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Abstract 

 

The European honeybee, Apis mellifera, is important economically not just for honey 

production but also as a pollinator. Bee pollinated plants contribute towards one third of the 

food eaten worldwide.  However, honeybee numbers in some areas are declining.  A range 

of interacting factors are thought to be involved, including pathogens and parasites, loss of 

forage, pesticide use, bad weather, and limited genetic variability.  Pathogens are also 

known to cause changes in the behaviour of their hosts and these premortality and 

sublethal effects of disease may well play a role in colony declines and are the focus of this 

thesis.   

 

For individual bees the fungus Metarhizium anisopliae was used as a model pathogen and 

RT-Q-PCR was used to detect and quantify naturally occurring pathogens. In field colonies 

the level of infestation of the parasitic mite Varroa destructor was modified as a surrogate 

for disease load as the amounts of many viruses correlate with mite levels. 

 

Survival experiments showed that both disease load and forage availability had an effect on 

honeybee longevity and feeding the bees pollen increased their survival. Learning 

experiments showed that both the fungus and some of the bees’ naturally occurring 

pathogens caused changes in the learning ability of young adult and older forager bees. 

Young adult bees were better able to learn when infected with the fungus, possibly because 

it made them more responsive to the sucrose stimulus, whilst older forager bees where less 

able to learn when infected with the fungus. Harmonic radar was used to show that 

honeybee flight ability was affected by naturally occurring pathogens, especially deformed 

wing virus which caused bees to fly shorter distances and for shorter amounts of time than 

uninfected bees. Observation hives were used to study in-hive behaviour showing that bees 

with more pathogens were likely to start foraging earlier than healthier bees. 

 
 
 
 
 
 
 
 
 
 
 
 
 



XVI 
 

Abbreviations 

 

ABPV    Acute Bee Paralysis Virus 

AFB   American foul brood  

ANOVA   ANalysis Of VAriance 

BQCV    Black Queen Cell Virus 

CBPV    Chronic Bee Paralysis Virus 

CCD   Colony Collapse Disorder  

CI   Confidence Interval 

CPE   Conditioned Proboscis Extension 

CSD allele  Complementary Sex Determining allele 

Ct   Cycle Threshold 

DEFRA    Department for Environment and Rural Affairs 

DWV    Deformed Ring Virus 

EFB   European Foul Brood 

FERA    Food and Environment Research Agency 

FRET   Fluorescence Resonance Energy Transfer 

IAPV    Israeli Acute Paralysis Virus 

IPA   Industrial Partnership Award 

JH   Juvenile Hormone 

KBV    Kashmir Bee Virus 

LPS   LipoPolySaccharides 

LT50   Lethal Time 50 

NASS    National Agricultural Statistics Service 

NBU   National Bee Unit 

PER   Proboscis Extension Reflex 

PO   Phenyloxidase  

REML   REstricted (residual or reduced) Maximum Likelihood 

SBV    Sac Brood Virus 

SDA   Sabouraud Dextrose Agar 

Q-RT-PCR   Quantitative – Real Time – Polymerase Chain Reaction 

 

 

 

 

 

 

 



1 

 

Chapter 1: General introduction 

 

1.1 Bees: 

 

1.1.1 Taxonomy: 

 

Bees belong to the order Hymenoptera and honey bees to the family Apidae. The species 

most commonly used for honey production in Europe is the European Honeybee; Apis 

mellifera, the name coming from the Latin meaning ‘honey bearing bee’ (Linnaeus, 1758). 

There are several subspecies of A. mellifera including: A.m. iberica, A.m. mellifera (native to 

Britain), A.m. carnica (the Carniolan honeybee) and A.m. scutellata (the African subspecies 

used to breed Africanized honeybees). Due to its nature and honey production an Italian 

subspecies ‘ligustica’ is currently most favoured although other subspecies are sometimes 

used. This species was chosen because it is generally a good housekeeper, prolific, a good 

forager, uses little propolis and shows less tendency to swarm than other subspecies 

(Hooper, 2008). The honeybee genome sequence was published in 2006 (Weinstock et al., 

2006) making it a good model organism for linking experimental results to genetics. The 

honeybee has been used as a model system for studying immunity, allergic reaction, 

antibiotic resistance, development, mental health, longevity and diseases of the X 

chromosome (Reviewed in Dearden et al., 2010). 

 

1.1.2 The Colony: 

 

A typical honeybee colony can contain as many as 80 000 bees at the height of summer 

although this number decreases dramatically over winter when the bees over winter; relying 

on the warmth of a cluster of individuals to survive the cold weather. A minimum of about 

10 000 bees is required to maintain the temperature required; if brood is present in the hive 

then the centre of the cluster must be 35oC whilst the edges may be only 6-7oC (Waring, 

2006). In cool weather the temperature within the hive is increased by activating the 

thoracic muscles to produce heat. In hotter weather, however, the bees collect water which 

they fan with their wings to evaporate, thereby cooling the temperature of the hive (Tautz 

et al., 2003). Honey must be stored to fuel the colony which usually requires between 200-

300 grams per week. 15-20kg of stored honey should last the colony not only through the 

cold weather but more importantly through the colony’s restart the following spring (Waring, 

2006). 

 

Honeybees are social insects with a haplo-diploid genome. This means that whilst the 

females are diploid with two copies of each of their 16 chromosomes the males are haploid; 
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developing from unfertilised eggs and having only one copy of each chromosome. Sex 

determination is controlled by complementary sex determining (CSD) alleles. If these are 

inherited heterozygously a female is produced, if inherited homozygously (or singly as in the 

case of haploid males) the embryo develops to be male. Diploid males are produced if the 

queen mates with a male having the same CSD alleles as she does. These offspring do not 

survive to maturity (Charlesworth, 2008). 

 

It was originally assumed that this haplo-diploidy favoured altruism within the colony. If the 

queen mates with one male drone then each worker is more closely related to her sister 

workers (75%) than any nephews (haploid drones produced by other workers) (35%). 

Hamilton’s equations (equations that can be used to predict the likelihood that a certain 

behaviour or attribute will evolve within a population based on the theory of inclusive 

fitness) (Hamilton, 1964) show that this close relatedness should favour the evolution of 

altruism. However, the queen mates with up to 20 different males and therefore workers 

are only likely to be 30% related to each other (Ratnieks and Wenseleers, 2008). However, 

workers in the colony continue to act altruistically leaving the queen as the only 

reproductive female.  

 

Ratnieks (2008) suggests that this is due to coercion rather than altruism. Using Hamilton’s 

equation (Hamilton, 1964) it can be shown that if the queen mates with ten males, then 

54% of workers should theoretically benefit from reproducing. However the actual number 

reproducing is far lower than that, between 0.01 and 0.1%. The coercion in queen-right (ie 

a colony with an actively laying queen) honeybee colonies takes the form of queen 

substance, a pheromone produced by the queen that, amongst other things, reduces the 

worker’s propensity to lay and encourages policing. Ratnieks (1993) examined a queen-right 

colony and found that, on average, one egg was laid by workers per day per 16000 drone 

cells. Of these 85% were removed within a day and only 2% hatched. In queenless colonies 

around 40% of workers lay, supporting the idea that it is coercion not altruism that 

maintains the social structure of the colony (Ratnieks and Wenseleers, 2008). 

 

1.1.3: The Queen: 

 

A honeybee queen is the largest of the bees in the colony being on average 2-3cm in 

length. She has fewer individual eyes, or ommatidia, in her compound eyes, a short 

proboscis and toothed mandibles (Waring, 2006). When laid, the queen and worker eggs 

are indistinguishable, but queen eggs are laid within ‘queen cups’, shallow cells usually near 

the base of the comb. Workers then build the cell down around the growing larva. As the 

larva grows it is fed on ‘royal jelly’ and it is this rich food source that allows it to develop 
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into a queen. The queen takes about 16 days from laying to emergence and a week after 

that is mature enough to mate (table 1.1). The queen may fly one, two or three times and 

mate with up to 20 males storing their sperm in her spermatheca. The queen then remains 

in the colony for the rest of her life unless she swarms or is disturbed (Hooper, 2008). 

 

The A. mellifera queen produces several pheromones. The pheromone produced by the 

queens mandibular gland, ‘queen substance’, prevents the workers from laying their own 

eggs (Butler et al., 1959). This ensures that every individual in the colony comes from the 

queen. At the height of summer this means a single queen may lay as many as 3000 eggs a 

day (Waring, 2006). Another of the queen’s pheromones encourages those workers near her 

to turn to face her. The surrounding workers will then feed, clean and generally care for all 

her needs allowing the queen’s attention to be focused solely on laying (Hooper, 2008). 

Queen bees have been known to live for up to eight years. These long-lived individuals 

usually run out of their stored sperm long before this however, and most queens are 

replaced after three to four years (Waring, 2006). This occurs when a virgin queen is raised 

to take over from the old queen. In most cases when virgin queens are ready to hatch the 

colony will swarm. The old queen leaves the hive with several thousand workers to set up a 

new colony. The hatching virgins can either take workers from the colony, if it is big 

enough, and swarm to set up a new hive themselves, or kill off any other emerging queens 

and take over the existing colony. If the old queen is superseded, however, one new virgin 

queen will emerge, go on her mating flight and return without the colony swarming. Any 

other queen larvae being raised at the time will either be killed by the emerging virgin 

queen or by the workers. The old queen usually leaves (or may be killed) but on some 

occasions the two queens may be seen laying together for some time. Thus the main 

difference between ‘supersedure’ and swarming is that no new colony is formed when the 

queen is superseded (Butler, 1957). 

 

Most of the eggs a queen lays will become workers. These are laid in hexagonal brood cells. 

Wider cells are used for drones and the queen can differentiate between these with her 

antennae. Drone production within the colony is likely to be controlled by both workers and 

queen. The workers having control over the number of larger drone cells produced and the 

queen having control over the laying of the eggs (Wharton et al., 2007). Queen eggs are 

laid in queen cups but if the colony’s queen is lost the workers may pick a worker egg or 

young larvae to feed up on royal jelly allowing the brood originally intended to be a worker 

to develop into a new queen. If the worker larva is too far developed however she will not 

develop into a good queen (Hooper, 2008). 
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Table 1.1: 

Day Queen Worker Drone 

1 Egg laid Egg laid Egg laid 

3 
Egg 

hatches 

Egg 

hatches 

Egg 

hatches 

6  
Diet 

change 
Diet 

change 

9 Sealed Sealed  

11   Sealed 

12 
5th 

(final) 
moult 

  

14  
5th 

(final) 
moult 

 

16 Emerge   

18   
5th 

(final) 
moult 

21 Mature   

 Mates   

 
+1 

week. 
Lays 

  

22  Emerge  

25   Emerge 

30  Fly  

36  Mature  

38   Mature 

   

+3 
weeks 

sexually 
active 

42 
Too old 
to mate 

  

Life 
expectancy 

2-3 
years 
(+8) 

+ 2-3 
weeks 

in 
summer 

 

  

+ 
Several 
months 

in 
winter 

Driven 
from 

colony 
before 
winter 

 

Table showing honey bee early development adapted from (Waring, 2006 p20). 

 

Much work has been undertaken to examine reproductive conflicts within the honeybee 

colony (eg. Trivers and Hare, 1976) and it has been determined, by use of Hamilton’s 

equation (Hamilton, 1964), that for workers, the optimum sex ratio is 3:1 in favour of 

female (especially young queen) production whilst for the queen the optimum sex ratio is 

1:1 (Trivers and Hare, 1976).  Trivers and Hare (1976) examined colonies of ants and found 
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there to be a significant female bias with on average 64% of reproductive offspring 

produced being female. This is less than the 75% predicted if the workers are in full control 

but also more than the 50% predicted if the queen is in full control.  

 

Once the larva reaches a certain size the cell is capped, i.e. sealed over with wax. The larva 

will continue to develop, eating stored food, until ready to pupate. At this point the larva 

orientates itself by finding the rough end of the cell so that its head is towards the capped 

end of the cell. The inside of the cell in polished smooth before eggs are laid so that when 

capped the capped end will be rough. (Hooper, 2008) The timetable for bee development is 

shown in table 1.1. 

 

1.1.4 The Workers: 

 

The worker caste are the smallest adults within the colony usually being less than 2cm in 

length.  They have smooth mandibles and a long proboscis; on average 6.5mm. These 

morphological attributes enable the workers to carry out the ‘work’ of the colony (Waring, 

2006). When a worker first emerges she will remain within the hive and carry out tasks 

there including the cleaning, trimming, capping and polishing of cells, storage of nectar and 

pollen, feeding larvae and drones and attending to the queen. Some of these young bees 

may act as undertakers, removing dead bees from the hive. They may also act as guards, 

stationed at the hive entrance. A guard bee will attack violently if approached by an 

aggressor, for example by wasps or bees from other colonies attempting to gain entrance to 

the hive and its stores (robbing).  

 

Sometimes, however, a worker bee from another colony may be confused and try to enter 

the wrong hive. In these cases the lost bee will not behave aggressively; it acts as if it has 

entered its own colony. In fact it acts submissively, offering the honey or nectar it carries 

and dropping its head. The guard bees mob the unfamiliar bee but are not particularly 

violent. Over time the continued mobbing leaves the lost bee smelling like the new colony 

and it can soon pass unharmed. The lost bee may now join this new colony. This process is 

called drifting (Hooper, 2008). 

 

A worker bee will only remain in the hive for the first 2 or 3 weeks of her life. After this she 

will take a trial or ‘play flight’ near the hive. This allows the worker to learn the hive’s 

location in preparation for longer flights whilst also testing the bee’s wings. The bees use 

visual cues to identify their hive, beekeepers can paint their hives to make them more 

recognisable and reduce the chance of bees drifting into other, nearby colonies (Komissar, 

1993). Older worker’s brood food glands shrivel and cease to function and they become 



6 

 

foragers. These bees collect the resources required by the colony including water, pollen 

and propolis. The propolis is made from resinous material taken from tree buds and is used 

as a sealant within the hive. Propolis also has antimicrobial activities. The honeybee hive is 

warm, humid and provides the perfect conditions for fungal and bacterial growth. Propolis is 

used to keep microbial growth under control (Silici et al., 2005). The foragers also collect 

nectar which will be turned into honey. The nectar is mostly comprised of sugars dissolved 

in water but the high water concentration of nectar (30-40%) means that it cannot be 

stored as bacteria and fungi would grow within it and contaminate it. If the water content is 

decreased, however, it can be stored. The bees achieve this by regulating the humidity 

within the hive by fanning which allows the water in the nectar to evaporate (Hooper, 

2008). Honey therefore has a water content of 18% or less. In the UK it is illegal to sell 

honey containing more than 20% moisture (Waring, 2006). It has been found that the sugar 

concentration of the nectar is increased during foraging and the return flight to the nest. 

Nicolson et al., (2008) tested the concentration of nectar in honeybee crops and found that 

not only was this higher than the nectar from the plant itself but also that the concentration 

increased between leaving the flower and returning to the hive. It is thought that this is 

achieved by regurgitating the liquid onto the tongue to evaporate off some of the water 

(Nicolson and Human, 2008). Further evaporation occurs within the hive where the nectar 

droplet is placed at the top of the cell and fanned with the wings. The enzyme invertase is 

added to the nectar and converts the sucrose to fructose and glucose (Gordon, 1980). 

Ruizargueso et al., (1975) determined that there may be bacterial activity involved in the 

ripening of honey. They discovered the presence of Lactobacillus and Gluconobacter within 

samples of ripening honey. When added to sugar syrup, the bacteria produce lactone and 

change the pH of the syrup to an acidity similar to natural honey. 

 

Some foraging bees act as scouts to find new sources of these resources. To pass on the 

information they use several dances the most well-known of which are the round dance and 

the waggle dance (figure 1.1). If the resources are near to the hive, some spilt honey for 

example, the scouting bees will rotate in ¾ inch circles stopping every so often to offer a 

sample of the resource to gathered bees. This dance is only used if the resource is within 

50m of the hive and although it has been found to encode directional and distance 

information this information is not precise to encode directional and distance information 

this information is not precise (Griffin et al., 2012). If the resource is further away a waggle 

dance is used. This dance consists of a repetitive figure of 8 motion, the abdomen is 

‘waggled’ rapidly as the bee walks the centre of the pattern. The vigour of the dance 

indicates how rich the source is whilst the number of waggling runs in a set time determines 

the distance of the source from the hive. Finally, the direction of the source is also given. 

The central waggling part of the walk is angled so that the degree of rotation from vertical is 
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equal to the degree of deviation from the direction of the sun (Couvillon, 2012). For 

example if the bee walks directly up the face of the hive then the resource can be found 

directly towards the sun. If the bee walks down the hive then the resource is in the opposite 

direction and so on. The bees have polarised vision allowing them to accurately detect the 

direction of the sun even through cloud cover and near its zenith. It was Karl Von Frisch 

who first determined the meaning of the waggle and round dances (von Frisch, 1974). He 

even determined that the bees must have polarised vision capabilities long before this was 

proved physiologically (von Frisch, 1974). He was eventually rewarded with a joint Nobel 

Prize for his efforts.  

 

Figure 1.1: 

 

 

Figure taken from Karl von Frisch’s 1973 Nobel lecture showing the 2 forms of dance used by foraging bees to 

transmit information to other workers. From Nobel Lectures, Physiology or Medicine 1971-1980, Editor Jan 
Lindsten, World Scientific Publishing Co., Singapore, 1992 

 

In addition to the waggle and round dances Seeley (1992) also identified a ‘Tremble dance’ 

in which a returning forager who is unable to pass her load onto another worker shakes her 

body back and forth, at the same time rotating her body axis by about 50-degrees every 

second or so, all the while walking slowly across the comb. This can last for 30 minutes and 

is thought to mean that the forager has found a rich food source but the colony already has 

enough supplies coming in to keep the workers busy.  

 

Over winter the worker bees are subtly different from their summer sisters. The winter bees 

are produced in late autumn and unlike other workers their brood food glands remain active 

for their entire life. Whilst the summer workers may only live for about six weeks on 

average; the winter bees may live for several months. 
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1.1.5 The Drones: 

 

Finally the male drones; these are bigger and ‘dumpier’ than the workers, unable to sting, 

with very big eyes and long antennae used when searching for virgin queens to mate with. 

They have only a short proboscis and must be fed by workers (Waring, 2006). many 

researchers believe that they do little more than mate with the queens. In good weather, 

the males leave the colony and gather together to wait for passing queens to mate with. It 

does seem, however, that colonies without drones tend to fare worse than those with. It 

may be that only better faring colonies can produce drones or the drone may have some as 

yet unknown function within the hive. It has been suggested that they are important for 

temperature regulation (Kovac et al., 2009). However at the end of the summer when the 

colony is preparing to hibernate any remaining drones are evicted from the hive (Hooper, 

2008). 

 

1.1.6 Economic value: 

 

The honeybee, Apis mellifera, is an ecologically and economically important species across 

the world. Products taken directly from managed bee colonies include honey, wax and 

propolis. Honey production in the UK was valued at £10 - 35 million annually (Burr, 2009). 

However, honeybees are most important as crop pollinators. The honeybee is a good 

pollinator because of its manageability and large forager populations (Benjamin and 

McCallum, 2008). In the UK a recent Defra report valued honeybee pollination at almost 

£200 million annually (Burr, 2009). In the USA honeybee pollination of crops such as 

almonds and oranges has been valued at over $14 billion per annum (Morse and Calderone, 

2000) and worldwide the figure may be as much as $75 billion (~£50 billion) annually 

(Swinton et al., 2007). In fact, bee pollinated crops could contribute up to 35% of global 

food production (Klein et al., 2007). 

 

1.2 Colony losses: 

 

Recently there have been several reports suggesting that there has been a massive decline 

in honeybee numbers especially in the USA and parts of Europe including the UK (Neumann 

and Carreck, 2010; Potts et al., 2010b; vanEngelsdorp et al., 2011). A lot of media attention 

has been drawn to dramatic honeybee losses (eg, guardian: 

http://www.guardian.co.uk/environment/2008/aug/12/conservation.wildlife1). Some honeybee 

colonies die each year due to parasitism and disease, poor management or starvation if 

insufficient pollen and nectar are collected over the summer to provide winter food stores 

http://www.guardian.co.uk/environment/2008/aug/12/conservation.wildlife1
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(Hooper, 2008). However, occasionally large numbers of colonies die for apparently 

unknown reasons.  

 

In the USA honeybee losses have been estimated at around 30% in recent years compared 

to previous losses of only 5-10% per year (vanEngelsdorp et al., 2008). A long term survey 

of US honeybee numbers carried out by NASS (National Agricultural Statistics Service ) 

(2008) shows that the trend in declining honeybee numbers is not a new thing as numbers 

have fallen by more than 50% over the past 50 years. In Europe, a recent paper by Potts et 

al., (2010b) concluded that honeybee numbers are also declining across much of Europe. 

Across central European regions, including the UK, honeybee numbers fell by approximately 

25% between 1985 and 2005, and in all countries examined the number of beekeepers had 

also decreased. 

 

The causes behind colony losses in the UK and elsewhere are currently unknown. Various 

studies have attributed the problem to viruses (especially Israeli Acute Paralysis Virus, 

IAPV), varroa mites, Nosema spp., pesticide use, GM crops, stress, decreased forage, lack of 

genetic diversity, pollution, climate change, weather… or a combination of several of these 

and other factors (eg Bromenshaenk et al., 2010; Cox-Foster et al., 2007; Giray et al., 2010; 

Guzman-Novoa et al., 2010; McFrederick et al., 2008; Oldroyd, 2007; Paxton, 2010; Potts et 

al., 2010a; Tarpy and Seeley, 2006). It now appears that there is no one cause behind 

these losses. In fact it is likely that several different factors act together making the problem 

multifactorial (Oldroyd, 2007). It is also likely that there are different problems in different 

regions. Varroa mites have been suggested as a cause for honeybee losses in Canada  

(Guzman-Novoa et al., 2010) but may not be such a problem in Africa (Fazier et al., 2010) 

and a questionnaire study of colonies in Turkey suggested that Turkish honeybee losses 

may be more closely related to region and weather than to disease level (Giray et al., 2010). 

This may be down to differing bee keeping practices, differences in climate and weather 

conditions, or many other reasons. 

 

There is still much conflict between data, for example whilst several studies point towards 

varroa mites as a cause (Guzman-Novoa et al., 2010; Le Conte et al., 2010; Yang and Cox-

Foster, 2007), data from the food and agricultural organization (FAO) for Europe shows little 

obvious impact from the introduction of varroa mites (Moritz et al., 2010) (figure 1.2). 

However there may be a combined effect of politics and varroa such that when the Soviet 

Union was dissolved in the early 1990s there was less financial support for beekeepers 

making it harder to replace colonies lost due to pathogens and parasites like varroa. This 

made it financially unviable for many beekeepers to continue to keep bees in Eastern 

European countries.  
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Figure 1.2: 

 

The annual number of hives reported to the FAO in western European countries (the former 15 EU 

member states, black circles) and the former Warsaw Pact countries in Eastern Europe (including the 
former USSR, open circles). The dramatic decline in Europe coincides with the political system changes in the in 

Eastern Europe, whereas the introduction of V. destructor had no perceptible impact on the number of hives 
reported. 

 

Other studies suggest that Nosema spp. (microsporidian gut pathogens), especially N. 

ceranae, may be linked to honeybee losses. A review by Paxton (2010) summarises much of 

the information gathered so far. There is research to suggest that N. ceranae can lead to 

the loss of a colony within 18 months of infection (Higes et al., 2008) it is also thought that 

N. ceranae may be more virulent than N. apis (Higes et al., 2007; Paxton et al., 2007), 

although a more recent study showed no discernible difference in virulence between the two 

species in caged bee studies (Forsgren and Fries, 2010). 

 

The large metagenomic study by Cox-Foster et al. (2007) however showed that although all 

the colonies identified as having been killed by colony collapse disorder (CCD) studied in the 

investigation were found to be positive for N. ceranae, so too were many of the apparently 

healthy colonies (47%) studied. This suggests that although N. ceranae may be linked to 

CCD losses it is unlikely to be the sole cause. 

 

It has been suggested that if something is not done to prevent A. mellifera colony losses 

there may be no colonies left by 2035 (Benjamin and McCallum, 2008), but the reality is 

unlikely to be quite so dramatic.  A more recent study suggests that the severest losses may 

be confined to the USA and some parts of Europe (Aizen and Harder, 2009). A review of the 

FAO data on the number of commercial bee hives worldwide showed that while the number 

of honeybees kept commercially has decreased in some areas (like the UK), worldwide 

numbers have actually been increasing since 1961 (Aizen and Harder, 2009). However, this 

increase is slower than the increasing demand for pollination (Aizen and Harder, 2009). A 
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recent UK study suggests that whilst the honeybee contribution to insect pollination is 

declining there has been no subsequent decline in crop yields. This is likely due to the 

contributions of wild insect pollinators (Breeze et al., 2011).  

 

1.3 Honeybee pathogens and parasites: 

 

Honeybees are hosts to many different pathogens including viruses, bacteria, fungi, 

protozoa and microsporidia as well as invertebrate parasites (Bailey and Ball, 1991). It is 

thought that one of the causes behind the honeybee declines seen in several countries, 

including the UK, may be pathogens (e.g. Cox-Foster et al., 2007; Oldroyd, 2007). This 

project focuses on the effect of the honeybee viruses common to the UK, the microsporidia 

Nosema spp. and the parasitic mite V. destructor.  

 

1.3.1 Bacteria: 

 

Several bacteria have been isolated from A. mellifera, usually from the digestive tract. Dying 

bees have been found infected with Pseudomonus apiseptica and other bacteria. However 

Bailey and Ball (1991) believe that bacteria act more as agents of septicaemia causing 

secondary, though potentially fatal infections after previous primary pathogenic or non-

infectious disorders are acquired. The two most common and virulent bacteria that infect 

honeybees are American foul brood (AFB) caused by the rod-shaped Gram-positive species 

Paenibacillus larvae and European foul brood (EFB) caused by the lanceolate, Gram-positive 

bacterium Melissococcus pluton. Both EFB and AFB are ‘notifiable’ diseases. In the UK this 

means that if the disease is found in a colony the secretary of state (or more accurately the 

National Bee Unit acting on his/her behalf) must be informed. This is part of DEFRA’s bee 

health program that was designed to control and limit the spread of bee diseases (DEFRA, 

2006).  

 

If AFB is confirmed within a colony that colony, must be destroyed, the frames burnt and 

the rest of the equipment scorched or fumigated. EFB colonies can be kept but must be 

quarantined. If the infection is light no treatment is needed other than to reduce the area of 

brood nest then feed and strengthen the remaining colony. For heavier infections chemical 

treatments such as Terramycin are used (Tarpy and Keller, 2007). 

 

1.3.2 Fungi: 

 
There are few fungi that affect adult A. mellifera naturally. Melanosis affects queens leading 

to melanization of the tissues surrounding the nurse and egg cells of the ovaries (Bailey and 

Ball, 1991). There are also pathogenic yeasts which are thought to be Torulopsis species 



12 

 

(Giordani, 1952). The two most common fungal pathogens of honeybees only infect the 

larvae. Chalk brood, Ascophaera apis, kills larvae after capping and makes them appear 

white, fluffy and swollen at first before shrinking and becoming hard. By this stage workers 

may have removed the cell cap (Bailey and Ball, 1991). Infected combs can be treated with 

Thymol but cedar oil has been found to be more effective if also more expensive (Mourad et 

al., 2005). Stone brood, Aspergillus flavus or Aspergillus fumigatus, also affects larvae after 

capping, first they appear white and fluffy but later become hardened and either a pale 

brownish or greenish yellow. There are no treatments available for this disease but it does 

not usually affect strong healthy colonies (Bailey and Ball, 1991).  

 

1.3.3 Protozoa: 

 

Malpighamoeba mellifica is a protozoan of the order Sarcodina and infects the lumen of the 

malpighian tubules of adult A. mellifera. This causes atrophy of the Malpighian tubules but 

leaves no other sign of infection. To diagnose this disease requires dissection of the bee to 

reveal the presence of cysts (Bailey and Ball, 1991). It is unclear how serious infection by M. 

mellifica actually is. Heavily infected colonies may show no outward sign of infection and the 

specific effects of this pathogen are unclear, however it may be linked to shortened worker 

longevity and is possibly associated with Nosema spp. infection (Jordan, 1937). 

 

1.3.4 Parasitic mites: 

 

1.3.4.1 Tracheal mites (Acarapis woodi): 
 
This parasite infests the tracheae of the first pair of spiracles of adult honeybees although 

they have also been found in air sacs in the head and abdomen (Prell, 1927). Injection of 

the dye congo red into the haemolymph of infested bees causes the mites to change colour 

indicating that they are likely to be feeding on haemolymph by piercing the tracheal wall 

(Orosi-Pal, 1934). There are no outward symptoms of parasitism and so dissection is 

required for diagnosis. Parasitised individuals do, however, have shortened life spans 

although this does not significantly affect the colony as a whole unless the parasitism level is 

high. In Britain this occurs only very rarely. In fact, prevalence of this mite in Britain has 

been falling since records began. This may be due to climate change, treatment or the 

breeding of resistant strains of bees (Bailey and Ball, 1991). 

 

Acarapis woodi has been found not to infect older bees (of about 9 days or older) or 

queens, although the reasons for this are unclear (Bailey and Ball, 1991). When foraging 

activity increases, the older infected bees are separated from younger susceptible ones; the 



13 

 

infestation decreases. In Florida parasitism levels were recorded to drop between 5 and 

90% during nectar flows (Taber, 1987).  

 

There are other Acarapis species that infect A. mellifera including A. dorsalis in Britain. This 

mite is located in the v-shaped groove between the mesoscutum and mesoscutellum on the 

bee’s dorsal region (Morison, 1931). Tracheal mites can be treated with many chemicals 

including Apiguard and Apilife VAR (Tarpy and Keller, 2007). 

 

 

1.3.4.2 Varroa destructor: 
 

More than 40 species of mite have been associated with honeybees of which six parasitize 

A. mellifera. The most common in UK is Varroa destructor. Varroa destructor, hereafter 

called ‘the varroa mite’ or simply ‘varroa’, is a relatively recent parasite of A. mellifera having 

transferred from the Asian honeybee, Apis cerana, in the early 1960s probably in the 

Primorsky region  of the former USSR (Dejong et al., 1982). This is likely to have occurred 

due to mutual robbing and drift between the two bee species as well as the use of A. cerana 

brood to bolster Western honey bee hives. Varroa is therefore co-evolved with A.cerana but 

not with A. mellifera, and A. mellifera colonies can soon be overrun with mites. Varroa has 

been linked to reduced adult bee size, weight, flight frequency and life span (Kralj, 2004). 

Previous studies have suggested that some viruses may be transmitted by the mite (e.g. 

Bakonyi et al., 2002; Tentcheva et al., 2004a, see also 1.3.5) but a study by Santillan-Galicia 

et al. (2010) was the first to prove that both DWV and slow paralysis virus are transmitted 

by the mite and mite transmission appears to be more important than bee-to-bee 

transmission.  

 

The mite is also able to ‘activate’ viruses. Many bee viruses occur at inapparent 

(symptomless) levels but varroa appears to trigger overt infections. For example Nazzi et al 

(2012) showed that varroa infestation transformed the usually inapparent virus DWV into a 

rapidly replicating and lethal infection.  This may be due to some biochemical component of 

the mite’s saliva that may suppresshumoral, cellular or genetic immune responses of the 

individual bees (Bailey and Ball, 1991; Gregory et al., 2005).  Yang and Cox-Foster (2005) 

examined the expression of several immune chemicals in A. mellifera infested with varroa 

both with and without deformed wings. Expression of the antimicrobial peptides 

hymenoptaecin, defensin and abaecin were all suppressed by the presence of varroa. 

Hymenoptaecin was not affected by the presence or absence of wing deformity. Defensin 

and abaecin, however, were suppressed to a greater extent in bees suffering from wing 

deformity suggesting that suppression of these peptides was not solely due to the mites.  

Phenoloxidase, lysozyme, glucose dehydrogenase and glucose oxidase are chemicals 
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important in insect immunity (see 4.5); all of these were also found to be suppressed by 

varroa (Yang and Cox-Foster, 2005). 

 

Many viruses are more effectively transmitted by injection than by ingestion by the bees and 

in nature those viruses vectored by varroa are transmitted through the mite’s feeding 

activity and thus effectively injected into the individual (Martin, 2001). Finally varroa 

transmits viruses between the different life stages of the bees. This is especially important in 

the case of DWV where the characteristic deformed wings are only seen when infection 

occurs at the early (white eyed) stage of pupal development (Ribiere et al., 2008).  

 

Zhang et al. (2010)  examined gene expression in both Asian and European honeybees in 

response to varroa infestation to determine whether the varroa tolerant Asian honeybees 

showed different gene expression compared with the more susceptible European bees. 

Several genes were differentially up or down regulated in response to infestation. Some of 

these have been pinpointed as potentially linked to varroa mite tolerance; although more 

work needs to be carried out to confirm this. If these genes are indicators of varroa 

tolerance they may be useful in selectively breeding varroa tolerant bees. 

 

However, it has been suggested by Fries et al. (2006) that if honeybees were left to adapt 

naturally to varroa infestation without the influence of applied miticides and other 

treatments, then they may be able to develop natural tolerance to the parasites. Fries et al. 

(2006) studied an isolated island population of honeybee colonies (N=150) each infested 

initially with 36-89 varroa mites. Mortality increased over the first three years but then over 

the next three years, mortality decreased, as did varroa levels whilst more colonies began to 

swarm. A similar study in Louisiana, USA, showed that swarming rates and colony survival 

decreased in the first three years after the introduction of varroa to the area, but after this 

swarming rates and colony survival returned to normal (Villa et al., 2008). Similar results 

were also found in France (Le Conte et al., 2007). A study of the reproductive success of 

varroa mites in control colonies and colonies that had previously survived varroa infestations 

showed the average proportion of successfully reproducing varroa mites was significantly 

lower in surviving colonies compared to control colonies (Locke et al., 2012).  

 

European honeybees in other geographical regions may already be resistant to the varroa 

mite; for example, in South America (see Rosenkranz, 1999) and in Africa (Fazier et al., 

2010) where little or no impact of the mite’s introduction to local honeybee populations has 

been seen, although geographical location and climate may be influential factors here. There 

is also a Russian honeybee race that may have been affected by varroa for longer than the 

European honeybee and thus is now better able to withstand attack. Rinderer et al., (1997) 
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examined these colonies in 1995-6 and showed that they had lower mite populations than 

similar hives in Baton Rouge Louisiana, but could not say for certain that this was not 

because of other influences such as environment and bee keeping practices.  Research is 

being carried out in the USDA Honey Bee Research Laboratory in Baton Rouge, Louisiana, 

into the use of Russian stocks to form varroa-tolerant colonies (Harris and Rinderer, 2004).  

 

African honeybees have also been shown to be more hygienic than similar bees found in 

Europe (Fries and Raina, 2003), and it has been suggested that the bees showing greater 

hygienic behaviour may be more resistant to the varroa mites. However, a recent study by 

Çacmak (2010) showed that hygienic colonies of bees, as determined using a liquid nitrogen 

freeze killed brood assay, were no more likely to survive over winter in the presence of 

varroa infestations than non-hygienic colonies. This may mean that either this assay is not a 

good indicator of hygienic behaviour in relation to varroa removal, or it may simply suggest 

that hygienic bees are no more tolerant to varroa than non-hygienic bees. 

 

Currently, control of varroa is achieved by chemicals (miticides or essential oils), drone 

trapping or powdered sugar application (Hooper, 2008). Mites are commonly seen crawling 

on bees and are present in nearly all colonies in the UK, although some island populations 

have remained varroa-free. Mites can be quantified within colonies by placing sticky varroa 

boards beneath the mesh floor of the colony and counting the number of mites that fall onto 

the boards within a week (varroa drop counts). Collecting a known number of adult bees 

into a container and covering them with icing sugar can induce grooming behaviour and 

may interfere with how the mites grip onto the bees (Fakhimzadeh, 2000), removing all the 

mites that can then be counted to provide an estimate of the number of mites living on the 

adult bees (phoretic mite counts) (Hooper, 2008; Waring, 2006). In Spring, if more than 2-3 

mites per bee are detected by these counting methods, or if 40-80 mites are trapped within 

24 hours on the sticky trap, then treatment is needed. In Autumn the threshold rises to 5-6 

mites per bee or 100-150 mites trapped in 24 hours (FERA, 2010). There are several 

chemical treatments that can be used from Apiguard and essential oils that encourage mites 

to leave their hosts, or pesticides such as Apistan or Bayvarol. It is known that resistance to 

pesticides is widespread, however, so these should be used in rotation (FERA, 2010). 

