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Abstract

Magnetic Compton scattering is already a well established technique for the
study of ferromagnetic and ferrimagnetic systems. The inelastic collision of a photon
with an electron is sensitive to the electron momentum density. Advances in X-ray beam
technology with the advent of dedicated synchrotron radiation facilities have allowed
the tunability of various properties of the X-ray beam, permitting the weak coupling
between it and the spin, S, of a target electron to be exploited. Recent developments
in sample conditions (field, temperature, pressure) have enabled previously forbidden
regions of the phase diagram of a sample to be explored. Other improvements in recent
years of the technique combined with novel analytic interpretation via ab initio band
structure calculations allow for a deeper understanding of the ground state to be gained
from magnetic Compton scattering experiments. In this thesis, the unique properties
of magnetic Compton scattering are applied to novel materials where high magnetic
fields are essential and in conjunction with modelling methods the underlying electronic
structure is elucidated.

In the first study, investigations into the spin density of two complex oxides,
Ca3Co2O6 and Sr3Ru2O7, are detailed. Ca3Co2O6 is a frustrated, metamagnetic spin
chain compound which has been the subject of much investigation over recent years.
From magnetic Compton scattering experiments, direct measurements of the bulk spin
moment (1.78 ± 0.05 µB for 2 T and 3.93 ± 0.05 µB at 5 T and 7 T) confirms the
existence of a large unquenched Co orbital moment (1.3 ± 0.1 µB at 7 T) together with
an oxygen spin moment of ≈ 0.9 µB. Calculations from which theoretical magnetic
Compton profiles have been extracted are shown to be in good agreement with the
experimental data and unexpectedly reveal the existence of a Fermi surface in this
system. With regards to the orbital occupation, molecular orbital calculations on the
active [CoO6]

9− cluster are discussed and from which the Co 3d orbitals responsible for
the observed electronic and magnetic behaviour are determined. It is suggested that it
is the double occupation of the dx2−y2,xy orbital that gives rise to the large unquenched
orbital moment. The second magnetic oxide, Sr3Ru2O7, is a model system displaying
a metamagnetic quantum critical point (MMQCP) reached via field tuning. Magnetic
Compton profiles were measured in the metamagnetic phase along three crystallographic
directions. LSDA band structure calculations and molecular orbital simulations were
performed to reveal the extent of Ru 4d - oxygen 2p hybridisation, and also determine
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the occupation numbers of the t2g and the eg orbitals in the metamagnetic phase. The
oxygen spin density is estimated to be approximately 30 - 31 % of the total spin density
in agreement with NMR results. Furthermore, a spin moment of 0.70 ± 0.03 µB in the
ab-plane reveals a negligible orbital moment.

In the second study, the magnetic properties of the uranium superconductors
UCoGe and UGe2 are presented. For UCoGe, the spin and orbital moments have been
measured using a combination of magnetic Compton scattering, X-ray magnetic circular
dichroism and density functional calculations to reveal the magnetic structure of this
ferromagnetic superconductor. The compound is found to be a weak ferromagnet with a
small total moment of 0.16± 0.01 µB. The uranium spin and orbital contributions nearly
cancel, it is suggested that the uranium 5f electrons carry a spin moment of ≈ -0.30 µB
and an opposing orbital moment of ≈ 0.38 µB, these values imply a strongly delocalised
system. This is in contradiction with recent ab initio calculations which over-estimate
the moments and also at odds with recent polarised neutron diffraction data. In addition
to the uranium magnetism, there exists a cobalt spin moment of 0.06 µB anti-aligned
to the uranium spin moment induced via significant 3d-5f hybridisation which could be
responsible for delocalising the uranium electrons. The magnetic structure is verified
by X-ray magnetic circular dichroism measurements at the cobalt L2,3 edges which
confirm that the uranium and cobalt moments are anti-parallel. For the compound UGe2,
temperature dependent magnetic Compton scattering experiments were conducted to
investigate the shape of the momentum density across the T ∗ phase transition. It is
this transition which is thought to play a vital part in the observed superconducting
phase. A change in the orbital occupation is inferred from a small shape change in the
magnetic electron distribution with increasing temperature, lending evidence to a Fermi
surface driven phase transition. For both compounds attention has been given to the
degree of delocalisation of the uranium 5f electrons.

In the final study, results from high temperature magnetic Compton scattering
experiments on the Invar alloys Fe1−xNix and pure nickel are presented. The aim of
which is to investigate any change in the shape of the spin-polarised momentum dis-
tribution. The spin density of Fe1−xNix (x = 0.20, 0.35 and 0.60) was first studied
over a temperature range 50 - 450 K to investigate a possible change in band structure
associated with the mechanism behind the Invar effect. The magnetic Compton profiles
for the non-Invar compositions (x = 0.20 and 0.60) show no significant change in the
electron momentum distribution in accordance with a similar study on Fe3Pt. However,
the Invar composition (x = 0.35) shows a distinct change between the high temperature
and low temperature momentum density. We associate this with a change in the electron
momentum density occupation. In addition, the size of the occupation change is shown
to be temperature dependent. The study into the spin density of pure nickel within the
ferromagnetic phase and at its Curie temperature revealed no change in the momentum
distribution in the two temperature regimes along the [100] crystal direction. This ob-
servation is in accordance with a Stoner-like reduction in the exchange-splitting with no
enhancement or reduction of the sp-hybridisation, but at odds with other experimental
work.

xv



Chapter 1

Introduction

1.1 Motivation

This thesis details investigations into a wide range of strongly correlated electron systems

using the technique of magnetic Compton scattering. Strongly correlated electrons are

a result of the interaction and competition between different properties of an electron

system, such as the spin, orbital or lattice degrees of freedom. The effect of strong

correlation between electrons can manifest itself as long range magnetic order, where

the electron spins of atoms align. Magnetism offers us a glimpse into the way electrons

interact with each other and their environment, it can be used as an indication of spin

ordering and electron localisation and as such is a vast area of research in solid state

physics.

Magnetism through the elements is a very varied phenomenon. The first row

of transition metal elements are characterised by their large electronic wavefunctions,

resulting in itinerant magnetism which is usually only composed of the spin of the

electron, S. As well as S, magnetism can arise from the motion of an electron, L,

which is generally negligible for the first row transition metals. Lanthanide magnetism

is characterised by the far more localised extent of their wavefunctions. This localised

behaviour typically leads to a large orbital moment as well as a spin moment [1]. Actinide
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magnetism lies somewhere in between, and can be localised or itinerant depending on

the crystal structure, often giving rise to interesting behaviour [2].

There are many techniques available to investigate the magnetic behaviour

of solids. There are bulk techniques such as superconducting quantum interference

device (SQUID) and vibrating sample magnetometry, these bulk techniques measure

the total magnetisation, J (J = S + L). Bulk techniques are used to investigate the

macroscopic behaviour of the magnetisation and are widely employed for the magnetic

characterisation of materials. To properly understand the physics of a strongly corre-

lated electron systems however it is vital to understand the behaviour of both spin and

orbital components.

As well as bulk magnetisation techniques there are also microscopic techniques

for probing magnetism on an atomic scale, used in particular to separate the total

moment, J, into the spin and the orbital contributions. Techniques to separate S and L

exist which utilise the scattering or absorption of a particle which possesses sensitivity

to an atoms magnetic moment. Neutrons possess a finite magnetic moment which

interacts with the magnetic moment of an atom. The neutron measures the total

moment, although in principle S and L can be extracted through further modelling. X-

rays are also sensitive to the magnetic moments of an atom and as such there are various

spectroscopies which can be used to separate S and L, this is due to the different ways

the way the photon E and B fields interact with the electrons spin and orbital degrees

of freedom. The magnetic probe used for the majority of the work in this thesis is the

X-ray magnetic Compton scattering technique which is based on the Compton effect.

1.2 The Compton effect

The Compton effect was discovered in 1923 [3] by Arthur Holly Compton and is the

observation that when a high energy photon is inelastically scattered from an electron,

the energy of the scattered photon is dependent on the angle of scattering, φ, and the
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p = 0

Figure 1.1: Schematic diagram of a photon being Compton scattered from a stationary electron.

initial energy of the photon, E1. The scattering is shown in Fig 1.1 and describes the

equation

E2 =
E1

1 + (E1/mec2)(1− cosφ)
. (1.1)

Here E2 is the energy of the X-ray after scattering, me the electron rest mass and c

is the velocity of light. Even the earliest experiments, however, showed a broadening

of the Compton peak at E2 beyond the instrument resolution. This broadening is due

to the motion of the electrons which Doppler broaden the scattered X-rays, as such,

Compton scattering not only provides information about the scattering process through

the energy shift E2 − E1, but also provides information on the electronic motion of

electrons in a sample.

The link between Compton scattering and the motion of the electrons makes it

possible to probe the momentum distribution of the electrons in a target. The momen-

tum distribution is an invaluable measurement as the shape reflects all of the electronic

wavefunctions in a crystal measured in momentum space.

An extension to the Compton technique is magnetic Compton scattering which

utilises a degree of circular polarisation in the X-ray beam. The circular polarised light

couples to the spin of an electron. Quantitative information on the spin moment of a
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sample, S, can be extracted precisely and without the need for further modelling. With

knowledge of the spin moment and a bulk moment from bulk techniques, a value of the

orbital moment, L, can be deduced, thus a complete picture of the magnetism may be

obtained.

The capabilities of the X-ray magnetic Compton technique are that:

• It provides an accurate measurement of the spin moment of a ferromagnetic sys-

tem, see Refs. [4, 5, 6] for prototypical examples.

• A magnetic Compton scattering experiment yields the electron momentum distri-

bution of spin polarised electrons through what is called the magnetic Compton

profile. With modelling techniques such as band-structure calculations and molec-

ular orbital calculations, the contribution each magnetic electron orbital makes to

the magnetic Compton profile can be determined. Understanding which electrons

contribute to the moment help explain the energy ordering of the orbitals and can

elucidate the underlying electronic structure. The electron wavefunction overlap

of one electron with another (hybridisation) is hugely important when discussing

the origins of magnetism in a crystal, this hybridisation is also reflected in the

shape of the magnetic Compton profile. See Refs. [7, 8, 9, 10] for prototypical

examples.

• There is no restriction on the sample conditions unlike other techniques described

in §4.4, for example, there is no requirement on a magnetic Compton scattering

experiment to be performed in ultra-high vacuum (UHV), at low temperatures,

or even have a clean surface. Single crystal, amorphous alloys, liquids are all

measured routinely. See Refs. [11, 12, 13] for prototypical examples.
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1.3 Organisation of the thesis

Detailed in this thesis are investigations into three classes of strongly correlated electron

systems where the magnetism is fundamental to understanding the underlying physics.

In chapter 2 the principles of magnetism in solid state physics are outlined with reference

to how magnetism is influenced by a crystal lattice. To fully understand magnetism in

a crystal lattice one must have an understanding of the underlying band structure of a

system which stems from the many body electron problem. Methods for investigating

the many body electron problem are introduced at the end of chapter 2.

In chapter 3, the theory of magnetic Compton scattering is detailed and how a

measurement of the magnetic electron momentum density is deduced from a magnetic

Compton scattering experiment is explained. In chapter 4, the experimental consider-

ations of how one can conduct a magnetic Compton experiment are detailed. Other

methods and complementary techniques are also introduced with reference to how they

are used in this thesis.

In chapter 5, magnetic Compton scattering studies on two strongly correlated

oxides are presented. The orbital occupation of the magnetic electrons in Ca3Co2O6

is first investigated with the aim of explaining the unusual electronic behaviour. Sec-

ondly, Sr3Ru2O7 is investigated to better understand which electrons take part in it’s

metamagnetic transition by determining the orbital occupation with molecular orbital

calculations.

In chapter 6, magnetic Compton scattering and X-ray magnetic circular dichroism

studies into a very rare phase of matter where magnetism and superconductivity coexist

are detailed. Spin and orbital moments in UCoGe are investigated to better understand

the localisation of the superconducting / magnetic electrons. This is followed by a

study into the temperature dependence of the shape of the magnetic Compton profiles

of UGe2 with an aim to determine the existence of a change in band structure across

the T ∗ magnetic phase transition.
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In the final experimental chapter, high temperature magnetic Compton scattering

experiments are presented. Firstly, in Fe1−xNix the shape of the magnetic Compton

profile is investigated to try to explain the observed magneto-elastic behaviour. In

nickel, the shape of the magnetic Compton profile is used to investigate the exchange

splitting at it’s Curie point to help resolve inconsistencies in previously published work.

Special mention is given to the sample heaters designed and made for these experiments.
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Chapter 2

Magnetism and electronic

structure calculations

This thesis details magnetic Compton scattering studies on a wide range of materials

possessing a huge variety of properties. The underlying physics of these properties is due

to the arrangement, motion and interaction of the electrons with each other and also

the lattice. The true behaviour of a materials electronic structure cannot be properly

appreciated without a firm understanding of quantum mechanics. The quantum nature

of electrons in solids is the subject of many solid state physics textbook (see for examples

Refs. [1, 14, 15]). The focus of this chapter is not to detail the entire history of solid

state physics but instead to highlight the important concepts fundamental to the work

described in this thesis.

The first section of this chapter outlines the origins of magnetism, summarising

how the quantum concept of exchange can dictate the arrangement of spins. The chapter

continues with how electrons in a real crystal environment have their magnetic properties

altered when compared to those of an ideal free atom. The chapter concludes by

introducing ways of predicting how a collection of electrons behave inside a crystal. As a

start, the many-body electron problem is introduced. Two methods for solving the many-

body electron problem used in this thesis are briefly outlined, an orbital wavefunction
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approach and density functional theory. Special mention is given to the applicability,

advantages and use of each of these methods and how these methods can be used to

elucidate the magnetism of a system.

2.1 Magnetism

2.1.1 Magnetic moments

Magnetism in atoms is associated with the total angular momentum J of an electron.

For a single atom with only one electron J = L + S, where L describes the orbital

angular momentum associated with the motion of an electron and S is the intrinsic spin

property.

There are various forms of magnetism in solids, some of which are shown in

Fig. 2.1. The simplest to understand is diamagnetism, which is exhibited by all materials.

The origin of diamagnetism can be understood with an appreciation of Lenz’s Law, which

states that when a magnetic field H is applied to an electronic system, the motion of

the orbitals act to create a field which opposes the field creating it. The result of this is

a magnetic moment only when there is a field applied. In a paramagnetic material the

electron spins are randomly oriented resulting in no net moment. With a field applied

however the electron spins align with the direction of the field thereby possessing a

moment in that direction. Again, this phenomena only contributes in the presence of

an applied field.

(a)                   (b)                  (c)                 (d)                 

Figure 2.1: The arrangements of spins in a (a) paramagnetic (b) ferromagnetic (c) anti-ferromagnetic
and (d) ferrimagnetic materials.
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In strongly correlated materials, inter-electronic interactions can result in the

collective phenomena of spontaneous magnetism which requires some level of “commu-

nication” between neighbouring spins to produce long range magnetic order. In 1907,

Pierre Weiss inferred from empirical evidence that the alignment of magnetic moments

in a ferromagnetic material was a result of an internal field, HW , that was proportional

to the magnetisation. Weiss deduced that at the temperature at which the sponta-

neous magnetisation disappears, TC (the Curie temperature) the thermal energy kBT

of atomic moments becomes greater than the interaction energy with the Weiss field

and the spontaneous magnetisation is destroyed. The origin of this “communication”

remained unsolved until Heisenberg and the advent of quantum mechanics [15].

2.1.2 Direct exchange

In 1928, Werner Heisenberg showed that magnetic ordering can occur due to the electro-

static interactions between magnetic moments. It is a manifestation of Pauli’s exclusion

principle and as such has no classical analogue. Direct exchange is described within the

Heisenberg model as

Ĥ = −
∑

ij

JijSi · Sj , (2.1)

where Ĥ is the Heisenberg Hamiltonian, Jij is the exchange energy constant and Sij

are the spin vectors for electron i and j. The idea behind the exchange energy is

that the Pauli principle imposes a constraint on the symmetry of the total electronic

wavefunction. Particles with half-integer spin such as electrons are called fermions and

must obey Pauli’s exclusion principle, that principle requires that upon the interchange

of two electrons positions, the total electronic wavefunction must change sign. The

total electronic wavefunction may be decomposed into the product of a spatial part and

a spin part. If the symmetry of the spatial part of the wavefunction is symmetric it

follows that the spin part must therefore be anti-symmetric and vice versa.
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If the value of Jij in Eq. 2.1 is positive a system will order ferromagnetically (spins

aligned Fig. 2.1(b)). A negative value of the exchange constant will, however, result in

an anti-ferromagnetic ground state (spins anti-aligned Fig. 2.1(b)). The situation for

two non-interacting electrons is clearly far too simplistic to explain magnetic order in

a real material. The important aspect to appreciate is that Pauli’s requirement for an

anti-symmetric wavefunction dictates the orientation of the spin and therefore imposes

an energy difference between the two alignments. This effect requires overlap between

the two neighbouring electronic wavefunctions and therefore cannot be used to explain

magnetic order in localised cases such is observed in 4f electron systems, which require

a different model to explain the magnetism.

2.1.3 Indirect exchange

The process of indirect exchange is valid where there is no orbital overlap between

aligned electrons, yet the spins still feel the effect of the neighbouring spins. There are

various kinds of indirect exchange, for example:

• Superexchange: superexchange occurs between two magnetic ions through the

interaction with a non-magnetic ion situated between them. Fig. 2.2 shows the

case of two magnetic d-metal ions (M) separated by a non-magnetic oxygen ion

with two free p-electrons (O). The arrangement of the oxygen p-electrons in this

                     O                      M

Figure 2.2: The case of two magnetic d-metal ions separated by a non-magnetic oxygen ion with two
free p-electrons.
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case dictates the ordering of the d-electron metal ions. If the two d-metal ions

were of the same spin then the overlap of those wavefunctions with the oxygen

wavefunctions would require that the oxygen p-electrons should be opposite to

the d-electron spin but the same as each other and thus unfavourable. Pauli’s

exclusion principle in this case would limit the movement of these p-electrons and

thus this configuration is higher in energy. An anti-ferromagnetic arrangement

however, allows for the p-electrons to be of opposite spin resulting in a lower

energy configuration. Rules to predict the spin configuration in transition metal -

oxygen ion systems were developed by Goodenough and Kanamori [16] and depend

on the M-O-M angle and the respective occupancies of the two metal ions.

• Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction: This exchange

type occurs in metals with localised magnetic moments. The exchange is me-

diated via the valence electrons. The radial dependence of the exchange energy

constant JRKKY is complicated and often leads to non-trivial magnetic struc-

tures. The RKKY interaction is observed in rare earths such as gadolinium as an

explanation to the observed magnetic ordering.

2.1.4 Magnetism in real systems.

The coupling between spin, orbital and crystallographic degrees of freedom in a magnetic

crystal can be very strong. As such, in a real magnetic system the crystal can greatly

influence the magnetic properties.

There are two energy scales that are of importance in a magnetic crystal: the

spin-orbit energy ESO and the crystal-field energy ECF. ESO is a consequence of rel-

ativistic quantum mechanics whereby the spin-orbit coupling links the motion of an

electron to its spin, and can be very large the heavier elements. ECF is the energy of

the interaction of the crystal field and the electronic wavefunction. It is dependent on

the geometry and the repulsion between the ions. The strength of the crystal field is

a particularly important factor in d-electron systems where the electron wavefunctions
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are large.

Roughly speaking it is the balance of these energy scales which determine how

a magnetic system behaves and leads to three situations:

• ESO < ECF: This is usually the case for 3d transition metals. The spatially

extended orbitals mean that the crystal field tends to arrange the energy levels

and are best explained in terms of ligand theory; a powerful model which considers

the ground state as molecular orbitals [17].

• ESO > ECF: This is usually the case for 4f metal ions, where due to the far

more localised radial extent of the wavefunction the magnetism is best described

through the coupling of spin and orbital momenta by the Russell-Saunders coupling

scheme [1].

• ESO ≈ ECF: This is usually the case for 5f electron systems. The competition

between the energy scales is often responsible for the novel behaviour observed in

actinide systems [18].

2.1.4.1 Quenching of the orbital moment

In a d-electron system where ECF is dominant, normally degenerate orbitals are split in

energy. The effect of removing this degeneracy of the otherwise free-atom like states

often results in a vanishing value for the orbital moment. The reason for this is that

the angular momentum operator for a wavefunction, L̂ , is a complex operator, L̂ =

−ih̄ × ∇. For the degenerate case (i.e. in the absence of a crystal field or spin-orbit

coupling), one is free to choose any complex linear combination of atomic wavefunctions

as a new basis - leading to a real, finite value for the orbital moment. However, in the

presence of a crystal field, the degeneracy of the orbitals is lifted - this forces one to

use real wavefunctions. Knowing the operator is imaginary but with the constraint

that the total angular momentum operator is Hermitian, the total orbital moment must

vanish [19].
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In order for a degenerate electron to generate an orbital angular momentum it

must be possible to transform the orbital it occupies into an entirely equivalent and

degenerate orbital by rotation [20]. In an octahedral environment the crystal field splits

the normally degenerate d-electrons into the t2g and eg subsets as shown in Fig. 2.3.

The t2g orbitals can be rotated into each other via 90◦ rotations thus possessing an

orbital angular momentum. The eg set, however, are different shapes and therefore

never possess an orbital angular momentum. There is one final consideration to make,

and that is based on Pauli’s exclusion principle which follows that a rotation can only

occur if the orbital is rotating into an unoccupied orbital.

In reality, the orbital angular momentum may not be completely quenched, be-

cause the spin-orbit coupling cannot always be ignored. This is usually the case for 4d

rare-earths and actinides, where the strength of the spin-orbit interaction can be compa-

rable to that of the crystal field energy. Additionally, by coupling the spin to the orbital

motion which is influenced by the crystal field, the spin-orbit coupling provides a linking

between the spin and the crystal axes. It is this coupling that drives the phenomenon

xy             xz              yz

Free atom                                  Octahedral crystal field 

eg3z2-r2        x2-y2

t2g

Δ

z

y x

Figure 2.3: Shapes and energy levels of the d-electron orbitals. Degenerate in the free-atom case and
split into t2g and eg levels when subject to an octahedral crystal field. Where ∆ is the crystal field
splitting energy.
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of magnetic anisotropy arises.

