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Abstract

This thesis is concerned with the problem of determining sets of rational points on
algebraic curves defined over number fields. Specifically, we will explore the methods
of descent, Chabauty-Coleman and the Mordell-Weil sieve. These have been around for
many years, and number theorists have used them to explicitly determine the solution
sets of many interesting Diophantine equations. Here we will start by giving an intro-
duction to the basics of the existing techniques and then proceed in the second and third
chapters by providing some new insights.

In Chapter 2 we extend the method of two-cover descent on hyperelliptic curves
[10], to the family of superelliptic curves. To do this, we need to get around some
technical difficulties that arise from allowing these curves to have singular points. We
show how to implement this process, and by doing this, we were able to apply descent
to successfully compute the solutions to some interesting Diophantine problems, which
we include in the end of the chapter.

Then, in Chapter 3, we extend the method of “Elliptic Curve Chabauty”, intro-
duced by Bruin in [5] and independently by Flynn and Wetherell in [21], to make it
applicable on higher genus curves. To fully take advantage of this technique, we combine
it with a modified version of the Mordell-Weil sieve. To demonstrate the usefulness of
our approach, we determine set of Q-rational points on a hyperelliptic curve of genus 6,

after checking that the existing techniques could not be used to solve the same problem.
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Chapter 1

Introduction

1.1 Background

Millennia after Diophantus first started pondering about his equations, mathematicians
are still trying to fully understand the secrets behind these problems whose statements
are easily grasped by a non-expert, whose proofs, nevertheless, are notoriously hard to
achieve.

Since Diophantine equations are essentially systems of polynomial equations,
there is an obvious connection with algebraic geometry. Unlike pure geometers though,
number theorists are usually interested in solution sets for these equations over fields of
arithmetic nature. The interplay of the more visual realm of geometry with the discrete
character of arithmetic, along with the fact that slight modifications to the constituents
of a Diophantine equation usually change completely the form and complexity of the
techniques needed to solve it, gave rise to some of the most beautiful mathematical de-
velopments of the past century. Probably the most notable example of this is Wiles’
proof of the long standing Fermat’s Last Theorem, which was based on one of the deep-
est connections between two seemingly unrelated areas of mathematics: elliptic curves
and modular forms.

One natural invariant that helps us categorize systems of polynomial equations



is the dimension. For example, if we restrict ourselves to one dimensional varieties, or
curves, we can easily reach a finer geometrical classification after considering another in-
variant, the genus. Every (irreducible) curve is birational to a unique non-singular curve
of a given genus g, which in turn lives in a max{3g — 3, g}-dimensional moduli space of
curves having the same genus. Even though curves have been studied substantially more
than higher dimensional varieties, we can only claim to have a complete understanding
of the behavior of the rational point sets of genus 0 curves and, if we accept the validity
of the famous Birch and Swinnerton-Dyer conjecture (BSD), some might argue that we
have a decent understanding of what is going on in genus 1. For higher genus curves,
Faltings proved that the set of rational points is finite, but unfortunately his proof is
totally ineffective.

The discovery and advancement of the computer, has also played an important
role in furthering the development of arithmetic geometry. Remarkably, one of the
applications of the first computer built in the United Kingdom was to test the validity
of BSD. In the modern age, very few explicit computations in number theory research
can be carried out by hand. Most of them require the use of highly complex algorithms
and are demanding enough to put strain on supercomputers.

This thesis aims to build on several existing techniques, used to study the set of
rational points on curves, in order to widen their range of applicability. Our philosophy
is to be as explicit as possible, and often provide algorithms, that fully explain how the

theoretical results can be implemented and used in practice.

1.2 Main results

The rest of Chapter 1 aims to remind the reader about the following topics: algebraic
curves, Jacobian varieties, ramification points, points at infinity, superelliptic curves,
local solubility, Hensel’s lemma, the Hasse principle, descent, Coleman integration, the

Chabauty-Coleman method and the Mordell-Weil sieve. All the examples included in



this chapter are either taken from the literature (e.g. Selmer’s curve in Theorem 1.3.19)
or straightforward applications of the existing techniques. The main results of this thesis
are in Chapters 2 and 3.

In Chapter 2 we demonstrate how to perform descent on superelliptic curves. The
most notable cases of Diophantine equations that were solved using this method are the

four, everywhere locally soluble, equations

16a” + 870" 4 625¢" = 0 (1.2.1)
11a® + 29b° + 81¢° =0 (1.2.2)
27a5 + 16b° + 2209¢° = 0 (1.2.3)
32a” + 810" + 187¢" = 0, (1.2.4)

whose sets of non-zero rational solutions are shown to be empty in Example 2.4.2. These
were also considered in [27], but the authors stated that their methods were not applicable
to these equations. Another interesting result is Theorem 2.4.5, where we show that the

only pair (a,b) € Z2, satisfying the equation

a
=i
=1

is (1,1)L.

In Chapter 3, Theorems 3.2.3, 3.2.7 and 3.2.9 give a higher-dimensional? ana-
logue of the method of “Elliptic Curve Chabauty”. Combining these theorems with an
appropriately extended version of the Mordell-Weil sieve (Theorem 3.3.1), we were able

prove in Theorem 3.4.1, that the equation

y? = (333 + 2% - 1)@ (z),

!This equation, along with infinite families of the same form, had already been solved (see [3], [26],
[40] and [45]). Here we give an alternative proof, based on descent, that determines the full set of
rational points on the corresponding curve, as opposed to the set of integral points.

20r higher-genus, depending on whether one is referring to the curve or its Jacobian variety.



where ®1; is the cyclotomic polynomial of degree 10, has no rational solutions?.

1.3 Preliminaries

1.3.1 Curves and their Jacobian varieties

Throughout the thesis, C' will be a projective, absolutely irreducible curve living inside
some weighted M-dimensional projective space PM (1), with weight vector & € Z%.
The field of definition of C will vary depending on the chapter. In this chapter C' will be
defined over a number field K, possibly Q, in Chapter 2, C' will be defined over Q but
we will use the same symbol for the extension of scalars to the fields Q, Q, and @p for
a rational prime p. Intrinsically, Chapter 3, relies on restriction of scalars, so C will be
defined over a number field K strictly larger than Q.

We fix a separable algebraic closure of K and denote it by K. Let Gk be the
absolute Galois group of K. The ring of integers of K will be denoted by Ok. For
an embedding @ : AM — PM (%), such that w(AM) N C # 0, we call @w(AM)nC
an affine patch of C. We denote its coordinate ring by K[w(AM) N C] (or just by
KI[C] if the choice of affine patch is clear from the context) and its function field by
K(C) = K[w(AM)NC]p), since this does not depend on the choice of . Let bl : o=l
denote the* desingularization of C, in other words, a non-singular projective algebraic
curve over K, birational to C i.e. with K(C') 2 K(C). We can obtain this by performing
consecutive blow-ups to get rid of the singularities, as in [23, Chapter 7]. See |23,
Theorem 3 p.92] for a proof of why we only need a finite number of blow-ups to do
this. For a point P € C and an affine patch @w(AM) N C, containing P, denote by
mp C K[w(AM) N C], the prime ideal consisting of functions vanishing at P and by

K[C]p € K(C) the localization of K[C] at mp.

Proposition 1.3.1. Let C be a curve over K and P € C' a non-singular point. Then

3There is of course the point at infinity on the corresponding projective curve.
4Uniqueness of desingularization is using the fact that C is a curve



the local ring K[C]p is a discrete valuation ring.
Proof. See for example [50, Proposition II.1.1 p. 17]. O

Definition 1.3.2. (Also in [50, p. 17|) Let C be a curve and P € C a non-singular

point. The (normalized) valuation on K[C]p is given by

ordp : K[C]p — {0,1,2,...} U{oc}

ordp(v)) = max{d € Z : 1) € mb}.

Using ordp (11 /102) = ordp(th1) — ordp(12), we extend ordp to K(C),
ordp : K(C) — Z U {c0}.

A uniformizer for C at P is a function 7 € K(C) with ordp(7) = 1 (i.e. a generator

for mp). X

Proposition 1.3.3. Let C be a curve, V. .C PV q variety, P € C' a non-singular point,
and v : C — V a rational map. Then o is reqular at P. In particular, if C is non-

singular, then ¥ s a morphism.
Proof. See for example [50, Proposition 11.2.1 p. 19]. O

Definition 1.3.4. (Also in [50, p. 23|) Let ¢ : C; — C5 be a non-constant map of
non-singular curves, and let P € C]. The ramification index of i at P, denoted by
ey (P), is given by

ey (P) = ordp (¥ 1y(py),

where 7,py € K(Cy) is a uniformizer at ¢)(P). Note that e, (P) > 1. We say that 1 is
unramified at P if e, (P) = 1; and v is unramified if it is unramified at every point

of Cl. X



Proposition 1.3.5. Let ¢ : C1 — Cy be a non-constant map of non-singular curves.

Then for every Q € Co

> ey(P) = deg(v).
Peyp=H(Q)

Proof. Use for example [28, I11.6.9]. O

Theorem 1.3.6 (Riemann-Hurwitz). Let ¢ : C; — Cs be a non-constant map of non-

singular curves which are defined over a field of characteristic zero. Then

291 — 2 = (deg(1))(292 — 2) + > _ (ew(P) = 1),

PeCq
where g; is the genus of C;.

Proof. See for example [50, Theorem I1.5.9 p. 37]. O

We will often use the defining equation of one of the affine patches to denote
the complete curve. Even though many of the results presented here apply to a general
curve, due to some, mainly computational, obstructions®, the examples of curves given

will belong to the family of superelliptic curves.

Definition 1.3.7. Let ¢ be a rational prime and n > 2 be a positive integer. We define
a superelliptic curve to be a projective plane curve C with an affine patch defined as
the locus

{(95729)6K23yq:f(36):anx”—l—...—i—ala:—i-ao},

for some ¢-th power-free polynomial f with coefficients in K. Let [ denote the lowest
common multiple of ¢ and n. The projective model of this superelliptic curve will be

defined in the weighted projective plane P?(I/n,[/q,1) as

C = {(X, Y, Z) € P2 (In, 1/q,1) : Y9 = F(X,Z) = an X" + ... + a1 X Z0-Y") ¢ aOZ[}

SFor example we often need to know a finite index subgroup of the set of K-rational points of the
Jacobian variety, J, of the curve, which normally requires performing descent on J. Having said that,
this has recently been achieved for other types of curves ([8]).



where the variables X, Y, Z have weights [/n,[/q, 1 respectively. X

The choice of the ambient space for the complete model of the curve is not arbitrary and
has two advantages over the completion inside the un-weighted projective plane. First,
a K-rational point (z,y) on the affine patch will satisfy z = a/c'/™, y = b/c"/? for some
a,b,c € Og. So the weighted homogeneous equation Y¢ = F(X, Z) can be thought of as
what we get when we cancel denominators from the affine equation. Another advantage
of this homogenization is that there are no singular points at infinity (i.e. points with
Z =0), so no need to blow-up, which would potentially change the form of the equation.
We will only use this fact when ¢ | n, in which case it is obvious when we think in terms
of the affine patch @ : A2 — P%(1,n/q,1), w(y, 2) = (1,9, 2).

When ¢ | n the superelliptic curve C has ¢ points at infinity. Out of these
e none is K-rational when a,, ¢ K*?,
e one is K-rational when a, € K*? and 1 is the only ¢-th root of unity in K,
e ¢ are K-rational when a, € K*? and all of the ¢-th roots of unity are in K.

When ¢ 1 n there is exactly one K-rational point at infinity. We illustrate this fact in

the following example:

Example 1.3.8. (K = Q) Consider the curve

C:Y3=8X%+ X323+ Z5.

The points at infinity are (1,2,0), (1,2p,0) and (1,2p?, 0) where p is a primitive cube
root of unity. It is easy to see that only (1,2,0) is Q-rational.

Consider the curve

C:Y3=2X%+X%2° 452"



Setting Z = 0 we see that we have the points (1, V/2,0),(1, p+v/2,0) and (1, p%+/2,0) at

infinity. But actually all these are the same since

(1, \3/57 0) = ((p)Sv (p)B\S/iv (p)O) = (17102 \3@7 0) and

(1,V2,0) = ((0°)%, (p*)° V2, (p*)0) = (1, p¥/2,0).

This also shows that the point at infinity is Q-rational since it remains fixed under the

action of Gg. X

The theory we are going to present in Chapter 2, requires a different treatment of the
case ¢ 1 n, in other words when the map + : C — P!, (X,Y,Z) — (X, Z"™) ramifies
at the point at infinity, and the case ¢ | n. When ¢ | n we can find a model of C over
K having a t-ramification point at infinity only when f has a linear factor defined over
K. On the other hand, the following proposition shows that the opposite transformation
is always possible, making the case ¢ | n more canonical, at least over non-algebraically

closed fields.

Proposition 1.3.9. FEvery superelliptic curve is birational to a superelliptic curve satis-

fying an equation of the form y? = f(x), where deg(f) =n and q | n.

Proof. Suppose Colq : yiiq = foid(Zold) is a superelliptic curve and that deg(folq) = m =
iq+ j with i € Z>0 and 0 < j < q. Pick a € K such that fya(a) # 0. Define the
polynomial h by foiq(2o1q) = h(zeig — @) and the polynomial f of degree n = q(i + 1) by
f(z) = h(1/2)xz0+D) | Let C be the superelliptic curve defined by y? = f(z). Then Coiq

is birational to C' via the map (zoq, Yoid) — ( 1 Yold ) 0

Told—a’ (zo1g—a)it!

In light of this proposition, from now on we will assume that ¢ | n.
The reason we can assume that f is ¢g-th power-free without any loss of generality
is because we have a rational map x : C' — C defined over K, whenever C is given by

the relation y¢ = f(z) with h? | f and C is given by y? = f(x) = f(z)/h(z)?, namely



(z,y) — (z,y/h(z)). So it will be equivalent, if not easier due to potentially lower genus,
to work with the C rather than C.

The following fact appears to be well known (see for example [43, p. 148]), but
we include its proof for convenience of the reader. By doing this we also explain why
Theorem 1.3.6 seems to apply directly to a superelliptic curve C, even though it may be

singular.

Proposition 1.3.10. Let C be a superelliptic curve over K defined as in Definition 1.5.7,

with q | n and f a q-th power-free polynomial. Suppose that over K, f factors as
f=(@—=200)"...(z—9g)",

where the ¥; are distinct and 1 < n; < q for 1 < i < d. Let bl : C — C be the

desingularization of C. Using the notation above, the genus g of C' is equal to

g = Genus(C) = ((1—2)2((1—1)

Proof. Let ) : C — P! be the morphism given by the function = € (K[x, yl/(y? — f(:z:)))(o) =
K(C), i.e. the map that sends a point (X,Y,Z) € C to (X,Z) € P'. This has degree
equal to g. By Proposition 1.3.3 bl ot is a morphism, again of degree ¢, of non-singular al-
gebraic curves. All the ramification points of blot lie in bl™! ({(X,Y, Z) € C : Y = 0}).
Note that #{(X,Y,Z) € C : Y = 0} = d. If we had that #bl"}(P) = 1 for every
singular point P € C, i.e. all the singular points are cusps, then by Proposition 1.3.5

and Theorem 1.3.6 applied to bloy we would get

=5 3 (enos(@ 1) —q+1
QeC
= Jdg— 1)~ (¢ 1)
_@d=2)(g-1)

2



To show that this is actually the case, we need the fact that ged(n;,q) = 1 for all
1 <7 < d. Resolving a singularity at the point (0,0) of the affine patch of C' of the
form y® = 2® + O(2"*!) using consecutive blow-ups leads to an affine patch defined by
the equation y8d(@b) = geed(@b) 4 p ot This is analogous to the way one performs the
Fuclidean algorithm on ¢ and b. This means, after we resolve the remaining singularity,
we will have exactly ged(a,b) points on C that map to (0,0) on C. In our case a = g
and b = n;, so we have exactly one. A similar argument can be used for singularities

away from the origin. O

We have the following inclusions:

Elliptic curves
Hyperelliptic
q=2,n=3 Superelliptic
- ) curves
or curves
q=2,n>4
g=2,n=4,C(K) #10

It is well known that for elliptic curves, the set of points C'(K) can be given the structure
of an abelian group and for any intermediate field K C K¢ C KK, the set of K®™trational
points C(K®) is a subgroup of C'(K). For an arbitrary curve C over K of genus g > 1
one can define the free abelian group of divisors Div(C) and its subgroup Princg(C) of
principal divisors. Let DiV?K(C) denote the kernel of the degree map deg : Divg(C) — Z.
The Picard group Picg(C) is the quotient Div(C')/ Princg(C). Since deg is zero on
Princg(C), it reduces to Picg(C). The kernel of deg : Picg(C) — Z is denoted by
Pic?K(C’). When C' is non-singular Pic?K(C’) can be given the structure of a projective

abelian variety defined over K ([12]). This is called the Jacobian variety of the curve C

and we denote it by J. Now as far as K-rationality is concerned we define
e Divg(C) = Divg(C)9% ( 9% denotes the part fixed by the Gg-action),

e Princk(C) = Princg(C)%%,
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° PiCK(C) = DiVK(C)/PrinCK(C),
e Pick(C) = Kernel(deg : Pick(C) — Z) and
o J(K)= PiC?K(C)gK, the subgroup of K-rational points on the Jacobian variety.

Note that the map Pick(C) — J(K) is injective but not always surjective, since a K-
rational divisor class might not contain a K-rational divisor. When C(K) # ) this map

is indeed an isomorphism (see for example [43, Proposition 3.2]).

Notation 1.3.11. Let V be a reduced, absolutely irreducible, projective variety defined
over a number field K and let p be a prime ideal of Og. We denote by V, the base
change of V' to the completion K, of K with respect to the non-archimedean place
corresponding to p and by V, the variety over the finite field F, = Ok /p obtained by

reducing the coefficients of V;, modulo p. We then have a reduction map
redy : Vp(Kyp) — V(Fy),

which is also a homomorphism whenever V is an abelian variety. We will denote the
restriction of this map to V(K) by Red,.

When we have a finite number field extension Q C K and p is a rational prime,
we will denote by

Red, : V(K) = [ V,(Fy)
plp

the map sending a K-rational point P to the tuple (Red,(P)),, , where p runs through

plp
all the primes of Ok that divide p. X

Now we will state some important results we will be using later. The first, The-
orem 1.3.12 is a bound on the number of rational points on a non-singular curve over a
finite field. We can interpret this bound roughly as saying that a non-singular curve of

genus g over a field with p® elements has approximately as many points as the projective

line over that field, namely p® + 1, modulo an error which can be bounded in terms of

11



g. This inequality is a consequence of the “Riemann Hypothesis” part of the famous
Weil Conjectures (for the case of curves). The second, Theorem 1.3.13, is a statement
concerning the finite generation of the group of rational points on an abelian variety. We
will be using it in the case where A = J, the Jacobian of a non-singular curve C. Last,
but certainly not least, is Theorem 1.3.14, originally known as “Mordell’s Conjecture”,
and proved by Faltings in 1983. It states that for curves C of genus g > 1 defined over
a number field K, we have #C(K) < co. Even though we will not be using this per se,
as it is ineffective, it is nevertheless the main reason the techniques developed here are

meaningful.

