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Abstract 

Applications of frequency-domain analysis in pipelines and pipe networks include resonance 

analysis, time-domain simulation and fault detection.  Current frequency-domain analysis 

methods are restricted to series pipelines, single-branching pipelines and single-loop networks 

and are not suited to complex networks.  This paper presents a number of formulations for the 

frequency-domain solution in pipe networks of arbitrary topology and size.  The formulations 

focus on the topology of arbitrary networks and do not consider any complex network devices 

or boundary conditions, other than head and flow boundaries.  The frequency-domain 

equations are presented for node elements and pipe elements, which correspond to the 

continuity of flow at a node and the unsteady flow in a pipe, respectively.  Additionally, a 

pipe-node-pipe and reservoir-pipe pair set of equations are derived.  A matrix-based approach 

is used to display the solution to entire networks in a systematic and powerful way.  Three 

different formulations are derived based on the unknown variables of interest that are to be 

solved for, being the head-formulation, flow-formulation and the head-flow-formulation.  

These hold significant analogies to different steady-state network solutions.  The frequency-

domain models are tested against the method of characteristics (a commonly used time-

domain model), with good result.  The computational efficiency of each formulation is 

discussed with the most efficient formulation being the head-formulation. 

Introduction 

The use of time-domain or frequency-domain analyses depends upon the problem at hand.  

Suitable problems for frequency-domain analysis are those that are linear in nature or involve 

a small perturbation about a reference state.  Frequency-domain analysis is used in 

applications such as resonance analysis (Chaudhry 1987; Wylie and Streeter 1993), leakage 

detection (Ferrante and Brunone 2003; Lee et al. 2005a, 2005b, 2006; Covas et al. 2006; Kim 

2005, 2007, 2008) and blockage detection (Mohapatra et al. 2006a, 2006b; Sattar et al. 2008).  

Additionally, certain time-domain solutions can be calculated via the frequency-domain 

solution allowing many applications, which involve time-domain analyses, to utilise 

frequency-domain analyses.  Suo and Wylie (1989) presented the impulse response method 

(IMPREM) where the frequency-domain response is transferred into a time-domain response.  

The technique assumes that the system is driven by a discharge perturbation at the 

downstream boundary and the solution requires a formulation of the impedance equations for 

the particular system.  Kim (2007, 2008) presented a matrix-based implementation of the 
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impedance method for a simple network, although the method is closely related to the transfer 

matrix method. 

 These applications, as described in the previous paragraph, have been limited to single 

pipelines, pipelines with single branches and single-loop networks.  This paper derives 

different formulations for frequency-domain analysis for an arbitrary pipe network.  For the 

purposes of clearly establishing the type of network considered in this paper the network 

elements considered include pipes, nodes, demands and reservoirs.  Excitation to the system 

can be made through perturbations in either demand (or flow) at a junction or head at a 

reservoir.  Analysis in the frequency domain, for a suitable problem, can be efficient and 

accurate provided that the nonlinearities involved are small.  Additionally, frequency-domain 

analysis allows convenient inclusion of unsteady friction and viscoelastic behavior where 

their solution is efficient.  The solution for a transient response, when calculated using 

frequency-domain analysis, requires the solution of the system response at many single 

frequency components, therefore, it is desirable that each frequency component be solved as 

efficiently as possible.  Three sets of network equations are derived in this paper that are 

based on the continuity of flow at a node, the unsteady-state equations of continuity and 

motion for a pipe, and pipe-node-pipe and reservoir-pipe pairs.  From those three sets of 

equations three formulations are derived based on solutions for the complex perturbations in 

heads and flow, heads only and flow only.  The computational merits of each formulation and 

similarities to steady-state solution formulations are discussed. 

Background 

The analysis of pipelines in the frequency domain (which also includes Laplace domain 

analysis) began in the 1950s (summarised in Goodson and Leonard 1972, Stecki and Davis 

1986).  This work was typically limited to a single pipeline.  The development of general 

frequency-domain solutions in more complicated pipelines involves two main methodological 

streams.  The first method is the transfer matrix method (Chaudhry 1970, 1987).  This method 

develops field matrices, which relate to the solution along the pipe, and point matrices that 

consider junctions, hydraulic devices and changes in pipe characteristics.  A block-diagram is 

used to formulate the matrices, usually by hand, for more complicated systems like pipes in 

series, single-branches and single loops.  While these units could be manipulated to solve 

small and restricted problems (limited to networks that do not have 2
nd

 order loops), in a 

complex network the number of units required can quickly become overwhelming.  The 

second method is the impedance method (Wylie 1965, Wylie and Streeter 1993).  This 
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method solves for the impedance which is equal to the complex head perturbations divided by 

the complex flow perturbations.  Again, this method is usually formulated for each system by 

hand and, although is useful in forming explicit relationships in simple systems, is poorly 

suited to complex network analysis. 

 The behavior of various hydraulic devices and phenomena in the frequency-domain 

has been addressed by many authors.  Chaudhry (1987) and Wylie and Streeter (1993) present 

a summary of solutions for different hydraulic elements, such as valves, orifices, junctions, 

and more.  Suo and Wylie (1990a) present solutions for viscoelastic pipe material.  

Viscoelasticity was incorporated using a frequency-dependent wave speed.  Similarly, Suo 

and Wylie (1990b) present frequency-domain solutions for rock-walled tunnels.  Unsteady 

friction has been dealt with by, amongst many others, Brown (1962) and D’Souza and 

Oldenburger (1964).  Vítkovský et al. (2003) present frequency-domain solutions for 

weighting function-type unsteady friction models.  Finally, Tijsseling (1996) presents a 

number of studies where fluid-structure interaction has been considered in the frequency (or 

Laplace) domain. 