Methods for calculating the magnetic properties of crystals have been developed

over the decades. These methods solve the interacting, many body electron problem

introduced in the next section.
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2.2 Electronic structure calculations

The aim of this section is to detail two schemes for calculating the electronic structure

of materials. The basis of the problem stems from the need to solve the Schrödinger

equation for all the electrons in a unit cell inside a periodic potential determined by the

three dimensional positions of the atomic cores.

The Hamiltonian for a collection of electrons and nuclei is shown in Eq. 2.2. The

second line shows that the total Hamiltonian can be split into a kinetic term for electrons,

a potential term for the interaction of an electron with a nucleus and a Coulomb term,

sometimes called the Hartree term, which describes the interaction of one electron with

another. There is an additional term due to the kinetic energy of the nucleus, however

the Born-Oppenheimer approximation assumes that the ionic cores are frozen and thus

is not included.

Ĥ ψi(ri) = εiψi(ri) (2.2)

Ĥ = T̂el + Ûel−nucl + Û
C
el−el,

where εi and ψi are the eigenvalues and eigenfunctions of the many-body Hamiltonian

Ĥ . T̂el, Ûel−nucl and Û C
el−el are the kinetic energy operator for the electrons, the po-

tential energy of the electron-nuclei interaction and the Coulomb potential respectively.

The expanded Hamiltonian for the many body problem is therefore



− h̄

2me
∇2 + Ûel−nucl(r) +

1

4πǫ0

′
∑

j

∫

e2

|r− r ′|
∣

∣ψj(r
′)
∣

∣

2
d3r′



ψi(ri) = εiψi(ri),

(2.3)

where ǫ0 is the permittivity of free space. One complication to solving Eq. 2.3 is that

each electron has three spatial dimensions so that the problem scales vastly as the

number of electrons increases. Methods for approaching this many body problem are
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detailed below.

2.2.1 Wavefunction methods

The basic idea of the Hartree-Fock wavefunction method is that we require a solution

for the true eigenvalues εi and eigenfunctions ψi(r) of Eq. 2.3. We start by constructing

a total wavefunction of N , non-interacting particles of the general form

ΨHP(r1, r2...rN ) = χ1(r1)χ2(r2)..χN (rN ) =
∏

i

χi(ri). (2.4)

Eq. 2.4 is known as the Hartree Product and was introduced by D. R. Hartree

to calculate approximate wavefunctions and energies for atoms and ions . Whilst the

functional form is fairly convenient, it has at least one major shortcoming, it does not

describe the properties of electrons as required by quantum mechanics. It is known that:

• two electrons cannot occupy the same state

• for spin orbitals the sign of the wavefunction is required to swap under interchange

of their positions.

Neither of these conditions are satisfied by the Hartree Product. This was rec-

tified by Slater and Fock who proposed the Slater determinant [21]. It can be seen in

Eq. 2.5 in the determinant of χ1 and χ2, that if we interchange r1 and r2 the sign of

the wavefunction changes and that if r1 = r2 the determinant vanishes

ΨSD =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χ1(r1) χ2(r1) · · · χN (r1)

χ1(r2) χ2(r2) · · · χN (r2)

...
...

. . .
...

χ1(rN ) χ2(rN ) · · · χN (rN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.5)

The solutions to the Schrödinger equation for free atoms are the atomic orbitals,

which describe the radial and angular distribution of each atomic state. Molecular theory
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allows one to be able to describe each one electron molecular orbital (χi) as a linear

combination of atomic orbitals (LCAO). This combination allows for bonding/anti-

bonding effects to be accounted for and can be far more instructive for systems with

significant orbital overlap. In general, each one electron molecular orbital wavefunction

is described by

χi(r) =
∑

j

ci,jφi,j(r), (2.6)

where φj(r) is an atomic orbital (AO) (or basis function), and cj is the weighting

coefficient for each AO. In a quantum chemistry calculation the variational theorem

then minimises the self-consistent field (SCF) energy and calculates these coefficients

by solving

εSD =
〈

ψSD|Ĥ |ψSD

〉

. (2.7)

2.2.1.1 Basis sets

In a molecular orbital calculation the single electron wavefunctions are approximated by

a set of functions φ1(r), φ2(r), ..., φj(r). The molecular orbital is defined as χi(r) =

∑

j
ci,jφi,j(r). The aim is to find the expansion coefficients for each atomic orbital. This

single electron wavefunction, φj(r), is called a basis function. Although these functions

can vary greatly in their complexity, they all follow the general form

φi,j(r) = fn,l(r)Yn,l(θ, ϕ). (2.8)

Where fn,l(r) describes the radial dependence of the atomic orbital and Yn,l(θ, ϕ)

describes the angular dependence. The basis functions used in this thesis were obtained

from “The Basis Set Exchange” website 1. Tabulated triple zeta valence (TZV) basis

functions were used for cobalt in §5.2, and ruthenium in §5.3. Triple zeta sets use three

1https://bse.pnl.gov/bse/portal.
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basis functions per one electron AO. For ruthenium the core electrons were replaced

by an effective core potential (ECP) as it is assumed that the core electrons are not

important for describing the bonding. This helps to reduce the computational effort.

2.2.1.2 Cluster calculations

Computational schemes have been developed over the past few decades for calculating

the quantities in Eq. 2.7. Molecular orbital calculations presented in this thesis were per-

formed using the quantum chemistry program gamess, in which the molecular orbitals

are computed via the Hartree-Fock scheme. For a full description see Ref. [22].

For the cases described in later chapters (§5.2 and §5.3), the magnetically active

part of the unit cell is represented by ab intitio clusters i.e. for Ca3Co2O6 the magnetic

cluster is the [CoO6]
9− cluster and for Sr3Ru2O7 a [RuO6]

8− cluster is used. This

immediately places a limitation on the wide scale applicability of the approach. If the

system is known to have many magnetic interactions via many different crystallographic

sites, the problem becomes too complex to solve through this method. The reasonable

assumption that magnetic effects are due to a single crystallographic site and coordinated

cations has to be made. This is simply the magnetic ion and its nearest coordinated

oxygens. These oxide clusters are called the ab initio atoms and are the only atoms in

the calculation to be expanded by use of a basis set.

The other atoms in the unit cell are treated as point charges situated on crys-

tallographic sites creating a crystal potential. This potential acts to affect the spatiality

of the ab initio atomic wavefunctions. The value of the point charges was the formal

charge of the ion in question except on the sides, edges and corners of the unit cell

where the charges were a half, quarter and an eighth respectively of their formal charge

ensuring charge neutrality throughout the crystal.
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Figure 2.4: Scheme for the calculation of directional and spherically averaged Compton profiles from
orbital contributions, where j is the orbital index. ||2 stands for square modulus, FT for Fourier or Fourier-
Dirac transformation, HT for Hankel transformation, AC for autocorrelation, Proj. for projection, Int.
for integration and Diff. for its reverse operation. Adapted from Ref. [23]

2.2.1.3 Representation in momentum space

The important point for this work is that real-space distortions to the electron density

(e.g. hybridisation, bonding/anti-bonding effects) are reflected in momentum space.

Thus a measurement in momentum space is just as instructive as a measurement in

real space. The relationships between different quantities in real space and momentum

space are summarised in Fig. 2.4.

The quantities of interest here are χi(r), these are each of the molecular orbitals

involved in the magnetism, this quantity represents the molecular orbital wavefunction

in real space. A 3D Fourier transform takes this quantity into momentum space, χi(p),

χi(p) =
1

(2π)3/2

∫∫∫

χi(r) exp(−ip · r) dr. (2.9)

To produce an electron momentum density, we take the modulus square of χi(r)

19



to represent ρi(p),

ρi(p) = |χi(p)|2 . (2.10)

Projection of ρi(p) along a chosen vector q results in the Compton profile Ji(q)

for the i-th molecular orbital,

Ji(q) =

∫∫∫

ρi(p)δ

(

p · q
q

− q

)

dp. (2.11)

This method of producing theoretical Compton profiles has been demonstrated

by a few authors; for examples see Refs. [9, 7, 10]. In real terms the way the real-space

wavefunctions are turned into Compton profiles is as follows: the real-space wavefunction

was sampled around the ab initio. atoms for each molecular orbital (MO) of interest.

After careful testing the size of this box and the real-space increment turned out to be

very important to the meaning and the shape of the Compton profile. Special care was

taken to ensure the electron density was effectively zero at the edges of the box. A 99

× 99 × 99 box of 20 × 20 × 20 Å was sufficient to adequately describe the momentum

density. The matrix of 3D probability was then Fourier transformed using the fftn

routine in MatlabTM. The resultant momentum matrix was re-ordered to ensure that

the 3D momentum density was symmetric about the central matrix element so that

any arbitrary rotation may be performed without moving the central point. The square

modulus of this matrix was then taken.

To extract a Compton profile from this matrix, rotations were performed using

the Euler angles α, β and γ so that the axis required was aligned along an integration

axis. The integration was then performed by summing the matrix elements perpendicular

to the axis, the resultant line shape is the Compton profile for that MO.

Once each of the Compton profiles for the MO’s of interest were calculated, they

were normalised and interpolated onto the experimental pz scale. Each orbital had it’s

own weighting coefficient a1, a2, ..., aN , for N orbitals. The total Compton profile is
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therefore the sum over N MO’s, so that

Jtotal(q) =
N
∑

i

aiJi(q) (2.12)

The sum of these orbitals was compared to the experimental data using a

weighted χ2 routine. The weighted χ2 for each crystal direction was calculated and

the sum was minimised by altering the coefficients ai. Provided the experimental data

were normalised to the total spin moment these coefficients are then the spin densities in

each molecular orbital, thus allowing the contributions to the spin moment to be found.

Further analysis can provide details as to the metal ion and oxygen contribution to the

molecular orbital and thus the spin moment.

2.2.2 Density functional theory

The important details of density functional theory (DFT) are now addressed as a way of

solving the many body electron problem introduced earlier. DFT differs in its approach

to solving the many-body electronic problem in §2.2 (Eq. 2.3) in it’s basic assumption

which states that the ground state energy is a unique functional of the electronic charge

density, ρ(r).

In 1964, Hohenberg and Kohn proposed a theorem which stated that the total

energy of a system can be formulated as a functional of the charge density [24]. Soon

afterwards, W. Kohn and L. J. Sham developed self-consistent eigenvalue equations

similar to those of the Hartree-Fock method which could be solved exactly [25]. By

accounting for electronic correlation, DFT provides an advantage over the Hartree-Fock

method described in §2.2. If we consider a set on non-interacting particles, φj , then the

total electronic charge density is

ρ(r) = −e
occ
∑

j

φ∗j (r)φj(r). (2.13)

The total ground state energy, E[ρ], is then formulated as a functional of the
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charge density given in Eq. 2.13 as the sum of the Hartree-Fock energy approximation

plus an additional exchange-correlation term.

E[ρ] = T [ρ] +

∫

Vext(r)ρ(r) dr + VC[ρ] + EXC[ρ], (2.14)

where Vext is the external potential on the system, T [ρ] the kinetic energy and EXC is

the exchange-correlation energy.

DFT is an exact method except for the EXC term, which is a non-local attractive

electron-electron interaction which cannot be evaluated. Modeling the exchange and

correlation interaction is the difficulty in DFT and approximations have to be made to

the energy functional. The simplest approximation is the local density approximation

(LDA) - whereby the energy is formulated according to the exact exchange of a uniform

electron gas. More complex functionals may often be more appropriate, for example the

generalised gradient approximation (GGA) - which takes into account not only the value

of the electron density, like the LDA, but also its first derivative.

It is assumed that the electronic charge density that minimises the energy of the

overall functional is the true ρ(r). The principle that the charge density is the basic

variable and the electron charge density is key to all properties reduces the 3N variable

problem of N electrons with three spatial coordinates to one variable ρ(r) problem with

three spatial coordinates, this greatly simplifies the calculation.

Whilst the Kohn-Sham equations formed the fundamental formalism and basis

behind DFT, it was left to others to develop schemes to solve it. The main branches

used for analysis in this thesis are the Kohn-Korringa-Rostiker (KKR) approach and the

full potential linearised augmented plane wave (FLAPW) approach. The reason for their

usage will be described below, but for a full review of the theoretical background on

both these methods consult Ref. [26] and Ref. [27] respectively.
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2.2.2.1 KKR

For the calculations of ground state properties such as magnetic moments and densities

of state the Munich spr-kkr package was used [26]. This code solves the Dirac

equation through the KKR Greens function formalism. The code is written with the

aim of calculating spectroscopic properties of magnetic solids, and as such can be used

to compare experimental techniques such as X-ray absorption spectroscopy (XAS), X-

ray magnetic circular dichroism (XMCD) and importantly for this thesis the electron

momentum density distributions of electrons in a crystal. The calculated profiles can be

decomposed into site specific and even orbital specific distributions. This is invaluable

for analysing an experimental profile as it can describe where the magnetism is coming

from.

The KKR formalism lends itself well to the calculation of disordered alloys

through the application of the coherent potential approximation (CPA). The calcu-

lations shown here are based on the atomic sphere approximation (ASA), whereby the

charge density and potential, V (r), are described inside a spherical volume called a

“muffin-tin” but outside the muffin tin radius, RMT, the potential is constant. As such

any information in the intistitial region, I is lost.

V (r) =











V (|r− R|) r < RMT

Constant r ∈ I
. (2.15)

The use of the spr-kkr code in this thesis is in §5.2 for Ca3Co2O6 in decon-

structing the magnetic Compton profile and investigating the metallic nature, UCoGe for

deconstructing the moment and producing the magnetic Compton profile §6.2 and for

calculating the spherically averaged Compton profile of the disordered alloy Fe0.65Ni0.35

in §7.2.
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2.2.2.2 FLAPW

For full potential (FP) calculations, the elk code was used [27]. This is a method

for calculating the electronic structure of a periodic crystal using the linear augmented

plane wave method [28]. Inside the atomic muffin tins the wavefunctions are described

as atomic partial waves. The energy dependence of the basis partial waves leads to

a non-linear eigenvalue problem. This was computationally difficult to solve as energy

bands were found by root finding. However, the equation was linearised so that the

eigenvalues can be obtained with one diagonalisation.

The code is a full potential code, which lifts the restriction of the ASA; inside

the muffin-tin the wavefunction is described by atomic partial waves in a given spherical

potential, but outside the muffin tin the potential is fully defined as a plane wave basis

set matched at the muffin tin boundaries,

V (r) =















∑

LM

Vn,l(r)Yn,l(θ, φ) r < Ra

∑

K

VKe
iK·r r ∈ I

. (2.16)

The applicability of the code to the work presented in this thesis is the inclusion

of the self interaction correction, local spin density approximation + U (LSDA + U)

formalism which the spr-kkr code lacks. The LSDA + U method takes into account the

interaction of an electron with, not only the crystal potential, but also its own potential.

This is extremely important when dealing with localised, strongly correlated electron

systems. The codes ability to deal with disordered alloys is limited to using a supercell,

which is not always appropriate for lightly doped systems. An extension to the code

has been written to calculate the full potential electron momentum density distributions

from potentials in elk by D. Ernsting and S. B. Dugdale at Bristol University. This

code is used in this thesis for Ca3Co2O6 in §5.2 for investigating the U dependence.
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Chapter 3

The theory of Compton scattering

There are three distinct regimes in which electromagnetic radiation interacts with matter.

For low energies (∼ 102 eV) the photoelectric effect is dominant. For very high energies

(∼ 106 eV) particle pair production is dominant. The Compton effect is dominant in

the intermediate regime (∼ 103 eV). The cross sections shown in this chapter are for

the scattering of photons in the inelastic, Compton regime. They are based on the

conservation of energy and momentum and initially are treated for stationary electrons.

3.1 Compton scattering

Although many important features of Compton scattering can be explained simply by

the kinematics shown in Fig. 3.1, a true understanding of the technique of magnetic

Compton scattering requires a consideration of the scattering cross-section.

Compton scattering is the inelastic scattering of a photon from an electron. The

scattered photon loses energy to the scattering electron. Compton showed this to be

dependent on the incident angle and the incident energy. These observations can be

explained if the electromagnetic radiation is transferred by photons carrying momentum,

p = E
c and if the photons are scattering off individual electrons, which behave as free

particles. Compton derived the energy softening (wavelength shift) in the formula which
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Figure 3.1: (Main) Experimental Compton scattering spectrum. (Inset) Compton scattering of a photon
from a stationary electron. The terms are defined in the text.

now bears his name:

∆λ =
hc

E2 − E1
=

2h

mec
sin2

φ

2
, (3.1)

where ∆λ is the change in wavelength E1 and E2 are photon energies before and after

the collision respectively and φ is the angle of scattering and have meanings depicted in

Fig. 3.1 (Inset). Eq. 3.1 is written in terms of the initial and final energies, E1 and E2,

E2 =
E1

1 + (E1/mec2)(1− cosφ)
. (3.2)

Where me is the electron rest mass. Eq. 3.2 is the case for a stationary electron;

the resulting spectrum for the scattered photons would be a sharp peak of back-scattered

photons at E2 given by the Compton equation, Eq. 3.2. The terms are shown in a typical

energy spectrum of high energy X-rays in Fig. 3.1. Aside from being a ratification for
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Figure 3.2: Angular variation of the Klein-Nishina scattering cross-section for four selected incident
beam energies: low (5 keV), high (5000 keV) and two energies used for studies in this thesis (90 keV
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the then new quantum theory of light, the Compton scattering technique shows how

X-ray interact with matter at high energies.

3.1.1 The Klein-Nishina cross-section

In 1929, Klein and Nishina performed a quantum electrodynamical calculation of the

Compton scattering cross-section [29]. It was shown that the cross-section for scattering

of an unpolarised photon is given by

(

dσ

dΩ

)

KN

=
1

2

(

e2

mec2

)2(
E2

E1

)2(E1

E2
+
E2

E1
− sin2 φ

)

, (3.3)

where e, me and c is the charge on an electron, electron rest mass and the speed of light

respectively. The solutions of the Klein Nishina cross-section for four energies are shown

in Fig. 3.2. E1 = 90 and 220 keV are included as these are the energies used for work

in this thesis. Fig. 3.2 shows that forward scattering (scattering in the 0◦ direction) is

increasingly favoured as the energy of the incident photon is increased. For low energies

photons, the Klein-Nishina cross-section reduces to the classical Thomson cross-section,

which is symmetric for forward and back-scattering geometries. The Klein-Nishina cross-

section describes the nature of the scattering process of a high energy X-ray with an
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electron, but is devoid of any information about the target electron.

3.1.2 Compton scattering and electron momentum density

Compton scattering was used in the early part of the twentieth century as a ratifica-

tion of the quantum theory of light. However, even the earliest experiments showed

that the Compton peak was broader than expected. Compton associated this with the

experimental resolution. It was quickly suggested by J. W. M. DuMond [30] that this

broadening was not resolution based, but instead a result of the motion of the elec-

trons involved in the scattering. The line broadening is because the scattered photon

is Doppler broadened along the direction of momentum transfer. DuMond went on to

show that the energy spectrum of scattered photons is directly related to the momentum

distribution of the electrons in the scatterer.

From DuMond’s reasoning, it was shown that the secondary photon energy was

not only dependent on the primary energy and scattering angle, but also on the com-

ponent of the initial electron momentum, parallel to the scattering vector. Referring to

Fig. 3.1 initial and final energies can be equated,

E2 − E1 =
1

2me
[p+ h̄(k1 − k2)]

2 − |p |2
2me

=
h̄2q 2

2me
+
h̄q · p
me

, (3.4)

where k1 and k2 are wavevectors for the incident and scattering photons respectively

and q = k1 − k2 is the scattering vector. By inspection of Eq. 3.4, there exists not only

the fixed Compton shift, but a term which is linearly dependent on one component, pz,

of the momentum of the electron. For target electrons where the momentum density

distribution is given by ρ(p), the component of the momentum parallel to the scattering

vector, pz is the so called Compton profile

J(pz) =

∫∫

ρ(px, py, pz) dpxdpy. (3.5)

It can be seen as a measurement of the probability density of all the electronic
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wavefunctions in a sample, albeit in the rather unfamiliar domain of momentum space.

As such a Compton scattering experiment can be highly instructive in the identification

of states in a target.

A description of how electronic states are related to the electron momentum

distribution (EMD) is described below. Through the Bloch theorem, Ψj,k(r) may be

written as a product of a real-space wavefunction and a Bloch function describing the

periodicity of the crystal lattice,

Ψj,k(r) =
1√
V
uj,k(r)exp(ik · r), (3.6)

because the Bloch function possesses the periodicity of the reciprocal lattice, it can

therefore be can expanded in terms of the reciprocal lattice vector G so that

Ψj,k(r) =
1√
V

∑

G

aj,k(G)exp(iG · r)exp(ik · r). (3.7)

Because of the reciprocal relationship between real space and momentum space and

in the independent particle approximation, the spin independent momentum density of

Bloch electrons is then the square modulus of the Fourier transformed wavefunction, so

that

ρ(p) = 2
∑

j,occ

∣

∣

∣

∣

∣

∣

∫

V

Ψj,k(r)exp(−ip · r) dr

∣

∣

∣

∣

∣

∣

2

(3.8)

= 2
∑

j,k,G

θ(Ef − Ek,j) |aj,k(G)|2 δ(p− k− G)

where θ(Ef − Ek,j) is a step function expressing the sum over all occupied states,

i.e. it is one for Ek,j ≤ Ef and zero otherwise. Contributions for higher-momentum

components, that is those with wavevector greater than the first Brillouin zone, are

expressed by delta functions. The intensities of these components are determined by
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the Fourier components aj,k(G) of the real-space wavefunctions. Eq. 3.8 demonstrates

that the EMD is composed of plane wave contributions at not only p = k, but also at

p = k+ G. This highlights the difference between reciprocal space, k, and momentum

space p, where contributions above the first G are called higher momentum components.

For a more rigorous derivation, one involving spin and for relativistic energies

approaching mc2, quantum electrodynamics must be used which treats electron mo-

mentum and spin on an equal footing and is the subject of the next section.