Theorem 1.3.12 (Hasse-Weil). Let p be a rational prime, a a positive integer and C be

a non-singular curve over the finite field F with p* elements. Then

| C(F) —p" = 1] < 29v/p",

where g is the genus of C.
Proof. See [55]. O

Theorem 1.3.13 (Mordell-Weil). Let A be an abelian variety defined over a number

field K. Then the set of K-rational points A(K) is a finitely generated abelian group i.e.
AK) =ToZ,
where T is a finite abelian group, the torsion subgroup, and r a non-negative integer, the

rank.

Proof. For elliptic curves over Q see [37] and for the extension to abelian varieties over

number fields see [54]. O

Theorem 1.3.14 (Faltings). Let C be a non-singular curve defined over a number field

K. When the genus of C is greater than 1, the set of K-rational points C(K) is finite.
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Proof. This was first proved by Faltings in [19]. O

1.3.2 Hasse’s local-to-global principle

Let V' be a variety over a number field K and let v be a place of K (finite or infinite).
Then the embedding of K in its completion K, induces an embedding of V (K) in V;(K,).

So we have the following straightforward implication

Vo(K,) = 0 for some place v = V(K) = 0,

which can be thought of as the first tool available for proving that the set V' (K) is empty.

For a while mathematicians believed that a converse of this statement, namely

Vo(Ky) # 0 for all places v = V(K) # 0, (1.3.1)

was also true, and actually Hasse in his doctoral thesis proved the following theorem:
Theorem 1.3.15 (Hasse-Minkowski). Let n be any positive integer and Q(x1,...,2y)

be a quadratic form over Q. The equation

Q(xl,...,xn) =0

has a non-trivial solution if and only if it has a non-trivial solution in R and in Q, for
every prime p.

Proof. See [29]. O

Hasse later generalized this to any number field and asked whether this is true in general.
Since then, varieties V' that satisfy (1.3.1) are said to satisfy the Hasse principle.

Violations to the Hasse principle were given by Lind [34], Reichardt [44] for the
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case of inhomogeneous quartic equations such as
2v? = x* —177*

and later Selmer in [47] presented extensive tables of violations in the case of homoge-

neous cubics in three variables, with the simplest example being
3X3 +4Y3 +52° = 0. (1.3.2)

Before we present a proof that (1.3.2) has no rational solutions, let us first state and
prove a simple, yet essential, result justifying the algorithmic nature of the determination
of whether V;(K,) is empty or not for a finite place p of K. It is basically a generalization
of the Newton-Raphson method for root approximation in R to the case of complete local

fields.

Lemma 1.3.16 (Hensel [30]). Let K, be the completion of a number field K with respect
to the discrete valuation ordy : K, — Z U {oo} corresponding to the non-archimedean
place p, and Ok, be its ring of integers. If F' is a polynomial with coefficients in Ok,
and w € Ok, salisfies

ordy (F(w)) > 2ordy(F'(w)) + 1

where ' is the formal derivative of F', then there exists a unique w € O, with F(w) =0

and ord,(w — w) > ord, (%)

Proof. (The proof of this is straightforward and very well known, but we present it here

since it will be used extensively later on.) Let wg = w and for ¢ > 1 define recursively

F(wi_1)
F’(wi_l) )

w; = wi_1 — &_1 where §_1 = We will show that {w;}°, is a sequence in
Ok, that converges to an w € O, satisfying the conditions in the statement of the
lemma. First we show that for each 4, ordy,(F(w;)) > ordy(F(wi—1)), ordy(F'(w;)) =

ordy (F'(w;—1)) and ordy(F(w;)) > 2ordy(F'(w;)) + 1. We will do this using induction.
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For ¢ = 1 consider the Taylor expansion

F(wo)

F(wy) = F(wy — &) = F(wo) — Fl(wO)F’(wo)

+0(&) = 0(&)).

Note that ordy(F(w1)) > 2(ordy (F(wo)) — ordy(F”(wp))) > ordy(F(wp)) and

F'(w1) = F'(wg) + O(&)

so ordy (F'(w1)) = ordy(F'(wp)). Combining these, we see that

ordy (F(w)) > ordy(F(wp)) > 2ordy(F'(wg)) + 1 = 2ordy(F'(w1)) + 1

as required. The inductive step can be shown using exactly the same arguments, just
replacing the indices 0 by i —1 and 1 by i. As i increases the valuation of F'(w;) increases
(strictly) while the valuation of F’(w;) stays the same, so

lim ordy(w; — w;—1) = lim ordy(—¢&;) = oo.

1—00 1—00
In other words, {w;}:2, is a Cauchy sequence, and since Ok, is complete, we have that

lim w; exists. We call this limit @. By continuity of F' and F’ we also have
1— 00

ordy (F(w)) = ordp(F(le w;)) = li}m ordy (F(w;)) = oo, (1.3.3)
ord, (F'(w)) = ordp(F’(le w;)) = 'lim ord, (F'(w;)) = ordy (F' (w)) (1.3.4)
and
ordp (0 —w) = ordp(,lim w; —w) = lgn ordy | — Z@- = ordy(&o). (1.3.5)
j=0

By (1.3.3) and (1.3.5) we get that F'(w) = 0 and ord, (w—w) > ord, <1€’((ﬁ))> which proves
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the existence part of the lemma. For uniqueness, note that if there exists w* € Ok, with

F(w*) = 0 and ordp(w* — w) > ord, (%) then there exists u € Ok, such that

w* =w+ ug,((lz))) and the Taylor expansion

2
0= F(w*) = F(#) + uF" () 5,% o ((u F(w) ) ) |

together with (1.3.4) show that u = 0. O
Lemma 1.3.17. Fquation (1.3.2) has solutions everywhere locally.

Proof. The existence of solutions over R is obvious due to the odd degree of the equation.
To deal with the non-archimedean places, note that (1.3.2) defines a curve C' of genus 1
in P2, with 2, 3 and 5 being the primes where C has bad reduction, so Theorem 1.3.12,
which ensures that C,(F,) # 0, can be combined with Hensel’s lemma to deduce that
C,p(Q,) # 0 for primes p > 7. To see this, suppose (X,Y,1) € C(F,), let X,V be
any lifts of X,V to Z,, and set either {F(z) = 32° + 4Y3 + 5,w = X} or {F(y) =
3X3 4+ 433 + 5,w = Y} in the proof of Lemma 1.3.16 (the choice is made so that F'(w)
does not evaluate to zero modulo p). To show local solubility for the remaining primes,
we can use an extension® of Lemma 1.3.16 to bivariate polynomials which define affine

patches of superelliptic curves with bad reduction at p. ]

Lemma 1.3.18. Equation (1.3.2) has no non-zero solution (X,Y,Z) € 73. Equivalently,
when this solution set is thought of as the set of Q-rational points of the curve C defined

by the same equation in P2, then C(Q) = .

Proof. We first use the automorphism of P2, (X,Y,Z) ~ (3X,—6Y, Z) to bring C into
the superelliptic form

C:Y3=6(X3+452%).

8Since lifting arguments of this type are well known, but quite messy, we do not include it here. For
details and implementation see http://wuw.warwick.ac.uk/"marfaqg/els.m.
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After scaling a point P = (X,Y,Z) € C(Q), we may assume that X,Y and Z are
coprime integers. Let K be the number field Q[t]/(t3 + 45) and 6 be the image of the
generator ¢ in K. Suppose that p is a prime of the ring of integers O such that p 1 6
and 3 { ordy (X — 6Z2), in particular

X =60Z modp. (1.3.6)

Then since 3 | ord,(Y?) = ordy(6) + ordy (X — 02) + ordy(X? + X Z + 62Z?), we also
have that 3 f ordy(X? + 0X Z + 6?Z?), in particular

X2+ 0XZ+6°Z*=0 mod p. (1.3.7)
Combining (1.3.6) and (1.3.7) we get that
30222 =0 mod p.

and we can deduce that p | 302 since X and Z are coprime. By dropping the condition

p 16 we get that

3fordy(X —07) = p | 66

= p € {p2,1, P22, p3,p5} = Supp(66°Ok).
Thus for every point (X,Y, Z) € C(Q) we have an equality of ideals
(X = 02)0x = p3'1p5%p5°p5' T

where e; € {0,1,2} and Z is an ideal of O. Let € be the fundamental unit of K and

g1, 92, g3, g4 be generators of pa 1, P22, 3, ps respectively (K has class number 1). Then
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there exist e¢; € {0,1,2} 0 <7 <4 and wup, u;,us € Z such that

X — 07 = g7 g52 952 g5* (uo + w16 + u26?)>. (1.3.8)

e] _ea

Denote the tuple (e, ...,es) by e and € g7' g5?g5*g;* by ae. We have

3

Y
? - NK/Q(X — QZ) = NK/Q(Oée)Sg,

s0 6N g(ae) € Q*3. This fact allows us to exclude all apart from 3% of the 3% possible
e’s. For a point P = (X,Y, Z) € C(Q) we say that ae covers P when (1.3.8) holds for
some u = (ug, uy,us) € P? (here we drop the assumption that X,Y and Z are coprime
integers and we allow scaling of the point). Then it is not hard to see that when we
have e, = A, 33 for some A € Q*, B € K*, we have that ae, covers P if and only if
(e, covers P (we can use A to scale P and f to transform linearly from one triple u to
the other). Using this allows us to deduce that the 9 remaining ae’s all cover the same
elements of C(Q). Note also that by our initial construction every element of C(Q) is
covered by an ae for some e. Thus, for C(Q) to be empty, we only need to show that
any of the 9 remaining ae’s cannot cover a point on C, i.e. the corresponding u does
not exist. For e = (0,1,0,2,0) we have ae = 6% + 6 — 9, with Nk g(ae) = 36. After

expanding (1.3.8) for this ae we get
X — 07 = Wy(u) + Wi (u)d + Wa(u)d?,

where Wy, W1 and Wy are cubic forms in three variables with coefficients in Q. From
what we have so far, for C(Q) to be non-empty we must have a non-zero solution u to
the equation

Wa(u) = 0. (1.3.9)
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In other words we must have

u% + 3u%u1 - 27u%u2 — 2Tugu? — 270uguyus — 135ugus — 45u5 — 135uius+

1215uqu3 + 2025u3 =0. (1.3.10)

By scaling we may assume ug, u; and ug are coprime. By (1.3.10) we deduce that 3 | uy,

80 ug = 3vg and we must have

3v8 4 3vgur — 2Tvius — Juout — Yvguiug — 45v0us — 5us — 15udug+

135uquj + 225u3 = 0. (1.3.11)

Now (1.3.11) implies that 3 | u1, so u; = 3v; and substituting in (1.3.11) gives

vg + 300201 — Yvdug — 2Tvgvs — 0vgviug — 15v0us — 4503 — 45vTug+

13501u3 + T5us = 0, (1.3.12)

which in turn implies that 3 | vg, so vg = 3wy and we get

9w8 + 9w8v1 — 27w8uz — 27w0v% — 90wgviug — 15w0u§ — 151)? — 15v%uz+

4501u3 + 25us = 0. (1.3.13)

Finally (1.3.13) implies that 3 | w2, which leads to a contradiction. This argument

essentially shows that there are no solutions in Qs, thus (1.3.9) has no solutions in

Q. O

Lemmas 1.3.17 and 1.3.18 together constitute a proof that Selmer’s example is

actually a violation of Hasse’s local-to-global principle.
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Theorem 1.3.19. The equation

3X3 +4Y3+523 =0

has solutions everywhere locally, but fails to have a rational solution.

We should note that this might not be exactly the same proof that Selmer gave,
but it is based on the same idea, adjusted to prelude the descent arguments that will
appear later.

Already apparent in the proof of Lemma 1.3.18 is the geometry behind the method
of descent. We will soon give a more concrete description of the geometric constructions
used in the general case and see how these provide very useful insights on how to deal

with number theoretic problems.

1.3.3 Chabauty-Coleman

Back in 1941, probably while trying to prove Mordell’s Conjecture (i.e. Theorem 1.3.14),
Chabauty in [11] had the idea of using integration on Cy(K,) and J,(K;) for a curve C
defined over K and its Jacobian J. While his method was only applicable to curves whose
genus g was strictly greater than the Mordell-Weil rank r, thus failing to prove the whole
conjecture, unlike Faltings’ proof, Chabauty’s argument could be made effective’. This
was noted by Coleman in [13], after he set well established foundations for computing
the necessary integrals in [14]. A very well written exposition can be found in [36]. In
this section we will remind the reader about the basics behind the Chabauty-Coleman
method and also present how one would perform it explicitly to determine the set of
rational points in particular cases.

Let us start by setting up the necessary notation.

Notation 1.3.20. We will use H°(V}, Q') to denote the Ky-vector space of regular 1-

"Effective here means: Can be used to obtain bounds for the number of rational points on curves
defined over number fields.
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forms on the base change of a variety V' with respect to a prime p of Ok. For a subset

S C V4(Kp) let S denote the (p-adic) closure of S in V;(Ky). X

We will assume the existence of a point Py € C(K). As we will see later, the
technique discussed in this section is useless in showing that C'(K) = (), so the assumption
comes essentially without any loss of generality. We use Py to define the Abel-Jacobi
embedding

t:C—J, (P)=[P- P,

which gives rise to an isomorphism of g-dimensional Ky-vector spaces
;o HO(J,, QY — HO(Cy, Q).

Definition 1.3.21. For a finite extension K of Q and a prime p of K above a prime p

of Q we define the ultrametric absolute value on K, to be

ordp (N]Kp /Qp (a))

ol =p T
Also for any m € Z>1 we define
-1 K = R,
||(CL1, s 7am)|| = 12%);1 | a; |

and for € > 0 the open polydisc centered at the origin

By(e,m) = {ac K" : |la] <€}.
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Definition 1.3.22. For m € Z>; let PSy(m) denote the formal powerseries ring in
m variables with coefficients in K, and for € > 0 let PSy(e,m) be the subring of e

convergent powerseries, i.e.

> X' e PSy(e,m) if and only if

i€z,
lim edesl) || =0,
deg(i)—o0
where deg(i) = deg((i1,...,%m)) =1+ ... + im. X

Lemma 1.3.23. Let p be an unramified prime of K above a rational prime p. Suppose
that I € PSy(1,1) is such that all the coefficients of its formal derivative I' are in Ok, .
Let k be the order of vanishing at zero of the reduction I' modulo p. If k < p — 2, then

I has at most k + 1 zeros in pOk, .

Proof. See for example [36, Lemma 5.1] for K = Q. The proof here is the same since p

is unramified. O

Definition 1.3.24. Let V}, be a non-singular projective variety of dimension m over K,
with good reduction. We say that a function n : V,(K,) — K, is locally analytic if for
every P € V,(K;) there exists a subset U C V,(K,) containing P and local parameters
Tty -, Tm € Kp(Vp) giving an isomorphism 7 = (71,...,7m) : U — By(€,m), sending P
to the origin, for some € > 0, together with an e-convergent powerseries I € PS;, (e, m)
such that

n(P') = I(r(P"))
for all P’ € U. X

Theorem 1.3.25. Let V,, be a non-singular projective variety of good reduction defined
over Ky and w € HU(V;J,Ql) be a regular, closed 1-form. Then there exists a locally

analytic function, n,, : V,(K,) = K, unique up to additive constant, such that dn., = w.
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For P,Q € Vy(K,) we set fgw = n,(Q) — nw(P). This integral satisfies the following

properties:

Additivity For wy,ws € H°(V,, Q1)

Q Q Q
/ (w1 +ws) = / w1 +/ w2.
P P P

Fundamental Theorem of Calculus If w = diy for some 1) € K,(V,) then

Q
/ w=$(Q) — B(P).

P

Change of Variables Suppose ¢ : Vp’ — Vp is a morphism of non-singular projective

varieties of good reduction over K, then

Q «(Q)
/ Vo = / w.
P L(P)

Homomorphism If V,, is also an abelian variety then

nt = /O.WVp(Kp)—NKp#)

1s a homomorphism of abelian groups.
Proof. See [14, Section II]. O
The following straightforward corollary will prove to be useful later:

Corollary 1.3.26. Let v : C' — J be the Abel-Jacobi embedding with basepoint Py and

P € C(K) be a rational point such that N -1(P) = ZniDi for Nyny,...,n. € Z, N #0,
i=1
Dy,...,D; € J(K) and w € HY(J,, Q') for some prime p of good reduction. Then

w = — o w | .
Py N\= "y
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Proof. We have that

P (P) N-(P)
N Cw = N/ w = / w
Py 0 0

by the change of variables and the homomorphism properties. Using the homomorphism

property again we get the required result since

N-u(P) r D;
w = n; w.
e,

=1

O

Using the homomorphism property of integration on .J, we get a bilinear pairing
Jp(Kp) x H(Jp, Q) — K, (1.3.14)

which has kernel J, (Kp)Torsion (see [14, Theorem 2.11]) on the left and {0} on the right.

If we denote the dual of H%(.J,, ') by T then (1.3.14) is equivalent to a homomorphism
log : J,(Ky) — 7,

which is a local diffeomorphism.

Let r’ denote the dimension of the closure J(K) inside J,(Kp). Chabauty’s idea
is based on the fact that 7’ is bounded above by the minimum of the genus g and the
Mordell-Weil rank r of J (see [36, Lemma 4.2]). So when r < g he expected that the

intersection Cp(Ky) N J(K) is finite. This is what he actually proved in [11].

Theorem 1.3.27 (Chabauty). Let C' be a curve of genus g > 2 over Q and J be its
Jacobian variety. Let p be a prime, and let v’ be the dimension of J(Q)% in J,(Q,).
Suppose r' < g. Then Cp(Qp) N J(Q) is finite.

Then Coleman in his “Effective Chabauty” paper showed how to produce very

good, and as Example 1.3.29 demonstrates sometimes sharp, bounds for the size of
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C(K). This also paved the way for a widely used technique which when combined with
the Mordell-Weil sieve can usually determine C(K), assuming one can obtain a finite

index subgroup of J(K).

Theorem 1.3.28 (Coleman). Let p be an unramified prime of K above a rational prime
p, and C be a non-singular curve of genus g, defined over K, with good reduction at p.
If 2g < p then

#O(K) < Cy(Fy) +29 — 2.

