
http://wrap.warwick.ac.uk/  

 
 

 
 
 
 
 
 
 
Original citation: 
Sharland, Thomas Joseph. (2013) Thurston equivalence for rational maps with clusters. 
Ergodic Theory and Dynamical Systems, Volume 33 (Number 04). pp. 1178-1198. ISSN 
0143-3857 
 
Permanent WRAP url: 
http://wrap.warwick.ac.uk/57141/ 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
Publisher’s statement: 
Copyright © 2012 Cambridge University Press 
 
A note on versions: 
The version presented in WRAP is the published version or, version of record, and may 
be cited as it appears here. 
 
For more information, please contact the WRAP Team at: publications@warwick.ac.uk  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/17205226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/57141/
mailto:publications@warwick.ac.uk


Ergodic Theory and Dynamical Systems
http://journals.cambridge.org/ETS

Additional services for Ergodic Theory and Dynamical
Systems:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Thurston equivalence for rational maps with clusters

THOMAS SHARLAND

Ergodic Theory and Dynamical Systems / Volume 33 / Issue 04 / August 2013, pp 1178 - 1198
DOI: 10.1017/S0143385712000181, Published online: 08 May 2012

Link to this article: http://journals.cambridge.org/abstract_S0143385712000181

How to cite this article:
THOMAS SHARLAND (2013). Thurston equivalence for rational maps with clusters. Ergodic
Theory and Dynamical Systems, 33, pp 1178-1198 doi:10.1017/S0143385712000181

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/ETS, IP address: 137.205.202.225 on 14 Oct 2013



Ergod. Th. & Dynam. Sys. (2013), 33, 1178–1198 c© Cambridge University Press, 2012
doi:10.1017/S0143385712000181

Thurston equivalence for rational maps
with clusters

THOMAS SHARLAND

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
(e-mail: tomkhfc@hotmail.com)

(Received 23 September 2011 and accepted in revised form 21 February 2012)

Abstract. We investigate rational maps with period-one and period-two cluster cycles.
Given the definition of a cluster, we show that, in the case where the degree is d and the
cluster is fixed, the Thurston class of a rational map is fixed by the combinatorial rotation
number ρ and the critical displacement δ of the cluster cycle. The same result will also be
proved in the case where the rational map is quadratic and has a period-two cluster cycle,
and we will also show that the statement is no longer true in the higher-degree case.

1. Introduction
The emergence of complex dynamics as a popular subject for mathematical research came
about as a result of the rediscovery of the early twentieth-century works of Fatou [5, 6]
and Julia [7]. After a comparatively quiet period, the subject was given new life in the
1980s. Perhaps the most notable contributions were supplied by Douady and Hubbard,
whose ‘Orsay lecture notes’ [1, 2] provide a number of enlightening and amazing results
about the behaviour of such systems. Since then, the study of complex dynamical systems
has grown enormously and is now a very fruitful area for research.

In dynamical systems, one often wants to be able to understand the systems one works
with up to some form of equivalence. The study of complex dynamics on the Riemann
sphere is no different, and we are fortunate that there is a powerful criterion, due to
Thurston, that tells us whether or not two rational maps on the sphere are equivalent.
However, despite its simplicity and power, the criterion suffers from the fact that it can,
in practice, be very difficult to check. In this paper, we investigate a specific class of
maps, those bicritical rational maps with periodic cluster cycles of period one or period
two (the latter only in the quadratic case), and show that in these cases the application of
the Thurston criterion is simple and allows a classification of such maps. This work fits into
the branch of complex dynamics which attempts to describe rational maps combinatorially
(or perhaps symbolically), following a programme initiated by Douady, Hubbard and
Thurston. Perhaps the most remarkable feature of the results in this paper is that the rational
maps in question are classified purely by the behaviour within their clusters. It is hoped that
the techniques in this paper can be refined to tackle a larger class of rational maps, perhaps
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those with clusters of higher period or even more than one cycle of clusters. This paper
was created from results from the author’s PhD thesis at the University of Warwick [14].
A second paper [13], focusing on matings, and in particular the construction of branched
covers which are Thurston equivalent to rational maps which have clusters has recently
been accepted for publication.

1.1. Definitions. Let f : C→ C be a rational map on the Riemann sphere, of degree
at least two. The Julia set J ( f ) will be the closure of the set of repelling periodic points
of f , and the Fatou set is the set F( f )= C\J ( f ). The connected components of F( f )
are called Fatou components. In the case where the critical orbits are periodic, we call
the immediate basins of the (super)attracting orbit critical orbit Fatou components. These
components will play an important part in the definition of clustering, defined below.

We first discuss what it will mean for two rational maps to be equivalent. We use the
standard definition of equivalence, which is Thurston equivalence. We will be dealing with
postcritically finite rational maps. To define this, let �F be the set of critical points of F .
Then we define the postcritical set to be

PF :=
⋃
n>0

F◦n(�F )

and say the map F is postcritically finite precisely when |PF |<∞.

Definition. Let F : 6→6 and F̂ : 6̂→ 6̂ be postcritically finite orientation-preserving
branched self-coverings of topological 2-spheres. An equivalence (or Thurston
equivalence) is given by a pair of orientation-preserving homeomorphisms (8, 9) from
6 to 6̂ such that:
• 8|PF =9|PF ;
• the diagram

(6, PF )
9 //

F

��

(6̂, PF̂ )

F̂

��
(6, PF )

8
// (6̂, PF̂ )

commutes;
• 8 and 9 are isotopic via a family of homeomorphisms t 7→8t which is constant

on PF .

We will say that two branched covers F and F̂ are equivalent if there an exists an
equivalence as defined above. By a result of Thurston (for a proof, see [3]), if two
rational maps with hyperbolic orbifold are equivalent then the equivalence is represented
by a Möbius conjugacy. In particular, each equivalence class of branched coverings
(with hyperbolic orbifold) of the sphere contains at most one rational map, up to Möbius
conjugacy. It should be noted that all rational maps in this paper will have hyperbolic
orbifold; for details on orbifolds the reader is again referred to [3].
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Since we will be dealing with bicritical rational maps, the criterion for a branched
covering to be equivalent to a rational map is a lot simpler (see [16]). This is because,
instead of needing to find Thurston obstructions (obstructions which prevent a branched
cover from being equivalent to a rational map), one can restrict the search to looking for
Levy cycles. Let 0 = {γ1, γ2, . . . , γn} be a collection of curves in S2. If the γi ∈ 0 are
simple, closed, non-peripheral†, disjoint and non-homotopic relative to PF then we say
that 0 is a multicurve.

