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I would like to thank my fiancé Stuart for his unwavering support during

my PhD. As well as providing amazing emotional support, he has helped me with

a lot of matlab di�culties, and I would not have been able to carry out many of my

analyses without his help!

xiii



I would like to thank Richard Tyson and Steven Kiddle for their advice and

help with matlab issues. I would also like to thank my amazing family for their

support during the (rather long) process of my PhD!

I would also like to thank everyone at The Systems Biology DTC for my

training during my MSc and PhD. I would especially like to thank Anne Maynard

and Sarah Shute for their help and advice.

Finally, I would like to thank the BBSRC and EPSRC for the funding to

allow me to carry out this project, and especially to the BBSRC for giving me the

opportunity to work in The Houses of Parliament during my PhD.

xiv



Declarations

This thesis is presented in accordance with the regulations for the degree of Doctor

of Philosophy. It has been composed by myself and has not been submitted in any

previous application for any degree. The work in this thesis has been undertaken

by myself except where otherwise stated. The following paper has been published

during the course of this PhD project:

Denny Z Levett, Bernadette O Fernandez, Heather L Riley, Daniel S Martin, Kay

Mitchell, Carl A Leckstrom, Can Ince, Brian J Whipp, Monty G Mythen, Hugh E

Montgomery, Mike P Grocott, and Martin Feelisch. The role of nitrogen oxides in

human adaptation to hypoxia. Sci Rep-Uk, 1:109, Jan 2011.

xv



Abstract

Hypoxia is defined as a deficiency in the amount of oxygen reaching the
tissues, and is a common problem in critically ill patients. It is not currently possible
to predict how well an individual will adapt to hypoxic conditions, and patients
presenting with hypoxia are often treated with supplemental oxygen. However, this
blanket-treatment approach is not suitable in all cases and a more personalised
approach is required.

My thesis project builds on information acquired during the Caudwell Xtreme
Everest (CXE 2007) expedition, where over 200 volunteers trekked to Everest Base
Camp. CXE uses studies on healthy volunteers exposed to extreme environments
to aid in the understanding of the complicated issues concerned with critical illness,
and aims to use these findings to improve the treatment of critically ill patients,
without putting them directly at risk.

My thesis project has combined physiological information acquired during
CXE with biochemical information measured in plasma samples taken during CXE.
Performance at altitude has been used as a proxy for hypoxia adaptation, with
individuals who show a small loss of performance at altitude compared to London
assumed to be adapting better compared to individuals who show a larger loss.

Analysis of the physiological and biochemical data for a core group of 24
individuals has culminated in the application of multiple linear regression to produce
a number of models capable of predicting the key changes in physiological response
as a function of a number of biochemical metabolites. These models have been used
to identify a set of biochemical metabolites to measure in a further 190 individuals,
to allow validation and training of the models on a larger sample size. These models
can then be adapted for use in a critical illness environment, to allow the prediction
of how well an individual will adapt to hypoxic conditions.
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Chapter 1

Introduction

1.1 Project motivation

Intensive care units (ICUs) treat patients with life-threatening conditions. Patients

admitted to ICUs require constant monitoring and treatment from specialised equip-

ment to keep the body functioning. Critical care is increasingly becoming a part

of people’s lives, with one in four people expected to receive treatment in an ICU

during their lifetime. Over 120 000 patients were admitted to ICUs in the UK in

2006 alone [CASE, 2012].

Many critically ill patients su↵er from oxygen starvation of one kind or an-

other, known as hypoxia, which can be caused by a lack of oxygen delivery to the

cells, or by an inability to utilise the oxygen delivered to the cells, due to conditions

such as mitochondrial dysfunction. It is not currently possible to predict when an

individual will have di�culty adapting to these conditions. An inability to adapt to

a lack of oxygen can become increasingly serious in a very short period of time, and

is even more dangerous when combined with other factors associated with critical

illness. Currently, the main treatment for cellular hypoxia is to increase oxygen

delivery via an oxygen mask. However, in some cases an overload of oxygen to the

system can have no e↵ect, or even cause harm, such as retinopathy of prematurity

in newborn babies, which causes severe scarring and blindness due to both oxygen

toxicity and hypoxia. It is therefore vital that doctors are able to track how well an

individual is coping with hypoxic exposure, and to be able to foresee any di�culties

they may have in adapting to these lower oxygen levels.

A more personalised approach to treating critically ill patients would be

preferable to the current blanket-treatment approach, but is complicated by the

lack of understanding of the process of cellular hypoxia adaptation, and by the
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lack of data from critically ill patients. Invasive studies on critically ill patients are

di�cult to perform due to the highly unstable and serious nature of their condition.

Any studies carry a high risk of making the patient’s condition worse, and may be

of no benefit to that individual in the short or longer-term.

Studies using cultured cells are of little use here, as the response varies sig-

nificantly between cell and tissue types. The exposure to multiple stress pathways

means that critically ill patients are not exposed to hypoxia in isolation, and many

stress response pathways overlap and interact with one another, to produce a com-

plex systems response, which we may not be able to replicate in an animal model

system. Similarly, chamber studies expose individuals to hypoxia in isolation, and

miss out on looking at interactive systems responses associated with critical illness.

Caudwell Xtreme Everest (CXE) is a research project coordinated by Uni-

versity College London (UCL) Centre for Altitude, Space and Extreme Environment

Medicine (CASE). CXE uses studies on healthy volunteers exposed to extreme en-

vironments to aid in the understanding of the complicated issues concerned with

critical illness, and aims to use these findings to improve the treatment of critically

ill patients, without putting them directly at risk. During CXE 2007, individuals

climbed to Everest Base Camp, with exercise performance tests and blood sampling

administered during the ascent. Exercise performance (as measured via cardiopul-

monary exercise testing) was used as a proxy for hypoxia adaptation, with individ-

uals showing similar performance levels to those seen at London assumed to be the

better adapters [CASE, 2012].

This thesis project builds on the work carried out during CXE 2007, by com-

bining information from exercise performance tests carried out during the expedition

with biochemical data derived from blood samples collected during the ascent. Sev-

eral stages of statistical analysis have been carried out to increase the understanding

of why some individuals adapt to hypoxia better than others. The information has

been analysed together, with the aim of producing a model capable of predicting

how well an individual will perform, and therefore adapt to the extreme environment

at high altitude. It is hoped that these models can be adapted for use in a critical

care environment, helping to track how well an individual is adapting to hypoxia,

and being able to take necessary interventional treatment to aid individuals who are

having di�culty in adapting to hypoxic exposure.
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1.2 Background of the problem

1.2.1 Hypoxia

In humans, oxygen is required for respiration and energy generation within cells,

and is vital for the life of most multicellular organisms on Earth. Hypoxia gener-

ally describes several conditions caused by the starvation of oxygen, and can occur

naturally, for example during periods of strenuous exercise or during ascent to high

altitude, where oxygen availability is reduced.

Most humans can ascend to around 2500m without experiencing any prob-

lems with hypoxic stress [McArdle et al., 2007]. However, when ascending further,

individuals may begin to su↵er from acute mountain sickness (AMS), and display

symptoms similar to those of a mild case of flu or a hangover, which usually abate

after a few days of acclimatisation [McArdle et al., 2007]. AMS can progress to more

severe conditions such as high altitude cerebral edema (HACE), and high altitude

pulmonary edema (HAPE). HACE is usually preceded by progressive AMS symp-

toms, and is a condition where the brain tissue swells due to leakage of fluid from the

capillaries, and can cause death due to brain herniation [Bärtsch and Saltin, 2008].

HAPE is a condition where fluid collects in the lung, impairing gas exchange, and

can lead to fatal respiratory failure. Both of these conditions are life-threatening,

and individuals su↵ering from HACE or HAPE would need to be immediately moved

to a lower altitude to recover.

Exposure to even a moderate altitude can cause significant problems for

some individuals. The problem of adapting to altitude is of great interest due to

millions of people travelling to high altitudes each year for business and holidays

worldwide. During such travels, individuals rarely take su�cient time to acclimatise

to the reduced oxygen availability and other challenges at altitude, resulting in a

high susceptibility to illness [Bezruchka, 1992].

High altitude research has been carried out for well over 100 years, and as

such, the general response to hypoxic exposure is well documented [Bärtsch and

Saltin, 2008]. However, it is still not understood why some individuals seem prone

to AMS when ascending to altitude and others are not. The ability to predict how

well an individual will respond to hypoxic exposure could be invaluable in allowing

the better preparation for exposure to higher altitude, and limiting the cases of

HACE and HAPE that occur at altitude [Richalet et al., 2012; Maggiorini, 2001].
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1.2.2 Hypoxia and critical illness

Hypoxia is a common problem in critically ill patients, and can contribute to, or be

a result of the illness itself [Grocott et al., 2007]. Individuals vary in how well they

can adapt to hypoxic conditions, and there is currently no way to predict how well

an individual will cope when exposed to a hypoxic environment, in the same way

that it is not possible to predict when an individual will become ill at altitude. The

ability to track how well an individual is coping with increased hypoxic exposure

could be very useful in a critical illness environment, where patients’ conditions can

deteriorate quickly, and swift responses to any lack of adaptation could mean the

di↵erence between a patient surviving or not.

1.2.3 General response to hypoxia

Acclimatisation is the process of an organism adapting to a gradual change in its

environment, such as temperature, UV or hypoxic exposure, which enables it to

continue to function in the altered environment. Full acclimatisation to high altitude

usually requires at least a few weeks, and the time needed varies significantly between

individuals, with some being unable to adapt to certain extreme altitudes at all.

Acute exposure to high altitude results in an increase in respiration (hyper-

ventilation) and an increase in blood flow, to compensate for the lower oxygen levels

available. The increase in blood flow seen at altitude is due to an increase in both

blood pressure and heart rate, but not stroke volume (the volume of blood pumped

from one ventricle of the heart with each beat) [McArdle et al., 2007]. Any change

in ventilation leads to an alteration in the acid-base balance of the blood, and is

strictly controlled.

Carbon dioxide is produced as a by-product of respiration within cells and

di↵uses into the blood, where it is transported to the lung and exhaled. Carbon diox-

ide enters the red blood cells and reacts with water to form carbonic acid (H
2

CO
3

).

This reaction is catalysed by the enzyme carbonic anhydrase, which is found in

virtually every cell, and in particularly high concentrations within red blood cells.

Carbonic acid dissociates into bicarbonate (HCO�
3

) and hydrogen ions (H+), as

shown in equation 1.1. This reaction also occurs outside red blood cells, however, at

a much slower pace. Any hydrogen ions formed combine with haemoglobin within

the red blood cell, limiting the reduction in pH within the red blood cell and acting

as a natural bu↵er. Bicarbonate ions di↵use out of the red blood cells into the

plasma, whilst being replaced by chloride (Cl�) ions, known as the chloride shift.

At the lung, these reactions reverse; bicarbonate ions move into red blood cells and
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combine with hydrogen ions to form carbonic acid. This acid is then broken down

into carbon dioxide and water, and the carbon dioxide formed di↵uses out of the

red blood cells and into the alveoli, where it can be expelled via the lungs.

CO
2

+H
2

O ⌦ H
2

CO
3

⌦ H+ +HCO�
3

(1.1)

Blood pH is tightly regulated to between 7.35-7.45, and hyperventilation

removes carbon dioxide from the blood, shifting the chemical equilibrium shown in

equation 1.1 towards the left to replace the CO
2

removed. This in turn raises the

pH of the blood, known as respiratory alkalosis, which limits the extent to which

ventilation can be increased in response to hypoxic exposure.

Continued exposure to altitude results in further acclimatisation processes

occurring within the body. These adaptations to prolonged altitude exposure take

longer to occur than initial exposure responses, and improve the body’s tolerance

to long-term altitude exposure. Long-term acclimatisation includes an increased

excretion of bicarbonate, which removes excess base from the body and allows ven-

tilation to remain elevated without causing alkalosis. Synthesis of haemoglobin and

erythrocytes is increased due to increased production of the erythrocyte production-

stimulating hormone erythropoietin (EPO). This increases the blood’s oxygen car-

rying capacity, and is the most important long-term adaptation to altitude expo-

sure [McArdle et al., 2007]. Bicarbonate, haemoglobin and EPO levels have been

measured in individuals to track this acclimatisation during CXE 2007. A summary

of the adaptive responses to hypoxic exposure is shown in Table 1.1.

Studies on native highlanders living on di↵erent continents have given in-

sights into long-term evolutionary adaptation to high altitude. Interestingly, adap-

tation to hypoxia di↵ers between populations. Andean highlanders from South

America are characterised by high numbers of red blood cells and haemoglobin con-

centrations, whereas Tibetan highlanders show haemoglobin levels that are similar

to comparable US sea level individuals [Beall et al., 1998]. Tibetans are therefore

thought to have adapted other mechanisms for long-term adaptation to altitude,

such as higher forearm blood flow and circulating nitric oxide products [Erzurum

et al., 2007]. Further study of generational adaptation such as that seen in Tibetan

highlanders may aid in our understanding of acclimatisation to chronic hypoxia.
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Figure 1.1: The ascent profile for participants of the Caudwell Xtreme Everest Ex-
pedition, 2007. The blue line indicates the general ascent profile for all individuals.
Individuals denoted lab sta↵ remained at Everest Base Camp at 5300m until the
end of the expedition, and did not ascend further. The red line indicates where
the 14 individuals of the climber group descended back down to Pheriche, and also
ascended further than Base Camp, with 8 individuals summiting at 8848m. The
labelled boxes indicate where and when testing took place during the ascent, and
show the days over which sampling took place; London (75m), Kathmandu (1300m),
Namche (3500m), Pheriche (4250m) and Everest Base Camp (5300m).
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1.3 Caudwell Xtreme Everest 2007

Caudwell Xtreme Everest (CXE) 2007 was the largest ever field-study of human

adaptation to hypoxia, and saw over 200 volunteers climb to Everest base camp

(5300m). Various measurements such as cardiopulmonary exercise testing, blood

sampling and muscle biopsies were taken at five di↵erent laboratories on the way

up. A second core group of 24 doctors and scientists also took part in the ascent,

consisting of 10 lab sta↵ individuals, who stayed at Base Camp with the volunteer

group, and 14 climber individuals, who ascended further and attempted to summit,

with 8 succeeding [Grocott et al., 2007]. The ascent profile from the expedition

is shown in Figure 1.1, which shows the basic ascent profile for all participants in

blue, and where the climber group ascended further than base camp, in red. The

laboratories where testing took place during the ascent are also marked; London

(75m), Kathmandu (1300m), Namche (3500m), Pheriche (4250m) and Everest Base

Camp (5300m).

The ascent exposed the team to multiple stresses, including reduced oxy-

gen levels and increased exposure to cold and UV light. Critically ill patients are

similarly exposed to multiple stresses, such as trauma, tissue hypoxia and infec-

tion [Grocott, 2008; Grocott et al., 2007]. As the responses to these di↵erent stresses

would occur simultaneously, isolating one single aspect (such as hypoxia adaptation)

is very di�cult. Adaptive stress-response pathways also overlap and communicate

with one another, to produce a complicated systems response. CXE 2007 aimed to

increase the understanding of a very complex adaptation process, with the aim of

using the results to aid the treatment of critically ill patients.

During the expedition only a small number of individuals su↵ered with alti-

tude sickness. However, three became seriously ill and had to be taken to a lower

altitude to recover. An additional individual also became ill, but later recovered.

It was hoped that these four individuals would show some di↵erences to other core

team members in their response to altitude in one or more of the measurements. It

was hoped that these di↵erences may help identify why some individuals adapt to

hypoxia better than others, to help in the understanding of di↵erences in individual’s

adaptability to low oxygen levels.

The value of the data from CXE 2007 is that it shows how metabolites

from many di↵erent biochemical pathways change with increasing altitude, includ-

ing those associated with hypoxia adaptation, inflammation, metabolism and home-

ostasis. No other study has looked at such a vast array of biochemical metabolites

at altitude, or has had the ability to combine this data with so many physiological
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measurements. Therefore, this project o↵ers a unique opportunity to gain insight

into what is happening in the body as altitude increases, in multiple biochemical

and physiological pathways at the same time.

1.3.1 Exercise performance testing

During CXE 2007, Cardiopulmonary Exercise Testing (CPX/CPET) was performed

on each individual at di↵erent locations during the ascent. CPX testing measures

an individual’s ability to do exercise or work as a measure of their aerobic fitness, by

assessing pulmonary and cardiac function as a measure of the whole-body response

to performing exercise. CPX testing was used as part of the CXE study to assess

each individual’s ability to do work compared to sea level, and analyse how this

changed as they ascended.

Performance was expected to decrease as the expedition progressed, due

to decreasing oxygen availability as the climbers ascended. Oxygen is required

by cells for respiration, the process by which complex organic substances such as

carbohydrates, lipids and proteins are broken down in the presence of oxygen to

produce adenosine triphosphate (ATP) [McArdle et al., 2007]. ATP is the energy

currency of the cell and used to perform many of the cell’s energy-requiring processes

(such as work), and is therefore vital to the survival of the cell [Voet and Voet, 2004].

In the presence of su�cient oxygen, glucose is broken down via aerobic respi-

ration, where 38 ATP molecules are generated from one glucose molecule, as shown

in equation 1.2. However, if insu�cient oxygen is available then anaerobic respira-

tion is stimulated, which generates only 2 ATP per glucose molecule and 2 lactate

molecules, as shown in equation 1.3.

C
6

H
12

O
6

+ 38ADP + 38P
i

+ 6O
2

! 6CO
2

+ 44H
2

O + 38ATP (1.2)

C
6

H
12

O
6

+ 2ADP + 2P
i

! 2C
3

H
6

O
3

+ 2H+ + 2H
2

O + 2ATP (1.3)

Aerobic breakdown of glucose is obviously preferred due to the much higher

yield of ATP obtained, and supplies the majority of ATP up to the anaerobic thresh-

old, where anaerobic breakdown of glucose occurs to supplement the aerobic break-

down of glucose as the work rate increases. As the climbers ascended during CXE

2007, oxygen availability decreased. CPX testing was used to assess how well each

individual was adapting to the decreased oxygen levels available, with exercise per-

formance being used as a model for hypoxia adaptation. Individuals who show a
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large decrease in the ability to do work at high altitude were considered to be adapt-

ing poorly, as they are not able to do as much work compared to sea level with less

oxygen available. Individuals who performed in a similar manner or showed a small

decrease in their ability to do work compared to sea level were considered to be

adapting well, as they were able to do a similar amount of physical work with less

oxygen available, and therefore must be adapting to use the lower levels of oxygen

available more productively.

1.3.2 Other methods of studying human adaptation to hypoxia

Hypobaric chamber studies have been used by some groups as a highly-controlled

simulation of the ascent to Everest base camp and beyond [Wagner, 2010]. A hypo-

baric chamber experiment would not have been possible on the scale of CXE 2007,

as the expedition took place over 78 days and involved a very large group of indi-

viduals. Chamber studies are very expensive to run, whereas climbing participants

usually contribute financially to the expedition. In addition, hypobaric chambers

only expose individuals to hypoxic stress and occasional exercise testing, and do not

encompass systemic responses to multiple stresses encountered during an expedition

such as CXE 2007. Both types of study are useful, depending on the questions being

asked, and in this case an expedition was more suitable due to the large number of

participants and the application of the results to critically ill patients.

1.3.3 Biomarkers

Biomarkers are characteristics that can be measured to give information on the

normal state of an organism, to track the progress of an illness, the body’s response

to an illness or to monitor the response to a treatment. Plasma biomarkers in

particular are of great interest, due to the ease in which blood samples can be

obtained in the clinical environment. Biomarkers are already used as markers of

ischemia, heart failure and inflammation in the field of cardiac medicine. However, it

is only recently that single biomarkers have started to be combined into multimarker

strategies [Maisel et al., 2006].

Figure 1.1 shows the ascent profile for CXE 2007, and identifies the five

laboratories where exercise performance testing and blood sampling were performed.

The blood samples were spun down in each laboratory, and the plasma frozen and

stored for later analysis. These plasma samples were used at The University of

Warwick to measure multiple biochemical metabolites, including metabolites known

to play a role in hypoxia adaptation, markers of inflammation and metabolism-

10



Dataset Parameter
type

Number of
variables

Collected Analysed Number of
individuals

Number of
measurements

Core Physiological 65 CXE 2007 CXE 2007 24 7
Biochemical 59 CXE 2007 University

of Warwick
24 7

Trekker Physiological 62 CXE 2007 CXE 2007 190 5
Biochemical - CXE 2007 Yet to be

analysed
190 5

Diary Physiological 16 CXE 2007 CXE 2007 24 78

Table 1.2: A summary of the di↵erent datasets collected during CXE 2007. Plasma
samples were measured at The University of Warwick.

related metabolites.

Biochemical and physiological information have been analysed together in

this thesis, to see if changes in physiological measurements (used as an indicator of

hypoxia adaptation) can be predicted by changes in biochemical measurements at

lower altitudes. This would therefore enable the prediction of how well an individual

will adapt to a higher altitude by taking a blood sample at a lower altitude.

1.3.4 Data available

Three di↵erent datasets have been used during this thesis project, which contain

measurements for the 24 core team members obtained during di↵erent stages of the

expedition. An overview of the di↵erent datasets is shown in Table 1.2.

The core team data is the main dataset that has been used during this thesis

project, and contains information about the 24 core team members only. The core

dataset contains physiological information collected during CXE 2007, as well as

biochemical information measured by myself and other members of the Feelisch

laboratory at The University of Warwick in plasma samples collected during CXE

2007. This dataset has been used to understand the overall changes occurring in

each of the 24 core team individuals during the expedition, and all modelling e↵orts

have been based on this dataset.

The diary data is an additional dataset collected for the 24 core team mem-

bers, consisting of daily measurements taken during the expedition, and shows the

day-to-day variation of each measurement. It contains only a small number of phys-

iological measurements such as heart rate and respiratory rate before and after a

simple 2-minute step exercise test, designed to look at how the body was adapting

to changes in altitude. This dataset has been used to look at the reliability and

day-to-day variability of some of the physiological measurements, i.e. if the same
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Response pathway Parameters involved

Oxygen regulation HIF-1↵ targets
Redox regulation Nitric oxide and reactive oxygen species metabolites
Inflammation / stress Cytokines, acute phase proteins
Metabolism / organ function Hormones

Table 1.3: A summary of the di↵erent biochemical pathways assessed during this
thesis project, giving an idea of di↵erent response pathways measured, and which
biochemical metabolites were used as anologues for the di↵erent pathways.

measurement is taken on two subsequent days, how similar are they?

The trekker data contains information about the 190 volunteers (individuals

from the general population, not core team members) who took part in the expe-

dition, and stayed at Everest Base Camp. This dataset only contains physiological

information about the exercise performance tests carried out during the ascent.

Plasma samples are available for these individuals, and are being kept in storage at

-80oC until use. The trekker plasma samples can be measured for various biochem-

ical metabolites identified during data analysis, to validate the models formed from

the core team dataset.

1.4 Biochemical adaptation to hypoxia

During CXE 2007, plasma samples were collected at five di↵erent laboratories dur-

ing the ascent, as detailed in Figure 1.1. These plasma samples were measured by

myself and other members of the Feelisch laboratory at The University of Warwick,

to investigate how the biochemical makeup of the plasma changed during the ascent.

Metabolites measured include readouts of hormonal activity, acid-base balance, in-

flammation, regulatory pathways and redox regulation. A summary of the biochem-

ical pathways measured is shown in Table 1.3. Many of the metabolites measured

are known targets of HIF-1↵, the master gene regulator for hypoxia adaptation.

Other metabolites were measured to gain insight into how related metabolites may

be changing. This section gives an overview of which biochemical metabolites were

measured and the reasoning behind these selections.

1.4.1 Oxygen regulation

Oxygen levels are constantly monitored by redox-sensitive and oxygen-responsive

transcription factors and cytokines within the body [Haddad, 2002]. Any change in

the amount of oxygen available leads to a pre-defined response mediated primarily
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by hypoxia inducible factor (HIF)-1↵, the master gene regulator for hypoxia adap-

tation, which has over 300 confirmed downstream targets [Haddad, 2002; Wenger,

2002]. In the presence of oxygen, the HIF-1↵ protein undergoes continuous protea-

somal degradation. During hypoxia the protein is stabilised and binds to hypoxia-

responsive element (HRE) sites on DNA to cause activation of hypoxia-inducible

targets. Examples of targets include erythropoietin [Semenza and Wang, 1992],

transferrin, energy metabolism genes, cell proliferation genes and vascular develop-

ment genes, for example vascular endothelial growth factor (VEGF) and inducible

nitric oxide synthase (iNOS). This allows the cell to switch from using oxygen to

produce energy during aerobic respiration, to anaerobic respiration when oxygen is

scarce. HIF-1↵ is also known to be regulated by several other molecules, including

nitric oxide (NO) and reactive oxygen species (ROS) [Wenger, 2002]. Several HIF-

1↵ targets have been measured in this study, to monitor HIF-1↵ activity and track

the progress of cellular hypoxia adaptation. These include NO metabolites, VEGF,

erythropoetin and other related metabolites.

1.4.1.1 Nitric oxide

Nitric oxide (NO) is produced enzymatically by mammalian cells and has been

found to have roles in hypoxia adaptation, as well as in the gastrointestinal tract,

immune system, central nervous system, respiratory system, cardiovascular system

and cell proliferation [Erzurum et al., 2007; Moncada et al., 1991]. NO is produced

from L-arginine via 3 isoforms of Nitric Oxide Synthase (NOS) and via reduction of

endogenous inorganic nitrite, as shown in Figure 1.2. Neuronal NOS (nNOS) and

endothelial NOS (eNOS) are both constitutively expressed, whereas inducible NOS

(iNOS) is only expressed upon exposure to specific stimuli, such as pro-inflammatory

cytokines and HIF-1↵ binding during hypoxia [Melillo et al., 1995]. Both eNOS and

nNOS play roles in hypoxia adaptation and the immune response, primarily by

increased blood flow [Erzurum et al., 2007; Delannoy et al., 2010]. This is achieved

by causing vascular smooth muscle to relax; NO di↵uses into smooth muscle cells

and activates soluble guanylate cyclase (sGC), which leads to the production of

the secondary messenger molecule cyclic guanosine monophosphate (cGMP). cGMP

then acts on smooth muscle cells, causing them to relax. eNOS knockout mice show

high blood pressure, indicating that NO also plays a role in general blood pressure

regulation [Huang, 1999; Stauss et al., 1999].

NO is oxidised in a step-wise manner to nitrite (NO�
2

) and nitrate (NO�
3

),

and in blood NO is almost completely converted to nitrite and nitrate [Yoshida

et al., 1983]. The main source of nitrate is from the diet, with green leafy vegetables
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Figure 1.2: A brief summary of part of the NO pathway in plasma. Nitrite and
nitrate are oxidation products of NO, but may also act as an alternative NO source.
NO binds to soluble guanylate cyclase (sGC), increasing the production of cGMP
from GTP. cGMP then acts on vascular tissue to cause smooth muscle relaxation.
Membrane-bound particulate GC (pGC) produces cGMP following stimulation by
either atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) or C-type
natriuretic peptide (CNP), independently of NO. They are measured in this study
to determine whether any change seen in cGMP is due to a change in NO, ANP,
BNP or CNP.
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being a particularly rich source. Nitrite and nitrate have also been shown to be

reduced back to NO in vivo, and may also provide an alternative source of NO in

the human cell [Lundberg and Weitzberg, 2005; Lundberg et al., 2008], as shown in

Figure 1.2.

In plasma, the half-life of NO is in the region of milliseconds [Hakim et al.,

1996]. Therefore, the amount of NO in plasma cannot currently be measured di-

rectly. Alternatively, the quantification of NO metabolites can give information

about NO production, availability and metabolism, such as those shown in Fig-

ure 1.2. Therefore, the measurement of metabolites such as nitrite, nitrate and

cGMP can give information on pathways downstream from HIF-1↵, and therefore

give information about how the body is responding to lower oxygen availability.

Several cytokines were also measured as they are known to interact with NO

and its products to facilitate inflammation, fight infection and regulate metabolism.

For example, NO is known to be generated by phagocytes as part of the human

immune response via iNOS, which can be activated by interferon-gamma (IFN-�) or

tumour necrosis factor (TNF). The activity of iNOS is inhibited by other cytokines

such as interleukin (IL)-4 and IL-10 [Moncada et al., 1991].

1.4.2 Redox regulation

The so-called oxygen paradox is that oxygen is inherently dangerous to cells, how-

ever, aerobic organisms require oxygen to generate ATP and cannot survive without

it. Each oxygen atom has two unpaired electrons in its outer shell, making it a free

radical. The reduction of oxygen to generate ATP by mitochondria is essential to the

cell, however, the univalent reduction of oxygen generates highly reactive interme-

diate species, the formation of which are promoted due to the reductive atmosphere

of the cell. Reduction of this kind can generate hydrogen peroxide (H
2

O
2

) and the

hydroxyl radical (•OH), which are known as reactive oxygen species (ROS), and can

cause large amount of damage to the cell. This is also a major problem in critically

ill patients, who have di�culty in responding to increased levels of oxidative stress.

During hypoxia, there is thought to be an accumulation of reducing equiva-

lents in the mitochondrial transport chain, due to a reduction in oxygen availability

to act as an electron acceptor, which may in turn lead to an increase in the pro-

duction of ROS [Kehrer and Lund, 1994; Chandel et al., 1998]. If the cell is unable

to remove the excess ROS, it is said to be in a state of oxidative stress. ROS are

known to have an e↵ect on the stability and signalling of HIF-1↵ [Brüne and Zhou,

2007], and have been shown to interact with NO to form secondary reactive nitric

oxide species and reduce the bioavailability of free NO [Brüne and Zhou, 2007; Feel-
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Figure 1.3: Reactive Oxygen Species (ROS) summary, showing oxygen becoming
a free radical. This free radical can then react with nitric oxide (NO) to form
reactive nitrogen oxygen species (RNOS) such as ONOO�, which can stimulate
oxidative stress within the cell. Superoxide dismutase (SOD) catalyses the dis-
mutation/disproportionation of superoxide free radical oxygen (O�

2

) into hydrogen
peroxide (H

2

O
2

) and oxygen, acting as an important antioxidant. H
2

O
2

is then
converted into water via the action of catalase and glutathione-dependent peroxi-
dase (GPx), which leads to the formation of oxidised glutathione (GSSG). GSSG is
then readily converted back to the reduced form (GSH) by the action of glutathione
reductase (GR).
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isch, 2007], as shown in Figure 1.3. Therefore, measurement of ROS would provide

information on how the body is responding to a lower availability of oxygen.

To combat the formation of ROS within the cell, cells produce antioxidants

such as glutathione, which react with ROS and remove them from the cell safely,

as shown in Figure 1.3. It is not currently possible to measure the amount of ROS

directly. Therefore, the levels of products formed during the interaction of ROS

with biological targets such as hydroxynonenal (HNE) and isoprostanes, as well as

antioxidant levels are measured in this study as indicators of oxidative stress.

1.4.3 Inflammation

Acute-phase proteins are a class of proteins that show changes in expression in

response to inflammation, known as the acute-phase response. Inflammatory re-

sponses were expected to occur during CXE 2007 due to the high levels of stress

the team were subjected to. During injury, inflammatory cells such as macrophages

and neutrophils secrete a number of cytokines into the bloodstream, to mediate the

inflammatory response. Inflammation typically accompanies disease, and is present

in many cases of critical illness. Cytokines such as IL-1, IL-6, IL-8 and TNF-↵

were measured during this study to monitor the level of inflammatory response seen

during the expedition. Measurement of these proteins was also of interest due to

the cross-talk that occurs with NO-related metabolites during inflammatory and

immune responses, as previously mentioned in Section 1.4.1.1.

1.4.4 Metabolism and organ function

Cytokines and hormones are small protein molecules that act as signalling molecules

between cells. A large number of signalling molecules were measured to monitor

any cross-talk between cells occurring during the expedition. The measurement

of hormones such as insulin and glucagon provides information on changes in cell

metabolism during CXE 2007. Molecules such as glucose and lactate provide infor-

mation on the energy production and use of cells. Organ function was monitored

by the measurement of molecules such as creatinine, which provides information on

kidney function.

1.5 Purpose of the study

The main aim of my thesis project was to develop a series of statistical models ca-

pable of predicting how an individual will respond to hypoxic stress, from measured
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changes in certain biochemical metabolites. The models were constructed using a

population response, with the aim of applying the final models to individual cases.

There is substantial data available, including 65 physiological measurements and 59

biochemical metabolites, providing a good possibility of finding novel relationships

for modelling.

1.6 Assumptions

The general assumptions for this thesis project are that:

1. Data collected from CXE 2007 can be used to design predictive models;

2. The physiological data can be used as a reliable indicator of how well an

individual is adapting to hypoxic exposure (i.e. that exercise performance at

altitude can be used as a proxy for hypoxia adaptation);

3. The biochemical data can be used to predict a physiological response;

4. The information we extract from this data can be useful for the application

to critically ill patients;

5. The information we extract from this data can be used to inform the Xtreme

Everest 2 (XE2) follow-up study in 2013.

1.7 Research questions

In order to test the hypotheses for this thesis project, the following questions were

posed:

1. Is there a di↵erence between how the lab group and climber groups respond

to altitude?

2. Are there di↵erences in the physiological responses seen between individuals?

3. Are there di↵erences in the biochemical responses seen between individuals?

4. Which physiological measurements appear to be the most suitable for measur-

ing how well an individual is adapting to altitude/hypoxia?

5. Is there a pattern of biochemical metabolites that can be used to predict how

well an individual will adapt to hypoxia?
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6. Can this data be used to create a model capable of predicting how well a

critically ill patient will respond to hypoxic stress?

7. Can the predictive models formed be used to inform the planned XE2 follow-up

study?

8. Can any of these predictions be validated during the planned XE2 follow-up

study?

1.8 Scope of the study

Systems Biology is an integrative inter-disciplinary approach to answering biological

questions. During this thesis project, biological experimentation has been integrated

with statistical analysis to extract as much information from the data as possible.

A Systems Biology approach is cyclic, as shown in Figure 1.4, where data is used

to inform a model, and the resulting model informs further data collection. It was

not possible to complete the cycle of data and modelling during this thesis project,

however, the results from this project can be used to inform further data collection

and analysis by other members of the Feelisch laboratory and the CXE team.

1.9 Outline of thesis

This thesis project will look at:

• The materials and methods used during this thesis project;

• The results for the biochemical measurements carried out by myself;

• The analysis of the 16 physiological measurements collected on each day of

the expedition, denoted the diary data;

• Exploratory statistical analysis of the physiological and biochemical informa-

tion available in the main dataset, denoted the core data;

• Exploratory modelling analysis, looking at relationships between physiological

and biochemical metabolites;

• A targeted modelling analysis, looking at the prediction of a change in a small

number of biologically relevant physiological measurements with a combination

of biochemical metabolites;

• A discussion of the results and applications of the models formed.
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Figure 1.4: Systems Biology - an iterative cycle of data collection (experiment), data
analysis, model construction, model analysis/refinement combined with biological
insight to validate or propose a hypothesis, which can be used to inform further
experiments.
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1.10 Thesis contribution

Throughout the course of this thesis project, I have contributed to data acquisi-

tion and undertaken all of the statistical analysis. I have become familiar with

the di�culties associated with collecting these data, and gained insight into causes

of systematic and random errors. During data acquisition, I contributed to the

measurement of biochemical metabolites in plasma samples taken from the 24 core

team members during CXE 2007. I measured four oxidative stress metabolites via

assay-kits, 14 diabetes and metabolism-related metabolites using xMAP technology,

and plasma osmolality. I also helped with sea-level testing for the follow-up study

Xtreme Alps, where I gained first-hand experience in the issues regarding CPEX

testing and blood sampling.

I have performed exploratory data analysis to gain a better understanding

of the main patterns seen in the dataset, and inter-individual di↵erences seen for

physiological measurements and biochemical metabolites. I have undertaken vari-

able selection, and performed several versions of linear and multiple linear regression

analysis on the dataset, to produce a series of models, capable of predicting a phys-

iological measurement at a certain altitude, or a change in a specific physiological

metabolite between two altitudes. These models can now be used to inform further

analysis of the trekker plasma samples, and be used to inform the CXE follow-up

study in 2013.
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Chapter 2

Materials and Methods

This section details the biochemical experiments and statistical analyses that were

carried out at The University of Warwick as part of my thesis project. All detailed

experiments were carried out on plasma samples collected during CXE 2007, which

were kept stored at -80oC until use.

In addition to the data collection detailed in this section, further experiments

were carried out on aliquots of the same plasma samples by members of the Feelisch

laboratory at The University of Warwick. Physiological data were also collected

during CXE 2007, and these data have been combined into one master dataset,

denoted the core dataset. Physiological data are also available for a further 190

trekker individuals. A third dataset, denoted the diary data is an additional dataset

collected for the 24 core team members, consisting of a small number of daily physi-

ological measurements collected throughout the expedition. Collectively, these data

were used in the statistical analysis carried out as part of my thesis project.

2.1 Xtreme Alps

In 2010, a CXE follow-up study was carried out, denoted Xtreme Alps. During this

study, I contributed to the collection of sea-level physiological data and assisted with

blood sample collection. Here, I gained first-hand experience in how the VO
2

max

exercise performance tests were carried out, and any problems associated with these

tests. One such problem is haemolysis, where red blood cells are ruptured during

blood collection, and their contents are released into the plasma. Occurrences of

such events were recorded to help account for any anomalous measurements when

analysing the plasma samples at a later date.
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2.2 Biochemical analyses

This section details the biochemical experiments carried out as part of my thesis

project. It includes information about specific methods used, as well as some back-

ground information on the metabolites being assessed.

2.2.1 Measurement of 8-iso-Prostaglandin F
2↵

Total 8-iso-Prostaglandin F
2↵

(8-isoPGF
2↵

) levels were quantified in the 24 core

team member’s plasma samples by using a direct 8-isoPGF
2↵

Enzyme Competitive

Immunoassay Kit from Assay Designs (catalogue number 901-091), according to the

supplier’s recommendations. 100µl plasma samples were hydrolysed by incubation

with 25µl of 10 N NaOH at 45oC for 2 hours. The reaction mixture was cooled on

ice for 5 minutes and neutralised with 25µl of 12 N HCl, then centrifuged in a mi-

crocentrifuge for 5 minutes. The clear neutralised supernatant was then transferred

to a new microcentrifuge tube, and 50µl of sample was used for the 8-isoPGF
2↵

assay.

The samples were incubated with the 8-isoPGF
2↵

antibody for 18 hours at

4oC in a 96-well plate. After incubation, the contents of the wells were emptied

and washed with wash bu↵er. Wash bu↵er was removed from the wells and the

colour was developed by incubation with 200µl of p-nitrophenyl phosphate for 45

minutes at room temperature. The reaction was stopped by the addition of 50µl of

stop solution, and the plate was read at 405nm in a Molecular Devices SpectraMax

M5 Microplate reader. A standard curve was generated by measuring the opti-

cal density of 160-100 000pg/ml of 8-isoPGF
2↵

standards that had been processed

simultaneously to the samples, on the same 96-well plate.

2.2.2 Glutathione determination

2.2.2.1 Tietze glutathione recycling assay

There are several di↵erent methods for the measurement of glutathione, with the

gold standard being the Tietze recycling assay. A plate-reader adaptation of the

Tietze recycling assay protocol had previously been used in the Feelisch lab for the

determination of reduced and oxidised glutathione in fresh rat tissue and plasma.

This protocol was modified over several months, to enable measurement of both

reduced and oxidised glutathione in frozen human plasma samples.

However, after several months of work it was still not possible to obtain

consistent standard curves at low glutathione concentrations, or reliably measure
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glutathione levels in human plasma samples that had been frozen. The final sensi-

tivity for the assay was down to 0.06µM for oxidised glutathione, and 0.47µM for

reduced glutathione, and was only measurable in standards, shown in Table 2.1.

The di↵erent steps taken during the refinement of the protocol are detailed

in section 3.1.2.1. The final refined assay protocol is detailed below.

2.2.2.2 Glutathione assay protocol

Reagents:

• 1x bu↵er (0.1M) and 5x bu↵er (0.5M);

– NaPO
4

(Sigma-Aldrich: S9638);

– 0.5M EDTA (Gibco/Invitrogen: 15575-038);

• NADPH (Sigma: N7505);

• 10% Metaphosphoric Acid (MPA) (Sigma-Aldrich: 239275);

• 2-Vinyl Pyridine (2-VP) (Aldrich: 132292);

• Glutathione Reductase (GR);

– Sigma (Item No. G3664-500): Glutathione reductase from Baker’s yeast;

– Roche (Ref. No. 10105678061): Glutathione reductase from yeast;

• 5,5-Dithiobis-2-nitrobenzoic acid (DTNB) (Sigma: D8130).

Standards:

GSSG (Oxidised Glutathione): 3mM stock was made by adding 0.04595g GSSG

and bu↵er to make 25ml. Two sets of tubes were labelled (23 total), and serial dilu-

tions were carried out as shown in Table 2.1. 100µl of each standard was added to a

new tube. 100µl of cold 10% MPA was added to each tube. 20µl of 2-VP was then

added to derivatise the sample, and was incubated at room temperature for 1 hour

in a flow-hood. 180µl of 5X bu↵er was added to neutralise the MPA, and the pH was

checked to make sure it was around 7. The samples were then stored on ice until use.

GSH (Reduced Glutathione): 3mM stock was made by adding 0.02305g GSH

and bu↵er to make 25ml. Two sets of tubes were labelled (17 in total) and dilutions

were carried out as shown in Table 2.1. 100µl of each reduced standard was added

to a new tube. 100µl of cold 10% MPA was added to each tube. 200µl of 5X bu↵er

was then added to neutralise the MPA, and the pH was checked to make sure it was
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Standard con-
centration (µM)

Dilution
factor

Volume of previous
solution (µL)

Volume of
bu↵er (µL)

GSSG
- 300 1:10 100 (3mM) 900
1 30 1:10 100 (300µM) 900
2 15 1:2 500 (30µM) 500
3 7.50 1.2 500 (15µM) 500
4 3.75 1.2 500 (7.50µM) 500
5 1.88 1:2 500 (3.75µM) 500
6 0.94 1:2 500 (1.88µM) 500
7 0.47 1:2 500 (0.94µM) 500
8 0.23 1:2 500 (0.47µM) 500
9 0.12 1:2 500 (0.23µM) 500
10 0.06 1:2 500 (0.12µM) 500
11 0 - - 1000
GSH
- 300 1:10 100 (3mM) 900
1 30 1:10 100 (300µM) 900
2 15 1:2 500 (30µM) 500
3 7.50 1.2 500 (15µM) 500
4 3.75 1.2 500 (7.50µM) 500
5 1.88 1:2 500 (3.75µM) 500
6 0.94 1:2 500 (1.88µM) 500
7 0.47 1:2 500 (0.94µM) 500
8 0 - - 1000

Table 2.1: Standard dilutions for reduced glutathione (GSH) and oxidised glu-
tathione (GSSG) for the Tietze glutathione recycling assay.
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around 7. The samples were then stored on ice until use.

