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Abstract 

Myxococcus xanthus is a soil-dwelling bacterium which produces carotenoids 
upon irradiation with blue light. Genetic analysis has allowed elucidation of 
transduction of the light signal to the carotenogenic machinery within the cell. 
The primary element within the carotenogenic regulon is the genetic switch 
manifested by CarR and CarQ. CarR is an integral membrane protein which binds 
to the sigma factor CarQ and holds it in an inactive state at the cell membrane. 
Illumination of the cell with blue light excites the photosensitiser protoporphyrin 
IX (PPIX) within the bacterial membrane, which then excites molecular oxygen to 
the excited singlet state. Both singlet oxygen and excited triplet state PPIX can 
cause large amounts of cellular damage. Carotenoids prevent this damage by 
absorbing the excess energy from these excited species and dissipating it 
harmlessly as heat. 
The presence of singlet oxygen within the bacterial membrane causes the 
inactivation/degradation of CarR. Removal of CarR releases CarQ from the 
membrane enabling it to mediate transcription from various promoters. CarQ 
causes transcription of the crt! gene and of the carQRS operon which produces 
further CarQ and CarS. CarS causes de-repression of the crtEBDC cluster. The 
carotenogenic enzymes encoded by crt! and the crtEBDC cluster catalyse the 
production of carotenoids which quench the initial signalling molecules, singlet 
oxygen and triplet PPIX. This causes down-regulation of the regulon as a whole as 
CarR is no longer degraded and once again carries nascent CarQ to the membrane 
in an inactive state. 
The negative feedback loop described above is an important consideration when 
assessing mutants which produce carotenoids either constitutively (Carc 

phenotype), or under no conditions (Car- phenotype). This work investigates the 
consequences of Carc and Car- mutations on the activity of promoters within the 
Car regulon in order to clarify the roles of various genetic loci. It is demonstrated 
that CarA has no regulatory role in expression of crt! or carQRS and that the 
expression of crt! has no regulatory consequences. Sequencing downstream of crt! 
revealed a novel gene gufB (gene of unknown function B) which has homologues 
of no known function. 
The critical event in the activation of the carotenogenic system is expression of the 
carQRS operon allowed by the release of CarQ from its complex with CarR at the 
membrane. Attempts were made to extract information about the interaction of 
CarQ with its cognate promoter at carQRS through a variety of in vivo and in vitro 
molecular and genetic techniques. Site-directed mutations within pcarQRS were 
assessed in vivo through the use of lacZ transcriptional fusions, enabling 
identification of important regions within the carQRS promoter. In vitro 
experiments provided information about the possibility of using molecular 
methods to assess interactions between CarQ and the pcarQRS promoter. 
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1. Introduction 

1.1. The Myxobacteria 

The myxobacteria as a group of organisms were first described by Roland Thaxter 

in 1892 (Thaxter, 1892). They are found in almost all environments including 

Antarctica (Dawid, 1988), but their main habitat seems to be the temperate topsoil 

and rotting vegetation (Reichenbach, 1993). There are several physiological 

features of the myxobacteria that have prompted the interest of researchers and 

most of these aspects involve social interactions between individual cells 

(Dworkin, 1996). Myxobacterial colonies can exhibit a swarming motility which 

allows 'wolf-pack' behaviour as myxobacteria predates on other bacteria. Their 

predatory life-style involves the production of lytic exoenzymes and the lysis 

products of other bacteria are sufficient to sustain growth (Dworkin, 1962). 

Myxobacteria are also capable of undergoing multicellular development to form 

fruiting bodies, morphologically complicated cellular aggregates which contain 

resistant differentiated cells termed myxospores (Sudo and Dworkin, 1969; 

Dworkin, 1996). The production of a population of myxospores within a fruiting 

body, sometimes within a hardened sporangiole, means that on relief of starvation, 

a population of germinants is released which is more efficient in terms of 

exoenzyme production and predation on other bacteria than a single germinating 

cell. 

The order of Myxococcales is divided into the sub-orders of Cystobacterineae and 

Sorangineae each of which are divided further into two families. The 

Myxococcaceae family within the Cystobacterineae contains the organism dealt 

with in this work, Myxococcus xanthus. The other myxobacterium which is widely 

studied is Stigmatella aurantiaca which is a member of the Cystobacteraceae 

family within the Cystobacterineae. The genus Myxococcus contains four species, 

M. xanthus, M. fulvus, M. virescens and M. stipitatus. All four species form 

fruiting bodies which are small mounds which differ mainly in their pigmentation 

and in the fruiting body stalks. 
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Species Fruiting body Colouration Other features 

stalk 

M. xanthus none yellow/orange bright orange fruiting bodies 

M. stipitatus stalked white/fawn yellow fluorescence under UV 

M.fulvus constriction at base white/pink/red 

M. virescencs none green/yellow/grey 

Table 1-1 Species o/the genus Myxococcus and their main 
similarities/differences. 

It must be pointed out that M. xanthus should not be considered a typical member 

of the Myxococcus genus, let alone of the entire Myxococcales order. It forms a 

very simple fruiting body in comparison to other myxobacteria such as Stigmatella 

aurantiaca and Nannocystis elegans and it also possesses some unique features. 

For example, it is the only myxobacterium for which illumination inhibits fuiting 

body formation rather than being a prerequisite for fruiting. For a general review 

of the classification and early characterisation of the myxobacteria see 

Reichenbach (1993). 

1.1.1. Myxococcus xanthus 

Most workers who research the myxobacteria and their features study Myxococcus 

xanthus. It is an easily culturable, genetically amenable organism with several 

generalised tranducing phage, a coliphage PI-based plasmid transduction system 

(O'Connor and Zusman, 1983) and it can be electroporated with high efficiency. It 

is readily studied using lacZ reporter genes and can support the introduction of 

transposons (For a review see Gill and Shimkets, 1993). 

In the vegetative mode of growth M. xanthus cells are typically rod-shaped of 

dimensions 0.7-1.2 by 3-12 J.Lm, with a doubling time of -5 hours. Under 

conditions of limiting nutrients on a solid substrate, around 100,000 cells of M. 
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xanthus aggregate to form a mound of cells (a fruiting body) within which a 

subset of cells differentiate to form relatively resistant dormant cell forms or 

myxospores (Dworkin, 1996; Sudo and Dworkin, 1969). This process in M. 

xanthus has been shown to require at least five separate intercellular signals, cell­

cell contact, extracellular fibrils, an active motility system etc. (Downard et ai., 

1993). 

Other interesting features of non-flagellate M xanthus include its gliding motility 

system. Motion has two modes, adventurous, single cell motion (A-motility) and 

social, group movement (S-motility). S-motility requires cell-cell contacts and 

appears to be mediated by extracellular fibrils and pili. Both forms of motility 

require the production of extracellular polysaccharide in the form of slime which 

can be seen as a trail left behind by cells moving adventurously. Most mutants 

defective in motility appeared to be hindered in either A-motility or S-motility but 

not both (except for the mgiA gene for mutual gliding; Stephens et ai., 1989). As 

well as the A (agi adventurous gliding) and S (sgi social gliding) genes (Hodgkin 

and Kaiser, 1979), many other loci have been implicated in motility, for instance 

the Jrz chemotactic system, the dsp genes and the dif chemotaxis homologues 

(Dworkin, 1996; Yang et ai., 1998). 

The organism also exhibits a number of characteristics which had conventionally 

been regarded as present only in eukaryotes. For instance, the presence of 

serine/threonine kinases (Munoz-Dorado et ai., 1991), conserved 'eukaryotic' 

protein sub-domains (e.g. HMGJ(Y) subdomains of CarD) and the ability to 

undergo complex co-ordinated multicellular morphogenesis. M. xanthus was one 

of the two myxobacteria (the other being Stigmatelia aurantiaca) in which the 

first bacterial retron elements and their reverse transcriptases were found 

(Lampson, 1993). The genome size of M xanthus is also unusually large at 9,454 

kb, nearly double that of E. coli. 

Myxobacteria are producers of a wide range of secondary metabolites including, 

for M xanthus, the antibiotic TA (Varon et al.,1997), saframycin, althiamycin, 

myxovalargin and myxovirescin (for review, see Reichenbach and Hofle, 1993; 

Foster et ai., 1992). 
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The feature of M xanthus biology which concerns the rest of this work is the 

production of coloured carotenoids as a response to illumination with blue light. 

This is the most apparent phenomenon associated with irradiation, but light has 

also been shown to inhibit fruiting body formation at an early stage in M. xanthus 

(Shimkets, L., pers. comm.). As mentioned earlier, this is the only member of the 

myxobacteria for which this is the case. 

1.2. Biology and Light. 

Light has a wide ranging and important impact on biological systems. It is 

obviously an integral requirement for photosynthesis and visual perception. Other 

biological roles for light include bioluminescence and vitamin D synthesis in 

animals, the establishment of circadian rhythms in a wide range of organisms and 

morphogenesis in fungi (Linden and Macino, 1997). The alga Chlamydomonas 

reinhardtii requires blue light to differentiate immature pregametes into mature 

gametes (Pan et al., 1996). However, illumination also has less beneficial 

consequences. UV light is a potent carcinogen as a result of various modes of 

photo-induced DNA damage, including formation of pyrimidine dimers and 

hydroxylation of guanosine residues (Kohen et ai., 1995). Adsorption of radiation 

in aerobic conditions is also linked to the production of high-energy oxygen 

species which are capable of causing potentially lethal damage and the prevention 

of this oxidative damage is of prime concern to photosynthetic organisms. In 

general most organisms seem to have evolved coordinated mechanisms for 

protection against illumination and oxidative damage, for example the SOS 

system (Humayun, 1998) and the SoxR and OxyR systems in E. coli and S. 

typhimurium (Ahem and Cunningham, 1995). 
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1.2.1. Photochemistry 

Light energy can be absorbed by many molecules with the colour of light absorbed 

being dependent on the chemical and physical nature of the molecule absorbing 

the light. For instance bacteriorhodopsin appears red because it absorbs blue light. 

It is capable of doing this because its conjugated retinal molecule contains a tract 

of six conjugated double bonds which delocalise their electric fields over the 

region of conjugation. 

Molecules which absorb the energy of light have their own intrinsic energy 

increased as electrons are raised from the ground state to an excited state. The 

second law of thermodynamics dictates that the system must return to its lowest 

energetic state if possible, reverting to ground state. This results in a number of 

possibilities for the excited molecule. It may re-emit its excitation energy as light 

due to electronic transitions, giving rise to fluorescence. Alternatively, it may emit 

the energy as heat due to vibrational relaxation, or in some cases the excitation 

energy is released by chemical reaction involving the excited molecule. 

If the electron that is excited is one of a pair of electrons within a particular 

bonding or non-bonding orbital, then in the ground state the electrons will have 

opposite spin and exist in a singlet state. (Spin states of electrons are governed by 

a quantum number which may have the values 112 or -112, each denoting a 

'direction' of spin. The state of the electron pair is denoted by S=21+ 1, where I is 

net spin, and therefore if the electrons have opposite spin, S= 1 {2[ 112+-112]+ 1 }, 

i.e. a singlet state. If the electrons are spinning in the same direction S=3 i.e. a 

triplet state.) On excitation one of the electrons is removed to an orbital of higher 

energy to form an excited singlet state. Since the electrons are now in separate 

orbitals the excited electron may change its spin state, a process which is now no 

longer forbidden by the Pauli exclusion principle. This spin flipping is termed 

intersystem cross-over and results in a metastable triplet state. 

Excited triplet states are relatively stable since the excited electron must first 

return to its original spin state before it can lose its excess energy and return to the 

ground state. This leads to an extended half-life of excitation and the delayed 
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remission of absorbed light is termed phosphorescence rather than fluorescence. 

Figure 1-1 demonstrates these possible transitions for a pair of electrons within a 1t 

bond. 
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Figure 1-1 Jablonski diagram of electronic transitions of 'IT: electron 
pairs. 
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The ground state is a singlet state with electrons having different spin 
states. On absorption of energy an electron is promoted to a higher 
electronic orbital (S 1 and S2). Intersystem crossover may occur flipping 
the spin state of the excited electron and producing an excited triplet 
state (T1 and T2)' Relaxation mechanisms described include 
fluorescence, phosphorescence and vibrational relaxation which emits 
heat. Adapted from Kohen et aI., 1995. 
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1.2.2. Photosensitisation 

Photosensitisers are molecules which absorb incident light to cause a deleterious 

effect within the cell. Excitation of photosensitising molecules is responsible for a 

great deal of light-induced cellular damage. Damage is mainly caused by the last 

of the relaxation mechanisms described in the previous secton - through the 

excitation of a second molecule, either a cellular biomolecule, leading to 

formation of photosensitiser adducts, or molecular oxygen, which is excited to the 

potent oxidiser, singlet oxygen. 

In the myxobacterial membrane is the photosensitiser protoporphyrin IX which is 

the direct biosynthetic precursor to haem (Burchard et ai., 1966; Burchard and 

Hendricks, 1969). The molecule is Ubiquitous within cellular membranes but its 

levels increase around 16-fold as the cells reach stationary phase. It is a porphyrin 

as its name suggests and possesses a large resonance energy at the same 

wavelength as blue light. Blue light incident on protoporphyrin IX causes the 

excitation of the photosensitiser to an excited singlet state from the ground singlet 

state. The excited singlet state PPIX can undergo inter-system cross-over (a 

forbidden transition) and form metastable excited triplet state PPIX. This triplet 

state can cause cellular damage through two types of mechanism. 

In type IT, or oxygen-independent photosensitisation, damage is caused directly by 

excited photosensitiser, through oxidation and porphyrin adduct formation with 

macromolecules (Foote, 1991). In type I, oxygen-dependent photosensitisation, the 

photosensitiser triplet state is sufficiently long-lived to cause the excitation of 

ground state triplet oxygen to an excited singlet state. Singlet oxygen can then 

itself cause cellular damage by causing peroxidation of lipids (a radical chain 

reaction), cross-linking of proteins, cleavage of DNA (Fiel et ai., 1981) and 

electrophilic or nucleophilic oxidation of susceptible biomolecules (principle 

oxidation reactions of singlet oxygen are shown in Figure 1-2). Singlet oxygen is a 

particular threat to the bacterium as it is relatively long-lived in the hydrophobic 

environment of the bacterial membrane with a half-life of up to 100~s (Knox and 
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Dodge, 1985; Suwa, Kimura and Schaap, 1977) and is primarily responsible for 

damage within membranes (for review see Valenzeno, 1987). 
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Figure 1-2 Reactions between singlet oxygen and susceptible 
functionalities. 
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In the 'ene' reaction and the cycloaddition reaction, introduction of 
oxygen into the target molecule results in the formation of organic 
peroxides. 

1.2.3. Oxidative Damage 

R 

Oxygen can be toxic to most lifeforms and is most potent as a set of energised 

oxygen-containing species which includes singlet oxygen and peroxide radicals. 

The most destructive of these is the radical superoxide ion (02"-) which can attack 

the macromolecules within a bacterial cell causing mutation or death. Superoxide 

can also undergo reduction to form hydrogen peroxide (H20 2) and hydroxyl 

radicals (OR") which are also potent oxidants (Fridovich, 1978). These species are 
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encountered due to sequential monovalent reduction of oxygen, a series of 

reactions caused by many metabolic enzymes and processes (Fridovitch, 1978). 

The other main source of high energy oxygen species is directly through 

illumination via photosensitisers. Photosensitisation can be mediated by any 

molecule with 1t orbitals, but is primarily caused by molecules that contain 

delocalised electrons, such as found in tetrapyrroles, aromatics and polyenes. This 

is because delocalised electrons require less energy to excite than those bound 

rigidly in localised orbitals. Photosynthetic bacteria generate high energy oxygen 

species as a result of their capture of energy from light and its subsequent 

conversion into proton motive force, due to the presence of chlorophyll which acts 

as a photosensitiser. Rhodobacter sp. have avoided this problem by only engaging 

in photosynthesis in anerobic conditions. 

As a general source of oxidative damage m cells, similar means are often 

employed to prevent oxidative damage caused by light and oxidative damage 

caused through the generation of activated oxygen species by other pathways. 

1.2.4. Prevention of Oxidative Damage 

The reponses to oxidative and photooxidative damage can be broadly classified 

into two general mechanisms. Firstly, the production of primary antioxidants, 

which cause the direct removal of the high energy oxygen species. These species 

include the enzymes catalase and superoxide dismutase (which catalytically 

remove the oxidants H20 2 and O2'- respectively) and small antioxidant molecules 

such as glutathione and a-tocopherol. The second class of antioxidant reponses 

comprise a range of activities, including the repair of biomolecules already 

damaged by oxidation and the induction secondary defenses which maintain an 

environment capable of supporting the requirements of the primary antioxidants, 

e.g. glutathione reductase and glutathione s-transferase which maintain 

glutathione in its active reduced form (Ahmad, 1995). 
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Antioxidant defenses are co-ordinately expressed in regulons which typically 

respond to a precise antioxidant species, although some antioxidant responses are 

activated generally by 'oxidising conditions'. 

The SoxR protein is a regulator of gene expression in response to the presence of 

superoxide radicals (Hidalgo et al., 1998) in Escherichia coli. The presence of 

superoxide causes SoxR to activate expression of soxS which in turn activates nine 

sox genes including MnSOD (manganese-containing superoxide dismutase) and 

endonuclease IV (Nunoshiba et al., 1992). The response to H20 2 in E. coli and S. 

typhimurium involves the regulator OxyR. The OxyR protein represses 

transcription of its own gene in all conditions. In the presence of peroxides 

however, it also causes the activation of nine genes including those encoding 

KatG (the stationary phase sigma factor, SigS) and AphC (alkyl hydroperoxide 

reductase), which are involved in the antioxidant reponse (Tartaglia et aI., 1992). 

The activation and deactivation of OxyR appears to be modulated by a pair of 

cysteine residues which can be covalently linked in a disulfide bond under 

oxidising conditions and which exist as thiols in reducing conditions (Zheng et al., 

1998). Thus OxyR is intrinsically receptive to the redox state of the cell. 

The SOS response elucidated in E. coli and S. typhimurium is a co-ordinately 

regulated set of induced functions (Walker, 1984), induced as a response to UV­

induced DNA damage. These functions include inhibition of cell division and 

post-irradiation DNA degradation, induced mutagenesis of DNA and induced lysis 

and mutagenesis of lysogens (Weigle, 1953). In the non-stressed cell, LexR 

represses expression of RecA and the SOS regulon. It is thought that replication 

cannot proceed regions of UV -induced DNA damage, and the stalled replicasome 

exposes single stranded DNA at the replication fork to RecA, which is 

conformationally activated to RecA *. RecA * induces LexA to undergo 

autoproteolysis, relieving repression of recA and the SOS regulon. Part of the SOS 

response seems to cause modification of DNA polymerases so that they are 

capable of replicating past damaged regions of DNA, although introducing errors 

at higher frequency (Humayun, 1998). Other features of the response include the 
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induction of DNA repair mechanisms, including excision, recombination and 

mutagenic repair mechanisms (Sancar and Sancar, 1988). 

A further reponse to UV -induced DNA damage is the removal of thymine dimers 

by photo lyase (Sancar and Sancar, 1988; Sancar, 1994). Photolyase utilises the 

energy of light to repair the DNA damage caused by light. Binding of enzyme to 

its substrate results in a complex, which upon absorption of light catalyses 

cleavage of the thymine dimer (Schieferstein and Thoma, 1998). The photolyase 

of M. xanthus has recently been identified and shown to be more similar to the 

photolyase of eukaryotes than to those of other eubacteria (O'Connor et ai., 1996). 

Blue light causes the photosensitisation of susceptible organisms through the 

production of singlet oxygen. Production of singlet oxygen induces various anti­

oxidant defenses, however, while overlapping with the antioxidant responses to 

superoxide and peroxides (e.g. alkyl hydroperoxidase induction), there does not 

seem to be a co-ordinated 'general antioxidant response' which is induced by all 

oxidants. 

Bacteria have evolved many solutions to the problems of cellular damage caused 

by oxidative mechanisms such as those detailed above. In general, primary 

antioxidant responses fall into two broad classes: enzymatic processes such as 

those catalysed by catalase and superoxide dismutase, or the production of small 

antioxidants including a-tocopherol, glutathione and carotenoids. The production 

of carotenoids is a major subset of responses to singlet oxygen-mediated photo­

induced oxidative damage. 

1.2.5. Role of carotenoids as photoprotectors 

Carotenoids are secondary metabolites produced mainly in conditions of arrested 

growth or limiting food. They are typically C40 conjugated polyenes and are a 

reddish-orange colour. Carotenoids fall into two chemical classes, the carotenes 

and the xanthophylls, which are oxygen containing carotenes. . 
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Carotenoids protect against photosensitisation damage since they are capable of 

quenching excited photosensitisers, singlet oxygen and are also able to directly 

absorb incident light. The excess energy absorbed by the carotenoids as they 

quench the excited species is' shuttled backwards and forwards along the 

conjugated carbon backbone of the carotenoid molecule and is dispersed 

harmlessly as thermal energy (through vibrational rather than electronic 

relaxation). This requires a tract of at least seven conjugated double-bonds (Fiel et 

al., 1981). The excited singlet state of the typical carotenoid, ~-carotene has a 

half-life of around 8 ps and this means that quenching of singlet oxygen by 

carotenoids is limited only by diffusion (Cogdell and Frank, 1987). The 

occurrence of carotenoids in the hydrophobic membrane means that they are also 

ideally situated for photoprotection, as they reside in the same environment as the 

triplet PPIX and singlet oxygen they quench. 

In the plant and bacterial photosynthetic reaction centre, carotenoids are 

positioned to protect the integral chlorophyll molecules from oxidation by singlet 

oxygen, to protect the cell against photosensitisation and to act as accessary light­

collecting pigments (Kuhlbrandt et ai., 1994; Cogdell and Frank, 1987). In 

Rhodobacter sphaeroides, a blue-green mutant which didn't produce end-product 

carotenoids was shown to grow normally under anaerobic, photosynthetic 

conditions. However, when illuminated in aerobic conditions the mutant 

underwent rapid cell death due to photosensitisation by bacteriochlorophyll 

(Dworkin, 1958, cited in Dworkin, 1959). Zhu and Hearst (1986) showed that 

expression of genes coding for reaction centre and light-harvesting complex 

proteins was down-regulated by high light intensity and oxygen concentration in 

R. capsuiatus. Expression of crt genes however was enhanced by increasing levels 

of light and oxygen consistant with a role in protection from photosensitisation. 

Additionally, carotenoids are produced as a protective measure against 

illumination with blue light among non-photosynthetic bacteria. In some cases this 

is independent of light (e.g. Erwinia {Armstrong et. al., 1990 and To et al., 

1994}) although light still up-regulates carotenoid production, whereas in others, 

illumination is absolutely required (e.g. Myxococcus xanthus). In some cases 
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carotenoid production can even be cryptic, which is the case for Streptomyces 

grise us (Schumann et al., 1996). 

In M. xanthus, photodynamic sensitisation through protoporphyrin IX has an 

action spectrum similar to both the absorption spectrum of porphyrins and to the 

spectrum for the induction of carotenogenesis (Burchard and Hendricks, 1969). 

Excited protoporphyrin IX and singlet oxygen are quenched by the carotenoids 

produced by M. xanthus, and they therefore prevent cell damage (Hodgson and 

Murillo, 1993). It seems that in light there is competition between the processes of 

photolysis and carotenoid induction, determining the fate of illuminated cells 

(Burchard and Hendricks, 1969). This competition is affected by many diverse 

factors including growth phase, temperature and metal ions, with monovalent ions 

enhancing and divalent ions inhibiting lysis (Burchard and Dworkin, 1966). 

It should be noted that production of carotenoids as protectors against 

photooxidative damage is not restricted to the bacteria. Other examples include 

Phaffia rhodozyma, Neurospora crassa and all photosynthetic organisms. 

Carotenoid synthesis is found in fungi, yeast and plants. Although animals can not 

synthesise carotenoids de novo, they are capable of modifying ingested 

carotenoids. 

1.3. Carotenoids 

1.3.1. Carotenoids of M. xanthus. 

The carotenoids synthesised by M. xanthus number 50-60, but most are produced 

in relatively low amounts. They exhibit varying degrees of un saturation and may 

be covalently modified by cyclisation, hydroxylation, ketonation or esterification 

via sugar residues to fatty acids. The majority of carotenoids found in M. fulvus 

are xanthophylls (oxygenated carotenoids) in the form of myxobactin and 

myxobacton esters (>70%), and 4-keto-torulene glucoside (Reichenbach and 

Kleinig, 1984; Hodgson and Murillo, 1993 and shown in Figure 1-3). They cause 
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an orange/red colouration, with significant carotenoid synthesis occuring only 

upon illumination and when the cells have entered stationary phase when levels of 

protoporphyrin IX rise around sixteen-fold (Burchard and Dworkin, 1966; Fontes 

et ai., 1993). 
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Figure 1-3 Phytoene, Lycopene and End-Product Myxobacterial 
Carotenoids. 

The four bonds of phytoene which are oxidised to from lycopene are 
indicated with arrows. The order of reactions according to the Porter­
Lincoln series is denoted numerically. 
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1.3.2. Carotenoid synthesis 

The pathway of carotenoid production shares a common pathway with steroid and 

terpenoid production, with condensation of isoprenoid units leading to the 

production of C20 geranylgeranyl-diphosphate (GGPP). In carotenogenesis, two 

molecules of GGPP are condensed to from C40 phytoene via the C40 intermediate 

prephytoene PPj by CrtB. Phytoene may then be desaturated in a series of four 

reactions catalysed by CrtI that produce consecutively, phytofluene, s-carotene, 

neurosporene and finally lycopene which is a pink/red colour, according to the 

series described by Porter and Lincoln (1950). Lycopene is a very potent 

scavenger of singlet oxygen, acting 120 times more efficiently than a-tocopherol 

(Di Mascio et ai., 1990). Subsequent steps in the carotenogenic pathway are 

organism-specific as are the end-products of carotenogenesis. 

In M. fuivus, there is a split in the carotenogenic pathway after the third 

desaturation of phytoene, with neurosporene either being dehydrogenated to from 

lycopene or alternatively undergoing hydroxylation to form hydroxyneurosporene. 

Hydroxyneurosporene is then converted to 3,4 dehydro-rhodopin glucoside ester 

by two dehydrogenations and an esterification and further modified to myxobacton 

esters by cyclisation and oxidation. Lycopene may also be converted into 3,4 

dehydro-rhodopin glucoside ester by a series of reactions, alternatively it is 

sequentially converted to 4 keto-torulene via y-carotene and 4-keto y-carotene 

(Kleinig et ai., 1975). See Figure 1-4 for a schematic representation of the 

synthetic pathway, with the enzymatic activities denoted. 

It should be emphasised that although it is generally assumed that this pathway is 

also true for M. xanthus this has not yet been proven to be the case. Indeed, the 

presence of 4-keto-torulene cannot be detected in wild-type M. xanthus strains, 

even in the light (Ruiz-Vazquez et ai., 1993). 
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Figure 1-4 Pathway of carotenoid production in M. fulvus. 

Adaptedfrom Hodgson and Murillo, 1993. Enzymatic steps are 
indicated by circles around the functionalities introduced. 
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In M xanthus the carotenogenic response is switched on by light. This could be 

rationalised since there could conceivably be a huge metabolic burden inherent in 

the production of carotenoids. Conversely, there seems to be very little effect on 

the physiology of cells actively producing carotenoids with no detectable 

reduction in growth rate during carotenoid production. However, the growth of 

cultures in the laboratory is not reflective of the situation in nature where 

nutrients may well be limiting. Nevertheless, the necessity for inducibility of 

carotenogenesis in M xanthus remains unclear. 

Carotenoids may also have a role in photoprotection other than the quenching of 

excited singlet oxygen and photosensititsers. In the thylakoid membrane of plants 

the constitutuent phospholipids are highly saturated and there is no cholesterol or 

sterols, which serve to maintain the membrane in a very fluid state which is 

necessary for photosynthetic processes involving membrane diffusion. This makes 

the membrane particularly vulnerable to photooxidative and thermal damage. 

Peroxidation of lipids is greater in highly saturated lipids and thermal membrane 

damage is associated with hyperfluidity and leads ultimately to membrane protein 

denaturation. Since the thylakoid membrane requires high fluidity for function it 

is highly susceptible to both forms of damage. The thylakoid membrane contains 

high levels of the carotenoid violaxanthin, a bi-cyclic doubly-epoxidated 

derivative of zeaxanthin. (Figure 1-5). 

Zeaxanthin 

Violaxanthin 

Figure 1-5 Carotenoids of the xanthophyll cycle. 
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In the thylakoid lumen resides an enzyme capable of de-epoxidating violaxanthin 

to zeaxanthin. This activity is only present in vivo in high light conditions and 

may require release of bound violaxanthin from the light harvesting complexes, 

due to conformational changes in the LHC on sudden illumination. The 

zeaxanthin may rebind to the LHe or it may remain in the membrane lipid phase. 

Reduction whilst under illumination causes zeaxanthin to be slowly converted 

back to violaxanthin. This comprises the xanthophyll cycle. The function of 

zeaxanthin is obscure but hints as to its role exist. As weB as its ability to quench 

high-energy species, zeaxanthin is dipolar, with a length corresponding to the 

width of the thylakoid membrane and is likely to exist perpendicular to the plane 

of the membrane. This leads to an increase in the viscosity of the membrane and 

also reduces the permeability of the bilayer to oxygen species. Thus the 

membrane is protected from both lipid peroxidation and also from thermal 

damage, which will usually go hand-in-hand with high illumination. Zeaxanthin 

appears to have additional roles in the plant as well, with evidence suggesting a 

role in the transduction of a blue light signal to stomatal opening and coleoptile 

binding (Quinones and Zeiger, 1994). Therefore carotenoids can have a role in 

modulation of membrane fluidity as well as the quenching of excited species in 

the prevention of photooxidative damage (Havaux, 1998). 

1.3.3. Bacterial carotenogenesis in other organisms. 

In the Gram negative, facultative phototroph Rhodobacter capsulatus and the 

Phytopa~n Erwinia uredevora, carotenoid biosynthesis genes are clustered. 

Eight carotenoid biosynthesis genes are clustered together in R. capsulatus in a 

minimum of four operons, crtA, crtlBK, crtDC and crtEF (Armstrong et al., 

1989). In Rhodobacter capsulatus the major carotenoid end-product is acyclic 

spheroidene in anaerobic cultures and its keto-derivative spheroidenone in aerobic 

cultures (Figure ]-6). The gene products of crtD and crtl were found to share 

homology, and both act as dehydrogenases. It is thought that crtD acts to 

dehydrogenate methoxyneurosporene and hydroxyneurosporene to spheroidene 
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and demethylspheroidene respectively. In the related species R. sphaeroides, there 

is also clustering of carotenoid genes with crtA, crtB, erIC, crtD, crtE and crtF 

mapping together. 

Crt~ 

Figure J -6 Carotenogenic pathway ofR. capsulatus. 

Adaptedfrom Armstrong et a1. (J989). Enzymatic steps are indicated 
and introduced jimctional groups circled. 

In Erwinia uredevora six carotenoid genes are found in a cluster in a minimum of 

two operons, crtEXYIB and crtZ (Misawa et aI., 1990). Genes crtY,Z and X have 

roles not found in R. capsulatus, being responsible for cyclisation of Iycopene, 

hydroxylation ofj3-carotene and esterification to sugars respectively (Figure 1-7). 
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Figure 1-7 Carotenogenic Pathway ofErwinia uredovora. 

Adaptedfrom Misawa et al. (1990). Enzymatic steps are indicated and 
introduced functional groups circled. 

Light-induced carotenogenesis is observed in a variety of specles of 

actinomycetes. In Mycobacterium marinum carotenogenesis is light-induced and 

the biosynthetic genes crt] and crtB have been isolated (Ramakrishnan et al., 

1997). In Mycobacterium vaccae the expression of carotenogenic genes is 

repressed in the dark, with light relieving the repression (Houssaini-Iraqui et al., 

1992). In Streptomyces setonii ISP5395 a sigma factor homologue, crtS is 

responsible for expression of carotenogenic genes. S. setonii normally does not 

produce carotenoids, however, it contains cryptic genes for carotenogenesis whose 
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expression can be induced in mutants obtained through protoplast regeneration 

(Kato et al., 1995). 