 In terms of network analysis, Wylie and Streeter (1993) present the frequency-domain 

solution for a simple network, although not expressed in an arbitrary way for general network 

analysis.  Other network-type analyses do not directly consider the frequency-domain 

solution, but are nonetheless relevant.  Ogawa et al. (1994) present frequency-domain 

solutions in networks with respect to the effect of earthquakes on water distribution networks.  

They used a matrix-based approach, but were solving for different response modes resulting 

from sinusoidal ground movement.  Shimada et al. (2006) present an exploration into 

numerical error for time-line interpolations in pipe networks.  Although this work relates to 

errors in time-domain methods, the errors are assessed in the frequency-domain where exact 

solutions exist.  More recently, Kim (2007, 2008) presents a more generic approach to the 

application of the impedance method in networks, but with respect to a particular network.  

Recently, Zecchin et al. (2009) formulated a Laplace-domain network admittance matrix 

formulation of the fundamental network equations, which shares a similarity to the ĥ -

formulation that is derived within this paper. 

 The remainder of this paper presents a systematic, matrix-based approach for 

frequency-domain analysis in arbitrary pipe networks. 
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Formulations for Frequency-Domain Analysis 

The formulations for the frequency-domain solution investigated in this paper consider a 

simplified network.  There is no consideration of hydraulic elements such as leaks, pumps, 

valves, etc.  Additionally, there is no consideration of column separation, fluid structure 

interaction, minor losses or convective terms, etc.  This paper is primarily concerned with the 

problem of finding the frequency-domain solution for an arbitrarily configured and basic 

network.  As a matter of nomenclature, uppercase denotes a full variable in the time domain, 

lowercase denotes a perturbation variable in the time domain, and lowercase with a caret 

denotes a perturbation variable in the frequency domain. 

Network Quantities 

The network considered consists only of pipes, junctions, reservoirs and demand nodes.  For 

an arbitrary network the quantities of each of these components are linked by 

ncnlnrnnnp   (1) 

where np = number of pipes, nn = number of nodes, nr = number of reservoirs, nl = number 

of loops, and nc = number of (separate) components.  This relationship is useful when 

considering the topology of an entire network.  An arbitrary network consists of pipe (links) 

and node elements.  The following sections define the relationships for these elements. 

Frequency-Domain Equations for Node Elements 

The head is common at a node and can be either known or unknown.  Also, a node element 

represents a junction of pipes and demands.  The continuity of flow is applied for pipes, p, 

connected to node k as 

k

p

kp DQ  ,  (2) 

where Qp,k = flow into node k from pipe p and Dk is demand out of node k.  Each pipe requires 

an arbitrarily set flow direction (not related to the actual flow direction).  In terms of 

continuity, pipe flows are taken as positive into a node and demands are positive out of a 

node.  Taking the perturbation of Q and D about steady-state conditions as q = Q–Q0 and 

d = D–D0 gives the continuity of perturbations at node k 

k

p

kp dq  ,  (3) 

The Fourier transform gives the frequency-domain continuity at node k 
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k

p

kp dq ˆˆ
,   (4) 

It should be noted that the relationship in (4) is now complex-valued and represents the 

continuity of flow at a node for different frequency components. 

Frequency-Domain Equations for Pipe Elements 

Each pipe element represents the behavior of unsteady pipe flow between two nodes.  The 

equations of continuity and motion for unsteady pipe flow, including unsteady friction and a 

viscoelastic pipe material (Wylie and Streeter 1993, Gally et al. 1979, Vítkovský et al. 2006), 

are 
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where H = head, a = wave speed, g = gravitational acceleration, D = pipe diameter, A = pipe 

cross-sectional area, e = pipeline thickness,  = fluid density,  = pipe restraint coefficient,  

= kinematic viscosity, Jr = retarded component of creep compliance function, W = unsteady 

friction weighting function, x = distance along pipe, and t = time.  The subscript “0” on some 

variables denote that it is based on an initial or steady-state value.  The operator “” 

represents convolution.  Taking a perturbation in flow (q = Q – Q0) and head (h = H – H0) and 

linearizing the steady friction term the equations of continuity and motion become 
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Taking the Fourier transform with respect to time and simplifying the resulting equation gives 

the frequency-domain equations for a pipe element. 
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where i = imaginary unit and  = angular frequency.  Eqs. (9) and (10) are a set of coupled 

ordinary differential equations with full derivatives only in space (x).  The transfer matrix 
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solution for this system of coupled ODEs can be derived for a pipe element (p) relating the 

upstream (U) head and flow to the downstream (D) head and flow for given frequency 

perturbation as 
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where L = pipe length and the propagation constant  is 
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and where the characteristic impedance Z is 
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and where the steady friction component RS is 
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and where the unsteady friction component RU is 
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and where the viscoelastic component RV is 
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where Je = elastic component of the creep compliance function (Je = 1/E, where E = Young’s 

modulus of elasticity) and 0 = dimensionless pipe constraint coefficient which depends on 

the relative pipe wall thickness e0/D0, Poisson’s ratio of the pipe wall material and the type of 

pipe anchoring.  Note that for elastic pipe materials, such as steel, cast iron, copper, etc., the 

convolution term in Eq. (5) is removed making the term RV in Eqs. (12) and (13) equal to zero 

and the constant 0/2 in Eq. (17) can be replaced by C1 resulting in the more common form of 

the equations of continuity and motion for unsteady pipe flow (Wylie and Streeter 1993).  Eq. 
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(11) can be directly compared to the field matrix for a pipe element in the transfer matrix 

method (Chaudhry 1970, 1987). 

Frequency-Domain Equations for an Arbitrary Network 

The previous sections have presented the relationships for individual node elements and pipe 

elements.  This section outlines how those elements can be combined and organised for an 

arbitrary network of pipes.  A topological matrix-based approach is considered allowing the 

presentation of relationships that apply to an entire network. 