Proof. This follows from [13, Proposition 1] and [13, Corollary 4a]. O

Let wi, . ..,wy be a basis for H°(J,, Q'). When r < g—1, there exist a1,...,a, €
g
Ky, not all zero, such that w = Z a;w; corresponds to a functional A\, : 7 — K, which

i=1
is zero on log (J(K))®. Then

] Ao
nd LKy —— T Kp

is zero on J(K)<. Let By(P) denote redp_l(redp(Po)). If there exists P € By(FPy) NC(K)
for a known Py € C(K), then

=Awfﬂw=[:ﬁw=1vw»,

where 7 is a uniformizer at Fy. We can bound the number of such P by bounding the

number of zeros the powerseries I € PS,(1,1) can have on B,(1,1) using Lemma 1.3.23.

Example 1.3.29. Let C' be the genus 2, hyperelliptic, plane curve with affine patch
defined by the equation
y? = 2° + 52" + 8z + 4. (1.3.15)

After searching we find the following rational points:

Hsearch — {OO, (717 0)7 (0’ f2)’ (0’ 2)’ (72’ —6)’ (—2, 6), (3, —26), (3, 26)} - C(Q)
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Using MAGMA [4] we computed that J(Q) = (Z/2Z) x Z with the free part generated
by the divisor class D = [(0,—2) + (—2,6) — 200]. We will perform the argument using

the prime p = 5. We find that over F5 the curve has the following points:

05(F5) = {007 (07 3)7 (07 2)7 (37 1)7 (37 4)7 (47 0)}

At this point we could just use Theorem 1.3.28 and conclude that H*¥" = C(Q),
but for the sake of demonstrating how Coleman’s argument works in practice on each
individual residue class, we will carry on the computation.

Let wy, w2 € HO(Jg,, Q') be such that t*wy = dz/y and (*ws = zdz/y. Then
{w1,wa} is a basis for H%(Jg,, Q). We observe that the points (=2, —6) and (3, —26)
reduce to the same point modulo 5. This will make our calculation slightly easier because
13D = [(3,—26) — (—2,—6)] € J(Q) is already in the residue class of the identity. We
want to find an w such that i} (D) = 0. This is equivalent to finding an a € Qs such

that

(3,-26) (1+ az)dx (3,-26) gy (3:-26) 2y
(—2,-6) Yy (-2,-6) Y (-2,-6) Y

We use 7 = x + 2 as a uniformizing parameter to expand:

' /(2,—6) Y /0 ( 6 6 108 36 81 ) T

= —1x5-2x524+2x5+5*+0(5%),

(3:-26) 2y 571 1 4 13 35
I pr— — el —_ _— 2 —_— 3 - 4 .. d
2 /(_27_6) ” /0 <3 + 67‘+ 277‘ + 108T + 3247 + ) T

=2x54+52+5*+0(5%).

So we must have
I

a=——==-2+2x524+0(5").
I
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So setting w = wy + aws and using Lemma 1.3.23 to bound the zeros its antiderivative
has on the residue class of each point in C5(FF5), as shown in Table 1.1, we see that all
the elements of C(Q) are accounted for in H*" We only had to check six of them,

because the other two lie in some residue class already on the table.

Py € H' | red5(Py) | uniformizer 7 w=(...)dr #B5(Py) <
00 00 y/z3 (=1+0(5))+0O(1) 1
(—1,0) (4,0) Y (24 0(5))+O(7) 1
(0, -2) (0,3) x (24 0(5)) + O(7) 1
(0,2) (0,2) T (=2+0(5)) +O(1) 1
(-2,-6) | (3,4) T+ 2 (O(5)) + (2+O0(5)) T+ O(1?) 2
(—2,6) (3,1) T+ 2 (O(5)) + (=24 O(5)) T+ O(7?) 2

Table 1.1: Performing Chabauty using Lemma 1.3.23

X

In the rest of this section we present another, almost equivalent®, description
of applying Chabauty-Coleman’s method in practice. By avoiding the use of Lemma
1.3.23, which is based on the theory of Newton polygons, and instead only employing
tools from linear algebra to bound zeros on residue classes, this viewpoint becomes more
straightforward to generalize later in Chapter 3. This was also used by Siksek in [48].

One must first make sure that the prime p is chosen such that red, : Cp(K,) —

Cy(F,) is injective when restricted to H****h in other words
Py, Py € H* Py &£ Py = redy(Pp) # redy(P). (1.3.16)

Lemma 1.3.30. Let p be an unramified prime of K lying above an odd rational prime

p. Fiz a Py € Cy(K,). Suppose P € By(Py) = red;l(redp(Po)). Let w € HY(Ck,, Q)

8This is actually slightly weaker since primes failing property (1.3.16) cannot be used. The two
descriptions are equivalent for primes satisfying this property.
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such that w € HO(Cr,, Q') \ {0} and 7 be a uniformizer at Py. Then

P
/ w = ar(P) + B7(P)?,

Py

where a, 3 € Ok, with o being independent of P.

Proof. See for example [48, Lemma 3.2|. O

Now fix a Py € H** and let p be a prime of good reduction for C and J
satisfying (1.3.16). Let ¢ : C' — J be the Abel-Jacobi embedding with basepoint Py and
P € By(Py)NC(K) be a rational point such that N-¢(P) = ZT: n;D; for N,ny,...,n, € Z,
N # 0, (Dq,...,D,) a finite index subgroup of J(K). Zfét Wi, ...,wy be a basis for
HO(JKP,QI). Then by Corollary 1.3.26 and Lemma 1.3.30, we can obtain «;, ; € Ok,,

for each 1 <i < g, such that «; is independent of P and the following equality holds:
T D
n; J
Z ]\?/ w; = oyT(P) + BiT(P)>.
j=1 70

We thus get the following system of equations:

fODl Wy ... fOD’” w1 ny/N o B
. . ) : — 7(P) : +7(P)? : . (1.3.17)
D D,
Jo " wg Jo " wg ne /N g &
A n a b

The following lemma is the analogue of computing the constant ¢ in Example 1.3.29.

Lemma 1.3.31. Let U be a (g — ) X g matriz with entries in Ok, such that U-A=0
and a be the vector defined in (1.3.17). Then if U-a % 0 modulo p we have that
By(Fo) N C(K) = {Fo}-

Proof. When we multiply both sides of equation (1.3.17) by U we get

0=U-A-n=71(P)U-a+7(P)U-b. (1.3.18)



Let us suppose we have P € B, () NC(K) with P # Py. Since 7 is a bijection of By(FPy)
with pOk, we know that 7(P) # 7(Fy) = 0. Let s = ordy(7(P)) and let 7 € Ok, be
a uniformizer for p. Then divide both sides of (1.3.18) by 7* and reduce it modulo p
(note that by Lemma 1.3.30 this is a system of equations defined over O, ). The term
757(P)2U - b is divisible by p so it reduces to zero. Since 7~ 57(P) is non-zero modulo

p we must have that U - a is zero modulo p. O

h+1

The following lemma implies that computing the matrix of periods A modulo p where

Dj
h= min ord, wj ,
1<i<g,1<j<r 0

is often sufficient to obtain U modulo p.

Lemma 1.3.32. Lel A be as above and m € Ok, be a uniformizer for p. Let h be an
integer such that the entries of Ag = 7" A are in Ok, and Ag is non-zero. Let U be a
(9 —r) x g matriz with entries in Fy, such that U - Ag = 0. If the rank of Aq is equal to

r then there exists a matriz U with entries in (’)Kp such that U - A =0 and U = 5

Proof. The matrix of partial derivatives at any point U of the vector space defined by
U - Ay = 0 is just the block-diagonal ((g —7)g) x ((g — r)r) matrix Diag(Ay, ..., Ao)
which has full rank (g — 7)r if and only if Ay has full rank 7. The required result is now
an eagy consequence of a generalization of Hensel’s lemma, i.e. Lemma 1.3.16, stating
that for varieties V},, non-singular points in the residue field lift to points in the local field
or equivalently that the image of the reduction map red, : V,(K,) — V,(Fy) contains
the subset of non-singular points in V,(F,). For a proof of this, see for example [41,

Theorem 3.5.45| or |52, Lemma 1.2.1]. O

Example 1.3.33. Let C' be the curve defined by equation (1.3.15). This has good
reduction at 17 and we also have that 17 satisfies (1.3.16). As before, we use D =
[(0,—2) 4 (—2,6) — 200] as the generator of the free part of J(Q). The order of red;7(D)

in J17(FF17) is 55. We use MAGMA to compute the quadratic polynomial with coefficients
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in Q whose roots x1 and xy satisfy
[(z1,91) + (x2,y2) — 2(0, —2)] = 55D.

We then proceed as in [56, Section 1.9] to estimate the entries of the 2 x 1 matrix of

periods A:

D 1 (z1.91) 4 (z2,y2) ¢
/ W= — / $+/ T 28 x 17 -3 x 172 — 8 x 173 + O(17Y),
0 9 \Jo-2 Y 0-2) Y

D 1 (@191) 2d (T2,92) 1
/ Wy = — / ”+/ ) = 7 x 1743 x 172 =5 x 173 + 0(17Y).
0 95 \Jo-2 Y 0-2 Y

We observe that the reduced matrix 171 A has rank 1 so by Lemma 1.3.32 we know

that there exists matrix U with entries in Z17 such that U - A is zero and

U=<78).

Since none of the entries in the final column of Table 1.2 is zero modulo 17, we can use

Lemma 1.3.31 to deduce that
Bi7(P)NCQ)={FP}, VY PFPe Fsearch

This is not a complete proof that H*¥ = C(Q) since #C17(F17) = 20 and we have
not yet dealt with the remaining 12 residue classes that appear to be empty. This will

be carried out using the Mordell-Weil sieve in Example 1.3.34 in the following section.

X
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Py € H*¥ | vedy7(Py) | uniformizer 7

3

o

00 00 y/x

|
)

EN|

(—1,0) (16,0) Yy

|
N

|
w
\-/\_/\_/v\_/\/\_/\_/

O 0o

wW|

|
o | o

~—
JO
>
=
K
8
/\/\/‘\/—\/_\/—\/_\
|
e [0 9]

Table 1.2: Performing Chabauty using linear algebra

1.3.4 The Mordell-Welil sieve

The Mordell-Weil sieving method was introduced by Scharaschkin in his doctoral thesis
[46] as a method of proving the absence of rational points on curves? and since then it
has been used extensively for this purpose. For example, Flynn in [20] applies this to
curves of genus 2 and later Bruin and Stoll in [9] apply it to more general hyperelliptic
curves. This technique was also adapted to prove non-existence of rational points in
individual residue classes thus, when combined with the Chabauty-Coleman argument
in the previous section, provides a powerful tool used for the determination of C(K),
even when this is non-empty. A thorough investigation of the Mordell-Weil sieve along
with an efficient implementation can be found in [9]. Poonen in [42] gives heuristics that
support his conjecture that this method can always be used to prove that C(K) is empty,

when this is the case. In this section we give the idea behind this method and then use

°In the case of curves the use of the Mordell-Weil sieve to prove that C(K) is empty is essentially
equivalent to the Brauer-Manin obstruction for C, assuming the conjecture that the Tate-Shafarevich
group of J is finite.
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it to complete Example 1.3.33.

One can trace the philosophy of the Mordell-Weil sieve back to the Chinese Re-
mainder Theorem, or more precisely the failure of existence of an integer solving simulta-
neously several congruence conditions, when these conditions are set “randomly” and fail
to satisfy the criteria for applicability of the CRT. To put this into perspective, suppose
we require an n € Z which satisfies the congruence conditions {n = n; mod M;};_,,.
When the M; are chosen to have many common divisors and the n; are chosen at ran-
dom, one expects that the probability of finding a common solution will decrease as s
increases. Now let C, J and ¢ : C'— J have their usual meanings and S = {p;}{_, be a
set of primes of good reduction. For the sake of argument, suppose that (D) = J(K) = Z
and that we are looking for a point P € C(K). For such P let n be the integer such that
(P) = nD. By using (the reduction of) ¢ to include the elements of Cy, (Fy,) in Jy, (Fy,)
we get a congruence condition n =n; p mod #redy, (J(K)), for each P € Cy, (Fy,) such
that «(P) € redy, (J(K)). The integer n must satisfy one of these. Evidence, for example
[42, Theorem 7.2|, suggests that these conditions are random. If we now suppose that
P e By, (P)= 1redp_01 (P) for a particular P € Cy, (Fp, ), but the corresponding congruence
leads to contradictions when combined with all possible combinations of congruences at

the other primes, then this contradicts the initial assumption and we can conclude that

By, (P) N C(K) = 0.

Example 1.3.34. We now continue with Example 1.3.33 to recompute the set of Q-
rational points of the curve C defined by equation (1.3.15), using the Mordell-Weil sieve.
To do that we need to show that the 12 remaining residue classes modulo 17 contain no
rational points. As before we use the point (0, —2) to define the embedding ¢ and the
divisor D = [(0,—2) + (—2,—6) — 200] as a generator for the free part of J(Q). Let us

denote by D' = [(—1,0) — oo] the generator for the torsion. All points P in the set

{(1,1),(1,16),(2,8),(2,9), (5,2), (5, 15), (8,2), (8,15), (12, 7), (12,10)} C C17(F17)
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satisfy «(P) ¢ redi7(J(Q)) so we already have Bi7(P) N C(Q) = 0 for these. The

remaining points (10, 12) and (10,5) satisfy

1((10,12)) — red17(D*") = 16red;7(D) and

¢((10,5)) — redy7(D™") = 43 red7(D),

where red7(D) has order 55 in the finite group J17(F17). So a point P € C(Q), that
is not already in the set H**M will have to satisfy «(P) = D'" 4+ nD where n is
congruent to either 16 or 43 modulo 55. We now choose to work with the prime 151
because redis1 (D) has order 55 x 34. But all points P in the set C151(F151) such that
L(P) € redi51(J(Q)) satisfy

L(P) — red151 (Dtor) = N1 red151 (D),

where n; #Z 16 and ny # 43 modulo 55 so we cannot have an integer n such that «(P) =
D' + nD for a P € C(Q) reducing to either (10,12) or (10,5) modulo 17, therefore
both B17((10,12)) and Bi7((10,5)) contain no Q-rational points. This completes the
proof that

C(Q) = Hoeueh,

X

Let us now drop the assumption r = 1 to see what happens in general. Fix a point
S

P € Cy,(Fp,) and denote by ¢p the composition of the inclusion of {P} x Hépi (Fp,) in

=1

S
Hépi (Fp,), with the product of Abel-Jacobi maps over the residue fields. Also denote
i=0

S
by Redg the reduction map from J(K) to the product H Jp,; (Fy,). We have the following

i=0
commutative diagram:
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Redg

{P} x H Upi (Fpi)c—> Hépz (sz)(—> H jm (sz)
i=1 \11// 1=0

Lemma 1.3.35. If Image(tp) NImage(Reds) = 0 then By, (P) N C(K) = 0.

Proof. This is trivial, as a point in By, (P)NC(K) would map to an element in Image(¢p)N

Image(Redg). O

A more interesting (and general) version of Lemma 1.3.35 is Theorem 3.3.1, which

provides an algorithmic way to apply the Mordell-Weil sieve in practice.
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Chapter 2

Descent on superelliptic curves

2.1 Preface

2.1.1 Background

When working with the set of rational points C(Q) of an algebraic curve C, we often
encounter cases, for example Selmer’s curve (1.3.2), where local solubility fails to decide
whether this set is empty or not. This is an important disadvantage, since local conditions
are in principle easier to check than global ones. Fortunately, the method of two-cover
descent on hyperelliptic curves is based on the fact that, for a hyperelliptic curve C,

there is a computable collection of covers ¢, : D, — C, such that

C@Q= |J ¢alDalQ)). (2.1.1)

acfinite set

Therefore, when local-to-global arguments cannot be applied directly to C', the problem
can be transferred to the one of looking for rational points on the covers. This is described
explicitly in [10]. In this chapter we extend this method to superelliptic curves C' defined
by an equation of the form y? = f(x), where ¢ is an odd prime and f € Q[z] is ¢-th
power-free. The theory behind the process of performing descent on the Jacobian variety

J of such curves, defined over a field containing the relevant roots of unity, is studied in

35



detail in [43]. In [15], an extension of the descent map to the Picard group of curves of
this type is used to introduce new insights on the nature of III(J-/Q). Nevertheless, it is
often much simpler and faster to avoid working with the rational points on the Jacobian
and instead restrict to information obtained using only the initial curve. The Selmer
set we define, contains information which is sometimes sufficient to determine the set
C(Q). We explain the necessary theory and present an explicit algorithm, similar to the
one in [10], to compute this Selmer set. Note that we cannot use a trivial extension of
the existing routines because our algorithm is expected to deal with the possibility of

singular points, which do not appear in the case of hyperelliptic curves.

2.1.2 Chapter structure

In Section 2.1.3 we will present the descent map for superelliptic curves, introduce the
necessary notation and explain how the information gathered after performing descent
can be used to help in the determination of C(Q).

Then, in Section 2.2 we will explain how class group and unit group information
about a collection of relevant number fields is used to refine the set of interest before any
local computation takes place.

The results necessary to handle the p-adic part of the computation are presented
in Section 2.3, along with the corresponding algorithms. We also give the usual geometric
description of the process, which is then applied to prove that the computation, in
principle, terminates in finite time.

The problem of finding points on superelliptic curves generalizes the problem of
finding solutions to Thue equations (see [35]) and can also be used to solve generalized
Fermat equations. In Example 2.4.2 we solve four such equations considered in [27],
which were used by the authors as examples of the limitations of their approach. Thus
in many situations descent arguments are more appropriate than other techniques. As
illustrated by Examples 2.4.1 and 2.4.2 it is often the case that C is everywhere locally

soluble, but its associated covers fail to be so, preventing C' from having any rational
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points, since the union in (2.1.1) is comprised of empty sets. In Example 2.4.3, local
information together with information obtained using subcovers, following the method
of “Elliptic Curve Chabauty” proposed by Flynn and Wetherell in [21] and independently

by Bruin in [5] and explored further in [6] and [7], is used to prove that the curve
y’ = (2 = 3)(a" - 2)

has no rational points except from one rational point at co. By making descent applicable
to singular superelliptic curves, we were able to prove in Theorem 2.4.5 that the only

pair (a,b) € Z2, satisfying
a
=i
i=1

is (1,1).