Unusually, M. xanthus has a crt! gene distinct from the other carotenogenesis 

structural genes. In other bacteria, all crt genes are clustered into operons, 

including crt! (Armstrong, 1997). 

1.3.4. Eukaryotic carotenoid production. 

In eukaryotes, production of carotenoids occurs as a response to different stimuli 

than in non-photosynthetic bacteria. For instance, plants produce carotenoids as a 

response to red light which stimulates the production of chloroplasts (Hader and 

Tevini, 1987). Clustering of carotenoid biosynthesis genes is not the case for 

eukaryotes. In the filamentous ascomycete Neurospora crassa, during mycelial 

growth, carotenogenesis is light-induced while during the developmental pathway, 

carotenogenesis can be independent of light. The identified genes for 

carotenogenesis in Neurospora crassa are unlinked. The aI-l gene has been 

shown to code for a product with phytoene dehydrogenase activity (Schmidthauser 

et al., 1990) and is homologous to crt! and crtD from R. capsulatus. Genes aI-2 

and aI-3 have been identified and aI-3 has been shown to encode GGPP synthase 

(Carattoli et al., 1991). Expression of the albino genes is under the control of a 

pair of DNA binding proteins, white collar 1 and white collar 2 (wc-l and wc-2). 

Both genes code for proteins which contain Zn-finger motifs, dimerisation 

domains and transcriptional activation domains (Linden and Macino, 1997). How 

WC-1 and WC-2 interact with the flavin thought to perceive the light signal 

(Paietta and Sargent, 1981), is unclear. 

1.4. Carotenoid biosynthetic genes in Myxococcus. 

In M. xanthus the genes responsible for carotenogenesis are distributed between 

three genetically unlinked loci. The three central loci are the carQRS operon, the 

carRA cluster and the care gene. Recently, the nomenclature for the Car genes has 

32 



been changed (Botella et al., 1995). The structural genes for carotenogenic 

enzymes have been given the crt designation based on their homologies to known 

carotenogenic enzymes from other organisms. Regulatory genes however retain 

their car designation with car being an acronym for £rt gene gctivity regulator 

genes (Hodgson and Berry, 1998). The table below shows the old and revised 

names of the genes involved in M. xanthus carotenogenesis (Botella et al., 1995). 

Functionality Old name New Name 

phytoene dehydrogenase carC crt! 

biosynthetic cluster (orfs 1-6) carB crtEBDC 

geranylgeranyl diphosphate synthase or[1 crtE 

carotene desaturase? orj2 -

phytoene synthase orf3 crtB 

hydroxyneurosporene desaturase or[4 crtD 

neurosporene hydratase orfS crtC 

carotene cyclisation? orf6 -

Table 1-2 New and old designations for carotenogenesis genes ofM. 
xanthus. 

The majority of carotenogenic genes are found within the crtEBDC and carA 

operons (carBA). This cluster contains eleven open reading frames with potential 

translational coupling (where the efficiencies of translation of different genes 

within a polycistronic mRNA molecule are not independent, Rex et al., 1994) 

between or12 and orf3, orf4 and orfS, orfS and orf6, orf6 and 017, orj7 and orj8, 

orj8 and orj9 and between orj9 and orf10. All open reading frames except orf11 

appear to be preceded by ribosome binding sites and orf3 and orj9 each start with 

a GTG not ATG initiation codon. From sequence similarities, Botella et al. (1995) 

assigned some of the open reading frames with crt gene functions. Thus due to the 

similarity of its gene product with geranylgeranyl diphosphate synthase, orf1 was 

renamed ertE. (See Table 1-2.) 

The four successive dehydrogenations of phytoene are performed by a single 

polypeptide in related bacteria, but by two distinct desaturases in photosynthetic 
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organisms (Linden et al., 1991 and 1994). There is evidence that in M. xanthus 

orj2 of the crtEBDC (carB) operon encodes an enzyme capable of converting 

phytoene into phytofluene (Murillo, F. J., pers. comm.) as transformation of E. 

coli with a plasmid carrying or/2, enabled the strain to produce copious amounts 

of phytofluene. Crt! (carC) is thought to catalyse the subsequent desaturations to 

form neurosporene and lycopene. Further evidence for this scenario was found 

when assessing the production of intermediates of the carotenogenic pathway 

(Martinez-Laborda, et at., 1990), as only phytofluene is formed in a crtf (care) 

mutant in the light, due to the action of a gene product presumably encoded within 

the crtEBDC (carB) cluster. 

Two distinct regions of or}9 show homology to ferrochetalase which introduces 

ferrous iron into PPIX to form haem. Genes orf10 and orf11 are 35% identical and 

contain putative HTH motifs at their N-terminal regions, with greatest homology 

to MerR of Tn501 (Parkhill et al., 1998). MerR forms a homodimer which binds 

to a region of dyad symmetry between the -10 and -35 elements of the merTPAD 

(mercury resistance operon) promoter. MerR acts as a repressor unless it has 

bound mercury in which case it introduces a sharp distortion in the promoter DNA 

and activates transcription (Parkhill et al., 1998). MerR is also related to SoxR of 

E. coli which is a redox-sensing gene activator which expresses a regulon as a 

response to oxidative stress (Nunoshiba et aI., 1992). The other biosynthetic gene 

crtf (carC) is unlinked to the crtEBDC (carB) cluster and codes for phytoene 

dehydrogenase. 
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1.5. Regulation of carotenogenesis. 

Induction of carotenogenesis by reactive oxygen species seems to be a 

commonplace phenomenon. Examples include the yeast Phaffia rhodozyma 

(Schroeder and Johnson, 1993). The organism lives within the bark of birch trees 

which produce reactive oxygen species as a defense mechanism. The reactive 

oxygen intermediates cause an increase in carotenoid production in cell cultures. 

This seems to be due to a selection of those cells which produce greater levels of 

carotenoids and an inverse relationship between sensitivity to superoxide radicals 

and carotenoid content was found. Resistance to the oxygen species was 

particularly increased in stationary phase. Phaffia rhodozyma possesses only 

manganese-containing superoxide dismutase, which is found in the mitochondria 

only. This has led to the inference that carotenoids may act as extra-mitochondrial 

protectors against oxidative stress. Subsequent studies on this organism have 

shown that oxygen species actively induce an increase in carotenoid levels within 

Phaffia rhodozyma cells (Schroeder and Johnson, 1995). This is due to two 

mechanisms. Firstly, singlet oxygen induces carotenoid synthesis. Additionally, 

the oxygen causes the oxidation and removal of an existing pool of carotenoids. 

This then relieves feedback inhibition of the biosynthetic enzymes and more 

carotenoids are produced with production greatest during stationary phase. A rapid 

turnover of the carotenoid pool allows a rapid response to light and relieves the 

necessity for regulatory genes. 

1.6. Regulation in M. xanthus 

Regulatory genes are found at the carQRS locus and carA which resides at the 3' 

end of the carA operon. These are the only true regulators of carotenogenesis 

identified to date. In addition, another two loci have been found to contain genes 

required for carotenoid production although these genes have pleiotropic effects 

and are therefore not strictly carotenogenesis genes. The first of these contains the 

carD gene which contains motifs resembling those found in HMGY(I) proteins in 
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eukaryotes. The second locus (carE) contains one of the genes for integration host 

factor (ilif) of M. xanthus. Over the last decade, the molecular basis for the action 

of the carotenogenic loci has been elucidated by a combination of biochemical and 

genetic means. 

1.6.1. The history of research on carotenogenesis of M. xanthus. 

1.6.1.1. Identification of the carR, crtEBDC, carA and crt] loci. 

Many of the initial Carc carotenogenic mutants were isolated in laboratories 

working with M. xanthus due to the obvious manifestation of the mutation, which 

causes a bright red colouration in the light and dark. Conversely, very few Car­

mutants have been isolated since nobody routinely incubates their strains in the 

light which is the condition required for observation of the Car- mutant phenotype. 

The carotenogenic loci were originally mapped by the creation of Tn5 insertions 

which cotransduced to known Carc mutations, giving constitutive carotenogenesis. 

Five linked to carR and one linked to carA (Martinez-Laborda et al., 1986). 

Another type of transposon insertion mutant was isolated (Balsalobre et al., 1987) 

that prevented carotenoid accumulation in both light and dark conditions. This 

mutation mapped to a locus linked to carA and later termed crtEBDC (carB). Tn5 

lac carries a promoterless lacZ gene within Tn5 and when integrated into the 

chromosome provide in-situ information on the transcriptional activity of the 

region around the transposon. Tn5 lac insertions at crtEBDC (carB) showed that 

the crtEBDC (carB) locus is transcribed in the light only, in wild-type, but both in 

the light and dark in constitutive carA and carR mutants. This suggested 

expression of crtEBDC (carB) occured from a light-inducible promoter which is 

regulated by the products of the carA and carR loci. Tn5 lac insertions later also 

identified the crt! (carC) locus as a region absolutely required for carotenogenesis. 

The absolute requirement for crt[ (carC) and crtEBDC (carB) implied that either 

these genes encode structural enzymes for carotenogenesis, or positive regulators 

of the structural genes. 
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1.6.1.2. Genetic dissection of the carR region. 

A strain containing a transposon insertion at Q1910 exhibited a dark yellow 

phenotype, although not as severe as a Care phenotype. D. A. Hodgson (pers. 

comm.) showed that the transposon insertion was a dominant effect and led to the 

postulation of a light-activated promoter upstream of an activator of 

carotenogenesis, which is activated by readthrough of an outward reading 

promoter from within the transposon. Transduction experiments showed that 

Q1910 mapped to the carR region. 

Screening carR mutants for spontaneous mutants which possessed a car­

phenotype, gave four strains which carried mutations epistatic over a carR lesion 

(Martinez-Laborda and Murillo, 1989). One lesion mapped to crtEBDC (carB) 

whereas the other three mutations were linked to carR. The three mutations at 

carR all abolished expression of Tn5 lac inserted at crtEBDC (carB). Thus linked 

to carR exists a region which is epistatic over constitutive mutations at carR for 

the production of carotenoids. A likely explanation would be that an element at 

carR has a positive role in expression of the car regulon, but its activity is 

repressed or inhibited by CarR in the dark. 

Sequencing of the entire carR region revealed the presence of three translationally 

coupled genes: carQ, carR and carS (McGowan et ai., 1993). Similarity searches 

revealed that CarQ was predicted to be a sigma factor, CarR an integral 

transmembrane protein and CarS had no known homologues. 

The regulation of the carQRS locus is highly dependent on the stoichiometry of 

CarR to CarQ (Gorham et aI., 1996). If carQ is present in greater copy number 

than carR then carotenogenesis becomes constitutive. This also results if the 

translational coupling between carQ and carR is relieved. If however carR is 

present in greater copy number than carQ then carotenogenesis remains light­

induced. 

It was also observed that CarR:~-galactosidase fusions expressed in M. xanthus 

disappear in the light and that a CarR-Protein A fusion in E. coli was membrane 
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located (Gorham et ai., 1996). The conclusion drawn was that CarR acts as an 

anti-sigma factor sequestering CarQ at the membrane in the dark, but releasing it 

in the light due to loss of active CarR. Deletion mutants showed that CarQ is a 

positive activator of the carQRS and crt! (care) promoters and that CarS is 

responsible for activation of the crtEBDC (carB) locus. 

1.6.1.3. Localisation of the Car structural genes. 

The next step was to analyse the nature of the carotenoids produced by strains 

carrying different Car mutations (Martinez-Laborda and Murillo, 1989). It was 

found that carR strains produced the same carotenoids in the dark and in the light 

as the wild-type did in the light. The carA mutant however accumulated mainly 

phytoene in the dark, but wild-type carotenoids in the light. Since crtEBDC (carB) 

mutants are unable to produce phytoene and strains carrying a crt! (care) lesion 

accumulate only phytoene, it was deduced that the enzymes required for phytoene 

production reside at crtEBDC (carB) and the gene encoding phytoene 

dehydrogenase is found at crt! (care). This was subsequently confirmed by 

cloning and sequencing of the crt! (care) gene (Fontes et ai., 1993). Expression 

studies using a crt!:: iacZ transcriptional fusion showed that crt! (care) expression 

was light induced and induction was maximal if the cells were in a stationary 

phase of growth (Fontes et ai., 1993). It was also noticed that in a strain carrying a 

crt! (care) lesion in the light, more phytoene was produced than the total amount 

of carotenoids produced in a wild-type in the light. This was postulated to be due 

to feedback inhibition by end products (Martinez-Laborda and Murillo, 1989). 

Subsequent experiments which introduced transposons into the crtEBDC (carB) 

region suggest the presence of mUltiple structural enzymes, and use of 

transcriptional fusions of promoterless iacZ to various sections of the crtEBDC 

(carB) cluster imply that the crtEBDC (carB) genes are transcribed from a single 

promoter which is carQ dependent and light inducible (Ruiz-Vazquez et ai., 

1993). Sequencing of the complete crtEBDC, carA (carBA) region showed several 

interesting features (Botella et ai., 1995). The cluster contained eleven open 
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reading frames. Open reading frames one to six had good sequence similarity to 

genes for known carotenogenic enzymes and allowed a tentative assignment of 

function to these orfs. Genes or/IO and or/II each contained a peptide motif 

which possessed homology to the DNA binding domains of the MerR family of 

transcriptional regulators while orj7, orfB and orj9 had no homologues in the 

databases. The mutated carAI allele found in strain MR7 was found to differ from 

the wild-type in two places - a G deletion at the end of orj9 and an A-T 

transversion at the start of or/IO. It was interesting to note however that the 

crtEBDC (carB) promoter showed no homology whatsoever to the carQRS 

promoter, implying its expression is governed by a sigma factor other than CarQ. 

It is thought that there are actually two promoters within the carBA cluster. The 

initial promoter is upstream of an operon consisting of the first six open reading 

frames of the cluster, designated the crtEBDC operon and is probably transcribed 

by a vegetative promoter. The last five open reading frames of the cluster form a 

second operon (the carA operon) which appears to be transcribed from a Sig54-

dependent promoter (Cervantes and Murillo, 1998). 

1.6.2. Current understanding of the regulon. 

The carotenogenic system involves the products of three unlinked genetic loci, 

which are coordinately expressed as a regulon, of which, the carQRS operon is the 

central regulatory locus. Also implicated in carotenogenesis are two genes, carD 

and carE which are not exclusively devoted to the carotenogenic regulon. 

1.6.2.1. The carQRS operon: 

The carQRS operon contains three translationally coupled genes under the control 

of a light-inducible promoter (McGowan et al., 1993). CarQ activates expression 

of the carQRS operon and the crt! gene in a light-dependent fashion, with 

mutations in carQ yielding a Car- phenotype. The CarQ gene product has 

significant sequence homology to a family of sigma-factors with proposed extra-
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cytoplasmic functions (ECF-sigma factors) and has recently been proven to have 

in vitro sigma factor activity (Browning, 1997). Examples of this class of sigma­

factor include AlgU, recently renamed AlgT, (alginate synthesis) in Pseudomonas 

aeruginosa (Martin et ai., 1993) and SigE (agarase expression) in Streptomyces 

coelicoior (Buttner, 1989). Comparison with 0'70 of E. coli shows that CarQ lacks 

region 1 while region 3 is severely shortened. The 2.4 and 4.2 regions which are 

the proposed DNA-binding regions for the -10 and -35 sites respectively are still 

present (Dombroski et ai., 1992; Dombroski, 1997). This suggests that CarQ 

activates transcription from pcarQRS and pert! through alteration of the specificity of 

the cellular RNA polymerase from its housekeeping mode. 

The second gene, carR, codes for a protein that is thought to act as an anti-CarQ 

factor. Its sequence corresponds to an integral membrane protein, predicted by 

hydropathy analysis to contain six trans-membrane helices and a large N-terminal 

cytoplasmic domain (McGowan et. ai., 1993). It has recently been proven to be 

present in the inner membrane when expressed in Escherichia coli, and present 

only in the dark and only when over-expressed, in M xanthus (Browning, 1997). 

Mutations in carR give constitutive carotenogenesis (McGowan et aI., 1993) and 

constitutive expression of the carQRS promoter and the crtJ promoter. 

The final gene of the operon codes for a protein (CarS) that activates expression of 

the crtEBDC gene cluster. Deletion of carS results in a Car- phenotype with a lack 

of expression of the crtEBDC cluster. The carQRS operon is still light-inducible 

however, which shows that CarS is a positive regulator of crtEBDC, but not 

carQRS. It seems that CarS is also a general inhibitor of induction, however, as 

deletion of carS gives three times greater expression from the carQRS promoter 

than in the wild-type. CarS exhibits no homology to any known protein 

sequences, and possesses no recognisable DNA-binding motifs. The nature of its 

activation of crtEBDC is obscure. 
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1.6.2.2. The crtEBDC cluster: 

The crtEBDC cluster contains 11 open reading frames arranged sequentially over 

12kb. The first six ORFs are structural genes for early and late stages in the 

biosynthesis of carotenoids (Botella et al., 1995). The crIB gene itself is one of 

these structural genes, encoding a phytoene synthetase enzyme. Expression of the 

crtEBDC promoter is dependent on CarS (Balsalobre et al., 1987; Martinez­

Labordez and Murillo, 1989), and is therefore induced in the light. 

The other five ORFs are of unknown function (Ruiz-Vasquez et al., 1993), but 

include the genes which are mutated in carA strains. CarA represses the crtEBDC 

operon in the dark (Balsalobre et al., 1987) and carA mutants are therefore CarC 

due to loss of the crtEBDC repression. They accumulate large amounts of 

colourless phytoene in the dark with a small level of red pigments arising from 

desaturation of the accumulated precursor. This dehydrogenase activity may 

reside within crtEBDC. The carA lesion maps to the 3' end of the cluster and a 

carA mutant was found to have mutations in both or19 (a frame-shift affecting 

or19, or/10 and orfll) and or/10 (an NT transversion). Genes or/10 and or/ll 

contain putative helix-turn-helix motifs and this supports the idea that CarA acts 

as a transcriptional regulator. 

1.6.2.3. The crtJ gene: 

From homologies to bacterial dehydrogenases, the crt! gene is suggested to code 

for the enzyme phytoene dehydrogenase (Balsalobre et al., 1987). Homology was 

only moderate (30-40% overall identity) but was very strong in two domains, one 

at the C-terminal and the other at the N-terminal. It is thought to catalyse an 

essential step in the pathway for the production of photo active carotenoids:- the 

conversion of colourless phytoene into coloured neurosporene and lycopene. 

Strains mutant in crt!, are Car- and show accumulation of phytoene in the light. 

Induction of crt! is dependent on carQ and is therefore light-induced. Expression 

of crt! seems additionally to be activated by carbon limitation (Fontes et ai., 

1993). This may be a consequence of the CarD requirement (see below). 
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Sequence analysis of the crt! promoter shows similarities to typical promoters of 

Gram negative bacteria. Homology of the -35 region is generally strong while that 

for the -10 region is much weaker. Interestingly, promoters which exhibit the 

greatest homology to the -10 region include two promoters from genes involved 

with multicellular development and a promoter from a vegetative gene all in M. 

xanthus (Fontes et al., 1993; Figure 1-8). This reinforces a possible link between 

crt! expression and development, mediated by CarD. 

crt! promoter 

vegA promoter 

tps promoter 

TCTTGTAACGTCCTGGCGGGTTCGCGCGTTCGCCAGGT 

ops promoter 

TAQACA 

TTGCAT 

TTGCTC 

AAQGGT 

AATQCT 

.QAAQCT 

Figure 1-8 Alignment between the crtI, vegA, tps and ops promoters. 
The transcriptional start site is shown in bold face. 

1.6.2.4. The carD gene: 

A CarD mutant was initially isolated as a Car- Tn5 insertion that was incapable of 

aggregation and fruiting body formation (Fru-). This mutant also had blocked 

expression from carQRS, crtEBDC and crt! (Nicolas et al., 1994). The CarD 

protein appears to modulate the activation of the carQRS and crt! operons by 

CarQ and also seems involved in expression of the A-factor and C-factor­

dependent classes of developmentally activated genes of the M xanthus fruiting 

body response. 

The sequence of CarD is related to the eukaryotic HMGI(Y) family of 

transcriptional activators. Its C-terminal sequence contains four copies of a DNA­

binding domain shared with these proteins (RGRP - Arg-Gly-Arg-Pro), which are 

known to enhance binding to the minor groove at A-T rich regions. These 

domains are adjacent to an acidic region which resembles a consensus serine 

phosphorylation site. For HMGI, phosphorylation has been shown to alter DNA­

binding activity (Nicolas et a/., 1994). The carQRS promoter contains a tandem 
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repeat of TITCC which is a similar sequence motif to the binding site of 

HMGI)Y) at the IFN-P promoter. Nicolas et ai. (1996) showed that in vitro, CarD 

could bind specifically to this repeated motif within pcarQRS. At the IFN-P 
promoter HMGI(Y) mediates displacement of HI histone by binding to 

nucleosomes. Binding to the IFN-P promoter changes bending within the 

promoter, allowing access by transcription factors. CarD also has a leucine zipper 

domain which may allow dimerisation or interaction with other DNA binding 

factors. 

1.6.2.5. The carE locus: 

This locus has recently been identified through a Tn5 insertion which abolishes 

carotenoid production and gives pink colonies rather than red. Phenotypic 

instability in the mutant yields red colonies at a low frequency. The red and pink 

forms of the mutant have been shown by Southern blotting to differ in the 

orientation of the Tn5 insert, but not in its location (Murillo, pers. comm.). 

Cloning and sequencing showed the locus encoded integration host factor (ihf). 

Subsequent Southern blotting showed that M. xanthus actually contains two copies 

of ihf, a gene involved with the control of gene expression through DNA bending. 

Its role in expression of the carotenogenic regulon is almost certainly a 

consequence of its general role in regulating DNA topology. 

1.6.3. Current Model 

The model as it presently stands is shown in Figure 1-9. In the dark grown cell of 

M. xanthus the transmembrane protein CarR binds to CarQ and holds it in an 

inactive state at the cell membrane. Light acting on the cell excites the 

photosensitiser protoporphyrin IX which in turn causes the excitation of molecular 

oxygen to the excited singlet state. This relatively stable species somehow 

mediates the inactivation of CarR. This could either be by direct damaging 

oxidation of the CarR protein or by the activation of a specific protease which 
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then removes CarR enzymatically. The loss of functionally active CarR releases 

CarQ from the membrane which is then free to activate transcription of the 

carQRS and crt! promoters. Expression of the carQRS operon causes the 

expression of CarQ, CarR and CarS. CarR is still removed by the action of light, 

so the net effect is the production of CarQ and CarS. CarQ activates transcription 

of crt! gene and CarS relieves the repression of the crtEBDC cluster by CarA. 

Expression of crt! and crtEBDC produces the carotenogenic enzymes which 

produce carotenoids. The carotenoids produced, by a process akin to feedback 

inhibition, quench the excited species responsible for transducing the light signal 

from light to the CarRiCarQ switch. Thus CarR is no longer inactivated and once 

more removes CarQ to the inner membrane. The down-regulation of the regulon 

therefore results. 
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Figure 1-9 Regulation of carotenogenesis in M. xanthus. 

Events subsequent to illumination are depicted. 
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1.7. Aims 

Fontes et al. (1993) have assigned CarA with a positive regulatory role in 

expression of the crt! and crtEBDC operon due to a reduction in activity of these 

loci in a car A mutant. Whether this is a correct interpretation of the data is under 

doubt, as carA mutants are Care and the reduction in promoter activities may be 

due to the constitutive production of carotenoids. The initial goal of this project is 

to clarify the role of CarA within the carotenogenic regulon. 

The crucial event in the response of M. xanthus to light, is expression from the 

carQRS promoter mediated by CarQ. Berry (1998), has constructed a set of site­

directed mutants of the carQRS promoter. The mutant promoters will be be 

introduced into M xanthus followed by assessment of in vivo activity. This may 

allow dissection of the interactions between the ECF sigma factor CarQ and its 

cognate promoter. 

An expression protocol for the production of active CarQ has been devised by 

Browning (1997), which allows the use of a range of in vitro techniques for the 

study of CarQ-promoter interactions. The applicability of in vitro studies to the 

carotenogenic system of M. xanthus will be determined and discussed. 
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2. The roles of carA. 

Sequence analysis of the carA region revealed 5 ORFs after crtEBDC that had no 

clear roles (orfs 7-11). It was observed that orfs 10 and 11 each contained a helix­

tum-helix motif, implicating an involvement in DNA binding as expected for 

CarA. To date only a single mutant allele of carA has been isolated. The mutant 

allele contained two differences from the wild-type. The first was a deletion of a G 

at the end of orf9 causing a frameshift, while the second was an A-T transversion 

at the start of or/I 0 (Botella et al., 1995). 

Recent experiments using precise in-frame deletions of the ORFs at the carA 

region show that or/IO alone causes the repression of crtEBDC in the dark 

(Cervantes and Murillo, 1998). Deleting or/II gave no discemable phenotype. 

GST fusions to the products of orfs 10 and 11 each bound weakly to the crtEBDC 

promoter. There is also some speculation on a possible involvement of vitamin 

B12 in the action of Car A as both or/IO and orfll have been postulated to contain 

vitamin B12 binding domains, based on homology of the C-termini of these 

proteins to metal-cobalamin binding sites of methionine synthases (Cervantes and 

MUrillo, 1998). The significance of these findings are obscure. Supplementing 

growth medium with vitamin B 12 did enhance light-induced carotenoid 

production dose dependently, but a plausible model for the role of cobalamin co­

factors in the function of Car A has not yet been constructed. 

The precise molecular nature of CarA and how it functions still remains obscure. 

It has been observed from the introduction of promoter probes (plasmids 

containing car promoters fused to a promoteriess lacZ gene) into car A strains, that 

there is much lower expression of carQRS and crt! in a carA background than in 

the wild-type. Therefore carA has been assigned with a positive regulatory 

function on crt! and carQRS expression (Fontes et al., 1993). Robson and 

Hodgson (personal communication) have also shown that the carQRS promoter is 

poorly activated by light in a mutant carA background. 
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An alternative explanation for this phenomenon other than a direct activating role 

for CarA is that the carotenoids produced constitutively in carA strains quench the 

high-energy intermediates in the light-induction process. This would effectively 

reduce the strength of the incident light stimulus and down-regulate the expression 

of the carotenogenic genes. The same argument is also applicable to the 

expression of crtI and CarA's exact activity is therefore uncertain. Is it a positive 

regulator of crtI and carQRS expression or not? This work aims to clarify its 

function in this respect. 

2.1. Introduction. 

In the wild-type Myxococcus xanthus cell in the light the most abundant 

carotenoids are the final carotenoids of the biosynthetic pathway. In a carA mutant 

in the dark the most abundant carotenoids are phytoene and phytofluene with 

small levels of final carotenoids sufficient to grant a Ca{ phenotype. On 

illumination the carotenoids produced are those found in wild-type cells in the 

light. A crtI mutant accumulates only phytoene and phytofluene in both the light 

and the dark (Martinez-Laborda et al., 1990). Phytoene and phytofluene are 

colourless and hence crtI mutants appear Car-. 

The nature of feedback control within the carotenogenic regulon has been 

mentioned in the literature, particularly with respect to the down-regulation of the 

regulon's activity by negative feedback on production of carotenoids (Hodgson, 

1993). Other feedback mechanisms involving end-product inhibition of the 

carotenogenic enzymes have also been hinted at (Martinez-Laborda et al., 1990) 

inspired by the situation in Phycomyces blakesleeanus. However, the effects of 

feedback due to constitutive production of carotenoids, or the lack of feedback 

regulation in a Car- mutant are areas that until now appear to have been neglected. 

As well as assessing the role of CarA, the effect of Care and Car- mutations on 

activity of various promoters within the regulon will be determined. 
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2.2. Does CarA activate pcrtl or pcarQRS? 

Plasmids containing copIes of the crt! (PMAR206) and carQRS (pDAH217) 

promoters fused upstream of a promoterless lacZ gene were mobilized into strains 

of M xanthus by PI-mediated transduction (see section 7.2.9). On introduction 

into M. xanthus the plasmids are not replicated autonomously and the appropriate 

drug resistance is not maintained unless they integrate into the chromosome 

(Shimkets et al., 1983). Integration occurs by homologous recombination across 

the promoter on the plasmid and the endogenous copy, creating a merodiploid 

with a tandemly duplicated promoter. One of the copies of the promoter is 

upstream of its normal transcriptional unit and the second copy is fused upstream 

of the promoterless lacZ gene. Thus as the wild-type gene is not disrupted in any 

way, the regulon functions exactly as if in the same strain without the promoter 

probe and the ZacZ gene is transcribed exactly as the genes downstream of the 

endogenous promoter. Thus the in-vivo activity of the crt! and carQRS promoters 

can be determined accurately by assaying the production of ~-galactosidase in a 

strain carrying either pMAR206 or pDAH217. 

Using these transcriptional fusions as probes for the activity of the crt! and 

carQRS promoters, promoter activities were assessed in different mutant 

backgrounds. Figure 2-1 shows the activity of a wild-type strain (DKIOl) into 

which was integrated pDAH217 as a probe for the carQRS promoter, determined 

by ~-galactosidase production. (N.B. In all ~-galactosidase assays, at Time=O a 

dark grown early exponential phase culture is split into two daughter cultures, one 

of which is illuminated and the other maintained in the dark. Samples are 

periodically removed for ~-galactosidase and protein assays allowing a time 

course of ~-galactosidase specific activity to be calculated (See section 7.3.1). p­
galactosidase assays were performed at least in duplicate and results shown only if 

both curves were consistent. 

After an initial lag period of ~2 hours induction occurs in the light with specific 

activity rising from 10 units/min/mg protein to 400 units/min/mg protein after 6 

hours. The response is then down-regulated and this is due to the production of 

carotenoids which quench the signal from light and reduce the strength of the 
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stimulus affecting the CarQ/CarR switch. In the dark a background level of 

activity of -10 units/min/mg protein is constant. 

When plasmid pDAH217 was introduced into a strain carrying a carA lesion 

(DK717) and the transductant assayed for p-galactosidase expression a curve was 

obtained which was very different from DK1Ol::pDAH217 (Figure 2-2). 

Induction in the light still occurs with a similar lag time but maximal induction 

gives only 40 units/min/mg protein instead of 400 as found for the wild-type. Thus 

functional CarA is required for full induction of carQRS expression on 

illumination and this has also been found to be the case for crt! expression. 

Plasmid pMAR206 was transduced into wild-type DK10l and the resulting 

integrants were assayed as before for p-galactosidase activity (Figure 2-3). 
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Figure 2- J Activity of the carQRS promoter in a wild-type strain 
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After an initial lag period induction occurs in the light with a maximum activity at 

6 hours with 50 units/min/mg protein (Phase I induction). The lower activity 

when compared to the carQRS promoter may purely be due to the greater distance 

separating the crt! promoter from the site of production of CarQ. After the initial 

induction there follows a decrease in activity until ~ 18 hours, when a second 

phase of induction occurs (Phase II induction). This has been previously reported 

and the second phase has been shown to be coincident with entry into stationary 

growth phase (McGowan, 1992). The second induction seems to be due to lack of 

carbon source from the medium and hence represents loss of catabolite repression. 

Consistent with this is the observation that on entry into stationary phase, activity 

of the dark-grown culture also increases, but not to such an extent as the 

illuminated culture. The second induction may be caused to start prematurely by 

resuspending cells from culture into a medium lacking carbon source such as MC7 

(Fontes et al., 1993). 

The second phase of induction has a far greater magnitude than the first induction 

with a maximum activity of over 2000 units/min/mg protein. A theoretically 

problematic aspect of this second phase of induction is that cultures entering 

stationary phase are already replete with carotenoids. Therefore negative feedback 

should be reducing the stimulus reaching the CarRiCarQ switch such that light­

dependent induction should be virtually impossible and yet, the second activation 

phase is strongly light induced. 

When the same promoter probe was introduced into a carA mutant (DK717) and 

assayed, the first phase of induction is almost completely absent (Figure 2-4). 

Thus both the crt! and carQRS promoters show a reduced activity in carA strains 

relative to the wild-type. This may be purely because crt! expression requires a 

product of the carQRS operon or alternatively because of a direct effect on pert!. 