Preparation of plasma samples: Three sets of eppendorf tubes were labelled for

each sample to be analysed; labelled MPA, oxidised (O) and reduced (R). 100µl of

10 % MPA was added to the MPA tubes, 7.5µl of 2-VP was added to the O tubes

and the R tubes were left empty. 100µl of plasma sample was added to the MPA

tubes and vortexed. The MPA precipitates any protein within the sample, so that

it did not interfere with glutathione measurement. The tubes were then centrifuged

at 10 000g for 10 minutes at 4oC. 75µl of the MPA extract (supernatant) was added

as quickly as possible to each of the O and R tubes (to prevent further reduction of

the sample). The O tubes were left to sit on ice for 1 hour. 67.5µl of 5X bu↵er was

added to the O tubes to neutralise the MPA. 75µl of 5X bu↵er was added to the R

tubes, and they were placed on ice until use.

Assay: 50µl of blank (1X bu↵er), standards or samples were added to the wells of

a 96-well microplate. 86µl bu↵er, 7µl of 10mM DTNB and 21µl of 5mM NADPH

was then added to each well. The plate was mixed well, and incubated at 37oC for

10 minutes within the microplate reader. 36µl of 15U/ml GR was added to each

well, and the change in absorbance was recorded at 412nm over 5 minutes.

Calculations: Standard curves were calculated from the OD readings for the stan-

dard samples prepared, detailed in Table 2.1. The reaction rates for the samples

were calculated by subtracting the appropriate 0.0 rate from each sample. The stan-

dard curves were then used to determine the concentrations for total and oxidised

glutathione. Reduced glutathione was calculated by subtracting twice the oxidised

glutathione concentration from the total glutathione value.

2.2.2.3 Glutathione fluorescence assay

Due to the poor reliability of the glutathione assay, reduced glutathione (GSH),

oxidised glutathione (GSSG) and total glutathione were quantified in the 24 core

team’s plasma samples by using a BioVision protocol Glutathione Assay Kit (cat-

alogue number K264-100), according to the supplier’s recommendations. 60µl of

plasma sample was thawed, and added to a microcentrifuge tube containing 20µl of

ice cold perchloric acid (PCA). The sample was vortexed and kept on ice for 5 min-

utes. The sample was spun in a microcentrifuge at 13 000g at 4oC, and 40µl of the

supernatant was collected and transferred to a new tube. 20µl of ice cold potassium

hydroxide (KOH) was added to the sample to neutralise the samples (the pH was
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tested to be 5-10). The samples were incubated on ice for 5 minutes, and then spun

in a microcentrifuge at 13 000g at 4oC for 2 minutes. 10µl of the neutralised sample

was transferred to a 96 well plate in triplicate, to measure GSH, total glutathione

and GSSG separately. These samples were then prepared further as follows:

• To detect GSH: 80µl of assay bu↵er was added to each well.

• To detect total glutathione: 70µl of assay bu↵er was added to each well.

10µl of reducing agent mix was added to each well, mixed thoroughly and

incubated at room temperature for 10 minutes to convert all GSSG present to

GSH.

• To detect GSSG: 70µl of assay bu↵er was added to each well. 10µl of GSH

quencher was added to each well, mixed well and incubated for 10 minutes at

room temperature to quench all GSH present. 10µl of reducing agent mix was

then added to each well to destroy the excess GSH quencher and convert the

GSSG present to GSH.

10µl of o-phthalaldehyde (OPA) probe was added to each well, mixed thor-

oughly and incubated at room temperature for 40 minutes. Samples were then

measured for fluorescence at 340/420nm in a Molecular Devices SpectraMax M5

Microplate reader. A standard curve was generated by measuring the fluorescence

of 0.19 - 25µM GSH and total glutathione standards that had been processed si-

multaneously to the samples, on the same 96-well plate.

2.2.3 Determination of osmolality

An Advanced Model 3300 Micro-Osmometer was used to measure the osmolality of

the 24 core team member’s plasma samples. 20µl plasma samples were loaded into

the Micro-Osmometer with the use of Advanced Ease-Eject Samplers. Each 20µl

sample was aspirated into a new sample tube, and inserted into the instrument’s

vertical holder. The holder was pressed down, and the testing began automatically,

with results being displayed after 60 seconds.

2.2.4 BioPlex analysis

A Bio-Rad BioPlex 200 system was used in conjunction with a BioPlex Pro Human

Diabetes 12 + 2-Plex Panel Complete Kit (catalogue number 171-A4S01M), accord-

ing to the supplier’s recommendations, to measure 14 cytokines in human plasma

samples (detailed in Table 2.2). Samples were prepared separately for the 12-plex
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Metabolite Description

Adipsin Also known as Factor D, found in high levels in adipose (fat) tissue, plays
a role in humoral suppression of infectious agents. The level of adipsin
is elevated in obese individuals.

Adiponectin Involved in regulating glucose levels (decreases gluconeogenesis and in-
creases glucose uptake) as well as the breakdown of fatty acids. Exclu-
sively secreted from adipose tissue, highly abundant in plasma.

C-Peptide Produced in a long chain attached to insulin. When cleaved apart,
C-peptide plays a role in intracellular signalling pathways, has anti-
inflammatory e↵ects as well as aiding in the repair of smooth muscle
cells. It is used to distinguish between type I and type II diabetes.

GIP Glucose-dependent insulintropic peptide is a member of the secretin fam-
ily of hormones, believed to induce insulin secretion. It is induced by
hyperosmolarity of glucose in the duodenum.

Ghrelin Shown to activate the endothelial form of nitric oxide synthase. Pro-
duced by adipose tissue to induce satiation when present at high levels,
it has been associated with obesity, insulin resistance and high blood
pressure [Xu et al., 2008].

Glucagon Secreted by the pancreas, it raises blood glucose levels when they fall
low by causing the liver to break down stored glycogen into glucose.

GLP-1 Glucagon-like peptide-1, increases secretion of insulin, decreases
glucagon secretion, increases satiety in the brain, thus decreasing food
intake and promotes insulin sensitivity of cells.

IL-6 Acts as both a pro and anti-inflammatory cytokine, secreted by T-cells
and macrophages to stimulate the immune response after trauma. Also
released from muscle cells, and is elevated in response to muscle contrac-
tion. It has inhibitory e↵ects on TNF-↵, IL-1, IL-1ra and IL-10.

Insulin Secreted by the pancreas in response to high blood glucose levels. It
stimulates cells to take up glucose from the blood and promotes the
storage of glycogen. It inhibits the release of glucagon.

Leptin Plays a key role in energy uptake and energy expenditure, inducing ap-
petite and metabolism. It promotes angiogenesis by increasing VEGF
levels.

PAI-1 Plasminogen activator inhibitor-1, present in increased levels during obe-
sity and metabolic syndrome.

Resistin Secreted by immune and epithelial cells, thought to play a role in in-
flammation by increasing levels of IL-1, 6, 12 and TNF-↵. Thought to
have links to both obesity and insulin resistance.

TNF-↵ Pro-inflammatory cytokine, involved in the regulation of immune cells, it
can induce fever, induce apoptosis, sepsis (via IL-1 and IL-6 production),
induce inflammation and inhibit viral replication and tumorigenesis.

Visfatin Promotes vascular smooth muscle cell maturation, activates insulin re-
ceptors and has insulin-mimic e↵ects, such as lowering blood glucose
levels and increasing insulin sensitivity.

Table 2.2: A list of metabolites related to diabetes, inflammation and metabolism,
measured with a BioPlex machine.
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and 2-plex assays. 25µl plasma samples were diluted by adding 75µl of human-

specific BioPlex sample diluent. The samples were stored on ice until use, and 50µl

of sample was used for the BioPlex assays.

A 96-well filter plate was pre-wet with 100µl of BioPlex assay bu↵er. The

bu↵er was then removed by vacuum filtration, and the bottom of the filter plate

was dried using a lint-free paper towel. The multiplex bead working solution was

vortexed for 15-20 seconds at a medium speed, and 50µl was added to each well. The

bu↵er was then removed by vacuum filtration, and the plate was washed twice with

100µl of BioPlex wash bu↵er, removing the bu↵er by vacuum filtration after each

wash. 50µl of diluted sample or standard was added to each well, and the plate was

covered with sealing tape. The plate was placed on a microplate shaker and covered

with aluminium foil. The shaker speed was slowly increased to 1100rpm for 30

seconds, then reduced to 300rpm, and the plate was incubated at room temperature

for 30 minutes.

After incubation, the sealing tape was removed and the bu↵er was removed

by vacuum filtration. The sample was washed 3 times with 100µl of BioPlex wash

bu↵er. The BioPlex detection antibody working solution was vortexed gently, and

25µl was added to each well. The plate was covered with a new piece of sealing tape

and placed onto a microplate shaker, and covered with aluminium foil. The shaker

speed was slowly increased to 1100rpm for 30 seconds, then reduced to 300rpm, and

the plate was incubated at room temperature for 30 minutes.

After incubation, the sealing tape was taken o↵ and the bu↵er was removed

by vacuum filtration. The sample was washed 3 times with 100µl of BioPlex wash

bu↵er. The 1 x streptavidin-PE was vortexed vigorously and 50µl was added to

each well. The plate was covered with a new piece of sealing tape and placed onto

a microplate shaker, and covered with aluminium foil. The shaker speed was slowly

increased to 1100rpm for 30 seconds, then reduced to 300rpm, and the plate was

incubated at room temperature for 10 minutes.

After incubation, the sealing tape was removed and the bu↵er was removed

by vacuum filtration. The sample was washed 3 times with 100µl of BioPlex wash

bu↵er. 125µl BioPlex assay bu↵er was added to each well to re-suspend the beads,

and the plate was then covered in sealing tape. The plate was placed on a microplate

shaker at 1100rpm for 30 seconds immediately before reading plate on the BioPlex

system. The sealing tape was removed before reading.

The plate was placed in a Bio-Rad BioPlex 200 system, and read using the in-

built software. Concentrations (pg/ml) of di↵erent cytokines in the plasma samples

were determined by using the standard curves generated in the multiplex assays.
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Each standard curve was generated using eight data points, and a nonlinear least

squares minimisation algorithm was used for the curve fitting by the five-parameter

logistic equation and to determine the high and low limits of detection.

2.2.5 Cardiopulmonary Exercise Testing (CPX/CPET)

Cardiopulmonary Exercise Testing (CPX/CPET) is a set of measurements that look

at an individual’s exercise performance in terms of their cardiac and pulmonary

function. The CPX test is usually performed during exercise on a static bicycle,

during which the subject is attached to an ECG and respirometry machine, and

has a breathing mask fitted, as shown in Figure 2.1. The mask is attached to a

computer that constantly monitors oxygen consumption and carbon dioxide pro-

duction throughout the testing. The subject begins to pedal against a continually

increasing resistance setting on the bike, whilst ECG readings and oxygen and car-

bon dioxide gas samplings are continually taken. These readings are then used to

calculate an individual’s lactate threshold (LaT, the threshold at which anaerobic

respiration begins to supplement aerobic respiration), and determine their cardiopul-

monary function. The lactate threshold is determined by measuring lactate levels

in the blood during exercise, and is the point during exercise of increasing intensity

where the lactate levels in the blood rapidly begin to accumulate above normal rest-

ing levels. This indicates that the clearance of lactate can no longer keep up with

lactate production, and is used to determine when anaerobic respiration begins to

supplement energy production by aerobic respiration.

CPX measures the ventilation rate, the e↵ectiveness of ventilation, oxygen

use and clearance of carbon dioxide to give a clear picture of an individual’s car-

diopulmonary function. CPX testing was carried out during CXE 2007, to measure

each individual’s exercise performance during the expedition. A full list of the mea-

surements acquired is shown in Table 2.4.

2.3 Data available

There are three main datasets available, as detailed in Table 1.2, denoted the core

dataset, trekker dataset, and the diary dataset. The core dataset consists of physi-

ological information collected during CXE 2007, and biochemical metabolites mea-

sured in plasma samples taken during CXE 2007, and measured by both myself

and other members of the Feelisch laboratory at The University of Warwick dur-

ing the course of my thesis project. This dataset contains information for 24 core

team individuals only, including 65 physiological measurements and 59 biochemical
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Figure 2.1: Cardiopulmonary exercise testing for Caudwell Xtreme Everest 2007,
taken from the CASE website.
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metabolites, at 7 di↵erent time-points, as detailed in Tables 2.3 and 2.4. These

measurements collectively form the basis for all analysis undertaken in Chapters 5,

6 and 7.

The trekker dataset consists of 62 physiological measurements taken during

CXE 2007, at 5 di↵erent time points. Plasma samples are available for this group

of individuals, but have not yet been measured. The diary dataset consists of 16

di↵erent daily measurements for the full 78 days of the expedition, and is available

for the 24 core team individuals only. The full list of these diary measurements is

shown in Table 4.1, and assessed in Chapter 4.
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Number Biochemical pathway Analyte shorthand name Units

1 NO Nitrite µM

2 NO Nitrate µM

3 NO Total NOx µM

4 NO RSNO nM

5 NO RNNO nM

6 NO Total RxNO nM

7 NO cGMP pmol/ml

8 NO proANP nmol/L

9 NO BNP fmol/ml

10 NO CNP pmol/L

11 ROS proCO mmol/mg

12 ROS 8-isoPGF ng/ml

13 ROS HNE mg/ml

14 ROS GSH µM

15 ROS GSSG µM

16 ROS GSH:GSSG ratio

17 ROS GSH/GSSG redox

18 Cytokines IL-↵ pg/ml

19 Cytokines IL-� pg/ml

20 Cytokines IL-1ra pg/ml

21 Cytokines IL-4 pg/ml

22 Cytokines IL-6 pg/ml

23 Cytokines IL-8 pg/ml

24 Cytokines IL-10 pg/ml

25 Cytokines IL-12(p40) pg/ml

26 Cytokines IL-13 pg/ml

27 Cytokines IL-18 pg/ml

28 Cytokines MIF pg/ml

29 Cytokines Eotaxin pg/ml

30 Cytokines TNF-↵ pg/ml

31 Cytokines IFN-� pg/ml

32 Cytokines VEGF pg/ml

33 Cytokines CRP ng/ml

34 Hormones Epinephrine ng/ml

Continued on next page
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2.3 – continued from previous page

Number Biochemical pathway Analyte shorthand name Units

35 Hormones Norepinephrine ng/ml

36 Hormones T3 pg/ml

37 Hormones T4 pg/ml

38 Hormones C-Peptide pg/ml

39 Hormones GIP pg/ml

40 Hormones Ghrelin pg/ml

41 Hormones Glucagon pg/ml

42 Hormones GLP-1 pg/ml

43 Hormones Insulin pg/ml

44 Hormones Leptin pg/ml

45 Hormones PAI-1 pg/ml

46 Hormones Resistin pg/ml

47 Hormones Visfatin pg/ml

48 Hormones Adiponectin pg/ml

49 Hormones Adipsin pg/ml

50 Hormones EPO mlU/ml

51 Hormones ET-1 pg/ml

52 Metabolic/Renal Markers Glucose mM

53 Metabolic/Renal Markers Cystatin-C ng/ml

54 Metabolic/Renal Markers Creatinine mg/dl

55 Metabolic/Renal Markers Lactate mM

56 Metabolic/Renal Markers Osmolality mOsmo/kg

57 Other Protein content mg/ml

58 Other Bicarbonate mmol/L

59 Other HSP-70 pg/ml

Table 2.3: Full list of biochemical metabolites measured in plasma samples taken
from 24 core-team individuals, at 5 di↵erent laboratories (7 di↵erent time-points)
during CXE 2007.
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Parameter Additional information

Gender

Weight Kg

Barometric pressure kilopascals (kPa)

Inspired O
2

partial

pressure

The partial pressure (Pi) O
2

would have if it alone occupied

a volume (kPa)

Ambient tempera-

ture

Degrees Celsius

Economy Measure of oxygen e�ciency expressed as rate of oxygen

consumption per workload (mls O
2

per Watt)

Maximum voluntary

ventilation

Maximal breathing capacity The greatest volume of gas that

can be breathed per minute by voluntary e↵ort - L/min

Forced expiratory

volume in 1 second

Volume exhaled during the first second of a forced expiratory

manoeuvre, started from the level of total lung capacity -

L/min

Exercise ramp

wattage

The workload increase /min during the CPX measured in

Watts

Haemoglobin Iron-containing oxygen transport protein in red blood cells

(g/dl)

Blood O
2

content The volume of oxygen carried within the blood - mls O
2

/L

Haematocrit The volume % of red blood cells in the blood

SBP at rest Systolic Blood Pressure (mm Hg)

DBP at rest Diastolic Blood Pressure (mm Hg)

SBP after exercise (mm Hg)

DBP after exercise (mm Hg)

The following measurements were taken at rest, at lactate threshold and at VO
2

max

O
2

consumption The volume of oxygen being consumed by the body per

minute - mls O
2

/kg/min

O
2

consumption / kg mls O
2

/kg/min (normalised per kg body weight /min)

Respiratory ex-

change ratio

Ratio of CO
2

production to O
2

consumption. Used in

VO
2

max test to see when individual has reached maximal

energy consumption.

Heart rate Number of heart beats per minute (beats/min)

Continued on next page
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2.4 – continued from previous page

Parameter Additional information

Minute ventilation Volume of gas inhaled/exhaled from the lungs in one minute

(L/min)

CO
2

production The di↵erence between the volume of CO
2

exhaled from the

lungs and the volume inhaled into the lungs (L/min)

Respiratory equiva-

lent for O
2

The ratio of the volume of inspired air and the amount of

oxygen consumed by the tissues

Respiratory equiva-

lent for CO
2

The ratio of inspired air to the amount of carbon dioxide

produced

O
2

pulse Surrogate of stroke volume during exercise. Normalises O
2

consumption for heart rate, calculated from O
2

consumption

and HR (ml O2/beat)

Respiratory rate Number of breaths per minute (breaths/min)

Tidal volume The normal volume of air displaced between normal inspira-

tion and expiration when extra e↵ort is not applied (L/min)

Partial pressure end

tidal O
2

The partial pressure of oxygen at the end of exhalation (mm

Hg)

End tidal partial

pressure CO
2

The level of CO
2

released at the end of expiration (mm Hg)

O
2

saturation Haemoglobin (Hb) saturation measured in samples obtained

from arterial puncture (%)

The following measurements were available at lactate threshold and VO
2

max

Work rate The amount of energy expended during physical exercise

(Watts)

Oxygen cost The volume of oxygen used by the body during LaT or at

VO
2

max. It is directly related to the energy demands of the

particular activity, and a↵ected the nature of the substrate

respired. Calculated by: work rate / O
2

consumption (/kg)

(Watts/mlsO
2

/kg/min)

Table 2.4: Full list of physiological measurements measured for 24 individuals during
CPX testing, at 5 di↵erent laboratories during CXE 2007.
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2.4 Missing data

Exposure to an extreme environment, such as the conditions experienced during

CXE 2007, leads to the stimulation of multiple adaptive response pathways. These

pathways communicate and interact with one another, to produce a complex systems

response to stress. Such responses mean that missing data values are likely within a

dataset that is trying to capture the complexities of such a response. These may be

due to certain samples or a specific technique not being available for measurement

(due to illness or a temporary machine failure), human error during experiments or

measurements being either above or below quantifiable limits.

An incomplete dataset can become a problem when it comes to further anal-

ysis. Some analyses will not work with missing values, and as biological experiments

usually contain a relatively small number of samples, leaving one sample out of the

whole analysis due to one missing datapoint could bias the analyses, or leave out

vital information, leading to erroneous conclusions.

2.4.1 Treatment of incomplete datasets

If a dataset is missing values, there are two options available, depending on why val-

ues are missing. If a measured sample gives a value above or below the quantifiable

limit of the equipment, then there is still some potentially useful information that

can be gained from this datapoint. If the sample is below the detection limit of the

equipment, it is very unlikely that the sample is simply empty of the material you

are testing it for (samples are rarely completely empty of a particular metabolite).

The simplest solution to this problem would be to impute a value half-way between

zero and the lowest limit of the equipment being used. This way, some information

can be gained from the sample that may be useful to the analysis.

If samples are missing, it is more di�cult to accurately impute their values.

Individual values can be estimated by assessing how that individual responds in

comparison to all other individuals, and impute the missing value based on that

individual’s average ranking within the group. For example, if the individual ranks

highly in the group for a particular metabolite, then an assumption could be made

that the individual ranks similarly for all time points, and an appropriate value

could be calculated from similarly-responding individuals. However, this may not be

appropriate in some cases, and relies heavily on the assumption that the individual

responds in a similar way compared to other individuals in the group.

There are several missing data points in both the biochemical and physiolog-

ical datasets used within this project. Due to the extreme conditions of CXE 2007,
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Biochemical metabolite Detection limit of technique used Value imputed Units

IL-13 0.63 0.315 pg/ml
Eotaxin 1.69 0.845 pg/ml
CRP 60.00 30.000 ng/ml
Adrenaline 0.12 0.060 fmol/ml
Noradrenaline 0.08 0.040 fmol/ml
Adipsin 422.00 211.000 pg/ml
EPO 0.40 0.200 mlU/ml

Table 2.5: List of imputed values for biochemical metabolites measured in plasma
samples taken during CXE 2007. All values were below the detectable limit of the
technique used, and were imputed as half-way between the lower detection limit of
the technique used and zero.

some individuals became ill during the expedition, and did not have samples taken at

particular time points. A small number of individuals su↵ered severely from hypoxia

and had to be evacuated from the mountain at higher altitudes. The biochemical

measurements contained more missing values than the physiological data, mainly

due to out of range measurements, as there is a higher level of error associated with

measuring metabolites that are present in very low concentrations. Measurements

taken at higher altitudes also contain more missing data points than measurements

taken at lower altitudes. It is important to know why a particular data point is

missing, as it can have an e↵ect on the assessment of the data, especially if it is due

to an individual being ill. Some metabolites are also missing for entire altitudes.

Due to this, several di↵erent versions of the dataset have been created, each useful

for answering di↵erent questions about the dataset. The biochemical metabolites

that had values imputed are shown in Table 2.5.

2.4.2 How missing values were treated in each dataset

For the core dataset, physiological measurements missing only a small number of

values were imputed, to restrict the amount of bias these values may have on further

analysis. This was done in a systematic way, by highlighting the individual on a box

and whisker plot showing the behaviour of the variable over all altitudes. This was

done to compare how the individual responded at known time points compared to the

rest of the group. The individual was then ranked within the group, depending on

their response. If this rank was similar across altitudes, a mean rank was calculated.

The missing variable was then imputed based on this rank - for example if the mean

rank was 2, the values for individuals ranked 1 and 2 were added and the sum

divided by two to calculate a value in-between them. If the rank varied too much
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within the group, a value could not be imputed this way. This method assumes

that an individual’s behaviour remains relative to the way the rest of the group is

behaving, and that this relationship is the same across altitudes.

The diary dataset was collected on each day of the expedition, and has many

missing data values. No information has been imputed for this dataset, as too many

data values are missing, and any imputation would risk biasing any analysis carried

out on this dataset as it would be mainly based on estimated data points.

2.4.3 Core team datasets

Biochemical metabolites and physiological measurements that are missing some data

points are still potentially valuable for analysis. The metabolites had several missing

values, ranging from one complete altitude missing (24 missing data values) for all of

the glutathione metabolites, to six altitudes missing data for IL-10 (approximately

144 missing data values). These metabolites can provide information on how the

group are responding, but cannot be used in model building.

Due to these limitations, two separate datasets for the core team were formed.

The first dataset contained only complete information (i.e. no missing data points

for any variable included in the dataset), whereas the second dataset contained all

measurements that included enough information to be useful (i.e. they contained

at least a full altitude worth of data). The complete dataset was primarily used

for modelling analysis, as well as any analysis that could not be performed on data

with missing values. The incomplete dataset was primarily used for exploratory

data analysis, looking at general patterns of expression within the group.

There were 10 individuals missing for all physiological measurements at Ever-

est Base Camp Weeks 6 and 8. Two individuals were also missing plasma samples

for Everest Base Camp weeks 6 and 8 as they became very ill during the expedi-

tion, and had to be moved down to a lower altitude to recover. The main focus of

this project was to assess the changes that occur with increasing hypoxic exposure,

therefore, only measurements from London - Everest Base Camp Week 1 were used

for modelling. This was because Everest Base Camp weeks 6 and 8 showed altitude-

independent changes, and were missing too much information to be used reliably

for modelling purposes. A full list of the biochemical metabolites and physiological

measurements available for the core dataset are shown in Tables 2.3 and 2.4.
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2.4.4 Variables omitted from the analysis

Some of the biochemical metabolites and physiological measurements were missing

too many values to be imputed with any accuracy, and did not appear to give any

information about any changes that occurred with increasing altitude. For example,

IL-1↵ only had three samples out of 168 that were within the detectable limits of

the BioPlex assay, used to measure multiple biochemical metabolites in the plasma

samples. These biochemical metabolites have been removed from all analyses, and

are as follows:

• Interleukin-1↵

• Interleukin-4

• Interferon-�

2.5 Statistical analysis

This section details the statistical techniques carried out on all of the data available

from CXE 2007. All work was performed on a MacBook Pro, 3.06 GHz Intel Core

2 Duo, 4 GB, Mac OS X Lion 10.7.5. All data analysis was performed by myself

using the commercial software package matlab 7.12 (The MathWorks Inc., Natick,

MA, 2012).

Initial statistical techniques were used to understand how di↵erent measure-

ments were changing as altitude increased, as well as looking for patterns and sum-

marising any important observations. This information was used to define a list of

metabolites that were most suitable to be used as part of modelling e↵orts. This

section details the di↵erent types of statistical analyses used in later chapters, as

well as the mathematics behind each test.

One of my personal aims for my thesis project was to gain an understanding

of the statistical methods and empirical modelling techniques that can be applied

to biological data. Therefore, this section describes the statistical methods used in

detail.

2.5.1 Box and whisker plots

Box and whisker plots are a simple yet convenient way of summarising one or more

groups of data in a graphical form, and allowing the visual analysis of the symmetry

of data around each median and the variability within the dataset [McGill, 1978].

Here the data are summarised as a ‘box’ with the lower edge of the box showing
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the lower 25th percentile and the upper edge of the box showing the upper 75th

percentile. The median is shown as a red line bisecting the box, and the interquartile

range is the di↵erence between the 25th and 75th percentiles. The ‘whiskers’ of the

plot show the smallest and largest values not considered to be an outlier, with

an outlier defined as being more than 1.5 times the interquartile range above the

75th percentile, or below the 25th percentile [McGill et al., 1978], and were plotted

individually as a red cross (‘+’).

Box and whisker plots show the di↵erences and similarities between samples

of data without making any assumptions of the underlying statistical distributions,

and are therefore non-parametric. Box and whisker plots include more useful in-

formation than a barchart or histogram, and can act as a visual summary of the

data, and include the median value, not the mean, as the median is less influenced

by extreme values, and useful for skewed distributions. The variability in the data

is shown by the interquartile range, which is a more stable summary than the total

range, as, like the median, it is less prone to skewing due to extreme values.

The boxplot function was implemented in matlab to produce box and whisker

plots for all of the di↵erent datasets. Data for the core team members was plotted

in several places, both together, and split into lab sta↵ and climber groups, to

allow comparisons between the two di↵erent groups. Box and whisker plots of the

diary data allowed the visual analysis of the day-to-day variability of the di↵erent

physiological measurements available. The box and whisker plots presented for

the core dataset show log-transformed data, as there were some metabolites that

contained high outlying values that skewed the plots and made them di�cult to

interpret. All box and whisker plots for the core dataset were presented after being

log-transformed, to maintain consistency across the figures. Box and whisker plots

for the diary dataset were presented as raw data, as log-transformation was not

necessary, and the raw data was more informative for this particular dataset.

2.5.2 Subplots

Here, a subplot divides a figure into equal segments, with each segment showing one

individual’s response, rather than giving an average of all responses. The subplot

function was implemented in matlab to produce subplot graphs of all 24 individual

responses for a particular physiological measurement or biochemical metabolite as

altitude increases, to analyse the inter-individual variability seen for that particular

measurement.
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2.5.3 F -test for assessment of equal variances

The F -test assesses whether the variances of two samples are equal, so that the

null hypothesis H
0

= the samples come from populations with the same variance, is

compared to the alternative hypothesis H
1

= the samples come from populations with

di↵erent variances. This test is highly sensitive to non-normality, and any departures

from normality can render the results of the F -test invalid. This is especially true

for heavy-tailed or light-tailed distributions, where the probability of getting high

values is larger or smaller than is expected for a normal distribution. For heavy-

tailed distributions, the associated p-value is smaller than the actual significance

value, resulting in false-positives. The opposite is true for light-tailed distributions,

with the associated p-value being much larger than the actual significance level,

resulting in the F -test being less likely to detect true di↵erences. However, it is

di�cult to assess the assumption of normality, unless the sample sizes are very

large. When the test assumptions are met, the F -test is the most powerful test

available, however, in the case of non-normality, a non-parametric test may be more

suitable. For the F -test the sample variances are calculated as follows:

S2

x

=
1

n� 1

nX

i=1

(x
i

� x̄)2, (2.1)

S2

y

=
1

m� 1

mX

i=1

(y
i

� ȳ)2, (2.2)

where x̄ and ȳ are the sample means, n is the number of individuals for sample x,

and m is the number of individuals for sample y. The test statistic is then as follows:

F =
S2

x

S2

y

, (2.3)

and has an F -distribution with n-1 andm-1 degrees of freedom if the null hypothesis

is true.

The vartest2 function was implemented in matlab for both the diary and

core datasets. This was done in part to inform the subsequent analysis of variance

and t-tests to be performed on the data, and to assess whether the variances of

groups changed between altitudes. A two-tailed F -test was performed to assess

whether the two sample variances were significantly di↵erent from one another. It
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was not of interest at this stage to assess which sample had the higher variance, just

that a di↵erence in the variance existed so that an appropriate form of the t-test

could be used. There are alternative ways to test multiple variances at the same

time, which may be more appropriate than performing multiple pair-wise analyses,

however, these tests have lower power compared to the F -test.

2.5.4 Two-sample Student t-test

The Student t-test assesses whether the means of two random, normally distributed

populations are equal [Student, 1908], so that H
0

= the samples have the same mean,

is compared to the alternative hypothesis H
1

= the samples have di↵erent means.

The standard form of the t-test assumes that the variances of the two populations

are equal, and that they are both drawn from populations assumed to be normally

distributed. The t statistic to test whether two means are di↵erent was calculated

as follows:

t =
x̄� ȳ

SD
xy

q
2

n

(2.4)

where, if the sample sizes and variances are equal:

SD
xy

=

r
1

2
(S2

x

+ S2

y

), (2.5)

where S2

x

and S2

y

are the sample variances (as shown in equations 2.1 and 2.2),

SD
xy

is the pooled standard deviation, and x̄ and ȳ are the sample means. The

denominator of the t statistic is the standard error of the di↵erence between the two

means.

If the F -test resulted in a rejection of the null hypothesis (i.e. the sam-

ple variances are not equal), then Welch’s t-test was used. The t statistic is now

calculated as:

t =
x̄� ȳ

sd
xy

, (2.6)

where
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sd
xy

=

s
s2
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n
+

s2
y

m
. (2.7)

Here s2 is the unbiased estimator of the variance of the two samples, and sd
xy

is not

a pooled variance. For significance testing, an approximate Student’s t-distribution

was used, with the number of degrees of freedom given by Satterthwaite’s approxi-

mation [Satterthwaite, 1946]:
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The ttest2 function was implemented in matlab, to compare the group mean

for the lab sta↵ against the group mean for the climbers on each day of the expedition

for both the core and diary datasets, at the 5% significance level. The function was

used to assess whether the lab sta↵ and climber groups responded di↵erently to one

another during the expedition, in a statistically significant manner. However, as the

two group sizes were very small, there may not have been enough power in this test

to reject the null hypothesis.

2.5.5 Paired Student t-test

The paired Student t-test is a variation of the t-test, which assesses whether the

mean di↵erence between two responses for the same individual is zero. For example,

taking a measurement in a patient before and after treatment, to see if the treatment

has had a significant e↵ect on the variable measured. The test statistic is as follows:

t =
x̄� µ
sp
n

, (2.9)

where x̄ is the sample mean, µ = 0 (or m) is the hypothesised population mean, s is

the sample standard deviation and n is the sample size. Under the null hypothesis

the test statistic will follow Student’s t-distribution with n-1 degrees of freedom.

The ttest function was implemented inmatlab after an initial positive analysis
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of variance (described in Section 2.5.6) between group means over all altitudes, to

identify exactly which groups were significantly di↵erent from one another. This

function was used for both the diary dataset and the core dataset.

2.5.6 Analysis of variance

The analysis of variance (ANOVA) is a generic statistical technique that assesses how

the mean value of a variable is a↵ected by the classification of the data according

to di↵erent sources of variation. The one-way ANOVA is a generalisation of the

two-sample t-test, appropriate for any number of groups, and is equivalent to the

two-sample t-test when assessing two groups.

If the p=0.05 (5%) level of significance is consistently accepted, then a wrong

conclusion will be drawn on average once in every 20 tests performed, known as Type

I error (rejecting the H
0

when it should be accepted, i.e. a false positive). If we then

perform multiple t-tests across a range of di↵erent treatments, than the probability

of drawing at least one false conclusion is greatly increased. This probability could

be reduced by lowering the significance level to p=0.01 (1%), however, this increases

the risk of making a Type II error (failing to reject the H
0

, i.e. a false negative).

Analysis of variance (ANOVA) overcomes these problems by comparing any number

of sample means within a single test.

The null hypothesis for ANOVA is: H
0

= the samples are drawn from nor-

mally distributed populations with equal means and variances, compared to the al-

ternative hypothesis: H
1

= the samples are drawn from populations with di↵erent

means.

The test statistic can be calculated as follows:

F =
TreatMS

ResMS
, (2.10)

where:
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n
P

m
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(x̄
j
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Source of
variation

Degrees of
freedom

Sum of squares Mean square Variance
ratio

Treatment (m-1) n
P

(x̄
j

� x̄)2 TreatSS / (m-1) TreatMS /
ResMS

Residual m(n-1)
PP

(x
ji

� x̄
j

)2 ResSS / (m(n-1))
Total n m - 1

PP
(x

ji

� x̄)2

Table 2.6: One-way analysis of variance table, where TreatSS refers to the treatment
sum of squares, TreatMS refers to the treatment mean square, ResSS refers to the
residual sum of squares and ResMS refers to the residual mean square. To complete
the test, the variance ratio was compared with tabulated critical values of the F -
distribution to test the null hypothesis for the ANOVA.

The treatment mean square (TreatMS) is calculated by dividing the treat-

ment sum of squares (the sum of squared deviations of the treatment (sample) means

multiplied by the number of observation per sample) by its degrees of freedom (m-

1). The residual mean square (ResMS) is calculated by dividing the residual sum

of squares (the sum of squared deviations of the individual observations about their

respective sample means) by its degrees of freedom (m(n-1)).

The treatment sum of squares and residual sum of squares add up to the total

sum of squares, which is the sum of the squared deviations of the individual obser-

vations about the overall mean. These values allow the construction of an ANOVA

table, which summarises all of the di↵erent components of variance, assuming equal

replication, such as that shown in Table 2.6. To complete the test, the variance

ratio was compared with tabulated critical values of the F -distribution to test the

null hypothesis for the ANOVA.

2.5.6.1 Assumptions in ANOVA

• The residuals (observations minus the treatment mean) should be approxi-

mately normally distributed;

• The residuals should have a common variance, which is not related to the

treatment or magnitude of the mean response;

• The observations are independent.

A two-way ANOVA is a generalisation of the paired t-test, which allows the

assessment of more than two treatments. This test looks at the grouping of exper-

imental units into blocks, with the same number of experimental units per block.

We can use ANOVA to calculate the treatment sum of squares, the block sum of
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Source of
variation

Degrees of
freedom

Sum of squares Mean square Variance
ratio

Blocks (b-1) t
P

(x̄
i

� x̄)2 BlkSS / (b-1) BlkMS /
ResMS

Treatment (t-1) b
P

(x̄
j

� x̄)2 TreatSS / (t-1) TreatMS /
ResMS

Residual (b-1)(t-1) by subtraction ResSS / ((b-1)(t-1))
Total b t - 1

PP
(x

ji

� x̄)2

Table 2.7: Two-way analysis of variance table without interactions, where BlkSS
refers to the block sum of squares, BlkMS refers to the block mean square, TreatSS
refers to the treatment sum of squares, TreatMS refers to the treatment mean square,
ResSS refers to the residual sum of squares and ResMS refers to the residual mean
square. To complete the test, the variance ratio was compared with tabulated
critical values of the F -distribution to test the null hypothesis H

0

= there is no
di↵erence between blocks or treatments.

squares (the sum of squared deviations of the block means about the overall mean)

and the total sum of squares. The residual sum of squares is usually calculated by

subtraction as follows:

Residual SS = Total SS - (Block SS + Treatment SS)

The mean squares (variance) can be calculated by dividing the sum of squares by

their respective degrees of freedom, and are used to test for di↵erences between

treatments of blocks in the same way as the one-way ANOVA, such as that shown

in Table 2.7. To complete the test, the variance ratio was compared with tabulated

critical values of the F -distribution to test the null hypothesis H
0

= there is no

di↵erence between blocks or treatments.

The anovan function was implemented in matlab for both the diary and core

datasets, to assess the main e↵ects of altitude and individual on each of the mea-

sured biochemical metabolites and physiological measurements. As there are no

repeated measures available for the core dataset, we cannot assess the interactions

between individual and altitude in a formal way, therefore a two-way ANOVA with-

out interactions was performed. If the null hypothesis was rejected, then t-tests

were performed between adjacent altitudes, to assess exactly which altitudes were

significantly di↵erent from one another.
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2.5.7 Correlations

Linear correlation looks at quantifying the linear association between pairs of vari-

ables. The correlation is described as positive if ‘large’ values of both variables tend

to occur together. The correlation is described as negative if ‘large’ values of one

variable tend to occur with ‘small’ value of the other variable. If the correlated

observations lie close to a straight line the correlation is said to be high, and if the

points are more widely scattered about that line the correlation is said to be low.

The Pearson product-moment correlation coe�cient (also known as Pear-

son’s r) is a measure of the strength of the linear association seen between the two

variables [Pearson, 1920]. The correlation coe�cient is defined as:

r =

P
n

i=1

(x
i

� x̄)(y
i

� ȳ)p
[
P

n

i=1

(x
i

� x̄)2][
P

n

i=1

(y
i

� ȳ)2]
, (2.13)

where n is the number of observations of variables x and y, and x̄ and ȳ are the

means of x and y, respectively.

The scatter and corrcoef functions were implemented in matlab to create

scatter plots and calculate the correlation coe�cient r and the p-value for each pair

of variables. The p-value is the probability of getting a correlation as large as the

observed value by random chance, when the true correlation is zero. If the p-value

was less than 0.05, then the correlation between x and y was significantly di↵erent

from zero. To aid interpretation, weak correlations are defined here as having a

correlation coe�cient between either -0.4 to -0.59 or 0.4 to 0.59, medium strength

correlations have a correlation coe�cient between either -0.6 and -0.79 or 0.79 and

0.6, and strong correlations have a correlation coe�cient between either -0.8 to -1.0

or 0.8 to 1.0. The r value and p-value were used to test the null hypothesis H
0

=

there is no association between the observations of variables x and y, against the

alternative hypothesis H
1

= there is an association between variables x and y. A

p-value less than 0.05, coupled with a high r value resulted in a rejection of the null

hypothesis.

Correlations were calculated within di↵erent datasets for several reasons.

Correlations were produced for the diary data to identify any redundancy in the

dataset, and assess any interesting associations between variables. Correlations were

produced during explanatory data analysis to identify potential associations between

di↵erent variables. Correlations between biochemical metabolites were produced for

variable selection for modelling, to test for any redundancy within the biochemical

metabolites. If any were identified, then potentially only one of these variables

48



would be used in modelling e↵orts. Finally, correlations of residuals produced from

modelling and explanatory variables used in the model allowed the assessment of

whether there was any underlying structure to the residuals, and whether or not the

di↵erent explanatory variables were appropriate to be included in the model.

2.5.8 Smoothing

Smoothing was used to remove some of the noise inherent within a biological system,

to allow the visual comparison of di↵erent individual responses over time. Smoothing

helps to pick out patterns that may be di�cult to see in noisy datasets, and can be

used to cope with day-to-day variability.

The smooth algorithm was implemented in matlab on the diary data only,

for each individual for each measurement. This was done to look at the overall

response for each individual over the entire expedition, whilst removing some of the

noise associated with the measurement. Each individual’s response was smoothed

using a 3-day running mean algorithm. The algorithm calculates the unweighted

mean of the previous, current and next data points, and creates a new data point.

The algorithm calculates successive values, and for each calculation a new value is

added into the sum and an old value drops out, smoothing each value in turn.

2.5.9 Simple Linear Regression

Simple linear regression fits a linear relationship between one dependent variable

and one independent variable. The linear regression model was fitted using the least

squares fit approach, which minimises the sum of squared vertical deviations of the

observed points around the fitted line, as shown in Figure 2.2.

2.5.9.1 ANOVA in regression

In order to assess whether the fitted regression line represents a true relationship (i.e.

is the underlying slope di↵erent from zero?) the analysis of variance (ANOVA) for

the fitted regression line was calculated. In order to construct the ANOVA, the sum

of squares explained by the regression, and residual sum of squares were determined.

These were then converted to variances (MS) by dividing by the respective degrees

of freedom. To complete the test, the regression variance was divided by the residual

variance to obtain an F -value, which was compared with tabulated critical values

of the F -distribution.

The residual sum of squares (denoted ResSS ) is the sum of the squared

di↵erences between each observed point and the fitted line. This can be calculated
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Figure 2.2: An example of a least squares fit, where a linear line is fitted through
points by minimising the squared di↵erence between the line and the observed data
point (i.e. minimising the squared lengths of the red dashed lines).
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by the following:

ResSS =
nX

i=1

(y
i

� (a+ bx
i

))2, (2.14)

summed over all of i, where a and b are the intercept and the slope of the fitted

line, respectively. Parameters a and b are shown by:
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a =

nX

i=1

y
i

� b
nX

i=1

x
i

n
= ȳ � bx̄ (2.16)

where x̄ and ȳ are the sample means, n is the number of observations of y. The

numerator in equation 2.15 is the corrected sum of products of x and y (denoted

S
xy

), and the denominator is the corrected sum of squares of x, denoted S
xx

. These

can be written as:

S
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)� nx̄ȳ, (2.17)

S
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=
nX

i=1

(x2
i

)� nx̄2. (2.18)

The regression sum of squares (denoted RegSS ) is calculated as follows:

RegSS =
(S

xy

)2

S
xx

. (2.19)

The regression and residual variances are calculated as follows:
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RegMS =
RegSS

Regdf
, (2.20)

ResMS =
ResSS

Resdf
, (2.21)

where the degrees of freedom for the regression (denoted Regdf ), is one as a straight

line model is being used. Therefore, the RegSS = RegMS for this case. The test

statistic is calculated as follows:

F =
RegMS

ResMS
. (2.22)

Additional summary statistics were calculated to assess the fit of the regression line

to the data, as follows:

2.5.9.2 Lack of fit mean square (LOFMS)

The sum of squared deviations between the observed mean at each altitude and

the fitted line, divided by the lack of fit degrees of freedom (summed across all

observations), denoted as:

LOFMS =

P
n

i=1

(ŷ
i

� ȳ
i

)2

LOFdf
, (2.23)

where LOFdf is the lack of fit degrees of freedom (which, in this case, is two less

than the number of altitudes).