3.1.3 Charge Compton scattering cross-section

How is the Compton integral in Eq. 3.5 determined in a scattering experiment? In a

Compton scattering experiment the quantity measured is the double differential scat-

tering cross-section (DDSCS); this is the flux scattered into a certain solid angle, Ω,

with a certain energy, E2. Following the logic of Ref. [31] the DDSCS is written as the

product of a term describing the nature of the scattering, for which the Klein-Nishina

cross-section for high X-ray energies may be used, (dσ/dΩ)KN, and a term describing

the nature of the target, the charge response function S(q, E),

d2σ

dΩdE
=

(

dσ

dΩ

)

KN

S(q, E). (3.9)

The charge response function is determined through the Born approximation,

which is valid in cases where the energy of the interaction is much smaller than the

energy of the scattering photon [32]. The scattering process can then be described as

a transition between initial and final momentum states given by Fermi’s Golden Rule.

Assuming the perturbation of an electromagnetic wave acting on an electron within the

Born approximation, the result for the charge response function is given as,

S(q, E) =
∑

f

∣

∣

∣

∣

∣

∣

〈

f

∣

∣

∣

∣

∣

∣

∑

j

exp (iq · rj)

∣

∣

∣

∣

∣

∣

i

〉

∣

∣

∣

∣

∣

∣

2

δ(E2 − E1 − ω2). (3.10)

where the δ-function restricts the summation to those states accessible with energy
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conservation. The exponential gives the phase of the j-th electron, and the sum is

carried out over all j electrons.

The Compton profile from the double differential scattering cross-section can

now be obtained with one further approximation: the impulse approximation. This is

the assumption that the scattering occurs impulsively. In other words, the potential seen

by the target electron is the same immediately before and after the interaction. This

is the case for high energies where the incident X-ray is much larger than the binding

energy of the electrons. Under this approximation the charge response function reduces

to an integral over the ground state momentum,

S(q, E) =

∫

ρ(p)δ

(

ω − k2

2me
− k

me
pz

)

dp, (3.11)

leading to our DDSCS being of the form,

d2σ

dΩdE2
=

(

dσ

dΩ

)

KN

E2

E1

me

|q |

∫∫

ρ(p) dpxdpy. (3.12)

In this way the measured energy spectrum is sensitive to the ground state mo-

mentum density measured along the scattering vector. This cross-section is derived for

an unpolarised photon interacting with an electron, neglecting spin. In the next section,

consideration is given to the cross-section once spin effects are included.
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3.2 Magnetic Compton scattering

The technique of magnetic Compton scattering differs from charge Compton scattering

described above in its ability to separate the momentum distributions of electrons with

unpaired spins, i.e. the magnetic electrons. This is possible due to a spin dependent

interference term in the scattering cross-section. With high energies, the scattering

becomes magnetic and sensitive to the electron spin vector and the degree of photon

circular polarisation.

3.2.1 The spin dependent Compton scattering cross-section

The next stage in the derivation of the Compton cross-section investigated the de-

pendence of the cross-section on the spin of the electron, and whether there was any

magnetic contribution.

In 1970, Platzman and Tzoar derived scattering factors in the cross-section for

a moving electron including spin [33]. The resulting cross-section contains three terms.

There is a term which leads to the Klein-Nishina charge cross-section described in §3.1.1.

The two remaining terms have spin dependencies iA(B ·S) and B2S2. The second term

is what is measured in magnetic diffraction, however, in inelastic scattering, this B2S2

term is not measured, this is because B ∼
(

ω1/mc
2
)

A and thus generally ignored [34].

Therefore, the second term must be used, the “interference” term between the charge

and magnetic scattering, the size of which scales with the energy transfer.

The first challenge is engineering this interference term to be a real measurable

quantity. A complex component to the incoming X-ray beam can be obtained by using

a beam which has a degree of ellipticity, thus resulting in a real value for the iA(B · S)

term. It is the DDSCS quantity that is measured in a magnetic Compton scattering

experiment. So like Eq. 3.12, but including the magnetic scattering term, our DDSCS

becomes composed of two scattering functions,
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d2σ

dΩdE2
=

me

2|q|
E1

E2

[

(

dσ

dΩ

)

charge

J(pz) +

(

dσ

dΩ

)

mag

Jmag(pz)

]

, (3.13)

where the cross sections, (dσ/dΩ)charge and (dσ/dΩ)mag are the Klein-Nishina cross

sections for a polarised photon scattering from a stationary electron [35],

(

dσ

dΩ

)

charge

=
r2e
2

(

E2

E1

)2
[

1 + cos2 φ+ PL sin2 φ+
q

mc
(1− cosφ)

]

, (3.14)

(

dσ

dΩ

)

mag

=
r2e
2

(

E2

E1

)2 [

(cosφ− 1)PC Ŝ · (k1 cosφ− k2)

mec

]

,

PL and PC are the Stoke parameters for linear and circular polarisation respectively

and Ŝ is the unit spin vector. Shown in Fig. 3.3 is the ratio of the spin to the charge

scattering cross-sections, the figure shows that not only does the spin scattering scale

with the incident energy, but it also greatly favours back scattering geometries.

Once coupled to the spin vector, a method is needed for isolating Jmag(pz).

With reference to Eq. 3.13 if the sign of the spin dependent term can be reversed then

the Jmag(pz) term can be obtained. This reversal can be achieved either by flipping

the photon polarisation (through PC) or by reversing the magnetisation of the sample

(Ŝ) with an external field. The second technique is preferable as to change photon

polarisation at the European Synchrotron Radiation Facility (ESRF) requires moving the

entire set-up above and below the synchrotron beam orbit making data normalisation

difficult. The resulting measurement is a projection of the momentum density of only

those electrons with unpaired spins.

As with the charge scattering explained above, one can define the projection of

spin-polarised electron momentum onto the scattering vector as the magnetic Compton

profile (MCP) (sometimes called the spin-polarised Compton profile). The magnetic

Compton profile (MCP) can be defined as,
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Figure 3.3: Ratio of magnetic to charge scattering as a function of scattering angle and incident energy.
Adapted from Ref. [36]. Note that the spin scattering is zero at perpendicular scattering geometries.

Jmag(pz) =

∫∫

[

ρ↑(p)− ρ↓(p)
]

dpxdpy, (3.15)

µspin =

∫

Jmag(pz) dpz. (3.16)

Here ρ↑(p) and ρ↓(p) are the momentum-dependent majority and minority spin

densities, respectively. The area under the MCP (Eq. 3.16) is equal to the number of

unpaired electrons, i.e. the total spin moment per formula unit in Bohr magnetons. This

is the main result of performing a magnetic Compton scattering experiment; it provides

an accurate, unambiguous measure of the spin moment of a sample without any need

for further modeling.

The existence of a magnetic Compton profile using circularly polarised light was
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experimentally ratified by Sakai and Ôno [37] who used a millikelvin cooled, oriented

β-emmiting source to provide a low flux, circularly polarised γ-ray source. The first

synchrotron based magnetic Compton scattering experiment was performed by Cooper

et al. [38]. This experiment highlighted the anisotropy of magnetic electron momentum

distribution in iron. Since the 1990s, magnetic Compton scattering has been performed

regularly at synchrotron facilities as a measure of spin-polarised electron momentum

densities, for various examples see Chapter 10 of Ref. [31].

3.2.2 Identification of magnetic species

Identification of the constituent magnetic contributions is made possible in magnetic

Compton scattering because of the different characteristic line shapes of various elec-

tronic states. Tightly bound core electrons with greater momenta produce a greater

Doppler shift resulting in a broader profile. The delocalised, slower moving valence
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Figure 3.4: The experimental magnetic Compton profile of SmMn2Ge2. Using RHF predictions for the
Mn 3d and Sm 4f moment. Adapted from [39].
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electrons produce narrower Compton profiles. This is demonstrated in Fig. 3.4, where

the experimental MCP for SmMn2Ge2 is deconstructed using RHF profiles of Mn 3d

and Sm 4f, as to extract a spin moment for each magnetic species in the sample. The

discrepancy at low momentum is expected in the free-atom approximation. Vast im-

provements are obtainable when modeling is performed beyond the free atom limit with

molecular orbital theory or density functional theory, as is the subject of §2.2.

3.2.3 Sensitivity to the orbital moment

Eq. 3.14 shows that the cross-section defines a contribution from the spin angular mo-

mentum component, Ŝ. But it is known from §2.1.1 that magnetism arises from not

just the intrinsic Ŝ, but also the motion of the electron cloud as defined by its orbital an-

gular momentum L̂. The contribution the orbital moment makes to magnetic Compton

scattering is based on the impulse approximation on which the relativistic cross-section

is founded. The impulse approximation states that the interaction time between the

photon and the electron is negligibly short. The motion of an electron is not defined

instantaneously, so it is assumed that the orbital moment does not contribute to the

scattering.

This insensitivity to the orbital moment has been experimentally ratified by

Cooper et al. in which a magnetic Compton scattering study of HoFe2 was under-

taken [40]. HoFe2’s magnetisation is mainly derived from its orbital motion. In one ge-

ometry where the scattering vector is perpendicular to the magnetic field, the magnetic

Compton scattering signal is proportional to
{

Ŝǫ+ L̂(1 + ǫ)
}

1. The measurement

should be only sensitive to the orbital contribution. It was shown that no magnetic

Compton profile was observed. However, a more common geometry with the magnetic

field parallel to the scattering vector sensitive to
{

Ŝ(2 + ǫ+ L̂)
}

showed a large mag-

netic Compton profile. This is evidence that the magnetic Compton profile is sensitive

solely to the spin contribution of the moment.

1ǫ = (E1 − E2)/E1 ∼ 0.1.
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Chapter 4

Experimental method

4.1 Introduction

This chapter outlines the various experimental techniques used in the gathering of data

for this thesis. It begins with a discussion of the way X-rays are generated at third

generation synchrotrons (where all X-ray data in this thesis are taken) and describes

the ways of tuning these X-rays to meet the conditions required for a magnetic Comp-

ton scattering experiment. The components used in a magnetic Compton scattering

experiment are then introduced.

Once data has been taken, a good understanding of the corrections which need

to be made to the raw energy spectrum in vital. Proper treatment of the corrections

needed is vital for the interpretation of the shape of the profile and the size of the spin

moment.

The chapter continues with notes on complementary techniques, in particular

techniques that yield similar information to magnetic Compton scattering (MCS), high-

lighting their advantages and disadvantages. The chapter concludes with details of

characterisation methods used in this thesis, bulk magnetisation methods and X-ray

alignment. Special mention is given to a new sample holder designed and created for

this thesis that can guarantee an alignment precision of better than 0.5◦.
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4.2 Magnetic Compton scattering at an X-ray synchrotron

facility

Magnetic Compton scattering has only become a viable technique in the study of mag-

netisation densities since the advent of third generation synchrotron radiation facilities.

The properties necessary i.e. high energies, tunable polarisation and high brilliance are

all accessible at synchrotron radiation facilities.

4.2.1 Synchrotron radiation

Synchrotron radiation is generated when a charged particle accelerates. In a synchrotron

radiation facility, electrons are generated by an electron source and accelerated in the

first instance by a Linac (linear accelerator). These electrons are then injected into a

booster ring where they reach relativistic speeds just shy of the speed of light and with

energies typically between 3 - 8 GeV. These electrons are then injected into the storage

ring. The orbit of the electron beam is maintained in the ring by bending magnets that

apply a magnetic field to the electron beam. The electron beam is “steered” into further

insertion devices/optics around the storage ring so that they can be tuned to the beam

parameters needed by the experimental user.

4.2.2 Insertion devices

As most of the data presented in this thesis come from ID15A beamline at the ESRF, the

setup relevant to that beamline will be discussed. ID15A obtains high energy photons

from an asymmetric multipole wiggler (AMPW). A mulitipole wiggler is a device that

sits in the stream of the electron beam, an array of magnets are positioned above and

below, altering the beam course. The “wiggling” of the electron beam by the wiggler

results in a cone of X-rays being emitted in the forward direction. The magnetic field

profile of a conventional wiggler is shown in the red line of Fig. 4.1. For a full description

of the physics of wigglers and undulators consult Refs. [41, 42].
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Figure 4.1: Magnetic pole and magnetic field profile of a conventional multipole wiggler (red) com-
pared with an asymmetric multipole wiggler (blue). The two profiles are obtained by using different
arrangements of magnets in the wiggler, adapted from Ref. [31].

Integral to the technique of magnetic Compton scattering is the production of

light with a degree of circular polarisation. In a conventional wiggler right-handed and

left-handed light cancel, thus resulting in no net circular polarisation. To overcome

this cancellation problem one can use an asymmetric multipole wiggler. An asymmetric

wiggler no longer has a symmetric magnetic field profile in the longitudinal direction,

rather, it has a large positive field over a short distance followed by a smaller negative

field over a longer distance designed as to have a net zero integrated field per period

(see Fig. 4.1). In this case, the circular polarisation contributions of the two poles are

not equal and so although there still exists a cancellation, there is a resultant net circular

polarisation off-axis.

The increase of circular light as one moves off-orbit is opposed by a Gaussian-like

fall off of the photon flux. A figure of merit is therefore used to obtain maximum flux

and still obtain a decent degree of circular polarisation to maximise the magnetic signal.

The off-axis or “inclined-view” method is used for all magnetic Compton scattering

experiments on ID15A at ESRF. Hard circular polarised light can also be obtained from

an eliptical wiggler as installed on BL08w, SPring-8. In an elliptical wiggler a periodic

displacement of the field is introduced above and below the electron beam, forcing the

beam to travel in an eliptical path, see Ref. [31].

At the ESRF, the beam from the bending magnet passes into a 7 pole 1.84

T AMPW ((a) in Fig. 4.2). The critical energy of AMPW is 44 keV and the useful
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Figure 4.2: Setup of a magnetic Compton scattering experiment. The purpose of each component
is described in the text. (a) the AMPW insertion device. (b) Primary slits. (c) SiC absorber. (d)
Monochromator. (e) Secondary slits. (f) Monitoring diode. (g) 9 T magnet. (h) 13-element solid state
Ge detector. Adapted from Ref. [43].

spectrum extends up to 500 keV. At the ESRF, an X-ray beam a few milliradian above

or below orbit is typically selected with the primary slits ((b) in Fig. 4.2). The circular

beam then enters the optics hutch for further tuning.

4.2.3 X-ray optics

Most of the low energy X-rays are removed by a rotating water-cooled SiC disc ((c)

in Fig. 4.2). The high energy beam is monochromated by the (311) reflection of a Ge

crystal monochromator ((d) in Fig. 4.2) which provides an incident energy of 220 keV.

Since the flux at these high energies is relatively low, and the Bragg reflection is very

selective, the monochromator is slightly bent as to ’smear’ the energy range of the Bragg

reflected beam. The effect of this is to broaden the momentum resolution, but as will be

discussed later, this is not the main source affecting resolution. The monochromated,

off-orbit beam is cut down to a shape and size appropriate for the sample, and resulting

in a count rate that is reasonable (∼ 6000 cps under the Compton peak) by secondary
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Figure 4.3: Schematic diagrams of the Spectromag cryomagnet used for magnetic Compton measure-
ments on ID15 A

slits ((e) in Fig. 4.2). This beam is then taken into the experimental hutch.

4.2.4 9 T superconducting magnet

The sample used for Compton scattering is located between the poles of a supercon-

ducting split-pair magnet (Fig. 4.3, (g) in Fig. 4.2) with a maximum possible field ±

9 T. The sample is baffled to a variable temperature insert (VTI) where its temperature

can be varied from 1.3 - 300 K (700 K with custom made furnace insert, see §7.3). The

magnetic field is aligned along the scattering vector and the appropriate direction for

the sample is orientated.

As the X-rays used are very high energy, the samples need not be open to the

storage ring and thus can travel in air (as the attenuation of air is negligible for high
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energy photons). X-ray access to the sample is through 85 µm thin aluminum windows.

4.2.5 Detectors

The multi-element detector available at the ESRF is comprised of thirteen, liquid nitro-

gen cooled hyperpure Ge crystals which are held at a bias of 3000 V. The large voltage

bias means that the integral of the current pulse is proportional to the energy of the inci-

dent photon. A pre-amplifier integrates the current and converts it into a voltage pulse.

Events are then converted as shaped pulses and logged in a multi-channel analyser. The

multi-channel analyser sorts the pulses according to their heights and assigns them a

channel number. The channel number is linear with the incident photon energy. This

linearity however breaks down at very high photon energies and very high photon flux,

therefore a reasonable photon flux should be used (∼ 6000 cps in the Compton peak).

Channel number to energy calibration is achieved by peak matching known fluorescence

lines in a spectrum with well defined energies1. The count rate must be optimised to

ensure that the number of counts is large enough to obtain good statistical accuracy but

not so large that the time the detector is rejecting pulses; its “dead-time” is minimised.

Dead-time is where the detector is blocked from measuring the next signal whilst the

previous one is being registered. If the dead-time is large, in the extreme case the

effective count rate may actually go down as the incident beam flux increases.

4.2.6 Experimental procedure

To measure a magnetic Compton spectrum, the beamline is set up as in Fig. 4.2. A

Compton spectrum is taken in an applied field of positive polarity (A) then again in

negative polarity (B) repeated in the sequence ABBA...., this sequence makes for better

data normalisation and less field flipping time. The maximum field sweep rate for the

9 T Spectromag is 1 Tmin−1, so minimising flipping time is essential (+ 9 T to - 9

T takes 18 minutes, during which the detector is not counting). Also, to minimise

1http://xdb.lbl.gov/
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field flipping time, the minimum field needed is used. The other alternative is to flip the

helicity of the incoming beam, as the off-axis method for circular polarisation production

is being used that would require the entire setup to be moved to the other side of the

synchrotron beam orbit. This was trialled in Ref. [44], however, reproducibility issues

made the method unreliable.

Normalisation data (beam current) is logged every minute, this is very important

as the beam at the ESRF decays due to electron-electron scattering in the storage ring.

Normalisation data is acquired from an X-ray diode in the beam before the sample ((f)

in Fig. 4.2).

There is a careful balance of considerations to make in the precise setup and

geometry of a magnetic Compton scattering measurement. Because Compton scattering

occurs at all angles (previously shown in Fig. 3.2) experimental Compton scattering

can be performed in a variety of geometries. There must be careful consideration in

choosing the geometry. At low energies, the scattering cross-section is almost symmetric

for forward and backward scattering at low energies (10 keV) but for higher energies,

forward scattering is favoured and thus provides a higher scattered count rate. However,

considering a photon scattering at near transmission geometry the deflection is therefore

small thus the momentum transfer is also small. This small momentum transfer affects

the momentum resolution. There is another advantage to back scattering geometries,

previously shown in Fig. 3.3, and that is that the spin scattering is a greater fraction of

the total scattering fraction at higher angles. As such, all results in this thesis are from

back-scattering experiments.

A figure of merit is also used for how much one should go off orbit to achieve the

circular light. The intensity of the beam falls off following a Gaussian distribution as one

moves off orbit, whilst the polarisation increases with the square root of the distance

off orbit. A careful balance of all these factors is needed to optimise the experiment.

Generally, back-scattering (∼ 170 ◦) at higher energies (90 - 220 keV) are used.
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4.2.7 Cross section correction

The cross-section correction is how the measured energy spectrum is turned into a

momentum scale, the cross-section used is that of Bell et al.. For the derivation, consult

the original article, Ref. [45]. The important relation is that the momentum component

parallel to the scattering vector is calculated from the energy spectrum with reference

to the scattering cross-section

pz =

[

√

E2
2 − E2

1 − 2E1E2 cosφ

2
+

√

1 +
2mec2

E1E2 (1− cosφ)

]

· 1

αmec2
, (4.1)

where α is the fine structure constant. From this it can be seen that the experimental

parameters needed are the incident energy, E1 and the scattering angle, φ. Derivation

of the scattering angle is critical for determining the momentum scale. Each detector

may have slightly different scattering angles and must be determined separately. If it is

assumed the peak of the Compton profile is where there is zero momentum transfered

along the scattering vector then to get the scattering angle the Compton equation is

used (Eq. 3.2).

4.2.8 Experimental resolution

The resolution of the momentum density profile is given by

∆pz =

√

(

δpz
δE1

∆E1

)2

+

(

δpz
δE2

∆E2

)2

+

(

δpz
δφ

∆φ

)2

. (4.2)

The first term is a result of the source resolution (also encompassing the monochro-

mator resolution mentioned earlier in §4.2.3) the second by the detector resolution and

the third by geometrical factors (i.e. the scattering angle). The dominant factor af-

fecting resolution is the detector resolution. Solid state Ge detectors suffer from poor

energy resolution when compared with area charge coupled device (CCD) devices used
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for high resolution charge Compton experiments which usually have a resolution of ∼

0.14 a.u.. CCD devices, however, cannot measure photons quick enough to accumulate

the large number of counts needed for the small signal in magnetic Compton scattering.

With realistic experimental parameters, a total resolution of about 0.4 a.u. is usual.
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4.3 Processing of experimental data

The process of collecting high quality, meaningful Compton data relies on the proper

treatment of all aspects of the experiment. Any of the corrections below can have the

effect of changing the symmetry of the profile and also the value of the flipping ratio.

4.3.1 Incident flux correction

For a magnetic Compton profile to be measured, photons must be counted for both

field directions. The integrated number of counts in the detector must be normalised

to the incoming photon flux or a comparison of the backscattered energy spectrum is

meaningless. To do this a monitor diode is placed in the beam path after the optics

hutch. The diode attenuates the beam slightly, but is an ideal and reliable measure

of the photon count incident on the sample. As the beam at the ESRF decays due

to electron-electron collisions and no “top-up” is used, the normalisation to the beam

current is critical. Scans during sudden changes in the intensity are avoided as these are

almost impossible to normalise out, so every 12 hours when the beam is “refilled” data

are not taken.

A new way of normalising the data by correcting for the beam decay was trialled

for a few experiments on ID15A. A perspex wedge was placed in front of the beam

on a motorised stage. The motor was run in a loop where it compared the value of a

diode placed in the beam path. If the current measured on the diode was too low when

compared to a target value, then the wedge moved so that less perspex was in the beam

and thus attenuated less. If the measured current was too high, then the wedge acted

to attenuate the beam with more perspex. Despite some initial promise, problems with

the motor losing steps over extended periods of time meant that the wedge correction

was not usable for most experiments.

