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Abstract 

 
Since their discovery in the 1950s, metallothioneins (MTs) have been isolated from an 
array of organisms, from sea urchins to sheep, and pigs to peas. With the advent of 
nuclear Overhauser effect nuclear magnetic resonance (NMR) experiments, a powerful 
route for MT structure determination became available. The contribution of structural 
data obtained by NMR has enabled identification of hitherto unknown metallothionein 
motifs, thought to be significant in the ‘tuning’ of MT for specific roles or functions. As 
the MT superfamily is so broad, there is a wealth of information still to be uncovered for 
MTs from some of the lesser-studied organisms. Although many in vivo genomics-based 
investigations have been performed within the invertebrate family, proteomics-based 
investigations, especially with respect to terrestrial invertebrates, are sparse. 

 

This research has investigated the metal-binding behaviour and determined the solution 
structure of earthworm metallothionein-2 (wMT-2) from Lumbricus rubellus. In addition, 
a method for purifying both wMTs expressed in adult earthworms is presented; in 
contrast to previous studies the purification method includes the removal of the N-
terminal S●tag. Using modified purification methods, the novel protein wMT-3 was also 
able to be isolated and characterised. Electrospray-ionisation mass spectrometry (ESI-
MS) revealed that all three wMTs bind 7 equivalents of divalent metal ions as the major 
species at pH ≈ 8. An NMR investigation of cleaved Cd-wMT-2 indicated that metal-
binding is localised in two discrete clusters. Conversely to vertebrate MTs, but similar to 
some invertebrate MTs, the stoichiometry of the domains is of an M4Cys11- N-terminal 
cluster, followed by an M3Cys9- cluster. When challenged with protons, demetallation of 
cleaved Cd-wMT-2 occurred in a step-wise manner: a 3 metal loss being followed by a 4 
metal loss; behaviour which is unique to the cadmium form. A comparison of the NMR 
TOCSY spectra of cleaved Cd- and Zn-wMT-2 showed significant differences, indicating 
that wMT-2 has a strong metal-binding preference for cadmium in vitro. 

 

In conclusion, the studies performed within this thesis have enabled the calculation of 
the first 3-dimensional solution structure of an MT from a terrestrial invertebrate, 
wMT-2. In addition, the novel protein wMT-3 was successfully isolated and purified. 
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1 
Introduction 

 
1.1 Metal ions in biology 

Environmental conditions influence the evolution of organisms; this can 

be said with some certainty based on the work of Lenski and research 

group [Michigan State University, USA], and their experiments with 

E. coli for over 20 years [1, 2]. Hence to some extent, organisms are a 

product of their environment. The classic examples being Galápagos 

finches, products of the distinctive ecosystems across the Galápagos 

Islands [3, 4]. 

 

Over time, organisms have developed dependencies on certain minerals, 

present in abundance, for correct cellular function [5]. Within the human 

body there are ten essential trace elements, eight of which are metals: 

iron, zinc, manganese, copper, molybdenum, chromium, cobalt and 

selenium [6]. Figure 1.1 illustrates the relationship between the 

requirements of the essential trace metals (Figure 1.1, PURPLE), and 

the maximum tolerable doses before severe side-effects are observed 

(Figure 1.1, ORANGE). With regard to the highest tolerable amounts of 

essential trace elements, selenium is the least terrestrially abundant*, 

                                                           
* Kenneth Barbalace. Periodic Table of Elements. EnvironmentalChemistry.com. 1995 - 2011. 
Accessed on-line: 11/3/2011 http://EnvironmentalChemistry.com/yogi/periodic/ 
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and becomes toxic at the lowest dose [7], whereas iron is most 

terrestrially abundant, and becomes toxic at the highest dose. So the 

data shown below indicate that the rarer essential trace metals are toxic 

in comparatively low doses [8]. However, the lack of certain metals is 

equally deadly to organisms [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

Metals are ubiquitous within the human body, as indicated by their 

prevalence in structures as diverse as bones and the brain [10]. The 

reason for this pervasiveness is the ability of certain metal ions to act as 

co-factors in enzymes, forming specialist catalytic sites such as those 

found in alkaline phosphatase and carbonic anhydrase [10, 11]. 

Figure 1.1: The six essential trace elements of which there is dose-based data, highlighting the 
requirements, and ability of the human body to deal with excesses of these minerals. 
Recommended daily requirements are highlighted in PURPLE; maximum tolerable doses 
(before side-effects observed) highlighted in ORANGE. Chromium and cobalt have incomplete 
data at this time, and are not included. 

Data compiled from Food and Nutrition Board, Institute of Medicine, National Academies: ‘Dietary Reference Intakes 
(DRIs): Tolerable Upper Intake Levels, Elements’; Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, 
Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (2000); 
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, 
Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001); Dietary Reference Intakes for Water, Potassium, Sodium, 
Chloride, and Sulfate (2005); and Dietary Reference Intakes for Calcium and Vitamin D (2011). 
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However, metal ions that are generally toxic - cadmium, mercury and 

lead - serve no known biological function in mammals [12]. 

 

1.2 Biological use of cadmium in a simple organism 

Although toxic to mammals, there is one organism that can exploit 

cadmium for a biological process. In general, the surface of the ocean is 

an environment that is very nutrient poor, especially with respect to zinc 

(< 1 µM) [13]. In this environment, the coastal diatom Thalassiosira 

weissflogii has adapted to utilise more abundant cadmium as a metal 

centre within carbonic anhydrase, a role classically filled by zinc [14]. 

 

In order to utilise metal ions and maintain them within non-toxic 

concentrations, means of handling metal ions have evolved [15]. This 

evolution appears to have been guided by a focus on metal ions in 

greatest contact with the organism [16]. Continuous adaptation of these 

metal ion control mechanisms has generated the complexity of present 

metal ion homeostasis [17]. 

 

1.3 Metal ion homeostasis 

For most modern organisms to survive, tightly controlled supply and 

partitioning of metal ions must be maintained [18]; this is the heart of 

metal ion homeostasis [9]. To paraphrase Paracelsus, the founder of 

toxicology [19], ‘All things are poison, and nothing is without poison; 



Chapter One 

 4 

only the dose permits something not to be poisonous’ [20]. Therefore to 

control the toxicity of a metal ion, we must control the availability (or 

‘dose’) of these ions. The evolution of metal ion homeostasis has been 

influenced by two main pressures: the propensity for metal ions to 

participate in redox reactions [21], critical for biological processes such 

as photosynthesis; and metal ion cytotoxicity when uncontrolled [22, 

23]. 

 

Metal ion homeostasis has given rise to a specific range of allowable 

metal ion concentrations within cells [18] before detrimental effects are 

observed: some metals are controlled to very low concentrations (Cu2+, 

10-21 M) [24], others are controlled at much higher concentrations (Mn2+, 

10-5 M) [24]. The level is proportional to their toxicity, with highly toxic 

copper maintained at lower concentrations than less toxic zinc (Refer to 

Figure 1.1). When metal ions are present in concentrations outside of the 

allowable range, a variety of organism-wide toxic effects are observed 

[22, 25, 26]. 

 

When homeostasis goes wrong 

Although zinc is toxic at very high [27] or low [28] quantities (see 

Figure 1.1), small quantities of cadmium will cause significant cellular 

damage [29, 30]. This is due to cadmium acting as a chemical 

doppelgänger, affecting zinc and calcium metabolism and targeting the 

kidneys and bones [31]. In the kidneys, cadmium perturbs calcium 
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absorption by disrupting vitamin D metabolism [31]. The end result is 

that cadmium, not calcium, is incorporated into bone structure causing 

soft bones [32, 33]. 

 

At the cellular level, as cadmium is a soft Lewis acid (large ionic radius, 

easily polarised) and therefore thiophilic, it will displace zinc from sites 

within metalloproteins, such as cysteine rich Metallothionein (MT) [29, 

30]. The effect on an organism of MT-bound zinc being replaced by 

cadmium has been the focus of numerous studies [31, 36, 37]. These 

studies have shown that although Cd-MT within the liver and kidneys is 

non-toxic, Cd-MT in the blood will cause significant kidney damage before 

excretion [31]. 

 

Another mechanism through which cadmium exerts cellular toxicity is 

through the replacement of zinc [30, 38] in either structural sites (ie 

Cys4 - zinc fingers [36]), or enzyme active sites (ie His2Glu(H2O) - 

alcohol dehydrogenase [38]). The susceptibility for cadmium replacement 

is proportional to the number of co-ordinating cysteine residues, with 

Cys4 structural sites showing the highest affinity for metal ion 

replacement [30]. Abnormalities in homeostasis of one metal ion can also 

cause cascading effects throughout an entire organism. For example, an 

excess of zinc within an organism can induce copper deficiency [27] 

through competitive inhibition of gastrointestinal absorption [39]. 
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In an attempt to maintain metal ions under homeostatic control, cells 

obtain their quotient of metal ions through varied and complex pathways 

[22, 26, 40-42]. The entire system of metal ion homeostasis can be 

broadly classified into three processes: absorption of metal ions (influx); 

storage of metal ions; and excretion of metal ions (efflux) [8, 22]. 

 

Influx & efflux of metal ions 

There is a general problem with passing divalent metal ions through cell 

membranes. Whereas neutral gases (O2, CO2) and anions with small 

charge-densities can move directly through cell membranes, most 

cations with high charge-densities must be actively transported [43]. 

There are three main groups of transporters that facilitate cation entry 

into cells: those driven by chemical energy (ATP) [22]; those driven by 

electrochemical gradients (H+ and other ions) [22]; and gated channels 

(specialised proteins that open pores in cell membranes) [44, 45]. Some 

systems, such as those found in yeast, wheat, and certain species of fish, 

show a combination of these transporters [46]. Generally speaking, a 

metal ion transporter can be classified as either high affinity, or low 

affinity for particular metal ions [47, 48]. A high affinity transporter 

(Figure 1.2. RED) is required when cells are metal deficient, with the 

expression of transporter genes usually under the control of a Metal 

Response Element (MRE) and a metal sensor protein. On the other hand, 

low affinity transporters (Figure 1.2. PINK) are not usually under the 

control of MREs and are present when cells are metal-replete [48, 49].
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Using zinc homeostasis in humans as a model, we observe two classes of 

proteins that control influx and efflux between the extracellular space 

and the cytosol. The Zip (Zrt- and Irt-like protein) family control the 

influx of zinc [52]; the cation diffusion facilitator (CDF) ZnT (zinc 

transporter) family of proteins control the efflux (See Figure 1.2). Once 

within the cell, metal ions must be either safely stored until required, or 

expelled from the cytosol using efflux mechanisms. To maintain a 

sufficient intracellular supply of metal ions, both storage and transport 

proteins are required [53]. 

Figure 1.2: Schematic of zinc homeostasis in mammalian cells. Simplified and combined from 
[50, 51]. Metal ion influx (RED, PINK) controlled by Zip- proteins. RED Indicates a high-affinity 
influx transporter, PINK indicates a low affinity influx transporter. Metal ion efflux (GREEN) 
effected by ZnT- proteins. Storage proteins (such as metallothionein) coloured BLUE, with zinc-
containing enzymes coloured ORANGE.  
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Storage and transport of metal ions  

Within the cell, storage and transport proteins are used for shuttling 

metal ions to compartments such as the endoplasmic reticulum and Golgi 

apparatus [50] (for protein synthesis and packaging), or to metal-

requiring enzymes [54]. The most widely studied system is intracellular 

copper transport by a specialised class of delivery proteins, 

metallochaperones [55]. Metallochaperones mediate protein-protein 

metal transfer, for example human copper chaperone (CCS) is used to 

transport Cu(I) to superoxide dismutase 1 (SOD1), thereby making it 

functionally active [56]. This system avoids toxicity from the uncontrolled 

redox activity of copper ions [57]. Another family of proteins, induced by 

excess zinc and cadmium (and copper), also participates in the role of 

metal ion storage and delivery: Metallothioneins (MTs, Figure 1.2. BLUE) 

[58-60]. Similar to storage proteins such as ferritin (induced by excess 

iron [26]), MTs are strongly expressed when cells are under metal-

induced stress [60]. 

 

1.4 Metallothioneins 

Metallothioneins (MTs) are small metal-binding proteins (< 100 

residues), and when fully metallated have ≈ 10-20 % of their final mass 

contributed by metal and sulphur [62]. In general, MTs lack significant 

regions of secondary structure (α-helices and β-sheets) [63], and 

therefore in the absence of bound metal ions are thought to exist as 

random coils [21]. MTs are present at high concentrations in the cytosol, 

with small amounts present in the nucleus [64]. The role of MTs within 
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the nucleus is not yet known [65], but being present within the nucleus 

during development does make MT immune to cytosolic lysosomal 

degradation [66]. There are also low concentrations of MT in extracellular 

fluids such as plasma, bile and urine [65]. This has enabled a novel test 

for cadmium exposure in humans: cadmium exposure induces MT; 

changes in Cd-MT level can be detected by SEC-ICP-MS [67]. Other 

postulated roles for MTs include: metal ion transport, metal ion 

detoxification, free-radical scavenging, storage of metal ions, 

metabolism, immune response and genotoxicity / carcinogenicity 

(Reviews of the proposed roles for MTs can be found in [68] and [69]). 

This may indicate that there is no ‘main’ role for MTs in general, but they 

instead participate in many different roles [65]. 

 

Since their discovery in the brains of mammals [70], interest in MT 

research has increased in profile. Although the mechanism of action is 

not currently know, MTs have been implicated in aiding the repair of 

central nervous system damage [71], and in helping to protect the brain 

from injury [72]. The upregulation of MT is also a consequence of many 

human neurological diseases [73] (Alzheimer’s disease [74, 75], short-

course Creutzfeld-Jakob disease [76], and multiple sclerosis [77]) as well 

as in some types of cancer cells [78]. 
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Classification 

Since the discovery of MT in horse kidneys [79] over 50 years ago, there 

have been two widely accepted classification systems for MTs 

[69, 80-82]. The first classification system, (Nordberg & Kojima 1979 

[83]; Modified Fowler 1987 [84]) contained three classes of MT: 

 • Class I: proteins with a high degree of cysteine congruity to equine 

renal MT; 

• Class II: proteins with only a minor degree of cysteine congruity to 

equine renal MT;  

• Class III: atypical or enzymatically synthesised polypeptides 

(phytochelatins). 

 

The old system was soon deemed inflexible in characterising the growing 

number of MT sequences being reported in following years. As a result, a 

new convention was suggested by Binz & Kägi in 1999 [85]. Similar to 

the first system, the MT superfamily as a whole is defined as comprising 

all polypeptides which with high primary sequence homology to equine 

renal MT [84]. However, the new system grouped similar MT sequences 

into families (many of these families are shown as similar sequences in 

Appendix 1). Each MT sequence can be classified as belonging to only 

one family, with each family further subdivided into subfamilies, 

subgroups and isoforms [85, 86]. All members of an MT family share a 

high degree of primary sequence identity, and as such their sequences 

can be aligned with each other [85]. This system provides more flexibility 

in MT classification, as new MT sequences can be compared to any other 

classified sequence, and assigned a family based on the shared 
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characteristics of those sequences. The current system for classification 

is summarised in Figure 1.3†, which highlights both the ubiquity of MTs 

throughout the biosphere, and the lack of their corresponding 

experimentally determined structures.  

                                                           
† Data obtained from: http://www.uniprot.org/docs/metallo.txt 
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Although initial studies focussed on MTs from vertebrates, recently a 

wider array of organisms [87, 88] have been investigated. These later 

studies have shown that MTs exhibit significant structural diversity 

between organisms [62]. 

 

Structure 

Although MTs contain a large proportion of sulphur-containing residues, 

due to their use in metal chelation, they usually contain no disulphide 

bonds [68]. Motifs such as CxC / CxxC are highly conserved in vertebrate 

MT sequences [89], with the emergence of similar motifs such as CC / 

CCC within other families thought to be caused by convergent evolution 

influenced by the requirement to form effective metal-binding clusters 

[90, 91]. Appendix 1 shows the ubiquity of MTs in a number of 

organisms, ranging from mice to mouse-ear cress, and the emergence of 

specialised motifs such as the –CPC- motif found in human MT-3, 

determined by mutagenesis to be crucial for functional activity in the 

brain [89]. 

 

X-ray crystallography [92] and NMR with spectroscopically active metal 

ions (111/113Cd [93]/ 59Co [94]) have shown that MTs bind metal ions in 

clusters exhibiting tetrahedral co-ordination environments [95]. As there 

are fewer cysteine residues than would be required for individual 

coordination of each metal ion, MTs utilise bridging sulphur ligands within 

these clusters (Figure 1.4) [96]. Further studies of some MT sequences 
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(Families 1-4 & 6, Figure 1.3) indicate that metal ions are bound in two 

discrete clusters joined by a linker region [97] (roughly adopting a 

‘dumb-bell’ shape [98] (Figure 1.4)). For MTs where two clusters are 

proposed, the linker region between the two domains varies greatly in 

length and amino acid composition; with the length of the linker region 

directly influencing protein stability [99]. 

 

 

 

 

 

Cysteine residues within a cluster are oriented so that their sulphur 

atoms are in close proximity, allowing the adoption of stable 6-

membered ring conformations (Figure 1.5) [100]. Naming convention 

(based on initial work with vertebrate MTs) designates the clusters as: 

M4Cys11, α-domain; M3Cys9, β-domain [95] (M representing a divalent 

metal ion such as Zn2+ or Cd2+). 

 

 

 

 

 

 

 

Figure 1.5: Schematic of (A) the M4Cys11-cluster; and (B) the M3Cys9-cluster found in vertebrate 
MT [101]. Sulphur atoms indicated in RED, Metal ions shown in YELLOW. Bridging sulphur 
ligands shown with an exterior RED OUTLINE. 

 

Figure 1.4: Diagram showing the similarity of the two-domain metallothionein to a ‘dumb-bell’ 
shape. Overlaid Rat MT-2 modified from [91]. 
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In vertebrate MTs, metal binding is very ordered within the domains 

[102], providing the metals are physiologically relevant (ie. zinc, copper 

and cadmium). Metal binding proceeds in a co-operative manner, with 

preferential filling of sites within the 4-metal α-domain, followed by the 

3-metal β−domain [103]. Binding in the α-domain was also found to be 

more thermodynamically stable than that of the 3-metal β−domain, with 

the complete release of metal ions in the β-domain before demetallation 

of the α-domain occurred [91]. 

 

Induction 

MT gene transcription can be induced by a wide range of stimuli, with 

detectable intracellular concentrations being accumulated within 1 hour 

of exposure [65]. As well as zinc, copper and cadmium, metal ions such 

as silver and mercury are also potent inducers of MT genes [104, 105]. 

To facilitate a rapid response to changing cellular conditions, MT genes 

have a number of cis-regulatory elements present in nearby 

upstream/downstream of the MT-gene promoter [91], including MREs 

[106] and antioxidant responsive elements [107]. 

 

For an MRE to be utilised, a metal sensor protein is required for 

activation. In mice, this metal sensor was found to be MTF-1 (Metal-

regulatory Transcription Factor-1). MTF-1 silencing led to no MT-I/II 

accumulation in cells, even when challenged with concentrations of metal 

ions known to induce MT expression in wild-type mice [91]. MTF-1 is a 
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large protein, comprising six zinc-finger domains [108]. When these sites 

are populated with zinc, transcription of downstream MT genes is enabled 

[30]; behaviour which is proposed to be self-regulating [109] 

(Figure 1.6). 

 

As functional MREs have yet to be found in many invertebrates, it is 

thought that there is less reliance on the control of MT transcription by 

metal-regulatory transcription factors [110]. This makes the regulation of 

MTs in invertebrates not easily comparable to that of MT regulation in 

vertebrates [68]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Postulated mechanism for control of MT synthesis, modified from [109]. MTF-1 (BLUE), 
Metal-regulatory Transcription Factor-1; MRE, Metal Response Element (RED / GREEN), Zinc 
(PURPLE), and MT (ORANGE). Zinc promotes MTF-1 binding to the MRE DNA sequence, inducing MT 
synthesis. When available zinc is bound by MT, excess apo-MT removes zinc from MTF-1, causing 
MTF-1 dissociation from the MRE, and halting MT expression. 
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1.5 Metallothioneins in invertebrates 

Approximately 16 % of MT entries in the ExPASy‡ database correspond to 

‘invertebrates’ – organisms in Kingdom Animalia that do not contain 

backbones or spinal columns. The various invertebrate clades for which 

there are reviewed MT sequences are: mollusca (including snails and 

mussels), pancrustacea (including the fruit fly, lobsters and crabs), 

echinacea (including sea urchins), annelida§ (segmented worms) and 

nematoda (C. elegans). Whereas vertebrate MTs show little variation in 

primary sequence, there is significant diversity within invertebrate MTs 

(Appendix 1). 

 

Adaptation of invertebrates to their environment 

The presence of invertebrates in soil and water-sources continuously 

exposes them to a wide variety of contaminants, including toxic levels of 

metal ions [112]. Invertebrates have a large capacity for sequestering 

contaminant metal ions, for example the earthworm Lumbricus rubellus 

can maintain body burdens of cadmium up to 1 mg/g dry weight [113]; it 

is thought that the metal-binding ability of MT is crucial for this behaviour 

[112]. As cadmium excretion proceeds slowly, invertebrates have utilised 

MTs as an efficient storage mechanism: compartmentalising toxic metals 

– rendering them biologically inactive - until excretion is complete [114]. 

                                                           
‡ http://www.expasy.org/ 

§ Annelids owe their name to the latin anellus ‘little ring’, and are segmented worms found in both 
aquatic and terrestrial environments [111]. 
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The high metal tolerance observed in invertebrates is postulated to have 

arisen through two mechanisms: the enhancement of constitutive MT 

expression; or MT genes adapting to chelate toxic metal ions more 

efficiently [110]. An example of the former was discovered in the aquatic 

worm Limnodrilus hoffmeisteri. Over the course of 30 years, this worm 

responded to cadmium pollution (> 500 µg/g Cd in soil) by upregulating 

expression of an MT-like protein [115]. This trait proved to be genetic in 

nature, as worms remained resistant to high levels of cadmium after two 

generations in control soil (≈ 19 µg/g Cd in soil) [116]. If cadmium 

tolerance across 1-4 generations could have evolved so rapidly in one 

invertebrate [116], what further insights into metal handling could be 

learned from studying other invertebrates? 

 

Mollusca MTs 

Research into MTs from molluscs has been divided into two groups: 

snails, such as Helix pomatia [117] and Arianta arbustorum [118]; and 

mussels / oysters, such as Mytilus edulis [119] and Crassostrea virginica 

[120]. The most widely studied of the terrestrial gastropods mentioned is 

the land snail Helix pomatia. Three distinct MT isoforms have been 

isolated, not thought to be under the control of an MTF-1 analogue 

[121]: one responsible for cadmium resistance (CdMT); one for copper 

homeostasis (CuMT); and a third having a smaller contribution to metal 

metabolism (Cd/CuMT) [121]. When isolated from the organism, it was 

found that CdMT (localised largely in the midgut gland) bound 6 

equivalents of cadmium, with CuMT binding 12 equivalents of copper(I) 
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[122]. These two MTs were found to be inert to protein-protein metal 

exchange, leading to the hypothesis that CdMT protects CuMT by acting 

as a cadmium sink [122]. 

With respect to the aquatic molluscs, the Mytilus mussel family expresses 

two subfamilies of isoforms [119], the variable MT-10 (induced by Zn, Cu 

and Cd) and the less variable MT-20 (induced by Cd) [123]. Each group, 

characterised by mass, binds seven divalent metal ions [124, 125]. In 

mussels, MT-10 has a postulated metal metabolism role, and MT-20 that 

of cadmium detoxification [126]. Of note is the dimerisation of the MT-20 

isoform obtained from exposed organisms [127]. The dimerisation is 

postulated to occur through unique monomer-bridging S-Cd-S bonds 

between two monomers, which are stable in the presence of DTT [127]. 

 

Although mollusca MTs contain histidine residues [121] and a higher 

percentage of glycine residues than vertebrate MTs [119], their gene 

structure is closer to vertebrate MTs than some other invertebrate MTs 

[124]. 

 

Pancrustacea MTs 

The pancrustcea group contains members from the crustacean and 

diptera families [128] (Figure 1.3). This divides the group into: 

crustaceans, such as Homarus americanus [129] and Callinectes sapidus 

[130]; and diptera, such as Drosophila melanogaster [131] and 

Orchesella cincta [132]. Homarus americanus (American lobster) 
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expresses three copper-binding MTs in the hepatopancreas, CuMT-1, 

CuMT-2 and CuMT-3 [129]. Of interest are the differences in primary 

sequence between CuMT-1/CuMT-2 and CuMT-3. It is thought that these 

differences cause CuMT-3 to be the only isoform capable of protein-

protein transfer of Cu+ [129]. The solution structure has been 

determined for lobster CuMT-1 (PDB 1j5l & 1j5m) indicating the presence 

of two non-identical β-domains joined by a linker region [133]. In 

contrast to most invertebrate MTs, but similar to that of vertebrate MTs 

(PDB 2mrt, 1m0j, 2f5h), there is an α-helix present in the βC-domain 

(PDB 1j5l) [134]. With respect to metal-binding, MTs from the lobster 

subfamily [134] bind 6 equivalents of divalent metal ions, or 6 Cu+ ions 

with 1 zinc ion [134]. 

 

Since the sequencing of the Drosophila melanogaster genome [135], 

genes encoding five MTs have been discovered: MtnA, MtnB, MtnC, MtnD 

[136] and MtnE [137]. The Mtn family of MTs are postulated to be single-

cluster proteins, and are somewhat similar to vertebrate and crab MT 

α-domains [138]. MtnA is unique among the five, as it is preferentially 

induced by copper, not cadmium [139]. Whereas all Mtn isoforms show 

significant preference for copper binding [140], MtnE is functionally 

distinct and shows metal-binding preferences that are much more diverse 

than the other Mtn genes [137]. MtnB, MtnC and MtnD are more closely 

related to each other (> 60 % sequence identity), and when isolated 

showed cadmium to be the major species [141]. MtnB appears to be 

most crucial for cadmium detoxification, as MtnB-knockout organisms 



Chapter One 

 20 

become highly susceptible to cadmium toxicity [139]. Unlike many other 

invertebrates, Mtn genes A-D are under control of dMTF-1 [141], the 

diptera equivalent of vertebrate MTF-1. 

 

Also within the terrestrial subfamily of pancrustacea is the springtail 

Orchesella cincta. This insect exhibits MT post-translational modification: 

one encoded peptide product is proteolytically cleaved to form two metal-

binding peptides [132]. 

 

Echinacea MTs 

The Echinacea family includes MTs from sea urchins, with a 3-

dimensional solution structure available for Strongylocentrotus 

purpuratus (PDB 1qjk & 1qjl) [87]. Exhibiting the most in common with 

vertebrate MT regulation, echinoderms express two MTs: MTA (heavily 

regulated by upstream MREs [142]) and MTB [143]. Both MTs bind 7 

divalent metal ions [87], with MTA being obtained from the organism 

containing cadmium [142]. Of note is the orientation of the domains in 

MTA, with an N-terminal α-domain being followed by a C-terminal 

β-domain [87] – the opposite of vertebrate MT (ie [144]). MTA contains a 

sole phenylalanine aromatic residue [145], uncommon for vertebrate 

MTs, but not so for invertebrate MTs. 
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Nematoda MTs 

The model organism C. elegans expresses two distinct MT isoforms, 

CeMT1 and CeMT2. Similar to many invertebrates, both CeMT1 and 

CeMT2 (regulated by a single MRE) are induced heavily in the intestines 

on ingestion of cadmium [146]. Although both isoforms natively bind 6 

divalent metal ions [147, 148], CeMT1 will adopt a Zn1Cd6- stoichiometry 

when cadmium is used to replace bound zinc [149]. Differentially from 

most invertebrate MTs, CeMT sequences contain histidine residues: 

CeMT2 containing 1; CeMT1 containing 4 [149]. The hypothesis is that 

the site in CeMT1 resistant to in vitro cadmium exchange is a result of a 

His3Cys1 coordination environment [149] showing zinc preference [150]. 

 

CeMT2 shows an in vitro [151] and in vivo [148] binding preference for 

cadmium. Knockouts of both mtl-1 and mtl-2 genes (encoding CeMT1 

and CeMT2 respectively) reduced reproductive fitness of the population 

(even in the absence of cadmium), and significantly increased their 

sensitivity to cadmium [152, 153]. These findings have led to the 

hypothesis that CeMT1 has a role in essential metal metabolism, whereas 

CeMT2 confers resistance to metal toxicity [149]. 

 

Annelida MTs 

Stürzenbaum et al. [99, 112, 114] identified two earthworm 

metallothionein (wMT) isoforms in the adult earthworm Lumbricus 

rubellus: wMT-1, highly expressed in vivo following exposure to zinc and 
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copper; and wMT-2, the sole in vivo cadmium-responsive MT [113]. A 

third MT isoform, wMT-3, was identified through in silico analysis of 

expressed sequence tags, obtained from cDNA, reverse-transcribed from 

cloned mRNA [112]. 

As is the case with most MT research, the roles and functions of the three 

isoforms remain enigmatic. However, wMT-1 appears to influence 

reproduction, as a multivariate statistical analysis showed a positive 

correlation between wMT-1 concentration and cocoon production rate 

[154]. wMT-1 is also hypothesised to be better adapted to act as a 

carrier and donor of essential metals, as its metal clusters are more labile 

than those of its counterpart, wMT-2 [113, 155]. Localised within the gut 

epithelium, and thought to act following soil ingestion, wMT-2 is found to 

accumulate in chloragogenous tissue (analogous to mammalian liver), 

before being excreted via the nephridium (analogous to mammalian 

kidneys) [112]. 

 

Although the promoter region upstream of wMT-2 contains 3 MREs, 

indirect evidence suggests that they are non-functional [156]. Therefore, 

unlike MTs in D. melanogaster, wMT-2 is unlikely to be under 

translational control of an MTF analogue [68]. Two N-glycosylation sites 

have been identified within the wMT-2 sequence, suggesting the ability 

for post-translational modifications. These could assist in transport of the 

protein to discrete areas within the cell, called ‘cadmosomes’ [113], 

further differentiating between wMT-1 as a carrier and donor of 

zinc/copper; and wMT-2 as a scavenger/immobiliser of cadmium. wMT-3 
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sequences were obtained predominantly from libraries created from 

embryonic tissue, showing high abundance and functional activity during 

early embryonic development [112]. One sequence, however, was 

obtained from a library created from adult tissue exposed to cadmium 

[112]. It is not known how significant this finding may be. 

 

It appears that the two domain vertebrate MT structure (βα) is in reverse 

orientation for earthworm MTs (Figure 1.7): N-terminal α-domain 

(M4Cys11-cluster); C-terminal β-domain (M3Cys9-cluster) [157]. Although 

wMT-1 and wMT-2 exhibit > 75 % sequence identity, there is significant 

variation in the composition of the linker region between the two 

proposed clusters [113]. wMT-2 exhibits a smaller (4 residue) linker 

region than wMT-1 (6 residue). A shorter linker region seems to 

correspond to increased stability, reflected in the greater pH range of 

metal retention within wMT-2 [113]. 

 

1.6 Diversity of annelida MTs 

Although few 3-dimensional MT structures have been determined in 

comparison with known sequences, the role of structure in elucidation of 

function is well recognised [158-160]. Figure 1.7 highlights the high 

cysteine conservation in MT primary sequences across the annelid family. 

The earthworms can be classified as one of three ecotypes, based on 

their chosen habitat: Epigeic (1–2.5 mm diameter, BLUE), live on the 

soil surface, feeding on leaf-litter, rarely burrowing and ingesting soil; 
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Anecic (4–8 mm diameter, ORANGE), live in vertical semi-permanent 

burrows, feeding on the soil surface and leaf-litter; Endogeic (2–4.5 mm 

diameter, GREEN), live in topsoil digging extensive systems of horizontal 

burrows, feeding on ingested soil [161]. As such, whether an earthworm 

spends most of its life above (epigeic) or below (endogeic/anecic) the soil 

surface will affect the extent of interactions with contaminant metals 

[162, 163]. The highest proportion of sequence variation is found within 

the proposed linker region. Within the linker region, most variability is 

seen between the burrowing worms (GREEN), compared to those that 

live on the soil surface.  

 

 

 

 

 

 

Effect of the linker region between MT domains 

The 77 residue wMT-2 contains a linker region between the two domains 

which is 2 residues shorter than that of wMT-1 (4 residues compared to 

6 residues). Experiments varying the length of the linker region between 

the two domains of vertebrate MT-2 indicated that isoforms engineered 

with short linker regions are most effective in protecting against 

cadmium toxicity [164]. Therefore the length of the linker region in 

Figure 1.7: Alignment of all annelid sequences in the non-redundant protein database, from protein 
BLAST [NCBI]. Cysteine residues indicated in RED. Identity of all sequences to L. rubellus wMT-2 
> 51 %. The three colours represent the earthworm ecotypes: EPIGEIC, ENDOGEIC, ANECIC. The 
linker region is present between the two domains. 
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wMT-2 may be crucial for its effectiveness in protection from cadmium 

toxicity. 

 

There may also be a connection between the susceptibility to proteolytic 

cleavage and linker region length [165], such as that exhibited by Eisenia 

fetida (Figure 1.7, last entry) and Orchesella cincta. Through post-

translational modification, the E. fetida MT-2 forms a stable single-

domain protein of 41 residues [166], whilst O. cincta generates two 

single-domain proteins of 42 residues and 30 residues from a single gene 

product [132]. This evidence supports the theory that the longer the 

linker region between the two domains, the less stable the protein [91]. 

It should be noted that plant MT sequences exhibit much longer linker 

regions (≈ 40 residues [167]) without similar cleavage [168], therefore 

there is likely another factor effecting whether or not an MT is cleaved in 

vivo. 

 

1.7 Interest in invertebrates for pollution monitoring 

One of the motivations for research into the metal-handling of 

invertebrates is in their use for monitoring pollution, and remediation of 

pollution [169]. The use of in situ organisms for pollution monitoring has 

several advantages, as they consider both bioavailability and 

environmentally relevant combinations of toxicants [170]. Organisms 

that can be used for this sort of pollution quantification are termed 
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‘biomarkers’ [169]. The most widely studied invertebrate biomarkers 

being mussels and earthworms [60, 171, 172]. 

