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We present a version of the newsvendor problem where one has n observations of p features as well as

past demand. We consider both “big data” (p/n = O(1)) as well as small data (p/n = o(1)). For small

data, we provide a linear programming machine learning algorithm that yields an asymptotically optimal

order quantity. We also derive a generalization bound based on algorithmic stability, which is an upper

bound on the expected out-of-sample cost. For big data, we propose a regularized version of the algorithm

to address the curse of dimensionality. A generalization bound is derived for this case as well, bounding

the out-of-sample cost with a quantity that depends on n and the amount of regularization. We apply the

algorithm to analyze the newsvendor cost of nurse staffing using data from the emergency room of a large

teaching hospital and show that (i) incorporating appropriate features can reduce the out-of-sample cost

by up to 23% relative to the featureless Sample Average Approximation approach, and (ii) regularization

can automate feature-selection while controlling the out-of-sample cost. By an appropriate choice of the

newsvendor underage and overage costs, our results also apply to quantile regression.

Key words : big data, newsvendor, machine learning, Sample Average Approximation, statistical learning

theory, nurse staffing, quantile regression
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1. Introduction

The classical newsvendor problem assumes that the probability distribution of the demand is fully

known. It is clear, however, that one almost never knows the distribution of the demand. Realisti-

cally, one might instead have demand data from the past, including data about many features that

are potentially associated with the demand. In this paper, we investigate the newsvendor problem

when one has access to past demand observations as well as a large number of features about the

demand. By features we mean exogenous variables (factors) that are predictors of the demand and

are available to the decision maker before the ordering occurs. Relevant features could be derived

from the seasonality (day, month, seasons), weather forecasts and various economic indicators.

With the current interest in big data analytics, many organizations are starting to systematically

collect such information, and this work investigates the newsvendor problem for precisely this type
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of a situation. Formally, we assume that an unknown joint probability distribution exists between

the demand and the p features used to predict the demand, and that we have a sample of size

n drawn from this distribution. It is possible to have big data; that is, p/n= O(1). We consider

learning from these past data: given a new period a new set of features, the decision maker chooses

an appropriate order quantity.

In the classical newsvendor problem, the optimal order quantity is the critical fractile of the

inverse cumulative distribution of the demand. In practice, however, it is quite restrictive to assume

that the demand distribution is known, and in recent years there have been many efforts to

relax this assumption. One main direction has been the nonparametric (“data-driven”) approach,

whereby instead of the full knowledge of the demand distribution, the decision maker has access

to independent and identically distributed (iid) demand data to estimate the expected newsvendor

cost. Levi et al. (2007) first considered the Sample Average Approximation (SAA) approach to the

newsvendor problem as well as its multiperiod extension. They derive a sample size bound; that is,

a calculation of the minimal number of observations required in order for the estimated solution

to be near-optimal with high probability. In this paper, we extend Levi et al. (2007), who did not

consider features, by deriving a bound on the out-of-sample cost of the newsvendor problem for

p 6= 0 (NB: we retrieve the bound of Levi et al. (2007) if p is set to zero). As far as we are aware,

this paper is the first to derive insights about the data-driven newsvendor problem when features

are involved.

Other perspectives on the data-driven newsvendor include Liyanage and Shanthikumar (2005),

who showed that integrating estimation and optimization (“operational statistics”) perform better

than separating them, Huh et al. (2011) and Besbes and Muharremoglu (2013) who provide the-

oretical insights into the newsvendor problem with censored demand data, and Levi et al. (2011),

who improve upon the bound of Levi et al. (2007) by incorporating more information about the

demand distribution, namely through the weighted mean spread.

Alternatively, Scarf et al. (1958) and Gallego and Moon (1993) considered a minimax approach;

whereby the decision maker maximizes the worst-case profit over a set of distributions over distri-

butions with the same mean and standard deviation. Perakis and Roels (2008) consider a minimax

regret approach for the newsvendor with partial information about the demand distribution. None

of the above mentioned works incorporate feature information.

Summary of contributions

(i) We introduce the newsvendor problem where the decision-maker has access to past feature

information as well as the demand. We show that the optimal order quantity can be learned
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via a linear programming (LP) algorithm that can be used broadly for both iid as well as time-

dependent data. This algorithm is based on the empirical risk minimization principle [for an in-

depth discussion of this approach, see Vapnik (1998)].