Treatment is not recommended in late Spring or Summer during honey flow (Tarpy and 

Keller, 2007).  

 

1.3.5 Viruses: 

 

As of 2007, a total of 18 viruses had been identified and characterised from bees of the 

genus Apis. With the exception of a single DNA virus (Filamentous virus) all others are single 
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stranded RNA viruses, usually isometric (with the exception of Chronic bee paralysis virus, 

CBPV) and forming three separate size classes; 17, 30 and 35nm respectively. Whilst all 

viruses except filamentous and CBPV are indistinguishable microscopically they do possess 

differing buoyant densities in CsCl and have different capsid protein profiles (Ribiere et al., 

2008). Each virus can also be distinguished using molecular techniques. In this project the 

viruses were identified using PCR (see chapter 2.6.1). 

 

All the honey bee viruses described below are single stranded, positive sense viruses. This 

means that each is made up of a single strand of RNA within a protein capsid. The ‘positive 

sense’ refers to the fact that it can be read in the same direction as mRNA without need for 

transcription first. The positive sense RNA can be read as mRNA to produce the protein 

capsids needed for packaging new virions and to produce RNA dependent RNA polymerase. 

This enzyme is used to replicate new minus sense RNA from which new positive sense 

strands can be made thus allowing the virus to replicate (Madigan et al., 2006). 

 

Most bee viruses in nature occur in ‘inapparent’ or ‘covert’ forms. This means that whilst the 

viruses are present within individuals in the colony there are no outward signs of infection. 

Covert infections are defined as conditions in which there are low levels of the virus which 

produces no clinical symptoms but the virus can re-emerge at a later date or be passed on 

vertically to subsequent generations. In contrast inapparent infections are short term, 

characterised by large levels of virus production and horizontal transmission but again with 

no obvious symptoms (Yue et al., 2007). Confusingly, ‘inapparent’ is often used to describe 

any infection where there are no outward symptoms irrespective of quantity of virus 

particles present or the transmission route (Ribiere et al., 2008). Virulence is thought to 

depend on the transmission route to which the virus is adapted. Vertical transmission 

requires increased longevity of the host compared to horizontal transmission and so 

vertically transmitted viruses are generally less virulent than horizontally transmitted ones. 

Thus covert viruses should be less virulent than inapparent ones (Yue et al., 2007). Several 

viruses may be present in a single colony or individual bee without any obvious signs.  

 

There are six honeybee viruses commonly detected around the world which are routinely 

checked for in honeybee samples by the National Bee Unit (NBU): acute bee paralysis virus 

(ABPV), black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing 

virus (DWV), Kashmir bee virus (KBV) and sac brood virus (SBV). The NBU also routinely 

test for the presence of one additional virus, Israeli Acute Paralysis Virus (IAPV) which is a 

new virus and has not yet been detected in the UK (Bee Base: 

https://secure.fera.defra.gov.uk/beebase/index.cfm?pageid=275). In this project all seven of these 

viruses were tested for although only BQCV, SBV and DWV were detected. 

https://secure.fera.defra.gov.uk/beebase/index.cfm?pageid=275
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1.3.5.1 Chronic Bee Paralysis Virus; CBPV: 
 

The symptoms of ‘paralysis’ may have been witnessed over 2000 years ago as recorded by 

Aristotle, however, the cause of the disease was not discovered until 1963 (Bailey et al., 

1963). There are two sets of symptoms associated with this virus. Firstly, bees may become 

flightless and trembling, often showing bloated abdomens and ‘dislocated’ wings. They die 

within a couple of days. This is the most common outcome in the UK (Bailey and Ball, 

1991). Some colonies however show a separate set of symptoms that make them prone to 

attack by guard bees much as robber bees are. These bees lose their yellow fur and thus 

appear black and shiny, they also appear smaller with broader abdomens. These bees 

become flightless within a few days and die soon after (Bailey and Ball, 1991). The 

mechanism determining which of these symptom sets the bees present is, so far, unclear. It 

is, however, known that it is not connected to virus titre or serology (Rinderer and Green, 

1976). Susceptibility to this virus may have a genetic basis (Bailey, 1965). This virus can 

also be found as a covert infection with virus particles detectable by molecular methods 

(section 1.5) (Tentcheva et al., 2004b). There is also some evidence that CBPV can be 

transmitted vertically (Chen et al., 2006a). 

 

CBPV also has an associative virus (CBPVa) that cannot be transmitted separately from 

CBPV. It appears to decrease the infectivity of CBPV and may be linked to defence 

mechanisms of the bees (Ball et al., 1985). There has been no evidence of any influence of 

varroa on the prevalence or impact of CBPV (Ribiere et al., 2008). 

 

1.3.5.2 Acute Bee Paralysis Virus; ABPV: 
 

This virus was discovered when researchers were searching for the cause of bee paralysis. It 

presents the same trembling and paralysis symptoms as CBPV but affects individuals much 

faster. Bees infected with 100 particles of ABPV show symptoms within 2-4 days and are 

dead 1-2 days later, while bees infected with CBPV show symptoms after 5-6 days and die a 

few days later (Bailey et al., 1963).  

 

In nature this virus is covert. It was not directly detected by serology in dead bees or brood, 

or associated with disease or mortality, until combined with the influence of varroa (section 

1.3.4.2). The mite appears to transmit the disease (Chantawannakul et al., 2006) although 

Wiegers (1986) showed that transmission efficiency decreases with time making it unlikely 

that the virus can replicate within the mite. The virus can be lethal at the colony level, 

especially when combined with varroa infestation. This virus has been detected in honeybee 

semen suggesting that it may be vertically transmitted (Yue et al., 2006). 
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1.3.5.3 Black Queen Cell Virus; BQCV: 
 

This virus was first detected in dead, field-collected queen larvae that came from cells with a 

blackened appearance (the source of the virus’ name) (Bailey and Woods, 1977). BQCV is 

prevalent and widespread across Europe (Bailey and Ball, 1991). Infected larvae have a pale 

yellow colouration with a tough sac-like skin. Infection is characterised by the presence of 

blackened cell walls of sealed cells which contain dead prepupal queen larvae (Bailey and 

Ball, 1991). The disease sometimes affects worker brood and has been found in drone 

larvae (Siede and Buchler, 2003). However, it is usually detected as a covert, symptomless 

infection in adult bees (Chen et al., 2006b). Anderson and Gibbs (1988) found that covert 

infections in worker larvae could be activated to increase replication to detectable levels by 

injection of salt solutions followed by incubation of the larvae for 3 days and 35oC.  The 

virus commonly occurs in conjunction with Nosema apis (section 1.3.3) and may rely on this 

microsporidian gut parasite for transmission. In the laboratory, N. apis infection was 

required for BQCV per os infection to occur (Bailey et al., 1983). There is some evidence 

that the virus is vertically transmitted (Chen et al., 2006a). BQCV follows the same seasonal 

cycles as N. apis with peak infection occurring in the spring and early summer (Bailey and 

Ball, 1991). BQCV was found to worsen the effect of N. apis and in combination with N. apis 

was responsible for some colony loses (Bailey et al., 1983). There is no evidence for any 

association between BQCV and varroa (Tentcheva et al., 2004b).  

 

 

1.3.5.4 Deformed Wing Virus; DWV: 
 

DWV was first identified in varroa-infested bees from Egypt (Ball, 1983). The virus is one of 

the causes of bee mortality in varroa-infected colonies (Bailey and Ball, 1991). Individuals 

infected at an early stage of development (white-eyed pupa stage) show developmental 

deformities such that, as adults, they are often of reduced size with the characteristically 

deformed wings. It was first thought that these symptoms were linked specifically to the 

presence of varroa.  However, symptomless bees can emerge from colonies heavily 

parasitised with varroa and symptomatic bees have been found in colonies with few or no 

mites suggesting that the symptoms are due solely to DWV (Ball, 1993). Allen & Ball (1996) 

confirmed this when larvae infected with DWV in the laboratory developed with the wing 

deformities. More often than not, however, an infected colony will show no outward 

symptoms and the presence of symptoms is not proportional to the virus titre (Chen et al., 

2005; Tentcheva et al., 2006). 
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Figure 1.3: 

 

A bee with deformed wings caused by DWV. Image taken by Graham Shephard, Rothamsted VCU. 

 

DWV is, however, closely associated with varroa infestation. The introduction of varroa to 

one of the Hawaiian Islands (Oahu) in 2007, and its later spread to a second island (Big 

Island) in 2009 allowed researchers to monitor the effect of the mite on naïve honeybee 

populations. A survey by Nikaido and Villalobos during 2007 and 2008 on Oahu recorded the 

collapse of 274 of 419 colonies that had not been treated against varroa. Martin et al. 

(2012) found that on the islands still free of varroa there was a high diversity but low 

prevalence of DWV isolates, however on the islands with the mites the virus diversity 

decreased and prevalence increased in comparison to the mite free islands. This suggests 

that the presence of mites was selecting for particular variants of DWV that may give them 

a competitive advantage. In other studies virus titre in individual bees was proportional to 

mite infection (eg. Bowen-Walker et al., 1999). The virus can be transmitted by varroa and 

it has also been suggested that the virus can replicate within the mites (Bowen-Walker et 

al., 1999). In experiments by Yang and Cox-Foster (2005) it was found that only those 

larvae parasitized by varroa developed the wing deformities associated with DWV, but not 

all parasitized larvae were deformed suggesting that varroa may increase the likelihood of 

bees developing with wing deformities. 

 

However other transmission routes do exist as individuals suffering from DWV type 

deformities were observed in the UK as early as 1963, before varroa was present in this 

country (Fyg, 1963) and the virus has been found in all developmental stages of bees 

including eggs, which the mites do not feed on (Chen et al., 2005). Experiments by de 
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Miranda and Fries (2008) showed that the virus could be transmitted horizontally between 

drones and queens during mating (‘venereal transmission’) and then from the queen to her 

offspring by vertical transmission. In the absence of varroa however the virus is usually 

covert, having no clinical symptoms but still passed on by both horizontal and vertical 

routes. Yue et al., (2007) determined that DWV has developed a ‘well balanced co-

existence’ with the honeybee that only leads to colony declines in conjunction with a trigger 

such as varroa infestation (see 2.3.1). When varroa is present the virus is more likely to 

become overt leading to much higher virus titres and the deformed wing symptoms (Yang 

and Cox-Foster, 2005). 

 

1.3.5.5 Kashmir Bee Virus; KBV: 
 

KBV was first detected in 1974 as a contaminant in preparations of Apis Iridescent Virus in 

the Asian honeybee Apis cerana in Northern India (Bailey and Woods, 1977), its name 

coming from the region in which it was found. Later serologically related strains were found 

in Australia (Bailey et al., 1979). KBV is serologically, biologically and genetically related to 

ABPV (Allen and Ball, 1995), although the two viruses are readily distinguishable by RT-PCR 

(Evans, 2001), and also show differences in capsid protein profiles (Allen and Ball, 1995). 

 

KBV is rapidly lethal to both brood and adults in the laboratory although, despite its close 

relation to APBV, it does not induce the same paralysis symptoms. In nature however the 

virus is covert with no clinical symptoms and it is unclear how severe a problem the virus is 

in nature (Ribiere et al., 2008). Varroa is likely to both transmit (Chen et al., 2004) and 

activate KBV (Yang and Cox-Foster, 2005). KBV, in association with varroa, has been linked 

to colony losses in New Zealand (Ball et al., 2004). The virus can, however, persist in the 

absence of the mites (Carreck et al., 2004) and there is some evidence that it is vertically 

transmitted (Chen et al., 2006a). 

 

1.3.5.6 Sacbrood Virus; SBV:  
 

SBV was the first honeybee disease attributed to a virus (White, 1917). Infected brood form 

a thickened skin in which fluid collects, forming the distinctive ‘sac’ (Bailey and Ball, 1991). 

Normally the larvae pupate about 4 days after their cell is sealed, infected larvae however 

do not pupate and fluid accumulates between the larva and its unshed skin. Infected larvae 

at first appear pale yellow, the colour darkening to brown after death and finally leaving 

only dried out scales (Ribiere et al., 2008). SBV is primarily a disease of honeybee larvae 

although it can multiply within adult hosts. However, infection susceptibility appears to be 

age dependant with only young adults (less than four days old) being experimentally 

susceptible (Bailey, 1969). 



21 

 

 

Whilst in the brood SBV is an acute overt infection (short lived with obvious symptoms); as 

with many other honey bee viruses, SBV can persist as a covert infection (Hails et al., 

2008). It is likely that it survives the winter at low levels in adult bees as it is unable to 

survive outside the host and there is rarely brood within the colony in winter (Ribiere et al., 

2008). Bailey found SBV to be common within bee colonies but large numbers of infected 

larvae were rarely found as workers remove infected individuals from the hive (Bailey, 

1967).  

 

SBV has been found in colonies infected with varroa but in a study by Shen et al. (2005a) 

this virus was detected at consistently low levels regardless of mite infection. In this 

experiment the bees were also infected with DWV and KBV and it is possible that the action 

of these other viruses suppresses SBV prevalence (Shen et al., 2005b). It is unclear whether 

the mite is responsible for transmission of the virus (Ribiere et al., 2008). Tentcheva et al. 

(2004b) did find SBV in varroa taken from 14% of the 36 colonies examined, but it has not 

been determined whether the virus can replicate within the mite so it is likely that it is 

present only as a consequence of feeding from infected individuals (Ribiere et al., 2008). 

 

1.3.5.7 Israeli Acute Paralysis Virus; IAPV: 
 

IAPV was isolated from honeybees in Israel in 2004. It is similar serologically to ABPV and 

KBV but was deemed to be unique enough to warrant a separate name (Maori et al., 2007a; 

Mayo, 2002). However Baker and Schroeder (2008b) believe that all three viruses are 

merely variants of the same species. The RNA dependent RNA polymerase used by such bee 

viruses during replication has no proof reading capabilities and thus is error prone. In fact 

Drake et al. (1998) suggests that RNA viruses show the highest mutation rate of any living 

being. For this reason many virus populations are actually made up of a collection of 

genetically distinct but related individuals, a quasispecies (Ribiere et al., 2008). With virus 

particles from different populations showing a high degree of variation it is difficult to define 

where one species ends and another begins. Baker & Schroeder (2008b) suggest that 

species identification should be based most strongly on the conserved gene regions as these 

show the lowest levels of variation both within and between species.  These authors also 

suggest that in previous studies the primers used to identify ABPV and IAPV may not have 

been specific enough to differentiate between the two viruses, for example in the study of 

Tentcheva et al. (2004b) the primer used to identify the presence of ABPV may also have 

detected IAPV (Baker and Schroeder, 2008b). For this project primers were chosen that 

could distinguish between all seven viruses tested for (see chapter 2.6). 

 



22 

 

Some viruses are known to undergo RNA recombination with other viruses present within a 

host and also with the host species. IAPV is one such virus and sections of its genome have 

been found embedded in the host bee genome (Maori et al., 2007c). When this 

recombination occurs however the bees become immune to subsequent viral infection by 

IAPV. This immunity may be due to RNAi mechanisms directed towards the viral RNA, 

disruption of pertinent host gene sequences or reciprocal mobilisation of host gene 

sequences to the virus (Maori et al., 2007b). The virus can also be transmittable by varroa 

mites (Di Prisco et al., 2011). 

 

In the study of Cox-Foster et al. (2007) into the causes for CCD in the USA it was suggested 

that one of the main contributing factors was IAPV infection. This paper also suggested that 

the introduction of this disease to the USA may have been due to importation of bees from 

Australia; however, later research discovered evidence of the virus in the US as early as 

2002, more than 2 years prior to the importation of any bees from Australia (Chen and 

Evans, 2007). IAPV does correlate closely with CCD occurrence in the study however, it has 

been suggested that the transposition of viral gene sequences into the host genome may be 

responsible for the behavioural changes that could cause CCD (Cox-Foster et al., 2007). 

 

1.3.6 Nosema disease: 

 

Nosema spp. are microsporidia; spore producing, unicellular parasites related to fungi 

(Texier et al., 2010). There are two species of Nosema that are infectious to honeybees: 

Nosema apis and Nosema ceranae (Texier et al., 2010). Nosema apis was first observed by 

Zander (1909) and has a worldwide distribution (Matheson, 1996). Nosema ceranae was 

first identified in A. cerana and later detected in A. mellifera, although it has been suggested 

that, as the two species are not easily distinguishable, that N. ceranae may have been 

present in A. mellifera long before it was first detected (Chen et al., 2008). The parasites 

are ingested and thereafter reside within the gut tissue of the bees, releasing spores that 

are transmitted through faeces. The spores can also be found in honey stores, on the comb 

surface and interior surfaces of the hive (Malone et al., 2001).  

 

Symptoms associated with Nosema spp in bees are relatively non-specific making it difficult 

to distinguish them from other diseases. Nosema apis-infected bees usually show symptoms 

in the spring, the most notable being dysentery, but bees may also be found crawling, with 

distended abdomens, or dead. Nosema ceranae-infected bees show symptoms throughout 

the year, although the symptoms are often less obvious as bees leave the colony to die 

(Bourgeois et al., 2010).  
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As the symptoms of Nosema disease are generally non-specific, the best way to diagnose it 

is microscopically. The abdomens of infected bees are macerated in water and examined 

under a light microscope. The spores, if present, can be counted using a haemocytometer to 

determine the level of infection. However, it is very difficult to distinguish microscopically 

between the two species (Bailey and Ball, 1991, see also figure 1.4). A more accurate 

diagnostic method to both identify and quantify these two species is by Quantitative 

polymerase chain reaction (QPCR) which uses the PCR reaction combined with fluorescent 

dyes to amplify and quantify DNA targets (e.g. Chen et al., 2008).  The full genome 

sequence has been determined for N. ceranae but not for N. apis. There are data available 

for sections of the ribosomal RNA genes of N. apis from which primers have been designed 

(e.g. Chen et al., 2009).  

 

Figure 1.4: 

  

Light microscope images of Nosema caranae (Left) and Nosema apis (right) at x400 with a single spore 
shown at x1000 magnification taken from Bee Craft January 2008 Page 7: Nosema ceranae. Giles Budge, National 

Bee Unit, Central Science Laboratory, York. 

 

Nosema ceranae, may be linked to honeybee losses although more research is needed to 

confirm this (Paxton, 2010). Research suggests that N. ceranae could cause colony loss 

within 18 months of infection (Higes et al., 2008) and it is considered more virulent than N. 

apis (Higes et al., 2007; Paxton et al., 2007), although a more recent study (Forsgren and 

Fries, 2010) showed no discernible difference in virulence between the two species in caged 

bee studies. The large metagenomic study by Cox-Foster et al., (2007) showed that, 

although all the CCD colonies studied in the investigation were positive for N. ceranae, so 

too were many of the apparently healthy colonies (47%) studied. This suggests that while 

N. ceranae may be linked to CCD it is not the sole cause. 
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Nosema can be treated with the antibiotic Fumadil B. It is not recommended to use chemical 

treatments in late Spring-Summer during the honey flow (Tarpy and Keller, 2007). 

 

1.4 Effects of pathogens on hosts: 

 

1.4.1 Immune response: 

 

The honeybee genome was fully sequenced in 2006 (Weinstock et al. 2006); analysis of 

these data revealed that honeybees appeared to have fewer immune related genes than any 

insect previously sequenced (Evans et al., 2006). Several reasons have been put forward to 

explain this, for example the immune genes may be present but have diverged far enough 

away from the known immune genes of other species that they were not identified. But it is 

more probably that honeybees rely more heavily on behavioural and social adaptations such 

as grooming, behavioural fever and use of propolis which is known to have antimicrobial 

properties (Silici et al., 2005) than on innate immune responses (Evans et al., 2006). 

Homologues for many of the immune related genes previously identified have, however, 

been found for honeybees (Evans et al., 2006) so it appears that honeybees do have 

functioning JAK/STAT, Imd and Toll pathways (see figure 1.5). 

 

Figure 1.5: 

 

Typical responses of the insect immune defense after different antigens (lipopolysaccharides, peptidoglucans, and 
β-1,3-glucans) have been recognized (oval). Rectangles denote major receptors and signaling pathways. Image 

taken from (Schmid-Hempel, 2005). 
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The honeybee immune system is made up of cellular responses and induced responses. 

Cellular responses are always present, non-specific and immediate in effect (Schmid-

Hempel, 2005). They include coagulation, phagocytosis, nodule formation and 

encapsulation, and the humoral prophenoloxidase activating system (ProPO-AS) (Gillespie et 

al., 1997). Phenoloxydase is responsible for biosynthesis of melanin and is involved in cuticle 

sclerotisation, wound healing, nodule formation, encapsulation and phagocytosis (Cerenius 

et al., 2008). It is often used as a measure of immune response ( e.g. Alaux et al., 2010b; 

Yang and Cox-Foster, 2005). Induced responses are activated in response to pathogen 

recognition and so take longer to take effect; they include antimicrobial peptides and 

lysozyme-like-activity (Boman and Hultmark, 1987). 

 

The immune response differs between honeybee developmental stages such that honeybee 

pupae may have higher total haemocyte counts than adults (Wilson-Rich et al., 2008), 

although Schmid et al., (2008) found contrasting results. Phenoloxydase activity, however, 

has been shown to increase with age (Zufelato et al., 2004). As adults, honeybee immune 

responses change again in the transition from in-hive activities to foraging. As in-hive bees 

become foragers there is a decrease in vitellogenin that causes a decrease in numbers of 

haemocytes that may then reduce the bee’s capacity for cellular-based immune responses 

(Amdam et al., 2005; Amdam et al., 2004). Honeybee foragers also have lower fat body 

mass than in-hive bees which could lead to decreased induced immune response, although 

this may be compensated for by an increase in phenoloxydase activity (Wilson-Rich et al., 

2008). 

 

1.4.2 Behavioural responses: 

 

Honeybees also respond behaviourally to pathogen or parasite infection. This may involve 

adaptive changes, such as grooming, in which the behaviour is modified by the bee in an 

attempt to combat the pathogen or parasite. Alternatively, it may be a result of ‘adaptive 

host manipulation’ as seen when the pathogen/parasite causes changes in the host’s 

behaviour to aid transmission (Poulin, 1995). However, behavioural changes may not be 

adaptive and may simply be due to the inevitable deleterious effects of invasion as the 

pathogen/parasite consumes the host’s tissue (Poulin, 1998).   

 

1.4.2.1 Adaptive responses: 
 

1.4.2.1.1 Behavioural fever: 
 

Mammals are able to regulate their body temperature such that if infected with a pathogen 

they can increase that temperature as a defence against the infection (eg. Hart, 1988). 
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Insects cannot regulate their body temperature in the same way but can change their 

behaviour to produce an artificial fever by seeking out warmer regions, for example heat 

lamps in barns or laboratories or sun drenched areas in nature (Roy et al., 2006). This has 

been recorded in several species including flies; Watson et al. (1993), for example, 

demonstrated that flies infected with the fungus Entomophthora muscae could increase their 

survival rates if heated to 40°C for several hours at an early stage of infection. However it is 

difficult to distinguish between active adaptations made by the host to combat infection and 

normal thermoregulatory basking behaviour (Roy et al., 2006). Honeybees infected with N. 

ceranae have been shown to prefer warmer temperatures, despite the fact that this benefits 

the pathogen (Campbell et al., 2010). It is possible that the heat seeking behaviour was 

adopted by the bee to combat other pathogens which may be more heat sensitive than N. 

ceranae. Honeybees also use heat to combat predatory hornets. The Asian honeybee Apis 

ceranae, form a ball around attacking hornets and vibrate their wing muscles to increase the 

temperature within the ball to almost 47oC killing the hornet (Ono et al., 1995). 

 

1.4.2.1.2 Heat avoidance: 
 

In the reverse of behavioural fever, infected individuals may also attempt to stay cool in the 

hopes of delaying pathogenic development and increasing their longevity. This was 

observed in bumble bees, Bombus terrestris, parasitised by a parasitic conopid fly (family: 

Conopidae). Muller and Schmid-Hempel (1993) discovered that infected bees often avoided 

returning to their nest especially at night. By collecting those bees returning the next 

morning and collecting bees that had remained in the nest they found that infected bees 

were significantly more likely to spend the night outside. To continue this work infected bees 

were kept in warm or cool conditions. Those kept in cool temperatures showed increased 

longevity as well as decreased parasite development. In a final choice test workers were 

given the choice between cool (17.2+ 2.4oC) or warm (29.2+ 1.7oC). Non-infected workers 

spent approximately equal time in the warm and cold areas whilst infected workers 

significantly preferred the cooler area, spending on average 80% of their time there. 

 

Although from the choice experiment it is clear that infected bees intentionally seek out 

cooler temperatures this may not be the main reason they do not return to the hive at night. 

Infected bees are known to suffer from hypothermia and thus with the cooler temperatures 

of evening may become torpid more easily than uninfected bees and, therefore, be unable 

to return to the nest. Equally it is known that infected bees often have behavioural changes 

especially with respect to learning (Riddell and Mallon, 2006, see also chapter 4) and nest 

orientation (Kralj and Fuchs, 2006, section 1.4.2.2.2) thus the infected bees may have 

simply been unable to find the nest. 

 

http://en.wikipedia.org/w/index.php?title=Conopinae&action=edit&redlink=1
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1.4.2.1.3 ‘Suicide hypothesis’: 
 

Apis mellifera infested with varroa mites show changes in behaviour and orientation and 

often fail to return to the hive (Kralj and Fuchs, 2006). This is suggested to be a defence 

mechanism to remove infected individuals from the colony. Examples of this ‘suicide 

hypothesis’ have been found in other organisms including butterflies and aphids (Dill et al., 

1990; McAllister et al., 1990; Shapiro, 1976). Smith-Trail (1980) suggests that ‘host suicide’ 

should evolve only if 1) the suicide prevents maturation of the parasite, 2) the parasite is 

unlikely to infect kin after host death or 3) the host’s death increases kin fitness more than 

decreasing its own fitness. In the case of varroa-infested A. mellifera these last two reasons 

may be true as infected honeybees leaving the hive to die will take the parasites with them 

thus ensuring that their kin are unlikely to be infested and this increases the fitness of the 

colony as a whole thus increasing kin fitness. It should be noted that the idea of behaviour 

occurring ‘for the good of the species’ has now been disproved in many cases as such 

behaviours that appeared to increase species survival are actually controlled by individual 

fitness. In social organisms like the honeybees, however, the individual workers do not 

reproduce so the fitness of the colony has greater importance than their own individual 

longevity. Their genes cannot be passed on directly and so must continue through sisters, 

nieces and nephews. Selection therefore acts at the level of the colony, not the individual, 

with colonies where sick workers are lost from the hive doing better than those where they 

are not lost from the colony. 

 

In the experiments of Kralj and Fuchs (2006) bees were observed leaving and returning to a 

hive in June 2001 and 2002. Of 179 varroa-infested bees leaving the hive 39 (21.8%) did 

not return. However 17% of uninfested bees leaving the hive did not return either. Although 

these results suggest that infested bees are actively choosing to stay away from the hive, 

the behavioural change may be non-adaptive, a result of decreased homing ability or 

energetic stress rather than an active choice (see section 1.4.2.2.2).  

 

1.4.2.1.4 Hygienic behaviour: 
 

The most well studied hygienic activity in bees is removal of infected brood, for example 

varroa-infested brood are removed by Apis cerana workers (Rinderer et al., 1997), A. 

mellifera workers also remove brood infected with fungi, foul brood and sac brood (Bailey 

and Ball, 1991). There are other activities that I will class as hygienic, for example workers 

storing nectar in American foul brood-infected colonies are known to avoid storing near cells 

containing dead larvae (Bailey and Ball, 1991). Furthermore, middle-aged workers may act 

as undertakers removing dead or dying adult bees from the hive (Waring, 2006).  
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Apis mellifera can also perform certain behaviours to remove pathogens. For example, 

ectoparasites can be removed by grooming. Honeybees perform both auto-and allogrooming 

(ie they groom both themselves and other workers) (Aumeier, 2001). Aumeier (2001) 

studied the grooming responses of Africanised and Carniolan honeybees when infested with 

varroa. Africanised honeybees are less susceptible to varroa infestation and thus it was 

hypothesised that they may show increased or more effective grooming behaviour. In this 

study only the Africanised honeybees showed allogrooming, they also groomed themselves 

twice as much as the Carniolan bees did. This was especially obvious for the intense 

cleaning and shaking activity that actively removed the mites. Africanised honeybees were 

also quicker to respond to the mite, with 90% showing grooming behaviour within 30 

seconds of infestation (only 66% of Carniolan bees reacted this fast). Most importantly, it 

was shown that this increased grooming activity was more effective at removing the varroa 

mites than the Carniolan bees’ grooming. (Aumeier, 2001) 

 

As larvae develop in individual cells, the spread of pathogens between them is decreased. 

The young brood are fed on royal jelly which contains glucose oxidase, a chemical with 

antimicrobial properties (Yang and Cox-Foster, 2005), and finally the propolis used in 

building and sealing the hive also has antimicrobial activity (Evans et al., 2006; Silici et al., 

2005). 

 

1.4.2.2 Host manipulation and deleterious behavioural changes: 
 

It is often difficult to tell whether a behavioural change is adaptive or not. For that reason 

both manipulative and non-adaptive changes are discussed here together. Some behavioural 

changes are not discussed in this section because they are covered in later chapters, for 

example; changes in hunger levels (chapters 3 and 4), changes in learning and memory 

tested using conditioned proboscis extension (chapter 4), changes in flight behaviour 

(chapter 5) and division of labour (chapter 6). 

 

1.4.2.2.1 Free flying choice experiments: 
 

Flying choice experiments have been used to study learning ability, with the bees learning to 

associate colour or scent or position of feeders with a sucrose reward. It is known that 

results found through free flying experiments correlate to those found using conditioned 

proboscis extension methods (Laloi et al., 2000, see also chapter 4). In 1914 Karl von Frisch 

examined the ability of bees to distinguish between coloured cards. He determined that the 

bees could differentiate yellow and blue from many shades of grey; however they could not 

distinguish the different grey shades (von Frisch, 1974). For this reason blue, yellow and 

white are often used for these experiments. 



29 

 

 

Alghamdi, Dalton et al., (2008) showed that bees injected with lipopolysaccharides, which 

mimic the cell walls of bacteria thus inducing an immune response without any pathogenic 

effect, were less able to learn a coloured reward. Injected bees given a choice of yellow and 

blue coloured flowers with sucrose solution provided only in flowers of one colour found it 

harder to learn which were the rewarding flowers, compared to uninfected bees.  

 

1.4.2.2.2 Nest orientation: 
 

Bees learn to recognise the position of and entrance to their hives by noting landmarks such 

as particular plants growing nearby (Cartwright and Collett, 1983; Menzel et al., 2005). Hive 

entrances can be marked with geometric shapes to help bees recognise their own hive and 

reduce drifting.  

 

Kralj (2006) marked a hive entrance (reduced in size) with a blue square and marked two 

circles of similar size at a distance from the real entrance as dummy entrances. One of the 

dummy entrances was similarly marked to the real entrance, the other was left blank. 

Individually marked bees were released 1.5m from the entrance and whether they entered 

the hive directly or visited one of the dummy entrances first was recorded.  Of 115 varroa-

infested workers released 103 returned to the hive. Of these 73 (70.9%) crossed the circle 

containing the dummy marker (ie the blue square with no entrance hole) some crossing it 

several times, before finding the correct entrance. Of 126 uninfested workers, 122 returned 

with only 43 (35.2%) first crossing the dummy entrance. It should be noted however that 

very few workers crossed the unmarked circle. (Kralj and Fuchs, 2006).  The fact that 

infected bees found it harder to recognise their own hive entrance may help in the parasite’s 

dissemination as this may increase ‘drifting’ of infected bees to other colonies. 

 

1.4.2.2.3 Pollination efficiency: 
 

About a third of the food eaten worldwide relies on some form of animal pollination, usually 

pollination by insects, especially bees (Klein et al., 2007). For this reason the pollination 

efficiency of bee species in different crops is of great interest. If a nucleus or small hive is 

placed within a mesh cage with forage plants available to them then the seed/fruit set of the 

plants can be examined to determine pollination efficiency of the colony. A control cage has 

to be set up with no bees to determine pollination efficiency with no pollinators present (eg 

by wind pollination) and further controls can be set up where pollen is dusted from anthers 

of one flower to stigma of another to show maximum potential pollination efficiency. The 

pollination efficiency at the individual level can be determined by allowing a bee to make a 
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single visit to a virgin (previously unvisited) flower that is then bagged to prevent 

subsequent visits. 

 

Ellis and Delaplane (2008) conducted caged experiments on bees infested with small hive 

beetle and varroa and determined that there was no significant decrease in the pollination 

efficiency of the infested colonies compared to controls. They showed that although 

individual pollination efficiency may be decreased the action of the entire colony 

compensates for this. There even seemed to be an increase in seed set in some infested 

treatments compared with the controls. This could be because parasitized and diseased 

bees have been shown to spend longer time foraging and forage under more adverse 

weather conditions than healthy bees (Kralj and Fuchs, 2006; Woyciechowski and Kozlowski, 

1998). 

 

1.5 Molecular detection and quantification methods: 

 

1.5.1 PCR & electrophoresis: 

 

The Polymerase Chain Reaction (PCR) is used to amplify DNA sequences in vitro (Mullis and 

Faloona, 1987). A polymerase enzyme uses specific primers (short sequences of DNA that 

complement the target DNA sequence) to produce multiple copies of a target DNA sequence 

within a sample. The polymerase enzyme used comes from the thermophilic bacteria 

Thermus aquaticus (Taq Polymerase). This enzyme is thermostable so that it is not 

denatured by the high temperatures used in the reaction. Before the discovery of this 

enzyme fresh polymerase had to be added for each cycle (Chien et al., 1976). 

 

Each cycle of the reaction starts with a ‘denaturation step’. This splits the double stranded 

DNA into single strands. Although the temperatures and timings used for each reaction may 

vary to increase sensitivity or specificity, the denaturation step is usually at around 94-98oC 

for 20-30s (Madigan et al., 2006). An ‘annealing step’ follows in which the primers bind to 

their specific regions on the DNA. The temperature for the annealing step is usually about 3-

5oC below the Tm (melting temperature) of the primers. This is usually around 30-50oC 

which is maintained for 20-40s. Higher temperatures can be used to increase the specificity 

of this step (Madigan et al., 2006).  

 

During the ‘extension/elongation step’ the polymerase enzyme uses the dNTPs to extend 

from the primers making a copy of the target sequence. This step is usually carried out at 

75-80oC for Taq Polymerase and can take a couple of minutes (Madigan et al., 2006). 
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These three steps (denaturation, annealing and extension/elongation) are repeated to 

exponentially increase the concentration of the target sequence. Each cycle should double 

the amount of target sequence present, although this is limited by the amount of reaction 

material present (Madigan et al., 2006).  

 

30-40 cycles are usually completed although sometimes an initial ~10 cycles can be run at a 

slightly lower annealing temperature increasing specificity on primer annealing. The 

remaining ~30 cycles are run at a higher annealing temperature as sufficient template 

material should be present after the ~10 more specific cycles. There is a final elongation 

step at 70-74oC for 1-5 minutes to ensure that any remaining single stranded DNA is 

extended. The reaction can then be ‘held’ at 4-15oC. 

 

Once the PCR reaction is completed the target sequences should be amplified enough to be 

visualised using electrophoresis. Each sample is placed in a well of an agarose gel and 

stained with ethidium bromide. Ethidium bromide binds to double-stranded DNA by 

intercalation and fluoresces under UV light (Madigan et al., 2006). As ethidium bromide is 

not particularly sensitive, and the gel electrophoresis is run on the end point product of the 

PCR reaction which does not depend on the initial amount of DNA; it cannot be used to 

quantify the amount of DNA present in the sample (Dale and Schantz, 2002). 

 

Figure 1.6: 

 

Sample gel: results for BQCV in 10 honeybee colonies at Rothamsted Research. The ladders are in the 
first and last well, the positive control is in the second well with the negative control (no band) next followed by 

each numbered colony. Colonies 4,15,21,54,132,135 and 140 tested positive (bands) colonies 63 and 67 tested 
negative (no bands). All the bands have travelled the same distance meaning that the PCR fragments are the same 
size, in this case 294 base pairs. 