2.1.3 Setup

We have seen in 1.3.7 the definition of a superelliptic curve over a number field K. In this
chapter we will assume that our curves are defined over Q, although the theory extends
to a general number field with minor adjustments. Since the case ¢ = 2 was addressed
in [10], we will assume ¢ is an odd rational prime. This will also simplify our exposition,
since it will result in all curves appearing in this chapter being soluble over R. We have
also seen in Proposition 1.3.9 that any superelliptic curve (see Definition 1.3.7) can be

defined by both an affine equation of the form
C: yl=f(x)=apz" + ...+ a1z + ag
and the more convenient weighted homogeneous one

C: YI=FX,Z)=a, X" +...+ a1 XZ" ' + ag2Z",
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with ¢ | n. Finally, as we have seen before, it is safe to assume that f and F' are ¢-th
power-free with integer coefficients.

We will now start using the factorizations of the polynomial f over different fields,
to index various objects that will appear in this chapter. This is not a commonly used
notation, but it makes the indexing more canonical. From now on let I denote one of
Q, Q, Qp, @p (where p can be any rational prime). Define Fy, to be the set of monic

factors of f, that are irreducible over L. Then

f=an [T 0™

heFy,

where 1 < np < q¢—1 for all h € Fr. Denote the degree of h by d. Let Ap be the

semi-simple L-algebra L[z]/(f*f(x)), where

fsf: H h.

heFy,

Note that f* is defined over Q and does not depend on L. We denote its degree by d.

Ap, decomposes as a direct product of finite field extensions of L

AL = [ &n= ][ Liz)/(h(=)).

heFy, heFL,

Denote by 8, € K}, the image of the generator x under the quotient map and by Or, the
set

oL = {9h : hG.F[L}.

For the following definition we will assume that a point (X,Y,Z) € C(L) is
normalized such that if L = Q then X,Y,Z € Z with ged(X,Z) = 1 and if L = Q,
then X,Y,Z € Z, with either Z =1 or X =1, Z € pZ,. We can always find such

representations by scaling the points.
Definition 2.1.1. For L = Q and L = Q, define the component maps ¢, : C(L) —
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K /K"

X —0,2)K; 1 it X —0,7Z #0,
Sh(X,Y,Z) = ( o K Wi # (2.1.2)
"Q/Fh(X, Z)71K;? otherwise,

where l?'h is the two-variable polynomial with coefficients in K} defined by

(X —0,2)"F(X,Z) = F(X, Z) (2.1.3)

and "Q/ﬁh(X, Z)71K,;" is defined to be the unique element v € Kj/K,? such that
v = Fy (X, Z) VK X

Remark 2.1.2. (1) Note that v exists because the groups K /K, ? have exponent ¢ and

ged(g, ny) = 1 and it is unique since these groups are Fy-vector spaces.

(2) The component maps 0y are defined this way because for a point (X,Y,Z) € C(L)

with F(X,Z) # 0, we have that (X — 0,2)K,"? = "Q/ﬁh(X, Z)~1K,;?, since (X —
0,2)" F,(X,Z) = F(X,Z) = Y9. We also need this so that the elements a in
the image of pg (see Definition 2.1.4) will be in one-to-one correspondence with a
covering collection {¢, : Do — C} whose elements satisfy Proposition 2.3.8.

X
Definition 2.1.3. Let 6, : C(L) — A} /A" be 61, = (On)ner, - X

In order to account for the fact that for any A € L* and (X,Y,Z) € C(L), (X,Y,Z2) =
(AX, \"9Y \Z) € C(L), we quotient the codomain of &, by this action of scalars. So

we define an action of L* on Aj by

A (ah)he}‘L = ()‘ah)he}'L )

where A € L* and (ap),cx € Af. This action descends to an action of L*/L* on

A; JA{?. We denote by Af /L*A;? the quotient of Af /Ar? by this action.
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Definition 2.1.4. Define the descent map ur, to be the composition

Ky

O(L) —2s A7 /AT —Thy A¥ [L* A

where 7y, is just the projection to the quotient. X

Our aim from now on will be to obtain a finite subset of Ag/Q*Ag, the Selmer
set, which will contain Image(pg) and will correspond to a finite collection of everywhere
locally soluble covers of C'. The rational points on these covers can help us determine

the rational points on C'. In particular, if the Selmer set is empty, C(Q) = 0.

2.2 Global information

2.2.1 The image of dg

The image of dg is contained in a finite subgroup A(q,S) of A(B/Af@q. To see this let us
restrict our attention to finding the allowed possibilities for each of the #Fg components.
Let h € Fg and set fu(z) = f(z)/(z — 0,)™ € Kp|x].
Suppose (X,Y,Z) € C(Q) with X,Y,Z € Z and X coprime with Z. We have
that
(XY, Z)= (X - 0,2)K,".

Now suppose that p { a, Ok, is a prime ideal of the ring of integers Ok, of the number
field Kj,. By assumption we have that

ordy(X —0,2) >0,  ordy(Fp(X,Z)) > 0.

At this point we want to figure out which primes p appear in the factorization of (X —
0nZ), but not as a ¢g-th power. So suppose ¢ { ordy(X — 6,72). Since ged(ngy,q) = 1,
this implies that ¢ { ordp(ﬁh(X, Z)). In particular we have X = 0,7 and Fj,(X,Z) =0

modulo p, which together give that ﬁh(GhZ, Z) = Z"‘”hfh(eh) = 0 modulo p. But
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if Z = 0 modulo p then also X = 0 modulo p which contradicts coprimality, so we
have that p € Supp(fh(ﬁh)OKh). By dropping the initial condition on p we have that if
qtordy(X—6,2) thenp e Supp(an fr(01) Ok, ) C Supp(AOk, ), where A = a,, Disc(f*).
In other words

(X — HhZ)OKh = pil .. plequ

where {p1,...,p;} = Supp (an]?h(ﬁh)OKJ, (e1,...,€) € Ffl and Z is a fractional ideal
of Kh-
Now define the sets of primes Sp, = Supp(anﬁl(ﬂh)(’)Kh) for h € Fg. Then by the

discussion above Image(dy) C Kp(q, Sp) where
Ki(q,Sn) = {aK;?: ¢ | ordy(a) for all p ¢ Sy}

Note that Kp(g, Sp) is a finite subgroup of Kj:/K;? (a proof of this can be found within

the proof of [50, Proposition VIII.1.6 p. 213]). Therefore we have that

Tmage(dg) € [] Kn(q, Sh) =: A(q,8) (2.2.1)
heFy

which is a finite subgroup of Ag/Ag.

2.2.2 The image of ¢,

Definition 2.2.1. Define the weighted norm homomorphism NA/]L A = L7 as

Naw ((an)her) = H N, (o)™

heF,

Since Ny 1(Ar) is a subgroup of L*? we also get a homomorphism N4 AL JATT —

L* /1", X
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Lemma 2.2.2. We have the following inclusion:
Image(dr) € 9L,

where N1, 1s defined as
——1 1
= —IL*) .
o NA/L (an >
Proof. By commutativity of the following diagram of norm homomorphisms

Az HNap

N
AL/AY =5 L /L

and the fact that

Y4
[T Neou(X =n.2)™ = 27 T wX/2)"™ = —,

Qn
heFr, heFy,

(2.2.2)

we can deduce that when (XY, Z) € C(L) satisfies X — 0,7 # 0 for all h € Fy, we have

5L(X, Y, Z) S ﬁL.

(2.2.3)

So it only remains to prove (2.2.3) for (X,Y,Z2) € C(L) with X — 0;,Z = 0 for some

k' € Fi. By (2.1.2) in Definition 2.1.1, when this happens, 6,/(X,Y, Z) =v € K, /K,],

where v = Fj (X, Z)"'K;T. Let ap € Kj, be such that ap K,/ = v. Note that for

X — 0y, Z to be equal to zero, we must actually have Ky =L, so NKh,/IL is the identity

and

N, o)™ = ot = Fy (X, Z) 7' 8,
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for some 8 € L*. But then

1
Nk, jLlon)™ H Ny (X =0, 2)" = CT/B;ZL/_ (2.2.4)
heFL\{r'} n

By (2.2.4) and by commutativity of diagram (2.2.2), we get that

Nu(X,Y. Z)) = 1",

an,
which completes the proof. O

Note that, if non-empty, 1 is a coset of the subgroup Kernel(A 4 /L) in Af JA;?. Com-

bining Lemma 2.2.2 with the inclusion (2.2.1) we deduce that
Image(dg) € Ho N A(g,S) =: Ho(S)-

2.2.3 The image of jg

Lemma 2.2.3. Let Ag be the semi-simple Q-algebra associated to the curve C' and
A(q,S) be the subgroup of A@/A(g] defined in (2.2.1). Also set

T := {p prime : for all h € Fg, and all p € Supp(pOk, ), (¢ | ordy(pOk,)) or (p € Sp)}.

Let v : Q*/Q* — A@/ATQ‘Z denote the reduction to the quotients of the inclusion ¢ : Q —

Ag. We have the following ezact sequence:

Q*/Q > Ay/AF > A /Q AT —> 1

ﬁ A(E S)/

Q(q, T)

Then
(i) Image(t) N A(q,S) = ¢ (Q(q, T))
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(1) mq (A(g,S)) = A(q,S)/t(Q(q,T)) -

Proof. (i) First suppose that aA*? € 1 (Q(q,T')). Then ¢ | ord,(a) for all p ¢ T. Let p

be a prime of Ok, for some h, with p ¢ S,. We know that

ord(aOg, ) = ordy (pOk, ) x ord,(a),

80 by the definition of T" at least one of the factors will be divisible by ¢ thus also
their product, which implies that aA*? € A(q,S).

For the opposite inclusion, suppose that a € Q* and aA*? € A(q,S). Then ¢ |
ordy(aOg, ) for all h € Fg and for all p ¢ Sy, so if p ¢ T, then ¢ must divide

ordy(a) since ¢ divides the product but not the first factor in the equality above.
(ii)) We have

A(g,S) A(g,S) @ Ag,S)

70 (A S) = Kermel(mg) 1 A(¢.S) ~ Image() MA@ ) (e, 1))’

Let us denote 7, (1) by $1 and when L = Q let us denote 7o (g (S)) by Hg(S).

Since Image(dg) C $Ho(S), we have that

Image(j10) € Ho(9). (2.2.5)

In the following section we will see how Image(uqg) is contained in a potentially strict

subset of H(S) and provide an algorithm to compute it.
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2.3 Local information

2.3.1 Determining the image of 1q,

In this section we will provide an algorithm which determines Image(uq,) for a rational
prime p. The algorithm relies on the fact that points on C' which lie in a “sufficiently
small” p-adic neighborhood, have the same image under pgq, -

The diagram below is crucial in the process of refining the possible image of ug

even further:

CQ) — Ay/Q Ay

Lpl lrp

i) . «
C(Qy) —— Ag,/QAg,
By commutativity, if we have a rational point P € C(Q) then ugq, o t,(P) = ) 0 ug(P).

Therefore we have that

Image(j1g) C 75 (Tmage(jug,)) N Hg(S) (2.3.1)
Definition 2.3.1. The Selmer set over Q of the superelliptic curve C, is defined as
Sel™ (C, Q) = {[a] € H0(S) : mp([a]) € Image(ug,) for all rational primes p} .

X

Remark 2.3.2. Strictly speaking, the set defined here corresponds to the “fake” Selmer
set found generally in the literature (e.g. [10] and [15]). Roughly, the difference between
the fake and the actual Selmer set is that the latter distinguishes between covers (defined
in Section 2.3.2) ¢ : Dy — C and ¢y : Dy — C when ¢, and ¢ are different even if
D, and D, are isomorphic. Since we are not using both sets, we omit the “fake” from

the notation. X

After considering the inclusion (2.2.5) in the end of Section 2.2.3 and the inclusions
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(2.3.1) for every rational prime p we get that
Image(ug) C Sel(C, Q).

Let h € Fg, and denote by pj the prime of Ok,. The following two lemmas
are used to show that the analytic space C'(Q,) can be covered by a finite number of
neighborhoods, where the map pg, is constant. In practice X3, (or X) will be a finite

precision approximation to the first coordinate of a point (X', Y",1) € C(Qp).

Lemma 2.3.3. Suppose that X', X, € Z), with ord,(X' — X3) > k

(i) If k > 2ordy, (g)+ordp;, (Xkp—0n)+1 then (Xy — Qh)K;q = (X' — ah)KZq-

€pp, /P

(ii) If k > 2ordy), (9)Fordp,, (fn(Xx))+1 then fTh(Xk>K;q _ J?h(X/)K;*Lq

€pp /P

Proof. (i) By the assumption X' = X}, + up® where u € Z,. So

X' —0 k
h g W
Xy — 0y X —0h

Now let 7(t) = i{iig}; — t7. By Hensel’s lemma we have that the following is a

sufficient condition for 7 to have a solution in Kjp,

ordy, (7(1)) > 2ordy, <dt(1)> +1,

or equivalently
kordy, (p) — ordy, (X — 0) > 2o0rdy, (q) + 1.

So, as long as the condition of the lemma is satisfied Hensel’s lemma ensures that

(Xi — 0)) and (X' — 6),) are the same modulo K.

(ii) This is very similar to the previous part. Just use the fact that

fu(X') = j?h(Xk +up”) = Fn(Xz) + vp* where v € Zy and set 7(t) = % — 4.
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O

Lemma 2.3.4. If {X;}?°, C Z, is a sequence satisfying ordy(X' — Xj) > k for some
X' € Z,, and every k, then there exists N € Zsq such that Xy satisfies at least one of

conditions (i) or (ii) of Lemma 2.3.3.

Proof. Suppose such N does not exist. This means that for every k we have

)

min 2ordy, (q) + ordy, (X —6n) +1 2ordy, (q) + ordy, (fn(Xy)) +1 ok
€pn/p Epn/p

and therefore both ord,, (X — 6},) and ordph(fh(Xk)) tend to infinity as k tends to
infinity. But since {X}}7°, converges to X’ we have that (X' —0)) = fr(X) =0, a

contradiction. O

A clear distinction between the case of hyperelliptic (¢ = 2) and superelliptic
(¢ > 2) curves is that, a superelliptic curve is allowed to have singularities, since f being
g-th power-free is no longer equivalent to f not having repeated roots. At this point
we would like to use some version of Hensel’s lemma to determine whether our finite
precision X}, lifts to Z, as the first coordinate of a point (X’,Y”, 1) € C(Q,). We have
to be careful not to ask this question for points approximating one of the singularities
as that would result in an infinite loop. Thus we have to determine the size of the ug,-
constant neighborhood around each singularity (which is defined over Q) in advance
and compute its image.

Let

il ={h e Fg, : deg(h) = 1,np, > 1,0, € Z},

where the exponent [si stands for linear, singular and integral. Elements of this set
correspond to the singular points on C' that are defined over Q,, but are of the form
(0r,0,1) with 65, € Z,. The last condition arises because we split the computation into

two parts, the first being the determination of the image under g, of points of the form
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(X', Y', 1) € C(Qy), with X, Y’ € Z,.

Algorithm 1 The SIZEOFNEIGHBORHOOD function
1: function SIZEOFNEIGHBORHOOD(h)
2 kp <0
3 FiNisH « false

4: while [ FiNisH = false| do

5.

6

kp < kp +1
X(—XGZCZpiordph(X—eh)Zkh
{ 2ordy, , (q)+ordph, (X—0,)+1

€ppr/p

7: VALLIST+— th e Fo, \ {h}} U

{201dy, () + ordy, (Ja(X)) +1}

8: if [ max(VALLIST) < k;, | then
9: FINISH < true

10: end if

11: end while

12: return ky, X

13: end function

Note that the function S1IZEOFNEIGHBORHOOD (Algorithm 1) only makes sense
when deg(h) = 1 otherwise we would not be able to find an X satisfying the condition
of step 6 for every given kj, (that would imply that 6, € Z,), and we will actually only
apply it to elements of ]-"6; This function has a double use: The returned value of X will
be used to compute ug,(04,0,1), and kj will keep track of the size of the pug,-constant

neighborhood around the singularity. Now for h € ]:(SZ set
Uy, ={X € Zy : ordp(X — 6p) > kp}
and
U= J t.

heFg)

The following function can be thought of as partitioning 7Z, into neighborhoods,
with the partition becoming finer close to the singularities. Then the function LocALIM-

AGE (Algorithm 3) will test each of these neighborhoods for elements that lift to points
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on C; and if necessary partition them further into uq,-constant parts.

Algorithm 2 The COMPUTEINPUTLIST function

1: function COMPUTEINPUTLIST(REPS, k, LIST)

2 for X € REPS do

3 NEEDRECURSION<+false

4 for h € ]-"Qlf; do

5: if kp > k and ord,(X — 6;,) > kj, then
6 NEEDRECURSION< true

7 end if

8 end for

9: if NEEDRECURSION then

10: LiST + COMPUTEINPUTLIST({X + tp* : t € {0,...,p — 1}} ,k + 1, LIST)
11: else

12: LisT < List U{(X,k)}

13: end if

14: end for

15: return LIST

16: end function

At this point we should stress that the functions S1IZEOFNEIGHBORHOOD (Al-
gorithm 1) and COMPUTEINPUTLIST (Algorithm 2) would be redundant if there were
no singularities, and the function LOCALIMAGE (Algorithm 3) would be sufficient to
compute the local image. In that case the input (LisT={0,...,p—1},IMAGE={}) would
produce the require result.

With the help of the SIZEOFNEIGHBORHOOD function, we pre-compute and store
in the variable image the images of the singular points under ug,. Using LOCALIMAGE

(Algorithm 3) with initial input
(CompUTEINPUTLIST ({0,...,p — 1},1,{}) ,image)

we get as output a set Vi C Ag /QpAg’ which satisfies pg,(U1) = Vi, where Uy =
{(X,Y,1) € C(Qp) : X,Y € Z,}. With slight modifications to the routine above we can
also obtain as output a set Va such that ug,(Uz) = Va, where U = {(1,Y,pZ) € C(Qy) :

Y,Z € Zy}. Thus we obtain the complete image of ug,, since Uy U U = C(Qy).
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Algorithm 3 The LOCALIMAGE function

1: function LOCALIMAGE(LIST, IMAGE)

2 for [ (X,k) € LisT | do

3 if [ X el or H(X',Y',1) € C(Qp) : ordy(X' — X) >k ] then

4: LisT <« LisT\{(X, k)}

5 else B

6 VALLIST 20rdph(q)+ordph(X70h)+1’ 2ordph(q)+0rdph(fh(X))+1:| he ]:Q }
€pp/p Cpp/p P

7: if [ V[kl,k‘g] eVALLIST, min(kl,l@) <k ] then
8 NEWELEMENT < 1
: for [ [k‘l,kg] €VALLIST ] do
10: if [ k1 < ks ] then
11: NEWELEMENT <~ NEWELEMENT X (X — 6,)K,?
12: else
13: NEWELEMENT<— NEWELEMENT x " ﬁ(X)—lKZq
14: end if
15: end for
16: NEWELEMENT<¢ mg, (NEWELEMENT)
17: IMAGE < IMAGE U{NEWELEMENT}
18: else
19: NEwLisT+ {(X +tpF k+1):t€{0,...,p—1}}
20: IMAGE«-LOCALIMAGE(NEWLIST, IMAGE)
21: end if
22: end if
23: end for
24: return IMAGE

25: end function
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Remark 2.3.5. We can be certain that the routine Locallmage (Algorithm 3) terminates
after a finite number of steps because of Lemma, 2.3.4. An infinite loop would correspond
to a sequence {X}7°, converging to some X' € Z, satisfying X' — 6, = (X)) =0
which is impossible. Also note that the If statement at step 3, ensures that if X € U, in
other words if our approximate value is very close to the first coordinate of one of the
singular points, then it is excluded from Li1ST and we do not try to lift it using Hensel’s

Lemma, which would have resulted in an infinite loop. X

2.3.2 The corresponding covers

For every o € Af such that [a] := alL*A*? € §y, we can construct a cover of C of degree

qd72

¢a : Do — C,

defined over L satisfying the properties

Do(L) #0 < [a] € Image(p)

[a] = [o'] = Dg= Dy

First let us give an equivalent description of the IL-algebra Ap. Denote the ab-
solute Galois group Gal(L/L) by GL. We fix embeddings K}, < L for all h € F, that
are compatible in the sense that they agree on the intersections Kj N Ky for h,h' € Fp..
We then get an inclusion ©p, < O and we can treat elements oy € Kj, as elements of

L and elements of O, as elements of Or.