Either CarA is an activator of these two promoters or the carotenoids produced 

constitutively by the carA mutant are causing feedback inhibition of the 

carotenogenic response. To determine which explanation was correct it was 

necessary to assess the activity of the two promoters in a strain carrying a carA 
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lesion which was also not producing carotenoids. Two experimental approaches 

were employed to create such a strain, one genetic and the other biochemical. 

2.2.1. Genetic Approach 

Creating a mutation in the crt! structural gene prevents the production of end­

Product carotenoids since the strain can no longer produce phytoene 

dehydrogenase. A crt! mutation should also have no further effect on other genes 

within the regulon as CrtI appears to have no regulatory role or downstream 

effects. Introduction of crt! lesions into various strains was achieved by the 

generalised transduction of a crt! allele containing a tetracycline resistance­

confering Tn5-132 insertion from MR461 (Fontes et al., 1993) into strains of 

interest. Transductants would be tetracycline resistant if a transducing particle 

introduced the crt! region from MR461 into the cell and a double cross-over event 

had replaced the endogenous copy of crt! with the allele containing the disruptive 

transposon insertion. When the crt! lesion was introduced into any strain, the 

transductants exhibited a Car- phenotype. 

As a control, the crt! lesion was first introduced into the carA mutant DK717 

which carried no promoter probe. The resulting strain UWM501 gave background 

levels of ~-galactosidase expression in both light and dark (Figure 2-5). It was 

necessary to perform this control as the Tn5-132 insertion within the crt! allele 

Contains a lacZ gene and the background transcription level of this gene needed to 

be determined. The lacZ gene is in the incorrect orientation for readthrough 

transcription to occur from the crt! promoter and thus its expression is almost 

indetectable through ~-galactosidase assays. 

The disrupted crt! allele was then introduced into two different wild-type strains, 

DK101 and DK1050, each containing pDAH217 to create UWM502::pDAH217 

and UWM503::pDAH217 respectively. When each strain was assayed for ~­

galactosidase activity the curves produced were virtually identical (Figure 2-6 and 

Figure 2-7). 
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In each case, induction occurs with exactly the same rate and timing as in the 

wild-type strain. However, negative feedback due to carotenoid accumulation is 

not seen and at maximal activity, ~-galactosidase levels approaching 1,000 units 

are seen after -15 hours. There is a gradual drop in activity after this time which 

may be due to the large number of cells within the culture, such that on average 

each cell in the population recieves a smaller dose of photons. Additionally, the 

drop in activity is consistent with entry into stationary phase and reduction in ~­

galactosidase expression may be associated with a general drop in macromolecule 

synthesis. The loss of negative feedback by elimination of carotenoid production 

proves that it is indeed carotenoid production which causes the down-regulation of 

carQRS activity in the wild-type. 

Addition of the crt! lesion to a carA mutant containing integrated pDAH217 to 

form a crt!lcarA double mutant (UWM501::pDAH217), shows carQRS promoter 

activity in that strain to be very different from that in a carA single mutant (Figure 

2-8). 

In fact, the time course and rate of induction is identical to that in the crt! mutant 

described above, with large amounts of expression. Thus the presence or absence 

of a carA lesion has no effect in a crt! background i.e. the crt! lesion is epistatic 

OVer a car A mutation. Therefore the low levels of carQRS promoter activity seen 

in the carA mutant is not because of a direct activation by CarA but instead is due 

purely to the constitutive production of carotenoids. In a carA background the 

constitutively produced carotenoids cause the end-product negative feedback loop 

to be established in the cell irrespective of irradiation and thus exposure to light 

gives much lower induction. Conversely, in cells carrying the crt! lesion the 

feedback loop can never become established and the carQRS promoter is induced 

strongly throughout illumination. 

As an interesting aside, it was noted that in all strains created by introducing the 

mutant crt! allele, a 'stable' tan phenotype was observed (phase variation). In 

unilluminated cells of M. xanthus there is a phenotypically unstable pigmentation. 

Vegetative cells are typically yellow due to production of an uncharacterised 

pigment, rough and swarming, with a proportion (1 %) appearing tan, smooth and 
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mucoid. The pigment has an absorption maximum at 379 nm and is also found in 

Myxococcus virescens (Burchard et aI., 1977). Interconversion between tan and 

yellow phenotypes occurs at low frequency: yellow cells switch to tan at a rate of 

around 10-2 to 10-3 per cell per generation and tan switch to yellow at a much 

higher frequency. Pigmentation appears to be related to 'stresses' experienced by 

the bacteria as selection with antibiotics and entry into stationary phase seems to 

cause the cell to become tan (or selection occurs against yellow cells). However, 

UV exposure, elevated temperatures and exposure to mitomycin causes an 

increase in the proportion of yellow cells (Laue and Gill, 1995). Research on 

phase variation has been hindered by the inability to isolate phase-locked mutants. 

The significance of the 'stable' tan phenotype of cells carrying a crt! lesion may be 

an artifact due to the stresses involved in creation of the cells, however, repeatedly 

streaking to single colonies over a period of several months in the absence of 

selection never yielded yellow colonies. It is possible that CrtI is involved in the 

production of the yellow pigment of M. xanthus, if so, then it may provide a 

phase-locked mutant for further study of phase variation. 
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Figure 2-8 Activity of the carQRS promoter in a carA/crtIC double 
mutant (UWM50/ ::pDAH217). 

Y-axis is specific activity ofJ3-galactosidase in units/minlmg protein. X­
axis is time in hours 
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2.2.2. Biochemical Approach 

The biochemical approach to create a carA mutant that did not produce 

carotenoids was to add nicotine which acts as one of the earliest inhibitors of 

carotenogenesis (Kleinig, 1974). This gave similar results to the disruption of crt! 

and confirmed that CarA does not activate crt! or carQRS expression. 

To determine which concentration of nicotine was most appropriate to use in the 

experiments DK101 (wild-type) was overlayed onto solid media plates containing 

different concentrations of nicotine (Figure 2-9 and Figure 2-10). At 

concentrations above 1mM, the nicotine proved toxic to the cells and a lawn of 

cells did not develope. At 1mM or below, lawns did develop but still produced 

carotenoids. However, as the concentration of nicotine within the plates increased, 

the amount of carotenoids produced by the cells was reduced as judged visually 

by intensity of colouration. Consequently nicotine was used at 1mM concentration 

in all further work. It can be seen from Figure 2-10 that colony pigmentation 

varied between colonies. The smaller colonies appear to be more darkly 

pigmented regardless of nicotine concentration. Whether this is a physiologically 

relevant phenomenon is unclear. Maybe within the bacterial colony 

Carotenogenesis proceeds primarily in exponential growth and is reduced in 

stationary phase due to the accumulation of carotenoids. Alternatively, as the 

Colony ages, the cells within the colony disperse by gliding motility and thus older 

colonies are less densely pigmented because their constituent cells are less densely 

distributed. A final possibility is that the older, larger colonies have 'soaked up' 

most of the nicotine from the plates leaving the younger, smaller colonies in a 

nicotine-depleted envionment. 

Nicotine appears to have two inhibitory effects on carotenogenesis in Myxococcus 

fulvus. At low concentrations (O.l-lOJlM) cyclisation was inhibited and 

accumulation of acyclic carotenoid glucoside esters resulted. At higher 

concentrations (20-100JlM), hydroxylation of C-l' was also inhibited causing the 

accumulation solely of lycopene (Kleinig, 1974). As both cyclisation and C-1' 

hydroxylation are thought to involve protonation at C-2/C-2', nicotine is thought 
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to act by interfering with the reactions directly, not by inhibition of the enzymes 

responsible for catalysing the reactions (Liaaen-Jensen, 1963). Higher 

concentrations of nicotine proved lethal (>O.1mM). Nicotine, even at low 

concentrations, was observed to cause an increase in generation time and lower 

cell density at the end of log-phase growth (Kleinig and Reichenbach, 1973). 

These phenomena were not observed in this work using 1mM nicotine. Lycopene 

is a pale pink/red compound (Cunningham and Grant, 1998, pS71) and the orange 

colour of M. xanthus in the presence of nicotine suggests that even at 1mM 

Concentations M. xanthus is still capable of producing end-product carotenoids. 

However, the reduction in intensity of pigmentation implies a decrease in total 

carotenoid content in cultures containing nicotine. A reduction in the carotenoid 

Content has also been observed in carR strains on the addition of nicotine 

(MUrillo, F. 1., pers.comm.), implying that inhibition of carotenogenesis by 

nicotine in M. xanthus is comparable to nicotine inhibition in M. Julvus. 

When nicotine was added to wild-type cells carrying pDAH217, the induction of 

the carQRS promoter was seen to be increased two-fold over the same strain 

grown in the absence of nicotine (See Figure 2-1 and Figure 2-11 for comparison). 

Addition of nicotine, although enhancing promoter activity approximately two­

fold, does not alter the strain's Car+ phenotype. The enhancement of induction is 

. not as severe as that seen on introduction of a crt! mutation, which 

concommitantly causes a more severe disruption of carotenoid production. 

Therefore, whereas insertion of a transposon into crt! abolishes carotenoid 

production, inhibition of CrtI by nicotine only partially hinders production but 

sufficiently to see an enhanced induction of the carQRS promoter. A possible 

inference is that there may be another ORF at crt! essential for carotenoid 

production which is disrupted by transposon insertion but whose product is 

unaffected by nicotine. 

Enhancement of induction by the presence of nicotine is also seen for the crt! 

promoter (see Figure 2-3 and Figure 2-12 for comparison). 
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Figure 2-9 Effect ql'vmying concentrations of nicotine on 
carotenogenesis (~f DK J OJ illuminated with white light. 

) 

oncentrations o/nicotine within plates fi'om lefi to right are Of1.M, 
O. J f1.M, 1 f1.M, 101M. 0.1 mM and I mM 

65 



Figure 2-JO Colony pigmentation on addition of nicotine. 

Colonies r1M. xanthus exposed Lo while lighf. [nicotine} in plate 10 left 
is O.lmAl, Inicoline} in plate to righl is ImfvL 
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Figure 2-1 1 Activity of the carQRS promoter in the presence o/,1mM 
nicotine in the wild-type (DK 101 ::pDAH217). 

Y-axis is specific activity o/'~galactosidase in unils/minlmg protein. X­
axis is time in hours 
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Nicotine enhances the initial induction but doesn't affect the secondary induction 

seen on carbon limitation. Thus it would seem that the second induction is less 

dependent on illumination with blue light than the initial induction phase. 

The crt! promoter probe pMAR206 was introduced into the carA strain DK717 

and the activity of the promoter assessed in the presence and absence of nicotine 

(see Figure 2-13 and Figure 2-4). 

Promoter activity is enhanced with the addition of nicotine, with induction up to a 

maximum of 70 units/min/mg protein. Once again a slight inhibition of 

carotenogenesis is sufficient to allow light-induction of the promoter and it can be 

concluded that CarA has no direct impact on the activity of the crt! promoter but 

rather exerts its effect indirectly through constitutive production of carotenoids. 

2.3. Outstanding Problems. 

2.3.1. Assessment of crtI activity in a crtI mutant. 

To complete the work detailed in this chapter it was desirable to provide genetic 

as well as biochemical evidence that the crt! promoter was not directly activated 

by CarA. Towards this end it was attempted to construct a strain carrying both a 

crt! lesion and a crt! promoter probe and an additional strain carrying pMAR206 

With mutations in both crt! and carA. However construction of these strains was 

hampered by the presence of a lacZ gene in the Tn5-132 insertion within the 

selectable crt! allele. Repeated attempts to transduce the tetracycline resistant crt! 

allele from MR461 into DK101::pMAR206 or DK717::pMAR206 by Mx8 

mediated generalised transduction yielded no transductants. An alternative 

strategy was to introduce pMAR206 into crt! mutants UWM501 or MR461 by Pl­

mediated specialised transduction but this method also failed to produce 

transductants regardless of multiplicity of infection. Presumably the presence of 

the large lacZ gene in the chromosome and on the piece of DNA being transduced 

into the cell promotes homologous recombination across lacZ rather than across 

crt!. Most of the possible outcomes of recombination across lacZ either break the 
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chromosome and are fatal, or do not result in the chromosome acquiring the 

appropriate selectable marker and recombinants are therefore removed by drug 

selection. 

A different approach was to generate a kanamycin resistant plasmid containing 

regions of the crt! gene flanking a promoterless copy of lacZ and a tetracycline 

resistance determinant. This plasmid could be electroporated into M. xanthus and 

selecting for tetracycline resistant, kanamycin sensitive electroporants would 

select for cells which had integrated the lacZ fusion by double cross-over across 

the flanking regions of homology to crt!. This would create a strain which had its 

endogenous copy of crt! replaced by an allele containing a lacZ transcriptional 

fusion and tetracycline resistance cassette. Introduction of the plasmid into wild­

type DKlOI and carA mutant DK7I7 would allow assessment genetically of the 

effect of crt! and/or carA mutations on the crt! promoter. 

An alternative approach was to use primers containing engineered restriction sites 

and regions of homolgy to internal regions of crt!, to PCR a internal fragment of 

crt! with flanking BamID and EcoRI sites. Upon restriction and ligation into 

BamHIfEcoRI-cut pDAH274, a plasmid would be created which carried around 

1.2Kb of crt!, lacking the conserved regions found at the 3' and 5' ends of 

phytoene dehydrogenases, upstream of a promoterless lacZ gene. Introduction of 

this plasmid into DKlOI by PI-mediated transduction would generate a 

merodiploid with two incomplete copies of crt!, with the copy of crt! lacking its 

C-terminal coding region transcriptionally fused to lacZ. 

Lack of time prevented completion of these strategies, however, future studies will 

Continue the attempts to create a crt! mutant containing a crt! promoter probe. 

If the current notion of how CrtI is involved in carotenogenesis is correct, the crt! 

promoter would be expected to exhibit enhanced induction in a crt! mutant with a 

lack of down-regulation by feedback mechanisms. These phenotypes would be 

eXpected to be irrespective of a carA lesion. 
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2.3.2. Effect of nicotine on carQRS expression in a carA 
background. 

When ~-galactosidase expression from a carA mutant carrying pDAH217 was 

assayed in the presence of nicotine, no effect could be seen due to the addition of 

nicotine (Figure 2-14). 

The results obtained from DK717::pMAR206 showed that 1mM nicotine was 

sufficient to see an elevated rate of induction on illumination and it was expected 

that the same would be true when looking at the carQRS promoter. This 

experiment was repeated several times usmg different clones of 

DK717::pDAH217 and in no case did an enhanced induction arise due to 

incubation with nicotine. The reason for this is not clear. If crt! expression is 

enhanced by nicotine, then it would be expected to be due to a reduction in 

quenching of high energy signalling molecules such as singlet oxygen, resulting in 

greater levels of active CarQ. This is seen to enhance crt! induction but seems to 

have no effect on carQRS induction. An explanation for this might involve the 

difference between the two promoters, with different ancilliary factors being 

required by the two promoters (This phenomenon may also be manifested in the 

light induction of the crt! promoter in a carR mutant {see section 3.2}). 
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Figure 2-13 Activity of the crtl promoter in a carA background in the 
presence of j mlvl nicotine (DK7 j 7: :pMAR206). 

Y-axis is spec~fic activity of~galactosidase in un its!minlmg protein. X­
axis is lime in hours 
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Figure 2- 14 Activity (~lthe carQRS promoter in a carA mutant with 
lmM nicotine (J)K7 17::plJAH2 17). 

Y-ax is is specific activity ()fl~galactosidase in unifs -minlmg protein. X­
axis is time in hours. 
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2.3.3. Effect of nicotine on the activity of the crtI promoter in a 
carR mutant. 

The two loci whose mutation leads to constitutive carotenogenesis in M. xanthus 

are carA and carR. The effect of nicotine on a Carc carA mutant was determined 

as described above and for completeness it was decided to determine whether 

nicotine had any effect on promoter activities within a Carc carR mutant. The 

effect of nicotine was assessed by introducing the crt! promoter probe into a strain 

carrying a carR lesion (DK718::pMAR206). ~-galactosidase expression by this 

strain was assayed and the results shown in Figure 2-15. 

Consistant with the carR mutation allowing CarQ to be constitutively active, 

activity of the crt! promoter in the carR background was very high (400 

units/min/mg protein in the light and 100 units/min/mg protein in the dark). 

Additionally, when compared to expression of crt! in the wild-type, a similar 

pattern of bi-phasic induction was observed. However, what the current model did 

not explain was why both induction phases were still light-induced when the 

availability of active CarQ irrespective of illumination should mean equal 

activities in both light and dark. This suggested the presence of a separate level of 

Control over the crt! promoter which was not included in the model. 

Nicotine had no effect on crt! expression in this carR background (Figure 2-16). 
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Y-axis is specific activity of~galactosidase in un itslminlmg protein. X­
axis is time in hours. 
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2.4. Conclusions. 

The use of lacZ transcriptional fusions to the carQRS and crt! promoters has 

enabled in vivo determination of expression of these two loci in a variety of 

mutant backgrounds. Introduction of a mutant crt! allele allowed strains to be 

constructed which are unable to produce carotenoids. In wild-type strains, 

carotenoid production upon illumination reduces the strength of the light stimulus 

being transduced to CarR and causes a down-regulation of the regulon. This 

negative feedback loop is absent in crt! strains and activity of the carQRS 

promoter is seen to increase past the time when down-regulation is observed in the 

wild-type. Thus crt! is essential for carotenoid production and it is the formation 

of carotenoids which causes the down-regulation of promoter activity seen in the 

wild-type after 6 hours of illumination. The carQRS promoter has a much reduced 

actvity in strains containing a carA lesion. Transduction of the crtIl allele into a 

carA mutant carrying the carQRS promoter probe created UWM501::DAH217, 

Which demonstrated no difference in promoter activity from a crt! single mutant. 

It was concluded therefore that CarA is not required for normal expression of the 

carQRS promoter, but rather exerts its effect on carQRS activity indirectly, 

through the constitutive production of carotenoids. 

Difficulties in the creation of a strain which carried both a crt! mutation and a crt! 

promoter probe caused a biochemical approach to be taken to determine the 

activity of the crt! promoter in a Car- strain. Nicotine has been reported to cause a 

reduction in the production of carotenoids by blocking steps early in the 

biosynthetic pathway. Illuminating cells in the presence of ImM nicotine caused a 

slight decrease in colouration, while using greater concentrations of nicotine had 

lethal effects. Addition of nicotine to wild-type cells carrying pDAH217 or 

pMAR206 showed that nicotine delayed the onset of feedback regulation 

consistent with a reduction in the amount of carotenoids produced. Mutants with 

carA lesions show much reduced crt! promoter activities in comparison to the 

wild-type. Addition of nicotine to carA cells carrying pMAR206 caused an 

increase in crt! promoter activity consistent with CarA's effect on pert! being 
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indirect, through constitutive carotenoid production. Thus it would seem that 

CarA does not affect the crt! promoter directly, but can influence activity of the 

carotenogenic regulon as a whole through its repression of crtEBDC expression 

and subsequent carotenoid production. 

It is clear that feedback by the production of carotenoids has important implication 

for the activities of promoters within the carotenogenic regulon and the effects of 

any mutations on carotenoid production must be taken into account when 

assessing any direct effects on promoter activity. Thus carA mutants affect 

promoter activity indirectly because they cause the negative feedback loop of 

carotenoid production to be established prior to illumination. Strains with crt! 

lesions however lack the feedback loop and therefore promoter activities are high 

because negative feedback can never be established. 

However, as well as clarifying the role of CarA within the carotenogenic system, 

the work described in this chapter has uncovered some interesting and as yet 

unexplained phenomena, particularly concerning crt! gene expression. These 

phenomena will be discussed in the next chapter. 
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3. The roles of crt/. 

Experimental work has shown that there are significant gaps in our understanding 

of the crt! locus and that its expression is not as easy to explain as that of the 

carQRS operon. 

To allow for the assessment of the action of nicotine on a Care strain other than a 

carA mutant, crt! promoter activity assays were performed for a CarR mutant in 

which the sigma factor CarQ is constitutively free and able to activate its cognate 

promoters. In this strain the crt! promoter shows two phases of promoter activity, 

unexpectedly, both were subject to light induction, with the second phase 

consistent with entry into stationary phase. Additionally, the crt! promoter's 

induction on illumination is enhanced by addition of nicotine as predicted, but this 

is not true for the carQRS promoter. Functional differences between the two 

promoters were also hinted at by in vitro transcriptional run-off assays which 

proved it was possible to obtain a transcript from the carQRS promoter but not the 

crt! promoter using purified CarQ (Browning, 1997). 

Another interesting phenomenon is that disruptive crt! mutations cause a Car" 

phenotype instead of a Car+ phenotype. This is unexpected as it is known that 

expression of carRA on its own (for instance in a carA mutant in the dark) is 

Sufficient for the production of coloured carotenoids. Therefore it was expected 

that a crt! mutant would still have a Car+ phenotype, not the Car" phenotype that is 

observed in all strains carrying a crt! mutation. Additionally, the presence of 

nicotine which inhibits CrtI does not grant a Car" phenotype. 

All these features of CrtI and the crt! promoter suggest that its behaviour is not as 

simple as the model implies. It has become necessary to address these unexplained 

aspects of crt! activity. 
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3.1. Introduction. 

The known gene at crt! encodes a protein with significant similarity to phytoene 

dehydrogenases from a diverse set of organisms including Neurospora crassa, 

Rhodobacter capsulatus and two species of Erwinia (Fontes et al., 1993). CrtI 

contains a noncovalently bound FAD co-factor and is homologous to both 

hydroxyneurosporine desaturase (CrtD) and protoporphyrinogen oxidase (which 

catalyses the oxidation of protoporphyrinogen to protoporphyrin IX) of M. 

xanthus (Dailey and Dailey, 1998). Disrupting crt! causes the strain to accumulate 

phytoene, the substrate for phytoene dehydrogenase and trace amounts of 

phytofluene (Martinez-Laborda et al., 1990). Expression of crt! requires CarQ 

directly, and CarD (indirectly or directly) and is maximal in conditions of carbon­

limitation and illumination (Gorham et al., 1996, Nicolas et al., 1994 and Fontes 

et ai., 1993). These were the facts known about crtIthree years ago and the model 

explains all these characteristics except for the activation by carbon-limitation. 

3.2. Light Induction of crt] in a carR mutant. 

The crt! promoter is light-induced in a carR background (DK718::pMAR206), see 

Figure 2-15 and Fontes et al. (1993). The simplest explanation perhaps being that 

the carR5 allele carries an incompletely disrupting mutation and that the carR 

protein produced is still able to bind carQ at a reduced affinity, with enough free 

CarQ unbound to CarR to allow constitutive expression of the regulon. To 

investigate the possibility that the light-induction of crt! was due to a peculiarity 

of the particular clone assayed or the carR allele used, DK718::pMAR206 was 

recreated and the crt! promoter probe was also introduced into a strain carrying a 

different mutant carR allele (DK406 carries the carR4 allele while DK718 carries 

the carR5 allele). Both strains were assayed for ~-galactosidase activity. In each 

case, light-induction was apparent in both phases of induction. Thus the 
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phenomenon is not unique to a particular carR allele or clonal isolate (Figure 3-1 

and Figure 3-2). 

With a biphasic induction it was difficult to conclude that each phase was being 

truly light-induced. It was possible that the initial activation was due to a carry 

OVer of stationary phase cells from the original inoculum and that this sub­

population of cells was exhibiting a phase IT activation, not a true initial induction. 

Conversely, phase IT may be due purely to loss of catabolite repression and is 

biologically irrelevant in the context of induction of carotenoid production. In 

order to avoid confusion due to these possibility the ~-galactosidase assays were 

repeated but after 3 hours the cultures were centrifuged and the pelleted cells were 

resuspended in a buffer lacking carbon source. This sent each culture into 

stationary phase and phase IT induction of crt! expression. In this way it proved 

Possible to assess a single phase of induction uncomplicated by the presence of a 

second phase. When a media replacement ~-galactosidase assay was performed on 

a wild-type strain containing pMAR206 it was clear that carbon limitation 

stimulated expression of crt! and that light also induced expression irrespective of 

illumination (Figure 3-3). 
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Figure 3-1 Activity of the crtI promoter in the carR5 mutant 

(DK718: :pMAR206). 

Y-axis is specific act ivity of f3-galactosidase in unitslminlmg protein. X­

axis is time in hours. 
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Figure 3-2 Activity of the crtI promoter in the carR4 mutant 
(DK406: :pMAR206). 

Y-axis is specific activity ol~galactosidase in un its/minimg protein. X­

axis is time in hours. 
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Assessing ~-galactosidase expression of the two carR backgrounds using media 

replacement after 3 hours showed that for each strain, starvation enhanced 

induction and light also stimulated expression (Figure 3-4 and Figure 3-5). 

The occurrence of light-induction in the constitutive presence of CarQ implies that 

for crt! there is a mechanism for light-induction which is additional to that 

mediated by CarQ. However, the additional light induction causes an increase in 

activity of only -two-fold which implies the light induction is more likely to be 

due a physiological effect rather than due to genetic factors such as a regulatory 

gene product (Hood et al., 1992). This may be due to any number of possible 

explanations, including the possible action of an activator of crt! transcription 

which has its activity directly increased by a light-induced conformational change. 

Alternatively, the increase in thermal energy within the cell upon illumination may 

allow a faster rate of diffusion of molecules inside the cell. In this scenario, CarQ 

may have its rate of diffusion increased and therefore its concentration at regions 

Within the cell away from its site of production may be increased upon 

illumination. This would presumably have no effect at the site of CarQ production 

(Le. the carQRS operon, but at other loci (such as crt!) the effective concentration 

of CarQ will be increased manifesting as an increased activity in the light. This 

Wildly speculative possibility could also explain why nicotine enhances induction 

of crt! but not carQRS in a carA mutant (see section 2.3.2). If the induction of crt! 

in the light in a carA background in the presence of nicotine is mainly due to 

Increased diffusion of CarQ to crt!, it might explain why the same increase is not 

seen at the carQRS promoter. This supposition assumes that the slight inhibition 

of carotenoid production seen on the addition of nicotine is significant enough to 

allow greater amounts of thermal energy from light into the cell. However, 

Carotenoids which absorb light are excited to a singlet state which emits the 

excitation energy as light. Thus absence of carotenoids is actually more likely to 

decrease rather than increase thermal energy within the cell. 
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Figure 3 -4 Activity of the crtJ promoter in a carR strain 
(DK718::pMAR206) with carbon limitation after 3 hours. 
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Y-axis is specific activity of {3-galactosidase in units/min/mg protein. X­
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Figure 3-5 Activity of the crt! promoter in a carR strain 
(DK406::pMAR206) with carbon limitation after 3 hours. 
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3.3. Are additional genes found at crt]? 

The unexpected Car- phenotype of strains which contained disruptive transposon 

insertions suggests that there may be unknown ORFs at crt! which are also 

disrupted by insertion of the transposon into crt!. This polar effect would be a 

consequence if the crt! promoter caused transcription of a polycistronic mRNA 

containing more than one gene and the insertion of Tn5 caused transcriptional stop 

signals to be introduced within the first gene. If this were the case, it would be 

expected that an additional gene(s) would be found downstream of crt! reading in 

the same direction of crt!, possibly including an activator of carBA expression. 

The region downstream of crt! was sequenced to determine whether any 

additional genes were present. 

3.3.1. Sequencing of the crt] region. 

The crt! region was cloned by plasmid rescue from DKIOl::pMAR206 which is 

the wild-type strain containing an integrated crt! promoter probe. Chromosomal 

DNA was extracted from DKI0l::pMAR206 by the CsCI method of McGowan 

(1992). Incubation of the DNA with restriction enzyme EcaRY followed by 

inactivation of the EcaRY and ligation gave a mixture which was used to 

transform Escherichia cali strain MCI061. This resulted in the creation of plasmid 

pDEWlOO which was ~15kb in size. PCR reactions using primers 3 and 4 

(7.4.6.2) confirmed it carried the crt! promoter but restriction mapping suggested 

it had undergone substantial rearrangements of the crt! region. Therefore plasmid 

pMAR202 which contains ~20 kb of the crt! region was chosen as the template 

for sequencing (Fontes et al. 1993). This plasmid was transformed into DH5u, a 

strain lacking a host methylation modification system. Sequencing was performed 

Using the method of Sanger et al. (1977) using dye-terminators. Sequencing 

reactions involved 30 cycles with a 15 second melting step at 96°C followed by a 

15 second annealling step at 50°C and a final extension step of3 minutes at 60°C. 
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Reaction products were visualised by gel electrophoresis (Alta Bioscience, 

Birmingham UK). For an example of sequence data, see section 8.2. 

3.3.2. DNA Sequence or'the crt] region. 

Sequencing was perfonned on both strands of the crt! region. The DNA sequence 

marked below in Figure 3-10 follows on from the sequence of the phytoene 

dehydrogenase gene (crt/) as detennined by Fontes et al. (1993) such that position 

1905 from Fontes et al. (1993) is the first base described with the initial GTGA 

containing a GTG triplet overlapping the TGA stop codon of the crt! gene. 

Analysis of the novel sequence was initially perfonned using FRAME (Bibb et 

al., 1984), BLAST 2.0 and PSI-BLAST (Altschul et al., 1997). FRAME analysis 

(Figure 3-9) suggested that there was an open reading frame of 852bp within the 

novel sequence, that confonned to expected bias in codon base usage (Bibb et al., 

1984) for a high-GC content organism. Thus for this putative ORF, the third 

codon base was a G or C in 90.2% of codons. GC percentage in codon positions 

One and two were 79.3 and 52.3 respectively with an overall GC content of 73.9% 

Which agrees well with values described for myxobacterial DNA (Mandel and 

Leadbetter, 1965). This putative open reading frame is designated (gene of 

unknownjimction B) gujB. The presence of an open reading frame divergent with 

the crt! gene was also revealed by FRAME. This ORF has been designated gufC 

(gene of unknown jimction C) and is shown in Figure 3-11. The first 164bp of the 

sequence of gufC are known, comprising 55 codon triplets and GC content in each 

of the three codon positions corresponds to that expected for a gene of M xanthus. 

The first codon position is 78.l % GC, the second is 45.5% GC and the third 

codon position is 92.7% GC with an overall GC percentage of 72.6% over the 

entire 164bp. Attempts to identify possible ribosome binding sites were made by 

comparisons to sequence complementary to the 3' sequence of the myxobacterial 

16S rRNA (3'-OH-UCUUUCCUCCACUA. .. -5', Oyaizu and Woese, 1985). No 

nUcleotide stretches with significant similarity to this sequence were found 

Upstream of gufC or gujB. 
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GTG AGC GCC GCG CCA TCC AGT GGC GCG CTC ACC CGG 
M S A A P S S G A L T R 

CAG GCG GGG AAG GGG CGC CCG CAT CCG CCG GGC GGG 
Q A G K G R P H P P G G 

GCG GGG GCG AAG CTG GCA TAG TTG CGA GGC ATG 
A G A K L A *** M 

Figure 3-6 Putative peptide gene (olpA) upstream of gum. 

Initial GTGA is a GTG initiation codon overlying the TGA stop codon 
of crt I. The stop codon of the peptide is shown with ***. Thefinal ATG 
is the initiation codon of gum. It is assumed that the first codon 
encodes formyl-methionine. 

It is possible that crt! is translationally coupled to a peptide which serves to 

deposit ribosomes upstream of the 51-end of gujB (Rex et al., 1994). This could 

imply that crt! and gujB are transcribed as a single mRNA species from the crt! 

promoter and would thus form an operon. In which case, it might be reasonable to 

assume that crt! and gujB are involved in the same physiological function. 

The overall GC percentage of the olpA peptide coding region is 81.1 % with GC 

Content in the three coding positions of 80%, 76.7% and 86.7% respectively. This 

conforms to the expected relative codon usage bias of M. xanthus, given that the 

overall region has such a high GC content. There are four residues in the coding 

sequence for olpA that are coded for by rare codons (Wright and Bibb, 1992) i.e. 

Pro(5), Ser(7), His(20) and Ala(30). Conventional thinking. suggested that the 

presence of rare codons at the start of a gene may have regulatory consequences 

with synonomous codon usage correlating diectly with levels of expression 
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(Shields and Sharp, 1987). It is probable that the tRNAs for infrequently used 

co dons have relatively low concentrations in the cell. A possible regulatory 

consequence would be the lower rate of translation of an mRNA containing an 

abundance of infrequently used co dons (Konigsberg and Godson, 1983). A typical 

model might be that on translation of o/pA the ribosomes 'stall', allowing 

increased levels of translation of gujB. 