It should be mentioned here that although incident flux corrections can be made

for the number of photons, it cannot be made for the polarisation of the beam. As
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described before, the circular polarisation is obtained via the inclined view method, where

a position a few milliradians off-orbit is taken. Any instability in this beam position not

only affects the beam current but also the beam polarisation. An attempt however was

made to monitor the polarisation of the beam by conducting a simultaneous magnetic

Compton scattering experiment on a polycrystal of iron using the unscattered primary

beam with a set up at the back of the hutch. The iron was placed in a 1 T electromagnet

whose polarity could be changed in seconds. This meant that the flipping ratio of iron

(which is well known) could be monitored each minute. Work is ongoing in this area.

4.3.2 Absorption correction

Absorption in X-ray scattering experiments can be a major correction. For low energy

X-rays, attenuation by the air means that the experiments must be performed under

UHV conditions. Luckily, for incident energies upwards of 100 keV the absorption from

the air is negligible. However, other parts of the experiment may need to be corrected

for.

The monochromatic beam enters the magnet bore tubes through a very thin (85

µm) aluminium window. Once the beam is scattered, the energy dispersed flux exits

through the same aluminium window. However, the aluminium absorbs different parts

of the spectrum differently. This can be modeled by dividing the raw spectrum by the

energy dependent transmission function for aluminum

I = I0 exp(−µl), (4.3)

where µ is the energy dependent mass absorption coefficient, I0 is the original intensity

and l is the thickness of the material acting as the absorber. The absorption from the

hyperpure germanium detector crystals must also be included. For some experiments

the addition of a tin filter was necessary. For example, 4f electron systems have a K -

absorption line near the edge of the profile. This is the binding energy of the 1s electron,
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Figure 4.4: Experimental energy spectrum with absorption corrections made for Ge, Sn and Al.

with high energy X-rays this electron is ejected from the core, this process is quickly

followed by a decay into this empty state by an outer electron leading to characteristic

lines of emission in the spectrum. This absorption is very strong compared with the

Compton profile as can be seen in Fig. 4.4. As the detector is count rate limited, it

is imperative to have as many of the counts in the Compton peak. Tin has the useful

property of attenuating strongly X-rays with the energy corresponding to a core state

transition yet allowing transmission of the Compton energy range thus acting as an

appropriate filter for our profile.

4.3.3 Multiple scattering correction

The derivation of the relativistic cross-section is based upon a single scattering event.

In reality, however, photons can scatter twice and even three times before being reg-

istered, this is called multiple scattering. Multiple scattering can have a large effect
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in Compton scattering experiments with double scattering events skewing the energy

profile. Felsteiner et al. [46] developed a code based on a Monte-Carlo routine that

simulates scattering events in a crystal given some conditions, X-ray geometry, sample

density etc. The profile is then corrected for these “parasitic” scattering events.

4.3.4 Detector efficiency correction

The absorption in the detector crystals can be modeled in a similar way as detailed

above. The length of the detector crystal is optimised so that maximum absorption

occurs at the energies needed but not so long that the created electron-hole pairs have

time to be reabsorbed before they are swept away by the 3000 V potential applied across

the crystal.

4.3.5 Magnetic Compton normalisation

Once the corrected magnetic Compton profile is obtained, to derived a spin moment,

the flipping ratio needs to be defined,

R =
I↑ − I↓

I↑ + I↓
, (4.4)

where I↑↓ are the integrated intensities for positive and negative polarities, it is the

ratio of spin scattering to charge scattering. Referring to Eq. 3.16, the area under the

magnetic Compton profile is proportional to the spin moment. The process of normal-

isation to obtain the spin moment is simple. It requires no further modeling, only the

measurement of a known calibration sample to scale the flipping ratio according to the

number of electrons involved in the scattering. This flipping ratio depends on experi-

mental conditions (degree of circular polarisation) and thus will not be same on each

experiment. Therefore, each sample being measured needs a corresponding calibration

sample. To scale the flipping ratio to a spin moment one uses
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µS =
RSample

RNi

× nelectrons(Sample)

nelectrons(Ni)
× 0.56µB. (4.5)

Nickel is generally used as it is known that the spin moment is 0.56 µB. Any

known sample can be used, for example Fe also may be used. However, as Ni has a

relatively small signal, any mistakes in the set up can be identified easily, whereas with

Fe where the signal is significantly stronger, subtle differences can be lost.

4.4 Complementary techniques

As a matter of comparison the complementary techniques that are used to gather similar

information as magnetic Compton scattering are discussed. The basis logic, advantages

and disadvantages behind each of the techniques are discussed.

4.4.1 X-ray magnetic circular dichroism

XMCD is a resonant X-ray absorption technique. Magnetic signals are strongly enhanced

on resonance, however, the signals contain information not only on S and L, but also

on the selection rules making determination of these quantities more difficult than with

magnetic Compton scattering. S and L can be estimated utilising the magneto-optical

sum-rules [47]. One of the main advantages of the technique is that it uses core level

spectroscopy and thus is capable of resolving element specific information.

In an XMCD experiment, a circularly polarised photon is absorbed by a magnetic

material into a core state, see (Fig. 4.5). The polarised photon possesses an angular

momentum of ml = ± 1 depending on the helicity of the photon. The core state

absorber gains the angular momentum of the photon. Transition probabilities for the

absorption of the now spin polarised photoelectron depend on the states available at the

Fermi energy thus the spin-up and spin-down bands can be probed dependent on the

photon helicity.

In a transition metal, for example, the imbalance of the spin-up and spin-down
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populations in the 3d shell leads to different absorption coefficients µ± of left and right

circularly polarised light at the L2,3 edge. Information about the magnetic properties

are thus contained in the XMCD spectra, defined as ∆µ(E) = µ+(E) − µ−(E). The

analysis can be extended via the magneto-optical sum rules which can be used to gather

great amounts of information of the magnetic properties [49].

The spectra in Fig. 4.6 is from pure cobalt measured at 200 K in an applied field

of 3 T on beamline I06 at Diamond, Oxford. The moments are derived by application of

the magneto-optical sum rules which work well for early transition metals. Quantitative

information is derived through the knowledge of the number of holes, nh. This quantity

is readily calculated with many band structure programs. The application of these rules

to non-transitional metal systems can be fraught with difficulty if the system exhibits

strong spin-orbit coupling, jj-mixing and a non-negligible 〈Tz〉 term. The technique is

Density of states

EF

photoelectron

Core level photon

Energy

Figure 4.5: Schematic diagram of the absorption of a circularly polarised photon by a ferromagnetic
target. Adapted from Ref. [48].
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Figure 4.6: XAS and XMCD for hcp cobalt measured on I06 beamline, Diamond. With spin and orbital
moments derived from the sum rules.

surface sensitive (when compared with a bulk probe such as Compton scattering) and

as such can be seen as either an advantage or a disadvantage depending on what one

wishes to measure.

For example, nh in cobalt is 7.51 [50]. The 〈Tz〉 operator reduces to zero in

this structure. The sum rules in this case are µorb = −4q(10 − nh)/3r and µspin =

−(6p−4q)(10−nh)/r. Where the values of q, p and r are values obtained from various

points along the integration of the normalised spin split edges. The moments in this

case are found to be µS = 1.63 µB and µL = 0.04 µB.

4.4.2 Polarised neutron diffraction

A polarised neutron diffraction experiment allows the spatially varying components of

the magnetisation to be measured because neutrons interact with condensed matter

both through the strong nuclear interaction and through electromagnetic interactions.

In a polarised neutron diffraction (PND) experiment the magnetisation density M(r) is

measured in the presence of an applied field B.
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If the neutron momentum transfer q = qi − qf equals a reciprocal lattice vec-

tor G, i.e. Bragg’s condition is satisfied, then scattering occurs both because of the

periodicity of the nuclear density and because of the microscopic periodicity of the

magnetisation density.

For studies of magnetisation, neutron scattering is an ideal family of techniques

and out of these the PND method is one the best known and most widely used. The

technique can be used to measure magnetic form factors, which are a reflection of the

real space distribution of J. To extract S and L, free atom model form factors are fit-

ted. Furthermore, the technique relies on being able to measure Bragg peaks, some

instruments however do not have the range to be able to measure these and therefore

observe diffuse moments. When compared to Compton scattering, the techniques real-

ibility on models and Bragg peaks can be a disadvantage. PND however has the ability

to measure very small total moments, well below the sensitivity of magnetic Compton

scattering. For better sensitivity than neutrons still, muon spectroscopy can be used.

4.5 Sample characterisation techniques

4.5.1 SQUID magnetometry

The method used throughout this thesis for the measurement of total magnetic moments

is the technique of SQUID magnetometry. The technique utilises Faraday’s Law of

electromagnetic induction. The magnetic sample is scanned vertically through a set of

superconducting pick-up coils carrying a supercurrent. As the magnetic sample passes

through the coils a change in the persistent current is induced in the coils. These coils

are in turn coupled to a SQUID device.

The SQUID is a loop generally consisting of two Josephson junctions. A Joseph-

son junction comprises two superconductors bridged by a thin, insulting “weak-link”. If

the flux through the loop changes (e.g. as a result of a change in the induced current

from the pick-up coils) then circulating currents will arise in the ring that will cancel the
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change. These currents can be detected by using a phenomenon called the Josephson

effect. The Josephson effect is due to Cooper pair tunneling through the weak-link; the

supercurrent in a Josephson loop is given by

is = ic sin∆φ, (4.6)

where ∆φ is the phase difference across the junction and is is the critical current.

The phase is affected by the vector potential A of the induced current. Using this

technique, minute changes in the phase result in measurable outputs from the SQUID

ring.

The capabilities of commercial SQUID devices vary but the use of Josephson

junctions means that it is possible to detect changes in field associated with one quantum

of magnetic flux. Sample and SQUID coils are isolated and shielded, so that the sample

can be exposed to a range of experimental conditions T = 1.8 - 800 K with fields as

high as 7 T. Some commercial SQUID systems can however reach ∼ 300 mK with a

special He-3 insert.

4.5.2 Laue diffraction

Single crystal samples used in this thesis were checked for quality and alignment using

the X-ray Laue technique. The Laue technique uses a polychromatic beam. Using a

polychromatic beam means that the sample can be stationary whilst multiple parts of

reciprocal space can be sampled simultaneously using the multiple wavelengths of the

incident beam. The X-ray beam is incident on the sample and a scintillator screen in

back scattering geometry measures the two-dimensional interference pattern. Samples

are mounted on a triple-axis goniometer which allows for translations and rotations in

all three-dimensions. Once orientated, the crystals are glued to a sample plate, and the

rotations needed are transfered to the precision alignment miniature sample goniometer,

introduced in the next section.
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Figure 4.7: (Left) Diagram of the specially designed goniometer used to align the single crystals. The
goniometer is the black device inside a brass holder. The tungsten slits are the grey sections. (Right) The
angular sensitivity was modeled by using a matrix of attenuation coefficients to describe the goniometer.
The matrix was then rotated and the absorption through the center was calculated. From the top of
the peak the angular variation is estimated to be 0.5 ◦

4.6 Precision alignment miniature sample goniometer

To accurately transfer sample orientation from the Warwick Laue diffractometer to

the beamline setup on ID15A, a special, high-precision sample holder was created. The

holder works by having two tungsten slits about a millimetre below the sample positions,

this is used as a reference path in the Laue (see Fig. 4.7). A low power X-ray detector 2 is

placed behind the sample holder on the opposite side from the X-ray source. The X-ray

beam is then incident on the tungsten slits. The holder is then rotated to maximise the

signal from the detector. At this point the rotational position is zeroed. All subsequent

angles are taken about this reference point.

The sample holder is then lowered so that the beam is incident on the crys-

tal. Using a backscattering Laue diffraction camera the crystal is orientated until the

2The detector is an amplified CdWO4 crystal acting as a scintillator, a second layer which detects
scintillations is on top and acts as a current source. Chip from Centronic Ltd.
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diffraction pattern of the desired axis is found and aligned. Any adjustments to the θ

and φ angles are made on a non-magnetic goniometer 3 inside the alignment holder.

To realign in situ at the ESRF, the same reference zero rotation is found inside the

cryomagnet. The synchrotron beam is used to align our sample. The tungsten is found

via its fluorescence and the slits located by a drop in intensity as the magnet is rastered

along. An X-ray pin diode is placed behind the beam and then the sample is rotated in

the magnet until maximum intensity is found. The back detector peak moves in along y

as the angle of the goniometer is varied. When the back detector peak is in the middle

of the tungsten slit gap the holder is aligned with the beam.

3Miniature Charles Supper goniometer. www.charles-supper.com.
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Chapter 5

Momentum density studies of

complex oxides

5.1 Introduction

The following section details two investigations into the spin density of two ferromagnetic

oxides; the spin chain Ca3Co2O6 and the metamagnetic ruthenate Sr3Ru2O7. The aim of

this research was to ascertain which electrons are responsible for the electronic behaviour

through a comparison of measured magnetic Compton profiles with molecular orbital

calculations and density functional theory. The work in this chapter also outlines some

of the highest continuous field magnetic Compton scattering experiments yet attempted.
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5.2 Determination of spin density and orbital occupation in

Ca3Co2O6

5.2.1 Introduction

Low dimensional compounds have been an area of vast interest in recent years; the

reduced dimensionality often gives rise to many interesting and novel behaviours, for

example low dimensional magnetism, metamagnetism and geometrical magnetic frus-

tration [51, 52, 53]. Ca3Co2O6 is in the unique position of providing the opportunity

to study of all these phenomena in a single compound as such it is an excellent testing

ground for many experimental techniques and theoretical studies.

The rhombohedral structure is shown in Fig. 5.1 (a). The structure consists of

ferromagnetic chains of CoO6 octahedral and trigonal prisms extending up the c-axis.

These ferromagnetic chains are sat on the hexagonal lattice of the rhombohedral cell

(Fig. 5.1 (b)). As well as the strong ferromagnetic intra-chain coupling (JFM ∼ +

25 K), there is also a weaker inter-chain antiferromagnetic coupling (JAFM ∼ - 0.25

K) both shown in Fig. 5.1 from Ref. [54]. This antiferromagetic arrangement on a

hexagonal lattice leads to strong geometrical frustration of the CoO6 chains. A strong

magnetocrystalline anisotropy prevents any canting of the moments, and the moment

remains highly uniaxial [55].

Ca3Co2O6 magnetically orders below 25 K and shows a number of metamagnetic

steps in the high field magnetisation (see Fig. 5.3) [56]. It has been suggested that

these steps are associated with the formation of metastable states or quantum tunneling

of magnetisation [55, 57].

The different crystal fields on the two symmetrically inequivalent cobalt sites

result in a high spin state (S= 2) on the trigonal sites (Cotri Co
3+ 3d6) and a low spin

state (S=0) on the octahedral sites (Cooct Co
3+ 3d6). Polarised neutron diffraction finds

a difference in total moment on the Cotri compared to the Cooct sites. The Cooct is

essentially magnetically inactive [58]. The octahedral site has cubic coordination and the
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Figure 5.1: Structure of Ca3Co2O6, showing (a) the Co2O6 chains formed along the c-axis and (b)
projection along the c-axis. Also shown are magnetic coupling constants, in (a) the ferromagnetic
in-plane coupling and in (b) the weaker anti-ferromagnetic coupling between chains. Green atoms are
calcium, blue are cobalt and red oxygen.

orbital moment is therefore quenched, as per §2.1.4.1. The Cotri site, however, possesses

a large spin moment and more surprisingly a large unquenched orbital moment. This

is related with the unusual coordination (D3h) of the trigonal prism shown in Fig. 5.2.

Unlike the octahedral (Oh) case, the D3h symmetry group allows for the unquenching

of the orbital moment. The energy level scheme for both the Cooct and Cotri are shown

in Fig. 5.2.

Recent work by Wu et al. explored the ground state of the system using the LSDA

+ U method [59]. They predict that Ca3Co2O6 is a ferromagnetic insulator opposing the

claim that it is the first one-dimensional ferromagnetic half metal as per Ref. [60]. They

also predict a large unquenched orbital moment associated with the double occupation

of the xy orbital, which generates a large magnetocrystalline anisotropy. The predicted

moments are in good agreement with polarised neutron diffraction data which measures

alternating magnetic moments of 0.08 and 3.00 µB on the octahedral and trigonal sites

respectively [58]. XAS experiments confirmed the valency of both cobalt sites to be

Co3+ by analysis of the XAS lineshape [61]. The authors also present dichroism studies,

however, the studies were restricted to the Co L-edges, and unusually they record a total
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Figure 5.2: (Top) CoO6 prism with D3h symmetry. Local crystal field energy diagram for Cotri site.
(Bottom) CoO6 prism with Oh symmetry octahedral prism. Local crystal field energy diagram for Cooct
site.

moment of 5.66 µB somewhat larger than their experimentally measured bulk moment

of 5.30 µB.

The purpose of this section is to address:

• the size of the spin and orbital contributions to the magnetism.

• the existence of any oxygen magnetism

• the orbitals responsible for the observed magnetism.

• the Hubbard correlation strength U required to reproduce the observed properties.
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Table 5.1: Summary of previous studies on Ca3Co2O6. KKR, MCS, XMCD results and LSDA + U. (All
values in µB/f.u.).

Method Ref. µs µl µs µs µs µl µj
Cotrig Cotrig Cooct O Total Total Total

LSDA + U [59] 2.99 1.57 0.07 0.78 3.84 1.66 5.66

XMCDsum [61] - - - - 4.10 1.20 4.80
XMCDsim [61] - - - - 3.60 1.70 5.30

SP - SREL This work 2.61 - 0.31 0.9 3.91 - 3.91

REL This work 2.59 0.43 0.29 0.9 3.78 0.43 4.26

LSDA + U This work 2.64 1.14 0.30 0.70 3.95 1.11 5.06

MCS This work - - - - 3.93 1.3 5.2

5.2.2 Experimental details

5.2.2.1 Sample characterisation

Single crystal samples of Ca3Co2O6 were grown by Stephano Agrestini 1 by a flux

method. Using a standard solid state reaction, polycrystals of Ca3Co2O6 were prepared

at 800 ◦C for 24 hrs, followed by pelleting. The pellets were then heated for 24 hrs

at 1000 ◦C, ground up and then heated again at 1000 ◦C for 24 hrs. Using 7 - 15

times the mass of KCO3 to Ca3Co2O6 slightly mixed. The mixture was heated in an

alumina crucible with an alumina lid. The mixture was then heated in a furnace to

1000 ◦C to form single crystals, sieved in running water and cleaned in an ultrasonic

bath. The high quality of the single crystal was confirmed by energy dispersive X-ray,

magnetisation (see Fig. 5.3), specific heat measurements [62] and Laue X-ray diffraction

which showed no sign of twinning. The same single crystals have also been measured

with neutrons, observing the slow magnetic order-order transition (see Ref. [63]), the

field and temperature dependence of ferromagentic and anti-ferromagentic Bragg peaks

(see Ref. [64]), nuclear magnetic resonance (NMR) (see Ref. [65]) and resonant X-ray

scattering (see Refs. [51, 66, 67]).

1Now at Max Planck Institut, Dresden.
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Figure 5.3: SQUID magnetometry for Ca3Co2O6 aligned along the c-axis at 10 K. Red points are spin
moment measurements from magnetic Compton scattering (errors on the spin moment are smaller than
the symbol size).

It is known that Ca3Co2O6 has an extremely anisotropic magnetisation axis.

To characterise by SQUID magnetometry, the sample was placed in a gelatin capsule

filled with Apiezon vacuum grease. A large field (7 T) was applied; due to the large

magnetocrystalline anisotropy, the torque oriented the c-axis along the field. With

the field still applied the temperature was lowered to freeze the grease and hold the

crystal [68].

Due to this extreme magnetic anisotropy care was needed to transfer the align-

ment of the c-axis from the Laue spectrometer at Warwick to the beamline on ID15A.

To achieve this sensitivity a new sample holder was created, from which the angular

sensitivity is estimated to better than 0.5◦. Details of this sample holder can be found

in §4.6.
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5.2.3 Results and analysis

5.2.3.1 Band structure calculations

The electronic structure of Ca3Co2O6 was calculated using the Munich spr-kkr pack-

age, which utilises a multiple scattering formalism to solve the Dirac equation [26]. The

system was calculated in the spin-polarised scalar-relativistic and fully-relativistic mode

using lattice parameters from Ref. [69] and using the GGA exchange parameratisation

described by Perdew, Burke and Ernzerhof [70]. This exchange parameterisation takes

into account not only the local charge density but also the gradient of the charge density

to account for sharply changing charge densities as expected in 3d electron systems.

The magnetic EMD, ρ↑(p)− ρ↓(p), was calculated from the self-consistent po-

tentials and projected along the c-axis to produce the magnetic Compton profile. The

partial densities of state are shown in Fig. 5.4 and shows a half-metallic ground state

similar to the bare local spin density approximation (LSDA) calculations of Wu et al. [59].

Moments from the calculation are shown in Table. 5.1 and the calculated site specific

magnetic Compton profile is shown overlaid with the experimental profile in Fig. 5.5.

5.2.3.2 Magnetic Compton results

The spin polarised Compton profiles were measured along the crystallographic c-axis on

beam line ID15A at the ESRF. The measurements were made in applied magnetic fields

of 2, 5 and 7 T using a superconducting solenoid at a temperature of 10 K.

The magnetic Compton profile at 7 T is shown in Fig. 5.5. Spin moments of

1.78 ± 0.05 µB at 2 T and 3.93 ± 0.05 µB at 5 T and 7 T are shown in Fig. 5.3. In

conjunction with SQUID magnetometry, which shows a total moment of 5.2 ± 0.1 µB,

the existence of a large unquenched Co orbital moment (1.3 ± 0.1 µB) is confirmed.

There are some surprising features in the profile in Fig. 5.5, at A, B and C, there

are “bumps” in the momentum density. These are Fermi surface (Umklapp) features.