Lemma 2.3.6.

A]L = Map]L (9E7 E) )

where the right hand side is the set of all G -equivariant maps from O to L.
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Proof. The isomorphism is given by
(Oéh)he_/TL — (Qh/ — ”ozh S Q]L, h e ]:]L, "Hh = Qh/)

with inverse

£ (£(0h))g,co.co, -

O
Let o € Aj such that [a] € 1. Since aA*? € ., there exists v € L* with
anNaL(a) = vl (2.3.2)
Let D, be the variety in P! x C' defined by
((uh)hefi, (X,Y, Z)) € Do 3N £ 05.t. Aa(0p)ul = X — 0,7 (2.3.3)

for all h € F and

A4y H u" =Y.
hE}-E

We use a description of the covers D,, similar, at least in terms of their ambient space, to
the one found in [15] and [49]. We equip the first factor, P~! with the twisted Gp-action
which permutes coordinates in the same way it permutes Of. In other words if o € G,
satisfies 70y, = Oy, then up = up. Another way to think of this is that we have the

usual affine space A¢ obtained as

A% = Spec (L [{zn, tner, 0<i<d,))

and setting

dp—1
up = Tpo + Tp10n + ...+ Tha, 10,
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and then using as generators the wy and their conjugates instead. We then take the
usual quotient of A?\ {0} by the action of scalars to obtain our P4~1. It is then obvious
from the definition that D, is actually defined over L. Projection to the second factor

gives rise to the required covering map

¢a : Do — C.

Lemma 2.3.7. For every P € C(L)

#e, ' (P) =g (2.3.4)

In particular Dy is a curve.

Proof. Let P = (X,Y,Z) € C(L) and suppose X — 0j,,Z # 0 for some hy € Fr. Then

X042

aOny) So for all uy,

up, 7 0 so we can set up, = 1. By doing this we also fixed A\ =

with h # hg we have
Oé(@ho)(X — HhZ)
Oé(@h)(X — GhOZ) '

q _
Uy =

Since we are over L, if there does not exist h € Ji such that X — 6,2 = 0, then there
are exactly ¢ different choices for the value of each of the d — 1 up’s. Once d — 2 of them

have been chosen, the remaining one is decided by the relation

Ny H up" =Y.
heFr
The fact that there is a unique choice for the value of the remaining coordinate uses
that ged(np,q) = 1 for every h € F. On the other hand if X — 6,;Z = 0 for some
h' € Fi\ {ho} then up = 0 and there are ¢ choices for the remaining d — 2 up’s. The
extra relation in this case does not decide the value for any of them. We see that in both

cases the fiber of ¢, over P € C(LL) contains exactly ¢?2 points. O
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Proposition 2.3.8. D, (L) # 0 if and only if [a] € Image(uy). Furthermore, if [a] =
[@/] then Dy = Dy over L. In other words, up to L-isomorphism, D, only depends on

the class [o] in Af JL*A77.
Pm#L@PZ(www%¢xngeD4u.mqwmg@m¢4m:@&xme

C(L) and if X —0,Z # 0V h € Fi then

0L (¢a(P)) = ((X — 042) K1) = (Aapuj K1)

0r€0OLCOL 0, €0LCOL

therefore pp(¢a(P)) = [o]. On the other hand if there exists b’ € Fi such that X —

01, Z = 0 then
S (Pa(P)) = "X/ Fu(X, Z)"1K;! (By (2.1.2) in Definition 2.1.1)
1
= K7 (By (2.1.3) in Definition 2.1.1)
wlan [[ (X —6u2)™ "
heF-\W
_ 1 K;:f] By (2.3.3), the defining
— n,
R ap AT H (04(9}1)%) " equations of the covers
\ heF\N
()‘ah')nh/ * .
= " ———— K, By Definition 2.2.1
NN 1 (@) h (By Definition )
)\Oéh’ Ny »
_ o) ! (By (2.3.2))

By by the definition of

"t/® in Definition 2.1.1

So again pur(¢a(P)) = [a], since all the other components of Jy, are evaluated without
using cofactors.

For the other implication, suppose [a] € Image(ur). This means there exist
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X,Y,Z € Or, A€ L* and 8 € A] such that
Aa(0n)B(0n)! = X — OhZ

for 0, € Op,. After conjugating these relations by elements of Gr, and using the fact that
a and 8 are Gp-equivariant, we obtain the corresponding relations for 6, € O \ OL.

Then

Q= ((B6)nes. (X.Y, 2)) € Da(L). (2:3.5)

Note that if for some h' € F, we have X — 6, Z = 0 then djs = 1 and the corresponding
coordinate uy is equal to zero.

For the last statement suppose that we have a,o/ € Aj with [a] = [¢/]. This
implies that there exist A € L* and 3 € A] such that a = A\&/$%. By definition of the
covers it is not hard to see that we can then map D, to Dy via ((uh)he]:f, (X,Y, Z)) —
<(ﬁ (On)un)ne Fos (X,Y, Z )) which is clearly an isomorphism and it is defined over L since

it is invariant under the twisted Gy -action. O

Corollary 2.3.9. Let H be any subset of Ho(S) containing Image(ug), then

C(Q): U ba (Da(Q))

[a)eH
In particular the above equality holds for H = Sel(“)(C, Q).

Proof. Since for all a € Ag such that [a] € 90, Do and ¢, are defined over Q, we know
that the right hand side is contained in C'(Q). Also, from the proof of Proposition 2.3.8,
in particular (2.3.5), we deduce that if we have P = (X,Y,Z) € C(Q) and uqg(P) = [a],
then there exists Q € Dq(Q) with ¢o(Q) = P. On the other hand, if [a] € H \Image(ug)
then D, (Q) = 0. O

Proposition 2.3.10. The curves D, are non-singular.
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Proof. To show this let us restrict to the affine patch where up, # 0 and Z # 0 for some
ho € F. We thus assume that u,, = Z = 1, label the elements of F1 \ {ho} using an
index i € {1,...,d — 1} and rename u; := up,, 0; := 0y, and n; := ny, to simplify the

notation. Thus equations (2.3.3), the defining equations for D,, in this patch become

a(@z)(X — Qo)ug = Oé(@o)(X — 01) for i € {1, ey d— 1}
X — 6y n/a 44 ni
U(a(90)> 1;[“1 =Y.

We get the following (d + 1) x d matrix of partial derivatives which represents a linear

map whose cokernel is the cotangent space of D, at a generic point of the affine patch.

d—1

a(01)uf — a(bo) a(02)ud — a(bo) s aBgud_y —a00) v (2)a(6e) " UX —00)"/971 T ul'
i=1
- X—60g\n/a -1 i
qa(01)(X — GO)u‘{ b 0 0 vny (Wﬂj(;) u;ll H u;z‘
i#0,1
0 qa(f2)(X — 90)11(2171 c. 0 vno (%)n/q 7,,;271 H u:Li
i#0,2
-1 X—6p\n/9 md—1—1 i
0 0 oo qa(Bg_q1)(X — 90)u371 vng_1 (@(90?) ud711 H u?‘
i#0,d—1
0 0 0 -1
(2.3.6)

This matrix has rank d at every point of the affine patch. To see this note that the first
d — 1 entries of the first row, can never be zero, since this would contradict the fact that
the roots of ff are distinct. For the same reason, at most one row can be identically
zero and when this happens the d x d matrix obtained by deleting that row has rank
d. A similar argument for all of the 2d affine patches covering D, shows that D, is

non-singular. O

Proposition 2.3.11. Let A be the discriminant of the polynomial f5. If p is a rational
prime such that p{ qA and o € Ay such that [a] € 90(S), then Dg has good reduction,
where B € Agy is such that [B] = rp([a]).

Proof. Since p does not divide g or A, v € Ag can be chosen such that ordy (a(6s)) =0

for every h € Fg and every p | p. Take ( to be the image of this « under the inclusion
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®Qp : Ay — A, - Then [5] = ry, ([o]) and also ord, (8(6s)) = 0 for every h € ]:@p and

every p | p. Thus the defining equation
MB(Op)uf = X — 0,2

of Dg can be reduced to a non-zero equation modulo py, for every h € F5 , where py, is
P

the prime of K} above p. We thus get a cover gZ)Tg : Diﬁ — C defined over F,,. Furthermore

we know that Dg is non-singular since the reduction of the matrix of partial derivatives

in (2.3.6) has full rank. O
Proposition 2.3.12. The genus G of the covers D, is equal to ¢* 2 (@ — q) + 1.

Proof. Let ¢ : C — P! be the map (X,Y, Z) — (X, Z). This has degree q. Since ¢, has
degree ¢?~2 by Lemma 2.3.7, the composition 1) 0 ¢, : Dy — P, which is a non-constant
morphism between two non-singular varieties, has degree ¢?~!. It is easy to see that for

every (X,1) € P!, with X ¢ O (in other words when X is not a root of f), we have
#yH(X,1) =q,
and combining this with equation (2.3.4) we get that
#(1 0 ¢a) H(X,1) = ¢! = deg(p 0 ¢a),V X ¢ Op.

By considering the affine patch where X # 0 we can show that the size of the fiber above
the point (1,0) € P! is also ¢?~!. By Proposition 1.3.5 we deduce that for Py, = (X, 1)

with X ¢ O and Py, = (1,0) we have
€pope (@) =1 V Q€ (0 ¢a)" (Pun)- (2.3.7)

Now take Pram = (05,1) € P! for some 0}, € ©f. Then 7 = z — 0, is a uniformizer at
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Pram for P! and by the defining equations (2.3.3) of D, we have that

for some h' € Fr\ {h}.} Since uy, is actually a uniformizing parameter for all points in

(¥ 0 ¢a) 1 (Pram), and (x — ) is non-zero and regular at these points, we get that that

Chope (@) = ¢ ¥V Q€ (Y0 ¢a) ! (Pram). (2.3.8)

Now by substituting (2.3.7) and (2.3.8) in the Riemann-Hurwitz formula for 1po¢,

we get

2G — 2 =(2 Genus(P') — 2) deg(v) 0 ¢ ) + > (eg — 1)
PEP!,QE(Yoda) " (P)

2G —2=—2¢""1+dg? (¢ - 1)
-1
G =¢? <d(q) - q) + 1.

2
O
Definition 2.3.13. Define the set of useful primes to be
. . 1
Sup = {p rational prime :p|gA or /p+— < QG} .
VP
X

Proposition 2.3.14. Suppose that p is a rational prime and p ¢ Sup. Then H(S) C

r,t (Image(ug,))-

Proof. Let a € Ap such that [o] € Ho(S) and B € Ag, such that [8] = rp ([e]). By

Propositions 2.3.11 and 2.3.12 we know that D7/3 is a non-singular curve of genus G over

!Note that we are actually abusing notation by denoting the affine coordinate again by u; when it
is actually up /up:.
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F,. Then by the Hasse-Weil inequality we have that #Dgs(F,) > 0 and we can use

Hensel’s lemma to lift to a point in Dg(Q,). By Proposition 2.3.8 this is equivalent to

[6] = rp(la]) € Image(ug,)- O

Corollary 2.3.15.
Sel(C,Q) = {[a] € Hg(S) : 7p([a]) € Image(yug,) for all p € Sup}

2.3.3 Computational efficiency

The groups A(q,S), Q(¢,T) and the homomorphism ¢ defined in Sections 2.2.1 and
2.2.3 can be computed using commands implemented by Claus Fieker in the MAGMA
computer algebra system [4], so we can compute mg (90(S)) = Hg(S). The bottleneck
of the computation is computing the class and unit groups of the number fields K}, for
h € Fgp, which are needed for the construction of A(g, S).

Also, although Corollary 2.3.15 indicates that the algorithm computes Sel(#) (C,Q)
in a finite amount of time, the size of S, is prohibitively large and in general we can only
hope to get information using small primes. Nevertheless we can still put the algorithm
to good use as in most cases bigger primes do not have a contribution in cutting down

the set we already have.

2.4 Examples

In this section we give examples of how descent on superelliptic curves can be used to
tackle some interesting number theoretical problems. Example 2.4.1 is a preparatory
example to demonstrate how the results from the local computations are obtained and
combined to prove statements regarding the sets of rational points of the curve, or curves
in question. In Example 2.4.2 we show how descent can sometimes be the appropriate
technique for solving generalized Fermat equations. In Example 2.4.3 we consider a

superelliptic curve, which although covers a plane cubic curve in an obvious way (X +—
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X2, 7Z + Z?), the set of rational points of this curve is infinite, so it is impossible to

construct the set of rational points of the superelliptic curve by pulling back rational

points of the cubic curve. After using the algorithm described above we exclude all but

one of the covers D, due to local insolubility and we manage to compute all the rational
points of this remaining cover D; by other means (found in [5],[6],[7],[21]). Finally, we
compute C(Q) since C(Q) = ¢1(D1(Q)).
covering techniques to transfer the problem to a different type of curves, is also used

in the proof of Theorem 2.4.5, but unlike Example 2.4.3, all the curves involved can be

The reasoning of this example, i.e. using

defined over Q. Theorem 2.4.5 also demonstrates the significance of extending descent

arguments to singular superelliptic curves.

Example 2.4.1. Consider the curve defined by the equation

y° = 22° + 2t + 223 + 2% 4+ 32 + 3.

This is ELS, but after applying the algorithm to this curve we obtain the results shown

in Table 2.1.

p

.17

19 ...

37

41

#90(8) [ ' (re, (C(@)))

! prime
I<p

25

25

25

Table 2.1: Descent computation for C : 3> = 22 + 2* + 223 + 22 4+ 32 + 3.

Therefore

which proves that C'(Q) = 0.

H(8) N5 (1es (C(Q5)) Nrig (e (C(Quo))) N7 (Hoy (C(Qar))) =0

X

Example 2.4.2. In [27], Halberstadt and Kraus, consider the following four generalized
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Fermat equations

16a” + 87b7 + 625¢" =0

11a® + 296° + 81¢° = 0

27a° + 16b° + 2209¢° = 0

3247 + 816" +187¢" =0

(2.4.1)
(2.4.2)
(2.4.3)

(2.4.4)

These have solutions everywhere locally, but appear to have no rational points. The

authors explain how the modular approach fails to show that the set of rational points

is empty. We show how one can use descent to tackle all four of them.

Observe that the problem can be easily transferred to the one of finding rational

points on superelliptic curves.

(2.4.1) & (=b,2a, —c) € C1(Q), where C; : Y7 = 8(87X" +62527)
(2.4.2) & (—a, 3¢, —b) € Co(Q), where Cy : Y5 = 3(11X° 4 292°)
(2.4.3) & (—a,2b, —c) € C3(Q), where C3 : Y° = 2(27X° + 22092°)

(2.4.4) & (—b,2a, —c) € C4(Q), where Cy : Y7 = 4(81X7 +18727)

Table 2.2 contains the results obtained when we perform descent on these curves.

P 11213|5|7...23|29
#9a(8) ﬂm 7 (e (Cr (@) 4910
#90(S) lﬁ r (ug (Co(@1)) | 0
#ﬁ@(s)lﬁ (g (C3(@)) | 5 [5(5]1|1... 1]0
#90(S) lﬁ (e (Ca(@))) | 7

Table 2.2: Results for the generalized Fermat curves
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Therefore C;(Q) =0 for i = 1,2, 3, 4. X

Example 2.4.3. Consider the curve C in P?(1,2,1), defined by

(X,Y,Z) e C Y3 =(X%-32%)(X*-27%).

This curve has three points at infinity (1,1,0), (1, p,0) and (1, p?,0), where p is a primi-
tive cube root of unity. So we know that it has at least one rational point. After applying

the algorithm to this curve we obtain the results shown in Table 3.5.

p 1 [ 2 [3]5]7[11]13]17 ...
#90(8) () 7 (g, (C(Q))) [243|243(9(3(3] 3 |3 |1 ...
! prime
I<p

Table 2.3: Results for C : y® = (2% — 3)(2* — 2).

The element of H(S) remaining is the image of the point (1,1, 0) under ug which
is equal to the identity element 1Q*A*3. This corresponds to a cover ¢; : D; — C, where
Dy is a curve in P? x C defined as in (2.3.3), whose set of rational points is non-empty.
We fix embeddings of K(,2_3) and Ka_g) in Q and index the six elements of Og as
V1 = V3,099 = V3,03 = V2,9, = —v/2,95 = iv/2 and ¥ = —iv/2. Dj is defined by

the following relations

((u1,...,ue), (XY, Z)) € Dy <3\ # 0 such that  Auj = X — ;7

for 1 < j <6 and

6
AQ HUj =Y
j=1

This covers a curve E’ of genus 1 in P2, defined over the number field L := Q(v3), given

by the equation
(UV,W)eE & V3= (U—9:3W)(U?+93W?).
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We have the following commutative diagram:

D, —2 ¢ ((ui, ..., ug), (X,Y, Z)) —> (X,Y, Z)

I | )

B —— P! (Xul, (X — 932)usug, Zu2) —> (X, Z)

Note that k is a well defined rational map between two non-singular curves so it is
actually a morphism. We can put E’ into Weierstrass form via a linear transformation,

by moving the point (3,0,1) to co. We obtain the Weierstrass model
E:y*z— 879%1/22 = 2% — 6423
The isomorphism of the two models is given by
v E— U(x,y, 2) = (V3y, 2032,y — 8932).
Using the package MAGMA we find that the Mordell-Weil rank of E(L) is 1. Since
7 (k(¢71(C(Q))) S PHQ),

we are not interested in all the L-rational points of E’, only (U, V,W) € E'(L) such that
(U, W) € P}(Q). Determining these will give us C(Q). To solve this problem we can use
“Elliptic curve Chabauty” ([5],[6],[7],[21]). Fortunately this is implemented in MAGMA.
Using the inbuilt MAGMA commands we find that

(o, v,w) e E/(L) (U W) € Pl(@)} ={(1,1,0), (0, =93, 1)}.