Definition. A multicurve 0 = {γ1, γ2, . . . , γn} is a Levy cycle if for each i = 1, . . . , n,
the curve γi−1 (or γn if i = 1) is homotopic to some component γ ′i of F−1(γi ) (rel PF ) and
the map F : γ ′i → γi is a homeomorphism.

PROPOSITION 1.1. [16] Suppose that F is a bicritical branched covering. Then F is
(Thurston) equivalent to a rational map if and only if it does not have a Levy cycle.

The concept of a cluster cycle for a bicritical rational map does not appear to be in the
literature. Informally, it is the condition that the critical orbit Fatou components meet at
a common boundary point, which is a repelling periodic point. This common boundary
point will be called the cluster point. We give a more formal definition below. Recall that
a bicritical rational map is said to be of type D if the two critical points belong to the
attracting basins of two disjoint periodic orbits.

Definition. Let F : C→ C be a bicritical rational map of type D with the property that
the two critical orbits belong to superattracting orbits with the same period. Then a cluster
point for F is a point in J (F) which is the endpoint of the angle 0 internal rays of at least
one critical orbit Fatou component from each of the two critical cycles. We will define a
cluster to be the union of the cluster point and the Fatou components meeting at it. The
period of the cluster will be the period of the cluster point. The star of a cluster will be
the union of the cluster point and the associated 0-internal rays, including the points on the
critical orbit.

Since this definition is new, we give a simple example.

Example. Consider the mating of Douady’s rabbit and the aeroplane polynomial (both
polynomials have a superattracting orbit of period three, and are postcritically finite). The
result of this mating can be seen in Figure 1. This map has a fixed cluster point. In the
figure, the basins of one of the critical points is white, the other basin is black. The cluster
point is in the bottom right of the picture; its pre-image in the top left.

It is clear that a cluster will be invariant under the first return map, and hence it
is possible to define the combinatorial rotation number of a cluster cycle in the usual
way. More precisely, we note that the first return map to the cluster is actually a
homeomorphism; this is because the 0-internal rays map homeomorphically onto their
images (which are also 0-internal rays) under the rational map.

Definition. Let F : C→ C be a rational map of type D. Let c be a cluster point of period
n of F . Then the combinatorial rotation number is defined as follows. The first return

† The term ‘non-peripheral’ means that γ ∩ PF =∅ and each connected component of S2
\γ contains at least

two points of PF .
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FIGURE 1. An example of a map with a cluster point, labelled c.

map, F◦n , maps the star of the cluster, X F , to itself. Label the arms of the star (the
0-internal rays) which belong to one of the critical orbits (it does not matter which)
cyclically in anticlockwise order by `1, `2, . . . , `n (the initial choice of `1 is not
important). Then for each k, there exists p such that F◦n maps `k to `k+p, subscripts
taken modulo n. We then say that the combinatorial rotation number is ρ = ρ(F)= p/n.

There is another piece of data that we will require in this paper. This is the notion of the
critical displacement. The definition we will use is different depending on whether we are
discussing the period-one or period-two case. First of all, we need a lemma. The author is
grateful to Rees for suggesting the proof of the following result.

LEMMA 1.2. There does not exist a rational map F with a period-two cluster cycle such
that the critical points are in the same cluster.

Proof. We begin with some notation. We suppose that F is a branched cover and the
critical points are in the same cluster. Denote the critical points by c0 and c̃0, and denote
ci = F◦i (c0) and c̃ j = F◦ j (c̃0). We will set both critical points to have period 2n, and so
PF = {c0, . . . , c2n−1, c̃0, . . . , c̃2n−1}. Since the critical points are in the same cluster and
the clusters are of period two, the set of postcritical points in the first cluster C0 consists of
those of the form c2i and c̃2 j (that is, those points with even index), whilst the remaining
postcritical points lie in the second cluster C1. Denote the star of C0 by X0 and the star of
C1 by X1.
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Now consider the curve γ , the boundary of a tubular neighbourhood U of X0. Then
γ separates the two clusters and, in particular, is non-peripheral. By [8, Lemma 3.4],
F−1(γ ) is made up of d disjoint curves, each of which is the boundary of a tubular
neighbourhood of a pre-image star of X0. If the pre-image star is not X1, then the curve
in F−1(γ ) bounding its tubular neighbourhood must be peripheral. The boundary of the
tubular neighbourhood of X1, γ ′ ∈ F−1(γ ), separates the two clusters, and so is isotopic
to γ . F : γ ′→ γ is a homeomorphism, hence 0 = {γ } is a Levy cycle and hence such a
branched cover cannot be equivalent to a rational map. 2

The reader will have noticed that the definition of the critical displacement is dependent
on the choice of which critical point is chosen to be the first one. Hence our results require
us to study rational maps with labelled critical points, so that the choice of the first critical
point is known.

Informally, we want the critical displacement to tell us how far apart the critical points
are in the clusters. In light of Lemma 1.2, we will want to define the critical displacement
depending on whether we are in the fixed case or the period-two case. In the fixed case, this
will be easy: we can just calculate the (combinatorial) distance between the two critical
points around the cluster. Clearly this is not possible in the period-two case (or indeed, in
any case where the period of the cluster is greater than one). So we modify the definition
so that we now measure the (combinatorial) distance around the cluster between the first
critical point and the image of the second critical point. The formal definitions are below.

Definition. Let F be a rational map with a fixed cluster point. Label the endpoints of the
star as follows. Let e0 be the first critical point, and label the remaining arms in anticlock-
wise order e1, e2, . . . , e2n−1. Then the second critical point is one of the e j , and we call
j the critical displacement of the cluster of F . We denote the critical displacement by δ.