 

A current is run through the tank so that the positively charged DNA moves towards the 

negative electrode. Larger fragments move slower than smaller fragments so that DNA 
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sequences are separated by size (Madigan et al., 2006). As the lengths of fragments 

produced for each virus/Nosema sp. are known or can be determined, it is then just a case 

of looking for bands of the appropriate size in each sample. PCR cannot distinguish between 

two products of the same size but with different sequences so each pathogen is tested for 

separately. A ladder is run on each gel; this has a range of different sized fragments so that 

the size of the fragment in each sample can be estimated. A sample gel is shown in figure 

1.6. 

 

The PCR method used in this project is given in chapter 2.6.1. 

 

1.5.2 QPCR: 

 

PCR and gel electrophoresis can be used to detect the presence of each pathogen but to 

determine the quantity or load of that species within an individual sample, quantitative PCR 

is required. All QPCR relies on the use of fluorescent probes or dyes to follow the production 

of DNA during the amplification process in real time. The two most commonly used methods 

are fluorescence resonance energy transfer (FRET) based probes (eg TaqMan) or dsDNA 

specific dyes (eg SYBR Green I). 

 

FRET based probes are similar to primers in that they bind to a specific sequence within the 

target DNA. There are several different FRET based methods but the most used is TaqMan. 

The advantage of TaqMan is that it can be used to follow the amplification of more than one 

sequence in a single reaction, i.e. multiplex reactions, as different probes can be designed 

and labelled with different reporters to fluoresce at different wavelengths. Multiplex 

reactions are useful for the detection of multiple pathogens because it is much quicker; a 

single reaction can be made to detect several pathogens rather than having to repeat the 

PCR for each one individually. It also removes any inaccuracies that might be introduced by 

repeating the PCR for each target (Mackay et al., 2002). The reaction needs to be optimised 

first, however, to ensure the probes and primers can all act optimally with the same reaction 

set up and do not cross hybridise. The TaqMan method is also more specific that dsDNA 

specific dyes as both target specific primers and target specific probes are used. 

 

Multiplex reactions are not possible for dsDNA specific dyes like SYBR Green which bind non-

specifically to any dsDNA. However SYBR Green dye is much cheaper than target specific 

fluorescent probes and is also much more sensitive to lower concentrations of a target 

sequence as several dyes can bind to a single region of dsDNA (Mackay et al., 2002). For 

these reasons SYBR green was used for this project. 

 



33 

 

SYBR Green is the most frequently used dsDNA dye used for QPCR. It is an asymmetrical 

cyanine dye which binds to the minor groove of dsDNA and fluoresces 1000 times stronger 

once bound (see figure 1.7).  

 

Figure 1.7: 

 

SYBR Green is a dye that binds to any dsDNA. Image taken from ww1.quiagen.com. 

 

Unlike any of the FRET based probes, SYBR Green is not sequence specific, it binds to any 

dsDNA. For this reason it is especially important to ensure that the only dsDNA present in 

the reaction is that of the target sequence and not (for example) primer dimers or non-

target sequences (Mackay et al., 2002). Melting curves (figure 1.8) can be used to check if 

this is the case. The temperature at which the DNA ‘melts’ (the strands separate) depends 

on the DNA sequence and length. This can be checked by raising the temperature of the 

reaction by incremental amounts and recording the fluorescence at each temperature. The 

fluorescence decreases dramatically as the DNA ‘melts’ as the SYBR Green dye only binds to 

dsDNA (Ririe et al., 1997). (Melting curves for one of the pathogens analysed in this project 

are shown in chapter 2.6.2) 

 

All samples of the same target product should have similar melting curves. If any do not 

then it is likely that they have some form of contamination. Primer dimers produce melting 

curves with peaks at a low temperature as they are only short sequences of DNA and thus 

do not need to be heated by very much to separate; these are easily distinguished from the 

target sequence (Ririe et al., 1997).  
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Figure 1.8:  

 

Figure taken from (Wilhelm and Pingoud, 2003). a) Shows the decrease in fluorescence as the reaction is heated 

for both a positive and negative control. b) Shows the change in fluorescence at each temperature, melting curves. 
The peak for the positive control occurs at 87.5oC, this is the Tm of the specific PCR product. 

 

As the amount of double stranded DNA increases throughout the reaction the amount of 

fluorescence also increases. This is recorded with each cycle to produce a plot as in figure 

14 which shows time (cycle number) along the x axis and amount of fluorescence on the y 

axis. There is an initial lag phase where no change in fluorescence or product accumulation 

can be measured. During this time the background fluorescence is greater than the 

fluorescence produced by dye. This is followed by an exponential increase in fluorescence as 

the amount of DNA doubles with each cycle. During this time the fluorescence associated 

with double stranded DNA becomes greater than the background fluorescence and can be 

measured. Eventually the amount of dNTPs and primers decreases, limiting the reaction and 

slowing it down to a plateau phase so that the overall curve is a sigmoid shape (Mackay et 

al., 2002).  
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Figure 1.9: 

 

Figure showing repeated QPCR results for a dilution series on an arithmetic scale. The graph shows 
change in fluorescence over time for 3 technical replicates of 8 samples following a dilution series. The curves 
nearest the y axis have fluorescence increasing in the earliest cycles because they had the highest concentration of 

target sequence. Plot taken from New England Biolabs http://www.neb.com/nebecomm/products/productF-
450.asp. 

 

The final amount of DNA (and thus fluorescence) produced does not relate directly to the 

initial concentration of DNA. Instead the relationship is with the speed of the reaction. If 

there is more DNA to begin with then the exponential phases of the curves begin earlier. 

The above plot (figure 1.9) shows the results from a sequence of stands produced from a 10 

fold dilution. The curves are evenly spaced with those produced by the higher 

concentrations to the left (Mackay et al., 2002). 

 

The concentration is determined by using the time taken for the curve to cross an arbitrary 

line (the threshold, green line on figure 13), this time is called the CT value. The threshold 

must be within the exponential phase of the curve to be accurate. Outside of this region of 

the graph the reduction in reaction substrates available make the rate of reaction slower 

and thus inaccurate to calculate from. Samples with a lower initial volume of DNA will cross 

the threshold later than those with higher initial concentrations and thus will have a higher 

CT value (Mackay et al., 2002). 

 

The QPCR method used in this project is given in chapter 2.6.2. 
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1.6 Aims: 

 

It is clear from a review of the current literature that honeybees have complex behaviours 

which can potentially be affected by pathogens and parasites and these behavioural 

changes may be one of the factors responsible for honeybee declines. The aims of this 

project were to use new and existing methods to study the effect of pathogens on honeybee 

behaviour. The effect of forage availability and disease on survival was also investigated. 

 

One technique applied, as explained in chapter 3, was the use of the generalist 

entomopathogenic fungus, Metarhizium anisopliae, as a model pathogen to study the 

general effect of pathogenic infection on behaviour in honeybees. In order to develop this 

technique, the germination rate, growth rate and virulence of the fungus had first to be 

determined to select appropriate abiotic conditions and conidial dose for use in experiments. 

 

The learning ability of honeybees was evaluated in chapter 4 using condition proboscis 

extension, an existing method that has already been used to look at the effect of some 

pathogens on learning ability in bees (e.g. Iqbal and Mueller, 2007; Kralj et al., 2007). In 

this project the method was used to test the suitability of the fungus, M. anisopliae as a 

model pathogen. The null hypothesis in this experiment was that inoculation with the fungus 

would cause no difference in learning ability for young adult or forager bees. If however the 

fungus could be used as a model pathogen then learning ability of the bees would be 

reduced as has been found for other pathogens. CPE experiments were also used to study 

the effect of the naturally occurring viruses and microsporidia infection with the null 

hypothesis that these pathogens, detected by Q-RT-PCR, would have no effect on learning 

ability.  

 

Harmonic radar was used in chapter 5 to study whether pathogen load had any effect on 

the orientation flights of honeybees with the null hypothesis that the flights of bees from 

high-varroa colonies, or testing positive for viruses and/or Nosema spp. would fly no 

differently from bees from low-varroa colonies or which did not test positive for the 

pathogens. Differences in flight could include changes to flight speed or distance, the 

number of times the bee stopped, the time spent away from the hive or the maximum 

distance travelled from the hive. This method has not been used previously to study the 

effect of pathogens on honeybee behaviour.  

 

Finally observation hives were used, as described in chapter 6, to study in-hive behaviour 

and age at which bees first began foraging. The null hypothesis was that bees would begin 

foraging at similar times irrespective of the disease load of the colony they came from. If 
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however one of the pathogens studied had an effect on time to first forage then bees from 

colonies testing positive for that pathogen should begin foraging earlier on average than 

those from other colonies. Other aspects of behaviour were also examined including the 

amount of time spent resting or interacting with other bees. 

 

Again this is an existing method that has been used to study the effect of some pathogens 

on these behaviours in honeybees (e.g. Bailey and Fernando, 1972; Downey and Winston, 

2001; Mattila and Otis, 2006), however, in this project the method was used to study bees 

from colonies of differing disease status to determine whether the disease status of a bee’s 

colony has an effect on her individual behaviour. 
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Chapter 2: General Methods 

 

2.1 Maintaining bees in the lab: 

 

In 2009 bioassay boxes modified from those designed by Pain (1966) were made in which 

small groups of honeybees could be maintained for manipulative experiments (figure 2.1). 

The boxes were 58mm x 98mm x 88mm. The sliding door design allowed for the removal of 

dead bees without the live ones escaping. The boxes also allowed for provision of sucrose 

solution and water in gravity feeders as well as candy or pollen in a feeding draw. The 

boxes were well ventilated and made from transparent PVC which could be easily and 

effectively cleaned after experiments.  

 

Figure 2.1: 

A)        B) 

 

The bioassay cages used for maintaining bees in the lab (Rothamsted VCU: Graham Shephard 2010).  

A) an empty box with colour coded gravity feeders (red for water, green for 60% sucrose solution). B) Bees inside 
a box. 
 

Twenty to forty bees could be kept conveniently in each box and transferred either by 

opening the sliding doors or via a valve that connected the box to the BioQuip® ‘insect vac’ 

collection tubes (http://www.bioquip.com) (which were also used as inoculation tubes). Blue 

roll (Tuddick Mill ltd. Plymouth, UK) was placed in the base of the cage and changed when 

required (when damp or if covered in fungus in any experiments with M. anisopliae). Unless 

stated otherwise, bees were provided with 60% sucrose solution in one gravity feeder (a 

2ml eppendorf tube with a 19G needle hole), water in the other (a 2ml eppendorf tube with 

a 25G needle hole) and ground pollen in the draw. The pollen came from frozen samples 

collected from Rothamsted bees using pollen draws fixed to the front of Rothamsted hives. 
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2.2 Collecting bees for experiments: 

 

Honeybees were collected from the apiaries at Rothamsted Research, Harpenden UK. The 

Rothamsted colonies are typical to the UK in being a mixture of European subspecies with 

naturally mated queens and they are maintained according to conventional UK husbandry 

practice.  

 

2.2.1 Young adult bees: 

 

Frames that had adult bees beginning to emerge from sealed brood were collected from the 

chosen hive. These frames were held in observation boxes in an incubator at 35oC 

overnight. 

Newly emerged adult bees were collected from the brood frame using feather forceps as the 

frame rested on a frame stand. Twenty to forty bees were placed in each bioassay box (see 

2.1), usually posted through the holes used for the gravity feeders to prevent other bees 

from escaping. The boxes were then maintained at 30oC in darkness with water, 60% 

sucrose solution and pollen, unless otherwise stated. 

 

2.2.2 Forager bees: 

 

Forager bees were collected from around the entrance of chosen hives. The BioQuip® ‘insect 

vac’ was used to capture bees as they flew in or out of the hive. Once enough bees were in 

the collection tube (usually 20-40 depending on experiment) it was removed from the vac 

and sealed with a plastic lid to prevent escape.  

 

An adapter was used to connect the collection tube to a bioassay box. Bees were 

encouraged into the bioassay box by blowing into the meshed end of the collection tube. 

Once all bees were in the box the tube and adapter could be disconnected allowing the 

bioassay box valve to close. 

 

The boxes were then maintained at 30oC in darkness with water, 60% sucrose solution and 

pollen, unless otherwise stated. 

 

2.3 Maintaining an in vitro M. anisopliae culture  

 

All experiments involving M. anisopliae used isolate 445.99 from the Warwick HRI culture 

collection. This isolate was originally taken from the commercial product Bio-Blast (Eco-

Science corporation); its original host and range are unknown (Shaw et al., 2002). The 
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cultures were grown on Sabouraud dextrose agar (SDA) (Sigma-Aldrich, Dorset UK, 

Mycological Peptone, 10 g/l, Dextrose 40 g/l and Agar, 15 g/l, (Carlier, 1948)). The M. 

anisopliae sample from Warwick was grown for 14 days on SDA (20ml SDA in 90mm 

diameter, triple vented Petri dishes) at 23oC in darkness. Subcultures were prepared by 

transfer of a loop of sporulating  mycelium onto fresh SDA plates (20ml SDA in 90mm 

diameter, triple vented Petri dishes) which were then grown for two weeks at 23oC in 

darkness to ensure the culture grew well. Plugs (cut using a sterile 6mm diameter cork 

borer) were taken from these subcultures and stored at -80oC in individual sterile 2ml 

eppendorf tubes (1 plug per tube), in sterile 10% glycerol that had been autoclaved at 

122oC for 15 minutes. 

 

For each experiment using M. anisopliae an eppendorf tube was removed from storage, 

thawed at room temperature, shaken thoroughly using a vortex mixer, and 20 l of the 

conidia-containing glycerol was pipetted onto each of four fresh Petri dishes of SDA (20ml 

SDA in 90mm diameter, triple vented Petri dishes) spread evenly with a sterile spreader and 

incubated for 14 days at 23oC in darkness. 

 

2.4 Collecting M. anisopliae spores 

 

Once the M. anisopliae had been growing for 14 days a layer of dark green conidia was 

visible (figure 2.2). The plates of fungus could then either be stored at 5oC for up to four 

weeks before use, or the spores could be harvested immediately for use in experiments. In 

the lamina flow cabinet a sterile loop was used to gently dislodge the spores from the agar 

and into a sterile 50ml centrifuge tube. The conidia were then stored in the centrifuge tube 

at 5oC for no more than one week before use. 

 

Figure 2.2: 

 

 

Metarhizium anisopliae grown on SDA for 14 days at 23oC in darkness. 
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2.5 Inoculation of bees with M. anisopliae conidia 

 

Young adult bees were inoculated 3 days after emergence (unless otherwise stated); 

forager bees could be inoculated at any time after collection but were never kept for more 

than three days before inoculation and were always inoculated on the same day as in-hive 

bees if both were used in the same experiment (eg the experiment to look at differences in 

learning between young adult and forager bees infected in Chapter 4, see 4.2.3). Prior to 

inoculation with M. anisopliae each bioassay box was wrapped in blue roll and placed in a 

cool box with icepacks. The bees were thus chilled to ~5oC. The bees were chilled until they 

could be moved without any risk of them escaping ; this usually took 30 minutes. After 20 

minutes in the cool box the bees were checked at 5 minute intervals and discouraged from 

clustering by shaking the boxes. Once the bees were chilled to immobility they were 

removed from the cool box. 

 

Twenty bees were transferred to each collection/inoculation tube and 0.5g of powder, either 

conidia mixed with sorbitol (treatment) or sorbitol alone (control) were introduced through 

the meshed end of each tube. The container was sealed with cling-film and turned three 

times to coat the bees evenly in powder. The tubes were then left to stand for 10 minutes.  

After 10 minutes the cling-film was removed and any excess powder was shaken into a 

plastic bag. The bees were then transferred from the tube to a clean bioassay box using 

feather forceps.  Tubes were re-used to inoculate further groups of bees until all replicates 

were completed. Control tubes were only ever used to inoculate with sorbitol and in the 

multiple dose bioassay the lowest dose was administered first and then each subsequent 

dose increasing in concentration after that.  

 

Each bioassay box was lined with blue roll on the base and was resourced with water, 60% 

sucrose and pollen. Pairs of similarly inoculated bioassay boxes (both M. anisopliae or both 

sorbitol) were placed inside airtight plastic boxes (~12” x 7” x 5”), to ensure an elevated 

humidity, and placed in an incubator at 30oC in darkness.  After 12 hours any bees that had 

not survived the inoculation process were removed and the food and water replenished. The 

blue roll was also replaced if it was wet or covered in spores/powder.  After a further 12 

hours the lids of the airtight boxes were replaced with ventilated lids (6 x 6mm holes in each 

lid) to reduce the humidity.  Thereafter mortality was assessed twice daily, once between 9-

10am and once between 4:30-6pm.  On every occasion the food and water was replenished 

and any dead bees recorded and removed.   

 

 

 



42 

 

2.6 Parasite and pathogen detection: 

 

The prevalence of varroa was monitored in all Rothamsted colonies at key time points 

throughout the year using varroa drop counts. Varroa boards were placed beneath the mesh 

floor of the colony and the number of dead mites that fell onto the boards within a week 

were counted (FERA, 2010). Microscopy was used to detect the presence of Nosema spp. 

using a standard beekeepers’ method based on methods set out by Cantwell (1970). The 

BioQuip® ‘insect vac’ was used to capture 30 bees from each colony as they flew in or out of 

the hive. The bees were killed in a killing jar with ether; their abdomens were removed and 

ground in a small amount of water (~1ml). A drop of the resulting liquid was viewed at x400 

magnification through a light microscope. The spores, if present, were easily visible (eg. 

Figure 1.4). In addition to this, to determine the colony level infection status of all colonies 

used in experiments, samples of 30 forager bees were collected from the hive entrance, 

pooled and analysed using RT-PCR (see section 2.2.2 for forager bee collection and 2.6.1 for 

PCR analysis). Individual bees from behavioural experiments were killed and stored at -80 to 

be tested individually using Q-RT-PCR to detect and quantify the load of each pathogen 

species (see section 2.6.2). The process was made efficient by using RT-PCR to first identify 

which pathogens were present in a pooled sample of extracts from the individual bees; then 

Q-RT-PCR could be done on the individual bee samples only for the pathogens identified as 

being present.  

 

2.6.1 PCR-based analysis of pooled bee samples: 

 

Samples of 30 - 50 bees were collected from the entrances to hives using the BioQuip® 

‘insect vac’ as described previously (section 2.2.2), transferred to 50ml centrifuge tubes and 

stored at -80˚C. The only exception was for the experiment to test learning ability of pollen-

starved foragers (chapter 4 section 4.2.4) when the bees were collected from within the 

hive from the comb above the queen excluder.  

 

Total RNA was extracted from each pooled sample of bees with TRIzol (Sigma-Aldrich) 

reagent, following the manufacturer’s instructions with some alterations. For each sample, 

30 bees were ground in liquid nitrogen; half the sample was stored at -80˚C and half 

transferred to another 50ml centrifuge tube for the extraction. The ground bee tissue was 

homogenized with 10ml of TRIzol and then 1ml of the suspension transferred to a 2ml 

eppendorf tube. The sample was purified to remove contaminants, such as polysaccharides, 

using the Qiagen RNeasy plant mini kit (Qiagen, Crawley UK) and following the 

manufacturer’s instructions. To ensure that the RNA extraction process had been successful 

a NanoDrop spectrophotometer was used to quantify the amount and quality of RNA in each 
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sample. The absorbance is measured at 260 and 280 nm. The ratio of the absorbance at 

260 and 280 nm is used to assess the RNA purity of an RNA preparation. Pure RNA has a 

260:280 ratio of ~2 whilst likely contaminants have lower 260:280 ratios, phenol for 

example has an absorbance ratio of 1.2 (Dale and Schantz, 2002). So long as each sample 

had a 260:280 ratio above 2 it was included in the analysis . No samples had a lower ratio 

than this but as some of each sample was kept it could be rerun if needed. The 

concentration of nucleic acid can be determined using the Beer-Lambert law, which predicts 

a linear change in absorbance with concentration (Commoner and Lipkin, 1949). 

 

All samples were treated with a DNase enzyme to catalyse the hydrolysis and removal of 

any contaminating DNA from the sample (DNase 1 (RNase free): New England Biolabs, 

Hertfordshire UK). The manufacturer’s instructions were followed to produce 50 l of 

0.1 g/ l solution for each sample. Complementary DNA (cDNA) was produced from the RNA 

by reverse transcription with Superscript II Reverse Transcriptase (Life technologies, Paisley 

UK) following the manufacturer’s instructions and using random hexamers (Life 

technologies). 

 

Table 2.1: 

Stage Temperature/'C Duration/seconds 

Initial denaturation 94 120 

10 cycles:   

Denaturation 94 30 

Annealing 50 60 

Extension 72 60 

30 cycles:   

Denaturation 94 30 

Annealing 53 30 

Extension 72 45 

   

Final extension 72 420 

Cooling 4  

 

Table showing the thermocycler routine used for all PCR reactions in this project. The protocol was 
optimised by Dr Ryabov, University of Warwick.  

 

PCR was run using the thermocycling conditions shown in table 2.1, with REDTaq® (Sigma-

Aldrich) using primers designed by Yang and Cox-Foster (2005) and De Miranda (2008) 

(table 2.2). These were chosen as they were SYBR Green primers (the chosen QPCR method 

for this project) and were cost effective, had good target sites and were designed to 

discriminate between the two Nosema spp. and the seven most commonly occurring viruses 

(ABPV, BQCV, CBPV, DWV, IAPV, KBV & SBV). PCR product positive controls were acquired 
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from De Miranda (for Nosema spp. ABPV, BQCV, CBPV, IAPV, KBV & SBV) and Ryabov (for 

DWV) and cloned into E. coli plasmids (QIAGEN PCR Cloning Kit) following the 

manufacturer’s instructions. DNase free water (Sigma-Aldrich) was used as a negative 

control. 

 
Table 2.2: 
 

Target Primer sequence Size Reference 

ABPV 
F - TCATACCTGCCGATCAAG 

197 (De Miranda, 2008) 
R - CTGAATAATACTGTGCGTATC 

KBV 
F - CCATACCTGCTGATAACC 

200 (De Miranda, 2008) 
R - CTGAATAATACTGTGCGTATC 

IAPV 
F - CCATGCCTGGCGATTCAC 

203 (De Miranda, 2008) 
R - CTGAATAATACTGTGCGTATC 

BQCV 
F - AGTGGCGGAGATGTATGC 

294 (De Miranda, 2008) 
R - GGAGGTGAAGTGGCTATATC 

CBPV 
F - CAACCTGCCTCAACACAG 

296 (De Miranda, 2008) 
R - AATCTGGCAAGGTTGACTGG 

SBV 
F - TTGGAACTACGCATTCTCTG 

335 (De Miranda, 2008) 
R - GCTCTAACCTCGCATCAAC 

N. apis 
F - CTAGTATATTTGAATATTTGTTTACAATGG 

277 (De Miranda, 2008) 
R - GCTATGATCGCTTGCC 

N. ceranae 
F - TATTGTAGAGAGGTGGGAGATT 

315 (De Miranda, 2008) 
R - GCTATGATCGCTTGCC 

-actin 
mRNA 

F - CGTGCCGATAGTATTCTTG 
271 (De Miranda, 2008) 

R - CTTCGTCACCAACATAGG 

DWV 
F - CAACTACCTGTAATGTCGTCGTGTT 

206 
(Yang and Cox-Foster, 

2005) R - GACAAAATGACGAGGAGATTGTT 
 

Table showing the primers used for PCR and QPCR analysis. The primer sequences and the size of the 

fragment amplified are shown. The primers are also shown for -actin which was used as a housekeeping gene for 

QPCR analysis (see section 2.6.2) 

 
The results were visualised using electrophoresis (Figure 2.4)(1.5% agarose gel with 

0.1 l/ml ethidium bromide in 10% Tris/Borate/Ethylene diamine tetra-acetic acid (EDTA) 

(TBE) buffer; run at 150 volts for approximately one hour). Each sample, and positive and 

negative control, was loaded in loading buffer. A UV imager and Quantity One® gel image 

analysis software (BioRad Laboritories) was used to get photographs of the gel as in figure 

2.4. 

 

 

 

 



45 

 

Figure 2.3: 

 

Typical PCR gel showing presence/absence of honeybee pathogen in pooled bee samples. This gel 
showed the BQCV results for 10 colonies. The virus was present in colonies 6, 15, 21, 54, 132, 135 & 140 and 
absent in colonies 63, 67 & 74. 

 

2.6.2 Quantification of pathogens in bees by quantitative reverse transcription–

PCR (Q-RT-PCR): 

 

Q-RT-PCR was used to quantify each pathogen, which had been detected in pooled samples 

by RT-PCR, in the individual bees from the behavioural experiments. Each bee was stored at 

-80˚C prior to RNA extraction. For total RNA extraction each individual frozen bee was 

ground in liquid nitrogen and half the ground material stored at -80oC whilst the rest was 

used for the total RNA extraction with TRIzol (Sigma) reagent, following the manufacturer’s 

instructions. For PCR, the total RNA extract was purified using the RNAEasy kit (Qiagen), 

DNase treated with RNAse-free DNAseI from New England Biolabs and reverse transcribed 

to produce cDNA using random hexamers (Applied Biosystems) and Superscript II Reverse 

Transcriptase (Invitrogen)  according to the manufacturers’ instructions (see section 2.6).  

 

QPCR was done for each pathogen that had been detected in pooled sample PCR (as in 

section 2.6, but using pooled samples of extracts from the individual bees, ~20 bee extracts 

were pooled in each sample) and also for the housekeeping gene actin. Platinum SYBR 

Green Supermix-UDG (Invitrogen) was used following the manufacturer’s instructions to the 

method shown in table 2.3 and with the following reaction mix: per 1 l of sample: 5 l SYBR 
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green mix + 0.1 l of each primer + 3.8 l RNase free water. The Q-RT-PCR reactions were 

carried out in an ABI PRISM 7700 sequence detection system (Applied Biosystems).  

 

Table 2.3: 

Stage Temperature/'C Duration 

Hot start 50 2 mins 

Initial denaturation 95 10 mins 

40 cycles:   

Denaturation 95 15s 

Annealing & 
extension 60 1 min 

Dissociation 
curve:   

 95 15s 

 60 15s 

 95 15s 

Table showing the routine used for all QPCR reactions in this project.  

 

The cycle threshold (Ct see chapter 1.5) was automatically calculated by the SDS software 

package (version 2.4). Melting curves were produced for each sample and compared to 

those produced for the positive samples to identify any contaminated samples that were 

then run again (see figure 2.5). Ct values for the pathogens were normalised to the 

housekeeping gene -actin by subtracting the Ct value for each sample.  

 

Relative pathogen load: Delta Ct(pathogen) = Ct(pathogen) –Ct( -actin) 

 

Because pathogen load is recorded as the number of cycles taken to reach a threshold value 

(Ct) the lower the value (ie the less cycles it takes to reach the threshold) the higher the 

amount of pathogen present in the sample. The pathogen load was calculated relative to the 

amount of the housekeeping gene -actin to remove the effect of any differences in 

efficiency of RNA extraction and/or reverse transcription. Therefore, in the case of high virus 

load delta Ct values were negative and the higher the pathogen load the more negative the 

relative delta Ct. The water controls gave a relative value of 20 or more so any sample with 

a relative value of 20 or higher, or with a melting curve that did not match the positive, 

were given a relative value of 20. 

 

The efficiency for RNA extraction and reverse transcription is not known so the actual 

amount of pathogen in an insect cannot be accurately calculated from the amount of DNA 

detected in a sample, but the relative disease loads can be compared between bees tested 

in this project. As different groups use slightly different methods and all use different 

equipment it is also impossible to compare relative pathogen loads to the results of others.  
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Figure 2.4: 

 

Melting curves for 1 plate of samples. The mostly blue/green/purple curves are the curves for the N apis 
positive samples and all the samples of this plate which tested positive for N. apis. The mostly yellow/pink/orange 

curves are the -actin positive samples and all samples tested for -actin. This curve has a shoulder (a second 

smaller peak on the left) which is likely produced by left over primers. There is one green curve at ~83.5oC 
(between the two sets of curves) this is a negative result, the curve is probable produced by left over primers. 
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Chapter 3: Characterisation of the germination and 

radial growth of the fungus Metarhizium anisopliae and 

the effect of fungal infection and forage availability on 

honeybee survival. 

 

Abstract: 

The European honeybee, Apis mellifera, is important economically not just for honey 

production but also as a pollinator. However, honeybee numbers in some areas are 

declining.  A range of interacting factors are thought to be involved, including pathogens 

and parasites,  which are known to cause changes in the behaviour of their hosts.  

 

The purpose of this chapter was to examine potential use of the generalist 

entomopathogenic fungus, Metarhizium anisopliae, as a model pathogen to study the 

general effect of pathogenic infection on behaviour in honeybees. In order to develop this 

technique, the germination rate, growth rate and virulence of the fungus had first to be 

determined to select appropriate abiotic conditions and conidial dose for use in experiments. 

This dose of fungus was then used to examine the effect of additional stressors on bees 

from colonies set up to have differing disease loads and forage availability. 

 

The fungus could grow well at 30oC, and was able to kill bees in the multiple dose bioassay 

with a dose of 1:30 killing 100% of bees in 12 days. There was no effect of different colony 

disease or forage availability on the bees’ reaction to fungal inoculation. There was however 

an effect of pollen feeding such that bees from high disease and restricted forage colonies 

were better able to survive when fed pollen although pollen fed bees from these colonies 

still did not survive as well as those from healthier and free foraging colonies that were also 

fed pollen. This suggests pollen feeding can aid survival but good forage is required 

throughout development. 

 

3.1 Introduction 

 

3.1.1: Use of the fungus Metarhizium anisopliae for biological control and as a 

model system:  

 

The taxonomic status of the entomopathogenic fungus Metarhizium anisopliae s.l. 

(Ascomycota: Hypocreales) has recently been revised following a new multilocus phylogeny 

and three new species names have been included within the genus (Bischoff et al., 2009). 
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The position of the isolate used in this study is not yet known and so for the purposes of 

this thesis is referred to simply as M. anisopliae. Metarhizium anisopliae is a very versatile 

fungus, being able to infect a broad range of insects, 200 species from over 50 insect 

families (Roberts and Humber, 1981). Different isolates of the fungus are pathogenic to 

different insect species (e.g. Chandler et al., 2001) which makes it a good candidate use as 

a biological control agent against many pests including spider mites (Tetranychus spp) (eg. 

Shi et al., 2008), aphids (eg. Vu et al., 2007), the brown plant hopper (Nilaparvata lugens ) 

(eg. Jin et al., 2008) among others (Wang and Ma, 2009). The fungus is also being 

examined as a possible method for controlling the varroa mite (eg. Chandler et al., 2001; 

Kanga et al., 2003). Infection occurs by the attachment, germination and growth of conidia 

through the host cuticle, the fungus then invades the haemocoel before ramifying 

throughout the host (Tanada and Kaya, 1993). Death usually occurs within 4-7 days of 

infection, depending on dose and temperature. For use in biological control of varroa the 

fungus was tested against non-target species and several isolates of M. anisopliae were 

pathogenic to both the target varroa and the non-target A. mellifera (e.g. Shaw et al., 

2002). Metarhizium anisopliae is ubiquitous in the environment, but mainly prevalent in the 

soil. It has been isolated from overwintered bumblebee queens (Nemec, 1976), but it is 

unlikely that honeybees could come into contact with it naturally.  

 

Metarhizium anisopliae infection has been used as a model system to study the effect of 

pathogens on several insect species, especially social insects (e.g. Bos et al., 2012; Gardner 

and Thomas, 2002; Hughes and Boomsma, 2004; Mburu et al., 2009). The fungus has been 

used to investigate genetic predisposition to disease resistance and the benefits of 

polyandry (Hughes and Boomsma, 2004). Polyandrous leaf cutting ants were used to test 

whether polyandry (the queens mating with multiple males) could benefit the colony by 

producing a colony with varied genetics with some patrilines less susceptible to infection 

than others. When inoculated with low concentrations of M. anisopliae there was a 

significant difference in susceptibility between patrilines and mixed groups of ants survived 

better than groups from a single patriline (Hughes and Boomsma, 2004). 

 

Some insects are able to use behavioural adaptations to avoid or reduce infection. Some 

insects thermoregulate; sitting in warmer locations so that they heat up, which is thought to 

have a similar function to fever in mammals (Blanford and Thomas, 2001). Metarhizium 

anisopliae was used to investigate thermoregulation in locusts and it was shown that the 

effects of a fungal infection are strongly influenced by environmental temperature and host 

thermoregulation behaviour (Gardner and Thomas, 2002). Another behavioural defence 

against fungal infection is for insects to groom themselves or each other. Shimizu and 

Yamaji (2003) showed that termites reared alone were far more susceptible to M. anisopliae 
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infection than those raised in groups so that they could groom each other illustrating the 

importance of group level defences against infectious disease in eusocial insects, like 

honeybees. Other insects are able to detect fungal spores and avoid them, for example 

termites are able to not only detect and avoid M. anisopliae, but also seem to be able to 

determine or recognise the virulence of different isolates of this fungus so that they were 

more likely to avoid the more virulent isolates than the less virulent ones in choice chamber 

experiments (Mburu et al., 2009). And ants are able to determine when they have been 

infected and avoid their nest mates to avoid spreading the fungal infection (Bos et al., 

2012).  

 

This fungus has also been used to study the effect of infection on feeding behaviour, 

showing that infected Chilo partellus (Lepidoptera) larvae consume up to 80% less food 

after infection (Tefera and Pringle, 2003). Blanford et al. (2011) used another fungus, 

Beauveria bassiana, to show that inoculated mosquitoes were also less likely to feed than 

uninoculated controls. The inoculated mosquitos were also less able to fly, presumably 

because the fungus caused energetic stress so that they did not have the energy to fly as 

well as uninoculated controls. Other pathogens have been shown to cause energetic stress 

(e.g. Nosema: Mayack and Naug, 2009).  

 

However, very few studies have used this species on bees. One study used a strain of M. 

anisopliae that was not pathogenic to bees as a control to examine resin collection as self-

medication in honeybees (Simone-Finstrom and Spivak, 2012). Bees collected more resin 

when exposed to the fungus and colonies with more resin showed reduced infection 

intensity, suggesting that honeybee do use resin successfully to self-medicate. 

 

Metarhizium anisopliae is easy to manipulate so it can be used to test hypotheses that would 

be difficult to test on the coevolved pathogens of bees that are more difficult to manipulate. 

It is also absent from honeybee populations so it is possible to be certain that control bees 

are uninfected whereas many of the co-evolved pathogens can exist as covert or inapparent 

infections (Hails et al., 2008). Its effect can also be superimposed over those of co-evolved 

pathogens to understand the generic effects of a pathogen, the differences between 

coevolved and new association pathogens, and the effect of multiple pathogens on 

honeybees.  

 

3.1.2: Experimental setup and hypotheses: 

 

It has been suggested that the honeybee declines recorded in the UK, USA and elsewhere 

may be due to a combination of factors including pathogens and forage availability 
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(Genersch et al., 2010; Oldroyd, 2007; Potts et al., 2010b). Studies of bees infected with N. 

ceranae show that infected bees become more responsive to lower concentrations of 

sucrose and become hungry more quickly than uninfected bees (Mayack and Naug, 2009; 

Naug and Gibbs, 2009). Mayack and Naug (2009) suggest that the reduced longevity of 

bees infected with Nosema spp. was more likely to be due to energetic stress than any 

direct pathogenic effect. Infected bees, when fed with enough sucrose, were able to survive 

almost as long as uninfected controls (Naug and Gibbs, 2009). Bees infected with DWV were 

also more responsive to lower sucrose concentrations, suggesting that this virus may also 

cause energetic stress (Iqbal and Mueller, 2007). This was not the case for bees infested 

with varroa mites (Kralj et al., 2007). One of the aims of this project was to examine the 

effect of pathogens and parasites as well as forage availability on honeybee survival as 

reduced forage availability may make honeybees more susceptible to the energetic demands 

associated with pathogen infection. 

 

To examine this bees were used from a project funded by a BBSRC Industrial Partnership 

Award (IPA) that is currently on-going at Rothamsted (BBSRC project ref: BB/H00114X/1) 

‘Honeybee population dynamics: Integrating the effects of factors within the hive and in the 

landscape’. Experiments were designed for the collection of data to parameterise a model 

capable of predicting how combinations of forage availability and pathogen load affect the 

structure and survival of a bee colony. In 2011, 20 colonies were established with four 

treatments of differing disease loads and forage availability (see section 3.2.3). While the 

IPA project focused on gaining information at the colony level, these colonies could be used, 

as part of this PhD, to gain information on the effect of forage availability and disease load 

of the colony on survival at the level of the individual bee. 