We deduce that C(Q) = {(1,1,0)}. X

Example 2.4.4. In [3], |26], [40] and [45] the authors consider a generalization of Lucas

“Square Pyramid” problem, namely the determination of all pairs (a,b) € ZQ>0 that satisfy
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the equation

bl =1k 4 2F 1 4 4F

for some ¢ > 2 and k£ > 1. Theorem 2.4.5 below is already proved in [3] where the
authors determine all the solutions for all values of ¢ and for 1 < k < 11. It is suggested
in 2] that this could have been extended to larger values of k. Nevertheless, we present
here this special case since our proof, which involves descent, includes the determination
of the full set of rational points (as opposed to the subset of integral points) of a singular
superelliptic curve of genus 7. We prove the case with ¢ = 3 because current tools only
allow the use of cubic curves for the intermediate steps?. We consider the case with
k = 9 since this is a value of k where the superelliptic curve involved in the computation

is both singular and non-hyperelliptic.

Theorem 2.4.5. The only pair (a,b) € Z2, satisfying

a
b = E i?
=1

is (1,1).

Proof. After replacing the right hand side of the equation by the closed formula for the

sum of the first a ninth powers we get the equation

1 1 3 3
v = 1—0a2(a +1)%(a®*+a—1) (a4 + 2a® — §a2 — 50 + 2) (2.4.5)
After the change of variables in the proof of Proposition 1.3.9, we see that the solu-

tions (a, b) correspond to rational points on genus 7, singular, superelliptic curve C in

P2(1,4,1) defined by

V3 = X3(X+52)*(X+102)%(X?+30X Z+1002%) (X 430X 3 Z4+460X? Z%4-2400X Z34+-4000Z%).

2 Although recent developments, like the implementation of descent on Jacobian varieties of superel-
liptic curves in MAGMA suggest that Chabauty’s method for superelliptic curves should be available
in the near future, which would open the possibility to solve cases with ¢ > 3. For more details see
Section 4.2.
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To be precise, the map sending a solution (a,b) to a point on C' is
(a,b) — (10,100000, (a — 1)) € C(Q). (2.4.6)

We have the descent map ug : C(Q) — A@/@*Ai‘f where the algebra Ag is isomorphic
to the product Q x Q x Q x K; x Ko where K1 = Q[z]/(2? + 30z + 100) and Ky =
Q[z]/(z* + 3023 + 46022 + 2400z + 4000). Denote the images of z in K7 and Ky by 6;
and 0y respectively. We can compute representatives in A(’{@ for the images of the five

known rational points. These are shown in Table 2.4.

i| PeC@ 1o (P)
1 (1,1,0) [(1,1,1,1,1)]

2 (0,0,1) [(1,5,10,01,02)]

3 (-5,0,1) [(1,75,1,1,400(563 + 134603 + 18606, — 5840))]

41 (-10,0,1) [(2,1,300,25(36; + 10),20(63 + 2065 — 9063 — 700))]

5 | (—10,1000,3) | [(2,1,4,25(36; 4 10),20(1363 + 330835 + 43806 + 9600))]

Table 2.4: Representatives in Ag of images of known points.

By Proposition 2.3.12, the genus G of the covers D, is

dlg—1 9x2
G:qd_2<(q2 )q>+1=37<>2< 3>+1:13123

so the set Sy, (see Definition 2.3.13) contains the rational primes which are less than
4 x 13123% = 688852516. Performing the local computations for all of these primes
would be unfeasible, but we do not need to, since after checking the primes 2, 3 and 5

we exclude every element from $g(S) apart from the five we already know. Thus
Sel(C,Q) = pg ({P1, Py, P3, Py, Ps}).

These elements correspond to five covers ¢; : D; — C, where each D; is a curve in P8 x C,
defined using a representative in pug(FP;) (see (2.3.3)).

Now for each 1 < i < 5, we choose a combination of three factors from .7-"@ to form
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a cover k; : D; — E; where E; is a genus one curve. By choosing factors whose product
is defined over Q, we ensure that F; and x; are defined over Q. When choosing the three
factors we also aim to obtain an elliptic curve E; which has finitely many rational points.
As it turns out, for all 1 <14 <5, the subset {z,z+ 5,2 + 10} C ]-"@ satisfies the criteria

we need, giving the five curves in Table 2.5.

~.

(U,V,W) € E; & : ((Uh)hef (XY, Z)) =

V3 = U(U + 5W)(U + 10W) (Xu?x), )
5018 = U(U +5W)(U +10W) | ( )
75V3 = U(U +5W) (U + 10W) (X u?x), XU(a15)U(2+10)5 Z“ )
( )

)

Xu (z+5)U(z+10)> ZU%@

b

u%x)a Xu m+5)u($+10)7 ZUQ

~

U%;E), Xu (z+5)U(z+10)> Zu(x)

Tl | W N |~

600V3 = U(U + 5W)(U + 10W)
SVE = U +5W)(U +10W) | (X, Xuge5yues10), 202,

Table 2.5: The cubic curves E; and the maps k; : D; — FEj;.

We note that there are isomorphisms F1 & E5 and E3 =2 E4 over Q, but this is not
relevant to the computation. We leave the coefficients of V? in E, and Fj unchanged
to remind the reader that they originate from multiplying the first three entries of the
representatives of ug(P;) shown in Table 2.4. All five cubic curves are elliptic curves

with Mordell-Weil rank equal to 0 so we can determine the sets E;(Q).

—10, —10, 3), (—20, 10, 3),

(0,0, 1),
(=10,0,1),[(1, 1, 0)],(~5,0,1)
(0,0, 1)](-10,0,1),(~ 501)}

E1(Q) = (

Bx(Q) = {[(0.

E3(Q) = {(001),( 10,0,1),[ (5,0, 1) }

E4(Q) = {(o 0,1), ~5,0,1)
)

(0,0,1), (~10,0,1), (=5,0,1),

E5(Q) =
(—20,5,3),(2,1,0),| (-10 , -5 , 3)

We then compute the pre-images of these sets under the maps ;. The box indicates that
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a point has one QQ-rational point in its k;-fiber. The rest of the points have no rational
pre-image. As expected, D;(Q) contains exactly one element for each 1 < i < 5. Using

Corollary 2.3.9 we get

5

C(Q) = |J ¢i (Di(Q)) = {P1, Pa, P3, Py, Ps}.

i=1

These points correspond to all solutions (a,b) € Q? satisfying Equation (2.4.5). In par-
ticular, using the inverse of the map (2.4.6) we get that P;, P», P3, Py and P5 correspond
to (1,1), “o0”, (—1,0), (0,0) and (—2, 1) respectively. Therefore (1,1) is the only solution

where both a and b are positive integers. O

X

67



Chapter 3

Extending “Elliptic Curve

Chabauty” to higher genus curves

3.1 Preface

3.1.1 Background

As we have already shown in Section 1.3.3, the method of Chabauty and Coleman
([11],]13]) is a very well established and explicit technique used to provide reasonable
and sometimes sharp upper bounds on the size of the set of rational points of a curve
defined over Q. To determine the actual set of rational points, it is usually used in
combination with the Mordell-Weil sieve which was presented in Section 1.3.4. One first
splits the analytic set of Ky-rational points of the curve into a finite disjoint collection
of neighborhoods, or residue classes. Then, Chabauty’s argument, made effective using
Coleman’s integration on these rigid analytic spaces [14], often allows one to show that
the classes containing known K-rational points do not contain any other rational points.
The Mordell-Weil sieve is then used to prove that the remaining classes (i.e the ones that
appear to have no K-rational points), indeed have none. The limitation of this approach

is the fact that it only applies to curves whose Jacobians have Mordell-Weil rank less
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than or equal to g — 1, where g is the genus of the curve.

In a more recent development, Siksek ([48]) following unpublished work of Wetherell,
showed that when Chabauty’s method is generalized to deal with curves defined over a
number field of degree d > 1, the limitation is usually weakened and the technique can be
applied to curves whose Jacobians have Mordell-Weil rank less than or equal to d(g—1).
The final remark in his paper is what actually motivated the results obtained in this
chapter.

Often, when one is interested in the set of rational points on a curve YT defined
over a smaller number field E C K, a descent argument leads to the consideration of
the following problem: let C' be a curve over a number field K. Let ¢ : C — P! be a

morphism defined over K. Determine the set

{P e C(K):y(P) c PH(E)}. (3.1.1)

For example, Flynn and Wetherell in [21] and Bruin in ([5]), present an approach to
this when C' is a curve of genus 1 using a variant of Chabauty called “Elliptic Curve
Chabauty”. The addition of this new ingredient to the classical approach allowed Bruin

to determine all solutions in coprime integers to the generalized Fermat equations

Other examples where this technique was applied to solve interesting Diophantine equa-
tions can also be found in [7], [16] and [22]. In this chapter we explain an extension of
this method to curves C with genus greater than 1. The fact that we are interested not
in all K-rational points of C, but in the subset (3.1.1) allows us to weaken the Chabauty

limitation on ranks even further.

Remark 3.1.1. Let J be the Jacobian of C'. Our method requires knowledge of a subgroup

L of J(K) of finite index. Such a subgroup can sometimes, though not always, be
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computed through a descent calculation (for genus 2 curves see [51]; for cyclic covers of

the projective line see [43]). X

3.1.2 Chapter structure

In Section 3.1.3 we start by setting up the notation and presenting how the two techniques
described in the latter sections can be combined to determine the set of rational points
of an algebraic curve.

In Section 3.2 the modified version of Chabauty is presented explicitly. There is
a slight increase in complexity when dealing with points Py on the curve that are rami-
fication points of the morphism v, as 1) — ¥ (P) can no longer be used as a uniformizing
parameter in the neighborhoods of these points. This case is thus addressed separately
from the case where 1 does not ramify at Fy. In the end of the section, we apply the
results to three examples of curves defined over a quadratic extension of Q. The outcome
of these examples is used in Sections 3.3 and 3.4.

Then, in Section 3.3 we show how the classical Mordell-Weil sieve can also be
adapted and refined, in order to work together with the version of Chabauty presented
in Section 3.2.1

Finally, in Section 3.4 we give an example of a genus 6 hyperelliptic curve YT

defined over Q by the equation

T: y2 = ($3 + 22— 1)®11(x),

whose set of Q-rational points cannot be computed using the classical Chabauty-Coleman
approach. To apply “Elliptic Curve Chabauty”, one needs to work over the degree 10
number field Q[t]/ (®11(¢)), and current tools appear to be incapable of computing gen-

erators for the Mordell-Weil groups of the associated elliptic curves. We transfer this

!Even though variations of the Mordell-Weil sieve that work together with the method of “Elliptic
Curve Chabauty” have been used on particular examples in the literature, to our knowledge, this is the
first time an explicit description of this method appears in writing.
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problem to a collection of auxiliary genus 2 curves {C’i}le, defined over an appropriate
quadratic number field K. Even at this step the rank limiting inequalities given in [48]
are not satisfied, but the inequalities that apply to our case, are. An implementation of

our techniques in MAGMA([4]) is then used to successfully prove that
T(Q) = {oo}.

3.1.3 Setup

Notation 3.1.2. Let K be a number field, Ok its ring of integers and p a prime of K. If
¥ is any K-algebra and ¢ € ¥, we will denote by ¢?, the image of 1) under the injection

U — ¥ ®k K, where K, is the completion of K at p. X

Definition 3.1.3. (1) Let Q C K be a finite field extension. Let V be a non-singular
projective algebraic variety defined over K and let p be a rational prime, unramified
in K, such that V, has good reduction for every prime p of K such that p | p. Denote
the residue field by F,. We define Red, : V(K) — ][, V,(Fy) to be the diagonal
product of the usual reduction maps Redy : V(K) — V,(F,). When V is an abelian

variety, these maps are actually homomorphisms of abelian groups.

(2) Let C be a non-singular projective algebraic curve. For P € Hép(Fp), define
plp

B,(P) ={P € C(K) : Red,(P) = P}
and for Py € C(K) define the p-residue class of Py to be

Bp(Py) = By(Red,(Fy)).

(3) Fix a morphism v : C' — P! defined over K. Note that 1 can be thought of as an
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element of K(C). Let

H={P e |[Cp(Fy): VP(Py) = ¢9(Py) € P'(F,) Vp,q|p}

plp

and

H =9 '(P{(Q)NCK).

Consider the following commutative diagram

H Y - PYQ)
Red, Red,
Y PP
[1C(Fy) _ e 11 Pl(Fp)
plp plp

Suppose we have a subset H%¥h C H . In practice H%* will be a subset of H found
through a computer search. The aim of this chapter is to provide explicit techniques

that often allow one to show that

(a) for all Py € H**! we have that B,(Py) N H = {Py} (by using a modification of

“Elliptic Curve Chabauty”) and

(b) for all P € H \ Red,(H***) we have that B,(P) N H = () (by using a modification
of the Mordell-Weil sieve).

(a) and (b) put together imply that H*¥h = H.
When dealing with the problem of determination of the set Y(Q) for an algebraic

curve Y defined over Q, we can sometimes perform a partial? descent computation to

2The word “partial” to describe descent using only partial information arising from factorization in
a smaller than usual number field was first used in [49], but the technique was also explored earlier, for
example in [7].
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obtain a finite collection, which we will label using a finite set S, of commutative diagrams

D, (3.1.2)

¢Cy \ﬁ,a

Ca '¢D,a T

wk A

Pl

for each o € S, where Dy, ¢ o, ¥y and ¥p , are defined over Q and Cy, ¢pc ., Yc,o are

defined over K. As with the usual (full) descent we have

T(@) = U ¢T,a(Da(Q))'

a€eS

We note that

and

Da(Q) € ¥5L, (PH(Q)) = Da(Q) C ¢k, (v, (PH(Q))),

SO

Da(Q) € ¢ (V00 ([PH(Q)) N CalK)).

We can then employ our Chabauty-Coleman/Mordell-Weil sieve argument to compute

D, (Q) for each a € S and thus determine Y(Q).

Example 3.1.4. Let YT be the genus 6 hyperelliptic curve which has an affine patch?

defined by the equation

y2 = (m3 + 2% - 1)@ (z)

= 2B 4222 42 20 4 9 S T St 2 - — 1.

3Even though the curves found in this example are projective we only use the affine equations to
define the curves and the maps involved.
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We start by noticing that over K = Q[z]/(2? — z + 3) = Q(9)
(2® + 2% = 1)®u(z) = (2° +2° = 1) f(2)g(x),
where

f(x) :x5+9334—x3+x2+(9—1)a:—1

g(x) =2® + (=0 + Dzt — 2> + 2% — 62 — 1.

This decomposition over K suggests that a partial descent argument can be used. So we

define a map

p:T(@Q = (Q/Q™) x (K*/K*?),

((x?’ + 22 - 1)Q*?, f(:c)K*Q) yif P = (z,y)
((1)Q*2, (1)K*2) ,if P =00

p(P) =
The image of this map is contained in
Kernel (V) N (Q(2,51) x K(2,52)),

where S7 = Supp(Resultant(x3+22—1, f(x)g(z))) = {23}, S = Supp(Resultant(f(z), (z3+

22 —1)g(x))) = {p}, with p one of the primes of Ok above 23, and
W (Q*/Q*2) y (K*/K*z) - Q*/Q*?
the reduction of the product of norm maps
N:QxK—Q,

N (h1, ha) = hiNg g(he).
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Also for each element o = (a1, 2) in

D, — T defined by

where o is the non-trivial automorphism of K and v is a rational number satisfying
y2a1NK/Q(a2) = 1. The D,’s are products of curves, fibered over P'. Note that the
D,’s are actually defined over Q*. These are in turn covered by the D,’s of full descent
found in Section 2.3.2, but we use the same notation since we will not need both sets of
covers in this example. More details on these “towers of covers” and the relation with

the Galois group associated with the defining equation of T can be found in [7]. If we

v =ai(z + 2% - 1)
Diayan) {45 = aaf(x) and

y§ = o(a2)g(x)

ér,a(, Y1, Y2, y3) = (2, vy1y2y3),

set S = Image(u) we get

T(Q) = | ¢r.0(Da(@)).

a€eS

A computation gives that

Kernel(N) N (Q(2, 51) x K(2,52)) = {(1,1),(1,-1),(23,5—6),(23,0 — 5)},

4This is because a point on the projective model of D, is of the form (X,Y1,Y>2,¥3,2) €
P*(2,3,5,5,1), with Gg acting on Y2 and Y3 the same way it acts on the roots of the defining poly-

nomial of K

6]

the image of u, we can associate a cover ¢y o :



so we only need to be concerned about the covers

y%:x?’—i—mz—l

Dr=Dayy: v = f(z)

Dy=Da-1: | 45=—f(2)
| ¥5 = —9(@)
y? =23(x3 + 2% — 1)
D3 =Dss-0: | v5=(5-0)f(z)
2

y? = 23(23 + 2% - 1)
Dy=Deso-5: | v3=—(5-0)f(z)
y3 = —(0+4)g(x)

and the corresponding covering maps

(z,y192y3)  fori=1,2
¢T7i . Dz — T, ¢T7i($7y17y27 y3) =

(2, 93y192y3) for i =3,4.

These cover, over K, the genus 2 curves

Cr: y = fa)
Co: y*=—f(x)
Cs: y*=(5-10)f(x)

Cr: y?=—(5-0)f(z)
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respectively, via the maps

¢ci:Di — Ci,  oci(z,y1,y2,93) = (z,y2).

All Q-rational points of the D;’s have Q-rational z-coordinate so we can use the maps

’(/JT :T_>P1 wT(xvy):(xv 1)
Ypi: Dy — P Ypi(x,y1,y2,y3) = (x,1)

wC’,i : C’L — ]Pﬂ ¢C,i('x’y) = ('T’ 1)

to form the data in (3.1.2). Later on, in Lemma 3.3.3, we will compute the sets
o (PH(@)) N Ci(K)

for 1 < ¢ < 4, which are required for the determination of Y(Q) in Theorem 3.4.1. KX

3.2 Chabauty

Let K, C, J and v : C — P! have their usual meaning. We will be using Py € H3®h a5
a bagepoint for the embedding ¢ : C' — J, but in practice the process described in this
section has to be repeated for each Py € H%h When this is completed or if Hearch jg
empty, then one should use some D € J(K) with deg(D) =1 to define the embedding ¢
and perform the Mordell-Weil sieve described in Section 3.3. If no such D can be found,
then hopefully C'(K) can be shown to be empty using descent computations.