Definition. Let F be a rational map with a period-two cluster cycle. Choose one of the
critical points to be c1, and label the cluster containing it C1. Then (by Lemma 1.2) the
other critical point c2 is in the second cluster C2. We define the critical displacement δ
as follows. Label the arms in the star of C1, starting with the arm with endpoint c1, in
anticlockwise order `0, `1, . . . , `2n−1. Then F(c2) is the endpoint of one of the `k . This
integer k is the critical displacement.

The critical displacement will always be an odd integer, since the critical orbit Fatou
components alternate around a cluster. That is, a Fatou component provided from the first
critical point c1 must be between two Fatou components provided by the orbit of the second
critical point c2. We can now define the combinatorial data of a map with a cluster cycle
to be the pair (ρ, δ). Note that this data is intrinsic to the cluster—it does not a priori give
any information about the rational map away from the cluster.

We are now ready to state the two main theorems. Essentially, they both state that, in
all degrees for the fixed case and in the quadratic case for period-two cluster cycles, the
combinatorial data is enough to define the rational map in question up to conjugacy by a
Möbius transformation.

THEOREM A. Suppose that F and G are bicritical rational maps (with labelled critical
points) with fixed cluster cycles with the same combinatorial data. Then F and G are
equivalent in the sense of Thurston.
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THEOREM B. Suppose that two quadratic rational maps F and G have a period-two
cluster cycle with rotation number p/n and critical displacement δ. Then F and G are
equivalent in the sense of Thurston.

Rees has carried out an in-depth study of the parameter space of quadratic rational
maps (see, for example, [10, 11]). The main results of this paper give a classification of
rational maps belonging to certain type D hyperbolic components (components containing
rational maps whose two critical points belong to the attracting basins of two disjoint
(super)attracting periodic orbits) in the parameter space of bicritical rational maps. It
should be noted that not all type D components contain rational maps with cluster cycles.
Furthermore, the results of this paper and its companion [13] provide some progress
towards a resolution of a question of Rees [12] on the over-count of matings in the
parameter space of quadratic rational maps.

The proofs of these theorems are in §§2 and 3 respectively. In §4, we will also show
that there exist degree-three rational maps with the same combinatorial data which are
not equivalent in the sense of Thurston. This means that, to carry out a classification in
higher degrees, we need to find some combinatorial data that is extrinsic to the cluster—
data which somehow is independent of the behaviour of the cluster cycle. This is perhaps
surprising; it is often the case that results in the quadratic case readily carry over to the
general bicritical case. However, the failure of Theorem B in the higher degree case
goes against this. The author is interested in further differences between the quadratic
and general bicritical cases.

2. Thurston equivalence for the fixed case
We now prove Theorem A. The proof is relatively simple but the techniques used in proving
it will make a useful comparison with the difficulties encountered when trying to prove the
period-two case in the next section. The proof will proceed as follows. To prove Thurston
equivalence, we need to find homeomorphisms 8, 8̂ : C→ C which satisfy:
(1) 8 ◦ F = G ◦ 8̂;
(2) 8|PF = 8̂|PF ;
(3) 8 and 8̂ are isotopic rel PF .
We will first construct the homeomorphism 8. We then try to construct the
homeomorphism 8̂ so that it satisfies the conditions (1)–(3) above. The first two conditions
will be satisfied by the construction given, whilst the third will follow from an application
of Alexander’s trick. The whole proof will be broken down into a sequence of lemmas.

In what follows, we will denote the stars of F and G by X F and XG respectively.
Recall that the star X F of a rational map F is made up of the union of the internal rays
inside the critical orbit Fatou components and the cluster point. By Böttcher’s theorem, the
dynamics of the first return map on each critical orbit Fatou component is then conjugate
to the map z 7→ zd (where d is the degree of this first return map) on the disc, D. We
also can label the critical orbit points cyclically as follows. Let c0 be the first critical
point, in terms of the ordering induced by the critical displacement, so that the critical
displacement is defined to be the combinatorial distance (anticlockwise) around the star
from c0 to the other critical point. We label, counting anticlockwise, the other critical orbit
points by c1, c2, . . . , c2n−1, and denote the Fatou component containing ci by Ui . Note
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that at this point we are not worried about which critical orbit the ci are in, since we are
only concerned with the dynamics of the first return map on each component. Finally, let
the 0-internal ray in Ui be labelled Ji .

In the following lemma, the objects associated with the map G will be given a prime
(′) to differentiate them from the objects associated with F . For example, the first critical
point of XG will be labelled c′0, and it will be in the Fatou component U ′0.

LEMMA 2.1. Suppose that F and G have the same combinatorial data. Then there exists
a conjugacy φ : X F → XG . That is, φ ◦ F = G ◦ φ on X F . Furthermore, the conjugacy
can be constructed so as to preserve the cyclic ordering of the internal rays in the star.

Proof. We will show that there is a conjugacy between the dynamics on Ji and J ′i for each
choice of i . There is a map hF,i conjugating the dynamics on Ui with that of z 7→ zd on D,
so that hF,i (Ji )= [0, 1). Similarly, there exists a conjugacy hG,i from U ′i to z 7→ zd on D,
with hG,i (Ji )= [0, 1) . So the map φi = h−1

G,i ◦ hF,i conjugates the dynamics on Ui with
that on U ′i and, in particular, takes Ji to J ′i . So the restriction of φi to Ji is the required
conjugacy on Ji .

The required conjugacy φ is then defined by mapping the cluster point c ∈ X F to the
cluster point c′ ∈ XG (that is, φ(c)= c′) and then picking φ|Ji = φi . 2

LEMMA 2.2. Let φ be the homeomorphism from Lemma 2.1. Then there exist continuous
maps η̃F and η̃G and a homeomorphism ψ such that the following diagram commutes:

∂D
ψ //

η̃F

��

∂D

η̃G

��
X F

φ
// XG

Proof. We remark that C\X F is simply connected, since X F is a connected set. Hence,
by the Riemann mapping theorem, there exists a Riemann map ηF : C\D→ C\X F .
Similarly, there exists a Riemann map ηG : C\D→ C\XG . Since the star X F is locally
connected, by Carathéodory’s theorem, we can extend the maps ηF and ηG to C\D in a
continuous way. We label these extensions η̃F and η̃G .