(ii) We provide tight probabilistic bounds on the out-of-sample cost of the data-driven newsven-

dor with feature information. Our bounds do not make any assumption about the feature-demand

relationship, or the distribution of the demand beyond the existence of finite mean. Both results

show how the out-of-sample cost (the “generalization error”) of a decision is bounded by the in-

sample cost and a complexity term that scales as 1/
√
n. The first bound is useful for the low p

setting, where regularization is not necessary, and the second bound handles the high dimensional

setting. The first bound depends on p and reflects problems with the curse of dimensionality when

p is too large and regularization is not used. Consequently, in order to reduce the out-of-sample

cost, which is what the decision maker really cares about, s/he must carefully choose the features

to use in order to prevent overfitting (having too many features and a large generalization error)

with respect to the amount of training data when regularization is not used. This bound reflects

that regularization becomes necessary in higher dimensions, motivating the second bound. For

high p, our second bound scales inversely with the regularization parameter, and does not depend

explicitly on p.

(iii) We demonstrate that our LP algorithm can be effective for nurse staffing in a hospital

emergency room. In particular, we show that the nurse staffing costs in the emergency room of

a large teaching hospital in the United Kingdom can be reduced by up to 23% compared to

the featureless SAA approach by appropriately incorporating high-dimensional feature data. This

setting is similar to He et al. (2012), who consider staffing in a hospital operating room (OR) with

two features (number and type of cases) to predict the required OR time. Our investigation is

different, however, because we are interested in the effect of high-dimensionality of the training

data on the out-of-sample cost.

Before proceeding, we also mention that by a certain choice of the underage and overage costs,

our feature-based newsvendor algorithm reduces to nonparametric quantile regression. The results

in this paper thus also extend to nonparametric quantile regression [see Koenker (2005) for a general

reference, Takeuchi et al. (2006) and Steinwart and Christmann (2011) for up-to-date results at

the time of writing].

2. Problem setup

The Newsvendor Problem A company sells perishable goods and needs to make an order before

observing the uncertain demand. For repetitive sales, a sensible goal is to order a quantity that

minimizes the total expected cost according to:

min
q≥0

EC(q) :=E[C(q;D)], (1)
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where q is the order quantity, D ∈D is the uncertain (random) future demand,

C(q;D) := b(D− q)+ +h(q−D)+ (2)

is the random cost of order q and demand D, and b and h are respectively the unit backordering

and holding costs. If the demand distribution, F , is known and does not depend on covariates, one

can show the optimal decision is given by

q∗ = inf

{
y : F (y)≥ b

b+h

}
. (3)

The Data-Driven Newsvendor Problem In reality, the decision maker does not know the

true distribution. Again assume the demand cannot be predicted from external covariates. If one

has access to historical demand observations d(n) = [d1, . . . , dn], then the sensible approach is to

substitute the true expectation with an sample average expectation and solve the resulting problem:

min
q≥0

R̂(q;d(n)) =
1

n

n∑
i=1

[b(di− q)+ +h(q− di)+], (SAA)

where we use the ˆ notation to emphasize quantities estimated from data. This approach is called

the Sample Average Approximation (SAA) approach in stochastic optimization [Shapiro et al.

(2009)].

The Big Data Newsvendor Problem The data-driven newsvendor problem is too simplistic

to hold in many real situations; in reality, one can collect data on exogenous information about

the demand as well as the demand itself. In other words, the newsvendor has access to a richer

information base from which s/he can make the present decision. We thus consider the newsvendor

who has access to the historical data Sn = [(x1, d1), . . . , (xn, dn)], where xi = [x1
i , . . . , x

p
i ] represents

features about the demand such as seasonality (day, month, season), weather and planning data for

the local area. It is possible for the decision maker to have big data, where the number of features

p is of a non-negligible size compared to the number of observations n, that is, p/n = O(1). We

assume the newsvendor observes the features xn+1 before making the next ordering decision.