An essential ingredient in what will follow, is the use of uniformizing parameters
to linearize the neighborhoods of the analytic spaces Cy(Ky) and J,(Kp), for some prime
p of K, thus reducing the problem of finding points on varieties to simple linear algebra.

We will require our uniformizers to be “well-behaved” under reduction.
Definition 3.2.1. Suppose Py € Cp(K,). We call a function 7% € K,(Cy) a well-
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behaved uniformizer of C, at Py when

(i) 7" is a uniformizer of C}, at Py and

(ii) ¥ is a uniformizer of Cy at red,(Pp).
X
Lemma 3.2.2. Let 7" be a well-behaved uniformizer of Cy, at Py and m be a uniformizing

element for K,. Then the map defined by By(FPy) — 70y, P +— 7°(P) is a bijection.

In particular, if P € By(FPy) and P # Py then 7°(P) # 0.

Proof. This is a standard result, see for example [35, Section 1] or [56, Sections 1.7 and

1.8]. O

The idea behind both “Elliptic Curve Chabauty” and our method, is to exploit
the extra dimensions over Q, when working in a number field K, so that the number of
equations gets multiplied by d = [K : Q], while the number of unknowns remains the
same, since they are defined over Q. For the sake of argument suppose K : Q] = d
and that we have a rational prime p such that pOx = p. To see what is going on
geometrically, let R/, denote the Weil restriction of scalars functor from varieties over

K, to varieties over Q,. Consider the following diagram:

Ry /p(t)
Rp/p<C)CL> Rp/p(J)

Rp/p(wp)
P (Qp) =Ry (P!)

Instead of taking the intersection in the gd-dimensional R, /,(Jy)(Qp) of the d- dimen-
sional Ry /p(t) (Rp/p(Cy)(Qp)) with the < r-dimensional J(K)“, we only need the inter-

section of the latter with the 1-dimensional

Rp/p(L) (Rp/pwp)_l(ﬂﬂ(@p))) )
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so when gd — 1 > r, the dimensions suggest that this intersection is finite.

When v is ramified at Fp, then one of our unknowns, namely our uniformizer
evaluated at a point, 7(P), is no longer guaranteed to be QQ,-rational, so we have to put
in extra effort to find new Q)-rational relations and unknowns. At the moment, we know
how to do this using rational primes p that do not ramify in quadratic number fields, or

split completely in general number fields.

3.2.1 Unramified case

Let C' be a non-singular, projective, genus g, algebraic curve defined over a number
field K and ¢ : C — P! a morphism to P! which is also defined over K. Suppose
Py € H=1"1(PY(Q))NC(K). Suppose further that ¢ is unramified at Py. If ¢(Ppy) = oo

replace ¥ by 1/1¢. Now fix a rational prime p such that:

(p1l) p does not ramify in K, i.e. pOg = p1 ...p,, with the p; distinct prime ideals.
(p2) Cp, = C xk Ky, has good reduction for 1 < i < m.

(p3) The reduced point redy, (Py) is not a ramification point of the reduced map ®: for

1< <m.

We aim to find a criterion that will guarantee that B,(Py) N H = {Fy}.

Fix p € {p1,...,pm}. Let C be a proper regular minimal model for C' over Ok, .
Now 7 := ¢ —(Py) € K(C) is a uniformizer for C at Py. By (p1l), (p2) and (p3), 7" is
a well-behaved uniformizer for the generic fiber Cgep, = Cy at Py and 7P is a uniformizer
for the special fiber Csp, = C) at red,(Py). Let P € By(Py)NH. In order to think in terms
of matrices we will fix a basis w’la, ..., wh for the Ok,-module HO(C, Q) of holomorphic
1-forms on C and also a finite index subgroup, L = (Dq,...,D,), of the Mordell-Weil
group J(K), such that [J(K): L] = N. Then

NL(P):N{P—P()] =mDi+...+n.D, (321)
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in J(K), for some ny,...,n, € Z.

Note that
th = 77(P) = P (P) — 4P (Ry) = (V(P) — ¢(P))? = ¢(P) —9(F) € Q
for every p | p, so
and since ordy, (tP¢) > 1 for 1 < ¢ < m we have that ord,(t) > 1. In other words, t € pZ,.
Let p | p and w € HY(C,Q') be a holomorphic 1-form. We will define the matrix

Apw € Mg, »(Qp) and the column vector ay,, € Zz" , where d, = [K, : Qp], as follows:

Using (3.2.1) and Lemma 1.3.30 together we get the following equality in K,
ain + ... + apn, = at + Bt2, (3.2.2)

where oy = fODq w for 1 < ¢ <r. Fix an integral basis 01, ...,0, for Ok, over Z,. We
can write ag = a1 401 +. .. +aq, ¢04,, @ = a161 + ... +aq,04, and = b101 + ... +bg,04,

and equate coefficients to get the following system of equations in @,

al’l(nl/N)+...+a1,T(n,«/N) = a1t+blt2
adpvl(nl/N)—|—...+adpyr(nr/N) = adpt—t—bdth.
Define Ay, = (acvq)1<c<dp 1<q<r and ap, to be the column vector (ai,...,aq,) € Zg”.

Now define the matrix A, € Mgdp,r((@p) and the column vector a, € ng” as

Ay r Ap WP
Ay = and ap =
Ayt A wh
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Finally define the matrix A € Mg, ,(Q,) and the column vector a € ng as
APl ap,

A= : and a=

ap

m

We now have

An = ta + t°b,
where n = (n;/N,...,n./N) € Q" and b € Z,g,d. Let h be the smallest integer such that
p" A has entries in Z, and U be a (gd — r) x (gd) matrix with entries in Z, such that

U-(phA)=0

modulo p. Denote by M, (Pp) the set containing only the column vector U - a in Z3% "
The reason for defining the set M, (Fp) that only contains a single element will become
apparent when we discuss how we deal with the case of 1 being ramified at Py in Section

3.2.2.

Theorem 3.2.3. If p"A has full rank and the unique E € M,(Py) satisfies E # 0
modulo p, then By(Po) N H = {Fy}.

Proof. Let P € By(Py) with P # Py and ¢ (P) € P}(Q). Using the fact that ¥ — ¢ (P)

is a local isomorphism we see that
s = ord,(t)

is finite. We have a matrix U such that U - (p"A) = 0 modulo p, but since p"A has full

rank, we can use Hensel’s lemma to lift U to a matrix U such that U= U and U-A =0
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(see Lemma 1.3.32). We have that

0=U-A-n=tU-a+tU-b.

Now divide by p* and reduce modulo p to get

0=ovlU-a=vU -a=vFE mod p,

but this is a contradiction since both v = (¢/p*) and E are non-zero. O

3.2.2 Ramified case

Suppose we have Py € H*M such that + ramifies at Py. Write ey(Py) = e for the

ramification index of 1 at FPy. Then e > 2. Define the modified properties:

(p1)*Plt pOx = p;...pg, in other words p splits completely into distinct primes in Ok,

and ged(p,e) = 1.
(pl)inert pOy = p, in other words p is inert in O.
(p3)ram e (redy(Pp)) = e for every prime p | p

If [K : Q] = 2 then choose an odd rational prime p that satisfies either (p1)sPlit,(p2)

and (p3)™™ or (p1)rert,(p2) and (p3)"@™, otherwise choose p such that it satisfies

(p1)sPlt (p2) and (p3)ram.

Proposition 3.2.4. Let p be a prime of K. Let Py € Cp(K;). Any function 7 € K, [Cylp,
which vanishes at Py, and maps modulo p to a uniformizer T at redy(P) for 6,,, 15 @
uniformizer at Py for Cy. If ¢ € K, [Cylp, vanishes at Py, then there exists n € Ky[Cylp,

such that ¢ = tn. The local power-series
e .
()= pirt
=0
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satisfies p; € Ok,. Let P € Cy(K,) with redy(P) = redy(Py). Then
((P)=> pir(P)".
=0

Proof. This is Proposition 8 in [17], with the notation adapted to our case. O

Lemma 3.2.5. Suppose p is a prime (of K) of good reduction for C. Let T be a well-
behaved uniformizer for Cp at a point Py € Cp(Ky) and P € K (Cy) be a rational

function such that ez (redy(Fy)) = ey (Po) = €. Let
e .
vT + Z it

i=1

be the powerseries expansion around Py of 1P — P (Py) with respect to 7. Then v € (’)ﬁ;p

and p; € Ok, for every i.

Proof. We can use Proposition 3.2.4 to show that, under our assumptions, all the coeffi-
cients in the expansion are in Ok,. The fact that the first e — 1 coefficients are zero and

that v € Oﬁ‘gp is obvious due to the ramification index of ¥* at Pp. O

p splits

Let us first consider the case where K is a number field of degree d > 1 over Q with ring
of integers Ok and that p is an odd rational prime that splits completely into distinct
primes over K. Equivalently pOg = p1...pg with each p., 1 < ¢ < d, a prime of Ok
of norm equal to p. To simplify the notation let K. denote the completion of K with
respect to p. and O, be the ring of integers of K.. Also let C. be a minimal, regular and

proper model for C. = C xg K, over O..

Lemma 3.2.6. Suppose that Py € H has ey,(Py) = e > 2 and let p be a prime satisfying

(p1)*PYt (p2) and (p3)™™. Let 1. be a well-behaved uniformizer of C. at Py and denote
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vdy + chyiTCe+i € K[[Te]] = @p[[TCH
1=1

the formal powerseries expansion of YPe — p(Py) in terms of T.. Suppose there exists
P e (By(Po) NH)\{Po}. Then for every c € {2,...,d}, viTY — v TS € Zy[Th1,Te] has a

linear factor T — AT, satisfying
t1 — Aete =0 mod p?*,

where t. := 71.(P) for 1 <c <d and s = ordy(t;) = ordy(t.) > 1.

Proof. By substituting P in the powerseries expansion of Pe — ¢ (Py) we get the d

equations

Y(P)Pe — P(Py) = vete + pett.

Note that v. € Z; and p. € Zp, by Lemma 3.2.5, since p satisfies (p3)™™. Since

P(P) € Q we have that

In particular we have that
ordy (t1) = ... =ord (tq),

since v, € Z,, for every ¢ € {1,...,d}. Let us denote this positive integer by s. We have

the following d — 1 congruences

1t — v S =0 mod p*lety),
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for c € {2,...,d}. By letting 7. = % we have that 4. is a solution to

11 X°—v.=0 mod p°.

Since the derivative of this polynomial is equal to ev; X! and e, vy and . are units

modulo p we can use Hensel’s lemma to lift 7. to a solution 4. € Z;. We then have that
(X =) | (i X¢—=wve) and (11 —A.Te) | (1T} — v.T5).

Furthermore we have that

Ye = ':Yc mod ps’

which implies that

t1 —Aete =0 mod p*.
L]

Let Py,e,p,t1,...,tq,v1,...,0q be as in the statement of Lemma 3.2.6 above.
Suppose that (X — ’Ayél)), (X - %lc)) are all the linear factors of v1 X¢ — v, for ¢ €

{2,...,d}. Define the matrices E, ;) € Mq—1,4(Zp) by

-----

B

12,0s8d)

for i € {1,...,1.}.
Let {w§}i<f<y be a basis of HO(C.,0Y) for 1 < c<dandlet L =(Dy,...,D,)
be a subgroup of J(K) of index N € Z~o. Now fix a ¢ € {1,...,d}. Define A, to be the

g x r matrix with entries in Q) defined by A. = (as4) where

Dq
afq :/ W;
0
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and by a. the g x d matrix with zero entries everywhere apart from the c-th column
which will consist of the vector (a1,...,ay) where af is the coefficient of the linear term

in the (formal) powerseries expansion of

[P—Po]
[
0

in terms of 7. (the well-behaved uniformizer of C. at Py). Now let A be the dg x r matrix

Aq

Ag
with entries in Q, and a be the gd x d matrix

aj

ad

with entries in Z,. Let h be the smallest non-negative integer such that p" A has entries

in Z, and U € Mgg_r qq(Zy) be a matrix such that
U-(phA)=0  mod p.

We denote by Ey € Mgg—ra(Zp) the matrix U - a. Finally define the set

0 if v1X¢ — v, has no linear
factors for some ¢ € {2,...,d},
Mp(PO) =
Ep
1 <. <. otherwise.
Eliy,...ia)
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Theorem 3.2.7. Suppose Py € H and p is a rational prime satisfying (p1)*P%, (p2)
and (p3)™™. If p" A has full rank and the reductions E for every element E € M,(Py)
have full column rank d over Fp, or if M,(Py) =0, then By(Py) N H = {Py}.

Proof. Let P € (By,(Py) N H) \ {Py}. Since P # P, there exist integers nq, ..., n,, not
all zero, such that

N[P - Pyl =Dy +...+n,D,

in J(K). Let 7. be a well-behaved uniformizer for C. at Py, for c € {1,...,d}. Now

D1 D, [P_PO]
(nl/N)/ w;—k...—i—(nr/N)/ ch:/ w;:a((:f)tc—i—ﬂéf)tg
0 0 0

for ¢ € {1,...,r}. Writing this in terms of matrices we get
A-n=a-t+b-t,

where t and t’ are the column vectors (¢1,...,t;) and (t%, e t?l) respectively. As in the
unramified case, we have a matrix U such that m = 0 modulo p, but since m
has full rank, we can use Hensel’s lemma to lift U to a matrix U such that U = U and
U-A=0. So we have that

0=U-a-t+U-b-t.

Dividing by p®, reducing modulo p and denoting (1/p®)t by v we see that

0=U-a-v=FEy-v modp, (3.2.3)

since s > 1.
Also we can write ¢(P) — ¢ (P) as a powerseries in t. for every c. Since the

ramification index of P at Py is e by (p3)™™, these powerseries will all start from the
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e-th term. Using these expansions we get the d equalities

Y(P) — p(Po) = vetl + petc™.

By Lemma 3.2.6 we know that there exist i, € {1,...,l.} for each ¢ € {2,
that

t] — &Q’e)tc =0 mod p*,

where s = ord,(t1) = ... = ord,(t4). Since s > 1 we get that

t1 — 'Ay(ic)tc =0 mod p5+1.

[

This can be re-written as

0=Eg,. )t mod piTL

Dividing by p® and reducing modulo p we obtain that

0=Eg;,. iyv mod p.

...,d} such

(3.2.4)

Relations (3.2.3) and (3.2.4) put together imply that there exists E' € M (Fp) with

0=FEv modp.

But this is a contradiction since rankp, (E) =dand v #0 mod p.

p inert

Now if we assume that K is a quadratic extension of Q the following results show how

we may also use an odd rational prime p which is inert in K. This might prove useful

in practice, since a split prime satisfying the properties (p1)sPHt,(p2) and (p3)ra™,

might be too big for computational purposes. In the following results we denote by p
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the unique prime above p, which has norm p?, by K, the completion of K with respect
to p and by O, the ring of integers of K. Let C be a minimal, regular and proper model
for Cp = C xg K, over O,.

Lemma 3.2.8. Suppose that [K: Q] =2, Py € H and p is a rational prime that satisfies
(p1)iemt, (p2) and (p3)™™™. Let T be a well-behaved uniformizer of Cy at Py and denote

by

oo
vl + Y T € Ky[[T)]
=1

the formal expansion of VP — 1 (Py) in terms of T. Write
(Ulel + v202)(T101 + T292)e = Wl(Tl, T2)91 + Wg(Tl, TQ)HQ,

where v1, va, T1 and Ty are defined by v = v101 + v20s and T = T107 + Ts05, and
Wi, Wy € Z,[T1,Ts] are forms of degree e. Suppose further that ord,(A) = 0, where A is
the discriminant of Wa. Then if there exists P € (Bp(Po) N H) \ {Po}, Wa has a linear

factor g1T1 — go'T5 satisfying
g1t1 — gat =0 mod p*,

where t1,ty are defined by T(P) = t1601 + t202 and 1 < s = min (ord,(t1), ord,(t2)) < co.

Proof. By substituting P in the powerseries expansion of ¥ — ¢ (Py) we get

YPI(P) —(Po) = (Wi(t1,t2)01 + Walty, t2)02) +

(Ws(t1,t2)bh + Wy(t1,t2)02),

where W3, Wy € Zy[[t1, t2]] are powerseries whose degree (as powerseries) is greater than
e. Note that we used the fact that p; € O, for every i (see Lemma 3.2.5). Since (P) € Q,
we have that

Wa(ti, ta) = —Wy(t1, t2).

89



Furthermore since P # Py either ¢; # 0 or t2 # 0, so s := min (ordy(t1),ord,(t2)) is
finite. Combining this with the fact that ord,(7(P)) > 1 we can see that s is actually a

positive integer. We have that
Wa(t1,t2) =0 mod ps(eﬂ).
By Hensel’s lemma (since ord,(A) = 0) we have that there exist g1, g2 € Z,, such that
(11 = g213) | Wa(T1, T2)

and

git1 — gota =0 mod p?*.
L]

Let K, Py, e,p,t1,t2, Wo be as in the statement of Lemma 3.2.8 above. Suppose
that (gil)Tl - gél)Tg), cee (ggl)ﬂ — gél)Tg) are all the linear factors of Wy (11, T5). Define

the [ matrices E(;) € Mi2(Zy) by

E) = < a’ —g )

forie {1,...,1}.
Let {wy}1< <, be a basis of HY(C,Q1), {61,062} be an integral basis of O, over Z,,
and L = (Dy,..., D,) be asubgroup of J(K) of index N € Z~q. Define {AM), ... AW} C

M, ,(Qp) to be the matrices whose entries are defined by
Dq
AV, + AY)0, = / "

and for f € {1,..., g} define al¥) € My 5(Z,) to be the matrix representing in coordinates

al) | the coefficient of the linear term in the (formal) powerseries expansion of fOULPO] wr
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in terms of the uniformizer 7 of Cy at Fy. Now let A be the 2¢g x r matrix

A

Al9)

with entries in @, and a be the 2g x 2 matrix

with entries in Z,. Let h be the smallest integer such that p" A has entries in Z,. Again

let U € Mag—r24(Zp) be a matrix such that
U-(phA)=0  mod p.
We denote by Ey € Mag_r2(Zp) the matrix U - a. Finally define the set

0 , if Wa(T4,T5) has no linear factors,

1< <] , otherwise.