 

The largest benefit of using living organisms as biomarkers is the ability 

to observe changes at molecular, cellular, tissue/organ, and organism 

level, when contaminants are present at sub-lethal concentrations [173-

175]. Earthworms are good biomarkers as they are widely available in 

almost all soil types and conditions, and have precedent in ecotoxological 

testing for metals and pesticides [176]. Using biomarkers for pollution 

monitoring gives very consistent data, with invertebrates shown to be 

highly responsive to stress conditions [177]. However some difficulties 

arise when local populations start to adapt to their environment, so care 

must be taken to screen for genetic differentiation in the populations 

used for in situ monitoring [178]. Currently, a genomics-based approach 

measures levels of gene expression, enabling quantification of the effects 

of certain pollutants [179, 180]. The utilisation of biomarkers allows a 

constitutive overview of the condition of the local ecosystem, allowing 

both early detection of imbalances within the ecosystem, and monitoring 

of ongoing ecosystem changes [169, 170]. MT expression within 

earthworms has been proposed to be an effective biomarker for pollution 

monitoring [181, 182], however there is no structural information, and 

little metal-binding information, with respect to the earthworm MTs 

involved in these genomics-based assays. 
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1.8 Research motivation and objectives 

The primary aim of the research presented in this thesis is to determine 

the solution structure of wMT-2. Given the lack of 3-dimensional MT 

structures, especially with respect to invertebrates, significant insights 

into the conformation of effective metal-binding proteins may be gained 

from obtaining the first solution structure of an annelid MT. A secondary 

aim is to recombinantly express and purify wMT-3, the third MT to be 

identified from earthworms, which is currently uncharacterised. A final 

aim is to characterise the metal-binding dynamics of wMT-2, with 

comparison to the other two wMTs where possible. This may help with 

the elucidation of particular characteristics which make wMTs suited to 

their proposed in vivo roles [112]. It is hoped that information about 

wMT in vitro metal-binding behaviour can be used as an indicator of in 

vivo properties (similar to the systems found in C. elegans [151] and H. 

pomatia [121]). 
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2 
Experimental Methods 

 
Chemicals and materials 

Unless specified within the text, all reagents were of the highest grade 

available, containing the lowest contamination from metal ions. The 

majority of reagents used were obtained from either Sigma-Aldrich (UK) 

or Fisher Scientific (UK). Ultrapure water was obtained using a Milli-Q™ 

Integral Water Purification System [Millipore, UK], with a resistance of 

18.2 MΩ·cm-1 (25 °C). 

 

The wMT-1, wMT-2 and wMT-3 plasmids 

Cloning of all three genes was performed by the Stürzenbaum group 

(King’s College London, UK), generating pET vector plasmids containing 

the target genes [Novagen]. The chosen vector was pET-29a-c(+) which 

carries optional N-terminal S•Tag™ / C-terminal His•Tag® sequences*. 

For plasmids containing wMT-1 and wMT-2, both proteins expressed as 

N-terminal S•Tag fusion proteins. wMT-3 expressed as full length protein, 

without either tag. 

                                                           
* TB076 – pET-29a-c(+) Vectors, http://www.merckmillipore.com/ 
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2.1 Modification of wMT-1 plasmid 

Antibiotic-selective agar plates 

Sterilised agar/broth mixture (agar flakes 15 g/L, LB powder 25 g/L, in 

dH2O pH 7.5) was supplemented with either kanamycin (50μg/mL final 

concentration) and/or chloramphenicol (34 µg/mL final concentration) 

when cool. Kanamycin selected cells that contained the Kan resistance 

gene on the pET-29a plasmid, retaining cells containing the target wMT 

gene; chloramphenicol selected cells that contained the CamR resistance 

gene, retaining cells containing the pRARE / pLysS plasmids found in 

Rosetta 2 [Merck Chemicals, UK] competent cells. 

 

Transformation 

Competent cells were transformed following the procedure outlined in the 

Novagen Competent Cell User Protocol. Briefly, 50 µL DH5α library-

efficiency† [Invitrogen, UK] competent cells were transformed with 2 µL 

plasmid (immediately once cells thawed). The mixture was cooled in ice 

for 5 mins, underwent heat-shock for 30 s at 42 °C, and was then cooled 

in ice for a further 2 mins. 200 µL room-temperature super optimal broth 

with catabolite repression (SOC) [Invitrogen, UK] was added to the cells, 

and the entire mixture shaken for 45 mins, 180 rpm, 37 °C. 50-150 µL 

cells from the outgrowth were spread on each plate, and incubated at 

37 °C for 16-18 hrs. 

                                                           
† 1x106 to > 1x109 transformants/µg plasmid DNA 
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Sequencing 

Prior to sequencing, individual colonies were picked and incubated in 

approximately 8 mL antibiotic selective LB media for 16 hrs. Plasmids 

were extracted using a QIAprep Spin Miniprep Kit [Qiagen, UK] according 

to manufacturer’s instructions. Sequencing was performed by the 

University of Warwick Molecular Biology Service, on an ABI PRISM 3130xl 

Genetic Analyser [Applied Biosciences, UK]. Samples to be sequenced 

contained 9 µL DNA (purified using Qiagen Miniprep Kit), and 1 µL of T7 

promoter primer (5’-TAATACGACTCACTATAGGG-3’) [Invitrogen, UK]. 

 

Correction of wMT-1 point mutation by QuikChange® 

To correct the single base mutation in the DNA sequence of wMT-1, a 

QuikChange® II XL Site-Directed Mutagenesis Kit [Invitrogen, UK] was 

used with the supplied protocol, using primers: 

QC_F 5’-GAA TGT TCG CCA AAC TGC AGG AAG CTT TGC TGT GCT GAT TCC-3’; 

QC_R 5’-GGA ATC AGC ACA GCA AAG CTT CCT GCA GTT TGG CGA ACA TTC-3’. 

Tm 83 °C, site of mutation underlined. Primers were 42 bases long, with 

50 % GC content and 3 % sequence mismatch. The method proceeded 

with an initial 60 s denaturation step (98 °C), 30 cycles of: 5 s 

denaturation (98 °C); 10 s annealing (55 °C); 20 s elongation (72 °C), 

and a final elongation step of 60 s (72 °C). Aliquots were transformed 

into DH5α cells before plasmid extraction and sequencing. 

 

Polymerase chain reaction (PCR) for subcloning of wMT-1 

After plasmid extraction, the primers used for the amplification of wMT-1, 
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removing the N-terminal S•Tag were:  

Nde1_F 5’-CAT GAA CAT ATG GCT GAT GCA-3’; 

BamH1_R 5’-CAT GGA TCC TTA GTC ACC ACA-3’. 

Tm 58 °C, enzyme sequence recognition sites underlined. Primers were 

21 bases long, with 43 % GC content. 

 

PCR was performed according to the New England Biolabs PCR Protocol‡. 

Briefly, 2 µM of each primer and 3 µL of DNA (from Miniprep) were mixed 

with dNTPs (200 µM final conc.) and 5x Phusion® HF buffer, for a 49 µL 

reaction. 1 µL Phusion® DNA Polymerase [NEB, UK] was added to 

initiate the reaction. The PCR method proceeded with an initial 300 s 

denaturation step (94 °C), 35 cycles of: 60 s denaturation (94 °C); 30 s 

annealing (55 °C); 45 s elongation (72 °C), and a final elongation step of 

420 s (72 °C). 

 

DNA gel visualisation 

Results were visualised on a 1 % SB-agarose gel following the protocol 

reported by Brody et al. [183]. For visualisation of DNA, GelRed™ 

[Biotium, UK] was added to each gel before casting. PCR product with 

DNA loading buffer (5x, containing bromophenol blue) was mixed and 

loaded onto gel. The gel was run in 1x SB buffer at 200 V, 150 mA for 

20 mins. DNA bands were visualised in a benchtop UV transilluminator at 

302 nm. 

                                                           
‡ PCR Protocol (M0530), http://www.neb.com/nebecomm/products/protocol631.asp 
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Digestion and ligation to create subcloned wMT-1  

For digestion, information from New England Biolabs§ was used to 

determine the optimum conditions for the two chosen enzymes, Nde1 

and BamH1. The PCR insert was digested for 3 hrs: 10 µL PCR insert, 

10 µL Buffer 3 (10x) [New England Biolabs, UK], 2.5 µL BSA (0.8 µg/µL), 

2.5 µL Nde1 and 2 µL BamH1, diluted to 100 µL with dH2O. The vector 

DNA was digested for 3 hrs: 5 µL pET-29a (from Miniprep), 5 µL Buffer 3 

(10x) [New England Biolabs, UK], 1.25 µL BSA (0.8 µg/µL), 1.25 µL 

Nde1 and 1 µL BamH1, diluted to 50 µL with dH2O. 

 

DNA was precipitated before further processing by mixing with 0.1 vol 

3 M sodium acetate, 2 vol 100 % ethanol and cooled at -20 °C for 1 hr. 

The mixture was centrifuged (20 mins, 4 °C, 13,000 rpm) washed with 

70 % ethanol, and centrifuged for a second time (10 mins, 4 °C, 

13,000 rpm). The pellet was then left to dry for ≈ 10 mins at room 

temperature, before being resuspended in 10-50 µL 10 mM Tris-Cl, 

pH 7.5. 

 

The ligation reaction was performed using a Quick Ligation™ Kit** [New 

England Biolabs, UK]: 7 µL Quick Ligation™ buffer (2x), 5 µL cleaned 

PCR insert, 1 µL cleaned pET-29a vector and 1 µL T4 ligase, were mixed 

and incubated for 2 hrs at 25 °C. DH5α cells were transformed with the 

ligated plasmid, and propagated on kanamycin-selective agar plates 

                                                           
§ Double Digests, http://www.neb.com/nebecomm/tech_reference/restriction_enzymes/ 
double_digests.asp 

** Quick Ligation, http://www.neb.com/nebecomm/products/protocol2.asp 
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before outgrowth in selective media and plasmid extraction. The resulting 

plasmid was confirmed by sequencing to contain the wMT-1 gene in the 

correct orientation, and encoding the correct protein sequence. 

 

Preparation of expression strain (Rosetta 2 λDE3 pLysS pRARE2) 

Expression strain Rosetta 2 cells [Merck Millipore, UK] were transformed 

with the sequenced plasmid as previously outlined, onto Kan/Cam-

selective agar plates before expression. 

 

2.2 Expression of wMTs 

Overnight cultures 

Before expression, overnight cultures were grown from single bacterial 

colonies on the Kan/Cam-selective plates. For these cultures, 100 mL 

sterile selective LB broth (pH 7.5), with kanamycin (50 µg/mL) and 

chloramphenicol (34 µg/mL) was inoculated with a single colony, and 

shaken at 37 °C, 180 rpm for 16-18 hrs. 

 

Expression of unlabelled wMTs 

The expression medium used was either standard LB medium, or auto-

induction (AI) medium. For the purpose of this thesis, this medium will 

be referred to as ‘AI’. For AI medium, the recipe reported by Studier et 

al. [184] for ZYM-5052 expression media was followed. For the complex 

medium, three components were required with the following 

compositions: tryptone/yeast extract (10 g tryptone [Oxoid, UK]; 5 g 

yeast extract [Oxoid, UK], in 900 mL dH2O); 20x sugar mix (100 g 

glycerol [Sigma-Aldrich, UK]; 10 g glucose [Fisher Scientific, UK]; 40 g 
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α-lactose monohydrate [Sigma-Aldrich, UK], to 1000 mL with dH2O); and 

20x phosphates mix (0.5 M Na2HPO4; 0.5 M KH2PO4; 1 M NH4Cl; 0.1 M 

Na2SO4 [BDH, UK]; 40 mM MgSO4; in 700 mL dH2O). 

 

For 1 L of AI medium, 900 mL sterile tryptone/yeast extract, 50 mL 

sterile 20x sugar mix, 50 mL 20x sterile phosphate mix and 100 µL 1 M 

FeCl3 were combined. The mixture was then supplemented with 

antibiotics (50 µg/mL final conc., kanamycin; 34 µg/mL final conc., 

chloramphenicol), metal ions (500 µM ZnSO4; or 200 µM CdCl2), and 

10 mL overnight culture. 

 

For 1 L LB medium, 1 L sterile LB, pH 7.5 was supplemented with 

antibiotics (as above) and 10 mL overnight culture. Cultures grown in LB 

medium were induced manually, at OD600 0.6-0.8 with 1 mM IPTG 

(Isopropyl-D-thiogalactopyranoside). Metal ions (500 µM ZnSO4; or 

200 µM CdCl2) were also added at this time. 

 

Standard expression conditions were to shake 400 mL media in 2 L 

baffled flasks at 180 rpm, 37 °C. Cultures were harvested after 9-10 hrs 

by centrifugation (5,000 x g, 10 mins, 4 °C), drained of supernatant and 

the cell pellets stored at -20 °C (< 90 days) or -80 °C (> 90 days). 

 

Sonication 

Cell pellets were resuspended in 4-8 mL/g wcw sonication buffer (50 mM 

Tris-Cl; 0.1 M KCl; 3 mM β-mercaptoethanol; in 100 mL dH2O, pH 8.5), 

with 1 % TWEEN-20 to aid in solubilisation of cell membranes. To 
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stabilise the proteins during sonication, 1 mM ZnSO4 / CdCl2 was added 

to each suspension. The resuspended cell pellet was sonicated with a 

large-tipped Vibra-Cell sonicator [Sonics, UK] using 1 s pulses requiring 

15 watts. Cycles of 30 s with 30 s rest were repeated until mixture was 

translucent, with no visible cell aggregates. The lysate was then 

separated from cell debris by centrifugation for 30 mins at 30,000 x g, 

4 °C. 

 

Expression of 13C/15N-labelled wMT-2 

For production of 13C/15N-labelled wMT-2, a system using sterile M9 salts 

and minimal medium was used. A 5x stock of M9 salts was produced, 

requiring Na2HPO4.7H2O (60 g), KH2PO4 (30 g) and NaCl (5 g) dissolved 

in 1 L of Milli-Q water. Additional solutions were prepared using Milli-Q 

water, with the following compositions: 10 % (w/v) yeast extract, 

15 mg/mL FeCl3 solution, 1 M MgSO4, 0.5 M CaCl2, 2 mg/mL thiamine-

HCl solution, and 10 mg/mL biotin solution. A metal mix was also 

required, consisting of: 0.115 g of ZnSO4.7H2O, 0.0169 g of 

MnSO4.5H2O, 0.0290 g of H3BO3, 0.0175 g of CuSO4.5H2O, made to 

100 mL with Milli-Q water. For unlabelled stocks of NH4Cl and glucose, 

1 g NH4Cl was dissolved in 10 mL Milli-Q water; with 20 g D-glucose 

dissolved in 100 mL Milli-Q water. For labelled stocks of NH4Cl and 

glucose, 1 g 15NH4Cl [99 % 15N, Cambridge Isotope Laboratories Inc., 

UK] was dissolved in 10 mL Milli-Q water; with 6 g D-glucose [99 % 13C, 

Cambridge Isotope Laboratories Inc., UK] dissolved in 100 mL Milli-Q 

water. 
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For (unlabelled) minimal media plates, 3 g of agar dissolved in 80 mL 

dH2O and 20 mL 5x M9 salts (pH 7.5) was sterilised. When sterile, 

200 µL MgSO4, 5 mL glucose, 20 µL CaCl2, 1 mL NH4Cl, 100 µL FeCl3, 

100 µL biotin, 100 µL metal mix, 50 µL thiamine, 100 µL yeast extract, 

1 mL NH4Cl, 5 mL glucose were added. Before the plates were poured, 

30 µg/mL kanamycin and 34 µg/mL chloramphenicol were added for 

antibiotic selectivity. 

 

For the unlabelled overnight media, 2 g of agar dissolved in 73.37 mL 

dH2O and 20 mL 5x M9 salts (pH 7.5) was sterilised. When sterile, 

200 µL MgSO4, 5 mL glucose, 20 µL CaCl2, 1 mL NH4Cl, 100 µL FeCl3, 

100 µL metal mix, 100 µL biotin, 50 µL thiamine, 100 µL yeast extract 

were added to the medium. 

 

For 1 L of 13C/15N labelled minimal media, 2 g of agar dissolved in 

733.70 mL dH2O and 200 mL 5x M9 salts (pH 7.5) was sterilised. When 

sterile, 2 mL MgSO4, 50 mL 13C glucose, 200 µL CaCl2, 10 mL NH4Cl, 

1 mL FeCl3, 1 mL metal mix, 1 mL biotin, 500 µL thiamine, 1 mL yeast 

extract were added to the media. Antibiotics were added the same 

manner as for minimal media plates. 

 

Colonies from unlabelled agar plates were grown for 5 hrs in unlabelled 

LB medium. The resulting culture was then streaked on minimal media 

plates, and incubated overnight at 37 °C. 100 mL unlabelled overnight 

M9 medium was inoculated with a single isolated colony from the 

streaked minimal media plates, and incubated at 37 °C, 14 hrs, 180 rpm. 
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Cells cultured overnight were harvested at 3,000 x g for 10 mins at 4 °C, 

and washed with 50 mL fresh labelled medium. 1 L of labelled minimal 

medium was inoculated with the entire washed suspension, and cells 

were grown at 37 °C, 180 rpm. Cultures were induced manually at 

OD600 0.8-1.0 with 1 mM IPTG, and supplemented with 200 µM CdCl2. 

 

Cultures were harvested after 10-12 hrs by centrifugation (3,500 x g, 

20 mins, 4 °C), drained of supernatant and cell pellets were stored at 

-20 °C (< 30 days). Lysis was performed identically to unlabelled 

samples. 

 

2.3 Purification of wMTs 

Fast protein liquid chromatography (FPLC) 

An ÄKTA™ Explorer10 [Amersham Pharmacia] FPLC System was used for 

chromatography, with columns purchased from GE Healthcare (UK), 

unless identified in the text. Before chromatography, crude cell lysate 

was passed through either a 0.2 µm or 0.45 µm syringe-filter [Millipore, 

UK] to remove small particulates and cell debris. Depending on final 

sample translucency, the mixture was diluted by addition of 4-8 mL of 

20 mM ammonium bicarbonate buffer before separation. 

 

Size-exclusion chromatography (SEC) 

To maintain consistency in the retention time of eluates, the injection 

volume for all SEC experiments was fixed at 4 mL. The separation was 

monitored at 220 and 280 nm, with eluate collected in 4 mL fractions. 

The flowrate was reduced for the duration of sample injection to reduce 
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the increase of pressure caused by the superloop. Standard conditions 

are indicated in the table below: 

 
 

 

Ion exchange chromatography 

For anion/cation exchange, the columns were used as per manufacturer’s 

instructions [GE Healthcare, UK]. For AnCat chromatography, the anion 

exchange column was coupled directly to the cation exchange column, 

giving an effective column volume of 10 mL. Standard conditions are 

indicated in the table below: 

 
 

Flowrate (mL/min) 1.0 

Injection flowrate (mL/min) 0.3 

Injection volume (mL) 4.0 

Fraction volume (mL) 4.0 

Maximum system pressure (MPa) 0.3 

Mobile phase; Buffer 20 mM NH4HCO3 

Column HiLoad 1660 Superdex 75pg 120 mL 

Flowrate (mL/min) 5.0 

Injection flowrate (mL/min) 0.3 

Injection volume (mL) Indicated in text 

Fraction volume (mL) 4.0 (Flowthrough > 4 mL) 

Maximum system pressure (MPa) 0.5 

Mobile phase; Buffer A 20 mM NH4HCO3 

Mobile phase; Buffer B 20 mM  NH4HCO3, 0.5 M NaCl 

Columns 
HiTrap Q XL 5 mL Anion or 

HiTrap SP XL 5 mL Cation 

Table 2.1. Standard conditions employed in size-exclusion chromatography. 

Table 2.2. Standard conditions employed in ion exchange chromatography. 
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SDS-PAGE and visualisation by silver-stain enhancement 

Two different systems were used during this project: NuPAGE® Novex 4-

12 % Bis-Tris minigels [Invitrogen, UK] with SeeBlue® Plus2 Pre-Stained 

Standard [Invitrogen, UK] and 4x NuPAGE® LDS Sample Buffer 

[Invitrogen, UK]; or Mini-Protean® 4-20 % TGX™ minigels [Biorad, UK] 

with the Precision Plus Protein™ Dual Colour Standard [Biorad, UK] and 

1x Laemmli Sample Buffer [Biorad, UK]. The protocol employed is 

indicated in the figure accompanying the experiment. 

 

Samples of 10 µL were prepared by mixture with sample buffer. Gels 

were run for either: 35 mins at 200 V (Invitrogen); or 45 mins at 150 V 

[Biorad, UK]. 

 

To enable visualisation of the protein bands after separation, silver-stain 

enhancement was used. After removal from the gel enclosure, the gel 

was rinsed thoroughly with dH2O. The gel was then transferred into fixing 

solution for 15 mins. The fixing solution comprised 60 mL 50 % acetone, 

1.5 mL 50 % TCA and 25 µL formaldehyde (37 %). After fixing, the gel 

was rinsed and washed for 2 mins in dH2O, followed by washing for 

5 mins in 60 mL 50 % acetone. To enhance the sensitivity of the silver-

stain, the gel was transferred into a solution containing 10 mg sodium 

thiosulphate in 60 mL dH2O for 1 minute. To stain the bands, the gel was 

incubated, in the dark, for 8 mins in a solution containing 160 mg silver 

nitrate and 600 µL formaldehyde (37 %) in 60 mL dH2O. After rinsing 

the gel in dH2O, the developing solution was added to visualise the 

protein bands. This solution contained 1.2 g sodium carbonate, 25 µL 



Chapter Two 

 40 

formaldehyde (37 %) and 2.5 mg sodium thiosulphate in 60 mL dH2O. 

To halt the developing process, the gel was quickly drained of all 

developing solution, and the reaction stopped using a 1 % acetic acid 

solution. 

 

Inductively coupled plasma-optical emission spectrometry (ICP-OES) 

Inductively coupled plasma-optical emission spectrometry or ICP-OES is 

used to measure the concentration of certain elements within a sample. 

Samples are analysed following nebulisation and introduction into the 

centre of a plasma [185]. The plasma is an inert ionised gas (such as 

argon) at temperatures in excess of 7000 K [186]. The extreme 

temperature of the plasma will provide enough energy to atomise the 

sample, dissociating all chemical bonds. Following excitation within the 

plasma, the individual atomised atoms and ions emit light at wavelengths 

characteristic of the elements being analysed. The intensity of these 

lines, when compared to standards of known concentration, can be used 

to determine the concentration of elements within a sample [185]. 

 

Samples for ICP-OES and the calibration standards were prepared using 

analytical grade 70 % nitric acid stock, diluted to a working concentration 

of 0.1 M HNO3 with Milli-Q water. All elemental standards were obtained 

from Sigma-Aldrich (UK), supplied in 2 % nitric acid. ICP-OES analysis 

was performed on an Optima 5300DV [Perkin-Elmer, UK], and data 

processed using the supplied WinLab32 software [Perkin-Elmer, UK]. 
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Mixed element calibration standards were prepared gravimetrically in the 

range 0.2 ppm - 2.0 ppm for zinc (213.857 nm), sulphur (180.669 nm), 

cadmium (228.802 nm) and copper (324.752 nm). Six standards were 

used during this project with metal concentrations of: 0 ppm (blank), 

0.2 ppm, 0.5 ppm, 0.7 ppm, 1.0 ppm and 2.0 ppm. This gave a working 

range broad enough to cover the expected concentrations of these 

elements in the samples from FPLC. 

 

Samples were prepared either volumetrically or gravimetrically 

(depending on the level of precision required). For FPLC samples of up to 

8 mL, 1 mL of FPLC fraction was diluted with 4 mL 0.1 M HNO3. For 

samples with high 220 nm absorbance from FPLC (ie flow-through 

fractions) the volume of FPLC fraction used was halved. 

 

Cysteine assay 

As an alternative to full elemental analysis, the cysteine assay provided a 

quick way of calculating protein concentration in large numbers of 

samples. The assay allows the determination of the concentration of free 

thiols in the sample by UV-vis spectrophotometry. 

5,5'-dithiobis (2-nitrobenzoic acid) (DTNB, Figure 2.1) reacts specifically 

with free thiols in solution, quantitatively releasing the nitro-thiobenzoate 

anion, which exhibits a characteristic absorption at 412 nm (at pH > 8).  
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The concentration of thiols in a sample may be derived from either the 

molar extinction coefficient of reduced nitrothiobenzene (14,150 M-1cm-1 

[187]), or a set of standard solutions with known concentrations of 

cysteine. It was chosen to use a set of standards, as this will correct for 

any contributions in error from equipment used for the measurements. 

Standard solutions with known concentration of cysteine were used, and 

their absorbances at 412 nm plotted with a linear fit [185] as per 

Equation 1:  

 

 

[Cys] = concentration of free thiols (cysteines), D = dilution factor, S = 

gradient of linear fit standard solutions. 

 

For the cysteine assay, three stock solutions were required, each 

prepared with Milli-Q water: 800 µM L-cysteine with 1 mM EDTA; 0.1 M 

Tris-Cl (pH 7.05) with 1 mM EDTA; 2.5 mM DTNB in 50 mM ammonium 

acetate (pH 5.00) with 1 mM EDTA. In the case of metallothioneins, high 

Equation I [Cys] = 
A412 ● D 

S 

Figure 2.1. Chemical structure of 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB) which after reacting 
with free thiols in solution, splits to form the (yellow) nitro-thiobenzoate ion. 
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concentrations of EDTA are required in each solution to fully remove 

MT-bound metal ions, and generate the measurable free thiol groups. 

 

From the stock solutions, 5 calibration standards were created with 

cysteine concentrations of 0.0 µM (blank), 13.3 µM, 26.7 µM, 40.0 µM 

and 53.3 µM. Standards were diluted to 3 mL, and contained 0.167 mM 

DTNB (final conc.). Samples were prepared in a similar manner, 

comprising 2.60 mL Tris-Cl solution, 200 µL DTNB solution and 200 µL 

sample (3 mL total volume). Samples of high concentration were diluted 

with dH2O to maintain the sample volume of 200 µL. Samples were 

incubated for 10-15 mins before their absorbances were measured. 

Protein concentration in pure samples could be estimated using the linear 

plot of the absorbances from the calibration standards, and dividing the 

calculated free thiol concentration by the number of sulphur-containing 

residues within the protein sequence (see Appendix 2). 

 

Thrombin cleavage 

For thrombin cleavage, samples were concentrated to approximately 

1 mg/mL protein, the optimum concentration as specified by the supplied 

protocol [Sigma-Aldrich, UK]. Protein concentration was performed using 

an Amicon® Ultra-4 (3 kDa MWCO) centrifugal filter [Millipore, UK]. 

Samples were incubated with 110 % of the required NIH units of 

thrombin for 3 hrs at 25 °C. To remove the cleaved protein from 

thrombin and other contaminants, samples were syringe-filtered, diluted 



Chapter Two 

 44 

to 4 mL with 20 mM ammonium bicarbonate buffer and separated by 

SEC. 

 

2.4 Mass spectrometry (MS) of wMTs 

Samples of wMT were prepared for MS to have concentrations of 

approximately 30-50 µM. This was performed using either Amicon® 

Ultra-4 centrifugal filters (3 kDa MWCO) [Millipore, UK], or Vivaspin® 

centrifugal concentrators (5 kDa MWCO) [Sigma-Aldrich, UK]. To 

maintain sample volatility, 20 mM ammonium bicarbonate was 

supplemented with 10 % (v/v) HPLC-grade methanol. Samples were 

analysed on an HCTultra ETD II ion-trap mass spectrometer [Bruker 

Daltonics, UK] equipped with an electrospray ionisation (ESI) source, by 

direct infusion at 240 µL/hr. To obtain apo-protein, samples were 

acidified with either acetic acid or formic acid to approximately pH 2.0. 

 

Resulting mass spectra were analysed using the supplied Data Analysis 

Suite [Bruker Daltonics, UK], an average mass spectrum being generated 

from 0.5-1 min of analysis time. Unless indicated in the text, no 

smoothing algorithms have been used to generate any of the figures. 

Deconvoluted spectra were generated from the most intense peak in the 

raw spectrum. 

 

 



Chapter Two 

 45 

2.5 Additional purification of wMT-2 

Chemical precipitation 

After sonication, the crude lysate was mixed with a 10 % streptomycin 

sulphate solution (0.375 mL/g wcw pellet mass). The mixture was 

centrifuged at 5,000 x g for 20 mins at 4 °C. The supernatant was 

decanted and cooled in an ice bath whilst volumes of ice cold 

ethanol:chloroform (100:8) were added dropwise. In the case of wMT-2, 

three separations of ¾ vol, 1¾ vol and 3 vol were performed. After the 

required volume of ethanol:chloroform had been added, the solution was 

incubated at -20 °C for 12 hrs before centrifugation at 5,000 x g for 

20 mins at 4 °C. The supernatant containing unprecipitated protein from 

the centrifugation was placed back into the ice bath, and the procedure 

repeated until the required number of separations had been performed. 

Precipitated protein at the various volumes were resuspended in 20 mM 

ammonium bicarbonate buffer for further analysis. 

 

Salt precipitation 

A stock of 4 M ammonium sulphate solution was required for salt 

precipitation. Post sonication, the required concentration of (NH4)2SO4 

was achieved through additions of small amounts of the stock. After 

incubation for no more than 5 mins, separation of precipitate was 

performed at 14,000 rpm for 10 mins at 4 °C on a MiniSpin® centrifuge 

[Eppendorf, UK]. As the aim was to keep wMT in solution, only 

contaminant proteins were precipitated. Therefore only the supernatant 

was required for FPLC separation. 
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2.6 Nuclear magnetic resonance (NMR) spectroscopy of wMT-2 

1H 1-dimensional NMR spectroscopy 

The foundation of NMR lies in the magnetic properties of an atomic 

nucleus, characterised by a spin quantum number (I) [188]. Of the NMR 

active nuclei, the most commonly used is the spin-½ hydrogen nucleus. 

Nuclei can exist in 2I+1 possible spin states, for the spin-½ hydrogen 

nucleus this means 2 spin states (denoted ½ and -½) can exist 

(Figure 2.2), similar to the two opposing poles of small bar-magnet 

[189]. 

 

 

 

 

 

 

At thermal equilibrium half of the nuclei will be in the lower energy state, 

and half will be in the higher energy state. However the equilibrium will 

shift when the nuclei orient themselves with/against an externally applied 

magnetic field, as a greater population of nuclei will reside in the lower 

energy state, aligned with the external magnetic field. It is then possible 

to excite nuclei using a radio-frequency pulse from the lower energy 

state to the higher energy state, before equilibrium is re-established 

through relaxation [189]. The gap between the two energy states is 

Figure 2.2. Quantum model of NMR, visualising the two spin states as being with/against the 
externally applied magnetic field. In an externally applied magnetic field, slightly more than half of 
the nuclei will exist in the lower energy state. Modified from [186]. 
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directly proportional to the experienced magnetic field at each nucleus, 

and the nuclei resonate between states at characteristic frequencies. The 

quantum model can be simplified to give a more classical view of the 

nucleus as a charged particle spinning in a magnetic field, with the ½ and 

-½ energy states represented as pointing “down” and “up” respectively 

(Figure 2.3) [188].  

 

 

 

 

 

 

 

This use of the vector model allows the visualisation of the magnetic field 

effect on a number of nuclei. The spinning nucleus causes the direction of 

magnetisation to rotate around the direction of the magnetic field, this 

effect is called precession [190]. If we consider the precession of a 

number of nuclei in the magnetic field, we can see that the average 

direction of the magnetic field (bulk magnetisation vector) is in the same 

direction as the external magnetic field (Figure 2.4) [190]. When an 

external radio-frequency pulse is applied, the direction of bulk 

magnetisation will orient in the x-y plane, before returning to the vertical 

position. During the return to equilibrium, the rotating bulk 

Figure 2.3. Vector model of NMR, visualising the two spin states as pointing “up” or “down” in the 
externally applied magnetic field. 
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magnetisation vector induces a voltage in the radio-frequency coils and 

the NMR spectrum is recorded as a free induction decay (FID) signal 

[189]. 

 

 

 

 

 

 

As each nucleus possesses its own intrinsic magnetic field, the proximity 

to other nuclei will slightly affect the strength of the effective magnetic 

field of neighbouring nuclei. This causes each nucleus to experience a 

unique magnetic field creating one individual signal for each hydrogen 

atom [189]. Although each signal will be itself unique, the differences 

between the effective magnetic field strength are relatively small, and 

high-resolution NMR instruments are needed to resolve as many 

individual signals as possible. 

 

All 1H 1-dimensional NMR experiments of wMT-2 (500 µM) were 

performed on an AV II 700 [Bruker Biospin, UK] equipped with a TCI 

cryoprobe and VT module. Sample conditions were 20 mM ammonium 

bicarbonate, pH 6.9, 10 % D2O, in a 3 mm NMR tube. Spectral conditions 

Figure 2.4. When several nuclei are oriented in a magnetic field 
along the z-axis, there is no overall magnetisation in the x-y 
direction, however there is magnetisation in the z direction. 
This leads to a  bulk magnetisation vector along the z axis. 
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were: zgesgp pulse program; 298 K; 256 scans; pulse length ≈ 8.00 µs 

(p1); 13.0 ppm spectral width centred on the water peak ≈4.6 ppm. 

 

Variable Temperature 1H 1-dimensional NMR spectroscopy 

Cd-wMT-2 was incubated for 5 mins at temperatures between 278-308 K 

on an AV II 700 [Bruker Biospin, UK]. Sample conditions were identical 

to those used for 1H 1-dimensional NMR experiments. 

 

[1H, 1H] 2-dimensional NMR spectroscopy 

To create a 2-dimensional NMR spectrum, a number of 1-dimensional 

NMR experiments are performed with different periods of time between 

excitation and detection [190]. After excitation, the nuclei are allowed to 

spin freely (evolution time), labelling the magnetisation with the 

frequency of the nucleus. The magnetisation can then be transferred via 

either scalar coupling or dipolar interaction (NOE) [189]. Before 

detection, the magnetisation is labelled with the frequency of the second 

nucleus. The experiment will generate a cross-peak at the position in 

each dimension of the two nuclei that exchanged magnetisation 

(Figure 2.5) [189]. 



Chapter Two 

 50 

 

 

 

 

 

 

 

 

The benefit of 2-dimensional NMR is the spreading of the spectrum in 

both the x and y direction, helping to overcome the problems of 

overlapping signals found in 1-dimensional NMR experiments [189]. 

 

All 1H 2-dimensional NMR experiments of wMT-2 (500 µM) were 

performed using the same instrument as for the 1H 1-dimensional NMR 

experiments. TOCSY experiments were performed with a mixing time of 

60 ms (d9), and NOESY experiments were performed with a mixing time 

of 60-120 ms (d8). Sample conditions were 20 mM ammonium 

bicarbonate, pH 6.9, 10 % D2O, in a 3 mm NMR tube. Spectral conditions 

for TOCSY and NOESY were: 298 K; 48 scans; pulse length ≈ 8.00 µs 

(p1); 16.0 ppm spectral width centred on the water peak ≈4.6 ppm. The 

pulse programs used were noesyesgpph [191] for NOESY, and 

mlevesgpph [192] for TOCSY. 

Figure 2.5. Simplified schematic of 2-dimensional NMR. Magnetisation is transferred between the 
two peaks, generating two cross-peaks at the specific frequencies of the two nuclei. 
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13C and 15N NMR spectroscopy 

Before NMR, the labelled protein was buffer exchanged using Amicon® 

Ultra-4 centrifugal filters (3 kDa MWCO) [Millipore, UK], with five steps of 

concentration and regeneration of volume with 20 mM ammonium 

bicarbonate, pH 6.8. 13C and 15N 2-dimensional and 3-dimensional NMR 

experiments (HNCA, HN(CO)CA, HNHA, [1H, 1H, 15N] TOCSY-HSQC, [1H, 

15N] HSQC) of double-labelled wMT-2 (500 µM) were performed on an AV 

II 700 [Bruker Biospin, UK]. For 3-dimensional NMR experiments, a 

number of 2-dimensional NMR experiments are performed. Whilst the 

nuclei are spinning freely (evolving) during a 2-dimensional NMR 

experiment, the magnetisation is transferred to a third nucleus and 

labelled by a third frequency [188]. The third dimension, containing 2-

dimensional ‘slices’ of an NMR spectrum allows further reduction of signal 

overlapping problems with a spectrum (Figure 2.6). As there is an 

additional evolution time, a significant amount of time is required to 

perform 3-dimensional NMR. Sample conditions were 20 mM ammonium 

bicarbonate, pH 6.8, 10 % D2O, in a 3 mm NMR tube. 
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Spectral widths for HNCA and HN(CO)CA experiments were: 13.0 ppm 

(centred at 4.6 ppm), 36 ppm (centred at 121 ppm), 64 ppm (centred at 

59.5 ppm) in the hydrogen, nitrogen and carbon dimensions respectively. 