The goal now is to compute an order quantity at the beginning of period n+ 1, after having

observed the features xn+1. Thus the problem now becomes that of finding the optimal function q(·)

that maps the observed features xn+1 ∈X to an order q(xn+1)∈R. Then the Big Data Newsvendor

(BDNV) problem is:

min
q∈Q={f :X→R}

R̂(q(·);Sn) =
1

n

n∑
i=1

[b(di− q(xi))+ +h(q(xi)− di)+] (BDNV)

where R̂ is called the empirical risk of function q with respect to dataset Sn, and this algorithm is

an empirical risk minimization algorithm.
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To solve (BDNV), one needs to specify the function class Q. The size or “complexity” of Q

controls overfitting or underfitting: for instance, if Q is too large, it will contain functions that fit

the noise in the data, leading to overfitting. Let us consider linear decision rules of the form

Q=

{
q :X →R : q(x) = q>x =

p∑
j=1

qjxj

}
,

where x1 = 1, to allow for a feature-independent term (an intercept term). This is not restrictive,

as one can easily accommodate nonlinear dependencies by considering nonlinear transformations

of basic features. The choice of Q can then be more or less complex depending on which transfor-

mations are included. We can solve (BDNV) via the following linear program:

NV Algorithm with Features

min
q:q(x)=

∑p
j=1 q

jxj
R̂(q(·);Sn) =

1

n

n∑
i=1

[b(di− q(xi))+ +h(q(xi)− di)+]

≡ min
q=[q1,...,qp]

1

n

n∑
i=1

(bui +hoi)

s.t. ∀ i= 1, . . . , n :

ui ≥ di− q1−
p∑
j=2

qjxji

oi ≥ q1 +

p∑
j=2

qjxji − di

ui, oi ≥ 0 (NV-algo)

where the dummy variables ui and oi represent, respectively, underage and overage costs in period

i.

3. Generalization Bounds on the Out-of-Sample Cost

In what follows we will provide two probabilistic bounds on the estimated sample cost. Because

we formulated the BDNV algorithm to fit into the framework of empirical risk minimization, we

are able to use modern tools from machine learning. In particular, we will use algorithmic stability

analysis which measures how much an algorithm’s predictions change when one of the training

examples is removed. If the algorithm is robust to the change in the sample, it tends to generalize

better to new observations.

Let us define the true risk as the expected out-of-sample cost, where the expectation is taken

over an unknown distribution over X ×D, where X ⊂Rp. Specifically

Rtrue(q) :=Ex,d[C(q(x);d)].
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We are interested in minimizing this cost, but we cannot measure it as the distribution is unknown.

Recall that the empirical risk is the average cost over the training sample:

R̂(q;Sn) :=
1

n

n∑
i=1

C(q(xi), di).

The empirical risk can be calculated using the data, and we would wish that a combination of the

empirical risk and other calculable features lead to an upper bound on the true risk.

In what follows, the random demand is denoted by D, and is assumed to be bounded: D ∈
D := [0, D̄]. The domain is also bounded, in particular, we assume all feature vectors live in a ball:

‖x‖22 ≤Xmax for all x. As before, the historical (‘training’) set of data is given by Sn = {(xi, di)}ni=1.

Theorem 1 (Generalization Bound for (NV-algo)). Let q̂ be the model produced by Algo-

rithm (NV-algo). Define D̄ as the maximum value of the demand we are willing to consider. The

following bound holds with probability at least 1− δ over the random draw of the sample Sn, where

each element of Sn is drawn i.i.d. from an unknown distribution on X ×D:

Rtrue(q̂)≤ R̂(q̂;Sn) + (b∨h)D̄

[
2(b∨h)

b∧h
p

n
+

(
4(b∨h)

b∧h
p+ 1

)√
ln(1/δ)

2n

]
.

This bound can be used for small p as it scales nicely as 1/
√
n. However it suggests that the

generalization error of the newsvendor cost could scale as O(p/
√
n), meaning that if the number of

features is large relative to the number of observations, the previous bound would give a vacuous

result. In the case of big data, i.e., when the ratio of the number of features to observations

p/n=O(1), we suggest instead solving the following regularized version of (NV-algo):

NV Algorithm with Regularization

min
q:q(x)=

∑p
j=1 q

jxj
R̂(q(·);Sn) +λ||q||22 =

1

n

n∑
i=1

[b(di− q(xi))+ +h(q(xi)− di)+] +λ||q||k

≡ min
q=[q1,...,qp]

1

n

n∑
i=1

(bui +hoi)

s.t. ∀ i= 1, . . . , n :

ui ≥ di− q1−
p∑
j=2

qjxji

oi ≥ q1 +

p∑
j=2

qjxji − di

ui, oi ≥ 0, (NV-reg)

where λ > 0 is the regularization parameter and ||q||2 denotes the L2-norm of the vector q =

[q1, . . . , qp]. The problem is a quadratic program, which can be solved efficiently using widely

available conic programming solvers.