 

Newly emerged bees were collected from replicate colonies of each of the treatments and 

maintained in the laboratory to determine if the longevity of bees was influenced by whether 

they had been raised in colonies of differing background disease status and forage 

availability. It was hypothesised that bees from colonies with higher disease loads and with 

forage restrictions would show decreased longevity as they had developed with less 

resources and higher immune activity than bees from colonies with lower disease loads and 

freely available forage. 

 

Another aim of these experiments was to characterise the growth of the fungus M. 

anisopliae and determine the effect of different concentrations on the mortality of 

honeybees so that the correct dose and timings could be chosen for later behavioural 

experiments. The chosen dose was then used on the bees from the different disease and 

forage treatments (project BB/H00114X/1) to see if disease load and forage availability had 

an effect on the bees’ ability to survive additional pathogens. It was hypothesised that bees 
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from colonies with higher disease loads and restricted in their foraging would be more 

susceptible to the additional pathogen (M. anisopliae) than bees from healthier colonies that 

could forage freely. It is, however, possible that bees from colonies with higher disease 

loads, because their immune systems are already activated, might be better able to combat 

the additional pathogen. For example it has been shown that beetle (Tenebrio molitor) 

larvae injected with Ringer’s solution, an isotonic solution relative to the bodily fluids of an 

animal, or Lipopolysaccharides (LPS) that mimic the cell walls of pathogenic bacteria, 

showed increased survival compared to uninjected beetle larvae when subsequently infected 

with the fungus M. anisopliae (Moret and Siva-Jothy, 2003). A similar study showed that in 

(Lepidoptera) immune priming can also be transgenerational with offspring of the individuals 

previously exposed to a low dose of virus as well as the individuals themselves become less 

susceptible to later viral infection (Tidbury et al., 2011). In Moret and Siva-Jothy’s (2003) 

study the LPS-injected larvae had increased antimicrobial activity in their haemolymph which 

may have been responsible for the increased survival. The larvae injected with Ringer’s 

solution, by contrast, had higher levels of phenyloxidase (PO), an enzyme involved in 

melanisation. One of the purposes of melanisation is to prevent a breach of the cuticle 

which may be why injection causes increased PO activity and therefore melanisation 

(Sugumaran, 2002). The biting of varroa mites, which also breaks the cuticle, could also 

cause increased PO activity. Melanisation is one of the defences used against fungal 

infections, so, if the honeybees from high varroa colonies have increased antimicrobial 

activity or PO levels, then they may be better able to survive fungal inoculation. 

 

3.2 Methods: 

 

3.2.1 Experiments to quantify conidia germination and colony growth of 

Metarhizium anisopliae at different temperatures: 

 

Metarhizium anisopliae isolate 445.99 from the Warwick HRI culture collection was used in 

all experiments (see Chapter 2.3-4 for culturing of M. anisopliae and collection of conidia). 

This isolate was originally taken from the commercial product Bio-Blast (Eco-Science 

corporation); its original host was unknown but it was known to infect honeybees (Shaw et 

al., 2002). Mycelial growth rate was measured on Sabouraud Dextrose Agar (SDA) and 

conidia germination was measured both on SDA and on bee wings. Three temperatures 

were used: 23oC: the temperature the fungus is usually cultured at, 30oC: the temperature 

bees were maintained at for the learning experiments (see chapter 4), and 35oC: the 

average temperature commonly found around the brood within a bee colony (Waring, 

2006).  
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3.2.1.1 Experiment to determine the germination rate of populations of conidia 

of  Metarhizium anisopliae at different temperatures: 

 

Metarhizium anisopliae was cultured for 14 days on SDA (20ml SDA in 90mm diameter, 

triple vented Petri dishes and sealed with Parafilm) at 23oC in darkness (chapter 2.3). The 

conidia were then collected by adding 20ml of sterile 0.03% Tween 80 to the plate and 

gently dislodging them into suspension using a sterile loop. The resulting conidial 

suspension was filtered through muslin to remove any mycelium and then adjusted to 1 x 

108 conidia ml-1 after counting using a Neubauer haemocytometer. Three 20 l drops were 

inoculated onto replicate SDA plates (20ml SDA in 90mm diameter, triple vented Petri dishes 

and sealed with Parafilm) or one 10 l drop per bee wing (two wings were set in ~20ml of 

1% tap water agar per replicate 90mm diameter, triple vented Petri dish and sealed with 

Parafilm) and incubated at each of the three temperatures, 23, 30, 35˚C. One plate from 

each temperature was sampled at each of 17 time points over 36 hours; to fit this more 

manageably into a working day the plates were set up at two time points (8am and 8pm) 

and then sampled at 1-4 hour intervals (table 3.1) and fixed with a 10% solution of cotton 

blue in lactophenol beneath a cover slip. A total of 19 plates were set up (one for each time 

point including 0). This experiment was repeated on three separate occasions. 

 

The time intervals were chosen based on previous experiments (Davidson et al., 2003) such 

that more measurements were taken when the greatest change in germination rate was 

predicted to occur. Each sample was examined using a microscope at x400 magnification 

and the number of germinated and ungerminated conidia were counted in a sample of 

approximately 100 conidia chosen at random in at least 3 fields of view in each drop. For a 

conidium to be considered as germinated its germ tube had to be longer than the width of 

the original conidium. The lengths of ten randomly chosen germ tubes produced by conidia 

in each drop (30/ replicate dish) were also measured by photographing the image and using 

video pro software to measure the length of the germ tubes (Deltapix: Infinity X; DPY video 

pro software). 
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Table 3.1: 

 

set up 1: 8 am 

    Day 1 

germination recording   

time time   

0 08:00   

4 12:00 set up 2: 8 pm 

8 16:00  Day 1 

10 18:00 germination  recording  

11 19:00 time time 

12 20:00 0 20:00 

    13 09:00 

26 10:00 14 10:00 

    15 11:00 

28 12:00 16 12:00 

    18 14:00 

32 16:00 20 16:00 

    22 18:00 

36 20:00 24 20:00 

 

Table showing set up and recording times for the germination experiments. One plate of each type (SDA 

or tap water agar with bee wings) was set up at each temperature (23, 30 & 35oC) for each recording time. The 
experiment was repeated on 3 occasions. 
 

 

These results were analysed in GenStat® (14th edition) (Payne, 2011). The germination data 

were analysed as proportions of the conidia population that had germinated, which were 

logit transformed and analysed using ANOVA. For the germ tube length measurements, as 

the length was only accurately measurable up to 100 m, after which the germ tubes tended 

to overlap and were impossible to differentiate, the data were censored (i.e. values only 

recorded to a maximum of 100 m). These data were analysed using ANOVA after replacing 

censored responses with values estimated using an iterative method tested by Taylor 

(1973), as implemented in the GenStat procedure CENSOR (Payne, 2011). 

 

This experiment was repeated on three occasions, with the incubator temperatures 

alternated in a Latin square design such that each incubator had been used at each 

temperature after the 3 repeats to increase replication and account for any potential 
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incubator effects. The incubators were monitored using tinytag data loggers (Gemini data 

loggers UK Ltd.). 

  

3.2.1.2 Experiment to determine the rate of colony growth of Metarhizium 

anisopliae at different temperatures: 

 

20 l of a 1 x 108 conidia ml-1 suspension of M. anisopliae conidia in 0.03% Tween 80, 

produced as explained earlier (section 3.2.1.1), were evenly spread onto each of three 

plates of SDA (20ml in 90mm diameter, triple vented Petri dishes sealed with Parafilm) using 

a sterile spreader and incubated for two days at 23oC in darkness. A flame sterilised cork 

borer was then used to take three 6mm diameter plugs from each plate. Each plug was 

placed with the fungal surface down on each of three replicate SDA plates (20ml in 90mm 

diameter, triple vented Petri dishes sealed with Parafilm) and three replicates were cultured 

at each of three temperatures (23, 30 & 35oC) for two weeks in darkness. The radius of 

each fungal colony was recorded every 2-3 days over the two week period. This was 

achieved by taking four perpendicular radial measurements with vernier callipers accurate to 

0.1mm. 

 

This experiment was also repeated on three occasions using the same Latin square design 

for rotation of incubator temperatures (chapter 2.1.1) and the data were analysed in 

GenStat® (14th edition) (Payne, 2011) by fitting a linear mixed model, assuming correlated 

measurements over time within independent subjects, using restricted maximum likelihood 

(REML). 

 

3.2.2 Multiple dose bioassay to determine the concentration of M. anisopliae for 

use in subsequent experiments: 

 

This experiment used the bioassay boxes modified from those designed by Pain (1966) 

(chapter 2.1). 

 

Metarhizium anisopliae was grown on SDA (20ml in 90mm diameter, triple vented Petri 

dishes sealed with Parafilm) at 23°C in darkness for 14 days and the conidia collected into 

50ml centrifuge tubes as described previously (chapter 2.3-2.4). The concentration of M. 

anisopliae within 0.5g of power used in the bioassay was adjusted by mixing with sorbitol in 

different ratios determined by weight (preliminary tests showed that sorbitol did not affect 

the longevity of honeybees nor the germination of the fungus). The concentrations used 

were; 1:300, 1:100, 1:30, 1:10, 100% M. anisopliae conidia and controls of 100% sorbitol 
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and no powder at all. The bioassay was run on three occasions and on each occasion there 

were two replicate groups of approximately 20 bees for each concentration. 

 

On each occasion two frames of brood were collected from Rothamsted hive 146 which had 

a low varroa count (0.4 mites per day in July 2010) and sealed brood present that were 

already beginning to emerge as adults. Newly emerged bees were collected as described 

previously (chapter 2.2.1). Approximately 25 bees were placed into each of fourteen 

bioassay boxes (two replicates per concentration) and maintained at 30oC in darkness with 

water, 60% sucrose solution and pollen. The sucrose concentration was determined using a 

refractometer, a device for the measurement of an index of refraction using Snell’s law 

(Feynman, 1963). Sugar refractometers are calibrated to show the concentration of sugar in 

a drop of solution. Three days after collection 20 bees from each group were inoculated with 

M. anisopliae as described previously (chapter 2.5). 

 

Mortality was recorded twice daily, once between 9 and 10am and once between 4:30 and 

6pm. Dead bees were removed, food and water were replenished and the blue roll replaced 

where necessary. The date that each dead bee was removed was recorded and survivorship 

curves produced. Kaplan-Meier plots with 95% confidence intervals (CI) were used to 

visualise the results and compare treatments. These plots were produced using GenStat® 

(14th edition) (Payne, 2011) with adaptation to the Kaplan-Meier program to add the CIs 

written by Suzanne Clark, Rothamsted Research BAB Department. 

 

3.2.3 Experiment to determine the effect of pathogen load and forage availability 

on the longevity and survival of honeybees when challenged with the fungal 

pathogen M. anisopliae: 

 

Newly emerged bees were taken from each of the project BB/H00114X/1 colonies in July, 

August and September of 2011 to examine the longevity of bees from each treatment and 

their susceptibility to additional pathogen challenge in the form of M. anisopliae.  The design 

of the BB/H00114X/1 field experiment (executed by others) is described in Box 1 and 

followed by my experiment on longevity. 
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Box 1:  

Five colonies were maintained in each of four treatments (20 in total): low disease and 

free foraging, high disease and free foraging, low disease and restricted foraging and high 

disease and restricted foraging (table 3.2). 

 

Table 3.2: 

  Forager availability 

D
is

e
a

s
e

 l
o

a
d

 

  Normal Reduced 

High Hive 1 Hive 2 

Low Hive 3 Hive 4 

Treatments established for the project BB/H00114X/1 summer 2011 field experiment. Twenty 
colonies were set up, and of each treatment at each of five field sites. 

 

In this experiment the level of disease was controlled by managing the numbers of varroa 

within the colonies. This was achieved by treating the low disease colonies against varroa 

using thymol (FERA, 2010) and choosing colonies with naturally high varroa levels (varroa 

drop counts of more than 5 mites per day on average (see chapter 1.3.4.2) for the high 

disease colonies. The high disease colonies were then not treated in any way against 

varroa. The level of varroa was monitored throughout the experiment using varroa drop 

counts and phoretic mite counts (FERA, 2010, see also chapter 1.3.4.2). The population 

size of varroa was used as a surrogate for disease load as the number of varroa in the hive 

is easier to measure and maintain/ manipulate directly than are the loads of pathogens. 

Several viruses are transmitted by varroa mites including DWV and ABPV and the loads of 

these viruses are known to correlate well with varroa loads (Tentcheva et al., 2006; 

Tentcheva et al., 2004b; Yue and Genersch, 2005). To ensure that the varroa loads did 

correlate with disease levels five samples of 20 adult bees were taken from inside each 

hive (section 2.2.2) and tested using PCR and QPCR (section 2.6) to see which other 

pathogens each colony had. Samples were collected at four time points: 1-3rd June 2011, 

11-13th July 2011, 26-28th September 2011 and March/April 2012 for all colonies that 

survived to the following summer. Samples of adult bees were also taken from each colony 

that did not survive the winter when they were found to have died. 

 

The colonies were maintained at five apiary sites with one colony from each treatment per 

site. The colonies were established using frames of bees from Rothamsted colonies 

between the 20th and 25th May 2011 and mated queens from 2010 were introduced on the 

27th May. All colonies were left to acclimatise for one week before foraging restrictions 

were imposed.  The level of forager was controlled by placing each hive within a 

pollination cage, a mesh cage 3m x 3m and 2m high, that was usually left open. The 

‘restricted forager’ cages could be closed, preventing the bees from foraging. In the 

restricted forager  
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On two occasions during the summer of 2011 (14th July and 9th August) brood combs were 

removed from each of the colonies and newly emerged adult bees were collected and their 

longevity and susceptibility to a M. anisopliae challenge were determined. During the 

experiment the bees were kept under optimal conditions (with regard to temperature and 

food availability) so the experiment would examine the effect of the treatments only 

(disease load and forage availability during development) on survival as adults.  

 

The frames were taken from the colonies and maintained in an incubator in darkness at 

30oC whilst the young bees emerged. If a queen was not laying then bees could not be 

collected from that colony. During this experiment bees could not be collected from one 

high disease load, free foraging colony and only 20 bees could be collected from one low 

disease load restricted foraging colony.  

 

Forty bees were collected from each hive/frame less than 24 hours after it had been 

removed from the colony (thus ensuring that all collected bees had emerged within 24 hours 

of each other). Of these, 20 bees would be inoculated with M. anisopliae and 20 bees sham 

inoculated with sorbitol. The frames were then returned to their colonies and the bees were 

maintained in bioassay cages (20 per cage) in incubators at 30oC and in darkness. They 

were fed on ground pollen (collected from bee colonies using pollen traps and stored at 5oC) 

60% sucrose solution and water. The boxes were checked twice daily to ensure a constant 

food supply was always available. 

 

After 4 days the bees were inoculated with conidia of M. anisopliae or sham inoculated with 

sorbitol as described previously (chapter 2.5). The concentration of M. anisopliae used in the 

bioassay was adjusted to 1:30 (this concentration was determined from the multiple dose 

bioassays described above (section 3.2.2) to ensure 100% mortality over approximately 8 

days). The concentration was achieved by mixing with sorbitol to achieve a final weight of 

0.5g.   

 

treatments the cages were closed on the first working day of the week (typically 

Monday with the exception of bank holidays) within half an hour of sunset, when the 

bees were likely to have finished foraging and all have returned to the hives. The 

cages were kept closed throughout the following morning and reopened between 

12:15 and 13:15 BST. This was repeated each working day such that the colonies 

were typically closed during mornings from Tuesday-Friday. These restrictions began 

on the week beginning the 6th June and finished 12 weeks later on Friday 26th 

August. 
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Mortality was recorded twice daily, once between 7 and 9am and once between 4 and 6pm. 

Dead bees were removed, food and water was replenished, and the blue roll replaced where 

necessary. The date that each dead bee was removed was recorded and survivorship curves 

produced.  

 

Kaplan-Meier plots with 95% CIs were used to visualise the results and compare treatments. 

These plots were produced using GenStat® (14th edition) (Payne, 2011) with adaptation to 

the Kaplan-Meier program to add the CIs written by Suzanne Clark. 

 

Survival data for the bees inoculated with M. anisopliae were analysed separately from the 

controls because all inoculated bees died within 15 days whilst the control bees’ survival 

ranged up to 70 days.  

 

3.2.4 Experiment to determine the effect of pathogen load, forage availability 

during development, and pollen availability as adults, on the longevity and 

survival of honeybees:  

 

As in 3.2.3, on the 6th September frames of brood were collected from all of the project 

BB/H00114X/1 colonies, maintained at 35oC overnight and newly emerged brood were 

collected for survival analysis. If the queen was not laying then bees could not be collected 

from that colony. For this experiment bees were not collected from one low disease load, 

restricted forage colony and two low disease load, free foraging colonies. 

 

Forty bees were collected from each hive/frame, and split between two bioassay boxes. Half 

of the boxes were provisioned with 60% sucrose, water and pollen as before, the rest 

received 60% sucrose and water but no pollen. The boxes were checked twice daily to 

ensure a constant food supply was available. 

 

Mortality was recorded twice daily, once between 7 and 9am and once between 4 and 6pm. 

Dead bees were removed, food and water was replenished, and the blue roll replaced where 

necessary. The date that each dead bee was removed was recorded and survivorship curves 

produced. 

 

Kaplan-Meier plots with 95% CIs were used to visualise the results and compare treatments. 

These plots were produced using GenStat® (14th edition) (Payne, 2011) with adaptation to 

the Kaplan-Meier program to add the CIs written by Suzanne Clark. 
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3.3 Results: 

 

3.3.1 Experiments to determine germination rate of Metarhizium anisopliae at 

different temperatures: 

 

The germination rate of M. anisopliae conidia was significantly faster on bee wings than on 

SDA (ANOVAL: H0: SDA mean = wing mean. SDA mean = -0.078, wing mean = 0.248 

standard error of difference (SED) = 0.0761, F1,210 = 18.38, P = <0.001), especially at 23oC 

(Figure 3.1). There was also a significant effect of temperature (ANOVA: : H0: 23oC mean = 

30oC mean = 35oC mean. 23oC mean = 0.131, 30oC mean = 1.535, 35oC mean = -1.410. 

SED = 0.2495, F2,2 = 69.72, P = 0.014) with the fungus growing fastest at 30oC; at 35oC 

germination did not reach 100% within the course of the experiment (36 hours) (Figure 

3.2).  

 

Figure 3.1: 
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Graph showing the mean logit proportion of conidia that had germinated for M. anisopliae (445.99) 

when grown on SDA and bees wings. The germination rate was highest on bee wings. The error bars show the 

standard error of the mean (SEM) for this data. 
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Figure 3.2: 
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Graph showing the mean logit proportion of conidia that had germinated over time for M. anisopliae 
(445.99).  The germination rate was highest at 30oC. At 35oC 100% germination was not achieved within the time 
of the experiment (36 hours). The error bar (0,0 on the plot) is the average SEM for the data. 

 

The rate of extension of germ tubes, however, was significantly faster on SDA compared to 

on bee wings (ANOVA using censor estimated values: H0: agar mean = SDA mean. Agar 

mean = 4.79, SDA mean = 4.52 SED = 0.10, F1,150 = 7.18, P = 0.008) (figure 3.3). There 

was also a significant effect of temperature (ANOVA using censor estimated values: H0: 23oC 

mean = 30oC mean = 35oC mean. 23oC mean = 4.74, 30oC mean = 6.01, 35oC mean = 3.30 

SED = 0.27 F2,40 = 50.19, P = 0.002) with the extension rate being greatest at 30oC; at 35oC 

the germ tubes did not reach 100 m within the course of the experiment (36 hours) (figure 

3.4)   

 

 

 

 

 

 

 

 

 

 

 

 

 



62 

 

Figure 3.3: 
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Graph showing the square root of the mean germ tube length for M. anisopliae (445.99) when grown 

on SDA and bees wings. The germ tubes grew best on agar. The error bars show the SEM for this data. 
 

Figure 3.4: 
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Graph showing the square root of the length of germ tube growth over time for M. anisopliae 
(445.99)  incubated at 3 temperatures. The germination length grew fastest at 30oC and slowest at 35oC. The 
error bar shows and average SEM for the data set. 

 

3.3.1 Experiments to determine colony growth of Metarhizium anisopliae at 

different temperatures: 

 

There was very little difference in colony growth at 30oC compared with 23oC, but there was 

a dramatic decrease in colony growth at 35oC such that at this temperature the fungus was 
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barely able to grow at all (figure 3.5). There was a significant effect of both temperature 

and time on colony growth (REML: Temperature: H0: 23oC mean = 30oC mean = 35oC 

mean. 23oC mean = 3.22, 30oC mean = 3.25, 35oC mean = 1.44 SED = 0.018 F2,4 = 

10040.89, P < 0.001. Time: H0 = all time means equal. Means for each time point increase 

from 2.19 at 4 days to 2.97 at 15 days SED = 0.0069  F5,109.8 = 2041.46, P < 0.001.) and a 

significant interaction between temperature and time (Interaction: F10, 111.3 = 367.28,  

P < 0.001).  

 

Figure 3.5: 

 

Colony growth of the fungus M. anisopliae recorded over a fifteen day period. There was a significant 

reduction in growth at 35oC compared to 23 and 30oC. 
 

3.2.2 Multiple dose bioassay to determine the concentration of M. anisopliae to 

use in experiments: 

 

There was an increase in the number of bees that died and a decrease in the time until 

death with increasing concentration of the fungus M. anisopliae; bees inoculated with 100% 

M. anisopliae conidia all died within four days, bees inoculated with a 1:10 to 1:30 

concentration of fungal conidia had all died within two weeks (nb figure shows only up until 

day twelve as one repeat of this experiment could only be carried out for this long. In the 

other two repeats all bees inoculated with these concentrations had died within two weeks). 

Some bees survived the course of the experiment when inoculated with the lower 

concentrations (1:100 to 1:300) and in the control groups, only two of the bees inoculated 

with sorbitol died.  
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From the Kaplan-Meier plot with 95% CIs (figure 3.6) it is clear that there is a significant 

difference between the CIs for 4 groups of concentrations: 100% fungus, 1:10-1:30, 1:100-

1:300 and the controls.  

 

Figure 3.6: 
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Kaplan-Meier plot showing survival of bees after inoculation with different concentrations of the 
fungus M. anisopliae . There were only two deaths in the control treatment inoculated with sorbitol and no 
deaths in the uninoculated control group. There was an increase in the number of bees that died and a decrease in 

the time until death with increasing concentration of the fungus. 

 

3.2.3 Experiment to determine the effect of background pathogen load and 

forage availability on the longevity and survival of honeybees when challenged 

with the fungal pathogen M. anisopliae: 

 

Varroa drop counts and phoretic mite counts (see chapter 2.6) in July-September (when 

bees were taken for these experiments) confirmed that high disease colonies had, on 

average, higher numbers of varroa than the low disease colonies (ANOVA, H0 = low varroa 

colonies mean = high varroa colonies mean. Mean values  in table 3.3, SED = 1.81, F1,79 = 

145.51, P < 0.001). 
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Q-RT-PCR analysis of bees sampled from the Rothamsted colonies studied in this thesis, and 

in the BBSRC IPA project, showed that bees from the colonies with high average levels of 

varroa also had higher DWV loads compared to bees from the low varroa colonies (S. Hilton, 

Warwick University, unpublished). At the time of writing this thesis, other diseases have not 

yet been tested for. 

Table 3.3: 

  Varroa drop counts phoretic mite counts 

  mean (SEM) mean (SEM) 

  July-Aug Aug-Sept July-Aug Aug-Sept 

FL 5.8 (2.4) 12.0 (3.1) 6.3 (2.6) 25.4 (6.3) 

RL 7.1 (3.4) 9.0 (6.6) 8.0 (3.4) 28.6 (6.5) 

FH 20.6 (6.9) 39.3 (19.7) 14.3 (1.6) 54.8 (9.2) 

RH 24.4 (11.5) 29.7 (8.9) 21.6 (8.2) 54.1 (10.9) 
 
Table showing the varroa counts for different treatments of colonies used in the survival experiments 
which took place between July and September 2011. FL (free forage, low disease) and RL (restricted forage, 
low disease) colonies have lower average varroa numbers by both counting methods than FH (free forage, high 

disease) and RH (restricted forage, high disease) colonies. 
 

Both disease load and forage availability during development had an effect on survival of the 

adults. The bees from the low challenge, best case scenario colonies, those from colonies 

with low disease loads and able to forage freely, survived for the longest time and the those 

from high challenge colonies, with high disease loads and restricted in their foraging, 

showed the shortest survival and intermediate survival was seen in the intermediate 

treatment colonies. The Kaplan-Meier plot (figure 3.7) shows no significant difference 

between CIs at the start and end of the experiment suggesting that the difference in 

survival between treatments is only significant in the middle of the experiment, most 

obviously between 10 and 30 days. The plot also shows no significant difference between 

the CIs of the two intermediate treatments at all time points, suggesting that these 

treatments do not significantly differ from each other. 

 

When the LT50s (median lethal times) are compared for each treatment, the bees from the 

colonies with restricted forage and high varroa loads had a shorter LT50 than any other 

treatment. The bees from these colonies died faster than any other treatment (confidence 

intervals do not overlap, table 3.4). The means for the other treatments were not 

significantly different from each other however. 
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Figure 3.7:  AAAA
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Kaplan-Meier plot showing survival of bees from colonies that were allowed to forage freely (F) or 
were restricted (R) in their foraging and with high (H) or low (L) varroa loads. The best survival was 
seen in bees from FL (Free forage, low varroa) colonies and the worst in RH (Restricted forage, high varroa) 
colonies. (FH N = 180, FL N = 200, RH N = 200, RL N = 190). 
 

 

 

Table 3.4:  
 

 LT50 (day) upper CI lower CI 

Restricted forage, low varroa 27.2 30.2 23.6 

Free forage, Low varroa 31.3 32.2 28.7 

Free forage, High varroa 22.6 24.2 21.7 

Restricted forage, High varroa 18.1 19.9 13.3 
 

Table of LT50s (time until half the bees were dead) for each treatment when not inoculated with 
fungus. The bees from the colonies with restricted forage and high varroa loads had a significantly shorter LT50 
(died significantly earlier) than any other treatment.  
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Figure 3.8: AAAA
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Kaplan-Meier plot showing survival of M. anisopliae infected bees from colonies who were allowed to 

forage freely (F) or were restricted (R) in their foraging and with high (H) or low (L) varroa loads. The 
best survival was seen in bees from RH (Restricted forage, high varroa) and FL (Free forage, low varroa) colonies, 
and the worst in RL (Restricted forage, low varroa) and FH (Free forage, high varroa) colonies. (FH N = 180, FL N 
= 200, RH N = 200, RL N = 190). 

 

 

When challenged with M. anisopliae, all bees died within sixteen days. There was only a 

significant difference in survival between 4 and 8 days when bees from the low challenge 

colonies: low disease load, free foraging colonies and the high challenge colonies: high 

disease load, restricted foraging colonies survived significantly better than those from the 

intermediate colonies: high disease load, free foraging, and the low disease load, restricted 

foraging (Figure 3.8).  

 

When the LT50s are compared the bees from the free forage, low varroa colonies have the 

longest LT50s, whilst the bees from the colonies with free forage and high varroa had the 

shortest LT50s (CI for these colonies do not overlap with the others, table 3.4). The bees 

from both the restricted forage treatments have intermediate LT50s. 
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Table 3.5: 

 LT50 (days) upper CI lower CI 

Restricted forage, low varroa 7.5 7.6 7.4 

Free forage, Low varroa 7.9 8.1 7.7 

Free forage, High varroa 7.2 7.3 6.9 

Restricted forage, High varroa 7.6 7.7 7.5 
 
Table of LT50s (time until half the bees were dead) for each treatment when inoculated with the 
fungus M. anisopliae. The bees from the colonies with free forage and high varroa has significantly shorter 

LT50s than the bees from the restricted forage colonies who in turn had significantly shorter LT50s than the bees 
from the colonies with free forage and low varroa. 

 

3.3.4 Experiment to determine the effect of pathogen load and forage availability 

during development and pollen availability as adults on the longevity and 

survival of honeybees: 

 
When bees from these colonies were maintained with and without pollen, the bees from the 

low challenge colonies, those with low disease loads and able to forage freely, survived for 

the longest. The high challenge colonies, with high disease loads and restricted in their 

foraging, showed the worst survival. But when the low challenge colony bees where starved 

of pollen their survival was as bad as for those bees from the high challenge colonies who 

had been given pollen (Figure 3.9). The increased longevity seen in the high challenge 

colonies when provided with pollen is more than the decrease in survival seen in the low 

challenge colonies when starved of pollen.  

 
Similar results were found when comparing the LT50s. The bees from the low challenge 

colonies have the longest LT50 and the bees from the high challenge colonies have the 

shortest LT50s. However, bees from the high challenge colonies that had been given pollen 

and bees from the low challenge colonies but deprived of pollen were not significantly 

different (table 3.5).  
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Figure 3.9: 
 AAAA
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Kaplan-Meier plot showing survival of bees with (P) and without (N) pollen,  from colonies who were 
allowed to forage freely (F) or were restricted (R) in their foraging and with high (H) or low (L) 
varroa loads. This plot shows the lowest and highest challenged colonies, bees from high varroa, restricted 

forager colonies and bees from low varroa, free foraging colonies. (FLP, N=60. FLN, N=60. FHP, N=100. FHN, 
N=100. RLP, N=80. RLN, N=80. RFP, N=100. RHN, N=100). 

 

 

Table 3.6: 

 LT50 (days) upper CI lower CI 

Free forage, Low varroa, Pollen 23.4 24.4 21.6 

Free forage, Low varroa, No pollen 19.5 20.6 17.0 

Restricted forage, High varroa, Pollen 20.3 21.6 18.6 

Restricted forage, High varroa, No pollen 13.4 14.2 12.4 
 
Table of LT50s (time until half the bees were dead) for the low and high challenge colonies when fed 

or deprived of pollen. The low challenge colonies bees had the longest LT50 and the high challenge colonies 
bees had the shortest. When bees from the low challenge colonies were deprived of pollen or bees from the high 
challenge colonies were fed pollen their LT50s were not significantly different from each other. 
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3.4 Discussion: 

 

Metarhizium anisopliae has a broad range of invertebrate hosts, (Roberts and Humber, 

1981) and different isolates are pathogenic to different species (e.g. Chandler et al., 2001) 

which makes it a good candidate use as a biological control agent against many pests and 

also as a model system for studying the effect of pathogens on their hosts.  

 

None co-evolved pathogens like M. anisopliae can provide insights into the potential effects 

of newly introduced parasites (Boughton et al., 2011) or for understanding the 

consequences of an invasion by a closely related host carrying parasites (Dhondt et al., 

2008), and the global phenomenon of increases in emergent diseases (Marra et al., 2004). 

They are also often used as biological pesticides and so effects on potential, unintended, 

hosts require study (Chandler et al., 2001; Shaw et al., 2002). But they can also be used to 

show changes in behaviour or physiology that would be difficult to do with co-evolved 

species. For example, Joop et al. (2006) assessed survival of wild-caught damselflies after 

infection with a novel entomopathogenic fungus to show that survival depended on colour 

morph and sex.  

 

An artificial immune insult could be used in place of a model pathogen to examine the effect 

of activation of the immune system on behaviour because all hosts will be naïve to it, it can 

be highly controlled and it removes potential host-parasite interactions. Examples include  

Phytohemagglutinin (Biard et al., 2009) and sheep red blood cells (Snoeijs et al., 2007) in 

vertebrates and lipopolysaccharides (Riddell and Mallon, 2006) in invertebrates. However, 

using an artificial immune insult does not reflect how the immune response will react to a 

living pathogen (Hanssen et al., 2004).  

 

It is difficult to inoculate bees with many of their co-evolved pathogens, especially the 

viruses which often need to be transmitted by injection. But merely injected the bee can 

cause immunological and behavioural responses (Mallon et al., 2003). Metarhizium 

anisopliae infection was chosen as a model system for studying the effect of pathogens on 

honeybee survival and learning behaviour (see chapter 4) because of its ease of use (the 

bees could be inoculated with a known dose of a powder with no need for injection or 

feeding by hand) and because it was unlikely to be present in any of the bees used in these 

experiments so that all individuals would be equally naïve to it. 

 

The main aim of these experiments was to characterise the growth of the fungus M. 

anisopliae for use in later experiments and then to use the fungus in a model system to 
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analyse the effect of multiple factors (forage availability, co-evolved pathogens and 

additional pathogens) on honeybee survival. 

 

There was a significant difference in the germination rate of the fungus M. anisopliae when 

grown on different media (SDA or honeybee wings set in tap water agar) and at different 

temperatures. This was determined using both germination rate (% conidia that had 

germinated) and germ tube elongation. Germination rate was fastest on bee wings but then 

germ tubes grew faster on the SDA. It has been shown that for an isolate of M. anisopliae 

specific to the locust species Schistocerca gregaria, only host cuticle stimulated the full 

developmental program of germination, cuticles of other insects caused reduced or even no 

germination (Wang and Leger, 2005). The isolate used in these experiments, whilst 

pathogenic to honeybees, is not co-evolved with them and so there may be a similar 

reduction in germination or in growth. This may be due to some defence mechanism, for 

example honeybees are known to secrete Metalloproteases, enzymes containing metallic 

ions, predominantly zinc ions, which help prevent infection (Strachecka et al., 2012) and leaf 

cutter ants have been found to have symbiotic bacteria on their cuticles which protect them 

from entomopathogenic fungi (Mattoso et al., 2012). And antifungal chemicals were found 

on flea beetles inoculated with M. anisopliae in an experiment by Butt et al. (1995), but in 

that experiment the fungus grew better on dead than live beetles, suggesting that the 

antifungal chemicals are only present on live insect cuticle. However other isolates of this 

fungus have been germinated and grown on several growth media including SDA (Ibrahim 

et al., 2002). 

 

An alternative explanation for the difference in growth and germination rate on the different 

media is that the fungus can detect when it is on a potential host species and so germinates 

faster when it detects the bee wings than it does on the SDA. Studies have shown that M. 

anisopliae changes its gene expression profile dramatically depending on whether it was 

growing in a nutrient rich medium or on a host cuticle (Freimoser et al., 2005; Wang et al., 

2005). The genes up-regulated in response to host cuticle are those associated with cuticle 

degradation and combatting the host’s immune system, suggesting that the fungus is able 

to detect its host and alter its growth patterns accordingly. It has also been shown that an 

isolate of this fungus which targets Lepidoptera has cell-bound enzymes which aid cuticle 

degradation and these enzymes were more abundant on spores taken from host cuticle than 

SDA, again suggesting that the fungus can adapt to its environment (St Leger et al., 1991). 

The fact that the fungus then probably grew germ tubes faster on the SDA could be 

because this is a more nutritious medium providing more nutrients for growth, as has been 

shown for other isolated of M. anisopliae which grew fastest on nutrient rich media than 

nutrient poor media (Ibrahim et al., 2002).  
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There was reduced germ tube growth and germination at 35oC so that there was not 100% 

germination and nor had germ tubes grown to 100 m within the course of the experiment 

(36 hours). The radial growth experiment showed similar results with very little radial 

growth at 35oC. This suggests that within the hive, where bees can easily maintain a 

temperature of 35oC for their brood (Hooper, 2008), the fungus is unlikely to grow well. For 

this reason all inoculated bees were maintained at 30oC for these experiments. Some 

isolates of M. anisopliae have been shown to grow at 35oC, but the optimal temperature 

range for most isolates studied is lower than this (Ouedraogo et al., 1997). 

 

In the multiple dose bioassay 100% mortality was only achieved with doses of 1:30 and 

above with some bees surviving at lower doses.  These bees may have overcome infection, 

or there may have been individuals that were not exposed to the conidia. The results of this 

experiment were used to choose the dose appropriate for future experiments. It was 

decided that 100% mortality was required to ensure that all bees had actually been 

infected. Sufficient time was also required between inoculation and death for behavioural 

experiments to take place (see chapter 4) so a dose of 1:30 was chosen as this dose caused 

100% mortality over the longest period of time; the majority of inoculated bees survived for 

up to six days. 