The presence of these Fermi surface features indicates that there must exist Bloch-like
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line represents spin up (down) states. (a) Total states, (b) Co 3d states for the octahedral site, (c) Co
3d states for the trigonal site (d) oxygen 2p states.

electron states implying some level of metallicity, similar to GGA calculations performed

here and by other authors [71, 72]. The data were carefully checked to see if the

“bumps” were real. They exist on both sides of the profile (before folding) and are

also periodic with the reciprocal lattice vector, G, making the existence of the Umklapp

features indisputable.

In the calculated momentum density profile shown in Fig. 5.5 it is interesting to

note that the Fermi surface features are only visible in the interference term between

Cooct and Cotri. The interference term is a term which represents the momentum

density of one atomic site on another atomic site. The Umklapp in the interference

term suggests that the states at EF are hybridised cobalt states. Although the size of
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Figure 5.5: Measured MCP at 10 K and 7 T plotted with the corresponding deconstructed KKR
predicted profiles.

the interference term looks significant, the moment associated with this interference is

only ≈ 0.02 µB.

An appreciation of the effect metalicity has on the shape of the MCP can be

gained from inspection of Fig. 5.6 where EF was moved 0.5 eV into a nearby bandgap.

The real profile shows sharp peaks associated with the Fermi surface topology. The

shifted profile, however, shows a much smoother profile where the Umklapp bumps have

disappeared.

5.2.3.3 Resistivity

Resistivity measurements can be highly instructive in elucidating the transport properties

of a material. Temperature and field dependencies can identify the transport regime

of the charge carriers. Systematic measurements by Raquet et al. [73] report that

ferromagnetic ordering within the chains does not induce a conductivity change towards
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metallicity, as is usually observed in transition-metal oxides. They conclude that for the

low temperature regime, the resistivity behaviour was consistent with Efros-Shklovskii

type conduction, characterised as variable range hopping (VRH) with a soft Coulomb

gap, ∆c, due to Coulomb interactions between the localised electrons [74].

The work by Wu et al. concludes the system is an insulator i.e. N(EF ) = 0

with a high Hubbard U parameter ≥ 5 eV, resulting in a band gap of approximately 1

eV. Whilst seemingly satisfactory for the observed magnetism this does not describe the

high 1D density of states (N1(EF ) ≈ 2.5× 1011 eV−1n−1) required for VRH shown by

Raquet et al..
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To investigate the apparent Fermi surface implied by the magnetic Compton

scattering data, resistance measurements were taken along the c-axis. Due to the large

room temperature resistance (≈ 108 Ω) a special high resistance set up was used.

The sample environment was provided by a Quantum Design PPMS with connections

made to a Keithley 6517A electrometer designed for ultralow current measurements,

the electrometer was then interfaced with LabView. The measurement showed a room

temperature resistance of 300 kΩ rising exponentially with reducing temperature to

above 1015 Ω. the temperature dependence of the resistivity is shown in Fig. 5.7, the

little “dips” are associated with the auto-ranging feature of the electrometer.

Measurements were made with and without an applied magnetic field of 7 T

applied. Measurements in the ab-plane were three orders of magnitude higher. No

evidence was found for a metallic ground state or a field induced metallic state. As such,

the nature of the observed Fermi surface effects remain a mystery. It is worth noting,

however, that work by Raquet et al. was performed on “needle-like” single crystals, this

Compton study however was performed on large crystals that were composed of many
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“needle-like” single crystals. Boundaries between adjacent crystals could be the cause

for the lack of any transport information in our crystals.

5.2.3.4 Effect of Hubbard-U parameter

In strongly correlated oxides such as Ca3Co2O6, the electrons not only feel the potential

from other electrons but they will also feel their own potential (self-interaction). This is

not accounted for in the LSDA/GGA. In the following section, band-structure calcula-

tions for Ca3Co2O6 have been performed in the LSDA + U formalism to better describe

this self-interaction.

Spin polarised, FLAPW calculations with spin-orbit coupling in the LSDA + U

formalism were performed using the elk code [27]. The Perdew-Wang/Ceperley-Alder

functional was chosen as the local-density exchange-correlation potential. For ease of

comparison muffin-tin radii from Wu et al. were used. The basis set cut-off parameters
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68



-1.0

-0.5

0.0

0.5

1.0

 

 

E
ne

rg
y 

(e
V

)

 PZ            Q                     F   P
1
Q

1
        L           Z

U = 0 eV
-500 0 5001000

 

 

DOS (sts. Htr.-1 f.u.-1)

-1.0

-0.5

0.0

0.5

1.0

U = 2 eV  

 

E
ne

rg
y 

(e
V

)

 PZ            Q                     F   P
1
Q

1
        L           Z

-500 0 5001000

 

 

DOS (sts. Htr.-1 f.u.-1)

-1.0

-0.5

0.0

0.5

1.0

U = 4 eV  

 

E
ne

rg
y 

(e
V

)

 PZ            Q                     F   P
1
Q

1
        L           Z

-500 0 5001000

 
 

DOS (sts. Htr.-1 f.u.-1)

Figure 5.9: Band structure and density of states for Ca3Co2O6 with U = 0, 2 and 4 eV. J = 0.9 eV.
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were Gmax = 14 and RmtKmax = 7. Integrations over the irreducible wedge of the

Brillouin zone were performed using a 500 k-point regular mesh. The potential and the

total energy were converged to a tolerance of 10−5 Ryd and 10−3 Ryd respectively. The

calculations were performed with a fixed spin moment set to be the experimental spin

moment of 3.93 µB / f.u. along the c-axis. Moment and band gap comparisons were

made as a function of the Hubbard correlation parameter U, whilst J was left as the

atomic value of 0.9 eV as per Ref. [59].

The aim in this section is to determine what value of U is required to give us the

spin and orbital moments measured in the magnetic Compton scattering experiment but

importantly not open a significant band gap, as signatures of a Fermi surface are clearly

observed in our magnetic Compton measurement. Fig. 5.8 shows the dependence on

the L,S and J as a function of U. As the moment is fixed, no significant change in the

spin moment is observed. The orbital moment however shows a dramatic dependence

on U. The value which corresponds to our experimental value is ∼ 2 eV.

The bandstructure of three selected U values is shown in Fig. 5.9. For the bare

LSDA (U = 0 eV) it can be seen that many bands of majority spin character cross EF

consistent with the half metallic ground state previously shown by KKR calculations in

§5.2.3.1. The optimum U value in terms of the magnetic moments is U ∼ 2 eV and

one can see that there are many states around EF , but EF itself lies conveniently in a

hybridisation gap with a size no more than 0.03 eV. Using a higher correlation factor

still leads us to the situation in the U = 4 eV panel and the situation suggested by Wu

et al. The bands are further separated around EF and there exists a large band gap ≈

0.5 eV. This value is inappropriate both in terms of the orbital moment and the large

bandgap. Due to a limitation of the elk code the momentum density distributions of

these calculations have not been calculated for comparison.

Further work is needed in this area to:

• confirm the existence of any Fermi surface sheets

70



6
5

4
3

2
1

0

0.0

0.2

0.3

0.5

0.7

0.8

1.0

1.2

-8

-6

-4

-2

0
2

4
6

8

(a)

ma
g

p [001] (a
.u.)

p
[100]  (a.u.)

6
5

4
3

2
1

0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-8

-6

-4

-2

0
2

4
6

8

(b)

ma
g

p [001] (a
.u.)

p
[100]  (a.u.)

6
5

4
3

2
1

0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-8

-6

-4

-2

0
2

4
6

8

(c)

ma
g

p [001] (a
.u.)

p
[100]  (a.u.)

Figure 5.10: Projections of the molecular orbital electron momentum density for the (a) yz, xz orbitals
(b) x2 − y2, xy orbitals (c) 3z2 − r2 orbital projected into the ac-plane

• see what effective masses correspond to the Fermi surface (FS) sheets with an

aim to explaining the electrical transport properties.

• compare LSDA + U profiles to experiment. The momentum density of potentials

calculated by elk is a project underway at Bristol University. The shape of the

profile as a function of U may prove greatly informative in these strongly correlated

oxides.

5.2.3.5 Orbital fitting results

As detailed in §2.2.1.3 the momentum space distribution can be described by a linear

combination of atomic orbitals LCAO in momentum space

The model for Ca3Co2O6 is shown in Fig. 5.2. The model consists of six cobalt

valence electrons; five electrons occupy the five 3d spin up orbitals, the sixth occupies

one of the spin down states. Theoretical work by Wu et al. suggests that it is the

xy orbital that is doubly occupied. As the magnetic Compton profile represents the

momentum distribution of all unpaired electrons, the shape of the Compton profile

should reflect which orbitals are singularly occupied.

To investigate the orbital occupancy, the magnetically active CoO6 prism (trig-

onal) was modeled as a cluster using the gamess quantum chemistry code [22]. A

restricted Hartree-Fock calculation was performed using the TZV basis set described
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by Schäfer et al. [75]. The cluster is then embedded in ≈ 800 point charges to mimic

the crystal environment. The 3D molecular wavefunctions are directly related to the

momentum space wavefunctions via a 3D Fourier transform. To represent the Compton

profile the momentum density is projected along the two perpendicular axes.

For the [001] direction the Compton profiles of the xy and x2 − y2 orbitals are

identical, as are the yz and the xz. Only the 3z2 − r2 orbital has a unique distribution

along the c-axis. Therefore, the only profiles fitted to our data were these three.

Due to the unconstrained nature of the fitting (three independent fitting param-

eters and only one set of data to fit to) an argument using the virial theorem is invoked.

It is assumed that the correct description of the electron distribution is the one with the

lowest total energy (TE). The virial theorem tells us that the kinetic energy KE = -TE.

The momentum distribution is related to the kinetic energy and note that the second

moment of the momentum distribution ρ(p) is also given by the second moment of the

Compton profile:

KE =
1

2m

∫

p2ρ(p) dp, (5.1)

KE =
3

2m

∞
∫

−∞

p2J(p) dp,

KE =
3

2m

∑

i

∞
∫

−∞

aip
2
i J(pi) dpi,

following the notation of Cooper et al. [31]. The argument followed is from an appre-

ciation that the tails must follow those of a free-atom. If the tails did not follow the

free-atom distribution then the second moments would be vastly different implying very

large cohesive energies. In fact the cohesive energy is effectively associated with changes

in the low-momentum line shape and the free-atom behaviour in the tails can be used

to verify that the line shape has been correctly deduced from the observed spectrum.
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Figure 5.11: Magnetic Compton profile and fitted curves. Green curve is the xz, yz degenerate orbitals,
the blue shows the x2 − y2, xy degenerate orbitals and the red is the 3z2 − r2 orbital. The black shows
the fitted momentum distribution with spin moments shown in Table. 5.2.

This argument is used to better constrain the fit. It is known that the momentum

profiles in any other (arbitrary) direction should (at high-momentum) closely follow that

of a 3d free-atom profile. The tabulated calculations from Biggs et al. [76] are used and

fitted from 3 a.u. outwards to the free atom profile for the [100], [111] and the [110]

simultaneously with the [001] profile of Ca3Co2O6. In this way the predicted orbital

scheme is robust and feasible. Excluded from the fit are the band-structure related

features (Umklapp bumps), which cannot be accounted for in the gamess method as

they rely on a periodic system of Bloch states.

In the trigonal coordination the yz and the zx become degenerate and the xy

becomes degenerate with the x2 − y2 shown in Fig. 5.2. The unquenching of the

orbital moment is allowed on the Cotri prism because of these degeneracies. The double

occupation of one of the ml = ± 2 orbitals would allow a rotation of the spin down

ml = ± 2 into the ml = ∓ 2 generating an orbital moment µl = 2 µB, close to

the observed 1.3 µB, (in agreement with Refs. [59, 61]). The value of the x2 − y2, xy
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Table 5.2: (Upper) Spin density in respective CoO6 molecular orbitals evaluated from the fitting analysis.
Errors on fit are estimated to be ± 0.05 µB . The value for O 2p is from a Mulliken population analysis
where the spin density is projected back onto an atomic site. (Lower) Spin density in the pure cobalt
orbitals from gamess and elk calculations (in µB).

CoO6 xz, yz x2 − y2, xy 3z2 − r2 O 2p

2.65 0.77 0.33 0.91

Co xz, yz x2 − y2, xy 3z2 − r2

gamess 1.90 0.65 0.35 -
LSDA + U (U = 2 eV) 1.34 0.92 0.38 -

band being nearly than unity confirms the double occupancy of one of the x2 − y2, xy

orbitals.

In Fig. 5.11, the fitted results of the CoO6 cluster are shown, the best fit is for

either the xy or the x2 − y2 becoming doubly occupied (due to the projected nature

of the measurement, determination of which one is not possible). Table 5.2 shows the

spin density associated with each molecular orbital and each cobalt orbital.

A Mulliken population analysis reveals that the spin density associated with the

six oxygen atoms in the CoO6 cluster is approximately 0.9 µB, in excellent agreement

with calculations performed here and other published band structure calculations.

Comparing the MO predictions for each cobalt orbital with those calculated by

the U = 2 eV optimised elk calculations can be done by examining the density matrix

in the LSDA + U formalism. The comparison is shown in the lower part of Table 5.2.

The reason for the comparably high predicted MO occupancy in the xz, yz band is likely

due to some contamination from the Cooct site, which in the MO scheme is assumed to

contribute nothing to the MCP, which may not be true.
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5.2.4 Conclusions

The spin density of the 1D spin chain Ca3Co2O6 has been measured using magnetic

Compton scattering from which spin and orbital moments are obtained and their ori-

gins are discuss with respect to molecular orbital calculations. The deconstructed site-

projected profiles emphasises the metallic nature of the system, seemingly at odds with

published LSDA + U and resistivity measurements work. Molecular orbital calcula-

tions elucidate the populations of cobalt 3d orbitals and their relevance to the observed

magnetic and electronic behaviour. The double occupancy of either the x2 − y2, xy

degenerate orbital is confirmed providing an explanation to the giant orbital moment

in-line with XMCD and LSDA + U published paper. The presence of a Fermi surface

is discussed with the aid of elk calculations to refine the correlation factor required to

best explain this system. A value of U = 2 eV is suggested that is consistent with our

experimental data and PND,XMCD and LSDA + U data. For this value of U, EF sits

in a hybridisation gap of majority spin electrons.
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5.3 Spin density and orbital occupation in the quasi 2D

ruthenate Sr3Ru2O7

5.3.1 Introduction

The Ruddlesden-Popper phases of ruthenates (Sr,Ca)n+1RunO3n+1 have been investi-

gated intensively over recent years owing to their varied electronic properties. Amongst

these varied properties the strontium members exhibit band ferromagnetism, strongly en-

hanced paramagnetism, spin triplet superconductivity and metamagnetism [77, 78, 79].

The subject of this section is Sr3Ru2O7 which is a quasi-2D system on the verge of

ferromagnetism but unlike its sister compound, Sr2RuO4, it is not a superconductor.

In zero field, and at the lowest temperatures Sr3Ru2O7 is a paramagnet. How-

ever, susceptibility measurements show a large Wilson ratio suggesting the system is on

the verge of a magnetic phase transition from paramagnetic to ferromagnetic. Ordering
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Figure 5.12: Structure of Sr3Ru2O7. (a) ab-projections showing the rotations of the RuO6 octahedra.
(b) Crystal structure along the c-axis. (c) Metamagnetic behaviour in the ab-plane from a paramagnetic
to ferromagnetic phase measured at 1.8 K.
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occurs via a metamagnetic transition above 5.3 T and in the highest quality samples

further transitions occur at 5.8 and 6.3 T, Fig. 5.12 (c) [79].

The phase diagram of Sr3Ru2O7 reveals that the end-point temperature of phase

transitions in the ab-plane is very low (∼ 1.5 K) and in the c-direction vanishes. Shown

in Fig. 5.13 is a phase diagram where the exponent of the resistivity expression ρ =

ρres + ATα is shown to deviate from the α = 2 expected for a correlated electron

metals as T → 0. This provides the opportunity to study new phases of matter where

Fermi-liquid theory breaks down [80].

The understanding of the local density of states at EF is crucial in this sys-

tem. From angle-resolved photoemmision spectroscopy (ARPES) the Fermi surface was

mapped and it was demonstrated that nesting was far less prominent in Sr3Ru2O7 than

Sr2RuO4, offering a possible explanation to why there is no observed superconductivity

in Sr3Ru2O7 [81]. This work was followed up by LSDA calculations which agreed with

the reduction of nesting features and showed that the density of states at EF consisted

of lower energy Ru, crystal field split t2g orbitals hybridised with O p-orbitals [82]. The
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Figure 5.13: Phase diagram of Sr3Ru2O7 determined from resistivity measurements showing the expo-
nent for the expression ρ = ρres +ATα in the c-axis. Taken from Grigera et al. [79].
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measured and predicted Fermi surface show that the Fermi surface is comprised of a

largely two-dimensional sheet of Ru t2g character as well as a small contribution from the

eg manifold both largely hybridised with the surrounding oxygen orbitals [83, 82]. This

is in contrast to the cuprate superconductors whose Fermi surfaces are characterised by

a 3z2 − r2 hole. Interesting comparisons between the ruthenates and the cuprates can

be made on the route to high temperature superconductivity.

All the properties of the strontium ruthenate phases are related to the coordi-

nation of the Ru4+ ion with six surrounding oxygens. The valence electronic structure

from low energy to high should consist of O 2p derived states, followed by exchange

split t2g levels around EF , and finally unoccupied Ru eg levels. However, the density

functional band structure is not in accord with this simple picture [84]. The t2g levels

have their degeneracy lifted and mix with higher energy eg states.

The situation is further complicated by structural distortions present in some of

the ruthenates where there exists a rotation of the RuO6 octahedra. These distortions

were refined by Shaked et al. who determined the real structure not to be the tetragonal

I4/mmm but instead the orthorhombic Bbcb with a rotation of the RuO6 octahedra of

about 7◦ [85]. The distortion narrows the t2g manifold increasing the density of states,

leading to a magnetic ground state via the Stoner mechanism, this rotation induced

magnetism is why ferromagnetic ordering is not observed in Sr2RuO4
2.

A NMR study estimated the oxygen contribution to the spin density to be large,

about 20 - 40 % of the total [86]. This is in contrast to the end series ferromagnetic

member, SrRuO3 which was found by a combination of magnetic Compton scattering

and molecular orbital calculations to have an oxygen moment no more than 12 % [9].

The aim of this section is to:

• determine the distribution of the Ru 4d moment and investigate the extent of the

hybridisation between the Ru dxz/dxy and the oxygen pz and py orbitals leading

2The Stoner criteria is D(EF )I > 1 where D(EF ) is the density of states at the Fermi level and I
is a measure of the strength of the exchange parameter.
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to π-bonding, in contrast to the superconducting cuprates.

• investigate the size and role of any orbital moment present.

• determine which orbitals take part in the metamagnetic transition.

The value of a magnetic Compton measurement is that it measures solely the

spin density, and with further analysis the constituent parts of the total spin density

can be obtained. The other ferromagnetic member of the family, SrRuO3 is a band

ferromagnet and has been studied by magnetic Compton scattering [9]. This study,

however, was performed with a powder sample, meaning that directional information

such as anisotropic bonding and hybridisation effects are lost through spherical averag-

ing. For these systems where oxygen contributions to both the ferromagnetic exchange

and bonding are important, experiments must be performed on high-quality single crys-

tals to retain the directional information.

5.3.2 Experimental details

5.3.2.1 Sample characterisation

For this investigation a single crystal of Sr3Ru2O7 was used, the crystal was grown

by Dr. Robin Perry at Edinburgh University in a floating-zone image furnace by a

method described in Ref. [87], detailed specific heat, resistivity, static susceptibility and

magnetisation measurements are also reported in Ref. [87]. Single crystal from the same

grower have also been characterised and studied by ARPES (see Ref. [83]), NMR (see

Ref. [86]), Hall effect measurements, (see Ref. [88]), ac-susceptibility under hydrostatic

pressure, (see Ref. [89]) and de Haas-van Alphen (see Ref. [90]). The dimensions of the

crystal used in this investigation was approximately 1 × 2 × 2 mm. The high quality of

the sample was confirmed by SQUID magnetometry (Fig. 5.12(c)) which confirms sharp

metamagnetic transitions and by Laue diffraction which showed little sign of twinning

along the c-axis, Fig. 5.14.
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001

Figure 5.14: Laue images from the 1 × 1× 2 mm single crystals of Sr3Ru2O7 along the c-axis.

5.3.2.2 Magnetic Compton scattering

To probe the momentum space distributions of the magnetic electrons, spin polarised

Compton scattering was used. Unlike complementary techniques such as ARPES or

XMCD, the high X-ray energies used in these experiments mean that the bulk electronic

structure is measured.

Spin polarised Compton profiles were measured on beamline ID15A at the ESRF,

Grenoble. The measurements were made in an applied magnetic field of ± 6 T for the

ab-plane and ± 8 T for the c-axis using a superconducting solenoid. The sample

temperature was 1.5 K, the field was reversed every 15 minutes in order to measure the

difference profile.

Figure 5.15 shows the experimental MCPs, the relatively low statistics can be
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attributed to the small magnetic signal of the sample and the large number of scattering

electrons. It is important to note that such a continuous high-field, low-temperature

magnetic Compton experiment has never been attempted.

5.3.3 Analysis

5.3.3.1 Magnetic Compton Results

By comparison with the flipping ratio of nickel, as measured under the same conditions

the spin moment was found to be 0.70 ± 0.03 µB/ f.u.. From SQUID magnetometry

in Fig. 5.12 (c) a total moment of 0.71 ± 0.01 µB / f.u. was shown, this suggest an

negligible orbital moment of 0.01 ± 0.03 µB / f.u..

5.3.3.2 Band structure calculations

Band structure calculations were performed by Tom Haynes at Bristol University with

the LMTO method as described elsewhere [91]. The calculations were performed in

the orthorhombic Bbcb structure using an LSDA functional. The paramagnetic band-

structure and Fermi surface were found to be in excellent agreement with previous

calculations [82], and all the major sheets identified by Tamai et al., corresponding to

the α, β, γ and δ orbits, were found to be present [83].