2.5.9.3 Pure error mean squares (ErrorMS)

The sum of squared deviations of individual observations about the mean for each

altitude, summed over all altitudes, divided by the degrees of freedom, denoted:

ErrorSS =
nX

i=1

(y
i

� ŷ
i

)2, (2.24)
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ErrorMS =
ErrorSSP
n

i=1

N
A

� 1
(2.25)

where N
A

is the means square degrees of freedom, which in this case is one less than

the number of observations at altitude A.

2.5.9.4 R2 value

The coe�cient of determination, or R2 value is a measure of how much of the

variability in a data set is described by a fitted model. For example, a linear regres-

sion model with an R2 value of 0.8 is describing 80% of the variability seen in the

dataset. The R2 value is calculated by dividing the error mean square by the total

mean square and subtracting this ratio from one, as follows:

TotalMS =

P
n

i=1

(y
i

� ȳ)2

Totaldf
, (2.26)

where Totaldf is the total degrees of freedom (sample size - 1).

R2 = 1�
ErrorMS

TotalMS
. (2.27)

The closer the final value is to one (i.e. the smaller the ErrorMS is), the better the

model fits the data.

2.5.9.5 Assumptions for simple linear regression

• There is a linear relationship between the dependent and independent variable;

• The sample is representative of the population as a whole;

• The sample is normally distributed;

• The error is a random variable, where the mean is zero, and is conditional on

the explanatory variables;

• The errors are uncorrelated;

• The variance of the error is constant across observations.
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2.5.10 Simple linear regression uses

Simple linear regression analysis was used at several points during my thesis project.

Initially, it was used on the diary data to assess whether each physiological mea-

surement changed in a linear way with altitude. Simple linear regression analysis

was used in exploratory data analysis to see if any metabolites showed an over-

all linear change during the expedition. Simple linear regression was also used as

an initial modelling technique, to see if any of the dependent variables could be

described as a linear function of any of the explanatory variables, as described in

Section 6.2. Finally, simple linear regression was also used in the final stages of

model refinement to assess the linear dependence between explanatory variable co-

e�cient values used in a model formed by multiple linear regression, and some form

of hypoxia measure. This information was used to produce a generalised model over

several altitude changes, instead of having one model per altitude di↵erence (for

example the di↵erence between all altitudes and London, not just Kathmandu and

London).

The following summary statistics are available for the analysis of the diary

data only, due to multiple measures being available at each altitude, and summarise

the information available from the regression and ANOVA.

2.5.10.1 Goodness of fit

The goodness of fit (GOF) statistic was compared to an F -distribution to assess

whether the regression line was significantly di↵erent from zero. The GOF statistic

was calculated using the RegMS (calculated in equation 2.20) and the LOFMS

(calculated in equation 2.23) as follows:

GOF =
RegMS

LOFMS
(2.28)

2.5.10.2 Lack of fit

The lack of fit (LOF) statistic was compared to an F -distribution to formally test the

goodness of fit of the regression line to the data. The LOF statistic was calculated

by dividing the LOFMS (calculated in equation 2.23) by the ErrorMS (calculated

in equation 2.25) as follows:

LOF =
LOFMS

ErrorMS
(2.29)
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If the lack of fit is large compared to the error term, then the means deviate

more from the fitted line than is to be expected, and indicates a poor fit to the line.

If the lack of fit is small compared to the error term, then this indicates that the

mean is close to the fitted line, however, there is scatter within points around the

mean.

2.5.10.3 Coe�cient of Variation (C
V

)

The coe�cient of variation is the square root of the error mean square (the scatter

of points around the mean value calculated for repeat y observations at a single

value for x ), divided by the mean, expressed as:

C
V

=
errorSD

ȳ
, (2.30)

where errorSD is the error standard deviation (square root of the ErrorMS, calcu-

lated in equation 2.25), and ȳ is the variable mean. The C
V

is a relative measure of

the variability associated within a variable, and can be compared between variables.

The C
V

was calculated for the diary data, to assess whether particular physiological

measurements showed high or low variability day-to-day at the same altitude, and

to assess the reliability of measurements taken on a particular day.

2.5.11 Multiple Linear Regression

Simple linear regression assesses whether the dependent variable y can be described

by one explanatory variable. Multiple linear regression is an extension of simple

linear regression, where the dependent variable is potentially described by a linear

combination of several explanatory variables. Explanatory variables can be com-

bined, so that the response of one explanatory variable may depend on another.

These combination terms are calculated by multiplying together two or more ex-

planatory variables, as follows:

1. Simple linear regression; y = a+ bx

2. Multiple linear regression; y = a+ bx
1

+ cx
2

+ dx
1

x
2

,

where x
1

and x
2

are two separate explanatory variables, and x
1

x
2

is the combina-

tion term. As the number of potential explanatory variables increases, it becomes

more di�cult to fit them all and assess the best model fit. In this case, the best

model would be the one that best summarises the observed data available. Stepwise
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regression techniques enable the selection of the best model for the observed data,

whilst minimising the amount of time required to assess the fit of each model.

The stepwisefit algorithm was implemented in matlab for the two di↵erent

stages of modelling undertaken during my thesis. In the exploratory modelling,

MLR was used to describe one physiological variable from a selection of potential

explanatory variables, over all altitudes. The second targeted form of modelling

looked at using MLR to describe the percentage change seen in oxygen consump-

tion or work rate with either absolute values at a low altitude of a selection of

biochemical metabolites, or the percentage di↵erence in biochemical metabolites at

low altitudes. MLR was used to form initial models and refine models for the ex-

ploratory modelling, and form initial models that were refined separately for the

targeted modelling.

The stepwisefit algorithm uses a systematic method for adding and removing

terms from a multilinear model, based on their statistical significance in a regres-

sion. The method is a combination of forward selection and backward elimination

techniques, beginning with an initial model, which is compared to the explanatory

power of incrementally larger and smaller models. At each step of the algorithm,

the p-value of an F -statistic is calculated and used to compare two models, one in-

cluding a potential term and one without it. If the term is not currently contained

in the model, the null hypothesis is that the extra term would have a coe�cient of

zero if it were added to the model. If there is su�cient evidence from the F -statistic

and p-values produced, then the null hypothesis is rejected and the term is added

to the model. Alternatively, if a term is currently in the model, the null hypothesis

is again that the coe�cient value is zero. If the null hypothesis is not rejected, then

the term is removed from the model. This is discussed in more detail below.

The response y to predictor x is a system of linear equations:

y = bx, (2.31)

where b is a matrix of coe�cient estimates.

Fitting the initial model: The vector of coe�cient estimators b is computed via

a least-squares method using QR decomposition. It is possible to express x, an m-

by-n matrix, as the product of Q, an m-by-m orthogonal matrix, and R, an m-by-n

upper triangular matrix. I.e.
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x = QR. (2.32)

Define a matrix Q
B

:

Q
B

= QT y. (2.33)

Multiple both sides of equation 2.31 by QT :

QT y = QT bx. (2.34)

Substitute in for x :

QT y = QT bQR. (2.35)

As Q is orthogonal:

QQT = I, (2.36)

where I is the identity matrix. This removes the necessity to calculate an inverse

matrix to solve the set of linear equations and speeds up the calculation. Hence it

is possible to express:

QT y = bR, (2.37)

and b can be found from:

b = Q
B

/R. (2.38)

Calculating the p-values: Following the initial model fit, explanatory variables

are tested to determine whether or not they are included in the final model. As

previously mentioned, the null hypothesis is that the variable would have a coe�cient

of zero if it were included in the model, and the user specifies the entry and exit

tolerances in the form of p-values. These are calculated as follows:
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1. Determine the standard error (SE):

SE = ErrorMS
p
R/I

2

. (2.39)

2. Calculate the critical t-value:

t
crit

= b/SE. (2.40)

3. Look up the p-value using the matlab function tcdf, which returns a probability

for given values of t and degrees of freedom v using the equation shown below

for the t-cumulative distribution function:

p = 2

Z �|tcrit|

�1

� (v+1

2

)

� (v
2

)

1
p

v⇡

1

(1 + t

2

v

)
v+1
2

dt, (2.41)

where � is the gamma distribution.

The method for stepwise regression is then as follows:

1. Define all explanatory variables and combination terms;

2. Fit the initial model;

3. If any terms that are not already in the model have a p-value < 0.05 (i.e. it is

unlikely that the term would have a coe�cient of zero if added to the model),

then add the term with the smallest p-value, and repeat the process. Else, go

to step 4;

4. If any terms in the model have a p-value > 0.1 (i.e. it is unlikely that the term

will not have a coe�cient of zero), remove the one with the largest p-value

and go to step 3. Else, end.

This method may build di↵erent models depending on the initial model

formed, and the order in which terms are added and removed from the model.

The algorithm terminates when no single step will improve the model. However,

there is no guarantee that a di↵erent initial model or a di↵erent sequence of steps to

add and remove terms will not produce a better fit. Therefore, stepwise fit models

are locally optimal, but not globally optimal. For this analysis, the initial model

began with no terms in the model, and added terms into the model based on the

associated p-value.
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2.5.11.1 Assumptions in multiple linear regression

• The dependent variable response is linearly dependent on one or more explana-

tory variables;

• The sample is representative of the population as a whole;

• The sample is normally distributed;

• The error is a random variable, where the mean is zero, and is conditional on

the explanatory variables;

• The errors are uncorrelated;

• The variance of the error is constant across observations.

2.5.12 Adjusted R2 value

The adjusted R2 value modifies the R2 value to take into account the number of

explanatory variables used within a model, with penalties for larger numbers of

explanatory variables. This is especially relevant when looking at multiple linear

regression. The adjusted R2 value will always be less than or equal to the R2 value,

and is defined as:

R̄2 = 1�
ErrorSS

TotalSS
.
Totaldf

Errordf
= 1�

ErrorMS

TotalMS
, (2.42)

where Totaldf is the total degrees of freedom (sample size - 1), and Errordf is the

degrees of freedom for the error [(sample size - number of explanatory variables in

the model) - 1].

The adjusted R2 value was calculated between observed data values and

predicted data values for all models formed by multiple linear regression. This

provided a measure for how much of the variability in the observed data was being

explained by the model, adjusted for the number of explanatory variables in the

model. These measures allowed the non-formal comparison of di↵erent models, to

see whether or not model refinement improved the final fit seen between observed

and predicted data. In most cases models could not be formally compared, as they

were mostly based on slightly di↵erent datasets. For example, if a model were refined

by removing one datapoint, the new model would be based on a slightly di↵erent

dataset, and could no longer be formally compared to the original model.
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Chapter 3

Biochemical Experimental

Results

This section details the results from the biochemical experiments I carried out at

The University of Warwick as part of my thesis project. It contains information

on the di↵erent experimental techniques as well as some of the key results obtained

by each technique. The purpose of this work was to collect a large set of biological

data for later modelling e↵orts, and to familiarise myself with di↵erent experimental

techniques, so that I could understand any problems that arose as a result of data

collection. The following techniques were all carried out by myself, unless stated

otherwise.

3.1 Oxidative stress

There is currently no agreement in the literature as to which measure of oxidative

stress is the most valuable or significant. Therefore, three independent metabo-

lites associated with oxidative stress were measured during this study, to gain a

clear picture about how the individuals were responding during the course of the

expedition. These were 8-iso-Prostaglandin F
2↵

(8-isoPGF
2↵

), 4-hydroxy-2-nonenal

(HNE) [Zarkovic, 2003] and glutathione levels. 8-isoPGF
2↵

and glutathione were

measured as part of my thesis project, and their measurement is detailed below.

This information was combined with the results for HNE, generated by another

member of the Feelisch group, to gain an overview of how the level of oxidative

stress changed in the individuals during the expedition.
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3.1.1 8-iso-Prostaglandin F
2↵

Isoprostanes are a class of prostanoids (a group of lipid compounds derived enzy-

matically from fatty acids) that are generated as a result of the attack of arachidonic

acid by free radicals during oxidative stress. 8-isoPGF
2↵

is a secondary peroxida-

tion end product, and 8-isoPGF
2↵

levels have been shown to be a good indicator of

oxidative stress in humans, compared to other markers [Morrow et al., 1992].

3.1.1.1 Immunoassay

A direct 8-iso-Prostaglandin F
2↵

Enzyme Competitive Immunoassay Kit (Assay De-

signs catalogue number 901-091) was used to measure 8-isoPGF
2↵

levels in each of

the 24 core team member’s plasma samples, as detailed in Section 2.2.1. The kit uses

a polyclonal antibody to bind, in a competitive manner, to the 8-isoPGF
2↵

avail-

able in the sample, or with an exogenous 8-isoPGF
2↵

with an alkaline phosphatase

molecule covalently attached.

After a simultaneous incubation, the excess reagents were washed away,

including any excess phosphatase. A p-nitrophenylphosphate substrate was then

added, which is a chromogenic substrate that can be cleaved by a phosphatase to

produce p-nitrophenol, which is yellow in colour, as shown in equation 3.1. Af-

ter incubation, the substrate was washed away, and the amount of yellow product

formed was measured in a microplate reader at 405nm. The amount of yellow

colour produced is inversely proportional to the concentration of free 8-isoPGF
2↵

in the sample. This is because the stronger the yellow colour generated, the less

8-isoPGF
2↵

was present in the sample to compete with the 8-isoPGF
2↵

coupled to

the phosphatase.

p� nitrophenylphosphate
Phosphatase

�������! p� nitrophenol(yellow) (3.1)

3.1.1.2 Results

Figure 3.1 shows the results for the 8-isoPGF immunoassay. Figure 3.1a shows all

24 core team individuals plotted over 7 time points. Figures 3.1b and 3.1c show the

results for the 10 lab sta↵ and 14 climber individuals, respectively. 8-isoPGF
2↵

show

a slight increase for all individuals between London and Namche, with the climbers

having a slightly wider range of values than the lab sta↵. There is an increase in

8-isoPGF
2↵

levels between Namche and Pheriche for all individuals. There is then

a decrease in 8-isoPGF
2↵

levels between Pheriche and Everest Base Camp week 1
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(b) Lab Sta↵
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(c) Climbers

Figure 3.1: Box and whisker plots showing how 8-isoPGF
2↵

levels change in 24
core team individuals during CXE 2007, showing log transformed values for (a) all
individuals, (b) for 10 lab sta↵ individuals and (c) for 14 climber individuals. Both
lab sta↵ and climber groups show similar responses up to Everest Base Camp Week
1, with di↵erences between how the lab sta↵ and climber groups respond between
Everest Base Camp weeks 6-8.
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for all groups, with the lab sta↵ showing a larger decrease, shown in Figure 3.1b.

The lab sta↵ show an increase in 8-isoPGF
2↵

levels between Everest Base Camp

weeks 1-6, whereas the climbers show a decrease. This may be due to the di↵erence

in ascent profile between the two groups here, shown in Figure 1.1, where climbers

ascended higher than lab sta↵ individuals. However, the climber levels would be

expected to increase here, and not decrease. This may be due to the climber group

having more experience at altitude than the lab sta↵ group, and showing better

anti-oxidant responses at high altitudes compared to the lab sta↵ group.

3.1.2 Glutathione determination

Reduced glutathione (GSH) is a tripeptide (�-glutamylcysteinylglycine) that con-

tains a free thiol (SH) group. GSH acts as an antioxidant, providing reducing equiv-

alents for the glutathione peroxidase catalysed reaction with harmful substances,

such as hydrogen peroxide to water, as shown in Figure 1.3. This reaction forms a

disulphide bond between two GSH molecules, forming oxidised glutathione (GSSG),

whilst simultaneously oxidising �-nicotinamide adenine dinucleotide phosphate (�-

NADPH) to NADP+. Any GSSG formed is readily converted back into GSH by the

enzyme glutathione reductase, which is also induced during oxidative stress [Haddad

and Harb, 2005; Rossi et al., 2002].

In healthy cells more than 95% of the total glutathione in the cell is in the

form of GSH and less than 5% is GSSG. If the cell is exposed to oxidative stress,

GSSG will accumulate and the ratio of GSH to GSSG will decrease. Therefore, the

quantification of GSH and GSSG can be used as an indicator of oxidative stress in

cells and tissues [Rahman et al., 2006].

3.1.2.1 The Tietze glutathione recycling assay

The Tietze assay is based on the glutathione recycling system by 5,5’-dithiobis-(2-

nitrobenzoic acid) (DTNB, also known as Ellman’s reagent) and glutathione reduc-

tase [Tietze, 1968; Rossi et al., 2002]. DTNB reacts with GSH to produce GSSG

and the chromophoric compound 2-nitro-5-thiobenzoic acid (TNB), which is yellow.

The GSSG formed is reduced back to GSH by glutathione reductase with the help of

the cofactor NADPH, as shown in Figure 3.2. Any new GSH formed is free to react

with DTNB to form more TNB. Therefore, the total glutathione concentration of a

sample can be determined by measuring the absorbance of the mixture at 412 nm,

which indicates how much TNB has been produced. This recycling system signifi-

cantly increases the sensitivity of glutathione detection compared to non-recycling
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methods [Tietze, 1968].

2-vinylpyridine (2-VP) is an alkylating agent that reacts with the thiol (SH)

group on GSH. 2-VP can be added to the mixture to derivatise any GSH present,

removing it from the reaction and allowing the quantification of GSSG present

within the sample [Gri�th, 1980]. The amount of GSH can then be calculated from

subtracting twice the oxidised glutathione concentration from the total glutathione

concentration.

A working glutathione assay protocol had previously been used in the Feelisch

lab for the determination of reduced and oxidised glutathione in fresh rat tissue and

plasma. My aim was to modify the protocol to allow the determination of both

reduced and oxidised glutathione levels in frozen human plasma samples, taken from

the CXE core team. The glutathione levels in human plasma are lower than those

found in rat plasma, therefore the sensitivity of the protocol had to be increased. It

was also not known how storing the samples at -80oC may a↵ect the levels detected.

Over a period of several months, the protocol was modified to improve relia-

bility and sensitivity. The original protocol was improved to allow the detection of

significantly lower quantities of glutathione than were possible in the first attempts.

The changes incorporated included:

• Lowering the dilutions made to the samples;

• Using a di↵erent supplier for the main enzyme. Initially an enzyme from

Sigma was used, and this was then replaced with an enzyme from Roche. The

specific activity of the two enzymes was comparable;

• Including a missed neutralisation step;

• Changing the dilution of the enzyme;

• Using fresh reagents every day;

• Increasing the temperature and length of the incubation period;

• Spiking the samples with a known concentration of oxidised and reduced glu-

tathione.

Despite all of these iterations, it was still not possible to obtain consistent

standard curves at low glutathione concentrations, or reliably measure glutathione

levels in human plasma samples that had been kept frozen for an extended period

of time. The refined version of this lab assay is detailed in Section 2.2.2.1.
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Figure 3.2: DTNB reaction with reduced glutathione (GSH) to form yellow TNB.
The rate of the formation of yellow product is directly proportional to the amount
of GSH present in the sample.
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3.1.2.2 Glutathione fluorescence assay

Due to the poor reliability of the Tietze recycling assay, in the end a commer-

cial Glutathione Assay Kit (BioVision, catalogue number K264-100) was used to

quantify both reduced and total glutathione levels within the plasma samples, as

described in Section 2.2.2.3. Oxidised glutathione levels were then calculated from

these measurements. Several other commercial glutathione kits were considered,

however, they all specifically stated that ”GSSG in normal resting plasma is at or

below the lowest level of detection for the assay.”

The BioVision assay uses a molecule called o-phthalaldehyde (OPA), which

reacts selectively with reduced thiols such as GSH to generate fluorescence, allowing

the quantification of GSH within the sample. The addition of a reducing agent

converts all of the GSSG present into GSH, and the addition of OPA allows the

specific quantification of the total glutathione in the sample.

GSSG can either be calculated by subtracting GSH from total glutathione

levels, or be measured specifically by adding a quencher to remove the GSH present,

and then adding a reducing agent to destroy the quencher and convert the GSSG

present to GSH for quantification by OPA.

3.1.2.3 Results

The results for the measurement of the di↵erent glutathione components are shown

in Figure 3.3. The lack of results for London is due to all of the London measure-

ments being out of range, even for this technique. Given that levels were measurable

for all other altitudes, this result came as a surprise, and may have been the result

of an issue with the plate or user error. It was not possible to re-run this partic-

ular plate due to the limited supply of plasma samples available. London levels of

GSH and the GSH:GSSG ratio would be expected to be higher than those seen for

Kathmandu. London GSSG levels would be expected to be lower than those seen

for Kathmandu, and total glutathione would be expected to be similar to that seen

for Kathmandu.

GSH levels show a slight decrease between Kathmandu and Namche, and

GSSG levels show an increase, shown in Figures 3.3a and 3.3b, respectively. As the

individuals are exposed to hypoxia, GSH present in the plasma would react with

ROS producing GSSG, therefore GSH levels are expected to decrease, and GSSG

levels are expected to increase [Chang et al., 1989]. The resulting GSH : GSSG

ratio shows a decrease between Kathmandu and Namche, shown in Figure 3.3d,

indicating an initial increase in oxidative stress.

66



GSH and total GSH/GSSG levels then show a steady increase up to Everest

Base Camp, coupled with a decrease in GSSG levels at these altitudes. This is most

likely due to an overall increase in glutathione production, which is inducible during

oxidative stress. In addition, glutathione reductase is increased [Haddad and Harb,

2005; Rossi et al., 2002], and would convert the excess GSSG back to GSH, resulting

in the increase in the GSH:GSSG ratio seen in Figure 3.3d.

A further increase in oxidative stress is seen between Everest Base Camp

weeks 1-6, shown by a decrease in GSH and the GSH:GSSG ratio, and an increase

in GSSG. This shows an altitude-independent change, and shows the response to

prolonged exposure to extreme altitude. This may also show the limit at which the

individuals can regulate oxidative stress levels.

3.1.3 Oxidative stress summary

Overall, there was a general increase in oxidative stress seen during CXE 2007.

This was shown by an overall increase in 8-isoPGF
2↵

levels shown in Figure 3.1a,

an overall increase in HNE shown in Figure 3.4a and a decrease in the ratio of

reduced to oxidised glutathione, shown in Figure 3.3d. However, this increase is

not constant across all altitudes, and the metabolite levels peak at di↵erent alti-

tudes. These di↵erences may be due to variations in the chemical reactivity and

biochemical pathways that lead to the formation of these di↵erent products. A gen-

eral increase in oxidative stress was expected during the expedition; as individuals

were exposed to higher levels of hypoxia, ROS levels would increase, producing more

ROS-products such as 8-isoPGF
2↵

and HNE, and antioxidants such as GSH would

be consumed [Morrow and Roberts, 1999, 2002]. None of the measures of oxidative

stress showed a significant di↵erence between lab sta↵ and climber groups, shown by

an acceptance of the null hypothesis for a t-test performed between the two groups,

at a 5% significance level. However, this may be due to the sample sizes being too

small to have the su�cient power to reject the null hypothesis at the 5% level (10

lab sta↵ individuals and 14 climber individuals), and some group di↵erences are

apparent for 8-isoPGF
2↵

levels in Figure 3.1.

3.2 Osmolality

Osmolality is a measure of the number of osmoles of solute per kilogram of solvent

(osmol/kg). The number of osmoles is the number of moles of a chemical compound

that contribute to a solution’s osmotic pressure, which is the pressure which must

be applied to a solution to prevent the inward flow of water across a semi-permeable
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(c) Total Glutathione
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(d) GSH : GSSG Ratio

Figure 3.3: Box and whisker plots showing how log-transformed glutathione levels
change in 24 core team individuals during CXE 2007. (a) shows reduced glutathione
(GSH), (b) shows oxidised glutathione (GSSG), (c) shows total glutathione and (d)
shows the GSH : GSSG ratio of the plasma.
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(a) All individuals, log transformed values
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(b) Lab Sta↵, log transformed values
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(c) Climbers, log transformed values

Figure 3.4: Box and whisker plots showing how log-transformed values from hy-
droxynonenal (HNE) levels changed in 24 core team individuals during CXE 2007.
(a) shows all individuals, with a general increase during the expedition. (b) and
(c) show no real di↵erence in the response seen for the sub-groups lab sta↵ (b) or
climbers (c).

69



5.45

5.5

5.55

5.6

5.65

5.7

5.75

5.8

London Kathmandu Namche Pheriche EBC wk1 EBC wk6 EBC wk8

Altitudes

L
o

g
 O

s
m

o
la

li
ty

 (
m

O
s

m
o

/k
g

)

Figure 3.5: A box and whisker plot showing the change in log-transformed plasma
osmolality of 24 core team members during CXE 2007. This measure was done as a
control, to see whether changes in other metabolites measured in the plasma were
real changes or due to a change in plasma density, due to fluid shifts or increased
diuresis (urine output). There was no significant change in plasma osmolality during
CXE 2007, assessed by the acceptance of the null hypothesis for the ANOVA at the
5% confidence level, as described in Section 2.5.6.
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membrane. An Advanced Model 3300 Micro-Osmometer was used to measure the

osmolality of the 24 core team member’s plasma samples, detailed in Section 2.2.3.

Plasma osmolality was determined by using freezing point depression (FPD) os-

mometry. Adding another solute to an initial solution lowers the freezing point

of the mixture. For example, seawater remains liquid at temperatures below 0oC

(the freezing point of pure water at atmospheric pressure) due to its salt content.

Osmometry measures the total molar concentration of dissolved solids in any solu-

tion, as the freezing point of a solution is depressed in direct relation to the solute

concentration.

3.2.1 Results

During acute exposure to high altitude, urine output generally increases (known

as diuresis) to concentrate the plasma, and increase the blood’s oxygen carrying

capacity. The body’s fluid also shifts from the intravascular space to the interstitial

and intracellular spaces, to decrease the blood plasma within hours of exposure to

hypoxia [McArdle et al., 2007]. Therefore, a general increase in plasma osmolality

was expected during the expedition. Figure 3.5 shows the osmolality levels for

the core team’s plasma samples during CXE 2007. The figure shows no change

in plasma osmolality during the expedition, confirmed by a rejection of the null

hypothesis for the ANOVA at the 5% confidence level. As CXE 2007 was a strictly-

controlled expedition, all participants were kept well-hydrated during the entire

expedition [CASE, 2012]. This would have compensated for any increased urine

output, and explain why plasma osmolality stayed constant throughout CXE 2007.

3.3 BioPlex analysis

The Bio-Rad BioPlex system is based on Luminex xMAP technology, which al-

lows the multiplexing of up to 100 di↵erent multiple ELISA-type assays to be per-

formed within a single sample. Each assay is performed on the surface of a 5.6µm

polystyrene bead. The beads are filled with di↵erent ratios of green and red fluores-

cent dye, resulting in a possible array of 100 distinct colours. Each set of beads can

be combined with a di↵erent capture molecule or antibody, which can then be mixed

with di↵erent samples in a microplate to detect the presence of specific antigens.

Detection follows a sandwich immunoassay method, where the beads are

incubated with sample, and a fluorescently-labelled reporter tag is added to bind

specifically to the sample of interest. The beads are drawn into the BioPlex machine

and passed through the machine in a single file, where two lasers excite the beads
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Figure 3.6: Log-transformed box and whisker plots showing 7 diabetes-related bio-
chemical metabolites measured in 24 individuals during CXE 2007. All of the
metabolites apart from ghrelin (shown in (c)) show di↵erences between altitudes,
shown by a rejection of the null for the ANOVA at the 5% level (as described in
Section 2.5.6, and shown in Table 3.1).
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Figure 3.7: Log-transformed box and whisker plots showing 7 diabetes-related bio-
chemical metabolites measured in 24 individuals during CXE 2007. Only C-peptide,
glucagon, GLP-1 and insulin show changes between altitudes, indicated by a rejec-
tion of the null for the ANOVA at the 5% level (as described in Section 2.5.6, and
shown in Table 3.1). However, all of these metabolites show altitude-independent
di↵erences between Everest Base Camp weeks 1-8, which were shown to be signifi-
cant by a rejection of the null for the ANOVA at the 5% level.
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Figure 3.8: Box and whisker plot showing log-transformed glucose levels in 24 indi-
viduals during CXE 2007. Glucose levels show a significant change between London
- Everest Base Camp week 1, shown by a rejection of the null hypothesis for an
ANOVA at the 5% level (shown in Table 3.1). However, there is no significant
change between Everest Base Camp weeks 1-8, as shown by an acceptance of the
null for an ANOVA at the 5% level.
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individually. The classification laser excites the dyes in each bead, identifying the

bead’s spectral address. The second laser excites the reporter molecule bound to the

antigen of interest, allowing the quantification of the captured analyte. The signals

are read simultaneously for each bead in a high-throughput manner, to allow the

fast quantification of several molecules of interest in one sample.

3.3.1 Results

The BioPlex system was used to measure a total of 14 di↵erent metabolites linked

to diabetes, obesity and metabolism, as described in Table 2.2. These metabolites

were measured in each of the core team member’s plasma samples, as detailed in

Section 2.2.4, and the results are shown in Figures 3.6 and 3.7. Two separate

2-way ANOVAs (as described in Section 2.5.6, looking for the e↵ect of altitude

and individual, without interaction) were carried out here; one for results between

London and Everest Base Camp (EBC) week 1, and the other for EBC weeks 1, 6

and 8. The first set of analyses tested for altitude-dependent changes, as there was

a change in altitude between each of the samples. The second set of analyses tested

for altitude-independent changes, as the samples were all taken at the same altitude

(Everest Base Camp, 5300m).

Figure 3.6 shows responses for adipsin, adiponectin, ghrelin, leptin, PAI-1,

resistin and TNF-↵. Ghrelin does not show a change between altitudes, or between

the three time-points at Base Camp, with significance levels for the ANOVA of 0.17

and 0.54 for London to EBC week 1 and EBC weeks 1-8, respectively (shown in

Table 3.1). However, ghrelin does show di↵erences between individuals for both of

these sets of data, with significance values of 1.9x10�22 for London to EBC week

1 and 0.0015 for EBC weeks 1-8. Adiponectin does not show a di↵erence between

individuals between EBC week 1-8, with a significance value of 0.076. All other

metabolites show di↵erences between individuals and altitudes for both London

to EBC week 1 and EBC weeks 1-8, indicating both hypoxia-dependent changes

(London - EBC week 1) and hypoxia independent changes (EBC weeks 1-8) are

occurring in these metabolites, and that there are di↵erences between individuals.

Figures 3.6a and 3.6b show the results for adipsin and adiponectin, respec-

tively. Both of these metabolites show low outlying values that skew the box and

whisker plot, even when log-transformed, and make it di�cult to see the general pat-

tern during the expedition. The low outlier seen for Kathmandu for both adipsin

and adiponectin is for the same individual, denoted X18, indicating that this indi-

vidual is showing a particularly low response for these metabolites at that altitude.

The low outlier for adipsin at Namche is for a di↵erent individual, denoted X14.
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Figure 3.7 shows the responses for C-peptide, GIP, glucagon, GLP-1, IL-6,

insulin and visfatin. Only C-peptide (Figure 3.7a), glucagon (Figure 3.7c), GLP-

1 (Figure 3.7d) and insulin (Figure 3.7f) show changes between altitudes between

London and EBC week 1. This was indicated by a rejection of the ANOVA null

hypothesis at the 5% level, with significance levels of 0.0024, 0.00000037, 0.00045

and 0.00001, respectively (shown in Table 3.1). However, all of the metabolites show

altitude-independent changes between EBC weeks 1-8, shown by a rejection of the

ANOVA null at 5%, shown in Table 3.1. The increase seen between EBC weeks

1-8 is seen for both lab sta↵ and climber groups in all cases, even though the two

groups were exposed to di↵erent conditions during these time points, as shown in

Figure 1.1. It is also worth considering that the time between EBC 1-6 is in terms

of weeks and not days, as the earlier measurements were.

Figure 3.8 shows the change in glucose levels during the expedition. Glucose

levels show a change between London and EBC week 1, indicated by a significance

value of 0.0015, shown in Table 3.1. Interestingly, glucose does not show a change

between EBC weeks 1-8, as shown by significance value of 0.8. Many of the metabo-

lites reported in Figure 3.7 that show an increase between EBC weeks 1-6 play a

role in glucose metabolism, including C-Peptide (Figure 3.7a), GIP (Figure 3.7b),

glucagon (Figure 3.7c), GLP-1 (Figure 3.7d) and insulin (Figure 3.7f).

Glucose metabolism is strictly controlled, which would explain why it only

shows a small change between London and EBC week 1, and does not show a change

in-between EBC weeks 1-8. The sharp increase seen for many of the glucose-related

metabolites between EBC weeks 1-6 suggests some form of breakdown in these path-

ways during prolonged exposure to extreme hypoxia. It may even suggest some form

of hypoxia-induced insulin-resistance, and requires further investigation to gain an

understanding of what is happening at extreme altitude. Additional plasma sam-

ples are available at intermediate time points between Everest Base Camp weeks

1-8, however, there was not su�cient time to measure these additional samples dur-

ing my thesis project. The measurement of these samples would help gain a better

understanding of what happens to glucose metabolism during prolonged exposure

to extreme hypoxia.

76



M
et
ab

ol
it
e

L
on

d
on

to
E
ve
re
st

B
as
e
C
am

p
w
ee
k
1

E
ve
re
st

B
as
e
C
am

p
w
ee
ks

1
-
8

A
lt
it
u
d
e

In
d
iv
id
u
al

T
im

e-
p
oi
nt

In
d
iv
id
u
al

F
-v
al
u
e

p
-v
al
u
e

F
-v
al
u
e

p
-v
al
u
e

F
-v
al
u
e

p
-v
al
u
e

F
-v
al
u
e

p
-v
al
u
e

A
d
ip
on

ec
ti
n
(p
g/
m
L
)

6.
75

•
8.
3E

-0
5

13
.9
4

•
6.
4E

-2
1

2.
73

7.
6E

-0
2

6.
62

•
5.
8E

-0
8

A
d
ip
si
n
(p
g/
m
L
)

28
.3
1

•
2.
5E

-1
5

3.
89

•
1.
7E

-0
6

35
.6
2

•
7.
5E

-1
0

5.
44

•
9.
3E

-0
7

G
h
re
li
n
(p
g/
m
L
)

1.
65

1.
7E

-0
1

15
.4
7

•
1.
9E

-2
2

0.
62

5.
4E

-0
1

2.
85

•
1.
5E

-0
3

L
ep
ti
n
(p
g/
m
L
)

8.
82

•
4.
5E

-0
6

9.
89

•
3.
4E

-1
6

7.
86

•
1.
2E

-0
3

4.
13

•
3.
0E

-0
5

P
A
I-
1
(p
g/
m
L
)

13
.8
3

•
7.
5E

-0
9

1.
95

•
1.
4E

-0
2

11
.7
7

•
8.
4E

-0
5

1.
76

5.
5E

-0
2

R
es
is
ti
n
(p
g/
m
L
)

9.
25

•
2.
5E

-0
6

4.
39

•
1.
8E

-0
7

11
.8
5

•
8.
0E

-0
5

2.
50

•
4.
7E

-0
3

T
N
F
al
p
h
a
(p
g/
m
L
)

3.
50

•
1.
1E

-0
2

8.
38

•
4.
1E

-1
4

4.
28

•
2.
0E

-0
2

2.
29

•
9.
3E

-0
3

C
-P
ep
ti
d
e
(p
g/
m
L
)

4.
46

•
2.
4E

-0
3

2.
61

•
6.
4E

-0
4

44
.8
9

•
3.
0E

-1
1

1.
53

1.
1E

-0
1

G
IP

(p
g/
m
L
)

1.
42

2.
3E

-0
1

1.
95

•
1.
4E

-0
2

21
.7
3

•
3.
0E

-0
7

3.
27

•
3.
9E

-0
4

G
lu
ca
go
n
(p
g/
m
L
)

10
.7
0

•
3.
7E

-0
7

7.
27

•
1.
9E

-1
2

25
.2
4

•
5.
6E

-0
8

1.
64

7.
9E

-0
2

G
L
P
-1

(p
g/
m
L
)

5.
59

•
4.
5E

-0
4

8.
64

•
1.
7E

-1
4

38
.6
4

•
2.
5E

-1
0

1.
52

1.
2E

-0
1

In
su
li
n
(p
g/
m
L
)

8.
21

•
1.
0E

-0
5

8.
30

•
5.
3E

-1
4

32
.5
4

•
2.
5E

-0
9

1.
43

1.
5E

-0
1

IL
-6

(p
g/
m
L
)

0.
30

8.
7E

-0
1

6.
73

•
1.
4E

-1
1

47
.0
2

•
1.
5E

-1
1

1.
67

7.
3E

-0
2

V
is
fa
ti
n
(p
g/
m
L
)

0.
50

7.
4E

-0
1

9.
98

•
2.
6E

-1
6

24
.5
8

•
7.
6E

-0
8

2.
38

•
6.
9E

-0
3

G
lu
co
se

(m
M
)

4.
78

•
1.
5E

-0
3

3.
18

•
4.
4E

-0
5

0.
23

8.
0E

-0
1

0.
74

7.
8E

-0
1

T
ab

le
3.
1:

2-
w
ay

A
N
O
V
A

re
su
lt
s
as
se
ss
in
g
th
e
e↵

ec
t
of

al
ti
tu
d
e
an

d
in
d
iv
id
u
al
,
p
er
fo
rm

ed
b
et
w
ee
n
5
al
ti
tu
d
es

(L
on

d
on

to
E
ve
re
st

B
as
e
C
am

p
w
ee
k
1)
,
re
p
re
se
nt
in
g
al
ti
tu
d
e-
d
ep

en
d
en
t
ch
an

ge
s,

an
d
se
p
ar
at
el
y
on

th
e
th
re
e
ti
m
e-
p
oi
nt
s
at

E
ve
re
st

B
as
e
C
am

p
(E

ve
re
st

B
as
e
C
am

p
w
ee
ks

1,
6
an

d
8)
,
re
p
re
se
nt
in
g
al
ti
tu
d
e-
in
d
ep

en
d
en
t
ch
an

ge
s.

p
-v
al
u
es

m
ar
ke
d
w
it
h
a
d
ot

(•
)
in
d
ic
at
e
a

re
je
ct
io
n
of

th
e
nu

ll
hy

p
ot
h
es
is

at
th
e
5%

le
ve
l,
in
d
ic
at
in
g
a
d
i↵
er
en

ce
b
et
w
ee
n
m
ea
n
s,

as
d
es
cr
ib
ed

in
S
ec
ti
on

2.
5.
6.

77



Chapter 4

Diary Data

The diary data is an additional dataset of simple physiological measurements col-

lected for the 24 core team members. It consists of daily measurements taken during

the expedition, and shows the day-to-day variation of each physiological measure-

ment within the dataset. The analysis presented in this chapter aims to assess the

precision and reproducibility of these measurements during the ascent, to inform the

analysis of the main core dataset. Similar physiological measurements are available

in the main dataset, therefore, the analysis performed on the diary data can be used

to highlight any measures that may potentially be useful for further analysis in the

core dataset.

The diary data contains information collected on blood pressure, oxygen sat-

uration, heart rate and respiratory rate. For each of these four main physiological

measurements, there are two measured variables and two derivations available. The

blood pressure measurements are Systolic and Diastolic blood pressure, as well as

the ratio of and di↵erence between these two biological measurements. For oxygen

saturation, heart rate and respiratory rate, measurements were taken at rest and

after a 2-minute step exercise test, and the ratio of and di↵erence between these two

biological measurements were also calculated. A full description of all 16 physiolog-

ical measurements contained in the diary data, and the shorthand names that will

be used throughout the rest of the analysis, can be found in Table 4.1.

The 2-minute step test exposes an individual to a small amount of physical

stress on each day. The di↵erence between and ratio of measurements at rest and

after exercise show an individual’s response to a defined amount of stress at di↵erent

altitudes, and can be used as a measure of how well that individual is adapting to the

environmental change. It was important to ascertain which of the four derivations

for each physiological measurement was the most consistent, useful or biologically
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relevant, as there may be redundancy within the measurements. This dataset al-

lows an assessment of the validity of the single-point measurements collected in the

main core study dataset, by analysing whether changes between altitudes seen for

a particular measurement are within the normal day-to-day variability, or larger,

indicating a true response to altitude.

This dataset can also be used to detect di↵erent patterns of adaptation be-

tween individuals. For example, individuals may show no significant change in

response to a change in altitude, a steady change in response to a change in al-

titude, or an erratic or extreme response to a change in altitude. Comparing the

responses seen at di↵erent altitudes allows the analysis of how individuals respond to

changes in altitude, considering both short-term responses (to changes in altitude)

and long-term adaptation.

Data is available for a maximum of 78 days for each individual, however, all

individuals have at least one day where measurements were not collected. This may

be due to an individual being ill or otherwise unavailable for testing on a particular

day. Data is available for an average of 73 days for lab sta↵ members and 63 days

for climber individuals, as defined in Section 1.3. This di↵erence is mainly due to

the climber team attempting to summit between days 60-70 (shown in Figure 1.1),

and measurements not being taken at extreme high altitudes.

4.1 Aims

The diary data has been used to assess the following questions:

1. Do the physiological measurements change with altitude?

2. Which of the physiological measurements are the most reliable?

3. Is there redundancy among these physiological measurements?

4. Is there evidence of di↵erent levels or types of adaptation?

5. Which of the physiological measurements are potentially the most suitable for

further analysis?

4.1.1 Lab sta↵ vs. climber group

In conducting the analyses of the diary data, the dataset was initially split into two

groups, one containing the records for the 10 lab sta↵ and the other containing the

records for the 14 climbers, as detailed in Section 1.3. The climber group was a
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self-selected group with more experience and exposure to high altitude than the lab

sta↵ group. The two groups had very di↵erent ascent profiles between days 37-71,

as shown in Figure 1.1, and were therefore expected to respond di↵erently during

these times.

ANOVA was performed to assess for di↵erences between the means of the lab

sta↵ and climber groups during the entire expedition, as described in Section 2.5.6.

The results for these tests did not show a significant di↵erence between the two

groups for any of the physiological measurements at the 5% level, up to 5300m.

However, due to such small sample sizes at extreme altitude (down to one or two

individuals, and on some days no individuals, at altitudes above 5300m), it was

not possible to obtain meaningful results between the two groups at altitudes above

5300m. Therefore, the main analyses were conducted on all 24 core team members

to improve the power of subsequent tests, due to the larger sample size. Lab sta↵

and climber groups were still visually assessed separately for some variables, mainly

to split the group into smaller subgroups to allow for easier visual analysis of trends

or patterns.

4.2 Results

Several di↵erent statistical analyses have been performed on the diary dataset, in

order to address the questions posed in section 4.1. A summary of the results is

described in the following sections.

4.2.1 Do the measurements change with altitude?

The aim of this analysis was to determine whether each of the physiological mea-

surements changed significantly during the expedition. Measurements that did not

change significantly would not be useful for predictive modelling purposes, as some

change is required in both the dependent and independent variable to enable the

prediction of one with the other.