We present the following generalization bound for (NV-reg).
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Theorem 2 (Generalization Bound for (NV-reg)). Define X2
max as the largest possible

value of ‖x‖22 that we are willing to consider. Let q̂ be the model produced by Algorithm (NV-reg).

Define D̄ as the maximum value of the demand we are willing to consider. The following bound

holds with probability at least 1− δ over the random draw of the sample Sn, where each element of

Sn is drawn i.i.d. from an unknown distribution on X ×D:

Rtrue(q̂)≤ R̂(q̂;Sn) + (b∨h)

[
(b∨h)X2

max

nλ
+

(
2(b∨h)X2

max

λ
+ D̄

)√
ln(1/δ)

2n

]
. (4)

This bound does not depend explicitly on p, indicating that Algorithm (NV-reg) can gracefully

handle problems with the curse of dimensionality through regularization. In fact p can implicitly

enter the bound through the choice of the regularization parameter λ, which should necessarily be

chosen depending on the ratio of features to dimensions. For large p, the bound indicates that it is

sensible to choose λ≤O(1/p), for example λ=O(1/p2). Note additionally that λ should be chosen

relative to X2
max.

Last, both bounds of Theorem 1 and 2 scale appropriately with δ, as O(
√

ln(1/δ)).

The rest of this section is devoted to the proofs of the main theorems.

3.1. Proofs of Main Theorems

Figure 1 A plot illustrating that the difference |C(qn(x),D(x))−C(qn\i(x),D(x))| is bounded.

We will use tools from algorithmic stability analysis to prove our results. Stability bounds were

originally developed in the 1970’s [Rogers and Wagner (1978), Devroye and Wagner (1979a) and

Devroye and Wagner (1979b)], and was revitalized in the early 2000’s Bousquet and Elisseeff (2002).

Denoting the training set by Sn = {z1 = (x1, d1), . . . , zn = (xn, dn)}, we define the following mod-

ified training set:

S\in := {z1, . . . , zi−1, zi+1, . . . , zn},
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which will be handy for the rest of the paper.

A learning algorithm is a function A from Zn into Q ⊂ DX , where DX denotes the set of all

functions that map from X to D. A learning algorithm A maps the training set Sn onto a function

ASn : X → D. A learning algorithm A is symmetric with respect to Sn if for all permutations

π : Sn→ Sn of the set Sn,

ASn =Aπ(Sn) =A{π(z1),...,π(zn)}.

In other words, a symmetric learning algorithm does not depend on the order of the elements in

the training set Sn.

The loss of the decision rule q ∈Q with respect to a sample z = (x, d) is defined as

`(q, z) := c(q(x), d),

for some cost function c, which in our work will become the newsvendor cost C.

In what follows, we assume that all functions are measurable and all sets are countable. Also

assume Q is a convex subset of a linear space. Our algorithm for the learning newsvendor problem

turns out to have a very strong stability property, namely it is uniformly stable. In what follows

we define this notion of stability and prove that the BDNV algorithm is uniformly stable in two

different ways, in Theorem 3 and Theorem 4. The fact that the algorithm possesses these properties

is interesting independently of other results. As we will discuss later, the proofs of Theorems 2 and

1 follow immediately from the stability properties.

Definition 1 (Uniform stability, Bousquet and Elisseeff (2002) Def 6 pp. 504). A

symmetric algorithm A has uniform stability α with respect to a loss function ` if for all Sn ∈Zn

and for all i∈ {1, . . . , n},

‖`(ASn , ·)− `(AS\i
n
, ·)‖∞ ≤ α. (5)

Furthermore, an algorithm is uniformly stable if α= αn ≤O(1/n).

The following will be the main result we need to prove Theorem 1.

Theorem 3 (Uniform stability of (NV-algo)). The learning algorithm (NV-algo) with

i.i.d. data is symmetric and uniformly stable with respect to the newsvendor cost function C(·, ·)

with stability parameter

αn =
D̄(b∨h)2

(b∧h)

p

n
. (6)

We will use the following lemma in the proof of Theorem 3.
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Lemma 1 (Exact Uniform Bound on the NV Cost). The newsvendor cost function C(·, ·)

is bounded by (b∨h)D̄, which is tight in the sense that:

sup
(x,D)∈X×D

|C(qn(x),D(x))|= D̄(b∨h).