A spin-polarised calculation was then performed in which the spin moment was

found to be 1.5 µB/Ru, somewhat larger than previous calculations, found for example

in Ref [82]. This may be ascribed to a combination of the use of a different form of LSDA

functional and the different partitioning of space within the codes and, importantly. The

spin moment was found to be 81% Ru 4d character with O 2p contributing approximately

18% of the total spin moment, see Table 5.3. Furthermore, the majority of the oxygen

moment was on the in-plane atoms, suggesting strong π-bonding of the in-plane Ru 4d

orbitals with the O 2p.
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Figure 5.15: One-dimensional spin density projections of Sr3Ru2O7 along the (a) a and (b) b and
(Inset) c crystallographic directions. Plotted with molecular orbital predictions fitted to the a and b

data and LMTO predictions.
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Figure 5.16: Comparison of momentum profiles, derived by three different methods (gamess, LMTO
and RHF calculations).

5.3.3.3 Molecular orbital calculations

As with Ca3Co2O6, the momentum space distribution can be described by a LCAO

in momentum space. An ab initio restricted open Hartree-Fock (ROHF) molecular

orbital calculation was performed for a (RuO6)
8− octahedra using the gamess quantum

chemistry code [22], the valence electrons are described by a triple zeta valence basis set

while the core electrons are replaced by effective core potentials described by Hay and
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Figure 5.17: Spin density for the (a) t2g, (b) x
2 − y2 and the (c) 3z2 − r2 manifolds projected into the

ab-plane.

Wadt [92]. The profiles were calculated for a real-space grid of 16 × 16 × 16 Å. The

(RuO6)
8− cluster was then embedded in an environment of about 1000 point charges

to describe the crystal potential, the point charges were placed on crystallographic sites

describing the Bbcb space group refined by Shaked et al. [85].

The three dimensional molecular real-space wavefunctions are directly related

to the momentum-space wavefunctions via a 3D Fourier transform, and then twice

projected to represent the Compton profile. The calculated profiles were broadened by

the experimental resolution (0.44 a.u.) and then the respective five molecular orbitals

are fitted to the experimental data, this allows us to investigate the occupancy of each

orbital using the constraints of real experimental data.

Due to the lower statistical precision, for a better constrained fit, the occupancy

of xy, xz and yz molecular orbitals were set to be equal, as to extract an occupancy for

the total t2g band. Again, the eg states were set as the sum of x2 − y2 and 3z2 − r2.

A dependent fit was performed on the [100] and the [110] directions but not the [001]

direction as the statistics were deemed too poor to improve the fit (though the predicted

profile reproduces the [001] satisfactorily). The results of the fit are shown in Fig. 5.15.

The occupancy of each orbital is shown in Table. 5.3 along with those calculated in the

LMTO method.

Oscillatory features similar to those reported by Koizumi et al. are present in the
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[100] data for the x2 − y2 orbital and in the [001] data for the 3z2 − r2 orbital, these

represent the bonding in those directions coordinated between the Ru and the O, the

heights of the ’bumps’ are larger than those seen in La2−2xSr1+2xMn2O7, indicative of

the stronger hybridisation between Ru 4d and O 2p states.

In Figure. 5.16, gamess predictions, LMTO profiles and Hartree-Fock free atom

profiles are shown for an assumed Ru4+ ion [76]. The RHF clearly fails to represent the

nature of the momentum distribution, this is due to charge transfer from the Ru atom to

the surrounding O atoms, this leads to a contraction in real space and a corresponding

expansion in momentum space. The gamess profile does slightly better, reproducing

the high end tails and low momentum dip adequately.

Hiroaka et al. found it necessary to consider other hybridised bands as extra

contributions, they ascribe some of the low momenta discrepancy to a small negatively

polarised Ru sp band Ref. [9]. By including a contribution from a Ru 5s relativistic

Hartree-Fock calculation the χ2 can be slightly improved. However, this inclusion of a

5s band is not physically meaningful as no 5s component is found in the band struc-

ture calculations. The discrepancies can instead be attributed to effects beyond the

Table 5.3: Occupation fraction in respective orbitals evaluated from the fitting analysis directions for Ru
4d, O 2p and Ru 5s. Shown with molecular orbital parameters from Ref. [9]. Orbital-wise decomposition
from LMTO in Ru spheres and gamess analysis (in percentage of total Ru spin density)

Ru 4d ( t2g eg) O 2p Ru 5s

Sr3Ru2O7

LMTO 0.81 (91 % 9 %) 0.18 -

MO 0.70 (89 % 11 %) 0.30 -

SrRuO3

MO 0.91 (91 % 9 %) 0.13 -0.04

xy yz xz 3z2 − r2 x2 − y2

gamess 0.27 0.31 0.31 0.06 0.05

LMTO 0.26 0.32 0.34 0.05 0.04
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Figure 5.18: Two-dimensional spin density of Sr3Ru2O7, reconstructed by fitting two crystallographic
directions of experimental Compton profiles to refine our molecular orbital fitting scheme and projecting
into the ab-plane.

Hartree-Fock method, as such, the method is not suitable for dealing with the low mo-

mentum part of the Compton profile. This failure has also been seen in a study on

Pr0.75Ca0.25MnO3 [8].

Turning our attention to the population analysis of the molecular orbitals, the

spin density is almost entirely composed of t2g derived states 89 (91) % for the gamess

(LMTO) methods respectively, interestingly the molecular orbital calculation predicts

a slightly higher eg occupation necessary for the best fit. The preferential filling of

the 3z2 − r2 band can be attributed to the elongation of the [RuO6] octehadra. This

elongation also affects the occupation of the t2g band with the yz and xz orbitals filling

preferentially when compared with the xy band. This filling of not only the in-plane

4dxy but also the out-of-plane 4dxz,yz orbitals is vastly different to the superconducting

cuprates, where the Fermi surface is derived from only the in-plane Cu 3dx2−y2 orbital.

In the molecular orbital method, the oxygen spin density as a percentage of

the total spin density is estimated at ∼ 33 %. Using the Mulliken population analysis
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method compared with ∼ 18 % in the oxygen LMTO spheres. This oxygen spin density

is far higher than that derived in SrRuO3. Both in good agreement with NMR estimates

of 20 - 40 %

5.3.4 Conclusions

The spin density of the Ruddlesden-Popper ruthenate Sr3Ru2O7 has been measured using

spin polarised Compton scattering. The profiles were measured in the metamagnetic

phase at 1.5 K along three crystallographic directions of a high-quality single crystal.

LSDA band structure calculations and molecular orbital simulations reveal the extent of

Ru 4d and oxygen 2p hybridisation and from which the occupation numbers of the t2g

and the eg orbitals in the metamagnetic phase are determined. The system is almost

completely (89 - 91 %) of t2g Ru 4d character but with a non-negligible (9 - 11 %) eg

occupation similar to it’s sister compound SrRuO3. However unlike SrRuO3 the oxygen

spin density is estimated to be approximately 18 - 30 % of the total spin density in

agreement with NMR results suggesting strong π-bonding between the Ru 4dxz,yz and

the O 2p orbitals. This strong oxygen hybridisation is in contrast to the superconducting

cuprates. The excellent agreement of the LSDA calculations and published ARPES

data allow us to identofy the Fermi surface sheets that take part in the metamagnetic

transition. Furthermore, a spin moment of 0.70 ± 0.03 µB is shown in the ab-plane

which, in comparison with SQUID data reveals a negligible orbital moment. This work

highlights the benefits of perfoming magnetic Compton scattering experiments on high

qulity single crystals, as unlike polycrystals the directional information is preserved, and

simulatneous model fits can be fitted to multiple profiles.
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Chapter 6

Spin and orbital magnetism in

uranium superconductors

6.1 Introduction

The uranium class of superconductors has attracted much attention since the surprise

discovery of ferromagnetism coexisting with superconductivity under pressure in UGe2

[93]. The conventional concept of electron Cooper pairs of opposite k being mediated

by an interaction with the lattice [94] is inappropriate for this class. The exchange

interaction in a ferromagnet acts to align electron spins in a crystal, however, Cooper pair

formation is most stable for opposite aligned electron pairs. It was for this reason that

the phenomena of superconductivity and ferromagnetism were thought to be mutually

exclusive.

One of the key factors determining the behaviour of actinides is the degree to

which the uranium 5f electrons delocalise and hybridise with other atoms alloyed in the

compound. There exists an empirical limit which governs the local/itinerant nature of

the 5f electrons. This limit determined by the distance between neighbouring uranium

atoms (dU−U ) is called the Hill limit and has a value of approximately 350 pm [95].

Compounds that bond below this limit tend to have overlapping electron wavefunctions

88



thus effectively delocalising the electrons. Compounds that bond above this limit tend

to have their wavefunctions localise. Of interest to us here is the behaviour of the

magnetism. For dU−U ≤ 350 pm the delocalised nature of the electron means that

its orbital path is not well defined and the orbital moment is strongly reduced when

compared with its free atom value. For dU−U ≥ 350 pm the electrons remain localised

and do not form bands, this results in orbital moments that are close to the free atom

value. The spin moment across this limit remains fairly constant, it is common for this

reason for the value of µL/µS to be used as a measure of the degree of hybridisation of

the 5f electrons with, not only neighbouring uranium atoms, but also transition metal

ions also present in the material [96].

Another important feature of these compounds is the lack of consistent theory

able to describe them. This is partially due to the ability of the uranium 5f electrons

to possess both local and itinerant character. For the localised case, the LSDA is not

an appropriate method to be used and it becomes necessary to include a U term into

the Hamiltonian. This extra term accounts for the electrons interaction with its own

potential. The delocalised case is easier and can be described well within the LSDA.

There exists a greater problem for systems on the border of a quantum critical phase

transition. The dynamic nature of the low energy spin fluctuations associated with

the phase transition cannot be captured in the static LSDA. Substantial improvements

are expected by using the dynamical mean-field theory (DMFT) approach [97], though

this has not been applied to the uranium superconductors to the best of the authors

knowledge.
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6.2 Spin and orbital moments in UCoGe

The first compound of study in this chapter is UCoGe. The system demonstrates the

coexistence of ferromagnetism (FM) and superconductivity (SC) at ambient pressure.

It was discovered by Huy et al. to have a small ordered moment of ∼ 0.03 µB below

its Curie point of 3 K which persists well in the superconducting regime below 0.8

K [98, 99]. The small ratio of the ordered moment to the effective moment, m0/peff ∼

0.1, confirmed the itinerant nature of the ferromagnetic state (peff ∼ 1.7 µB/U-atom).

This led to the compound being classed as a weak itinerant ferromagnet. This small

moment along with its magnetic sensitivity to doping and the much reduced value of

the magnetic entropy (Smag = 0.04 × R ln 2), reveal its proximity to a ferromagnetic

quantum critical point (FMQCP) [100].

Despite the experimental discovery of weak and itinerant magnetism several

theoretical studies have suggested that the system consists of a large orbital 5f moment
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Figure 6.1: (a) Structure of UCoGe showing U-U zigzag chains, the U-U distance is 348 pm, on the
border of itinerant and localised behaviour. Large atoms are uranium, red are cobalt and purple are
germanium. (b) High field magnetisation of UCoGe.
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opposed by a large spin moment (both > 1 µB), resulting in the near cancellation of

the total moment [101, 102, 103], one of these papers also suggests that the uranium

5f moment is “fairly localised” in clear contraction to experimental studies. All studies

predict there should be a significant cobalt spin moment with a quenched Co orbital

moment, but calculate a much larger total moment than is experimentally measured.

To explain this discrepancy with the magnetic moments Divǐs suggested the cobalt

moments are not collinear, giving rise to a smaller net moment, as observed in UNiAl

[104], however, the degree of canting required would have to be ∼ 20◦ to explain the

magnetisation measurements and therefore seems unlikely to be the case. It is more likely

that spin fluctuations from the systems proximity to a FMQCP reduce the moment and

as such they are not captured by the static LSDA.

UCoGe belongs to the family of ternary compounds UTX compounds where T is

a transition metal and X is a p-electron atom. UCoGe crystallises into the orthorhombic

Pnma spacegroup. The uranium atoms arrange themselves in zig-zag chains along the

a-axis shown in Fig. 6.1. Each uranium atom has only two uranium nearest neighbours

at a distance of 348 pm, characteristic for the critical region between localised and

itinerant 5f -electron behaviour (Hill limit) [95].

The quantity µL/µS has been used for many years to discuss itinerant / localised

behaviour from polarised neutron scattering data [96]. It follows that the spin value of an

electron is not much altered by its spatial extent, but the orbital value is greatly reduced

as it becomes delocalised because the orbital path becomes less well-defined. The degree

of 5f localisation depends on the overlap of 5f wavefunctions on neighbouring uranium

atoms and on the hybridisation of 5f states with transition metal electrons. It has been

suggested that the degree of U-T hybridisation could be small in UCoGe due to the

possibility of filling up the cobalt 3d shell by transfer of electrons from the uranium,

leading to a significantly increased localised behaviour for the uranium 5f electrons

[105]. For the above reasons, an understanding of the role of cobalt in UCoGe is vital.

A polarised neutron diffraction (PND) experiment [106] was published recently
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Table 6.1: Previous studies investigating the magnetic moments in UCoGe. The orbital moment on the
Co is negligible, as well as any moment on Ge. (All values in µB/f.u.)

Ref. USpin CoSpin UOrb Total -µUL/µ
U
S

PND [106] -0.05 -0.04 0.18 0.17 3.60

LSDA + U [101] -1.12 0.52 1.34 0.77 1.20

FAPW + FPLO [102] -1.2 0.25 1.1 0.1 - 0.3 0.92

LSDA [103] -1.08 0.23 1.22 0.47 1.13

LSDA + OPC [103] -1.25 0.30 2.67 1.95 2.14

spr-kkr This work -0.96 0.25 1.21 0.55 1.26

in an attempt to reconcile the discrepancies between theory and the observed electronic

behaviour. The measurement at low field (3 T) suggested that there is a little contri-

bution from the cobalt (-0.04 µB) and this contribution is parallel to the uranium spin

moment, at odds with all the published theory. Most of the moment is associated with

the uranium orbital moment, 0.18 µB. However, much of the moment at these fields

appeared not to be associated with any particular site, this intistital moment was 0.08

µB, almost as big as the uranium and cobalt moments added together. The previous

theoretical and experimental investigations are summarised in Table. 6.1. The purpose

of this part of the chapter is:

1. to determine the orientation of the magnetic moments.

2. to clarify the sizes of these magnetic contributions in the normal phase which

are often non-trivial in 5f electron systems [2] which will determine whether the

small observed total moment is indeed a result of large canceling spin and orbital

moments.

3. to determine the role of the cobalt 3d electrons.

4. to investigate the itinerancy of the uranium moment
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6.2.1 Sample characterisation

As both of the samples studied in this chapter contain depleted uranium, crystals were

prepared and characterised in facilities that specialise in handling radioactive samples.

The UCoGe single crystal was grown at Los Alamos National Lab, USA by Dr. Eric

Bauer. A 1.09 g single crystal was grown from zone refined ingots. Magnetic measure-

ments for that sample were taken with a Quantum Design SQUID by Dr. Jon Taylor at

a base temperature of 1.8 K at the ISIS facility, UK. The data show an effective moment

at zero-field of 0.06 ± 0.01 µB and in 5 T of 0.16 ± 0.01 µB. The discrepancy between

our sample and those used in other works [107, 108, 98] can be attributed to the effect

of annealing as magnetic properties are known to vary largely as a result of this process

[109]. Sample alignment was performed on a Laue set at the ESRF on ID20. Ultra-low

temperature (down to 0.1 K) ac-susceptibility measurements Ref. [99] on this sample

were made confirming the bulk superconducting behaviour (T ∼ 0.8 K) coexisting with

ferromagnetism and estimates the critical field, HC2
, to be in good agreement with

Ref. [110], although that study was performed on a polycrystal.

6.2.2 X-ray magnetic circular dichroism

A very important, yet unresolved, issue concerning UCoGe is the orientation of the mo-

ments. All band structure calculations performed agree that the uranium spin moment

is anti-aligned to the total moment - the rest being composed of a large uranium orbital

moment and cobalt spin moment. In all cases the cobalt orbital moment is assumed to

be quenched. This however is at odds with PND measurements which measures both

uranium and a cobalt spin moments to oppose the total moment. A very useful tool in

the separation of magnetic moments is the element specific technique of X-ray magnetic

circular dichroism (XMCD). The aim is to directly probe the cobalt L2,3 (2p→ 3d) edges

thereby investigate the orientation of the cobalt 3d moment. A similar investigation on

the N4,5 (4d → 5f ) edges of the uranium states could also be addressed to study the

uranium 5f moment. The possible transitions are shown in Fig. 6.2 (a).
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The technique of XMCD (introduced in §4.4.1) uses the imbalance of spins at

the Fermi level to give information on the electronic and the magnetic structure of a

system. Using light of varying (positive and negative) helicity, one can measure the

dichroism induced by the spin imbalance. Quantitative information can be gained by

applying the magneto-optical sum rules. Whilst these rules work well for early transition

metals, the non-negligible Tz component in our non-cubic system and the jj-mixing of

4d5/2 and 4d7/2 core states means that the analysis is less trivial.

X-ray absorption and XMCD spectra were measured on beamline I06 at Diamond

Light Source, RAL, Oxford. The vector superconducting magnet on the I06 branchline

has the capability of providing a sample temperature down to 1.3 K and can apply a field

in any arbitrary direction with a maximum of 6 T along the direction of the beam and

4 T perpendicular. The branchline is fed by an apple ii undulator whose useful energy

range (i.e. that light which is circularly polarised) is between 106 - 1300 eV. Energy

tuning was achieved using a plane grazing monochromator. Spectra were recorded in

both total electron yield (TEY) and fluorescence yield (FY). TEY mode is more surface

sensitive, with the depth sensitivity given by the escape depth of electrons (20 - 200

Å). However, for the purpose of measuring a bulk signal only measurements from the

FY mode were used. FY has a depth sensitivity given by the penetration depth of the

incident and emitted photon (of the order 1000 Å in the soft X-ray regime).
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Figure 6.2: (a) Core state energy levels of the probed transitions of cobalt and uranium and (b) a large
range energy scan XAS of UCoGe at 1.5 K in zero field.
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Figure 6.3: XAS and XMCD of (a) hcp Co at 200 K and 3 T and (b) UCoGe at 1.5 K at 6 T showing
the same orientation of moments i.e. both aligned with the field. Also visible is structure in the UCoGe
L3 data not present in the pure Co.

One complication of this approach is in the positions of the cobalt L3 and the

uranium N4 edge, which overlap strongly - in fact the difference in binding energy is only

0.2 eV, shown in Fig. 6.2 (b). However, the distinct uranium N5 peak could be resolved.

This peak was shown to be much smaller than the cobalt L-edges and suggested that

the uranium N4 peak would not influence our cobalt data significantly.

XA and XMCD spectra for pure cobalt and UCoGe are shown in Fig. 6.3 measured

at 200 K, 3 T and 1.5 K and 6 T respectively. XAS comparison with reference data

for Co3+ (EuCoO3) and Co2+ (CoO) showed the valence state to be Co3+ [61]. At

all temperatures within the ferromagnet (FM) regime dichroism at the Co L3 edge was

observed. This was confirmed by a temperature dependence study where dichroism

could not be found at temperatures higher than TC (3 K) and a field dependence study

where the peak of dichroism was shown to increase with the applied magnetic field,

shown in Fig. 6.4 (a).

Dichroism at the uranium N-edge was unfortunately not observed, shown in

Fig. 6.4 (b). This could be for a variety of reasons. The size of the uranium dichroism,

with reference to Ref. [111], in UFe2 is very small compared with the iron dichroism -
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this could put the magnetic signal well below the level of sensitivity of the experiment.

It may also be important to note that the dichroism from the N-edge may be an order

of magnitude smaller than that from the hard X-ray dichroism expected from M-edge

transitions [112]. It may in future prove highly informative to repeat the experiment in

the hard X-ray regime.

Given the decent quality of the dichroism, tentative estimates of the moments

involved can be deduced. It was assumed that the uranium N-edge dichroism is negligibly

small. Applying the sum-rules (described in §4.4.1) to the cobalt edges would gives µS

as 0.05 µB and µL as 0.0004 µB. However, as mentioned before due to the various

approximations in the sum rules which may not be valid here and also the presence of

a uranium peak the size of these numbers is questionable.

However, important information can be gained when comparing the orientations

with those determined by the PND experiment. The PND measures the spin of uranium

and cobalt to be aligned, contrary to every band structure calculation. Using a standard

cobalt reference it is shown that the cobalt spin moment in UCoGe aligns with the field

as the dichroism is the same sign for cobalt where it is assumed the cobalt moment

aligns with the field. This test shows that the orientation of the moments obtained by

PND is inconsistent with that measured by XMCD.
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Figure 6.4: (a) Field dependence of the XMCD at L3 edge and (b) XMCD at the N4 peak, both in an
applied field of 6 T and at 1.7 K.

96



6.2.3 Band structure calculation

The electronic structure of the UCoGe was calculated self-consistently using the spr-

kkr method in the ASA, the ground state was calculated fully relativistically and the

potential was converged to a tolerance of 0.001 Ryd. Using this scheme the moments

obtained are -0.97 µB of spin per uranium site, 0.25 µB per cobalt site and a negligible

contribution from the germanium. The orbital moments are 1.22 µB on the uranium

site and 0.05 µB on the cobalt sites, in good agreement with the LSDA calculations

performed by other authors in Table. 6.1. The discrepancy of the numbers could be

attributed to the limitations of the ASA as much of the moment is expected to be

itinerant.

The general features of our calculations are a large uranium spin moment opposed

by a larger uranium orbital moment. The uranium spin moment is opposed by a non-
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Figure 6.5: Calculated partial densities of state for UCoGe in the ferromagnetic state showing similar
behaviour as that of Refs. [101, 102, 103]. The dashed grey line represents Fermi level.
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negligible cobalt spin moment, resulting in the uranium moment being aligned opposite

to the total moment. The density of states and magnetic Compton profile, ρ↑(p)−ρ↓(p)

for UCoGe calculated from the self-consistent potentials and are shown in Fig. 6.5 and

Fig. 6.6 respectively.