Box and whisker plots were produced, as described in Section 2.5.1, to visu-

ally assess how each of the physiological measurements changed during the expedi-

tion. Figures 4.1 and 4.2 show how oxygen saturation at rest and diastolic blood

pressure changed in both lab sta↵ and climber groups during CXE 2007. The as-

cent profile is marked on both of these figures, to enable the comparison of altitude

increases to changes in the physiological measurements. Figure 4.1 shows a clear

negative correlation between oxygen saturation and altitude for both the lab sta↵

(Figure 4.1a) and climber (Figure 4.1b) groups. The change in oxygen saturation
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(a) Oxygen saturation at rest for 10 lab sta↵ individuals.
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(b) Oxygen saturation at rest for 14 climber individuals

Figure 4.1: Box and whisker plots showing oxygen saturation at rest overlaid with
the ascent profiles for the lab sta↵ and climber groups during CXE 2007. There
is a clear increase in variation within both groups as altitude increases, shown by
an increase in the interquartile range (length of the box). Both (a) and (b) show a
clear negative correlation with the shape of the box and whisker plot response.
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(a) Diastolic blood pressure at rest for 10 lab sta↵ individuals.
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(b) Diastolic blood pressure at rest for 14 climber individuals

Figure 4.2: Box and whisker plots showing diastolic blood pressure (DBP) at rest
overlaid with the ascent profiles for the lab sta↵ and climber groups during CXE
2007. There is an increase in DBP until day 20, for both groups, and some variability
in the DBP after day 20, which is clearest for the lab sta↵ in (a), where the altitude
remained constant.
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(a) Regression of heart rate after exercise over altitude for 24 individuals.
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(b) Regression of respiratory rate at rest over altitude for 24 individuals.

Figure 4.3: Linear regression analysis of (a) heart rate after exercise against alti-
tude and (b) respiratory rate at rest against altitude, for 24 individuals. Climber
individuals are marked in green and red, lab sta↵ individuals are marked in blue
and magenta. Individuals X01 and X07 were climber individuals who became ill,
and are labelled in red. Individual X23 is a lab sta↵ member who became ill, and is
labelled in magenta. These measurements are shown because they demonstrate the
di↵erences seen between fitted individual responses. Individual regression plots are
shown in Figures 4.4 and 4.5.
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(b) Individual X10
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(c) Individual X11
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Figure 4.4: Linear regression analysis of heart rate after exercise (HR
Ex

) against
altitude for 4 individuals. The statistic values are shown in Table 4.3 for each fit.
(a) shows the regression for individual X05, who shows a significant GOF statistic
of 10.19, but a non-significant p-value of 0.611. This indicates that the line is not
significantly di↵erent from zero, but that the response is linear, also shown by a
low LOF statistic of 0.40, which shows that the means (shown as black squares) fit
closely to the line. (b) shows the results for individual X10, who shows a slope sig-
nificantly di↵erent from zero (shown by a significant p-value of 0.002 and significant
GOF statistic value of 21.08), with means that deviate slightly from the regression
line (shown by a LOF statistic value of 1.16). (c) shows the results for individual
X11, who shows a significant p-value of 0.03, but a non-significant GOF statistic
of 0.97. These results indicate that there are di↵erences between means, but that
the response seen is not linear, which is also shown by a high LOF statistic of 2.32,
indicating that there is scatter around each of the means. (d) shows the results
for individual X20, who shows a fitted regression line with a slope not significantly
di↵erent from zero (shown by a non-significant p-value of 0.794 and a non-signficiant
GOF statistic of 0.03), and a large amount of scatter of points around each mean
(shown by a low LOF statistic of 0.67).
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Figure 4.5: Linear regression analysis of respiratory rate at rest (RR
rest

) against
altitude for 4 individuals. The statistic values are shown in Table 4.4 for each fit.
(a) shows the results for individual X03, who shows a fitted regression line that
is not significant from zero (shown by a non-significant GOF statistic of 0.06 and
a non-significant p-value of 0.176), with means (black squares) that deviate from
the fitted line (shown by a high LOF statistic of 1.70). (b) shows the response
for individual X17, who shows a line that appears to be not significantly di↵erent
from zero (shown by a non-significant GOF statistic of 0.08), however the p-value
of the F -value is significant at 0.01. This indicates that there does appear to be a
di↵erence between the means, but that the response is non-linear, which is evident
by a very high LOF statistic of 3.04, indicating that the means deviate from the
fitted line. (c) shows the response for individual X18, showing a significant GOF
statistic of 11.10, but a non-significant p-value. This indicates that the line is not
significantly di↵erent from zero, but that the response is linear, also shown by a low
LOF statistic of 0.63, which shows that the means fit closely to the line. (d) shows
the response for individual X21, who shows a fitted line significantly di↵erent from
zero (shown by significant GOF statistic of 30.11 and a significant p-value of 0.002),
with some scatter around each mean (black square, shown by a low LOF statistic
of 0.73). 87
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was identified to be statistically significant during the expedition by an analysis of

variance, at the 5% significance level, as described in Section 2.5.6. This confirms

that the level of hypoxia that the individuals were exposed to during the expedition

increased as altitude increased, which was as expected. Figure 4.2 shows a positive

correlation between altitude increase and increases in diastolic blood pressure, which

was also confirmed to be a statistically significant change by analysis of variance at

the 5% significance level.

Table 4.2 shows the results for the two-way ANOVA performed to assess the

main e↵ects of altitude and individual on each of the physiological measurements.

The table shows that the null hypothesis for the ANOVA was rejected for all phys-

iological measurements at the 5% level for both altitude and individual, indicating

that the average (mean) response by the group changed significantly at some point

during the expedition for all of the measurements, with respect to both altitude and

individual.

A simple linear regression analysis was also performed for each physiological

measurement against altitude. This was done for both the group as a whole, to as-

sess how the group was responding during the expedition, and for individuals within

each group, to assess how each individual was responding during the expedition. The

regression was performed to assess whether the change seen in each physiological

measurement could be described by a linear fit, and to assess how well this line de-

scribed the data. The results could also be used to assess whether each physiological

measurement changed significantly with altitude, shown by a regression line with

a slope significantly di↵erent from zero. Table 4.2 shows the results for the group

regression analysis performed between each physiological measurement and altitude.

The heart rate di↵erence measurement was the only physiological measurement that

did not show a regression line slope that was significantly di↵erent from zero, with

a non-significant GOF statistic of 2.46, as described in Section 2.5.10.1.

Figure 4.3a and Table 4.3 show the individual regression results for all indi-

viduals for heart rate after exercise, with the results for the group regression at the

bottom of Table 4.3. The group response shows a slope significantly di↵erent from

zero, however, Table 4.3 shows that only four individuals have a regression slope

significantly di↵erent from zero shown by significant GOF statistics, labelled in the

table with an asterisk (*). Figure 4.4 shows the linear regression of heart rate after

exercise against altitude for four individuals, and demonstrates the di↵erences in

response seen between individuals.

Figure 4.3b and Table 4.4 show the individual regression results for respira-

tory rate at rest, with the results for the group regression at the bottom of Table 4.4.
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The overall group regression shows a slope significantly di↵erent from zero, with a

significant value for the GOF statistic (labelled with an asterisk (*)). The individ-

ual responses for this measurement show some variability, with both positive and

negative slopes. Figure 4.5 shows the linear regression of respiratory rate at rest

against altitude for four individuals. This figure shows the di↵erence in response

seen between individuals. These results indicate that there is a lot of variability in

how individuals are responding, and in some circumstances, this may mean that a

group summary is not capturing the inter-individual di↵erences seen within a group.

In some cases, the group as a whole may be showing a response, however, this may

be due to only a small number of individuals within that group, and may not be

representative of the group as a whole.

4.2.1.1 Summary

• ANOVA showed a rejection of the null hypothesis for both altitude and in-

dividual at the 5% level for all physiological measurements, indicating that

all of the measurements show a significant change at some point during the

expedition;

• Simple linear regression analysis against altitude showed that the heart rate

di↵erence measurement was the only physiological measurement that did not

show a slope significantly di↵erent from zero;

• Analysis of individual regression results show that even though the group as

a whole may show a regression slope significantly di↵erent from zero, all indi-

viduals within that group may not. Therefore, analysis of both the individual

regressions and group regression is required to fully understand what is hap-

pening in the group overall;

• Individual regression and ANOVA analyses show that for each of the physio-

logical measurements, at least one individual shows a significant change during

the expedition, highlighting that there are di↵erences in how individuals are

responding to altitude.

4.2.2 Which measurements are the most reliable?

The aim of this analysis was to assess the precision and reproducibility of each of the

measurements within the diary dataset. Box and whisker plots were used to visually

assess the variability during the expedition. Figure 4.1 shows that the variability

for resting oxygen saturation increases as altitude increases for both lab sta↵ and
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Parameter Name Coe�cient of Variation
from Linear Regression and
ANOVA

O2SatRatio

0.052
O2SatRest

0.053
O2SatEx

0.061
BP

Ratio

0.084
DBP 0.106
SBP 0.110
HR

Ex

0.135
HR

Rest

0.168
HR

Ratio

0.200
RR

Ex

0.216
RR

Ratio

0.223
PP 0.235
RR

Rest

0.245
�HR 0.424
�RR 0.656
�O2Sat 0.772

Table 4.5: A summary of all diary data measurements, ranked in increasing order of
the C

V

value, obtained from the regression, as described in Section 2.5.10.3. Low C
V

values indicated low day-to-day variability, i.e. measurements taken on subsequent
days will be very similar to one another.

climber groups, indicated by a larger interquartile range (IQR, shown by the length

of the box) at higher altitudes. For example, day 1 in Figure 4.1b has an IQR of

2%, whereas day 40 has an IQR of 9%.

Figure 4.2 shows the variability for diastolic blood pressure stays roughly

the same for both lab sta↵ and climber groups at around 15-20 mmHg. Figure 4.2a

shows variability in the group response for the lab sta↵ after day 20, even though

altitude remained constant. Long-term adaptation to hypoxia would expect to show

a consistency over time, whereas the variability shown in Figure 4.2a is more di�cult

to explain.

The coe�cient of variation (C
V

) was calculated from the regression analysis

for each physiological measurement in Table 4.1, as described in Section 2.5.10.3.

The C
V

can be used as a measure of the overall day-to-day variability within each

measurement, and is used here as a measure of how reproducible a particular mea-

sure is, with a low C
V

value indicating that two measurements taken at the same

altitude will be very similar to one another. This analysis is also important for

the assessment of the core dataset, which only contains single-point measures for

all physiological and biochemical measurements. Therefore, the results from this

analysis can be used as an indicator of how reliable a single measure is for each
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altitude.

Table 4.5 shows a ranked summary of the C
V

values for each measurement.

Standard deviations must always be assessed in the context of the dataset, however,

the C
V

is independent of the unit in which the measurement has been taken, and is

therefore dimensionless. This allows the formal comparison of the C
V

value across

di↵erent datasets, and is very useful for the comparison of di↵erent physiological

measurements within the diary data. Table 4.5 shows that oxygen saturation mea-

surements for rest, exercise and ratio have the lowest day-to-day variability for any

of the physiological measurements, indicated by the lowest C
V

values of 0.052, 0.053

and 0.061, respectively. Respiratory rate measurements show the highest day-to-day

variability, with the highest C
V

values of 0.216, 0.223 and 0.245 for exercise, ratio

and resting values, respectively. This is likely to be due to the di�culty in taking

respiratory rate measurements, as it is very di�cult to see the movement of the

chest when the subject is wearing several layers, especially in poor light conditions.

Di↵erence measurements showed the highest C
V

values within each measurement.

This is to be expected, as it is combining the error associated with two di↵erent

measurements.

4.2.2.1 Summary

• The measurements showing the lowest relative day-to-day variability were con-

sidered the most reliable measurements. These were oxygen saturation ratio,

oxygen saturation at rest and oxygen saturation after exercise, with C
V

val-

ues of 0.052, 0.053 and 0.061, respectively. This indicates that single-point

measurements should be suitable for oxygen saturation in the core dataset, as

the measurements show low day-to-day variability for measurements taken on

di↵erent days at the same altitude;

• The measurements with the highest day-to-day variability were respiratory

rate at rest, after exercise and their ratio, with C
V

values of 0.216, 0.223

and 0.245, respectively. This indicates that these values varied a lot between

measurements at the same altitude, and may not be suitable for use in further

analysis and modelling. However, this variability may be due to di�culties in

taking those particular measurements;

• This analysis highlights the issue of the reliability of single-point measures for

the core dataset.
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4.2.3 Is there any redundancy within these measurements?

As there are multiple derivations of each physiological measurement available, this

analysis looks at any redundancy within these measurements, i.e are any of the

measurements showing the same response? If measurements are showing the same

information, then only the measurements that are the most statistically and biolog-

ically informative would be used for further analysis to help save the time taken to

carry out any further analysis.

Ideally, we want measurements that show a change with altitude and have

low day-to-day variability. Correlations were calculated and scatter plots produced

between all pairs of physiological measurements, to assess how similar the responses

were for each measurement, as described in Section 2.5.7. If two physiological mea-

surements show a strong correlation, as determined by a high correlation coe�cient

and significant p-value, then potentially only one would be needed for further anal-

ysis.

The di↵erence and ratio measurements showed high levels of correlation with

one another, with correlation coe�cients of 0.868 for blood pressure, -0.893 for res-

piratory rate, -0.942 for heart rate and -0.989 for oxygen saturation, shown in Ta-

ble 4.6. These high correlation values were expected, as the di↵erence and ratio

measurements are both slightly di↵erent ways of showing how the rest and exer-

cise measurements are related to one another. The ratio measurements consistently

showed a lower C
V

than the di↵erence measurements, as shown in Table 4.2, in-

dicating a lower day-to-day variability for the ratio measurement compared to the

di↵erence measurement.

Although the ratio measurement is the most statistically reliable, the di↵er-

ence measurement is more commonly used in the biological and medical environ-

ment. For example, blood pressure is always expressed as pulse pressure (systolic

blood pressure - diastolic blood pressure). A di↵erence measure is easy to interpret,

and removes the scale of the measurement. For example, if an individual has a very

low blood pressure, the di↵erence would not take this into account, and only provide

the absolute di↵erence between the values. A ratio may be misleading here, because

if the blood pressure is low, then the resulting ratio may also be low. For example,

a ratio value of 2 can be obtained by a 4:2 ratio, or by a 8:4 ratio, whereas the

di↵erence values for these ratios would be di↵erent. Which measure to use depends

on the information required, and which method would best display this information.

Oxygen saturations at rest and after exercise show a strong significant pos-

itive correlation with a correlation coe�cient of 0.824 and a p-value that was too

small to be calculated by Excel (shown as ./), indicating that they are showing a
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very similar response to altitude. Resting oxygen saturation levels show a lower

C
V

of 0.053 than oxygen saturations after exercise, which shows a C
V

of 0.061.

However, oxygen saturations after exercise show a larger change in response to al-

titude, shown by a steeper slope of -0.0041 compared to -0.0032 for resting oxygen

saturation. Oxygen saturation after exercise also shows a slight di↵erence between

individual responses, whereas oxygen saturation at rest does not, suggesting this

may be the most informative oxygen saturation to use for further analysis.

Respiratory rate at rest and respiratory rate after exercise show a weak pos-

itive correlation with a correlation coe�cient of 0.505 and a p-value of 9.4x10�93.

Systolic and diastolic blood pressure show a strong significant positive correlation,

with a correlation coe�cient of 0.709 and p-value of 1.9x10�218, shown in Figure 4.6.

Both of these measurements show di↵erent information, and are most often used in

a clinical environment together (as pulse pressure), therefore, both values would

be potentially informative in further analysis, rather than using one measurement

alone.

Correlations between unrelated measurements are weaker than those seen

between related measurements, as shown in Table 4.6, and was to be expected, as

they are measuring di↵erent physiological responses. Figure 4.7a shows a significant

weak negative correlation between oxygen saturation at rest and respiratory rate

after exercise for the whole core group, with a correlation coe�cient of -0.346 and a

p-value of 3.1x10�41. However, individuals within the group show di↵erent relation-

ships, for example individual X18 shows a strong significant negative correlation in

Figure 4.7b, with a correlation coe�cient of -0.710 and a p-value of 0.034, whilst

individual X08 shows no correlation in Figure 4.7c with a correlation coe�cient of

-0.210 and a p-value of 0.140. However, this low r -value and high p-value may be

due to 4 high values for respiratory rate at high oxygen saturation levels. This corre-

lation shows one of the adaptive responses that occurs during exposure to hypoxia;

as the oxygen saturation level of the blood drops, the respiratory rate increases to

try and increase the blood oxygen saturation. These individual correlations provide

information on di↵erences between individuals, and can be used to assess whether

individuals are showing similar relationships between variables. Correlations be-

tween unrelated measurements that have a correlation coe�cient above 0.392 are

summarised in Table 4.6.
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(a) Scatter plot showing the correlation between systolic blood pressure
and diastolic blood pressure for 24 individuals over 78 days. r=0.709,
p=1.9x10�218.
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(b) Individual X19, r = 0.824, p = 3.7x10�13.
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(c) Individual X04, r=0.335, p=0.010.

Figure 4.6: Correlation between systolic blood pressure and diastolic blood pressure.
The p-value is the probability of getting a correlation as large as the observed value
by random chance, when the true correlation is zero, as described in Section 2.5.7.
p-values below 0.05 indicate that the correlation between x and y was significant.
(a) shows a strong significant correlation for all 24 individuals, with an r -value of
0.709 and a p-value of 1.9x10�218. (b) shows a strong significant correlation for
individual X19, with an r -value of 0.824 and a p-value of 3.7x10�13. (c) shows a
very weak but significant correlation in individual X04, with an r -value of 0.335 and
a p-value of 0.010.

96



55 60 65 70 75 80 85 90 95 100
5

10

15

20

25

30

35

40

45

50

55

Oxygen saturation at rest (%)

R
e

s
p

ir
a

to
ry

 r
a

te
 a

ft
e

r 
e

x
e

rc
is

e
 (

b
re

a
th

s
/m

in
)

(a) Correlation between oxygen saturation at rest and respiratory rate after
exercise, for all individuals over 78 days. r= -0.346, p=3.1x10�41.
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(b) Individual X18, r= -0.710, p=3.4x10�12.
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(c) Individual X08, r= -0.210, p=0.140.

Figure 4.7: Correlations between resting oxygen saturations and respiratory rate
after a 2 minute step-exercise test. The p-value is the probability of getting a corre-
lation as large as the observed value by random chance, when the true correlation is
zero, as described in Section 2.5.7. p-values below 0.05 indicate that the correlation
between x and y was significant. (a) shows a weak but significant correlation in
all 24 individuals, with an r -value of -0.346 and a p-value of 3.1x10�41. (b) shows
a strong significant correlation for individual X18, with an r -value of -0.710 and a
p-value of 3.4x10�12. (c) shows a very weak correlation for individual X08, with an
r -value of -0.210 and a p-value of 0.140. However, this low r -value and high p-value
may be due to 4 extreme values in the top right of the graph.
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A - Related

Parameter x Parameter y r -value p-value

�O2Sat O2SatRatio

-0.989*** • ./
�HR HR

Ratio

-0.942*** • ./
�RR RR

Ratio

-0.893*** • ./
PP BP

Ratio

0.868*** • ./
O2SatRest

O2SatEx

0.824*** • ./
SBP PP 0.725** •8.9E-234
RR

Ex

�RR 0.713** •2.2E-221
SBP DBP 0.709** •1.9E-218
HR

Ex

�HR 0.703** •8.2E-209
HR

Rest

HR
Ratio

0.682** •2.6E-109
O2SatEx

O2SatRatio

-0.580* •1.9E-128
RR

Rest

RR
Ex

0.505* •9.4E-93
RR

Ex

RR
Ratio

-0.503* •7.3E-92
O2SatEx

�O2Sat 0.486* •4.0E-85
HR

Ex

HR
Ratio

-0.483* •2.5E-82
HR

Rest

�HR -0.465* •5.1E-76
DBP BP

Ratio

-0.442* •1.9E-69

B - Unrelated

Individual Group
Parameter x Parameter y Number r >0.39 r -value p-value
O2SatRest

RR
Ex

19 -0.346 •3.1E-41
O2SatEx

RR
Ex

19 -0.361 •4.0E-45
O2SatEx

DBP 14 -0.249 •5.9E-21
O2SatEx

�RR 13 -0.318 •8.4E-35
O2SatRest

�RR 11 -0.296 •4.7E-11
O2SatRest

RR
Ratio

10 0.319 •6.7E-35
O2SatEx

SBP 9 -0.174 •7.0E-11
O2SatRest

HR
Rest

7 -0.288 •6.3E-30
HR Rest RR

Ex

7 0.142 •6.8E-8
O2SatEx

HR
Rest

5 -0.235 •2.4E-19

Table 4.6: A summary of the correlations between measurements of the diary data,
as defined in Table 4.1. The p-value is the probability of getting a correlation as
large as the observed value by random chance, when the true correlation is zero.
Measurements marked with a dot (•) show a p-value less than 0.05, indicating that
the correlation between x and y was significant. p-values marked as ./ were too
small to be calculated by Excel, but greater than zero. Weak correlations have an
r -value between either -0.4 to -0.59 or 0.4 to 0.59 and are marked with an asterisk
(*). Medium strength correlations have an r -value between either -0.6 and -0.79 or
0.69 and 0.79, and are marked with a double asterisk (**). Strong correlations have
an r -value between either -0.8 to -1.0 or 0.8 to 1.0, and are marked with a triple
asterisk (***). Correlations between unrelated measurements show the number of
individuals who show a weak correlation or stronger (>0.39). The r -value and
p-value are for the correlation for the entire group.
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4.2.3.1 Summary

• All of the di↵erence measurements show strong correlations with the corre-

sponding ratio measurement;

• The C
V

values for the ratio measurement show lower day-to-day variability

compared to the di↵erence measurement, indicating it may be the more reliable

of the two measurements. However, the di↵erence measurement may be more

biologically useful, as it may be easier to interpret;

• Other related measurements tend to correlate strongly with one another, how-

ever, not strongly enough to justify the removal of one for the other, as they

may both provide useful information on their own or in combination. There

seems to be some amount of redundancy, but not enough to remove any of the

measurements from further analysis;

• Some weak correlations are present between unrelated measurements. These

can be used to confirm that known adaptive responses to hypoxia are oc-

curring, to assess relationships between variables, and to look for di↵erences

between individuals (by assessing individual correlations of variables).

4.2.4 Is there evidence of di↵erent levels of adaptation?

The most important characteristic of measurements used in predictive modelling is

the ability to distinguish between di↵erent types of behaviour. A smoothing algo-

rithm was implemented, as described in Section 2.5.8, to allow the visual analysis of

di↵erent individual responses during the expedition. These figures were used to visu-

ally identify individuals who were showing di↵erent responses compared to the other

individuals within the group. Figures 4.8 and 4.9 show the raw and smoothed values

for heart rate at rest and diastolic blood pressure, respectively. After smoothing,

individual responses are much easier to identify. For example, individual X14 shows

a very high response in Figure 4.8b, which is di�cult to identify in Figure 4.8a.

Figure 4.9b shows diastolic blood pressure after rest, where it is easy to identify

individual X17 who shows a very low response, and individual X10 who shows a

very high response, compared to Figure 4.9a.

For each individual, a simple linear regression analysis was carried out for

each physiological measurement against altitude. This was done to assess whether

the response seen for each of the physiological measurements against altitude could

be described with a linear fit, and to assess any di↵erences in the fit between indi-

viduals. Figures 4.3a and 4.3b show the fitted regression lines for all individuals for
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(a) Heart rate at rest for 10 lab sta↵ individuals (raw data)
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(b) Heart rate at rest for 10 lab sta↵ individuals (smoothed)

Figure 4.8: Heart rate at rest for 10 lab sta↵ individuals. The figures show the raw
data plotted for each individual, and smoothed data plotted, respectively. Here, (b)
shows much clearer responses, allowing the identification of individuals such as X14,
who shows a very high response compared to other individuals.
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(a) Diastolic blood pressure at rest for 14 climber individuals (raw data)
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(b) Diastolic blood pressure at rest for 14 climber individuals (smoothed)

Figure 4.9: Diastolic blood pressure for 14 climber individuals. The figures show
the raw data plotted for each individual, and smoothed data plotted, respectively.
Here, (b) shows much clearer responses, allowing the identification of individuals
such as X17, who shows a very low response compared to other individuals.

101



0 1000 2000 3000 4000 5000 6000
5

10

15

20

25

30

35

Altitude (m)

R
e
s
p

ir
a
to

ry
 r

a
te

 a
ft

e
r 

e
x
e
rc

is
e
 (

b
re

a
th

s
/m

in
)

 

 

X03

X09

X12

X13

X14

X15

X16

X21

X23

X24

(a) Individual regressions of respiratory rate after exercise against altitude, in 10 lab sta↵ individ-
uals.
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(b) Individual regressions of blood pressure ratio (SBP:DBP) against altitude, in 10 lab sta↵ indi-
viduals.

Figure 4.10: Simple linear regression analyses for (a) respiratory rate after exer-
cise against altitude and (b) blood pressure ratio against altitude, for 10 lab sta↵
individuals. Individuals X09 and X23 became ill during the expedition, and are
both marked in magenta. Both figures show individual X23 as having a linear re-
sponse that is di↵erent compared to other individuals within the group for these
measurements, whereas only (b) shows a response that is di↵erent for individual
X09.
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(a) Individual regressions of respiratory rate at rest against altitude, in 14 climber individuals.
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(b) Individual regressions of respiratory rate ratio against altitude, in 14 climber individuals.

Figure 4.11: Simple linear regression analyses for (a) respiratory rate at rest against
altitude and (b) respiratory rate ratio against altitude, for 14 climber individuals.
Individuals X01 and X07 became ill during the expedition, and are both marked in
red. Both figures show individuals X01 and X07 having a linear response that is
di↵erent compared to others within the group for these measurements.
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heart rate after exercise and respiratory rate at rest, respectively. These responses

are also summarised in Tables 4.3 and 4.4. Both of these measurements show dif-

ferences in how individuals are responding to altitude, indicated by positive and

negative slopes for individual regression lines. However, only 4 and 10 individuals

show slopes that are significantly di↵erent from zero for heart rate after exercise and

respiratory rate at rest, respectively, shown in Tables 4.3 and 4.4 as having a sig-

nificant GOF statistic (marked with an asterisk (*)) and significance value (marked

with a dot (•)).

Figures 4.4 and 4.5 show four individual responses for heart rate after exercise

and respiratory rate at rest, respectively. These figures show di↵erences in response

between individuals, as well as di↵erences in the strength of the linear fit. The

summary statistics in Tables 4.3 and 4.4 can be used to assess the linear fit for each

individual, by comparing the slope, C
V

, goodness of fit statistic, lack of fit statistic

and F -value.

Individual’s fitted regression figures can also be used to assess whether any

individuals were showing responses very di↵erent from others within their group.

To assess this, individuals who became ill during the expedition were highlighted in

each figure (magenta for lab sta↵ individuals, or red for climber individuals). This

aided in visually identifying these specific individuals. Figures 4.10 and 4.11 show

instances where ill individuals do seem to be responding di↵erently to others within

their group. This information can be used to inform future modelling analysis, and

identifies measurements that may be potentially useful for discriminating between

individuals who struggled during CXE 2007, and those who did not.

4.2.4.1 Ill individuals

Individuals X01, X07, X09 and X23 all became ill at di↵erent points during the

expedition. It was hoped that these particular individuals would show a response

that was di↵erent to other individuals within the group, to help account for why

they became ill and others did not. There were several measurements that showed

di↵erences in how these particular individuals were responding.

Figure 4.3a and Table 4.3 show the simple linear regression results for heart

rate after exercise against altitude. This particular measurement shows di↵erences

for how individuals X01, X09 and X23 are responding, compared to others within

the total core group. Figure 4.3a shows that these three individuals have negative

slopes, compared to most of the other individuals, who show positive slopes. The

slope for individual X09 is the only slope that is significantly di↵erent from zero,

shown in Table 4.3 as having a significant GOF statistic of 13.62 (marked with an
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asterisk (*)) and a significance value of 0.009 (marked with a dot (•)). The GOF

statistic and significance value for individual X01 and X23 are 0.25 and 0.059, and

4.84 and 0.121, respectively.

Figure 4.3b and Table 4.7 show the simple linear regression results for respira-

tory rate at rest against altitude. This particular measurement shows steep positive

slopes for individuals X01, X07 and X23, shown as 0.00165, 0.00066 and 0.00123 in

Table 4.4, respectively. All of these individuals show slopes that are significantly

di↵erent from zero, with individual X01 showing GOF and significance values of

11.90 and 0.000003, individual X07 showing GOF and significance values of 5.46

and 0.004, and individual X23 showing GOF and significance values of 16.58 and

0.012. Individual X10 also shows a steep slope that is comparable to the individuals

who became ill. The steep slope for individual X01 is also shown in Figure 4.11a.

Other respiratory rate measurements also show ill individuals as having a

response that is di↵erent from others within the group. Figures 4.10a and 4.12b and

Table 4.7 show the fitted regression lines for respiratory rate after exercise against

altitude. Individuals X01 and X23 both show slopes that are steeper than other

individuals, with slope values of 0.003 and 0.004, respectively. All ill individuals

slow slopes that are significantly di↵erent from zero, with significant GOF values

(marked with an asterisk (*)), and significance values (marked with a dot (•)) in

Table 4.7. Figures 4.11b and 4.12c, and Table 4.7 show the fitted regression lines for

respiratory rate ratio against altitude. Individuals X01 and X07 both show slopes

that are not significantly di↵erent from zero, whereas other individuals show steep

negative slopes.

Figures 4.10b and 4.12a and Table 4.7 show the fitted regression lines for

blood pressure ratio against altitude. Individual X09 shows a high intercept value

of 1.76, with a slope that does not change significantly with altitude. Individual X23

shows a positive response here, whereas all other individuals show negative responses

over altitude. The fitted regression line for individual X23 shows a significance value

of 0.04, however, the GOF statistic is non-significant at 3.33. This may indicate

that there are di↵erences between the means at each altitude for individual X23,

but the response may not be linear, as indicated by a significant LOF statistic of

2.24. All of these measurements could be useful in modelling attempts, to allow the

discrimination between individuals who became ill, and those who did not.

4.2.4.2 Summary

• There are di↵erences seen between individuals for all measurements, however,

the di↵erences seen between individuals are clearer for some measurements
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than others;

• Smoothed responses and individual regression analyses against altitude can

both be used to assess how individuals responded during the entire expedition,

and identify individuals who are responding in a di↵erent way to others within

the group;

• Several of the physiological measurements showed di↵erences in how ill individ-

uals were responding compared to other individuals within the group. These

measurements were BP
Ratio

, HR
Ex

, RR
Ex

, RR
Ratio

, RR
Rest

and �RR. These

measurements may be useful in the next stages of modelling for discriminating

between individuals who became ill and those who did not.

4.3 Which parameters are most suitable for use in mod-

elling?

The analyses carried out on the diary data have been used to determine which

of the measurements available are the most informative for further analysis, by

looking at whether individual’s responses change with increasing altitude, how stable

each measurement is day-to-day and whether and they can be used to di↵erentiate

between di↵erent individuals, especially individuals who became ill.

Table 4.8 shows a final ranked summary of the diary data measurements,

indicating which would be most useful for further analysis and modelling. The top

section of this table contains BP
Ratio

, HR
Ex

, RR
Ex

, RR
Ratio

, RR
Rest

and �RR.

These measurements are ranked in order of increasing C
V

value, as a measure of the

relative day-to-day reliability of each measurement. Whilst these measurements do

not show the best reliability out of all of the measurements assessed, these measure-

ments all show di↵erences in how individuals are responding (indicated by di↵erences

in slopes and intercepts for fitted regression lines), and di↵erences in how ill individ-

uals are responding, compared to other individuals within the group, as described

in Section 4.2.4.1.

The second group of 6 measurements are HR
Rest

, SBP, DBP, PP, O
2

Sat
Ratio

and �O
2

Sat. These measurements are also ranked in order of increasing C
V

value,

as a measure of their reliability. Each of these measurements show di↵erences in

how individuals are responding, but do not show di↵erences in how ill individuals

are responding. These measurements were deemed the next most useful group of

measurements to use in further analysis/modelling.
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(a) Individual regressions of blood pressure ratio at rest against altitude,
in 24 core individuals.
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(b) Individual regressions of respiratory rate after exercise against
altitude, in 24 core individuals.
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(c) Individual regressions of respiratory rate ratio against altitude, in
24 core individuals.

Figure 4.12: Simple linear regression analyses for (a) blood pressure ratio against
altitude, (b) respiratory rate after exercise against altitude and (c) respiratory rate
ratio against altitude, for 24 core team individuals. Climber individuals X01, and
X07 became ill during the expedition, and are both marked in red. Lab sta↵ in-
dividuals X09 and X23 also became ill during the expedition, and are marked in
magenta.
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The final four measurements are O
2

Sat
Rest

, O
2

Sat
Ex

, HR
Ratio

and �HR.

Whilst these measurements show some of the lowest C
V

values for any of the di-

ary data measurements, they either do not show di↵erences in how individuals are

responding (O
2

Sat
Rest

, O
2

Sat
Ex

and HR
Ratio

), or they do not show a slope sig-

nificantly di↵erent from zero (�HR). However, measurements that do not show a

change with altitude could still be useful as explanatory variables, as long as they

show di↵erences between individual responses.

The next stage in this analysis will be to repeat these and other statistical

analyses on the main core dataset, and to identify other physiological measurements

that may be useful indicators of how well an individual is adapting to altitude, as

well as identifying which of the biochemical metabolites may be good predictors of

acclimatisation. Any variables identified in this way will then be used in further

modelling processes.
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Parameter Name Slope C
V

GOF Di↵erences? Ill individuals?

BP
Ratio

-0.00002 0.084 * 50.66 §Yes • Yes
HR

Ex

0.00112 0.135 * 7.79 §Yes • Yes
RR

Ex

0.00184 0.216 * 48.23 §Yes • Yes
RR

Ratio

-0.00005 0.223 * 246.77 §Yes • Yes
RR

Rest

0.00042 0.245 * 8.51 §Yes • Yes
�RR 0.00148 0.656 * 64.10 §Yes • Yes
HR

Rest

0.00234 0.168 * 23.42 §Yes No
SBP 0.00203 0.110 * 26.49 §Yes No
DBP 0.00269 0.106 * 73.61 §Yes No
PP -0.00065 0.235 * 7.67 §Yes No
O2SatRatio

0.00001 0.052 * 26.34 §Yes No
�O2Sat -0.00088 0.772 * 17.39 §Yes No
O2SatRest

-0.00323 0.053 * 261.75 No No
O2SatEx

-0.00408 0.061 * 1064.99 No No
HR

Ratio

0.00002 0.200 * 7.82 No No
�HR -0.00126 0.424 2.46 §Yes No

Table 4.8: A summary of all diary data measurements, ranked in decreasing order of
potential usefulness in further analysis/modelling. Slope is the slope for the fitted
regression line for all 24 individuals. C

V

is the coe�cient of variation calculated
from the regression, as described in Section 2.5.10.3. GOF is the goodness of fit
statistic, as described in Section 2.5.10.1. Values marked with an asterisk (*) show
slopes that are significantly di↵erent from zero. Di↵erences? indicates whether there
are di↵erences in how individuals are responding, such as di↵erences in slope and
intercept values for the fitted regression lines. Ill individuals? indicates whether the
particular measurement is showing di↵erences in how ill individuals are responding,
as detailed in Section 4.2.4.1.
The first 6 measurements show a slope significantly di↵erent from zero, di↵erences in
how individuals are responding and di↵erences in how ill individuals are responding.
These are ranked in increasing order of C

V

value, as a measure of reliability. These
measurements are deemed the most likely to be of use in further analysis/modelling.
The second 6 measurements show di↵erences in how individuals are responding, but
not specifically for ill individuals. These measurements are also ranked in order
of increasing C

V

value, and are deemed the next group of measurements to be of
most use in the next stage of analysis/modelling. The final four measurements are
deemed the least useful for modelling, as they show no di↵erences in how individuals
are responding, or do not show a slope that is significantly di↵erent from zero.
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Chapter 5

Exploratory Data Analysis

Exploratory data analysis (EDA) is a hypothesis-generating approach to analysing

data, which avoids any unnecessary bias that may be present when undergoing

confirmatory data analysis. The aims of EDA are to maximise the users insight

into the dataset, to undercover any underlying structure to the data, to clarify

important variables, to detect outliers and anomalies and to test the validity of

initial assumptions. EDA utilises various graphical techniques to allow the user to

explore the data with an open-mind. Graphical representations allow fast and easy

identifications of any patterns or outliers in the data, whilst allowing the user the

ability to gain new and unexpected insight into the dataset.

5.1 Which data are available?

Data is available for two groups of individuals, comprising a group of 24 core team

members and a larger group of 190 trekker individuals, as detailed in Table 1.2.

The full lists of biochemical metabolites and physiological measurements available

for the core team are detailed in Tables 2.3 and 2.4. A majority of the trekker

samples have yet to be analysed up to this date. Data is available at London (75m),

Kathmandu (1300m), Namche (3500m), Pheriche (4250m) and Everest Base Camp

Weeks 1, 6 and 8 (5300m), as shown in Figure 1.1.

One important point to take into consideration is that these analyses are

almost exclusively based on the results of a small self-selected group of 24 core team

members, consisting of doctors and scientists who each had a certain level of fitness

and mountaineering experience. As these 24 are a highly selected group, they may

not be truly representative of the population as a whole. EDA was used here to

generate hypotheses from the biochemical data for the 24 core team members, which
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may be validated at a later date once the 190 trekker plasma samples have been

measured.

It is also important to note that the 24 core team members did not simply rest

at Everest Base Camp for the period over which samples were taken. 14 individuals

attempted to summit after EBC week 1, and their ascent profile is shown in red in

Figure 1.1. Individuals who ascended to altitudes higher than Base Camp would

have been subjected to much higher levels of oxidative stress than the individuals

who stayed at Base Camp. However, the main focus of this study was to assess

the di↵erences in individual responses to an identical ascent profile (i.e. the same

amount of hypoxic exposure). Therefore, most analyses were performed for data

collected on 5 occasions from London to Everest Base Camp week 1 only.

5.2 Aims

The aims of this preliminary analysis were to:

• Visually summarise all of the available data and identify the main patterns

of hypoxic response seen in the physiological measurements and biochemical

metabolites;

• Identify physiological measurements and biochemical metabolites that are

changing in a similar way across individuals as altitude increases;

• Identify any outliers and quality check the data before further analysis and

modelling;

• Assess and rank the physiological measurements in order of suitability as

a proxy for hypoxia adaptation, based on their statistical suitability, and

whether they are of biological interest;

• Assess and rank the biochemical metabolites in order of suitability as poten-

tial predictors of the physiological measurements, based on their statistical

suitability and whether they are of biological interest.

5.3 Data analysis techniques

Several di↵erent operations have been performed on the dataset, comprising:

1. Plotting box and whisker plots for all physiological measurements and bio-

chemical metabolites to assess how each measurement changes in response to
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increasing altitude, and the variability of each measurement across altitudes

and between individuals;

2. Plotting all individual responses for a particular measurement on one figure

or subplot, to show the di↵erent responses seen and assess inter-individual

variability in response;

3. Performing simple linear regression analyses against altitude to assess how

each biochemical metabolite and physiological measurement changes with in-

creasing altitude, and to see whether a linear fit is appropriate to describe the

relationship between the two;

4. A two-way Analysis of Variance (ANOVA) without interactions for each phys-

iological measurement and biochemical metabolite to assess the e↵ect of alti-

tude and individual on the response.

This section will look at the di↵erent data analysis techniques used, and summarise

interesting results from each technique.

5.3.1 Box and whisker plots

The boxplot function was implemented in matlab, as described in Section 2.5.1, to

produce box and whisker plot graphs of all 124 physiological measurements and

biochemical metabolites for the core group, and 63 physiological measurements for

the trekker group. Each plot shows a summary of all individuals over five increasing

altitudes.

5.3.1.1 Results

The box and whisker plots produced for the core data show several di↵erent pat-

terns of response during CXE 2007. Figures 5.1 and 5.2 show examples of di↵erent

patterns of response seen for the biochemical metabolites and physiological mea-

surements, respectively. Table 9.2 (located in the appendix) shows the full results

for the interquartile ranges (IQR) for each variable for each altitude, as a measure

of the variability. Table 5.1 shows a summary of the results for a 2-way ANOVA

performed for these particular variables. A full list of the ANOVA results for all

biochemical metabolites and physiological measurements is shown in Table 9.1, in

the appendix.

Figures 5.1a and Figure 5.1b show an overall increase for both nitrite and

cGMP levels during the expedition. This was expected, as they are known to play
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a key role in hypoxia adaptation (as described in Section 1.4.1.1). The increase of

nitrite levels between Kathmandu and Pheriche may be due to the large increase

in altitude between these two time-points, as shown in Figure 1.1. cGMP only

shows an increase between London and Namche, which may be due to only initial

adaptive responses involving the increase of cGMP. Figure 5.1c shows an initial

decrease of RSNO levels between London and Kathmandu, and then an increase

between Kathmandu and Everest Base Camp week 1. The reasons for this particular

pattern are less clear, but may be due to lower NO availability to form RSNOs

at Kathmandu [Rassaf et al., 2002]. Figure 5.1d shows that osmolality shows no

change during the expedition, and is described in more detail in Section 3.2. All

of these changes were tested for their significance by a two-way ANOVA without

interactions, to assess the e↵ect of altitude and individual, and the ANOVA results

for these particular metabolites are shown in Table 5.1.

Figures 5.2a and 5.2b show a general decrease for both oxygen saturation

at rest and work rate at VO
2

max, which is to be expected. Oxygen saturation is

known to decrease during hypoxia, and is used later in the analysis as a proxy for

hypoxia exposure. Work rate is a measure of the body’s ability to utilise oxygen,

and is also known to decrease in response to decreasing oxygen availability [McArdle

et al., 2007].

Figure 5.2c shows a general increase for haematocrit levels, which is to be

expected. Haematocrit is the volume percentage of red blood cells in whole blood.

One of the main adaptations to hypoxia is an increase in the blood’s oxygen carrying

capacity [McArdle et al., 2007]. This is achieved by increased urine output, shifting

of body fluid and increased red blood cell production, as described in Sections 1.2.3

and 3.2, which leads to an increase in haematocrit. Figure 5.2d shows that resting

heart rate only shows an increase between Pheriche and Everest Base Camp week 1.

A much earlier increase was expected, as increasing heart rate is an early response

to hypoxia, as described in Section 1.2.3. However, the late increase may be due to

the high fitness level of the 24 core individuals, and only increases when they are

exposed to very high levels of hypoxic stress.