 The organisation of all node elements is considered first, essentially specifying flow 

continuity at all nodes in a network.  The complex unknown upstream and downstream flow 

perturbations for each pipe written as column vectors are 
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ˆ,,ˆˆ
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 (18) 

The complex demand perturbations at each node written a column vector are 

 Tnndd ˆ,,ˆˆ
1 d  (19) 

Two topological matrices are required that define if a pipe is connected to a node by its 

downstream or upstream end.  These pipe-node incidence matrices are defined as B1D and 

B1U respectively 
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Using Eqs. (18), (19) and (20), the frequency-domain nodal continuity equations (Eq. (4)) can 

be written in matrix form as 

dqB1qB1 ˆˆˆ  U

T

UD

T

D  (21) 

 In a similar manner, the relationships for all pipe elements in a network can be written 

in matrix form.  The complex unknown head perturbations at each node written as a column 

vector are 

 Tnnhh ˆ,,ˆˆ
1 h  (22) 

The complex known head perturbations at each reservoir written as a column vector are 

 T

nrrr ˆ,,ˆˆ
1 r  (23) 
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An additional topological matrix is required to relate the connectivity of pipes and reservoirs.  

Two pipe-reservoir incidence matrices, B2D and B2U respectively, are defined for pipes that 

connect to a reservoir by its downstream or upstream end. 
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Using Eqs. (20), (22), (23) and (24), the frequency-domain pipe element equations (Eq. (11)) 

for an entire network can be written in matrix form as 

 
   rB2hB1cqszrB2hB1

rB2hB1szqcq

ˆˆ ˆ  ˆˆ

ˆˆ ˆ ˆ 1

UUUDD

UUUD



 

 (25) 

The matrices c and s are diagonal matrices that represent the hyperbolic functions cosh and 

sinh for each pipe (for completeness t represents the tanh function which is used later), and 

the diagonal matrix z represents characteristic impedance for each pipe, that is 
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Eqs. (21) and (25) define all of relationships for all of the node and pipe elements in an 

arbitrary pipe network.  This set of equations can be solved for different frequency inputs 

allowing the development of the frequency response function.  This paper considers three 

different formulations for the frequency-domain solution.  All formulations are organised into 

the generic linear system AX = B that can be solved using existing complex matrix solvers.  

Comments relating to the solution efficiency of each formulation are discussed. 

Frequency-Domain hq ˆˆ -Formulation 

The first formulation is the hq ˆˆ -formulation, which solves for the complex flow and head 

perturbations.  This is the most straightforward approach that uses Eqs (21) and (25) as they 

are.  Putting this set of equations into matrix form gives 
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This can be written in a simplified form as 
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The matrix Mqh is complex, sparse, and asymmetric.  Both Mqh and Nqh depend on frequency, 

although some elements of each are independent of frequency.  The number of unknowns, and 

hence the size of Mqh, is 2np+nn. 

Frequency-Domain ĥ -Formulation 

The second formulation is the ĥ -formulation.  This formulation begins by rearranging the 

pipe element equations from Eq. (25) in terms of the complex flow perturbations, that is 
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Substituting the result into the node element equations (Eq. (21)) gives the solution of the 

complex head perturbations as 

        
     drB2szB1B2szB1

hB1tzB1B1szB1B1szB1B1tzB1

ˆˆ     

ˆ         

11

1111









D

T

UU

T

D

U

T

UD

T

UU

T

DD

T

D
 (30) 

Written in a simplified form as 

hh NhM ˆ  (31) 

The structure of the Mh matrix is of interest as it can affect how efficiently the linear solution 

can be solved.  The Mh matrix is constructed as 
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The matrix Mh is complex, sparse and symmetric and shares these similarities with the H-

formulation for the steady-state solution (as discussed later).  The number of unknowns, and 

hence the size of Mh, is nn.  The Nh vector can be constructed as 
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Both Mh and Nh are functions of frequency.  Once the complex head perturbations have been 

determined the complex flow perturbations can be calculated using Eq. (29). 
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Frequency-Domain q̂ -Formulation 

The final formulation is based on solving for the complex flow perturbations.  The q̂ -

formulation begins by rearranging the pipe element equations in Eq. (25) such that all known 

and unknown complex head perturbations are on the left side of the relationship and all 

unknown complex flow perturbations are on the right. 

 

 UDDD

UDUU

qqcszrB2hB1

qcqszrB2hB1

ˆˆ  ˆˆ

ˆ ˆ ˆˆ

1

1









 (34) 

Together with the node element equations, the above equation can be reformulated to link 

both the upstream and downstream complex flow perturbations between two pipes, provided 

they are connected by a common node or reservoir.  There arises the need to generate all of 

the pipe-node-pipe (PNP) pairs and reservoir-pipe (RP) pairs in an arbitrary network. 

 The flows in pipes joined at a common node can be equated to form a set of equations 

representing pairs of pipes joined by a common head, i.e., the PNP pairs.  Figure 1(a) shows 

an example of a node connected to four pipes.  Also shown is a graph (in the mathematical 

sense) of all of the possible pipe pairings called the complete graph (see Figure 1(b)).  If the 

degree of the node is dn then the total number of pipe pairings is ½(dn
2
–dn).  This complete 

set of pipe pairings would form an over-determined set of equations in terms of pipe pairs, 

whereas all that is required is a set of pipe-pairs that are non-degenerative when solving the 

linear system.  A non-degenerative set of PNP pairs can be found by finding any spanning 

tree of the complete graph.  In a pipe network sense, the set of PNP and RP pairs must form a 

continuous coverage across the whole network (no isolated areas).  For a node with dn pipes 

connected to it the minimum number of non-degenerative PNP pairs is dn–1 from a total 

number of possible non-degenerative PNP-pair sets of dn
dn–2

. 