The HNCA spectrum was acquired using the hncagpwg3d [193] pulse 

program for a total of 16 scans, with 2,048 x 36 x 64 data points in the 

H, N, C dimensions. The HN(CO)CA spectrum was acquired using the 

hncocagpwg3d [194] pulse program for a total of 32 scans, with 2,048 x 

36 x 64 data points in the H, N, C dimensions. 

 

Spectral widths for HNHA experiments were: 13.0 ppm (centred at 

4.6 ppm), 13 ppm (centred at 4.6 ppm), 36 ppm (centred at 121 ppm) in 

the H, H (2nd) and N dimensions, respectively. The HNHA spectrum was 

acquired using the hnhagp3d [195] pulse program for a total of 16 scans, 

with 2,048 x 128 x 40 data points in the H, H (2nd), N dimensions. 

 

Figure 2.6. Simplified schematic of 3-dimensional NMR. Using a third dimension allows 2-
dimensional ‘slices’ to be taken of a spectrum, minimising signal overlap. 
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Spectral widths for [1H, 15N] HSQC experiments were: 13.0 ppm (centred 

at 4.6 ppm) and 45 ppm (centred at 121 ppm) in the H and N 

dimensions, respectively. The [1H, 15N] HSQC spectrum was acquired 

using the hsqcetf3gpsi [196] pulse program for a total of 16 scans. 

 

Spectral widths for [1H, 1H, 15N] TOCSY-HSQC experiments were: 

13.0 ppm (centred at 4.6 ppm), 36 ppm (centred at 121 ppm), 13 ppm 

(centred at 4.6 ppm) in the H, N and H (2nd) dimensions, respectively. 

The [1H, 1H, 15N] TOCSY-HSQC spectrum was acquired using the 

mlevhsqcetf3gp3d [197] pulse program for a total of 16 scans, with 

2,048 x 40 x 128 data points in the H, N, H (2nd) dimensions. 

 

111Cd 1-dimensional NMR spectroscopy 

A stock solution of labelled cadmium was produced from solid 96.4% 

111CdO [Cambridge Isotope Laboratories Inc., UK], and dissolved in 1 M 

HCl. 500 µM wMT-2 was incubated with 10 mM DTT (final conc.) for 1 hr 

in an inert atmosphere (N2). The sample pH was reduced to 1 with 1 M 

HCl, and applied to a PD-10 column [GE Healthcare, UK] equilibrated 

with 0.1 M HCl. The first 3.5 mL of eluate was collected (under constant 

flow of N2), into a vessel containing 10 equivalents of 111CdCl2 solution, 

to ensure that all metal–binding sites were filled with metal ions. The pH 

was raised to pH 7.5 with 1 M deuterated Tris base, and the solution was 

concentrated by centrifugation to 500 µL. 10 % D2O was added to the 

sample before analysis in a 5 mm Shigemi tube [Shigemi, Japan] on a 
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DRX-500 spectrometer [Bruker Biospin, UK]. A broad band observe 

(BBO) probe allowed direct observation of 111Cd nuclei. Spectra were 

acquired for a total of 98,304 scans, with a spectral width of 264 ppm 

centred at 475 ppm. Concentrations of the elements in the sample were 

confirmed after NMR data acquisition by ICP-OES. 

 

All data was processed using TopSpin [Bruker Biospin, UK]. 

1-dimensional NMR were processed Gaussian window multiplication, 

underwent Fourier transformation with 64k real data points and followed 

by phase correction and baseline correction. 2-dimensional NMR were 

processed using the QSINE window multiplication, underwent Fourier 

transformation with 2k x 2k real data points (15N-HSQC with 2k x 1k real 

data points). 3-dimensional NMR were processed using the QSINE 

window multiplication, underwent Fourier transformation with 2k x 256 x 

128 real data points (HNHA with 2k x 512 x 512 data points; TOCSY-

HSQC with 2k x 128 x 512 real data points). 

 

 

2.7 Structure calculations 

The CcpNmr Analysis ver. 2.2.2 from The Collaborative Computing 

Project for NMR (CCPN) [University of Cambridge, UK] was used to 

display and assign all spectra. From the manually assigned NOESY 

spectrum, upper and lower distance restraints were obtained through 

CcpNmr Analysis, before exporting to Combined assignment and 
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dynamics algorithm for NMR applications (CYANA, v2.1) format. To 

ensure the maximum amount of unambiguous distance restraints, the 

NOESY peaks were also exported and automatically assigned by CYANA 

[198, 199]. These two lists underwent a ‘distance modify’ function, to 

remove redundant restraints. Torsional angles were generated from the 

assigned data, with the respective 3J-HNHA module in CcpNmr Analysis. 

For metal restraints, a limit of 4.05 - 8.5 Å (lower distance limit – upper 

distance limit) for cysteine sulphur atoms (within a cluster), and 

4.50 - 4.70 Å for the cadmium ions within a cluster were used. A 2.60 Å 

bond length was set for Cd-S bonds. 

 

From 200 calculated structures, the 10 containing the lowest target 

function were taken forward. Distance restraints were refined until the 

maximum deviation of non-metal restraints was < 0.6 Å, and the target 

function was < 10.00 Å. 

 

2.8 Metal-binding studies 

Acid competition reactions 

Mass spectrometry conditions were identical to those outlined in 

Section 2.4. Aliquots of stock wMT solutions were diluted to working 

concentrations of between 30-50 µM with 20 mM ammonium 

bicarbonate, before being acidified with either acetic acid or formic acid. 

pH was measured after mass spectrometry to avoid contamination of the 

sample with K+ from the pH probe. Approximately 100 µL of sample was 
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required to record a mass spectrum for approximately 2 minutes, with 

the remainder exceeding the minimum volume requirements for the pH 

probe (≈ 50 µL). 

 

pH of ½ dissociation (pKa
1/2) 

For the analysis by mass spectrometry, the estimations were performed 

through analysis of the magnitude of the deconvoluted peaks of the 5+ 

charge state. For analysis by ICP-OES, sample aliquots were allowed to 

equilibrate for 1 hr at the desired pH (between pH 2.0-8.5). After 

equilibration, wMT-bound metal ions were separated from free metal ions 

using a pre-equilibrated PD-10 column [GE Healthcare, UK] at the same 

pH. The protein fraction (3.5 mL) and salt fraction (6.0 mL) were 

collected. Due to the potential for low concentrations, all samples were 

diluted by 1.5 to generate the minimum required volume for ICP-OES. 

The percentages of metal ions bound to wMT at each pH were 

determined with respect to the total metal present in both fractions. 

 

Cadmium exchange 

Purified Zn-wMT-2 was incubated for 1 hr with 0-7 and 10 equivalents of 

CdCl2. Free metal was separated from protein-bound metal using a 

PD-10 desalting column [GE Healthcare, UK]. The first 3.5 mL of eluate 

(protein fraction) and the next 6.0 mL of eluate (salt fraction) were 

collected. Analysis by ICP-OES gave the proportions of each metal 

remaining either bound to wMT-2 (protein fraction), or displaced and in 
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solution (salt fraction). A sigmoidal fit from the data was performed using 

Origin Pro 8 [OriginLab Corporation]. 

 

Reaction with EDTA 

A sample of wMT-2 was concentrated to approximately 40 µM before 

addition of 40 µM EDTA (1:1 protein, 1:7 metal). The sample was 

injected over the course of 90 mins, with raw spectra being averaged 

± 30 s at each time period, to enable averaging over 60 s total. Mass 

spectrometry conditions were identical to those reported in Section 2.4. 

 

Reaction with 5F-BAPTA 

Samples of wMT-2 were buffer exchanged into 10 mM Tris-Cl (pH 8.1) by 

three steps of concentration and redilution using Amicon® Ultra-4 

centrifugal filters (3 kDa MWCO) [Millipore, UK]. A stock of 30 mM 

5F-BAPTA [Molecular Probes, UK] was used for competition experiments, 

stored at 4 °C. 450 µL of sample was incubated with 50 µL D2O and 

50 µL 5F-BAPTA stock (3 mM final conc.) for 12 hrs. Direct observe 19F 1-

dimensional spectroscopy was performed on a DRX-400 spectrometer 

[Bruker Biospin, UK], fitted with a QNP probe-head operating at 

375.91 MHz. Proton decoupled spectra were acquired for a total of 

24,576 scans, with a spectral width of 200.229 ppm centred at -50 ppm. 
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Concentrations of the elements in the sample were determined by 

ICP-OES after NMR data acquisition. Calculations of apparent stability 

constants (KMT) were performed using the published procedure [146, 

200]. 

 

2.9 Creation of Figures 

Figures based on PDB coordinates were created using: RasMol 2.7.5 

(atoms and bonds), JMol 12.2 (cartoon backbone conformation), and 

MolMol 2K.2 (‘sausage’ plots). NMR experimental data were exported 

from CcpNmr Analysis ver 2.2.2. 
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3 
Isolation and identification of wMT-1, wMT-2 & 

wMT-3 

 
3.1 Introduction 

The first DNA sequences of earthworm metallothioneins (wMTs) were 

reported in 1998 by Stürzenbaum, Kille and Morgan [99]. Genes for two 

distinct isoforms were sequenced, nominally wMT-1 (Figure 3.1) and 

wMT-2 (Figure 3.2). Electron probe x-ray emission analysis of 

'cadmosomes' (discrete vesicular compartments enclosed within a lipid 

bilayer) within earthworm cells, revealed a Cd:S ratio of 1:3. Native 

protein was obtained from earthworms by size exclusion 

chromatography, coupled with anion exchange chromatography at pH 8.1 

[99]. 

 

 

 

 

 

 

In 2001, genes for both wMT-1 and wMT-2 were cloned into pET-29a 

vector DNA. This construct recombinantly expressed a fusion protein: 

Figure 3.1. Aligned sequences of wMT-1  from all reports publishing wMT sequences [99, 112, 
113, 157]. The proposed two domain structure is indicated, with potential metal chelating 
cysteine residues coloured RED, linker region is in GREY. Residues that are divergent to the 
construct in this thesis are coloured GREEN. Greater variation is found in sequences from the 
2004 study, as they were deduced from expressed sequence tags. 



Chapter Three 

 60 

wMT with an N-terminal S•Tag [113]. Through titrating equivalents of 

cadmium ions into a solution containing only apo-protein (monitored by 

UV-vis spectrophotometry at A250, the S-Cd absorbance wavelength), the 

stoichiometry for both S•Tag-wMT-1 and S•Tag-wMT-2 was estimated to 

be 6 cadmium ions per protein molecule [113]. Recombinant 

S•Tag-wMTs were isolated by an initial heating step, followed by cation 

exchange chromatography at pH 7.4 and size-exclusion chromatography. 

 

 

 

 

 

 

 

A third earthworm MT gene, wMT-3 (Figure 3.3), was reported in a 2004 

study [112]. However, the corresponding wMT-3 protein was not 

isolated. X-ray microanalysis showed that both cadmium and sulphur 

were co-localised within earthworm cells, and held in compartments that 

were devoid of calcium, phosphorus, zinc and lead. This indicated that 

within the earthworm, cadmium could be bound solely to MT [112]. 

 

 
Figure 3.3. Derived sequence of wMT-3 [112], reported in 2004. Cysteine residues coloured RED. 

Figure 3.2. Aligned sequences of wMT-2 from all reports publishing wMT sequences [99, 112, 
113, 157]. The proposed two domain structure is indicated, with potential metal chelating 
cysteine residues coloured RED, linker region is in GREY. Residues that are divergent to the 
construct in this thesis are coloured GREEN. Greater variation is found in sequences from the 
2004 study, as they were deduced from expressed sequence tags. 
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In 2006, Stillman et al. published the first studies of Cd-S•Tag-wMT-2 

using mass spectrometry [157]. S•Tag-wMT-2 was determined to bind 

seven cadmium ions as the major species, revising observations from 

2001. S•Tag-wMT-2 was recombinantly expressed as a fusion protein 

from similar plasmids to those used by Kille et al. in 2001. In the 2006 

study, the sole technique used for purification was size-exclusion 

chromatography [157]. 

 

In 2008, work within the Blindauer group (performed by Ms Ilka Thiel) 

was partially successful in the recombinant expression and purification of 

S•Tag-wMT-2 in the presence of cadmium. The construct was obtained 

from the Stürzenbaum group, exhibiting the N-terminal S•Tag used in 

previous work by Stillman et al. [157]. The S•Tag was utilised during 

purification, by passing crude cell lysate through an S•protein affinity 

column. This proved to be very inefficient, as a significant amount of 

S•Tag-wMT-2 was not retained and passed through the column 

(determined by Western blot against S•Tag polyclonal antibodies – data 

not shown). 

 

Attempts to express S•Tag-wMT-2 solely in the presence of zinc were 

shown by mass spectrometry to be unsuccessful, as contamination by 

cadmium during workup caused mixed metal species to be observed. LC-

MS was used to obtain mass spectra of both S•Tag-wMT-2 and, for the 

first time, wMT-2 with the tag cleaved. However, approximately half of 

the protein was observed with up to five N-terminal residues (-GSMAD-) 
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not present, making unambiguous identification of individual metal 

species problematic. NMR experiments were performed on the 

S•Tag-wMT-2 mixed metal species, however due to significant signal 

overlap in the crucial fingerprint region (8.6-7.8 ppm), the quality of the 

sample was deemed insufficient for a structural investigation. Although 

this work met with limited success, it was thought that with optimisation 

of the purification protocol, sufficient protein could be isolated to enable 

structural studies of wMT-2. 

 

3.2 General expression strategy 

The creation of a protocol for obtaining high yields of pure untagged wMT 

was a major goal of this project. Although previous studies had obtained 

wMTs both recombinantly (with S•Tag) and natively from earthworms, 

recombinant expression was perceived as the only viable way of isolating 

sufficient protein for structural studies. It should be noted that some 

experiments described within this Chapter concerning wMT-1 were 

performed in collaboration with Ms Maike Hansen. Where appropriate, 

credit has been given for the figures created from collaborative 

experiments. All work with wMT-2 and wMT-3 was performed 

independently by myself. The schematic in Figure 3.4 provides a 

graphical representation of the work presented in this chapter. 
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3.3 Working with tags 

The original constructs containing the wMT-1 and wMT-2 genes used in 

the present work (obtained from the Stürzenbaum group) were within a 

pET vector construct; each protein being expressed with an N-terminal 

S•Tag. Both wMT-1 and wMT-2 sequences were identical to that reported 

in 1998 and 2001, but different from the sequence deduced from 

expressed sequence tags in 2004 (see Figure 3.1). 

 

Tagged proteins are thought to have many advantages, from 

manufacturers’ claims of 80 % protein recovery [201], to increasing 

solubility and stabilising protein folding [202]. The S•Tag does not aid in 

protein solubility, but is mainly used for affinity purification. However, 

the quantity of pure wMT-2 obtained by Ms Thiel through exploitation of 

the S•Tag during purification was insufficient for metal-binding or 

structural studies due to significant losses of protein during cleavage. 

 

For removal of the S•Tag, the protease thrombin was required [201, 

202]. Cleavage of protein introduces an undesirable further purification 

step, with potential for non-specific cleavage. This procedure was 

followed by Ms Thiel, with limited success, as yields of cleaved protein 

were insufficient for metal-binding studies. Leaving the construct 

unaltered was considered, however for metal-binding studies, and 

structural work, there is a strong preference to work with full length 

untagged protein. This is due to the difficulty in determining if the S•Tag 
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is influencing metal binding behaviour; the presence of 27 additional 

residues also makes NMR assignment more difficult. Furthermore, 

previous work within the group using full-length untagged MTs had 

proved to be effective for metal binding studies [151, 168]. Taking the 

previous work into account, it was decided to subclone the wMT genes to 

remove the S•Tag sequence, starting with wMT-1. 

 

3.4 Sequencing and subcloning of wMT-1 

The plasmid containing S•Tag-wMT-1 was propagated in DH5α cells and 

sequenced using T7 promoter primers. After sequencing, a single 

nucleotide point mutation within the sequence for wMT-1 was discovered 

at position 65 (Figure 3.5. CYAN).  

 

 

 

 

The single mutation created a TAC codon, encoding for tyrosine, rather 

than the reported cysteine (encoded by a TGC codon) [99, 113]. This 

point mutation was significant, as this cysteine is thought to be utilised 

by the protein in metal-binding and cluster formation.  

 

Quikchange Mutagenesis was performed using the protocol supplied, 

outlined in Chapter 2.1. When the corrected sequence was confirmed, the 

Figure 3.5. Obtained sequencing data of wMT-1. Cysteine residues are coloured RED, linker 
region is in GREY. The point mutation, encoding a tyrosine residue is circled in CYAN with the 
cysteine of the correct sequence indicated below. The entire S•Tag sequence is coloured 
GREEN. 
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plasmid was ready for sub-cloning. The next consideration was which 

restriction enzyme cleavage sites to engineer within the PCR primers. 

The S•Tag-wMT-1 construct already had an Nde1 restriction site at the 

start of the S•Tag DNA sequence, however the C-terminus of the wMT-1 

gene provided more flexibility. Based on the downstream sequence, and 

the enzymes previously employed successfully within the Blindauer 

group, it was elected to use high fidelity BamH1 as the second restriction 

enzyme. PCR was performed to amplify the wMT-1 gene, before double-

digestion of both the vector and insert with Nde1 and BamH1. DNA was 

separated by electrophoresis on a 1 % agarose sodium boric acid gel 

[183] supplemented with GelRed for visualisation under UV, shown in 

Figure 3.6. 

 

The PCR insert (the wMT-1 gene with restriction sites) ran at 

approximately 260 bp, which corresponds with the 239 bp elongation 

expected from the primer design and in silico analysis using Serial 

Cloner v2.1. The double-digested plasmid ran as a clean single band 

between 2,100 bp and 8,000 bp, in agreement with the calculated size of 

the digested vector (5,274 bp). 
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Figure 3.6. 1 % agarose DNA Gel (Na2B4O7, pH 8.8) of: the wMT-1 PCR product, the undigested pET-
29a DNA, and the digested pET-29a (Nde1/BamH1). A faint band below 100 bp in the digested 
plasmid is the cut MCS between Nde1 and BamH1. 1 % agarose gel visualised using GelRed. 

 

 

 

 

 

 

 

 

 

 

There was also a faint band, < 100 bp, which could correspond to the 

removed portion of vector (97 bp), between the Nde1 and BamH1 

restriction sites. It should be noted that the undigested plasmid ran 

slightly faster than the digested plasmid due to being supercoiled and 

therefore not linearised. 

 

After ligation, the plasmid was propagated in DH5α cells. The cells were 

then grown on kanamycin-selective LB-agar plates, before plasmid 

extraction. Plasmids containing the corrected wMT-1 gene without 

N-terminal S•Tag were confirmed by subsequent sequencing 
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(Appendix 3). The plasmid was extracted as before, and transformed into 

the E. coli expression strain Rosetta 2 (λDE3) pLysS. 

 

A schematic outlining the general characteristics of the pET expression 

system is shown in Appendix 4. The Rosetta 2 strain is classified as: 

λDE3, containing a chromosomal copy of the T7 RNA polymerase 

controlled through the lacUV5 promoter on the E. coli genome 

(Appendix 4A), which allows the induction of a target gene by IPTG; and 

pLysS, which contains the T7 lysozyme sequence, suppressing basal 

expression of the target gene caused by small amounts of T7 RNA 

polymerase present prior to induction by IPTG (Appendix 4C). 

 

Rosetta 2 host strains also contain an additional pRARE2 plasmid, which 

supplies tRNAs for 6 rare codons rarely used in E. coli. The availability of 

these tRNAs, provided by pRARE2, is thought to enhance the expression 

of eukaryotic proteins which often require codons seldom used by E. coli. 

Figure 3.7 indicates the position and number of rare codons in the DNA 

sequences. The wMT-1 sequence (Figure 3.7A) contains 3 rare arginine 

codons (2 AGA, 1 AGG); the wMT-2 sequence (Figure 3.7B) contains 2 

rare arginine codons (1 AGA, 1 AGG). Due to the ability of Rosetta 2 cells 

to provide these rare codons, they were used to express all of the wMTs. 
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3.5 Subcloned wMT-1, expressed with zinc, purified with 

cadmium 

The subcloned wMT-1 construct was expressed in the presence of zinc, 

but purified with the addition of cadmium on recommendation from 

M. Stillman. Previous work expressing wMTs had indicated that 

expression in the presence of zinc gave higher yields of protein than 

expression in the presence of cadmium [113]. However, cadmium is a 

useful indicator in ICP-OES, as it is not present in medium or buffer 

(unlike zinc). 

 

After expression, cells were lysed in the presence of 1 mM CdCl2, before 

being separated by size-exclusion chromatography (SEC). The results of 

the SEC showed a peak in the A220 chromatogram around Fraction 10 

Figure 3.7. DNA sequences of wMT-1 (A) and wMT-2 (B) obtained from sequenced plasmids (using 
T7 promoter primer). Frame 1 contains entire expressed protein sequence (including S•Tag). Rare 
codons highlighted in RED. First amino acid encoded is N-terminal methionine (atg), C-terminal 
residue proceeded by stop codon (taa). Rare codons identified using the Rare Codon Calculator 
(RaCC) http://nihserver.mbi.ucla.edu/RACC/ [NIH MBI Laboratory for Structural Genomics and 
Proteomics]. 
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(Figure 3.8A). There is no corresponding peak in the A280 chromatogram 

as there is only one contributing amino acid (phenylalanine). As this 

column was calibrated with known protein standards (BSA 66 kDa; 

myoglobin, 17 kDa; cytochrome c 12 kDa), a retention volume of 

approximately 72 mL (Fraction 9, Figure 3.8A) corresponds to a protein 

of approximately 8-15 kDa. This was supported by the SDS-PAGE gel, 

with a protein of approximately 10 kDa being present in Fractions 7-9 

(Figure 3.8B, GREEN). Another set of bands presenting at slightly higher 

mass (approximately 20 kDa) may have also indicated the presence of 

wMT-1, as it is not uncommon for MTs to run more slowly through gels 

and present at a higher molecular mass [203]. 
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All fractions after the initial void volume (Vo ≈ 40 mL for HiLoad 1660 

Superdex 75pg 120 mL) were collected and their Zn, S, Cd and Cu 

content measured by ICP-OES (Figure 3.8A, Cu readings below detection 

limit). Of note are the small quantities of sulphur, cadmium and zinc in 

Fractions 7-10 (Figure 3.8A). Fractions 7-8 and 9-11 were pooled 

separately and concentrated, the limit of concentration being the 

minimum volume required for identification by MS (≈ 150 µL). 

 

Figure 3.8A. FPLC purification by SEC of subcloned wMT-1. UV absorbances measured at 220 nm 
and 280 nm. ICP-OES concentrations are overlaid (ZINC, SULPHUR, CADMIUM). Fraction 10 
(GREEN) showed a peak which could contain wMT-1. B. shows an SDS-PAGE gel developed using 
silver stain enhancement (Invitrogen SeeBlue Plus2 Prestained Standard, designated MW), of the 
Fractions in (A). The bands corresponding to Fractions 7-9 (GREEN) indicate a protein of a similar 
molecular mass to wMT-1, with Fractions 9-11 showing another potential protein of slightly higher 
molecular mass. Fraction volumes are 4mL, with Fraction 1(A) beginning at a retention volume of 
40 mL. 

A 

 B 
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Neither sample generated a mass spectrum of a protein that was 

discernible from background noise. The fact that intact wMT-1 was not 

detectable by ESI-MS, from a 400 mL culture, suggested that either 

protein expression levels were very low or that the protein had degraded 

during purification. Subsequent expressions and purifications with 

approximately three times the starting culture did not generate a clear 

mass spectrum of wMT-1. To rule out problems caused by expression or 

the new construct, it was decided to compare the expression profiles of 

S•Tag-wMT-1 with that of subcloned wMT-1. 

 

3.6 Comparing subcloned wMT-1 with S•Tag-wMT-1 

To compare the expression efficiency of the two plasmids (with / without 

S•Tag), cultures of transformed E. coli Rosetta 2 cells were grown in the 

presence of zinc, and induced after 3 hrs (OD600 0.5-0.7). Aliquots of 

each culture were removed every hour for the first 6 hrs, and again after 

16 hrs. Analysis of the gels (Figure 3.9), showed significant differences in 

the expression profiles of the two constructs. Although the samples were 

normalised to slightly different optical densities, there was a significant 

increase in the strength of a band at around 12 kDa in the samples for 

S•Tag-wMT-1. This is in the correct region for wMT-1, as S•Tag-wMT-1 

should present at 10,762 Da (subcloned wMT-1 should present at 

7,807 Da). 
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Although this band (Figure 3.9, GREEN) coincides with that of another 

protein expressed in E. coli (hence a 12 kDa band present in subcloned 

wMT-1, and before induction in S•Tag-wMT-1), there was clear 

overexpression of protein in the S•Tag-wMT-1 culture. This was not the 

case for subcloned wMT-1, suggesting that although the construct was 

correct as indicated by sequencing, the lack of observable protein by MS 

is likely due to expression problems. 

 

 

 

 

 

 

 

 

 

 

This prompted work to cease with the subcloned wMT-1, and work to 

begin using the original S•Tag-wMT-1 construct (with corrected 

mutation), and removal of the S•Tag during purification. 

Figure 3.9. SDS-PAGE gel developed using silver stain enhancement (Invitrogen SeeBlue Plus2 
Prestained Standard, designated MW). Fractions 1-7 are of the S•Tag-wMT-1 plasmid. Fractions 
8-14 are of the subcloned wMT-1. The ARROW indicates the point at which the cultures were 
induced. The bands in Fractions 4-7 (GREEN), highlight the difference in expression profile 
between the two constructs. Samples 2-6 were normalised to A600 0.550, samples 9-13 were 
normalised to A600 0.425. samples 1,8 A600 0.175; samples 7,14 A600 0.950. 
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3.7 S•Tag-wMT-1, expressed with zinc, purified with zinc 

The construct was expressed and purified using the same protocol as for 

subcloned wMT-1. However, to generate homo-metallated species, 1 mM 

ZnSO4 was added during sonication. There were three main reasons for 

not introducing cadmium: it did not prove fruitful in previous work with 

subcloned wMT-1; wMT-1 is postulated to be a zinc/copper responsive 

MT, so it may be more stable in the presence of these metals; mass 

spectra of mixed-metal wMT-1 would be harder to analyse, with cadmium 

being close to double the molecular mass of zinc. The purification 

progressed, as before, with sonication and filtration of the crude lysate. 

The lysate was then separated by SEC which generated the 

chromatogram in Figure 3.10. 

 

 

 

 

 

 

 

This chromatogram was significantly different to that of the subcloned 

wMT-1 (Figure 3.8A). Of note are the fractions at retention volumes 

between 64-72 mL (Figure 3.8A, Fractions 7-9 and Figure 3.10, Fractions 

1-3). In these fractions, there is a significant amount of sulphur co-

Figure 3.10. FPLC purification by SEC of S•Tag-wMT-1. UV absorbances measured at 220 nm and 
280 nm. ICP-OES concentrations are overlaid (ZINC, SULPHUR, CADMIUM). Fraction volumes are 
4 mL, with Fraction 1 beginning at a retention volume of 64 mL. 
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eluting with zinc, as expected for fractions containing MT. However, from 

the appearance of the A220 chromatogram, we can assume that there are 

a number of proteins eluting within those fractions. Although there is 

little metal present, the small molecule fractions in Fractions 9-11 

(Figure 3.10) are particularly high in sulphur, therefore the presence of 

degraded MT in these fractions cannot be ruled out. It would appear that 

the quantity of material loaded onto the column caused the UV detector 

to become overloaded, decreasing the overall resolution of the 

chromatogram. In combating the problem of detector overload, smaller 

injections, or more dilute injections were not thought to be viable due to 

significant increases in purification time. Therefore it was decided to 

attempt other chromatographic methods such as anion exchange, or 

cation exchange chromatography, which had been successful in past 

purifications of wMTs. The following work with both Cd- and Zn- S•Tag-

wMT-1 was performed in collaboration with Ms Maike Hansen. 

 

Ion exchange chromatography 

One of the difficulties in purifying metal-binding proteins by ion exchange 

chromatography is ascertaining whether their actual isoelectric point (pI) 

is close to their theoretical isoelectric point. The theoretical pI for 

S•Tag-wMT-1 is 8.49*, with previous separations being performed at 

pH 8.1 with anion exchange [99], and pH 7.4 with cation exchange [113] 

chromatography. The fact that both of these values are within 1 pH unit, 

but are for techniques which require the protein to carry opposite 
                                                           
* http://web.expasy.org/cgi-bin/protparam/protparam 
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charges, highlights the difficulty of working with protein theoretical pI. 

The ambiguity could be decreased by experimentally determining pI 

through isoelectric focussing experiments, however these often involve 

the use of specialised equipment. The theoretical method of pI 

determination involves averaging the pI of the constituent amino acids of 

a protein based on work performed by Bjellqvist et al. [204]. Making the 

theoretical pI approximation more relevant for MTs, we may consider 

that divalent metals carry a +2 charge, and thiols are thought to be 

deprotonated (contributing a -1 charge). 

 

The S•Tag-wMT-1 sequence contains 9 residues which are expected to be 

negatively charged at neutral pH (Aspartic acid, Glutamic acid); and 15 

residues which should be positively charged (Arginine, Lysine), leaving 6 

positive charges at neutral pH. If we consider that the cysteine residues 

are negatively charged, and that the divalent metal ions will contribute a 

+2 charge, there are 6 additional negative charges contributing to the 

overall charge on the protein at a given pH, which may decrease the pI. 

There appears, however, to be no information available as to how the 

charges on the buried metal-thiolate cluster affect affinity to ion 

exchange columns. Manufacturer’s guidelines [GE Healthcare, UK] 

suggest that optimum conditions for ion exchange chromatography 

consist of mobile phase buffers at least 1 pH unit above the pI of a 

protein for anion exchange, and 1 pH unit below the pI of a protein for 

cation exchange. Therefore it was decided to attempt both cation 

exchange and anion exchange, with modification to the previous 
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protocols. For anion exchange chromatography the pH was increased 

slightly; for cation exchange the pH was decreased slightly. Another 

consideration was to keep the pH as high as possible, as low pH has the 

tendency to strip metal ions from metalloproteins. 

 

Anion exchange chromatography 

The cell pellet for anion exchange chromatography was sonicated, before 

being separated at pH 8.94 on a HiTrap Q XL 5mL column [GE 

Healthcare, UK]. All fractions were collected and analysed for their S, Zn 

and Cd content (Figure 3.11). It should be noted that the flow-through 

fraction also appears to contain these elements, however due to just the 

initial portion being collected, the determined concentration of these 

elements is likely to be an underestimate. A proportion of S•Tag-wMT-1 

remaining in the flow-through therefore, cannot be ruled out. Even so, 

the raw sulphur concentrations obtained by ICP-OES of the samples 

collected during the elution were very high (> 1000 µM) when compared 

to previous experiments (≈ 600 µM). 

 

The separation was ultimately deemed inadequate for subsequent 

experiments, as significant amounts of contaminant proteins also bound 

to the anion exchange column. This was a consideration during 

preparation, as high pH could generate a significant amount of proteins 

carrying a negative charge. It appears that anion exchange is a valid 
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technique for capturing protein, especially those with large quantities of 

sulphur and zinc, which may indicate the presence of MT. 

 

 

 

 

 

 

 

However, as the aim of this method was to increase the yield of pure 

S•Tag-wMT-1, it was decided not to optimise this technique further. 

However, as ion exchange chromatography could still prove useful for 

purification, the next stage was to compare this separation to that 

obtained by cation exchange chromatography. 

 

Cation exchange chromatography 

The cell pellet for cation exchange chromatography was prepared in an 

identical manner to that used for anion exchange. Separation was 

performed at pH 6.53 on a HiTrap SP XL 5mL column [GE Healthcare, 

UK]. Fractions were collected through the entire experiment (including 

flow-through), however only flow-through and fractions with 

A220 > 100 mAU were analysed by ICP-OES (Figure 3.12). 

Figure 3.11. FPLC purification by anion exchange chromatography. UV absorbances measured at 
220 nm and 280 nm, salt gradient indicated as a (GREEN) line. ICP-OES concentrations are 
overlaid (ZINC, SULPHUR, CADMIUM). Elution was over 10 cv (≈ 50 mL), salt gradient of 1 M 
NaCl from 0-100 %. Mobile phase at pH 9.0. Fraction FT is the ‘flow-through’ from the column. 
Experiment performed by Ms Hansen. 
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The separation by cation exchange chromatography showed one small 

peak centred at ≈ 18 % Buffer B (Figure 3.12, GREEN). Although there 

was a significant amount of sulphur and zinc present in the flow-through 

fractions, a small amount was retained by proteins which bound to the 

column. Both the flow-through fractions and Fractions 2-4 were pooled 

and their volumes reduced for SEC. Due to the large volume of flow-

through, to obtain a 4 mL sample for SEC a significant amount of 

concentration was required. This caused visible protein aggregation 

within the centrifugal filter, decreasing the final yield of protein. There 

was no difficulty with concentrating pooled Fractions 2-4 however, so 

minimal losses in yield were expected. The two samples were filtered and 

loaded onto an SEC column for separation (Figure 3.13). 

Figure 3.12. FPLC purification by cation exchange chromatography. UV absorbances measured at 
220 nm and 280 nm, salt gradient indicated as a (GREEN) line. ICP-OES concentrations are overlaid 
(ZINC, SULPHUR, CADMIUM). The peak in Fractions 2-4 highlighted in GREEN was thought likely to 
contain wMT-1, Elution was over 10 cv (≈ 50 mL), salt gradient of 1 M NaCl from 0-100 %. Mobile 
phase at pH 6.5. Fractions FT are the ‘flow-through’ from the column. Experiment performed by Ms 
Hansen. 
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The two chromatograms above indicate that although there appeared to 

be a significant amount of protein present (indicated by high A220 and 

high sulphur concentration), zinc was present in highest concentration in 

Fractions 6-8 in the SEC from pooled Fractions 2-4 (Figure 3.13B). 

Although there is more than one protein in the fractions obtained from 

elution from cation exchange chromatography, it would appear that using 

this protocol as a first step yields a protein with MT-like characteristics 

(low A280, high Zn and S content, elution at 64 mL). Fractions 7-8 from 

Figure 3.13A (from cation exchange flow-through), and Fractions 6-9 

A 

B 

Figure 3.13A. FPLC purification by SEC of pooled and concentrated FT Fractions from cation 
exchange chromatography. B. SEC of pooled and concentrated Fractions 2-4 from cation 
exchange chromatography. UV absorbances measured at 220 nm and 280 nm. ICP-OES 
concentrations are overlaid (ZINC, SULPHUR, CADMIUM). GREEN fractions are those proposed to 
contain S•Tag-wMT-1. Fractions start at a retention volume of 44 mL in both A and B. Both 
experiments performed by Ms Hansen. 

44          52         60         68          76         84          92    mL 
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from Figure 3.13B (broad peak in cation exchange, Fractions 2-4) were 

pooled and concentrated for thrombin cleavage. It should be noted that 

at this point, a mass spectrum of the putative Zn-S•Tag-wMT-1 was not 

recorded. 

 

Previously Ms Thiel had some success in the cleavage of the S•Tag from 

wMT-2, using the Thrombin CleanCleave™ Kit [Sigma Aldrich, UK], the 

main component being immobilised bovine thrombin on agarose beads. 