 

This dose of M. anisopliae, when used on bees from colonies of differing varroa load and 

forage availability, killed all inoculated bees within sixteen days. There was no significant 

effect of either treatment (disease load or forage availability) on survival, but there was a 

significant interaction. This is because both the low and high challenge colonies bees 

survived longest when compared with the intermediate treatments. This suggests that 

neither factor contributed to survival when challenged with the fungus which may be 

because the dose was too high for any benefit of a primed immune system or good forage 

availability during development to be seen. It is possible that if a lower concentration of M. 

anisopliae had been used, 1:100 or 1:300 where 100% mortality was not achieved, that 

there might have been a difference between treatments in the proportion of bees that 

survived as bees from the low challenge colonies are better able to fight off the fungus or 

bees from the high varroa colonies have primed immune systems which help them fight off 

the fungus. For example in Moret and Siva-Jothy’s (2003) study on immune primed beetle 

larvae,  the larvae injected with Ringer’s solution or LPS to stimulate an immune response 

were then better able to survive subsequent challenge with M. anisopliae and some 

inoculated beetles survived for over fifty days.  
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There was a significant effect of colony treatment on survival without the added fungal 

pathogen. In the lab, the bees from colonies with low disease loads and able to forage 

freely survived best whilst those from colonies with high disease loads that were restricted 

in their foraging survived the worst. The intermediate treatments showed intermediate 

survival with neither combination significantly different from the other. This suggests that 

disease load and forage availability during development are equally important in determining 

survival. Kunert and Crailsheim (1988) did a two year study recording the forage availability 

and quality of colonies and the weight and survival of newly emerged bees. They found no 

correlation between larval feeding and longevity. In fact that study found that life span 

seemed to be linked with productivity of the colony such that when there were the most 

resources (pollen and nectar) being brought into the hive, bees had the shortest lives. Life 

span has been linked with flight distance (Neukirch, 1982) and wing damage (which 

increases with increased foraging activity) (Higginson et al., 2011). My results, however, 

measure the longevity of adult bees kept under ideal conditions without the need to forage 

or care for brood, similar to studies used to look at survival of bees when infected with 

Nosema spp. (Mayack and Naug, 2009; Rinderer and Elliott, 1977; Rutrecht and Brown, 

2009). It should be remembered that laboratory experiments are simplified compared with 

the real world and any conclusions taken from them should be considered with respect to 

factors that are not accounted for in the experiment. For example the bees in cages couldn’t 

fly more than a few centimetres and did not have brood to care for.  

 

My results suggest that bees from the high disease load colonies who were restricted in 

their foraging did not live as long as the healthier bees so that, within the high disease 

colonies, there were fewer bees in total and thus fewer forager bees to bring back pollen 

and nectar. This would mean that colonies with high disease loads are less able to bring in 

forage than healthy colonies so they would have fewer stores for the winter. This may be 

one of the reasons, along with reduced worker longevity, that pathogen infected colonies 

are less likely to survive over winter (e.g. Bach Kim et al., 2011; van Dooremalen et al., 

2012). 

 

When bees from the high challenge colonies (high varroa and restricted foraging), that 

usually survive the least well under ideal conditions, were fed with pollen their survival 

increased. Equally, when bees from the low challenge colonies (low varroa and free 

foraging) were starved of pollen their survival decreased. But bees from the high challenge 

colonies that were fed pollen still survived less well than bees from the best colonies that 

were fed with pollen. These results suggest that bees require adequate resources 

throughout their development and whilst feeding bees after the colony has gone through a 

period of sparse forage or when they are suffering from high disease loads will help them 
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improve their survival, they really need a constant supply or stores of both nectar and pollen 

resources. For example Schmidt and Buchmann (1985) determined the average requirement 

for a small colony within a flight cage to be 3.07 mg N per bee per twenty-eight days. This 

corresponds to 19.2 mg protein. This also suggests that the immune system is energetically 

costly to the bees (Chown and Nicolson, 2004). It has been shown that a high pollen diet 

can aid in survival of bees infected with Nosema apis in caged trials (Rinderer and Elliott, 

1977), but under similar conditions in the field the added pollen did not aid survival (Mattila 

and Otis, 2006). This result highlights the fact that field conditions can be very different 

from the controlled environment of the laboratory.  For example, although feeding the bees 

pollen in this experiment, and in Rinderer and Elliott’s (Rinderer and Elliott, 1977) 

experiment, aided the survival of infected bees, in the field excess pollen may be used 

preferentially to feed young or bees may be under more energetic stress as they forage so 

the added pollen may not actually aid survival to the extent that it does in the caged 

experiments.  

 

In conclusion M. anisopliae infection could work well as a model system for investigating the 

effect of pathogens on honeybees because of its ease of use. It was however too fast acting 

at the dose used here to show any significant difference in the survival of bees from 

colonies with differing disease and forage treatments. It was clear however that both forage 

availability and disease load have an effect on honeybee survival in the laboratory and 

pollen feeding can aid in survival under laboratory conditions.  
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Chapter 4: The effect of pathogens on honeybee 

learning and sucrose sensitivity. 

 

Abstract: 

 

The European honeybee, Apis mellifera, is important economically not just for honey 

production but also as a pollinator. However, honeybee numbers in some areas are 

declining.  A range of interacting factors are thought to be involved, including pathogens 

and parasites,  which are known to cause changes in the behaviour of their hosts.  

 

The learning ability of honeybees was evaluated in this chapter using condition proboscis 

extension, an existing method that has already been used to look at the effect of some 

pathogens on learning ability in bees (e.g. Iqbal and Mueller, 2007; Kralj et al., 2007). Here 

the method was used to test the suitability of the fungus, M. anisopliae as a model 

pathogen as well as studying the effect of naturally occurring viruses and microsporidia.  

 

Metarhizium anisopliae infected nurse bees were less able to learn than controls however 

infected forage bees seemed to learn better than controls. This may be due to different 

immune competence of different aged bees. The increased learning ability may be due to 

increased hunger leading to increased responsiveness to the sucrose stimulus. The results 

also suggest that Nosema spp. and sac brood virus cause decreases in learning ability. 

 

 

4.1 Introduction 

 

4.1.1 Behavioural effects of pathogens and parasites on honeybees: 

 

Many species of pathogens and parasites are thought to influence their hosts’ behaviour. 

These behavioural effects can be diverse but one form they can take involves changes in 

learning ability (e.g. Iqbal and Mueller, 2007; Kralj et al., 2007; Mallon et al., 2003). This is 

especially important in honeybees, which need to navigate large areas of the landscape to 

find nest sites and resources, use the position of the sun and landmarks to remember where 

these sites and resources are, and communicate that information within the hive via the 

waggle dance - all of which require both learning and memory (Menzel and Giurfa, 2001). 

Other behavioural changes brought about by pathogens have been seen in several insect 

species including changes in movement, grooming, thermoregulation and appetite (e.g. Roy 

et al., 2006). 
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These behavioural effects may be as a result of ‘adaptive host manipulation’ as seen when 

the pathogen/parasite causes changes in the host’s behaviour to aid transmission (Poulin, 

1995). One of the best examples of this are the so-called ‘zombie-ants’. Ants infected with 

fungi of the Ophiocordyceps clade leave their nests and bite onto leaves at the tops of 

plants before they die due to infection. This ensures that the infected ant is in the best 

elevated position for the fungus to complete its lifecycle and distribute its spores (Lefèvre et 

al., 2009). Hosts can also demonstrate adaptations in the form of defensive behaviours, 

such as grooming, in response to infection/attack. Ants inoculated with the fungus 

Metarhizium anisopliae, for example, show an increase in self-grooming behaviour. Ants also 

groom nest mates that return to the colony after foraging irrespective of whether they have 

been experimentally inoculated with the fungus or not. These behavioural adaptations 

decrease the number of spores on inoculated individuals and thus decrease the likelihood of 

infection and transmission of the fungus through the colony (Reber et al., 2011). However, 

behavioural changes may not be adaptive and may simply be due to the inevitable 

deleterious effects of invasion as the pathogen/parasite consumes the host’s tissue (Poulin, 

1998).   

 

It is often difficult to differentiate between effects caused by the pathogen/parasite and 

effects caused by the host because of a lack of information about causal mechanisms of 

behavioural change or evidence of effects on fitness. For this reason, experiments done to 

elucidate relationships between disease and behavioural changes caused by altered learning 

ability in both honeybees and bumblebees have used injected lipopolysaccharides (LPS) as a 

surrogate for infection (Mallon et al., 2003; Riddell and Mallon, 2006). LPS mimics bacterial 

cell walls thereby activating the bee’s immune system without any pathogenic effect. These 

experiments showed that bees injected with LPS were less able to learn to associate a scent 

with a food reward than bees that were injected with a control of Ringer’s solution (Mallon 

et al., 2003; Riddell and Mallon, 2006). This was especially evident in pollen-starved bees 

(Riddell and Mallon, 2006). As pollen is the only source of protein for bees, this suggests 

that there may be a protein involved in both the immune system and in learning that is used 

preferentially by the immune system. Riddell and Mallon (2006) suggested some potential 

candidate proteins (octopamine or eicosanoids), but more research is needed in this area. It 

is also known that mounting an immune response is energetically expensive; wound healing 

and encapsulation in insects can raise the metabolic rate by up to 28% (Ardia et al., 2012). 

So lack of appropriate nutrition, both nectar and pollen, would likely have a negative effect 

on immunity. For example if mosquito larvae are raised with suboptimal nutrition or 

completely starved then they become more susceptible than controls to viral infection 

(Muturi et al., 2011). This was seen in chapter 3 where bees raised in colonies with 
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restricted forage survived for less time as adults on average than those raised in freely 

foraging colonies. 

 

Similar experiments have shown that both varroa mites and DWV decrease learning ability in 

honeybees (Iqbal and Mueller, 2007; Kralj et al., 2007). Bees injected with DWV-containing 

lysate (an extract from bees) were less able to learn to associate a scent with a sucrose 

reward and were also less likely to remember the association after two, and especially after 

24 hours, than bees injected with DWV-free lysate (Iqbal and Mueller, 2007). Bees infested 

with varroa mites, however, showed decreased learning ability when tested after 1 minute 

but were not significantly different to uninfested controls after 12 minutes (Kralj et al., 

2007). These decreases in learning ability may be due to activation of the immune system 

as shown in Riddell and Mallon’s experiments (2003; 2006) or due to the direct influence of 

the pathogen/parasite, or a combination of the two.  

 

Studies of bees infected with Nosema ceranae showed that they became more responsive to 

lower concentrations of sucrose and became hungry more quickly than uninfected bees 

(Mayack and Naug, 2009; Naug and Gibbs, 2009). Mayack and Naug (2009) suggested that 

the reduced longevity observed in bees infected with Nosema spp. was more likely to be 

due to energetic stress than any other pathogenic effect. Infected bees, when fed with 

enough sucrose, were able to survive almost as long as uninfected controls. Infected bees 

were also less likely to share food with nest mates (Naug and Gibbs, 2009). This is 

important because Nosema spp. can be transmitted during feeding and it was originally 

thought that the increased hunger associated with infection might lead to increased food 

sharing which would have aided transmission (Mayack and Naug, 2009). Bees infected with 

DWV were also more responsive to lower sucrose concentrations, suggesting that energetic 

stress may also be caused by this virus, although this was not the case for bees infested 

with varroa mites (Iqbal and Mueller, 2007; Kralj et al., 2007).  

 

The experiments in this chapter use classical conditioning to examine the effect of honeybee 

pathogens on learning by using the fungus Metarhizium anisopliae (see chapter 3) as a 

model, generalist pathogen. 

 

4.1.2 Conditioned Proboscis Extension (CPE): 

 

CPE is a common behavioural tool used to measure learning and memory in insects (El 

Hassani et al., 2008; Farooqui, 2008; Ramirez-Romero et al., 2008). It relies on the 

proboscis extension reflex (PER), a reflex found in many insects eg Diptera (e.g. Nakamura 

et al., 2008) Lepidoptera (e.g. Omura et al., 2000), Hymenoptera (e.g. Abramson et al., 
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2008), and was first described by Minnich (1921). When presented with a food source, 

sucrose for example, the insect extends its proboscis. If a scent is presented at the same 

time as the food source the insect will associate the scent with the food such that the scent 

alone will ultimately stimulate the extension reflex. This is an example of classical 

conditioning as first demonstrated by Ivan Pavlov who received a Nobel Prize for his 

research in 1904 (Pavlov, 1927). Frings (1944) was the first to condition the proboscis 

extension reflex and experiments using it have since been refined based on further research 

(Bitterman et al., 1983).  It was the use of this method which demonstrated that both DWV 

and varroa infestation affected honeybee learning (Iqbal and Mueller, 2007; Kralj et al., 

2007) and that the immune system was involved (Mallon et al., 2003; Riddell and Mallon, 

2006).  

 

Some studies have shown that CPE was best done using foraging bees rather than the 

younger hive bees (Behrends et al., 2007) as foraging bees were considered more 

responsive to gustatory stimuli. However, young 6 day old adult bees can be conditioned 

and 10 day old bees show results comparable to forager bees (Ray and Ferneyhough, 

1997). As part of this project, preliminary experiments were done using Rothamsted bees to 

verify this information and to better determine what age of bees would be most appropriate 

for each behavioural experiment. 

 

In 4.2.2 CPE was used to study the effect of a pathogen, the fungus Metarhizium anisopliae, 

on honeybee learning throughout the infection period. This was accomplished by testing the 

learning ability of infected bees 2, 4 and 6 days after inoculation. It was hypothesised that 

learning ability would decrease in infected bees and that the decrease in learning ability 

would become more pronounced over time. 

 

The method was also used in 4.2.3 to study M. anisopliae-infected bees that were either 

young adult bees collected after emergence, or older forager bees to determine whether 

age had an effect on the bees’ response to infection. It was hypothesised that young adult 

bees would respond differently to forager bees. All bees were killed after experimentation 

and stored at -80oC for QPCR to detect and quantify co-evolved pathogens. It was 

hypothesised that, within each age group, bees that were also infected with other 

pathogens (potentially multiple pathogens), or with higher pathogen loads would show 

decreased learning ability compared to bees with fewer pathogens or lower pathogen loads. 

 

CPE was then used in 4.2.4 to test the effect of M. anisopliae infection on forager bee 

learning when the bees were also pollen-starved. It was hypothesised that any potential 

decreases in learning associated with infection would be exacerbated by pollen starvation 
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because pollen is the bees’ only source of protein and several proteins are required for both 

learning and immunity (Riddell and Mallon, 2006). 

 

Furthermore, in 4.2.5 M. anisopliae-infected and uninfected forager bees were examined in 

a sucrose sensitivity experiment to determine whether M. anisopliae-infected bees were 

more responsive to lower concentrations of sucrose and thus hungrier than uninfected bees. 

These experiments were also done on bees two, four and six days after infection. It was 

hypothesised that infected bees would be energetically stressed by the fungal infection and 

would thus be hungrier and respond to lower concentrations of sucrose. It was further 

hypothesised that the difference in responsiveness would increase over the course of the 

infection such that the bees tested six days after inoculation would respond to lower 

concentrations of sucrose then those tested four days after inoculation. 

 

 

4.2 Methods 

 

4.2.1 General methods for CPE: 

 

Classical conditioning in the form of CPE was used to test the bees’ ability to learn and 

retain information. The techniques used were modified from those used by Dr Mathilde 

Briens of Inscentinel (http://www.inscentinel.com/) and adapted from a technique similar to 

Bitterman et al. (1983).  

 

Bees were fed with 60% sucrose and then starved for 3-4 hours before experimentation 

began so that they would all be equally responsive to the sucrose stimulant. Bees were 

immobilised by chilling at 5˚C, as described previously (chapter 2.5), and then secured in 

glass tubes with PVC tape (Figure 4.1). This held the bee secure whilst leaving its antennae 

and proboscis free. The bees were left for 30 minutes to habituate under ambient conditions 

(22˚C, in light).  

 

All CPE experiments were done in a controlled environment room at 22oC with an air 

extractor to remove odours. Each bee was submitted to six training trials. For the first 

training trial, each bee in turn was placed in an air stream set at 2l/min and exposed to 

clean air for 15s. The conditioned stimulus (citronella) was then introduced for 5s without 

changing the overall air flow. After the first 3s of odour stimulation the bee was presented 

with 30% sucrose on a cotton wool bud that was touched to the bee’s antennae until the 

bee extended her proboscis. This allowed the bee to associate the conditioned stimulus 

(citronella) with the unconditioned response (extending the proboscis for food). The bee 
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was then allowed to feed for the final 2s of conditioned stimulus, reinforcing the association, 

then left for a further 15s in clean air with no sucrose stimulation. 

 

Figure 4.1: 

 

 

 

 

A bee secured for CPE experimentation. The bee is secured in such a way that the antennae are free and it 
can extend its proboscis. It is held in a glass tube by a band of electrical tape (yellow) and by thinner tape (lining 
tape) to hold its head in place (grey).  

 

This process was repeated for each bee in turn, taking about 1 minute per bee. As there 

were 32 bees tested on each day of this experiment, this meant that each bee’s subsequent 

training trial occurred after 30 minutes. In the subsequent trials each bee was expected to 

extend its proboscis within the first 3s of citronella stimulation without need for sucrose, 

indicating it had learnt to associate the scent with a food reward and had responded to the 

scent alone. If the bee extended her proboscis in response to the citronella she was 

rewarded by being fed sucrose, if not then the sucrose was touched to her antennae again 

as in the first training trial to reinforce the association. 

 

In the sixth trial there was no sucrose stimulation, giving an extra 2s for the bee to respond 

to the citronella. On each occasion the bee’s response was recorded; either the bee 

responded to the odour alone, responded only to the sucrose or responded to neither. For 

each bee, a blank test was run after the third trial without any odour and thus no reward to 

ensure that the bees were learning to associate the odour and nothing else. None of the 

bees responded in this blank test, but should they have done so, they would have been 

removed from the analysis. 

 

Each bee was recorded as either having not responded to the reward (not extending 

proboscis on three or more of the six trials), not learned the response (responding to the 
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sugar, but not to the scent alone) or learned (responding to the scent alone in the final test 

trial).   

 

4.2.2 Testing for differences in learning behaviour in young adult bees over the 

course of infection with M. anisopliae: 

 

Newly-emerged young adult bees were collected as described previously (Chapter 2.2.1) 

then maintained at 30oC in darkness and provided with pollen, 60% sucrose solution and 

water. After three days the bees were inoculated with 0.5g of a 1:30 concentration of M. 

anisopliae in sorbitol or sham inoculated with 0.5g of sorbitol alone and maintained under 

conditions to ensure infection as described previously (chapter 2.5) and then tested two, 

four and six days after inoculation. These times and the concentration of M. anisopliae used 

were chosen based on the results of a virulence bioassay and represented the lowest 

concentration of conidia to achieve 100% infection and mortality within 12 days (chapter 

3.3.2).  

 

The bees used in this experiment came from Rothamsted colonies 30 and 12. Both colonies 

were similar in respect to their varroa loads (Colony 30: high varroa levels, 33.4 mites per 

day counted in July 2010; Colony 12: high varroa levels, 25.7 mites per day counted in July 

2010) and had been foraging in the same area. These colonies were chosen specifically for 

their high levels of varroa as they were expected to also have high levels of other diseases, 

such as DWV (Yue and Genersch, 2005). After experimentation all bees were stored at -

80oC for Q-RT-PCR analysis to examine the interaction between these natural diseases and 

the M. anisopliae. Although the intention was to use bees from the same colony, sufficient 

brood of the correct age was not available from one colony and so two were used. For that 

reason, bees tested six days after inoculation on the 21/07/2010 came from colony 30 and 

the rest came from 12 (Table 4). 

 

The experiment was designed and blocked to allow each treatment to be compared whilst 

taking time and date effects into account. On each experimental day 32 bees were tested; 

eight from each of two of the six treatment groups. This was repeated over six non-

consecutive days until 32 repeats of each treatment were achieved (Table 4.1).  
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Table 4.1: 

 

Experimental 

day 

Treatments  

(days after 

inoculation (d) and 

+ M. anisopliae (M) 

or sorbitol (S)) 

No bees in 

each 

treatment 

Colony 

1 +2d + M +2d + S 8 8 12 

21/07/2010 +6d + M +6d + S 8 8 30 

2 +2d + M +2d + S 8 8 12 

23/07/2010 +4d +M +4d + S 8 8 12 

3 +4d +M +4d + S 8 8 12 

26/072010 +6d + M +6d + S 8 8 12 

4 +2d + M +2d + S 8 8 12 

28/07/2010 +6d + M +6d + S 8 8 12 

5 +2d + M +2d + S 8 8 12 

30/07/2010 +4d +M +4d + S 8 8 12 

6 +4d +M +4d + S 8 8 12 

02/08/2010 +6d + M +6d + S 8 8 12 

 

Table showing the experimental design employed to examine changes in learning ability of 
honeybees over the course of infection with M. anisopliae.  

 

Each bee was tested as described above (4.2.1) and recorded as either having not 

responded to the reward (not extending proboscis on three or more of the six trials), not 

learned the response (responding to the sugar, but not to the scent alone) or learned 

(responding to the scent alone in the final test trial).   

 

These data were analysed in GenStat® (14th edition) using repeated measures ANOVA after 

logit transformation with the treatment structure to test the effect of time since inoculation 

(two, four or six days) and inoculation treatment (inoculated with M. anisopliae or sorbitol), 

and a blocking structure to take account of experimental day. 

 

4.2.3 Testing for differences in learning behaviour in young adult and forager 

bees infected with M. anisopliae: 

 

Newly emerged young adult bees were collected from Rothamsted colony 12 (which had 

high varroa levels in July 2010, 25.7 mites per day) and maintained as described previously 

(chapter 2.2.1) for three days. They were then inoculated with 0.5g of a 1:30 concentration 
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of M. anisopliae in sorbitol or sham inoculated with 0.5g of sorbitol and maintained at 30oC 

in darkness and provided with pollen, 60% sucrose solution and water. Forager bees were 

collected from the entrance of the same colony using the BioQuip® ‘insect vac’ as described 

previously (chapter 2.2.2) on the same day as the frames of brood were collected. The 

forager bees were maintained for three days prior to inoculation with M. anisopliae in the 

same manner and at the same time as the young adult bees. 

 

This experiment was also designed and blocked to allow each treatment to be compared 

whilst taking time and date effects into account (Table 4.2).  

 

Table 4.2: 

 

Experimental 

day 

Treatments No bees 

tested per 

treatment + M. anisopliae + sorbitol 

1 Young adult  Young adult  8 8 

09/08/2010 Forager  Forager 8 8 

2 Young adult Young adult 8 8 

10/08/2010 Forager  Forager 8 8 

3 Young adult Young adult 8 8 

13/08/2010 Forager  Forager 8 8 

4 Young adult Young adult 8 8 

16/08/2010 Forager  Forager 8 8 

 

Table showing the experimental design employed to examine differences in learning behaviour in 
young adult and forager bees after infection with M. anisopliae.  

 

Each bee was tested as described above (4.2.1) and recorded as either having not 

responded to the reward (not extending proboscis on three or more of the six trials), not 

learning the response (responding to the sugar, but not to the scent alone) or learned 

(responded to the scent alone in the final test trial). These data were analysed in GenStat® 

(14th edition) using repeated measures ANOVA after logit transformation with the treatment 

structure to test the effect of age (young adult or forager bees) and inoculation treatment 

(inoculated with M. anisopliae or sorbitol), and a blocking structure to take account of 

experimental day. All experimental bees were then killed by freezing and stored at -80oC for 

later molecular analysis to detect and quantify the background level of natural infection of 

viruses and Nosema spp. in each individual (chapter 2.6). A form of multivariate analysis, 

canonical variance analysis, was done using both the behavioural data and the molecular 
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analysis to determine whether differences in learning ability could be accounted for 

differences in disease load. 

 

4.2.4 Testing for differences in learning behaviour of pollen starved forager bees 

infected with M. anisopliae: 

 

Forager bees were collected from hive entrances using the BioQuip® ‘insect vac’ as 

described previously (chapter 2.2.2). These bees came from colonies 40 and 41 which had 

similar varroa levels (Colony 40: low varroa levels, 0.7 mites per day counted in July 2010. 

Colony 41: low varroa levels, 0 mites per day counted in July 2010) and had been foraging 

in the same area. Any pollen sacs the bees had were removed to ensure the bees had no 

access to pollen. The bees were inoculated with 0.5g of a 1:30 concentration of M. 

anisopliae in sorbitol or sham inoculated with 0.5g of sorbitol and then maintained at 30°C 

in darkness and provided with 60% sucrose solution and water (but without pollen). These 

pollen-starved forager bees were tested at four and six days after inoculation. Three 

repetitions of 15-16 bees for each treatment were run on each of six non-consecutive days 

for each time since inoculation (Table 4.3).  

 

Table 4.3: 

Experimental 

day 

Treatments  

(days after inoculation (d) 

and + M. anisopliae (M) or 

sorbitol (S)) 

No bees 

in each 

treatment 

Colony 

1 +4d + M 16 40 

20/08/2010 +4d + S 16 40 

2 +4d + M 15 40 

25/08/2010 +4d + S 15 40 

3 +4d + M 15 41 

26/08/2010 +4d + S 15 41 

4 +6d + M 15 40 

30/08/2010 +6d + S 15 40 

5 +6d + M 15 41 

31/08/2010 +6d + S 15 41 

6 +6d + M 15 41 

03/09/2010 +6d + S 15 41 

 

Table showing experimental design employed to test changes in learning ability after infection with 
M. anisopliae in pollen-starved bees.  
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Each bee was tested as described above (4.2.1) and recorded as either having not 

responded to the reward (not extending proboscis on three or more of the six trials), not 

learning the response (responding to the sugar, but not to the scent alone) or learned 

(responded to the scent alone in the final test trial). These data were analysed in GenStat® 

(14th edition) using repeated measures ANOVA after logit transformation with the treatment 

structure to test the effect of inoculation treatment (inoculated with M. anisopliae or 

sorbitol), and a blocking structure to take account of experimental day. As the bees tested 

four days after inoculation were all tested on separate days to those tested six days after 

inoculation the two time points could not be statistically compared and were analysed 

separately.  

 

4.2.5 Testing for differences in sucrose sensitivity in young adult bees infected 

with M. anisopliae: 

 

The sucrose sensitivity of M. anisopliae-infected bees was tested for pollen-starved bees 

two, four and six days after inoculation with M. anisopliae.  A frame of sealed brood was 

collected from colony 150 (low varroa loads: 0.1 mites/day drop count and 0 phoretic mites 

28/06/12, see chapter 2.6) and newly emerged adult bees were collected as described 

previously (chapter 2.2.1). Bees were inoculated over the course of a week such that on the 

experimental day the same aged bees would either have been inoculated two, four or six 

days earlier (timings for the experiment in table 4.4). On each inoculation day, three groups 

of 40 bees were chilled and split into two groups of 20. One group was inoculated with 0.5g 

of a 1:30 concentration of M. anisopliae in sorbitol, the second was sham inoculated with 

0.5g of sorbitol. This meant on each inoculation day, three groups of 20 M. anisopliae 

inoculated bee and three groups of 20 sorbitol inoculated bees were produced. Only ten 

bees of each treatment in each group were needed, but twice this number were inoculated 

in case some bees died. The bees were then maintained at 30oC in darkness and provided 

with pollen, 60% sucrose and water. Bees were starved of all food, but not water, for 12 

hours prior to experimentation and secured in glass tubes with PVC tape as for the CPE 

experiments (see 4.2.1). Ten bees from each treatment (two, four and six days after 

inoculation/sham inoculation) were tested on each run of the experiment which was 

repeated three times. This meant that 60 bees were tested in each of the three runs, 180 

bees in total. 
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Table 4.4: 

Day Experimental procedure: 

1 Brood frame collected from colony 150 

2 Newly emerged adult bees collected 

5 First group of 120 bees inoculated/sham inoculated 

7 Second group of 120 bees inoculated/sham inoculated 

9 Third group of 120 bees inoculated/sham inoculated 

11 Bees tested for sucrose sensitivity in three runs 

Table showing timings for the sucrose sensitivity experiment.  
 

Each bee in turn was stimulated with a drop of water on a cotton wool bud touched to the 

antennae. Whether the bee extended her proboscis or not was recorded. This was then 

repeated with increasing concentrations of sucrose (0.1%, 0.3%, 1%, 3%, 10% & 30%) 

with 10 minute intervals between each concentration. The number of concentrations each 

bee responded to was counted as used as the ‘gustatory response’, this could range from 0 

(the bee responded to none of the concentrations) to 7 (the bee responded to all six 

concentrations and water).  

 

These data were analysed in GenStat® (14th edition) using ANOVA analysis with the 

treatment structure to test the effect of infection with the fungus M. anisopliae and time 

since inoculation on gustatory response. The blocking structure took account of when each 

group of bees was tested and which groups of bees were inoculated together. The data did 

not require transformation. 

 

4.3 Results: 

 

4.3.1 Testing for differences in learning behaviour in young adult bees over the 

course of infection with M. anisopliae: 

 

Learning in M. anisopliae-infected and sorbitol-inoculated (control) young adult bees was 

evaluated two, four and six days after inoculation. In each successive training trial more 

bees learnt the association, irrespective of treatment, so there was a positive trend in 

learning ability over time for all treatments (Repeated measures ANOVA: H0 = equal means 

for each time point. The logit transformed means ranged from -0.048 for trial 2 to 0.45 for 

trial 6. SED = 0.072. F2.67, 48.0 = 12.76, P<0.001, see also Figure 4.2). This is to be expected 

as each training trial reinforced the association allowing more bees to learn each time. 
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Figure 4.2: 

 

 

Learning ability of young adult bees infected with M. anisopliae at 2, 4, and 6 days after inoculation. 
The proportion of bees that learnt the CPE response is shown for each of the six training trials except the first in 
which no bees responded to the odour stimulus. Open shapes and dotted trend lines are M. anisopliae inoculated 

bees, filled shapes and continuous trend lines are sham (sorbitol) inoculated bees. Error bars show +/- standard 
error. 

 

There was a significant effect of M. anisopliae infection; infected bees were more able to 

learn the association than uninfected bees (Repeated measures ANOVA: H0 = infected mean 

= control mean. Infected mean = 0.25, control mean = 0.11. SED = 0.063. F0.67, 8.67 = 4.86, 

P = 0.046). There was no significant effect of the time since infection, or any interaction 

between treatments over the course of the experiment. 

 

4.3.2 Testing for differences in learning behaviour in young adult and forager 

bees infected with M. anisopliae: 

 

Learning in M. anisopliae-infected and sorbitol-inoculated (control) forager and young adult 

bees was evaluated four days after inoculation and again, with each successive trial more of 

the bees had learned the association, irrespective of treatment (Repeated measures ANOVA: 

H0 = equal means for each trial. The logit transformed means ranged from -0.38 for trial 2 

to 0.33 for trial 6. SED = 0.08.  F2.42, 29.07 = 28.16, P<0.001, see also Figure 4.3). 
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Figure 4.3: 

 

 

Learning ability of forager and young adult bees infected with the fungus M. anisopliae 4 days after 

inoculation. Open shapes and dotted trend lines are M. anisopliae inoculated bees, filled shapes and continuous 

trend lines are sham (sorbitol) inoculated bees. Error bars show +/- standard error. 

 

There was a suggestion that the forager bees were better able to learn than the young adult 

bees, although this was only significant at the 10% level (Repeated measures ANOVA:  

H0 = forager mean = young adult mean. Forager mean = -0.023, control mean = -0.11.  

SED = 0.039. F0.61, 5.45 = 5.05, P = 0.051). There was also a significant interaction between 

age and M. anisopliae infection; whilst infected young adult bees were better able to learn 

the association than uninfected controls (as in the previous experiment) (as in 4.3.3) the 

infected forager bees were less able to learn than uninfected controls (Repeated measures 

ANOVA: H0 = infected mean = control mean. Infected mean = -0.062,  

control mean = -0.072. SED = 0.039. F0.61, 5.45 = 19.28, P = 0.002). 

 

The bees from this experiment were analysed using Q-RT-PCR (see chapter 2.6). Five 

common bee diseases were detected; DWV, BQCV, SBV, Nosema apis and Nosema ceranae 

(table 4.5). Most of the bees tested positive for both Nosema species. This is likely to be 

because the bees were not treated against these pathogens. Several colonies failed in the 

winter following these experiments, potentially because of the high levels ofNosema spp. 

infection. 
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Table 4.5: 

  BQCV DWV SBV N.apis N.ceranae 

Total tested 128 128 128 128 128 

No. positive 75 126 49 105 106 

No. negative 51 0 78 20 19 

Inconclusive 2 2 1 3 3 
 

Summary of PCR analysis. 128 bees from experiment 4.2.2 were analysed using RT-PCR based detection to 
identify the viral diseases and Nosema spp. present. Five diseases were detected, the viruses BQCV, DWV & SBV 
and both N.apis and N.ceranae. A few samples were inconclusive. 
 

The multivariate analysis accounted for 95.04% of the variance within the data. There are 

four groups of bees that can be represented as circles equating to a 95% CIs (figure 4.4). 

Those four groups are: Forager bees that learned, forager bees that did not learn, young 

adult bees that learned and young adult bees that did not learn. The CIs around the groups 

that were unable to learn are larger than around those that did learn because fewer bees 

were unable to learn the association than those that did. The forager bees are separated 

from the young adult bees and the young adult bees that learned are separated from the 

young adult bees that did not. 

 

Figure 4.4: 

 

Canonical variance analysis including presence or absence of BQCV, SBV, N.apis & N.ceranae, age and 
whether the bees had learned the association in the sixth and final trial. 
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A bi-plot was produced to determine which factors were contributing to the separation of 

the data (figure 4.5). The direction of the lines produced on the biplot show the direction of 

data separation produced by each factor. The position and direction of the arrow point along 

the line is indicative of the strength and direction of the effect. The analysis suggests that 

the horizontal separation of the data was caused by BQCV, which was more likely to be 

found in the forager bees than in the young adult bees. The vertical separation, between 

the young adult bees that learned and those that did not, seems to be caused by a 

combination of SBV and N. ceranae, SBV having the greatest effect. 

 

Figure 4.5: 

 
Biplot from the canonical variance analysis including presence or absence of BQCV, SBV, N.apis & 
N.ceranae, age and whether the bees had learned the association in the sixth and final trial.   
 

Quantitative PCR analysis was done to quantify the absolute load of each pathogen in each 

bee. The DWV load for each bee, when plotted as a histogram, has a bimodal distribution 

such that there appear to be bees with a relatively high DWV load (centred around -9) or a 

relatively low DWV load (centred around 3) (see figure 4.6). This was not found for any of 

the other diseases detected (BQCV, SBV, N. ceranae or N. apis).  
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Figure 4.6: 

 

Histogram showing the distribution of DWV load relative to the housekeeping gene -actin within the 
bees from experiment 4.2.3. The lower (or more negative) the relative load the more virus was present, see 

chapter 2.6.2. 

 

REML analysis of the Q-RT-PCR and behavioural data (Table 4.6) showed that for some 

diseases there was a significant correlation between the disease load and age of the bee; 

the forager bees had higher levels of BQCV and DWV than the young adult bees. Also, for 

some diseases there was a significant interaction between age and disease (DWV and N. 

apis) but there was no effect of disease load on learning. 

 

Table 4.6: 

Disease DWV BQCV SBV N.ceranae N.apis 

Learning 
F3,110.7 = 2.06 
P = 0.109 

F3,63 = 0.6   
P = 0.616 

F3,38 = 0.23  
P = 0.877 

F3,88.9 = 0.25 
P = 0.861 

F3,86.2 = 0.12 
P = 0.948 

Age 
F1,109.1 = 14.98 
P = <0.001 

F1,63 = 9.05 
P = 0.004 

F1,38 = 0.64  
P = 0.43 

F1,87.7 = 0.38 
P = 0.541 

F1,82.6 = 0.13 
P = 0.723 

Interaction 
F2,111 = 3.18      
P = 0.045 

F1,63 = 0.25 
P = 0.621 

F2,38 = 0.01  
P = 0.991 

F2,86.8 = 1.6   
P = 0.207 

F2,83 = 4.32  
P = 0.016 

Table showing REML analysis combining molecular and behavioural data for bees whose learning 

behaviour was tested after infection with the fungus M anisopliae.  The relationships amongst each 
pathogen, the learning behaviour and the age of the bee were analysed. The only significant effects were on age 
(for DWV and BQCV) and the interaction between age and learning (for DWV and N. apis). 

 

4.3.3 Learning behaviour of pollen-starved forager bees infected with M. 

anisopliae: 

 

Learning in M. anisopliae-infected and sorbitol-inoculated (control) forager bees that had 

been starved of pollen was evaluated four and six days after inoculation. There was a 



92 

 

significant effect of trial for the bees tested four days after infection, but not for those 

tested six days after infection (Repeated measures ANOVA, H0 = equal means for each trial. 

+4 days: The logit transformed means ranged from -0.26 for trial 2 to 0.77 for trial 6.  