Proof. (Of Lemma 1) Clearly, D̄(b∨h) is an upper bound on |C(q, d)| for all q, d∈ [0, D̄]. Now

if d= 0 and qn(x) = D̄, |C(qn(x), d)|= D̄h. Conversely, if d= D̄ and qn(x) = 0, |C(qn(x), d)|= D̄b.

Hence the upper bound is attained. �

Now for the proof of the theorem.

Proof. (Of Theorem 3) Symmetry follows from the fact that the data-generating process is i.i.d..

For stability, we will change our notation slightly to make the dependence on n and Sn explicit.

Let

qn(x) := q>nx =

p∑
j=1

qjnxj

and

qn\i(x) := q>n\ix =

p∑
j=1

qjn\ixj

where

[q1n, . . . , q
p
n] = arg min

q=[q1,...,qp]

R̂(q;Sn) =
1

n

n∑
j=1

b(dj − p∑
j=1

qjxj

)+

+h

(
p∑
j=1

qjxj − dj

)+


is the solution to (NV-algo) for the set Sn without regularization, and

(q1n\i, q
1
n\i) = arg min

q=[q1,...,qp]

R̂(q;S\in ) =
1

n

n∑
j=1

b(dj − p∑
j=1

qjxj

)+

+h

(
p∑
j=1

qjxj − dj

)+


is the solution to (NV-algo) for the set S\in without regularization. Note that:

R̂(q;Sn) =
n− 1

n
R̂(q;S\in ) +

1

n
R̂(q;Si),

where Si = (xi, di).

By definition, the algorithm is stable if for all Sn ∈Zn and i∈ {1, . . . , n},

sup
(x,D)∈X×D

|C(qn(x),D(x))−C(qn\i(x),D(x))| ≤ αn,

where αn ≤O(1/n). Now for a fixed x, we have, by the Lipschitz property of C(q; ·),

sup
(x,D)∈X×D

|C(qn(x),D(x))−C(qn\i(x),D(x))| ≤ sup
(x,D)∈X×D

(b∨h)|qn(x)− qn\i(x)|.
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(See Fig. 1). So we want to bound

|qn(x)− qn\i(x)|=

∣∣∣∣∣
p∑
j=1

qjnxj −
p∑
j=1

qjn\ixj

∣∣∣∣∣ .
By the convexity of the function R̂n(·, S), we have (see Section 23 of Rockafellar (1997)):

p∑
j=1

νj(q
j
n\i− q

j
n)≤ R̂(qn\i;Sn)− R̂(qn;Sn)

for all ν = [ν1, . . . , νm] ∈ ∂R̂(qn;Sn) (set of subgradients of R̂(·, Sn) at qn). Further, because 0 ∈

∂R̂(qn;Sn) by the optimality of qn, we have

0≤ max
ν∈∂R̂(qn;Sn)

p∑
j=1

νj(q
j
n\i− q

j
n)≤ R̂(qn\i;Sn)− R̂(qn;Sn)

where the max over ν can be attained because ∂R̂(qn;Sn) is a compact set. Denote this maximum

ν∗. We thus have

R̂(qn\i;Sn)− R̂(qn;Sn)≥ |ν∗>(qn\i−qn)|=
p∑
j=1

ν∗j (qjn\i− q
j
n)

≥ |ν∗j (qjn\i− q
j
n)|= |ν∗j ||q

j
n\i− q

j
n| for all j = 1, . . . p

where the second inequality is because ν∗j (qjn\i−qjn)> 0 for all j because R̂(·;Sn) is piecewise linear

and nowhere flat. Thus we get, for all j = 1, . . . , p,

|qjn\i− q
j
n| ≤

R̂(qn\i;Sn)− R̂(qn;Sn)

|ν∗j |
.