The benefits of using the kit were the ease at which the thrombin could 

be removed, the speed of the protocol, and the reusability of the 

enzyme. However, the kit also provided some disadvantages: one being 

the presence of salt in the sample buffer; the other was the very low 

protein recovery. The kit also came with a significant cost disadvantage. 

 

After cleavage, thrombin must be removed by some means. The benefit 

of using SEC for this purpose was in the removal of contaminants eluting 

at similar retention volumes to S•Tag-wMT-1. When the S•Tag is 

cleaved, the size of the resulting protein is reduced, potentially solving 

the problem of low sample purity. Thrombin is priced much more 

competitively, and for a similar cost to the kit, approximately four times 

as much protein could be cleaved. Considering the cost and potential 

purification benefits, and considering the difficulties experienced by 

Ms Thiel during her work with the CleanCleave™ Kit, it was decided to 

use a two-step thrombin method, rather than using the premade kit. 
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The optimum protein concentration for thrombin cleavage is 

approximately 1 mg/mL, achieved by centrifugal filtration. Approximately 

110 % of the required NIH units (used to measure thrombin activity) 

were added to the concentrated S•Tag-wMT-1 solution. The mixture was 

incubated with gentle agitation at room temperature for 3 hours. The 

crude cleavage reaction was then filtered and loaded onto an SEC column 

(Figure 3.14). 

 

 

 

 

 

 

 

Fractions 9 and 10 were analysed by ICP-OES, and were found to contain 

significant amounts of zinc and sulphur, but no cadmium. An SDS-PAGE 

gel was used to try and discriminate between pooled fractions that may 

or may not contain cleaved wMT-1 (Figure 3.15, below). Although the 

pool of Fractions 6-8 did contain a possible band for cleaved wMT-1, 

there was a significant amount of contamination. However in pool 

Fractions 9 and 10, there appeared to be very few contaminants 

(although some higher molecular mass proteins at 37 kDa and 25 kDa 

Figure 3.14. FPLC purification by SEC of the pooled and concentrated Fractions 6-9 from cation 
exchange chromatography. UV absorbances measured at 220 nm and 280 nm. Pooled fractions 
for further analysis highlighted in GREEN. Fractions start at a retention volume of 40mL. 
Experiment performed by Ms Hansen. 
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are present), and a strong band, corresponding to a molecular mass of 

approximately 10-11 kDa (cleaved wMT-1 apo- mass is ≈ 8 kDa). 

 

 

 

 

 

 

 

 

 

 

There is the possibility that with < 100 % cleavage efficiency, some 

S•Tag-wMT-1 remained in Fractions 6-8 from the separation, so at this 

point the identity of the band remained ambiguous. The concentrations of 

the pooled Fractions 9 & 10 were determined to be 486.9 µM S and 

121.7 µM Zn, giving a S:Zn ratio of approximately 4.0:1. If we consider 

that cleaved wMT-1 contains 21 sulphur atoms, and can bind seven metal 

ions, we would expect a S:Zn ratio of 3:1 in a pure sample of cleaved 

Zn7-wMT-1. 

 

Figure 3.15. SDS-PAGE gel developed using silver stain enhancement comparing uncleaved 
pooled Fractions 6-9 from SEC of cation exchange flow-through (Figure 3.13A), with cleaved 
pooled Fractions 6-8 and 9,10 from SEC of cation exchange peak (Figure 3.14). Biorad Dual Colour 
Prestained Standard, designated MW. Notice the GREEN bands highlighting the approximate 
positions of S•Tag-wMT-1 (U6-9; 6-8) and cleaved wMT-1 (6-8; 9,10). 
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The mass spectrum is shown in Figure 3.16, with the raw spectrum 

indicating the peak used for the deconvoluted spectra. The overall quality 

and the signal/noise ratio (< 10) of the mass spectrum was poor, 

indicating that the actual protein concentration was significantly less than 

expected. These losses could have occurred during concentration either 

through protein permeating the filter membrane or by aggregation of 

protein. Another explanation could be that cleaved wMT-1 has low 

ionising efficiency, and therefore a higher concentration of protein is 

required to achieve an acceptable signal/noise ratio. 

 

Deconvolution of the peaks in Figure 3.16C gave the cleaved Zn-wMT-1 

species: Zn7-wMT-1 8,394.3 Da (8,394.9 Da theoretical); Zn6-wMT-1 

8,328.5 Da (8,331.5 Da theoretical); Zn5-wMT-1 8,260.1 Da (8,268.1 Da 

theoretical); Zn1-wMT-1 8,031.3 Da (8,077.9 Da theoretical); apo-wMT-1 

7,942.9 Da (7,951.2 Da theoretical). This spectrum shows recombinant 

cleaved Zn-wMT-1 for the first time. Following the methodology of 

Capdevila et al. [205], we can assume that the intensities of protein 

species in a mass spectrum correspond to their actual abundance, 

therefore the major species at pH 8.50 is Zn7-wMT1. Decreasing the pH 

to 2.6 allowed observation of the apo-mass. The raw mass spectrum 

(Figure 3.16B), indicates that although the 6+ and 5+ charge states 

were used for deconvolution, there are a number of contaminant peaks 

present which do not correspond to known Zn-wMT-1 species 

(Figure 3.16, ‘*’). The major raw contaminant peaks (Figure 3.16B at 

1401.7, 1456.3, 1546.2 m/z), when manually deconvoluted assuming a 



Chapter Three 

 85 

5+ charge state gave masses which are below the mass of apo-wMT-1. 

When manually deconvoluted assuming a 6+ charge state, the 

contaminant at 1401.7 m/z gave a mass of 8,404.2 Da, which is similar 

to the Zn7-wMT-1 theoretical mass of 8,394.9 Da. However, it is unlikely 

that wMT-1 would contain seven zinc ions below pH 3. Knowledge gained 

from this successful purification of S•Tag-Zn-wMT-1 was then used in the 

purification of S•Tag-Cd-wMT-1. 
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Figure 3.16. ESI-MS of cleaved Zn-wMT-1 of Fractions 9,10 from Figure 3.14. Cleaved wMT-1 
concentration ≈ 30 µM. Samples in 20 mM NH4HCO3, and 10 % MeOH. Spectrum (A) is the raw 
spectrum of wMT-1 at pH 8.48, (B) is the raw ESI-MS after addition of 2 % acetic acid, pH 
2.58.‘*’ peaks indicate possible contaminants, some contributing to the spurious data when 
deconvoluted. (C) is the deconvoluted spectrum of (A), (D) is the deconvoluted spectrum of (B) 
at pH 2.58, which enabled the observation of the apo- mass of the protein. ‘*’ peaks indicate 
possible contaminants. A mass list is presented in Appendix 4. 

A 

C D 

B 
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3.8 S•Tag-wMT-1 expressed with cadmium, purified with 

cadmium 

Cd-S•Tag-wMT-1 was obtained using a similar protocol to that for 

Zn-S•Tag-wMT-1. However, there exist two published strategies for the 

use of cadmium in E. coli recombinant protein expression: either multiple 

additions of 50 µM CdCl2 [113]; or addition of 500 µM CdCl2 at induction 

[151]. As cadmium is not required before induction, and 500 µM CdCl2 

could have caused retardation of cell growth, the accepted protocol 

within the group was to use a lower concentration of 200 µM CdCl2 at 

induction. In an attempt to stabilise the target protein, a further 1 mM 

CdCl2 was added before sonication. The crude lysate, after centrifugation 

and filtration, was purified by cation exchange chromatography at 

pH 7.34. In an attempt to build on lessons learned from purifying 

Zn-S•Tag-wMT-1 (Figure 3.12), the chromatography proceeded in a 

step-wise manner (Figure 3.17), at a slightly higher pH. This was to 

attenuate protein binding to the cation exchange column, whilst 

maintaining full metallation of the bound proteins. The elution proceeded 

with step-wise gradients with respect to column volume (cv): 4 cv at 

12 % NaCl; 4 cv at 24% (expected S•Tag-wMT-1 elution stage); 4 cv at 

50% and finally 4 cv at 100%. 

 

Performing cation exchange chromatography with approximately twice 

the amount of cellular material (compared to the previous purification of 

Zn-S•Tag-wMT-1) meant that a significant amount of protein bound to 

the column. The UV detector was also heavily overloaded, hence 
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crenulations at the top of the chromatograms. Although it cannot be 

ruled out that cadmium was in the first 10 mL of flow-through, or in the 

final 100 % gradient fractions (which were not analysed for cadmium), a 

large quantity of cadmium presented during the 12-24 % gradient step, 

which was a good indication of Cd-S•Tag-wMT-1 being present. 

 

 

 

 

 

 

 

 

 

 

 
Fractions 7-10 were pooled, concentrated by centrifugation, and applied 

to an SEC column (Figure 3.18). The separation of the fractions from 

cation exchange chromatography showed a large number of proteins 

were present in the 24 % NaCl step, indicating a large proportion of 

other proteins co-eluting with Cd-S•Tag-wMT-1. 

Figure 3.17. FPLC purification by cation exchange chromatography. UV absorbances measured at 
220 nm and 280 nm, salt gradient indicated as a (GREEN) line. ICP-OES concentrations are 
overlaid (ZINC, SULPHUR, CADMIUM). Fractions though to contain wMT-1 shown in GREEN. 
Elution was over 20 cv (≈ 100 mL), salt gradient of 1 M NaCl performed stepwise: 0-12 %; 12-
24 %; 24-50 %; 50-100 %. Mobile phase at pH 7.3. FT Fractions are the ‘flow-through’ from the 
column. Performed by Ms Hansen. For Fractions 1-4 and 12-15 the sulphur concentration was 
> 400 µM (which put it outside of the ICP-OES calibration curve). 
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For mass spectrometry, Fraction 5 (Figure 3.18, GREEN) provided a 

compromise between protein yield and purity (estimated from ICP-OES 

cadmium concentration as ≈ 52 % pure), and was pooled and 

concentrated. Contaminants in the sample, whilst contributing to the 

sulphur content, are unlikely to be cadmium-binding. Therefore the 

cadmium concentration was used as a better indicator of wMT-1 

concentration than sulphur alone. 

 

Few species were observed in the mass spectrum of Cd-S•Tag-wMT-1 

(Figure 3.19), although the analyses were performed at the extremes of 

the pH range when compared to past experiments with Zn-S•Tag-wMT-1. 

The major species at pH 8.21 was Cd7-S•Tag-wMT-1, with a significant 

peak for a Cd8-S•Tag-wMT-1 species also present. This was unexpected, 

although overmetallalation of MTs with cadmium does have some 

precedent [206, 207]. It would also appear that the Cd7-S•Tag-wMT-1 

species is stable, as it is the major metal species (ie. partially 

Figure 3.18. FPLC purification by SEC of the pooled and concentrated Fractions 7-10. UV 
absorbances measured at 220 nm and 280 nm. ICP-OES concentrations are overlaid (ZINC, 
SULPHUR, CADMIUM). Fractions start at a retention volume of 52 mL. GREEN Fractions were 
determined to contain Cd-S•Tag-wMT-1 by MS. Experiment performed by Ms Hansen. 
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demetallated species are not observed as with Zn-S•Tag-wMT-1, 

Figure 3.16). Although the raw mass spectrum (Figure 3.20) did show 

some contamination, the peaks of greatest magnitude corresponded to 

Cd-S•Tag-wMT-1. 

 

 

 

 

 

 

 

 

 

The contaminant proteins, either unassigned, or indicated ‘*’ in 

Figure 3.20 have a calculated molecular mass outside of the ± 1 kDa 

window used by the deconvolution algorithm of Mass Analysis [Bruker 

Daltonics, UK], as they did not affect the quality of the deconvoluted 

mass spectrum in Figure 3.19. 

Figure 3.19. ESI-MS of Cd-S•Tag-wMT-1 from Figure 3.18, Fraction 5. S•Tag-wMT-1 
concentration ≈ 40 µM. Samples in 20 mM NH4HCO3, and 10 % MeOH. Spectrum (A) is at pH 
8.21, spectrum (B) is after addition of 5 % formic acid, pH 1.74, which enabled the observation 
of the apo- mass of the protein. A mass list is presented in Appendix 5. 

 

A B 
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Realising that contaminant proteins could be removed after thrombin 

cleavage and SEC, Fractions 3-6 (Figure 3.18) were pooled and 

concentrated to 1 mg/mL protein. The SEC chromatogram of the cleaved 

fractions showed that the cleavage efficiency was either low, or there 

was significant contamination from other proteins, as a large peak 

remained in Fractions 1 and 2 (Figure 3.21). 

Figure 3.20. Raw ESI-MS of Cd-S•Tag-wMT-1 at pH 8.21.‘*’ peak (and surrounding unlabelled 
peaks) indicate possible contaminants, although they did not affect the deconvolution of 
Cd-wMT-1 peaks. 
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Analysing the metal content of these samples gave low sulphur:cadmium 

ratios, with approximately half of the expected sulphur present. 

Fraction 4 (GREEN, Figure 3.21) was concentrated (as of the five 

fractions, this was the most likely to contain cleaved Cd-wMT-1 with the 

least contamination, based on retention volume and elemental 

concentrations). As sulphur (≈ 1 ppm detection limit) is less sensitive 

than cadmium (≈ 1 ppb detection limit), it is most likely that the sulphur 

concentrations were underestimated.  

 

SDS-PAGE (Figure 3.22) showed some bands present after cleavage 

(Fractions 1-3, Figure 3.21) not present previously (Fractions 3-6, 

Figure 3.18). The unidentified bands could be either thrombin (one 

subunit is approximately 36 kDa), or created through specific / non-

specific cleavage of proteins other than S•Tag-wMT-1. 

Figure 3.21. FPLC purification by SEC of the pooled and concentrated Fractions 3-6 from 
Figure 3.18. UV absorbances measured at 220 nm and 280 nm. ICP-OES concentrations are 
overlaid (ZINC, SULPHUR, CADMIUM). Fractions start at a retention volume of 60 mL. GREEN 
Fractions were determined to contain cleaved Cd-wMT-1 by MS. Experiment performed by Ms 
Hansen. 
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Mass spectrometry of Fraction 4 (Figure 3.23) were recorded with a 

lower signal/noise ratio than for the Cd-S•Tag-wMT-1 (Figure 3.19). This 

could be due to the sample concentration being lower than was 

approximated from the cadmium concentration. Although the spectra of 

cleaved Cd-wMT-1 and Cd-S•Tag-wMT-1 > pH 8 showed the same 

species, there appear to be more metallated species at lower pH 

(Figure 3.23B) for cleaved Cd-wMT-1. This may be due to the pH being 

≈ 0.5 pH units higher for the data shown in Figure 3.23. 

Figure 3.22. SDS-PAGE gel developed using silver stain enhancement comparing uncleaved 
pooled Fractions 3-6 obtained from cation exchange and SEC (Figure 18), with cleaved pooled 
Fractions 1-3 and 4 (Figure 21). Biorad Dual Colour Prestained Standard, designated MW. Notice 
the GREEN bands highlighting the approximate positions of S•Tag-wMT-1 (U3-6) and cleaved 
wMT-1 (1-3; 4). 
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From Figure 3.23A, the major species shows seven cadmium ions bound 

per cleaved wMT-1 molecule. This is in reasonable agreement with the 

seven metal ions expected to be bound by wMT-1, based on primary 

sequence analysis. The SDS-PAGE gel (Figure 3.22) indicated that even 

after the second round of SEC, some contaminant proteins remained, 

somewhat confirmed by the observation of contaminant peaks in the 

spectrum at low pH (Figure 3.23B, ‘*’). Further optimisation would have 

to be performed, with a focus on obtaining pure protein. With the success 

of the now established procedure, the next objective was to attempt to 

optimise each step of protein expression and purification. 

Figure 3.23. ESI-MS of cleaved Cd-wMT-1 from Figure 3.21, Fraction 4. Cleaved wMT-1 
concentration ≈ 40 µM, Samples in 20 mM NH4HCO3, and 10 % MeOH. Spectrum (A) is at pH 
8.53, spectrum (B) is after addition of 2 % acetic acid, pH 2.21, which enabled the observation of 
the apo- mass of the protein. Contaminant peaks indicated with ‘*’. A mass list is presented in 
Appendix 6. 

A B 
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3.9 Optimising expression 

The largest change in expression was to trial auto-induction (AI) medium 

[184]. One of the biggest advantages of AI medium is that it can support 

growth to higher cell densities [184], which may enable cells to produce 

higher quantities of the target protein. Additionally, expression is under 

metabolic control of E. coli, initiating the change in priority from cell 

replication, to production of target protein at the optimum time. 

 

Metabolic control is through carbon catabolite repression (CCR) allowing 

rapid adaptation to a preferred energy source in a medium [208]. The AI 

medium contained a mixture of glucose, glycerol and lactose. Unless the 

medium becomes acidic (< pH 5), E. coli will continue to utilise glucose 

as its sole carbon source until depletion. Other sources of carbon (ie 

glycerol and lactose) will be utilised thereafter [184], with glycerol 

supporting growth at a similar rate to glucose, but suppressing the effect 

of other carbon sources much less efficiently. This allows lactose to be 

metabolised inducing expression of target protein (analogous to IPTG). 

To ensure that induction was occurring during the exponential phase of 

growth, growth curves were plotted (Figure 3.24). The experiment was 

performed with S•Tag-wMT-1, expressed in the presence of cadmium 

(200 µM CdCl2 and 1 mM IPTG added when LB culture induced; 200 µM 

CdCl2 and 0.20 % lactose present from the start in AI medium). To 

maintain uniformity in results, and direct comparison between each set, 

30 °C was chosen. Low temperature expression has been a proven 

strategy for increasing the solubility, and decreasing the propensity for 
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Figure 3.24. Comparison of pH (TOP) and OD600 (BOTTOM) of AI (BLUE) and LB (RED) medium in 
Rosetta 2(DE3) pLysS cells. The LB culture was induced with 1 mM IPTG and supplemented with 
0.2 mM CdCl2 at 310 mins. Readings taken every 30 minutes until death phase observed at 
540 mins. Experiment performed by Ms Hansen. Cultures shaken at 180 rpm at 30 °C.  

misfolding of recombinant proteins [209], a potential cause of the 

inability to isolate subcloned wMT-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.24 highlights a difference between the two media, as a 

significant divergence of pH values between the two experiments is 

observed after induction. Decreasing pH is often equated with respiration 



Chapter Three 

 97 

by-products - increased amounts of aqueous CO2, generating more 

hydrogen carbonate in the medium. A steady decrease in pH was 

observed in the ‘unbuffered’ LB culture before induction, caused by the 

build-up of acidic products from respiration and metabolism of sugar. 

Figure 3.24 indicates that AI medium can support cultures at higher cell 

densities, with OD600 > 120 % higher when grown in AI medium. The 

data also confirmed that induction of LB media at OD600 ≈ 0.7 is well 

within the exponential phase of E. coli growth, the optimal time for 

induction with respect to protein yield. 

 

There was a large lag time in both experiments, known to be caused by 

the addition of chloramphenicol to select for the pRARE and pLysS 

plasmids [Invitrogen User Manual]. A distinct pH increase after IPTG 

induction in LB could indicate expression of the target protein, a trend 

observed by groups working with similar metal-binding proteins [210]. It 

may be that the removal of metal ions from solution causes the overall 

pH to increase slightly, although the magnitude of the effect would 

indicate a contribution from another source.  

 

Another function of the Rosetta 2 cell line is a proportional response to 

IPTG concentration [Novagen Manual]. Increasing the concentration 

between 0.1-1 mM IPTG will induce protein expression at different levels. 

This can be useful if the protein is prone to form inclusion bodies, or is 

sparingly soluble in the medium. However, as the temperature was 

already decreased (from 37 °C to 30 °C), the effects of a low 
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concentration of inducing agent was not investigated at this time; this 

may have also compromised the aim of generating maximum yield of the 

target protein. From comparing the expressions between the two media, 

AI medium did allow greater cell densities to be achieved, but translating 

this into higher yields of pure protein proved to be rather more difficult. 

The subsequent experiments were carried out with the S•Tag-wMT-2 

construct, since time constraints required the development of an 

adequate purification procedure for both proteins. 

 

3.10 S•Tag-wMT-2 expressed with cadmium, purified with 

cadmium 

With the perceived benefits of using AI medium over LB medium, a 

comparison experiment was undertaken using the S•Tag-wMT-2 

construct (Figure 3.25). With AI medium able to support cells grown to 

higher cell densities than in LB medium, larger pellets were produced in 

each culture, with some increases of mass in excess of 400 %. 

Figure 3.25 also shows the comparison between cultures being induced 

and uninduced. It would be expected that if the culture is not induced 

then the cell priority would never diverge from replication, causing more 

cells to be present during harvesting. In all cases the pellet size was 

increased when uninduced, and smallest for induced LB cultures. 

However, whilst the average pellet masses for AI medium were in the 

order of four times larger, this did not necessarily correspond to a 

fourfold increase in yield of wMT. 
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Figure 3.25. Compiled chart of S•Tag-wMT-2 pellet masses (wcw) from both LB and AI media. 
All conditions were kept constant, other than the addition of IPTG (1 mM) and metal (0.5 mM 
ZnSO4; 0.2 mM CdCl2) when LB cultures induced. AI medium without inducing agent was 
created without lactose. ‘-I’ designates cultures without inducing agent (shown as striped 
bars). 

 

 

 

 

 

 

 

 

Cation exchange chromatography 

After sonication (supplemented with 1 mM CdCl2) and filtration, cation 

exchange chromatography was performed with a mobile phase of 20 mM 

ammonium bicarbonate at pH 7.19, and Buffer B containing 1 M NaCl 

(Figure 3.26). Although step-wise elution was successful for 

Cd-S•Tag-wMT-1, a gradient of 0-100 % over 30 cv was chosen, as 

Cd-S•Tag-wMT-2 had not been previously separated by ion exchange 

chromatography. The S•Tag-wMT-2 construct contained a possible 14 

positively-charged residues, one less than S•Tag-wMT-1, and 9 

negatively-charged residues. This gave an overall 5+ charge at neutral 

pH. Although sulphur concentrations were very high, there was no 

appreciable amount of cadmium present in eluate fractions. 

Unfortunately the likely location of Cd-S•Tag-wMT-2, the flow-through, 

was not collected during this experiment. 
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Previous experiments with S•Tag-wMT-1 separated by anion exchange 

chromatography (Figure 3.11) had shown a significant amount of protein 

binding at pH ≈ 9, which made it unsuitable for wMT isolation. However, 

considering the high pI of S•Tag-wMT-1, and the ability of both cation 

and anion exchange columns to capture large amounts of contaminant 

proteins, an alternative technique was tested. This was to perform 

concurrent anion exchange and cation exchange chromatography, 

referred to as ‘AnCat’ exchange chromatography. 

 

AnCat exchange chromatography 

For the AnCat exchange column, an anion exchange column, and a cation 

exchange column were connected in series, forming a hybrid column with 

a cv of 10 mL. The experiment was performed with Buffer A, 20 mM 

ammonium bicarbonate, with Buffer B containing 1 M NaCl (Figure 3.27). 

Figure 3.26. FPLC purification of Cd-S•Tag-wMT-2 by cation exchange chromatography; UV 
absorbances measured and 220 nm at 280 nm (Note that these colours are reversed from other 
experiments). ICP-OES concentrations are overlaid (ZINC, SULPHUR, CADMIUM). Note that the 
colours are reversed from other experiments. Salt gradient (GREEN) performed 0-100 % Buffer B 
over 30 cv. Both buffers at pH ≈ 7.4. 
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For AnCat exchange chromatography, the mobile phase was at pH 8.29, 

approximately the theoretical pI of S•Tag-wMT-2 (the point at which 

there is no net charge on the protein). For optimal column retention of 

the target protein, the mobile phase should have a pH ± 1 unit from the 

theoretical pI. Therefore a pH at the protein pI should cause the target 

protein to pass through the columns, with contaminant proteins being 

bound to the columns. It was hoped that the low affinity of S•Tag-wMT-2 

for the exchange columns would make this a very efficient step for 

removing contaminants. The FPLC chromatogram (Figure 3.27) shows 

two broad peaks at the start of each step (either 0 % Buffer B, or 100 % 

Buffer B). A third UV wavelength, 254 nm, was used during this 

experiment, as it can be somewhat useful in identifying fractions 

containing S-Cd bonds (although there is some overlap with 220 nm and 

280 nm). The fractions with the highest A254 were Fractions 1-2 (in the 

flow-through) and also Fractions 9-11. However, only Fraction 10 

contained a significant amount of cadmium as determined by ICP-OES 

Figure 3.27. FPLC purification of Cd-S•Tag-wMT-2 by AnCat chromatography; UV absorbances 
measured at 220 nm, 280 nm and 254 nm. ICP-OES concentrations are overlaid (ZINC, SULPHUR, 
CADMIUM). Stepwise elution of 5 cv 0 % Buffer B, 5 cv of 100 % Buffer B; followed by gradient 
elution to 0 % Buffer B (GREEN). Both buffers at pH ≈ 8.4. S•Tag-wMT-2 containing fractions 
indicated in GREEN. 
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(147 µM). A significant amount of sulphur was present in Fraction 10 

(> 1mM), a good indicator that MT may be present. This was not 

expected, as at pH 8.4, the protein was assumed not to have affinity for 

either column, based on theoretical pI. However, the presence of 

S•Tag-wMT-2 eluting when the salt-containing buffer was applied was 

supported by an SDS-PAGE gel (Figure 3.28). 

 

 

 

 

 

 

 

 

 

 

The SDS-PAGE gel was rather ambiguous for Fractions 1-8, with no real 

identifiable bands presenting in the 10-15 kDa range. However, it was 

decided to pool Fractions 1-8, and concentrate by centrifugation at slow 

speed (2,000 x g, to avoid protein aggregation). The supernatant was 

filtered and separated by SEC (Figure 3.29). The amount of cadmium 

present in all fractions was very low, with no discernible peak present. 

There was also distortion of the peak area around the expected retention 

Figure 3.28. SDS-PAGE gel of Fractions 1-14 from AnCat exchange chromatography. Biorad 
Dual Colour Prestained Standard, designated MW. The RED line divides the gel into: 0 % Buffer 
B (left) and 100 % Buffer B (right). S•Tag-wMT-2 containing fractions are highlighted GREEN. 
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volume for S•Tag-wMT-2 (Fractions 4-6, Figure 3.29). All fractions were 

analysed by SDS-PAGE (Figure 3.30). 

 

 

 

 

 

 

 

There appeared to be some potential candidates for S•Tag-wMT-2, as 

there were some bands present in the 10-15 kDa range. However, these 

bands were present across the separation, and the resolution between 

proteins in the sample was insufficient.  

 

This evidence would suggest that S•Tag-wMT-2 did bind in some way to 

the AnCat column at pH 8.4, most likely to the anion exchange column, 

indicating that using the theoretical pI for S•Tag-wMT-2 is indeed not 

reliable. However the use of anion exchange with S•Tag-wMT-1 proved 

to be problematic. In addition, using the theoretical pI as a starting 

point, and increasing by 1 pH unit (for optimal separation) gives a very 

high pH (pH 9.4). Compromising at pH 9.0 meant that too many proteins 

are bound to the column, therefore anion exchange chromatography is 

unsuitable as a first fractionation step for S•Tag-wMT-2. 

Figure 3.29. SEC of pooled 0 % Buffer B fractions from AnCat chromatography; UV absorbances 
measured at 220 nm, 280 nm and 254 nm. ICP-OES concentrations are overlaid (ZINC, SULPHUR, 
CADMIUM). Fractions begin at 52 mL retention volume. 
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With the absence of S•Tag-wMT-2 confirmed in the fractions of 0 % 

Buffer B, Fractions 10 and 11 from Figure 3.27 were concentrated by 

slow centrifugation (2,000 x g). In an attempt to decrease the amount of 

salt within the sample, an additional dilution (with 20 mM ammonium 

bicarbonate) and centrifugation was performed before FPLC. The 

supernatant was filtered and loaded onto the SEC column as one 

injection (Figure 3.31). A254 was used again, to assist the determination 

of those fractions containing S-Cd bonds. This was helpful, as the 

detector at 220 nm was heavily overloaded. However, ICP-OES showed 

that Fraction 5 contained a significant amount of cadmium, and SDS-

PAGE (Figure 3.32) supported the presence of S•Tag-wMT-2.  

Figure 3.30. SDS-PAGE gel of Cd-S•Tag-wMT-2 SEC Fractions 1-9 from pooled 0 % Buffer B 
obtained by AnCat chromatography (Figure 3.29). Biorad Dual Colour Prestained Standard, 
designated MW. 
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As Fraction 5 contains the least contamination, it was chosen for mass 

spectrometry. Concentrations estimated by ICP-OES were 588.0 µM S, 

176.4 µM Cd, giving an S:Cd ratio of ≈ 3.3:1, which was close to the 

ratio of 3:1 S:Cd for Cd7-S•Tag-wMT-2.  

 

 

 

 

 

 

 

 

 Figure 3.32. SDS-PAGE gel of 100% Buffer B Fractions from Figure 3.27, separated by SEC in 
Figure 3.31. Biorad Dual Colour Prestained Standard, designated MW. S•Tag-wMT-2 is indicated 
in GREEN. 

Figure 3.31. SEC purification of the 100 % Buffer B fractions obtained from AnCat 
chromatography (Figure 3.27); UV absorbances measured at 220 nm, 280 nm and 254 nm. 
ICP-OES concentrations are overlaid (ZINC, SULPHUR, CADMIUM). S•Tag-wMT-2 is indicated in 
GREEN. Samples begin at 52 mL retention volume. 
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To remove the maximum amount of salt before mass spectrometry, 

Fraction 5 was applied to a PD-10 column as per manufacturer’s 

instructions [GE Healthcare], causing a slight dilution of the sample. 

 

S•Tag-wMT-2 was then concentrated by centrifugation at a slow speed 

(3,000 x g), to achieve an MS sample of ≈ 40 µM. Clearly, 

Cd-S•Tag-wMT-2 has been isolated from the 100 % Buffer B fractions 

(Figure 3.33). However, even after 2 centrifugation steps, an SEC 

column, and a PD-10 desalting column, there was a significant amount of 

sodium remaining, causing sodium adducts in the spectrum 

(Figure 3.33B). The salt also appears to have caused a slight unfolding of 

the protein, as high charge states (> 6+) were not observed for cleaved 

Cd-wMT-2 purified without AnCat. This suggests that the salt has caused 

the protonation of non-surface sites on the protein, which could affect 

metal-binding studies if performed on these samples. 

 

Using ion exchange chromatography in this way was somewhat 

successful – it did allow the purification of a pure sample of 

S•Tag-wMT-2. Whilst salt from exchange chromatography did not appear 

to be a problem for the purification of Cd-S•Tag-wMT-1 (the mass 

spectrum showed few sodium adducts), for Cd-S•Tag-wMT-2 the quantity 

of salt carried through from ion exchange chromatography makes it 

unsuitable for mass spectrometry. Therefore a purification method was 

attempted without the introduction of sodium ions.  
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Figure 3.33A. Raw mass 
spectrum of S•Tag-wMT-2 
indicating the charge states 
used for deconvolution, B. 
shows the deconvoluted 
mass spectrum of the above 
peaks. S•Tag-wMT-2 
concentration ≈ 40 µM, pH 
8.45. Sample in 20 mM 
NH4HCO3, and 10 % MeOH. 
Single metallospecies were 
observed, with significant 
amounts of sodium adducts 
(+23 mass units, *). Peak 
masses shown in 
Appendix 7. 

A 

B 
* 

* 

* 
* 
* 
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Chemical precipitation 

Chemical precipitation is used to either concentrate a target protein, or 

to remove contaminants and other proteins. Attractive and repulsive 

forces between proteins are partially negated by solvation in water. 

Displacement of the water solvation layer that forms around proteins by 

organic solvents (causing the water molecules to form layers around the 

organic solvents instead) will cause attractive electrostatic and dipole 

forces to lead to aggregation of protein [211]. Organic solvents lower the 

dielectric constant of water, allowing similar charges to exist in close 

proximity, promoting protein aggregation. The temperature is kept close 

to 0 °C, to minimise protein denaturation [211]. Initially three 

separations were performed based on the volume of lysate, with addition 

of ¾ vol, 1¾ vol and 3 vol of ethanol:chloroform (100:8). To ensure that 

proteins could precipitate quantitatively, each solution was stored at -

20 °C for > 12 hrs. SDS-PAGE was used to identify which volumes 

contained potential candidates for S•Tag-wMT-2 (Figure 3.34). 

 

 

 

 

 

 

 

Figure 3.34. SDS-PAGE gel of the fractions from chemical precipitation. Biorad Dual Colour 
Prestained Standard, designated MW. Fractions thought to contain S•Tag-wMT-2 are indicated in 
GREEN. The poor resolution is thought to be due to difficulty in resuspending the precipitate. 
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Whilst the gel is not well resolved, there does appear to be some 

separation of protein within the mixture. Due to the long incubation 

times, the total time for purification was approximately 2 days from the 

start of purification. Although the additional time would have been 

acceptable if the separation of S•Tag-wMT-2 from contaminant proteins 

had been significant, the size-exclusion chromatograms of the three 

fractions showed considerable overlap in the region thought to contain 

S•Tag-wMT-2 (Figure 3.35). 

 

 

 

 

 

 

 

As this generated > 50 samples, sulphur concentration was determined 

using a cysteine assay. All samples were analysed in this manner, with 

the region expected to contain S•Tag-wMT-2 showing a protein 

concentration of 1-2 µM (Table 3.1).  

 

 

 

Figure 3.35. FPLC purification by SEC of volumes from ethanol:chloroform precipitation. UV 
absorbances measured for ¾ vol (220 nm, 280 nm); 1¾ vol (220 nm, 280 nm); 3 vol (220 nm, 
280 nm). Fractions thought to contain S•Tag-wMT-2 highlighted in GREEN. 
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Fraction 8 (Figure 3.35) in both ¾ and 1¾ volumes showed a relatively 

high concentration of sulphur (> 1 µM sulphur), however it would appear 

that the yield of S•Tag-wMT-2 was significantly lower than previous 

experiments without precipitation. Considering the purpose of the 

experiment, to increase the yield of pure protein, it would seem that 

ethanol:chloroform precipitation is not suitable. The next course of action 

was to attempt a salt precipitation. 

 

Salt precipitation 

Another common way of removing bulk contaminants or precipitating 

target protein is the use of ammonium sulphate. The theory is similar to 

that of chemical precipitation, as protein solubility within the sample is 

altered through dehydration and increasing protein-protein interactions. 

Protein solubility is heavily influenced by the ionic strength of the 

solution; addition of a highly water soluble salt, such as ammonium 

sulphate, will increase the ionic strength of the solution to the point 

where most proteins precipitate. After salt precipitation, salt must be 

removed by a technique such as SEC. SDS-PAGE of sequential increases 

Table 3.1. Table indicating the fractions for which the total protein concentration is over 2 µM for 
the fractions in Figure 3.35. Df is the dilution factor (40x) used to measure the samples. 

A412 [Cys] µM [Prot] µM [Prot] x df  µM
0.75 vol 2 0.007 1.32 0.07 2.6

8 0.017 1.89 0.09 3.8

1.75 vol 4 0.007 1.32 0.07 2.6
5 0.015 1.77 0.09 3.5
8 0.009 1.44 0.07 2.9
10 0.014 1.72 0.09 3.4
13 0.001 0.98 0.05 2.0

Samples
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in 0.5 M ammonium sulphate concentration were poorly resolved (data 

not shown), however, S•Tag-wMT-2 was estimated to precipitate 

between 2.0-2.5 M ammonium sulphate concentration. 