All the calculations significantly overestimate the magnetic moments. This is

perhaps due to the neglect of spin fluctuations in the calculations [113]. However, it

is assumed that the shape of the momentum density distributions remains unchanged

and it is the area that is affected, thus the analysis continues using the shapes of the

profiles1.

6.2.4 Momentum distribution and size of the moments

The spin polarised Compton profiles were measured on beamline ID15A at the ESRF.

The measurements were made in an applied magnetic field of ± 5 T, at 1.5 K. The

data were corrected for energy dependent detector efficiency, sample absorption, and

the relativistic scattering cross section. An incident energy of 90 keV was used to

keep below the K -edge of uranium and avoid flooding the detector with fluorescence.

The MCP measured at ID15A is shown in Fig. 6.6, also plotted are the profiles from

KKR calculations, renormalised so that the total spin moment has the same area as the

measured Compton profile.

The shape of the profile can sometimes result in the individual momentum den-

sities being distinguishable, see §3.2.2, however, the electron momentum distribution of

U 5f and Co 3d are essentially (within our error) indistinguishable so cannot be done

in this case. Instead, the moments on the other sites has been approximated by com-

paring the experimental moments with moments predicted by published full potential

calculations Ref. [103]. Using this combined method, and the knowledge gained from

the XMCD moments summarised in Table. 6.2 are obtained.

1The assumption that the exchange splitting is reduced equally across all sites is based with reference
to Haynes et al. where an investigation into the spin density in the quantum critical NbFe2 was
undertaken [114].
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Figure 6.6: Magnetic Compton profile of UCoGe along the c-axis, shown with spin density predicted by
KKR calculations normalised to the spin moment of -0.22 ± 0.05 µB and de-constructed into the site
projected profiles.

From the magnetic Compton scattering data a total spin moment of -0.22 ±

0.05 µB is shown with an opposing orbital moment of 0.38 ± 0.05 µB. When compared

with full-potential augmented plane wave calculations from Ref. [103], it can be inferred

that UCoGe consists of a uranium spin moment of -0.30 ± 0.05 µB and a larger orbital

moment of 0.38 ± 0.05 µB resulting in the spin moment being aligned opposite to the

total moment.

Focusing on the uranium moments, the small value of µl/µs (1.04) suggests a

strongly itinerant nature of the 5f electrons. This low value, when compared with the

free atom value, suggests strong 5f -5f overlap and strong 5f -3d hybridisation. It is also
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Table 6.2: Scaled moments for UCoGe, using band structure calculation from Ref. [103]) adapted to
model our results. Starting from the value of the measured total spin moment with a value of -0.22 µB

and an orbital moment of 0.38 µB and assuming a negligible orbital moment on the cobalt as inferred
from XMCD. (All values in µB/(f.u)).

Uspin Cospin Uorb UTot UCoGeTot

FP LSDA -1.10 0.23 1.22 -0.12 0.47

Rescaled -0.30 0.06 0.38 -0.08 0.17

shown that the cobalt spin moment is of moderately magnitude 0.06 ± 0.05 µB induced

by strong hybridisation with the uranium and suggesting that the cobalt orbitals play a

significant role in the delocalisation of the uranium electrons.

The conclusions drawn by polarised neutron diffraction at 3 T are now addressed.

Prokeš et al. suggest that there is a very small cobalt moment anti-aligned with the

field, it is shown here that it aligns with the field and it moderately large. The large

value of their µl/µS (∼ 3.6) is indicative of a strongly localised uranium 5f orbital in

contradiction with other theoretical and transport data.

6.2.5 Conclusions

Unlike theoretical predictions the small total moment in UCoGe is not composed of

large opposing orbital and spin moments, but instead consists of opposing, fairly weak

spin and orbital moments. The magnitude of the individual moments are indicative

of a strongly delocalised electron system, with the delocalisation mechanism being a

strong overlap between uranium 5f and cobalt 3d electrons which consequently result

in a non negligible cobalt moment. By means of XMCD experiments the alignment of

the moments are determined in agreement with LSDA calculations, but in contrast with

PND measurements.

Due to the cancellation of the uranium spin and orbital moment, the majority

of the total moment comes from the cobalt 3d electrons. However, the majority of the

spin moment comes from the uranium 5f electrons.
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The work detailed in this chapter presents detailed studies of two magnetic X-ray

methods used to comprehensively unveil the magnetic structure of this novel compound.

The understanding of the magnetic structure is vital for understanding the behaviour of

these fascinating materials.

We highlight the vital importance of making experimental determination of the

individual spin and orbital contributions of S and L rather than just the total moment,

and as such these measurements provide a more rigorous test of theoretical calculations.

We also highlight how a combination of different methods can be used together to

provide a more complete picture of the magnetic structure of a material.
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6.3 Temperature dependence of the spin moment in UGe2

The first ferromagnetic superconductor in the uranium series to be discovered was UGe2

[93] under the application of a pressure of ∼ 1 GPa. The phase diagram (Fig. 6.7)

shows superconductivity coexisting with FM in a small range around 1 GPa and at

low temperatures. The superconducting dome is intersected by a first order phase

transition. This phase transition is between a weakly polarised (WP) FM state and a

strongly polarised (SP) FM state. It is reached via a metamagnetic transition at a critical

temperature (T ∗) within the ferromagnetic phase (≤ 60 K) which can be observed in

hysteresis loops clearly below ∼ 1 K, see Ref. [115].

The nature of this phase transition has prompted much research into it’s origin.

It has been suggested that a sharp band moving across the Fermi level is responsible
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Figure 6.7: (a) Pressure - temperature phase diagram of UGe2, taken from Ref. [116] (b) Structure
of UGe2. Grey atoms are uranium and purple atoms are germanium. The green arrow indicates the
direction of spontaneous moment.
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for this behaviour [116]. LSDA + U calculations found two nearly degenerate solutions

which differ very slightly in terms of the orbital moment. The nature of the transition

at T ∗ could be due to fluctuations between these two polarised states, Ref. [117]. The

phase transition at T ∗ has also been ascribed to a CDW/SDW formation, although no

evidence of long-range order has been found to confirm this by neutron scattering [118].

The interaction of this phase transition and the superconducting region suggests a link

between the two phenomena. Clearly a firm understanding of the electronic structure

through the WP → SP transition is desirable.

In terms of the magnetism, as previously mentioned in §6, the properties of the

5f electrons struggle to be explained on a general footing. For UGe2, the standard

LSDA predicts a total moment of ≈ 0.25 µB, this compares very badly with the ≈

1.4 µB shown by bulk magnetisation methods. This was ascribed to an inadequate

treatment of correlation effects governed by the presumably localised nature of the 5f

electrons [117]. UGe2 bonds below the Hill limit, localising the 5f electrons. With the

inclusion of the LSDA + U term, the total moment is found to be in accordance with

magnetisation measurements for the total magnetic moment, but the calculated spin

moment 1.52 µB is somewhat at odds with previously performed magnetic Compton

scattering measurements [119] which measures a saturated spin moment of 1.15 ± 0.05

µB along the a-axis. For this novel system, accurate measurements of the constituent

values of the spin and orbital moments are desirable if the complex electronic structure

is to be fully understood.

In the previous magnetic Compton scattering study, the spin-polarised electron

momentum density of UGe2 was fitted successfully with free-atom wavefunctions to

estimate the spin density in each 5f orbital [119]. The effect of Ge magnetism was

expected to be negligible as the contribution has been shown to be less than 1 % from

DFT and XMCD [121, 122]. The purpose of this section is:

1. to investigate the temperature dependence of magnetisation from a spin and or-

bital point of view
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Table 6.3: Results from previous investigations into the magnetic state of UGe2. All moments are in
Bohr magnetons. PND, LSDA + U and XMCD quote values only for the uranium ion.

Ref UTot USpin UOrb -µUL/µ
U
S

PND [120]

U4+ 1.46 -0.91 2.37 2.60

U3+ 1.45 -1.17 2.62 2.24

LSDA [121] 0.27 -1.57 1.848 1.17

LSDA + U [121] 1.46 -1.52 2.98 1.96

XMCD [122]

U3+ 1.41 -0.94 2.35 2.51

U4+ 1.41 -0.48 1.89 3.94

MCS

[119] 1.90 -1.15 3.05 2.65

This work 1.46 -0.98 2.42 2.47

2. to investigate the spin-polarised momentum density across the transition to ad-

dress any change in the orbital configuration of UGe2.

6.3.1 Sample characterisation

UGe2 samples were grown at Edinburgh University by Dr. Dmitry Sokolov using the

Czochralski technique under a protective atmosphere of purified Ar to suppress the

vapour pressure of Ge [123]. The samples have previously been used in neutron scattering

studies to investigate the lattice expansion under pressure, Ref. [124]. Temperature

dependent magnetisation measurements in a field of 1 T from 2 K up to 100 K confirmed

that it had an easy axis along the a-direction in agreement with Ref. [125] and is shown

in Fig. 6.9. This is in contrast with UCoGe, where the spontaneous moment is confined

to the c-axis. Fig. 6.9 shows an ordered moment at zero field of 1.48 µB.
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6.3.2 Magnetic Compton scattering method and results

The spin polarised Compton profiles were measured on beamline ID15A at the ESRF. An

incident radiation flux of 90 keV was used to avoid the problem of fluorescence counts

dominating the spectra. As the magnetisation of UGe2 is soft along the a-axis, the

measurements were made in an applied magnetic field of ± 1 T, at 10, 30, 40, 50 and

60 K. The field was reversed every 5 minutes in order to measure the difference profile.

The data were corrected for energy dependent detector efficiency, sample absorption, and

the relativistic scattering cross section. Temperature dependent momentum distributions

and magnetic moments are shown in Figs. 6.8 and 6.9 respectively.

Values of the spin and orbital moments for the lowest temperature are shown

in Table. 6.3, higher temperatures are shown in Fig. 6.9. Whilst seemingly consistent

with the observed total moment, the values of the spin and orbital moments from LSDA

+ U calculations of Ref. [121] are not consistent with those measured here. A spin

moment (at our lowest temperature) of -0.98 ± 0.05 µB is shown, this compares with

a spin moment of 1.52 µB from the calculations. It may be instructive to perform

some optimisation of the U and J parameters with a fixed spin calculation, using the

spin value obtain here, to get a more accurate description of the electronic structure as

performed in the Ca3Co2O6.

The value -µUL/µ
U
S introduced earlier, can also help to draw conclusion on the

localisation state of the uranium electrons in UGe2. The value of 2.47 obtained from

magnetic Compton scattering is over twice as large as that of UCoGe. This suggests a

far more localised electronic state, which is expected for this material.

6.3.3 Molecular orbital calculations

The analysis of the magnetic Compton profiles uses the gamess quantum chemistry

code. A free uranium atom was expanded using a double-zeta valence (DZV) basis set

in which 78 electrons were removed and replaced by ECP. The resulting wavefunctions

are then transformed into Compton profiles in a manner described in §2.2.1.3. The
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Figure 6.8: Temperature dependent magnetic Compton profiles at 1 T for T = 10 K, 30 K and averaged
data for 30, 40, 50 and 60 K for UGe2 deconstructed using uranium molecular orbital calculations.
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profiles have a similar distribution to those reported by Sakurai et al. [119], who used

tabulated data for the radial and angular distributions of the orbitals.

Due to fact the magnetic Compton profile is a twice projected quantity the

distribution along the a-axis, for the mL = 1 and -1 orbitals are the same, as are

2 and -2 orbitals etc. Thus there are four fitting parameters: mL = 0, |mL| = 1,

|mL| = 2 and |mL| = 3. Fig. 6.8 shows these four orbitals fitted to the temperature

dependent magnetic Compton profiles. The profiles have been normalised to unity for

ease of comparison although in reality they have the areas shown by the spin moments

in Fig. 6.9.

With increasing temperature it is apparent there is a narrowing of the normalised

profile. This narrowing is indicative of a redistribution of the moment into a more

itinerant orbital of perhaps |mL| = 3 character, such a change in the occupied states

across T ∗ has been suggested as a possible mechanism for the T ∗ transition and thus

the mediation of the superconductivity.

Orbital moments obtained by the weighting coefficients multiplied by the angu-

lar momentum character are also plotted in Fig. 6.9. These estimates for the orbital

moments show far better agreement than those of Sakurai et al., who obtain an orbital

moment of 2.92 µB - far larger than that which is measured.

6.3.4 Conclusions

A magnetic Compton scattering experiment was performed on UGe2 to investigate the

temperature dependence of the spin and orbital moments as well as the spin-polarised

momentum density distribution across the T ∗ transition. Crucial to the understanding

of UGe2 is what happens to the bandstructure at T ∗, where the system changes from

a weakly polarised (WP) to a strongly polarised (SP) state. The critical temperature

reduces with pressure where it forms into a superconducting region, this leads to the

assumption that the WP → SP transition plays a role in the superconductivity. The

aim of the investigation was to observe any redistribution of the electronic occupation
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from gamess fitting the profiles to experimental data

associated with the phase transition. It had been suggested that a dramatic change in

the Fermi surface could be responsible.

With the aid of molecular orbital calculations, it has been found that the mag-

netic electron momentum distribution narrows as the temperature is increased. Such a

shape change is consistent with a Fermi surface driven superconducting region. More

work is needed on improving the statistics at ambient pressure and also extending the

investigation into the high-pressure regime.
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6.4 Conclusions

In the previous chapter magnetic X-ray experiments on two uranium superconductors

are detailed with an aim to better understand their magnetic properties with relation to

their electronic properties.

The current understanding is based on agreement of the total moment with that

predicted by the LSDA or the LSDA + U formalism. This is not enough - vast differences

between the spin and orbital moments measured and those predicted by band structure

calculations exist in UCoGe, UGe2 and URhGe.2

As well as being fundamental properties of the magnetism of a system, µS and

µL can be used to comment on the localisation of the magnetic electrons. Presented

in Table. 6.4 are the constituent values of the moments and the ratio -µUL/µ
U
S for the

uranium compounds studied in this thesis. This value can be used to comment on the

localisation. The more localised an electron the better defined it’s orbital path therefore

it possesses a higher -µUL/µ
U
S ratio. Conversely, a low value of -µUL/µ

U
S indicates the

electron is more itinerant in character. A brief summary of the spin and orbital moments

and the -µUL/µ
U
S value for the systems studied here are present in Table. 6.4.

More work is needed in the case of UCoGe. A clear consensus between any two

techniques is yet to be reached. The LSDA is doomed from the start with the lack

of consideration of dynamic effects known to re-normalise the size of the moments. A

method here of measuring the electron momentum distribution and fitting the mag-

nitudes with the LSDA predictions can associate site specific magnetisation densities.

The very low value of -µUL/µ
U
S indicates that the system is strongly itinerant. Given the

reasonably large cobalt moment, it can be inferred that the cobalt helps delocalise the

uranium 5f electrons through hybridisation. Using XMCD, the cobalt moment is shown

to be oppositely aligned to the total spin moment - in contradiction with PND work but

2There exists a slight mystery with URhGe (not presented in this thesis). Far smaller moments than
expected from LSDA calculations are shown although seemingly in accord with PND experiments. The
mystery is that the measured Compton profile does not have the expected uranium 5f line shape. More
work is needed on this system.
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consistent with theoretical work.

For UGe2 the agreement is good for all components of the magnetisation. This is

expected in the LSDA + U as the electron is localised by the large dU−U distance. The

large -µUL/µ
U
S value verifies that the system is largely localised. An interesting experiment

would be to look at the spin and orbital components of the magnetisation as dU−U is

shortened, i.e. under pressure - such an experiment is currently feasible. The high

pressure experiment would use the diamond anvil cell belonging to the Warwick group

and the X-ray beam would pass in and out of the transparent diamond having scattered

from the sample held in between a CuBe gasket. With reference to the temperature

dependence of the magnetisation performed here, a small redistribution of the orbital

occupation was observed on moving across T ∗. Such an observation could be evidence

for an orbital redistribution which could be related to the superconducting properties.
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Table 6.4: Comparison of Compton and theoretical moments for UCoGe and UGe2. All values are in µB / f.u..

Ref UTot USpin CoSpin UOrb Total -µUL/µ
U
S

UCoGe

MCS This work -0.08 -0.30 0.06 0.38 0.17 1.04

PND [106] 0.1 -0.05 -0.04 0.2 0.17 3.60

LSDA [103] 0.14 -1.10 0.23 1.22 0.47 1.1

UGe2

MCS This work 1.46 -0.98 - 2.42 1.46 2.47

PND [126] 1.45 -1.17 - 2.62 1.45 2.24

LSDA + U [121] 1.46 -1.52 - 2.98 1.46 1.96
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Chapter 7

High temperature magnetic

Compton scattering

7.1 Introduction

The understanding of magnetic materials at finite temperatures is an elusive goal for

theoreticians and experimentalists alike. Whilst band-structure predictions for transition

metals give qualitatively good agreement of the electronic ground state, the agreement

at temperatures greater than 0 K is still a challenge. There is considerable difficulty in

accounting for temperature effects and specifically in making accurate predictions of a

materials Curie temperature.

It is known that magnons and thermal vibrations with energy kBT compete with

exchange interaction energies to destroy magnetic order in itinerant ferromagnets such

as nickel at temperatures consistent with the observed Curie temperature. The dynamic

thermal behaviour and the possibility of emergent phenomena such as local moment

formation is often overlooked in conventional band-structure techniques. The technical

difficulties of high-temperature techniques mean that high quality data is rare. As such,

the need for experimental data at high temperatures to refine our understanding of finite

temperature magnetism is clear.
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Detailed here are two examples of how the magnetic Compton scattering tech-

nique can be used to shed light on the magnetic behaviour of materials at high tem-

peratures. The chapter first details work on a range of Invar alloys, Fe1−xNix, as a

function of temperature and composition, the aim of which is to attempt to observe any

redistribution of the magnetic electrons which has been, as of yet, unseen. Any such

redistribution of the magnetic electrons could be related to the observed magneto-elastic

properties. Secondly, the spin-polarised momentum distribution of pure single crystal

nickel is investigated in it’s ferromagnetic regime and then at TC . There is consider-

able disagreement between techniques concerning the size of the itinerant part of the

moment across the transition. The aim is to resolve these inconsistencies.

7.2 Fe1−xNix alloy

The Invar effect in metal alloys has been studied extensively since its discovery over

100 years ago [127]. The observation that the thermal expansion coefficient, α, al-

most vanishes across a large temperature range is well documented (Fig. 7.1) and has

subsequently been used in technologies which utilise this lack of expansion, yet the

mechanism by which it occurs is yet to be satisfactorily determined. The phenomena

has been identified in many materials, for example, alloys of iron and nickel (as studied

here) [127], alloys of iron and platinum [128] and SrRuO3 [129]. It was recognised early

that in addition to the well-known positive contribution to α from the thermal motion

of atoms, there also exists a negative contribution to α that is magnetic in origin. This

magnetic origin was inferred from the the correlation of the Invar effect and the Curie

point, this can be seen in the lower part of Fig. 7.1, where the magnetic contribution

(αM) to the thermal expansion reduces to zero at the Curie point.

In 1963, Weiss proposed a simple two-band model to explain the observed ef-

fect [130]. This model relies on two nearly degenerate magnetic states: a high-spin

(high-volume) state and a low-spin (low-volume) state as shown in Fig. 7.1 (b). With
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Figure 7.1: (a) Energy levels of low spin and high spin states for Fe 3d6 ion. (b) Linear expansion
coefficient as a function of temperature of Fe0.65Ni0.35 showing the magnetic (αM) (blue) and non-
magnetic (αNM) contributions to the measured α (black).

increasing temperature / pressure he proposed there would be a charge transfer from

the occupied eg to t2g orbitals in the Fe 3d band near the Fermi energy (i.e. from

the high-volume to the low-volume state) thus effectively canceling lattice expansion.

This high-spin to low-spin transition has been experimentally hinted at as a function of

pressure [131]. However, such a temperature dependent spin-state transition in Fe-Ni or

Fe3Pt has never been experimentally confirmed (see below) although some theoretical

work supports its existence [132].

Any t2g/eg transfer would be expected to be reflected in the magnetisation den-

sities. As such, MCS should be an ideal technique to investigate this. Early form factor

measurements with polarised neutrons [133] conclude that a decrease of the observed
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total moment near the Invar regions seemed to be brought about by the decrease of the

localised moment of Fe and by the increased non-local negative moment contribution

in the Invar region. These measurements were followed up by Brown et al. [134] who

studied a greater temperature range (100 - 600 K) and a slightly larger sinθ/λ range on

the optimally doped (x = 0.35) system. They concluded that the eg orbital population

does not change as a function of temperature. These data were analysed in terms of

localised free atom iron and nickel 3d moments where the structure factor was com-

posed of free-atom iron and nickel magnetisation distributions randomly distributed on

an fcc lattice. It could be that this model used for describing the magnetic scattering is

too simplistic. Also, the itinerant part of the moment is not well measured in neutron

scattering due to the lack of Bragg peaks, thus it is possible to miss changes if the

charge transfer involves an itinerant band.

More recently, a non-collinear magnetic structure has been proposed to describe

the Invar effect. It was suggested that the magnetic structure is characterised, even

at zero temperature, by a continuous transition from the ferromagnetic state at high

volumes to a disordered non-collinear configuration at low volumes [135]. The non-

collinearity gives rise to an anomalous volume dependence of the binding energy, and

explains other peculiarities of Invar systems.

Recent unpublished µSR data shows a robust peak in the relaxation rate, in-

dicative of a population renomalisation only in the Invar composition (x ∼ 0.35) [136].

However, anything more quantitative is difficult muon spectroscopy. The muon is sen-

sitive to some change in the spin fluctuation bandwidth and this peak of the relaxation

rate is, to date, the only data that shows any population reordering concurrent with the

Invar behaviour.

Crisan et al. [132] reported that chemical short- or long-range order and negative

interatomic exchange interaction of electrons in anti-bonding majority-spin states force

the fcc lattice to compete simultaneously for a smaller volume (from AF tendencies)

and a larger volume (from Stoner ferromagnetic tendencies). This additional negative
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lattice anharmonicity is very large for Fe-Ni alloys while absent for Fe-Pt alloys.