Some of the figures show an increase in variability during the expedition,

shown by an increase in the interquartile range (IQR, length of the box). For

example, Figures 5.1d and 5.2a and Table 9.2 show an increase in the IQR for both

osmolality (from 0.036 to 0.064), and oxygen saturation at rest (from 0.020 to 0.100)

between London and Everest Base Camp week 1. This is to be expected, due to

various adaptive responses taking e↵ect. The more stress an individual is exposed

to, the stronger the expected response to that stress, which accentuates any inter-
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ANOVA (altitude) ANOVA (individual)

Variable F -value p-value F -value p-value
Nitrite (mM) 22.07 • 8.6E-13 2.25 • 3.5E-03
RSNO (nM) 18.01 • 5.9E-11 2.04 • 9.1E-03
cGMP (pmol/mL) 9.21 • 2.7E-06 2.65 • 5.4E-04
Osmolality (mOsmo/kg) 1.57 1.9E-01 1.48 9.8E-02
Oxygen saturation at rest 146.30 • 5.2E-38 3.97 • 1.5E-06
Work rate at VO2max 239.68 • 9.3E-47 56.48 • 2.5E-43
Haematocrit 57.79 • 2.7E-24 5.60 • 1.1E-09
Resting heart rate 24.58 • 1.0E-13 13.88 • 1.8E-20

Table 5.1: 2-way ANOVA results for a selection of biochemical metabolites and
physiological measurements, looking at the e↵ects of altitude and individual, with-
out interaction. Significance levels marked with a dot (•) indicate that the null
hypothesis has been rejected at the 5% level.

individual variability seen in those response readouts. The change in variability may

have an impact on the power of the ANOVA carried out.

Some variables show similar variability during the expedition, shown by sim-

ilar IQR values for each altitude. Figures 5.1a, 5.1b, 5.2b, 5.2c and 5.2d show box

and whisker plots for nitrite, cGMP, work rate at VO
2

max, haematocrit and resting

heart rate, respectively. These figures and Table 9.2 show that the IQR is similar

across altitudes for these particular variables. A small number of variables show

a decrease in variability during the expedition, shown by a decrease in the IQR.

For example, Figure 5.1c and Table 9.2 shows that the IQR for RSNO decreases

from 1.026 for London to 0.488 for Everest Base Camp week 1. The reason for this

decrease is less clear.

5.3.1.2 Treatment of potential outliers

Here, outliers are defined as data points that are more than 1.5 times the interquar-

tile range either above the 75th percentile, or below the 25th percentile [McGill et al.,

1978], and are labelled as a red ‘+’ on the box and whisker plots. Outliers may

be due to instrument or calculation error, or they may show an individual-specific

response, resulting in an unusually high or low observation. They may also indicate

illness of an individual at the time the sample was taken. If a datapoint is labelled

as a potential outlier, it needs to be checked as it can have a great impact on the

overall outcome of any analysis performed on the data. Any potentially outlying

values were double-checked in the original dataset, to confirm the value was correct.

Potential outliers for the physiological data in the smaller core group can

be compared to data from the larger trekker group to identify the position of the
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(c) Log-transformed RSNO
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(d) Log-transformed osmolality

Figure 5.1: Examples of di↵erent patterns of response seen in several biochemi-
cal metabolites in 24 individuals during CXE 2007. (a) shows nitrite, (b) shows
cGMP, (c) shows RSNO and (d) shows osmolality. (a) shows an increase between
Kathmandu and Namche, (b) shows a general increase until Namche and then a
levelling-o↵, (c) shows an initial decrease between London and Kathmandu, fol-
lowed by an increase, and (d) shows no change during the expedition. All of these
changes were confirmed with a 2-way ANOVA without interactions, as shown in
Table 5.1.
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5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

London Kathmandu Namche Pheriche EBC wk1

Altitudes

L
o

g
 W

o
rk

 R
a
te

 a
t 

V
O

2
m

a
x

(b) Log-transformed work rate at VO2max
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(c) Log-transformed haematocrit
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(d) Log-transformed resting heart rate

Figure 5.2: Examples of di↵erent patterns of response seen in several physiological
measurements in 24 individuals during CXE 2007. (a) shows oxygen saturation at
rest, (b) shows work rate at VO

2

max, (c) shows haemoatocrit and (d) shows resting
heart rate. (a) and (b) show a general decrease during the expedition, (c) shows
a general increase and (d) shows an increase between Pheriche and Everest Base
Camp week 1. All of these changes were confirmed with a 2-way ANOVA without
interactions, as shown in Table 5.1.
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outlier in a larger sample size. Figure 5.3 shows an observation at London that

appears to be a potential outlier within the 24 individuals, but is not for the 190

individuals. This emphasises that whilst a sample size of 24 is suitable to show

the general population response, a larger sample size gives more information about

individual responses, especially when highlighting individuals who are responding

di↵erently to everyone else.

5.3.2 Subplots

Subplots allow a swift visual representation of several individual’s responses to be

compared and analysed for trends, and clearly show individuals who show a response

vastly di↵erent from others. Subplots also highlight potential outliers and indicate

the individual to whom the outlier belongs, to aid in further analysis. The subplot

function was implemented in matlab, as described in Section 2.5.2, to produce figures

showing all individual responses for all biochemical metabolites and physiological

measurements. Males were labelled in cyan (lab sta↵) and blue (climbers) and

females in magenta (lab sta↵) and red (climbers), to look for any obvious gender

di↵erences, or di↵erences between lab sta↵ and climber groups. Individuals who have

data points labelled as asterisks (*) became ill during the expedition (individuals

X01, X07, X09 and X23).

5.3.2.1 Results

The subplot figures indicate that most of the physiological measurements show low

inter-individual variability (i.e. individuals show a similar response over altitude),

whereas the biochemical metabolites tend to show a higher level of inter-individual

variability in their response. Figure 5.5 shows subplots for haemoglobin and work

rate at VO
2

max, which both show low variability between individuals. In compari-

son, Figure 5.4 shows subplots for nitrate and IL-8, which both show much higher

variability between individuals compared to Figure 5.5. This is to be expected, as

the biochemical metabolites are showing the response of multiple stress-response

pathways, which cross-over and communicate with one another, or may just contain

more noisy data. This creates a very complex pattern of responses, which can vary

greatly between individuals. Analysis of the biochemical metabolites in the remain-

ing 190 trekker individual’s plasma samples will be vital for further assessing the

inter-individual variability seen for the biochemical metabolites.
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(a) CO2 production at VO2max for 24 core team individuals.
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(b) CO2 production at VO2max for 190 individuals.

Figure 5.3: box and whisker plots showing carbon dioxide production at VO
2

max
for (a) 24 core team individuals and (b) 190 trekker individuals. (a) shows generally
a higher CO

2

production compared to (b), and both figures show a general decrease
over altitude. (a) shows an outlier for London, which becomes part of the whisker
for (b). The whiskers for (b) are also much larger compared to (a). This figure
shows the importance of the size of a sample when looking at potential outlying
points.
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(a) Subplot of log-transformed nitrate levels in 24 individuals during CXE 2007
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(b) Subplot of log-transformed IL-8 in 24 individuals during CXE 2007

Figure 5.4: Subplots showing how log-transformed nitrate levels (a) and IL-8 (b)
change during CXE 2007 in 24 individuals. The horizontal axis shows the increase in
altitude, with 1-5 representing London, Kathmandu, Namche, Pheriche and Everest
Base Camp. Females are labelled in magenta (lab sta↵) and red (climbers) and males
are labelled in cyan (lab sta↵) and blue (climbers). The labels above each graph
represent that individual’s denotative. Missing data points are due to observations
not being available in the dataset. Both figures show relatively high inter-individual
variability compared to physiological measurements (shown in Figure 5.5).
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(a) Subplot of log-transformed haemoglobin levels in 24 individuals during CXE 2007
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(b) Subplot of log-transformed work rate at VO2max in 24 individuals during CXE 2007

Figure 5.5: Subplots showing how log-transformed haemoglobin levels (a) and work
rate at VO

2

max (b) change during CXE 2007 in 24 individuals. The horizontal axis
shows the increase in altitude, with 1-5 representing London, Kathmandu, Namche,
Pheriche and Everest Base Camp. Females are labelled in magenta (lab sta↵) and
red (climbers) and males are labelled in cyan (lab sta↵) and blue (climbers). The
labels above each graph represent that individual’s denotative. Missing data points
are due to observations not being available in the dataset. Both measurements
show relatively low inter-individual variability compared to biochemical metabolites
(shown in Figure 5.4).
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5.4 Variable selection

Frequently, experiments generate a large amount of data, which can be used to

create hypothesis-generating models, capable of predicting the output of further ex-

periments. In the absence of any prior biological knowledge, many, if not all of the

possible variables may be used in initial models to reduce possible model bias (ap-

proximation error). However, a complex model that encompasses many insignificant

variables may have less predictive power, and the results may be di�cult to inter-

pret. In this case, a simpler model with fewer variables may be more appropriate.

Variable selection is key to solving this problem, and looks at selecting the variables

with the most predictive power over the dependent variable. Automatic methods

such as step-wise selection or elimination allow the swift analysis of large numbers

of potential variables. However, they can be computationally expensive and may

not take into consideration any prior biological knowledge. The main question here

is which variables to choose, and the main challenge is how to choose them. The

methods in this section look at selection methods for both the physiological mea-

surements (dependent variable) and biochemical metabolites (explanatory variables)

of interest for modelling methods.

5.4.1 Variable selection criteria

Suitable dependent and explanatory variables for modelling were selected based on

the following criteria, which were assessed with a statistical approach:

1. A significant change during the expedition. This was assessed via an ANOVA

and by assessing fitted regression lines against altitude;

2. Variability in response between individuals, to allow the distinction between

how individuals are responding. This was assessed by analysing fitted regres-

sion lines against altitude;

3. Ideally, low day-to-day variability, shown by a low C
V

value (as described

in Section 2.5.10.3). Diary data was used here for some measurements, as

described in Chapter 4;

4. Ideally, a di↵erence between lab sta↵ and climbers, and ill individuals and

individuals who did not become ill. Diary data was also used here for some

measurements.

Physiological measurements and biochemical metabolites were assessed for

their suitability for use in modelling by calculating several summary statistics, and
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combining this with prior biological knowledge. Variables that measured very similar

components were compared via correlations to see if both were needed for modelling

purposes. Binary information such as gender was removed from the analysis, as well

as any variables missing a large amount of data, so that any models constructed

would be as accurate and complete as possible.

5.4.2 Physiological measurement selection

For each individual, a simple linear regression (SLR) model was fitted for each phys-

iological measurement against altitude, as described in Section 2.5.9. Fitting a SLR

model against altitude allowed the assessment of whether the measurement showed

a linear response with increasing altitude, and whether there were di↵erences be-

tween individuals for the response. The fitted lines were then summarised across all

individuals for each measurement, by calculating the mean and standard deviation

of the slopes, intercepts and R2 values. The mean and standard deviation for the R2

values were used as indicators of how well a SLR described the relationship between

the physiological measurement and altitude, across all individuals. The intercept

was used as an indicator of the calculated physiological measurement value when

hypoxia exposure was zero, and the slope mean and standard deviation were used

as indicators of how much variability there was between individuals for the response

seen. If any measurements overlapped with the diary data, then the information

gained during Chapter 4 was used to inform the analysis of the corresponding mea-

surement in the core data.

Several physiological measurements were highlighted by members of the CXE

team as being of high biological interest. Indicators of hypoxaemia (low partial pres-

sure/content of oxygen within the blood) show how well an individual is loading

haemoglobin with oxygen and transporting it in the blood. Hypoxaemia indica-

tors include haemoglobin, oxygen saturation at rest and oxygen content. Oxygen

consumption is an analogue of how well the body utilises oxygen, and can be an

indicator of how well an individual is adapting to low oxygen levels. Parameters

of interest that show oxygen consumption are work rate at LaT and VO
2

max and

oxygen consumption at rest, LaT and VO
2

max. Oxygen e�ciency is a measure of

how well oxygen is being used by the body, and is measured by looking at oxygen

economy.

For the SLR analysis, a high standard deviation of the slope coupled with a

low standard deviation for the intercept and high R2 was preferred. This indicated

that there was a good linear relationship between the physiological measurement

and altitude (shown by a high R2 value), and that there was a di↵erence in how
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individuals were responding to the exposure to hypoxia (shown by di↵erences be-

tween individual’s fitted slopes). If any measurements did not change significantly

over altitude, as determined by an ANOVA, or did not show di↵erences between

individual responses, then they were not used in further modelling e↵orts. The

resulting ranked physiological measurement list is shown in Table 5.2. This was

constructed by looking at the summary statistics, and highlighting metabolites of

specific biological interest with an asterisk (*).

Figures 5.6a and 5.6b show examples of the fitted regression models for the

physiological measurements against altitude, for all individuals. Figure 5.6a shows

the results for work rate at LaT and Figure 5.6b shows the results for heart rate

at VO
2

max. Both of these measurements are ranked highly as potential dependent

variables for modelling in Table 5.2, due to high mean R2 values for the fitted lines,

and a high standard deviation for the slopes.

Work rate at LaT is also a measurement of particular biological interest, as

it is a measure of oxygen consumption. Heart rate after exercise was identified in

the diary data as showing responses for ill individuals that were di↵erent to other

individuals within the group. Figure 4.3a shows the simple linear regression results

for heart rate after exercise against altitude for the diary data. Heart rate after

exercise and heart rate at VO
2

max are not identical measurements, but both show

the heart rate after exercise. Interestingly, the diary data measurement shows a

general increase in heart rate for most individuals, with ill individuals showing a

decrease. However, the core data shows a general decrease for most individuals.

This may be due to di↵erences in what the measurements are actually showing, and

may limit how useful the diary data information is for analysing the core dataset.

The top group of measurements in Table 5.2 are all measurements of biolog-

ical interest, and are ranked by decreasing standard deviation of the slope (to show

di↵erence in how individuals are responding). The second group includes measure-

ments identified from the diary data as showing di↵erences in how ill individuals

were responding, as described in Section 4.2.4.1. The measurements are also ranked

by decreasing standard deviation of the slope. The final group of measurements

have been identified purely by their statistical summaries, and are also ranked by

decreasing standard deviation of the slope.

5.4.3 Biochemical metabolite selection

Explanatory variables are variables that are expected to have some influence over a

dependent variable of interest. The biochemical metabolites were used as potential

explanatory variables, with the aim of finding a combination of biochemical metabo-
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(b) Heart rate at VO2max regressed against altitude

Figure 5.6: Examples of simple linear regression analyses carried out for the physio-
logical measurements against altitude. (a) shows work rate at LaT against altitude,
and (b) shows heart rate at VO

2

max against altitude. Both figures show separate
fitted regression lines for 24 individuals. These measurements are both ranked highly
as potential dependent variables for modelling in Table 5.2, due to a high mean R2

value for the fitted lines (indicating that the model is a good fit to the data) and
di↵erences between individual slopes (shown by a high slope standard deviation in
Table 5.2), indicating di↵erences between how individuals are responding. Lab sta↵
individuals are in blue, with ill individuals in magenta, and climber individuals are
in green, with ill individuals in red.
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Parameter name Slope mean Slope
SD

Intercept
mean

Intercept
SD

R2

mean
R2

SD

⇤Work rate at LaT -0.010561 0.00513 158.27 30.90 0.729 0.284
⇤Work rate at VO2max -0.017348 0.00397 317.00 47.86 0.882 0.067
⇤Oxygen saturation at rest -0.003058 0.00096 99.43 1.11 0.903 0.073
⇤Oxygen consumption at
LaT (kg)

-0.001556 0.00088 26.69 4.63 0.749 0.221

⇤Economy -0.000222 0.00023 10.88 0.90 0.488 0.329
⇤Haemoglobin 0.000584 0.00022 13.72 0.67 0.671 0.198
⇤Resting oxygen consump-
tion (kg)

0.000080 0.00014 5.24 0.82 0.309 0.296

•Heart rate at LaT -0.003113 0.00333 132.11 15.40 0.515 0.347
•Heart rate at VO2max -0.006097 0.00265 181.72 10.16 0.782 0.192
•Respiratory rate at
VO2max

0.001186 0.00178 45.98 10.27 0.435 0.293

•Resting respiratory rate 0.000492 0.00052 17.16 2.83 0.297 0.268
Maximum voluntary venti-
lation

0.006373 0.00383 168.24 27.95 0.598 0.311

Minute ventilation at LaT 0.002077 0.00230 44.65 10.41 0.518 0.340
Diastolic blood pressure at
rest

0.001240 0.00211 78.58 9.13 0.331 0.278

Resting heart rate 0.001802 0.00208 72.80 10.91 0.338 0.290
Resting minute ventilation 0.001085 0.00064 11.60 1.84 0.547 0.274
Resting oxygen pulse -0.000054 0.00021 5.60 1.05 0.376 0.307
Respiratory exchange ratio
at VO2max

-0.000014 0.00002 1.22 0.06 0.304 0.288

Respiratory exchange ratio
at LaT

-0.000008 0.00001 0.89 0.05 0.371 0.308

Table 5.2: A ranked list of physiological measurements for use as dependent variables
in the modelling analysis. The top group are all measurements of specific biologi-
cal interest (labelled with an asterisk (*)), and are ranked by decreasing standard
deviation of the slope (to show di↵erence in how individuals are responding). The
second group were highlighted during analysis of the diary data, for ill individuals
showing responses that were di↵erent to other individuals within the group (labelled
with a dot (•), as described in Section 4.2.4.1. These measurements are also ranked
by decreasing standard deviation of the slope. The final group have high mean R2

values for the fitted regression lines, indicating a good fit to the model, and are
ranked by decreasing standard deviation of the slope.
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lites that would be able to predict a value or change in a particular physiological

measurement of interest. To ensure only the most suitable biochemical metabolites

were used as potential explanatory variables in modelling, all of the biochemical

metabolites were assessed for several characteristics. They had to show a significant

change between altitudes during the expedition, show di↵erences in how individuals

were responding and only be missing a small number of data points.

Several biochemical metabolites were highlighted as being of high biological

interest. These included members of the NO and ROS pathways, as described in

Sections 1.4.1.1 and 1.4.2. These particular biochemical metabolites are known

to play a role in hypoxia adaptation, and it was thought that these may play an

important role in the modelling process.

Data was available for a total of 59 biochemical metabolites, and 13 metabo-

lites were removed from modelling for several reasons. proANP, BNP and CNP are

known to influence cGMP levels, and were originally measured to determine whether

any change seen in cGMP levels was due to changes in these three metabolites (a

non-hypoxic response) or the action of nitric oxide on soluble guanylate cyclase (a

hypoxic response). These metabolites were only measured as a control for cGMP,

and were removed from the modelling process. Protein carbonyls are an important

measure of oxidative stress within the body. Protein carbonyls were measured with

a protein ELISA plate, which showed high variability between plates measuring

samples from the same altitude (a 75-80% decrease was seen between two plates).

Therefore, the data was considered spurious and removed from further analysis.

Nine biochemical metabolites were removed due to a lack of data points.

These metabolites included all four glutathione measurements, due to a lack of data

points at London levels (the vital measurement used for modelling and compara-

tive analysis). Other metabolites removed due to a lack of data points included

IL-1↵, IL-1�, IL-4, IL-10 and interferon-�. Explanatory variables must also show

di↵erences between individual responses. This was analysed by performing a linear

regression between each of the biochemical metabolites against altitude, and look-

ing for di↵erences in individuals slope values. All biochemical metabolites showed

di↵erences in slopes, intercepts and gradients for fitted regression lines, indicating

di↵erences in how individuals were responding. This may also be caused by noise

within the dataset, and is an important point to take into consideration in the next

stage of analysis.

A final list of the 46 biochemical metabolites suitable for initial modelling

e↵orts is shown in Table 5.3, with metabolites of specific biological interest marked

with an asterisk (*).
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Metabolite Slope Mean Slope SD Intercept
Mean

Intercept
SD

R2 Mean R2 SD

*Nitrite 0.00002 0.00002 0.12 0.04 0.350 0.24
*Nitrate 0.00170 0.00392 21.57 10.83 0.261 0.21
*Total NOx 0.00172 0.00393 21.68 10.83 0.261 0.21
*RSNO 0.00053 0.00111 5.51 2.41 0.284 0.27
*RNNO 0.00003 0.00129 11.16 4.32 0.229 0.23
*Total RXNO 0.00056 0.00213 16.67 5.73 0.221 0.21
*cGMP 0.01782 0.01617 93.02 83.05 0.450 0.26
*8-isoPGF 0.00787 0.00851 40.14 20.86 0.303 0.28
*HNE 0.00190 0.00691 36.70 42.56 0.451 0.28
IL-1ra -0.00047 0.00392 39.53 17.40 0.198 0.22
IL-6 0.00004 0.00067 12.08 3.31 0.259 0.27
IL-8 0.00034 0.00036 4.11 1.24 0.243 0.21
IL-12(p70) 0.00031 0.00094 7.24 7.48 0.222 0.22
IL-13 0.00017 0.00018 1.46 0.65 0.327 0.24
IL-18 -0.00546 0.00767 116.20 56.31 0.405 0.33
MIF 0.53250 0.69174 5905.25 1545.77 0.472 0.31
Eotaxin 0.00063 0.00691 76.23 42.42 0.290 0.25
TNFalpha -0.00067 0.00167 33.01 9.54 0.304 0.28
VEGF 0.00869 0.01189 81.63 55.27 0.359 0.31
CRP 0.60843 1.21997 2964.17 4907.02 0.221 0.21
Adrenaline 0.00001 0.00001 0.06 0.03 0.187 0.20
Noradrenaline 0.00001 0.00004 0.14 0.05 0.249 0.32
T3 0.21402 0.75427 3318.68 1849.76 0.418 0.25
T4 2.84280 14.31760 92453.90 50772.00 0.357 0.27
C-Peptide 0.02274 0.07773 1708.52 355.25 0.221 0.25
GIP -0.00129 0.01541 127.21 64.79 0.248 0.23
Ghrelin -0.00196 0.00519 118.59 40.48 0.257 0.25
Glucagon 0.00609 0.01080 350.53 59.04 0.211 0.21
GLP-1 0.02609 0.04214 837.20 252.68 0.348 0.25
Insulin 0.03196 0.07273 1334.43 396.88 0.246 0.18
Leptin -0.11242 0.15481 1254.98 972.25 0.450 0.31
PAI-1 -0.78621 0.69800 8644.11 3286.20 0.530 0.29
Resistin -0.07318 0.08187 1018.25 442.48 0.417 0.32
Visfatin 0.07488 0.37754 4456.18 2351.47 0.269 0.23
Adiponectin 1535.64000 2071.05000 14453600.00 11682700.00 0.228 0.20
Adipsin 27.54690 17.51600 147056.00 61527.00 0.362 0.22
EPO 0.00274 0.00417 15.16 8.57 0.418 0.32
ET-1 -0.00047 0.00167 25.77 32.33 0.212 0.24
Glucose -0.00007 0.00018 4.70 0.84 0.224 0.25
Cystatin C 0.14954 0.11037 961.04 189.07 0.549 0.31
Creatinine 0.00001 0.00002 0.82 0.12 0.344 0.30
Lactate 0.00012 0.00015 1.37 0.42 0.355 0.31
Osmolality -0.00098 0.00187 293.03 5.23 0.248 0.18
ProteinContent -0.00042 0.00126 82.94 5.28 0.176 0.19
Bicarbonate -0.00123 0.00056 24.67 2.22 0.506 0.28
HSP-70 -0.00004 0.00105 3.79 8.06 0.254 0.24

Table 5.3: A list of biochemical metabolites for use as explanatory variables in the
modelling analysis. Parameters marked with an asterisk (⇤) are of specific biological
interest.
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5.5 Summary

• These analyses are based on a relatively small self-selected group of 24 individ-

uals. The results from these analyses can be verified at a later date when the

190 trekker plasma samples are measured, and will provide more information

on a population response;

• Not all of the physiological measurements and biochemical metabolites avail-

able were suitable for modelling purposes, and several statistical analyses were

combined with biological information to create two lists of variables suitable

for modelling (one for physiological measurements (dependent variables), and

one for biochemical metabolites (explanatory variables));

• Simple linear regression analysis against altitude allowed the assessment of

how physiological measurements and biochemical metabolites were changing

with increasing hypoxic exposure. This was used as a basis for the selection

of variables for modelling;

• Several physiological measurements were selected as potential indicators of

hypoxia adaptation. These measurements showed a change during the expe-

dition (assessed via an ANOVA) and showed variability between individual

responses (shown by variability in the slope for fitted regression lines against

altitude). Measurements of particular biological interest comprise of indicators

of hypoxaemia, oxygen consumption and oxygen e�ciency, and are marked in

Table 5.2 with an asterisk (*);

• A list of 46 biochemical metabolites has been finalised for use as potential

explanatory variables in further modelling analysis. These metabolites show

a change during the expedition, and contain enough data to be potentially

useful for modelling. Biochemical metabolites of particular biological interest

were from the NO and ROS pathways, and are marked in Table 5.3 with an

asterisk (*).
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Chapter 6

Model Exploration

This chapter describes the initial modelling e↵orts undertaken to produce a number

of models, capable of predicting the response seen in one dependent variable (phys-

iological measurement) using a combination of one or more explanatory variables

(biochemical metabolites). This initial stage of modelling is exploratory in nature,

and several physiological measurements were used as potential dependent variables,

as identified in Chapter 5. The overall suitability of each physiological measurement

as a dependent variable was assessed by looking at the strength of the resulting pre-

dictions from the model formed, and the biological relevance of the variable (i.e. has

it been highlighted as a measurement of particular biological interest, as described

in Section 5.4.2).

6.1 Aims

The main aims of this stage of model building were to:

• Identify possible linear relationships between physiological measurements (de-

pendent variable) and a combination of biochemical metabolites (explanatory

variables);

• Identify physiological measurements that are predictable by a combination of

one or more biochemical metabolites.

6.2 Simple linear regression

Simple linear regression (SLR) looks at the linear relationship between one depen-

dent variable and one explanatory variable, as described in Section 2.5.9. This initial
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(e) Everest Base Camp

Figure 6.1: Nitrite correlated against oxygen consumption at VO
2

max, for each
altitude, separately. Each plot shows the two variables correlated for that altitude.
The r -values are the correlation coe�cients between the two variables. Whilst none
of these correlations are strong, these figures show a change in the relationship
between these two metabolites during the expedition [Levett et al., 2011].
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method looks for simple linear relationships between two variables, and was used

to identify individual explanatory variables that may be useful for complex model

building. Each of the physiological measurements listed in Table 5.2 were regressed

against each of the biochemical metabolites listed in Table 5.3 (for all altitudes

together).

Some initial associations were identified during the writing of a paper pub-

lished in Scientific Reports in 2011, which looked at correlating NO metabolites

against oxygen consumption measures separately for each altitude [Levett et al.,

2011]. The paper identified several associations, for which the correlation coe�-

cients were only significant at London (sea-level). It also identified relationships

that changed over the course of the expedition. One example is shown in Figure 6.1,

which shows correlations between oxygen consumption at VO
2

max and nitrite. This

figure shows an initial weak positive correlation value between the variables, that

becomes negative by Pheriche. This highlights a problem - simple models may as-

sume that the relationship between two variables remains the same throughout the

expedition, whereas the example shown in Figure 6.1 shows that this is not always

the case.

The aim of this initial analysis was to identify relationships that were con-

sistent over all altitudes. This would be the first step towards building a predictive

model, capable of looking at a variety of scenarios. In a clinical environment, it may

not be clear how hypoxic a patient is when they first arrive into the ICU (i.e. which

altitude they are equivalent to). Therefore, we want a general model that is able

to incorporate the hypoxic status of a patient and the change in the relationships

seen between variables during hypoxic exposure (such as those shown in Figure 6.1).

The fitted regression lines were assessed for their fit by assessing the scatter plot

between the dependent and independent variables, as well as the R2 value, goodness

of fit statistic, lack of fit statistic and F -statistic calculated for the fit, as described

in Section 2.5.9.

6.2.1 Results

The simple linear regression models produced showed poor R2 values, with a max-

imum R2 value of 0.35, indicating that none of the dependent variables could be

explained by one explanatory variable. Most of the regression models produced

showed very poor R2 values of less than 0.1. However, these results were expected,

due to the complex nature of the system studied. These results were used to iden-

tify potential explanatory variables that may be of use in a more complex modelling

method, to see if a combination of multiple biochemical metabolites could explain
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more of the variability associated with the physiological measurements of interest.

Figure 6.2 shows some of the typical results from the simple linear regres-

sion analysis performed for each physiological measurement. Figure 6.2a shows an

example of one of the strongest relationships seen, for the regression of oxygen con-

sumption at VO
2

max (normalised for body weight) against bicarbonate. This figure

shows an R2 value of 0.328, indicating that bicarbonate is explaining 32.8% of the

variability associated with oxygen consumption.

Figures 6.2b, 6.2c and 6.2d show the regression results for work rate at

VO
2

max against creatinine, work rate at LaT against adipsin and oxygen consump-

tion at LaT against IL-6. All of these figures show no clear relationship between the

dependent and independent variables, and were typical of the vast majority of the

results gained from the simple linear regression analyses.

6.3 Multiple linear regression

Multiple linear regression (MLR) was chosen as the next model building method

due to the number of potential explanatory variables available, shown in Table 5.3.

MLR looks at the inclusion of a combination of terms, as described in Section 2.5.11.

In some cases, additional explanatory variables were calculated as the product of

original explanatory variables. The inclusion of these combination terms allows the

assessment of interaction e↵ects within the statistical model, and may highlight

potentially interesting biological combinations to be assessed further. However,

including all possible combination terms is computationally expensive, and was only

possible when considering a relatively small subset of the biochemical metabolites as

explanatory variables, and not when using the full range of biochemical metabolites

available, shown in Table 5.3.

As there were a large number of potential explanatory variables available, an

automated selection algorithm was chosen to assess potential relationships between

each dependent variable and the multiple explanatory variables. Stepwise regression

was chosen to swiftly select the best model for the observed data, whilst minimising

the amount of time required to fit each model. In this case, the best model is the

one that best describes the observed data available, measured by the calculation

of an adjusted R2 value, as described in Section 2.5.12. The stepwisefit algorithm

was implemented in matlab to produce the best model for each of the physiological

measurements listed in Table 5.2, as described in Section 2.5.11. All of the models

fitted were formed using MLR, and as such no biological information was used to

determine the inclusion or exclusion of specific explanatory variables at this stage.
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(d) O2 consumption at LaT vs. IL-6

Figure 6.2: Simple linear regression figures, regressing a physiological measurement
against a biochemical metabolite. (a) shows a very weak linear relationship between
oxygen consumption at VO

2

max (normalised for body weight) against bicarbonate.
The R2 value for this model is 0.32787, indicating that bicarbonate is explaining
32.8% of the variability associated with the dependent variable.
(b), (c) and (d) were more typical of the regression results, showing the results for
(b) work rate at VO

2

max against creatinine, (c) work rate at LaT against adipsin
and (d) oxygen consumption at LaT against IL-6. These figures show that the bio-
chemical metabolites have no relationship with their respective dependent variable.
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6.3.1 Assessment of model stability and fitting

All models produced were assessed to determine how well each model fitted the

observed data, and examine the relationships between the dependent variable and

each of the explanatory variables.

6.3.2 Uncertainty, variability and residuals

For a given model, all predicted values will exhibit some degree of uncertainty. This

uncertainty (or error) should be random, so that predicting higher or lower than the

actual response should carry the same probability (i.e. the error is symmetric). The

magnitude of error should also be independent of the time when the observation

occurred. The uncertainty represents any incomplete knowledge about a system,

and the level of uncertainty may be reduced with more or better data and a greater

understanding of the system. Error is distinct from variability, which is the range

in values of naturally occurring parameters. This variability is inherent to the data,

and cannot be reduced by increasing the amount of data, gaining better data or a

greater understanding of the system.

Residuals are defined as being the di↵erence between values fitted from a

model and the observed values. Residuals can be used as an estimate of the er-

ror associated with a model, and can be used to assess the appropriateness of each

parameter included in a model. Examination of the residual values allows the assess-

ment of whether the assumptions made during the modelling process are reasonable,

and whether the choice of each of the explanatory variables, or even the entire model

choice, is appropriate for the intended use. The overall pattern of residuals should

follow a normal distribution and be homoscedastic (i.e. show a homogeneity of vari-

ance). Any departure from these assumptions generally indicates that there is some

structure to the residuals, which is not accounted for within the model.

For each model, the residual values were plotted against each explanatory

variable, and against values fitted by the model, and assessed for heteroscedasticity.

95% confidence intervals (CI) for the residuals were added to each figure to aid in

the assessment of the residual values. They were calculated from the residual mean

square (ResMS, shown in equation 2.21) as follows:

95%CI =
p

ResMS(t� value), (6.1)

where the 5% t-value is the critical value of the t-distribution for the number of

degrees of freedom for that model, calculated as n - (the number of explanatory
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variables used in the model - 1).

6.3.3 Hypothesis testing

In order to determine the appropriateness of each fitted model, univariate correla-

tions were performed between (a) the residual values and the fitted values for the

model and (b) the residual values and each of the explanatory variables used in

the model, as described in Section 2.5.7. If a significant correlation exists between

the residuals and the fitted values, then this suggests that there is a structure to

the residuals, and that the model is not describing the variability associated with

the dependent variable. If a significant correlation exists between the residuals and

the explanatory variable, then this suggests that the particular explanatory variable

may not be suitable for use in the model, as it is not taking any of the variability

out of the model.

6.3.4 Model refinement

Initial MLR models were formed for each physiological measurement, for the com-

bined data over all altitudes. These initial models were then refined through the

following steps:

1. Apply multiple linear regression for the dependent variable for the combined

data against all altitudes, using a selection of biochemical metabolites as ex-

planatory variables;

2. Produce a summary for each dependent variable, including figures showing

observed vs. fitted values and the related adjusted R2 value, residual values

vs. fitted values and residual values vs. each explanatory variable used;

3. Use summary figures to assess the suitability of each of the explanatory vari-

ables in the model (assess for heteroscedasticity and outliers);

4. Remove any observations with high leverage, or the metabolite containing the

observation with high leverage from the analysis and refit the MLR to assess

the e↵ect of removing the values on the model formed;

5. Compare initial and refined models formed, and determine the best model for

each of the dependent variables. This may not always be the best fitting model,

but may be the most reliable model, or the model that predicts a dependent

variable of biological interest.
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6.4 Di↵erent sets of explanatory variables

Two di↵erent subsets of the explanatory variables listed in Table 5.3 were used in

multiple linear regression:

• NO metabolites only, including pairwise combination terms;

• All biochemical metabolites listed in Table 5.3, with no interactions/combinations.

The NO metabolites are labelled in Table 5.3 with an asterisk (*), and are

described in detail in Sections 1.4.1 and 1.4.2. These metabolites were considered

in a separate set of models because nitric oxide is known to play a role in hypoxia

adaptation, and it was thought that the NO and ROS-related metabolites may

interact and be good predictors of hypoxia adaptation and performance at altitude.

The second set of models were created using the complete range of biochemical

metabolites listed in Table 5.3.

6.4.1 Exploratory modelling - NO metabolites

All of the MLR analyses carried out using the NO metabolites alone resulted in poor

models with low adjusted R2 values ranging from 0.034 to 0.222, indicating that the

models produced were not explaining the variability associated with each of the ob-

served dependent variables. Figure 6.3 shows some of the best initial models formed

for oxygen consumption at LaT (normalised for body weight, Figure 6.3a), work rate

at VO
2

max (Figure 6.3b), economy (Figure 6.3c) and haemoglobin (Figure 6.3d).

Table 6.1 shows the best models produced for each of the dependent variables listed

in Table 5.2, using NO metabolites and their combinations as explanatory variables,

ranked in order of decreasing adjusted R2 value. The table shows that the best

model produced was for oxygen consumption at LaT (normalised for body weight),

with an adjusted R2 value of 0.222, indicating that it was explaining 22.2% of the

variability associated with oxygen consumption. The worst model produced was

for minute ventilation at LaT, which showed an adjusted R2 value of 0.034, and

only included one explanatory variable. The final models produced were similar

to the best models produced using simple linear regression, shown in Figure 6.2.

Ten of the models formed only use one explanatory variable (mostly for the lowest

ranked dependent variables in Table 6.1), making the results no more informative

than those gained from simple linear regression. Figure 6.3 shows some of the final

models produced, with fitted values plotted against observed values. All of these

figures show very poor predictability of the response.
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As these models had low predictive power, higher orders of combined vari-

ables were not considered. This was because it was not considered meaningful to

introduce further combinations of variables purely to reduce residual values for the

fitted model without an understanding of the variable relationship or impact on the

physiological measurement being assessed. From a statistical perspective, it may

seem a good idea to incorporate higher order combinations of explanatory variables,

however, from a biological perspective it is very di�cult to interpret what these

combinations of explanatory variables would actually mean.

6.4.1.1 Work rate at LaT

Table 6.1 shows that one of the most powerful models produced was for work rate at

LaT. This model is shown in detail as an example of why the NO metabolites were

not able to explain the variability associated with the dependent variables. Fig-

ures 6.4 and 6.5 show the summary figures produced for a MLR analysis for work

rate at LaT, using NO metabolites as potential explanatory variables. Figure 6.4a

shows the fitted values plotted against the observed values. The adjusted R2 value

generated is a measure of how much of the variability in the observed data is ex-

plained by the model. For this model, the adjusted R2 value is only 0.219, indicating

that the model is only describing 21.9% of the variability seen in the observed data.

The model also shows systematic error, underestimating high responses and overes-

timating low responses. This indicates that the subset of explanatory variables used

is not capturing the variability seen in the dependent variable, and that the overall

model is not describing the dependent variable.

Figure 6.4b shows the residual values plotted against the fitted values for

the model. This figure shows a clear heteroscedastic relationship, with variability

within the residual values increasing as the fitted values increase. This indicates that

there is variability in the model that is not being accounted for by the explanatory

variables being used. Figures 6.5a, 6.5b and 6.5c show the residual values plotted

against each of the explanatory variables used within the model. Each of these

figures also suggest heteroscedasticity within the residuals. These figures indicate

that the model is failing to describe the variability in the dependent variable, and

therefore may not be suitable for the observed data.

There is some evidence of redundancy within the NO metabolites, shown

by high r -values and significant p-values for correlations calculated between the

metabolites, shown in Table 6.2. This table shows very high correlations between

related metabolites, such as Nitrate and NOx (r -value = 1, p-value = 1.9x10�250) and

RNNO and RXNO (r -value=0.925, p-value=2.2x10�51), which is to be expected,
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as NOx is calculated as the sum of nitrate and nitrite levels, and RXNO is the

sum of RNNO and RSNO. As the NO metabolites are strongly linked with the

response to hypoxia, they may be showing too narrow a response, and may not

be able to explain the variability associated with non-hypoxic factors such as UV

exposure or the physical e↵ort associated with the expedition. Therefore, there may

not be enough variability in the NO metabolite values to explain the physiological

responses.

Alternatively, as NO is known to play a crucial role in several bodily func-

tions across several organs and tissues (as described in Section 1.4.1.1), then these

metabolites may be highly regulated independently of oxygen availability, to ensure

the proper performance across the whole physiological oxygen gradient. There is

also evidence that some of the NO metabolites do not show a significant change

over altitude during the expedition. For example, nitrate shows a very low slope

value for the fitted simple linear regression line against altitude, shown in Table 5.3,

and an acceptance of the null hypothesis for a two-way ANOVA performed for al-

titudes and individuals. Therefore, the NO metabolites may not be good enough

as explanatory variables on their own to explain the variability associated with the

dependent variables of interest.

6.4.2 Exploratory modelling - All biochemical metabolites

In order to try and explain as much of the variability in the dependent variables

as possible, the next stage of modelling looked at utilising all of the available bio-

chemical metabolites described in Table 5.3 as potential explanatory variables. Only

linear relationships were looked at here, due to the large initial number of explana-

tory variables available. The initial results from this analysis were more promising,

with higher adjusted R2 values between the fitted and observed values than those

seen using the NO metabolites alone. The results for the initial models produced

are shown in Table 6.3, and are ranked in order of decreasing adjusted R2 value.

A series of statistical tests was then performed on the eight models with

an adjusted R2 value above 0.4, shown in Table 6.3 as dependent variables above

the line. Only initial models that had an adjusted R2 above 0.4 were refined. 0.4

was chosen as an arbitrary cut-o↵ value for model refinement, as there was not

su�cient time to refine all of the models. Any refinement may include the removal

of observations or explanatory variables from the model, leading to a decrease in

the adjusted R2 value. Therefore, only the strongest models were refined, to ensure

the final models were meaningful and explained as much of the observed variability

as possible.
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Figure 6.3: Examples of the best MLR models produced for various physiological
measurements, using the NO metabolites as explanatory variables.
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Figure 6.4: Summary figures produced for a MLR between work rate at LaT and
NO metabolites (metabolites playing a role in NO and ROS pathways). (a) shows
observed vs. fitted values and (b) shows the residual values for work rate at LaT
(observed y - fitted ŷ) plotted against the fitted values for work rate at LaT. (b)
shows a large amount of variability within the residual values when plotted against
fitted values, indicating that it is not explaining the variability associated with the
dependent variable. Therefore, this model is not appropriate for this dependent
variable. 142
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Metabolite x Metabolite y r -value p-value

Nitrate Total NOx ***1.000 • 1.9E-250
RNNO Total RXNO ***0.925 • 2.2E-51
RSNO Total RXNO ***0.899 • 4.2E-44
RSNO RNNO **0.682 • 9.4E-18
Nitrite cGMP 0.349 • 9.2E-05
cGMP HNE 0.343 • 2.6E-04
Nitrite Total NOx 0.248 • 6.2E-03
Nitrite Nitrate 0.242 • 7.7E-03
Nitrite HNE 0.239 • 1.2E-02
cGMP 8-isoPGF2↵ 0.198 • 3.0E-02
Total NOx Total RXNO 0.191 • 3.7E-02
Nitrate Total RXNO 0.190 • 3.7E-02
Total NOx RSNO 0.170 6.3E-02
Nitrate RSNO 0.169 6.4E-02
Total NOx RNNO 0.161 8.0E-02
Nitrate RNNO 0.160 8.1E-02
Nitrite RSNO 0.160 8.1E-02
Total NOx cGMP 0.144 1.2E-01
Nitrate cGMP 0.142 1.2E-01
Nitrite Total RXNO 0.121 1.9E-01
RNNO HNE -0.109 2.6E-01
Nitrite 8-isoPGF2↵ 0.098 2.9E-01
Total RXNO HNE -0.090 3.5E-01
Total NOx HNE 0.088 3.6E-01
Nitrate HNE 0.087 3.7E-01
RNNO cGMP -0.085 3.6E-01
Nitrite RNNO 0.081 3.8E-01
8-isoPGF2↵ HNE -0.073 4.5E-01
RNNO 8-isoPGF2↵ -0.057 5.4E-01
Total RXNO cGMP -0.053 5.6E-01
Total RXNO 8-isoPGF2↵ -0.047 6.1E-01
RSNO 8-isoPGF2↵ -0.031 7.4E-01
RSNO HNE -0.029 7.6E-01
RSNO cGMP 0.015 8.7E-01
Total NOx 8-isoPGF2↵ 0.009 9.2E-01
Nitrate 8-isoPGF2↵ 0.007 9.4E-01

Table 6.2: Correlations calculated between the NO and ROS metabolites, ranked
in decreasing strength of the absolute value for the correlation coe�cient (r -value).
The p-value is the probability of getting a correlation as large as the observed value
by random chance, when the true correlation is zero. Metabolites marked with a
dot (•) show a p-value less than 0.05, indicating that the correlation between x and
y was significant.
Medium strength correlations have a correlation coe�cient between either -0.6 and -
0.79 or 0.69 and 0.79, and are marked with a double asterisk (**). Strong correlations
have a correlation coe�cient between either -0.8 to -1.0 or 0.8 to 1.0, and are marked
with a triple asterisk (***).
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Several figures of the residuals were produced to check the quality of the fitted

models. These figures showed the residual values for the fitted response plotted

against each of the explanatory variables used within the model, and the residual

values plotted against the fitted values for the model. Ideally, we want to see an

even scatter of residual values around zero as either the explanatory variable or the

fitted values increase. Correlation values were computed for each of the plots, as

described in Section 2.5.7, and the null hypothesis (H
0

= there is no correlation

between the observations of variables x and y) was accepted for all correlations

between residual and explanatory variables, and residual and fitted values. The

figures were also visually assessed for heteroscedasticity, to determine whether there

was any underlying structure to the residuals.