 

In an attempt to maintain S•Tag-wMT-2 in solution, only 1.5 M final 

ammonium sulphate concentration was used in the purification. If 

S•Tag-wMT-2 was resistant to resolubilisation, then maintaining it in 

solution should increase the final yield of S•Tag-wMT-2. The pellet was 

divided, and a parallel purification either with or without salt precipitation 

were compared (Figure 3.36). 

 

For the salt precipitated sample, the FPLC chromatograms were not well 

resolved (Figure 3.36B), with ICP-OES suggesting a decrease of ≈ 20 % 

in protein yield after precipitation; and SDS-PAGE indicating a reduction 

of fraction purity (Figure 3.36C & D). These experiments showed that 

there is no major benefit in using a salt precipitation step at this stage of 

the purification. A comparison with the cell pellet that was not 

precipitated with salt showed that moderately pure S•Tag-wMT-2 could 

be obtained through one sole SEC separation. If thrombin cleavage was 

utilised, then this protocol may be sufficient to obtain pure S•Tag-wMT-2. 
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Figure 3.36. FPLC purification by SEC; A is without salt precipitation, B is with salt precipitation. 
UV absorbances measured at 220 nm and 280 nm . ICP-OES concentrations are overlaid (ZINC, 
SULPHUR, CADMIUM). SDS-PAGE gels C & D shown with Biorad Dual Colour Prestained 
Standard, designated MW. S•Tag-wMT-2 highlighted in GREEN, notice in well 5 that there are 
more contaminants present in D, after salt precipitation. 

 D  C 

A 

B 



Chapter Three 

 113 

Using SEC as the initial purification step 

Sonication buffer was supplemented with 1 mM CdCl2, and the sample 

sonicated as before. The sonicated mixture was filtered before separation 

by SEC. Figure 3.37A shows a distinct peak in the A220 chromatogram of 

the Cd-S•Tag-wMT-2 chromatogram, which is in the region where 

S•Tag-wMT-1 eluted (≈ 64 mL). SDS-PAGE (Figure 3.37B) also shows 

that fractions within Figure 3.37A thought to contain S•Tag-wMT-2 

(Fractions 6-9) were moderately pure. Fractions 7-8 had the highest 

proportion of S•Tag-wMT-2, with a small amount in Fractions 6 and 9. 

Measured S:Cd ratios for Fractions 6-9 were 3.1:1, 3.0:1, 2.8:1 and 

2.6:1 respectively. Fraction 7 had the highest sulphur concentration, and 

had the closest S:Cd ratio to that expected for pure Cd7-S•Tag-wMT-2 

(3.0:1). Fraction 7 was concentrated to approximately 35 µM 

S•Tag-wMT-2, and its identity was confirmed by mass spectrometry 

(Figure 3.38). The MS results showed that at neutral pH or above, there 

was only one observable species, Cd7-S•Tag-wMT-2. Acidification to pH 

≈ 2 generated the apo- mass and a number of other species, varying 

from Cd6- to apo-S•Tag-wMT-2. Of note is the good agreement between 

the calculated and observed masses shown in Appendix 8. 
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Figure 3.37A. SEC of S•Tag-wMT-2 & C SEC of cleaved wMT-2. UV absorbances measured at 
220 nm and 280 nm . ICP-OES concentrations are overlaid (ZINC, SULPHUR, CADMIUM). The 
GREY chromatography lines indicate the previous spectrum of (A). B is an SDS-PAGE gel of 
Cd-S•Tag-wMT-2 from (A). D shows a comparison of selected Fractions from (A) and (C). The 
bands in Fractions 6-9 (GREEN), indicate a protein of a molecular mass similar to S•Tag-wMT-2. 
Fractions in (A) begin at a retention volume of 40 mL, Fractions in (C) begin at a retention 
volume of 64 mL. 

 B 
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After confirmation of Cd7-S•Tag-wMT-2 by mass spectrometry, 

S•Tag-wMT-2 was concentrated to 1 mg/mL before thrombin cleavage. 

After cleavage, the protein was separated by SEC. Figure 3.37C shows 

that there was, as expected, a shift in the wMT-2 peak to the right (from 

68 mL to 76 mL), indicating a protein of a smaller hydrodynamic volume. 

This is expected, as the S•Tag is approximately 3 kDa, or 1/3 of the total 

size of the fusion protein. By reducing the size of wMT-2, trace 

contaminants were removed by relocating the peak (through the 

decrease in size) to a contaminant-free area of the elution profile. 

Fractions 7 & 8 were pooled and concentrated for further analysis, 

generating a pure final sample, as estimated by SDS-PAGE. Curiously, 

cleaved Cd-wMT-2 presented at approximately 150 kDa in the gel 

(Figure 3.37D). This is ten times higher than expected, but even so, this 

single band corresponded unmistakably to cleaved wMT-2, as shown by 

Figure 3.38. ESI-MS of Cd-S•Tag-wMT-2, Fraction 7 from SEC (Figure 3.37A). S•Tag-wMT-2 
concentration ≈ 37 µM. Samples in 20 mM NH4HCO3, and 10 % MeOH. Spectrum (A) is at pH 
8.48, spectrum (B) is after addition of 20 % acetic acid, which enabled the observation of the 
apo- mass of the protein at pH 2.32. 

A B 
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the mass spectrum in Figure 3.39A. There could be two explanations for 

this behaviour: oligomerisation/aggregation of the protein; or incomplete 

denaturation and linearization of the protein in the reducing buffer. 

Before mass spectrometry, Fractions 4 and 5 were pooled and 

concentrated to approximately 35 µM with respect to sulphur 

concentration, or 52 µM with respect to cadmium concentration, as 

determined by ICP-OES. Inaccuracy in ICP-OES measurements caused 

some ambiguity in the concentration and stoichiometry for wMT-2. 

Stoichiometry by MS (Figure 3.39) was determined to be 6.4 cadmium 

ions per wMT-2 molecule, caused by the quantity of Cd4- present in the 

cleaved spectrum at neutral pH. The major species however, is still 

Cd7-wMT-2 showing the ability of cleaved wMT-2 to bind seven divalent 

metal ions. For the cleaved spectrum, the concentration was 

approximately the same as before thrombin cleavage, but the observed 

species were decidedly different. 

 

 

 

 

 

 

 

 

Figure 3.39. ESI-MS of cleaved Cd-wMT-2, Fractions 4-5 from SEC (Figure 3.37C). wMT-2 
concentration ≈ 35 µM. Samples in 20 mM NH4HCO3, and 10 % MeOH. Spectrum (A) is cleaved 
wMT-2 at pH 8.47, spectrum (B) is cleaved wMT-2 after addition of 20 % acetic acid, which 
enabled the observation of the apo- mass of the protein, also at pH 2.32. 

B A 
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The S•Tag may be stabilising the fully-loaded species, as at a similar pH, 

these intermediate species were not present in the S•Tag-wMT-2 

spectrum (Figure 3.38). The observed masses were very close to that of 

the theoretical masses, given in Appendix 9: Cd7-wMT-2 8,570.3 

(8,570.8 Da theoretical); Cd4-wMT-2 8,240.3 (8,239.6 Da theoretical); 

apo-wMT-2 7,796.4 (7,797.9 Da theoretical). The final yield of protein 

purified in this way was approximately 2-2.25 mg/L of medium, meaning 

that the method described for purifying wMT-2 was successful in 

obtaining sufficient quantities of pure cleaved Cd-wMT-2. This same 

method was then utilised for the successful production of cleaved 

Zn-wMT-2. 

 

3.11 S•Tag-wMT-2 expressed with zinc, purified with zinc 

S•Tag-wMT-2 was purified as before with the addition of 1 mM ZnSO4 

before sonication. Crude lysate was filtered and applied to an SEC 

column (Figure 3.40A). A well defined peak (Fractions 7 and 8), distinct 

from the main bulk of contaminants thought to contain Zn-S•Tag-wMT-2 

was observed in the spectrum. There was also a peak in the 

concentration of zinc, around Fraction 7 (Figure 3.40A), matched by a 

spike in the sulphur concentration. This was in a similar location as 

Cd-S•Tag-wMT-2 (Figure 3.37). 
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The magnitude of the peak was also similar, but slightly smaller than that 

obtained from purifying Cd-S•Tag-wMT-2. This indicates that E. coli will 

express S•Tag-wMT-2 equally well, if not better, when cultured with 

Figure 3.40A. SEC of S•Tag-wMT-2 & C SEC of cleaved wMT-2. UV absorbances measured at 
220 nm and 280 nm . ICP-OES concentrations are overlaid (ZINC, SULPHUR, CADMIUM). The 
GREY chromatography lines indicate the previous spectrum of (A). B is an SDS-PAGE gel of 
Zn-S•Tag-wMT-2 from (A). D shows a comparison of selected Fractions from (A) and (C). The 
bands in Fractions 6-9 (GREEN), indicate a protein of a molecular mass similar to S•Tag-wMT-2. 
Fractions in (A) begin at a retention volume of 40 mL, Fractions in (C) begin at a retention 
volume of 60 mL. 

 

A 

 B  D 

C 
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cadmium, rather than with zinc. This finding has been reported in other 

studies with MTs [212, 213]. 

 

SDS-PAGE (Figure 3.40B) shows Fractions 7 & 8 to be purest, with a 

small contamination around 17 kDa in Fraction 6. The S:Zn ratios of 

Fractions 6-8 were 3.6:1, 3.2:1 and 3.1:1 respectively, the optimum 

being an S:Zn ratio of 3:1 corresponding to Zn7-wMT-2. To obtain a 

mass spectrum of Zn-S•Tag-wMT-2, Fraction 7 was concentrated to 

≈ 35 µM, with a S:Zn ratio of 3.2:1.  

 

 

 

 

 

 

 

 

 

 

Analysis by MS shows significantly more species than seen with 

cadmium, as at high pH (> pH 8) there were 3 species. The major 

Figure 3.41. ESI-MS of Zn-S•Tag-wMT-2, Fraction 7 from SEC (Figure 3.40A). S•Tag-wMT-2 
concentration ≈ 35 µM. Samples in 20 mM NH4HCO3, and 10 % MeOH. Spectrum (A) is at pH 
8.39, spectrum (B) is after addition of 1 % acetic acid, which enabled the observation of the 
apo- mass of the protein at pH 3.76. Accurate masses provided in Appendix 10. 

A B 
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species however, is Zn7-S•Tag-wMT-2. This could indicate differences in 

metal-binding affinities for cadmium and zinc. 

 

To obtain cleaved mass spectra, the remainder of Fractions 7 and 8 were 

pooled and concentrated by centrifugation. Some precipitate was visible 

after centrifugation, which can be assumed from SDS-PAGE 

(Figure 3.40B) to be aggregated wMT-2. Cleavage was performed 

identically to that of Cd-S•Tag-wMT-2, and filtered before being 

separated by SEC (Figure 3.40C). Similar to the behaviour of cleaved Cd-

wMT-2, a defined shift in the cleaved Zn-wMT-2 peak to the right (as 

expected from a reduction in molecular mass) was observed. However, it 

does appear that there was a certain amount of protein remaining in 

Fractions 1 & 2 (Figure 3.40C) that was left uncleaved. The column was 

also overloaded at this point, but even so, the S:Zn ratios for Fractions 

3-5 were 3.4:1, 3.4:1 and 3.7:1 - close to the S:Zn ratio of 3:1 for Zn7-

wMT-2. The purification appeared to work well, as Fraction 4 appeared 

almost without contamination (Figure 3.40D). 

 

Concentration to 35 µM and subsequent mass spectrometry (Figure 3.42) 

showed a significant increase in baseline noise over that of 

Zn-S•Tag-wMT-2 (Figure 3.41). This could be due to the higher 

ionisation efficiency of S•Tag-wMT-2. Another possibility is that the 

estimated 35 µM wMT-2 concentration was incorrect, and/or a proportion 

of protein was lost to aggregation at the concentration stage. 
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Similar species were observed to those in the Zn-S•Tag-wMT-2 spectrum 

(Figure 3.41), with Zn7- to Zn5- being major species. If all species in the 

mass spectrum of cleaved Zn-wMT-2 are analysed (Figure 3.42), a value 

of approximately 6.2 zinc ions per wMT-2 molecule is calculated, slightly 

lower than that reported for Zn-S•Tag-wMT-2. Interestingly there are 3 

major species, cleaved Zn7-, Zn6- and Zn5-wMT-2, which is similar to 

that observed with cleaved Zn-wMT-1 (Figure 3.16). A further 

consideration is that proteins observed by mass spectrometry often 

contain multiple species if they contain a metal that is not ‘native’ [214]. 

For example, wMT-2 is postulated as the sole cadmium responsive MT in 

earthworms, hence hypothesised to be a cadmium-binding MT, and might 

therefore bind zinc in a less well-defined manner. 

B A 

Figure 3.42. ESI-MS of cleaved Zn-wMT-2, Fraction 4 from SEC (Figure 3.40C). wMT-2 
concentration ≈ 35 µM. Samples in 20 mM NH4HCO3, and 10 % MeOH. Spectrum (A) is cleaved 
wMT-2 at pH 8.70, spectrum (B) is cleaved wMT-2 after addition of 2 % acetic acid, which 
enabled the observation of the apo- mass of the protein at pH 2.78. Masses provided in 
Appendix 11. 
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Observed masses for the cleaved spectra were somewhat more divergent 

from the calculated masses (Appendix 11), the main source of error 

being the low signal/noise ratio reducing the accuracy of the mass data. 

 

3.12 wMT-3 expressed with cadmium, purified with cadmium 

The plasmid encoding the wMT-3 gene was obtained from the 

Stürzenbaum group. Initial attempts to express the construct were 

successful, but a metal-binding product approximately 2 kDa larger than 

Cd-wMT-3 was isolated. Attempts to sequence the plasmid by both 

myself, and within the Stürzenbaum group, could not generate 

acceptable data. A second clone, however, was received which was 

confirmed to contain the wMT-3 gene of the correct sequence. However, 

the resultant protein sequence was slightly different to that first reported 

in 2004 (Figure 3.43). This is due to the 2004 sequence being derived 

from crude consensus sequences from earthworms in multiple locations 

(S. Stürzenbaum, personal communication). The new construct was 

created from earthworms in a single location, with the most abundant 

sequence being cloned. 

 

 

 

The main difference in the purification of wMT-3 is that the construct 

obtained from the Stürzenbaum group expressed full-length native 

Figure 3.43. The wMT-3 sequences obtained from DNA sequencing of the construct (Seq.) 
compared to reported in 2004 [111]. Cysteine residues are coloured RED. Residues that are 
different to those reported in the 2004 study coloured GREEN. 
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protein, without N-terminal S•Tag. This makes this construct similar to 

the subcloned wMT-1 plasmid. With the success of expressing and 

purifying in the presence of cadmium, for both S•Tag-wMT-2 and 

S•Tag-wMT-1, it was chosen to express wMT-3 in LB, in the presence of 

cadmium. The first stage was to sonicate the cell pellet in sonication 

buffer, with the addition of 1 mM CdCl2. The crude lysate was filtered 

before separation by SEC (Figure 3.44). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The chromatogram from SEC indicates a well resolved peak, distinct to 

the main bulk of contaminants (those eluting before Fraction 2, 

Figure 3.44A. FPLC purification by SEC of wMT-3. UV absorbances measured at 220 nm, 280 nm 
and 280 nm. ICP-OES concentrations are overlaid (ZINC, SULPHUR, CADMIUM). B is an SDS-PAGE 
gel of pooled Fractions from (A), shown with Biorad Dual Colour Prestained Standard, designated 
MW. The pool containing Fractions 3-5 (GREEN), indicate a protein of a molecular mass similar to 
wMT-3. A band present at approximately 150 kDa is similar to that observed with cleaved Cd-
wMT-2. Fractions in(A) begin at a retention volume of 58 mL. 

B 

A 
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Figure 3.44A). The absorbtion at 254 nm was also measured for this 

separation, to potentially observe the effect of S-Cd bonds, bearing in 

mind there could be some interference from neighbouring wavelengths. 

The peak proposed for wMT-3 (Fractions 3-5, Figure 3.44A) showed 

strong absorbance at this wavelength, potentially indicating many S-Cd 

bonds. SDS-PAGE (Figure 3.44B) used combined fractions for ease of 

analysis, of most interest are the two bands observed across the gel: 

One at approximately 12 kDa; a second at approximately 150 kDa. 

 

The lower of these two bands is close to the expected apo- molecular 

mass of wMT-3 (8,779 Da), the upper may reflect similar behaviour to 

that observed with cleaved Cd-wMT-2, with an apparent molecular mass 

of around 150 kDa. Although there appear to be many contaminant 

proteins, S:Cd ratios for Fractions 3-5 were 3.2:1, 3.0:1 and 2.9:1 

respectively. The expected S:Cd ratio for Cd7-wMT-3 is 3.1:1, as wMT-3 

contains 22 cysteine residues. Mass spectrometry (Figure 3.45) showed 

the observed mass corresponded to full-length wMT-3 lacking the 

initiation N-terminal methionine, so this was not included in calculation of 

theoretical mass (Appendix 12). This is different to both cleaved wMT-1 

and cleaved wMT-2 due to their N-termini containing residues remaining 

from thrombin cleavage (-GSM-).  Pooled Fractions 3-5 showed the 

highest proportion of the band at 10 kDa, so were concentrated by 

centrifugation to 50 µM, filtered, and analysed by mass spectrometry. 
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The mass spectrum (Figure 3.45) is fairly conclusive, as the major 

species is of Cd7-wMT-3, showing that wMT-3 has been isolated for the 

first time. There is a small amount of noise to the right of the Cd7- peak, 

which could potentially conceal a Cd8- peak, but this is not reflected in 

the S:Cd ratios observed by ICP-OES. Decreasing the pH allowed 

observation of the apo-mass, and also the Cd4- species. Interestingly this 

behaviour was similar to that of cleaved Cd-wMT-2 .  

 

The construct used in this expression was designed to produce wMT-3 

without an S•Tag. Initial data demonstrate that significant quantities 

(≈ 1 mg/L) of well-defined, full-length wMT-3 can be obtained using this 

approach. For future studies, a further purification step will be required 

to separate the protein from remaining contaminants. In addition, 

expression in the presence of zinc should also be attempted. 

Figure 3.45. ESI-MS of Cd-wMT-3, Pooled Fractions 3-5 from SEC (Figure 3.44). wMT-3 
concentration ≈ 50 µM. Samples in 20 mM NH4HCO3, and 10 % MeOH. Spectrum (A) is at pH 
8.34, spectrum (B) is after addition of 2 % formic acid, which enabled the observation of the 
apo- mass of the protein at pH 3.02. Masses presented in Appendix 12. 

A B 
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3.13 Summary 

In this chapter I have outlined the development of successful expression 

and purification methods for obtaining, close to their native sequence, all 

three currently known wMTs in Lumbricus rubellus. In the case of cleaved 

wMT-1, some further refinement is required, as the purity of the fractions 

showed contamination in both MS and SDS-PAGE experiments 

(Figures 3.16 / 3.23). However this did not hinder the recording of MS 

experiments that showed fully-metallated cleaved wMT-1 with both zinc 

and cadmium. For S•Tag-wMT-2, the protocol was modified to minimise 

the loss of protein from multiple purification steps. This method is 

however, unsuitable for purifying S•Tag-wMT-1, with the protein peak 

not well resolved by performing SEC without ion exchange 

chromatography (Figure 3.10). Fortunately this is not the case for 

S•Tag-wMT-2, and the problematic ion exchange step could be omitted. 

This has enabled purification of both cleaved Zn-wMT-2 and cleaved 

Cd-wMT-2, with good purity, as observed by very few contaminants in 

MS and SDS-PAGE (Figures 3.39 / 3.42). Using the general parts from 

the purification of S•Tag-wMT-2, wMT-3 (without S•Tag) was able to be 

isolated in the presence of cadmium (Figure 3.45). At this time, 

purification of Zn-wMT-3 has not been performed. 
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With the success of wMT-3 expression in a construct without S•Tag, 

questions are raised as to why this would not be the case for subcloned 

wMT-1. There is no doubt that the chromatograms obtained for wMT-3 

and wMT-1 from SEC of their crude lysate are significantly different, with 

the absence of a significant peak at 60-70 mL retention volume in the 

subcloned wMT-1 chromatogram (Figure 3.8). With the difficulty in 

expressing the first wMT-3 construct, it is assumed that the problem with 

subcloned wMT-1 was more likely at the expression stage, rather than at 

the purification stage. Table 3.2 (below) shows a summary of results 

within this Chapter, including the purification route, and the major 

species observed when purified with zinc or cadmium. 

 

 

Moving forwards, the purification of the isoform found to be isolated in 

the greatest quantity, Cd-S•Tag-wMT-2, was expanded to larger culture 

volumes (approximately 1,200 mL). This enabled purification of sufficient 

quantities of cleaved Cd-wMT-2 required for solution NMR structure 

determination, reported in Chapter 4. This is followed by a comparison of 

the metal-binding dynamics of the three isoforms, and the effect of 

competitive metal chelators such as EDTA and 5F-BAPTA on cleaved 

Cd-wMT-2 in Chapter 5. 

 

Isoform 

 

Purification method 
Zn Major Species Cd Major Species 

pH >8 pH <4 pH >8 pH <4 

wMT-1 Cation Exchange -> SEC -> 

Cleavage -> SEC 

Zn7, Zn6, 

Zn5 

apo, Zn1 Cd8, Cd7 Cd5,  Cd4, 

Cd1, apo 

wMT-2 SEC -> Cleavage -> SEC Zn7, Zn6, 

Zn5 

apo, Zn1 Cd7, Cd4 Cd4, apo 

wMT-3 SEC - - Cd7 Cd4, apo 

Table 3.2. Tabulated summary of results from Chapter3. wMT-1 data from Figure 3.16 (Zn) and 
Figure  3.23 (Cd); wMT-2 data from Figure 3.39 (Cd) and Figure 3.42 (Zn); wMT-3 data from 
Figure 3.45 (Cd), no Zn-wMT-3 data recorded at this time. 
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4 
Structural Investigation of cleaved Cd-wMT-2 

 
4.1 Introduction 

The link between the structure and function of proteins is now well 

established, and as such the structural determination of proteins is a 

quickly expanding field. The first protein structure deposited into the 

Research Collaboratory for Structural Bioinformatics (RCSB) protein data 

bank was in 1976, obtained by X-ray crystallography. It took until 1989 

before the first protein structure was determined by solution NMR (a 43 

residue protein [215]), coinciding with the availability of powerful 2-

dimensional NMR experiments such as COSY and NOESY. These NMR 

experiments were pioneered at the end of the 1970s, meaning that in 

just 10 years, a viable alternate route to crystallography for structure 

determination was available. Nowadays there are significantly more 

powerful pulse sequences available for solution structure determination. 

Whilst X-ray crystallography is still popular, of the current 83,983 protein 

structures in the protein data bank, 9,586 have been determined by 

solution NMR*. X-ray crystallography has been used widely in protein 

structure determination, however due to their flexibility and lack of 

overall rigid structure MTs are very difficult to crystallise. There are 

disadvantages to using solution NMR for structure determination, such as 

the significant time required for analysis of data. However, due to the 

                                                           
* http://www.pdb.org/pdb/static.do?p=general_information/pdb_statistics/index.html 
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inherent flexibility of the linker region between the two domains, MT 

exhibits a dynamic non-rigid structure [216, 217]. Solution NMR becomes 

an invaluable tool in the structural investigation of MTs. 

 

The nomenclature used during the discussion of NMR experiments will be 

in relation to the standard protein model in Figure 4.1. This defines the 

carbon atoms on the backbone as CO and Cα, with subsequent carbon 

atoms labelled incrementally. Hydrogen atoms are labelled with respect 

to the nitrogen / carbon atom they are bonded to, ie all hydrogen atoms 

bonded to the Cβ atom are labelled Hβ. There are also four specific angles 

which are utilised for structure calculations: φ (phi) is defined as: CO-N-

Cα-CO; ψ (psi) is defined as: N-Cα-CO-N ; ω (omega) is defined as: Cα-

CO-N-Cα;τ (tau) is defined as: N-Cα-CO. 

 

 

 

 

 

 

 

Figure 4.1. Cartoon of a protein backbone showing the names of angles and atoms within an 
amino acid. Note that the view is centred around an alanine residue, with an additional nitrogen 
atom from a subsequent amino acid present to include the ω angle.  
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4.2 Investigation of temperature effects by NMR 

To ascertain the stability, and optimise the NMR conditions for wMT-2, a 

variable temperature experiment was performed to establish whether 

temperature caused a significant sharpening (or broadening) effect of 

NMR proton signals due to correlation between lower relaxation time in 

the transverse plane (x-y) with increased temperature [218]. 

 

It was a concern that high temperature would significantly decrease the 

lifetime of the protein, therefore it was of benefit to use the lowest 

possible temperature whilst still achieving well-resolved spectra. To 

monitor the effect of temperature, spectra from 278 K to 308 K (in 

increments of 10 K) were recorded. To determine an optimum 

temperature, a peak in the downfield region > 9.5 ppm was used. The 

isolated nature of this peak made it a useful probe for monitoring the 

effect of changing temperature. Due to the difficulties in establishing a 

comparative baseline over the four spectra, determining peak integral 

area proved to be problematic. Therefore the peak width at half height 

was chosen as the parameter to be compared. Although there were 

significant changes in the entire fingerprint region as temperature 

increased from 278 K (Figure 4.2A), further increase in temperature 

above 298 K appeared to give no significant benefit in spectral 

dispersion, resolution or peak intensity. The measured peak widths at 

half height for each peak in Figure 4.2B were: 0.6885 Hz, 0.7138 Hz, 

0.6025 Hz, 0.6499 Hz for 278-308 K respectively; a lower value 

indicating a sharper peak. Examining peak intensity and peak width at 
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half height, the ideal temperature for experiments with Cd-wMT-2 was 

close to 298 K.  

 

 

 

 

 

 

 

 

4.3 Sequential assignment 

[1H, 1H] TOCSY, NOESY 

The TOCSY (Total correlation spectroscopy) experiment is an 

improvement over the original COSY (Correlation spectroscopy) 

experiment, which enables the correlation of hydrogen atoms within an 

amino acid residue. Whereas COSY generates crosspeaks for hydrogen 

atoms generated by 3-bond (3J) scalar coupling (within 3 bonds - ie HN to 

Hα, Hα to Hβ and HN), TOCSY can in principle show the crosspeaks of all 

hydrogen atoms in a residue (ie HN to Hα, Hβ, Hγ; Hα to HN, Hβ, Hγ) due 

to many 3J transfers occurring during a mixing step which keeps all spins 

together (also called spin-lock) [188]. The schematics of the two 

experiments are shown in Figure 4.3. 

Figure 4.2A. Stacked plot of variable 
temperature experiments, all experiments 
processed under the same conditions, with 
line to indicate the change in chemical shift 
of characteristic peak. B. Shows an 
enlargement of the isolated peak region. This 
allowed the signal improvement by 
variations in temperature to be compared 
more easily. Sample (≈500 µM wMT-2) in 
20 mM NH4HCO3, pH ≈ 7.0. 

B A 
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Assignment of the Cd-wMT-2 [1H, 1H] TOCSY experiment proceeded 

using the two stage method, first reported by Wüthrich in 1982 [219, 

220]. As magnetisation is transferred through-bonds to all of the 

hydrogen atoms within an amino acid, the crosspeaks of different amino 

acids will form characteristic patterns. These patterns can be grouped as 

belonging to one of 5 broad types of spin system. The first stage was to 

identify the spin system type (Figure 4.4): either J-type (S, D, N, C, W, 

F, Y, H), U-type (K, R, E, M, Q, and P), A/T-type, V/I/L-type or glycine. 

Due to the amino acid composition of wMT-2, there are significantly more 

J-type spin systems than U-type, with: 37 J-type; 17 U-type, 15 A/T-

type, 1 leucine and 9 glycines. The majority of the analysis of the NMR 

spectra utilised the fingerprint region of the spectrum (6-10 ppm in the 

Figure 4.3. Schematic of the COSY (LEFT) and TOCSY (RIGHT) experiments. RED indicates the 
direction of magnetisation transfer. In the COSY spectrum, the HN residue can form a cross-
peak with the Hα atom, through transfer of magnetisation over 3 bonds (Pane 2). The Hα can 
transfer magnetisation to the HN, and also the three Hβ atoms (Pane 3). The Hβ atoms can 
only transfer back to the Hα (Pane 4). For TOCSY, crosspeaks between every hydrogen atom 
on the residue are possible. 
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F2 dimension), however peaks in the aliphatic portion (Hα-Hβ and Hα-

CH3) were also assigned where possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The second stage was to assign the spin systems to a particular residue 

in the amino acid sequence using nuclear Overhauser effect spectroscopy 

(NOESY [221]) data, which gives information on the type of neighbouring 

spin systems. In NOESY experiments, magnetisation is transferred 

through-space between hydrogen atoms and is detectable for 

interactions within ≈ 5 Å (Figure 4.5) [188]. Interactions between 

nuclear spins in close proximity cause an intensity enhancement through 

transfer of spin polarisation via mutual relaxation of two nuclei (called 

the nuclear Overhauser effect) [188]. NOESY peaks are most often found 

Figure 4.4. A section of the TOCSY spectrum between 8.7-
10.0 in the F2 dimension of Cd-wMT-2. This region is 
downfield of the bulk of peaks in the fingerprint region of 
the spectrum. Shown are 3 types of spin systems, with 
their characteristic patterns (residue-specific patterns in 
Appendix 13). The U-type spin system has an Hα crosspeak 
≈ 4.5 ppm, with contributions from any Hβ, Hγ, Hδ and Hε 
in the region between 1.0-3.0 ppm in the F1 dimension. 
The A/T-type spin system has a Hα crosspeak ≈ 4.5 ppm, 
with Hβ ≈ 1 ppm for alanine, and Hα / Hβ ≈ 4.5 ppm with 
Hγ ≈ 1 ppm for threonine. The J-type spin system has an 
Hα crosspeak ≈ 4.5 ppm, with the two Hβs in the region 
between 2.5-4.0 ppm. 
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between backbone HN and the Hα of neighbouring residues, but 

depending on backbone conformation, longer range NOEs can be 

observed.  

 

 

 

 

 

 

 

 

 

Using the protein primary sequence, unique motifs can begin to be 

identified. One of the starting points for this assignment was the unique 

leucine (43Leu) residue, which had a characteristic spin pattern 

(Appendix 4). A backbone walk can be performed by selecting either a 

TOCSY crosspeak or NOESY crosspeak. Using a TOCSY crosspeak as a 

starting point, a corresponding NOESY crosspeak can be located in the 

same hydrogen dimension as either the HN or Hα. Once a NOESY 

crosspeak is found, a corresponding TOCSY crosspeak in the second 

hydrogen dimension can be identified. The NOESY peak linking these two 

hydrogen chemical shifts indicates that the hydrogen atoms of the two 

residues are within 5 Å of each other. Examining Figure 4.7, the 

TOCSY/NOESY backbone walk revealed a stretch of 5 amino acids. The 

Figure 4.5. Schematic of a NOESY NMR experiment. RED indicates the direction of 
magnetisation transfer. In the NOESY spectrum, crosspeaks are formed between atoms in close 
spatial proximity. Crosspeaks from neighbouring residues appear in NOESY spectra (Pane 2), 
therefore based on the spin system type of nearby residues, a picture of the entire backbone 
can be created, aiding unambiguous assignment of residues. 
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exact sequence is determined to be U-type - U-type - L-type - J-type - 

J-type. There are four sections within the wMT-2 sequence with two 

subsequent U-types together, and ten sections with two adjacent J-types 

(Figure 4.6).  

 

 

 

 

 

However utilising the unique leucine residue, these five residues were 

unambiguously assigned to the -KKLCC- block of the sequence, 

corresponding to residues 41-45. The right hand side of Figure 4.7 shows 

all assigned NOEs for each residue (not just those used in the 

TOCSY/NOESY backbone walk). Of note are some of the longer range 

NOEs in this portion of the sequence - for instance some of the 

interactions between the backbone HN of 42Lys, and the Hβs of 45Cys. 

Although many motifs could be identified from the TOCSY and NOESY 

spectrum, there were many peaks that could not be unambiguously 

assigned from these spectra alone. To aid in assignment, a wMT-2 

sample was expressed in medium containing 13C and 15N isotopes. 

Figure 4.6. The sequence of cleaved wMT-2, with colours indicating the different spin systems: 
J-type ; U-type ; G ; A/T-type ; L. 
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Figure 4.7. LEFT. Schematic of the backbone walk procedure, TOCSY spectrum in BLUE, NOESY 
spectrum in BLACK. The initial starting point (1) was a U-type HN - Hα crosspeak (determined 
afterwards to be 41LysH, Hα) from the TOCSY spectrum. From interactions through-space, there is a 
NOESY (2) crosspeak between the spatially close backbone hydrogen from the proceeding residue. 
Following this NOESY peak, we reach another TOCSY crosspeak between the backbone nitrogen and 
the Hα from another U-type. Proceeding in this manner, the spin-types for a stretch of about 5 
amino acids were elucidated. RIGHT. All NOEs indicated for the five residues, indicating long-range 
interactions between residues. 
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4.4 Generation of 13C/15N double-labelled cleaved Cd-wMT-2 

As there was significant ambiguity and peak overlap in the unlabelled 

spectra, even when the peaks were spread over two dimensions, the 

next stage was to generate an isotopically labelled protein. This allows 

the separation of peaks over a greater number of dimensions, and the 

assignment of carbon and nitrogen atoms within the protein backbone. 

The strategy employed for generating isotopically labelled protein was to 

express in minimal medium supplemented with M9 salts. The expression 

protocol was similar to that of expression of unlabelled Cd-S●tag-wMT-2 

in LB. The two main differences were: a higher ratio of initial overnight 

culture used (1 mL per 10 mL medium), larger than the 1 mL per 

100 mL medium ratio required for expression in LB; the minimal medium 

cultures were grown to OD600 ≈ 0.8 before induction, 33 % higher than 

expression in LB. The route to purify the labelled protein was identical to 

that reported for Cd-S●tag-wMT-2 from LB cultures (see Chapter 2.2). 

 

Both 15N and 13C isotopes were 99 % enriched, increasing the theoretical 

average molecular mass of cleaved Cd7-wMT-2 from 8,570.8 Da to 

8,955.0 Da†. From Figure 4.8, the experimentally determined neutral 

mass of the predominant species is 8,950.3 Da, confirming the presence 

of double-labelled cleaved Cd7-wMT-2. The slight difference in mass 

( < 5 Da) may be accounted for by considering a lower than reported 

                                                           
† Calculated using the number of atoms reported by the ProtParam tool, 
http://web.expasy.org/protparam/ 
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99 % isotopic fidelity of both 15N and 13C, with an average of 97.79 % 

giving a theoretical mass which matches that of the mass spectrum. 

 

 

 

 

 

 

 

 

As the mass spectrum showed pure cleaved Cd7-wMT-2, the resulting 

protein was concentrated for multinuclear NMR experiments. To maintain 

the maximum concentration of wMT-2, the buffer exchange and 

concentration steps were performed concurrently, with the final NMR 

buffer comprising 20 mM ammonium bicarbonate buffer (made with 

Milli-Q water), pH 6.8. The final concentration of the double-labelled 

cleaved wMT-2 sample used in the remaining sections in the chapter was 

determined by ICP-OES to be 542.4 µM. 