Theorem 3.2.9. Suppose [K : Q] = 2, Py € H and p is a rational prime satisfying
(p1)™et (p2),(p3)"™®™ and that Wy, A are defined as in the statement of Lemma 3.2.8
with ordy, (A) = 0. Then if pPA has full rank and rankp, (E) = 2 for every E € My(Py)
or if My(Py) =0, we have that B,(Py) N H = {Py}.

Proof. Let P € (By(FPy) N H) \ {Po}. Since P # P, there exist integers ny,...,n,, not
all zero, such that

N[P—Po]:nlDl—l-...—FnrDr
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in J(K). Let 7 be a well-behaved uniformizer for C, at Py. Now
Dl Dy [P_PO]
(n1/N) / Wy + ..+ (ny/N) / wy = / wy = alN7(P) + B r(P)?
0 0 0
for g € {1,...,r}. Writing this in terms of matrices we get
An=a-t+b-t,

where t and t’ are the column vectors t = (¢1,t2) and t' = (¢}, 1) with ¢}, ¢}, defined by
7(P)? = t}01 + th0s. As in Lemma 1.3.32 and Theorems 3.2.3 and 3.2.7 we can lift U to
a matrix U such that U = U and U - A = 0. So

0=U-a-t+U-b-t.

Dividing by p®, reducing modulo p and denoting (1/p*)t by v, we see that

~

0=U-a-v=FEy-v modp, (3.2.5)

since s > 1.

Also, we can write YP(P)—9?(Pp) as a powerseries in 7(P). Since the ramification
index of ¢P at Py is e by (p3)™™, this powerseries will start from the e-th term. By
Lemma 3.2.8 we know that there exists i € {1,...,1} such that

ggi)tl — gg)tg =0 mod p*,

where s = min (ord,(¢1), ordy(t2)). Since s > 1 we get that

( (i)

gli)tl — gy 'ta =0 mod piL
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This can be re-written as

0=FE; -t mod pTL

Dividing by p® and reducing modulo p we obtain that
0=E;-v mod p. (3.2.6)
Relations (3.2.5) and (3.2.6) put together imply that there exists E' € M,(Py) with
0=F-v mod p.
But this is a contradiction since rankg, (E) =2 and v # 0 mod p. O

3.2.3 Applying Chabauty

Example 3.2.10. Let K be the number field defined by Q[z]/(2? — x + 3), and denote
by 6 the corresponding image of = in the quotient. Consider the first three out of four

genus 2 curves C, Co and Cs defined in Example 3.1.4 by the equations

Cr: ¥P=a+02" 23+ 22+ (00— 1Dz -1 (3.2.7)

Cy: y?=—a%—02r+2° -2 —(0—1Dz +1 (3.2.8)

C3: > =(-0+5)2"+ (40 +3)z + (0 —5)z3 + (-0 +5)2° + (50 —2)z+ 60 — 5
(3.2.9)

and the “z-coordinate” maps ¢ 1,¥c 2, ?c 3 from the projective models of these curves

(whose points will be denoted by (X,Y, Z) € P?(2,5,1)) to the projective line

Yo Cr =P e (XY, 2) = (X,27).
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Denote C;(K) N (P1(Q)) by H; for 1 <i < 3. Let

erarch — {(—1’ -1, 1)’ (—1’ 1, 1), (1, 1,0)} C H,
Hge e = {(0,1,1), (0,~1,1), (~1,1,0)} € Hy (32.10)
Hgeareh .= £(1,4/5—6,0)} C Hs.

After searching for K-rational points on Oy, C and Cj3 it appears that actually H{eh =
Hy, H;eamh = Hs and H§eamh = Hj3. The first step towards proving this is using The-
orems 3.2.3, 3.2.7 and 3.2.9 together with the relevant information (computed using
MAGMA [4]) presented in the following tables:

In TABLE 3.1 we observe that the rank of the Mordell-Weil group of the Jacobian
variety of C7 is equal to 3 > d(g — 1) = 2, making it impossible to use the classical
method of Chabauty, improved by Siksek, which requires that » < d(g — 1). See for

example [48]. Our approach is applicable in cases where the rank r of J(K) satisfies
r<dg-—1.

In TABLE 3.2 we give the matrix A with entries in @, and a corresponding matrix

U with entries in Z,, such that U - (p"A) =0 mod p.

lin. ind.
C'rankg, (Sel (J/ K)) non-torsion divisors rank (J(K))
(In Mumford Representation)

(22 —x+1,-2+1)
o 3 (22 4+ (0 -1z —1,(0 -1z —1) 3

(@2 + (=0 -1z —0+2,(30 — 1)z + 0 —4)
Co 1 (22 —2—-6,(0 —2)x —2) 1
Cs 1 (% + (20 — 1)z + 0 — 3,(—40 — 3)x — 50 + 2) 1

Table 3.1: The Mordell-Weil data for C7, Co and Cj.

Using Theorems 3.2.3, 3.2.7 and the data in TABLES 3.3, 3.4 and 3.5 we deduce

the following:
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P A U
70 82 51
70 61 86 5
Cr 89| on 3 &g x89+0(89) (6 2 —6 —11)
29 38 28
__161 1 0 11 1
Cy | 23 x 23 + 0(23?) -11. 0 6 0
-l 0 1 -1 0
—11
23 1 0 —-13 13
Cs | 71 7 x 71+ O(712%) 0 1 —11 11
18 0 0 23 —24

Table 3.2: The period matrices for C, Cy and Cj.

(a) ng(P@) NH = {PO} for every Pye erarch
(b) B23(P0) NHy = {PO} for every PO c ngarch

(C) B7 (PU) N Hg = {PO} for every Py € ngarch

3.3 Mordell-Weil sieve

The idea behind the Mordell-Weil sieve was presented in Section 1.3.4. Here we provide
an improved version, that applies to the scenario we are considering: We are interested

in excluding residue classes By,(P), for P € H C Hép (Fp), that have empty intersection

plp
with the set H%*°h by showing that they actually have empty intersection with the set

H. We rename the prime p appearing in the previous section by pg and we use it as the
first prime in a finite sequence of primes {pg,...,pp}. Theorem 3.3.1 is all we actually
need, but the efficiency of the computation tends to depend a lot on the ordering of these

primes. Experimental evidence shows that it is usually efficient to order the primes in

decreasing order of “smoothness” of the sizes of the sets of rational points of the Jacobian
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Py T a {Ej } Mp(PO)
1
(1’ 1a _1) -1
unramified | © T 1 1|7 O(89) N/A (9)+0(89)
~1
—1
(17 _17 _1) 1 B
mramified | © T | Z1 | TO®Y) N/A (=9 ) +0(89)
1
0 0 82 21
(1,1,0) |o-122|| 41 0 +0(89) (1 41)+40(89), < 1 41 )+O(89)7
ramified 2y 0 0 (1 —41)+0(89) 82 21\ (89)
0 79 1 -4

Table 3.3: Chabauty data for C

varieties over the residue fields. This usually results in large common divisors, which are

needed to obtain contradictions in CRT-like arguments.

H C C(K) - J(K) (3.3.1)
Redp, Redp, Redp,
Hi C 11 Cy (Fp) [T Jp (Fy)
plpi plpi

Theorem 3.3.1. Let L = (Dq,...,D,) < J(K) be a subgroup of the Mordell-Weil group

of finite index equal to N and pg,p1,...,pp be rational primes satisfying
(1) p; does not ramify in Ok for 0 < i <b.

(it) Cy has good reduction for every prime p | p;, for 0 <i < b.

(ii1) # [ Jp(Fp) is coprime with N for 0 <i <b.

plpi

Let
Hi=1{ P e [[CoFy): ¢P(Py) = tq(Py) € PL(Fp,) Vp,q | ps

plpi
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Py T a {Ej,} M, (Po)
0,-1,1) o 1
unramified | * 1| " 0(23) N/A 5 | +0(23)
1
0
1
—11
(0,1,1) 0 B
unramified | 1 | T0@3) N/A _i) +0(23)
0
0 5
0 0
0 0 6 0 + 0(23),
(=1,1,0) | 22| 17 O (1 3)+0(23), 1 3
ramified 6 y 0 0 +0(23) (1 _3 )+O(23) 0 5
05 0 0
6 o | To@3
1 -3
Table 3.4: Chabauty data for Cy
T T a {Ejz} Mp(PO)
0 0
(LV5—0,0) | 25-6)a2 56 0
ramified y o o |T O(71) 0 0
0 64

Table 3.5: Chabauty data for C3

Let Ly := L N Kernel (Red,,) and define inductively L; := L;—1 N Kernel (Red,,) for
1 <i<b. Then for every P € Hg define Wy p = {l € L/Lg : Red,,(w) = +(P)} and
then inductively W; p := {w +1:w € Wy_1p,l € Li_1/L;,Redy,,(w +1) € t(H;)} for
1 <i<b. Then if Wy p =0 we have that B,y (P) N H = 0.

Proof. Suppose there exists some point P in By, (P) N H. Then N - (P) = n1Dqy +
...+ n,.D, for some nqy,...,n, € Z. Since condition (ii7) holds for py we have that
Red,, (¢(P)) € Red,, (L) and also Red,, (¢(P)) = ¢(P) by commutativity of diagram
(3.3.1), in other words we can find wo p € L/Lg such that Red,, (wo,p) = Redy, (¢(P)).

In particular wo p € Wy p. Now suppose that fori =0,...,i—1 we have w;—1.p € Wi_1p
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such that Red,, , (wi—1,p) = Redp, , (¢(P)). We now have
i1
L(P)—wi_1,p € m Kernel (Red,,) .
=0
If we multiply by the index N we have
i—1
N ((P) —wi—1.p) € LN ﬂ Kernel (Redpj) =L, 1

Jj=0

and if we reduce both sides modulo p; we get
N Red,, (¢(P) —w;—1,p) € Redp, (Li—1) .
But since N is coprime with # Red,, (Li—1) by (¢4¢) this implies that
Red,, (¢(P) — wi—1,p) € Redy, (Li—1).

So there exists [ € L;—1/L; such that Red,, (1) = Red,, (¢«(P) — w;—1,p). But we can now

define an element of W; p by
wip = wi—1,p+1€W;p.

In particular W), p is non-empty. O

Example 3.3.2. Let ('1,Cs and C3 be the curves defined in Example 3.1.4 by the

equations (3.1.3),(3.1.4) and (3.1.5). Then

(a) Bso(P) N Hy = 0 for every P € [[ C1,(Fp) \ Redsg (H5°?). This was shown
p|89
after taking {po, p1,p2,p3 = pp} = {89,673,859, 131} and using Theorem 3.3.1 after

checking that conditions (), (i7) and (ii7) were satisfied for each of these primes.

(b) Bas(P) N Ha = 0 for every P € [] Cap(Fy) \ Redas (H5%™"). The primes used here
p|23
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were {23,43}.

(¢) Bz1(P)NH;z =0 for every P € [] C3,(Fy) \ Redr (H5*"). The primes used were
pl71
(71,131},

X

Lemma 3.3.3. Let C1,Cy and Cs be the curves defined by equations (3.1.3), (3.1.4) and
(3.1.5) respectively and let 1o, for 1 < i < 3 be the corresponding “x-coordinate” maps
from the curves to the projective line. We have that H; = 1#511 (PH(Q)) NCy(K) = Hiearch

for 1 <i <3, where the H**™ are as in (3.2.10).

Proof. Just note that the corresponding parts of Examples 3.2.10 and 3.3.2 together give

the required result. O

3.4 Applications to Diophantine problems

In this section we consider an example of a curve T defined over Q whose set of rational
points is computed using the methods presented in the previous sections. This illus-
trates how all of the existing techniques ([6],[11],[13],[48]) may fail due to theoretical or
computational restrictions®, while the methods in this chapter remain applicable. Their
usefulness should be more apparent when applied on curves that are not hyperelliptic, for
example more general superelliptic curves. These might have Jacobians of Mordell-Weil
rank large enough to pose a theoretical obstruction to the use of classical Chabauty or
its refinement in [48] and also fail to be related to collections of curves of genus 1, where

“Elliptic Curve Chabauty” might be applicable.

3.4.1 The equation y* = (z° + 2% — 1)®yy(x)

We can now prove the following

SWe used the RankBound command in MAGMA to get that 1 is an upper bound for the Mordell-Weil
rank over Q of the Jacobian variety of Y. Thus, the explicit version of Chabauty-Coleman would be
applicable if we could find a generator. But even after extensive search, a generator could not be found.
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Theorem 3.4.1. The only Q-rational point on the curve Y defined by the equation
T: 2= +22 - 1)Py(2)

is the point at infinity.

Proof. In Example 3.1.4 we saw that

4

T(Q) = [ ¢r.i(Di(Q)),

i=1
and also that

Di(Q) C ¢cs(Hy),

where

H; = 45 (PY(Q) N Ci(K).

From Lemma 3.3.3 we know that H; = era“h for 1 < ¢ < 3. Also a 2-Selmer group
computation shows that Js4(K) = {0}, where J4 is the Jacobian variety of C4 and thus
Hy = C4(K) = {(1,v/6 — 5,0)}. We should note that the points on the D;’s are defined
as (X,Y1,Ys,Y3,7Z) € P4(2,3,5,5,1), with Gg acting on Y2 and Y3 the same way it acts
on the roots of the defining polynomial of K, and the points on the C;’s are defined as
(X,Y,Z) € P%(2,5,1). To save space we fix a square root for each of —1, 23, § — 5 and
0 4+ 4 and denote them by &1, &, &3 and &4 respectively. Putting these together we get

the following:

100



(—1,-1,1),
D1(Q) € ¢cy (-1,1,1),
(1,1,0)
(-1,&,-1,-1,1),(-1, =&, -1,-1,1),(-1,&,-1,1,1), (-1, =&, -1, 1,1),
=9 (L&, 1L1,1), (=1, =&, 1, 1,1),(=1,&,1,-1,1), (=1, =&, 1, -1, 1),
(1,1,1,1,0),(1,—1,1,1,0),(1,1,1,-1,0),(1,—1,1,-1,0)

= D;(Q)={(1,1,1,1,0),(1,-1,1,1,0)}

(O, _1a 1))
D2(Q) € ¢y (0,1,1),
(-1,1,0)

(07£1a _]-7 _13 1)7 (07 _517 _17 _]-7 1)7 (Oagla _]-7 ]-7 1)7 (07 _Sla _]-7 ]-7 1);
= (Oa§17 17 17 1)a (05 _517 1a 1; 1)7 (0a§17 17 _17 1)7 (07 _gla 1; _17 1)a
(715517 17 17 0)3 (717 7517 17 17 0)3 (717513 13 7170)3 (717 7513 17 717 0)

= DQ(Q) =0

D3(Q) C dcy ({ (1,£&3,0) })
{ (1€ 616,€0,0), (1, —€2, €165, €0,0), (L €2 €163, 84, 0), (1, —2. E163, —4,0) }
0

= D3(Q)

f({ e })

D4(Q) € ¢¢;
{ (17527537515470)7(17_521537615470)?(17527637_515470)7(17_527537_616470) }
0

N

= D4(Q)

So we have that T(Q) = ¢y 1(D1(Q)) = {(1,1,0) = co}. O
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Remark 3.4.2. The MAGMA functions used to tackle this problem, along with comments

explaining how they work, can be found at
http://www.warwick.ac.uk/“marfaq/chabauty.m.

This can be easily adapted to work with other examples, but currently the polynomial
defining T must have a quintic or a sextic factor (depending on whether the initial degree

is odd or even respectively) over a quadratic number field. X
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Chapter 4

Future Directions

We will conclude this thesis by presenting some ways the techniques developed in Chap-

ters 2 and 3 can be refined.

4.1 Finding uniform bounds using extended Chabauty-Cole-

man

Another interesting direction to consider, would be to find uniform bounds on the size
of the set H = v~ 1(P}(Q))NC(K) used in Chapter 3. This may be applicable to further
improve existing bounds on the size of the set of rational points of different classes of
curves (see for example the use of Chabauty’s method to bound the number of points
on hyperelliptic curves in [13] and the number of solutions of Thue equations in [35]).
The new bounds should depend only on the number of zeros a holomorphic dif-

ferential @ has on 6p and the size of the set

H={Pe Hép(Fp) L P(Py) = $1(Pg) € P'(F,)  Vp,a|p},
plp

in the same way the current bounds depend on the number of zeros of differentials and

#C(Fp) (as in Theorem 1.3.28).
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4.2 Explicit Chabauty-Coleman on superelliptic curves

Along with the more theoretical directions, one could consider providing an explicit
description of how to apply Chabauty-Coleman techniques on particular examples of
superelliptic curves. This will open the door to a complete solution of an abundance
of interesting Diophantine equations (e.g. unsolved cases of the Generalized Fermat
equation X? + Y7 = Z"). Most of the theoretical groundwork needed to do this has

already been laid out. Some of the issues that still need to be addressed are the following:

1. Searching for points on J: In order to find generators for a finite index subgroup
of J(K) one has to perform a search for K-rational points on J. Currently this is
only implemented for curves C' with ¢ = 2 and K = Q, using the Elkies-Stahlke-
Stoll algorithm ([18],[53]) to search for points on the Kummer surface K. There is
a straight-forward way to use the algorithm to search for higher degree divisors on
higher genus hyperelliptic and superelliptic curves over any number field. It should

be possible to refine this method further and improve its efficiency.

2. Use of Kedlaya’s algorithm for Chabauty-type computations: When per-
forming Chabauty’s method it is crucial to efficiently compute p-adic integrals on
Cy, and Jy,. Although there are ways to do this indirectly (see for example [56]), the
most efficient way to do this would be to introduce the use of Kedlaya’s algorithm
for computing Frobenius actions on de Rham cohomology ([31]), as was done in [1]
for hyperelliptic curves, where it is also noticed that this could be generalized to

superelliptic curves extending on the work done in [25].

3. Arithmetic of points on J: Performing the Mordell-Weil sieve requires knowl-
edge of the finite group J,,(Fy) as well as being able to solve the discrete logarithm
problem for elements of this group. This issue, along with an explicit method to
perform addition of points on the Jacobian as well as reduction of divisors to a

canonical representative in the same class have been addressed in [24]. Another,
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possibly more efficient and general, implementation of arithmetic on the Jacobian

can be extracted from [32] and [33].

Combining (1) — (3) and the implementation of descent on the Jacobian!, provides an
algorithm for determining the set C'(K) for many examples of superelliptic curves C.
We have worked out the details of how solving this problem for a particular collection of
curves of this type will allow us to deal with the Generalized Fermat equation X7 +Y7 =
Z®. But judging by how important the study of hyperelliptic curves proved to be in
Diophantine Geometry, we can only be certain that the extension of these techniques to

a more general class of curves will carry equal significance.

!The implementation in MAGMA of descent on the Jacobian varieties of cyclic covers of the projective
line is now in its final stages, due to the work of Brendan Creutz.
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