95% confidence intervals were added to the figures to assess how well the

model was predicting the dependent variable. If the model is estimating the depen-

dent variable well overall, then 95% of the total points should lie within the green

intervals. Observations that lay outside of the confidence intervals were poorly fit-

ted. Observations with high leverage that gave a residual value close to zero may

skew the model by influencing the resulting regression between that explanatory

variable and the dependent variable, as shown in Figure 6.6. Any observations that

were thought to have high leverage were highlighted for further assessment. These

observations were removed one-by-one to assess the impact of the observation on

the model. It is important to note that removal of any one observation would also

remove this specific observation from all other explanatory variables for that model.

Therefore, if that observation was also important for the strength of the regression

seen between the dependent variable and another explanatory variable, then it may

have an e↵ect here also.

For each of the dependent variables assessed, the initial model best described

the observed data available, indicated by the largest adjusted R2 value, which was

to be expected, as the initial models were all based on the full dataset available.

Once the model was refined and any observations with high leverage or explanatory

variables were removed, then the adjusted R2 value decreased, indicating that the

removal of the values led to less of the variability within the observed data being

described by the resulting model. However, the full model may be strongly influ-

enced by the observations with high leverage included. It is also important to note

that these models were fitted without any prior biological information being used

to determine whether or not a particular explanatory variable was included in the

model. The refinement of the model allowed the use of prior biological information,

to assess whether the outlying values made biological sense, and should be left in
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the model or omitted.

6.4.3 Results

Table 6.3 shows the initial models formed for each dependent variable by stepwise

MLR, using all biochemical metabolites as possible explanatory variables. The table

also shows that several of the biochemical metabolites used as explanatory variables

are included in multiple models. Figures 6.7, 6.8 and 6.9 show examples of the

models formed from MLR for di↵erent dependent variables, and show how well the

fitted values by the model match the observed data.

Figure 6.7 shows the results for the MLR performed for heart rate at VO
2

max.

Figure 6.7a shows the observed values plotted against the fitted values by the model,

colour-coded by altitude, and Figure 6.7b shows the residual values plotted against

the fitted values by the model. Figure 6.7a shows a reasonable fit of the observed

data to the fitted data, with an adjusted R2 value of 0.566, indicating that the model

is explaining 56.6% of the variability associated with the observed data. This figure

also shows an even scatter of points around the dashed line, indicating that it is

fitting values for all altitudes with similar levels of error.

The physiological measurement of heart rate after a 2-minute step-exercise

test (HR
Ex

) from the diary data (described in Chapter 4) is similar to the heart rate

at VO
2

max measurement in the core data. Both measurements show the heart rate

at di↵erent altitudes after exercise, although the amount of exercise at VO
2

max is

much higher. Therefore, the results from the analysis of HR
Ex

within the diary data

may be used to inform the use of heart rate at VO
2

max as a dependent variable, to

aid in understanding the model formed.

Heart rate after exercise was highlighted in the diary data as showing di↵er-

ences between ill individuals, and is marked with a dot (•) in Table 6.3. The diary

data showed that HR
Ex

was a reasonably stable measurement between days, with a

low C
V

value of 0.135 calculated from the simple linear regression performed for the

diary data measurement against altitude, shown in Table 4.2. HR
Ex

also showed

di↵erences in how individuals were responding, shown by di↵erences in the slopes

and intercepts for simple linear regression analyses performed against altitude for

each individual, identifying it as a potentially good dependent variable for mod-

elling. The adjusted R2 for the MLR performed for heart rate at VO
2

max may be

low due to the inter-individual variability being relatively high for this type of mea-

surement, shown in Figure 4.3a and Table 4.3. Some di↵erences in how individuals

are responding are required for modelling. However, the MLR is attempting to fit a

model to all individuals, therefore, the high inter-individual variability for this type
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Figure 6.6: An example of a linear regression performed, where x contains two
observations with high leverage, in red. Data points far from the mean x value are
potentially more informative than those near it. If there are only a few of these
points, then they can have a misleading e↵ect on the fitted line, as shown here.
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Figure 6.7: Observed vs. fitted values for a multiple linear regression model predict-
ing heart rate at VO

2

max, and residuals plotted against fitted values from the model.
(a) shows each altitude colour-coded, and shows relatively even scatter around the
line, indicating that the model is fitting high and low values with equal probability.
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Figure 6.8: Observed vs. fitted values for a multiple linear regression model pre-
dicting diastolic blood pressure at rest, and residuals plotted against fitted values
from the model.
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of measurement may make it more di�cult to reliably predict a population response

using MLR.

Figure 6.8 shows the results for the MLR performed for diastolic blood pres-

sure (DBP). Figure 6.8a shows the observed values plotted against the fitted values

from the model, and Figure 6.8b shows the residual values plotted against the fitted

values from the model. Figure 6.8a shows no relationship between the fitted data

and observed data, with an adjusted R2 value of 0.097. Analysis of DBP in the diary

data (shown in Chapter 4) indicated that DBP seemed a good potential dependent

variable. DBP showed good day-to-day consistency, shown by a low C
V

calculated

from a simple linear regression of DBP against altitude. DBP also showed a signifi-

cant change against altitude and between individuals, tested by a two-way ANOVA

for altitude and individual. The reason for the poor prediction from the MLR is

unclear, but may be due to the lack of linear relationships being present with any

of the explanatory variables, as only two explanatory variables were included in the

MLR, but even these do not appear to be predictive.

6.4.3.1 Work rate at VO
2

max

Table 6.3 shows that similar biochemical metabolites were used in several of the MLR

models formed. These included biochemical metabolites that were highlighted as

containing observations with high leverage, that may be having a high impact on

the resulting relationships within the MLR. The model produced for work rate at

VO
2

max contained a high number of explanatory variables, including several that

were contained in other models and contained observations with high leverage (listed

in Table 6.4). Therefore, the model for work rate at VO
2

max is detailed here as an

example of the refinement process, and to determine whether any of the explanatory

variables highlighted may be highly influential on the MLR models formed.

Work rate at VO
2

max was identified as a variable of biological interest in

Section 5.4.2, as it is a measure of how well the body is using oxygen to do work

(i.e. oxygen utilisation vs. consumption). Work rate is known to decrease during

exposure to hypoxia, and how much it changes can be used as an indication of how

well an individual is adapting to the hypoxic conditions. An individual who shows a

low reduction is considered to have adapted to that change better than an individual

who has a larger reduction in work rate. This is because a low reduction in work

rate indicates that an individual is still able to perform a similar amount of work

with less oxygen available.

MLR was performed on work rate at VO
2

max using all of the biochemical

metabolites listed in Table 5.3 as potential explanatory variables. The initial MLR
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produced a model with an adjusted R2 value of 0.717 - the highest adjusted R2

value for any initial model formed, as shown in Table 6.3. This model was chosen

for refinement due to the high adjusted R2 value associated with the initial model

and the fact that the variable is of biological interest. This model also contained a

relatively large number of explanatory variables, and was assessed further to see if

a reduction in the number of explanatory variables used would yield similar results

to the initial modelling, or whether all of the explanatory variables were required

to produce a reasonable model with a high adjusted R2 value, indicating that it

is explaining a good proportion of the variability associated with the dependent

variable.

Figures 6.9 and 6.10a show the observed vs. fitted values for the MLR

performed between work rate at VO
2

max, using all biochemical metabolites listed

in Table 5.3 as potential explanatory variables. Figure 6.9 shows a colour-coded

version of Figure 6.10a, labelling each altitude in a di↵erent colour. The figures

show a high adjusted R2 value of 0.717, indicating that the model is describing

71.7% of the variability seen within the observed values for work rate at VO
2

max.

Figure 6.9 shows relatively even scatter around the dashed line (which shows where a

perfect 1:1 relationship would lie between the fitted and observed values), indicating

that the model is fitting high and low values equally well. The model also seems

to be fitting values for each altitude equally well, shown by even scatter for each

colour above and below the dashed line. Figure 6.10b shows the residual values

plotted against the fitted values from the model, and shows reasonable homogeneity

of variance (i.e. no underlying structure or pattern to the residual values from the

model). This indicates that the assumptions for the model are being met. The top

row of Table 6.5 shows the explanatory metabolites included in this model, as well

as their associated coe�cients and significance levels for use in the model.

Figures 6.11 and 6.12 show the residual values for work rate at VO
2

max

plotted against each of the explanatory variables included in the model. The figures

shown in Figure 6.11 show explanatory variables that were deemed to be suitable

for use within the model without further assessment. They showed no discernible

patterns or heteroscedasticity. This indicates that these explanatory variables show

true relationships with the dependent variable, and are suitable for use within the

model.

There were some explanatory variables within Figure 6.11 that showed po-

tential outlying observations, however, they were not deemed to need further as-

sessment, as they were not considered to be observations with high leverage. The

outlying value seen for MIF (shown in Figure 6.11h) is also associated with a large
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Figure 6.9: Observed vs. fitted values for a multiple linear regression model pre-
dicting work rate at VO

2

max, and residuals plotted against fitted values from the
model. The figure is colour-coded by altitude, with London values in yellow, Kath-
mandu values in green, Namche values in cyan, Pheriche values in blue and Everest
Base Camp values in red. The figure shows relatively even scatter around the line,
indicating the model is fitting high and low responses equally well.
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Figure 6.10: Observed vs. fitted values for a multiple linear regression model pre-
dicting work rate at VO

2

max, and residuals plotted against fitted values from the
model.
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Figure 6.11: Figure 1 of 2 showing residuals for work rate at VO
2

max plotted
against each explanatory variable used in a multiple linear regression. None of these
residuals show any discernible pattern, or require further assessment.
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Figure 6.12: Figure 2 of 2 showing residuals for work rate at VO
2

max plotted against
each explanatory variable used in a multiple linear regression. None of these resid-
uals show any heteroscedasticity, however, some potentially outlying values were
cause for concern due to their correlation with low value residuals. This indicates
that these values may be having a biasing e↵ect on the regression between the de-
pendent variable and the explanatory variable in question. Therefore, all of these
values were assessed further to ascertain their impact on the model formed.
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Explanatory variable Individual Altitude

Adiponectin X24 Kathmandu
X24 Pheriche
X21 EBC week 1
X24 EBC week 1

IL-1ra X02 London
Resistin X02 London
VEGF X16 EBC week 1
8-isoPGF2↵ X21 Namche

X08 EBC week 1

Table 6.4: A summary of observations considered to have high leverage in MLR.

residual value, indicating that this point is not having a large e↵ect on the model,

and is badly predicted by the model overall. Low residual may also be balanced out

by other values. For example, Figure 6.11i shows low residual values for nitrite that

are both above and below the zero residual line in red, balancing each other out.

Figure 6.12 shows plots of explanatory variables that require further inves-

tigation. Although these figures all show a good homoscedastic spread of points,

there are individual points that require further assessment, as they have the poten-

tial to be observations with high leverage. These explanatory variables were also

used in several of the other models shown in Table 6.3, therefore, it is important to

determine whether these points are suitable for use in further modelling e↵orts.

All of the explanatory variables shown in Figure 6.12 have observations with

high leverage values associated with low residual values from the model, indicating

that they may be having a strong influence on the resulting regression between the

dependent variable and that particular explanatory variable. Each of these points is

listed in Table 6.4. Three of the high leverage adiponectin values are associated with

individual X24, indicating that this individual may have unusually high values for

this particular metabolite. The other observations with high leverage are distributed

well between individuals and over di↵erent altitudes, indicating that it is not one

individual or altitude that is associated with these potentially highly influential

observations.

6.4.3.2 Assessment of potential outliers

It is di�cult to ascertain whether the outlying values measured are truly erroneous,

or a real response to the extreme conditions experienced during CXE 2007. The

current literature on these biochemical metabolites in human samples is very poor,

and mostly consists of clinical situations at sea level. The literature does not contain
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information about these metabolites measured at di↵erent altitudes, and many of the

metabolites are measured via a variety of di↵erent techniques, making comparisons

to our values very di�cult.

To assess the impact of the potential outliers shown in Figure 6.12, the

observations with high leverage were removed one at a time, and the MLR was refit.

Four values were removed for adiponectin, two values were removed for 8-isoPGF
2↵

and one value was removed for each of IL-1ra, resistin and VEGF, as detailed in

Table 6.4. MLR was run separately on each of the five new datasets formed (with

observations with high leverage omitted). The new models formed could not be

formally compared to one another or to the initial model, as they were all based on

sightly di↵erent data sets. However, the changes seen in adjusted R2 and residual

mean square values could still be assessed to see which model explained most of the

variability seen in the dependent variable. Di↵erences in the explanatory variables

included and their coe�cient values could also be assessed to determine the e↵ects

of removing the potentially erroneous data points.

Table 6.5 shows information for the initial and refined models formed using

MLR on work rate for VO
2

max. This table shows the adjusted R2 and residual mean

square values for each of the models, as well as the intercept, explanatory variables

included in each model and their coe�cients and significance levels for inclusion

in the model, as described in Section 2.5.11. The coe�cient values provided for

explanatory variables not included in a particular model are the values they would

have had if they had been included. If these variables had been included, then it is

likely that the coe�cient values for the other explanatory variables would change.

The initial model gave the highest adjusted R2 value for all of the models

shown in Table 6.5. This is to be expected, as it resulted from a MLR using all

of the data available for analysis. Therefore, the initial model explains more of

the variability seen within the observed data than any of the refined models, where

observations with high leverage have been removed. The initial model also has the

lowest value for the residual mean square compared to any of the refined models,

which is a measure of the di↵erence between the observed data and the model, with

a small residual mean square value indicating a good fit of the model to the data.

This indicates that the initial model is statistically the best model for the observed

data available. Observations with high leverage were removed to assess how much

of an impact they had on the regression, and their e↵ects are described below.
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6.4.3.3 Adiponectin

Adiponectin is a protein that is produced and secreted by adipocytes, and regulates

the metabolism of lipids and glucose [Nedv́ıdková et al., 2005]. It is known to play

roles in the body’s response to insulin and the inflammatory response. Low levels of

adiponectin are associated with obesity and increased risks of heart attack [Ukkola

and Santaniemi, 2002; Kizer et al., 2008], although this is not currently fully under-

stood. Adiponectin is very abundant in human plasma compared to other hormones,

and shows sexual dimorphism, with females showing higher levels than males.

Adiponectin levels were measured via xMAP technology, as described in Sec-

tion 2.2.4. A diabetes panel assay was used to measure adiponectin levels, as well

as several other metabolites thought to play a role in type II diabetes, listed in

Table 2.2. The assay included information about cytokine levels that had been val-

idated in real patient samples. The samples validated by the assay manufacturer

(BioPlex) were taken from 10 healthy control patients and 10 patients su↵ering

from type II diabetes. However, the validated levels were measured in serum, which

has had clotting factors such as fibrin removed, and may result in slightly di↵erent

measurements when compared to the CXE plasma samples. It is important to note

that these validated samples were measured by BioPlex and were only measured in

a very small sample size. The BioPlex validated samples and CXE samples gave

results in the range of:

• BioPlex healthy validated samples: mainly ⇠8,000,000 to ⇠40,000,000 pg/mL,

with outliers up to ⇠100,000,000 pg/mL

• BioPlex type II diabetes validated samples: mainly⇠10,000,000 to⇠60,000,000

pg/mL, with outliers up to ⇠90,000,000 pg/mL;

• CXE samples: mainly ⇠5,000,000 to ⇠50,000,000 pg/mL, with outliers down

to ⇠30,000 and up to ⇠110,000,000 pg/mL.

This indicates that the values obtained from measurement of the CXE sam-

ples seem reasonable when compared to the BioPlex validated samples. The CXE

samples have a larger range than the BioPlex validated samples, however, the CXE

samples were taken from individuals exposed to an extreme environment. No in-

formation is given on the sex of the individuals for the BioPlex validated samples,

which would impact the range of results obtained. Finally, serum was measured

for the BioPlex validated samples compared to plasma for the CXE samples, which

may give cleaner results with a lower variability compared to plasma samples.
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The MLR analysis was run with the four observations with high leverage

removed, and the results for this analysis are shown in Table 6.5. This refined

model has a lower adjusted R2 value than the initial model of 0.697 compared to

0.717, indicating that it is describing 2% less of the variability seen in the observed

data than the initial model. The intercept value for the model decreases from -

273.27 to -317.30 compared to the initial model, and the ResMS increases from

827.34 for the initial model to 880.22 for the refined model. This indicates that

there is a larger discrepancy between the model and the observed data, compared

to the initial model.

Adiponectin is still included as an explanatory variable in the refined model,

although its coe�cient value increases by 57.14% compared to the initial model

value. The refined model no longer includes nitrite or resistin as explanatory vari-

ables in the model, with their p-values dropping to 0.074 and 0.065, respectively.

Figure 6.13 shows individual responses for adiponectin, nitrite and resistin. Ta-

ble 6.4 shows that the observations with high leverage removed for adiponectin were

for individual X24 (Kathmandu, Pheriche and Everest Base Camp week 1) and X21

(Everest Base Camp week 1), and are also shown in Figure 6.13a. However, the

corresponding data points for nitrite (shown in Figure 6.13b) and resistin (shown in

Figure 6.13c) are not outlying points. Therefore, it is not clear why the removal of

these points leads to the removal of nitrite and resistin as explanatory variables.

Several explanatory variable coe�cient values change in the refined model,

with the largest di↵erences seen in 8-isoPGF
2↵

, GIP and protein content, which

change by "28.04%, #61.54% and "47.5%, respectively. These results indicate that

the removal of the four outlying points has an e↵ect on the explanatory variables

included in the model, as well as their coe�cient values. The refined model explained

less of the variability seen in the observed data, and is a slightly worse fit to the

data compared to the initial model.

Adiponectin levels are relatively straightforward and quick to measure in a

high-throughput manner along with other cytokines due to the multiplexing abilities

of the xMAP technology. Combined with the biological information suggesting that

similar values have been measured in human samples before, the four outlying values

should not be removed, as they are likely to be reliable values for adiponectin levels

in human plasma.

6.4.3.4 IL-1ra

Interleukin-1 (IL-1) is a pro-inflammatory cytokine, which binds to the IL-1 receptor

to promote inflammation and aid in the defence against infection [Arend et al., 1998].
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Figure 6.13: Subplots of all 24 individual responses during CXE 2007 for: (a)
adiponectin, (b) nitrite and (c) resistin.
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Interleukin 1 receptor antagonist (IL-1ra) binds to the interleukin-1 receptor in a

competitive manner with IL-1, acting as an anti-inflammatory cytokine. The levels

of IL-1ra were measured via xMAP technology, as described in Section 2.2.4

MLR was run with the highest outlying value for IL-1ra removed, and the

results are shown in Table 6.5. This refined model showed a lower adjusted R2

value and higher ResMS value compared to the initial model, of 0.683 and 933.97,

respectively. There are also several di↵erences in the explanatory variables included

in the model, as well as their coe�cients. 8-isoPGF
2↵

, VEGF, GIP and resistin

are no longer included in the model, and IL-13 and C-Peptide are new explanatory

variables included in the refined model, but not in the initial model.

Table 6.4 shows that the observation with high leverage removed for IL-1ra

was for individual X02 at London, and is shown to be a potential outlier in Fig-

ure 6.14a. This datapoint is also shown to be a potentially outlying value for GIP

(shown in Figure 6.14b), resistin (shown in Figure 6.13c) and VEGF (shown in

Figure 6.16a). This indicates that this datapoint may also be an observation with

high leverage for the regressions between those explanatory variables and the de-

pendent variable, and the removal of the point results in those explanatory variables

being removed from the MLR, as the relationship with the dependent variable is

no longer strong enough. The datapoint is not an outlying value for 8-isoPGF
2↵

(shown in Figure 6.15a), and it is unclear why the removal of this point would result

in 8-isoPGF
2↵

no longer being included in the model.

6.4.3.5 Resistin

Resistin is secreted by immune and epithelial cells in humans. Resistin is thought

to be the link between obesity and type II diabetes [Steppan et al., 2001], however,

how resistin may link these two processes is currently unknown. Resistin levels were

measured via a BioPlex system as part of the diabetes panel, and as such provided

information on validated patient samples in a similar way to adiponectin. The

validated and CXE samples gave results in the range of:

• Healthy validated samples: ⇠2000 to ⇠7500 pg/mL;

• Type II diabetes validated samples: ⇠2000 to ⇠7500 pg/mL, with an outlier

at ⇠14000 pg/mL;

• CXE samples: ⇠250 to ⇠1500 pg/mL, with an outlier at ⇠3000 pg/mL.

The samples measured from CXE gave values that were much lower than

the validated samples. Therefore, the outlying value measured in the CXE samples

162



0 2 4 6

3

4

5

X01*

0 2 4 6

3

4

5

X02

0 2 4 6

3

4

5

X03

0 2 4 6

3

4

5

X04

0 2 4 6

3

4

5

X05

0 2 4 6

3

4

5

X06

0 2 4 6

3

4

5

X07*

0 2 4 6

3

4

5

X08

0 2 4 6

3

4

5

X09*

0 2 4 6

3

4

5

X10

0 2 4 6

3

4

5

X11

0 2 4 6

3

4

5

X12

0 2 4 6

3

4

5

X13

0 2 4 6

3

4

5

X14

0 2 4 6

3

4

5

X15

0 2 4 6

3

4

5

X16

0 2 4 6

3

4

5

X17

0 2 4 6

3

4

5

X18

0 2 4 6

3

4

5

X19

0 2 4 6

3

4

5

X20

0 2 4 6

3

4

5

X21

0 2 4 6

3

4

5

X22

0 2 4 6

3

4

5

X23*

0 2 4 6

3

4

5

X24

Altitudes

L
o

g
 I
L

−
1
ra

 (
p

g
/m

L
)

(a) IL-1ra

0 2 4 6

100

200

300

400

X01*

0 2 4 6

100

200

300

400

X02

0 2 4 6

100

200

300

400

X03

0 2 4 6

100

200

300

400

X04

0 2 4 6

100

200

300

400

X05

0 2 4 6

100

200

300

400

X06

0 2 4 6

100

200

300

400

X07*

0 2 4 6

100

200

300

400

X08

0 2 4 6

100

200

300

400

X09*

0 2 4 6

100

200

300

400

X10

0 2 4 6

100

200

300

400

X11

0 2 4 6

100

200

300

400

X12

0 2 4 6

100

200

300

400

X13

0 2 4 6

100

200

300

400

X14

0 2 4 6

100

200

300

400

X15

0 2 4 6

100

200

300

400

X16

0 2 4 6

100

200

300

400

X17

0 2 4 6

100

200

300

400

X18

0 2 4 6

100

200

300

400

X19

0 2 4 6

100

200

300

400

X20

0 2 4 6

100

200

300

400

X21

0 2 4 6

100

200

300

400

X22

0 2 4 6

100

200

300

400

X23*

0 2 4 6

100

200

300

400

X24

Altitudes

G
IP

 (
p

g
/m

L
)

(b) GIP

Figure 6.14: Subplots of all 24 individual responses during CXE 2007 for: (a) IL-1ra
and (b) GIP.
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may be an extreme value for this dataset, but a reasonable measured value when

compared to the validated samples. Resistin levels are known to be higher in obese

individuals [Steppan et al., 2001]. High levels of fitness were required to take part

in CXE 2007, and this may account for the relatively low resistin values in CXE

participants compared to the validated samples.

MLR was run without the highest outlying value for resistin, which was

the same datapoint removed for IL-1ra, (individual X02 at London) as shown in

Table 6.4. As removing one value removes the corresponding point from all other

metabolites, the same refined model was produced for IL-1ra and resistin.

6.4.3.6 8-isoPGF
2↵

Isoprostanes are a class of prostanoids that are formed by the attack of arachidonic

acid by free radicals during oxidative stress, and can be used as a marker of oxidative

stress, as described in Section 3.1. MLR was run with the two highest outlying

values for 8-isoPGF
2↵

removed, and the results are shown in Table 6.5. This refined

model had the lowest adjusted R2 and the highest ResMS value for all of the models

formed, of 0.629 and 1087.69, respectively. This indicates that this refined model is

the worst fitting of any formed for this dependent variable, and that the two points

removed are important in the relationship between 8-isoPGF
2↵

and work rate at

VO
2

max, as well as in other relationships within the MLR.

The explanatory variables included in the model were di↵erent to those in-

cluded in the initial model. IL-1ra, MIF, VEGF, resistin, osmolality and protein

content were no longer included in the model, and IL-13 was included as a new

explanatory variable. Table 6.4 and Figure 6.15a show the observations with high

leverage for 8-isoPGF
2↵

were for individual X21 at Namche, and individual X08

at Everest Base Camp week 1. The first data point (for individual X21) shows a

low value for MIF (shown in Figure 6.16b), and a relatively high value for resistin

(shown in Figure 6.13c). The second data point (for individual X08) shows a high

value for C-peptide at Everest Base Camp week 1, shown in Figure 6.16c. These

points may also be observations with high leverage for these explanatory variables,

indicating why they are removed from the MLR if those two points are removed.

Neither of the observations with high leverage were outlying values for IL-1ra (shown

in Figure 6.14a), VEGF (shown in Figure 6.16a), osmolality (shown in Figure 6.15b)

or protein content (shown in Figure 6.15c), and the reason for the removal of these

explanatory variables from the MLR is less clear.

The coe�cient values for explanatory variables were also di↵erent from the

initial model, with the largest di↵erences seen for nitrite ("52.96%) and 8-isoPGF
2↵
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("74.77%). The intercept value changed from -273.27 for the initial model to 84.03

for the refined model, indicating that the removal of these two points is having a

large e↵ect on every aspect of the model formed, as is vital for several relationships

within the MLR.

6.4.3.7 VEGF

Vascular endothelial growth factor (VEGF) is a signalling protein that is produced

by cells to stimulate angiogenesis and vasculogenesis. This hormone is released to

increase the oxygen supply to tissues when the circulation of oxygen is not adequate,

as previously mentioned in Section 1.4.1.

MLR was run with the highest outlying value for VEGF removed, and the

results are shown in Table 6.5. The refined model has a lower adjusted R2 value

and a higher ResMS value compared to the initial model of 0.631 and 1076.70,

respectively. This model includes the same explanatory variables as the 8-isoPGF
2↵

model, with similar coe�cient values for the explanatory variables used. However,

the value removed was not the same as either value removed for 8-isoPGF
2↵

. The

intercept is also similar to that for the 8-isoPGF
2↵

model, at 76.69. This indicates

that the removal of this datapoint is having a similar e↵ect on the MLR as the

removal of the 8-isoPGF
2↵

points.

The observation with high leverage for VEGF is shown in Figure 6.16a and

Table 6.4 to be for individual X16 at Everest Base Camp week 1. This particular

datapoint is also shown to be an outlier for MIF (shown in Figure 6.16b), and may

explain why this explanatory variable is removed from the MLR if the datapoint

is removed. However, this datapoint does not seem to be an outlying value for

IL-1ra (shown in Figure 6.14a), C-Peptide (shown in Figure 6.16c), resistin (shown

in Figure 6.13c), osmolality (shown in Figure 6.15b) or protein content (shown

in Figure 6.15c), and the reason for the removal of these particular explanatory

variables from the MLR is less clear.

6.4.4 Summary

The models formed in this sectionshow that several of the explanatory variables

used within the models contain observations with high leverage, which may a↵ect

the relationships in the MLR. Removal of any of these points leads to a worse model

being formed, which explains less of the variability associated with the dependent

variable compared to the initial model formed. As previously stated, the literature

regarding the measurement of these biochemical metabolites in samples similar to
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Figure 6.15: Subplots of all 24 individual responses during CXE 2007 for: (a) 8-
isoPGF

2↵

, (b) osmolality and (c) protein content.
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Figure 6.16: Subplots of all 24 individual responses during CXE 2007 for: (a) VEGF,
(b) MIF and (c) C-Peptide.
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the CXE samples is very poor, with most measurements involving clinical patients

at sea-level. The range of techniques used to measure these di↵erent metabolites

also makes the comparison with other studies problematic. Therefore, for the pur-

poses of further modelling, it was assumed that the results obtained for each of

the explanatory variables are showing true responses to the extreme conditions the

individuals are exposed to. Measurement of the trekker samples will further verify

whether this assumption is reasonable or not.

6.5 Conclusions

• The NO metabolites alone are not enough to describe the variability seen

within any of the dependent variables. This may be due to there not being

enough variability within the NO metabolite values to explain the physiological

responses, or NO metabolite levels being kept highly regulated independently

of oxygen availability;

• Linear combinations selected from all of the biochemical metabolites can be

used to produce a model capable of predicting some of the physiological mea-

surements;

• Some of the physiological measurements of interest are poorly predictable,

even when all available biochemical metabolites are used as explanatory vari-

ables. This may be due to high inter-individual variability for some of the

physiological measurements. The reasons for the poor predictability for some

of the physiological measurements remain unclear;

• MLR on work rate at VO
2

max produces the model with the highest adjusted

R2 value, explaining 71.7% of the variability seen within the observed data.

This makes it a good potential dependent variable in the next stage of targeted

modelling;

• The initial models formed for each dependent variable describe the largest pro-

portion of the variability seen in the dependent variable, which is as expected;

• Any refinement of the initial models resulted in a lower adjusted R2, a higher

residual mean square value and di↵erent explanatory values and coe�cients

being included in the model, which is as expected. Any removal of observations

lead to the removal of the corresponding observations in all other explanatory

variables for that model. Therefore, if that observation was also important

for the strength of the regression seen between the dependent variable and
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another explanatory variable, then it may have an e↵ect here also, reducing

the strength of the model further compared to the initial model;

• The removal of observations with high leverage was performed to assess the

extent of the changes that would occur with the removal of specific observations

with high leverage;

• The decision to remove a data point or explanatory variable depends on the

reliability of the values obtained for that variable. This is di�cult to deter-

mine, due to a lack of information in current literature surrounding values

obtained from human plasma, especially during exposure to extreme environ-

ments. Therefore, the assumption that the dataset is reliable will be used for

the next stage of modelling.

6.6 Relevance to modelling approaches in critically ill

patients

The results from this analysis were used as a basis for the next stage of targeted

modelling, specifically aimed for application to a critical illness environment. The

next stage of modelling focusses on dependent variables highlighted in the initial

modelling stages as predictable with a combination of the biochemical metabolites

available. This stage will also look at predicting a change in a dependent variable, as

a predictor for how well an individual will adapt to hypoxic exposure. Explanatory

variables used in this stage of analysis are expected to be used as part of the MLR

in the next stage of modelling.
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Chapter 7

Model Development

This chapter describes the final stage of modelling, involving the targeted MLR of

the change seen in six specific physiological measurements. This chapter describes

the steps undertaken during the modelling process, comprising technique, refinement

and model selection.

7.1 Aims

The main aims of the final stage of modelling were to:

• Build on the exploratory modelling undertaken in the previous chapter, tar-

geting the use of MLR on the % change seen in specific dependent variables

(oxygen consumption and work rate);

• Identify which, if any, of the oxygen consumption or work rate measurements

can be predicted using absolute biochemical metabolite values at one low al-

titude;

• Identify which, if any, of the oxygen consumption or work rate measurements

can be predicted using a % change in biochemical metabolite values between

two low altitudes;

• Refine the four initial models produced for one dependent variable (one for

each altitude di↵erence) to produce a generalised model, capable of predicting

the % change seen in a dependent variable over all altitude di↵erences;

• Produce a list of biochemical metabolites present in several models formed, for

measurement in the trekker samples for model validation, and for the future

XE2 study;
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• Understand the uses and limitations of any models formed.

7.2 Targeted multiple linear regression

The final stage of modelling expanded on the approach used in the previous chap-

ter, focussing on predicting a change in a physiological measurement (dependent

variable), with a combination of biochemical metabolites (explanatory variables).

Ideally, an absolute value, or change between two low altitudes would be used for

the explanatory variables, in order to apply the models to a critical illness en-

vironment (the explanatory variables need to be easily measurable in critically ill

patients). This stage of modelling focussed on predicting a change in a physiological

measurement for two reasons; firstly, to see if a change would be more predictable

than an absolute value, and secondly, because a change would be a more biologically

relevant value to predict.

The dependent variables chosen for this stage of modelling were work rate and

oxygen consumption. These measurements were chosen as they were considered the

most biologically relevant out of all of the physiological measurements available, and

therefore the most informative to be able to predict. Work rate was also identified in

the previous chapter as a physiological measurement that was highly predictable by

the biochemical metabolites (explanatory variables) available. Exercise is severely

limited at high altitude, and this limitation has been well documented [McArdle

et al., 2007]. Oxygen consumption is a measure of an individual’s ability to transport

and utilise oxygen to do work, and reflects the aerobic fitness of that individual.

Work rate is a measure of the body’s ability to perform work, and is highly correlated

with oxygen consumption, as shown in Figure 7.1a. Both Oxygen consumption and

work rate are known to decrease with increasing altitude, although the underlying

mechanism of this is not well understood.

Individuals who adapt well to the decrease in oxygen availability will show

the smallest decrease in oxygen consumption and work rate at higher altitudes,

compared to London. Presumably, this is because they are able to adapt better to

the lower oxygen levels available, and still transport and utilise oxygen e�ciently.

Therefore, the percentage loss in oxygen consumption and work rate were used in

this final stage of modelling as dependent variables, as they were considered good

indicators of acclimatisation to hypoxia. Oxygen consumption is usually normalised

for body weight, which does not correlate as highly with work rate, as shown in Fig-

ure 7.1b. Therefore, di↵erent variations of these two measurements were assessed

during modelling to determine which, if any, could be successfully predicted with
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Figure 7.1: Two scatter plots, showing (a) oxygen consumption at VO
2

max vs.
work rate at VO

2

max, and (b) oxygen consumption at VO
2

max normalised for body
weight (/ kg) vs. work rate at VO

2

max. Both correlations are performed between
log-transformed values. (a) shows a higher correlation between work rate and oxygen
consumption, compared to (b) work rate and oxygen consumption normalised for
body weight over all altitudes.
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Variable type Altitude / Time-point Measurement type Hypoxic level

Physiological Kathmandu - London % Di↵erence Low
(Dependent variable) Namche - London % Di↵erence Medium

Pheriche - London % Di↵erence High
Everest Base Camp - London % Di↵erence Very high

Biochemical London Absolute values Normoxia
(Explanatory variable) Kathmandu Absolute values Low

Namche Absolute values Medium
Kathmandu - London % Di↵erence Low
Namche - London % Di↵erence Medium

Table 7.1: A list of di↵erent variations of dependent and explanatory variables used
in targeted multiple linear regression. MLR was run for each of the dependent
variable altitude di↵erences, using one of the variations of the explanatory variables
listed above. The four models produced for the dependent variable (one for each
altitude di↵erence) were then combined to create a generalised model, capable of
predicting the dependent variable over a range of di↵erent altitudes. Absolute values
at low altitude and di↵erences between low altitudes were used for the explanatory
variables to see which altitude was the most predictive, and to produce a series of
models that could be applied to di↵erent situations, depending on the information
available.

MLR. Using the percentage loss allowed a more generalised model to be formed,

which would be more applicable to the population as a whole. The di↵erent vari-

ations of work rate and oxygen consumption used in this final stage of modelling

were:

• Oxygen consumption at LaT;

• Oxygen consumption at LaT, normalised for body weight (/kg);

• Oxygen consumption at VO
2

max;

• Oxygen consumption at VO
2

max, normalised for body weight (/kg);

• Work rate at LaT;

• Work rate at VO
2

max.

7.2.1 Explanatory variables

The full range of biochemical metabolites shown in Table 5.3 were used as poten-

tial explanatory variables for this stage of modelling. However, several variations

of the biochemical metabolites were used, to try to establish the best relationship

between the dependent and explanatory variables. The explanatory variables used
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in modelling needed to be measurable in critical ill patients, so that any final models

produced could be applied to predict how well a critically ill patient will adapt to hy-

poxic conditions. Therefore, only absolute measurements taken at low altitudes and

the percentage di↵erences between low altitudes were used for the explanatory vari-

ables for this stage of modelling. These included measurements taken at London

(normoxic levels), Kathmandu (moderate hypoxia), Namche (substantial but not

severe hypoxia) and percentage changes between these low hypoxia measurements.

To measure the changes in biochemical metabolites, one would apply a small hy-

poxic stress to a patient and take blood samples for measurement before and after

the stress was applied. This method would not threaten the patient’s health and

would enable the examiner to see how the individual responds to a small amount of

stress. The di↵erent variations of the explanatory variables used in modelling are

summarised in Table 7.1.

7.2.2 Producing a general model

MLR was run four times for each dependent variable listed in Section 7.2, once for

each altitude di↵erence shown in Table 7.1. These four initial MLR models were then

summarised for analysis, showing the adjusted R2 value for predicted vs. measured

values, the intercept, and the explanatory variables and coe�cient values fitted in

each MLR model.

A generalised MLR model was then constructed by combining the four initial

MLR models for each dependent variable. The coe�cient values for each of the

explanatory variables used in the MLR were assessed to determine whether they

were similar between the four MLR models, or whether they showed an altitude-

dependent change. All coe�cients and the intercept value for each model were

regressed against di↵erent measurements of hypoxia, in order to create one model

that could predict a range of outcomes based on one set of input variables, and a

hypoxia-based measure.

This was achieved by expanding the normal MLR equation of y = ax
1

+bx
2

+c

(shown in equation 7.1), so that a, b and c are all dependent on some measure of

hypoxia exposure, shown in equations 7.2, 7.3 and 7.4, respectively. Therefore,

each explanatory variable was regressed against hypoxia exposure in turn, and the

resulting equation was substituted back into the original (shown in equation 7.5),

as follows:
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y = ax
1

+ bx
2

+ c; (7.1)

a = [a
1

(hypoxia) + a
2

]; (7.2)

b = [b
1

(hypoxia) + b
2

]; (7.3)

c = [c
1

(hypoxia) + c
2

]; (7.4)

y = [a
1

(hypoxia) + a
2

]x
1

+ [b
1

(hypoxia) + b
2

]x
2

+ [c
1

(hypoxia) + c
2

]. (7.5)

This was repeated using each of the five variations of the biochemical metabolites

shown in Table 7.1 as explanatory variables. In summary, for each dependent vari-

able:

1. Run multiple linear regression on each altitude di↵erence shown in Table 7.1

(four in total), using all biochemical metabolites in Table 5.3 as explanatory

variables;

2. Produce a summary of the four initial models produced, including explanatory

variables used, coe�cient values and intercept value;

3. Run simple linear regression analysis for each explanatory variable, looking at

how the coe�cient value changes over some measure of hypoxia exposure (e.g.

altitude);

4. Run simple linear regression analysis for the four intercept values, assessing

how the intercept value changes over some measure of hypoxia exposure;

5. Combine the four initial models into one generalised model, substituting the

explanatory variable coe�cient value for the equation gained from the regres-

sion analysis;

6. Assess the fit for the generalised model by plotting measured values against

values predicted from the model, assessing residuals and calculating the good-

ness of fit statistic, lack of fit statistic and F -value for the fit.

7.2.3 Finding a suitable hypoxia measure

In order to construct a generalised model, each explanatory variable used in the four

initial models was assessed, to see how its coe�cient value changed with increasing

altitude di↵erence. Simple linear regression analysis was performed between each

explanatory variable coe�cient value and a measure of hypoxic exposure. The mea-

sure of hypoxic exposure would be used in the final generalised model, and needed
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Figure 7.2: Examples of linear regression analyses carried out between coe�cients
for explanatory variables used in a MLR and three di↵erent measures of hypoxia
exposure. (a) and (b) show coe�cient values regressed against a change in altitude,
(c) and (d) against cumulative oxygen debt and (e) and (f) against oxygen satura-
tion. The final three data points are most closely clustered together for altitude, and
most evenly spaced out for cumulative oxygen debt. Altitude gives the best linear
relationship, whereas cumulative oxygen debt gives the weakest linear relationship.
Oxygen saturation is the only measure easily taken in critically ill patients, and is
a good compromise between the other two measurements.
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to be measurable in critically ill patients. Altitude was initially used, and whilst this

measure showed a good linear relationship with most of the coe�cients (as shown in

Figures 7.2a and 7.2b), it would not be a good surrogate for the hypoxic level of a

critically ill patient. An even spread of data points is important for linear regression

analysis, as uneven clustering of data points can have a biased impact on the regres-

sion formed, especially if the number of data points is small. The values for altitude

di↵erence showed an uneven spread of altitude points, with three values clustered

at higher altitudes. This would have had a high influence on the regression analysis

performed. This emphasises that the design of CXE was not ideal for performing

this type of modelling analysis, and was the main limitation to the analysis that

was carried out.

Oxygen debt looks at the cumulative exposure to an increasingly hypoxic

environment. A detailed expedition ascent profile was constructed, which took into

consideration how far the group ascended each day, any stop-overs they had, average

breathing rates at each altitude both at rest and during exercise, and relative oxy-

gen availability at di↵erent altitudes. This detailed ascent profile was then used to

calculate how much oxygen had been inhaled into the lungs during di↵erent stages

of the expedition. These values were then compared to the amount of oxygen an

individual would have inhaled if they had stayed in London (75m above sea level) for

the entire expedition. The di↵erence between these two values, denoted oxygen debt

could be used as a measure of hypoxic exposure. This measure had the most even

spread of data points for all hypoxic measures assessed, as shown in Figures 7.2c

and 7.2d. Whilst this is the most accurate measure of how much hypoxia an in-

dividual has been exposed to, it would be very di�cult to measure in critically ill

patients, especially if they were already hypoxic before entering the ICU. If a patient

is hypoxic due to an inability to transport oxygen or use the oxygen once it reaches

the tissues, then this measure would not capture that information.

Oxygen saturation of the blood is well documented in hypoxia studies, and

is known to decrease on exposure to hypoxia, due to less oxygen being available.

Oxygen saturation is also very easy to measure in a critically ill patient in a non-

invasive manner, minimising disruption to the patient. However, if the patient is

hypoxic due to an inability to use the oxygen being delivered to the tissues, the

oxygen saturation could be high, but the individual could still be severely hypoxic

at the cellular level. This is an important limitation to this study, and has to be

taken into consideration when looking at the application of the models formed. The

resulting regressions would be a mirror image of the previous two hypoxic measures,

as oxygen saturation decreased during the expedition, whereas altitude and oxygen

178



debt increased. The four data points are more evenly spread out than they were for

altitude di↵erence, however, they are not as evenly spaced as they were for oxygen

debt. Therefore, this measure is a compromise between the information we need to

perform the regression analysis, and what can be measured in a critically ill patient.

It may not be applicable in all cases, however, it is the best measure available from

this dataset.

As only four data points are available for the regression analysis, any kind

of fit is a best guess, and requires a lot of assumptions to be made (for example,

for a linear fit we assume that the response remains linear in-between the altitude

points available). We cannot say with certainty that a relationship is 100% linear or

otherwise with only four data points, even if the R2 value is very high - as we do not

know what is happening in-between these data points. If the R2 value is high, we

can only say that a linear relationship seems appropriate from the data available.