The region surrounding o/pA was assessed for the possibility of secondary 

structure formation within a transcribed RNA product using MFOLD (Zucker, 

1989). MFOLD predicted 20 different models of possible region of secondary 

structure within the region, however certain hairpin loops were present in the 

majority of predicted folds. Appendix 8.3 shows representative examples of 

MFOLD results displayed as squiggle plots. Predicted hairpin loops of interest are 

shown in Figure 3-7. Of the twenty squiggle plots, no two plots suggested an 

identical stem-loop around the crtIlo/pA junction, while fifteen of the squiggle 

plots consistently predicted a large stem-loop within the o/pAlgujB junction area. 

This hairpin lies at such a position that the initation codon of gufA lies at the 

bottom of the stem. If this structure is capable of forming in vivo then a possible 

mechanism for translational coupling between olpA and gujB is clear. Translation 

initiation may only be possible if ribosomes pass along the mRNA of olpA 

disrupting the stem-loop structure. This will cause the section of mRNA 

Containing the gujB translational start site to revert to single stranded nucleic acid 

and allow initiation of guB translation to occur. Site directed mutagenesis of the 

hairpin would allow this phenomenon to be confirmed or denied. 

The lack of obvious secondary structure of mRNA at the crt!lolpA junction does 

not preclude the possibility of translational coupling between these two genes as 

the overlapping start and stop co dons of the genes may imply a model of 

translational coupling where after translation of crt!, the ribosome 'shifts' back a 

nucleotide to re-initiate translation of olpA. 
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Met 

CGTATGTGCCGCCGCTGGAGCCGGAGTCGCCCGTTCAAGCTCGCGCGGGGTGAGC 

GCCGCGCCATCCAGTGGCGCGCTCACCCGGCAGGCGGGGAAGGGGCGCCCGCATC 

Met 

CGCCGGGCGGGGCGGGGGCGAAGCTGGCATAGTTGCGAGGCATGCCCTTCTTCAT 

CCCATTCGCGGTGGGTGGCCTGGTGCTGACGGCACTGGGCCTGGGTGTGAGGAAG 

Figure 3-7 Predicted hairpin loops around olpA. 

Bases which form hairpin loops are underlined. The GTG and ATG 
codons denoted 'Met' are the initiating codons for olpA and gufB 
respectively. 

C-G 

G-C, 
/ G 

G I 
\ A 
U-G' 

C-G 

A"G-, 
I A 

\G-t (Met 
C-G 

G-C 

G-C 

G-C 

G-U 

Figure 3-8 Predicted hairpin loop at the start of gufB. 

The A UG initiation codon for gufB is on the downward strand of the 
stem. 
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In Bacillus subtilis, genes for biologically active oligopeptides are found 

downstream of genes of related function (Grossman, 1995). The initial steps in 

Commitment to sporulation of Bacillus subtilis involve a phospho-relay system 

terminating in phosphorylated SpoOA. One of the phosphorylated intermediates in 

the relay is SpoOF which is dephosphorylated by the phosphatase RapA. 

Immediately downstream of rapA is phrA which encodes a small peptide. PhrA is 

secreted and processed to a smaller peptide which is imported by the SpoOK 

oligopeptide permease. The peptide then inhibits the action of RapA and allows 

SPorulation to procede (Perego and Hoch, 1996). A similar system is involved in 

the development of genetic competence in B. subtilis. ComX is a small peptide 

pheromone which is exported form the cell, processed to a smaller peptide and 

imported by SpoOK. The peptide then inhibits a cellular phosphatase which is 

responsible for preventing accumulation of ComA~P and the subsequent 

development of competence. The gene for ComX is immediately downstream of 

comQ which appears involved in the export of ComX from the cell (Soloman and 

Grossman, 1996). 

It is possible that OlpA has a role in the cell other than to translationally couple 

crt! and gujB expression. It may regulate an aspect of carotenoid synthesis or it 

may control a separate aspect of cell physiology. It seems unlikely that it's 

presence between crt! and gujB is purely to couple the two genes, as this could be 

easily achieved by the cell without recourse to an intervening peptide coding 

region, however the possibility cannot be discounted. 

Translation of the DNA sequence of gujB gave a theoretical protein product of 

"-'28 kDa whose sequence is shown in Figure 3-10. BLAST 2.0 analysis failed to 

reveal the presence of homologues in the database, however analysis with the 

iterative PSI-BLAST algorithm revealed Guill possessed similarity to several 

proteins, with the best similarity to members of the PE family identified recently 

in Mycobacterium tuberculosis (Cole et al., 1998){17% identity plus 10% 

similarity over 80.3% of Guill, with an E-value of 6e-36}. For all PE family 

homologues, similarity was found to be towards the C-terminal half of Guill. One 

of the PE family homologues has been shown to be a lipase/esterase of M. 
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tuberculosis (Cole et aI., 1998). Other homologues include human butyrophilin 

(Banghart et al., 1998) {30% identity plus 11% similarity over 20.7% of GufB, 

with an E-value of 7e-13}, peroxidase/peroxidase-like proteins (29% identity plus 

5% similarity over 20.4% of GufB with an E-value of 3e-5) and Gcr-l of 

Chlamydomonas rheinhardtii {22% identity plus 9% similarity over 34% of GufB 

with an E-value of 4e-4} (Wakarchuk et al., 1992). The gcr-l gene contains many 

GC-rich direct repeats but is of unknown function. 

Analysis of gufC by BLAST 2.0 also failed to reveal any homologues in the 

database, which was to be expected due to the small length of the known sequence 

of gUfC. However, searching with PSI-BLAST, iterating until convergence, gave 

three homologues with homology spanning the entire known sequence of GufC, 

including a gene from Caenorhabditis elegans (cDNA yk46f1.3) which is a 

homologue of the vanadate resistance protein GOG5NRG4 from Saccharomyces 

cerevisiae (21 % identity plus 26% similarity over 69% of GufC, with an E-value 

of ge-12)(Poster and Dean, 1996). The other homologues were an Sqv-7-like 

protein from man involved in the glycosylation pathway (21 % identity plus 24% 

similarity over 75% of GufC, with an E-value of 2e-11) and a human homologue 

of a protein encoded in cosmid C52E12 of C. elegans required for vulval 

mvagination (29% identity plus 26% similarity over 75% of GufC, with an E­

Value of 3e-1O). 
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GTGAGCGCCG CGCCATCCAG TGGCGCGCTC ACCCGGCAGG CGGGGAAGGG GCGCCCGCAT 1965 
*** 

CCGCCGGGCG GGGCGGGGGC GAAGCTGGCA TAGTTGCGAG GCATGCCCTT CTTCATCCCA 2025 
M P F F I P 

TTCGCGGTGG GTGGCCTGGT GCTGACGGCA CTGGGCCTGG GTGTGAGGAA GGTGCTGACG 2085 
FAVG GLV LTA LGLG VRK VLT 

GAGACGGGCG TCACCACGCC TGGGGATGCC CGGCTGGCCG AGGCGCGTGA GCGGCACCGC 2145 
E T G V T T P G DAR L A EAR E R H R 

GGGGCGGTGG CCGCGCTCCG GGCGGACCGC CTCCAGGTTC GCGATGGCGT GGCCACCCAT 2205 
GAVA ALR ADR LQVR DGV ATH 

GGCGCGCTCC AGGCGCGGGT GCACGTGGAG GTGCTGGTGC CCTTCGGCGC GCTGTTGGAG 2265 
GALQ ARV HVE VLVP FGA LLE 

CGGCTGGAGC GCTGGGGGCA CGTCCAGGAA GCCGAGCTGC TCGAACCCGA GGCGCTGGAG 2325 
R L E R W G H V Q E A ELL E PEA L E 

GCGCTGCGCG CGCTCCTGCG CGAATCCCCG TCCCGCGCGA CGCGGCGAAA CTGGCCCCTG 2385 
A L R ALL RES P S RAT R R N W P L 

CTGGGCGCGG GTGCCGAGGT GCCCGCCGCG CTGGAGTCCG TGCTGGCGTG GCTGGACCGG 2445 
LGAG AEV PAA LESV LAW LDR 

GGCTGGCTGG ACGAGGATTC GCCGCCGGTG GTGCTGGATG GGACGCCGCT GTACGCAGTC 2505 
G W L D E D S P P V V L D G T PLY A V 

ATCTCGGCCC GCGCCATCCT GGCGGGGAGC GCTCCGGAGG AGGGTGCGCG GGCGCTCGAT 2565 
I S A R A I LAG SAP E EGA R A L D 

GAGGCCTCCG CGCTGCTGGC TCGGACGACG GCGTTCCTGG GGGCGCTGCG CGTGCGGCTG 2625 
EAS A LLA RTT AFLG ALR VRL 

ACGGCGCTGG AGCAGCGGGT GGCGGGGCTG CATGGACGGG CCTCGGCGCA GCTCGCCTAC 2685 
TALE QRV AGL HGRA SAQ LAY 

CTGGACGCGG CCAGCTTCGA GGCGGGCGGC GAGGAGCCCC GGGAGCGGCT GACGCGGCTG 2745 
LDAA SFE AGG EEPR ERL TRL 

GCGGTGCTCG TGGGCCAACT CGCCGTGCTG CTGCGCACGC CCGTGCTGAA CTCGGAGGGG 2805 
AVLV GQL AVL LRTP VLN SEG 

CGTCTGACGC CCATGCTCGC CGCGCGTGCG GAGGACGACG CGCCTTCCAA CGGTTGATGC 2865 
R L T P M L A A RAE D D A P S N G *** 

AGCGGCACCG TGGCCCGCGC TCGAGCGCGG GCGAGCCGCC GCATCAGACG TAGCGTTCAG 2925 

Figure 3-10 DNA sequence of the region downstream ofert!. 

The translation product of gufB is shown in single letter code below the 
corresponding DNA sequence. Asterisks denote stop codons. The stop 
codon beginning at position 1906 is the stop codon for ertI as revealed 
by Fontes et aI., 1993. 
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CCGCACGCTG CCTCCCTCGC TTGCCATGCC CTACCGGATG CCAAGGCCCT CCGGTACCTG 
Met 

GGTGAACGGA ATCCCACCCA CTCATTCACC TGGCGAACGC GCGAACCCGC CAGGACGTTA 
+1 -10 

CAAGAGCACC GTCCGGCACT GGCCCCCGGG CGAGCGCCAT TCCAGCCTTC CTTGGCCACC 
-35 

GTGCCACCGC ATTCCTCCTC CCACCTGCGC CGCAACGCCG CCGCCTACTG CGTGGTCCTG 
M P PHS S S H L R RNA A A Y C v V L 

GTGGGGCTGC TCCTCACCGC CGTGTCGGCG ACCTATGTGC AGCAGAGCAT CCACGAGCGC 
V G L L L T A V SAT Y v Q Q S I HER 

CGCCTGCACC GCTTCGACGG CGCGGTCCAT GACGGGGTGC TGGGC 
R L H R F D G A V H D G V L G 

Figure 3-11 DNA sequence of gufC and its relationship to crt!. 

Primary structure of GufC is denoted by single letter amino acid code 
underneath the coding DNA sequence. Met denotes the initiating codon 
of crt!. Bases in bold show the -10 and -35 consensus hexamers of the 
crtJ promoter and the + 1 position. It is assumed that the initiation 
codon GTG encodes a formyl-methionine residue. 
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3.3.3. Clues to the structure and functions of Gum and GufC. 

Due to the upsurge in predictive analyses of genomes and proteins made necessary 

by entire genome sequencing projects, there are an abundance of public-domain 

world-wide web servers which provide predictive algorithms for the analysis of 

primary DNA and protein structures. The sequences of Guill and GufC were 

extensively analysed using these resources. It should be noted that at best these 

analyses give highly speculative predictions, but may suggest directions which 

future experimental work may prove fruitful. 

3.3.3.1. Gum. 

The homologue which showed the greatest similarity to Guill is a member of the 

PE PGRS family (Pro-Glu, with l!olymorphic GC-rich repetitive ~equences), 

whose existance was discovered during the sequencing of the entire genome of 

Mycobacterium tuberculosis (Cole et al., 1998). There are 99 PE family proteins 

in the M. tuberculosis genome including 61 members of the PGRS sub-family. 

The genes for the PE PGRS proteins are clustered around the M. tuberculosis 

genome and are based around multiple copies of repetitive polymorphic repeats or 

PGRSs. PE refers to a conserved Pro-Glu (PE) motif near the N-terminal of the 

majority of these proteins. All PE members have a conserved N-terminal region of 

"'110 residues which is believed to form a globular domain (Cole et al., 1998). 

The C-terminal regions of the proteins can be variable in length, with some 

proteins lacking any extension to the globular domain and others having a 100-

1400bp C-terminal domain. Only one member of the PE PGRS family has had a 

function ascribed to it, being an esterase/lipase (Cole et al., 1998). The abundance 

of a highly conserved family of proteins in a potent pathogen has led to the 

Suggestion that the PE proteins serve to provide a source of antigenic variation. 

Polymorphism seems to occur in the PE PGRS proteins as a result of genetic 

instability in the tandem repeats within the PGRS moiety (Cole et al., 1998 and 

RObertson and Meyer, 1992). Homology between Guill and the PE proteins 

extends from around residue 165 to the end (residue 284) of Guill and over the 
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first 110 residues of the PE proteins, i.e. the globular N-terminal domain common 

to all PE proteins. GufB does not share the PE motif (Figure 3-12). 

It is possible that the conserved domain is a general protein folding domain, yet its 

absence from the database except for the PE proteins suggests this is not the case. 

Alternatively, the globular domain may provide a generic module for membrane 

association, but once again the lack of homo logs outside of M tuberculosis argues 

against this possibility. A role for GufB in immunological evasion is also unlikely 

as GufB lacks homology to the PGRS domain of the PE PGRS proteins and M. 

xanthus is non-pathogenic. The significance of the PE globular domain in GufB is 

therefore obscure. 

Gum 165 AVISARAILAGSAPEEGARALDEASALLARTTAFLGALRVRLTALEQRVAGL 

Wag22 6 
Z96071 6 
Z96800 6 

A A A + G+ +A A TT+ L A ++A + 
AVPETIAAAATDLADLGSTIAGANAAAAANTTSLLAAGADEI SAAIAALFGA 
AAPE IVVAAATDLAGIGSAI SAANAAAAAPTTAVLAAGADEVSAAIAALFSG 
AQPEMIAAAAGELASIRSAINAANAAAAAQTTGVMSAAADEVSTAVAALFSS 

Gum 217 HGRASAQLAYLDAASFEAGGEEPR--ERLTRLAVLVGQLAVLLRTPVLNSEG 

Wag22 57 
Z96071 57 
Z96800 57 

H +A AAS +A + + LT P+L + 
HGRA------YQAASAEAAAFHGRFVQALTTGGGAYAAAEAAAVTPLLNSIN 
HAQA------YQALSAQAAAFHQQFVQTLAGGAGAYAAAEAQVEQQLLAAIN 
HAQA------YQAASAQAAAFHAQVVRTLTVDAGAYASAEAANAGPMLAAVN 

Gum 266 RLTPMLAARAEDDAPSNG 

wag22 101 
Z96071 101 
Z96800 101 

L R +NG 
APVLAATGRPLIGNGANG 
APTQALLGRPLIGNGADG 
APAQALLGRPLIGNGANG 

Figure 3-12 Homology between PE PGRS members wag22, Z96071, 
Z96800 and GujB. 

'+' denotes similar residues. For this purpose, the follOWing amino 
acids are considered to be similar: (LL,M, V), (H,K,R), (D,E,N,Q), 
(A, G), (F, Y, W) and (S,T). The helix-turn-helix motif of region 4.2 is 
underlined. The PE motifs of the PE PGRSfamily members are 
underlined as is the potential leucine zipper ofGujB (see below). 

In order to determine whether GufB contained any transmembrane (TM) helices, 

its sequence was passed through the TMpred algorithm on the ISREC server 
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(www.ch.embnet.orgl) (Rost et al., 1995). Two models were suggested, a 

favoured model involving three TM helices and a less favoured model involving 

two. The first, much preferred, model suggested helices at residues 3-19 (in-out), 

123-144 (out-in) and 246-262 (in-out) {Helices 1, 2 and 3}, while the second 

predicted helices at residues 3-21 (out-in) and 246-262 (in-out) {Helices 1 and 3}. 

Charged residues at the termini of TM helices tend to be distributed with positive 

charges on the inside and negatively charged residues on the outside. It is thought 

that as the cytoplasm is negatively charged relative to the extra-cytoplasmic space, 

distribution of charges serves to lock the TM helix in position (von Heijne, 1989). 

There are regions of positively charged residues at position 22 corresponding to 

the C-terminal of helix 1, around position 120 at the N-terminal end of helix 2, 

and at the N-terminal of helix 3. Negative charges are found at the C-termini of 

helices 2 and 3 (Figure 3-13). This suggests that the two-helix model may be a 

valid alternative, with helix 1 going out-in and helix 3 being in-out. 

HELIX 1 
1 MPFFIPFAVGGLVLTALGLGVRKVLTETGVTTPGDARLAEARERHRGAVAALRA 

++ - + - +-+++ + 

54 DRLQVRDGVATHGALQARVHVEVLVPFGALLERLERWGHVQEAELLEPEALEAL 
-+ +- + + + - -+ -+ + 

HELIX 2 
108 RALLRESPSRATRRNWPLLGAGAEVPAALESVLAWLDRGWLDEDSPPVVLDGTP 

+ +- + ++ -+ 

162 LYAVISARAILAGSAPEEGARALDEASALLARTTAFLGALRVRLTALEQRVAGL 
+ + + + + - + 

HELIX 3 
216 HGRASAQLAYLDAASFEAGGEEPRERLTRLAVLVGQLAVLLRTPVLNSEGRLTP 

+ + -- +-+ + + - + 

270 MLAARAEDDAPSNG 

+ ---

Figure 3-13 Distribution of charged residues and predicted TM helices 
within GufB. 

Glu and Asp residues are asumed to be negatively charged, while His, 
Arg and Lys residues are positive. Potential TM helices are underlined. 
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The sequence of GufB was also searched to determine whether any protein motifs 

could be found within its structure using 'ScanProsite', again on the ISREC server 

(at www.expasy.chl) (Bairoch et aI., 1997). In this way the presence of a possible 

leucine zipper motif was discovered at residues 185-206. 

185 LDEASALLARTTAFLGALRVRL 206 

The leucine zipper is a protein dimerisation motif originally described for 

eukaryotic DNA binding proteins including Fos and Jun. In this motif, there is a 

leucine residue every seventh position such that if the region of the zipper is in an 

a-helical conformation (with -3.5 residueslhelical tum), the leucines line up on 

one face of the helix, with one leucine every two helical turns. Two proteins, each 

with a leucine zipper may then align themselves such that the leucine side-chains 

on their respective helices interdigitate (Landschulz et aI., 1988). Although mainly 

found in eukaryotes, leucine zippers have also been described previously in 

prokaryotes including a putative example in CarD (Nicolas et aI., 1996). The 

significance of the leucine zipper is unclear. It may function as a dimerisation 

domain if that region of GufB is a-helical. None of GufB's homologues have 

leucine zippers, so its presence in GufB may instead be a coincidental result of the 

high (17%) proportion of leucine residues within the protein which is probably 

due to the codon position bias of the organism. 

The predictive algorithm of Altschul et aI. (1990) confidently suggests that GufB 

is mainly a-helical (67%), with very little ~-sheet (7%), three transmembrane 

helices of around 20 residues and includes helices which seem particularly long 

(up to 40 residues). The algorithms used to compare proteins according to 

organisation of secondary structure, are particularly inappropriate to study 

membrane proteins as the TM helices are modelled as if they were general a­

helices. When these programs were used regardless, a hit of probability (0.7) was 

found to the cytoplasmic tetracycline repressor (Gatz and Quail, 1988), which may 

be purely a consequence of the high a-helical nature shared by GufB and TetR. 

Searching the PRO SITE database of protein domains with the sequence of GufB 
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(Altschul et al., 1990) scored a weak hit on a gene withinflaA of Bacillus subtilis 

(E-value of 7e-2). The similarity was found to orf6 of the flaA locus which is 

believed to be anchored at or within the membrane (Albertini et al., 1991). 

Interestingly, this domain is homologous to jrzCD of M. xanthus which is a 

homologue of the MCPs involved in chemotaxis. MCPs (methyl-accepting 

chemotaxis proteins) are membrane-spanning chemoreceptors involved in 

transduction of a chemotactic signal to the cell's motility system. 

The predictors of secondary structures were very certain that GufB is 

predominantly a-helical and contains three TM helices. Further structural 

predictions about GufB seem premature at best. 

The role of GufB is also still uncertain, however certain features of its sequence 

suggest speculative possibilities. The postulated presence of a translated leader 

sequence which causes ribosomes to be taken from the end of crt! to the beginning 

of gufB suggests that the two genes are both involved in carotenogenesis. One of 

the homologous PE proteins is an esterasellipase. It is conceivable that GufB is 

also an esterasellipase, possibly even involved in carotenogenesis, as the gene 

Product required for the addition of a glucoside ester to carotenoids (i.e. the 

conversion of 7,8 dihydro, 3-4' dehydro-rhodopin to 7,8 dihydro, 3-4' dehydro­

rhodopin glucoside ester) has not yet been identified. The TM helices of GufB 

imply a localisation of GufB in the membrane, consistant with the site of action of 

carotenogenic enzymes. If this scenario is correct it will prove necessary to 

determine conclusively whether crt! and gufB are co-transcribed or are expressed 

independently. The upstream region of gUfB certainly does not appear to contain 

any obvious promoter sequences (although my opinions on assigning promoters 

on the basis of similarity to a consensus will be aired later), so a single operon 

model is perhaps most likely. If crt! and gufB are part of a single operon, it is 

Possible that there are other genes downstream of gufB which are also in the 

operon. Future work will extend sequencing downstream of gufB to determine 

Whether further genes are present. 
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3.3.3.2. GufC. 

It is hard to find any constancy of function between the three homologues of GufC 

yet identified. Of the three homologues, the only one which may suggest a role for 

GufC in M. xanthus is the gene in C. elegans which is homologous to the vanadate 

resistance protein GOGS/VRG4 of Saccharomyces cerevisiae. VRG4 is 

responsible for correct glycosylation and trafficking of proteins through the Golgi 

apparatus and vanadate resistance seems to occur due to underglycosylation of 

secreted invertase. Whether any~elS can be drawn between the function of 

VRG4 and GufC is unlikely and would be speculative in the extreme. 

Searching GufC for protein motifs gave no hits except for a single transmembrane 

helix running between residues 13 and 33, with a particularly favoured orientation 

running in-out, with a negatively charged Glu residue at the C-terminal of the 

helix and positive residues at the N-terminal. The paucity of infomation gleaned 

about GufC is certainly a consequence of the small amount of its sequence that is 

known, although the ability to actually find homologues of such a small region of 

known sequence is testament to the power of the iterative PSI-BLAST program. 

3.3.3.3. Consequences to crt] due to gufC. 

Both crt! and carQRS have genes of unknown function reading divergently from 

them. For carQRS it has been postulated that correct expression of gufA is 

required for normal transcription (McGowan, 1992). Whether the same might be 

true for crt[ and gufC is unknown. The transcriptional start site of crt! is only 80bp 

from the initiating codon of gufC and therefore the promoters of the two genes 

would be very likely to overlap. This may have regulatory consequences for 

expression of the two genes. Scenarios can be envisioned where expression of one 

gene precludes expression of the other, or as is the case for carQRS/gufA, 

expression of one gene may be dependent on expression of the other. The effect of 

transcriptional activators/repressors of either gene could also have profound 

103 



effects on activity of the other gene. It must be noted that the site-directed 

mutations introduced into the crt! promoter by Martinez-Argudo et al. (1988) may 

be exerting effects on the expression of crt! indirectly, through a direct effect on 

expression from the gujC promoter. Which explanation is correct would be 

difficult if not impossible to determine, but the two alternative possibilities must 

not be overlooked. 

In short, although the situation for crt!/gujC is analagous to that of carQRS/guJA, 

the inter-relation of the promoters of crt! and guJA may reflect why expression of 

crt! is so different from that of carQRS. 

It is possible that the function of guJA and guJC is related. GufA and GufC both 

have TM helices within their first 30-40 residues and it is conceivable that they 

have a similar role in the cell. However, any role may be as basic as to exert an 

effect on expression of the carotenogenic loci crt! and carQRS. It should be 

pointed out that this is speculation and should be taken with several large pinches 

of salt. 

3.3.4. Why does a crtl mutation render strains Car"? 

In all strains created and isolated, which contain a crtIl allele, there is a Ca( 

phenotype. Initial thoughts suggested that as expression of crtEBDC alone is 

sufficient to cause production of carotenoids (i.e. in a carS constitutive mutant or 

in a carA mutant), then a crt! mutant in the light would also be able to create 

coloured carotenoids. This was seen not to be the case and suggested that the 

transposon insertion within crt! in the crtIl allele was also causing the disruption 

of unidentified gene or genes involved in carotenogenesis, down-stream of crt! -

i.e. a polar effect. The postulated downstream gene(s) could potentially include 

Carotenogenic enzymes, or a positive regulator of crtEBDC expression. 

Sequencing and subsequent analysis of the region downstream of crt! identified a 

gene (gujB) which may be translationally coupled to crt! and thus possibly 

involved with carotenogenesis. GufB shares homology to the.PE protein family of 

M. tuberculosis which includes an esterase/lipase. It is possible that GufB 

possesses an esterase activity involved in carotenogenesis. If this is true, then the 
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initial postulation that carotenogenic genes would be found downstream of crt! 

would appear to be vindicated. 

However, a more likely explanation for the Car- phenotype of a crt! mutant arises 

due to the nature of the carotenogenic pathway of M. xanthus. CrtI catalyses the 

Conversion of phytoene into lycopene, a conversion which is absolutely required 

for the production of coloured carotenoids. Thus by preventing the production of 

CrtI, the crtIl allele is causing a block in the carotenogenic biosynthetic pathway. 

This hypothesis is strengthened by the data available about the amount of each 

intermediate in the carotenoid pathway in various mutant strains (Martinez­

Laborda et ai., 1990). It is clear that in any strain carrying a crt! lesion there is an 

accumulation of phytoene, with traces of pytofluene, but with no detectable levels 

of any intermediates further down the pathway. There is therefore a strong case for 

the Car- phenotype of a crt! mutant being due solely to removal of the enzyme 

catalysing an essential step in the pathway of carotenogenesis. The constitutive 

production of carotenoids in a carA mutant in the dark will involve a low-level 

basal expression of crt! which is independent of expression of the carQRS operon. 
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3.4. Conclusions 

The crt! gene encodes phytoene dehydrogenase which catalyses the conversion of 

phytoene into lycopene, an essential step in the pathway of carotenoid production. 

Thus crt! mutants are Car- and appear tan. Expression of crt! is biphasic and both 

phases are activated by both CarQ, with phase II also seemingly activated by 

carbon limitation. Additionally, there is a two-fold induction of crt! expression in 

the light which is independent of CarQ. 

There are several features of crt! which are as yet unexplained. Why is expression 

of crt! more complicated than that of carQRS? Why is crt! catabolite-repressed? 

Why can in vitro run-offs transcripts be obtained from pcarQRS but not for perIl? All 

these queries suggest that there are many aspects of the expression of crt! that are 

not yet understood. Ongoing work in our lab and that of F. J. Murillo will 

hopefully shed more light on these areas of uncertainty. 

Analysis of the DNA sequence of the crt! region obtained by Fontes et al. (1993) 

and novel DNA sequence downstream of crt! obtained in this study, indicates the 

presence of two additional genes at this locus. Translationally coupled to the end 

of crt! appears to be encoded a leader peptide (OlpA) which terminates 

Immediately pior to gujB and implies a level of translational coupling between the 

two genes. Gene gujB starts around IOObp downstream of the end of crt! and 

enCodes a membrane protein which is homologous to a family of proteins of 

unknown function in Mycobacterium tuberculosis. It is likely that gujB is 

transcribed with crt! as a single operon and is also involved with carotenogenesis. 

The second novel gene, gufC is divergent from crt! and has homologues of diverse 

function. Any potential role of gujB or gufC in carotenogenesis is unclear, 

although it is clear from the close proximity of the promoters for crt! and gufC 

that expression of these two genes must be inter-related. 

Future work will entail complete sequencing of gufC and analysis of its coding 

sequence. Sequencing further downstream of gujB will determine whether any 

more genes fall in the putative crt! operon. Creation of disrupting lacZ 

transcriptional fusions of both gujB and gufC will potentially allow 
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characterisation of the roles and expression of these two genes. Other techniques 

which may be used to map transcription of these genes include primer extension 

analysis to identify transcriptional start sites (and therefore promoter sequences) 

and RT-PCR (reverse transcriptase PCR) and northern blotting to determine 

Whether the genes are transcribed separately or as polycistronic mRNAs. 
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4. Molecular Analysis of the carQRS Promoter. 

4.1. Introduction 

Promoters are the prime cis-acting genetic elements controlling differential gene 

expression. Each gene is transcribed from a promoter and in most cases, an 

increase in transcription of a gene leads to a proportional increase in gene product 

Production. Therefore the recognition of a promoter by the cellular transcriptional 

machinery and the resulting production of mRNA is of paramount importance to 

the cell. The levels of transcription of a particular gene are determined by 

availability of sigma factor, the nature of the gene's promoter element and how it 

interacts with the transcriptional complex and other factors/genetic elements. 

Determination of which promoters might be expressed is under the control of the 

sigma factor within the initiating RNA polymerase complex. Each sigma factor 

mediates the recognition of a sub-set of promoters by RNA polymerase, 

dependent on the sequence of the promoter. For promoters recognised by sigma 

factors of the (J 70 family, the most important aspects of the promoter required for 

recognition are hexamers at -35 and -10, and the spacing between these two 

hexamers. However, due to experimental difficulties, little is known of the exact 

nature of interactions between sigma factors and their cognate promoters (for 

review see deHaseth et al., 1998). 

4.1.1. Initiation of transcription. 

There are thought to be around 5,000 genes and 2,000 promoters in the genome of 

E. coli. In a genome of approximately 4Mb of DNA, it is extremely important that 

RNA polymerase can differentiate between promoters and the far larger non­

promoter DNA. RNA polymerase within the cell exists in two main forms, the 

Core enzyme which is responsible for elongation during RNA synthesis and has a 

SUb-unit composition of a2~W, and the initiating holoenzyme which is core 
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enzyme with associated sigma factor (a2PWcr). Specificity for promoters IS 

mediated by the cr (or specificity) factor of the RNA polymerase holoenzyme. 

The initial events in transcription by RNA polymerase are DNA binding and 

promoter selection. There are many models as to how this is achieved by the 

holoenzyme including: on/off binding to DNA, with complexes at non-promoter 

DNA thermodynamically unstable relative to binding at promoters; non-specific 

binding to DNA followed by a one-dimensional walk to promoter sites and several 

other variants (von Hippel and Berg, 1989). 

When the holoenzyme binds to a promoter it forms a closed complex (RP d with 

the DNA of the promoter in a 'closed' duplex state. There then occurs a significant 

isomerisation as the closed complex changes conformation to an open complex 

(RPo). This isomerisation is commensurate with melting of the DNA between 

positions -9 and +3, as shown by susceptibility to cross-linking agents which can 

attack only single-stranded DNA (deHaseth and Heimann, 1995). The 

iSOmerisation is also accompanied by a substantial change in the protection of 

promoter bases from DNase I cleavage. In the closed complex protected bases 

extend from around -5 to approximately -55, whereas in the open complex 

protection extends from -55 to around +20 (Schickor et al., 1990). The closed to 

open conversion involves two, poorly characterised, intermediates (Craig et aI., 

1995). In the second of these intermediates (RPC2)' the two promoter hexamers are 

'over-rotated' by 68° relative to each other and this torsional strain produced by the 

RNA polymerase seems to induce opening of the DNA duplex (deHaseth and 

HeImann, 1995). The melting of duplex DNA is the rate limiting step at some 

promoters and is enhanced by negative supercoiling which reduces the energy 

requirement associated with duplex melting. 

RNA production now commences within the P sub-unit of the open complex. 