Let us bound R̂(qn\i;Sn)− R̂(qn;Sn). Note

R̂(qn;Sn) =
n− 1

n
R̂(qn;S\in ) +

1

n
R̂(qn;Si)

≥ n− 1

n
R̂(qn\i;S

\i
n )

since qn\i is the minimizer of R̂(·;S\in ). Also, R̂(qn;Sn)≤ R̂(qn\i;Sn) since qn is by definition the

minimizer of R̂(·;Sn). Putting these together, we get

n− 1

n
R̂(qn\i;S

\i
n )− R̂(qn\i;Sn)≤ R̂(qn;Sn)− R̂(qn\i;Sn)≤ 0

=⇒ |R̂(qn;Sn)− R̂(qn\i;Sn)| ≤
∣∣∣∣n− 1

n
R̂(qn\i;S

\i
n )− R̂(qn\i;Sn)

∣∣∣∣
=

∣∣∣∣n− 1

n
R̂(qn\i;S

\i
n )− n− 1

n
R̂(qn\i;S

\i
n )− 1

n
R̂(qn\i;Si)

∣∣∣∣
=

1

n
|R̂(qn\i;Si)|.
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Thus

sup
(x,D)∈X×D

(b∨h)|qn(x)− qn\i(x)| ≤ sup
(x,D)∈X×D

(b∨h)

(
p∑
j=1

|qjn− q
j
n\i||xj|

)

≤ sup
(x,D)∈X×D

(b∨h) ·
p∑
j=1

|xj|
|ν∗j |
· (R̂(qn\i;Sn)− R̂(qn;Sn))

= sup
(x,D)∈X×D

b∨h
n
·

p∑
j=1

|xj|
|ν∗j |
· |R̂(qn\i;Si)|. (8)

We can further simplify the upper bound (8) as follows. Recall that ν∗ is the subgradient of

R̂(·;Sn) at qn that maximizes
∑p

j=1 νj(q
j
n\i− qjn); and as ∂R̂(qn;Sn) is compact (by the convexity

of R̂(·;Sn)), we can compute ν∗ exactly. It is straightforward to show:

ν∗j =

{
−bxj if qjn\i− qjn ≤ 0

hxj if qjn\i− qjn ≥ 0 ∀ j.

We can thus bound 1/|ν∗j | by 1/[(b∧h)|xj|]. By using the tight uniform upper bound (b∨h)D̄ on

each term of |R̂(·, ·)| from Lemma 1, we get the desired result. �

We move on to the main result needed to prove Theorem 2.

Theorem 4 (Uniform stability of NV-reg). The learning algorithm (NV-reg) is symmetric,

and is uniformly stable with respect to the NV cost function C with stability parameter

αrn =
(b∨h)2

n

X2
max

2λ
. (9)

Let us build some terminology for the proof of Theorem 4.

Definition 2 (σ-admissible loss function). A loss function ` defined on Q × D is σ-

admissible with respect to Q if the associated convex function c is convex in its first argument and

the following condition holds:

∀ y1, y2 ∈Y, ∀ d∈D, |c(y1, d)− c(y2, d)| ≤ σ|q1− q2|, (10)

where Y = {y : ∃ q ∈Q, ∃ x∈X : q(x) = y} is the domain of the first argument of c.

Theorem 5 (Bousquet and Elisseeff (2002) Theorem 22 pp 514). Let F be a reproduc-

ing kernel Hilbert space with kernel k such that ∀ x ∈ X , k(x,x)≤ κ2 <∞. Let ` be σ-admissible

with respect to F . The learning algorithm A defined by

ASn = arg min
g∈F

1

n

n∑
i=1

`(g, zi) +λ||g||2k (11)

has uniform stability αn wrt ` with

αn ≤
σ2κ2

2λn
.
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Note that Rp is a reproducing kernel Hilbert space where the kernel is the standard inner product.

Thus, κ in our case is Xmax.

Proof. (Of Theorem 4) By the Lipschitz property of C(·;d),

sup
d∈D

|C(q1(x), d)−C(q2(x), d)| ≤ (b∨h)|q1(x)− q2(x)|, ∀q1(x), q2(x)∈Q (12)

as before, hence C :X ×D→R is (b∨h)-admissible. Hence by Theorem 5 the algorithm (NV-reg)

has uniform stability with parameter αrn as given. �

We have thus far established the stability of the big-data newsvendor algorithm (NV-algo) for

low- and high-dimensional problems, which lead immediately to the risk bounds provided in The-

orem 2 and Theorem 1 following the established theorems relating stability to generalization, as

follows.

Denote the generic true and empirical risks for general algorithm A as:

Rtrue(A,Sn) :=Ezn+1
[`(ASn , zn+1)] and R̂(A,Sn) :=

1

n

n∑
i=1

`(ASn , zi).