 A logical method to generate a non-degenerative set of PNP pairs is to: (i) selectively 

consider each node in order of node number; (ii) determine the degree of the node (how many 

pipes are connected), (iii) select the pipe with the lowest pipe ID number and form a set of 

pairs with that pipe and all other pipes connected to the node; and then (iv) move to the next 

node and repeat.  An example of this approach gives the selected spanning tree in Figure 1(c). 

 The total number of PNP pairs depends on the connectivity of the network as does the 

number of RP pairs; however, the sum of PNP and RP pairs must equal 2np – nn.  The PNP 

pairs can be defined in matrix form by first defining the following topological incidence 

matrices B3D, and B3U for pipe pairs as 
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 

 




















otherwise0

nodecommon  exits pair  PNPin   pipe 2  theif1

nodecommon  exits pair  PNPin   pipe 1  theif1

otherwise0

nodecommon  enters pair  PNPin   pipe 2  theif1

nodecommon  enters pair  PNPin   pipe 1  theif1

nd

st

nd

st

kp

kp

kp

kp

pkU

pkD

B3

B3

 (35) 

The PNP pair equations (a rearrangement of Eq. (34)) can be written in the following form 

    0qszcB3B3qszB3cB3  

U

T

U

T

DD

T

U

T

D
ˆ ˆ 11  (36) 

Similarly the RP pairs can be defined in matrix form by first defining the following 

topological incidence matrices B4D, B4U, and B5 for RP pairs are 

 

 

 


















otherwise0

 pair  RPin  reservoir  connects pipe if1

otherwise0

reservoir exits pair  RPin   pipe if1

otherwise0

reservoir  enters pair  RPin   pipe if1

kj

kp

kp

jk

pkU

pkD

B5

B4

B4

 (37) 

The RP pair equations can be written (a rearrangement of Eq. (34)) in the following form 

    rB5qszcB4B4qszB4cB4 ˆˆ ˆ 11 T

U

T

U

T

DD

T

U

T

D    (38) 

The q̂ -formulation uses the node element equations, the PNP pair and RP pair equations, Eqs. 

(21), (36) and (38) respectively.  Putting the set of equations into matrix form gives 

   
    



















































rB5

0

d

q

q

szcB4B4szB4cB4

szcB3B3szB3cB3

B1B1

ˆ

ˆ

ˆ

ˆ

    

    
11

11

TU

D

T

U

T

D

T

U

T

D

T

U

T

D

T

U

T

D

T

U

T

D

 (39) 

Written in a simplified form as 

q

U

D

q N
q

q
M 









ˆ

ˆ
  (40) 

The matrix Mq is complex, sparse, and asymmetric.  The number of unknowns, and hence the 

size of Mq, is 2np.  A difference between the q̂ -formulation and the other two formulations is 

that only the Mq matrix depends on frequency.  The Nq matrix is independent of frequency 

and would only need to be calculated once for the full calculation of the transfer function.  

Once the complex upstream and downstream flow perturbations have been solved for Eq. (25) 

can be used to calculate the complex head perturbations. 
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Numerical Verification 

The previous section presents three formations for the frequency-domain solution of an 

arbitrary pipe network.  This section provides numerical verification of those formulations 

(Eqs. (27), (30) and (39)).  All formulations produce exactly the same solution, thus no 

comparison in terms of accuracy can been made between the methods.  However, the validity 

of the frequency-domain solution can be tested against a rigorously tested time-domain 

method.  In this paper the Method of Characteristics (MOC) is used generate the frequency 

response function for validation.  The perturbation size was kept small so as to not incur 

errors from the linearization of nonlinear terms.  Additionally, a very finely discretised MOC 

diamond grid was used to reduce numerical error. 

 The first validation is performed on a simple pipeline (Figure 2) with parameters given 

in Vítkovský et al (2006).  The pipeline is bounded by a known head at one end and a 

perturbed flow at the other end.  Three cases are considered: (1) steady-state friction only, (2) 

steady and unsteady friction, and (3) steady friction, unsteady friction and a viscoelastic pipe 

material.  The results are shown in Figure 3, Figure 4 and Figure 5, respectively, for the 

frequency response function at the flow boundary (node 2).  The weighting function model 

for the unsteady friction is from Vardy and Brown (2003, 2004).  The creep compliance 

function is for polyethylene at 25C from Gally et al. (1979).  As observed, the frequency-

domain analysis and the time-domain analysis match. 

 The second validation considers a small pipe network from Liggett and Chen (1994), 

as shown in Figure 6.  This network has 11 pipes and 7 nodes that are supplied from a single 

reservoir (node 1) and supplies two demands (nodes 4 and 6).  The system is excited by a 

perturbation in the demand at node 6.  Figure 7 shows the match between the frequency-

domain and time-domain analyses for the head response at node 6. 

 Both validations show an excellent match between the frequency-domain and time-

domain analyses.  Of course, this is to be expected as both analyses are solving the same set 

of equations. 

Discussion of Frequency-Domain Analysis 

This section provides a further discussion of frequency-domain analysis in arbitrary networks.  

This includes properties of frequency-domain network matrices, comparison to steady-state 

analysis in arbitrary networks and efficiency of the frequency-domain formulations. 
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Properties of Frequency-Domain Network Matrices 

During the formulation of the frequency-domain solution a number of matrices were defined.  

Selected properties of these matrices are now discussed.  Consider the diagonal matrices that 

contain the hyperbolic functions for each pipe in a network, c, s and t, which are related by 

1

22

 



cst

Isc np  (41) 

Many topological matrices share relationship based on basic system connectivity ideas.  The 

matrices B1, B2, B3, and B4 share relationships by noticing that no pipe can simultaneously 

enter a reservoir and enter a node at the same time, giving 

0B4B30B2B3

0B4B10B2B1





D

T

DD

T

D

D

T

DD

T

D  (42) 

Similarly, no pipe can simultaneously exit a reservoir and exit a node, giving 

0B4B30B2B3

0B4B10B2B1





U

T

UU

T

U

U

T

UU

T

U  (43) 

Additionally, the B5U, B5D and B5 matrices can be formed from existing matrices B2U, B2D, 

B4U, and B4D as 

U

T

UU

D

T

DD

B4B2B5

B4B2B5




 (44) 

Similar relationships can be found in topological matrices for steady-state analysis (see Eqs. 