While the transcription complex is in the initiating mode, transcription is not 

guaranteed and transcripts up to around 9 residues can be aborted without the 

polymerase having moved off the promoter (Krummel and Chamberlin, 1989). It 

seems that it is escape from the initiating mode into the elongation mode that is 

the rate-determining step in transcription, a process that on average has a half-life 

of around 60s. The sigma factor is still attached to the RNA polymerase complex 
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while it is in initiating mode and when the nascent transcript has reached a size of 

9-16 residues, the complex enters the elongation mode and the sigma factor is 

released. 

As the complex enters the elongation mode there are once again Significant 

changes to the structure of the complex. The complex becomes more compact and 

stable and there is a brief extension of the protected region of DNA to position 

+24. The region of melted DNA in the transcription bubble also increases in size, 

growing from 10 to 18 nucleotides (Yager and von Hippel, 1991). The sigma 

factor is then released from the complex leaving the core polymerase to continue 

polymerisation and leaving the sigma factor free to interact with a further RNA 

polymerase core enzyme and mediate initiation of another round of transcription. 

4.1.2. Promoters of M. xanthus. 

Knowledge of promoters in M. xanthus is limited with very few identified. In 

1995 the transcriptional start sites for only 8 genes were known (Keseler and 

Kaiser, 1995), and not many more have been identified since, making 

determination of consensus sequences difficult. Another complication is that there 

are mUltiple sigma factors in M. xanthus and for the majority of promoters, it is 

unknown which sigma factor mediates their transcription. Until it is known which 

sigma factor is responsible for expression from which particular promoters, it will 

prove impossible to determine a consensus promoter sequence for the 

housekeeping and alternative M. xanthus sigma factors. A brief summary of the 

sequences and proposed regions of interest of known M. xanthus promoters is now 

given. It has been attempted to group them tentatively by cognate sigma factor 

(speculatively in most cases). 
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g:70-like and constitutively expressed promoters. 

Pkn5 AAATCCTACGGACCACGTACAGTCAGGGTCAACGTTGGCAACG 
pkn6 CAACGTTGACCCTGACGTGACGTGGTCCGTAGGATTTCGACAT 
4403 GGTTGATTCATGAATAAGCCGTTTTTGATGTACACCCGTTTTACC 
f~z TTTCGATGGTCCGCGCTGCACCAAAGGTGTAGGGTTCTACCGCGA 
~lA CCGTTCACAGTTCGGGCAGACCACGGCGAGGGAGGACAGCA 
sasS GGTCATGGGACAGCGCCGTGAGGCGCCACATATAAAGTACGCACA 
vegA TTCCTTTAGACAAAACCATTTTTGGAAGGTAAGGGTATGGGCA 
cnEBDC CCTTGACAAGCTCTGGACGCAAACGCTACCTCTAGGAAA 
carD GTGGCGTCCGACGTGGCTCGGTGCTAAGCCCAGGCCTGTT 
rpoE1 TTGTTCCCGTGCATACATTTGGCGGGTAAGCGACAACTCATTCC 

tutative and proven SigECF-dependent promoters. 

CarQ-dependent: 
carQRS CGAGCGCCGGAAACACTTTCGCAGGTGGCCCGTAGAGGAGTCG 
cn! GGTGCTCTTGTAACGTCCTGGCGGGTTCGCGCGTTCGCCAGGT 

SigE-dependent: 
~oE1 GCTAGGGAATATGTTTCCCTGGCCGGCGTCGTGTATTCCCGA 
rpoE2 ACTCGGGAAGGCATGTTTCCTGGCTCAATATCTTGCAATTCACG 

!!!lidentified promoters. 

4400 GGCCGGAGGCGCGAGGTGCATGCCGGCGCTACAACACCCCCGGTC 
gufA GCATCCCGTCCTGCCCTGGAGGGCGAGGCCGTTAGTGTTGGGC 

i 4
-like promoters. 

carA TTGGGCGAAGCGCTCTTGCTTGCGGCCTTCCTGCGCT 
4521 GTCGAGCACGCG TCTTGCTTTGGCTCACGGCTCTTC 
mbhA GAATGGCACGCCATCT GCTTCGCGGCTGCGCGGAGC 

Figure 4-1 The -35 and -10 regions of promoters from M. xanthus. 

Areas of interest are underlined and transcriptional start sites (if 
known) are in bold. These are regions identified by the respective 
authors, and obvious regions of homology in other promoters. 
Promoters are classed according to which sigma factor they are 
probably recognised by. This is speculatively assigned according either 
to evidence provided by the authors or by obvious homology. Promoter 
sequences from: pkn5/pkn6 Zhang et al. (1996): 4521 Keseler and 
Kaiser (1995): 4403 Fisseha et al. (1996): vegA Komano et al. (1987): 
aphII Biran and Kroos (1997): mbh Romeo and Zusman (1991): relA 
Harris et al. (1998): sasS Yang and Kaplan (1997): 4400 Brandner and 
Kroos (1998): rpoE1 Ward et al. (1998): rpoE2 Ward M. (pers.comm.): 
frzZ: Trudeau et al. (1996). 
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Cursory examination presents some immediate observations. There are no very 

obvious homologies at the -35 and -10 regions detectable by direct sequence 

comparison. Additionally, if a comparison is made to the E. coli consensus 

promoter sequence for Sig70 (the housekeeping sigma factor of E. coli), 

(TTGACA ... TATAAT) similar motifs can be seen in the M. xanthus promoters 

but not in the same positions and not consistantly. For instance, the relA, pkn6 and 

crtEBDC promoters have very similar hexamers at -35 to E. coli but one base pair 

displaced from each other. Additionally of these three promoters, pkn6 has a 

hexamer around -10 which is very similar to that of E. coli, however, neither relA 

of crtEBDC have any apparent similarity to the -10 hexamer of E. coli. Yet 

homOlogy at -10 can be found among M. xanthus promoters (e.g. promoters of 

Pkn5 andfrzZ). This makes it very difficult to define a consensus for any of the M. 

xanthus sigma factors and is probably a consequence of the multiple sigma factors 

present in M. xanthus. The presence of hexamers which have a great degree of 

similarity to the consensus promoter sequence of E. coli suggests that there is at 

least one sigma factor in M. xanthus which recognises a similar consensus to that 

recognised by Sig70 of E. coli. The gene encoding Sig70 of M. xanthus (rpoD) has 

been cloned, sequenced and the gene product shown to be an active sigma factor 

in vitro (Inouye, 1990; Biran and Kroos, 1997; Davis et al., 1995). 

Generally, there are lots of problems associated with the identification of promoter 

sequences. In most cases a promoter sequence can only be identified through 

eXperimental procedures such as primer extensions or S 1 nuclease studies which 

determine transcriptional start sites. These results can be ambiguous and are 

Certainly not unequivocal. A primer extension analysis which gives a slightly 

displaced transcriptional start site, can cause significant problems when 

attempting to make comparisons with other promoters. An ambiguity in the length 

of the spacer region between the -10 and -35 sites compounds uncertainty in the 

exact position of the various promoter elements and thus in assignments of -10 

and -35 regions. Difficulties in precisely defining promoter sequences may explain 

Why it is so hard to find a consensus for SigA-dependent promoters. 
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Another difficulty arises from the nature of the search for consensus itself. It is 

impossible to define a promoter as being Sig70-dependent until it has been proven 

to be so experimentally. This is also true for all promoters of any given sigma 

factor. Assignment of promoter sequences purely through homology to known 

promoter sequences thought to be recognised by the same sigma factor, is a recipe 

for disaster, yet the temptation to do so is omnipresent. Ward et al. (1998) have 

recently discovered what appears to be two copies of rpoE in M. xanthus. The 

gene for RpoEl was cloned during attempts to use the yeast two-hybrid system to 

screen M. xanthus for genes whose products interacted with the chemotaxis 

protein FrzZ. They assumed from the sequence of RpoEl that it was an ECF­

sigma factor (SigECF) and postulated that rpoE1 would be under the control of an 

RpoE-dependent promoter. The DNA sequence upstream of rpoE1 was searched 

for regions with homology to known promoter consensus sequences and a region 

of homology to an SigECF-dependent promoter consensus and a region similar to 

a Sig70-dependent promoter were found. Subsequent expression studies showed 

however that rpoE1 is exclusively transcribed from the Sig70-like promoter and 

not from the SigECF-dependent promoter, in all growth conditions assessed. The 

validity of the proposed SigECF-dependent promoter for rpoE1 is therefore in 

doubt and emphasises the folly in assigning promoter sequences from sequence 

data only. In effect, the attempt to find an SigECF-dependent promoter upstream 

of rpoE1 was biased towards successfully finding one. When found, experimental 

work showed that the 'promoter' was not transcribed in vivo and therefore not a 

promoter, yet the conclusion arrived at by the authors is that the conditions under 

which the SigECF-dependent promoter is active have not yet been determined. 

The need to derive a consensus promoter sequence for a sigma factor is far from 

clear. Even were it possible to unambiguously determine the consensus promoter 

sequence, it is impossible to deduce anything about the activity of any promoter 

without experimental work, except perhaps to identify which sigma factor is most 

likely to cause its transcription. Even this scenario is unlikely, as assignment of a 

specific sigma factor to a particular promoter, requires the promoter to be similar 

to the consensus promoter, a situation which is not necessarily going to be the 

case. 
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The folly of assigning promoter activity to regIOns of DNA by sequence 

homology alone is probably going to be compounded however, during the 

upcoming project to completely sequence the M xanthus genome. While a noble 

goal, current understanding is too limited to make this a viable option for 

promoter identification. 

In some cases, with sufficient genetic evidence it is possible to assign promoters 

unambiguously. The carQRS and crt! promoters are two good examples of this. It 

is known that both promoters are completely dependent on CarQ for their 

expression, thus they presumably share the same sigma factor and may therefore 

have similar promoter sequences. This can be seen to be the case on examination 

with identical hexamers at -35, 67% identity at -10 and with identical spacing 

between the two recognition hexamers, but only if the proposed start site of 

transcription of crt! is displaced by 12bp. The identification of these regions of 

DNA as promoter elements is unambiguous, however, even with such clear 

eVidence, there is still uncertainty as to the exact nature of the sub-elements within 

both of these promoters. For instance, the expression of crt! is very different from 

that of carQRS. Run-off transcription assays show that CarQ causes transcription 

of the carQRS promoter but the same was not true for the crt! promoter 

(Browning, 1997). Additionally, the crt! promoter is regulated by carbon 

availability which is not the case for the carQRS promoter. The repressive effect 

of carbon source availability may be specific to crt! or due to a non-specific 

Consequence of nutritional state such as the degree of DNA supercoiling which 

has been shown to be the case in response to osmotic and anaerobic stress in 

enteric bacteria (Bhriain et al., 1989). It is still possible that CarQ is not the sigma 

factor required for crt! expression, and that the requirement of CarQ for crt! 

expression is due to CarQ mediating the production of an additional factor at an as 

Yet unidentified locus, which then goes on to activate crt! transcription. 

Alternatively, crt! expression may require an activating protein which was not 

sUpplied during the run-off assays. 
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4.1.3. ECF sigma factor-dependent promoters. 

The original description of the ECF sub-family of sigma factors (section 5.2.3) 

(SigECFs) described a clear similarity of sequence for SigECF-dependent 

promoters. It should be noted that the similarity profile was derived from a large 

number of different species (Lonetto et al., 1994). 

SigECF-dependent promoters have a highly conserved -35 hexamer but with 

Significantly less identity at the -10 hexamer. If SigECF -dependent promoters had 

a conserved -10 region as well as a conserved -35 region, it would prove 

Impossible for multiple SigECFs to be maintained with independent functions 

Within the same species. The reason for this difference in conservation between 

the -35 and -10 hexamers is unclear, particularly concerning the great degree of 

similarity at the -35 hexamer. It is conceivable that the ECF sigma factors will 

prove to be degenerate in their recognition of SigECF -dependent promoters due to 

the similarities between different SigECF-dependent promoters even within the 

same species. 

4.1.4. Promoters of the M. xanthus carotenogenic regulon. 

At the moment there is considerable confusion in the literature about the nature of 

the crt! promoter. Currently, evidence for the start site of the crt! promoter comes 

Solely from primer extension analysis (Fontes et al. 1993). Evidence for the start 

site of the carQRS promoter comes from both primer extension experiments 

(MCGowan et al. 1993) and from transcriptional run-off assays (Browning 1997) 

and thus is more certain than that of crt!. Fontes et al., (1993) and Martinez­

Argudo et al. (1998) describe a start site that results in -10 and -35 sequences that 
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show only poor similarity to those of the carQRS promoter. If the start site is 

shifted upstream by 12bp relative to that described by the above authors then there 

appears to be a striking degree of similarity to the carQRS promoter (Figure 4-2). 

The crt! promoter with the 12bp displacement will henceforth be refered to as the 

crt! (+ 12) promoter) 

No other promoters in M xanthus appear to resemble the carQRS or crt! 

promoters, including that of crtEBDC (which is to be expected as crtEBDC 

expression is not CarQ dependent). The promoter of crtEBDC seems to share 

homology to those of several vegetatively expressed genes of M xanthus (Figure 

4-1), particularly , suggesting it may be under the control of the housekeeping 

sigma factor, SigA. 

Martinez-Argudo et al. (1998) have performed a site-directed mutation approach 

to analyse the crt! promoter. They created specific mutations within the -10 and -

35 regions and analysed the results in vivo, through p-galactosidase fusions and by 

Colony colouration. However, if the true start site of crt! is displaced by 12bp as 

described above to bring pert! into line with pcarQRS, then the regions being mutated 

will actually be around the transcriptional start site and at the area around position 

-23. Due to the similarity of the displaced crt! promoter to that of carQRS around 

-35 conforming to the consensus for SigECF-dependent pomoters, a triple 

mutation was engineered that changed the GAC at position -45 to -43 to CCG. 

The triple mutation had no significant on pert! activity and this result does argue 

against the 12 bp displacement ofpcrtl. 

Point mutations generated between -33 and -29 almost abolished promoter 

activity. This is the region of similarity between pcarQRS and pertl as shown by 

Fontes et al. (1993). If the 12 bp displacement of pert! described above is correct 

then the mutated residues actually lie between -21 and -17. Mutation of the T at-

9, the G at -10 or the C at -11 all greatly reduced promoter activity. Note once 

again that if the 12 bp displacemant of pertl is correct, the mutated residues 

actually lie from + 1 to +3. Martinez-Argudo et al. (1998) also determined the 

minimum stretch of the crt! promoter required for activity. Full expression 
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required a stretch of DNA extending from somewhere between -54 and -25, to 

somewhere between +57 and + 120 (the initiation codon of crt! lies at +61). The 

reason for the requirement of such a large amount of downstream DNA for 

promoter activity is far from clear. 

carQRS 

crt! (+12) 

carQRS 

crt! (+0) 

CGAQCGCCGGAAACACTTTCGCAGGTQGCCCQTAQAQGAGTCG 

CCAQTGCCGGACGGTGCTCTTGTAACQTCCTQGCQGQTTCGCG 

CGAGCGQCGQAAACACTTTCGCAGGT GGCCCGTAGAGGAGTCG 

GGTGCTQTTQTAACGTCCTGGCGGGTTCGCGCGTTCGCCAGGT 

Figure 4-2 Homology between the carQRS and crtI promoters. 

The two possible promoters of crtI are shown, each alongside the 
carQRS promoter. Conserved bases are underlined. crtI (+ 12) denotes 
the promoter of crt I as described in Fontes et al. (1993) with the start 
site displaced 12 bases upstream. -10 and -35 nucleotides are in bold. 

To date, several areas of importance within the carQRS promoter have been 

identified. McGowan (1992) has shown that the minimum stretch of the carQRS 

promoter required for activity extends from between positions -136 and -145 

(including the promoter for gufA). The carQRS promoter is thus very large and 

implies that additional factors are required for expression of carQRS. 

Determination of the transcriptional start site of carQRS allowed assignment of 

the -35 and -10 recognition regions, an assignment which has since been 

strengthened by the similarity of these regions to those of other SigECF­

dependent promoters. The discovery that carQRS expression is CarD-dependent 

(Nicolas et al. (1994) prompted Berry (1998) to search for possible regions of 

homology to the binding sites for HMGI(Y) proteins. He found a tandem repeat of 

TTTCC centred on positions -75 and -65 of the carQRS promoter. Subsequent 

Work has shown that a CarD-GST fusion will bind to this area of the carQRS 
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(Cayuela and Murillo, 1998). Thus there are several regions of interest within the 

carQRS promoter: the CarD binding sites, the -35 and -10 recognition motifs and 

the gufA promoter. 

4.2. Site-directed mutations within pcarQRS 

Berry (1998) has constructed a set of sixteen site-directed mutations spread over 

the length of the carQRS promoter, with each mutant promoter fused upstream of 

a promoterless iacZ gene (Figure 4-3). Mutant sequences are designated Altl to 

Alt16 and were primarily engineered at sites such that the mutation introduced a 

KpnI site into the sequence. The mutant promoter constructs also contain the PI 

inc region and a kanamycin resistance determinant. Constructs containing the 

sixteen mutant promoters are designated pAEB601 to pAEB616 (see Figure 4-3) 

and are refered to as the pAEB6XX constructs, such that the Alt4 promoter is 

found on pAEB604. Construct pAEB600 carries the wild-type carQRS promoter. 

Introduction of these constructs into the Mx8 attB site of wild-type M. xanthus 

enables assessment of the activity of the promoter mutations in vivo. 

4.2.1. Integration at the Mx8 AttB site. 

Mx8 is a general transducing phage of M. xanthus which is capable of a lysogenic 

lifestyle and was first isolated as a lysogen (Martin et ai., 1978). Lysogeny arises 

by a specialised integration system encoded within the phage. The Mx8 genome 

Contains an attP site which is a region of 29bp overlying an inverted repeat of 

Ilbp (Tojo et ai., 1996). The attP sequence is identical to a site on the M. xanthus 

chromosome, the attBMx8 site, 3.5Mb from the carQRS locus (Chen et ai., 1991). 

Also found at the attP region of the phage genome is the intP gene which encodes 

an integrase protein and includes the attP site within the coding region of the 

gene. Recombination of the phage genome into the chromosome by homologous 

recombination across the att sites causes the intP gene to be truncated (denoted 

intX) and the gene product of the truncated gene (lntX) has been proven to be 
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defective in integrase/resolvase activity (Tojo et al., 1996). Therefore integration 

into attBMx8 prevents excision events and the lysogen is stable. 

It has been shown that plasmids carrying the Mx8 attP region, when introduced 

into M xanthus integrate stably at the attBMx8 site (Orndorff et al., 1983). The 

population of strains produced by integration are in the majority due to single 

insertions but a minority do integrate in multiple copies (Y ouderian, P. and Gill, 

R. pers. comm.). Another consideration is the presence of two attBMx8 hairpin sites 

in the M xanthus chromosome at which recombination with attP can occur. 

Nothing is known about the relative frequency of insertions into each of the two 

sites or whether there is any difference in expression levels between the two sites. 

Introduction of the mutant promoter lacZ fusions into the attBMx8 site has obvious 

advantages, with no disruption of any of the genes in the carotenogenic regulon, 

allowing activity of the mutant promoters to be assessed in a completely wild-type 

Context. However, is has been shown that expression from within the attBMx8 

locus can give different levels of expression of integrated genes than when 

expression of the same genes is assessed in their natural location in the M xanthus 

chromosome (Gill, pers. comm.; McGowan, 1992). 

4.2.2. Introduction of mutant promoter constructs into M. 
xanthus. 

In this study, introduction of constructs containing the mutated carQRS promoters 

into DK101 was surprisingly difficult. PI-mediated transduction of plasmids 

Containing substantial regions of M xanthus DNA typically give rise to large 

qUantities of transductants (~1 00 per plate) due to homologous recombination. 

Transduction of the pAEB6XX constructs which contain the mutated promoters 

(-150bp) and the Mx8 attP region (including int gene) gave transductants only 

rarely. This was also true when electroporation was attempted as the method for 

the introduction of plasmids. 

With the presence of attP and the Mx8 intP gene on the introduced plasmid, 

Integration should be favoured across the att sites over integration at the 160bp 
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carQRS promoter. With promoter probe plasmids such as pMAR206, the 

promoter fragment on the plasmid is much larger (-2.6kb) than that found on the 

pAEB6XX constructs, making homologous recombination into the chromosome 

much more probable for pMAR206, than for the AEB6XX plasmids. The small 

size of the promoter fragment in the pAEB6XX constructs means that should 

integration at the attBMx8 site be ineffective, the plasmid is unlikely to integrate 

into the chromosome at all. Therefore the inefficient integration of pAEB6XX 

plasmids into DK101 is most probably due to a defective copy of the intP gene on 

these plasmids. 

4.2.3. Checking the pAEB6XX constructs. 

Plasmids carrying the mutated promoters were checked by PCR using PCR 

primers 1 and 2 (see section 7.4.6.2.1). Primer 1 anneals to a site within pcarQRS 

while primer 2 anneals in the opposite orientation within the lacZ gene. Products 

should only be obtained by PCR if the plasmid carries both lacZ and pcarQRS in the 

Correct orientation. The 480bp product obtained from the PCR reaction was then 

incubated with restriction enzyme KpnI. Since the mutated promoters each 

Contained a novel KpnI site due to the presence of the Alt mutation, cleavage of 

the PCR product confirmed that the copy of pcarQRS within the plasmid still 

Contained the engineered mutation. The integrated plasmids were also checked by 

PCR to confirm their presence within the chromosome of the recipient strain using 

primers 1 and 2 and KpnI digestion as above. All strains were screened in this 

fashion before p-galactosidase assays were performed (see Figure 4-4 for example 

of the PCRlKpnI screen). 
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Altl6 Alt15 
EcoRI GTA GTA 

-176 GAATTCCCCGCGTGCGTCCGAGGTGCCTCCGC~CCCAACACTAACG 

Alt14 Alt13 Alt12 Altll AltlO Alt9 
TAC GTAC TACC TAC GTAC GGTA 

-130 GCCTCGCCCTCCAGGGCAGGACGGGATGCTGCTGGCGTTCGCAACC 

Alt8 Alt7 Alt6 
GGTA GTAC GGT GG 

-84 CCGTGACTTTCCAGAGCTTTCCTCACCGAACCTTGAGAAGCGCGAG 
CarD CarD 

Alt5 Alt4 Alt3 Alt2 Alt1 
TA TAC GGTA TAC TACC 

-38 CGCCGGAAACACTTTCGCAGGTGGCCCGTAGAGGAGTC~GTGATG 

-35 -10 +1 

RBS Met EcoRI 
+9 CGGAGCCAAACGGACGAAGCACTCATGGAACGCGATGAATTC 

Figure 4-3 Site-Directed mutations within the carQRS promoter. 

The DNA sequence shown is the EcoRI fragment of pAEB120 
containing the carQRS promoter sequence. Sequence is of plasmid 
origin up to position -164. Changes in the sequence engineered into the 
promoter by site-directed mutagenesis are shown above the wild-type 
sequence with the label for the plasmid carrying the mutant promoter. 
All the mutations introduce a novel KpnJ restriction site (GGTACC). 
Plasmid names correspond to the plasmid which carries that particular 
mutant promoter. For example, pAEB602 carries the mutant promoter 
Alt2 which has the sequence GGTACCG instead of the wild-type 
sequence GGAGTCG approaching position +1. The base underlined at 
-144 is the transcriptional start site of the gufA gene. The proposed 
CarD binding site is also underlined centered at positions -74 and -64. 
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l,'igure 4-4 Screeningfor the presence o.fsite-directed mutations within 
p C<lrQRS. 

Lane 1: Molecular Markers. Lanes 2-7: PCRproducts derivedfrom 
DK101::pAEB600, DK101::pAEB601, DK101::pAEB602, 
DK101: :pAEB603, DK101::pAEB604 and DK101 ::pAEB606 using 
primers 1 and 2, restricted with KpnJ The presence of a KpnI site 
between the carQRS promoter and the lacZ gene gives a 300bp and a 
220bp fragment on restriction of PCR product with KpnI. Presence of 
an engineered KpnI site within pcarQRS eliminates the 220bp fragment 
and gives rise to two fragments which together comprise the full 220bp. 
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The possibility that the more than one copy of the plasmid had integrated to form 

multiple insertions was also checked by PCR. Primers MULTI 1 and MULTI 2 

are complementary to regions flanking the Mx8 aUP site within the Mx8 aUP 

region. Amplification between these primers should only occur in strains 

containing an intact copy of the aUP site, i.e. only in the case of an E. coli strain 

carrying one of the pAEB6XX plasmids and in M xanthus strains which contain 

tandem multiple insertions of the pAEB6XX plasmid in the aUB
Mx8 site. Since 

absence of an amplification product does not mean that the target template 

sequence is not present, a positive control was built into the PCR reaction. Primer 

MULTI 3 is complementary to a site within the Mx8 aUP region which is the 

same side as the annealing site of MULTI 1 relative to the aUP site, and in the 

opposite orientation. Amplification between MULTI 1 and MULTI 3 should occur 

in all strains which contain integrated pAEB6XX plasmids, regardless of their 

copy number, acting as an internal positive control for the PCR reaction. 

The PCR screen for multiple insertions were performed on all strains containing 

integrated pAEB6XX plasmids that gave greater levels of p-galactosidase activity 

than the wild-type construct DK101::pAEB600 (i.e. DK101::pAEB606 and 

DK101::pAEB607). The PCR reactions contained primers MULTI 1, MULTI 2 

and MULTI 3 in the ratio 2:1 :1(see section 7.4.6.2.2). Amplification between 

Primers MULTI 1 and MULTI 2 gave the expected product of 694bp. This 

product was only seen when PCRs were performed on unintegrated plasmids 

carrying the intact AttP region. PCR reactions performed on DK101 containing 

Integrated pAEB606 and pAEB607 and reactions performed directly on the 

unintegrated plasmids, all gave the expected product of 212bp due to 

amplification between primers 1 and 3 (Figure 4-6). This indicated that both 

DI<.101::pAEB606 and DK101::pAEB607 carried integrated plasmids in single 

COpy number and not as tandem multiple insertions. 

PeR would ideally have also been used to characterise the nature of the event 

Which integrated the plasmids into the chromosome, ie. into which of the two aU 

sites the plasmids integrated and in which orientation. Without this control, the 

Orientation of the Alt promoters and their chromosomal context remain variables 

Which are unaccounted for when comparing Alt promoter activities. 
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Figure 4-5 The attP region and annealing sites for primers (MULTI) 1, 
2 and 3. 

The products expected from peR reactions involving primers (MULTI) 
1, 2 and 3 differ between (toIj plasmid containing attP, (middle) single 
integrated plasmid into attB x and (bottom) multiply integrated 
plasmids at attBMx8

. Filled boxes refresent attP site-derived sequences 
and open boxes derive from attBMx 

. Not to scale. All three scenarios 
give a product between primers 1 and 3. Product is only formed 
between primers 1 and 2 in the case of plasmid carrying attP top) and 
in the case of a multiply inserted plasmid (bottom). 
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Figure 4-6 Check/or multiple insertions a/integrated plasmid\' at the 
attBMx8 site, 

1% agarose gel showing the products ofPCR reactions performed 
using MULTI 1, MULTI 2 and MuLTI 3 on various DNA templates, 
Lane 1: pAEB606 (positive contra/), Lane 2: Markers. Lane 3: 
DK101::pAHB606, Lane 4: DKIOI::pAEB607. 

4.3. In vivo activity of mutant promoters. 

Plasmid pAEB600 carnes the wild-type carQRS promoter. The plasmid was 

introduced into the attBMx8 site of DK 101 and the resulting strain's production of 

~-galactosidase was assayed in both light and dark (Figure 4-7). As before, p­
galactosidase assays were performed in at least duplicate and only consistent 

results are shown. 
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Figure 4-7 Activity (~lthe carQRS promoter at the AttB site 
(DKIOI ::pAEB600). 

o 

Y-axis is specific activity of f3-galactosidase in units!minlmg protein. X­

axis is time in hours. 
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If the promoter activity is compared to the situation in DK101::pDAH217 where 

the identical carQRS promoter is integrated at the carQRS locus, then there are 

two immediate observations. Firstly there is a very similar background level of 

expression (~1O units/minimg protein for DK101::pAEB600 and for 

DK1 0 1: :pDAH217). However, in most cases where promoter probes have been 

introduced into the attBMx8 site, very variable background levels of expression are 

observed (Fisseha et al., 1996 and Youderian, P., pers. comm.). As will be seen 

later, this variable background level is also seen for the pAEB6XX constructs. 

Another observation that has been made from other studies of promoters at the 

attBMx8 site is that induction can be much reduced relative to the same promoter 

When at its wild-type locus (Fisseha et al., 1996). In the case of the carQRS 

promoter, when at the carQRS locus, induction gives a maximal activity of ~400 

llnits/minimg protein whereas a maximum of only ~35 units/minimg protein is 

seen when integrated at attBMx8
• Despite the lower induction of the promoter when 

in the attBMx8 site, a significant induction (250%) is still observed which should 

prove sufficient to assess any loss-of-activity mutations amongst the promoters 

Within the pAEB6XX constructs. The approximately three-fold induction on 

illumination corresponds well to the results obtained by McGowan (1992) which 

Suggested that the carQRS promoter extending from -145 would exhibit roughly 

three-to-four fold induction at the attBMX8 site. 

For ease of reference the mutations created in plasmids pAEB6XX will be refered 

to as AltX. For instance the mutant carQRS promoter carried on plasmid 

PAEB601 will be refered to as promoter Alt 1. 

4.3.1. Altt exhibits no light-induction. 

A.lt1 carries a mutation overlying positions +3 to +6 bases relative to the 

transcriptional start site of carQRS. When at the attBMx8 site, the promoter is not 

induced by light (Figure 4-8). 
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Figure 4-8 Activity of the Altf promoter (DKfO f: :pAEB60 f). 

Y-axis is !)pecific activity of~galactosidase in unitslminlmg protein. X­
axis is time in hours. 
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It is difficult to reconcile loss of light-induction with a mutation which is situated 

outside the promoter, within the transcribed region itself. However, there are 

possibilities which might explain this behaviour. When the RNA polymerase 

holoenzyme undergoes isomerisation from a closed to an open promoter complex, 

footprinting studies show that the enzyme protects a region of DNA extending to 

position +20. It is possible that sequence specific contacts are made between the 

enzyme and the DNA within the transcribed region such that mutation of this 

region prevents correct open complex formation at the promoter. Alternatively, 

there may be a requirement for the first few transcribed bases to be of a particular 

nature-either of specific sequence or conserved chemisty, purine/pyrimidine etc .. 

Buttner et al. (1987) have shown that it is possible to achieve in vitro transcription 

from the promoters of the S. coelicolor dagA gene using initiating dinucleotides 

that do not match the sequence of the transcriptional start site. This implies that 

there is considerable leniency in the requirements for any specific initiating 

nucleotides and therefore the lack of light-induction of Alt1 implies that the 

mutation is most likely causing an alteration in the promoter which affects 

formation and/or activity of an initiating RNA polymerase complex. The early 

transcribed region is known to be very important in the process of promoter 

clearance. It must be melted upon open complex formation, causing the loss of 

stabilising contacts with the polymerase, and the sequence of this region therefore 

modulates the rate of promoter escape (Kammerer et al., 1986). The involvement 

of specific residues within the transcribed region of pcarQRS mirrors the 

requirement of the crt! promoter for a region of DNA extending well into the 

transcribed area (Martinez-Argudo et a!., 1998). 

4.3.2. Alt2 shows wild-type induction. 

The Alt2 promoter exhibits no fundamental differences from the wild-type 

carQRS promoter when integrated into attB
MX8 (Figure 4-9). 

The mutation carried by Alt2 lies centred at position -3. As such it lies outside of 

the promoter elements believed to have a role in promoter activity, except that it 

lies within the region of DNA that is melted during open complex formation. The 

129 



site-directed mutation causes AGT to be replaced with TAC and thus the GC 

content of the region is maintained. Thus any effect of the mutation on promoter 

melting is likely to be minimal and the lack of phenotype associated with the 

mutation is therefore not unexpected. 

As with all the mutant Alt promoters which exhibit activity, it is possible that the 

activity (whether background or light-induced) is due to the mutant promoter 

being recognised by a sigma factor other than CarQ. For all the Alt promoters 

CarQ-dependence should be assessed by introduction into UWM303 (a carQ 

knock-out strain) and assaying for activity. 

4.3~3. Alt3 is constitutively active in M. xanthus. 