As φ is a homeomorphism, it maps arms of the star X F to arms of XG . We now define
the mapψ . Clearly, we would like to defineψ = η̃−1

G ◦ φ ◦ η̃F . However, since most points
in XG (indeed, all points not in PG) have more than one pre-image under the mapping η̃G ,
this function is not well defined. However, it is possible to use this motivating idea to
construct ψ , by choosing the ‘correct’ pre-image when necessary. Note that each point in
the postcritical set of F has precisely one pre-image under η̃F , and the cyclic ordering of
the η̃−1

F (ci ) is the same as the cyclic ordering of the ci . Since the same is true for η̃G (that
is, points on the postcritical set have only one pre-image), we can define ψ = η̃−1

G ◦ φ ◦ η̃F

on the postcritical set. Since φ will rotate the arms of the star by k places anticlockwise, ψ
will do the same. For ease of notation we will write pi = η̃

−1
F (ci ) and p′i = η̃

−1
F (c′i ). With

this new notation, therefore, ψ(pi )= p′i .
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FIGURE 2. Construction of the map ψ in Lemma 2.2.

The cluster point c in X F has 2n pre-images under η̃F , and each pre-image lies in
one of the arcs (pi , pi+1) for i = 0, . . . , 2n − 1 (otherwise cyclic ordering would not be
maintained). Label the pre-image in (pi , pi+1) by ξi . Similarly, the cluster point c′ in
XG has 2n pre-images under η̃G , and each pre-image lies in one of the arcs (p′i , p′i+1)

for i = 0, . . . , 2n − 1. So we denote the pre-image in (p′i , p′i+1) by ξ ′i . We then define
ψ(ξi )= ξ

′

i , and note that this satisfies η̃G ◦ ψ = φ ◦ η̃F , since φ(c)= c′. Furthermore, this
agrees with the cyclic ordering induced on the circle by the rotation of arms in the map φ.
See Figure 2 for the construction so far in the case where the critical orbits have period
four.

Now let z ∈ X F where z is not in the postcritical set or equal to the cluster point. Then z
has precisely two pre-images under η̃−1

F and the point z′ = φ(z) ∈ XG has two pre-images
under η̃−1

G . For the diagram in the statement of the lemma to commute, we need to have
ψ(η̃−1

F (z)) ∈ η̃−1
G (z′). It is clear that z must belong to the interior of some internal ray of

the form [c, ci ] ⊂ X F , hence z′ belongs to the internal ray [c′, c′i ] ⊂ XG . This means that
there is a point w1 of η̃−1

F (z) in the arc (ξi−1, pi ) and the other point w2 must be in the
arc (pi , ξi ). Furthermore, the two pre-images of z′ (under the map η̃G) are w′1 ∈ (ξ

′

i−1, p′i )
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and w′2 ∈ (p
′

i , ξi ). We now define ψ(w1)= w
′

1 and ψ(w2)= w
′

2. This definition satisfies
φ ◦ η̃F = η̃G ◦ ψ . Observe also that this construction will preserve the cyclic ordering of
the points on the circle.

We now show thatψ is a homeomorphism. The construction ofψ shows that it is clearly
bijective, so we only need to show thatψ is continuous. Then, sinceψ will be a continuous
bijection from a compact space to a Hausdorff space, it will be a homeomorphism. Indeed,
since η̃F and φ are continuous maps, it is sufficient to check that the choices we made for
η̃−1

G are done in a continuous way. We have three cases.

Case 1. z /∈ {p0, . . . , p2n−1, ξ0, . . . , ξ2n−1}. Suppose that z lies in some arc (pi , ξi ).
Then any sequence vm→ z will belong to (pi , ξi ) if m is large enough. Then by
construction we will have ψ(vm) ∈ (p′i , ξ

′

i ). Now we notice that η̃G is a homeomorphism
on (p′i , ξ

′

i ) and soψ must be continuous at z as it is (locally) the composition of continuous
maps. A similar argument holds when z belongs to some arc (ξi , pi+1).

Case 2. z = pi . Let xn→ z. Then φ(η̃F (xn)) ∈ (0, c′i ] for n sufficiently large and, by
continuity of η̃F and φ, φ(η̃F (xn))→ c′i . Now the map η̃G is a branched covering when
restricted to (ξ ′i−1, ξ

′

i ), with image (0, c′i ]. The unique branch point is p′i which has its

image at c′i . So as φ(η̃F (xn))→ c′i , it must follow that η̃−1
G (φ(η̃F (xn)))→ η̃−1

G (c′i )= p′i .

Case 3. z = ξi . Let yn→ z. Then for n sufficiently large, yn ∈ (pi , pi+1), φ(η̃F (yn)) ∈

[c′, c′i ) ∪ [c
′, ci+1) and φ(η̃F (xn))→ c′. So η̃−1

G (φ(η̃F (yn))) ∈ (p′i , p′i+1), by the
construction of ψ (the other pre-images of φ(η̃F (yn)) cannot be the images of ψ , since
as yn ∈ (pi , pi+1), it must follow that ψ(yn) ∈ (p′i , p′i+1)). We then use the fact that η̃G

restricted to (p′i , p′i+1) is a homeomorphism, which once again means that ψ is continuous
at z. Hence φ is a homeomorphism. 2

We now extend the map ψ .

PROPOSITION 2.3. The map ψ of Lemma 2.2 can be extended to a homeomorphism
9 : C\D→ C\D. This map9 induces a homeomorphism8 : C→ C, such that8|X F = φ

(that is, 8 is an extension of φ to the sphere) and

C\D 9 //

η̃F

��

C\D

η̃G

��
C

8
// C

commutes.

Proof. The extension of ψ to 9 is an application of the Alexander trick.
We want 8 to be an extension of φ, and hence it is necessary to have 8(z)= φ(z) on

X F . Note that, considering η̃−1
F (z) as a set, the commutative diagram for ψ in Lemma 2.2

suggests that we can write φ(z)= (η̃G ◦ ψ)(η̃
−1
F (z)) for z ∈ X F . Bearing this in mind,

define

8(z)=

{
ηG ◦9 ◦ η

−1
F (z), z ∈ C\X F ,

φ(z), z ∈ X F .
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FIGURE 3. The star (solid line) and pre-image stars (dashed line) and how they separate the sphere. The black
dots represent the critical points, where the star and pre-stars meet.