(89) and (90)). 

Comparison to Steady-State Analysis 

Given that both steady-state analysis and frequency-domain analysis can be performed in 

networks sharing the same topology, it comes as no surprise that some matrices from both 

analyses are related.  Appendix A outlines three formulations (head, flow and loop) for the 

steady state solution in an arbitrary pipe network.  The relationship between the B1D and B1U 

matrices and the steady-state topological node incidence matrix A1 (see Eq. (53)) is 

UD B1B1A1   (45) 

The relationship between the B2D and B2U and the steady-state topological reservoir 

incidence matrix A2 (see Eq. (57)) is 

UD B2B2A2   (46) 

 Other similarities occur in the shape of the linear systems formed when finding 

solutions in terms of heads (or complex head perturbations).  The Mh matrix in the ĥ -
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formulation (Eq. (30)) has elements in identical locations to the JH of the steady-state H-

formulation (see Eq. (83)) and the P matrix of the steady-state QH-formulation (see Eq. (74)).  

Zecchin et al. (2009) term the JH matrix a hydraulic admittance matrix, as it maps from 

pressure to flow.  A more in-depth comparison of the element locations common to the 

formulations can be observed in (32) and (84).  The similarity occurs when a node-pipe 

incidence matrix is multiplied by its transpose.  The resulting matrix is sparse and symmetric 

and in the case of the steady-state formulation is positive definite. 

 Other similarities are that the formulation for the frequency-domain q̂ -formulation 

(see Eq. (39)) and the steady-state Q-formulation (see Eq. (85)) are sparse and asymmetric.  

Both formulations require node element equations (continuity around a node); however, the 

steady-state formulation adds the loop equations (head loss corrections around a loop), 

whereas the frequency-domain formulation adds the pipe-node-pipe pair and reservoir-pipe 

pair equations.  Both the frequency-domain hq ˆˆ -formulation (see Eq. (27)) and the basic 

steady-state QH-formulation (see Eq. (70)) are sparse and asymmetrical. 

Computational Considerations 

Given the three different formulations, a number of factors relate the linear solution to its 

computational efficiency, the most important being the number of unknowns of the linear 

system (see Table 1).  In general, for a dense matrix the solution complexity is O(n
3
), whereas 

for a sparse matrix, the use of sparse matrix solvers will give a comparatively faster solution 

approaching O(n
2
).  A small increase in the dimensionality of the problem results in a large 

increase in computational effort.  This means that the ĥ -formulation, with the smallest 

number of unknowns, will be the computationally fastest formulation.  Timing of the 

frequency-domain analysis for the network in Figure 6 gave the ĥ -formulation as the fastest, 

followed by the q̂ -formulation (43% slower), and the hq ˆˆ -formulation (60% slower), 

although this is generally problem dependent. (Note that the timings were performed by 

running 10,000 simulations on a PC with an Intel® Core™2 Duo CPU running Microsoft 

Vista ™.  Relative measures are utilised to negate PC-specific results.) 

 For moderate and large networks the M matrices are sparse.  Sparse matrix solvers 

should be used for efficient solution.  Most sparse solvers have a pre-conditioning (or 

reordering) phase that would only need to be performed once as the topology of the M matrix 

does not change for different frequencies.  An additional computational saving can be made 

for the ĥ -formulation which has a symmetric M matrix which could be exploited.  Sparse 
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matrix solvers also reduce the amount of memory required to solve large matrices.  General 

relationships for the number of non-zero elements of M are shown in Table 1 (where nrc is 

number of reservoir-pipe connections and nruc is number of reservoir-pipe connections that 

connect at the upstream end of the pipe.).  In terms of the network in Figure 6, the percentage 

of non-zero elements in M is 11%, 67% and 17% for the hq ˆˆ -, ĥ - and q̂ -formulations, 

respectively. 

 Another efficiency consideration is that some of the formulations, in particular the 

hq ˆˆ - and q̂ -formulations, have significant frequency-independent parts of their M matrix.  

These parts would only be required to be computed once when solving for different 

frequencies, thus making a time saving.  Table 1 shows relationships for the number of 

frequency-independent and frequency-dependent elements of M.  In terms of the network in 

Figure 6, the percentage of frequency-independent elements compared to the non-zero 

elements in M is 51%, 0.0% and 25% for the hq ˆˆ -, ĥ - and q̂ -formulations, respectively. 

 With regard to the solution of the linear equations, the condition number of M 

provides information about the computability of their solution using numerical methods.  If 

the condition number is smaller than ~10
6
 then the solution is computable using single 

precision variables and if the condition number if less than ~10
12

 then the solution is 

computable with double precision variables.  Figure 8 shows the condition number for each 

formulation across a range of frequencies for the network in Figure 6.  The ĥ -formulation has 

the smallest condition numbers and should be most amenable to numerical solution.  The hq ˆˆ -

formulation has the largest condition numbers and should be computed using double precision 

variables. 

 It is trivial to solve for intermediate locations along a pipe from a known ĥ  and q̂  

using Eq. (11).  Hence, it is only necessary to solve for points in a network where there is a 

change in the pipe’s properties or there is a hydraulic device.  Therefore trimming those 

intermediate points that do not represent a change in pipe properties (and their associated ĥ  

and q̂ ) from the linear system will reduce its size thus increasing computational efficiency.  