Fitting a higher order polynomial to only four points is not appropriate, as we do

not have enough information to fit such a curve. It is also not meaningful to remove

data points to improve the fit, as there are only four points to begin with, removing

any of them would reduce the certainty of the fit further still.

7.3 Results

MLR analysis was run for six di↵erent dependent variables, as listed at the end of

Section 7.2. Each MLR was run four times, once for each altitude di↵erence shown

in Table 7.1. This was also done for each variation of explanatory variables shown

in Table 7.1. Summary tables were produced, detailing statistics for the four initial

models produced for each dependent variable. Table 7.2 shows an example of the

generic summary of the MLR results for all dependent variables, in this example

using absolute values at London for the explanatory variables.

Models that had an adjusted R2 value of 0.4 or above were marked with an

asterisk (⇤). This was judged to be an appropriate threshold value for refinement,

as the models explained 40% or more of the variability of the dependent variable.

In order to produce a generalised model, each of the four initial models formed for

one dependent variable needed to have an adjusted R2 value above 0.4, in order to

give the best possibility for producing a good generalised model. These dependent

variables were marked with a plus (+) in the summary table, as shown in Table 7.2.

One model was refined for each variation of biochemical metabolites shown

in Table 7.1, to show the principle of producing a generalised model, and due to time

constraints. The models refined were chosen due to high adjusted R2 values for each
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of the four initial models, and the number of metabolites used within each model

(a low number was preferred, for easy measurement in critically ill patients). One

model was refined for each variation of biochemical metabolites in order to produce

a range of models that would be applicable to di↵erent situations, depending on the

information available. For example, a model based on absolute London values (i.e

normoxia) for the biochemical metabolites would be most appropriate for applying

to an individual who is not yet hypoxic. If the individual was already slightly

hypoxic, then a model based on absolute values at Kathmandu for the biochemical

metabolites (i.e. moderately hypoxic, equivalent to around 1300m altitude or 96%

oxygen saturation) would be more appropriate. If more than one dependent variable

produced four good initial models, then the dependent variable with the highest

overall adjusted R2 values was refined, to maximise the probability of forming a

good generalised model, however, this was not guaranteed. Further work could look

at refining the other initial models produced, to see if they produce a generalised

model with better predictability than those shown here.

7.3.1 Work rate at VO
2

max vs. absolute values at London

Table 7.2 shows the summary of the results for the MLR for all dependent variables,

using absolute London values of the biochemical metabolites as explanatory vari-

ables. Two dependent variables showed good adjusted R2 values for all four initial

models produced; oxygen consumption at VO
2

max and work rate at VO
2

max, and

are marked with a plus (+) in Table 7.2. Table 7.3 shows an expansion of the table

for work rate at VO
2

max, showing the explanatory variables included in each ini-

tial model. Both of these variables show adjusted R2 values above 0.4, and a good

number of explanatory variables used in the models. These two variables are known

to correlate highly with one another, as shown in Figure 7.1a. Therefore, only work

rate at VO
2

max was refined, as it showed higher overall adjusted R2 values and

lower ResMS values for the initial models formed compared to oxygen consumption

at VO
2

max. One potential next step in this analysis would be to construct a gen-

eralised model for the oxygen consumption model, and compare it to the work rate

model formed.

Table 7.3 shows the full summary for the four initial models formed for

work rate at VO
2

max, including explanatory variables used in each model and their

associated coe�cient values. Each of these explanatory variables was regressed

against oxygen saturation, and the results are shown in Table 7.4. The table shows

that a majority of the explanatory variables show a reasonable linear relationship

with oxygen saturation. This is shown by mostly high R2 values between the linear
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Explanatory variable Slope Intercept R2 F -value df p-value

Intercept -1.76438 4.4388 0.647 3.67 3, 17 0.196
Nitrate -0.01310 0.2963 0.370 1.18 3, 17 0.392
RSNO -0.03084 0.3391 0.362 1.13 3, 17 0.399
cGMP 0.00261 -0.0331 ⇤0.160 ⇤0.38 3, 17 ⇤0.601
8-isoPGF -0.01584 0.0283 0.771 6.72 3, 17 0.122
IL-1ra 0.00380 -0.0248 0.494 1.96 3, 17 0.297
IL-8 -0.06459 0.7463 0.953 40.76 3, 17 •0.024
IL-18 -0.00112 0.0156 0.458 1.69 3, 17 0.324
VEGF -0.00119 0.0101 0.581 2.77 3, 17 0.238
Adrenaline -4.89147 -12.7149 0.733 5.50 3, 17 0.144
T3 0.00001 0.0003 ⇤0.143 ⇤0.33 3, 17 ⇤0.622
GLP-1 0.00030 0.0027 ⇤0.032 ⇤0.07 3, 17 ⇤0.820
Leptin 0.00007 -0.0009 0.686 4.36 3, 17 0.172
Visfatin -0.00001 -0.0001 ⇤0.013 ⇤0.03 3, 17 ⇤0.885
EPO 0.03769 -0.4822 0.789 7.48 3, 17 0.112
Creatinine 1.43553 -19.9378 0.894 16.93 3, 17 0.054

Table 7.4: Summary of the regression analysis performed between coe�cients for ex-
planatory variables from a MLR and oxygen saturation. The MLR was performed
between work rate at VO

2

max (dependent variable) and absolute values for bio-
chemical metabolites at London (explanatory variables). The slope and intercept
are for the fitted regression lines for each separate regression analysis. The R2 value
was calculated for the regression line, as described in Section 2.5.9.4.
The F -value and p-value were calculated from the regression, as described in Sec-
tion 2.5.9. This value is calculated from a lack-of-fit sum of squares, and is not
very meaningful as it is based on only four data points. The only F -test that shows
a significant p-value is for IL-8 (marked with a dot (•)), which has an R2 value of
0.953, which is the highest for any metabolite assessed. The poorly fitting regression
lines for cGMP, T3, GLP-1 and visfatin are all marked with an asterisk (⇤). These
metabolites are associated with the highest p-values, confirming that these are the
poorest fitting regression lines to the data. A larger number of data points would
provide greater power to reject the null hypothesis for this test.
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Figure 7.3: Simple linear regression analysis performed for coe�cient values against
oxygen saturation. All of these coe�cients show a reasonable linear relationship
against oxygen saturation. As there are only four points available here, we are only
able to fit a linear line, which is obviously not suitable in some cases (for example
(b), (g), (h), (i), (j) and (k) look almost curved in their response). However, a linear
fit is used here as a best estimate for the data available.
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Figure 7.4: Linear regression analysis performed between coe�cient values included
in MLR for work rate at VO

2

max and oxygen saturation. All of these coe�cients
showed low R2 values for the resulting regression line and the original coe�cient val-
ues. All plots show one altitude which does not follow a linear relationship, resulting
in the poor resulting R2 value. The remaining values for GLP-1 (a) and visfatin
(b) show only a small change with oxygen saturation, therefore, these coe�cient
values were assessed to see if the use of a constant term was more appropriate than
a linear dependence on oxygen saturation for the MLR for these metabolites. As
cGMP (c) and T3 (d) show a change with altitude, the linear relationship against
oxygen saturation was used for these metabolites in the MLR.
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regression line and the coe�cient values.

The F -statistic was calculated for each regression, as described in Section 2.5.3.

All of these linear regression analyses are based on four data points, and more data

points are needed to give the F -test the power to reject the null hypothesis. For this

dataset, only IL-8 passed the F -test with a R2 value of 0.953, a F -value of 40.76

and a p-value of 0.024 (marked with a •), showing that the model generated from

the regression analysis was a good fit to the data. However, the smallest F -values

and largest p-values were associated with the worst fitting regression lines, seen for

cGMP, T3, GLP-1 and visfatin, indicated by the lowest R2 values of 0.160, 0.143,

0.032 and 0.013, respectively. Therefore, the F -value and associated p-value give

an indication of how well each model fits the data, but there is not enough data to

definitively accept or reject the null hypothesis for the F -test.

Figures 7.3 and 7.4 show the figures produced from the simple linear re-

gression analyses of the explanatory variable coe�cients for work rate at VO
2

max

against oxygen saturation. All figures show the actual coe�cient values in magenta,

and the fitted regression line in blue. Figure 7.3 shows the regression figures where a

linear fit is a reasonable estimate for the relationship between the explanatory vari-

able coe�cient and oxygen saturation. The R2 values for these regression figures

range from 0.362 to 0.953. The threshold R2 value is lower here than for previ-

ous analyses due to the smaller number of data points that the regression is based

on, and because the linear fits for nitrate (shown in Figure 7.3b with an R2 value

0.370) and RSNO (shown in Figure 7.3c with an R2 value of 0.362) both show an

increase with increasing oxygen saturation, and seem a reasonable estimate of the

relationship against oxygen saturation.

Figure 7.4 shows the weakest of the resulting regression fits. All four metabo-

lites shown in Figure 7.4 show one outlying datapoint compared to the other three.

However, it is not very meaningful to remove this one point, due to such few data

points being available. Figures 7.4a and 7.4b show an almost constant coe�cient

value, apart from the one outlying datapoint. These metabolites were highlighted

for further refinement at a later stage. Figures 7.4c and 7.4d show an overall decrease

in coe�cient value as oxygen saturation increases.

For the initial generalised model, the linear fits were substituted into the

MLR for all explanatory variables. The measured values were plotted against values

predicted from the model, and are shown in Figure 7.5. The adjusted R2 value for

this figure is 0.738, indicating that the generalised model is explaining 73.8% of

the variability seen in the measured data. The cyan data points show the results

for % di↵erence between Kathmandu - London, the blue for Namche - London,
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the magenta for Pheriche - London and the red for Everest Base Camp - London.

This model shows systematic error, overestimating loss at low altitude (Kathmandu,

shown in cyan) and underestimating loss at high altitude (Everest Base Camp, shown

in red).

The initial model for Kathmandu-London contained 10 explanatory variables

(as shown in Table 7.2), which have all changed slightly due to the regression against

oxygen saturation. The overestimation of the response at this altitude may be due

to the perturbation of these explanatory variables to accommodate the prediction

of other altitude di↵erences, which has led to a less accurate prediction at this par-

ticular altitude. The initial model for EBC - London only contains two explanatory

variables, and the extra explanatory variables included in the generalised model

from other initial models may not be appropriate for predicting the response at this

particular altitude. The closest predictions are for the middle altitudes of Namche

and Pheriche, shown in blue and magenta, respectively.

7.3.1.1 Further refinement

Overall, the biochemical coe�cient values seemed to show a good linear relationship

with oxygen saturation. However, four explanatory variables showed very poor linear

relationships with oxygen saturation. These were GLP-1, visfatin, cGMP and T3,

shown in Figure 7.4. All of these plots show one datapoint that is very di↵erent

from the others, resulting in a poor linear fit. As the regression is only based on

four data points, the removal of one point would severely a↵ect the reliability of

the resulting regression performed. The plots for cGMP and T3 show a general

decrease with oxygen saturation, therefore, the linear relationship against oxygen

saturation was used for these metabolites in the MLR. However, GLP-1 and visfatin

could reasonably be assumed to be constant, when excluding the one outlying value.

Therefore, constant values were tested for both of these metabolites, to see if the

overall fit of the model could be improved.

Figure 7.6 shows observed values plotted against fitted values from six further

refined MLR models. These models looked at using a constant value for GLP-1 or

visfatin, or completely removing the metabolites from the MLR to assess the impact

on the final model. Figures 7.6a, 7.6b and 7.6c show refined models for GLP-1, and

Figures 7.6d, 7.6e and 7.6f show refined models for visfatin.

The adjusted R2 value was used to informally compare the di↵erent models.

The adjusted R2 value increased to 0.812 when a constant value was used for GLP-1

that was based on all four data points, shown in Figure 7.6a. This indicates that

using a constant value for GLP-1 helps to explain a further 7.4% of the variability
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Figure 7.5: Measured values vs. values fitted from a MLR model, fitting the % loss
in work rate at VO

2

max seen between London and 4 increasing altitudes. Cyan
shows results for Kathmandu - London (low hypoxia), blue shows Namche - London
(medium hypoxia), magenta shows Pheriche - London (high hypoxia) and red shows
Everest Base Camp - London (very high hypoxia). The adjusted R2 value for this
model is 0.738, indicating that it is explaining 73.8% of the variability associated
with work rate at VO

2

max. The figure shows that there is a higher % loss in work
rate at higher altitudes, which is to be expected. This model shows systematic error,
overestimating loss at low altitude (Kathmandu, shown in cyan) and underestimat-
ing loss at high altitude (Everest Base Camp, shown in red). This may be due to
the generalised model being less appropriate for fitting responses at those particular
altitude di↵erences.

188



seen within the observed data. All other variants of the refined model resulted in

a decrease in the overall model’s adjusted R2 value. Therefore, the linear equation

was kept for visfatin and a constant value was used for GLP-1 in the final model.

The final refined model formed is shown in Figure 7.7, and has a adjusted R2

value of 0.812, indicating that it is explaining 81.2% of the variability seen in work

rate at VO
2

max. This final model still shows some systematic error, overestimating

the percentage di↵erence between Kathmandu and London, and underestimating

the percentage di↵erence between Everest Base Camp and London, as shown in

Figures 7.8a and 7.8d, respectively.

However, this appears to be less than is seen in the first refined model,

shown in Figure 7.5, indicating that the refined model describes the variability seen

at London and Everest Base Camp better than the initial model formed. Overall,

these metabolites seem to show good predictive power over work rate at VO
2

max.

7.4 Final models

The previous section detailed the refinement process for one model, created for work

rate at VO
2

max, using absolute values at London for the biochemical metabolites

(explanatory variables). This model was refined in detail, as it was considered the

most potentially useful in both a critical illness environment and for mountaineer-

ing. It would also be a good model to validate with the data for the 190 trekker

individuals, and the follow-up study XE2. The next section will present a selection

of finalised models that have already been through this refinement process, to show

some of the final results of the targeted multiple linear regression modelling process.

Multiple linear regression was used to form models for oxygen consumption

and work rate, using biochemical metabolites as explanatory variables. All of these

models were formed using the method outlined in Section 7.2.2. These models are all

based on di↵erent biochemical measurements, for example absolute values at London

or the percentage di↵erence between London and Kathmandu. Two di↵erent types

of model were formed, as summarised below:

• The London model, Kathmandu model and Namche model, produced using ab-

solute values of the biochemical metabolites at London, Kathmandu or Nam-

che as explanatory variables, to predict the percentage change in a dependent

variable for several hypoxic exposures/altitudes;

• The Kathmandu - London model and Namche - London model, produced us-

ing the percentage di↵erence of the biochemical metabolites between Kath-
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(a) Average GLP-1 (4 points)
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(b) Average GLP-1 (3 points)
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(c) GLP-1 removed
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(d) Average visfatin (4 points)
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(e) Average visfatin (3 points)
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(f) Visfatin removed

Figure 7.6: Model refinement results after MLR on percentage loss of work rate at
VO

2

max. Each figure shows measured values plotted against values fitted from the
model. The adjusted R2 value associated with each figure is a measure of how well
the model explains the variability seen in the observed data. The best model from
this analysis is shown in (a), where a constant coe�cient term is used for GLP-1 in
the model instead of a term that changed over altitude, which is simply the average
of the four coe�cient terms acquired at each of the di↵erent altitudes.
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Figure 7.7: Measured values vs. values fitted for a MLR model, fitting the % loss
in work rate at VO

2

max seen between London and 4 increasing altitudes. Cyan
shows results for Kathmandu - London (low hypoxia), blue shows Namche - London
(medium hypoxia), magenta shows Pheriche - London (high hypoxia) and red shows
Everest Base Camp - London (very high hypoxia). The adjusted R2 value for this
model is 0.812, indicating that it is explaining 81.2% of the variability associated
with work rate at VO

2

max. This model shows systematic error, overestimating loss
at low altitude (Kathmandu, shown in cyan) and underestimating loss at high alti-
tude (Everest Base Camp, shown in red). This may be due to the generalised model
being less appropriate for fitting responses at those particular altitude di↵erences.
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(a) Kathmandu - London
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(b) Namche - London

−30 −25 −20 −15 −10 −5 0 5
−30

−25

−20

−15

−10

−5

0

5

Measured % Loss of Work Rate at VO2max

F
it

te
d

 %
 L

o
s

s
 o

f 
W

o
rk

 R
a

te
 a

t 
V

O
2

m
a

x

(c) Pheriche - London
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(d) Everest Base Camp - London

Figure 7.8: Measured values vs. values fitted for a MLR model, fitting the % loss
from London for work rate at VO

2

max (% loss in work rate). All plots show a
general good fit, however, the fitted values show systematic error. (a) shows values
for Kathmandu - London are overestimated, and (d) shows values for Everest Base
Camp - London are generally underestimated, however, to a lesser extent than
(a). (b) and (c) show the best fits for Namche - London and Pheriche - London,
respectively. This means that the model is the most accurate at fitting the response
at a medium hypoxic exposure.
In terms of diagnosis, this model is more likely to overestimate how badly an in-
dividual will adapt to hypoxia at low hypoxic exposure (i.e. false positive, shown
in (a)), and underestimate how badly an individual will adapt at extreme hypoxic
exposures (i.e. more false negatives, shown in (d)), which could potentially be more
serious in a critical illness environment, or with a climber wanting to ascend to ex-
treme altitude. The use of a correction term could help to account for some of the
systematic error seen for (a) and (d).
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mandu and London or Namche and London as explanatory variables, to pre-

dict the percentage change in a dependent variable for several hypoxic expo-

sures/altitudes.

This provides a number of models that can be applied to di↵erent circum-

stances, depending on the information available. If the aim were to predict the

response of mountaineers during an ascent to high altitude, then the London model

would be most appropriate, as a blood sample could be taken at sea level, and used

to predict how that individual would adapt to di↵erent altitudes. For critically ill

patients, the model applied would depend on the condition of the patient. If a pa-

tient had newly arrived at the ICU and unlikely to be hypoxic, then the London

model would be the most appropriate. If the patient was slightly hypoxic, then

the Kathmandu model would be more appropriate. If the patient was in a stable

enough condition to be exposed to a small amount of stress, then the patient would

be exposed to a low amount of hypoxia via an oxygen mask, and blood samples

would be taken before and after the hypoxic exposure. These samples would then

be measured for a set of biochemical metabolites, which would be used in one of

the di↵erence models, such as the Kathmandu - London model. The final models

produced are detailed below.

7.4.1 London model

The London model was produced by performing MLR on work rate at VO
2

max,

using absolute values of the biochemical metabolites at London as explanatory vari-

ables. The final figure of observed vs. values fitted by the model is shown in

Figure 7.7. The final adjusted R2 value for this model was 0.812, indicating that

it is explaining 81.2% of the variability within the observed data. The model uses

a constant value for GLP-1, and a linear dependence on oxygen saturation for all

other explanatory variables. The equation for the London model is as follows:

Work rate at VO
2

max =

[ Nitrate * ( -0.013096 * O
2

Sat + 0.2963 ) ] +

[ RSNO * ( -0.030839 * O
2

Sat + 0.3391 ) ] +

[ cGMP * ( 0.002608 * O
2

Sat -0.0331 ) ] +

[ 8-isoPGF * ( -0.015838 * O
2

Sat + 0.0283 ) ] +

[ IL-1ra * ( 0.003798 * O
2

Sat -0.0248 ) ] +

[ IL-8 * ( -0.064588 * O
2

Sat + 0.7463 ) ] +

[ IL-18 * ( -0.001117 * O
2

Sat + 0.0156 ) ] +
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[ VEGF * ( -0.001185 * O
2

Sat + 0.0101 ) ] +

[ Adrenaline * ( -4.89147 * O
2

Sat -12.7149 ) ] +

[ T3 * ( 0.00001 * O
2

Sat + 0.0003 ) ] +

[ GLP-1 * -0.0054 ] +

[ Leptin * ( 0.000074 * O
2

Sat -0.0009 ) ] +

[ Visfatin * ( -0.000013 * O
2

Sat -0.0001 ) ] +

[ EPO * ( 0.037694 * O
2

Sat -0.4822 ) ] +

[ Creatinine * ( 1.43553 * O
2

Sat -19.9378 ) ] +

( -1.76438 * O
2

Sat + 4.4388 )

7.4.2 Kathmandu model

The Kathmandu model was produced by performing MLR on work rate at VO
2

max,

using absolute values of the biochemical metabolites at Kathmandu as explanatory

variables. The final figure of observed vs. values fitted by the model is shown in

Figure 7.9. The adjusted R2 value for this model was 0.857, indicating that it is

explaining 85.7% of the variability associated with the observed data. The model

shows a slight tendency to underestimate values, shown by a higher scatter in points

above the dashed line, which shows where a perfect 1:1 relationship between observed

and fitted data would lie. The model also shows the best predictions for Namche -

London and Pheriche - London, with lower scatter around the dashed line for these

measurements compared to Kathmandu - London and EBC - London.

This model would be a good target for further refinement, due to the high

predictability (shown by a high adjusted R2 value) and the small number of ex-

planatory variables used in the model. The model uses a constant value for GIP,

and a linear dependence on oxygen saturation for all other explanatory variables.

The equation for the Kathmandu model is as follows:

Work rate at VO
2

max =

[ cGMP * ( -0.000871621 * O
2

Sat + 0.0692098 ) ] +

[ TNFalpha * ( -0.00307143 * O
2

Sat + 0.373616 ) ] +

[ VEGF * ( 0.00119403 * O
2

Sat -0.113077 ) ] +

[ GIP * ( -0.0030042 ) ] +

[ Adipsin * ( -1.03E-06 * O
2

Sat + 0.000119648 ) ] +

[ Creatinine * ( -0.168058 * O
2

Sat + 7.24898 ) ] +

( 2.41639 * O
2

Sat -230.265 )
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7.4.3 Namche models

The attempts to produce a generalised model using absolute values of biochemical

metabolites at Namche as explanatory variables did not yield positive results. MLR

on individual altitudes produced some very strong modelling results, however, the

attempts to generalise these results over all altitudes did not produce a model with

strong predictive power, indicated by low and negative adjusted R2 values for fi-

nalised models. This suggests that the models produced were not suitable for the

dependent variable being predicted, over all altitudes. Therefore, two of the MLR

on individual altitudes are presented, as they provide the most predictive power

from the explanatory variables available. These include oxygen consumption at

VO
2

max normalised for body weight, predicting the percentage loss between Lon-

don and Everest Base Camp, and work rate at VO
2

max, predicting the percentage

loss between London and Namche.

These models would have fewer uses than the generalised models formed, as

they require individuals to be exposed to a high level of hypoxia to obtain values

for the explanatory variables, and are only capable of predicting the response at one

hypoxic level. However, they may still be useful for severely hypoxic patients who

were to undergo surgery or receive a treatment that would increase their hypoxic

state, to see if they will have any di�culties coping with the higher level of hypoxia.

Figure 7.10a shows the observed vs. fitted values for a MLR performed on

oxygen consumption at VO
2

max, normalised for body weight. The adjusted R2

value for this model is very high at 0.998, indicating that the model is predicting

99.8% of the variability seen within the observed data. Figure 7.10b shows the

results for work rate at VO
2

max. The adjusted R2 value for this model is lower

at 0.691, indicating that it is explaining 69.1% of the variability of the observed

data. There seems to be an even scatter of points around the dashed line for both

models, indicating they are overestimating and underestimating values with the

same probability.

7.4.4 Kathmandu - London model

The Kathmandu - London model was produced by performing MLR on work rate at

VO
2

max, using the percentage di↵erences between London and Kathmandu (Kath-

mandu levels - London levels) for the biochemical metabolites as explanatory vari-

ables. The final figure of observed vs. fitted values for this model is shown in

Figure 7.11. The adjusted R2 value for this model was 0.902, indicating that it is

explaining 90.2% of the variability associated with the observed data. The model
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shows an even scatter of points above and below the dashed line, indicating that

the model is overestimating and underestimating values with the same probability,

and seems relatively equal for all altitude di↵erences. This model has the highest

adjusted R2 value of all models produced, indicating that it is the strongest out of

all the models produced and best fit for the observed data available.

This model would also be a good target for further refinement, due to the

high predictability and the relatively small number of explanatory variables used

in the model. The model uses a linear dependence on oxygen saturation for all ex-

planatory variables. The equation for the Kathmandu - London model is as follows:

Work rate at VO
2

max =

[ Nitrite * ( -0.00181257 * O
2

Sat + 0.154603 ) ] +

[ HNE * ( 0.000500961 * O
2

Sat -0.0860054 ) ] +

[ T3 * ( -0.00164845 * O
2

Sat + 0.142948 ) ] +

[ GIP * ( 0.00155984 * O
2

Sat -0.143077 ) ] +

[ Insulin * ( 0.00267985 * O
2

Sat -0.210178 ) ] +

[ Resistin * ( 0.00443372 * O
2

Sat -0.444642 ) ] +

[ EPO * ( -0.00259166 * O
2

Sat + 0.302993 ) ] +

[ Creatinine * ( -0.00549015 * O
2

Sat + 0.565245 ) ] +

( 2.01976 * O
2

Sat -195.07 )

7.4.5 Namche - London model

The Namche - London model was produced by performing MLR on work rate at

VO
2

max, using the percentage di↵erence between London and Namche for the bio-

chemical metabolites as explanatory variables. The final figure of observed vs. fitted

values for this model is shown in Figure 7.12. The model shows an adjusted R2 value

of 0.87472, indicating that it is explaining 87.472% of the variability associated with

the observed data. The data shows a relatively even spread of points above and

below the dashed line, indicating that the model is underestimating and overesti-

mating values with the same probability. The model shows the least scatter around

the line for the EBC - London predictions, shown in red. This indicates that the

model produced the strongest predictions for the response to high levels of hypoxia.

The model uses a constant term for resistin, and a linear dependence on oxygen sat-

uration for all other explanatory variables. The equation for the Namche - London

model is as follows:
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Work rate at VO
2

max =

[ 8-isoPGF * ( 0.00212489 * O
2

Sat -0.208226 ) ] +

[ IL-1ra * ( 0.00679786 * O
2

Sat -0.610947 ) ] +

[ IL-12(p70) * ( -0.00188627 * O
2

Sat + 0.199826 ) ] +

[ IL-13 * ( 0.000280559 * O
2

Sat + 0.0438252 ) ] +

[ VEGF * ( -0.00479035 * O
2

Sat + 0.411325 ) ] +

[ T3 * ( 2.93E-05 * O
2

Sat -0.0087744 ) ] +

[ GIP * ( 0.000328302 * O
2

Sat -0.0373064 ) ] +

[ Resistin * ( -0.024176051 ) ] +

[ Creatinine * ( 0.0105785 * O
2

Sat -0.942044 ) ] +

[ Protein Content * ( 0.00664081 * O
2

Sat -0.53097 ) ] +

( 1.64614 * O
2

Sat -161.588 )

7.5 Biochemical metabolites of interest

There were several biochemical metabolites that were used as explanatory variables

in more than one MLR analysis. Table 7.6 shows the biochemical metabolites used

as explanatory variables in all of the generalised models reported in this chapter.

The table ranks biochemical metabolites in order of how many times they were used

as an explanatory variable in MLR. This list indicates metabolites that need to be

measured in the 190 trekker plasma samples in order to validate the generalised

models reported in this project.

All of the generalised models formed are for work rate at VO
2

max, as this

was the strongest model formed for each of the di↵erent biochemical metabolite

variations used as explanatory variables shown in Table 7.1. This indicates that the

biochemical metabolites measured have the strongest relationship with the exercise

measurement work rate at VO
2

max, which is the amount of work the body can do at

VO
2

max, i.e. a measure of the body’s maximal work output. The use of this partic-

ular physiological measurement as a diagnostic tool for hypoxic adaptation is based

on the assumption that performance at altitude can be used as a proxy for hypoxia

adaptation. This assumption formed the basis for this model building, and would

need to be tested, for example during the XE2 follow-up study, to determine if this

assumption is reasonable, and how accurate and useful this particular measurement

is.

The biochemical metabolites included in the MLR include metabolites from a

range of di↵erent biochemical pathways, including oxidative stress, metabolism and
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Kathmandu − London

Namche − London
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EBC − London

Figure 7.9: Measured vs. fitted % loss of work rate at VO
2

max from London levels,
calculated using a MLR with biochemical metabolites at Kathmandu as explanatory
variables. The model shows a good adjusted R2value of 0.857, indicating that it is
explaining 85.7% of the variability associated with the observed data.
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(b) Work rate at VO2max (Namche - London)

Figure 7.10: Measured vs. fitted values for two MLR analyses, using absolute values
at Namche for the biochemical metabolites as explanatory variables. (a) shows the
results for a MLR for oxygen consumption at VO

2

max, normalised for body weight
(Everest Base Camp - London). This figure shows a very strong adjusted R2 value
of 0.998, indicating that it is explaining 99.8% of the variability seen in the observed
data. (b) shows the results for work rate at VO

2

max (Namche - London). This figure
shows a lower adjusted R2 value of 0.691, indicating that the model is explaining
69.1% of the variability associated with the observed data.
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Figure 7.11: Measured vs. fitted values for a MLR for work rate at VO
2

max from
London levels, using the % di↵erence in biochemical metabolites between Kath-
mandu and London as explanatory variables. This model shows a strong adjusted
R2 value of 0.902, indicating that the model is describing 90.2% of the variability
associated with the observed data. There is an even scatter of points either side of
the dashed line, indicating that the model is overestimating and underestimating
values with the same probability. This is the strongest out of all of the models
formed, indicated by the highest adjusted R2 value.
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Figure 7.12: Measured vs. fitted values for a MLR for work rate at VO
2

max from
London levels, using the % di↵erence in biochemical metabolites between Namche
and London as explanatory variables. This model shows a good adjusted R2 value
of 0.874, indicating that it is explaining 87.4% of the variability associated with
the observed data. The scatter of points around the dashed line is relatively even,
indicating that the model is overestimating and underestimating values with the
same probability. The model also seems to predict the largest percentage losses
seen with the most accuracy, shown by the red points very close to the line at
around -40% loss of work rate at VO

2

max.
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inflammation. In isolation, the direct relationship between each of these biochemical

metabolites and work rate at VO
2

max may be unclear and poor (for example the

simple linear regression analysis performed for work rate at VO
2

max over creatinine

(shown in Figure 6.2b) shows a very poor relationship between the two variables,

however, creatinine is one of the most highly-featured explanatory variables in the

targeted MLR), and it is only when these metabolites are combined that they show

predictive power over work rate at VO
2

max. The biochemical metabolites that are

used as explanatory variables in MLR on several occasions include VEGF, cGMP

and EPO, which are all known to play a role in hypoxia adaptation. VEGF induces

new vascular growth, to improve the blood supply in response to hypoxia, cGMP

increases blood flow by acting on blood vessels to induce vascular relaxation, and

EPO stimulates the production of new erythrocytes to improve the blood’s oxygen

carrying capacity.

Table 7.6 contains a total of 25 di↵erent biochemical metabolites required

for the generalised MLR models reported. These metabolites were measured by a

variety of di↵erent experimental techniques, including multiplexing assays, di↵er-

ent ELISA kits, HPLC and a tri-iodide-based chemiluminescence assay. Some of

these metabolites are relatively straightforward to measure, whereas others require

substantial upfront costs for the equipment required. 15 of the metabolites were

measured via di↵erent types of multiplexing assays. These are based on Luminex

xMAP technology, and require a multiplexing reading machine (such as the Bio-

Rad BioPlex 200) to analyse the samples. However, the actual assays are very quick

and straightforward to perform, and it is possible to measure multiple biochemical

metabolites in a single biological sample at the same time. The multiplexing sys-

tem is a high-throughput technique, making it potentially very useful in a hospital

environment after the upfront costs have been considered.

Several of the metabolites were measured via di↵erent ELISA kits, which

are easy to purchase directly from the supplier, and straightforward to carry out.

These assays require minimal upfront costs, if equipment such as a microplate reader

is already available, and all of the non-standard solutions for the assay itself are

provided with the kit. This makes these potentially the easiest out of the metabolites

to replicate in a lab environment or measure in a hospital environment.

The most di�cult metabolites to measure were nitrite, nitrate and RSNO.

Nitrite and nitrate require a specialised HPLC machine, and nitrite and nitrate

levels have only been successfully quantified in plasma samples by a handful of labs

worldwide [Lauer et al., 2001; Yang et al., 2003]. RSNO was measured via a tri-

iodide-based chemiluminescence assay. This again requires specialised equipment,
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which may not be available in another lab or hospital environment, and would

require substantial upfront costs. These samples could be sent to a specialised lab

for measurement, however, the logistics of doing so, as well as a substantial wait

time makes these measurements more di�cult to perform for critically ill patients.

7.5.1 Model comparison

Table 7.5 shows a comparison of the four general models produced in this chapter.

It summarises the biochemical measurements used as explanatory variables, the

adjusted R2 calculated between the observed data and values fitted from the model,

the number of explanatory variables used in each model and whether any of these

variables would be di�cult to measure in another lab or hospital environment.

We want a model that will give good diagnostics, with an adjusted R2 value

close to one, a small number of explanatory variables and no metabolites that would

be di�cult to measure. Nitrite, nitrate and RSNO were identified in the previous

section as di�cult to measure in either another lab or a hospital environment. This is

because they require substantial upfront costs for specialised equipment to measure

these metabolites, as well as experience measuring them at low levels in human

plasma in a high-throughput manner.

Two of the models contained metabolites that would be di�cult to measure,

and two did not. The two that did not were the Kathmandu model and the Namche

- London model. These two models had adjusted R2 values of 0.857 and 0.874,

respectively. They contained 6 and 10 explanatory variables, respectively. Without

any further analysis, these two models were considered better for application to

a critical illness environment, as they would be relatively easy to measure. The

Kathmandu model was considered the better of the two, because even though the

adjusted R2 value was slightly lower compared to the Namche - London model,

it only contained 6 explanatory variables, compared to 10 for the other model,

making it cheaper to measure the metabolites for this model. The Kathmandu model

also only contains two metabolites that were not measured via the high-throughput

multiplexing technique, whereas the Namche - London model contained three.

7.5.2 Further refinement

The London and Kathmandu - London models were refined, to assess the impact

of removing nitrite, nitrate and RSNO from the MLR on the final model formed.

Nitrite was removed from the final MLR between work rate at VO
2

max and the

percentage di↵erence in biochemical metabolites between London and Kathmandu.
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The resulting generalised model is shown in Figure 7.14. This model shows an

adjusted R2 value of 0.898, indicating that the model is describing 89.8% of the

variability associated with the observed data. Therefore, it is only describing 0.4%

less of the variability in the observed data than the original model including nitrite,

shown in Figure 7.11. It does not seem necessary to include nitrite in this model,

as it is relatively di�cult to measure compared to other metabolites, and does not

significantly improve the overall e↵ectiveness of the model formed.

Nitrate and RSNO were removed as explanatory variables from the final MLR

between work rate at VO
2

max and absolute values of the biochemical metabolites.

The resulting generalised model loses all predictive power, as shown in Figure 7.13.

The figure shows no relationship between the observed and fitted values, indicating

that nitrate and RSNO were key explanatory variables within the model. Therefore,

it is not possible to use this model without these metabolites.

7.6 Conclusions

• Several models predicting oxygen consumption and work rate were formed,

which showed di↵erent predictive power over the di↵erent dependent variables.

For each set of biochemical metabolites (explanatory variables), one model

was refined to form a generalised model, capable of predicting a change in a

physiological measurement at several di↵erent hypoxic exposures;

• Work rate at VO
2

max shows the strongest relationship with the biochemical

metabolites measured, and was the most predictable physiological measure-

ment. The usefulness of this measurement as a diagnostic still needs to be

determined;

• It was not possible to form a generalised model using absolute values at Nam-

che for the biochemical metabolites as explanatory variables;

• Six di↵erent final models were formed, four generalised models, and two mod-

els that could predict the response at one hypoxic exposure. These models

varied in the strength of their predictions and used di↵erent combinations of

biochemical metabolites as explanatory variables;

• Each of these models could be used in either a critical illness environment

(to predict how well a patient will adapt if they become hypoxic), or for

predicting the adaptation of a mountaineer before ascending to high altitude.
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Figure 7.13: Measured vs. fitted values for a MLR for work rate at VO
2

max from
London levels, using biochemical metabolites at London as explanatory variables,
with nitrate and RSNO removed. This model now shows no predictive power over
the dependent variable, compared to Figure 7.7, where nitrate and RSNO were
included as explanatory variables.
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Figure 7.14: Measured vs. fitted values for a MLR for work rate at VO
2

max from
London levels, using the % di↵erence in biochemical metabolites between Kath-
mandu and London as explanatory variables, with nitrite removed. This model still
shows a strong adjusted R2 value of 0.898, indicating that the model is describing
89.8% of the variability associated with the observed data. Therefore, it is only
describing 0.4% less of the variability in the observed data, than the original model
including nitrite, shown in Figure 7.11. There is an even scatter of points either side
of the dashed line, indicating that the model is overestimating and underestimating
values with the same probability.
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The potential applications for these models are discussed further in the next

chapter;

• A list of biochemical metabolites used as explanatory variables in this stage of

modelling is shown in Table 7.6. Measurement of these metabolites in the 190

trekker plasma samples would allow the validation and training of the models

on a larger population size. These are potentially good metabolites to measure

in the XE2 study, for further validation of the models reported here.
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Explanatory variables
used

Model adjusted R2 Number of explana-
tory variables

Are any metabo-
lites di�cult to
measure?

Absolute values at
London

0.812 15 Nitrate and RSNO

Absolute values at
Kathmandu

0.857 6 No

Kathmandu - London
% di↵erence

0.902 8 Nitrite

Namche - London %
di↵erence

0.874 10 No

Table 7.5: A comparison of four models formed, predicting work rate at VO
2

max
levels at various altitudes. Explanatory variables used shows the variation of the
biochemical metabolites used as explanatory variables in the MLR analysis. The
adjusted R2 value was calculated between the observed data and values fitted from
each model. Any metabolites that would be di�cult to measure in another lab or
within a hospital environment have been highlighted. Ideally, the model will have
an adjusted R2 value close to one, a small number of explanatory variables and no
explanatory variables that are di�cult to measure.
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Biochemical metabolite Number
of MLR
used in

How to measure Easy to
measure in a
hospital?

Creatinine 4 Bioassay Yes
VEGF 3 Bio-Plex multiplex assay Yes
T3 3 Millipore multiplex assay Yes
GIP 3 Bio-Plex diabetes panel Yes
cGMP 2 Immunoassay Yes
8-isoPGF 2 Immunoassay Yes
EPO 2 Immunoassay Yes
Resistin 2 Bio-plex diabetes panel Yes
IL-1ra 2 Bio-Plex Yes
⇤Nitrite 1 HPLC No
⇤Nitrate 1 HPLC No
⇤RSNO 1 Tri-iodide-based chemilu-

minescence assay
No

HNE 1 ELISA Yes
IL-8 1 Bio-Plex Yes
IL-12(p70) 1 Bio-Plex Yes
IL-13 1 Bio-Plex Yes
IL-18 1 Bio-Plex Yes
Adrenaline 1 ELISA Yes
GLP-1 1 Bio-Plex diabetes panel Yes
Leptin 1 Bio-Plex diabetes panel Yes
Visfatin 1 Bio-Plex diabetes panel Yes
TNF-↵ 1 Bio-Plex diabetes panel Yes
Adipsin 1 Bio-Plex diabetes panel Yes
Insulin 1 Bio-Plex diabetes panel Yes
Protein Content 1 Assay Yes

Table 7.6: Biochemical metabolites used as explanatory variables in multiple linear
regression analysis for work rate at VO

2

max. Most metabolites were measured in a
relatively straightforward manner with various assay kits. Measurement of many of
the cytokines require a multiplexing assay machine. The metabolites marked with
an asterisk (⇤) show metabolites that would be di�cult to measure in another lab
environment or hospital, without substantial upfront costs for the equipment, and
specialised training.
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Chapter 8

Discussion

This chapter brings together the key findings from the project, discusses how the

models could have been improved, any further work that can be done on these

results, and the applications of the final models developed. It also describes the

limitations to the study, and gives proposals for the follow-up study, XE2, in 2013.

8.1 Data analysis and model building

Several stages of data analysis and modelling have been carried out during this

thesis project, to gain an appreciation of the dataset and make the most out of the

modelling performed. Chapter 4 described the assessment of the diary data, which

contained a small number of simple physiological measurements, to determine their

day-to-day reliability, and identify measurements that may be useful for modelling.

The results from this chapter could be taken further, by the inclusion of the most

reliable measurements as additional explanatory variables within modelling e↵orts.

Chapter 5 described the assessment of the main core dataset, to identify

possible patterns and relationships within the di↵erent measurements available. This

analysis was used to identify the physiological measurements that were potentially

the most appropriate as dependent variables, and the biochemical metabolites that

were potentially the most appropriate as explanatory variables.

Chapter 6 described the initial stages of modelling, looking at the prediction

of several physiological measurements identified in Chapter 5 with a combination of

one or more biochemical metabolites, across all di↵erent altitudes available. These

methods identified physiological measurements that were predictable with the ex-

planatory variables available, and biochemical metabolites that were used as ex-

planatory variables in the MLR. Metabolites from the NO and ROS pathways (as
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detailed in Sections 1.4.1 and 1.4.2) were not as dominant in the modelling as an-

ticipated, however, there were several biochemical metabolites that were present in

multiple models formed.

Chapter 7 described the final targeted stage of modelling, looking at pre-

dicting the di↵erence in an explanatory variable at a certain altitude or hypoxic

exposure, compared to sea level. Six di↵erent models were formed using di↵erent

combinations of biochemical metabolites as explanatory variables, as described in

Section 7.1. Several biochemical metabolites were present as explanatory variables

in multiple models formed. This resulted in the formation of a list of biochemical

metabolites to measure in the trekker plasma samples, detailed in Table 7.6.

8.2 Applications of the fitted models

The models formed in Chapter 7 are capable of predicting the di↵erence in work

rate at VO
2

max in a range of altitudes or hypoxic exposures, compared to sea level.

Work rate at VO
2

max was used as the main dependent variable, as it was the most

predictable from the explanatory variables available. Di↵erences in work rate at a

certain altitude (level of hypoxia) compared to sea level (normoxia) were used as a

proxy for hypoxia adaptation, with individuals showing a small di↵erence compared

to sea level considered to be adapting better to the lack of oxygen available compared

to individuals who show a larger di↵erence.

The models produced could be used in di↵erent situations, depending on the

condition of the patient, and the information available. Two other models were

also produced, looking at predicting the percentage loss of oxygen consumption at

VO
2

max (normalised for body weight) between Everest Base Camp and London, and

the percentage loss of work rate at VO
2

max between Namche and London. These

models were more specific, and only allowed the prediction of oxygen consumption

or work rate at a high level of hypoxic stress.