The proof that 8 is a homeomorphism is essentially just using the fact that η̃F

and η̃G are quotient maps. This means that η̃G ◦9 is a quotient map and so 8 is a
homeomorphism. 2

Note that, so far in this section, we have not needed any requirement about the
combinatorial data being equal, so these results hold in full generality. However, the next
result is the point where the equality of combinatorial data is needed.

Before we prove the next proposition, we briefly discuss the space C\X F and its pre-
image C\F−1(X F ). Informally, first note that the star X F has d pre-images in C, and
each pre-image is disjoint, save for the fact that they all contain the critical points of
F . More exactly, we notice that the set X F\{critical values} has d disjoint pre-images
under F , and the union of one of these pre-images with the two critical points will map
homeomorphically onto X F . We call each of these pre-images, with its union with the
critical points, a pre-image star of X F . Note that there is a cyclic order of these pre-
image stars at c0 (the first marked critical point), so that we can label them as follows.
Label X F by X1. Counting anticlockwise from this pre-image, label the remaining stars
X2, X3, . . . , Xd .

Furthermore, we notice that C\F−1(X F )= C\
⋃d

j=1 X j contains d connected
components. Label these components in anticlockwise order, starting with A1 as the
component anticlockwise from X F = X1 with respect to the cyclic ordering at c0, and
the others in order as A2, . . . , Ad . We remark that in this notation, the boundary of
A j is contained in X j ∪ X j+1. With this notation, the map F |A j : A j → C\X F is a

homeomorphism, and the map F |C\F−1(X F )
: C\F−1(X F )→ C\X F is a covering map

of degree d . For ease of notation we write F j = F |A j . See Figure 3. We can carry
out a similar construction with G. Using the same construction as above, the pre-image
stars of XG are X ′1, X ′2, . . . , X ′d and the connected components of C\G−1(XG) are
A′1, A′2, . . . , A′d . G j will denote the map G|A′j .



1188 T. Sharland

PROPOSITION 2.4. There exists a homeomorphism 8̂ : C→ C such that

C
8̂ //

F

��

C

G

��
C

8
// C

commutes.

Proof. As with Lemma 2.2, this proof is constructive. First note that if z ∈ X F , then we
define 8̂(z)= φ(z) ∈ XG , taking advantage of the fact that φ is a conjugacy between the
dynamics on X F and XG (Lemma 2.1).

Now suppose that z is in F−1(X F ). The case where z ∈ X F is dealt with above, so
we may assume that z ∈ X j for some j ∈ {2, . . . , d}. Then for the diagram to commute
we require 8̂(z) ∈ G−1

◦8 ◦ F(z)= G−1
◦ φ ◦ F(z). The set G−1

◦8 ◦ F(z) contains
d elements, one each in X ′1, . . . , X ′d . Since z ∈ X j , we choose 8̂(z) ∈ X ′j .

Finally, suppose that z ∈ C\F−1(X F ). Then z ∈A j for some j ∈ {1, . . . , d}. With
a similar argument to that in the previous paragraph, the set G−1

◦8 ◦ F(z) contains d
elements, one in each of the A j . So as z ∈A j , we define 8̂(z) to be the element of
G−1
◦8 ◦ F(z) in A′j .

We now show that 8̂ is a homeomorphism. Let U be an open disc in C, which is
disjoint from the critical points. We will show that 8̂−1(U ) is open. By commutativity,
8̂−1(U ) is contained in F−1(8−1(G(U ))). Since G is a rational map, G(U ) is an open
set, and by continuity of 8, 8−1(G(U )) is also open. Furthermore, 8−1(G(U )) is
disjoint from the two critical values, and so F−1(8−1(G(U ))) is made up of d disjoint
open sets. By the construction of 8̂ given above, we see that precisely one of these
is the set 8̂−1(U ), which is therefore open. This proves continuity for the non-critical
points.

If U is a disc which contains one critical point, then a similar argument shows that
F−1(8−1(G(U ))) is a single simply connected open set, and so 8̂ is continuous at the
critical points. Hence 8̂ is a continuous bijection from a compact space to a Hausdorff
space, and so is a homeomorphism. 2

LEMMA 2.5. There exists a homeomorphism 9̂ : C\D→ C\D such that

C\D 9̂ //

η̃F

��

C\D

η̃G

��
C

8̂

// C

commutes.
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Proof. This is analogous to the proof of Proposition 2.3. We define

9̂(z)=

{
η−1

G ◦ 8̂ ◦ ηF (z), z ∈ C\D,
ψ(z), z ∈ ∂D.

Again, continuity on C\D is assured by the fact that 9 is defined as a composition of
homeomorphisms there. So we only need to check continuity on the boundary, ∂D.

The cyclic ordering induced by the Riemann maps and 8̂ is induced by the cyclic
ordering from φ and ψ . Notice that if xn→ x ∈ X F , then limn→∞(8̂(xn))= φ(x). Also
ψ = 9̂|∂D is chosen as the homeomorphism of the circle which satisfies φ ◦ η̃F (z)=
η̃G ◦ ψ(z) for all z. This means that ψ(z) is the element of η̃G(η̃

−1
G ◦ 8̂ ◦ η̃F (z)) which

maintains the cyclic ordering of the points. Hence any sequence converging to z must
converge to ψ(z) under 9̂ (otherwise we would lose the ordering), and so the given
boundary values for 9̂ give continuity. Once again, since 9̂ is a continuous bijection
from a compact space to a Hausdorff space, it is a homeomorphism. 2

We are now ready to prove Theorem A.