The intermediate points are then calculated using Eq. (11) after the linear system has been 

solved. 
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Conclusions 

This paper presents formulations for the frequency-domain solution in arbitrary pipe 

networks.  The formulations focus on the topology of arbitrary networks and do not consider 

any complex network devices or boundary conditions, other than head and flow boundaries.  

The frequency-domain equations are derived for pipe networks, including the effects of 

unsteady friction and viscoelastic pipe material.  A topological-matrix-based approach is 

useful to organise the system of equations.  Three sets of equations have been derived for (1) 

node element equations, (2) pipe element equations, and (3) pipe-node-pipe pair and 

reservoir-pipe pair equations.  Three formulations, the hq ˆˆ -, ĥ - and q̂ -formulations, are 

derived and their various merits discussed.  Of the three formulations the ĥ -formulation 

should be the most computationally efficient and accurate.  The frequency-domain solution 

formulations share many characteristics with the steady-state solution formulations, allowing 

the re-use of some of the topological matrices.  The systematic approach for the frequency-

domain solution in pipes networks presented in this paper does not consider other hydraulic 

elements, such as valves, pumps, leaks, air vessels, etc., or other boundary condition types.  It 

is envisaged that future research will consider these other hydraulic elements and boundary 

conditions, although their incorporation may not be straightforward.  The calculation of the 

frequency response function is integral to other transient analysis applications, e.g. resonance 

studies, time-domain simulation (IMPREM) and fault detection methods, which will benefit 

from the methods presented in this paper. 

Appendix A: Formulations for Steady-State Analysis 

This section contains a basic derivation of different formulations for the steady-state solution 

for arbitrary pipe networks.  The section’s purpose is for comparison against the different 

frequency-domain solution formulations.  The following sections outline the basic equations 

and three different solution formulations.  Note that the loop flow correction formulation for 

steady-state analysis is not presented here. 

Steady-State Basic Equations 

The equations of WDS analysis are based on three relationships.  The first considers flow 

continuity at a node, which is a statement of the conservation of mass.  The sign convention 

adopted is that all flows entering a node are positive and flows exiting a node are negative.  

Given the sign convention, the summation of the flows entering and exiting a node must equal 
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zero (no accumulation of mass).  The continuity equation applied at a node k (or junction) for 

pipes p is 

   
k

p
kp

DQ 0,0   (47) 

The second equation for WDS analysis describes the head loss due to friction along a pipe.  

For a particular pipe in a WDS, the Darcy-Weisbach head loss relationship (including 

reservoirs) for pipe p from node k to node j is 

       
pp

pp

pp

pjpk
QQ

AgD

Lf
HH 002,0,0

2
  (48) 

A third set of equations can be formulated based on the property that head loss around a loop 

is equal to zero.  For a WDS there are two types of loops: simple loops and path loops.  The 

simple loop is an internal loop of pipes.  The equation that describes the summation of the 

head loss in pipes p around a simple loop l is 

    0
2

,0,02

,,

,,


p
lplp

lplp

lplp
QQ

AgD

Lf
 (49) 

There are many different simple loops that can be defined for a network; however, they form 

a non-degenerative set (sometimes called a fundamental cycle basis).  Typically, the set of 

loops that contain the smallest number of pipes is most desirable, the number of which is nl.  

The path loop considers the head loss around a loop containing two reservoirs linked by a 

path.  The head difference between the reservoirs acts like an additional head loss element.  

The head loss in pipes p between reservoirs k and j around a path loop l is 

       
ljlk

p
lplp

lplp

lplp
RRQQ

AgD

Lf
,0,0,0,02

,,

,,

2
  (50) 

There are many different combinations of reservoirs and pipe-paths that constitute a set of 

path loops.  Again, the multiple path loops must form a non-degenerate set with the number of 

path loops equal to np – nn – nl. 

Steady-State Equations for an Arbitrary Network 

The three basic relationships (node elements, pipe elements, and loop elements) for the 

steady-state solution in an arbitrary pipe network are written in matrix-form in this section.  

The node elements, representing flow continuity are considered first.  The unknown steady-

state flows for each pipe are 

    T
np

QQ 0100 ,,Q  (51) 
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The known steady-state demands at each node are 

    T

nn
DD 0100 ,,D  (52) 

The topological node-pipe incidence matrix A1 is defined as 













kp

kp

kp

pk

 node exits  pipe if1

connectednot  are  node and  pipe if0

 node enters  pipe if1

A1  (53) 

Using Eqs. (51), (52) and (53), the flow continuity around a node (Eq. (47)) for an arbitrary 

pipe network can be written in matrix-form as 

00 DQA1 T  (54) 

In a similar manner, the head loss for all pipe elements in a network can be written in matrix 

form.  The unknown steady-state heads at each node are 

    T

nn
HH 0100 ,,H  (55) 

The known heads at each reservoir are 

    T

nr
RR 0100 ,,R  (56) 

The topological reservoir-pipe incidence matrix A2 is defined as 













kp

kp

kp

pk

reservoir  exits  pipe if1

connectednot  are reservoir  and  pipe if0

reservoir  enters  pipe if1

A2  (57) 

The head loss for each pipe (Eq. (48)) for an arbitrary pipe network can be written in matrix-

form as 

000    QG1RA2HA1   (58) 

where G1 is a positive valued diagonal matrix that is dependent on Q0 and is defined as 

 













p

pp

pp
Q

AgD

Lf
022

diagG1       p = 1, …, np (59) 

Finally, the loop equations are considered.  The loop-pipe incidence matrix (for both simple 

and path loops) for pipes p that belong to loop l is defined as 













direction  loop eagainst th isdirection  its and  loop  tobelongs  pipe if1

 loop  tobelongnot  does  pipe if0

direction loop  with theisdirection  its and  loop  tobelongs  pipe if1

lp

lp

lp

plA3  (60) 

The direction of the path linking two reservoirs in a loop is defined as identical to the simple 

loop’s direction.  The loop-reservoir incidence matrix for reservoirs k that belong to loop l is 

defined as 
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











reservoir  theenterspath  its and  loop  tobelongs reservoir  if1

 loop  tobelongnot  does reservoir  if0

reservoir   theexitspath  its and  loop  tobelongs reservoir  if1

lk

lk

lk

klA4  (61) 

The head loss for both the simple and path loops are written in matrix form for an entire 

network as 

0RA4G1QA3  00

TT  (62) 

The number of loop equations (including path loops) is equal to np – nn.  Eqs. (54), (58) and 

(62) form the basis for formulation to solve the steady-state in an arbitrary network. 