The mutation within Alt3 lies at position -14 to -17. This region is similar between 

the carQRS promoter and the 12bp-displaced crt! promoter (Figure 4-2) and may 

thus define the region recognised by region 2.4 of CarQ. Even though this region 

does not conform to the position expected to hold the -10 hexamer, it is possible 

that this is the region required for CarQ recognition. CarQ is an ECF sigma factor 

and as such carries a significant deletion relative to Sig70 between regions 2.4 and 

4.2. It is possible that this deletion causes the recognition elements within 

SigECF -dependent promoters to be more closely spaced than those within Sig70-

dependent promoters, and therefore the '-10' hexamer may not lie at -10 within the 

carQRS promoter. Whether this is the case or not is far from certain, as the poor 

sequence identity between the -10 elements of SigECF-dependent promoters has 

precluded their unambiguous assignment. Alternatively, the positions mutated in 

Alt3 may lie outside of the -10 recognition hexamer and would be postulated to 

have a minimal effect on promoter activity. 

The Alt3 promoter was transduced into DK101 and the activity of the promoter 

assayed. Alt3 was found to be constitutively and highly active in DK101 (Figure 

4-10). 
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Figure 4-9 Activity of the A 112 promoter (DK 101 ::pAEB602). 
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Y-axis is specific activity of jJ-galactosidase in un itslminlmg prote in. X­
axis is time in hours 
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There are several possible explanations for his activity. It is possible that by 

mutating the recognition sequence of the carQRS promoter (from GGCCCG to 

GT ACCG), the sigma factor specificity of the promoter has been altered. Thus in 

the M xanthus cell, a sigma factor other than CarQ is able to initiate transcription 

from the promoter. This sigma factor could be constitutively present and therefore 

activate the promoter constitutively. However, were this to be the case, then the 

sigma factor causing transcription of Alt3 would be expected to also possess the 

altered positional requirement postulated for the ECF sigma factors, i.e. be an 

ECF sigma factor itself. 

To check this hypothesis, attempts were- made to introduce pAEB603 into 

UWM303 which carries a deletion of carQ. If the suggested explanation was 

correct, it would be expected to still observe constitutive activity of the Alt3 

promoter in this strain. However, due to the aforementioned problem with AttP 

integration of the pAEB6XX constructs, UWM303: :pAEB603 was unable to be 

constructed. 

An alternative strategy to introduce Alt3 into UWM303 was to use the generalised 

transducing phages Mx4 and Mx8 to transduce kanamycin resistance from 

DK101::pAEB603 into UWM303 to create UWMS04. Some of the kanamycin 

resistant transductants would be expected to carry A1t3 upstream of lacZ, allowing 

assessment of Alt3 activity in vivo. DK101::pAEB603 proved resistant to Mx4, 

but was sensitive to Mx8 and a single Car- kanamycin resistant transductant was 

obtained through transduction mediated by Mx8. 

DWMS04 was grown on plates containing 20Jlg/ml X-Gal in both light and dark, 

and in both conditions colonies developed intense blue colouration. PCR reactions 

Were performed using primers 1 and 2, confirming that UWMS04 contained the 

A.lt3 promoter upstream of lacZ. Time constraints prevented the determination of 

a time-course for p-galactosidase expression, however the hydrolysis of X-Gal in 

both light and dark-grown colonies ofUWMS04 implies that the Alt3 promoter is 

Constitutively active in this carQ strain. It seems therefore that the initial 

hYpothesis that Alt3 is expressed constitutively by a non-CarQ sigma factor of M. 

Xanthus is correct. 
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An alternative possible explanation for the constitutive activity of Alt3 lies in the 

notion of an 'extended -10 promoter'. In some Sig70 promoters of E. coli there lies 

a conserved TG dinucleotide at -15 to -14, forming an extended -10 region 

sequence of TGnT AT AA T. The presence of the extended -10 motif removes the 

requirement for a cognate -35 region and reduces the specificity required by the 

sigma factor for the promoter at the -10 region (Bown et at., 1997 and Kumar et 

al., 1993). It is possible that the mutation found in Alt3 has introduced a 'psuedo­

extended -10' motif of TAcCGTAGA. Barne et al. (1997) changed the TG doublet 

by site-directed mutagenesis to TC and TT and in each case found that loss of 

promoter activity was compensated for by a mutation of Sig70 at position 458, 

within region 2.5. 

CarQ may, or may not, have a region 2.5. Members of the ECF sigma factors have 

a significant deletion between regions 2.4 and 4.2 relative to all other Sig70-

family sigma factors (Lonetto et a/., 1994). However, the vestigial region between 

2.4 and 4.2 of CarQ had very little homology to any corresponding region of 

Sig70 and could thus actually form an entire region 2.5, or entire region 3.1, or 

may be interspersed randomly between the regions. It is possible that CarQ does 

POSsess an entire region 2.5 and may thus bind to an 'extended -lO'-like promoter 

Such as Alt3, however, CarQ is not constitutively available to cause transcription 

of carQRS promoters in DK101. If Alt3 is being transcribed by a non-CarQ sigma 

factor, it may be acting as an 'extended -10' promoter and thus the sigma factor 

which is causing its transcription is able to initiate transcription without requiring 

-35 and -10 regions similar to those of its cognate promoters. 
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4.3.4. Alt4 exhibits no light-induction. 

The mutation within promoter Alt4 results in no promoter light-induction (Figure 

4-11) although it seems to cause a general light-independent increase in the level 

of expression. It is possible that the lack of induction upon illumination is merely 

due to a masking of induction due to the higher basal promoter activity. 

The mutated bases present in promoter Alt4 slightly overlap the 3' end of the -35 

hexamer. That is, the wild-type sequence CGCCGGAAAC is altered to 

CGCCGGTACC. It is possible that by changing the -35 hexamer the promoter 

may no longer be recognised by CarQ. It is possible that the increased background 

level of transcription is due to Alt4 being recognised by a non-CarQ sigma factor, 

either by changing the sigma factor specificity of the extant promoter or by 

fortuitously creating a novel promoter. Determination of the transcriptional start 

site of Alt4 would allow elucidation of which possibility is the correct 

explanation. This situation is also true for the background activities of the other 

Alt promoters. 

Berry (1998) has suggested using predictive programs that the carQRS promoter 

carries intrinsic curvature of around 16° at the CarD binding site due to the 

specific sequence of its DNA. The KpnI sites introduced into the carQRS 

promoter by site-directed mutagenesis possess an intrinsic curvature of around 6° 

and this slight kink is able to influence the curvature of its surrounding region 

depending on the site of insertion. Thus in Altl, Alt2 and Alt3, the KpnI site 

causes no significant change in the curvature of the promoter. In Alt4 however, 

the KpnI kink is positioned such that it is predicted to cause the introduction of a 

13° bend in the DNA between positions -16 to -40. DNA bending is of 

Considerable importance in transcription initiation (Perez-Martin and Espinosa, 

1994). The process of promoter melting during conversion of open to closed 

COmplexes is enhanced by negative supercoiling and an over rotation of the DNA 

between -10 and -35 (deHaseth and HeImann, 1995). Bending and supercoiling of 

DNA are inter-related as bends cause a change in the degree of coiling of the 

DNA at the bend (Yang et al., 1995) and supercoiling can ease or hinder the 
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melting of DNA, which can be viewed simplistically as a change in the bend of 

the DNA strands within the double helix. Thus as bending and supercoiling affect 

the ease of promoter melting it is conceivable that Alt4 is not light-inducible as a 

consequence of the introduced bend of its DNA betwen -35 and -10 hindering the 

melting of the downstream DNA during open complex formation. Alternatively, 

the bend between -10 and -35 may cause a reduced affinity of RNA polymerase 

holenzyme for the promoter, with CarQ being less able to make specific contacts 

simultaneously to both -10 and -35. 

The observation of increased transcription from Alt4 in the dark may be a 

consequence of integration of pAEB604 into a different attBMx8 site, or in an 

opposite orientation within the attB
Mx8 

site, from that of DK101::pAEB600. Not 

enough is known about the difference in transcriptional activity of promoters at 

the different attBMx8 sites and in the alternative possible orientations, to be able to 

make any conclusions about this aspect of the activity of Alt4. 
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Figure 4-11 Activity of the Alt4 promoter (DKIOI::pAEB604). 

Y-axis is spec(fic activity of f3-galactosidase in units!minlmg protein. X­
axis is lime in hours 
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4.3.5. The Alt6 promoter shows light-induction. 

The mutation introduced to create Alt6 lies between the -35 promoter element and 

the CarD binding sites, around position -57. The A1t6 promoter seems to exhibit 

enhanced light-induction relative to the wild-type carQRS promoter (Figure 4-12), 

with the degree of induction almost doubled. Programs designed to model 

probable sequence specific bends within a DNA sequence identify a putative 16° 

kink at the CarD binding site (Berry, 1998). The A1t6 mutation is predicted to 

reduce the severity of the bend in this region to 13°, even though it lies outside the 

area containing the CarD binding site. Possibly, by removal of the intrinsic DNA 

bend, the mutated promoter serves as a better substrate for CarD recognition and 

therefore causes an increase in the initiation of transcription. Alternatively, CarD 

may function by increasing or decreasing the degree of DNA bending at its 

binding site, which serves to modulate the level of transcription. By decreasing 

bending at the CarD binding site, the mutation in Alt6 may be stimulating 

transcription by intrinsially simulating the binding of CarD. However, bending of 

DNA upstream of the promoter has typically been shown to enhance binding of 

RNA polymerase and increase not reduce levels of transcription (Perez-Martin and 

Espinosa, 1994). 

4.3.6. The mutation in Alt7 also exhibits light-induction. 

The mutation in Alt7 overlies the CarD binding site at -65 and enhances light 

induction almost two-fold (Figure 4-13). It seems likely that the enhancement of 

induction is a consequence of alteration of the CarD binding site. As with Alt6, 

the mutation is predicted to cause a reduction in the predicted bending of the CarD 

binding site, and this may enhance promoter activity due to greater binding by 

CarD or by simulation of the action of CarD. In the case of Alt7, the predicted 

bend at the CarD binding region is predicted to be almost completely abolished. 
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The CarD binding site of pcarQRS is believed to be a tandem repeat of the sequence 

1Trcc (Berry, 1998). AT-rich regions have been shown to introduce intrinsic 

curvature into DNA and have also been shown to increase transcription when 

Upstream of the RNA polymerase binding region (Rao et ai., 1994). The a sub­

units of RNA polymerase are believed to bind to these AT -rich regions and 

pomote transcription (Ross et ai., 1993). They function by recognising either an 

AT-rich sequence, or the curvature induced by the AT-rich region. 

By decreasing the predicted bend of the CarD binding site, it is possible that the 

Alt7 mutation provides a CarD binding site which has a greater affinity for CarD 

than does the wild-type promoter. This possibility could explain the increased 

activity of Alt7, if CarD binding to a wild-type promoter causes straightening of 

the promoter and allows CarD-RNA polymerase contacts to form, stabilising 

closed complex formation. However, it is normally the case that DNA binding 

proteins induce curvature within their target DNA. While true that many will bind 

to pieces of DNA that already exhibit curvature, they do not usually then cause 

removal of that curvature. 

As for Alt6, it should be pointed out that whereas for Alt7, where a loss of DNA 

bending is associated with increased promoter activity, in general, bending of 

DNA upstream of the promoter typically enhances binding of RNA polymerase 

and increases not reduces levels of transcription (Perez-Martin and Espinosa, 

1994). 
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Figure 4- 12 Activity of the Alt6 promoter (DK10l ::pAEB606). 

Y-axis is specific activity off3-galactosidase in un itslmin/mg protein. X­
axis is time in hours 
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Y-axis is .\pecific activity off3-galactosidase in unitslminlmg protein. X­

axis is time in hours 
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4.3.7. The AIt15 and AIt16 promoters show no light-induction. 

The mutations within Alt15 and Alt16 lie at positions -145 and -150 from the 

transcriptional start site. This distance corresponds to the end of the minimum 

promoter as determined by serial deletion analysis (McGowan, 1992) and Alt15 

overlies the region of the transcriptional start site for the divergent gufA gene. 

Each of the mutations in Alt15 and Alt16 abolishes light-induction of the 

promoter (Figure 4-14 and Figure 4-15). 

There are two main, non-exclusive, possiblities for the lack of light-induction of 

Alt15 and Alt16. The reduction in light-induction could be due to an alteration in 

an essential cis-acting part of the carQRS promoter, or. alternatively, it could be 

due to an indirect effect caused by a direct effect on the transcription of gufA. 

Initial work by McGowan (1992) suggested that correct expression of carQRS 

required a functioning gufA promoter, though not requiring a functional gufA gene 

product. It is probable that this is because of the supercoiling state of the two 

promoters, which is being affected by passage of a transcription bubble. High 

degrees of negative supercoiling form between divergent promoters (Mojica and 

Biggins (1996) which is enhanced if the RNA polymerase complex is anchored to 

the cell membrane. A situation which is likely, due to the coupling between 

transcription and translation in prokaryotes and the transmembrane nature of 

GufA and CarR (Lynch and Wang, 1993). 

The evidence that there are cis-acting elements within pcarQRS around -160 is non­

eXistent, however there is no evidence to the contrary either. Whether either or 

both of the explanations discussed above are correct will require a method for 

seperating the gufA and carQRS promoters - a far from trivial, if not impossible, 

eXercise. 
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Figure 4-14 AClivUyofthe Altl5 promoter (DKIOI::pAEB615). 

Y-axis is ,\pecific activity of ~galaclosidase in un its!minlmg protein. X­
axis is time in hours. 
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4.4. Conclusions. 

The carQRS promoter is large and has many internal regions which affect its 

function. Site-directed mutations were constructed within the carQRS promoter 

(Berry, 1998) and the mutant promoters were integrated into the attBMx8 site of 

DK101. Analysis of the in vivo activity of the mutant promoters was performed, 

allowing detection of areas of importance within the carQRS promoter. 

The mutation within Alt1 lies at the beginning of the transcribed region and 

renders the promoter uninducible by light. Presumably, this area is of importance 

in initiation of transcription and subsequent promoter clearance. Alt2 carries a 

mutation around position -3 and seems to cause no apparent effect on promoter 

activity. This was to be expected as there are no known promoter elements around 

-3. The Alt3 promoter is mutated between positions -14 and -17 and is 

constitutively active in wild-type M xanthus. Alt3 is constitutively active in a 

mutant strain deleted for carQ and it would therefore seem that Alt3 is expressed 

by a sigma factor other than CarQ. 

Promoter Alt4 exhibited no light-induction but with higher background levels of 

expression. The mutation within Alt4lies at the the 3' end of the highly conserved 

-35 promoter hexamer and so a loss of light-induction can be easily rationalised 

with CarQ no longer able to recognise the promoter. The A1t6 promoter has 

enhanced light induction relative to the wild-type. This phenotype is also true for 

Alt7, which has a mutation overlying the downstream CarD binding site. In both 

A1t6 and Alt7, the presence of the mutation is predicted to cause a reduction in the 

angle of a predicted bend intrinsic within the DNA of the promoter at the CarD 

binding site. It may be the case that the mutations reduce the angle of curvature of 

an inhibitory bend within the promoter, thus allowing enhanced induction. This 

Would contrast with the conventional situation where curvature upstream of 

promoters typically enhances promoter activity. 

Promoters Alt15 and Alt16 carry mutations around positions -145 and -151 

respectively and they exhibit no light-induction in DK101. The mutation within 

promoter Alt15 overlies the transcriptional start site of gufA and the mutation 

carried by Alt16 lies around +6 relative to the gufA start site. The loss of light-
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induction of these promoters could be due either to disruption of a cis-acting 

element of the carQRS promoter, or because of an indirect effect mediated by a 

change in the activity of the gufA promoter. 

The ability to assess the effects of site-directed mutagenesis on the carQRS 

promoter in vivo provides a great deal of physiologically relevant infomation. 

However the analysis of the regions of importance within the carQRS promoter 

have been necessarily crude to date. Mutating clusters of three or four bases 

within the promoter allows a general dissection of regions of importance, with the 

assumption that the introduced mutations will be disruptive if they do lie at 

important regions. However, the conclusions that can be drawn from experiments 

of this nature are vague, with a typical conclusion being that the mutated area is of 

importance in promoter function. For a more refined analysis of promoter 

elements, single and double point mutations might perhaps provide more 

infomation about the precise nature of the elements within the promoter. This 

Would be particularly interesting for the carQRS promoter, as its recognition by a 

member of the SigECF sigma factor family, makes the nature of its promoter­

sigma factor interactions somewhat of an unknown quantity. 

Further experiments need to precisely define the chromosomal context of the 

integrated Alt promoters and to determine whether their activities are truely CarQ­

dependent. Only then can a meaningful, quantitative assessment of the effects of 

the mutations within the mutant promoters be made. Ideally the transcriptional 

start sites of each of the Alt promoters would also be checked to ensure that the 

transcriptional activity of the constructs is due to transcription from the carQRS 

promoter and not a novel, fortuitously-created promoter. 

The first step along the road to a full understanding of the carQRS promoter has 

been taken with a gross mutational study having crudely identified regions of 

function within the promoter. Further refined mutagenesis may illustrate which 

elements of the promoter dictate the various features of carQRS expression, but 

only in conjunction with molecular techniques for the analysis of transcriptional 

Intermediates and protein-protein / protein-DNA interactions. 
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5. Molecular analysis of promoter-CarQ interactions. 

5.1. Introduction 

One of the more widespread mechanisms whereby bacteria are able to alter their 

pattern of gene expression in response to a given stimulus, is through the 

production of alternative sigma factors. These generally lead to the expression of a 

set of genes of related function. For instance, 0'32, the heat shock sigma factor 

mediates expression of genes involved in the survival of stress (Gross, 1996). 

Similarly O's, the stationary phase sigma factor, is reponsible for expression of 

genes required for the entry into and survival of the stationary phase of the growth 

cycle (Loewen and Hengge-Aronis, 1994). 

5.2. Sigma factors. 

5.2.1.1. Diversity of sigma factors 

Sigma or specificity factors are the polypeptides within the RNA polymerase 

which confer specificity for particular promoters sequences and as such they have 

various essential and conserved features. Sigma factors fall into two broad classes, 

the RpoD class and the RpoN class. These are very different proteins which 

recognise very different promoters. For instance the RpoD family sigma factors 

have recognition motifs consisting of hexamers around -35 and -lObp relative to 

the transcriptional start site. The RpoN family sigma factors however have 

recognition motifs centered at -12 and -24bp and unlike the RpoD proteins have 

been extensively characterised biochemically because of their ability to bind to 

their cognate promoters even in the absence of core RNA polymerase (Buck and 

Cannon, 1992). Sigma factors of the RpoN family are involved with functions 

SUch as flagella and pili formation, nitrogen fixation and utilisation of various 

metabolites (Ronson et ai., 1987). Transcription of RpoN dependent promoters 

always requires additional response regulator-type transcription factors to 
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overcome the energy barrier associated with open complex formation, which 

appears to be the rate-limiting step of initiation from all RpoN-dependent 

promoters (Geiselmann, 1997; Sasse-Dwight and Gralla, 1990). 

Typically, bacteria contain a housekeeping or vegetative sigma factor (RpoD) 

which mediates transcription of housekeeping and essential genes. As might be 

expected for such an essential gene product, RpoD is highly conserved throughout 

the bacteria, recognises very similar promoters, and is functional in heterologous 

hosts (Inouye, 1990; Rudd and Zusman, 1982). There are also a wide variety of 

RpoD-family alternative sigma factors which cause expression of particular sub­

sets of genes, e.g. the heat shock sigma factor 0'32. (For an example of the role of 

alternative sigma factors in a regulatory cascade see Haldenwang, 1995.) 

Expression of an alternative sigma factor will cause an increase in the proportion 

of RNA polymerase holoenzymes containing that sigma factor and this leads to 

increased transcription of promoters recognised by that sigma. The dynamics of 

this process are uncertain. Alternative sigma factors may have higher affinity for 

Core RNA polymerase than the housekeeping sigma. Alternatively, the proportion 

of holoenzymes containing a particular sigma factor could be purely determined 

by a dynamic equilibrium dependent on the relative concentrations of each sigma. 

This is not a trivial uncertainty, due to the low and limiting concentration of free 

core RNA polymerase in the cell. There are 2,000-10,000 copies of RNA 

polymerase per genome in E. coli (Ishihama, 1993; Bremer and Dennis, 1996) 

with most of it not 'free', since the majority of polymerase will be bound non­

Specifically to DNA or involved in the process of transcription. 

There has been considerable confusion regarding the nomenclature of sigma 

factors. 

Originally, sigma factors were described by a superscript denoting the molecular 

Weight of the sigma factor. Thus E. coli 0'70 refers to a sigma factor with a mass of 

70kDa. The mass of sigma factors were originally assessed by SDS-PAGE. In 

actual fact these are usually incorrect since the sigma factor carries a 

Preponderance of positive charge and this leads to an anomalously high mobility 

dUring SDS-P AGE. Thus for instance, CarQ has an apparent mass of around 

27kDa but calculations based on translation of the gene sequence show its actual 

148 



mass should be 19.6kDa. Similarly, Sig70 has a mass of 70kDa although on SDS­

PAGE it migrates at a rate consistent with a protein of 96kDa. 

An alternative naming convention is to label the sigma factor with a superscripted 

capital letter e.g. crA. The letter used being dependent on the role of the factor 

within the cell and on the bacterial species the sigma factor is found in. 

However, this has led to confusion with some similar sigma factors in different 

organisms being given different designations and the same letter designation being 

used for very different sigma factors in different species. Thus the vegetative 

sigma factor of E. coli is denoted SigD (cr70
, crD, encoded by rpoD) , but is 

designated as SigA (crA, encoded by sigA) in Bacillus subtilis, while SigD of 

Bacillus subtilis is involved with flagella synthesis and is most similar to SigF of 

E. coli. (For a review of the current nomenclature of bacterial sigma factors see 

Lonetto and Gross, 1996.) 

In 1988 there were only 13 putative sigma factors for which the primary sequence 

Was known. Eleven years later, there are hundreds of sigma factor primary 

sequences known and several have also been proven to act as sigma factors, 

including two from M. xanthus, CarQ and SigA. 

5.2.1.2. Structure of sigma factors 

Sigma factors have four main functions. They bind to core RNA polymerase, 

recognise promoter DNA, mediate DNA melting during open complex formation 

and inhibit non-specific transcription. The first two of these properties are 

absolutely required for all sigma factors (HeImann and Chamberlin, 1988 and 

Gross et al., 1996 for reviews). 

Sigma factors of the RpoD family have a four domain structure as seen from 

homology matching. These are denoted regions 1, 2, 3 and 4 and have sub­

domains denoted by decimals, for instance 2.4 for the fourth sub-domain of region 

2. Region 2.4 has been shown to be involved in recognition of the -10 region of 

the promoter while region 4.2 binds to the -35 promoter region. The 4.2 region is 

likely to include a helix-turn-helix (HTH) motif in all sigma factors and at its C-
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tenninus has a highly basic region which may bind the phosphate backbone of 

DNA. Region 2.1 is suggested to have a role in binding to core polymerase while 

regions 2.1 and/or 2.3 are involved in melting the promoter DNA during open 

complex formation. Most isolated mutants of sigma factors have a mutation lying 

within the 2.4 or 4.2 regions. Siegele et al. (1989) were able to map interactions 

between sigma factors and their promoters to specific nucleotides and amino acid 

residues by a comparison of 13 missense mutants of rpoD (0'70 gene) and 37 

mutant promoters. Their results confirmed a role for regions 2.4 and 4.2 in 

promoter hexamer binding. 

Region 1 has an unknown function but is only of significant size in the 

housekeeping RpoD sigma factors. Dombroski et al. (1992) showed by filter 

binding assays of truncated forms of 0'70 that region 1 seems to be required for the 

inhibition of specific and non-specific binding of the sigma factor to DNA. 

Interaction of sigma factor with core RNA polymerase would then be expected to 

relieve the inhibitory effect of region 1 allowing sigma factor-mediated binding to 

DNA. Severinova et al. (1996) suggest that the inhibition by region 1 is through 

interaction with the C-terminus of region 4. Region 1 has also been implicated in 

efficient conversion from open to elongating complex and in region 1.2 in 

Particular, with isomerisation from the closed to open complex (Wilson and 

Dombroski, 1997). It should be noted that region 1.1 is essentially missing in all 

SigECF sigma factors, but region 1.2 is still present (Lonetto et al., 1992). 

Severinova et al. (1996) showed that a tryptic fragment of 0'70 containing only 

region two was capable of binding to core RNA polymerase competitively with 

intact 0'70, and when bound to core was capable of binding specifically to 

Oligonucleotides containing the -10 promoter consensus sequence (although not 

unless present with core) but wasn't able to initiate transcription. Comparison 

between the solely region 2 truncate and a truncated sigma lacking just region 4 

Showed that region 3 is essential for transcription whereas region 4 is not. The 

truncated protein lacking region 4 was able to initiate transcription from 

promoters containing only the -10 sequence. 

Binding to core RNA polymerase is thought to be mediated by region 2.1 (Lesley 

and Burgess, 1989). Binding to core polymerase exposes the DNA binding 

domain of the sigma factor and also reduces affinity of the polymerase 
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holoenzyme to non-specific DNA. Region 2.3 has a preponderance of aromatic 

residues (44% aromatic as opposed to 7% over the entire protein). This suggests a 

Possible role in binding the single-stranded DNA after open complex formation. A 

role for sigmas in the conversion of a closed complex into an active complex is 

suggested by the enhancement of the ability to photochemically cross-link sigmas 

to DNA when in the open complex compared to when in closed complex. 

Apart from the analogous roles shared by sigma factors and the TATA-binding 

protein of eukaryotic RNA Pol II, disparate specificity factors are also found in 

some eukaryotes. For instance in Saccharomyces cerevisiae a 43kDa protein 

allows recognition of mitochondrial promoters (Schinkel et al., 1987) while the 

core mitochondrial RNA polymerase is a single protein (Masters et al., 1987). 

Specificity factors are found in other organisms including, for example, 

bacteriophage T4 has a sigma factor (Gp55) which mediates initiation of 

transcription from promoters which lack the -35 hexamer and have only the -10 

region (Elliott and Geiduschek, 1984). 

5.2.2. Sigma factors of M. xanthus. 

The gene for the vegetative sigma factor «(JA encoded by sigA) of M. xanthus was 

initially cloned by cross-hybridisation using a probe from the E. coli rpoD. SigA 

Showed great similarity to the vegetative sigma factors of E. coli «(J70) and B. 

sUbtilis «(J43) (Inouye, 1990). Subsequent probing with sigA identified sigB and 

SigC which encode proposed development-specific sigma factors and the two 

putative sigma factors sigD and sigE (Apelian and Inouye, 1990; Apelian and 

Inouye, 1993; Ueki and Inouye, 1996). Probing with rpoN from Caulobacter 

crescentus identified the gene for (J54 from M xanthus, which is essential in M 

Xanthus but in no other bacterium studied (Keseler and Kaiser, 1997). Recently, 

biochemical confirmation of the sigma factor activity of (JA was provided by Biran 

and Kroos (1997) by transcriptional run-off assays from the aphII and vegA 

prOmoters, which have previously been shown to be expressed vegetatively. 
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The genes for two copies of erE have also been identified in M. xanthus, encoded 

by rpoEl and rpoE2 (Ward et al., 1998; Ward, M. pers.comm.). They are SigECF 

sigma factors (5.2.3) and appear to have a role in the regulation of motility. 

Together with CarQ, this puts the number of sigma factors of M xanthus 

identified to-date at nine, of which two (CarQ and SigA) have been demonstrated 

to act biochemically as sigma factors. 

5.2.3. ECF sigma factors. 

As mentioned earlier, CarQ is a member of a sub-family of the RpoD family 

known as the ECF sigma factors (Lonetto et al., 1994). This group was originally 

identified as a group of 8 proteins responsible for the transcription of genes 

associated with an ~tra£Ytoplasmic .liInction. The original eight consisted of 

CarQ from M. xan thus , SigE of Streptomyces coelicolor, AlgT(AlgU) of 

Pseudomonas aeruginosa, HrpL of Pseudomonas syringae, SigE and Feci of E. 

coli, CnrH of Alcaligenes eutrophus, SigX of Bacillus subtilis and PbrA of 

Pseudomonas spp.. Since then a plethora of ECF sigma factors have been 

unearthed and they appear to be widely distributed (Missiakis and Raina, 1998). 

Sequencing of the entire Bacillus subtilis genome revealed 19 sigma factors, of 

which 7 were postulated to be members of the ECF sub-family (Kunst et al., 

1997). Likewise in Mycobacterium tuberculosis, 14 sigma factors were found 

Including nine SigECFs (Cole et al., 1998). However of these putative ECF sigma 

factors, very little is known except their homology to other sigma factors. 

The greatest differences between the SigECF and other RpoD family factors lie in 

regions 1,2.4 and 3. There is greater conservation of region 4.2 than of region 2.4 

Within the SigECF sigma factors, but not in comparison to non-ECF RpoD-family 

Proteins. Consequently the promoter sequence profile for the SigECF sigmas is 

Very clear at the -35 region and different from that of non-ECF factors. The 

PrOmoter sequence profile derived from the known promoters of the first eight 

SigECF factors is CCGGAACTT at -35 and TCTNRt at -10. As can be seen in 

Figure 5-1, the sequence profile is virtually identical to the promoters of carQRS 

and crt! (+12) in the -35 region, but the -10 region shows very little similarity. 

Even less similarity is seen to the crt! (+0) promoter. 
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ECF profile 

carQRS 

crt! (+ 12) 

crt! (+0) 

CCGGAACTT TCTnRt 

CGAGCGCCGGAAACACTTTCGCAGGTGGCCCGIAGAGGAGTCG 

CCAGTGCCGGACGGIGCTCTTGTAACGTCCTGG~GGGTTCGCG 

GGTGCT~TTQTAACGTCCTGGCGGGTTCGCGCGTTCGCCAGGT 

Figure 5-1 Comparison between SigECF-dependent, carQRS, crtI(+O) 
and crtI(+ 12) promoters. 

Conserved bases in the carQRS, crtI (+0) and crtI (+ 12) promoters are 
underlined. Transcriptional start sites are in boldface. 

Siegele et al. (1989) and Gardella et al. (1989) assessed the ability of a range of 

mutant Sig70 proteins, to mediate recognition of a set of mutated Sig70-dependent 

promoters, enabling the assignment of specific base-amino acid residue 

interactions (Figure 5-2). They showed that Arg584 of Sig70 contacted the base 

complementary to C( -31) and that Arg588 contacted the base complementary to 

the G at promoter position -33. In the helix-turn-helix motif of CarQ as shown by 

Lonetto et al. (1994), Arg584 is replaced with a proline residue while Arg588 is 

conserved. In the carQRS promoter, position -33 is a G and position -31 is an A. 

Therefore the Arg-C interaction at position -33 found for Sig70 is maintained for 
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CarQ, however the Arg-G interaction at -31 is not, instead being replaced with a 

putative Pro-T interaction. Whether this is a possible protein-DNA interaction or 

not is unknown, however, care must be taken when comparing DNA binding of 

Sig70 with that of a SigECF sigma factor as their helix-turn-helix motifs are very 

different. The HTH of Sig70 has a downstream highly basic region which is 

lacking in the SigECF sigmas (Lonetto et ai., 1994). The chemical character of the 

two recognition helices is also different, with polar, acidic, hydrophobic and basic 

residues lying at different positions. Since the 2.4 and 4.2 regions of the two types 

of sigma factor are separated by very different distances, a direct comparison of 

their DNA binding would be premature, as the exact regions of contact between 

the SigECFs and their promoters has not yet been subjected to experimental 

scrutiny. 
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A) 

B) 

T GTe A 

A C A G T 

-31 -33 

T T Tee 

A A A G G 
-31 -33 

Figure 5-2 Recognition of promoter bases at -35 by the HTH of Sig70 
and CarQ. 

A) Interaction between the recognition helix of Sig70 region 4.2 and the 
consensus Sig70-dependent promoter. Adaptedfrom Siegele et al. 
(1989). B) Mirrored interactions between CarQ and the carQRS 
promoter. 