SED = 0.10. F1.42, 10.30 = 32.06, P = 0.001. +6 days: The logit transformed means ranged 

from 0.15 for trial 2 to 0.35 for trial 6. SED = 0.09. F1.21, 4.85 = 1.40, P = 0.304 (Figure 4.7). 

 

There was no significant difference in the learning behaviour of pollen-starved forager bees 

infected with M. anisopliae compared to uninfected controls at either time point (repeated 

measures ANOVA, H0 = infected mean = control mean. +4 days: Infected mean = 0.35, 

control mean = 0.41. SED = 0.41. F0.36, 0.71 = 0.02 P = 0.899. +6 days:  

Infected mean = 0.34, control mean = 0.23. SED = 0.12. F0.61, 0.30 = 0.84 P = 0.455).  

 

Bees tested 6 days after inoculation were more likely to die during the experiment than bees 

tested 4 days after inoculation; eight of the 45 fungus-infected and four of the 45 sorbitol-

inoculated bees tested 6 days after inoculation died during the experiment compared to no 

deaths in the bees tested 4 days after inoculation.  

 

Figure 4.7: 

 

Learning ability of pollen- starved forager bees infected with M. anisopliae at 4 and 6 days after 
inoculation. There was no significant effect of wither M. anisopliae infection or time since inoculation on learning 

ability in this experiment. 
 
 

4.3.4 Sucrose sensitivity in young adult bees inoculated with M. anisopliae: 

 

Each bee that responded to a concentration of sucrose then continued responding to each 

subsequent, increasing, concentration. Thus the number of concentrations a bee responded 
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to could be used as the gustatory response with 0 = responded to no concentrations, 1 = 

responded only to the most concentrated solution…7 = responded to all concentrations 

including water (0%).  

 

The bees that had been inoculated with M. anisopliae where significantly more likely to 

respond to more concentrations of sucrose and thus lower concentrations of sucrose and 

therefore were hungrier than uninoculated bees (ANOVA: H0 = inoculated mean = 

unincoluated mean number of concentrations responded to. Inoculated mean = 4.76, 

uninoculated mean = 3.18. SED = 0.16. F1,12,= 94.00, P <0.001, see also figure 4.8). There 

was also a significant effect of the time since inoculation such that bees tested 2 days after 

inoculation responded to less concentrations of sucrose than those tested 4 or 6 days after 

inoculation. Thus bees tested 4 or 6 days after inoculation responded to lower 

concentrations of sucrose and were therefore hungrier than those tested 2 days after 

inoculation (ANOVA: H0 = equal means for each testing time (2, 4 or 6 days after 

inoculation). +2 days mean = 3.77, +4 days mean = 4.32, +6 days mean = 3.82. SED = 

0.28. F2,12 = 4.66, P = 0.032, see also figure 4.8). 

 

Figure 4.8: 

 

Graph showing mean number of concentrations each treatment of bees responded to. Metarhizium 
anisopliae infected bees (filled bars) were significantly more likely to respond to more sucrose concentrations than 

uninfected bees (open bars). 
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4.4 Discussion: 

 

Previous studies have shown that several factors can cause differences in learning ability in 

honeybees, such as time of day (Lehmann et al., 2011) and temperature during 

development (Tautz et al., 2003), but these were standardised in all the experiments 

described here. It has also been shown that time of year can affect results (Frost et al., 

2011) but, although experiments had to be carried out over several months, the timing of 

each experiment was accounted for in the statistical analysis of the results. 

 

In experiment 4.2.2 there was a significant effect of M. anisopliae infection; young adult 

bees infected with the fungus were more able to learn the association than uninfected bees. 

This is surprising given that the work of others has shown decreases in learning with other 

parasitic/ pathogenic organisms including varroa and DWV (Iqbal and Mueller, 2007; Kralj et 

al., 2007) and when the bee’s immune system was stimulated (Riddell and Mallon, 2006). 

Varroa and DWV are not fast acting, lethal infections as M. anisopliae is and so bees should 

not be expected to respond in the same way. It has, however, been shown that young adult 

bees infected with M. anisopliae show up regulation of immune pathways, including the Toll 

pathway (Bull et al, in press). This should lead to decreased learning ability, given Riddell 

and Mallon’s (2006) results, so the increase in learning ability of the inoculated bees in these 

experiments cannot be explained by lack of immune response. 

 

Previous experiments have also shown that forager bees that are more responsive to lower 

concentrations of sucrose are better able to learn the CPE response (Mujagic et al., 2010). 

Nosema ceranae-infected bees were shown to be energetically stressed which led them to 

be more responsive to lower concentrations of sucrose (Naug, 2009). Although CPE tests 

have not been carried out on N.ceranae-infected bees it could be predicted that the change 

in sucrose sensitivity might mask any decreases in learning caused by infection. The results 

to experiment 4.2.4 suggest that young adult bees infected with M. anisopliae may also 

have become more responsive to lower sucrose concentrations and this could explain why 

they were better able to learn the CPE response. 

 

It is also possible that learning in young adult bee is not affected by infection in the same 

way that forager bees are. For example a recent study on the response of newly emerged 

and 23 day old forager bees’ response to fungal infection showed that the younger bees 

were more susceptible to the fungus (died faster and allowed more fungal growth) but 

showed a greater immune response than the forager bees (Bull et al, in press). This study 

also showed that several immune related genes seem to become activated as honeybees 

age and this may be the cause for the increased resistance to M. anisopliae found in the 
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older forager bees. All previous research on the effect of pathogens on learning has used 

forager bees (Iqbal and Mueller, 2007; Kralj et al., 2007; Mallon et al., 2003) without 

looking at younger bees. It is possible that the forager bees’ learning behaviour may be 

more susceptible to the influence of infection than young adults’. This is supported by the 

results of the second experiment (section 4.3.2) in which there was a significant interaction 

between the fungus treatment and age; the young adult bees were better able to learn after 

infection whilst the forager bees were less able to learn after infection (figure 4.3). 

 

The PCR and QPCR results suggest that forager bees have higher levels of naturally 

occurring infective agents (such as Nosema spp. or viruses) than young adult bees. This 

may be because the nurse bees are exposed to DWV and Nosema sp., and potentially other 

pathogens, during hygienic activities, especially if they catabolise infected larvae (Mockel et 

al., 2011) or when cleaning faecal matter (Bailey, 1955) so older, forager bees are more 

likely to have come into contact with pathogens and parasites and, being older, have had 

more time for them to accumulate (Wilson-Rich et al., 2008). This would lead to an 

accumulation of effects if the diseases act synergistically such that bees with higher disease-

loads or infected with a greater number of diseases show greater changes in learning.  

 

It is known, for example, that some diseases and parasites can act synergistically or 

additively, causing greater overall negative effects on the colony. Colonies infested with 

both varroa mites and tracheal mites (Acarapis woodi) are more likely to die (Downey and 

Winston, 2001) than those infested with either mite alone. There is also evidence to suggest 

that varroa mites transmit and activate the replication of some viruses, making their effects 

more severe than they would otherwise be (Bailey and Ball, 1991). Combinations of 

diseases, parasites and other factors can also affect aspects of behaviour. For example 

whilst varroa-infested bees began foraging earlier and tracheal mite-infested bees began 

foraging later, dual infections led to an intermediate foraging time (Downey et al., 2000). 

Pollen-limited bees also begin foraging earlier than controls whilst pollen-limited bees with 

varroa infestation begin foraging even earlier, again showing an additive effect (Janmaat 

and Winston, 2000). Recent studies have also shown interactions between pesticides and 

pathogens. For example, Alaux et al. (2010a) showed an interaction between N. ceranae 

and a neonicitinoid pesticide that caused higher mortality in affected bees than in bees 

affected with either pathogen or pesticide alone and could also help explain some colony 

losses. 

 

In addition to this, forager bees are older and might be less able to respond to and recover 

from fungal infection than younger bees.  It has been shown that nurse bees (comparable 

to my young adult bees) have greater fat body mass than forager bees, which means that 
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they may be better able to respond to infection via the production of anti-pathogenic 

proteins than older forager bees (Wilson-Rich et al., 2008). Forager bees also have a 

decreased haemocyte count compared to nurse bees, although phenyloxidase activity was 

greater in forager bees compared with nurse bees (Schmid et al., 2008), and the average 

level of encapsulation, a method used by honeybees to combat pathogenic infection, 

remained stable across all life stages (Wilson-Rich et al., 2008). 

If this were the case I would have expected to find decreased learning ability in pollen-

starved bees that were challenged with a pathogen as the immune response is costly and 

lack of nutrition could lead to a trade-off between learning and immune response (as seen 

in Riddell and Mallon’s (2006) experiments. However, the pollen-starved infected bees 

showed no difference in learning compared to the pollen-starved uninfected bees (see 

4.3.3). This may be because the bees used for this experiment could compensate because 

they came from a large, healthy colony and had been provided with plenty of pollen during 

development and until just before the experiment started. The fat bodies of bees are 

important in energy metabolism and as a store for excess nutrients. The fat body is also 

involved in synthesizing most haemolymph proteins (Law and Wells, 1989). Forager bees 

generally have lower concentrations of protein in their fat bodies than younger bees, 

although winter bees (those bees who will survive in the colony over the winter) have far 

greater protein stores (Shehata et al., 1981). This experiment was run late in the season, in 

September, when the bees tested may also have been winter bees with higher protein 

stores and thus less likely to be affected by pollen limitation. In addition to this Frost (2011) 

found that bees tested in June responded to the sucrose stimulus significantly less often 

that bees tested in July, showing that there are seasonal changes in sucrose sensitivity 

which could lead to changes in learning ability. The bees tested after pollen starving were 

tested later in the year than any others (late August, early September, experiment 4.2.2 was 

run in July and experiment 4.2.3 finished by mid-August) so the pollen starved bees may 

also have been more responsive to the sucrose stimuli which would affect the results of the 

CPE experiment. 

  

I was expecting to find a more pronounced effect of the fungus on learning ability at both 

ages, but it is possible that learning is a robust trait that the bees only lose very near death 

if the immune system has not been activated. This could be tested by doing similar 

experiments but testing the bees much closer to the point of death after fungal-inoculation 

and infection.  

 

It is also possible that whilst the aspect of learning that I was examining was not greatly 

affected by the fungus, other aspects may have been. The method I used in these 

experiments was developed for the company, Inscentinel (http://www.inscentinel.com/), 
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whose main purpose is to ensure bees learn novel odours so that they can be used for 

detection purposes. The method is therefore designed to get the highest proportion of 

learning bees as possible. There does not appear to be a standardised method for testing 

honeybee learning using the CPE method. Kralj et al. (2007) gave bees a single training trial 

then tested after one and four minutes, finding that varroa-infested bees showed a 

significant decrease in learnt response for the 1 minute test. Mallon et al. (2003) carried out 

a similar test on bees injected with LPS which activated the bees’ immune systems; however 

they tested after one and 12 minutes and found significant differences only for the 12 

minute test. Finally Iqbal and Mueller (2007) tested DWV-infected bees this time giving 

three training trials at two minutes intervals and then testing after two and 24 hours. The 

virus-infected bees showed significant decreases in learning ability on the third training trial 

and at both testing trials (after two and 24 hours).  

 

Frost (2011) states that there is ‘substantial inconsistency in PER (proboscis extension 

reflex) experimental design’. In that paper the focus was on the handling methods because 

chilling the bees to allow them to be secured for experiments can affect their learning 

behaviour (Frost et al., 2011). However, the fact that different experiments focus on 

different aspects of learning behaviour is also an issue. It is also of concern that negative 

results are published less readily than positive ones (Callaham et al., 1998) such that if two 

pathogens are examined by different groups, but using the same techniques and looking at 

the same aspect of learning, but one experiment shows a negative result, this negative 

result is less likely to be published.  

 

It is possible that different methods could produce different results. The method I used 

tested each bee at 30 minute intervals over six training trials and so was testing relatively 

long-term memory. This does not test the short or mid-term memory (tested one-12 

minutes after the training trial) so my results are not directly comparable to those of Kralj et 

al., (2007) or Mallon et al., (2003). Nor did I test the bees after a two or 24 hour lag as was 

done by Iqbal and Mueller (2007). It is also possible that the fungus genuinely has little or 

no deleterious effect on learning behaviour of either age of bees and changing the method 

may not influence this.  

 

I also looked at the effect any naturally occurring pathogens might have had on the bees’ 

learning ability. The presence/absence data showed a correlation between learning ability of 

the young adult bees and both Nosema spp. and SBV, but BQCV only differed with age such 

that the older forager bees were more likely to be infected with this virus. Although neither 

SBV nor either species of Nosema have been shown to effect learning in honeybees it has 

been shown that N. ceranae-infected bees are more responsive to lower concentrations of 
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sucrose which may affect the results of PER experiments which rely on the bees’ response 

to a sucrose reward.  

 

There was a bimodal distribution to the quantity of DWV detected in these bees suggesting 

that the bees are separated into two groups with regard to DWV load; those with a high or 

a low dose of the virus. This may be because the bees became infected at different times 

and had longer or shorter periods of time for the virus to replicate within them, but the clear 

peaks in quantity suggest that if this were the case then there are two separate times when 

the bees are most likely to be infected. This could mean that one set of bees were infected 

as larvae or even earlier, as eggs via vertical transmission, whilst the other set were infected 

as adults. There is evidence that DWV can be transmitted vertically (Chen et al., 2006a) and 

the quantity of DWV correlated with age such that the older forager bees were more likely 

to have higher level of virus which suggests that the amount of virus does increase with 

age. 

 

An alternative explanation for this distribution is that the virus has two different strategies, 

either rapid replication throughout all tissues, or slower replication, potentially in a limited 

number of tissues. It would be possible to test this by using lysate from infected bees 

identified as having either low or high levels of DWV to infect healthy bees and then test the 

quantity of virus at set time points and in different tissues.  

 

The quantitative data also showed an interaction with age and learning for both DWV and N. 

apis, suggesting that, as with the presence/absence data, the pathogens affect the young 

adult bees’ learning differently from the forager bees. DWV is known to affect the learning 

ability of forager bees (Iqbal and Mueller, 2007) but to the best of my knowledge the effect 

of Nosema spp. has not been tested in this way, although as stated above, changes in 

learning behaviour detected using this method may be complicated because Nosema spp. 

also cause changes in sucrose sensitivity. There was no effect of N. ceranae on learning in 

this experiment. Nosema ceranae is thought to be more virulent that Nosema apis, although 

these results are contentious (Martin-Hernandez et al., 2011) as it may be that N. ceranae is 

only more virulent at higher temperatures (Forsgren and Fries, 2010). 

 

It would be interesting to do further work to examine the effect of these pathogens on 

learning in a more controlled manner, i.e. by actively infecting bees with the diseases rather 

than merely looking for them post hoc. This would allow the effects of each individual 

pathogen or interaction between pathogens to be studied and potentially lead to useful 

information for managing bee diseases. However this is difficult to do as to really work it 

requires bees clean of all viruses which are unlikely or even impossible to find in nature. 
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Colonies can be found in some areas (Australia and some island populations) which have no 

varroa mites, but to the best of my knowledge no colony has been found without a single 

pathogen present. 
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Chapter 5: The effect of disease load on the orientation 

flights of honeybees. 

 

Abstract: 

 

The European honeybee, Apis mellifera, is important economically not just for honey 

production but also as a pollinator. However, honeybee numbers in some areas are 

declining.  A range of interacting factors are thought to be involved, including pathogens 

and parasites,  which are known to cause changes in the behaviour of their hosts.  

 

Harmonic radar was used in this chapter to study whether pathogen load had any effect on 

the orientation flights of honeybees. This was achieved by following the orientation flights of 

bees from high and low varroa colonies exploring a novel area. Q-RT-PCR was also used to 

detect and quantify naturally occurring viruses and microsporidia. 

 

It was found that bees with higher levels of DWV infection flew shorter distances and for 

shorter periods of time than those will lower levels of infection whilst bees with higher levels 

of N. Apis or BQCV flew faster than those with lower levels of infection. This may have 

knock on effects to colony survival by effecting how well foragers exploit their landscape. 

 

5.1 Introduction 

 

5.1.1 Honeybee navigation, memory and exploration of novel environments: 

 

Honeybees often need to be able to travel over great distances, explore novel environments 

for potential food sources and then must be able to return to their colony. Honeybees are 

able to find their hives when they have been moved up to 11km away from their original 

location (Pahl et al., 2011). Southwick and Buchmann (1995) showed that honeybees were 

able to find their way back from greater distances in mountainous terrain (~9km) than in 

flat terrain (~5km) suggesting that they used horizon landmarks. Pahl (2011) found that 

bees released from points at different directions, but the same distance from the hive, had 

differing success in finding their way back. Bees are believed to use visual cues to find their 

way home so it is possible that this difference in homing success is because some landmarks 

work better than others, but it is equally possible that the bees merely knew certain areas 

around their colony better than others, especially if the better known regions had better 

forager available. 
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Bees may learn the route they took as a sequence of landmarks and then follow the same 

route back (Collett, 2005). In order to do this bees need sequential memory. It has been 

shown that bees can easily learn to associate a single stimulus with a reward, (Horridge, 

2003), but bees can also learn sequences of stimuli. Giurfa et al. (2001) used Y tube choice 

experiments to show that honeybees can learn to match similar or different stimuli to reach 

a reward. To start with, the bees were taught to match similar stimuli. If the bee was first 

shown one colour, blue for example, then she should later choose the same colour in a y 

tube choice test. Next bees were taught to match different stimuli; a blue stimulus with a 

vertical line pattern and a green stimulus with a horizontal line pattern. The bees were able 

to learn these simple sequences. 

 

Honeybees can also learn more complex sequences. Collett et al. (1993) set up mazes which 

honeybees learned routes through. In one experiment coloured patches were used at each 

point where the bee’s flight direction changed. When the order of the colours was changed 

the bee’s flight changed to match the colours rather than the original route suggesting that 

the bees learn to match the changes in flight with the coloured landmarks.  

 

When honeybees first begin foraging they perform flights known as orientation flights. 

These begin with the bee hovering in front of the hive, presumably learning what the hive 

looks like so that it can be recognised when the bee returns (Vollbehr, 1975). The bee then 

explores the landscape, usually taking several flights to do so (Capaldi et al., 2000). This 

allows bees to view the landscape around their hive and possibly learn the cues they later 

use as landmarks. 

 
Worker honeybees are able to fly over long distances allowing them to take advantage of 

resources across a large area and support colonies of tens of thousands of individuals. The 

distance covered by foraging bees is variable depending on colony size, season and 

landscape (Steffan-Dewenter and Kuhn, 2003). For example Waddington et al.,  (1994) 

found a foraging range of 534-1138m in suburban areas whilst Visscher and Seeley (1982) 

found a mean foraging range of 2260m in temperate deciduous forest and Beekman and 

Ratnieks (2000) observed foraging distances of over 5km when distant but immense 

patches of heather were in bloom. Under extreme conditions of food shortage, honeybees 

have been found foraging up to 13km from their hives (Eckert, 1931). Other aspects of bee 

flight that have been studied include speed and duration of flight, ability to explore and 

navigate through different environments, foraging duration, and pollination efficiency (e.g. 

Capaldi et al., 2000; HanauerThieser and Nachtigall, 1995; Rader et al., 2012; Wenner, 

1963). 
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5.1.2 Effect of pathogens on honeybee flight: 

 

Some bee pathogens have obvious effects on honeybee flight capabilities. Deformed wing 

virus, for example, can cause wing deformities that prevent flight entirely (see figure 1.3) 

(Ribiere et al., 2008). Chronic and acute bee paralysis viruses cause bees to tremble and 

become paralysed, again preventing flight entirely (Bailey, 1965). Other diseases have less 

dramatic effects. Mayack, Naug and Gibbs have done studies on bees infected with N. 

ceranae (Mayack and Naug, 2009; Mayack and Naug, 2010; Naug and Gibbs, 2009), which 

showed that infected bees were more sensitive to lower concentrations of sugar, suggesting 

that they were more hungry than uninfected bees. They also had lower levels of sugars in 

the haemolymph, which suggests that N. ceranae is energetically stressing the bees.  

 

This could mean that N. ceranae infected honeybee forager bees don’t have enough energy 

for long flights. This could lead to them failing to return to the hive and may be the reason 

why colonies infected with N. ceranae often show reduction in the numbers of forager bees 

that is also one characteristic of colony collapse disorder (CCD) (Mayack and Naug, 2009; 

Mayack and Naug, 2010; Naug and Gibbs, 2009). 

 

In the work of Duay et al. (2002), healthy honeybee forager bees were flown to exhaustion 

in wind tunnels and then fed differing amounts of glucose solution before their flight ability 

was tested, again in a wind tunnel. This experiment allowed information on flight energetics 

to be gained. Bees fed 5 l of a 1.28mol/L solution of glucose monohydrate could only fly for 

an average of 9.28 mins (+2.00) whereas when fed 20 l of the solution they could fly for 

27.13 (+3.13) mins on average.  

 

 

Duay et al., (2002) then measured the duration of flight in drones that came from cells 

infested with zero, one, or two mites and found that those infested with two mites flew for 

significantly less time than those infested with one or no mites. Kralj (2006) also showed 

that varroa-infested bees spent more time foraging than uninfested bees and were also less 

likely to return to the colony. When infested and uninfested bees were released 5 and 400m 

from their colonies, the infested bees took longer to return and were more likely not to 

return at all (Kralj and Fuchs, 2006). This suggests that varroa mites, or the diseases that 

they spread, may also be energetically stressing bees or otherwise affecting their flight 

capabilities. For instance both DWV and varroa mite infestation has been shown to affect 

honeybee learning ability (Iqbal and Mueller, 2007; Kralj et al., 2007; see also chapter 4) so 

infected/ infested bees may find it harder to remember how to get back to their colonies. It 
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has also been shown that varroa infested bees are less capable of finding the correct 

entrance to their hives than uninfested bees (Kralj and Fuchs, 2006). 

 

5.1.3 The Harmonic Radar: 

 

Radar has been used to study high flying insect migration patterns for over 40 years (Riley, 

1989). The harmonic radar differs from other radar techniques in that it uses a re-radiated 

signal from a transponder attached to the experimental insect. This means that only the 

insect of interest is seen and not reflections from other objects in the environment (Riley et 

al., 1996). In contrast to radio tracking, the harmonic radar also uses a much lighter 

transponder (typically ~0.012g) as it does not require a power source (Osborne et al., 

1999). This is approximately 6-7% of the bee’s own weight and less than the pollen loads 

that foraging bees are capable of carrying, which may reach 90% of the bee’s body weight 

(Osborne et al., 1999). Tests were initially made with bumblebees and showed that bees 

with transponders were able to collect comparable pollen and nectar loads, but spent 

slightly longer outside of the nest than bees without transponders (Osborne et al., 1999).  

The harmonic radar can be used to follow an individual bee’s flight in real time.  

 

This method has been used to follow butterflies, bumblebees and honeybees (e.g.Cresswell 

et al., 2002; Osborne et al., 1999; Ovaskainen et al., 2008; Reynolds et al., 2009; Riley et 

al., 1999). For honeybees it has been used to study the orientation flights of young forager 

bees (Capaldi et al., 2000) and the search patterns of forager bees when a known food 

source was removed (Reynolds et al., 2007). The harmonic radar is uniquely suited to these 

studies as the actual pattern of the bees’ flight paths can be analysed. To the best of my 

knowledge this technique has not been used to study changes in behaviour brought about 

by pathogens but it is clearly a valuable tool for comparing the ability of infected and 

uninfected forager bees to explore their environment. 

 

5.1.4 Experimental background and hypotheses: 

 

The purpose of this experiment was to examine the effect of disease on honeybee flight 

capability, especially on how honeybees explore novel environments. To do this, honeybee 

colonies were moved to a new area and the harmonic radar was used to track the first 

explorative flights of the foraging bees.  The tracks of individual bee flights from colonies 

infested with high and low levels of varroa were recorded. Bees from colonies with high 

levels of varroa are also likely to have high loads of the viruses associated with these mites 

(see chapter 1.3.4), especially DWV (Genersch, 2005), and so it was predicted that within 

these colonies there would be individuals representing a wide range of virus species and 
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disease loads. Disease identity and absolute load within tracked bees were measured at the 

molecular level using Q-RT-PCR (chapter 2.6.2) to determine whether the individual disease 

load of the bee affected its flight behaviour. 

 

It was hypothesised that the scouting honeybees would firstly orientate themselves to the 

new hive location and then search the landscape in a looping pattern until they found the 

resources they were looking for (e.g. nectar and pollen producing flowers or water) (Capaldi 

et al., 2000; Reynolds et al., 2007).  It was further hypothesised that bees with higher 

disease loads, or infected with several diseases, would fly shorter distances from the colony 

or need to stop more often due to the deleterious effects of disease progression and/or 

because heightened immune response took an energetic toll on the bees. As some diseases 

can affect honeybee learning ability and memory (Iqbal and Mueller, 2007; Kralj et al., 

2007; Mallon et al., 2003; Riddell and Mallon, 2006, see also chapter 4) it was also 

hypothesised that bees with higher disease loads would be more likely to get lost, either 

taking longer to return to the hive or not returning at all. 

 

 

5.2 Methods 

 

5.2.1 Experimental setup: 

 

The radar experiment was run on Rothamsted Farm (Hertfordshire, UK: open farmland, 

mixed crops) between June and August 2009.  Two experimental bee hives were moved 

from an out apiary over 3km from the farm and positioned approximately 250m away from 

the radar (see figure 5.1). This made it unlikely for any of the foraging bees to have already 

visited the area so that their initial explorative flights could be followed. During the 

experiment each hive was placed within a pollination cage; a mesh cage 3m x 3m and 2m 

high was used to allow the foraging bees to fly outside of the hive without getting out into 

the environment (figure 5.1c).  

 

The hives were adapted from standard national bee hives and were made up of two brood 

boxes stacked one on top of the other. The bottom box contained ten frames of bees with 

their queen, and was open, via a Perspex tunnel, into the pollination cage. Sucrose syrup 

(30%), water and pollen were provided within the cage for the bees to feed on. The top box 

was separated from the bottom by a wire mesh which prohibited bees moving between 

boxes but allowed for physical and chemical contact between the bees. At any time during 

experimentation the top box would contain only one frame of bees with a Perspex cover to 

aid in temperature regulation whilst allowing the frame to be observed for waggle dancing 
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and other behaviour. The top box had its own Perspex tunnel which led out of the 

pollination cage and was opened on experimental days, allowing foraging bees to exit the 

hive and explore the local landscape. It was these explorative flights that were tracked with 

the radar. 

 

Figure 5.1: 

A) B) 

         

  

 

 

 

 

 

 

 

 

 

 

 C) 

 

 

 

 

 

 

 

 

 

 

 
The experimental set up. A) Map of Rothamsted farm (Black boxes are farm buildings). The position of the radar 

is shown as a red circle; the positions of the hives used in the experiment are shown as blue circles. Potential 
forage at the time of the experiment (oilseed rape fields, bean fields and wild flowers) are shown in yellow. B) The 
harmonic radar dishes. C) The external view of experimental hive V125. A second tunnel opens into the mesh 
pollination cage.  

 

Brood combs of bees including the queen and some forager bees were collected from 

colonies placed more than three miles from the experimental area so that the bees would 

not have prior knowledge of the area. The collected bees came from a colony with low 

numbers of varroa (H132: Daily varroa drop count 0.4 in June), and a colony with high 



106 

 

numbers of varroa (first V125: Daily varroa drop count 64.7 in June, and later V91: Daily 

varroa drop count 6.6 in June) and were placed in the experimental hives. Bees visiting the 

syrup feeder within the pollination cage were deemed to be forager bees and were marked 

by painting the thorax with queen marking paint (E. H. Thorne Ltd., U.K.). In the day before 

the experiment began, a frame of bees was moved from the lower box to the top box, 

ensuring that the queen was left behind. As relatively few marked bees could be moved into 

the top box a different colour was used to mark more bees on this frame. This allowed the 

bees to get used to having something on their thorax so that when the transponder was 

attached they did not become distracted and begin grooming themselves. 

 

On experimental days the top-box tunnel of one hive was opened allowing the bees in that 

top box to explore their new environment and begin to forage outside of the pollination 

cage. Initially, individuals from the two colonies were tracked on alternate days (first H132, 

then V125 the next day, then H132 the day after that etc).  However, after two weeks both 

colonies were tracked on the same day with individual bees from each colony tracked 

alternately. As tracks from different bees cannot be distinguished from each other, only one 

bee was tracked at any one time to avoid confusion between flight tracks. Each bee could 

be detected within a range of 700m of the radar and from just above ground level up to 6-

7m, although if the bee landed or moved behind a solid object, such as a tree, it was 

temporarily lost from view.  Where possible, marked bees were captured on the way out of 

the hive and transponders were attached to their thorax (section 5.2.2). If marked bees 

were not seen then unmarked bees were tracked.  

When the bee returned to the entrance/exit tunnel it was captured, the transponder was 

removed and could be used again whilst the bee was frozen and stored for later molecular 

analysis. If the bee did not return or had not been recorded by the radar in more than 30 

minutes, then the bee was deemed lost and a new marked bee was captured and tracked. If 

the bee did not fly within 30 minutes of release it was recorded as ‘did not fly’ and stored 

for later molecular analysis (section 5.2.3). Some bees made very short flights, <1m, these 

bees were given a chance to perform a longer orientation flight, but again, if they had not 

done so within 30 minutes then they were recorded as ‘flew but no tracks’ and stored for 

molecular analysis (section 5.2.3).  

Each frame of bees was monitored over several days until the explorative orientation flights 

had become foraging flights (indicated by straightened tracks directly to and from resources 

such as flower patches). At this point the frame was removed to a colony more than 3km 

away so that the bees could not return to pass on their knowledge to the next frame of 

bees. A new frame of marked bees was then moved up into the top box, ensuring that the 

queen was left in the bottom box and new forager bees were tracked. 
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5.2.2 Attaching the transponders to the bees: 

 

The transponder consists of a 16mm vertical diode aerial with a small low-barrier Schottky 

diode and an inductive loop weighing about 13mg.  

 

Marked bees emerging into the tunnel were captured in a queen marking cage and 

manipulated until their thorax was framed in the mesh. The paint was then removed with a 

blunt cocktail stick and the transponder attached using double sided sticky foam (Self-

adhesive ‘sticky fixers®’, Sellotape®). The bee was then returned to the tunnel. 

 

5.2.3 Molecular analysis: 

 

All returning bees were captured when they entered the entrance tunnel. Forceps were used 

to hold the bee by the transponder. Once captured the transponder was removed and the 

bee placed in individual sterile 2ml eppendorf tubes and stored at -80oC for later molecular 

analysis to detect and quantify their disease load as described previously (chapter 2.6). PCR 

analysis was done on pooled bee samples to determine which pathogens to run QPCR for. 

For the QPCR, 56 bees were selected for individual analysis that included individuals making 

all the different flight types (didn’t fly, flew but no track, flew less than 250m from hive, flew 

more than 250m from hive) and all hives (H132, V125 and V91) were represented.  

 

5.2.4 Track analysis: 

 

Any bees that did not return to the hive could not be analysed using molecular techniques 

and so were excluded from the analysis. For those bees that did return, the flights were 

recorded as either ‘did not fly’, ‘flew but no radar track’, ‘flew less than 250m’ or ‘flew more 

than 250m’. If the bee flew but no radar track was produced then the bee’s flight had to be 

less than 3m from the hive as the radar cannot discriminate between two positions less than 

3m apart.  

 

The radar data was recorded as the position of the bee on each revolution of the radar 

(every 3s) as range (distance from the radar) and theta (angle of the bee from north). 

These data were then converted into X, Y coordinates from the hive using simple 

trigonometry. 

 

From the radar tracks several flight parameters were quantified (table 5.1). The total flight 

distance was taken as the complete length of track measured for each bee. This was 

calculated by summing the distance between each point recorded. It should be noted 
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however that if the bee’s flight was obscured, by a hedge or tree for example, then the 

distance the bee flew might be longer than seen in in radar track. The total flight duration 

was the sum of all the points multiplied by three (as the bee’s position was recorded every 

3s the sum of these recordings multiplied by three is the flight duration in seconds). The 

average groundspeed of the flight was calculated by dividing the total flight distance by the 

total flight duration. The maximum distance of the bee from the hive was recorded as the 

furthest signal from the hive. 

 

The bees may land within a flight. If they do this then they are lost from the radar. This 

leaves gaps in the recording which may be as little as 3s (one radar rotation) or may last for 

several minutes. Short gaps may be caused by the bee flying behind an obstruction such as 

a tree so only gaps of greater than 15s are recorded as such. It should be noted however 

that some of the longer gaps might be caused by the bee flying behind bigger obstructions 

such as hedgerows. As the number of stops that can be taken is relative to the length of 

flight (ie a bee that only flew for a short time is not able to stop as many times as a bee 

that flew for a longer time), the gaps were calculated as the number of gaps relative to the 

total number of fixes (number of gaps divided by total number of recordings) and the 

number of gaps per 100s. 

 

Table 5.1: 

Flight parameter (units) Description 

Total flight distance (m) The total distance travelled by the bee 

Total flight duration (s) The time taken for the flight 

Average flight speed (m/s) The average speed of the flight (distance/duration) 

Maximum distance from hive (m) The furthest signal from the hive 

Gaps relative to total points 
The number of stops relative to the total flight 
duration (in terms of number of fixes) 

Gaps per 100s 
The number of stops relative to the total flight 
duration (in terms of time) 

Table showing the flight parameters calculated from the radar track data. 

 

5.2.5: Statistical analysis: 

 

Where the population of bees tested had a good mix of individuals that were either infected 

or uninfected or had a bimodal distribution of high and low DWV (see chapter 4) the 

presence/ absence and high/low load was analysed separately from the relative disease 

loads. 

 

All statistical analysis was carried out in GenStat® (14th edition) (Payne, 2011). 

 



109 

 

5.2.5.1: Chi Square analysis of flight types: 
 

Chi square analysis was used to determine whether high or low loads of DWV or presence/ 

absence of disease was related to flight types (didn’t fly, flew but no track, <250m, 

>250m). The null hypothesis was that there should be an equal distribution of bees with 

each disease load (high/low) across the flight types and an equal distribution of bees for 

which each disease was either present or absent across the flight types. This analysis could 

be done on all bees that returned to the hive even if there was no radar track produced.  

 

5.2.5.2: Mann-Whitney U tests on flight parameters: 
 

Mann-Whitney U tests were used to determine whether the high or low loads of DWV or the 

presence/ absence of disease had an effect on any of the flight parameters (see table 5.1). 

This analysis could only be carried out on bees that were successfully tracked. 

 
5.2.5.3: Simple linear regression analysis on flight parameters: 
 

Because the QPCR analysis also provided the disease load for each virus relative to the 

housekeeping gene  actin; these could also be used for analysis. Simple linear regression 

analysis was carried out to look for the relationship between the relative loads of each 

disease in individual bees and aspects of their flights. The log values were taken for some of 

the flight data to normalise them (total flight duration, total flight distance, average flight 

speed and the maximum distance from the hive).  

 

5.3 Results 

 

5.3.1: Radar summary: 

 

A total of 80 bees were used in this experiment, 36 from the healthy colony (H132), 21 from 

one of the high varroa colonies (V125) and 23 from the second high varroa colony (V91) (a 

total of 44 from high varroa colonies). Of these, nine bees did not fly (six from the healthy 

colony, three from the high varroa colonies) and, of those that did fly, 32 bees flew far 

enough to produce radar tracks (14 from the healthy colony and 18 from the high varroa 

colonies). There were eight bees that either did not return to the hive, five from high varroa 

colonies and three from the low varroa colony. A chi square test showed that the number of 

bees that did not return was not significantly affected by the varroa load of the colony  

( 2 (1, N = 80) = 0.202, P = 0.35.) 
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Many of the tracks produced look similar to those found in similar studies of honeybee 

search patterns (Reynolds et al., 2007), with looping flights that in a previous investigation 

were shown to be Levy flight patterns, an optimal search pattern (Reynolds et al., 2009) 

(figure 5.2).  

 

To determine whether the looping flights found in this study were the optimal search 

patterns, or Levy flight patterns, shown in Reynolds’ work (2009), further analysis of these 

tracks is being carried out by Dr Reynolds. This analysis will also examine whether there is 

an effect of disease status on the likelihood of bees performing optimal search patters. 

 

Figure 5.2: 

 
Typical flight track produced in this experiment. Track of bee H132-14, a bee which tested negative for 
BQCV, had low DWV load and relatively low levels of n. apis and N. ceranae. This bee shows a looping flight 
pattern as it explores the landscape. The range lines are 100m apart. The red lines connect consecutive points, if 
there was a gap, even of only one rotation, the points are connected by green lines. 

