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Abstract 

Most major materials extraction processes are more than 100 years old, developed at a time of limited awareness of 

their environmental impact and the issue of resources limitations.  In this context, it is proposed to look back at 

materials processes progress in parallel with the history of electric power generation. This overview reveals that 

electricity became a key energy vector for chemical and materials processing in less than a century. The role of 

electricity in the production of the highest tonnage metals, i.e. aluminium and steel proved to be crucial, leading to 

higher productivity and lower energy consumption for both metals. Finally, a review of the recent developments in 

electrolytic steel shows that new electricity-based processes are possible, offering the opportunity for a symbiosis 

between future carbon-free power generation and materials processing. 

 

1. The availability of electricity: a timeline 

 The impact of electricity on the level of technological development achieved by mankind is hard to 

summarize. The upper part of Figure 1 presents the timeline in the mastering of electricity and reveals that electric 

power became available quantitatively and reliably only at the beginning of the 19th century, thanks to a first key 

invention: the battery by A. Volta in 1799. Several decades elapsed before the second key discovery: a device that 

was able to reliably convert mechanical power to electricity, invented by M. Faraday in the form of a disk generator 

in 1831. The battery and the disk were both immediately adopted by scientists in their laboratory as a source of 

electricity. The successful demonstration of the electromagnetic conversion method led to numerous developments, 

and in particular to the invention of the dynamo for high power application by C. Wheatstone and W. Siemens 

simultaneously in 1867. The next key step in this timeline are the invention and construction of the first dam for 

electric power generation, which occurred presumably close to Niagara Falls (Schoelkopf Power Station No. 1, 

1881). One year after, the first coal-fired  power  station  was  built  and  operated  in  New  York  City  (Edison’s  Pearl  St  

station, 1882). 

 A century of inventions and developments passed before mankind was able to reliably generate large 

quantity of electricity, an achievement considered as one of the pillars of the 2nd industrial «revolution». 
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2. Adoption of electricity: the role of chemists 

 As illustrated in the center of part of  the  timeline  in  Figure  1  ‘philosophers’  of  the  early  19th century were 

well ahead of their time and immediately embraced this new form of energy as a mean to isolate elements and 

investigate their physical properties. 

 As early as 1807, the potential difference at the terminal of a battery was identified by chemists as a 

powerful  tool  for  the  investigation  of  the  ‘true  elements  of  bodies’.  It  indeed  allowed  the  experimentalists  to  expose  

any chemical media to a finite and controllable difference of chemical potential. Helped by the availability at the 

Royal Society of the world largest battery, H. Davy became a chemist of standing and isolated alkaline and alkaline 

earth elements thanks to electrolysis [1]. The isolation of these reactive elements was a first in chemistry and helped 

in less than two decades to separate other elements thanks to metallothermic reaction, e.g. beryllium («glucinium» 

by  reduction  of  its  chloride  salts  with  electrolytic  potassium  [2,3]).  Less  than  two  decades  after  Volta’s  invention, 

electricity was also identified as a mean to provide heat and obtain temperatures hardly achievable with previous 

laboratory techniques: J. G. Children melted metallic iridium and osmium in 1813 using a battery as electricity 

source [4]. It is also thanks to electricity that H. Moissan - who isolated fluorine thanks to electrolysis in 1886 [5] - 

was able to reach temperatures in excess of 3000°C in his electric furnace that relied solely on arc-generated 

radiative heat [6]. It is with this tool that he investigated diamond synthesis and the melting point of refractory 

oxides. 

 The use of a continuous source of electricity and the principle of electrolysis was also adopted by chemists 

to produce essential gases in significant quantities and in pure form: hydrogen [7], oxygen [7] or  ozone1. Some of 

these  processes  or  products  nowadays  are  interestingly  advocated  as  a  solution  to  mitigate  mankind’s  impact  on  the  

environment. The remarkable efficiency of electrolysis for separation has continued to be appraised by chemists in 

the 20th century, for example after the discovery of deuterium for the forthcoming production of heavy-water [8]. 

The production of chlorinated compounds by electrolysis2 was also an early discovery and scaled up at the pace of 

industrial electricity deployment [9]. The chlor-alkali production ultimately became one of the most important 

process in the chemicals industry3, consuming around 3% of the electricity in USA. It is in this industry that 

electrochemical experts see the last technical breakthrough of key importance for energy and the environment: the 

dimensionally stable anode (DSA®) for chlorine evolution invented by H. DeBeer and industrialized by the V. & O. 