Steady-State Solution Algorithm 

The three steady-state solution formulations are considered in this section: the Q-Formulation, 

the H-Formulation and the QH-Formulation.  Unlike the frequency-domain equations, the set 

of steady-state equations are nonlinear.  The Newton-Raphson algorithm can be used to 

determine a set of unknown variables from a set of non-linear equations.  The iterative 

solution by the Newton-Raphson algorithm is derived by making a Taylor series expansion of 

a set of non-linear functions Y(X) about some initial vector of variables Xk (such that Y(Xk) 

does not need to equal zero) as 

       2 XXXJXYXXY  Okkk  (63) 

Ignoring the higher order terms and assuming that the perturbation of Xk by X results in the 

correct steady-state solution (i.e., Y(Xk+X) = 0) produces 

    XXJXY0   kk  (64) 

where J is the Jacobian matrix that is defined as 

   XY
X

XJ



  (65) 

Rearranging for X gives 

   kk XYXJX  1  (66) 

The final set of unknowns is calculated by addition of X to Xk as 

XXX  ksolution  (67) 

If the vector of functions Y(X) is linear, then the solution vector of variables is 

   kkksolution XYXJXX  1  (68) 

If the vector of functions Y(X) is non-linear, then the vector of variables X is iterated using 

the formula 
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   kkkk XYXJXX  1

1



   (69) 

The Newton-Raphson algorithm exhibits quadratic convergence in the neighbourhood of the 

solution.  The iterative solution procedure concludes when convergence criteria are met.  The 

most computationally intensive component of the Newton-Raphson algorithm is dealing with 

the inversion or decomposition of the Jacobian matrix.  The following sections consider the 

form of the Jacobian derived for each formulation. 

Steady-State QH-Formulation 

The first formulation considers the solution of both heads and flows simultaneously.  The two 

relationships required to form a solvable system are Eqs. (54) and (58) which can be written 

in matrix form as 
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 (70) 

where both Q0 and H0 are required to be solved.  Rearranging the above equation gives a set 

of non-linear equations Y, the roots of which can be solved for using the Newton-Raphson 

algorithm. 
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The Jacobian matrix is equal to 











0A1

A1G1
J

TQH

2
 (72) 

The Jacobian in Eq. (72) is sparse and symmetric for the Darcy-Weisbach head loss 

formulation used in this paper, but can be a difficult to invert or decompose.  A more efficient 

way to deal with the Jacobian was shown by Todini and Pilati (1988), which was originally 

based on the Content Model (Collins et al. 1978).  Todini and Pilati developed an efficient 

approach to the inversion of the Jacobian by partitioning as 
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where the positive diagonal matrix G1 is dependent of Q0 and where the sub-matrices T and 

P are defined as 

A1TA1P   T     and      1
2 


 G1T  (74) 

The critical and time-consuming step in the inversion of the Jacobian is inverting the sub-

matrix P.  The matrix P is symmetric, diagonally dominant, has positive diagonal elements 
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and has either zero or negative off-diagonal elements and is positive definite and of Stieltjes 

type.  Also, for large networks P is sparse.  Todini and Pilati (1988) suggest the use of the 

ICF/MCG algorithm for the efficient inversion of P.   
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 (75) 

The method of solution is applied in the following steps.  First the following system of 

equations is solved for (H0)k+1 as 
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 (76) 

Then (H0)k+1 is used to calculate (Q0)k+1 by 
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Steady-State H-Formulation 

An alternative to the Q-formulation is to formulate the WDS equations in terms of the heads.  

In order to achieve this, Eq. (48) is rearranging to be in terms of the flows as 

         
5.0

,0,0,0,0

5.0

20
2





















pjpkpjpk

pp

pp

p
HHHH

AgD

Lf
Q  (78) 

For an entire network, the matrix-based form of (48) in terms of H is 

 000    RA2HA1G2Q   (79) 

where the positive valued diagonal matrix G2 is defined as 
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Now that a relationship exists for the flows in terms of the heads, this relationship can be 

substituted in the continuity equations (Eq. (54)) giving 

  0DRA2HA1G2A1  000     T  (81) 

The above set of equations represents the steady-state equations for a WDS in terms of the 

heads.  Rearranging gives the set of functions Y for the Newton-Raphson algorithm as 

  000     DRA2HA1G2A1Y  T

H  (82) 

The Jacobian for the Newton-Raphson algorithm is 
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 A1G2A1J   
2
1T

H   (83) 

The matrix JH is symmetric, diagonally dominant, has positive diagonal elements and has 

either zero or negative off-diagonal elements and is therefore positive definite and of Stieltjes 

type.  Also, for large networks JH is sparse.  After solving for the heads, the solution flows 

can be calculated using Eq. (58).  More directly, the matrix JH is defined as 
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(84) 

It is to be noted that this matrix is similar to the Jacobian in the QH-formulation.  In fact, both 

are of identical dimension and have identically located elements, which is obvious since both 

have similar components (i.e., P = A1
T
(½G1

–1
) A1 and JH = A1

T
(½G2)A1). 