Proof of Theorem A. We claim that we have the following commutative diagram:

X F

F

��??????????????????
φ // XG

G

��������������������

'&%$ !"#1

X F
φ // XG

'&%$ !"#2

∂D

η̃F

OO

ψ
// ∂D

η̃G

OO

'&%$ !"#3

∂D
ψ

//

η̃F

OO

∂D

η̃G

OO

Each part of this diagram is justified as follows:

(1) φ is a conjugacy so φ ◦ F = G ◦ φ. The existence of φ is given by Lemma 2.1.
(2) Lemma 2.2.
(3) Lemma 2.2.
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This diagram extends to give a commutative diagram:

(C, X F )

F

��>>>>>>>>>>>>>>>>>
(8̂,φ) // (C, XG)

G

�������������������

'&%$ !"#1

(C, X F )
(8,φ) // (C, XG)

'&%$ !"#2

(C\D, ∂D)

η̃F

OO

(9,ψ)
// (C\D, ∂D)

η̃G

OO

'&%$ !"#3

(C\D, ∂D)

η̃F

OO

(9̂,ψ)

// (C\D, ∂D)

η̃G

OO

where the notation (8, φ) : (C, X F )→ (C, XG) means the map is defined as8 on C, and
its restriction to X F is φ. The other maps are defined analogously. This diagram is justified
by:
(1) Proposition 2.4;
(2) Proposition 2.3;
(3) Lemma 2.5.

We now remark that the maps 8 and 8̂ agree on X F , and so agree on the set PF ⊂ X F .
Furthermore,9 is isotopic to 9̂, by the Alexander trick, and so we see that the commutative
diagram above (and the fact that η̃F and η̃G are homeomorphisms on C\D) gives us
that 8 and 8̂ are isotopic rel X F and so isotopic rel PF . Hence F and G are Thurston
equivalent. 2

3. Thurston equivalence for the period-two case
The case where the clusters are of period two is more difficult than the fixed case. In the
previous section, we were able to use the Alexander trick, which allowed us to get the
isotopy between the two homeomorphisms 8 and 8̂. There are now two stars. Denote
the star containing the first critical point of F by X1

F and the one containing the second
critical point by X2

F . We similarly define the stars X1
G and X2

G . The proof of the following
result is similar to that of Theorem A. The added complexity comes about because we no
longer have an analogue to the isotopy version of Alexander’s trick. Informally, this is
because the space C\(X1 ∪ X2) is no longer simply connected, and so is not conformally
equivalent to a disc. Indeed, it is conformally equivalent to an annulus. The simplicity
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of Theorem A resulted from the mapping class group of the disc being trivial. For the
annulus, the mapping class group is now Z, and so we see that there is an extra difficulty
when we consider the period-two cluster case.

We also emphasize that, unlike in the previous section, we only prove the result in the
case where the rational maps F and G have degree two. The reason for this will become
clear in §4, where we show that the statement is in fact false in the higher-degree setting.
A number of the proofs in this section are completely analogous to those in the previous
section. We will proceed as follows:
• First we will construct a pair of homeomorphisms 8 and 8̂ which satisfy 8 ◦ F =

G ◦ 8̂.
• We then modify 8 and 8̂ to homeomorphisms 81 and 8̂1 which still satisfy

81 ◦ F = G ◦ 8̂1 and also agree on the stars X1
F ∪ X2

F .
• Finally, we modify 81 and 8̂1 to homeomorphisms 82 and 8̂2 which still satisfy

82 ◦ F = G ◦ 8̂2, agree on the stars X1
F ∪ X2

F and are isotopic rel PF .
This will mean that the homeomorphisms 82 and 8̂2 satisfy the conditions of the

homeomorphisms in the definition of Thurston equivalence of F and G, and so F and
G will be equivalent. We begin with an analogue to Lemma 2.1.

LEMMA 3.1. There exists a conjugacy φ : (X1
F ∪ X2

F )→ (X1
G ∪ X2

G) such that

φ ◦ F = G ◦ φ. (1)

Proof. The proof of this lemma is essentially the same as that for Lemma 2.1. Notice, in
particular, that we require the stars to be marked, so that we know which one contains the
first critical point in the definition of combinatorial displacement. 2

The next result is the first point where we notice a difference with the previous section.
By the Riemann mapping theorem for simply connected regions (not equal to the whole of
C), we saw that the complement to the star in the sphere will be conformally isomorphic
to the unit disc. However, in this case, we use the fact that the complement to the stars
will be conformally equivalent to some annulus A. However, two annuli A1 and A2 are
conformally equivalent to each other if and only if the ratio of the radii of their boundary
circles are the same. In other words, if we normalize so that the radius of the inner boundary
circle is 1, we see that two annuli are conformally equivalent if and only if their outer
boundary circles have the same radii.

PROPOSITION 3.2. Let F be a rational map with a period-two cluster cycle. Then there
exists a conformal map ηF : AF → C\(X1

F ∪ X2
F ), where AF is an annulus. Furthermore,

this conformal equivalence can be extended to a continuous function η̃F : AF → C.

Proof. The conformal equivalence with the annulus is a standard result and the continuous
extension follows from the fact that the stars are locally connected. 2

We now set our notation so that AF = {z : 1< |z|< eRF }, AG = {z : 1< |z|< eRG } and
ηF : AF → C\(X1

F ∪ X2
F ) and ηG : AG→ C\(X1

G ∪ X2
G) are conformal equivalences.

PROPOSITION 3.3. Let ψ be a homeomorphism defined on the boundary of the annulus
AF mapping to the boundary of the other annulus AG , which preserves the orientation on
each boundary circle. Then ψ can be extended to a homeomorphism 9 : AF → AG .
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Proof. By the results of [17], it is always possible to extend a homeomorphism on the
boundary of a 2-manifold to the whole manifold. 2

LEMMA 3.4. The homeomorphism 9 induces a homeomorphism 8 : C→ C. Moreover,
8|X1

F∪X2
F
= φ.

Proof. We define

8(z)=

ηG ◦9 ◦ η
−1
F (z), z ∈ C\(X1

F ∪ X2
F ),

φ(z), z ∈ X1
F ∪ X2

F .