Some SigECFs are able to mediate transcription of SigECF-dependent promoters 

in heterologous species. Hershberger et al. (1995) showed that the ECF sigma 

factor AlgT of Pseudomonas aeruginosa was able to recognise the E. coli SigE­

dependent promoter rpoH P3 in vitro (P. aeruginosa also contains the ECF sigma 
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factor PvdS). However, SigE of Streptomyces coelicolor was unable to mediate 

transcription ofpcarQRS in vitro (Browning, 1997). 

Another interesting feature noted by Lonetto et al. (1994) was that of the eight 

SigECFs, four (CarQ, AlgT(AlgU), E. coli SigE and CnrH), were thought to 

mediate transcription of negative regulators of themselves, i.e. anti-sigma factors. 

This has recently been shown to also be the case for S. coelicolor SigR (Buttner 

pers. comm.). In fact, of the 19 ECF sigma factors described by Missiakis and 

Raina (1998), 8 mediate transcription of their own anti-sigma factors and seem to 

share a common operon organisation, with the first gene in the operon coding for 

the sigma factor and the second gene in the operon encoding the anti-sigma factor. 

For instance, carHlorfl of Alcaligenes eutrophus, algT(AIgU)lmucA of 

Pseudomonas aeruginosa and of Azotobacter vinelandii, rpoElrseA of E. coli, 

Haemophilus influenza, carQlcarR of M xanthus, sigRlrsrA of Streptomyces 

coelicolor, rpoElorj2 of Photobacterium SS9 and pupJlpupR of Pseudomonas 

putida. 

A good example of control by anti-sigma factor activity is the case of SigR of 

Streptomyces coelicolor A3(2) which mediates a response to oxidative stress 

through its activation of the trxBA operon (encoding thioredoxin reductase and 

thioredoxin) which serves to increase the reducing nature of the cytoplasm (Paget 

et al., 1998). Downstream of the positively autoregulated sigR gene lies rsrA 

Which is believed to encode an anti-sigma factor. The current model proposes that 

under a normal reducing environment, SigR is bound by the anti-sigma factor, 

RsrA, which contains seven thiols. In conditions where thiols are oxidised, the 

thiols in RsrA form a disulphide bond (Paget and Buttner, 1998) and oxidised 

RsrA releases SigR. The sigma factor then causes expression of trxBA which 

returns the redox poise within the cell to normal, whereupon RsrA is reduced and 

once again binds to SigR. 

As most regulons involve homeostatic feedback loops, the fact that negative 

regulators of the SigECFs are transcribed by the SigECFs themselves may not be 

particularly surprising. Indeed, as part of co-ordinated regulons, it might be more 

SUrprising if the anti-sigma factors weren't transcribed by the actual sigma factors 

they inhibited. In a similar vein, the observation that some of the SigECF sigma 

factors seem to govern small regulons (Lonetto et al., 1994) is probably a 
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consequence of the SigECFs being alternative sigma factors more than because it 

is a conserved feature of the SigECFs. It could be disputed whether the regulon 

governed by CarQ is indeed small. It is true that as far as we know CarQ only 

causes expression of the carQRS and crt! loci, but CarS, which is CarQ dependent 

mediates expression of crtEBDC, an operon of 6 genes. Therefore CarQ IS 

responsible for expression of at least 10 genes which is not a small regulon. 

The complement of SigECF sigma factors identified in M. xanthus has recently 

been increased to three with the discovery of rpoEl and rpoE2 (Ward et ai., 1998 

and Ward, M. pers.comm.)., Both RpoEI and RpoE2 share 40% identity with 

CarQ, particularly between regions 2.2 and 2.4. Of the three sigma factors, CarQ 

is smaller than RpoE2 by 23 residues, which is smaller than RpoE 1 by 16 

residues. All three sigma factors share homology across their length, including 

regions 2.4 and 4.2, but with more extensive identity at region 4.2 (Figure 5-3). 

Alignments have also been suggested between the carQRS promoter and putative 

promoters upstream of the rpoE genes themselves (on the assumption that RpoE is 

responsible for its own expression) (Zusman, D. per. comm.). These possible 

alignments are shown below (Figure 5-4). As is true for the SigECFs generally, 

there is greater conservation at -35 than at -10, a reflection of the greater 

conservation of region 4.2 of the sigma factor over region 2.4. However, the 

benefits of assessing a consensus between the SigECFs of M xanthus seems 

dUbious, as the three sigma factors must recognise different promoters almost by 

definition. In addition it seems that the rpoEl and rpoE2 promoters have been 

identified solely by their homology to the SigECF dependent promoter consensus 

(Ward et ai., 1998), and thus similarity to the carQRS promoter is a circular 

arguement. 
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Region 2.4 

CarQ 

RpoEl 

RpoE2 

68 

88 

70 

lAANAARDALRHQRHVDAYA 

IALNLAKNHARQVQRWRPVL 

ILTNTFINRYRRKVKERTVV 

88 

108 

90 

Region 4.2 

CarQ 

RpoEl 

RpoE2 

131 VEGWSFEEIGALRGISPGAARLRAHRGYEKLRE 163 

156 DGGLAFKDlAETLGITENNAKVQFHHAMKRLKA 188 

146 LQEFSYKElAEILECPVGTVMSRLFRGRKLLQK 178 

carQRS 

rpoEI 

rpoE2 

carQRS 

rpoEI 

Figure 5-3 Alignment of CarQ, RpoE1 and RpoE2. 

Regions 2.4 and 4.2 are shown as identified by Lonetto et aI., 1994. 
Conserved and similar residues are in bold. For this purpose, the 
following amino acids are considered to be similar: ([,L,M, V), 
(H,K,R),(D,E,N,Q),(A,G),(F, Y, W) and (S, T). The helix-tum-helix motif 
of region 4.2 is underlined. 

AGCGCCGGAA ACACTTTCGCAGGTGGCCCGTAGAGGAGTCGGGT 

TGCTAGGGAA TATGTTTCCCTGGCCGGC GTCGTGTATTCCCGA 

AACTCGGGAAGGCATGTTTC CTGGCTCAATATCTTGCAATTCACG - -
-35 -10 

AGCGCCGGAAACACTTTCGCAGGTGGCCCGTAGAGGAGTCGGGT 

TGCTAGGGAATATGTTTCCCTGGCCGGC GTCGTGTATTCCCGA 

-35 -10 

Figure 5-4 Alignment of the promoters for carQRS, rpoEl, and rpoE2. 

Two alignments are shown between the carQRS and rpoEl promoters. 
Conserved bases are in bold. Underlined bases are at -35 and -10 
relative to the presumed transcriptional start site. 
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A common feature of the SigECF sigma factors is that they lack almost all of 

region 1. As region 1 is responsible for the inhibition of binding between (370 and 

DNA (Dombroski et ai., 1992), it was thought possible that SigECF sigma factors 

lacking region 1 might be able to bind directly to their cognate promoters. This 

was shown by Dombroski et ai. (1993) for FliA (SigF) of S. typhimurium which is 

a non-ECF sigma factor, but which has a very small region 1. Binding to DNA 

was noted by filter binding assays but was too weak to be visualised by a gel 

retardation approach. CarQ has a region 1 which is two residues smaller than that 

of FliA and as a member of the SigECF factors, CarQ may be different enough 

from FliA that it may bind to its cognate promoters with an affinity sufficient to be 

observed by band-shift assays. 

5.3. Binding between CarQ and the carQRS promoter. 

Since CarQ has a particularly small region 1, it was conceivable that any 

interaction with its cognate promoter may be strong enough to be visualised by a 

gel retardation approach. Browning (1997) provided a protocol for the production 

of pure, biologically active CarQ allowing an in vitro assessment of binding to 

pcarQRS using solely purified components. 

5.3.1. Gel retardation assays. 

Interactions between proteins and DNA can be detected in a number of ways. 

Filter binding assays are one of the oldest methods of demonstrating DNA-binding 

activity in proteins. In this assay, a radio-labelled piece of DNA is mixed with the 

protein of interest and passage of labelled probe through a nitrocellulose filter is 

followed. Binding of protein to the probe manifests as a reduction in the amount 

of radiation that passes through the filter. The technique is very sensitive but 

requires a large number of stringent controls (A good example of the use of filter 

binding assays is given in Dombroski et ai., 1992). 
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A less sensitive but more widespread method for assessing DNA binding by 

proteins is the gel retardation, or band-shift assay. In this method a radiolabelled 

probe piece of DNA is mixed with protein and the mixture resolved by non­

denaturing gel electrophoresis. Protein bound to the DNA probe effectively 

increases the apparent molecular weight of the DNA and will reduce the rate of 

migration of the probe through a gel. 

In both of these methods it is important to be able to discriminate between specific 

and non-specific binding. When assessing specific binding between a protein and 

a particular DNA sequence non-specific interactions must be eliminated. This is 

usually achieved by adding unlabelled 'non-specific' protein and DNA in high 

concentrations. Therefore if the protein is a non-specific DNA binding protein, 

due to the excess of unlabelled DNA, most of the protein will bind to unlabelled 

DNA and relatively little of the protein will bind to the labelled DNA and cause its 

retardation during electrophoresis. In such a fashion a relatively few experiments 

will allow discrimination between specific and non-specific binding. 

As a simple and yet conclusive method for investigating interactions between 

DNA and protein, gel retardation assays were performed to determine whether 

specific interactions could be observed between CarQ and the carQRS promoter. 

5.3.2. Production of CarQ 

Plasmid pDFBT13 contains carQ cloned into the NdeI / BamID sites of pET-3A. 

The NdeI site overlies the MetI codon so no extra amino acids are introduced into 

CarQ. Two additional stop codons are located in-frame, downstream of the coding 

sequence and expression of carQ is under the control of the T7 promoter. 

This plasmid was transformed into E. coli BL21::DE3, using the TSS method of 

Chung et ai. (1989), using AmplOO selection. BL21::DE3 is protease deficient and 

Contains the integrated A phage DE3 which has a copy of the T7 polymerase gene 

under the control of the lac promoter. 

A freshly transformed strain was used to produce CarQ as described in section 

7.4.2. 200ml of selective medium was subcultured with an overnight culture of the 

transformed strain and incubated until an OD600 of 0.8 was attained, then 
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induction was achieved by addition of IPTG. After 4 hours, the cells were pelleted 

and frozen. Purification and resolubilisation of the inclusion bodies was then 

performed as described in section 7.4.3. Progress of the purification and refolding 

procedures was followed by SDS-PAGE and activity of the CarQ preparation 

confirmed by in vitro transcriptional run-off assay (section 5.4). 

5.3.3. Gel Retardation of the carQRS promoter by CarQ. 

Initial experiments used a range of concentrations of CarQ added to a probe 

containing the carQRS promoter. Binding reactions were performed as described 

in section 5.3.1. 

Probe DNA was amplified from M. xanthus chromosomal DNA containing a 

Wild-type copy of the carQRS promoter (primers 1 and 2, section 7.4.4.1) and end­

labelled with 32p by reaction with T4 polynucleotide kinase. Figure 5-5 

demonstrates retardation of migration of the labeled DNA probe by CarQ. 
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Figure 5-5 Gel retardation of the carQRS promoter by CarQ. 

Lane I: No CarQ. Lanes 2-5: Increasing concentrations ofCarQ 
(constant volume of IOOOx, lOOx, lOx and Ix dilutions ofCarQ) used in 
binding reactions. 
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This was a promising result with the presence of CarQ retarding labelled pcarQRS 

and with more retarded band observed with greater quantities of CarQ. A 

reduction in the amount of unretarded probe could also be seen at high CarQ 

concentrations. 

However, the bands due to retardation of the probe coincided with the bottom of 

the wells of the acrylamide gel. This is unusual as even large DNNprotein 

complexes can enter acrylamide upon electrophoresis (Dent and Latchman, 1993). 

To determine whether the effect was due to CarQ or a trace contaminant from the 

purification protocol, the purification procedure was repeated using BL21::DE3 

untransformed with pDFBT13. The product of this purification was used in the 

place of CarQ during another attempt at the retardation assay. This time, no 

retarded bands were observed regardless of probe used, and the presence/absence 

of competitor DNA, so the initial retardation seen in Figure 5-5 must be CarQ­

dependent. 

These results suggested that CarQ was preventing entry of probe DNA into the 

acrylamide gel. This could be a specific or non-specific effect so retardation 

assays were repeated using i) a non-promoter-containing fragment of DNA as the 

probe. ii) addition of varying amounts of unlabeled competitor DNA. iii) addition 

of unlabelled non-specific DNA. 

Retardation of probe by CarQ was seen irrespective of the probe used, even when 

the probe used was a non-promoter-containing fragment of completely synthetic 

DNA (provided by Dr. G. Owenson, pers.comm.) Thus the retardation effect 

caused by CarQ is non-specific. Addition of a range of amounts of unlabelled 

pIC19H or of unlabelled probe, showed a reduction in the intensity of the retarded 

band, again indicating that retardation was non-specific (data not shown). 

In conclusion, it appears that CarQ causes the sequence-independent prevention of 

DNA entrance into a polyacrylamide gel. It is perhaps most probable that the 

preparation of CarQ, while producing active CarQ, also produced inactive 

denatured aggregates of protein which 'trapped' DNA in a state unable to penetrate 

the non-denaturing polyacrylamide gel. Browning (1997) showed that 6His-CarQ 

expressed in E. coli always precipitated, irrespective of concentration and even 
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following dialysis to remove sarkosyl after successful resolubilisation. It is 

possible that CarQ is also prone to precipitation, although not to the extent of 

6His-CarQ, with the precipitation induced as the protein is electrophoretically 

induced to enter an acrylamide gel. 

Potentially, if the inactive protein could be removed from the CarQ preparation it 

may prove possible to observe a sequence-dependent retardation of pcarQRS by 

CarQ. The experiments could alternatively be repeated using cell extracts, or using 

CarQ directly purified from a culture of M. xanthus. However, results obtained by 

Browning (1997) suggest that CarQ is a relatively unstable protein and present at 

very low levels within the cell. CarQ could not be detected in M. xanthus using 

anti-CarQ anti-sera even in strains carrying a carR lesion. Additionally, CarQ 

instability would explain the rapid down-regulation of carQRS expression on the 

production of carotenoids and the consequent transition from light to dark and also 

explain the much lower light-induction at loci far removed from the site of CarQ 

production, i.e. at crt[ and at M. xanthus AttB ( sections 2.2 and 4.3). 

5.4. Transcription run-off assays. 

Transcription run-off assays are a means of assessing the transcriptional efficacy 

of promoters and sigma factors in-vitro, using purified transcriptional components. 

5.4.1. Nature of the assay. 

For the in vitro pre-binding transcription run-off assay, a template fragment of 

DNA is combined with core RNA polymerase, a sigma factor and rNTPs. If the 

Sigma factor is capable of directing initiation of transcription from a promoter 

contained on the DNA fragment, mRNA will be produced. Production of mRNA 

by the system is assessed by the incorporation of 32P_a_CTP into the nascent 

macromolecule, resolution by gel electrophoresis and visualisation by 

autoradiography. The assay is a sensitive technique for the determination of sigma 
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factor activity in a protein sample and can also be used to assess the ability of a 

promoter sequence to be recognised by a specific sigma factor. 

However, there can be problems associated with the interpretation of data derived 

from in vitro transcription run-off assays. If the assay is being used to determine 

whether a protein has sigma factor activity, the production of a specific mRNA 

product is incontravertible proof that the protein is a sigma factor (for example 

Browning, 1997). More care must be taken when looking at the ability of various 

promoters to be recognised by a specific sigma factor. This is a consequence of the 

non-physiological conditions employed in the assay, i.e. the artificial situation 

where there is a single sigma factor present with a single promoter. Additionally, 

the concentrations of each of these species and of the core RNA polymerase are 

typically much higher than those found within a cell. This can lead to anomalous 

results. For instance, work on the dagA gene of Streptomyces coelicolor used the 

transcriptional run-off assay to prove that SigE could mediate transcription from 

the P2 promoter of dagA (Buttner et al., 1988). The implication was clearly that 

SigE mediated expression of dagA from P2 in vivo (Lonetto et al., 1994). 

However, when a sigE knock-out mutant was created it was discovered that 

transcription from dagA P2 in vivo was unaffected (Jones et al., 1997). Thus it 

would seem likely that it is possible to get a positive result from the transcriptional 

run-off assay by virtue of the assay conditions. This is not true in all cases 

however. When the ability of SigE to initiate transcription from the carQRS 

promoter was assayed, no transcription product was observed (Browning, 1997). 

This is probably since the promoters thought to be recognised by SigE and CarQ 

are very different around -10, even though very similar at -35 (Figure 5-6). 

The implication is therefore that it is possible to obtain a transcription product 

from a promoter and sigma factor combination that may not produce mRNA in 

vivo. This would presumably be more likely if the promoter being assessed was 

similar to a promoter that is recognised by that sigma factor in vivo. 
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dagA P2 

carQRS 

crt! (+ 12) 

GCGTTCCGGAACTTTTTGCACGCACGCGAGCTCTCGAATTTT 

GAGCGCCGGAAACACTTTCGCAGGTGGCCCGTAQAGGAGTCG 

CAGTGCCGGACGGTGCTCTTGTAACGTCCTQGCQGGTTCGCG 

Figure 5-6 Comparison of the promoters whose recognition is mediated 
by CarQ and by SigE. 

CarQ-dependent promoters shown are for crtI and for carQRS. The 
SigE-dependent promoter shown is for dagA P2. Underlined bases 
correspond to bases conserved in rarQRS . 

5.4.2. Transcription run-off assays of mutant carQRS 
promoters. 

Bearing this in mind, attempts were made to mirror the in vivo assays of the 

mutant promoters constructed by Berry (1998), by assessing the in vitro activity of 

the same promoters. Browning, (1997) had previously used the transcription run­

off assay to prove that CarQ had sigma factor activity and was able to mediate 

transcription from pcarQRS, although he was unable to show that CarQ could cause 

transcription of crt!. 

PCR was used to amplify 500bp fragments of DNA from the pAEB6XX series of 

plasmids to use as templates for in vitro transcriptional run-off assays. The PCR 

products were each 480bp long, with the promoter located at such a position that 

any mRNA produced from promoter within the template would be 317bp long. 

Soluble CarQ was made as described in section 7.4.2 and assays were performed 

as described in section 7.4.5. 

Using a PCR product derived from pAEB600 which carnes the wild-type 

promoter, the run-off assay gave two bands of interest on the auto radiograph 

(Figure 5-7). The first at ~500nt corresponds to an RNA product transcribed from 

one end of the template to the other. This product is formed independently of 

sigma factor by core RNA polymerase and is always obtained in run-off 

experiments. It is produced as core RNA polymerase is capable of binding to and 

initiating transcription from the end of a fragment of DNA. The second product, 
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of -300nt is only found if CarQ is present and is the result of transcription from 

the internal promoter within the template. The ability to obtain a transcript from 

pcarQRS using pure CarQ and core RNA polymerase is a poor reflection of what 

occurs in vivo already as transcription of carQRS in vivo absolutely requires the 

DNA binding protein CarD. 

Assays were also performed for mutant promoter Alt4. In this case both full­

length and internal transcripts were obtained from the assay (Figure 5-8). The Alt4 

promoter contains a mutation around position -32 within the highly conserved -35 

promoter hexamer. When the promoter activity of Alt4 was assessed in vivo it 

showed no light-induction and the inference was therefore that the mutation in 

Alt4 abolished light-induction of promoter activity. This conclusion is 

contradicted by the result of the in vitro run-off assay which suggests that CarQ 

can mediate expression from Alt4. It seems likely that the ability to produce a 

transcript from Alt4 is a result ofthe conditions employed in the run-off assay and 

not a true reflection of what occurs in vivo. The similarity of the Alt promoters to 

the wild-type carQRS promoter makes it likely that all run-off assays of Alt 

promoters will yield positive results, making the worthiness of the technique for 

this application doubtful. The presence of a large number of non-specific RNA 

products within the background noise seen in Figure 5-7 and Figure 5-8 implies 

that transcription is being initiated at multiple sites along the template DNA 

fragment, perhaps at 'initiation hot-spots', not at the promoter. This again argues 

for inappropriate conditions used in the run-off reactions. A further consideration 

is that the core RNA polymerase used is obtained from E. coli not M xanthus. It is 

possible that the differences between the core RNA polymerase from the two 

species may influence the results of the transcription assays using CarQ. 

The benefits of the in vivo assays of promoter activity over the in vitro assays are 

manifold. They provide temporal and quantitative data, obtained in situ, in the 

organism of interest, under whichever conditions are required. Conversely, the in 

Vitro assays are purely qualitative, employing reaction conditions far removed 

from those in the organism and the results obtained can therefore be ambiguous to 

interpret. 
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Figure 5-7 Transcriptional run-off of I ;>carQRS directed by CarQ. 

Lane 1: Markers. Lane 2: Core polymerase only. Lane 3: CarQ and 
core polymerase. 
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Figure 5-8 Transcriptional run-offofAlt4 directed by CarQ. 

Lane: I CarQ and core polymerase. Lane 2: Core polymerase only. 
Lane 3: Markers .. 
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Due to time constraints run-off assays were not performed for any of the other Alt 

promoters. Another factor which hindered the performance of the run-of assays 

was the instability of the purified preparations of CarQ, which lost sigma factor 

activity at a significant rate and made any CarQ-mediated transcripts 

indistinguishable from the background products. Although it is difficult to 

determine an exact half-life of stability, the preparation had lost nearly all activity 

within two weeks of its production. This may be a consequence of the proteins 

natural instability or be due to precipitation at -20°C during storage. Perhaps 

activity would not be lost at such a rate if the samples are stored at -80°C. It 

should be noted that the CarQ preparations were no more than two days old when 

used in the binding assays described earlier and are assumed to have been 

biologically active at the time. This was confirmed by successful in vitro 

transcription run-off assays. 

Future work will extend the use of the in vitro run-off transcription assay to assess 

all other Alt promoters. Whether this will yield data of comparable quality to that 

obtained from in vivo assays is unlikely, however it may generate qualitative 

results of interest. 

5.5. Conclusions. 

While in vivo assessment of the activity of mutated promoters provides a great 

deal of qualitative and quantitative data, in vitro studies have shed relatively little 

light on the nature of the sigma factor-promoter interactions between CarQ and 

pcarQRS. Experimental work proved unable to demonstrate direct binding between 

CarQ and the carQRS promoter. Whether this was a consequence of high levels of 

protein aggregates in the CarQ preparation or due to an inability of CarQ to bind 

directly to its cognate promoters is unknown. A more sensitive technique would 

have to be employed to determine that CarQ can not bind to pcarQRS without core 

RNA polymerase. 

The use of in vitro transcription run-off assays to analyse the effects of mutations 

within pcarQRS also met with limited success. It is possible to obtain a specific 

transcription product due to the recogition of pcarQRS by CarQ. However it is also 
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which in vivo assays show to be defective in light-induction. This is likely to be 

due to the non-physiological conditions in the actual run-off transcription 

reactions and suggests that CarQ-mediated transcription products may be obtained 

from any promoter which is similar, to wild-type pcarQRS. 

A perhaps more appropriate method of dissecting functional regions within pcarQRS 

can be envisaged, made possible by the genetic tools available for manipulation of 

M xanthus. A library of all possible point mutations within the -35 and/or -10 

promoter hexamers could be generated easily using degenerate oligonucleotide­

mediated mutagenesis (essentially a random-directed mutagenesis). If engineered 

appropriately, these mutant promoters could be introduced into M. xanthus such 

that selection favoured homologous recombination across pcarQRS resulting in 

replacement of wild-type pcarQRS with a mutant form. Isolation of all mutations 

causing a Care or Car- phenotype would then provide a directory of base changes 

within the promoter which affect recognition by CarQ. This may provide a better 

strategy for the isolation of non-silent promoter mutations than the engineering of 

crude site-directed mutations and the detemination of their effects, if any. 
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6. Conclusions. 

6.1. The role of carA 

Care mutants caused by a carA mutation show greatly decreased levels of 

transcription from the carQRS and crt! promoters. By preventing the constitutive 

production of carotenoids in a carA strain and assessing promoter activities, it was 

apparent that the reduction in promoter activities due to the carA lesion was an 

indirect effect due to constitutive carotenogenesis, rather than due to loss of direct 

promoter activation by CarA. It seems that the only role of CarA in 

carotenogenesis is to repress crtEBDC expression in the dark. 

The production of carotenoids was shown to be responsible for the feedback 

regulation of the carotenogenic regulon. Thus in a Car- mutant, the negative 

feedback loop cannot be established and the regulon exhibits increased activity. 

Conversely, in a Cal mutant, the constitutive production of carotenoids causes 

precocious establishment of the feedback loop and induction by light is 

diminished. 

6.2. The role of crt!. 

Previous work has shown that expresion of crt! is much more complicated than 

that of carQRS. The crt! locus has a biphasic pattern of induction, with the latter 

phase being enhanced by carbon limitation. Further differences between the crt! 

and carQRS promoters are suggested by sequence comparison and in vitro 

molecular studies. Browning (1997) showed it was possible to obtain 

transcriptional run-offs from the carQRS but not the crt! promoter. 

Analysis of crt! promoter activity upon carbon limitation showed that in a carR 

mutant, the crt! promoter is still light-induced, implying a mechanism of light­

induction separate from the CarQ-dependent mechanism. 

The possible occurance of uncharacterised genes involved In carotenogenesis 

downstream of crt! was considered, and sequencing confirmed the presence of two 

genes downstream, and the start of a divergent gene upstream, of crt!. 
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Immediately downstream of crt! is the gene, olpA, for a thirty residue peptide 

whose initiation codon overlaps the termination codon of crt!. Downstream of 

olpA is a gene, gujB, whose mycobacterial homologues have no clear function. 

The termination codon of olpA lies over a putative ribosome binding site for gujB, 

suggesting a possible co-transcription and translational coupling of crt], olpA and 

gujB and conceivably a shared involvement in carotenogenesis. 

6.3. CarQ and the carQRS promoter. 

The carQRS promoter is a large complicated promoter with many regions of 

importance. Site-directed mutation has enabled an in vivo confirmation of the 

areas of interest within the promoter. Mutation of the -35 hexamer, the early 

transcribed region, and the region within pcarQRS overlapping the gufA promoter 

start site all cause a loss of promoter function. Enhanced induction of the carQRS 

promoter was seen on mutation of the downstream CarD binding site, or on 

mutation of the region between the CarD binding site and the -35 hexamer. This is 

probably due to a change in the curvature of the DNA at the promoter which is 

predicted to have a sharp bend at the CarD binding site (Berry, 1998). The 

mutation introduced into the -10 hexamer caused constitutive promoter activity, 

presumably due to promiscuous activation by a non-CarQ sigma factor. Mutation 

of the region between the carQRS transcriptional start site and the promoter -10 

region had no effect on promoter activity. 

Attempts to detect direct binding between CarQ and the carQRS promoter by gel 

retardation assay were unsuccessful. Whether this is a result of the binding 

reaction conditions used, or because CarQ will not bind promoter DNA directly, is 

not known. 

Upon performance of in vitro run-off transcription assays to assess the effect of 

mutations within the carQRS promoter, it was found that a mutant promoter (Alt4) 

Which is uninduced in vivo, gave a transcription product in vitro. It appears that in 

vitro transcription is an inappropraiate technique to assess the activity of mutant 

promoters, most probably as a consequence of the non-physiological conditions 

Used in the assay. 
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6.4. Future Perspectives. 

The studies described in this work have important consequences and suggest 

further directions, for research into carotenogenesis in M xanthus. The general 

conclusion from chapters two and three is that when assessing promoter activities 

of the car genes, the consequences of the Car phenotype of the strain must be 

borne in mind, as it has a drastic indirect effect on promoter activities. 

Chapter three also identified at least two novel genes downstream of the crt! 

locus. Future work may enable elucidation of the functions of these genes and 

possibly implicate them with a role in carotenogenesis. Further sequencing around 

the crtJ region, may identify other carotenogenic genes at this locus. 

Chapters four and five attempted to elucidate molecular details of the interaction 

between CarQ and the carQRS promoter. The in vivo assays of mutant promoters 

described in chapter four provided infomation about which areas within the 

carQRS promoter are of imporance, and will enable future work to engage in a 

more fine-scale mutagenesis of the promoter. 

Attempts to perfrom a variety of in vitro assays of interactions between pcarQRS 

and CarQ demonstrated a range of difficulties with the techniques used, when 

applied to the system at hand. Further analysis of CarQ / pcarQRS interactions will 

probably be best served by in vivo assays. Perhaps a more pressing area for study 

is the molecular nature of the action of CarS, which derepresses crtEBC in the 

light, and has no known homologues. 

174 



7. Materials and Methods. 

7.1. Bacterial strains and plasmids. 

7.1.1. Cultivation of Escherichia. coli. 

7.1.1.1. Growth conditions and storage of E. coli. 

E. coli strains were typically incubated in LB medium at 37°C, in liquid or on 

agar. For storage, plates were kept at 4°C and re-streaked every 2 months. Longer 

storage was achieved by centrifugation of an overnight culture followed by 

resuspension of pelle ted cells in Iml of 50% glycerol with storage at -80°C. 

7.1.1.2. Materials required for the cultivation of E. coli. 

LB medium (ldm\ 

5 g Yeast Extract 
109 Tryptone 
5g NaCl 

15g agar (LB agar) 
7.5g agar (LB soft agar) 

7.1.2. Cultivation of Myxococcus xanthus. 

7.1.2.1. Growth conditions and storage of M. xanthus. 

Strains of M xanthus were incubated in DCY or YT media at 33°C, in either 

liquid or on agar plates. Strains were stored on agar plates at 18°C and were re­

streaked every two to three weeks. Storage of strains for longer periods was 

achieved by mixing 0.9ml of a two day old culture (late log phase) with O.lml of 

DMSO and freezing at -80°C. 
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7.1.2.2. Materials required for the cultivation of M. xanthus. 

DCY medium (ldm3
). 

20g Bacto casitone 
2g yeast extract 
lOmM Tris HCl (pH. 8.0) 
8mMMgS04 

YT medium (ldm3
). 

lSg agar (DCY agar) 
7.Sg agar (DCY soft agar) 

109 yeast extract Sg tryptone 
lmM NaCl, 1mM MgCh and 1mM CaCl2• 

7.1.3. Antibiotics 

Stock solutions were made and stored as described in Sambrook et al. (1989). 

Antibiotics were used at a final concentration described in the appropriate 

protocol. 

7.1.4. Bacteriophage used. 

PI dr-lOO Tn9 (Rosner, 1972) 

Mx4-LA27 (Avery and Kaiser, 1983) 

Mx8 (Martin et al., 1978) 

7.1.5. Plasmids used. 

Plasmids used during this study are detailed below. The name, description and key 

features of each plasmid are also given. 

pAEB600 

pAEB601-
pAEB616. 

pDAH217 

_pcarQRS (232bp BamHIlEcoRI fragment from 

pAEB120), lacZ, P1inc~, Mx8 attP, plSA ori, 
KmR,fd term (Berry, 1998) 

Constructs identical to pAEB600 except that the 
copy of pcarQRS carried has been mutated. Thus 
pAEB601 carries mutant promoter Altl and 
pAEB607 carries promoter Alt7. (Berry, 1998). 

_pcarQRS, lacZ, P1inc, ApR, plSA ori, KmR + 1/.1 
IS50L (Hodgson, 1993). 
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pDAH274 

pDFBT13 

pDEW100 

pDEW300 

pMAR202 

pMAR206 

pPR108 

-lacZ, PI incL1, ApR, KmR, p15A ori, (Hodgson, 
1993). Identical to pDAH283. 

-T7 promoter (<p 10) driving expression of carQ, 
ApR, pBR322 ori. (Browning, 1998). 

_pertl and crt!, ApR,KmR p15A ori (This Study) 

-crt! (intemal1.2Kb fragment), lacZ, PI incL1, 
ApR, KmR, p15A ori (This Study). 

-crt! (20kb KpnI, EcoRI fragment), KmR, (Fontes et 
al., 1993). 

_pertl and crtI (2.6kb PstI fragment), lacZ, PI incL1, 
ApR, KmR, p15A ori (Fontes et al., 1993) 

-Mx8 attP (5.6kb PstI fragment), KmR, pearQRS, 
lacZ. (Robson, 1992) 

ApR, ampicillin resistance determinant; fd term, major transcriptional 
terminator of coliphage fd; KmR, kanamycin resistance determinant; 
KmR +If4IS50L, kanamycin resistance determinant derived from Tn5 
including the portion of IS50L containing the promoter; Mx8 AttP, 
myxophage Mx8 AttP phage attachment site;pcarQRS, light-inducible 
promoter of carQRS; pcrtl, promoter of crtI; p15A ori, origin of 

replication from plasmid p15A;P 1 incL1, PI inc region with a deletion 
between Hpal and KpnI; pBR322 ori, origin of replication from 
plasmid pBR322. 