Steady-State Q-Formulation 

Rearranging the basic WDS equations to be in terms of the flows only produces the Q-

formulation.  The Q-formulation considers the continuity equations (Eq. (54)) and the head 

loss around a loop equations (Eq. (62)), both of which are only dependent on Q0.  Eqs. (54) 

and (62) can be written in a matrix form as 
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In terms of the Newton-Raphson algorithm, the set of functions Y is 
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and the Jacobian is 

 
2 
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The Jacobian for the Q-formulation is sparse, but neither symmetric nor positive definite. 

Steady-State Matrix Relationships 

Some relationships exist between the steady-state topological matrices.  Substituting Eq. (58) 

into Eq. (62) results in 
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000   RA4RA2A3HA1A3
TTT   (88) 

By observation the following relationships can be realised 

TT
A4A2A3   (89) 

0A1A3  T  (90) 

Although not presented here, other graph-theoretic relationships exist for topological 

matrices, such as derivation of the A3 and A4 pipe-loop incidence matrices from the pipe-

node incidence matrices A1 and A2. 

Notation 

 A = cross-sectional pipe area; 

 a = wave speed; 

 A1 = steady-state topological matrix (pipe-node incidence); 

 A2 = steady-state topological matrix (pipe-reservoir incidence); 

 A3 = steady-state topological matrix (pipe-loop incidence); 

 A4 = steady-state topological matrix (reservoir-loop incidence); 

 B1 = frequency-domain topological matrix (pipe-node incidence); 

 B2 = frequency-domain topological matrix (pipe-reservoir incidence); 

 B3 = frequency-domain topological matrix (common node pipe-pair incidence); 

 B4 = frequency-domain topological matrix (reservoir pipe-pair incidence); 

 B5 = frequency-domain topological matrix (reservoir pipe-pair incidence); 

 D = pipe diameter, demand; 

 d = perturbation in demand; 

 E = Young’s modulus of elasticity; 

 e = pipe wall thickness; 

 f = Darcy-Weisbach friction factor; 

 G1, G2 = steady-state diagonal matrices for steady friction components; 

 g = gravitational acceleration; 

 H = head (unknown head); 

 h = perturbation in head (unknown head); 

 I = identity matrix; 

 i = imaginary unit  1 ; 

 J = Jacobian matrix (Newton-Raphson algorithm); 

 Je = elastic component of the creep compliance function; 
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 Jr = retarded component of the creep compliance function; 

 K = bulk modulus of elasticity of fluid; 

 L = pipe length; 

 M = coefficient matrix; 

 N = right-hand-side vector/matrix; 

 nc = number of network components; 

 nd = degree of node; 

 nl = number of loops; 

 nn = number of nodes (unknown heads); 

 np = number of pipes; 

 nr = number of reservoirs (known heads); 

 nrc = number of reservoir-pipe connections; 

 nruc = number of reservoir-pipe upstream connections; 

 Q = flow (unknown flow); 

 q = perturbation in flow (unknown flow); 

 R = reservoir head (known head); 

 r = perturbation in reservoir head (known head); 

 RS = steady friction coefficient; 

 RU = unsteady friction coefficient; 

 RV = viscoelastic coefficient; 

 s, c, t, z = frequency-domain diagonal matrices for sinh, cosh, tanh and Z components; 

 T, P = steady-state matrices for Todini & Pilati algorithm; 

 t = time; 

 W = weighting function; 

 X, Y = steady-state solution matrices (Newton-Raphson algorithm); 

 x = distance; 

 Z = characteristic impedance; 

  = pipe constraint coefficient; 

  = propagation constant; 

  = density of liquid; 

  = kinematic viscosity; 

  = angular frequency; 

Subscripts: 
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 0 = initial or steady-state quantity; 

 U = upstream end of pipe; 

 D = downstream end of pipe; 

 QH = relating to the steady-state QH-formulation; 

 H = relating to the steady-state H-formulation; 

 Q = relating to then steady-state Q-formulation; 

 qh = relating to the frequency-domain hq ˆˆ -formulation; 

 h = relating to the frequency-domain ĥ -formulation; 

 q = relating to the frequency-domain q̂ -formulation; 

Font Types: 

   Uppercase denotes a full quantity; 

   Lowercase denotes a perturbation quantity; 

   A caret denotes a Fourier transformed quantity; 

   Bold denotes a vector or matrix quantity; 
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Figure 1.  Pipe pairings around a node in the example network 
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Figure 2.  Example pipeline (from Vítkovský et al. 2006) 
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Figure 3.  Frequency- and time-domain solutions for example pipeline with steady 

friction only 
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Figure 4.  Frequency- and time-domain solutions for example pipeline with steady and 

unsteady friction only 
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Figure 5.  Frequency- and time-domain solutions for example pipeline with steady and 

unsteady friction and viscoelastic pipe material 
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Figure 6.  Example pipe network (from Liggett and Chen 1994) 
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Figure 7.  Frequency- and time-domain solutions for example pipe network 

 

 

 



 

 37 

 

 

 

 

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

0 5 10 15 20

qh-Formulation

h-Formulation

q-Formulation

C
o

n
d

it
io

n
 N

u
m

b
e
r

ωωωω  (rad/s)

Double Precision Limit

Single Precision Limit

 

 

Figure 8.  Condition number of coefficient matrix for example pipe network 
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Table 1.  Properties of the coefficient matrix M 

Matrix M Property hq ˆˆ -formulation ĥ -formulation q̂ -formulation 

Unknowns 2np+nn nn 2np 

Total Elements (2np+nn)
2
 nn

2
 (2np)

2
 

Non-Zero Elements 8np–2nrc–nruc 2np+nn–2nrc 10np–4nn–3nrc 

Frequency-Independent Elements 4np–2nrc+nruc 0 2np–nrc 

Frequency-Dependent Elements 4np–2nruc 2np+nn–2nrc 8np–4nn–2nrc 

 

 