 

5.3.2: Disease loads: 

 

Although all of the tested bees had DWV, because the quantitative molecular analysis 

always show a bi-modal distribution for DWV load (4.3.2; figure 4.6), the data could be 

analysed as high (relative DWV load <-4) and low (relative DWV load >-4). As before the 

lower/more negative the relative disease load, the more disease was present (see chapter 

2.6.2). There were a good number of bees testing positive and negative for BQCV so the 



111 

 

effect of the presence/absence of BQCV could also be tested. There were only very few 

bees that tested negative for the other diseases detected (N. apis and N. ceranae) so the 

effect of the presence/absence of these diseases could not be tested for (table 5.2).  

 

For all diseases the relative disease load could be used for analysis. The amount of disease 

was calculated relative to the housekeeping gene  actin. The negative control (water) 

produced a result of 20 and so any bees testing negative for any disease were also recorded 

as 20. Bees with higher disease loads had lower relative values (chapter 2.6). 

 

Table 5.2: 

Pathogen No. bees 

Low DWV 37 

High DWV 18 

* 1 

- BQCV 21 

+ BQCV 35 

* 0 

- Na 4 

+ Na 49 

* 3 

- Nc 2 

+ Nc 53 

* 1 
 

Table of disease presence for bees tracked using the harmonic radar. DWV results are given as high 
(relative DWV load <-4) and low (relative DWV load >-4), all other diseases (BQCV, N. apis (Na) and N. ceranae 
(Nc)) are shown as presence (+)/absence(-). Inconclusive results are shown as ‘ * ’. 56 bees were tested in total. 
 

5.3.3: Chi square analysis of flight types: 

 

A Chi-Square test showed no significant deviation from the null hypothesis for either disease 

(DWV: 2 (3, N = 56) = 5.37, P = 0.147. BQCV: 2 (3, N = 56) = 1.65, P = 0.647.). This 

suggests that the load of DWV (high or low) and the presence/absence of BQCV had no 

effect on flight type (Tables 5.3 & 5.4).  

 

Table 5.3: 

 Flight type 
Didn't 

fly 
No 

track <250m >250m 

Low DWV load 6 11 6 14 

High DWV load 2 9 5 2 

Table showing the number of bees with low/ high DWV load for each flight type. 
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Table 5.4: 
 

 Flight type 
Didn't 
fly 

No 
track <250m >250m 

Negative for BQCV 2 8 6 5 

Positive for BQCV 6 12 6 11 

Table showing the number of bees tested positive/ negative for BQCV for each flight type. 
 

 

5.3.4: Mann-Whitney U test on flight parameters: 

 

The Mann-Whitney U tests on the flight parameters calculated from the radar tracks showed 

that the load of DWV (high or low) had a significant effect on total flight distance (U = 29.0, 

P = 0.022. See also Figure 5.3a), it also had an effect on maximum distance travelled from 

the hive (U=35.0, P = 0.055. See also Figure 5.3b) although this was only significant at the 

10% level. Bees categorized as having high DWV loads flew shorter distances and tended to 

stay closer to their hives than bees with low DWV loads. DWV had no effect on mean flight 

speed however (U = 65, P = 0.808). The presence/absence of BQCV had an effect at the 

10% level on mean flight speed (U = 52.0, P = 0.053. See also Figure 5.3c); infected bees 

tended to fly faster than uninfected bees. BQCV had no effect on total flight distance (U = 

80, P = 0.547) or maximum distance travelled from the hive (U = 66, P = 0.208). Neither 

virus had a significant effect on any of the other measures of flight performance including 

duration of flight (DWV: U = 42, P = 0.13. BQCV: U = 79, P = 0.517), and number of gaps 

in recording (representing the bee either being hidden from the radar or having landed) 

(DWV: U = 64, P = 0.766. BQCV: U = 70, P = 0.285). 
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Figure 5.3: 
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Box plots showing the effect of DWV load (high/low) on flight distance (a) and duration (b) and 
BQCV (presence/absence) on speed (c). Box plots show the median, interquartile range (box) and the range 
(sticks) with any outliers shows as Xs. Bees with high DWV flew for shorter distances and times and bees infected 

with BQCV flew faster. 

 

a) 

b) 

c) 
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5.3.5: Simple linear regression analysis on flight parameters: 

 

Figure 5.4: 

a) 
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d) 
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Plots showing relationship between disease load relative to actin and flight analysis. For all plots a 

relative disease load of 20 is a negative result, and lower values are higher disease loads. Bees with higher N. apis 
loads tended to fly faster (a) than bees with lower N apis loads. Bees with higher BQCV loads tended to fly faster 
(b) and stop less often (c) than bees with lower BQCV loads. Bees with higher DWV loads tended to have shorter 
flights in terms of distance (d) and duration (e) than bees with low DWV loads. 

 

There was no effect of the load of N. ceranae on any flight parameters. There was a 

significant effect of BQCV and N. apis loads on the log of speed of flight (Figure 5.4 a & b).  

(BQCV: F1,26 = 6.13 P = 0.02, intercept = 18.47 SE = 1.18, slope = -7.46 SE = 3.01.  

N. apis: F1,26 = 4.46 P = 0.04, intercept = 0.661 SE = 0.167, slope = -0.0258, SE= 0.0122.)  

 

There was also a significant effect of BQCV load on the number gaps relative to the total 

number of recordings (F1,26 = 6.86 P = 0.015 intercept = 13.64 SE = 1.15, slope = 15.56 SE 

= 5.94. See also Figure 5.4 c) suggesting that bees with high BQCV loads and/or N. apis 

loads flew faster and bees with high BQCV loads also stopped less often than bees with low 

loads of these pathogens. There was a significant effect of the relative DWV load on the log 

of duration of flight (F1,26 = 4.24 P = 0.05, intercept = -8.23 SE = 4.08, slope = 3.04 SE = 

1.47. See also Figure 5.4 d) and the log of flight distance (F1,26 = 6.08 P = 0.021, intercept 
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= -10.72 SE = 4.4.2, slope = 4.25 SE = 1.72. See also Figure 5.4 e) suggesting that bees 

with higher DWV loads took shorter flights, in terms of both flight time and distance, than 

bees with lower DWV loads. 

 

5.4 Discussion 

 

Many of the tracks produced in this experiment by bees exploring a novel landscape had the 

appearance of the looping tracks seen in previous research (Reynolds et al., 2007), (see 

figure 5.2). These flight patterns were previously seen when bees were searching for a 

feeder which had been removed. Similar loops were produced by bees when they did their 

first orientation flights (Capaldi et al., 2000), although on these flights the bees only did one 

loop whilst the bees tracked here often did several loops. This suggests that a similar 

searching flight is used to explore new areas and, on a smaller scale, to search for missing 

items. The initial orientation flights of new forager bees may only have single loops whilst 

experienced forager bees explore with several loops because the older experienced forager 

bees may have more energy to fly over greater distances or have better memories to 

remember more of the landscape. 

 

The results of this experiment suggest that the presence of DWV reduces honeybees’ flight 

capability by causing them to take shorter flights both in terms of distance covered and time 

spent outside of the colony. The wings of all the bees used in this experiment appeared 

normal and so the virus had this effect even in the absence of the classic wing deformities 

that give it its name. The bees may not show deformity because they became infected after 

their wings had developed or the virus may have been at a low enough level during 

development that their wings developed normally. Despite this the bees’ flight was still 

affected. The Chi-Square analysis however showed that DWV load didn’t affect whether the 

bees were likely to fly or not. This is possibly because the majority of bees tracked in this 

experiment were of unknown age or task so that the tracked bees might not have all been 

forager bees; although every effort was made to choose bees that seemed eager to leave 

the tunnel there is the possibility that some could have been guard bees or middle aged 

bees performing fanning duties in the tunnel. Therefore, some of the bees may not have 

flown due to age and task rather than disease presence or load. 

 

A study on bees artificially infected with DWV showed increased sensitivity to sucrose in the 

infected bees compared with controls (Iqbal and Mueller, 2007) suggesting that the virus 

was energetically stressing the bees’ and making them more hungry. This could also mean 

that they have less energy for sustained flight which would explain why the bees with higher 

DWV loads flew for shorter distances than bees with lower DWV loads.  
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Like DWV, it has been suggested that N. ceranae causes energetic stress in honeybees as 

bees with N. ceranae infection are more responsive to sucrose than uninfected bees 

(Mayack and Naug, 2009). Bees with Nosema spp. infection also take longer to return to 

their colonies and are more likely to get lost than uninfected bees when released 6 or 10 m 

away from the hive (Kralj and Fuchs, 2010). It is surprising therefore that, in my study, 

there was no significant effect of N. ceranae load on flight behaviour and N. apis only 

affected flight speed.  However, the QPCR analysis detected only very low levels of either 

species of Nosema in any individual bee. Of all the bees tested as part of this project only 

two had relatively high levels of N. apis (Copy number in QPCR sample: 3.28x108 and 

9.64x108) whilst all the rest had much lower loads (Average copy number for rest of 

samples: 9.72x103). Three bees had relatively high levels of N. ceranae (Copy number in 

QPCR sample:6.50x107, 3.19x109 & 3.95x1010) compared to the rest (Average copy number 

for rest of samples: 1.08x104). All the bees tested as part of this experiment had low N. apis 

loads and only one bee had high levels of N. ceranae (Copy number in QPCR sample: 

3.95x1010). In both Mayack & Naug (2009), and Kralj & Fuchs’ (2010) experiments the bees 

were artificially infected and probably had higher Nosema spp. loads than I detected in this 

experiment. It is possible therefore that the energetic stress and changes in flight behaviour 

are only seen with higher Nosema spp. loads. 

 

There was a trend for bees infected with BQCV and/or N. apis to fly faster than uninfected 

bees, and bees with higher BQCV and/or N. apis loads flew faster than bees with low BQCV 

or N. apis loads although this was only significant at the 10% level. It is known that BQCV 

and N. apis often co-occur (Bailey et al., 1983), so although both correlated with flight 

speed it is possible that only one of the two actually caused the effect. Little is known about 

any effects of BQCV on honeybee behaviour. However, N. ceranae is known to energetically 

stress bees and it is likely that N. apis has a similar effect. It was thought that this was due 

to increased immune defence (Mayack and Naug, 2009) but it could also be due to the 

pathogen causing the bees to overexert themselves; it is possible that infected bees lose 

their ability to judge the speed at which they are flying and so fly faster thus using up more 

energy than they otherwise would.  

 

It should be noted that the experience of the bee has been shown to have an effect on 

flight speed, with more experienced bees flying faster (Capaldi et al., 2000). The results of 

Q-RT-PCR analysis in chapter 4 showed that older bees were likely to have higher levels of 

BQCV (see chapter 4.3.2) so although the results suggest that bees with higher loads of 

BQCV flew faster this may in fact be because the bees with higher loads of BQCV were older 
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than those with lower loads and older bees were more experienced fliers and flew faster 

than younger bees. 

 

It is also possible that the effect of BQCV and N. apis on flight speed was only found to be 

significant due to the low level of replication. Much of this analysis was carried out on a 

fairly small number of bees as the analysis could only be carried out on bees which had 

been tracked by the radar, recaptured and then undergone Q-RT-PCR analysis (N=28). If a 

similar study could be carried out on a larger number of bees then the statistical analysis 

would be more robust. 

 

The data do however clearly show that bee pathogens can affect honeybee flight behaviour. 

My analysis shows that bees infected with common honeybee diseases are able to fly 

shorter distances and for shorter lengths of time than healthier bees; in this instance that 

meant that the foraging bees could explore less of the novel environment which could mean 

that they would have less chance of finding good food sources for the colony. In general it 

could also mean that bees from sicker colonies would be less able to take advantage of 

mass flowing crops at a distance from the colony than healthier colonies. This could have 

knock-on effects to foraging potential and colony strength and therefore colony survival.  
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Chapter 6: In-hive behaviour and time to first forage for 

honeybees from colonies of differing disease status in 

observation hives. 

 

Abstract: 

 
The European honeybee, Apis mellifera, is important economically not just for honey 

production but also as a pollinator. However, honeybee numbers in some areas are 

declining.  A range of interacting factors are thought to be involved, including pathogens 

and parasites,  which are known to cause changes in the behaviour of their hosts.  

 

In this chapter observation hives were used to study whether the disease load of the colony 

a bee develops in has an effect on in-hive behaviour and age at which bees first began 

foraging. The aspects of behaviour which were examined were the amount of time spent 

resting or interacting with other bees. 

 

Bees taken from colonies infected with deformed wing virus, black queen cell virus and 

Nosema spp. appeared to begin foraging earlier than bees taken from colonies with only one 

or two of these pathogens; however, this was not statistically significant. There was also no 

statistically significant effect of colony disease status on the interacting or resting behaviour 

of individuals within the observation hives. This may mean that the disease status of the 

colony a bee develops within has no effect on that bee’s behaviour, or the replication used 

in this experiment may have been too low to pick up statistically significant changes to 

behaviour. 

 

6.1 Introduction 

 

6.1.1: Use of observation hives to study honeybee in-hive behaviour: 

 

In nature bees usually nest in dark cavities with small entrance holes, inside hollow trees for 

example. This environment is simulated in a hive but makes it very difficult to learn anything 

about the behaviour of the bees within (Gary, 1975). Observation hives are the solution to 

this problem. An observation hive is a transparent walled hive into which 2 or more frames 

of bees can be placed and observed (Dadant, 1975). Observation hives can be used to study 

the in-hive behaviour of honeybees and their progression from in-hive to foraging activity 

(e.g. Bailey and Fernando, 1972; Mattila and Otis, 2006). The first documented use of 

observation hives to study honeybee behaviour was in the eighteenth century, when the 
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French scientist René-Antoine Ferchault de Réaumur used such hives to study, amongst 

other things, the egg laying behaviour of honeybee queens (Ratcliff, 2005). 

 

More recently observation hives have been used to study a range of behaviours including 

hygienic behaviour in honeybees. Hygienic behaviour is the recognition and removal of dead 

or diseased brood from the hive (Rothenbuhler, 1964). Panasiuk et al., (2010) showed that 

bees of all ages were involved in hygienic behaviour, but that these tasks were mostly 

carried out by bees aged 6-10 days.  Some colonies are also better at this hygienic 

behaviour than others (e.g. Palacio et al., 2000; Spivak and Gilliam, 1993). Palacio et al., 

(2005) observed hygienic and non-hygienic bees over several hours to show that the 

hygienic bees were able to detect pin-killed brood within an hour of their death; these 

hygienic bees then uncapped and removed the affected brood much more quickly than the 

non-hygienic bees. 

 

Survival can be monitored in observation hives. Higginson et al., (2011) examined the effect 

of wing damage on survival to show that mortality rate increased with wing damage and 

that bees with damaged wings were less able to forage. Observation hives have also been 

used to investigate survival and behaviour of bees infected with different pathogens (section 

6.1.3). 

 

Observation hives can also be used to study the behaviour of other species within hives.  

Atkinson and Ellis (2011) used observation hives to study the hiding behaviour of six beetle 

species living within honeybee colonies and demonstrated that species coevolved with 

honeybees were better at finding confinement sites to hide in than other species.  

Observation hives also facilitated the study of the division of labour within the hive (e.g. 

Seeley and Kolmes, 1991; Trumbo et al., 1997). 

 

6.1.2: Division of labour in bees: 

 

There is a division of labour within social insect colonies such that different groups, or 

castes, of individuals, perform different tasks. The division of labour in honeybees was first 

recorded by Dönhoff in 1855 (see Calderone, 1998) who requeened a colony of black 

honeybees with a yellow queen and observed that the new yellow worker bees did not begin 

foraging for up to seventeen days. This age-related division of labour in honeybees is often 

called age-polyethism because workers tend to perform different tasks at different ages 

(Calderone, 1998). Younger bees attend to in-hive tasks such as caring for brood and 

attending the queen and older bees undertake foraging for resources such as nectar and 

pollen (Hooper, 2008). Age polyethism is not fully understood in honeybees. For example, 
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Ribbands (1952) found that honeybee workers could alter the duration of tasks or omit 

them entirely resulting in variation in the time to first forage of between nine and 35 days. 

He suggested that this variation demonstrated that division of labour was controlled more 

by the needs of the colony than by the age of the workers. Many subsequent experiments 

have shown that there is a significant association between age and task (e.g. Calderone, 

1995; Seeley and Kolmes, 1991) but the mechanisms behind when bees move from one 

task to the next are still under debate.  Several models have been put forward, many of 

which are reviewed by Calderone (1998) and modelled by Johnson (2003).  

 

Division of labour in honeybees does not rely on behavioural changes alone; forager bees 

are physiologically different from in-hive bees. For example, in-hive honeybees have larger 

hypopharyngeal glands than forager bees (Huang et al., 1994). Higher levels of dopamine, 

serotonin, and octopamine were found in the antennal lobes of forager bees when 

compared to in-hive bees, regardless of age. The difference was most pronounced for 

octopamine (Schulz and Robinson, 1999).  

 

It is thought that juvenile hormone (JH) is responsible for the switch from in-hive to 

foraging tasks. Juvenile hormone increases with age in worker honeybees (Fluri et al., 1982; 

Jassim et al., 2000); forager bees typically have higher JH levels than in-hive bees 

(Elekonich et al., 2001), and the transition from in-hive to foraging tasks can be initiated by 

treating bees with juvenile hormone or chemicals that mimic it (Jaycox, 1976; Jaycox et al., 

1974). However, Sullivan et al., (2000) showed that JH did not activate the transition from 

in-hive to forage duties but merely controlled the rate at which the transition occurred. Bees 

that had their corpora allata (the gland which produces JH) removed still became forager 

bees, just much more slowly than sham treated bees. 

 

Bees generally move from in-hive to foraging activity after about three weeks (Hooper, 

2008), but some factors can accelerate or slow down this progression.  Janmaat and 

Winston (2000) found that bees with low pollen stores began foraging earlier than normal, 

but a similar study by Mattila and Otis (2006) found no such effect. Bees began foraging 

earlier than normal when treated with CO2 (Woyciechowski and Moron, 2009) and when 

raised at a constant 36oC, the highest temperature normally found in bee hives, rather than 

the usual 34oC (Becher et al., 2009).   

 

6.1.3: Effect of bee diseases on honeybee in-hive behaviour and polyethism: 

 

Several experiments have shown that honeybees infected with Nosema spp. and SBV are 

less likely to feed brood or attend the queen than uninfected honeybees (Wang and Moeller, 
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1970Bailey and Fernando, 1972). Varroa infestation and SBV infection caused honeybee 

workers to begin foraging earlier than controls (Bailey and Fernando, 1972; Downey et al., 

2000; Janmaat and Winston, 2000), whilst honeybee workers infested with tracheal mites 

began foraging later than uninfested controls (Downey et al., 2000). There is conflicting 

evidence when it comes to Nosema spp. however. Whilst both Wang & Moeller (1970) and 

Woyciechowski & Moron (2009) found that Nosema spp. infection caused honeybee workers 

to begin foraging earlier than uninfected individuals, Mattila & Otis (2006) found no effect of 

Nosema apis infection on age at first forage. To the best of my knowledge there have been 

no such experiments on bees infected with BQCV.  

 

6.1.4: Experimental setup and hypotheses: 

 

For this experiment bees were taken from colonies with differing combinations of pathogen 

species (as determined using molecular techniques) and transferred to observation hives 

where their in-hive behaviour and foraging behaviour could be monitored. It was 

hypothesised that bees from colonies with more pathogen species present would begin 

foraging earlier than bees from colonies with fewer pathogen species present. The 

pathogens studied were DWV, Nosema spp. and BQCV. DWV was found in all colonies used 

in this experiment and so its effects cannot be determined with these results. Nosema spp. 

infected bees have been shown to avoid feeding brood and begin foraging earlier than 

uninfected bees (Wang and Moeller, 1970; Woyciechowski and Moron, 2009) although other 

studies showed no effect on age to first forage of Nosema spp. (Mattila and Otis, 2006). 

BQCV has not been studied before for its potential effects on behaviour but it is known to 

interact with Nosema spp. to decrease honeybee survival (Bailey et al., 1983) and so it is 

possible that the reason no effect of Nosema spp. was found in the work of Mattila and Otis 

(2006) was because the behavioural change was only found when the two diseases 

interacted. It was, therefore, hypothesised that the bees from colonies with both Nosema 

spp. and BQCV would begin foraging earlier and be less likely to attend brood or the queen 

than bees from colonies without these pathogens. 

 

The survival of the bees was also monitored and it was hypothesised that bees from 

colonies with more pathogen species present would die faster than bees from colonies with 

fewer pathogen species present as, individually, all three pathogens have been shown to 

decrease the survival time of bees (e.g. Bailey et al., 1983; Forsgren and Fries, 2010; Yang 

and Cox-Foster, 2007).  

 

 



123 

 

6.2 Methods  

 

6.2.1: Observation hive set up: 

 

Observation hives were used to examine the in-hive behaviour, time to first forage and 

longevity of bees from colonies with differing numbers of diseases present. Two observation 

hives were set up in the field lab on Rothamsted farm (figure 6.1). Each section of the 

observation hive was 460 x 227 x 45mm and could hold a single national frame (the size of 

frames used in the Rothamsted hives). The entire set up was approximately 1m tall (when 

three sections were in place) and the base rested on the work surface. The room was 

maintained at 26˚C. A tunnel connecting the base of the hive with the outside allowed bees 

to enter and exit for foraging. The top and sides were made from clear Perspex to allow the 

foraging bees to be observed and their behaviour recorded. To select colonies to establish in 

the observation hives, pooled bee samples from 32 Rothamsted colonies were evaluated 

using PCR and of these, 21 tested positive for Nosema spp. and 17 tested positive for DWV, 

and of those 12 colonies were positive for both pathogens (chapter 2.6). The colonies that 

were chosen for the observation hive experiment were selected from those that remained. 

The observation hive colonies were selected to be as similar as possible with regard to 

disease profile. 

 

Observation hive A originated from field colony 134, a colony based at Cheapside that had 

low varroa levels (1.1 daily mite drop in May 2011) but tested positive for DWV in PCR 

analysis in the same month. Observation hive B originated from field colony 90, a colony 

also based at Cheapside that also had low varroa levels (0.4 daily mite drop in May 2011) 

and also tested positive for DWV.  It would have been preferable to use colonies with no 

diseases, however all colonies available tested positive for some pathogen so colonies used 

to establish the observation hives were chosen to be as similar as possible and to have as 

little disease as possible. Three frames of bees were placed in each observation hive, one on 

top of the next, with space remaining so that a fourth, empty frame could be added if the 

colony became large and needed more space (figure 6.1). Having additional space for 

expansion also helped prevent them from swarming. If the colony began to dwindle the 

extra frame could be removed or a frame of new bees added as necessary.  Food stores 

within each observation hive were monitored and if supplies grew too low a jar of ~200ml of 

60% sucrose solution was fed to the colony (figure 6.2). 
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Figure 6.1: 

 
One of the observation hives at the Rothamsted Bee Field Lab.  Each section is 460 x 227 x 45mm. 

 

Figure 6.2: 

 
The tunnel of the observation hive with the feeder attached. The feeder has a honey jar which can be filled 

with sucrose solution. The bees can get to the sucrose via a gauzed hole. 
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The aim of this experiment was to study the in-hive behaviour of individual bees taken from 

source colonies of differing disease status. To this end, six colonies were selected from the 

Rothamsted apiaries; two colonies testing positive for DWV only, two for DWV and Nosema 

spp. and two for DWV, Nosema spp. and BQCV.  

 

Brood frames were collected from the source colonies and maintained in an incubator in 

darkness at 35oC overnight. Newly emerged adults were collected within 24 hours of 

emergence and were marked with coloured, numbered queen marking tags (E. H. Thorne 

Ltd., U.K.)  to indicate the source colony, receiving observation hive and replicate number 

for every individual bee. Orientation of the marking tags was used to differentiate between 

which observation hive the bees went into so that it was possible to tell if bees had drifted 

between the hives. Bees going into observation hive A had the tags aligned so that they 

were the right way up if the bees head was facing downwards (head down) whilst bees 

going into hive B had the tags aligned so that they could be read if the bee’s head was 

upwards (head up) (see figure 6.3). Ninety four bees from each source colony were added 

to each observation hive via a small hole at the top and monitored over a period of 67 days 

until all marked bees had died. The source colonies used, methods used for marking 

individual bees and the date and observation hive that the bees were added to, are shown 

in table 6.1. 

 

Table 6.1: 
 

Source 
colony 

No of 
bees 

Disease status 
of source 

colony 

Receiving 
Observation 

hive 

Tag 
colour 

Tag 
orientation 

Date added 
to 

observation 
hive 

15 94 DWV A yellow Head up 06/08/2011 

  94   B yellow Head down 07/08/2011 

88 94 
DWV, BQCV & 
Nosema spp. 

A red Head up 06/08/2011 

  94   B red Head down 07/08/2011 

98 94 DWV A green Head up 06/08/2011 

  94   B green Head down 07/08/2011 

146 94 
DWV, BQCV & 
Nosema spp. 

A white Head up 06/08/2011 

  94   B white Head down 07/08/2011 

64 94 
DWV &  

Nosema spp. 
A dark blue Head up 09/08/2011 

  94   B dark blue Head down 09/08/2011 

132 94 
DWV &  

Nosema spp. 
A light blue Head up 08/08/2011 

  94   B light blue Head down 08/08/2011 

 

Table showing the set up for both runs of the observation hive experiment to monitor the in hive and 

foraging behaviour of bees from colonies of differing disease statuses. 
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Figure 6.3: 

 
 
Figure showing the orientation of marking tags on the bees for run 2 of the observation hive 
experiment. A: bees added to observation hive A with the tags readable when the bee’s head is down. B: bees 
added to observation hive B with the tags readable when the bee’s head is up. Both bees are shown with the 

number 39 and their heads up.  

 

 

6.2.2: Monitoring of behaviour within the observation hives: 

 

Over the six weeks of this experiment, in-hive behaviour of individual bees in both 

observation hives was monitored twice a day; once in the morning between 8 and 10am and 

once in the evening usually between 5 and 7pm. The position and behaviour of each marked 

bee that could be seen was recorded in a scan sample. The position of the bee was 

recorded in relation to a 6 by 4 grid for each frame, and its behaviour was chosen from the 

list of behaviours in table 6.2. 

 

Not all the marked bees in each hive were recorded on each day as some of the bees were 

not seen. This may have been because they were outside of the hive, foraging, or because 

they were hidden within cells. However, some measure of longevity could be achieved by 

recording when marked bees were last seen.  
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Table 6.2: 

Solo behaviour   

Self-grooming Rubbing of legs against body for the purpose of grooming 

Cleaning Actively checking/cleaning the comb surface 

Manipulating Wax 

Manipulating wax either to cover/uncover stores or draw out 

comb 

Head in cell 

Cleaning in cell or tending egg (if brood is visible 'tending 

brood') 

Head in nectar/pollen cell Storing or moving pollen or nectar 

In cell In cell with only tip of abdomen visible (possibly sleeping) 

Walking Moving purposefully across the comb 

Sitting Still, not interacting with others or the comb 

Shaking Shaking to show a need to be groomed by another bee 

Fanning Fanning wings to increase air flow within the hive 

Inter-individual behaviour   

Grooming worker Touching surface of a worker for the purpose of grooming 

Grooming drone Touching surface of a drone for the purpose of grooming 

Being groomed Being touched by another worker for the purpose of grooming 

Antennal touching Face to face touching antennae 

Giving food 

Transferring liquid food by exuding a drop of liquid between 

mandibles 

Receiving food Receiving liquid food from another worker 

Waggle dancing Waggle dancing to pass on information about food source 

Watching waggle dance Touching or following a dancing worker 

Shaking bee Shaking a worker bee 

Being shaken Being shaken by a worker bee 

Tending Queen In the queen's retinue, facing queen and touching with antennae 

Tending brood Head in cell with larvae 

Table showing a list of behaviours recorded in the observation hive experiment. Behaviours recorded 

are based on those used by Mattila and Otis (2006). 

 

On days when the weather was good (i.e. not raining or too windy) foraging from each hive 

was also monitored. The tunnel of one hive was watched for 1 hour and every marked bee 

that exited or entered the tunnel was recorded along with the time that she left and 

returned. From this the time spent foraging could be calculated. The presence of any pollen 

or propolis loads was also recorded. The second hive tunnel was also monitored for an hour 

per day. On each day that foraging was monitored the hive monitored first was alternated 

so that on day one hive A was recorded for 1 hour followed by hive B and on day 2 hive B 

was monitored first followed by hive A etc. Before and after each tunnel was monitored, 5 

minute counts were taken at the entrance to each hive of the total number of bees exiting 

and entering. This was used to estimate the amount of ‘traffic’ for each hive during the 

observation period. 
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6.2.3 Statistical analysis of results: 

 

All statistical analysis was carried out in GenStat® (14th edition) (Payne, 2011). 

 

6.2.3.1 Survival analysis: 
 

The last time each marked bee was seen within an observation hive was recorded as the 

extent of its life. It is possible that bees may have lived longer than this and just not been 

seen in the observation hive but the exact time of death could not be determined in this 

experiment. Bees often die away from the colony and those that did die within the 

observation hive and were carried outside were often removed by wasps. 

 

Kaplan-Meier plots with 95% CIs were used to visualise the results and compare treatments. 

These plots were adapted by Suzanne Clark to add CIs to the Kaplan-Meier program.  

 

6.2.3.2 Time to first forage: 
 

The day that each bee was first seen flying for more than five minutes, or seen returning 

carrying pollen, was taken as the day of first forage. Again, it is possible that bees might 

have foraged at times when the hive was not being observed. 

 

analysis linear mixed model was fitted using REML; no transformation was required to 

normalise the data which were analysed with a treatment structure to test the effect of 

number of pathogens in the source colony (1, 2 or 3) on time to first forage, and a blocking 

structure to take account of the source colony and observation hive for each individual bee. 

 
6.2.3.3 Behavioural analysis: 
 

The behavioural data were examined for only the first 20 days of the experiment. After this 

time the number of bees seen on each day decreased to a point where the proportions were 

often out of 2 or 3 bees (figure 6.4). The statistical analysis used (see below) does not take 

sample size into account such that 1/1 is treated the same as 50/50.  To avoid low sample 

sizes only the first 20 days were analysed as, on the plot below, this looked like the period 

when good numbers of bees observed. The mean number of bees observed in the first 20 

days was 29.07 whilst the mean number of bees observed in the remaining 46 days was 

only 8.63. 

 

 

 

 



129 

 

Figure 6.4: 

 

Figure showing the proportion of bees, from all treatments, resting over time for the observation hive 
experiment.  The number of bees recorded in this experiment decreased over time. 

 

Biologically it has been suggested that by about three weeks of age, the majority of bees 

have started foraging (Hooper, 2008), so this time period should cover when most of the 

bees are focusing on in-hive activities.  

 

The proportion of bees resting and interacting with other bees were analysed because these 

were the behaviours most often affected by pathogens in previous studies (e.g. Bailey and 

Fernando, 1972; Wang and Moeller, 1970). Other behaviours were recorded but only at low 

frequencies through the course of the experiment, making them more difficult to analyse. A 

linear mixed model was fitted using REML to examine the effect of time and number of 

diseases on the proportion of bees resting and interacting, whilst taking into account the 

source colony and receiving observation hive. Splines were fitted to produce smooth curves 

for the data and a power correlation model used to test for an effect of autocorrelation 

(whether there was any pattern over time within the data).  

 

Barycentric triangles (Aitchison, 1986) were produced to visualise the proportion of bees 

either resting, cleaning or doing other behaviours (see table 6.2) over the first 20 days of 

the experiment.  
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6.3 Results  

 

6.3.1 Survival results: 

 

The last bee remaining alive was recorded 66 days after introduction to the observation 

hives. The Kaplan-Meier plot of survival for each disease treatment shows that, although 

there is no significant difference between the CIs across all three treatments, the bees from 

colonies with only DWV appeared to survive longer than those from the other colonies. 

There was a significant difference amongst the CIs for the bees from colonies with only 

DWV and the bees from colonies with all three diseases between about 20-30 days into the 

experiment (figure 6.5). The mean average survival for each treatment was: DWV: 24.81 

days, DWV and Nosema spp.: 23.10 days and DWV, Nosema spp. and BQCV: 19.83 days. 

 

Figure 6.5: 
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Kaplan Meier plot of survival for each treatment of bees in the observation hives. For most of the 

experiment there is no significant difference in the CIs for each treatment, however, between 20-30 days the DWV 

only bees and the bees from colonies with all three diseases differed significantly such that the DWV bees survived 

better than those from colonies with all three diseases.  
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There was a sharp decrease in the proportion of each group of bees still alive at around day 

30 (figure 6.4). This decrease in bee numbers occurred between the 5thand 6th of 

September. Table 6.3 shows the Rothamsted meteorological data for that period of time. 

 

Table 6.3: 

 

Date 
Average 

temperature 
[min-max] (oC) 

Sun light 
(hrs) 

Precipitation 
(mm) 

Wind speed 
(knots at 10m) 

04/09/2011 13.9 [14-18] 2.0 12.2 6 

05/09/2011 14.9 [9.3-18] 5.8 3.0 12 

06/09/2011 13.9 [13.1-17.6] 0.0 3.2 10 

07/09/2011 13.6 [11.3-16.2] 1.2 0.4 9 

Average  [8.6-11.3] 4.8 1.7 7.2 

 

Table showing meteorological data for Rothamsted farm from 4th-7th of September 2011. All values 

were recorded from 0900-0900 the following day. The average temperatures are the mean average of hourly 

recordings taken from 0900-0900 the following day. 

 

Figure 6.6 shows the LT50s for all the bees used in this experiment. Three of the groups of 

bees from colonies infected with only DWV (black) show similar LT50s (~28 days) but one 

group has a much lower value (16.5 days) its CIs only overlapping with one of the other 

DWV only groups. Similarly most of the groups of bees from colonies with all three diseases 

(blue) have similar LT50s (~14 days) but one has a much higher LT50 (25.88 days) and its 

CIs don’t overlap with any of the other groups with all three diseases. It is not clear why 

these two groups should be so different from the rest. Ignoring the two anomalies the DWV 

bees and the bees from colonies with all three diseases have different LT50s with CIs that 

are significantly different such that, as with the Kaplan-Meier results, the bees from colonies 

with just DWV survived longer than those from colonies with all three diseases whilst the 

bees from colonies with DWV and Nosema spp. (red) are intermediate, overlapping with 

both of the other groups.  
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Figure 6.6: 

 
Graph showing LT50s calculated from the Kaplan Meier results for each group of 95 bees from 

colonies with 1 (DWV), 2 (DWV and Nosema spp. ) or 3 (DWV, Nosema  spp. and BQCV) diseases. 1 

and 2 for each treatment went into observation hive A and 3 and 4 went into observation hive B.  

 

6.3.2 Time to first forage: 

 

When all three treatments were compared there was no significant effect of the number of 

diseases in the source colony on the time to first forage of individual bees (REML: H0 = 

equal means for each disease treatment. DWV mean = 29.26, DWV & Nosema spp.  

mean = 31.13, DWV, Nosema spp. & BQCV mean = 24.78. SED = 3.156. F2,8.6 = 1.64, P = 

0.25). However, a graph of the average time to first forage for each treatment shows that 

the bees from colonies with all three diseases appeared to have an earlier average time to 

first forage than bees from the other two treatments (figure 6.7).  

 

On average the bees from colonies with only DWV began foraging 29.25 (+1.13) days after 

being introduced to the receiving observation hive, bees from colonies with both Nosema 

spp. and DWV began foraging 30.48 (+1.83) days after introduction, but bees from colonies 

with all three diseases began foraging only 24.68 (+1.18) days after introduction. 

 

 

 

 

 

 

 

 

 

 

             DWV                                 DWV & Nosema spp.           DWV, Nosema spp. & BQCV 
  1          2          3          4          1          2          3          4          1          2          3          4 
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Figure 6.7: 
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Graph showing the average time to first forage against number of diseases in the source colonies. The 

error bars show the standard error of the mean (SEM) for these data. 