 

A B 

Figure 4.8A. Raw mass spectrum of double-labelled cleaved Cd7-wMT-2. B. Deconvoluted mass 
spectrum of the charge states indicated in (A). wMT-2 concentration 44.7 µM, pH 8.37. Sample in 
20 mM NH4HCO3, and 10 % MeOH. A sole Cd7- (BLUE) metalloform is observed. 
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Figure 4.9. Schematic of the [1H, 15N] 
HSQC experiment. RED indicates the 
direction of magnetisation transfer. In 
Panes 2-4, magnetisation is transferred 
from the HN for evolution on the 
backbone nitrogen, before being 
transferred back to the HN for detection. 

4.5 Multinuclear NMR experiments for structure determination 

[1H, 15N] HSQC 

Combining the chemical shifts of backbone HN atoms from the 

TOCSY/NOESY spectra, and the corresponding backbone N chemical shift 

from the HNCA/HN(CO)CA spectra, the next spectrum to be assigned was 

the [1H, 15N] HSQC. The [1H, 15N] HSQC experiment (Figure 4.9) 

correlates the chemical shifts of the nitrogen chemical shift (F1 

dimension), with that of the chemical shifts of any attached hydrogen 

atoms (F2 dimension) in the form of a crosspeak in the 2-dimensional 

spectrum. 

 

 

 

 

 

 

 

Although the main objective of the experiment was to assign the 

backbone nitrogen atoms, some nitrogen-containing sidechains were also 

present in the upper right quadrant of the spectrum. For wMT-2, four of 

six asparagine / glutamine residues showed peaks in this area 

(Figure 4.10). Most peaks have a well-defined and narrow peak shape. 
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Peaks are well dispersed, indicating a well-folded protein, with some 

clustering around the centre of the spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

Triple-resonance experiments: HNCA, HN(CO)CA 

Combined experimental data from both the HNCA and HN(CO)CA 

experiments were required for a Cα backbone walk. The HNCA 

experiment generates a spectrum with two peaks per residue, the 

stronger of the two usually corresponding to that of the intraresidual 

N-Cα transfer, the weaker to transfer to the preceding Cα-1 (i-1). The 

Figure 4.10. [1H, 15N] HSQC of double-labelled cleaved Cd-wMT-2. Buffer was 20mM ammonium 
bicarbonate, pH ≈ 6.8 with 10 % D2O. NMR conditions: 700 MHz, 298 K. Approximately 80 % of 
the residues were able to be assigned, based on information from the NMR experiments 
reported in this section. 
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HN(CO)CA experiment generates a spectrum of one peak from the 

preceding Cα-1 (i-1) residue, labelled with the hydrogen and nitrogen 

shifts of the i residue (Figure 4.11). When the two experiments are 

overlaid, the two overlapping peaks correspond to the Cα-1 of the i-1 

residue, the lone peak corresponding to the Cα of the i residue. As the 

experiments separate peaks in 3-dimensions, the problem of overlapping 

peaks was significantly reduced. Therefore using the limited 

unambiguous information from the 2D TOCSY experiment, further 

neighbouring residues could be unambiguously assigned. The backbone 

nitrogen chemical shift for residues could also be tentatively assigned, 

based on the chemical shift of the 2-dimensional slice of the 

3-dimensional spectrum in the nitrogen dimension containing the 

backbone Cα - HN crosspeak. Figure 4.12 shows a Cα backbone walk from 

an unambiguously assigned residue, 44Cys. The next residue was also 

unambiguously assigned from the TOCSY (45Cys), confirming that the 

peak for the Cα is at the expected carbon chemical shift with respect to 

the hydrogen dimension. 
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Figure 4.11. Schematic of the HNCA experiment (TOP) and HN(CO)CA experiment (BOTTOM). RED 
indicates the direction of magnetisation transfer. For the HNCA experiment, magnetisation is 
transferred from the HN to the backbone N, before being passed to both the intraresidual Cα, and 
the Cα−1 of the i-1 residue. Magnetisation is then transferred back through the backbone N, to the 
HN for detection (not shown). For HN(CO)CA, magnetisation is transferred from the HN to the 
backbone nitrogen, before being passed to the i-1 Cα-1 through the backbone carbonyl group 
(C=O). Magnetisation is transferred identically to HNCA for detection (not shown). 
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Figure 4.12. Schematic of the backbone walk procedure for HNCA (ORANGE) and HN(CO)CA 
(PINK) spectra. The initial starting point (1) is the backbone H shift of a known residue, here 44Cys 
(1). Combined with the assigned nitrogen shift (from 15N-HSQC), there is one possibility. The 
HN(CO)CA indicates the preceding residue, moving from HN(CO)CA to HNCA means we are 
walking forwards along the backbone. Moving from the 44Cys HNCA (2), we reach a peak in the 
HN(CO)CA spectrum with the same carbon shift (3). This shift is at the same hydrogen shift as the 
Cα of the next residue (4). The backbone walk proceeds in this manner. Note that the second peak 
in the HNCA spectrum is underneath the peak in the HN(CO)CA spectrum. 
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[1H, 1H, 15N] TOCSY-HSQC 

The [1H, 1H, 15N] TOCSY-HSQC experiment proceeds initially like a 

standard TOCSY experiment, ie magnetisation is transferred to all 

hydrogen atoms within an amino acid residue, however the 

magnetisation is then transferred onto the backbone nitrogen, and finally 

detected on the HN. This adds a third (nitrogen) dimension which is 

invaluable for assigning overlapping spin systems in the 2-dimensional 

TOCSY experiment. This was the case for 67Ser, with three possibilities 

for assignment of the H-Hα crosspeak (Figure 4.13). The TOCSY-HSQC 

allowed unambiguous assignment of the H-Hα crosspeak, and aided in 

the assignment of the entire overlapping region. Although a lower 

resolution in each nitrogen slice of the 3-dimensional spectrum is 

acceptable due to the separation of peaks along a third axis, the low 

intensities of some peaks meant that many slices were not used in the 

sequential assignment. Sequence coverage in the TOCSY-HSQC was 

≈ 24 %. 
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Summary of wMT-2 assignment 

Combining information from all of the experiments in this section, it was 

possible to unambiguously assign 63 of the 79 residues in the cleaved 

wMT-2 sequence. This included within the unambiguous assignments four 

residues (24Cys, 39Arg, 40Cys, 72Cys) which presented solely in the 

NOESY spectrum, although absent from the TOCSY spectrum. In 

addition, partial information (some hydrogen atoms not present) was 

available for 5 residues, allowing their assignment as: 6Ala, 18Pro, 

32Pro, 38Pro, 56Ser. Considering the two surplus amino acids at the N-

terminus remaining from cleavage of the S●tag, there was 88 % 

coverage of the wMT-2 sequence in the TOCSY/NOESY spectra. In the 

Figure 4.13. Experimental data from a 
TOCSY-HSQC experiment (RED), overlaid 
with the original TOCSY experimental data 
(BLUE). Although the resolution is poorer 
than the TOCSY due to the requirement of 
keeping the number of scans per slice low, 
it is sufficient to determine which 
crosspeak in the overlapping region of the 
spectrum corresponds to that of 
67SerH, Hα. The Hβ crosspeaks can also be 
seen in the TOCSY-HSQC, overlapping with 
the original TOCSY peaks, for additional 
confirmation. 
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HN(CO)CA/HNCA spectra, 72 residues had their Cα atoms assigned, 

giving wMT-2 sequence coverage of 94 %. In the HSQC experiments, 66 

residues had their nitrogen atoms assigned, giving 86 % wMT-2 

sequence coverage. The chemical shifts of the assigned atoms within the 

residues of wMT-2 are tabulated in Appendix 17. From the assigned 

spectrum, distance restraints were generated for structure calculations. 

Additionally some backbone torsional angles were determined 

experimentally using the HNHA experiment. 

 

HNHA 

The HNHA experiment (Figure 4.14) can be used to experimentally 

determine phi (φ) protein backbone dihedral angles (CO-N-Cα-CO), using 

the Karplus relationship [222]. From an assigned spectrum, the relative 

intensities of the HN and H-Hα crosspeak heights (or volumes) are 

required for the equation. Due to the pulse sequence used for the 

experiment, crosspeaks for the H-Hα chemical shifts appear as positive 

peaks, with the backbone HN appearing as negative peaks. After manual 

assignment, values for torsional angles were calculated using the CcpNmr 

Analysis 3J H-Hα Coupling module. This output was subsequently 

exported as an angle file to be used in CYANA calculations. Based on the 

assigned spectrum, angles were able to be calculated for 57 % of the 

protein sequence due to peaks being either missing or unable to be 

unambiguously assigned. 
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4.6 111Cd 1-dimensional NMR Spectroscopy 

To determine cluster assignments for specific cadmium-cysteine 

connectivities, attempts to prepare samples reconstituted with the 111Cd 

isotope were undertaken [93]. The specific isotope used was 96.4 % 

111Cd, obtained as solid CdO [Cambridge Isotope Laboratories Inc., UK], 

and dissolved in HCl. Due to the high cost of isotopically enriched metals, 

wMT-2 was expressed first in the presence of unlabelled cadmium, and 

then reconstituted with labelled cadmium just before spectroscopy. Initial 

Figure 4.14. LEFT.Schematic of the HNHA experiment. RED indicates the direction of 
magnetisation transfer. Magnetisation is transferred from the HN to the backbone N, before being 
passed through the intraresidual Cα to the Hα atom. Magnetisation is then transferred back the 
same way for detection (not shown). RIGHT. HNHA experimental data is presented of two isolated 
residues (74Lys and 79Asp). Peaks in the positive spectrum (PINK) correspond to that of the 
backbone H, Hα crosspeak. This can be compared to the negative peak (GREEN) on the diagonal 
(corresponding to the backbone H) using the Karplus relationship. This will generate the dihedral 
backbone angles for the residue. 
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attempts at this procedure caused precipitation of the sample, possibly 

due to protein not refolding correctly around the newly supplied metal, or 

the apo-protein chains aggregating at low pH. A subsequent purification 

met with similar losses in protein, the best spectrum being obtained from 

a sample of approximately 100 µM cleaved 111Cd-wMT-2, with a 

stoichiometry of 6.8 cadmium ions per wMT-2 molecule. The low 

concentration meant that a large number of scans (96k) were required 

for the experiment, and only three of the seven possible environments 

emerged significantly from background noise (Figure 4.15). 

 

 

 

 

 

 

 

 

Work performed by Hemmingsen et al. [223] indicated a correlation in 

the type and number of ligands, and the observed chemical shift in 

111/113Cd NMR. The S4Cd tetrahedral coordination environment can 

theoretically present anywhere from 622-791 ppm [223], however, 

experimentally determined chemical shifts for other MTs indicate shifts in 

the 610-672 ppm range being most likely [223]. Peaks A and B are well 

Figure 4.15. 111Cd 1-dimensional NMR of reconstituted 111Cd-wMT-2. wMT-2 concentration 
approximately 100 µM. Sample buffer 50 mM [D11]Tris-Cl, pH 7.5. Spectrum acquired at 298 K, 
96k scans. There are 3 distinct peaks are labelled A-C, with potential additional peaks indicated 
with ‘*’. 
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within this range, with three additional potential peaks designated ‘*’ 

(Figure 4.15). Peak C, however appears at an unexpectedly low chemical 

shift (580 ppm), which may suggest that the metal ion is either not 

coordinated by 4 sulphur ligands, or experiences shielding usually 

observed with nitrogen ligands. This could be a consequence of the harsh 

reconstitution conditions significantly affecting the ability of wMT-2 to 

reform the correct coordination environment. To enable full 

characterisation of the binding sites, further 111Cd experiments will be 

required.  

 

4.7 Structure Calculations using CYANA 

The basis for structure calculations is the retrieval of restraints from NOE 

experiments. Restraints are values imposed on the calculation based on 

experimental data, for example the magnitude of an NOE crosspeak 

generates an approximate distance (distance restraint) between the two 

hydrogen atoms. The magnitude of the assigned NOE peaks gives 

information on the approximate through-space distances of the 

respective atoms. The structure determination of two-domain MTs by 

NMR usually requires the separate treatment of the two domains, as the 

data tend to offer no information on the mutual orientation of the 

domains. This is due to the rigid domains being joined by a flexible linker 

region. Flexible regions in NMR are problematic for structural 

determination, as they often have few or weak NOEs due to peak 

broadening from multiple conformers. This method [87] was followed for 

wMT-2 and separate calculations were performed for each domain. In the 
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following experiments, 200 structures were calculated, and the 10 with 

the lowest target function used in backbone root-mean-square deviation 

(RMSD) calculations. The target function is defined as being zero when 

no restraints are violated by the calculation; target functions < 10 are 

generally acceptable. 

 

Linker Region 

There are two potential candidates for linker regions in wMT-2. Although 

the linker region thus far has been postulated to consist of residues 46-

49 (-ADAQ-), a -KK- motif (found in vertebrate MT linker regions [224, 

225]) is also present in the wMT-2 sequence. To further add to the linker 

region conundrum, the two candidates either divide the wMT-2 sequence 

into Cys11 / Cys9 clusters (not uncommon for invertebrate MTs), or Cys9 

/ Cys11 clusters (similar to vertebrate MTs) (Figure 4.16). 

 

 

 

 

In an attempt to experimentally ascertain the correct domain boundary, 

two sets of calculations were performed. Both were of Domain 2 without 

Cys-Cys or Cys-Cd restraints. The two calculations were performed for: 

residues 50-79 (Cys9 cluster, Figure 4.16 TOP); or residues 44-79 (Cys11 

cluster, Figure 4.16 BOTTOM). The first calculation generated an RMSD 

result of 2.56 ± 0.53 Å, whereas the second calculation (including 

Figure 4.16. Sequences of cleaved wMT-2 with the two proposed linker regions highlighted in 
GREEN. Cysteines coloured RED, with the domains shown below the respective sequence. 
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-ADAQ-) gave an RMSD of 5.97 ± 1.49Å. As a consequence of MT linker 

regions being flexible and dynamic, the residues involved are likely to be 

lacking in NOE peaks due to peak broadening, and therefore distance 

restraints. As inclusion of the –ADAQ- portion caused a significantly 

higher RMSD value in the second structure calculation, it will be assumed 

that this corresponds to the correct linker region. In addition, some long 

range NOE crosspeaks corresponding to the lysine doublet (41-42) with 

residues 37Ala and 31Cys are present. These crosspeaks would be 

unlikely to be present if the lysine residues were part of a linker region. 

This reinforces the hypothesis that the linker region consists of residues 

46-49. 

 

Deriving metal-cysteine connectivities 

In the absence of unambiguous labelled cadmium data, the connectivities 

between specific cysteine sulphur and cadmium atoms had to be 

approximated by other means. Due to the lack of deposited MT 

structures, a sequence-specific search of the individual domain 

sequences against those with Protein Data Bank (PDB) coordinate 

information was performed. Usually the measure for determining a ‘real’ 

hit from a ‘chance’ hit is the E value of the match. The E value is the 

‘Expect value’, the higher this value, the more likely a hit is due to 

chance matches of part of the sequence. Generally speaking, an E value 

between matched sequences > 10 is purely due to chance, with an E 

value > 1 being unlikely to be related. When working with short 

sequences however, the E values are sometimes misleading and the 



Chapter Four 

 152 

‘Total Score’ value is more effective for determining ‘real’ hits. The ‘Total 

Score’ reflects the homology in all portions of the sequence, even if they 

are non-contiguous (ie there are gaps in the sequence), with higher 

values indicating a better match. The search for Domain 1 

(CCGNKTCPREGSTCACSKCRCPKDDCAPNCKKLCC) generated no significant hits 

(E value > 5). Performing the same search with Domain 2 however 

(CGNASCSCGAACKCAAGSCASGCKKGCC) generated 2 potentially significant hits 

(E value < 1), with the β-domain of sea urchin MTA covering 96 % of the 

sequence. Relaxing the E value parameters to accept potential ‘chance’ 

matches generated 4 additional hits with E value < 1.5, all from the 

vertebrate MT family (Figure 4.17). This is probably due to the 

disproportionately large number of vertebrate MT sequences which have 

had their three-dimensional structures determined. 

 

 

 

 

 

Unexpectedly, there was a hit from the βE-domain of the plant MT, Wheat 

Ec. Contrary to previous experimentally determined metal connectivities, 

a modelling approach was taken for the βE-domain of Wheat Ec, with the 

connectivity with the lowest RMSD published as the expected connectivity 

[226]. This required a calculation for every permutation of every cysteine 

Figure 4.17. Results from a PDB search of wMT-2 Domain 2. Note that all domains are β-domain. 
The Horizontal lines in the Wheat Ec sequence indicate a section of 14 residues which have been 
removed for the alignment only. 
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in the cluster, for in excess of 7,000 calculations. This was not deemed a 

suitable method for deriving the connectivities for wMT-2. 

 

To determine the possible structure of wMT-2 Domain 2, two approaches 

were taken. The first was to transpose the connectivities from the similar 

β-domain of sea urchin MTA to the sequence of wMT-2 [87]. The 

approach is somewhat similar to that of homology modelling, however 

only the metal-cysteine connectivities are required, and no other 

structural inferences are made between the two protein sequences. This 

is possible due to the highly conserved positions of the cysteine residues 

in this area of both proteins (Appendix 18). The second approach was to 

refine a structure from the starting point of a structure determined 

without metal restraints. Distances measured between the sulphur atoms 

of different cysteine residues in a cluster were sufficient for determining 

likely cluster formations caused by four thiols being in close spatial 

proximity. 

 

Domain 2 (Residues 50-77) 

Structure calculations included all cysteine residues for the proposed 

second domain, leaving the flexible termini out of the calculation. 

Figure 4.18 shows the restraints generated for Domain 2 by CCPN from a 

starting 98 NOESY peaks, including both upper and lower distance limits.
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Domain 2 is not well defined without metal restraints, and gave an RMSD 

of 2.56 ± 0.53 Å. (Figure 4.19). This lack of definition is reflected in the 

‘sausage’ plot, with thick lines indicating that within the 20 structures 

within the ensemble, multiple conformations were present. This is in 

keeping with secondary structure analysis using the PDBsum Web 

Interface, which indicates no secondary structure elements are present.  

 

 

 

 

 

 

Figure 4.19. LEFT. Representative structure with lowest target function (T = 9.50E-04) of wMT-2 
Domain 2 without metal restraints. RIGHT. The ensemble of 20 structures calculated by CYANA, 
indicating the flexibility of the structures. Thinner lines represent lower variability of the 
structure. 

 

Figure 4.18. LEFT Plot of the number of upper and lower distance limits per residue in wMT-2 
Domain 2 (note that metal restraints are not included). Intra-residual NOEs shown in PURPLE, 
Short-range (sequential) NOEs shown in GREEN, Medium-range (2-4 residues) NOEs shown in 
RED, Long-range (> 5 residues) NOEs shown in BLUE. RIGHT Summary of the NMR constraints, 
and statistics obtained from CYANA for Domain 2 of wMT-2. 
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NMR Constraints    

Upper Distance Limits  66 

Lower Distance Limits  104 

Intra   77 

Short 1 aa  51 

Medium 2-4 aa  23 

Long > 5 aa  19 

Dihedral Angle Constraints  96 
    

CYANA Statistics    

No. of calculated structures  200 

No. of structures in ensemble  10 

Average target function  3.35 ± 0.15 

Number of violations ( > 0.2 Å)  19 

Metal related  12 

Number of angle violations ( ≥ 5 °) 1 

RMSD of ensemble backbone  0.75 ± 0.21 Å 

RMSD of ensemble heavy atoms  1.07 ± 0.23 Å 
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To improve the quality of the structure, an additional 51 metal restraints 

were included in the next calculation: the upper and lower distance limits 

were fixed to 2.60 Å between S-Cd - defined as the value for non-

strained Cd-S bonds [227], Cd-Cd distances between metals in the 

cluster were fixed to between 4.50-4.70 Å, and cysteine S-S distances in 

the cluster were fixed to 4.05-9.00 Å‡. Transposing the relative positions 

of the cysteine residues in the MTA β-domain to wMT-2 Domain 2 

generated a structure with 18 violated distance restraints (≥ 0.2 Å), with 

a sum of the mean of these violations of 7.13 ± 0.13 Å. There was also 1 

violated angle restraint (≥ 5 °). The structure determined using these 

metal constraints had a backbone RMSD of 0.85 ± 0.17 Å, which 

indicates good resolution. The ‘sausage’ plot showed that the backbone 

was significantly higher resolution than without metal restraints 

(Figure 4.20), whilst still resembling the original shape.  

 

 

 

 

 

Visualising the structure with the lowest target function in SWISS PDB 

Viewer enabled other permutations of the metal cluster to be 
                                                           
‡ These numbers were derived from a survey of known MT PDB structures, 1dft, 1qjl, 2kak, 2mhu, 
2mrb, 4mt2 

Figure 4.20. LEFT. Representative structure with lowest target function (T = 3.65) of wMT-2 
Domain 2, utilising the connectivities from sea urchin MTA. RIGHT. The ensemble of 20 
structures calculated by CYANA, indicating the flexibility of the structures. Thinner lines 
represent lower variability of the structure. 
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investigated. The investigation was performed on the PDB structure with 

the lowest target function (the target function is zero when all restraints 

are met), calculated in the absence of metal restraints. From this 

structure, the distances between the sulphur atoms of each cysteine 

were measured, and tabulated (Figure 4.21).  

 

 

 

 

 

 

 
 

 

 

 

 

 

Although it was thought that residues with > 3 short interresidual 

distances§ (ie 61Cys has another 6 cysteine residues in close proximity) 

were more likely to be bridging cysteine residues, this was not 

necessarily the case. A total of ten permutations were attempted, based 

on possible connectivity patterns from their inter-residual S-S distances, 

the results are tabulated in Table 4.1. 
                                                           
§ short distances are distances less than the mean distance of 9.40 Å for Domain 2 

Figure 4.21. Cysteine S-S distances (in Å) of wMT-2 Domain 2, measured from the structure with 
lowest target function from the ensemble, values lower than the mean (9.40 Å) are indicated in 
BLUE. 

DOMAIN 2 - S-S distances 

 
50 55 57 61 63 68 72 76 77 

50   8.88 9.29 8.31 10.47 15.04 13.03 7.92 5.98 

55 8.88   3.20 4.89 10.26 6.43 15.17 13.34 10.78 

57 9.29 3.20   3.92 8.31 6.15 15.41 11.89 11.10 

61 8.31 4.89 3.92   7.01 2.96 11.53 9.87 7.99 

63 10.47 10.26 8.31 7.01   6.08 14.02 13.70 13.51 

68 15.04 6.43 6.15 2.96 6.08   10.23 11.64 8.62 

72 13.03 15.17 15.41 11.53 14.02 10.23   12.07 7.10 

76 7.92 13.34 11.89 9.87 13.70 11.64 12.07   2.46 

77 5.98 10.78 11.10 7.99 13.51 8.62 7.10 2.46   
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The permutation with the lowest RMSD score (Alternate Connectivity 1, 

Table 4.1) was used for further work in this section. From analysis of the 

domain composition, both connectivity options look very similar, 

especially in the coordination of CdII and CdIII, although the nature 

(either bridging or terminal) of the cysteine residues was different. The 

most significant difference was in the CdI coordination cluster, at the 

start of the sequence (Figure 4.22). 

 

 

 

 

 

 

 

 

 

Table 4.1. The outcome of performing structure calculations based on ten possible cluster 
compositions for Domain 2. Results are ranked by RMSD of backbone atoms. BLUE indicates 
bridging cysteine residues. 

 

 

 

Figure 4.22. Comparison of the wMT-2 Domain 2 connectivities obtained by transposition of the 
β-domain of sea urchin MTA (TOP), and the permutation with lowest RMSD from PDB analysis 
(BOTTOM). 

 

distance angle
 Alternate Connectivity 1 50 55 57 76 57 61 63 77 68 72 76 77 0.75 ± 0.21 19 1

  Sea Urchin Connectivity 50 55 63 68 55 72 76 77 57 61 63 77 0.85 ± 0.17 25 3
Alternate Connectivity 2 50 55 57 72 55 61 76 77 57 61 63 68 1.06 ± 0.32 27 4
Alternate Connectivity 3 50 61 76 77 55 57 61 68 63 68 72 77 1.41 ± 0.33 23 3
Alternate Connectivity 4 50 55 57 63 50 72 76 77 57 61 68 77 1.41 ± 0.33 31 4
Alternate Connectivity 5 50 61 76 77 55 57 61 68 63 68 72 77 1.43 ± 0.33 24 3
Alternate Connectivity 6 50 61 63 77 55 57 61 68 68 72 76 77 1.43 ± 0.93 27 2
Alternate Connectivity 7 50 61 63 68 50 55 57 77 68 72 76 77 2.70 ± 1.01 24 5
Alternate Connectivity 8 50 55 63 77 55 57 61 68 61 72 76 77 2.74 ± 0.66 39 5

  Alternate Connectivity 9 50 55 57 63 57 72 76 77 61 63 68 72 3.37 ± 0.97 35 8

5.57
7.82
6.02
7.61

Violated constraintsRMSD ± ÅTargetCdI CdII CdIII

3.35
4.19

6.64
4.88
8.81
8.85
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The ‘Alternate 1’ domain connectivity generated a structure with an 

RMSD of 0.75 ± 0.21 Å (Figure 4.23), approximately 10 % smaller than 

with ‘Sea Urchin’ domain connectivity. The sausage plot in Figure 4.23 

shows a slightly different backbone conformation, although the general 

motif of a large clockwise turn moving into a set of three anti-clockwise 

turns (as oriented in Figure 4.19 & Figure 4.20) was conserved. 

 

 

 

 

 

 

The changes in structure are due in part to the scarcity of long-range 

connectivities, making the metal ions and their connectivities the largest 

contributor to the structure of Domain 2. Within the structure, 19 

distance restraints were mildly violated (0.2 - 0.7 Å), more than half of 

these were from the inclusion of perhaps overly restrictive metal 

restraints. With that in mind, the magnitude of the violations was similar 

to literature [144], with no violation exceeding a mean of 0.67 Å, with 

the sum of all mean violations 6.14 ± 0.01 Å. To estimate whether the 

values for violations are acceptable, they were compared to the values 

reported for sea urchin MTA (sum of all mean violations of 1.8 ± 0.4 Å). 

Figure 4.23. LEFT. Representative structure with lowest target function (T = 3.11) of wMT-2  
Domain 2 utilising ‘Alternate 1’ metal restraints. RIGHT. The ensemble of 20 structures 
calculated by CYANA, indicating the flexibility of the structures. Thinner lines represent lower 
variability of the structure. 
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Structure Z-scores wMT-2        
Sea Urchin

wMT-2 
Alternate 1 MTA

Packing quality -3.644 ± 0.691 -3.566 ± 0.858 -6.192
Ramachadran plot -7.802 ± 0.275 -7.719 ± 0.572 -5.581
Backbone conformation -2.459 ± 1.083 -1.834 ± 0.381 -5.744

RMS Z-scores

Bond lengths 0.948 ± 0.001 0.948 ± 0.001 1.065
Bond angles 0.147 ± 0.000 0.147 ± 0.000 0.688
Improper dihedral distribution 0.154 ± 0.002 0.154 ± 0.002 0.601

Analysis of the protein ensemble of 20 structures with lowest target 

function was performed using the Common Interface for NMR structure 

Generation (CING) Web Interface** for analysing PDB files. The CING 

interface outputs general information on both the quality of the structure, 

and how well the structure conforms to current structures within the 

database (Table 4.2). 

 

 

 

 

 

 

 

 

For gauging the quality of the data, the two connectivity options were 

compared with the β-domain Cys9-cluster of MTA. Packing scores are an 

evaluation of the interaction between buried amino acids and interactions 

between exposed amino acids. Generally, proteins pack tightly, with the 

expected distance (or packing) between a particular amino acid and its 

neighbours in a sequence being experimentally determined [226]. 

Therefore low packing quality scores are probably due to the metal-

binding clusters of MT causing unique conformations of the protein 

                                                           
** https://nmr.cmbi.ru.nl/icing/iCing.html 

Table 4.2. Summary of the output from CING for the two connectivities, compared with that of 
sea urchin MTA β-domain. Structure Z-scores generally give an indication of the quality of the 
structure, based on currently available structures, the more positive the score the better. The 
RMS Z-scores generally give an indication of how well the model conforms to current structural 
data, the closer to 1.0 the score the better. 
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backbone. The very low Ramachadran score may be of some concern, 

with 1.9 % (sea urchin MTA β-domain connectivity) or 3.8 % 

(‘Alternate 1’ connectivity) of residues exhibiting angles in the disallowed 

region (Figure 4.24). Glycine residues have been shown for reference, 

but as they may adopt any backbone torsional angle, they are not of 

concern. Although the structure of the sea urchin MTA β-domain has no 

angles in disallowed areas, the presence of angles in disallowed regions 

is not uncommon for MTs. For example, the accepted structure of rat 

MT-II β-domain (PDB 1mrt) has 3.8 % of residues with angles in 

disallowed areas. 

 

 

 

 

 

 

 

 

The backbone conformation score looks at the backbone formed by a 

residue, and its direct neighbours either side. Based on the conformation 

of these triplets, a score is derived, with low scores indicating that 

residues are part of an unusual loop, or there are issues with the angles 

formed by those particular residues. Comparing the RMS Z-scores from 

Figure 4.24. Ramachadran plot of the torsional angles in Domain 2 of wMT-2 with either sea urchin 
MTA β-domain or ‘Alternate 1’ connectivities. Crosses within YELLOW regions are favourable 
regions, crosses within BLUE regions are generously allowed. Residues that are not glycine and are 
outside of these regions are labelled, and show abnormal torsional angles. 
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the actual sea urchin MTA β-domain with those of the two wMT-2 

connectivities suggests that both options for Domain 2 are 

conformationally less unusual than the β domain of MTA. This may 

indicate that the angles imposed by CcpNmr Analysis and CYANA on the 

wMT-2 calculations are more tightly restrained than in the older program 

DYANA, which was used for calculating the MTA domain structures. This 

led to slightly less variation in bond angles than would be expected with 

respect to the protein backbone composition for wMT-2 Domain 2. 

Considering the ambiguous nature of the assignment of coordinating 

residues within wMT-2 Domain 2, the exact metal connectivity cannot be 

determined without heteronuclear [1H, 111/3Cd]-correlation spectroscopy 

[87]. 

 

The packing quality and Ramachadran scores are better for the 

‘Alternate 1’ connectivity than any other tested, and again comparable to 

those reported in accepted MT PDB structures. Although the percentage 

of angles in disallowed regions is slightly worse for the ‘Alternate 1’ 

connectivity than for ‘Sea Urchin MTA β-domain’ connectivity, the sum of 

the mean of all violated distance restraints is significantly lower 

(≈ 15 %). Considering that the general shape of the molecule without 

metal restraints matched fairly closely with the refined structure utilising 

the connectivity with lowest backbone RMSD (‘Alternate 1’), it is likely 

that this connectivity is close to the real structure. 
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Domain 1 (Residues 11-45) 

The determination of the structure of Domain 1 proceeded in a similar 

manner to that of Domain 2. Structure calculations included all cysteine 

residues for the proposed first domain, leaving the flexible termini out of 

the calculation. Figure 4.25 shows the restraints available for Domain 1, 

generated by CCPN from a starting 161 NOESY peaks, including both 

upper and distance limits.  

 

 

 

 

 

 

 

 

 

 

 

Without metal restraints, Domain 1 had a high RMSD of 4.58 ± 0.46 Å 

(Figure 4.26), significantly higher than for Domain 2 without metal 

restraints (Figure 4.19). As investigation of similar structures was not 

possible (there were no hits in the database), and the primary sequence 

of the α-domain of sea urchin MTA is significantly different to that of 

wMT-2 Domain 1 (Appendix 18), the method of deducing connectivity 

permutations by measuring S-S distances between cysteine residues in 

the cluster was attempted (Figure 4.27). 

Figure 4.25. LEFT Plot of the number of relevant distance restraints per residue in Domain 1 of wMT-2 
(note that metal restraints are not included). Intra-residual NOEs shown in PURPLE, Short-range 
(sequential) NOEs shown in GREEN, Medium-range (2-4 residues) NOEs shown in RED, Long-range 
(> 5 residues) NOEs shown in BLUE. RIGHT Summary of the NMR constraints, and statistics obtained 
from CYANA for Domain 1 of wMT-2. 

 

 

NMR Constraints    

Upper Distance Limits  111 

Lower Distance Limits  192 

Intra   136 

Short 1 aa  85 

Medium 2-4 aa  37 

Long > 5 aa  45 

Dihedral Angle Constraints  128 
    

CYANA Statistics    

No. of calculated structures  200 

No. of structures in ensemble  10 

Average target function  8.68 ± 0.16 

Number of violations ( > 0.2 Å)  31 

Metal related  16 

Number of angle violations ( ≥ 5 °) 3 

RMSD of ensemble backbone  0.52 ± 0.12 Å 

RMSD of ensemble heavy atoms  1.13 ± 0.24 Å 
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Figure 4.26. LEFT. Representative structure with lowest target function (T = 0.22) of wMT-2 
Domain 1, without metal ion restraints. RIGHT. The ensemble of 20 structures calculated by 
CYANA, indicating the flexibility of the structures. Thinner lines represent lower variability of the 
structure. 

 

11 12 17 24 26 29 31 36 40 44 45

11 5.28 17.38 8.17 8.82 11.33 15.21 19.94 15.61 14.32 14.50

12 5.28 14.92 9.40 12.87 16.50 20.14 22.47 18.29 18.77 18.10

17 17.38 14.92 12.00 17.59 24.09 25.80 18.72 20.89 23.12 23.14

24 8.17 9.40 12.00 6.54 12.82 14.85 15.36 16.39 14.46 16.52

26 8.82 12.87 17.59 6.54 6.69 8.48 13.07 13.52 8.70 12.42

29 11.33 16.50 24.09 12.82 6.69 4.65 16.60 14.74 7.43 11.87

31 15.21 20.14 25.80 14.85 8.48 4.65 16.20 17.31 8.88 14.75

36 19.94 22.47 18.72 15.36 13.07 16.60 16.20 12.00 11.29 13.73

40 15.61 18.29 20.89 16.39 13.52 14.74 17.31 12.00 8.73 4.07

44 14.32 18.77 23.12 14.46 8.70 7.43 8.88 11.29 8.73 6.40

45 14.50 18.10 23.14 16.52 12.42 11.87 14.75 13.73 4.07 6.40

DOMAIN 1 - S-S distances

Figure 4.27. Cysteine S-S distances (in Å) of wMT-2 Domain 1, measured from the structure 
with lowest target function from the ensemble, values lower than the mean (14.11 Å) are 
indicated in BLUE. 
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Similarly to Domain 2, the resolution of the structure was improved with 

the addition of 77 metal restraints, but due to the number of proposed 

bridging cysteine residues in Domain 1, the rules regarding the 

connectivities were much stricter. Therefore a total of five permutations 

were attempted, the results are tabulated in Table 4.3. 

 

 

 

 

The permutation with the lowest target function, ‘Alternate 1’, showed a 

backbone RMSD value of 0.52 ± 0.12 Å (Figure 4.28). This structure 

causes the violation of 31 distance restraints ≥ 0.2 Å (44 total distance 

violations), with a sum of the mean of these violations 12.34 ± 0.16 Å; 

there were also 3 violated angle restraints ≥ 5 ° (5 total angle violations). 

Due to the number of violated restraints, the average target function was 

higher than for Domain 2, at T = 8.68. 