Clearly 8 is a bijection, and it is a homeomorphism by an argument similar to
Proposition 2.3. 2

We now define the homeomorphism 8̂ to be the lifting of 8 under F and G; that is,
8̂= G−1

◦8 ◦ F . We realize that since G is quadratic, there are two ways in which we
could define our map 8̂, depending on which branch of the inverse we take. In the previous
chapter, we constructed the map 8̂ in Proposition 2.4, starting off with the observation that
φ was a conjugacy on the stars X F and XG , and so we could set 8̂ to equal φ on X F . It
was then a fortunate consequence of the fixed cluster case that this restriction still allowed
us to construct the homeomorphism 8̂ which satisfied all the required properties. We are
not so fortunate in the case where there is more than one cluster. In this case, it may
be that, a priori, the map 8̂ we construct that satisfies 8̂= G−1

◦8 ◦ F may not satisfy
8̂|(X1

F∪X2
F )
= φ. However, we notice that it is at least possible to set 8̂|X1

F
=8|X1

F
, since

z ∈ X1
F H⇒ F(z) ∈ X2

F

H⇒ 8(F(z))= φ(F(z)) ∈ X2
G

H⇒ G−1(φ(F(z)) ∈ G−1(X2
G).

The set G−1(X2
G) contains the star X1

G and the non-periodic pre-image stars of X2
G . Of

course, we are at liberty to pick the lift (the branch of G−1) that gives us 8̂(X1
F )= X1

G .
This choice will uniquely define our choice of G−1 and so our map 8̂. However, this
choice may not give us 8̂(X2

F )= X2
G , but instead will map it to the pre-image star (or

pre-star, for short), and so our choice of pair (8, 8̂) may not satisfy the requirements
for the homeomorphisms in Thurston’s theorem. However, we will show that we can
carry out some suitable modifications to get two homeomorphisms which do satisfy the
requirements.

The reader may be suspicious about the above claim that the conditions 8̂= G−1
◦

8 ◦ F and 8̂(X1
F )= X1

G are enough to uniquely define the homeomorphism. We briefly
explain why this is the case below. Let the critical points of F be c1 ∈ X1

F and c2 ∈ X2
F .

Let γ be a path between v1 = F(c1), the critical value in X2
F , and v2, the critical value in

X1
F , with γ ∩ (X1

F ∪ X2
F )=∅. Then F−1(γ ) is made up of two curves from c1 to c2, and

these split the sphere into two regions, which we label anticlockwise around the critical
point c1 by A1 and A2, chosen so that X1

F ⊂A1. The map Fi : Ai → C\γ , the restriction
of F to Ai , is a homeomorphism for each i . This can be extended continuously to the
boundary. With a similar argument we see that 8(γ )=: γ ′ is a path between the critical
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points v′1 and v′2. Hence G−1(γ ′) splits the sphere into two regions, which we similarly
label anticlockwise by A′1 and A′2, with A′1 being the region containing X1

G . Again the
restriction Gi : A′i → C\γ ′ is a homeomorphism and it can be extended continuously to
the boundary. We now define 8̂ by mapping Ai onto A′i so that 8̂= G−1

◦8 ◦ F .

LEMMA 3.5. 8̂ is a homeomorphism.

Proof. The details of this proof are similar to Proposition 2.4. 2

Let τ ⊂ C be a simple closed curve which is disjoint from the stars X1
G and X2

G and
which intersects γ ′ in only one place and so that the winding number of τ about the first
cluster point p′1 is 1. Denote by Dτ the Dehn twist about this curve τ in the anticlockwise

direction. The plan is to modify8 to a new function81 = D◦ j
τ ◦8 so that the pair81 and

8̂1 = G−1
◦81 ◦ F equal φ on X1

F ∪ X2
F .

By construction we map X1
F onto X1

G under 8̂. If 8̂(X2
F )= X2

G then we are done,
so suppose not. So X2

F ⊂Ak and X2
G ⊂A′`, with {k, `} = {1, 2}. If k 6= ` then replace

8 with 81 = D◦(`−k)
τ ◦8. 81 is a homeomorphism since it is the composition of two

homeomorphisms. We get a new path γ1 =81(γ ) (γ defined as before) and hence we
can define the regions A′′1 and A′′2 as the connected components of the complement of
G−1(γ1) in the sphere. As before, we label anticlockwise round the first critical point and
set X1

G ⊂A′′1 . Now define 8̂1 = G−1
◦81 ◦ F , mapping Ai onto A′′i and forming the

homeomorphism in the usual way. Note that 81|X1
F∪X2

F
= φ.

LEMMA 3.6. 8̂1(X1
F )= X1

G and 8̂1(X2
F )= X2

G . Furthermore, 8̂1|X1
F∪X2

F
= φ.

Proof. The first equality is clear since, by construction, X1
F ⊂A1 and X1

G ⊂A′′1 . Also, by
assumption, X2

F ⊂Ak (see Figure 4). So all we need to show is that X2
G ⊂A′′k . But this is

precisely what is guaranteed by modifying 8 to 81 and thus 8̂ to 8̂1.
In passing, we note that the integer k − ` is equal to 1 or −1 (or 0, if we are in the

case where no Dehn twist is required). In either case, since X2
G ⊂A′`, we must get, after

applying the Dehn twist, that X2
G ⊂A′′`−(`−k) =A′′k (see Figure 5). Hence 8̂1(X2

F )= X2
G .

It only remains to show 8̂1|X1
F∪X2

F
= φ. But, by construction,

G ◦ 8̂1 =81 ◦ F. (2)

Define φ̂ = 8̂1|X1
F∪X2

F
. Then

G ◦ φ̂ = φ ◦ F (by (2))

= G ◦ φ (by (1))

on X1
F ∪ X2

F . Since G is a homeomorphism on the stars, we get φ̂ = φ. 2

So now 81 and 8̂1 agree on the stars. So we now compare the induced maps 91

and 9̂1 from AF to AG . Both these maps will equal ψ on ∂AF and so 9̂−1
1 ◦91 is

a homeomorphism of AF which fixes the boundary pointwise. Since the mapping class
group of the annulus is Z, this homeomorphism is isotopic to D◦k for some k ∈ Z, where
D is the Dehn twist around the (anticlockwise) core curve of the annulus AF . We can think
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FIGURE 4. Diagram for the proof of Lemma 3.6. A′i is the image of Ai under 8̂. The dashed lines shows the
effect of changing 8 to Dτ ◦8. Compare with Figure 5.