 

 

6.3.3 Behavioural analysis: 

 

Barycentric triangles were produced to show the proportion of bees from each treatment 

and in each observation hive that were recorded either resting, cleaning or performing any 

other behaviour over the course of the experiment (figure 6.8). Each point on the plot was a 

different recording time with the final record shown as a larger point. For the most part, 

pairs of treatments are similar, however the bees from colonies with only one disease 

(DWV) or with all three diseases (DWV, Nosema spp. and BQCV) in observation hive B 

seemed to be more likely to be resting than those in observation hive A. Although this was 

not the case for those bees from colonies with two diseases (DWV and Nosema spp.), this 

suggests that bees were more likely to rest in observation hive B. 
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                                                                       & BQCV 
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Figure 6.8: 

 
 
 
 

 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 

 

 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 

 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
Barycentric triangle plots showing the proportion of bees resting, cleaning or doing other activities 

over time (20 days) for each treatment in each observation hive.  

Colony 98/Obs A (DWV) Colony 15/Obs A (DWV) 

Colony 98/Obs B (DWV) Colony 15/Obs B (DWV) 

Colony 132/Obs A (DWV) Colony 64/Obs A (DWV) 

Colony 132/Obs B (DWV) Colony 64/Obs B (DWV) 

Colony 146/Obs A (DWV) Colony 88/Obs A (DWV) 

Colony 146/Obs B (DWV) Colony 88/Obs B (DWV) 
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Analysis of the proportion of bees resting over time showed no evidence of autocorrelation 

and so no need for the power correlation model to be used. There was also no effect of 

disease treatment on the results and so the final model looked at the effect of time on the 

proportion of bees resting and took the source colony and receiving observation hive into 

account, using a spline to produce smooth curves (figure 6.9). 

 

There was no significant effect of disease treatment on the proportion of bees resting but 

there was a change over time shown by the spline on the plot (figure 6.9, black line). The 

spline suggests that the proportion of bees followed an oscillating pattern. To determine 

whether this pattern was caused by the weather, Rothamsted meteorological data was 

examined. Only the rainfall data seemed to match the pattern seen in the proportion of bees 

resting over time (figure 6.10). 

 

Figure 6.9: 
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Plot of the proportion of bees resting over time for the first 20 days of the observation hive 
experiment. Black spots are bees from colonies with one disease (DWV), red spots are bees from colonies with 

two diseases (DWV & Nosema spp.) and blue spots are bees from colonies with all three diseases (DWV, Nosema 
spp. and BQCV). The fitted mixed model is shown as the black line; this was found to be the same for all disease 
treatments. 
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Graph of the rainfall data for Rothamsted farm over the first 20 days of the observation hive 
experiment. All values were recorded from 0900-0900 the following day.  
 

Analysis of the proportion of bees interacting with other bees over time also showed no 

evidence of autocorrelation and no effect of disease treatment on the results and so the 

final model examined the effect of time on the proportion of bees interacting and took the 

source colony and receiving observation hive into account, using a spline to produce a 

smooth curve (figure 6.11). 

 

Figure 6.11: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Plot of the proportion of bees interacting with other bees over time for the first 20 days of the 
observation hive experiment. Black spots are bees from colonies with one disease (DWV), red spots are bees 
from colonies with two diseases (DWV & Nosema spp.) and blue spots are bees from colonies with all three 
diseases (DWV, Nosema spp. and BQCV). The fitted mixed model is shown as the black line; this was found to be 

the same for all disease treatments. 
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There was no significant effect of disease treatment on the proportion of bees interacting. 

The proportion of bees interacting decreased over the first ten days and then remained 

steady for the following ten days.  

 

 

6.4 Discussion:  

 

Observation hives were the perfect tool for examining the behaviour of honeybees within 

the hive; it also proved possible to record honeybee longevity. The survival times were 

determined in this experiment by recording the last time that each individual bee was 

recorded alive in the behavioural and foraging observations. This is not completely accurate 

as a bee may have survived for an unknown time, anything from minutes to days, after it 

was last seen. The original plan for the experiment was to collect dead bees that were 

removed from the observation hive and left on a sheet outside. However the majority of 

bees either died away from the hives or were taken from the sheet by scavenging wasps. 

This meant that only 19 bees were actually recovered which was not enough to use for 

survival analysis. This also meant that disease analysis could not be carried out on individual 

bees, as has been done for previous chapters (see chapters 4 and 5). 

 

However, despite the limitations of the method, the survival times for the bees in this 

experiment were not very different from previous studies. In this experiment the bees 

survived for a mean average of 19.8-24.8 days depending on treatment; other studies 

recorded survival times of between 11 and 36 (table 6.4).  

 

Table 6.4: 

Reference Factor 
Average survival time 

(days) 

(Janmaat and Winston, 2000) Control 12-15 

 Varroa 11-13 

(Mattila and Otis, 2006) Control 31 

 Pollen supplemented 36 

(Woyciechowski and Moron, 2009) Control 31.0 

 
N.apis infection at one 

day old 
15.5 

 CO2 treated 25.4 
Table showing survival time results for observation hive experiments. 

 

There was, however, a sharp decrease in the proportion of each group of bees still alive at 

around day 30 (figure 6.4). This decrease in bee numbers occurred between the 5thand 6th 

of September. There was no significant temperature change for either of these days, 

although the 6th was more overcast and both days had higher wind speeds (table 6.3). The 

average wind speed over the course of the experiment was 7.2 knots at 10m, whilst on the 
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5-6th of September the wind speed was recorded at 10 and 12 knots respectively at 10m. 

However, several other days during the experiment had similar wind speeds, so this is 

unlikely to be the cause of the sharp decline in honeybee numbers. Equally there were 

several days that were just as overcast and none of the other meteorological data was 

sufficiently different on those days to explain the decline in honeybee numbers.  A nearby 

field of field beans was combined on the 5th of September, but I am unaware of any 

evidence of combining having a negative effect on honeybees so the sharp decrease in 

proportion of bees alive remains a mystery. It is possible that another farm in the area may 

have been spraying pesticides. Although usually pesticide spraying leads to much higher 

numbers of dead bees (Girolami et al., 2012), if the field being sprayed was far enough 

away then smaller numbers of bees would have flown that distance and been affected by it. 

 

Bees from colonies with three pathogens, DWV, Nosema spp. and BQCV, survived for less 

time on average than bees from colonies with only one pathogen, DWV, whilst bees from 

colonies with two pathogens, DWV and Nosema spp., survived for an intermediate amount 

of time. This suggests that the number of pathogens present has an effect on survival; bees 

from colonies with more diseases survive for shorter amounts of time on average than bees 

from colonies with fewer pathogens. Similar results are discussed in chapter three where the 

effect of a combination of pathogens and forage availability on survival was examined. 

 

However, it is also likely that it is the identity of the pathogens present, rather than merely 

their number, that is important in determining whether there are any negative effects on 

honeybee survival. Previous studies have shown a deleterious effect of Nosema spp. on 

survival (e.g. Higes et al., 2007; Mayack and Naug, 2009; Woyciechowski and Moron, 2009) 

although Mattila and Otis found no effect of N. apis on honeybee survival in their 

observation hive experiment. There is also controversy when it comes to the relative 

virulence of N. apis versus N. ceranae. For example N. ceranae it is considered more virulent 

than N. apis (Higes et al., 2007; Paxton et al., 2007), although a more recent study 

(Forsgren and Fries, 2010) showed no discernible difference in virulence between the two 

species in caged bee studies. This may be accounted for by temperature effects as, at 

higher temperatures, N. ceranae is more virulent than N. apis. For example, at 33oC N. 

ceranae was shown to produce spores faster than N. apis (Martin-Hernandez et al., 2009). It 

is possible that the experiments that suggested N. ceranae was more virulent than N. apis 

were carried out in warmer regions than those that found no difference. This is supported 

by the fact than the significant results described were found in Spanish bees (e.g. Higes et 

al., 2007) whilst those that found no effect of Nosema spp. or no greater virulence of N. 

ceranae compared with N. apis took place in Canada (Mattila and Otis, 2006) and Sweden 
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(Forsgren and Fries, 2010). Colonies in this experiment were infected by a mixture of the 

two species. 

 

BQCV has also been shown to have deleterious effects on honeybee survival but only in 

combination with N. apis (Bailey et al., 1983). In the laboratory, prior infection by N. apis 

was required for BQCV per os infection to occur, coinfection increased the deleterious 

effects of N. apis on bees and was responsible for some colony loses (Bailey et al., 1983). 

This is supported by the results of this experiment where the colonies with both Nosema 

spp. and BQCV did not survive as long on average as those without BQCV. However, there 

was no BQCV-only treatment to confirm the effect of the virus alone.  

 

When time to first forage was investigated there was no significant difference amongst 

treatments. The bees began foraging on average 24-30 days after introduction to the 

observation hives. This is slightly later than other studies have reported (table 6.5) 

 

Table 6.5: 

Reference Factor 
Average time to first 

forage (days) 

(Downey et al., 2000) Control 18.0 

 Tracheal mites 20.5 

 Varroa mites 15.9 

(Janmaat and Winston, 2000) Control 13-14 

 Varroa 9 

(Mattila and Otis, 2006) Control 21 

 N. apis 17 

(Woyciechowski and Moron, 2009) Control 28 

 N. apis infected at one 
day old 

17.4 

 N. apis infected at six 
days old 

19.4 

 N. apis infected at 11 
days old 

24.9 

Table showing time to first forage results for observation hive experiments.  

 

For all of these results, with the exception of Woyciechowski and Moron (2009), bees began 

foraging at an earlier average time than those in this experiment. This might be because of 

the way the time to first forage was determined in this experiment. Because the bees could 

not be monitored continuously, each hive was monitored for an hour each morning to record 

which bees were foraging and the first time a bee was seen making a trip longer than five 

minutes, or returning with propolis or pollen, was counted as her first foraging trip.  This 

means that some bees could have begun foraging at a time when their hive was not being 
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monitored and then have been seen and recorded a day or more later. One of the best 

current methods for monitoring bees in this sort of experiment is to use RFID tags to 

monitor each marked bee as she leaves and returns to the hive (e.g. Schneider et al., 

2012). This can be carried out 24 hours a day when physically watching the bees for that 

time is impractical. However this technology was not available to me at the time of this 

experiment. 

 

There was no significant effect of the pathogens in the source colonies on time to first 

forage, although the average time to first forage was slightly lower for bees from colonies 

with all three diseases when compared to the other two treatments. It was expected that 

the bees from colonies with more diseases would begin foraging earlier as this has been 

seen in previous studies; for example Mattila and Otis (2006) found that N. apis inoculated 

bees began foraging earlier than uninoculated controls. Woyciechowski and Moron (2009) 

also found that the earlier bees were inoculated with N. apis, the earlier they began 

foraging. To the best of my knowledge the effect of DWV and BQCV on time to first forage 

has not been previously examined. However, varroa infested bees begin foraging earlier 

than uninfested controls (Downey et al., 2000; Janmaat and Winston, 2000), and varroa 

infestation is often associated with DWV infection (Yang and Cox-Foster, 2007). Earlier 

foraging ages with more disease may not have been detected in the statistical analysis of 

this experiment due to the low level of replication at the colony level. Only six colonies were 

used for this experiment, two with DWV, two with DWV and Nosema spp. and two with 

DWV, Nosema spp. and BQCV. This makes it difficult for any statistical analysis to determine 

whether an effect is caused by the disease in the colony or just due to random chance. To 

determine whether colony disease level affects individuals’ behaviour, more colonies are 

needed.  

 

It is also possible to look at individual disease level by inoculating individual bees with each 

pathogen treatment. This would require fewer colonies of bees. However as there are 

genetic effects on behaviour, such that different colonies may behave differently regardless 

of pathogen treatment (e.g. Laloi and Pham-Delegue, 2010; Mattila and Seeley, 2011), the 

experiment should still need to be repeated at the colony level. Individual bees should be 

taken from at least three colonies and then individually inoculated with the different 

pathogen treatments. However, it is difficult to find bees that are completely disease free to 

use as a control group. All colonies tested in this experiment tested positive for at least one 

virus. The other way to look at individual disease load is to use post hoc molecular analysis 

to determine exactly what each individual bee was infected with. Unfortunately this was not 

possible in this experiment because each bee was followed until death and the majority of 
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bees either died away from the observation hives or, when removed from the hives, were 

scavenged by wasps.  

 

It has also been shown that some honeybee forager bees prefer to forage in the morning 

whilst others prefer foraging later in the day and this preference has a genetic basis(Kraus 

et al., 2011), although no one has looked at whether pathogens might also influence it. It is 

therefore possible that by only watching bees in the morning, to avoid recording orientation 

flights that usually take place in the early afternoon (Vollbehr, 1975), bees who preferred to 

forage later in the day were excluded from analysis. 

 

Previous studies of in-hive behaviour have identified several factors that influence honeybee 

behaviour. For example, Wang and Moeller (1970) used observation hives to show that 

honeybees infected with Nosema spp. were less likely to attend the queen or feed brood 

than healthy controls. Bailey and Fernando (1972) showed a similar effect for bees infected 

with SBV that were also less likely to attend the queen than healthy controls. This is likely to 

be an adaptation to reduce pathogen spread. However Mattila and Otis (2006) found no 

effect of N. apis on behaviour in their experiments. They did show that pollen-limited bees 

rested more than control bees ,although pollen availability did not affect brood or food 

related activities. Pesticides have also been shown to affect behaviour. Cox and Wilson 

(1984) showed that bees treated with permethrin, a pyrethroid neurotoxin used against a 

wide range of insects and mites, spent significantly more time cleaning than controls and 

significantly less time walking, in the cells, sharing food, or touching their antennae to other 

bees when compared with control bees. Treated bees were also more likely to make 

abnormal dances (rotation, tremble, abdomen curling). Again some of these changes may 

be adaptations to reduce spreading the pesticide to other bees (reduced food sharing and 

increased cleaning for example) while others may be due to deleterious effects of the 

pesticide (decreased time spent walking for example). 

 

In this experiment, however, there was no effect of the disease treatment on in-hive 

behaviour. Neither the proportion of bees resting over time nor the proportion of bees 

interacting with other bees over time differed with the number of diseases present in the 

first 20 days of this experiment. These were the two most commonly affected behaviours in 

previous studies (e.g. Cox and Wilson, 1984; Mattila and Otis, 2006; Wang and Moeller, 

1970) and appear to have two different drivers for behavioural change. The increased time 

resting caused by some factors may be a result of the deleterious impact of that factor; 

infected or treated bees have less energy and so spend more time resting. The decreased 

time interacting with other bees (feeding, grooming, caring for brood or attending the 

queen for example) may be an adaptation to reduce spread of the pathogen or pesticide. 
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The lack of effect found in this study may again be due to the low level of replication at the 

source colony level (see above). 

 

There was, however, an effect of time on both behaviours studied. The proportion of bees 

resting increased and decreased in an oscillating manner. A previous study by Seeley and 

Kolmes (Seeley and Kolmes, 1991) showed no such changes in amount of time spent 

resting, although Kolmes’ method found that in the first few days newly emerged bees were 

more likely to be seen inside cells (something it was not possible to see in this experiment 

because only the bees’ thoraxes were marked and only the tip of the abdomen is visible 

when the bee is in a cell) whilst Seeley’s method showed that in the first few days newly 

emerged bees were more likely to be cleaning. It has also been shown that there is no 

difference between in-hive and forager bees in the time spent sleeping (Eban-Rothschild 

and Bloch, 2008).  

 

When compared with the amount of rainfall over time, it appears that the proportion of bees 

resting increased with increased rainfall. Previous studies have shown that adverse weather, 

especially rain, leads to a reduction in foraging activity, as the bees do not fly in the rain, 

and that leads to reduced activity within the hive (Riessberger and Crailsheim, 1997). With 

less forage brought in, the bees would spend less time collecting and storing pollen and 

nectar from the forager bees or following waggle dances. There would also be more bees in 

the colony to share tasks.  

 

Bees in observation hive B were more likely to be resting than those in hive A. This is likely 

to be because hive B had more bees in it through the course of the experiment. With more 

bees to share jobs, bees without work would be more likely to be seen resting. It has been 

suggested the bee colonies have reserve workers, nurse bees that can be called upon when 

there is a sudden increase in work, for example if a profitable food source is found and 

more bees are needed to collect and store to food (Robinson, 1992). If there are more than 

enough bees in the colony then there may be more bees acting as reserves with no work to 

do. 

 

The proportion of bees interacting with other bees decreased over the first ten days and 

then remained at a constant low level of about 0.05 for the next ten days. It has been 

suggested that honeybees may reduce the amount of time they spend interacting with other 

bees if they are infected with a pathogen to prevent the spread of that pathogen (Bailey and 

Fernando, 1972; Wang and Moeller, 1970). It has also been shown, as part of this PhD, that 

the quantity, or load, of some pathogens that bees carry increase with age (see chapter 4), 

so it is possible that, as the bees grow older, and the number and load of pathogens 
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increases, that they interact with other bees less frequently. Also as bees age they move 

from in-hive tasks to foraging (Calderone, 1998). Many of the in-hive tasks, such as 

attending the queen, involve interacting with other bees whilst forager bees only interact 

whilst dancing or giving food to other bees to store.  

 

In conclusion, this experiment showed no statistically significant effect of the diseases 

present in the source colony on in-hive behaviour or time to first forage for individual bees, 

although bees from colonies with more diseases were likely to live for less time than those 

from healthier colonies. The lack of significance in these data may have been down to the 

low level of replication at the colony level or because the disease status of the source colony 

was less important than the disease status of the individual. Mattila and Otis (2006) showed 

that bees taken from their colony and tested in another colony showed fewer behavioural 

changes caused by pollen and N. apis treatment than those raised in their own colonies, 

suggesting that the colony bees live in as adults may be more influential on their behaviour 

as adults than the colony that they are raised in as larvae. 
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Chapter 7: General Discussion 

 

The aim of this project was to use new and existing methods to study the effect of 

pathogens on honeybee behaviour. To this end several different methods were used to 

study learning behaviour, foraging behaviour, flight and survival. This type of research, 

combining laboratory and field based techniques, is important because information gained 

only at the laboratory level do not always reflect what happens in the real world where 

there are many additional and interacting factors that cannot always be included or 

controlled for in laboratory based experiments (Pedersen and Babayan, 2011). 

 

In the learning experiments in chapter 4 forager bees inoculated with a fungal pathogen 

were less able to learn than uninoculated forager bees, suggesting that the fungus had a 

negative effect on the bees’ learning ability. This has been shown previously for the 

honeybee pathogen DWV (Iqbal and Mueller, 2007) the parasitic varroa mites (Kralj et al., 

2007), and for the bees’ own immune system (Mallon et al., 2003; Riddell and Mallon, 

2006). What is interesting is that there was no difference in the effect of time since 

inoculation (two, four or six days) on learning ability; although it was hypothesised that over 

time, as the fungus did more damage, the negative effect on learning should increase. For 

example several pathogens have been shown to decrease survival of their hosts over time 

as it usually takes days or even weeks for the pathogen to cause enough damage to kill the 

host (e.g. Bos et al., 2012; Forsgren and Fries, 2010; Yang and Cox-Foster, 2007). Very few 

experiments have looked at changes to behaviour over the course of infection, although it 

has been shown that fungal infection in ants leads to changes in behaviour over time such 

that infected ants initially received more grooming from nest mates and were more likely to 

groom themselves than uninoculated individuals, but after two days the amount of 

grooming they received and the amount of self-grooming decreased (Bos et al., 2012).  The 

lack of effect of time since inoculation in these experiments may simply be because the 

fungus was too fast acting. At the dose used in these experiments M. anisopliae killed its 

host within about six days on average. This may not have been enough time to see any 

change in behavioural effects in the honeybees. 

 

Although it has been shown that younger bees are less able to learn than forager bees 

(Behrends and Scheiner, 2009), this is, to the best of my knowledge, the first experiment to 

test the effect of a pathogen on the learning ability of different ages of honeybees. I 

showed that young adult bees were better able to learn after inoculation than uninoculated 

bees of the same age; whilst the inoculated forager bees were less able to learn than 

uninoculated bees. This is likely to be because the fungus was affecting the different aged 

bees’ hunger differently. As with some other pathogens, like Nosema spp. (Naug and Gibbs, 
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2009), the fungus may be energetically stressing the bees and making them more 

responsive to the sucrose stimulus that was used in the learning experiment. This makes it 

appear that they are better able to learn (Mujagic et al., 2010). A sucrose sensitivity test 

was used to show that the fungus was indeed causing increased responsiveness in the 

young adult bees but a similar test was not performed on forager bees. It would be useful 

to test the effect of the fungus on sucrose responsiveness in forager bees to see whether 

there is less effect than was seen in the young adult bees. But this does highlight the fact 

that the age of bees used in experiments is an important factor when examining behaviour.  

 

Age is known to be an important factor in the immune response as well. For example young 

adult bees have greater fat body mass than forager bees, which means that they may be 

better able to respond to infection via the production of anti-pathogenic proteins than older 

forager bees (Wilson-Rich et al., 2008). Forager bees also have a decreased haemocyte 

count than young adult bees, although phenyloxidase activity was greater in forager bees 

compared with young adult bees, (Schmid et al., 2008) and the average level of 

encapsulation, a method used by honeybees to combat pathogen invasion, remained stable 

across all life stages (Wilson-Rich et al., 2008). 

 

The learning experiments were also used to look at the effect of naturally occurring 

pathogens. Although none of the bees tested showed any obvious symptoms of disease, 

they were tested using Q-RT-PCR to see exactly how much covert and inapparent virus and 

Nosema sp. infection was present. There are several methods used to detect pathogens in 

honeybees (reviewed in De Miranda, 2008) but since RT-PCR was shown as a good method 

for detecting and distinguishing KBV from closely related viruses (Stoltz et al., 1995), the 

majority of groups now use RT-PCR detection (e.g. Baker and Schroeder, 2008a; Blanchard 

et al., 2008; Chen et al., 2006b; Kukielka et al., 2008a; Tentcheva et al., 2004a). Unlike the 

serological methods previously used to detect honeybee viruses (eg Ouchterlony gel 

diffusion, indirect fluorescent antibody (IFA) and enzyme-linked immunosorbent assay 

(ELISA) tests, (Allen and Ball, 1995; Allen et al., 1986; Anderson, 1984)), RT-PCR methods 

can be highly specific and sensitive. For example primers have been designed that can 

differentiate between even closely related honeybee viruses like Kashmir bee virus (KBV) 

and acute bee paralysis virus (ABPV) (De Miranda, 2008) and SYBR green Q-RT-PCR is 

sensitive enough to detect viruses at 10-7 in a 10-fold serial dilution (Kukielka et al., 2008b). 

However, this does raise the question: is it biologically relevant to be detecting pathogens at 

such low levels?  

 

The results of this project showed that even at the low, covert levels, with no obvious 

symptoms, some of these pathogens still had an effect on behaviour. For example young 
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adult bees infected with sac brood virus (SBV) and Nosema spp. were less able to learn than 

uninfected young adult bees. There was, however, no significant effect of the presence of 

any pathogen on forager bee learning ability or of the quantity of each pathogen on the 

learning behaviour at either age.   

 

Harmonic radar was used in chapter 5 to examine the effect of naturally occurring 

pathogens on the bees’ behaviour, this time looking at their ability to perform orientation 

flights. The effect of parasites, pathogens and pesticides on honeybee flight behaviour has 

been studied in the lab (Duay et al., 2002; Harrison et al., 2001) and in the field (Kralj and 

Fuchs, 2010; Kralj and Fuchs, 2006; Schneider et al., 2012). However, with the harmonic 

radar, more detailed information could be gathered, for example the speed of flight in the 

field, the total distance travelled and the number of times the bee stopped, all of which are 

difficult if not impossible to record using other methods.  

 

This experiment showed that low levels of pathogens also affected the flight behaviour of 

honeybees; for example the amount of BQCV and N. apis seemed to affect how fast the 

bees were likely to fly and the amount of BQCV affected how often the bees stopped. These 

results were only, however, significant at the 10% level. DWV was detected at higher levels 

than the other pathogens; although all bees tested had normal wings. The amount of DWV 

detected had an effect on flight duration such that bees with higher loads of DWV tended to 

fly for shorter distances and times. This could be because the pathogens, especially DWV, 

cause energetic stress to the honeybees reducing the distance or time they can fly for. 

However, as this was the first time this method has been used to study the effect of 

pathogens on honeybee orientation flight, the level of replication was quite low (N = 56 but 

only 28 were tracked with the radar, the rest either did not fly or flew too short a distance 

to be detected). The experiment allowed the method to be refined and it is currently being 

used to look at the effect of Nosema sp. infection on orientation flights in honeybees (Wolf, 

unpublished). 

 

Observation hives were also used, as described in chapter 6, to look at the effect of 

naturally occurring pathogens on honeybee in-hive behaviour and time until first forage. 

Observation hives have been used since the eighteenth century (Ratcliff, 2005) and are still 

the best way to study the in-hive behaviour of bees. However, as the bees in this study 

could not be retrieved after death, the individual disease loads of these bees could not be 

determined. This meant that only the effect of the disease load of the source colony could 

be tested statistically and, due to low replication at the colony level, the results of this 

experiment were mostly inconclusive. The results did suggest, however, that bees from 

colonies with more diseases were likely to begin foraging earlier; a result that has been 
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found for several diseases including Nosema sp. (e.g. Wang and Moeller, 1970), varroa 

mites (Downey et al., 2000) and SBV (Bailey and Fernando, 1972).  

 

One of the main issues with bee research is knowing whether replication should occur at the 

level of the individual bee or at the level of the colony. For example in the learning 

behaviour experiments in chapater 4 32 bees of each treatment were tested to see whether 

the fungus M. anisopliae had any effect on their learning ability. All those bees came from 

the same colony. It has been shown that bees from different patrilines (bees with different 

fathers) have different learning abilities (Laloi and Pham-Delegue, 2010). In other species, 

genetics can have an effect on susceptibility to disease; for example bumblebees from 

different sire groups (with different fathers) have different susceptibility to parasites (Baer 

and Schmid-Hempel, 2003) and leaf cutter ants with different fathers, or from colonies 

where the queen has mated with multiple males, are less susceptible to fungal infection  

(Hughes and Boomsma, 2004). So it is likely that bees from different colonies, with different 

queens who will have mated with different drones, will respond differently. This could mean 

that bees from one colony could show different behavioural changes in response to 

pathogen infection than bees from another colony. For this reason replication should be 

carried out at the level of the colony as well as the individual, taking a good number of bees 

from several different colonies. 

 

However, this is not always feasible. In the observation hive experiment, chapter 6, bees 

were taken from six separate colonies, marked and monitored until death. The colonies had 

different levels of disease; one, two or three pathogens were present. This meant that there 

were only two replicates of each treatment despite the fact that over 1000 individual bees 

were monitored. However, finding enough colonies with each disease level, and then 

collecting, marking and monitoring all the individual bees was not practical for a single 

person.  

 

Another major challenge in honeybee research is that many of the methods used to study 

honeybee pathogens and behaviour are not standardised. When Seeley and Kolmes were 

studying age polyethism in in-hive bees they came up with contrasting results, Seeley 

(1982) finding age related changes in in-hive behaviour but Kolmes (1985) finding no 

changes. The two decided to experiment on sister bees within the same colony at the same 

time, each using their own method for recording and analysing the behaviour, and they still 

found contrasting results (Seeley and Kolmes, 1991). 

 

I used CPE to study the learning behaviour of honeybees. However there are several 

different methods in use, making the results difficult to compare. Different groups use 
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different methods in order to restrain the bees for testing and then test them at different 

times of day, use different odours for conditioning, reward the bees with different 

concentrations of sucrose, and test after different numbers of training trials and after 

differing lengths of time (e.g. Iqbal and Mueller, 2007; Kralj et al., 2007; Laloi et al., 2000; 

Mallon et al., 2003; Mujagic et al., 2010). Some of these factors do affect how well bees 

learn. For example time of day; honeybees learn best in the morning (Lehmann et al., 

2011). Also restraining technique; honeybee are usually chilled to immobilise them, allowing 

them to be restrained for the experiment. However, the length of time and the temperature 

at which bees are chilled can itself have an effect on learning ability (Frost et al., 2011).  

 

In addition to this, the molecular identification and quantification of honeybee viruses is 

carried out using a variety of different methods and different primers. Most groups now use 

RT-PCR to detect the different pathogens, especially viruses that often have ambiguous or 

no symptoms (see chapter 1.3), but often use different primers. Partially this may be down 

to the fact that all but one honeybee virus detected to date are RNA viruses (Ribiere et al., 

2008) which have very high mutation rates (one mutation per 2200 bases or 4 mutations 

per transcript) (Drake et al., 1998). This is largely because the RNA dependant RNA 

polymerase (RdRp) has no 3’-5’ endonuclease activity (proof reading capability) (Dale and 

Schantz, 2002). This high mutation rate is at the threshold for genetic maintenance such 

that even a slight increase in mutation rate would exceed the maximum viable mutation rate 

leading to extinction (Drake and Holland, 1999). However it also allows these viruses to 

adapt more easily to new situations as they have huge genetic plasticity (Carter & Genersch, 

2008). This high mutation rate means that genetically related virons may show high levels of 

variation, which makes it difficult to classify viruses in terms of species, thus the term 

quasispecies was used to describe the population of phylogenetically related variants that 

may be present in a single infected organism (Carter & Genersch 2008). 

 

Primers have to be designed for conserved regions (eg sequences coding for important 

proteins such as the RdRp) that are less likely to vary between isolates. However, there is 

still some variation between variants and different groups use different primer sequences 

(De Miranda, 2008). When quantification is needed, some groups use TaqMan Q-RT-PCR 

(e.g. Blanchard et al., 2007; Chantawannakul et al., 2006; Chen et al., 2005) whilst others 

use SYBR Green (e.g. de Miranda and Fries, 2008; Tentcheva et al., 2006), as was used in 

these experiments. All this variation makes it difficult to compare results between groups, 

especially as some of the viruses are so closely related that some of the primers used may 

not differentiate between them (de Miranda et al., 2010). 

 



149 

 

Animal and human cell cultures and cell lines have been used to study the properties of 

animal viruses and to reveal the mechanisms by which viruses cause disease; but currently 

there is no cell culture system to easily propagate honeybee viruses (Hails et al., 2008). It is 

possible to extract a lysate from infected bees that can then be used to infect healthy 

individuals (e.g. Iqbal and Mueller, 2007), but merely injecting the bee can cause 

behavioural changes as the bee’s immune system responds to the physical damage (Mallon 

et al., 2003) and many of the honeybee viruses, like deformed wing virus (DWV), are not 

easily transmitted by feeding (Ribiere et al., 2008). Bees can be taken from colonies infected 

with a particular pathogen, as in the observation hive experiments (see chapter 6), but each 

individual bee will have its own disease profile; some will be infected with the pathogen 

whilst others will not, as was seen in the individual disease analysis used in chapters 4 and 

5. 

 

Until cell lines are produced, an easier way to examine the effect of pathogens on honeybee 

behaviour is by using a model system. Krogh’s principle states that ‘for a large number of 

problems, there will be some animal of choice, or a few such animals on which it can most 

conveniently be studied’ (Krogh, 1929). These model organisms and systems are specially 

selected as research materials because they are viewed as easy and relatively inexpensive to 

gather, transport, maintain, and manipulate experimentally. There are many examples of 

model organisms including the honeybee which, since its genome was sequenced in 2006 

(Weinstock et al., 2006), has been used as a model organism. For example, Abramson et al. 

(2000) used honeybees as a model to study the effect of ethanol on various aspects of 

behaviour and physiology. Other model organisms include the sea urchin for the study of a 

variety of developmental phenomena (e.g. Maienschein, 1991), the sea slug Aplysia sp. 

for neurobiological studies (e.g. Rajasethupathy et al., 2012) and the mouse in many 

different fields, for example for medical research (e.g. Bouchard et al., 2012; Manga and 

Orlow, 2012; Norgett et al., 2012). 

 

I used the generalist entomopathogenic fungus, Metarhizium anisopliae, as a model 

pathogen to study the general effect of pathogenic infection on survival (chapter 3) and 

behaviour (chapter 4) in honeybees. Metarhizium anisopliae is easily administered in known 

doses in a powdered form without any physical damage to the bees. In these experiments a 

dose of 1:30 was able to kill 100% of inoculated bees within two weeks. This ensured that 

the dose was enough to definitely kill the bee whilst leaving it alive long enough for 

behavioural experiments to take place, meaning that bees could be tested two, four and six 

days after inoculation with the fungus to see whether the effect of infection changed over 

time. 
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There is also the problem that in nature it is hard to find individuals without any pathogen 

species present. This means that any behavioural results observed after infection with a test 

pathogen may be caused by the test pathogen or as a result of interactions between the 

test pathogen and any natural pathogens the host was already infected with. Although this 

is still a problem when using M. anisopliae, it is at least possible to be sure that the bees 

were not infected with this fungus. As many of the honeybee viruses can occur as 

inapparent or covert infections, with no obvious symptoms, molecular analysis is required to 

be certain a colony is not infected (Ribiere et al., 2008). 

 

The fungus was used to examine both survival (chapter 3) and learning (chapter 4) in 

honeybees. Unfortunately the M. anisopliae killed the bees too quickly to determine the 

effect of pre-existing pathogens or forage restriction on the bees’ ability to defend against 

subsequent pathogen challenge. A repeat of this experiment using a lower dose of M. 

anisopliae might give the bees a chance to defend themselves against the fungus and 

determine whether bees infected by more than one pathogen or suffering restricted forage 

are less able to survive subsequent fungal attack. 

 

Survival analysis was also used in chapter 3 to investigate the effect of a combination of 

forage restriction and disease on honeybees. It has been suggested that combinations of 

factors that negatively affect bees may be more important than single factors. For example 

whilst the evidence for the effect of pathogens on honeybee survival is contentious 

(Cresswell et al., 2012), recent studies have shown the combined effect of pathogens and 

pesticides is much worse than any single factor alone (Pettis et al., 2012; Vidau et al., 2011; 

Wu et al., 2012). My results showed that forage availability and disease both had an effect 

on honeybee survival and that the combined effect of restricted forage and high disease 

levels was worse than either factor alone. I also showed that, by feeding bees that had been 

raised in colonies with restricted forage, their survival could be improved. However these 

experiments were carried out in cages under optimal conditions and so the results may not 

be exactly the same in the field. For example Mattila and Otis’ (2006)observation hive and 

colony experiments showed no effect of additional pollen feeding on survival of N. apis 

infected bees despite previous cage studies having shown this (Rinderer and Elliott, 1977). 

This highlights the difference between laboratory and field-based experiments. Laboratory-

based experiments often simplify things, removing factors like weather that may affect the 

results. Field experiments may take more factors into account, but can be influenced by so 

many factors that interpreting results becomes difficult or even impossible. 

 

The results of my experiments suggest that pathogens can have an effect on honeybee 

behaviours. This is true for low levels of viruses even when no obvious symptoms are seen 
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and for the fungus M. anisopliae which can be used as a model system for studying infection 

in honeybees. These effects, which include decreased learning ability, increased energetic 

stress and hunger and decreased flight ability, will all have indirect effects on honeybee 

survival. For example if honeybees are less able to learn then they may be less able to 

return to their colony when foraging, as has been shown for varroa infested (Kralj and 

Fuchs, 2006) and Nosema sp. infected (Kralj and Fuchs, 2010) bees. Energetic stress has 

been suggested as the main reason Nosema sp. kills honeybees (Mayack and Naug, 2009).  

 

Honeybee decline is the focus for many current studies and these results add to the 

increasing evidence that pathogens may be responsible. However there are several other 

factors that are also likely to be important, Each factor may be important in different 

situations or geographical regions and multiple factors often act together (Brown and 

Paxton, 2009; Oldroyd, 2007; Potts et al., 2010a; Potts et al., 2010b; Wu et al., 2012). 

 

Future work needs to focus on standardising the methods used to study honeybees and 

their pathogens so that work from different groups can be more easily compared. One of 

the main goals of the prevention of colony losses network (COLOSS) is to produce a 

standardised protocol for monitoring honeybee colony losses (Bach Kim et al., 2010). 

However, other methods for studying both behaviour and pathology also need 

standardising. Cell cultures for virus propagation are needed to advance research on viruses 

substantially. One of the goals of an insect pollinator initiative funded project; ‘Impact and 

mitigation of emergent diseases on major UK insect pollinators’ is to produce cell cultures for 

DWV and Nosema spp. (Paxton et al., unpublished). However, cultures for the other viruses 

are also needed. Finally a thorough review of the current literature is required to ensure that 

work done or in progress is well known and not repeated.  Such a review should also 

identify hypotheses that still need testing, thereby targeting future research.  
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Appendix I 

 
Histograms showing the distribution of DWV load relative to the housekeeping 

gene -actin within the bees from the learning experiment in chapter 4.2.3. The 

lower (or more negative) the relative load the more virus was present, see chapter 2.6.2. 

Only DWV shows a bimodal distribution. 
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