7.1.6. E. coli strains used. 

MC1061 -hsdR, mcrB, araD139, l:l(araABC-leu)7679, galU, 
galK, rpsL, thi, I:llacX74(lacIPOZY). 

BL21 (DE3) -FompT [Zon] hsdSB with DE3, a A prophage carrying the 
T7 RNA polymerase gene. 

DH5a -<P80dlacZI:lM15, I:llacU169, recAl, endAl, hsdR17, 
supE44, thi-l, gyrA, relAl. 
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7.1.7. M. xanthus strains used. 

The strains used during the course of this study are detailed in Table 2.1. For each 

strain the genotype, cartenogenic phenotype, derivation and source are given. 

Strain Car Car Derivation Source 
Genotype phenotype 

DKlOl wild-type Car+ spontaneous mutation of strain FB D.Kaiser. 
(DKlOO) 

DK1050 wild-type Car+ DKIOO (sp.) Ruiz-Vasquez and 
Murillo, 1984 

DK406 carR4 Carc DK1050 (NTG) Martinez -Laborda et aI., 
1986. 

DK717 carAl Care DKlOl (UV) Hodgson, 1993. 

DK718 carR5 Carc DKlOl (UV) Martinez-Laborda et al., 
1986. 

MR136 wild-type Car+ Mx8-mediated transduction of KmR 
Martinez-Laborda et al. , 

from DK2725 into DK1050 1986. 

MR461 carel Car' TcR replacement of QMR403::Tn5-1ac Balsalobre et al., 1987. 

UWM303 carQ2 Car' Gene replacement of DKI01 with McGowan et al., 1993. 
pSJM122 

UWM501 carel, Car' Mx8-mediated transduction of TcR from This study 
carA2. DK461 into DK717 

UWM502 carel. Car' Mx8-mediated transduction of TcR from This study 
DK461 into DKlOl 

UWM503 carel Car' Mx8-mediated transduction of TcR from This study 
DK461 into DK1050 

UWM504 carQ2 Car' Mx8-mediated transduction of KmR This study 
from DKI01::pAEB603 into UWM303 

Table 7-1 M. xanthus strains used. 
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7.2. Basic Techniques. 

7.2.1. Restriction endonuclease digestion of DNA. 

DNA was digested with restriction enzymes using the buffers and conditions 

specified by the manufacturers. Digestion was carried out in a volume between 

10f.!1 and 30f.!1 using 10 to 30 units of enzyme typically for 2 hours at 37°C. 

7.2.2. Reaction of Alkaline phosphatase with DNA. 

DNA was 5' -dephosphorylated by incubation with calf intestine alkaline 

phosphatase using buffers and conditions as specified by the manufacturers. 

7.2.3. Reaction ofT4 DNA Kinase with DNA. 

DNA was 5'-phosphorylated by addition of T4 DNA kinase and ATP, with 

conditions and buffers as suggested by the manufacturer. 

7.2.4. Gel electrophoresis of DNA. 

Gel electrophoresis was used to visualise or isolate DNA fragments. Agarose gels 

were typically between 0.5 and 1.4% and contained 1xTBE with 0.5f.!glml 

ethidium bromide. A long-wavelength transilluminator was used to visualise gels 

and isolate bands, whilst a short-wavelength transilluminator was employed to 

photograph gels with a Polaroid camera. 

7.2.4.1. Materials needed for gel electrophoresis. 

10xTBE. 

108g Tris base 
55 g boric acid 
9.3g EDTA per litre. 

Loading buffer. 

50% glycerol 
0.5% xylene cyanol FF 
0.5% bromophenol blue. 

7.2.5. Transformation of E. coli and M. xanthus. 

7.2.5.1. Transformation of E. coli using TSS transformation. 

TSS transformation was carried out as specified by Chung et al. (1989). 
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7.2.5.2. Transformation of E. coli using CaCl transformation. 

The method used for CaCI transformation is described in Sambrook et al. (1989). 

7.2.5.3. Transformation of M. xanthus by electro po ration. 

Electroporation of plasmid DNA into M xanthus was performed according to the 

method of Kashefi and Hartzell (1995) using a Bio-Rad Gene Pulser 

electroporator. 

7.2.5.3.1. Preparation of electrocompetent cells. 

Exponentially growing cells were washed three times in one volume water and 

resuspended into 0.01 volumes of water. Manipulations were performed at 25°C. 

7.2.5.3.2. Electroporation conditions. 

40111 of cells was added to 2111 of DNA in a 0.2cm electroporation cuvette. 

Conditions for electroporation were set at a capacitance of 251lF, a voltage of 

0.65kV, a resistance of 4000 and time constants in the range 0.5-0.9ms. Cells 

were immediately introduced into rich DCY media and after a period of 4 hours 

incubation at 33°C, were overlayed in DCY soft agar onto selective DCY plates. 

Electroporants gave visible colonies after four days' incubation at 33°C. 

7.2.6. Preparation of plasmid DNA from E. coli. 

The small scale preparation of plasmid DNA was carried out using the alkaline 

lysis QIAprep Spin Plasmid Kit (QIAGEN), as specified by the manufacturers. 

7.2.7. Preparation of M. xanthus chromosomal DNA. 

The method is based on that described by Hodgson (1993). An overnight culture 

was used to inoculate 100ml DCY containing appropriate antibiotic. This culture 

was incubated until stationary phase was reached. Cells were pelleted by 

centrifugation at 4°C, 16,000g for 15 minutes and resuspended in lOml STE. Img 

Proteinase K and 2ml 0.5M EDTA were added, followed by 1.5mllO% N-Lauryl 

sarcosine to induce lysis. Tubes were incubated at 60°C overnight. 

180 



28.5g of CsCI was then dissolved in the mixture and the volume made up to 38ml 

with water. 2ml 5mglml ethidium bromide was added and the sample was then 

incubated on ice for 2 hours. Cellular debris was pelleted by centrifugation at 4°C, 

20,000g for 15 minutes and the supernatant decanted through muslin into a 

Beckman 'Quick-Seal' centrifuge tube. The tubes were topped up with 71.25% 

CsCI, balanced with paraffin oil and heat sealed. Centrifugation was performed at 

room temperature for 20 hours at 220,000g using a Beckman L8 ultracentrifuge 

(VTi50) rotor. The band of chromosomal DNA was removed using a 19 gauge 

needle and syringe. Successive washes with 5ml salt-saturated isopropanol 

removed ethidium bromide from the samples which were then made up to 12ml 

with water and the DNA precipitated by the addition of 24ml ethanol. After 

incubating at -20°C overnight, the DNA was pelleted by centrifuging at 4°C, 

20,000g for 15 minutes and washing with 70% ethanol. The DNA was finally 

resuspended in 1ml of TE. 

7.2.7.1. Solutions required for preparation of Chromosomal DNA. 

25% Sucrose 
50rnM Tris-HCI pH 8.0 
5rnMEDTA 

lOrnM Tris-HCI pH 8.0 
5rnMEDTA 

5MNaCI 
lOrnM Tris-HCI pH 8.0 
1rnMEDTA 

Salt -saturated isopropanol 

400ml isopropanol 
200mlNTE 

7.2.8. Preparation of PI stock solution. 

Stock solutions of PI bacteriophage were prepared from single plaques of PI 

grown on a lawn of MC1061 on LC agar. Plaques were picked into TM buffer 

and plated with MC1061 onto LGC agar to give a lawn of E. coli, with 

confluently lysed PI plaques. Plates exhibiting confluent lysis were soaked 

with 6ml TM buffer and the resulting 'soak-out' stock solution of PI stored 

above chloroform. 
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7.2.8.1. Materials needed for the preparation of PI stock solutions. 

LC medium. 

As LB media (7.1.1.2) 
+5mMCaCI 

TMBuffer 

lOmM Tris-HCI pHS.O 
SmMMgS04 

LGCmedium. 

As LC media 
+2ml 50% Glucose 

7.2.9. PI Packaging of plasmids for transduction of M. xanthus. 

The PI packaging of plasmids carried by E. coli strain MC1061 and the 

transduction of M. xanthus using Pllysates was carried out as detailed in Hodgson 

(1993). 

7.2.10. Mx8-mediated transductions. 

Generalised transductions between strains of M. xanthus using bacteriophage MxS 

were performed as described in Hodgson (1993). 

7.3. Physiological Studies. 

7.3.1. Assays for the activity of ~-galactosidase in strains of M. 
xanthus. 

The protocol for assaying p-galactosidase activity in M. xanthus strains was 

performed according to the method detailed in Hodgson (1993). 

7.3.2. Media replacement during assays of ~-galactosidase 
activity. 

Assays which required introduction of the cells into a medium lacking a carbon­

Source were performed as above (7.3.1). At time = 3 hours the cultures incubating 

in the light and in the dark were split into two 100mi daughter cultures. One of 

each pair of daughter cultures were subjected to centrifugation for 15 minutes at 

16,000g at 20°C and the cell pellets resuspended in MC7 buffer after washing with 
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100ml MC7 buffer. Sampling and enzyme activity determinations were continued 

as normal for a typical ~-galactosidase assay. 

7.3.2.1. Materials required for Media replacement ~.galactosidase 
assay. 

MC7 Buffer. 

lOmMMOPS 
ImM CaCh 
pH to 7.0 

7.3.3. Developmental Assay. 

Assays for starvation-induced fruiting body formation were performed as 

described in Yang and Kaplan (1997). A culture of M. xanthus in a late 

exponential phase of growth was centrifuged and the pelleted cells resuspended in 

1/10 volume of TPM. Several 20J-ll drops of this solution were spotted onto TPM 

agar plates and incubated at 33°C in the dark. Fruiting bodies typically formed 

after 72 hours. 

7.3.3.1. Materials needed for Developmental Assays. 

lOmM Tris-HCI pH 7.5 
ImMKH2P04 

8mMMgS04 
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7.4. Molecular Studies. 

7.4.1. SDS PAGE gel electrophoresis. 

7.4.1.1. SDS PAGE electrophoresis using the Tris-glycine system. 

Tris-glycine SDS PAGE electrophoresis was carried out as detailed in Silhavy et 

al. (1984). Vertical SDS PAGE slab gels were run using a Bio-Rad Protean gel 

tank and two different percentages of separating gel were routinely used (7% and 

12%). Their composition is indicated below: 

4x lower buffer 
Acrylamide stock 
Distilled water 
10% ammonium persulfate 

Acrylamide concentration 
7% 12% 

10ml 
9.3ml 
20.5ml 
0.2ml 

10ml 
16ml 
13.8ml 
O.2ml 

The stacking gel was poured on directly onto the top of the polymerised resolving 

gel. Its composition is defined below: 

Stacking gel mix. 

2.5ml 4x upper buffer 
Iml acrylamide stock 
6.4ml distilled water 
0.2ml ammonium persulfate. 

Protein samples were mixed with an equal volume of cracking buffer, boiled for 5 

minutes and loaded onto the gel. Electrophoresis was carried out using 1 x running 

buffer at 30-40mA constant current for 3-4 hours. Alternatively, gels were run 

overnight at 6mA. 
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7.4.1.2. Materials required for Tris-glycine SDS PAGE system. 

Acrylamide stock (30%). 

300g acrylamide 
8g bis acrylamide 
final volume of 1 litre. 

4x upper buffer. 

60.6g Tris base 
40mll0%(w/v) SDS 
final volume of 1 litre. 
Adjust to pH 6.8 with HCI 
and add 1ml ofTEMED. 

Running buffer. 
24g Tris base 
57.6g glycine. 
0.66M sucrose 
6% (w/v)SDS 
final volume of 4 litres. 

4x lower buffer. 

181.7g Tris base 
40mll0% (w/v) SDS 
final volume of 1 litre. 
Adjust to pH 8.8 with HCI 
and add 1m! TEMED. 

Cracking buffer. 
133mM Tris-HCI pH8.8 
3.3mMEDTA 
4Omll0%(w/v) SDS 
O.1MDTT 
1.6% (v/v) 2-mercaptoethanol 
0.01 % bromophenol blue. 

7.4.1.3. Coomassie blue R staining of SDS PAGE gels. 

After electrophoresis, SDS PAGE gels were immersed in Coomassie blue R stain 

for 1-2 hours with shaking. Excess stain was removed by incubating gels in 

destain solution. This was replaced every 4 hours until there was little or no 

background staining within the gel. 

7.4.1.4. Materials needed for Coomassie blue R staining. 

Coomassie blue R stain. 

90ml methanol 
20ml acetic acid 
90ml distilled water 
0.45g Coomassie blue R. 

Destain 

400ml methanol 
70ml acetic acid per litre. 
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7.4.2. Expression of recombinant CarQ using T7 polymerase. 

Protein expression was also carried out using a T7 RNA polymerase expression 

system in the strain BL21(DE3) (Rosenberg et ai., 1987). Overnight cultures, 

containing the appropriate plasmid, were used to inoculate LB broth plus 

antibiotic at a dilution of 1:100. Cultures were incubated at 37°C with shaking 

until OD600 = 0.8, after which protein expression was induced by the addition of 

IPTG (hnM final concentration) for 4 to 5 hours. 

7.4.3. Refolding of insoluble recombinant CarQ. 

The expression of protein in 100ml E. coli cultures was carried out for 4 hours as 

detailed in section 2.7.4. The isolation of inclusion bound protein, its 

resolubilization using Sarkosyl and refolding was carried out as detailed by 

Nguyen et ai. (1993). Cells were isolated by centrifugation at 4000 rpm in a MSE 

Hi-Spin 21 centrifuge at 4°C for 10 minutes and resuspended in 20ml of lysis 

buffer with 0.2% sodium deoxycholate and 200j.lg/mllysozyme. This was kept on 

ice for 30 minutes and then sonicated using a Jencons sonicator with a 19mm 

diameter probe for 3x30s bursts (6 microns peak to peak) with 30s cooling on ice 

in between pulses. Inclusion bodies were isolated by centrifugation at 18000rpm 

in an MSE Hi-Spin 21 centrifuge at 4°C for 30 minutes. The pellet was 

resuspended in 25ml of TGED buffer containing 50mM NaCI and 2% sodium 

deoxycholate. This was incubated on ice for 1 hour with stirring and the inclusion 

bodies were collected by centrifugation as before. The pellet was again 

resuspended in 25mls of TGED with 50mM NaCI and 2% sodium deoxycholate 

and incubated on ice for 1 hour with stirring. Inclusion bodies were collected by 

centrifugation at 18000rpm and resuspended in 25mls of TGED containing 50mM 

NaCI and 0.25% Sarkosyl. After 1 hour incubation on ice with stirring, the sample 

was centrifuged at 18000 rpm in an MSE Hi-Spin 21 centrifuge at 4°C for 30 

minutes. The supernatant was dialysed overnight at 4°C against 2 litres ofHGED 
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buffer, which was changed twice and then dialysed overnight at 4°C against 1 litre 

of storage buffer. Samples were stored at -20°C until required. 

7.4.3.1. Materials required for refolding of insoluble recombinant 
CarQ. 

Lysis buffer. 

50mM Tris-HCI (pH 7.9) 
IOmMEDTA 
50mMNaCI 
ImMDTT 
ImMPMSF. 
5% glycerol. 

HOED buffer. 

50mM sodium HEPES (pH 7.8.) 
O.lmMEDTA 
O.lmMDTT 
5% glycerol. 

7.4.4. Gel retardation assays. 

TOED buffer 

50mM Tris-HCI (pH 7.9) 
O.lmMEDTA 
O.lmMDTT 
5% glycerol 

Storage buffer. 

50mM Na HEPES (pH 7.8) 
O.lmMEDTA 
O.lmMDTT 
50% glycerol 
50mMNaCl. 

Assays were performed according to a method based on that of Marshak et ai. 

(1996). 

7.4.4.1. Preparation of DNA probe 

Probe fragments of DNA were made by PCR amplification from strains of M. 

xanthus. The PCR products used were initially 5' -labelled with 32p from 32p_yATP 

by the action of T4 polynucleotide kinase according to supplier's specifications. 

Polynucleotide kinase was then removed by phenol extraction (Sambrook et ai., 

1989). 

7.4.4.2. Binding reactions. 

Binding reactions were performed in a tota~ volume of 1OJ.!1 with incubation at 

37°C for 10 minutes prior to loading on a 6% non-denaturing polyacrylamide gel. 

Contents of the binding reactions are described below. Electrophoresis was 
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performed at 110V for 20 hours before the gel was dried onto filter paper and 

visualised by autoradiography. 

Binding Reaction 

1 J.tll Ox shift buffer 
2/-l1 glycerol 
2/-lg pBR322 
S/-ll Protein preparation 
1/-lllabelled DNA probe 

7.4.4.3. Materials required for gel retardation assays. 

lOx Shift Buffer (for 10 reactions). 

O.IMHEPES 
0.6MKCI 
40mMMgCh 
ImMEDTA 
Img/mIBSA 
2.SmMDTT 

7.4.5. Pre-binding in vitro transcription run-off assays. 

7.4.5.1. The in vitro transcription run-off assay. 

Template DNA containing pcarQRS or the Alt promoters were prepared by PCR 

from the pAEB6XX series of plasmids using primers 1 and 2 (Section 7.4.6.2). 

CarQ protein was prepared as in sections 7.4.2 and 7.4.3. 

O.Spmol of DNA template was mixed with 2S/-l1 of reaction mix and the volume 

made up to 26/-l1. This was incubated at 30°C for 2 minutes, after which O.S/-ll (2 

units) of E. coli core RNA polymerase (Epicentre Technologies) and purified 

sigma factor were added. (When using purified CarQ protein, 7/-l1 of sample was 

added.) The reaction mixture was incubated for S minutes at 30°C and 1/-l1 

(lO/-lCi) of [a_32P]rCTP (Amersham, UK) and S/-ll of RTP mix was added. This 

Was incubated for 2 minutes at 30°C. After the addition of 1/-l1 of Smglml heparin, 

the reaction was placed at 30°C for S minutes. 4/-l1 of Smglml CTP mix was added 

and incubated for 10 minutes at 30°C. Reactions were stopped by placing mixtures 
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on ice and RNA products were precipitated with the addition of 10 III of 

precipitation mix and 60111 of isopropanol. Samples were left on ice for at least 15 

minutes and then centrifuged at maximum speed using a bench top 

microcentrifuge for 30 minutes. The pellet was resuspended in 10IlI of sequencing 

'stop' solution (Sequenase TM Version 2.0 DNA Sequencing Kit (United States 

Biochemical)). Samples were stored at -20°C until required. 

2-31l1 of RNA sample was incubated at 90°C for 2 minutes before electrophoresis 

was carried out using a 6% acrylamide, 8M urea, lxTBE sequencing gel at 40W 

constant voltage for 2.5 hours. RNA products were detected by autoradiography 

using intensifier screens. 

Molecular weight markers were made by end-labelling lKb ladder (Pharmacia, 

UK) by incubating with 3Zp_y_dATP and T4 DNA kinase in Ix exchange buffer 

(see manufacturers instructions). 

7.4.5.2. Solutions required for transcription run-off experiments 

2x master mix. 

Tris base 
EDTA 
MgCb.6HzO 

1.21g 
9.3 mg 
487.2mg 

This mixture was made up to 35ml with water and adjusted to pH 7.9 with HCI. 

To this 25ml of 4mM potassium phosphate (pH 7.5) was added and adjusted to pH 

7.9. This was made up to a final volume of 70ml, filter sterilised and stored in 

aliquots at -20°C. 

Reaction mix (for 10 reactions). 

2x master mix 115!ll 

BSA (RNase-free, 2.9mglml) 6111 
100mM DTT 6 III 
100mM EDTA 2 III 
glycerol 80111 
water 41 III 
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RTP mix is an equal mixture 
of: 
5mglml rATP (pH7.0) 
5mglml rGTP (pH7.0) 
5mglml rUTP (pH7.0) 



Precipitation mix. 

tRNA (lOmg/ml) 101-11 
3M sodium acetate 531-11 
water 1 71-11. 

7.4.6. peR of DNA from M. xanthus and E. coli strains 

7.4.6.1. peR amplification of DNA. 

PCRs were performed in a 50 1-11 mixture containing Ix Taq polymerase buffer, 

4mM MgC12, 251-1M dNTPs, and 12.5 pmoles of each primer. Template DNA was 

either 11-11 of a 100x dilution of a previous PCR product, 11-11 of a lOx dilution of a 

plasmid preparation, or 51-11 of a 1001-11 solution containing a single colony picked 

from plate and resuspended in water. Reactions were performed in a Perkin-Elmer 

thermal cycler according to two programs. Program one was used for 

amplification between primers 1 and 2, whereas program two was used as the 

basis for all other reactions. 

Program one involved a hot-start drop-down approach with annealing 

temperatures reducing from noc to 62°C at a rate of 0.5°C per cycle, followed by 

10 cycles with an annealing temperature of 62°C. Each cycle consisted of a 15 

second melting step at 96°C, a 15 second annealing step and finally a 30 second 

extension step at 72°C. After the final cycle a five minute extension step at noc 
was performed. 

Program two was also hot-start with 30 cycles and final extension step as 

described above but with a constant annealing temperature of 58°C. 

7.4.6.2. Primers. 

Primers were obtained from alBCO (UK) and stored at -20°C as a 100 pmol/ml 

solution. 
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7.4.6.2.1. Primers for amplification of DNA containing promoters from M. 
xanthus. 

Primer 1 

Primer 2 

Primer 3 

Primer 4 

GCGTCCGAGGTGCCTCCG 

CGATCGGTGCGGGCCTCT 

CCAGGACCACGCAGTAGG 

CTCCCTCGCTTGCCATGC 

Pairs of primers used to amplify pieces of DNA containing promoters of interest 

are shown below with a description of the promoters located on the peR products 

and the size of the predicted products. 

Primer 1 - Primer 2 480bp Product. 

Primer 3 - Primer 4 231 bp Product. 

pearQRS pgujA , 

p ertl 

pgujA pearQRS 

1 r lacZ 

Primerl~ ...... Primer2 

pcrtl 

r crtl 

Primer3~ ...... Primer4 

The annealing site for primer 1 lies at the 51-end of the minimum carQRS 

promoter around position -170, while the annealing site for primer 2 lies on the 

opposite strand within lacZ such that amplification of template DNA will only 

OCcur on a template that contains pearQRS upstream of a copy of the lacZ gene (for 

instance any of the pAEB6XX constructs). 
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7.4.6.2.2. Primers used for the amplification of DNA to determine multiple 
insertions of pAEB6XX promoter constructs. 

Primers were designed to be complementary to sites within the aUP region as 

shown in Figure 7-1. 

Primer MUL TIl 

Primer MUL TI2 

Primer MUL TI3 

CGGACTCACGATGCTCGC 

GACTCCTCTGGCTGGGTG 

CAGCTTGGCACTCGGCAG 

peR reactions were performed as described above but including 12.5 pmol of 

each of MULTI2 and MULTI3 and with 25 pmol of MULTIl, with a final 

concentration of 10% DMSO to eliminate problems due to secondary structure 

formation .. 

Multi 1 Multi 3 

AttP 
I 

Multi 2 

Figure 7-1 The Mx8 attP region and annealing sites for primers. 

Amplification between pnmers MULTIl and MULTI2 is expected to give a 

product of 694bp if the template strain contains an intact aUP region, due to 

multiple insertions of plasmids carrying attP into the aUBMx8 site. Amplification 

between MULTIl and MULTI3 is expected to give a product of 213bp from all M. 

xanthus strains. Lack of a 694bp peR product does not prove the non-existance of 

multiple insertions since it is possible that that peR reaction failed for some 

reason. However, if the strain under test gives a product between primers MULTIl 

and MULTI3 in the same reaction, it is almost certain that primers MULTIl and 

MuLTI2 aren't giving a product because there aren't mUltiply inserted plasmids. 

In this way, amplification between MULTIl and MULTI3 serves as an internal 

positive control to each peR product. 
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7.4.7. Sequencing of M. xanthus DNA 

Plasmids containing M. xanthus DNA for sequencing were cloned into E. coli 

strain DH5a. Template DNA was then prepared as described in 7.2.6. 

7.4.7.1. Sequencing primers for the crt] region. 

Primers for sequencing were obtained from OIBeD (UK) and stored at -20oe as a 

100 pmol/ml solution. Primer sequences are shown below along with a schematic 

representation of the positions of the primer annealling sites within the crt! region. 

eSEQl 

eSEQ2 

eSEQ3 

eSEQ4 

eSEQ5 

eSEQ6 

BAKI 

BAK2 

BAK3 

BAK4 

GACTACCTGACGCGCGAG 

GCTGGAGCCGGAGTCGCC 

CGGTGGGTGGCCTGGTGC 

GGCACGTCCAGGAAGCCG 

GGGACGCCGCTGTACGCA 

GTCTGACGCCCATGCTCG 

CGGCTTCCTGGACGTGCC 

TGCGTACAGCGGCGTCCC 

CGAGCATGGGCGTCAGAC 

CACCACGCAGCAGGCAGC 
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1200bp I 

crt! olpA gujB 
--..... 1 
--~I~-.H~ ________________ ~r 

CSEQl~ CSEQ2~ CSEQ3~ CSEQ4~ CSEQ5~ CSEQ6~ 

...... BAKI ...... BAK2 ...... BAK3 

The crtI region 

7.4.7.2. Sequencing reactions 

Sequencing reactions were performed using the method of Sanger et al. (1977). 

1.2 J..1g of template DNA was added to 3.2 pmol of primer and made up to 6J..11 with 

water. Taq cycle sequencing was then performed using an Applied Biosystems 

373A DNA sequencer (Alta Bioscience, Birmingham, UK). 
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8. Appendices 

8.1. Appendix 1: Inhibition of Development by Light. 

Light has been shown to have two effects on cells of Myxococcus xanthus. The 

first response is the initiation of carotenogenesis described in the bulk of this 

work. The second effect is the prevention of starvation-induced development. In 

M. xanthus, starvation induces aggregation of large numbers of cells which form a 

fruiting body containing cells, a subset of which then differentiate into 

myxospores - cells relatively resistant to environmental stresses (Sudo and 

Dworkin, 1968). Disrupting Tn5-iac insertions have allowed isolation and 

characterisation of a large number of developmentally expressed genes. Initial 

events seem dependent on a starvation signal involving (p)ppGpp and a cell­

density dependent signal mediated through the CsgA protein (Harris et ai., 1998). 

Together, these signals induce expression of genes necessary for A-signal 

production, and activate the Jrz genes responsible for co-ordinated cell motions 

and aggregation. Subsequent steps generate and respond to the C, D and E signals 

and lead to the completion of fruiting body formation (for a recent review see 

Dworkin, 1996). 

Previous work (Shimkets, L., pers. comm.) has shown that light inhibits the 

normal process of fruiting body formation of M. xanthus and that the 

developmental block occurs early in the developmental cascade. In all other 

myxobacteria, light is absolutely required for fruiting body formation. In 

Stigmatelia aurantica, light photosensitises starving cells to a pheromone which 

stimulates fruiting body formation (Inouye et ai., 1980 and Stephens et ai., 1982). 

The possibility that this block in fruiting body formation is a consequense of gene 

expression within the Car regulon has never been systematically investigated, 

although the existance of a link between carotenogenesis and development is 

clear, since fruiting bodies contain high levels of carotenoids. 

Another suggested line of evidence implicating a link between carotenogenesis 

and development is the existance of CarD which is required both for fruiting body 
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fonnation and for carotenogenesis. However, CarD is most probably only a 

requirement for both processes since it is a general DNA-binding protein and has a 

non-specific mode of action. 

D. A. Hodgson (pers. comm.) has shown that the inhibition of development is not 

due directly to the production of carotenoids themselves, by showing that a Care 

carR mutant would fruit in the dark but not in the light. This also suggests that the 

wavelength of light causing the inhibitory effect is probably not blue light. To 

detennine whether the inhibition of development by light is a phenomenon which 

depends on products of the carotenogenic regulon, the wild-type (DK101) and a 

CarQ mutant (UWM303) were assessed for their ability to fonn fruiting bodies in 

the light and dark. If light-mediated inhibition of development was due to a 

product of the Car regulon (or absence of CarR), it would be expected that 

UWM303 would be able to develop nonnally in the light, unlike DK101. This 

would be the case if the required product was a gene product such as CarS or CrtI, 

or whether it is a carotenoid produced by the regulon's structural genes. 

This was shown not to be the case. Figure 8-1 displays the results of a standard 

developmental assay for both strains, in the dark and in the light. Both strains 

develop nonnally in the dark with multiple fruiting bodies fonning from each 

colony, but neither strain fonns any fruiting bodies under illumination. 
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A) 8) 

c, D) 

Figure 8- 1 Development of wild-type and Car- strains in light and dark. 

A): DKIOJ (wild-type) under illumination. B) : DK10J in the dark. 
C): UWM303 (Car; under illumination. D): UWM303 in the dark. 
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In conclusion, light-dependent inhibition of development is not a CarQ-dependent 

phenomenon. The mechanism of light inhibition of development requires an initial 

photoreception event. This event could be due to a specific chromophore, or the 

light could be absorbed causing a non-specific effect. It may be that PPIX and 

singlet oxygen are the chromophores responsible for light-dependent inhibition of 

development however, the inhibition by light seen in a carR mutant implies this 

not the case, as these species are quenched by the abundant carotenoids. Other 

possible chromophores include the non-carotenoid yellow pigment found in 

yellow phase M. xanthus cells. This possibility is strengthened by the observation 

that the yellow/tan phase variation seen in mixed cultures determines the 

development fate of starved cells (Laue and Gill, 1995), with tan cells fated to 

form myxospores, a process that requires trans-acting yellow cells, which 

themselevs are fated to autolyse during development (Dworkin, 1996). 

In summary, the mechanism of light-dependent inhibition of development IS 

obscure. It does not however involve the products of the Car regulon. The next 

step to study this phenomenon should be to determine an action spectrum of 

inhibition, which may allow identification of the photoreceptive chromophore 

involved. 
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8.3. Appendix 3: Examples of predicted secondary structure 
around olpA. 

Squiggle plot of: crtigufb.mfold February 10, 1999 11:53 

(Linear) MFOLD of: crtigufb.gcg T: 37.0 Check: 1489 from: 1 to: 331 February 10, 199911:49 

Length: 331 Energy: -146.7 

Squiggle plot of: crtigufb.mfold February 10, 199911:53 

(Linear) MFOLD at: crtigufb.gcg T: 37.0 Check: 1489 from: 1 to: 331 February 10, 199911:49 

Length: 331 Energy: -146.2 
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8.4. Appendix 4: LP405 is Care and does not contain a carR lesion. 

Strain LP405 was recently created by Linda Plamann's group by UV mutagenesis 

of a Car+ A-signalling mutant, during an attempt to find supressors of an asgA 

mutant (Kessler and Plamann, 1998). It carries a 'suppressor of A-signalling' (sas) 

mutation and is Care. The double phenotype introduced by UV-mutagenesis in 

LP405 is probably a consequence of two independent mutations, not the result of a 

single pleiotropic mutation and could therefore provide another carR or carA 

mutant allele. Alternatively, the mutation could lie at an as yet unidentified locus 

encoing a negative regulator of carotenogenesis. 

In order to determine whether the Care mutation within LP405 lay at carR, a wild­

type carR allele which is linked to a Tn5 insertion (Martinez-Laborda et aI., 1986) 

was transduced from MR136 into LP405 by Mx4-LA27-mediated generalised 

transduction. Around 100 transductants were isolated and each one maintained a 

Care phenotype. Had LP405 contained a lesion in carR, around 80% of the 

transductants would have been expected to acquire a Car + phenotype due to the 

close proximity of carR and Tn5 in MR136. This enabled the conclusion that the 

mutation causing the Care phenotype in LP405 does not lie within carR. 

A suitable plasmid containing wild-type carA has recently been provided by F. J. 

Murillo (pMAR100, Martinez-Laborda et al., 1989) which has been shown to 

allow complementation of a carA mutant. This plasmid will be introduced into 

LP405 to determine whether the Ca{ mutation within LP405 lies within carA or at 

a novel locus. 
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