 

 

 

 

 

 

 

 

Table 4.3. The outcome of performing the structure calculations based on five possible cluster 
compositions for wMT-2 Domain 1. Results are ranked by RMSD of backbone atoms. BLUE 
indicates bridging cysteine residues. 

 
distance angle

Alternate Connectivity 1 11 12 24 44 11 17 36 40 24 26 31 36 29 31 40 45 0.52 ± 0.12 44 5
Alternate Connectivity 2 11 17 24 31 26 29 31 36 11 36 40 44 12 24 44 45 0.70 ± 0.29 61 4
Alternate Connectivity 3 11 12 24 26 11 29 45 17 26 29 31 44 36 40 44 45 1.10 ± 0.54 59 10
Alternate Connectivity 4 11 12 24 26 17 24 29 36 26 29 31 44 36 40 44 45 1.33 ± 0.27 69 6
Alternate Connectivity 5 12 17 24 31 26 29 31 36 17 36 40 44 11 24 44 45 1.96 ± 0.55 65 8

CdIV CdV CdVI CdVII ÅTarget

8.68
16.96

Violated constraints

18.99
20.77
23.38

RMSD ±

Figure 4.28. LEFT. Representative structure with lowest target function (T = 8.22) of wMT-2 
Domain 1, with ‘Alternative 1’ metal restaints. RIGHT. The ensemble of 20 structures calculated 
by CYANA, indicating the definition of the structures. Thinner lines represent lower variability of 
the structure. 
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Structure Z-scores wMT-2 
Alternate 1 MTA

Packing quality -4.019 ± 0.837 -6.041
Ramachadran plot -7.534 ± 0.487 -7.202
Backbone conformation -3.189 ± 0.394 -3.559

RMS Z-scores

Bond lengths 0.966 ± 0.000 1.11
Bond angles 0.191 ± 0.000 0.686
Improper dihedral distribution 0.248 ± 0.002 0.642

Although the primary sequences of MTA α-domain and wMT-2 Domain 1 

are divergent, some insight into the quality of the structure can still be 

gathered by comparing their respective values. The Z-scores in Table 4.4 

are similar to those for the accepted structure of MTA α-domain from sea 

urchin, suggesting that the calculation has generated a good potential 

structure. In a similar fashion to Domain 2, Domain 1 exhibits a slightly 

lower Ramachadran score. 

 

 

 

 

 

 

 

 

The Ramachandran plot (Figure 4.29) indicated 9.3 % of residues with 

backbone torsional angles in disallowed regions. Although this is a very 

high percentage, it is similar to that of the α-domain of rat MT-II (PDB 

2mrt) which has 8.0 % of residues with backbone angles in disallowed 

regions, but higher than sea urchin MTA α-domain, which has 3.4 % in 

disallowed regions. 

Table 4.4. Summary of the output from CING for the two connectivities, compared with that of 
sea urchin MTA α-domain. Structure Z-scores generally give an indication of the quality of the 
structure, based on currently available structures, the more positive the score the better. The 
RMS Z-scores generally give an indication of how well the model conforms to the current 
restraints, the closer to 1.0 the score the better. 
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In general, the RMS Z-scores for Domain 1 (Table 4.4) are slightly better 

than for Domain 2 (Table 4.2), with the low variation in bond lengths and 

bond angles indicative of tight restrictions within CYANA. As the overall 

target function is very much higher than for Domain 2, with a similar 

increase in the number of distance and angle violations, more refinement 

of the Domain 1 structure may be required. However, the structure 

generated thus far exhibits low variability within the ensemble, as shown 

by the thin lines in the ‘sausage’ plot in Figure 4.28. With this in mind, 

and without the aid of experimentally determined metal-cysteine 

connectivities, this structure is acceptable. 

 

Figure 4.29. Ramachadran plot of the torsional angles in Domain 1 of wMT-2. Crosses within 
YELLOW regions are favourable regions, crosses within BLUE regions are generously allowed. 
Residues that are not glycine and are outside of these regions are labelled, and show abnormal 
torsional angles. 
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4.8 Summary 

The proposed structures for Domain 1 and Domain 2 of wMT-2 were 

experimentally determined through the use of 2-dimensional and 3-

dimensional NMR techniques. When an acceptable 1-dimensional 

spectrum is recorded, 2D [1H, 111Cd] HSQC can be performed, and with 

knowledge of the 1H chemical shifts assigned previously, the through-

bond couplings between the hydrogen atoms of the coordinating residue 

and the specific cadmium ions [93] can be used for unambiguous cluster 

assignment. Without the aid of experimentally determined cadmium-

cysteine connectivities, a sequence similarity search was performed for 

each domain, and distances between every cysteine in a domain were 

measured from a structure without metal restraints. Based on the inter-

residual cysteine distances (55 for Domain 1, 36 for Domain 2), likely 

permutations of cysteine residues about the metal ions were then 

attempted. Domain 2 was found to be similar in sequence to sea urchin 

MTA (≈ 50 %). When the domain connectivities were transposed, the 

backbone RMSD was calculated to fulfil all criteria for an acceptable MT 

structure. However, based on a permutation generated from inter-

residual cysteine distances a structure was calculated with lower 

backbone RMSD. This was accepted in preference, as likely to be 

representative of the correct backbone conformation. The search with 

respect to Domain 1 yielded no similar sequences, but cysteine-cysteine 

connectivities generated a structure which also showed all the 

characteristics of an acceptable MT structure.  
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The next step towards a structure/function relationship for wMT-2 was to 

investigate the in vitro metal-binding properties. Where possible, these 

properties are compared to the other members of the earthworm MT 

family, wMT-1 and wMT-3. 
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5 

Metal-binding studies of wMTs 

 
5.1 Introduction 

In order to gather information about the metal-binding properties of 

earthworm MTs, a series of experiments to ascertain their responses to 

zinc and cadmium ions were undertaken. As with the majority of the 

work presented in this thesis, the focus was on wMT-2. However, due to 

the successful purification of wMT-1 and wMT-3, some general 

comparisons could be made between all three wMTs. Mass spectrometry 

measurements were performed on a Bruker HCTultra ion-trap mass 

spectrometer. Sample conditions were 20 mM ammonium bicarbonate 

(pH indicated in the text), with 10 % HPLC grade MeOH. NMR 

measurements were performed on either a Bruker AV II 700 

spectrometer or a Bruker AV-400 fitted with a quadruple nucleus probe 

(QNP) able to measure 19F nuclei. 

 

5.2 Competition with protons 

Like virtually all metal-binding proteins, MTs exhibit pH dependence 

within their metal-binding clusters [229]. Some pH dependent behaviour 

of Cd-S●tag-wMT-2 had emerged in a 2006 study performed by Stillman 

et al. [157]. This study observed only the Cd7-, Cd4- and apo- forms of 

S●tag-wMT-2 during acidification at three pH values (6.80, 3.46, 2.30). 
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An investigation with more pH data points is required to ascertain 

whether other species might be present at intermediate pH values, and if 

observations with S●tag-wMT-2 were applicable to cleaved wMT-2. 

 

Behaviour of wMT-2 

A pH titration followed by mass spectrometry was undertaken for both 

the Zn- (13 readings) and Cd- (21 readings) forms of cleaved wMT-2 

(Figure 5.1). The general trends for the two metalloforms were found to 

be significantly different. For example at pH 4.0 cleaved Zn-wMT-2 

showed species from Zn7- to apo-, whereas only fully metallated Cd7- 

was observed as the major species. A Zn8- species became apparent 

around neutral pH, indicating lability within the zinc clusters. This 

indicates that wMT-2 can either form divalent metal adducts, or the 

backbone can adopt a conformation that will accept an extra zinc ion 

(possibly due to the ionic radius of the Zinc(II) ion being approximately 

80 % smaller than Cadmium(II)). The alternate backbone conformation 

of Zn-wMT-2 may influence the lability of zinc within the clusters, and 

therefore allow the observation of multiple Zn-wMT-2 species. The zinc 

spectra at pH 4.2-3.8 suggest that four of the remaining zinc ions may 

be bound within the proposed M4Cys11- cluster, as acidification to pH 3.8 

caused a significant change in the species observed. 

 

If we consider that cadmium is harder to remove than zinc from MT, we 

might expect the behaviour of Zn-wMT-2 to be shown by Cd-wMT-2 but 
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Figure 5.1. Stacked plot of the deconvoluted MS of cleaved wMT-2 with either zinc (LEFT) or 
cadmium (RIGHT). Similar pH conditions are juxtaposed to allow direct comparison of the 
spectra. The calculated mass of the metallated species are indicated with lines through the 
spectra, with supermetalated species indicated with dashed lines. Cd-wMT-2, 6.7 cadmium ions 
per wMT-2 molecule (48 µM protein); Zn-wMT-2, 6.1 zinc ions per wMT-2 molecule (42 µM 
protein) in 20 mM ammonium bicarbonate, 10 % MeOH. Further analysis in Appendix 14. 
FIGURE CONTINUED OVER THE PAGE. 

at a lower pH. This was not the case, as Cd4- became the major species 

(at pH 3.5), followed by the emergence of the apo- form (at pH 2.5). 

There were very few intermediate species observed, even though  
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Figure 5.1 (continued). Stacked plot of the deconvoluted MS of cleaved wMT-2 with either zinc 
(LEFT) or cadmium (RIGHT). Further analysis in Appendix 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pH steps of < 0.5 units were used in this study. Essentially, only the 

Cd7-, Cd4-, and apo- wMT-2 forms were observed. This supports the 

hypothesis that, at least with respect to H+ induced metal loss, Cd2+ ions 

are cooperatively bound in Cd-wMT-2. The three major species (Cd7-, 

Cd4- and apo-) show a 3 metal ion loss, followed by a 4-metal ion loss. 
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These may correspond to complete losses from the likely C-terminal 

M3Cys9- cluster, followed by the N-terminal M4Cys11-cluster. This is 

similar to previous studies with metal addition to vertebrate MT [217]. 

Even though the orientation of the clusters in earthworm MTs (M4Cys11- / 

M3Cys9-) are reversed when compared to vertebrate MTs (M3Cys9- / 

M4Cys11-) the orientation does not seem to effect the cooperative 

behaviour of the MT. Experiments with hybrid M3Cys9-/ M3Cys9- MTs 

[230] and reversal of the entire vertebrate MT sequence [231] also 

suggest that metal-binding is independent of domain orientation. 

 

A large reduction in pH (below pH 4.0) was required for initial cadmium 

ion removal from wMT-2. This is significantly different to the behaviour of 

Zn-wMT-2, which shows undermetallation above neutral pH. Due to the 

presence of multiple species present in the zinc spectrum (ie. Zn7-, Zn6-, 

Zn5-), there is a lower initial stoichiometry of Zn-wMT-2 compared to 

Cd-wMT-2. Without further experiments, it cannot be determined 

whether the relative instability of Zn-wMT-2 is magnified by the presence 

of species which are not fully metallated, causing non-chelating cysteine 

residues to be more susceptible to protonation. Stability to cadmium 

removal at low pH could be crucial for the proposed storage role of 

wMT-2. This would support the hypothesis that Cd-wMT-2 is secreted into 

‘cadmosomes’, cellular compartments similar to lysosomes [232]. 

Lysosomes have an internal acidity of ≈ pH 5 [233], and if this is similar 

for ‘cadmosomes’, then stability at this pH may be crucial for 

ameliorating the toxic effects of cadmium ions within the earthworm.  
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Above pH 5.0, there were no discernible changes in the spectra for 

Cd-wMT-2. However, a small proportion of a supermetalated species 

(Cd8-) appeared concurrently with the emergence of a small Cd4- peak. 

It is difficult to ascertain whether these species would exist in vivo, or if 

they are a consequence of the imposed in vitro experimental conditions. 

As metals are not removed from the solution during the pH titration, it 

could be that the appearance of Cd8- and Cd4- at the same time 

indicates that some of the Cd2+ liberated from the Cd3Cys9- cluster may 

form an adduct with Cd7-wMT-2. As this behaviour is seen for both zinc 

and cadmium forms, the propensity for supermetalation may be a 

specific advantage for a protein whose role is to quickly chelate large 

influxes of toxic metal ions. There have been certain cases of known 

supermetalation, either of individual clusters [206, 207], or of entire MTs 

[234], but this has not been previously seen in wMTs.  

 

Behaviour of wMT-1 and wMT-3 

Due to time constraints and low protein yields, mass spectra for wMT-1 

(Zn and Cd forms) and wMT-3 (Cd form only) were recorded at fewer pH 

intervals than wMT-2 (Figure 5.2). However, initial trends did start to 

emerge, even with the comparatively limited data. 
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For cleaved wMT-1 at pH 2.5 (Figure 5.2), although there were some 

contaminants present, all zinc ions were stripped. This is identical to that 

observed at the same pH for Zn-wMT-2 (Figure 5.1). Similarly, at 

≈ pH 8.5, a mixture of metal species was observed, with Zn7- to 

Zn5-wMT-1 comparable to the Zn7- to Zn5-wMT-2 species present at this 

pH. At an intermediate pH value (pH 4.7), multiple species were 

observed, ranging from Zn8- to Zn4-wMT-1. This behaviour was largely 

similar to that of Zn-wMT-2, which at pH 4.5 showed species from Zn7- 

to Zn2-wMT-2 (with Zn8-wMT-2 observed at pH 7.0). 

 

Cd-wMT-1 showed supermetalation at much higher pH (> 8) than 

Zn-wMT-1. The Cd8- species was still present at pH 3.5, at a similar pH 

to the observation of Cd8-wMT-2. At pH 3.5, Cd4- was the major species 

(≈ 50 %) for both wMTs, but there was a higher percentage of Cd8- to 

Cd7- in wMT-1 (76 %) compared to wMT-2 (63 %). At low pH, there 

were similar amounts of apo-wMT-1 and apo-wMT-2, with major species 

Figure 5.2. Deconvoluted mass spectra of cleaved wMT-1 with either zinc or cadmium. Samples in 
20 mM NH4HCO3, with 10 % MeOH. Contaminant peaks indicated with ‘*’. Relevant concentration 
and metal:sulphur ratios were: Cd-wMT-1 (35.5 µM, 2.9 S:Cd); Zn-wMT-1 (23.2 µM, 4.0 S:Zn). Ideal 
ratios for binding seven metal ions were: Cd7-wMT-1, 3.0 S:Cd; Zn7-wMT-1, 3.0 S:Zn. 
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Figure 5.3. Deconvoluted mass spectra of Cd-wMT-3. Samples in 20 mM NH4HCO3, with 10 % 
MeOH. Cd-wMT-3 concentration and metal:sulphur ratios were 46.1 µM. 3.0 S:Cd. Ideal ratios for 
binding seven metal ions were Cd7-wMT-3, 3.1 S:Cd. 

of Cd4- and apo- for both MTs. It might be expected that wMT-2 would 

retain cadmium ions over a wider pH range, as it is a postulated to be a 

native cadmium binding protein [112], however the sequence similarity 

between wMT-1 and wMT-2 may make the magnitude of these 

differences very small. 

 

 

 

 

 

 

Cd-wMT-3 at pH > 8 exhibited a sole Cd7- species (Figure 5.3), which 

could indicate properties similar to Cd-wMT-2, rather than Cd-wMT-1. It 

is not known if this is significant, as comparison of the character of 

wMT-3 to wMT-1 or wMT-2 would also require experimental data for the 

zinc form of wMT-3. At low pH, no comparison could be drawn between 

Cd-wMT-3 and Cd-wMT-1, as the pH differences between the 

experiments were too great. However, the presence of apo-wMT-3 at 

pH 3.0 contrasts with Cd-wMT-2, where apo-wMT-2 was first observed at 

pH 2.5. The major species at pH 3.0 was Cd4-wMT-3, but the presence of 

the apo- form suggested that the Cd-thiolate clusters in Cd-wMT-3 are 

more susceptible to protonation than Cd-wMT-2. This may be consistent 

with the proposed role of wMT-3, as a ‘native’ zinc carrier [112].  
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pH of ½ dissociation (pKa
1/2) 

Previous work performed by Stürzenbaum et al. provided a good 

reference point for the pH of ½ dissociation (the pH at which the wMT-2 

had lost half of its bound metal ions), as the pKa
1/2 for Cd-S●tag-wMT-2 

was determined to be 2.8 [113]. Using the data obtained from the pH 

titration observed by mass spectrometry, a rough pKa
1/2 can be 

calculated. The quality of the data obtained in this way was validated 

with Cd-wMT-2 by performing elemental analysis as reported by 

Stürzenbaum [113] and Tommey et al. [235]. Briefly, samples were 

incubated at different pH values, before the MT-bound and free metal 

were separated by gel filtration and analysed by ICP-OES or a similar 

technique. The ratio of MT-bound to free metal was then calculated. Both 

methods of analysis generated data that showed a sigmoidal shape 

(Figure 5.4), which is similar to titration curves for other MTs [168]. 

 

Investigation into the single clusters of MTs has highlighted that M3Cys9- 

clusters often have a higher pKa
1/2 than M4Cys11- clusters. One study 

performed on the C-terminal M3Cys9- cluster of recombinant rabbit MT-

II, displayed a pKa
1/2 of 3.3 (compared to a pKa

1/2 of 3.0 for the entire 

sequence) [236]. Similar experiments repeated with the M4Cys11- and 

M3Cys9- clusters from Human MT-II, reported similar findings, but with a 

difference of 0.5 pH units for the M3Cys9- cluster (pKa
1/2 3.6), compared 

to the M4Cys11- cluster (pKa
1/2 3.1) [231]. The overall pKa

1/2 determined 

for human MT-II was determined to be pKa
1/2 3.03, slightly lower than the  
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M4Cys11- cluster, suggesting some inter-domain influence on metal  

binding characteristics [237]. If this is the case, then additional amino 

acids from purification and expression tags could also influence these 

inter-domain effects. This validates efforts expended on the observation 

of the wMTs unencumbered by tags. 

 

Figure 5.4. pH titration of cadmium and zinc wMT-2. Cadmium (TOP), solid BLUE line showing 
species estimated by MS, error bars show the measurement uncertainty between spectra. Dotted 
BLUE line corresponds to the analysis using ICP-OES. Zinc (BOTTOM) solid ORANGE line showing 
species estimated from MS. Note the error bars are significantly larger as the spectrum baseline is 
significantly more variable. RED lines are sigmoidal fitted curves (calculated in Origin Pro 8.5). 
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In the Cd-wMT-2 experiment, at pH 3.5 there was a large deviation from 

the sigmoidal curve. These data suggest a two-step demetallation 

process, corresponding to the complete removal of metals from one 

cluster, before the metals are removed from the other. This would 

support the data observed in the MS pH titration for Cd-wMT-2 

(Figure 5.1). Considering the reported higher pKa
1/2 for M3Cys9- clusters 

in other MTs, this data also supports the hypothesis that Cd-wMT-2 

demetallation is cluster specific, with the M3Cys9- cluster demetallating 

first. 

 

To allow comparison with previous MT data, a sigmoidal fit was 

performed with only one constant. Although fitting a biphasic curve 

requires two constants, in some cases experimental data is insufficient 

for this, therefore a single constant was used to fit all of the data 

reported. The pKa
1/2 for Cd-wMT-2 as determined by MS was 

pKa
1/2 2.92 ± 0.10, and by ICP-OES was pKa

1/2 3.28 ± 0.07. The value 

obtained by MS was very close to the value reported by Stürzenbaum et 

al. (pKa
1/2 2.8) for Cd-S●tag-wMT-2 [113]. However, the value obtained 

by ICP-OES lies within the range of values reported for vertebrate MTs 

(pKa
1/2 3.0-3.5) [238, 239], but lower than those reported for plant MTs 

(pKa
1/2 3.9-5.8) [235, 240]. 

 

Further work is required to validate the use of mass spectrometry to 

determine pKa
1/2 values, however it does seem to generate data that are 
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comparable to those obtained by elemental analysis. The pKa
1/2 for 

Zn-wMT-2 was not determined by ICP-OES, however utilising the mass 

spectra in Figure 5.1 gave a value of pKa
1/2 4.20 ± 0.05. As expected, 

this is higher than that observed for Cd-wMT-2, and similar to that of 

equine renal MT-II (pKa
1/2 4.5) [235] and rabbit MT-II (pKa

1/2 4.6) [239]. 

 

5.3 Competition Reactions 

Reaction with EDTA 

To probe the lability of cadmium ions bound to wMT-2 at neutral pH, the 

competitive divalent metal chelator EDTA (Ethylenediaminetetraacetic 

acid, Figure 5.5 LEFT) was used. Fully metallated cleaved Cd-wMT-2 (6.9 

cadmium ions per wMT-2 molecule) was incubated with one equivalent 

(with respect to metal) of EDTA, and incubated for 60 mins 

(Appendix 15). A low concentration of EDTA was used in this initial 

experiment to overcome the propensity for EDTA to quickly strip metal 

ions from MT, and therefore only observe apo-wMT-2 [241]. 
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1,2-Bis(2-amino-5-fluorophenoxyl)ethane-N,N,N',N'-tetraacetic acid

EDTA 
Ethylenediaminetetraacetic acid 5F-BAPTA 

5,5'-Difluoro-1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-
tetraacetic acid 

Figure 5.5. The structure of the two metal chelators used in the following section, EDTA (LEFT) 
and 5F-BAPTA (RIGHT). Standard IUPAC names are displayed below the respective structures. 
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Figure 5.6 shows the appearance of EDTAxCd7-wMT-2 complexes after 

just 30 seconds, highlighting the propensity for metal-binding proteins to 

form EDTA adducts [242, 243]. Spectra taken at further time-intervals 

did not show significant differences, indicating that wMT-2 was possibly 

inert to cadmium removal by low concentrations of EDTA within 60 min 

(Appendix 15). 

 

 

 

 

 

 

 

 

 

 
Although only a single equivalent of EDTA was added, species up to 

EDTA5Cd7-wMT-2 were observed in the raw spectrum. Cd-wMT-2 

contains 20 cysteine residues which are postulated to chelate metals, 8 

bridging ligands (contributing 2 bonds), and 6 terminal ligands. Although 

EDTA usually forms 6 multi-dentate bonds with divalent metal ions, this 

is not always the case. This suggests that EDTA is able to form adducts, 

possibly by displacing the terminal ligands, and adopting a bidentate 

conformation, whilst still maintaining seven metals bound. This would 

cause the appearance of the particular adducts (of EDTA1- to EDTA6-) in 

Figure 5.6. Raw mass spectrum at 30 seconds (0.5 mins) of cleaved Cd7-wMT-2 incubated with 
1 eq of EDTA (wrt cadmium concentration). 
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MS, but no higher states (EDTA7- upwards). Alternatively, the EDTA 

adducts may be with wMT-2 itself, and not involve interaction with metal 

ions. It may be inferred from the raw spectra (Appendix 15) that 

Cd-wMT-2 is remarkably stable with respect to cadmium removal by low 

concentrations of EDTA, similar to studies performed with Cd-MT by 

Petering et al. [244]. However, later NMR experiments showed that 

rabbit MT-II may react in an ‘all-or-nothing’ way with low concentrations 

of EDTA [242]. There is no peak corresponding to apo-wMT-2 in the raw 

mass spectra however, so this is unlikely to be the case. 

 

Reaction with 5F-BAPTA 

Another competitive chelator is 5F-BAPTA (Figure 5.5 RIGHT). The use of 

5F-BAPTA allows the observation of changes in the environment of the 

fluorine atoms of the chelator by 19F 1-dimensional NMR spectroscopy 

[200]. The experiments were performed using the technique first 

reported by Smith et al. [245], with suggested modifications by Benters 

et al. [246] for experiments involving cadmium ions. 5F-BAPTA forms 1:1 

complexes with divalent metal ions, each complex having a distinctive 

chemical shift in the 19F spectrum (Figure 5.7). Using the integral values 

of the peaks for free 5F-BAPTA (≈ -121 ppm) and cadmium-bound 

5F-BAPTA (≈ -116 ppm) / zinc-bound 5F-BAPTA (≈ -117 ppm) in 

Equation II [200], allowed the overall metal-binding affinity (apparent 

metal-binding constant, KwMT) for wMT-2 to be calculated. 
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Using the conditional equilibrium binding constant of 5F-BAPTA with 

cadmium (KCd-BAPTA = 5.62 x 1011 M-1) and zinc (KZn-BAPTA = 8.13 x 109 M-

1) for the particular ionic strength and pH of the experiment [151], the 

calculated apparent metal-binding constants of wMT-2 under these 

conditions were: KCd-wMT-2 = 3.88 x 1013 M-1 and 

KZn-wMT-2 = 8.26 x 1010 M-1. 

 

The spectra in Figure 5.7 show that, although potentially inert to metal 

removal by EDTA, 5F-BAPTA will remove both zinc and cadmium from 

wMT-2. As the chelating residues of EDTA and 5F-BAPTA are very similar 

(Figure 5.5), this behaviour may be due to 5F-BAPTA being present in a 

much higher concentration in this reaction (approximately 42x higher). 

Comparing these values to the apparent metal-binding constants for 

other MTs, derived under similar conditions (Figure 5.8), we can see 

that whilst the value for KZn-wMT-2 seems to be neither particularly high 

nor low, the value for KCd-wMT-2 is comparatively low. In comparison, the 

major cadmium binding protein CeMT2 from C. elegans [151], has a 

KCd-CeMT2 approximately 1.5 orders of magnitude greater. However, this 

Equation II 

Equation II. KwMT, apparent metal-binding constant of wMT; KBAPTA, equilibrium binding constant of 
5F-BAPTA with metal ion; [Mx-wMT], concentration of metal filled sites of MT; [BAPTA0], initial 
5F-BAPTA concentration; α, M-5F-BAPTA integral; β, Free 5F-BAPTA integral. From [200]. 
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could be a result of CeMT2 binding all metals strongly, exhibiting a 

KZn-CeMT2 approximately 1.1 orders of magnitude greater than wMT-2. If 

we compare the behaviour of Cd-wMT-2, pKa
1/2 ≈ 2.8-3.4, log(KCd-wMT-2) = 

13.6, with that of human Cd-MT-II, pKa
1/2 = 3.0, log(KCd-MT-II) = 14.8, 

these values appear to be reasonable. However, with wMT-2 being the 

postulated native cadmium binding protein in earthworms [112], one 

might expect either a higher log(KCd-wMT-2) or lower pKa
1/2 than their 

experimentally determined values. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. 19F NMR spectroscopy of the cadmium and zinc form of wMT-2. Notice the 
approximate areas and magnitudes of α and β peaks. These were integrated before being 
utilised in Equation II. Both samples were approximately 500 µM wrt metal ion concentration, 
in 10 mM Tris-Cl, pH 8.1; Ionic strength of the solution was 4 mM. 
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The most crucial characteristics of metal-binding proteins within a system 

are thought to be their relative affinities for metal ions when compared 

with other MTs and metal-binding proteins [247]. Whilst wMT-2 has an 

apparent metal-binding constant approximately 3 orders of magnitude 

higher for cadmium over zinc, further experiments with wMT-1 would be 

necessary for this relationship to be investigated fully. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4 Effects of zinc and cadmium on the backbone of wMT-2 

Two separate expressions and purifications were carried out in the 

presence of either zinc or cadmium. The parent overnight culture of both 

experiments was identical, in an effort to normalise protein expression 

Figure 5.8. Comparison of derived apparent metal-binding constants of MTs derived in 10 mM Tris-
Cl pH 8.1, < 5 mM ionic strength. Values expressed as log(KMT) values. Human MT-II and MT-III [200], 
SmtA & Ec-1 [168], CeMT1 and CeMT2 [151]. 
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levels. Sample concentrations for each experiment were 524 µM for 

cleaved Cd-wMT-2 (6.7 cadmium ions per wMT-2 molecule, measured 

after NMR data acquisition), and 483 µM for cleaved Zn-wMT-2 (5.9 zinc 

ions per wMT-2 molecule). To minimise loss of protein from purification, 

the samples were not buffer exchanged by gel filtration, but the buffer 

replenished during 4 concentration by centrifugation steps (25-35 mins, 

4 °C, 3,000 x g) with a source of 20 mM ammonium bicarbonate made 

with Milli-Q water and pH adjusted to ≈ 6.8. This was sufficient to 

achieve a sample at pH 7.0, with no observable precipitation of protein 

during centrifugation. Figure 5.9 illustrates the stark differences between 

the two samples. Both datasets were acquired at 700 MHz, 298 K, 

pH 7.0. Although some residues are present in both spectra, the 

spectrum for cleaved Cd-wMT-2 is significantly better defined; indicative 

of a well-folded protein [248]. 

 

There could be two reasons for the poor quality spectrum of cleaved 

Zn-wMT-2: wMT-2 being partly folded due to insufficient zinc ions; or the 

wMT-2 backbone being more flexible when binding zinc. As the 

stoichiometry of the sample is lower than 7, the implication is that 

Zn-wMT-2 is undermetallated. As metal ions are vital for MT folding 

[249], undermetallation may lead to increased flexibility - broadening the 

NMR crosspeaks to the point where they are no longer observed. 

However, Zn-wMT-2 samples exhibiting stoichiometry measured by 

ICP-OES between 5.5-6.3 zinc ions per wMT-2 (data from across 12 

preparations) still showed Zn7-wMT-2 as the major species by mass 
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spectrometry (Figure 3.42). The difference between the spectra is likely 

due to the backbone fold being more flexible in the zinc form, or the 

sampling of multiple conformations of the protein caused by incomplete 

metallation of the protein. The generally lower quality of both MS and 

NMR spectra of Zn-wMT-2 would support the hypothesis that the ‘native’ 

metal for wMT-2 is cadmium [112]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. 2D TOCSY NMR of 500 µM cleaved wMT-2 with: Cadmium (BLUE) or Zinc (ORANGE). 
Picked peaks in the zinc spectrum (in ORANGE) corresponded closely (ppm < 0.2) with those 
observed in the assigned cadmium TOCSY (assignments not shown). Buffer was 20mM 
ammonium bicarbonate, pH ≈ 7.0 with 10 % D2O. RED peaks are peaks observed in the zinc 
spectrum which were unable to be unambiguously assigned from the cadmium spectrum. 
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Residues which were able to be unambiguously assigned in the spectra of 

cleaved Zn-wMT-2 were compared the assignment of cleaved Cd-wMT-2. 

The partial assignment of Zn-wMT-2 indicated that only 11 of the 45 

residues in the M4Cys11- cluster were assignable, with 11 of 30 residues 

in the M3Cys9- cluster assignable (not including the proposed linker 

region) (Figure 5.10). Overall, this meant that a similar number of 

crosspeaks were assigned in both domain clusters (M3Cys9- ≈ 37 %; 

M4Cys11- cluster ≈ 36 %). 

 

 

 

 

 

 

 

Of the unassigned residues in Figure 5.9, 4 spin systems exhibited a 

J-type pattern. The difficulty in assigning these ambiguous J-type spin 

systems in the spectra of Zn-wMT-2 could indicate that to accommodate 

zinc ions the protein has to adopt an alternative fold to that of the 

cadmium form. This would position the cysteine residues in different 

environments to those observed in Cd-wMT-2, significantly altering their 

chemical shifts. The assigned residues are spread throughout the entire 

sequence of wMT-2 (Figure 5.10), with gaps of no more than four amino 

Figure 5.10. Comparison of the residues identified in 2D TOCSY experiments. Scheme indicates: 
Cadmium (BLUE) or Zinc (ORANGE). The proposed linker region is shown in GREY, with the 
N-terminal -GS- residues remaining from the removal of the S●tag also highlighted. 
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acids between assigned amino acids, indicating that both clusters are at 

least partially folded. 

 

There is clustering of assignable crosspeaks around cysteine residues, as 

might be expected from their structure-forming ability. This being 

considered, the apparent absence of resolved cysteine residues in the 

zinc form would suggest that the ambiguous J-type spin systems could 

be the coordinating cysteine residues absent from Figure 5.10 (ie. Cys17, 

Cys24, Cys44, Cys61, Cys68, Cys76). This suggests that while some MTs 

do show domain preferences for metal ions [250], this appears not to be 

the case for wMT-2. 

 

5.5 Metal exchange reactions 

Cadmium exchange reaction 

To investigate the propensity for wMT-2 to preferentially bind cadmium 

ions over zinc ions, aliquots of Zn-wMT-2 were incubated with increasing 

equivalents of Cd2+ for 60 mins, before free metal was separated from 

protein-bound metal by gel filtration. Both the ‘protein’ fraction and the 

‘salt’ fraction were analysed for metal composition (Figure 5.11).  

 

The replacement system appears to be stoichiometric up until 5 

equivalents of cadmium. The deviation when 6 equivalents of cadmium 

are added is likely due to measurement uncertainty. However on addition  
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of > 7 equivalents, incomplete exchange (gradually increasing to 90 % 

total cadmium) was observed, possibly as thermodynamic equilibrium is 

reached. During the experiment, the initial stoichiometry of 5.5 zinc ions 

per wMT-2 gradually increased to 6.9 metal ions per wMT-2 (and a final 

stoichiometry of 6.2 cadmium ions with 0.7 zinc ions bound). This final 

stoichiometry indicates that a stable conformation of wMT-2 with 7 metal 

ions bound can be achieved with contributions from both cadmium and 

zinc. Similar behaviour was observed by Capdevila et al. in their paper 

investigating the metal preference of different MTs. It was found that 

MTs with a preference for divalent metal ions showed a clear reluctance 

for in vitro Zn/Cd exchange [214]. As wMT-2 is postulated to bind 

divalent cadmium in vivo [113], even though the measured KCd-wMT-2 

value is 3 orders of magnitude higher than for KZn-wMT-2, complete zinc 

exchange is not observed. 
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Figure 5.11. Titration experiment with increasing equivalents of Cd2+ added to a solution of 
cleaved Zn-wMT-2. Total metals bound to cleaved wMT-2 shown as open circles, zinc content 
shown in ORANGE, cadmium content shown in BLUE. The dashed BLUE line indicates the values 
expected for a 1:1 stoichiometric replacement of zinc by cadmium. 
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Zinc displacement by cadmium during purification 

The stability of the M7-wMT-2 species was reinforced with data obtained 

from a sample expressed in the presence (excess > 500 µM) of zinc, and 

purified in the presence (excess > 1 mM) of cadmium (Figure 5.12). 

 

 

 

 

 

 

 

 

 

 

 

 

When purified, there were 6 major species, all of which contained seven 

metal ions. Due to the significant excess of cadmium ions being present 

during purification (the protein concentration during purification is in the 

tens of µM), complete displacement and formation of a Cd7- species was 

Figure 5.12. Deconvoluted mass spectrum of mixed-metal species in S●tag-wMT-2. S●tag-wMT-2 
concentration 36.6 µM, pH 8.39. Sample in 20 mM NH4HCO3, and 10 % MeOH. Zinc (ORANGE) 
and cadmium (BLUE) forms are indicated, ‘*’ indicates a contaminant peak, or deconvolution 
artefact. Peak masses and percentages of species are summarised in Appendix 16. 

 

* * * 
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observed. This indicated that although complete metal removal could not 

be achieved in the incubation experiment, it is likely that the incubation 

produced a sample containing a similar mixture of species. The species 

with the highest abundance was Zn3Cd4-, this could indicate the 

presence of a Cd4- M4Cys11- cluster and a Zn3- M3Cys9- cluster. However 

without isolation of the individual domains, it is not known at this point if 

this is the case. It is known however that in vertebrate apo-MT, cadmium 

begins to fill the M4Cys11- cluster first [251]. 

 

The stability as mixed-metal species may be important for wMT-2, which 

exists in an environment containing a mixture of zinc and cadmium ions. 