A similar study focusing of the Invar material Fe3Pt was performed using mag-

netic Compton scattering by Taylor et al. [137] to try and observe any change in the

band-structure as a function of temperature to support the Weiss model. In alloys of Fe-

Pt, the Invar effect is observed near Fe3Pt stoichiometry. Magnetic Compton scattering

was performed on chemically ordered and disordered samples of this composition. The

measurements were performed in an applied magnetic field of 1 T and in a temperature

range of 15 - 500 K. The aim of that experiment was to observe some degree of charge

transfer between the eg and t2g Fe 3d band, as suggested by the Weiss model. A charge

transfer had been tentatively suggested in a statistically limited magnetic Compton scat-

tering experiment by Srajer et al. [138]. However, the work by Taylor et al. showed

there to be no shape difference in the temperature dependence of the profiles.

The purpose of this section is to present a systematic temperature and compo-

sition dependent magnetic Compton scattering study into the binary alloy Fe1−xNix, at

the optimum Invar composition and above and below, where there is little or partial

effect.

7.2.1 Sample characterisation

Polycrystalline samples of Fe1−xNix (x = 0.20, 0.35 and x = 0.60) were arc-melted from

4N purity constituents and vacuum annealed at 800 ◦C for a week. The composition was

verified by energy-dispersive X-ray spectroscopy. The samples used for this study have

previously been used in a muon spin relaxation experiment (described above, Ref. [136])

and a magnetic Compton scattering experiment on the temperature dependence of the

spin and orbital moments of Fe1−xNix but were limited to below room temperature, and

was the inspiration for this study, Ref [139].
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7.2.2 Experimental details

The MCPs were measured on beamline BL08w at SPring-8, Japan. The measurements

were made on the polycrystalline samples (cut into plates) using an incident photon

energy of 183 keV in an applied magnetic field of ± 2.5 T at temperatures between 50

K and 500 K. The high temperatures were achieved with a custom built furnace insert

for the magnet described below.

7.2.3 Miniature sample heater for BL08w setup

For this experiment temperatures up to 500 K were required. To achieve these high

temperatures a custom built miniature heater was designed and built. The heater was

designed so that it could be attached to the set up on BL08w. The sample was held

between the poles of a superconducting magnet by a brass holder connected to a closed-

cycle refrigerator (CCR). The brass holder was divided into two parts: a hot part and

a cold part. The hot part clamped the sample and consisted of two Watlow-heater

cartridges and a calibrated Pt-100. The cold part acted as an in between area, designed

not to heat the cold finger and damage the CCR. The cold part also held a Pt-100 for

monitoring. Good thermal contact was achieved by using MoS2 heat-sink paste.

Due to the setup of the system, a large thermal gradient was required. To

maintain this gradient, the two parts were connected by two brass screws, these screws

were not threaded into the brass holder but instead into ceramic washers to minimise

heat flow. As part of the experiment required the sample to be cooled, three sapphire

(Al2O3) rods were added to bridge the two parts of the holder. Sapphire has the

remarkable property of being a very good conductor of heat at low temperatures but

effectively isolating itself when it gets above a certain temperature. This meant the

sample could be actively cooled by the CCR through the sapphire, but when a high

temperature was needed on the sample, the sapphire acts as to isolate the two parts of

the holder, thus protecting the cold finger.

The system was first tested on the emu muon spectrometer at ISIS. The cold
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finger remained at 20 K whilst the hot stage reached 700 K. For the experiment at

SPring-8, thermal cutoffs were installed on the Lakeshore 800 temperature controller

which allowed the power to be cut to the heaters if the monitored sensors reached

temperatures above the predetermined limits. If the temperature of the cold finger

increased above 300 K, then the power to the heaters would be cut.

7.2.4 Results, analysis and discussion

The spin-polarised Compton profiles for the extremal temperatures of the optimum

(x = 0.35) composition are shown in Fig. 7.4 (a). The profiles were carefully analysed

so that the data at high momentum was consistent where the spin-polarised momentum

density should be effectively zero. The profiles were then normalised to unit area so that

subtle differences in the shape could be observed. As is evident in the figure, there exists

a bump above the statistical noise in the region 1 - 2 a.u.. The difference profile after

Front view

Rear view

Sapphire rod

Ceramic washer

Pt100

50 W firerod cartridge

     heaters and Pt100

Brass plate for CCR
ϕ = 30 mm

Length ~ 100 mm

Figure 7.2: High temperature setup used for the experiments on BL08w, SPring-8. Based on a similar
design for a sample heater on emu, ISIS, Oxford

118



(a) (b)

Figure 7.3: (a) Heater on the cold finger of the cryostat on BL08 W. (b) The cryostat and feedthrough.

≈ 3 a.u. is consistently slightly below zero but returns to an average of zero past 9 a.u..

This suggests that the high temperature data is slightly narrower in the tails with a more

pronounced peak at ≈ 1.5 a.u.. This narrowing would be the case if there was a charge

transfer between two bands of different orbital symmetries. The effect is small but the

size of the bump is shown to be temperature dependent shown in Fig. 7.4 (a):Inset. This

can be most easily seen by the height of the normalised MCP peak. The average of the

four data points surrounding the maximum was taken to rule out rogue points and also to

increase the statistical accuracy for that temperature. Importantly, with reference to the

non-Invar compositions the difference between the extremal temperatures is statistically

zero (within error) i.e. there exists no structure in the difference profiles above random

noise. This suggests that the population renormalisation is strongest in the Invar region

(x ≈ 0.35).

As has been shown in the oxide chapter, the shape of the Compton profile reflects

the magnetic orbitals occupied. The Compton profile of a spherically averaged eg band

and a t2g band are unfortunately very similar in a polycrystal. It may be possible to

associate this charge transfer with a specific orbital if the experiment was repeated for

a single-crystal as the different orbitals possess different angular dependencies.
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Figure 7.4: (a) Difference (grey) of high temperature (400 K, red) distribution and low temperature
(100 K, blue) distributions for the Fe0.65Ni0.35 composition (Inset) Normalised peak of the magnetic
Compton profile of the Invar sample. (b) Fe0.8Ni0.2 and (c) Fe0.4Ni0.6.
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Table 7.1: Comparison of ASA-CPA and FP-CPA for x = 0.20, 0.35, 0.60 and 1.00 tabulating the
different moment contributions to the magnetic Compton profile.

x Fe Ni Fe-d Ni-d Spin Orbital
(spin) (spin) (spin) (spin) (total) (total)

ASA

0.20 2.64 0.87 2.71 0.99 2.28 0.06

0.35 2.67 0.77 2.72 0.97 2.00 0.06

0.60 2.54 0.69 2.57 0.75 1.43 0.05

1.00 0.60 0.63 0.60 0.05

FP

0.20 2.53 0.86 2.59 0.96 2.20 0.06

0.35 2.58 0.76 2.62 0.85 1.94 0.06

0.60 2.64 0.69 2.67 0.77 1.47 0.05

1.00 0.62 0.66 0.62 0.05

7.2.5 Band structure calculations

The electronic structure of Fe1−xNix was calculated using the Munich spr-kkr pack-

age [26] in both the ASA and the FP mode. The face-centered cubic crystal structure

was used for x ≥ 0.35 and the body-centered cubic lattice for x ≤ 0.35 with lattice

parameters from X-ray diffraction data from Ref. [140]. Calculations were performed

fully relativistically using 1500 special k-points. Exchange correlation effects were esti-

mated using the generalised-gradient approximation function as described in Ref. [70], as

this functional has proven to describe the momentum space magnetisation distribution

in pure nickel better than the LDA [11]. Table. 7.1 shows the contributions from the

different bands. Due to limitations in the code the spin polarised momentum density

was only calculated in the ASA but the momentum distribution is not expected to differ

greatly between ASA and FP.

Calculated Compton profiles projected along the [110], [100] and [111] directions

as well as a spherically averaged profile necessary to describe the polycrystallinity are
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Figure 7.5: Theoretical magnetic Compton profiles for Fe0.65Ni0.35 [110],[100] and [111] directions
and experimental polycrystalline magnetic Compton profile with spherically averaged and convoluted
prediction (error bars are smaller than symbol size).

shown in Fig. 7.5 along with a typical experimental Compton profile. The agreement

is very good. The disagreement at low momentum is not unexpected in itinerant mag-

netic systems and is perhaps due to an inadequate treatment of the electron-electron

correlation by the code [11].

7.2.6 Conclusions

A systematic, temperature and compositional dependent spin-polarised Compton scat-

tering experiment has been performed to investigate the changes in band occupation

in the Invar materials Fe1−xNix. Subtle but distinct changes can be seen in the high

temperature data for the Invar material (x = 0.35) but not in the off-Invar (x = 0.2

and x = 0.6) samples. This change in shape is associated with a charge transfer that
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may be consistent with the Weiss two-state model. However, due to the polycrystallinity

of the samples used in this experiment, a more quantitative analysis is not possible, As

such, a single crystal experiment on the Invar samples is planned. The benefit of a single

crystal investigation is that individual orbitals can be determined as information is not

lost through the random orientation of the orbitals in the polycrystal. This population

renormalisation is consistent with recent unpublished µSR data. In reference to the neu-

tron data which observed no change, it is important to appreciate that the itinerant part

of the moment contributes to the scattering at low values of sin θ/λ, where there are no

Bragg peaks to measure on certain PND instruments. The neutron data does not see

any significant change in the form-factor across the temperature range this observation

is not consistent with what is measured in this thesis. More work is needed in this area

to confirm the observed population renormalisation in single-crystal samples.
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7.3 Spin density in pure nickel

Nickel, below TC (632 K) is an itinerant ferromagnet. The magnetism of nickel arises

from the relatively localised 3d band electrons, which induce a negatively polarised

moment on the hybridised sp-like electrons. The ferromagnetic properties of nickel (at

zero temperature) are well understood and have been reported by many authors [11, 141,

142]. Above TC , however, the LDA fails to account for the local spin fluctuations. The

disordered local moment (DLM) scheme was designed to account for these fluctuations

and indeed works well for iron. For the weak, itinerant ferromagnet nickel, however, it

fails. A framework that predicts the Curie temperature for bcc iron and fcc nickel is

still yet to exist. Analysing the spin fluctuations in iron and nickel above their Curie

temperatures (in their paramagnetic states) beyond the mean-field limit provides an

improvement over the DLM method and finds that the magnetic properties of iron can

be related to a Heisenberg model but nickel is better described by traditional Stoner

theory. It is therefore expected that the exchange splitting will reduce “Stoner” fashion

as the temperature is raised and local moments do not form [143].

Over the past few decades, a number of attempts have been made to directly

measure the electronic structure of nickel across the Curie point. A previous magnetic

Compton scattering experiment (performed in an applied magnetic field of 2 T) claimed

to show a change in the lineshape along the [100] direction, indicating that the negatively

polarised sp-contribution persists more strongly than the local 3d moment at 640 K.

The statistical accuracy of their measurement make the validity of this claim uncertain.

Results shown in Fig. 7.6 (a) [144].

Spin-polarised (two-dimensional angular-correlation of annihilation radiation) 2d

acar spectroscopy in an applied magnetic field of 4 T was also performed [145] which

suggests very little change on the spin-polarised momentum distribution. The positron is

biased to annihilate electrons away from the core due to positron-core repulsion. As such,

if there were any change in the itinerant electron distribution, then the positron would
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be sensitive to it. Polarised neutron scattering (at 4.6 T) [146] measured 22 independent

reflections. By comparing neutron diffraction and bulk magnetisation measurements, the

authors saw no significant change in the nickel form factor except in the (111) reflection

where it was suggested that the negatively polarised moment disappears at temperatures

≈ TC , however, then changes sign and increases above TC , shown in Fig. 7.6 (b).

As with the Invar alloys described in §7.2, these neutron diffraction data were

analysed in terms of cubic free atom Ni form factors. According to their analysis at

room temperature the sp-hybridised bands contribute more than ∼ -0.1 µB to the spin

moment. It is shown however, that the sp-contribution is significantly lower, -0.042 µB

in calculations performed for this thesis.

More recently, the transient electronic structure of nickel was investigated by

XMCD [147]. The authors compared XMCD spectra of thin film nickel taken at room

temperature and spectra taken after heating the thin film with a 100 ps laser pulse.

They estimated the heated temperature to be T/TC = 0.93 (588 K) from the reduction

in the XMCD peak. Additionally, they saw that the shape was different at high T , the

nickel absorption spectra was characterised by a shift of the L2 edge and satellite. This,
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field of 2 T adapted from [144] (b) Temperature dependence of the diffuse magnetisation in nickel in
an applied field of 4.6 T adapted from [146].
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in conjunction with cluster calculations, the authors attributed to a reduction in the

3d-sp hybridisation.

The purpose of this section is to contribute new results from a higher statistic

magnetic Compton scattering experiment into the spin density of nickel below and above

TC .

7.3.1 Sample characerisation

Single crystalline samples of nickel were grown and oriented along the [100] direction us-

ing a Laue diffraction camera. The nickel sample has been fully characterised in previous

magnetic Compton scattering experiments as it is routinely used as the normalisation

sample. High temperature SQUID magnetometry was made on our sample in a commer-

cial insert for a 5 T SQUID magnetometer, the temperature dependent magnetisation

is shown in Fig. 7.9.

7.3.2 Experimental details

Whilst in the ferromagnetic regime the magnetic signal is large (typically 0.5 % of the

charge signal), at TC and at T/TC = 1.1, the moment is very small and requires a large

external field in order to induce a moment. This has only recently become possible due

to the advances in detector technology and incident photon flux. The spin polarised

Compton profiles were measured on beam line ID15A at the ESRF. The measurements

were made using an incident photon energy of 220 keV in an applied magnetic field

of 1 T in the FM (250 K) regime and 4 T in the paramagnetic (650 K) regime. The

experiment was performed at a scattering angle of 172◦. The momentum resolution

of the magnetic Compton spectrometer was 0.44 a.u. of momentum. The data were

corrected for energy dependent detector efficiency, sample absorption and the relativistic

scattering cross section. The high temperatures were achieved with a new custom built

furnace insert for the high-field magnet, detailed below.
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Figure 7.7: Custom built high temperature sample stick in high-field Spectromag magnet used for
magnetic Compton experiment on nickel.

7.3.3 Miniature sample heater for ID15A setup

The high temperatures needed for this experiment were achieved using a specially de-

signed and constructed furnace different from the one used on BL08w. The furnace

needed to fit inside the already present VTI but be thermally isolated from it. To

achieve this isolation a vacuum shield was first installed with the heater stick inside.

The heat-shield was evacuated to minimise convection and heat transfer from the sam-

ple stage.

The sample heater was a cylinder of copper drilled out to accommodate the

nickel sample, a Pt-100 and a 35 W Watlow-firerod cartridge. Good thermal contact
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Thermocouple sensor, attached 

to the outside of the radiation shield

Cernox sensor for VTI temperature

Pt100 sensor for sample

He and N2 levels

Magnet coil current / field indicator

Figure 7.8: Equipment required to provide high-field, high-temperature environment for the Compton
experiment. (Value of top Keithley in ◦C, both ITCs are in K, level meters in % and field indicator in
T.)

was achieved using ZnO suspended in silicone. The copper was graphene coated by

chemical vapour deposition to minimise oxidation, thereby retaining its shininess and

therefore minimise its emissivity. The copper was attached to the main aluminium shaft

by a ceramic screw and baffled to the heat-shield by ceramic washers to avoid movement

in a field. The ceramic washers were shaped to minimise the touching area.

The sample temperature was regulated by an Oxford Instruments ITC503 tem-

perature controller. The maximum output voltage for the heaters was set to 25 V into

a resistance of 30 Ω resulting in a (maximum) power of 20.8 W. This power was found

necessary to adequately control the temperature at 650 K. To keep a low temperature

on the VTI, a small flow of exchange helium gas was used to maintain the temperature

being actively and independently controlled by another separate ITC503.

Due to the high-temperatures, high-fields and (potentially) high pressure gases

used in the setup, various safety features were installed. The radiation shield had a

thermocouple (non-magnetic type-T- constantan and copper) attached to it around the
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hottest part. The temperature of the VTI was also monitored. The macro used to run

the experiment and acquire the data was rewritten with a trap for monitoring all the

temperatures.

• Tsample. If the temperature of the sample increases by 10 K unexpectedly, this

could indicate a failure of the Pt-100. If it falls (by 10 K) then the heater cartridge

could have failed. Either event would cut power to the heater.

• Tshield. If the temperature of the shield increased to above previously determined

acceptable limits, this indicates that the heater could be touching the heat shield

and the heater power would be cut.

• TVTI. If the VTI temperature rises to above room temperature, this could indicate

of heating directly from the hot-source to the VTI and the power is cut. This limit

is set particularly low as the VTI is close to indium seals on the magnet which can

distort above room temperature.

When running for extended periods the temperatures recorded on the three mon-

itors were. Tshield = 351 ± 3 K, TVTI = 275 ± 1 K and Tsample = 650 ± 3 K.

7.3.4 Results, analysis and discussion

7.3.4.1 Magnetic Compton scattering results

Magnetic Compton profiles from ID15 A are shown in Fig. 7.9. Both the high tem-

perature, 650 K (red) and low temperature, 250 K (blue) data are shown along with

a calculated profile from fcc nickel projected along the [100] crystal direction and con-

voluted with the a Gaussian expressing the experimental resolution (full-width half-

maximum (FWHM) = 0.44 a.u.).

The data were treated in the same way as the Invar polycrystals. i.e. the

high momentum tails were checked for consistency. The difference was then taken to

identify any change in the shape of the profile. Plotted in Fig. 7.9 is the difference
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Figure 7.9: (Main) High temperature (650 K (red)) and low temperature (350 K (blue)) MCPs with
difference. Experimental low temperature profile with predicted KKR calculation broadened by the
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temperature in an applied 4 T field. Plotted with spin moments from magnetic Compton scattering.
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of the high temperature and the low temperature data. The difference is shaded to

highlight the oscillations above and below zero. There is no structure in the oscillations

as there was in the Fe0.65Ni0.35 data. The reduction of the total moment is shown in

the inset of Fig. 7.9, the 250 K data was taken near the saturated moment. The high

temperature data however, shows that the total moment has been reduced by a factor

of approximately 4.

From this it is shown there is no change in the itinerancy of the moment as this

would manifest itself as an increase or decrease in the low-momentum component. This

is at odds with previous magnetic Compton scattering result and XMCD data which

show a reduction in the sp-hybridisation at elevated temperatures, but in agreement

with positron annihilation.
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7.4 Conclusions

A temperature dependent study into the spin-polarised momentum distribution was

performed on single crystal nickel. No change was found in the momentum distribution

across the ferromagnetic to paramagnetic transition. It is shown that the exchange

splitting reduces the same for 3d electrons and the sp-like electrons, with no observable

change in the hybridisation. This is at odds with a previously reported, statistically

limited magnetic Compton scattering experiment and polarised neutron data, however,

it is consistent with spin-polarised 2d-acar data.
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Chapter 8

Conclusions

8.0.1 Concluding remarks

Over the past decade magnetic Compton scattering has evolved from a proof of princi-

ple technique into a cutting edge research tool in the field of magnetisation densities.

The work contained in this thesis describes results from magnetic Compton scattering

experiments applied to the field of strongly correlated electron systems. The purpose of

this research was to utilize the unique abilities of magnetic Compton scattering and in

conjunction with new high-field facilities and novel modeling techniques shed light on

some exciting, novel materials.

8.0.2 High field oxides

Complex oxides exhibit a huge range of properties, studied here are two metamagnetic

oxides. Of interest are the orbitals responsible for the magnetic behaviour. Using a

molecular orbital modeling technique, the orbitals which compose the magnetic Compton

profiles are identified as is the magnitude of any oxygen contribution. The relevance of

this work is in how individual orbital contributions can be made by measuring as few

a one magnetic Compton profile, this allows detailed comparisons with band structure

calculations to be made. This work also demonstrates some of the highest field, lowest
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moment results ever obtained. Extensions to this work would be in pushing the limit of

the size of the signals measurable. There are currently plans to move the high-field 9 T

magnet to BL08w, SPring-8 to exploit the ultra-stable beam.

8.0.3 Uranium superconductors

The technique is unique in its ability to separate the magnetic moment of a sample

into its spin, S and orbital, L contributions without the need of modeling. Work in this

thesis on the uranium class of superconductors shows the importance of separating S

and L when describing the magnetism in these novel systems. UCoGe is a ferromag-

net on the verge of a magnetic phase transition. Work in this thesis determines the

magnetic structure in the normal phase and relates it to the itinerancy of the uranium

5f electrons. UGe2 is studied to determine the nature of the magnetic transition at

T ∗ in the ferromagnetic regime. A temperature dependent shape change is observed

which could be related to its superconducting properties. The relevance of this work is

in highlighting the importance of separating S and L to better describe the underlying

electronic structure of these complex materials. Further work investigating the pressure

dependence of the magnetism are currently feasible and would be highly instructive in

these materials. Further studies are also required on URhGe so that conclusions across

the entire range or uranium superconductors can be drawn.

8.0.4 High temperature magnetic Compton scattering

The magnetism in the Fe1−xNix range of alloys has been studied in chapter 6. The

aim was to observe subtle changes in the magnetisation density which could be related

to the observed macroscopic properties. Changes perhaps related with the Invar effect

were observed in the x = 0.35 composition. However, no change was seen in pure

nickel which had been hinted at in previous studies. A single crystal investigation of

Fe0.65Ni0.35 would be advantageous for a fuller understanding. The relevance of this work

highlights the flexibility of the magnetic Compton scattering technique in its ability to
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study samples at high temperatures and without the need of high quality, single crystals.

8.0.5 Future trends

Using the ultra-stable, automatically topped-up beam at SPring-8 it is hoped that even

smaller signals will be measurable. The application of higher pressures will extend the

range of magnetic Compton scattering studies further into a larger area of a samples

phase diagram. The work in this thesis shows how high quality, high magnetic field

data can be gathered and in conjunction with some modeling techniques described here

can be used to obtain unique and vitally important information on strongly correlated

electron systems. These trends will continue to see magnetic Compton scattering as an

invaluable technique in the study of strongly correlated materials.
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