There were three di↵erent types of model produced, as follows;

• The London model and Kathmandu model, produced using absolute values of

the biochemical metabolites at London or Kathmandu as explanatory vari-

ables, to predict the percentage change in work rate at VO
2

max for several

hypoxic exposures/altitudes, as described in Sections 7.4.1 and 7.4.2;

• Two Namche models, produced using absolute values of the biochemical metabo-

lites at Namche (3500m) as explanatory variables, to predict the percentage

change in oxygen consumption at VO
2

max (normalised for body weight) be-
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tween Everest Base Camp and London, and work rate at VO
2

max between

Namche and London, as described in Section 7.4.3;

• The Kathmandu - London model and Namche - London model, produced us-

ing the percentage di↵erence of the biochemical metabolites between Kath-

mandu and London or Namche and London as explanatory variables, to pre-

dict the percentage change in work rate at VO
2

max for several hypoxic expo-

sures/altitudes, as described in Sections 7.4.4 and 7.4.5.

Potential applications for each of these models are described below. The

choice of which model would be appropriate to use depends on the status of the

patient and the information available. Figure 8.1 shows a flowchart that could be

used for critically ill patients to decide which model would be most appropriate.

8.2.1 London model

The London model was refined in detail, as it was considered the most versatile of

the models produced. It uses absolute values for the biochemical metabolites at

London as explanatory variables, along with an oxygen saturation value to calculate

the percentage loss of work rate at VO
2

max at four di↵erent hypoxic levels. The

model has a good predictive power, with an adjusted R2 value of 0.812 - indicating

that the model is describing 81.2% of the variability associated with the observed

data. Figure 7.7 shows the observed values plotted against the values fitted for the

model.

This model could be used in a critical illness environment by taking a blood

sample immediately after a patient arrives in the ICU, and the results could be

used to predict whether the patient will have any problems adapting if they become

hypoxic. This model could also be used to predict how well mountaineers will adapt

to extreme hypoxic conditions during a climb, by taking a blood sample at a sea-

level testing centre. This model would be the easiest to validate during the XE2

trek, by taking blood samples during sea level testing, measuring the 15 required

metabolites (shown in Section 7.4.1), predicting the individual’s performance, and

then comparing this to the actual performance recorded at altitude. However, this

model contains the highest number of metabolites out of all of the models formed,

and also contains two metabolites that are potentially di�cult to measure in a

critical illness environment - nitrate and RSNO, which require specialised equipment

and training to measure, as described in Section 7.5.2. Removal of these metabolites

from the London model removes all of the predictive power, and are therefore vital
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Figure 8.1: A flowchart providing guidance as to which of the predictive models
would be most suitable for a critically ill patient.
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for the model. This limits how useful this model will be, and would only be useful in

situations where it would be possible to measure plasma nitrate and RSNO levels.

8.2.2 Kathmandu model

This model uses absolute values for the biochemical metabolites at a moderate level

of hypoxic exposure (similar to an exposure to Kathmandu at 1300m, around 96%

blood oxygen saturation) as explanatory variables. This is combined with an oxygen

saturation value to predict the percentage loss of work rate at VO
2

max at four

di↵erent hypoxic levels. The model has a high predictive power, with an adjusted

R2 value of 0.857, indicating that it is explaining 85.7% of the variability associated

with the observed data. Figure 7.9 shows the observed values plotted against the

values fitted for the model.

This model would be suitable for critically ill patients who enter the ICU

already slightly hypoxic, and would allow the doctor to ascertain how well the

patient will adapt to further hypoxic exposure. This particular model would be

suited to use in a hospital environment, as all of the explanatory variables are easy

to measure in simple lab assays, as described in Section 7.5. This model contains six

explanatory variables, which is the smallest number for any of the models formed.

This model could also be used for mountaineers, where a blood sample could

be taken at an altitude similar to Kathmandu at 1300m, and be used to predict how

well the individual will cope with the ascent. This particular model would be a good

target for further refinement, to assess the importance of each of the explanatory

variables within the model.

8.2.3 Namche models

Two separate Namche models were produced, one capable of predicting the percent-

age loss for oxygen consumption at VO
2

max (normalised for body weight) between

Everest Base Camp and London, the other capable of predicting the percentage loss

of work rate at VO
2

max between Namche and London. Oxygen consumption was

identified alongside work rate as a good potential proxy for hypoxia adaptation, as

described in Section 7.2. Both of these models used absolute values of the biochem-

ical metabolites at Namche (3500m) as explanatory variables. A generalised model

was not produced for this particular explanatory variable combination, as it was

not possible to produce a model with enough predictive power from the explanatory

variables available, as described in Section 7.4.3. Therefore, these models do not

include the e↵ect of oxygen saturation (which is included in all of the other models
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produced), and are solely based on the absolute biochemical values at Namche as

explanatory variables.

The oxygen consumption model shows a very strong predictive power, with

an adjusted R2 value of 0.996, indicating that it is explaining 99.6% of the variability

associated with the dependent variable. Figure 7.10a shows the observed values

plotted against the values fitted for the model. The work rate model shows a lower

predictive power, with an adjusted R2 value of 0.691, indicating that it is explaining

69.1% of the variability associated with the dependent variable. Figure 7.10b shows

the observed values plotted against the values fitted for the model. These models

have a very limited use, as it is only possible to predict how well an individual will

adapt to a certain hypoxic exposure, which is quite high in both cases. However, the

high predictive power of the oxygen consumption model means that the model could

potentially be applied in the case of an individual who is already very hypoxic, to

see how they will respond if exposed to extreme hypoxia. For example, this model

could perhaps be applied before a hypoxic patient was to undergo surgery or receive

a treatment that would increase their hypoxic state, to see if they will have any

di�culties coping with the higher level of hypoxia.

8.2.4 Kathmandu-London model

This model uses the percentage di↵erence in biochemical metabolites between Kath-

mandu and London to predict the percentage loss of work rate at VO
2

max over a

range of hypoxic exposure/altitudes. This model has very good predictive power,

with an adjusted R2 value of 0.902, indicting that the model is explaining 90.2% of

the variability associated with the observed data. Figure 7.11 shows the observed

values plotted against the values fitted for the model. This model includes 8 explana-

tory variables, including nitrite, which requires specialist equipment and training to

measure. The removal of nitrite from the model reduces the adjusted R2 value to

0.898, and may allow the wider use of this model, as described in Section 7.5.2.

This model has the highest adjusted R2 value out of any of the generalised models

produced.

This model would be suitable for critically ill patents who are stable enough

to be exposed to a small amount of hypoxic stress. When the patient first arrives at

the ICU a blood sample would be taken, and the individual would then be exposed to

a reduced amount of oxygen via an oxygen mask, equivalent to an altitude of 1300m.

After exposure, a new blood sample would be taken, and the percentage change in

7 biochemical metabolites would be used to predict how well that individual will

adapt to further hypoxic exposure. This particular model could also be used for
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mountaineering, with individuals having blood samples taken at sea level before

they travel, and then after they have arrived at a higher altitude of around 1300m.

The individual could also be exposed to an altitude of 1300m in a hypoxic chamber

(the same exposure they have during the flight to Kathmandu). The percentage

di↵erence between these two measures could then be used to predict how well that

individual would cope with ascent to high and extreme altitude. This model is

only useful if an individual is able to be exposed to a small amount of hypoxia,

which should not cause too much stress to the individual. There is also an ethical

consideration here, as it is not always possible or justifiable to expose all patients

to hypoxic stress, when they are already seriously ill.

8.2.5 Namche-London model

This model uses the percentage di↵erence in biochemical metabolites between Nam-

che and London as explanatory variables, in combination with an oxygen saturation

measure, to predict the percentage loss of work rate at VO
2

max over a range of hy-

poxic exposures. This model has good predictive power, with an adjusted R2 value

of 0.875, which indicates that it is explaining 87.5% of the variability associated

with the observed data. Figure 7.12 shows the observed values plotted against the

values fitted for the model. This model uses 10 explanatory variables, which are all

relatively easy to measure in a clinical environment. However, this model requires

the individual to be exposed to quite a high level of hypoxia, and requires a sea-level

measurement. This model may be most suitable for critically ill patients who had a

blood sample taken when they first arrived at the hospital, and are becoming quite

severely hypoxic (i.e. in a peri-operative setting). An additional blood sample could

then be taken, and the biochemical measurements compared to sea level to predict

how well that individual will respond to increased hypoxic exposure. This model

may also be of use as a hypoxic-stress test for climbers who may be more susceptible

to developing AMS symptoms in the field.

8.2.6 Combined test

If one or more of these models proves to be useful in a clinical environment, then it

may be possible to produce a combined assay, which would test all of the required

biochemical metabolites in a single blood sample (similar to the multiplexing ca-

pabilities of the Bio-Plex). A blood sample would be taken by a member of sta↵,

measured in the hospital lab, and the results transferred to a hand-held device, which

would take the information and calculate the predicted adaptability for the patient
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via one or more models. This information would be displayed in an easy-to-use

format on the device, to allow the swift transition from blood sample to prediction

for patients in a critical illness environment, where time is always a limiting factor.

8.2.7 Explanatory variables in multiple models

There were several biochemical metabolites that were used in multiple models. It

was expected that metabolites from the NO and ROS pathways would feature in the

models formed, due to the known links with hypoxia, as described in Section 1.4.1.1

and 1.4.2. However, metabolites that were used in multiple models included very

traditional measurements such as protein content, osmolality and creatinine. Mea-

sures such as protein content and osmolality were originally used in this project

as controls. Creatinine was used as a measure of kidney function, however, many

groups now favour Cystatin C over creatinine as it is more specific, but also more ex-

pensive to measure than creatinine. It is interesting that reasonably simple measures

would play such an important part in the analysis, however, the underlying reasons

are currently unknown. It may be that less specific metabolites show the integrated

response of multiple body functions compared to more specific metabolites.

8.2.8 Other applications

The models formed could also be used in the area of sports medicine, to predict

how well an individual will perform (during higher physiological stress or hypoxic

training) at a higher altitude. This would improve the safety of the train high,

sleep low method of training, where athletes train at high altitude to improve their

performance at sea level, whilst sleeping at a lower altitude to maintain their blood

oxygen saturation. These models could allow the assessment of how well individuals

will perform at di↵erent altitudes, to advise which altitude would be best for a

particular individual to train at, to get the most out of the training without becoming

too severely hypoxic.

8.3 Extension and modifications of the modelling ap-

proach

There are several ways in which the modelling undertaken during this project could

be expanded to improve on the initial models formed. These include:

1. Looking at producing a model using the di↵erence between Namche - Kath-

mandu for the explanatory variables, for patients who are already moderately
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hypoxic, and are stable enough to be exposed to a higher level of hypoxia;

2. Looking at further refinement of all of the models produced, to assess the

impact of removing each variable, with the aim of stream-lining each model;

3. Only the strongest models were refined for each set of explanatory variables,

due to time limitations and to increase the likelihood of meaningful results. It

is possible that the refinement of one of the other models produced for each

set of explanatory variables may have more predictive power than the models

reported here;

4. The possibility of log-transforming specific explanatory variables, to reduce

the impact of observations with high leverage, as described in Section 6.4.2;

5. The inclusion of simple physiological measurements as additional explanatory

variables may help to explain more of the variability associated with the de-

pendent variable of interest. These would include measurements that are easily

acquired and in most cases already available for critically ill patients, and are

known to be reliable due to the diary data analysis;

6. Targeted MLR on other physiological measurements of interest identified dur-

ing model exploration, such as physiological measurements identified in the

diary data analysis as showing di↵erences for ill individuals. These models

may be less powerful, but more biologically useful;

7. Assessment of non-linear responses, which would require additional altitude-

points;

These are all relatively straight-forward extensions to the analysis performed,

however, these were not possible to include as a part of this thesis due to time

constraints.

8.3.1 Validation and testing

The validity of any model formed is based on the reliability of the data it is con-

structed from. If the data is unreliable, then any model formed from this data will

also be unreliable. Assessing the impact of outlying values requires an understand-

ing of the biological metabolites being assessed. Ideally, the values obtained for the

CXE samples would be compared to other studies, to determine whether or not the

values were within the normal biological range, or were truly erroneous. However,

observed values for biochemical metabolites vary widely between studies, and can
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depend on the technique used to measure the samples. Additionally, the nature of

the CXE study is that the individuals were exposed to high levels of hypoxic and

environmental stresses. Therefore, what may seem an erroneous datapoint for nor-

mal sea level samples, may be within an expected response to exposure to extreme

hypoxia. Many of these measurements have never been acquired from individuals

exposed to such conditions before, making them unique, and therefore very di�cult

to formally compare to values obtained from other studies.

Ideally, the model would be cross-validated using an independent data set,

however, a second data set was not available for this analysis. The original dataset

could have been split, with the model being based on one half of the data and verified

with the second half. However, due to the small sample size, it was decided to use

all of the data available in model building, in order to produce the most accurate

model possible. The next stage to this analysis will be to measure the biochemical

metabolites identified in Table 7.6 in the trekker plasma samples. This will allow

the validation of the models in a much larger sample size of 190 compared to the 24

that the models were originally based on. The model can also be validated in the

follow-up XE2 study.

8.4 Limitations

8.4.1 The design of CXE 2007

CXE 2007 was planned and conducted by the CXE team, without any plan to

measure the range of biochemical metabolites that have been assessed within this

project. The CXE team did not set up the collaboration with the Feelisch lab until

a year after the expedition had taken place, and so it was not possible for us to

have any input into the design of the study, including the timing and number of

samples taken, which is the main limitation to the modelling performed. Whilst

this is not ideal, it does not mean that the data acquired from the biochemical

analysis of plasma samples is not valid. Xtreme Alps 2010 was a follow-up expedition

designed and conducted in direct collaboration with the Feelisch lab. This expedition

incorporated intervention studies with control groups (such as supplementary nitrate

consumption), and allowed the acquisition of more directly applicable data. Similar

additions are being considered for the large direct follow-up study to CXE 2007,

denoted XE2, due to take place in 2013.
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8.4.2 Performance at altitude

This project is based on the assumption that performance at altitude in healthy in-

dividuals can be used as a proxy for hypoxia adaptation, and been used to generate

models capable of assessing the potential response to hypoxia in critically ill patients.

There may be other measures that are more suitable as a measure of hypoxia adap-

tation, however, this assumption forms the basis of the modelling for this project.

If this assumption does not hold, then the models will still be applicable to moun-

taineers, to predict how well they will perform physically at altitude. However, the

application to critically ill patients would be more limited. The models formed need

to be calibrated on data from critically ill patients, to test the assumptions made,

and assess whether the models can be adapted for a critical illness environment.

8.4.3 Self-selection

The core team members were a group of highly selected individuals. This means

that their fitness is well above the average for the general population, and they had

previous experience at altitude, which can aid in faster acclimatisation [McArdle

et al., 2007]. The trekker data contains information for 190 individuals, who have

had much less experience at altitude and may not be as physically fit as those

from the core group. However, this group is still self-selecting, as it only contains

individuals who had an interest in the expedition and who considered themselves fit

enough to participate. It is expected that the trekker group of individuals will show

responses that will be closer to critically ill individuals, however, there may still be

large di↵erences between the groups. It is important to understand this limitation

when assessing the results, and making comparisons to the normal population.

8.4.4 Translation of results

As the core individuals were a self-selected group, the training and validation of

the models for the trekker data will be vital in producing a model that is more

applicable to the population as a whole. These refined models should also be more

applicable to a critical illness environment than the original models formed, as they

are based on a less selected group of individuals. The models will then need to

be re-trained and re-validated once again to see how applicable they are to critical

illness environment. It may be the case that the models produced here are very good

at predicting the responses for healthy climbers, but are not applicable to critically

ill patients. However, if hypoxia is an overriding theme in critical illness, as it is

assumed to be by the CXE team, then the models produced should hold to a certain

220



degree when applied to critically ill patients, but further work is needed to calibrate

the results of this study to a critical illness environment.

8.4.5 The role of other environmental factors

During the expedition, the team would have been exposed to multiple environmen-

tal stresses. The main stress of interest to this study is hypoxia, however, other

factors such as high UV exposure, low environmental temperatures and the physical

exertion required to ascend would all have a pronounced e↵ect on the biochemistry

and physiology of the participants as they ascended Mount Everest. Critically ill

patients are similarly exposed to multiple stresses such as hypoxia, inflammation

and infection, but the nature of these stresses is di↵erent. The aim of CXE 2007

was to study healthy volunteers exposed to extreme environments, to increase our

understanding of the complex response pathways that occur within critically ill pa-

tients. However, the overlapping of these response pathways also adds an extra layer

of complication to our understanding of the adaptation process.

The stresses that critically ill patients are exposed to are similar to those

experienced by the CXE participants, however, they would not be directly compa-

rable. In addition, critically ill patients vary in their stress exposure. We do not

know whether some of the changes seen in the participants are due to low oxygen

levels, high UV levels, strenuous exercise, or some other factor. It is important to

understand that this is both an asset and a limitation of this study. Additional stud-

ies involving the assessment of such factors in isolation would allow the modelling

to account for the factors that cannot be changed during the expedition. When

analysing any results it is important to be aware of this problem, and of the e↵ects

it may have on any inferences made from the data.

8.5 Suggestions for XE2

1. The main limitation to this modelling analysis has been the number of alti-

tude/hypoxic stress points. The models produced assessed the change between

London and Everest Base Camp week one, which meant that only four data

points were available for model building. More levels of hypoxic exposure

would allow more accurate modelling of changes that occurred during the ex-

pedition, improve the accuracy of the model and improve the application to

environments such as critical illness. It would also allow the analysis of non-

linear relationships within the dataset, which is not realistic to do using only

four levels of hypoxic exposure;
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2. The acquisition of whole blood samples would allow the analysis of additional

metabolites in white or red blood cells, which are not present in the plasma;

3. The inclusion of intervention studies, similar to those conducted during Xtreme

Alps, which looked at the role of supplementary nitrate during the expedition,

and allow the analysis of this particular metabolite in the adaptation to hy-

poxia during the expedition;

4. Oxygen intervention studies, would allow the assessment of the role supple-

mentary oxygen can play during an expedition such as CXE (i.e. does sup-

plementary oxygen during the ascent help, hinder or have no e↵ect on the

individuals?)

8.5.1 Controls

Scientific controls allow for the comparison of di↵erent hypotheses, and aid in vali-

dating any conclusions that are drawn from the results of an experiment. It is more

di�cult to incorporate suitable controls into some experiments than others, due to

the logistics or cost of some experiments. It is important within scientific experi-

ments to control as many variables as possible, to allow the assessment of whether

one attribute is responsible for the changes seen during an experiment.

The inclusion of additional controls into a future expedition such as XE2

would increase the amount of information that could be gained from the experiments.

Additional controls might include:

1. Hypoxic chambers: Simulating an ascent to high altitude using an identical

ascent profile in a hypoxic chamber would allow the assessment of the hypoxic

response to a change in oxygen availability in the air, whilst minimising other

potential confounding factors such as UV, temperature and physical exertion

during a climb. The same individual could be assessed during the ascent and

then at a later date in the chamber (once the individual had su�cient time to

lose acclimatisation), to allow the direct comparison of results obtained;

2. Additional oxygen: A subset of individuals ascending could ascend using

oxygen masks for the entire expedition, so that they are solely exposed to all

other stresses encountered during the ascent. A subset of these tank-carrying

individuals would also need to breathe ambient air without their knowledge,

to test for the e↵ects of utilising a mask system whilst ascending. However, it

would not be possible to send the same individual on the ascent twice, both

with and without an oxygen mask. Therefore, participants could be paired
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(one individual with a mask, and one without) based on their fitness and

previous experience, to allow the most direct comparison as possible.

Such additional controls would allow a more refined assessment of the bio-

chemical and physiological changes associated with the hypoxic response, and the

other stresses induced by the expedition itself. Such controls would only be possi-

ble with a small number of individuals, due to the high costs of running a hypoxic

chamber, and the logistical issues associated with using oxygen tanks during the as-

cent. Additional sherpas would also be required to carry the oxygen bottles during

the ascent, so that the individuals are not exercising much more than non-oxygen

wearing participants by carrying their own oxygen tanks during the ascent.

The extra information that would be gained from these additional controls

would have to be weighed against the additional costs and logistics that would be

required to incorporate them. These controls would undoubtedly give extremely

valuable data, however, whether they would be possible to do in large enough num-

bers to make comparisons statistically significant is also unclear.

8.6 Conclusions and outlook

Current tests in medicine use very specific measures, which can be expensive, and

may not necessarily be better in a model than a seemingly similar metabolite. My

modelling results support that the use of ‘simple’ metabolites, which integrate sev-

eral systems including skeletal, cardiac and pulmonary performance, may be prefer-

able for modelling compared to selective measures of specific organs. The cost and

ease in which a particular metabolite can be measured also play a role in determining

which metabolites are the most useful in modelling.

My results show that sometimes it is best to apply a simple method to a

dataset, to see what the data can tell us before using complex methodology which

requires a large number of assumptions. The results can sometimes be surprising! It

was initially thought that due to the complex nature of the responses seen by these

individuals during the expedition, it was unlikely that linear relationships would

be present, which seemed the case when looking at simple linear regression in Sec-

tion 6.2. However, the model fits from the MLR are surprisingly good, and show

some potentially valuable applications. The metabolites used within the models as

explanatory variables would not have been predicted by knowledge of the biochem-

ical pathways alone, and shows the power of correctly-applied statistical analysis of

biological data. These results can now be used to inform the analysis of the trekker

plasma samples, to allow the validation and re-training of the models formed on a
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larger sample size. Figure 8.2 shows the cyclic nature of the complete analysis of

this data, highlighting the strength of a systems biology approach to looking at this

type of dataset. This type of approach is perhaps reminiscent of the words of one

of the greatest British mountaineers of all time:

In 1923, George Mallory climbed Mount Everest. When asked ”Why climb Mount

Everest?” he replied ”Because it’s there.”
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Figure 8.2: The Systems Biology approach used during this thesis project - data
collection from CXE 2007, exploratory data analysis, model building, model analysis
and refinement, measurement of trekker samples based on information from the
modelling and refinement of the model based on the trekker data. This model would
then be used to inform XE2 and be calibrated for use for critically ill patients. It
was only possible to get to the stage of model refinement in this thesis project,
and the next steps would be to measure the trekker plasma samples, and use the
information to validate the models reported .
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Chapter 9

Appendices

9.1 2-way ANOVA results

ANOVA (Altitude) ANOVA (Individual)

Variable F -value p-value F -value p-value

Nitrite (mM) 22.07 • 8.6E-13 2.25 • 3.5E-03

Nitrate (mM) 1.18 3.2E-01 1.14 3.2E-01

Total NOx (mM) 1.21 3.1E-01 1.14 3.2E-01

RSNO (nM) 18.01 • 5.9E-11 2.04 • 9.1E-03

RNNO (nM) 11.85 • 8.3E-08 2.88 • 1.9E-04

Total RxNO (nM) 18.19 • 4.9E-11 2.90 • 1.7E-04

cGMP (pmol/mL) 9.21 • 2.7E-06 2.65 • 5.4E-04

8-isoPGF (ng/mL) 7.96 • 1.5E-05 1.49 9.6E-02

HNE (mg/mL) 4.76 • 1.7E-03 3.18 • 7.6E-05

GSH (micromolar) 15.40 • 9.1E-08 1.09 3.8E-01

GSSG (micromolar) 6.89 • 4.2E-04 0.94 5.5E-01

Total Glutathione (micromo-

lar)

3.01 • 3.6E-02 0.62 9.0E-01

GSH to GSSG ratio 8.83 • 5.4E-05 1.37 1.6E-01

IL-1beta (pg/mL) 1.03 4.0E-01 9.92 • 5.3E-11

IL-1ra (pg/mL) 3.70 • 7.7E-03 1.86 • 2.1E-02

IL-6 (pg/mL) 0.30 8.7E-01 6.73 • 1.4E-11

IL-8 (pg/mL) 3.12 • 1.9E-02 1.01 4.6E-01

IL-10 (pg/mL) 1.18 3.5E-01 1.01 5.0E-01

IL-12(p70) (pg/mL) 8.38 • 8.3E-06 12.85 • 9.5E-20

Continued on next page
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9.1 – continued from previous page

ANOVA (Altitude) ANOVA (Individual)

Variable F -value p-value F -value p-value

IL-13 (pg/mL) 9.47 • 1.9E-06 4.38 • 1.9E-07

IL-18 (pg/mL) 8.82 • 4.5E-06 18.34 • 4.7E-25

MIF (pg/mL) 11.05 • 2.3E-07 3.37 • 1.8E-05

Eotaxin (pg/mL) 4.39 • 2.7E-03 11.44 • 4.0E-18

TNFalpha (pg/mL) 3.50 • 1.1E-02 8.38 • 4.1E-14

VEGF (pg/mL) 9.86 • 1.1E-06 6.07 • 1.7E-10

CRP (ng/mL) 2.90 • 2.6E-02 1.23 2.4E-01

Adrenaline (ng/mL) 24.69 • 6.7E-14 0.89 6.1E-01

Noradrenaline (ng/mL) 5.57 • 4.6E-04 1.61 5.9E-02

T3 (pg/mL) 5.05 • 1.0E-03 11.66 • 2.1E-18

T4 (pg/mL) 1.68 1.6E-01 7.89 • 2.1E-13

C-Peptide (pg/mL) 4.46 • 2.4E-03 2.61 • 6.4E-04

GIP (pg/mL) 1.42 2.3E-01 1.95 • 1.4E-02

Ghrelin (pg/mL) 1.65 1.7E-01 15.47 • 1.9E-22

Glucagon (pg/mL) 10.70 • 3.7E-07 7.27 • 1.9E-12

GLP-1 (pg/mL) 5.59 • 4.5E-04 8.64 • 1.7E-14

Insulin (pg/mL) 8.21 • 1.0E-05 8.30 • 5.3E-14

Leptin (pg/mL) 8.82 • 4.5E-06 9.89 • 3.4E-16

PAI-1 (pg/mL) 13.83 • 7.5E-09 1.95 • 1.4E-02

Resistin (pg/mL) 9.25 • 2.5E-06 4.39 • 1.8E-07

Visfatin (pg/mL) 0.50 7.4E-01 9.98 • 2.6E-16

Adiponectin (pg/mL) 6.75 • 8.3E-05 13.94 • 6.4E-21

Adipsin (pg/mL) 28.31 • 2.5E-15 3.89 • 1.7E-06

EPO (mlU/mL) 6.26 • 1.7E-04 3.63 • 5.6E-06

ET-1 (pg/mL) 1.79 1.4E-01 34.19 • 2.2E-35

Glucose (mM) 4.78 • 1.5E-03 3.18 • 4.4E-05

Cystatin C (ng/mL) 28.37 • 2.6E-15 2.40 • 1.8E-03

Creatinine (mg/dl) 6.86 • 7.1E-05 6.15 • 1.3E-10

Lactate (mM) 5.97 • 2.7E-04 1.87 • 2.1E-02

Osmolality (mOsmo/kg) 1.57 1.9E-01 1.48 9.8E-02

Protein Content (mg/mL) 3.87 • 6.0E-03 1.52 8.5E-02

Bicarbonate (mmol/L) 35.86 • 4.9E-18 1.89 • 1.8E-02

HSP-70 (ng/mL) 1.02 4.0E-01 7.14 • 3.0E-12

Continued on next page
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9.1 – continued from previous page

ANOVA (Altitude) ANOVA (Individual)

Variable F -value p-value F -value p-value

Barometric Pressure 95623.60 • 9.4E-161 1.71 • 3.9E-02

Ambient temperature 40.31 • 3.1E-19 0.94 5.4E-01

Economy 9.83 • 1.2E-06 2.81 • 2.7E-04

Maximum voluntary ventila-

tion

27.34 • 7.4E-15 23.90 • 6.6E-29

Forced expiratory volume in 1

second

2.16 8.0E-02 59.65 • 1.1E-44

Haemoglobin 60.25 • 6.9E-25 3.92 • 1.5E-06

Blood oxygen content 1.86 1.2E-01 4.55 • 9.0E-08

Haematocrit 57.79 • 2.7E-24 5.60 • 1.1E-09

Resting oxygen consumption 5.18 • 8.5E-04 10.49 • 1.1E-16

Resting oxygen consumption

(/kg)

7.24 • 4.3E-05 4.99 • 1.7E-08

Resting respiratory exchange

ratio

7.13 • 5.0E-05 2.64 • 5.9E-04

Resting heart rate 24.58 • 1.0E-13 13.88 • 1.8E-20

Resting minute ventilation 46.64 • 4.5E-21 7.21 • 3.5E-12

Resting carbon dioxide produc-

tion

5.32 • 6.8E-04 9.47 • 2.2E-15

Respiratory equivalent for oxy-

gen at rest

76.03 • 6.9E-28 4.33 • 2.8E-07

Respiratory equivalent for car-

bon dioxide at rest

139.01 • 2.1E-37 7.81 • 4.5E-13

Resting oxygen pulse 1.52 2.0E-01 10.72 • 5.8E-17

Resting respiratory rate 15.29 • 1.5E-09 6.65 • 2.7E-11

Resting tidal volume 9.28 • 2.6E-06 5.08 • 1.2E-08

Partial pressure end tidal oxy-

gen

2702.62 • 5.5E-92 7.48 • 1.4E-12

End tidal partial pressure car-

bon dioxide

319.59 • 6.8E-52 12.99 • 1.5E-19

Work rate at LaT 42.53 • 6.7E-20 6.90 • 1.1E-11

Oxygen consumption at LaT 41.83 • 1.1E-19 7.11 • 5.0E-12

Continued on next page
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9.1 – continued from previous page

ANOVA (Altitude) ANOVA (Individual)

Variable F -value p-value F -value p-value

Oxygen consumption at LaT

(/kg)

40.69 • 2.4E-19 4.72 • 5.4E-08

Respiratory exchange ratio at

LaT

6.20 • 1.9E-04 3.46 • 1.3E-05

Heart rate at LaT 13.26 • 1.6E-08 6.92 • 9.8E-12

Minute ventilation at LaT 11.66 • 1.2E-07 8.23 • 1.1E-13

Carbon dioxide production at

LaT

41.83 • 1.1E-19 6.55 • 3.8E-11

Respiratory equivalent for oxy-

gen at LaT

319.79 • 6.6E-52 8.97 • 1.0E-14

Respiratory equivalent for car-

bon dioxide at LaT

370.75 • 1.4E-54 11.98 • 1.9E-18

Oxygen pulse at LaT 41.20 • 1.7E-19 25.28 • 1.3E-29

Respiratory rate at LaT 8.01 • 1.5E-05 9.22 • 4.8E-15

Tidal volume at LaT 0.74 5.7E-01 8.44 • 5.5E-14

Partial pressure end tidal oxy-

gen at LaT

2343.54 • 2.9E-89 10.12 • 3.2E-16

End tidal partial pressure car-

bon dioxide at LaT

706.13 • 1.7E-66 16.65 • 4.1E-23

Work rate at VO
2

max 239.68 • 9.3E-47 56.48 • 2.5E-43

Oxygen consumption at

VO
2

max

159.66 • 9.9E-40 28.72 • 1.1E-31

Oxygen consumption at

VO
2

max (/kg)

136.57 • 4.1E-37 14.79 • 2.2E-21

Respiratory exchange ratio at

VO
2

max

18.05 • 6.9E-11 3.24 • 3.7E-05

Heart rate at VO
2

max 62.27 • 5.4E-25 9.41 • 2.6E-15

Minute ventilation at VO
2

max 13.75 • 9.0E-09 16.59 • 4.6E-23

Carbon dioxide production at

VO
2

max

221.07 • 2.4E-45 32.56 • 8.8E-34

Respiratory equivalent for oxy-

gen at VO
2

max

171.15 • 6.5E-41 6.50 • 4.5E-11

Continued on next page
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9.1 – continued from previous page

ANOVA (Altitude) ANOVA (Individual)

Variable F -value p-value F -value p-value

Respiratory equivalent for car-

bon dioxide at VO
2

max

279.95 • 1.6E-49 11.56 • 5.8E-18

Oxygen pulse at VO
2

max 31.21 • 3.1E-16 24.45 • 4.5E-29

Respiratory rate at VO
2

max 5.14 • 9.0E-04 10.59 • 8.3E-17

Tidal volume at VO
2

max 4.67 • 1.8E-03 40.46 • 1.8E-37

Partial pressure end tidal oxy-

gen at VO
2

max

3110.84 • 1.1E-94 8.63 • 3.0E-14

End tidal partial pressure car-

bon dioxide at VO
2

max

231.22 • 4.0E-46 10.24 • 2.3E-16

Systolic blood pressure at rest 0.56 6.9E-01 4.13 • 1.2E-06

Diastolic blood pressure at rest 3.48 • 1.1E-02 3.15 • 8.2E-05

Systolic blood pressure after

exercise

0.50 7.3E-01 5.84 • 1.3E-08

Diastolic blood pressure after

exercise

1.27 2.9E-01 1.47 1.2E-01

Oxygen cost at LaT 7.26 • 4.2E-05 29.49 • 4.0E-32

Oxygen cost at VO
2

max 5.28 • 7.3E-04 24.31 • 5.7E-29

Oxygen saturations at rest 146.30 • 5.2E-38 3.97 • 1.5E-06

Oxygen saturations at LaT 119.36 • 1.0E-29 2.46 • 2.6E-03

Oxygen saturations at

VO
2

max

132.72 • 1.7E-28 3.87 • 2.3E-05

Table 9.1: Full 2-way ANOVA results (without interactions) looking at the e↵ect of
altitude and individual.

230



9.2 Inter-quartile ranges

Interquartile ranges

Variable London Kathmandu Namche Pheriche EBC week 1

Nitrite (mM) 0.584 0.392 0.555 0.449 0.461

Nitrate (mM) 0.538 0.440 0.714 0.882 0.824

Total NOx (mM) 0.539 0.436 0.703 0.880 0.818

RSNO (nM) 1.026 0.859 0.782 0.817 0.488

RNNO (nM) 0.625 0.246 0.475 0.340 0.590

Total RxNO (nM) 0.662 0.388 0.429 0.452 0.654

cGMP (pmol/mL) 0.331 0.480 0.395 0.656 0.438

8-isoPGF (ng/mL) 0.476 0.799 0.905 0.427 1.336

HNE (mg/mL) 0.352 0.698 0.262 0.347 0.243

GSH (micromolar) NaN 0.195 0.330 0.331 0.280

GSSG (micromolar) NaN 0.817 0.758 0.639 0.811

Total Glutathione (mi-

cromolar)

NaN 0.400 0.562 0.453 0.368

GSH to GSSG ratio NaN 0.914 0.530 0.417 0.762

IL-1beta (pg/mL) 0.217 0.154 1.801 0.869 0.000

IL-1ra (pg/mL) 0.544 0.397 0.816 0.414 0.454

IL-6 (pg/mL) 0.356 0.489 0.279 0.417 0.392

IL-8 (pg/mL) 0.457 0.376 0.667 0.585 0.476

IL-10 (pg/mL) 1.554 0.725 2.729 1.526 1.608

IL-12(p70) (pg/mL) 0.903 0.887 0.648 1.203 0.776

IL-13 (pg/mL) 0.626 0.648 0.451 0.956 0.616

IL-18 (pg/mL) 0.664 0.779 0.627 0.548 0.836

MIF (pg/mL) 0.271 0.351 0.304 0.534 0.708

Eotaxin (pg/mL) 0.710 0.795 0.448 0.605 0.493

TNFalpha (pg/mL) 0.299 0.521 0.303 0.353 0.352

VEGF (pg/mL) 1.069 1.011 0.948 1.171 0.712

CRP (ng/mL) 1.976 2.771 1.809 1.481 2.224

Adrenaline (ng/mL) 1.389 0.724 0.472 0.611 0.531

Noradrenaline (ng/mL) 0.646 0.525 0.400 1.001 1.636

T3 (pg/mL) 0.983 0.505 0.743 0.610 0.634

T4 (pg/mL) 0.490 0.293 0.279 0.281 0.608

C-Peptide (pg/mL) 0.288 0.455 0.352 0.222 0.185

Continued on next page
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Interquartile range

Variable London Kathmandu Namche Pheriche EBC week 1

GIP (pg/mL) 1.024 1.023 0.676 0.825 0.571

Ghrelin (pg/mL) 0.430 0.422 0.304 0.420 0.517

Glucagon (pg/mL) 0.225 0.325 0.266 0.243 0.213

GLP-1 (pg/mL) 0.313 0.518 0.285 0.346 0.329

Insulin (pg/mL) 0.208 0.504 0.394 0.389 0.412

Leptin (pg/mL) 1.212 1.214 0.946 0.786 0.851

PAI-1 (pg/mL) 0.667 0.458 0.248 0.383 0.279

Resistin (pg/mL) 0.558 0.472 0.499 0.371 0.398

Visfatin (pg/mL) 0.842 0.837 0.671 0.646 0.619

Adiponectin (pg/mL) 0.722 0.782 0.858 0.724 1.027

Adipsin (pg/mL) 0.578 0.628 0.371 0.587 0.415

EPO (mlU/mL) 0.399 0.617 0.639 0.568 1.016

ET-1 (pg/mL) 0.955 0.974 0.819 0.663 0.915

Glucose (mM) 0.211 0.242 0.402 0.196 0.298

Cystatin C (ng/mL) 0.242 0.256 0.263 0.276 0.271

Creatinine (mg/dl) 0.163 0.148 0.206 0.205 0.133

Lactate (mM) 0.358 0.499 0.507 0.392 0.389

Osmolality

(mOsmo/kg)

0.036 0.036 0.040 0.068 0.064

Protein Content

(mg/mL)

0.110 0.084 0.109 0.115 0.102

Bicarbonate (mmol/L) 0.110 0.099 0.130 0.176 0.137

HSP-70 (ng/mL) 0.565 1.025 0.838 0.703 0.912

Groups 0.693 0.693 0.693 0.693 0.693

Gender 0.347 0.347 0.693 0.347 0.000

Weight (Kg) 0.207 0.201 0.192 0.190 0.194

Barometric Pressure 0.006 0.007 0.007 0.006 0.006

Inspired oxygen partial

pressure

0.000 0.000 0.000 0.000 0.000

Ambient temperature 0.057 0.077 0.173 0.138 0.975

Economy 0.178 0.099 0.136 0.108 0.170

Maximum voluntary

ventilation

0.270 0.254 0.196 0.169 0.232

Continued on next page
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Interquartile range

Variable London Kathmandu Namche Pheriche EBC week 1

Forced expiratory vol-

ume in 1 second

0.241 0.223 0.206 0.244 0.191

Exercise ramp wattage 0.405 0.405 0.405 0.405 0.405

Haemoglobin 0.108 0.092 0.078 0.080 0.109

Blood oxygen content 0.098 0.093 0.078 0.087 0.178

Haematocrit 0.080 0.066 0.075 0.073 0.066

Resting oxygen con-

sumption

0.242 0.215 0.313 0.250 0.256

Resting oxygen con-

sumption (/kg)

0.327 0.247 0.226 0.224 0.119

Resting respiratory ex-

change ratio

0.118 0.118 0.000 0.000 0.100

Resting heart rate 0.226 0.119 0.170 0.187 0.232

Resting minute ventila-

tion

0.199 0.231 0.292 0.253 0.306

Resting carbon dioxide

production

0.265 0.233 0.263 0.267 0.252

Respiratory equivalent

for oxygen at rest

0.139 0.114 0.158 0.142 0.191

Respiratory equivalent

for carbon dioxide at

rest

0.163 0.165 0.156 0.140 0.160

Resting oxygen pulse 0.288 0.231 0.352 0.316 0.255

Resting respiratory rate 0.219 0.264 0.218 0.197 0.261

Resting tidal volume 0.154 0.322 0.232 0.224 0.228

Partial pressure end

tidal oxygen

0.033 0.047 0.050 0.067 0.046

End tidal partial pres-

sure carbon dioxide

0.152 0.172 0.108 0.109 0.124

Work rate at LaT 0.273 0.236 0.212 0.222 0.206

Oxygen consumption at

LaT

0.216 0.181 0.236 0.143 0.163

Continued on next page
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Interquartile range

Variable London Kathmandu Namche Pheriche EBC week 1

Oxygen consumption at

LaT (/kg)

0.300 0.155 0.161 0.138 0.162

Respiratory exchange

ratio at LaT

0.074 0.063 0.082 0.063 0.070

Heart rate at LaT 0.136 0.142 0.166 0.117 0.149

Minute ventilation at

LaT

0.340 0.227 0.333 0.260 0.214

Carbon dioxide produc-

tion at LaT

0.311 0.175 0.246 0.214 0.148

Respiratory equivalent

for oxygen at LaT

0.121 0.159 0.117 0.114 0.149

Respiratory equivalent

for carbon dioxide at

LaT

0.125 0.113 0.150 0.134 0.175

Oxygen pulse at LaT 0.183 0.198 0.330 0.229 0.318

Respiratory rate at LaT 0.235 0.231 0.260 0.327 0.261

Tidal volume at LaT 0.296 0.265 0.290 0.293 0.259

Partial pressure end

tidal oxygen at LaT

0.049 0.075 0.061 0.067 0.070

End tidal partial pres-

sure carbon dioxide at

LaT

0.108 0.097 0.107 0.129 0.128

Work rate at VO
2

max 0.209 0.202 0.281 0.265 0.221

Oxygen consumption at

VO
2

max

0.236 0.197 0.305 0.258 0.246

Oxygen consumption at

VO
2

max (/kg)

0.238 0.176 0.167 0.086 0.155

Respiratory exchange

ratio at VO
2

max

0.099 0.084 0.083 0.049 0.075

Heart rate at VO
2

max 0.065 0.087 0.114 0.090 0.197

Minute ventilation at

VO
2

max

0.220 0.329 0.416 0.404 0.222

Continued on next page
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Interquartile range

Variable London Kathmandu Namche Pheriche EBC week 1

Carbon dioxide produc-

tion at VO
2

max

0.165 0.169 0.353 0.243 0.249

Respiratory equivalent

for oxygen at VO
2

max

0.203 0.178 0.137 0.128 0.187

Respiratory equivalent

for carbon dioxide at

VO
2

max

0.211 0.217 0.186 0.091 0.187

Oxygen pulse at

VO
2

max

0.170 0.260 0.337 0.297 0.335

Respiratory rate at

VO
2

max

0.355 0.224 0.215 0.302 0.301

Tidal volume at

VO
2

max

0.288 0.232 0.295 0.361 0.373

Partial pressure end

tidal oxygen at VO
2

max

0.055 0.058 0.058 0.043 0.045

End tidal partial pres-

sure carbon dioxide at

VO
2

max

0.204 0.222 0.168 0.090 0.196

Systolic blood pressure

at rest

0.225 0.167 0.227 0.150 0.271

Diastolic blood pressure

at rest

0.152 0.250 0.165 0.202 0.178

Systolic blood pressure

after exercise

0.181 0.263 0.186 0.198 0.257

Diastolic blood pressure

after exercise

0.270 0.202 0.151 0.147 0.161

Oxygen cost at LaT 0.210 0.237 0.243 0.251 0.216

Oxygen cost at

VO
2

max

0.247 0.193 0.218 0.239 0.203

Oxygen saturations at

rest

0.020 0.031 0.055 0.058 0.100

Oxygen saturations at

LaT

0.031 0.032 0.095 0.074 0.137

Continued on next page
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Interquartile range

Variable London Kathmandu Namche Pheriche EBC week 1

Oxygen saturations at

VO
2

max

0.021 0.039 0.075 0.101 0.159

Altitude 0.000 0.000 0.000 0.000 0.000

Day NaN 0.288 0.095 0.069 0.140

Table 9.2: Full interquartile range information for all variables for all altitudes, for
the core data.
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