FIGURE 5. The ‘modified’ diagram from Figure 4, with the new regions A′′i = 8̂1(Ai ) labelled.

of this core curve C as being the pre-image under ηF of some curve κ separating the stars
in the F-sphere. Note that the curve κ ′ = F−1(κ) maps onto κ by a two-to-one covering.
Also, the curve C ′ = η−1

F (κ ′) is homotopic to the curve C . We are now ready to prove
Theorem B.

Proof of Theorem B. We begin by remarking that the homeomorphisms81 and 8̂1 satisfy
G ◦ 8̂1 =81 ◦ F and agree on X1

F ∪ X2
F (and hence on PF ). So all that remains is to

modify them so that these two conditions are preserved and, furthermore, that they are
isotopic to one another. This is equivalent to making sure some suitable modification of
91 and 9̂1 are isotopic to one another. It should be borne in mind that the definitions
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of 82 and 8̂2 rely on each other, since we require 8i ◦ F = G ◦ 8̂i for i = 1, 2. Hence
modifying one will force the modification of the other.

Since κ ′ maps to κ in a two-to-one covering, a Dehn twist around C ′ will correspond to
the second power of a Dehn twist around C , again in light of the fact that8i ◦ F = G ◦ 8̂i

and because F and G are of degree two. Working on the annulus AF , we define
9̂2 = 9̂1 ◦ D◦(−k)

C ′ and 92 =91 ◦ D◦(−2k)
C . Since C and C ′ are homotopic, the Dehn twist

around them has the same effect on the element of the mapping class group, hence we drop
the subscript from now on. So we calculate

9̂−1
2 ◦92 = D◦k ◦ 9̂−1

1 ◦91 ◦ D◦(−2k)

∼= D◦k ◦ D◦k ◦ D◦(−2k)

= Id.

Hence 9̂2 and 92 are isotopic on the annulus and hence the maps 8̂2 and 82 which
are obtained by passing forward onto the Riemann sphere (using the maps η̃F and η̃G)

satisfy the conditions for the homeomorphisms in Thurston’s theorem. Hence F and G are
Thurston equivalent. 2

3.1. Differences in the higher-degree case. We will now briefly explain why the
above method will not work when the degree is strictly greater than two. A probable
counterexample to the statement is given in the next section. In the proof above, we
would be able to follow the method of this proof for general degree d right until the
proof of Lemma 3.6. In other words, the problem occurs when we want to make the
two homeomorphisms isotopic rel PF . Thinking of8 as the homeomorphism on the range
and 8̂ as the homeomorphism on the domain, we see that if we carry out one Dehn twist in
the domain, then we will need to carry out the Dehn twist d times in the range. We require
the use of Dehn twists to ‘undo’ the difference between the two homeomorphisms. The
problem occurs if the difference is not a multiple of d − 1 (which it always will be in the
case d = 2, as in the proof above).

To give an example, suppose that we are in the degree-four case and that we found that
9̂−1

1 ◦91 was isotopic to D. Then, if we carry out k twists in the domain we carry out
4k twists in the range, and we see that we can solve for the number of twists required to
make 9̂−1

1 and 91 isotopic by solving the equation 1= 4k − k = 3k. But this does not
have an integer solution, and so we cannot carry out a (power of a) Dehn twist to correct
the discrepancy. Hence the above technique would not supply a proof of equivalence in the
higher-degree case.

4. Counterexamples in the general period-two case
In this section, we give an example which suggests that the generalization of Theorem B
to the higher-degree case is not possible, which would provide a stark contrast with the
fixed cluster case given in Theorem A. We will construct two degree-three rational maps
using the mating operation, by which the same combinatorial data are not (according
to calculations) equivalent in the sense of Thurston. We will not define the mating
operation here; the interested reader is directed to [9, 13, 15, 16] for more information.
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FIGURE 6. The positions in parameter space for (a) f1 and f2 and (b) g1 and g2.

Let f1(z)= z3
+ c1 be the map corresponding to the parameter c1 = 0.209 925 . . .+

1.093 51 . . . i , and let f2(z)= z3
+ c2 be the map corresponding to the parameter c2 =

−0.243965 . . .+ 1.322 41 . . . i . Also, let g1(z)= z3
+ c′1 be the map corresponding

to the parameter c′1 =−0.209 925 . . .+ 1.093 51 . . . i , and let g2(z)= z3
+ c′2 be the

map corresponding to c′2 = 0.601 679 . . .− 0.684 721 . . . i . Equivalently, if the reader
is familiar with specifying polynomials by the parameter rays landing at the principal
root points of their hyperbolic components, we have that f1 corresponds to the angles
(11/80, 19/80), f2 to (22/80, 24/80), g1 to (21/80, 29/80) and g2 to (71/80, 73/80).
See Figure 6 for the positions of the maps in parameter space, and Figure 7 for the Julia
sets of the maps, along with the external rays which land on the points which will become
the cluster points in the mating. Note that for f2, the external rays shown land at non-
principal root points of the critical orbit Fatou components.

Now construct the (topological) matings F ∼= f1 ⊥⊥ f2 and G ∼= g1 ⊥⊥ g2. Both the
rational maps F and G have a period-two cluster cycle which has rotation number ρ = 1/2
and critical displacement δ = 3. However, these two maps are not Thurston equivalent.
Calculations using the FR package (written by Laurent Bartholdi) in GAP suggest that the
two rational maps are given by

F(z)=
(2.522 60 . . .+ 1.430 40 . . . i)z3

+ 1

(−4.317 48 . . .− 7.216 73 . . . i)z3 + 1

and

G(z)=
(1.025 05 . . .+ 2.736 36 . . . i)z3

+ 1

(−6.436 98 . . .+ 5.609 85 . . . i)z3 + 1
.

It is hoped that the confirmation that the maps F and G are different will be shown in a
forthcoming paper. Furthermore, it is hoped that we can find exactly what extra data is
required (in terms of combinatorial data extrinsic to the cluster cycle) to get a complete
classification of the general period-two cluster case. A simple case of this problem is
tackled in [4].
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FIGURE 7. The Julia sets of (a) f1, (b) f2, (c) g1 and (d) g2.
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