Theorem 6 (Bousquet and Elisseeff (2002) Theorem 12 pp 507). Let A be an algo-

rithm with uniform stability αn with respect to a loss function ` such that 0≤ `(ASn , z)≤M , for

all z ∈Z and all sets Sn of size n. Then for any n≥ 1 and any δ ∈ (0,1), the following bound holds

with probability at least 1− δ over the random draw of the sample Sn:

Rtrue(A,Sn)≤ R̂(A,Sn) + 2αn + (4nαn +M)

√
ln(1/δ)

2n
. (13)

Proof. (Of Theorem 2) By Lemma 1, 0≤ `(AS, z)≤ D̄(b∨ h) for all z ∈ Z and all sets S. The

result then follows from Theorems 4 and 6. �

4. Case study: nurse staffing in a hospital emergency room

In our numerical study, we consider nurse staffing in a hospital emergency room. Assuming a

mandatory nurse-to-patient ratio, nurse staffing in an emergency room can be cast as a newsvendor

problem in that if too many patients arrive, expensive agency nurses have to be called, incurring an

underage cost, whereas if there are not many patients, regular nurses sit idle, incurring an overage

cost. As nurse staffing contributes to a significant portion of hospital operations [see Green et al.

(2013) and references therein], a sophisticated machine learning algorithm that can better predict

the newsvendor critical minimum fractile and cost has potential for much impact.

Our data comes from the emergency room of a large UK teaching hospital from July 2008

to June 2009. The data include the total number of patients in the emergency room at 2-hour

intervals. We assume the hourly wage of an agency nurse is 2.5 times that of a regular nurse, that
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No. of past days inc. Total no. of features (p) Average Cost (% of SAA) Improvement stat. sig.?
0 2 96.17 No
2 26 93.90 No
4 50 93.40 No
6 74 91.29 Yes
8 98 86.66 Yes
10 122 85.67 Yes
12 146 84.82 Yes
14 170 83.58 Yes
16 194 81.40 Yes
18 218 77.74 Yes
20 242 77.06 Yes
22 266 76.58 Yes
24 290 76.78 Yes

Table 1 The out-of-sample cost (NV-algo) with increasing number of features (past demands) relative to

featureless SAA approach on validation dataset.

is b= 2.5/3.5 and h= 1/3.5, yielding the target fractile b/(b+h) = 2.5/3.5. We use as features the

day of the week, time of the day and m number of past demands. Our aim is to investigate whether

incorporating features can improve upon the featureless SAA approach, and if so, the magnitude

of improvement. We use n = 12× 7× 16 = 1344 observations as training data and compute the

3-period ahead out-of-sample newsvendor cost on 1344/2 = 672 validation data on a rolling horizon

basis (note we use the rule of thumb suggested by Friedman et al. (2009) in choosing the size of the

validation data). In Table 1, we report the ratio of the average of the feature-based newsvendor cost

to the average of the SAA newsvendor cost on the same validation dataset and indicate whether

the improvement is statistically significant at the 5% level using the Wilcoxon rank-sum test.

In Fig. (2), we plot the empirical cumulative distribution function (ecdf) of the SAA out-of-

sample costs versus the (NV-algo) on the validation dataset. Remarkably, not only does incorpo-

rating features improve upon the average out-of-sample cost, we find that the ecdf of (NV-algo) is

stochatically dominated by that of SAA, i.e. the cost of (NV-algo) is smaller than SAA at every

single percentile of the out-of-sample distribution, which is a very strong result. We also remark

that the phenomenon of overfitting seems to kick in beyond p= 266, as evidenced by the increase

in the average out-of-sample cost from p= 266 to p= 290.

5. Conclusion

This work shows how a newsvendor decision-maker who has access to past information about

various features about the demand as well as demand itself can make a sensible ordering decision.

We proposed two simple algorithms, one when the number of features is small and one when

the number of features is large (“big data”), and characterized their expected out-of-sample cost

performance analytically, leading to practical insights. Finally, we investigated nurse staffing in a
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Figure 2 The empirical cumulative distribution function of the cost of the featureless SAA approach

and the feature-based (NV-algo) approach (which uses patient numbers from 22 previous

days as features) on the validation dataset.

hospital emergency room using a real dataset from a large teachng hospital in the United Kingdom

and showed that incorporating appropriate features can reduce the average out-of-sample cost by

up to 23% relative to the featureless SAA approach.
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