Were there insufficient cadmium to completely fill metal sites in wMT-2, 

zinc could be temporarily utilised to slow the degradation rate of the 

protein in vivo. If concentrations of cadmium were subsequently 

increased, a slow metal exchange appears to be possible, relinquishing 

the bound zinc ions. The ability to form a stable structure when partially 

filled by cadmium ions may be of benefit for a wMT-2 whose proposed 

role is to protect the earthworm from excesses of cadmium [113]. 

 

5.6 Summary 

wMT-2 exhibits differential behaviour to acidification depending on the 

metal bound. MS has shown that demetallation of Cd-wMT-2 is 

cooperative, whereas demetallation of zinc proceeds non-cooperatively. 

Both wMT-1 and wMT-2 indicate a propensity to become supermetalated, 
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with the appearance of a transient Cd8- species. This was not observed 

for the novel protein, wMT-3. The stability of Cd-wMT-2 was highlighted 

by exhibiting no transfer to EDTA, and showed high structural stability 

from well-defined 2-dimensional spectra. The inability for complete metal 

exchange (behaviour not uncommon for this type of MTs, even 

considering the > 3 orders of magnitude preference for cadmium) is 

therefore likely due to wMT-2 being a native divalent metal-binding MT. 
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6 

Conclusions from structural and metal-binding 
studies 

 
The ‘holy grail’ of working with proteins is in ascertaining a proteins role 

in vivo, and the characteristics which make it suitable for that function 

[252]. As such, a wealth of information about biological function has 

been gained from identifying protein characteristics from experimentally 

determining their 3-dimensional structure [253]. There are two barriers 

to experimental work with proteins: the ability to recombinantly express 

or obtain native protein in milligram quantities; and the ability to purify 

the protein to an acceptable level. This chapter consists of a general 

summary of the work presented in this thesis, a discussion of the more 

important results, and concludes with some avenues for further research. 

 

6.1 Validating the purification methods used for obtaining 

Lumbricus rubellus wMTs 

The genes encoding the three wMTs were confirmed by sequencing 

plasmids received from the Stürzenbaum group. In the case of wMT-1, 

the plasmid sequence was corrected to match that reported in the 

literature [99]. Two approaches for the removal of the N-terminal S●tag 

were investigated: either through subcloning or cleavage. Using a 

combination of ion exchange and size exclusion chromatography, 

sufficient yields of pure wMT-2 and wMT-3 were isolated and 
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characterised by mass spectrometry. Lower yields of impure wMT-1 were 

also able to be characterised by MS. Both expression and purification 

protocols were optimised with wMTs in mind. 

 

Generally speaking, obtaining yields of MT in the region of 1 mg/L 

expression culture is acceptable for structural studies [124], with the 

levels for wMTs determined to be 0.8-1.7 mg/L. However, whilst the 

purification protocol was employed for production of pure non-labelled 

wMT-3 and unlabelled and double-labelled wMT-2, further optimisation is 

required to obtain a similar quantity of pure wMT-1. All three MTs when 

expressed recombinantly with either zinc or cadmium were detected by 

mass spectrometry with seven divalent metal ions bound as the major 

species. This is the first time that wMT-1 and wMT-2 have been isolated 

(as homometallated species) without the encumbrance of an S●tag, and 

the first time that the novel wMT-3 has been isolated. With respect to 

purification, wMT-2 was obtained in highest yields when expressed in the 

presence of cadmium, and slightly lower yields when expressed in the 

presence of zinc. This pattern was mirrored in the expression of wMT-1; 

with comparable data for wMT-3 not available at this time. The difference 

in MT expression level in the presence of cadmium is not uncommon, for 

example higher yields of MT from rainbow trout and monkey were 

obtained in the presence of cadmium rather than zinc [212, 213]. 
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6.2 Structural investigation of wMT-2 

For the structural investigation, a Cd-wMT-2 sample labelled with 13C and 

15N was produced. From the combination of multidimensional NMR 

experiments, and the use of both unlabelled and the double-labelled 

cleaved Cd-wMT-2 samples, a spectral assignment was undertaken. 

Using restraints generated from the assigned spectra, structure 

calculations for the two domains of wMT-2 were then performed. 

However, in the absence of meaningful restraints from 111Cd NMR 

experiments, the metal-cysteine connectivities were approximated by 

minimising the backbone violations of restraints with different 

permutations of connectivities. 

 

Although currently the main route for structure determination is through 

experimental means, there are a growing number of computational 

approaches based on homology modelling from protein primary 

sequences [254, 255]. Due to the nature of homology modelling, the 

quality of the resultant model is directly proportional to the quantity of 

data available, ie the number of experimentally determined 3-

dimensional protein structures within a library [256]. Therefore for an 

acceptable structure to be modelled, at least one ‘template’ 

experimentally solved structure is required with high primary sequence 

similarity [255]. 
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Although vertebrate MTs show significant similarity, MT-3 exhibits 

differential cluster preferences, with the α-domain (M4Cys11- cluster) 

containing copper, not zinc [257]. The novel -CPCP- sequence in the 

α-domain of MT-3 is thought to tune the protein to be biologically active, 

by the preferential binding of copper ions [258]. Although also somewhat 

active with zinc bound, when the–CPCP- motif is mutated to the -CSCA- 

sequence found in MT-1 and MT-2, the functional activity of MT-3 is lost 

[257]. 

 

In the case of MTs, the difficulty in using a homology-based approach for 

structure determination is that there are simply no available ‘template’ 

sequences for the majority of Class II MTs (ie, those with only some 

similarity to equine renal MT). To fulfil the criterion of high primary 

sequence similarity, the sequences must also share an evolutionary 

relationship; there is no such relationship between vertebrate and 

invertebrate MT sequences (Appendix 1). This reduces the quantity of 

potential ‘template’ sequences for wMT-2 to just 3 (lobster, crab, sea 

urchin). Even when an evolutionary relationship is present, such as for 

MT-3 and MT-1/MT-2, a homology modelling approach would have been 

problematic, due to the unique motif present in MT-3. 

 

The evolutionary diversity and the surge of current research on MTs, has 

meant that novel folds have been recently characterised in cyanobacteria 

(SmtA [259]), and plants (wheat Ec [260]). Although wMT-2 Domain 1 

showed little similarity to other available MT structures, the similarity of 
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Figure 6.1. 3-dimensional structure of wMT-2 Cys9- cluster ‘Alternate 1‘ (RED) fitted to sea urchin 
MTA Cys9- cluster (BLUE). Although the general form is similar, the fit is relatively poor. 

wMT-2 Domain 2 to the β-domain of MTA [87] was used as a starting 

point for the determination of cysteine-metal connectivities. However, 

this connectivity pattern did not have the lowest backbone RMSD of the 

permutations investigated (see Chapter 4.6). As metal-cysteine 

connectivities had not been experimentally determined, it was 

hypothesised that the cluster formation with the lowest backbone RMSD 

was correct, as per Peroza et al. [226]. The structure obtained using 

‘Alternate 1’ connectivities fits this criterion. Given the number and 

magnitude of violated restraints, and backbone RMSD values, the 

structure of the two domains of wMT-2 presented in this thesis show the 

same characteristics as other accepted MT structures [87, 144, 224, 261, 

262]. 

 

Comparison of the resultant structure of wMT-2 Domain 2 (Cys9- cluster) 

showed only slight similarity to the backbone conformation of the Cys9- 

cluster of sea urchin MTA (Figure 6.1). 
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When the backbone conformation of residues 37Ile-64Cys of sea urchin 

MTA and 50Cys-77Cys of wMT-2 were compared, an RMSD of 8.08 Å* 

between the two structures was calculated. If only the conserved 

positions of the cysteine residues at the N-terminus of the Cys9- cluster 

(Appendix 18) were considered, this value was reduced to 5.84 Å. This 

value remains higher than might be expected from the similarity in 

primary sequence of the two MTs, suggesting the two sequences show 

little evolutionary relationship. The apparent lack of similarity in 3-

dimensional structure between the Cys9- cluster of wMT-2 and sea urchin 

MTA may rationalise why the metal-cysteine connectivities generated 

from transposing the connectivities found in sea urchin MTA to the Cys9- 

cluster of wMT-2 did not exhibit the lowest backbone RMSD of the 

permutations attempted. 

 

Although the sea urchin MTA Cys9- cluster shows highest sequence 

identity to the wMT-2 (45.2 %†), representatives from both the 

vertebrate MT family (41.4 % identity for rat MT-2, PDB 2mrt [259]) and 

the invertebrate MT family (37.5 % identity for crab MT-1 (C-terminus), 

PDB 1dmc [263]) were investigated for structural similarities. The results 

of fitting the respective 3-dimensional structures to the wMT-2 Cys9- 

cluster are shown in Figure 6.2. 

                                                           
* obtained from SWISS PDB Viewer, calculated for 28 residues 

† GENESTREAM Align Query Tool http://xylian.igh.cnrs.fr/bin/align-guess.cgi 
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Figure 6.2. 3-dimensional structures of wMT-2 Cys9- cluster ‘Alternate 1‘ (RED) fitted to crab 
MT-1 Cys9- cluster (C-terminus) (BLUE, TOP), and rat MT-2 Cys9- cluster (BLUE, BOTTOM). The 
backbone of rat MT-2 and crab MT-1 both conform generally to the shape of wMT-2, and show 
greater similarity than sea urchin MTA. 
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Both crab and rat structures showed significant similarity to that of 

wMT-2. Values for backbone RMSD comparisons were lower than that for 

sea urchin MTA (8.08  Å), with rat MT showing a backbone RMSD 

difference of 5.72  Å, and crab MT showing a backbone RMSD difference 

of 4.50  Å. 

 

This comparison suggests that the currently identified MT with closest 

evolutionary link to earthworm wMT-2 may be crab MT-1. However, 

although the backbone conformations were similar, the positions of 

cysteine residues in the primary sequences of earthworm and crab MT 

are not conserved (hence the low sequence identity). The structural 

features of the specific backbone conformation adopted by earthworm 

wMT-2, crab MT-1 and rat MT-2 may give the first indication of a 

‘cadmium’ specific fold utilised in MT β-domains/Cys9- clusters, as all 

three MTs are differentially expressed when the organism is challenged 

with cadmium [113, 130, 264]. 

 

6.3 Metal-binding studies with wMTs 

An investigation into isoform specific metal-binding behaviour was 

performed, with an emphasis on wMT-2. Using MS, a large-scale pH 

titration was performed for both cleaved Zn- and cleaved Cd-wMT-2. 

Smaller-scale pH titrations for cleaved Zn- and cleaved Cd-wMT-1, and 

Cd-wMT-3 were also performed. For cleaved wMT-2, the pKa
1/2 was then 

calculated using two techniques (MS and ICP-OES). In addition to 
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competition with protons, the metal chelator 5F-BAPTA was introduced to 

samples of cleaved wMT-2, which allowed the calculation of the apparent 

metal-binding constants for the cadmium and zinc form (KCd-wMT-2 and 

KZn-wMT-2). The metal chelator EDTA was also incubated with a sample of 

cleaved Cd-wMT-2, and monitored for an hour. NMR was performed on 

both cleaved Zn- and cleaved Cd-wMT-2 to observe the effect of metal 

binding on the backbone fold of wMT-2. Finally, the inertness of cleaved 

wMT-2 to zinc displacement was investigated by incubation with 

cadmium. 

 

To determine the behaviour of MTs, extensive metal-binding studies are 

usually undertaken. The in vitro metal-binding studies can, in some 

cases, give indications of in vivo properties [122, 146]. Although the 

trend for MT metal-binding affinities generally follows the Irving-Williams 

series (Zn < Co < Pb < Cd < Cu / Ag < Hg) [247], metal ion preferences 

have begun to be elucidated for a number of MTs from different 

organisms. It was found that for the two MTs in C. elegans, CeMT1 and 

CeMT2, it was not the direct affinity for metal ions that was important, 

but the relative affinities of each isoform for each metal ion [151]. 

Studies on metal preferences in vitro, coupled with in vivo studies. 

proposed the hypothesis that although both CeMTs are utilised with 

respect to zinc handling, CeMT2 had the major role in cadmium 

accumulation and detoxification [151]. The two MTs have over 50 % 

sequence identity, but show different metal-binding preferences, with 

CeMT2 favouring cadmium significantly more than CeMT1 [146]. 
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Similarly a system in the invertebrate Helix pomatia (Roman snail) has 

been elucidated, resulting in the identification of two distinct isoforms 

CuMT or CdMT [122, 247]. The two isoforms in snails also exhibit over 

50 % sequence identity, but show differential metal-binding 

characteristics.  

 

There are two explanations for this behaviour. The first is that MTs 

themselves can differentiate between metal ions, as in the case of CeMT1 

in vitro [146]. Based on this idea, a system was proposed for classifying 

MTs is based solely on their metal-binding preferences. The system 

suggested by Capdevila et al. [214] showed that generally MTs exhibit 

characteristics of either Zn-thionein or a Cu-thionein. As the character is 

reflected during in vitro experiments, the major contributor to the metal-

binding preference of MT is proposed to be the protein fold. Zn-wMT-2 

was found to be inert to complete exchange with excess cadmium, which 

characterises it as being a Zn-thionein (ie preference for divalent metal 

ions [214]). Considering the significant spectral differences indicated by 

comparison of the TOCSY spectra of Zn- and Cd- form, wMT-2 may be 

characterised specifically as being a Cd-thionein. 

 

The second explanation is that the cell controls selection of metals that 

can be bound [247]. This is the case for the metal-binding protein MncA, 

which binds manganese over the more competitive copper [247, 265]. In 

the case of MncA, folding in the cytoplasm provides an environment 

where comparatively high concentrations of manganese are present 
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[265]. Therefore it may be that differential expression causes the 

apparent metal-binding preferences of MT in vivo, governing which 

metals are found bound to MT when isolated from native sources. 

However as all wMTs in this thesis were obtained from recombinant 

expression, it is difficult to speculate if this may be case. 

 

In Chapter 5, wMT-2 was determined to have a higher apparent metal-

binding affinity for cadmium than zinc. However the value was somewhat 

lower than that of vertebrate MT [200]. It would be interesting to see 

how the apparent metal-binding affinities of wMT-1, the postulated zinc-

handling protein [112], compared to wMT-2. These two sequences have 

over 70 % identity, yet appear to have different metal-binding properties 

(Figures 5.1 & 5.2). Comparing the properties in a more comprehensive 

manner may lead to new insights into the specific function of the 

isoforms within the earthworm. 

 

6.4 Further avenues for research 

The proposed structure of wMT-2 is presented within this thesis. 

However, for unambiguous metal connectivities, 2-dimensional 

heteronuclear labelled-cadmium experiments are required, as per Frey et 

al. [93]. This will remove any ambiguity from the assigned connectivities, 

and increase the confidence in the model proposed in this thesis. 

Although reconstitution of a sample with 111Cd was attempted twice 

during the course of the project, significant protein losses were incurred 
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after demetallation in both cases. In the future, performing the entire 

experiment with rigorous exclusion of oxygen may be more successful 

than elution under a constant flow of nitrogen. If losses of protein are 

unavoidable however, starting the reconstitution procedure with a larger 

quantity of protein (> 1mg) may generate an acceptable spectrum. 

 

The majority of the work in this thesis has focussed on only a part of the 

three wMT system in earthworms: wMT-2. Therefore as further work, it 

would be interesting to compare the metal-binding properties of wMT-1 

and wMT-2 in more detail. The results may help to answer such 

questions as: ‘what makes the two isoforms different?’, and ‘how do the 

differences in metal-binding properties between wMT-1 and wMT-2 effect 

their function in adult earthworms?’. 

 

Mutation studies involving the linker region between the two domains 

may provide further insight into the metal ion preferences of wMTs. The 

longer linker region in wMT-1 may be crucial for this role. Therefore it 

may be possible to emulate the metal-binding properties of wMT-2 with 

the creation of a wMT-1 deletion mutant, removing 2 residues in the 

linker region.  

 

Splitting wMT-2 into two domains either by cloning, or by limited 

proteolysis, may provide information about domain-specific metal-

binding characteristics. Comparisons to Eisenia foetida MT may then be 
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possible, which exists as a stable α-domain (M4Cys11- cluster), and is 

similarly induced by cadmium [166]. It is also within Domain 1 that 

wMT-1 and wMT-2 show higher sequence disparity, so it may be that the 

metal-binding preferences of the M4Cys11-cluster in wMTs are 

significantly more diverse than that of the M3Cys9-cluster. Isolation of 

the individual domains would also enable comparison with full-length 

protein, and determine if there are inter-domain effects influencing the 

characteristics of wMTs, similar to that observed for vertebrate MT [266]. 

 

Additionally, structural determination of wMT-3 may reveal a novel fold, 

as although the cysteine residues are highly conserved in the three 

wMTs, there is lower sequence identity between wMT-3 and 

wMT-1/wMT-2. As it is present in earthworm cocoons [112], wMT-3 is 

expected to be functionally distinct from wMT-1 and wMT-2. Therefore a 

structural investigation and comprehensive metal-binding study may 

shed new light on the function of wMT-3.  

 

6.5 Conclusion 

In conclusion, it is believed that the investigations presented in this 

thesis have furthered the understanding of wMT-2, a member of the 

earthworm MT family within Lumbricus rubellus. Furthermore, data have 

been presented for the first MT 3-dimensional structure from the phylum 

annelida. The best outcome for this research is that it will pave the way 
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for further work with wMTs, ultimately leading to the determination of a 

structure/function relationship for all three earthworm metallothioneins. 
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Appendix 1 

 

 

 

 

Appendix 1. Multiple sequence 
alignment from CLUSTALW2 of 
metallothionein sequences within the 
ExPASY database (http://expasy.org/). 
The sequences have been ordered 
due to similarity, which tends to group 
sequences which are thought to be 
evolutionary related. This shows the 
great diversity in MT primary 
sequence between kingdoms. 
Cysteine residues have been indicated 
in RED for ease of identification. 
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Appendix 2 

Referred from: Chapter 2, Section 2.3 – Cysteine Assay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 2. Calibration curve used for Cys Assay, showing the standards used, and 
absorbencies recorded. The wavelength used was 412 nm. A Line of Best Fit was 
used for concentration calculations, with the equation shown on the graph. 



Appendices 

 227 

Appendix 3 

Referred from: Chapter 3, Section 3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3. (TOP) Sequencing data of Domain 1, (BOTTOM) Sequencing data of 
Domain 2. Peak colours are: Guanine BLACK, Thymine RED, Cytosine BLUE, Adenine 
GREEN. The translated codons are shown in YELLOW, below the DNA bases. Sequencing 
data analysis performed using Chromas Lite [Technelysium Pty Ltd, Australia]. 
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Appendix 4 

Referred from: Chapter 3, Section 3.4 

 

 

 

 

 

 

Appendix 4. Schematic of the pET expression system, modified from the Novagen 
pET Sytem Manual. Genes, targets and proteins are indicated in similar colours. (A) 
Shows the control of the production of T7 RNA polymerase by the use of a 
chromosomal copy of the lacI gene, encoding a lac repressor protein. When present, 
lacI does not allow binding of the native E. coli RNA polymerase. Addition of IPTG will 
remove the lac repressor protein, allowing transcription of T7 RNA polymerase. (B) 
Shows the position of the target gene in relation to the T7 promoter region, in the 
pET vector. (C) Shows the action of T7 lysozyme, encoded by the pLysS plasmid. 
When expressed, T7 lysozyme will inactivate T7 RNA polymerase, inhibiting basal 

 f h    b f  d  h  
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Appendix 5. For the indicated peaks, in Figure 3.16, the theoretical and observed masses 
for all metallated species. All masses have been corrected from +1 to neutral, by 
subtracting 1Da. All observed masses are within 0.6% of their theoretical counterparts. A, 
B, C designates the spectrum from which the readings were taken. 

Appendix 5 

Referred from: Chapter 3, Section 3.7 

 

 

 

 

 

 Metallospecies Calculated Mass (Da) Observed Mass (Da) 

C Zn7- wMT-1 8,394.9 8,394.3 

C Zn6- wMT-1 8,331.5 8,328.5 

C Zn5- wMT-1 8,268.1 8,260.1 

D *  8,321.0 

D *  8,141.4 

D Zn1- wMT-1 8,077.9 8,031.3 

D apo- wMT-1 7,951.2 7,942.9 
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Appendix 6. For the indicated peaks, in Figure 3.19, the theoretical and observed masses 
for all metallated species. All masses have been corrected from +1 to neutral, by 
subtracting 1Da. All observed masses are within 0.11% of their theoretical counterparts. 
A, B designates the spectrum from which the readings are observed. 

Appendix 6 

Referred from: Chapter 3, Section 3.8 

 

 

 

 

 

 
Metallospecies Calculated Mass (Da) Observed Mass (Da) 

A Cd8- wMT-1 11,645.7 11,643.0 

A Cd7- wMT-1 11,535.3 11,535.9 

B apo- wMT-1 10,762.4 10,773.3 
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Appendix 7. For the indicated peaks, in Figure 3.23, the theoretical and observed masses 
for all metallated species. All masses have been corrected from +1 to neutral, by 
subtracting 1Da. All observed masses are within 0.02% of their theoretical counterparts. 
A, B designates the spectrum from which the readings are observed. 

Appendix 7 

Referred from: Chapter 3, Section 3.8 

 

 

 

 

 

 
Metallospecies Calculated Mass (Da) Observed Mass (Da) 

A Cd8- wMT-1 8,834.5 8,835.9 

A Cd7- wMT-1 8,724.0 8,723.2 

B *  8,829.8 

B *  8,718.4 

B *  8,619.0 

B Cd5- wMT-1 8,503.2 8,501.0 

B Cd4- wMT-1 8,392.8 8,393.3 

B Cd1- wMT-1 8,061.6 8,061.9 

B apo- wMT-1 7,951.2 7,950.5 
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Appendix 8. For the indicated peaks, in Figure 3.33, the theoretical and observed masses 
for the single metallated species. All masses have been corrected from +1 to neutral, by 
subtracting 1Da. Observed mass within 0.006% of its theoretical counterpart. B 
designates the spectrum from which the reading was observed. 

Appendix 8 

Referred from: Chapter 3, Section 3.10 

 

 

 

 

 

 

 
Metallospecies Calculated Mass (Da) Observed Mass (Da) 

B Cd7- wMT-2 11,382.0 11,382.6 
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Appendix 9. For the indicated peaks, in Figure 3.38, the theoretical and observed masses 
for all metallated species. All masses have been corrected from +1 to neutral, by 
subtracting 1Da. All observed masses are within 0.1%, most within 0.02% of their 
theoretical counterparts. A, B designates the spectrum from which the readings are 
observed. 

Appendix 9 

Referred from: Chapter 3, Section 3.10 

 

 

 

 

 

 

 
Metallospecies Calculated Mass (Da) Observed Mass (Da) 

A Cd7- wMT-2 11,382.0 11,381.0 

B Cd6- wMT-2 11,271.6 11,271.4 

B Cd5- wMT-2 11,161.2 11,158.8 

B Cd4- wMT-2 11,050.8 11,049.6 

B Cd1- wMT-2 10,719.5 10,719.3 

B apo- wMT-2 10,609.1 10,606.8 



Appendices 

 234 

Appendix 10. For the indicated peaks, in Figure 3.39, the theoretical and observed masses 
for all metallated species. All masses have been corrected from +1 to neutral, by 
subtracting 1Da. All observed masses are within 0.1%, most within 0.02% of their 
theoretical counterparts. A, B designates the spectrum from which the readings are 
observed. 

 

Appendix 10 

Referred from: Chapter 3, Section 3.10 

 

 

 

 

 

 

 

 

 
Metallospecies Calculated Mass (Da) Observed Mass (Da) 

A Cd7- wMT-2 8,570.8 8,570.3 

A Cd4- wMT-2 8,239.6 8,240.3 

B Cd4- wMT-2 8,239.6 8,239.1 

B apo- wMT-2 7,797.9 7,796.4 
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Appendix 11. For the indicated peaks, in Figure 3.41, the theoretical and observed masses 
for all metallated species. All masses have been corrected from +1 to neutral, by 
subtracting 1Da. All observed masses are within 0.11%, most within 0.05% of their 
theoretical counterparts. A, B designates the spectrum from which the readings are 
observed. 

 

Appendix 11 

Referred from: Chapter 3, Section 3.11 

 

 

 

 

 

 

 
Metallospecies Calculated Mass (Da) Observed Mass (Da) 

A Zn7- wMT-2 11,052.8 11,051.0 

A Zn6- wMT-2 10,989.4 10,984.8 

A Zn5- wMT-2 10,926.1 10,923.9 

B Zn4- wMT-2 10,862.7 10,870.6 

B Zn3- wMT-2 10,799.3 10,788.1 

B Zn2- wMT-2 10,735.9 10,731.7 

B Zn1- wMT-2 10,672.5 10,669.5 

B apo- wMT-2 10,609.1 10,607.1 
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Appendix 12. For the indicated peaks, in Figure 3.42, the theoretical and observed masses 
for all metallated species. All masses have been corrected from +1 to neutral, by 
subtracting 1Da. All observed masses are within 0.11%, most within 0.05% of their 
theoretical counterparts. A, B designates the spectrum from which the readings are 
observed. 

 

Appendix 12 

Referred from: Chapter 3, Section 3.11 

 

 

 

 

 

 

 
Metallospecies Calculated Mass (Da) Observed Mass (Da) 

A Zn7- wMT-2 8,241.7 8,238.7 

A Zn6- wMT-2 8,178.3 8,170.4 

A Zn5- wMT-2 8,114.9 8,105.3 

B Zn1- wMT-2 7,861.3 7,857.8 

B apo- wMT-2 7,797.9 7,796.4 
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Appendix 13. For the indicated peaks, in Figure 3.44, the theoretical and observed masses 
for all metallated species. All masses have been corrected from +1 to neutral, by 
subtracting 1Da. All observed masses are within 0.14% of their theoretical counterparts. 
A, B, designates the spectrum from which the readings are observed. Calculated masses 
are without N-terminal methionine. 

 

Appendix 13 

Referred from: Chapter 3, Section 3.12 

 

 

 

 

 

 

 
Metallospecies Calculated Mass (Da) Observed Mass (Da) 

A Cd7- wMT-3 9,420.9 9,420.7 

B Cd4- wMT-3 9,089.7 9,088.5 

B apo- wMT-3 8,648.0 8,646.9 
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Appendix 14. Spin systems of the U-type amino acids. The proline spin system has 
been characterised as a ‘special’ system, and is presented later. 

 

Appendix 14 

Referred from: Chapter 4, Section 4.2 
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Appendix 14. Spin systems of the J-type amino acids. As H / Y / W residues are not 
present in the wMT-2 sequence, they have not been included. 

 

Appendix 14 

Referred from: Chapter 4, Section 4.2 
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Appendix 14. Spin systems of the remaining amino acids A/T-, L-, G- and P-type. As V / I 
residues are not present in the wMT-2 sequence, they have not been included. 

Appendix 14 

Referred from: Chapter 4, Section 4.2 
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Appendix 15. Comparison of the number of metal ions bound at decreasing pH. Of note 
are lifetimes of the species present at various pH. TOP is the analysis of Cd-wMT-2, 
BOTTOM is the analysis of Zn-wMT-2. Spectra analysed are displayed in Figure 5.1. 
Number of metal ions bound are indicated in RAINBOW colours, for ease of viewing, 
alternating dashed and solid lines. 

 

Appendix 15 

Referred from: Chapter 5, Section 5.2 
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Appendix 16. Focussed region between 1,500 m/z and 2,500 m/z, showing the 5+ charge 
state of wMT-2. All spectra have been scaled identically, so changes in their peak 
intensities can be roughly compared. 47.2 µM wMT-2 in 20 mM ammonium bicarbonate, 
10 % MeOH. Stoichiometry 6.8:1 cadmium ions per wMT-2 molecule. Times are displayed 
in minutes from first EDTA addition. 

Appendix 16 

Referred from: Chapter 5, Section 5.3 
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Appendix 17. Comparing the theoretical calculated masses of potential states of wMT-2 
when metallated with both zinc and cadmium. Observed mass is the experimental mass –  
1Da to give a neutral mass. % calculated from the intensity of the respective peaks from 
MS in Figure 5.9. 

Appendix 17 

 

Referred from: Chapter 5, Section 5.5 

 

 

 

 

Metallospecies Calculated Mass (Da) Observed Mass (Da) % of 
sample 

      Cd7- wMT-2 11,382.1 11,381.4 12.7 

Zn1Cd6- wMT-2 11,335.0 11,335.1 19.0 

Zn2Cd5- wMT-2 11,288.0 11,287.0 20.4 

Zn3Cd4- wMT-2 11,241.0 11,241.0 21.2 

Zn4Cd3- wMT-2 11,194.0 11,192.6 17.3 

Zn5Cd2- wMT-2 11,146.9 11,144.6 9.3 

Zn6Cd1- wMT-2 11,099.9 -  

Zn7         - wMT-2 11,052.9 -  

     apo- wMT-2 10,609.2 -  
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Appendix 18. Chemical shift list of atoms assigned by NMR for cleaved Cd-wMT-2. 

Appendix 18 

 

 HN N Nδ Nε Hα Hβ Hγ Hδ Hε Cα

2 Ser - - - - - - - - - -

3 Met - - - - - - - - - 59.18

4 Ala 9.22 135.77 - - 4.56 1.04 - - - 47.72

5 Asp 8.92 127.75 - - 4.16 3.04,2.76 - - - 57.08

6 Ala - - - - 4.11 0.95 - - - 51.24

7 Phe 7.86 111.38 - - 4.54 2.85,3.10 - 7.18 7.26 54.39

8 Asn 8.11 119.68 112.06 - 4.75 2.20,2.36 - 7.17,6.53 - 49.35

9 Thr 8.75 109.59 - - 4.04 - - - - 58.39

10 Gln 8.09 119.93 - 112.08 4.17 2.50 2.30,2.24 - 6.72,7.14 55.15

11 Cys 7.95 114.69 - - 4.29 3.36,2.93 - - - 55.23

12 Cys 7.48 112.35 - - 4.80 3.07,3.12 - - - 54.01

13 Gly 7.63 113.38 - - 3.81 - - - - 44.30

14 Asn 6.99 115.41 - - 5.08 2.89,2.80 - - - 48.47

15 Lys - - - - - - - - - 56.17

16 Thr 7.93 118.73 - - 4.39 4.01 1.18 - - 59.42

17 Cys 9.07 127.58 - - 3.90 2.94,3.05 - - - 59.28

18 Pro - - - - 4.33 1.98,2.24 - 3.47,3.88 - 60.21

19 Arg 8.22 118.67 - - 4.80 1.60,1.37 1.26 - - 52.07

20 Glu 8.41 123.02 - - 4.35 1.70,1.81 2.03 - - 52.33

21 Gly - - - - - - - - - -

22 Ser 7.81 - - - 4.20 3.96,3.70 - - - 56.51

23 Thr 7.30 107.48 - - 4.48 4.06 0.99 - - 56.28

24 Cys 8.40 124.82 - - 4.82 2.52,3.30 - - - 57.33

25 Ala 8.30 - - - 4.40 - - - - -

26 Cys 7.84 - - - 4.53 3.60,3.83 - - - 54.14

27 Ser 7.05 124.22 - - 4.01 2.96,2.84 - - - 58.32

28 Lys 7.41 119.78 - - 4.26 1.50 - - - 53.12

29 Cys 7.26 123.63 - - 4.50 3.14,3.50 - - - 56.27

30 Arg 9.12 131.95 - - 4.38 1.75,1.90 1.61 - - 53.42

31 Cys 8.51 126.09 - - 4.10 2.87,3.00 - - - 57.59

32 Pro - - - - 4.35 - - 3.79 - 59.68

33 Lys 8.61 121.15 - - 3.91 1.77 - - - 55.22

34 Asp 8.12 114.82 - - 4.19 2.77 - - - 50.43

35 Asp 7.90 120.34 - - 4.70 2.48,2.19 - - - 50.12

36 Cys 8.13 123.21 - - 4.50 2.46,2.73 - - - 56.62

37 Ala 8.77 132.70 - - 4.52 1.33 - - - 48.68

38 Pro - - - - 3.96 2.09,2.20 1.68 3.51 - 62.14

39 Asn 8.03 115.22 - - 4.54 - - - - 51.03

40 Cys 7.61 121.28 - - 3.96 3.66,2.78 - - - 59.46

41 Lys 8.46 128.21 - - 4.37 2.00 1.39 - - 50.99

42 Lys 9.42 124.55 - - 4.24 1.81 1.27 1.63 - 53.56

43 Leu 8.77 116.86 - - 3.69 1.53,2.47 1.63 0.98,0.87 - 53.11

44 Cys 8.48 122.81 - - 4.41 2.93,3.08 - - - 55.25
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Appendix 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45 Cys 8.84 123.14 - - 4.16 3.40,3.32 - - - 58.35

46 Ala 6.82 121.14 - - 3.88 1.28 - - - 49.84

47 Asp 7.94 117.26 - - 4.43 2.58,2.37 - - - 51.37

48 Ala 8.29 124.42 - - 4.17 1.14 - - - 49.19

49 Gln 8.27 121.63 - 112.11 4.20 2.05,2.19 1.89 - 6.64,7.42 53.71

50 Cys 8.09 117.81 - - 4.96 2.63,2.95 - - - 57.87

51 Gly 7.88 110.87 - - 4.29,4.19 - - - - 42.76

52 Asn 8.63 122.26 111.20 - 4.80 2.84,3.16 - 6.95,6.82 - 48.52

53 Ala - - - - - - - - - 49.52

54 Ser 7.88 118.60 - - 4.84 - - - - 54.62

55 Cys - - - - - - - - - -

56 Ser - - - - 4.19 4.02 - - - 58.69

57 Cys 8.53 123.21 - - 3.86 3.42,2.62 - - - 60.09

58 Gly 7.43 106.53 - - 3.69,3.82 - - - - 43.29

59 Ala - - - - - - - - - 51.24

60 Ala 7.45 117.43 - - 4.28 1.36 - - - 48.90

61 Cys 7.39 121.28 - - 4.15 3.18,2.88 - - - 59.45

62 Lys 9.80 131.96 - - 4.33 1.97,2.02 1.47 1.58 - 53.24

63 Cys 8.59 125.82 - - 3.77 2.70,2.97 - - - 60.66

64 Ala 8.17 123.92 - - 3.91 1.24 - - - 49.14

65 Ala - - - - - - - - - -

66 Gly 7.85 111.32 - - 4.04 - - - - 43.13

67 Ser 8.49 115.59 - - 4.54 3.92,3.67 - - - 55.83

68 Cys 8.21 128.03 - - 4.63 3.13,2.42 - - - 55.89

69 Ala 8.41 131.49 - - 4.32 1.27 - - - 48.18

70 Ser - - - - - - - - - -

71 Gly - - - - - - - - - 42.47

72 Cys 7.74 122.89 - - 3.63 3.73,2.76 - - - 59.54

73 Lys 8.40 127.67 - - 4.25 2.01 1.41 - - 51.18

74 Lys 9.25 125.58 - - 4.14 1.61,1.53 1.32 - - 53.40

75 Gly 8.32 108.59 - - 3.51,3.95 - - - - 44.19

76 Cys 8.17 129.57 - - 4.26 2.99,3.15 - - - 56.20

77 Cys 7.84 121.42 - - 4.06 3.14,3.17 - - - 58.75

78 Gly 7.37 106.76 - - 3.89,3.45 - - - - 42.43

79 Asp 7.42 125.51 - - 4.30 2.57,2.42 - - - 53.27

HN N Nδ Nε Hα Hβ Hγ Hδ Hε Cα
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Appendix 19. Alignment of the Sea Urchin MTA sequence with Earthworm wMT-2. 
Alignment performed in ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). 
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