DeNora  in  the  1970’s  [11].  From  a  materials  perspective,  it  is  fair  to stress that the technological progress and the 

sustainability of these electrochemical processes relied intensively on the application of materials science which 

provides a link to the section below. 
                                                 
1 Ozone was identified as the «odor of electricity» because of its production during thunderstorm. Its first isolation 
by electrolysis is due to C. F. Schönbein, Ber. Verh. Nat. Ges. Basel, 1838-40, 4, 58, from a lecture on March 13, 
1839, see Mordecai B. Rubin, Technion-Israel Institute of Technology, The History of ozone. The Schönbein 
Period, 1839-1868,  Bull. Hist. Chem., vol. 26, Number 1 (2001) 
2 Chlorine as an element was isolated and identified by L.J. Gay-Lussac in 1809 without assistance of electricity 
3 The  author  cannot  refrain  from  quoting  Clifford  A.  Hampel,  a  chemical  engineer  :‘The  chlorine  industry,[...],  
produces the two greatest tonnage products of the electrochemical industry [...] This statement neglects the 
production  of  steel  made  in  electrical  furnaces’,  The Encyclopedia of Electrochemistry, (1964), R. K. Krieger 
Publishing Company, Huntington, NY, p172, see [10] 
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3. Contribution of electricity to metal processing 

 The timeline in Figure 1 also shows that many philosophers at the time of Alessandro Volta were not only 

chemists,  but  also  metallurgists.  In  1805,  three  decades  before  Faraday’s  laws  on  electrolysis,  L.  Brugnatelli  

demonstrated the principle of electrodeposition  of  gold  using  Volta’s  battery  [12].  In  1808,  H.  Davy  demonstrated  

the use of an arc to melt and join metal thus giving birth to fusion welding techniques. These early successes 

initiated an intimate relationship between electricity and metallurgy at both low and high temperatures. 

 In less than 70 years, the field application of electrolytic methods in aqueous-based electrolyte was 

broadened and investigated for the extraction or manufacturing of most common metallic elements (33 out of 70) 

e.g., for plating, refining or forming [13]. Industrial electrolysis at low temperature is nowadays a key process for 

primary and secondary metal extraction, and enables the large-scale availability of some of the most important 

metals. 

 Electrolytic techniques for metal separation at high-temperatures in molten salts were also applied early as 

pioneered by H. Davy in 1807 [1]. The corresponding industrial processes were designed and operated less than a 

century later, for sodium (from sodium hydroxide by Castner in 1891 [14] and later sodium chloride electrolysis by 

Downs [15]), magnesium (chloride electrolysis principle by Faraday in 1833 [16]), lithium (commercial production 

started in 1923 from chlorides) or rare-earth elements (in chlorides or fluorides [17,18]). One metal, isolated before 

the advent of electrolysis, has lead to one of the most fascinating business and technological adventure of the 20th 

century: aluminium. Considered as a precious metal before the invention of molten cryolite electrolysis 

simultaneously by C.M. Hall [19] and P. Héroult [20] in 1886, aluminium has become a commodity in less than 25 

years. 

 The use of electricity for high temperature metal extraction or refining in electric furnaces was also 

promptly adopted, with a very sound physical understanding of the thermodynamics attributes of electricity [21] . 

The invention of the direct arc-heating furnace is credited to W. Siemens [22] as early as 1878. At that time, an arc 

was created between an electrode and the material to be processed. The combination of direct arc and resistance 

heating was patented in 1887 and operated in France (La Praz) to melt steel for the first time by the very same P. 

Héroult in 1900 [23, 24]. In this specific case the arc was generated between two electrodes through a resistive 

media - a slag - in contact with the material of interest. After several decades of domination by the Héroult type of 

furnace, and after its important transition from AC to DC operation, direct arc heating furnaces for smelting 

operation became commercially available to process oxide materials and are used today for the extraction of a wide 

range of products, from ferro-alloys to platinum group elements [25].  

4. Benefits of materials processing with electricity 

 The use of electricity in metal production provides unique process attributes: low capital cost, high purity 

of the metal product, easy process control, flexible production capacity... These key features shall not mask another 

asset of the industrial application of electricity: using electricity helps to reduce the energy consumption and 

improve productivity. 
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In the context of the promotion of sustainable materials processing techniques, it is of interest to recall the trend in 

the energy intensity4 for aluminium production (Hall-Héroult electrolytic process (HH)) along with the increase in 

the corresponding reactor productivity (Figure 2). These data are praised by the aluminium sector and are worth 

sharing with the whole materials community: the use of electricity led simultaneously to a rapid and drastic 

reduction of the specific energy consumption and a considerable increase in the cell capacity (productivity per 

square meter of cathode). For comparison, the time variation of the energy consumption for primary steel production 

(ironmaking, Blast-Furnace based (BF)) and steel electric remelting (Electric Arc Furnace (EAF) based) is presented 

in Figure 2 revealing a similar rate of improvement during the same period, though limited to an energetic efficiency 

factor  slightly higher than 2 for BF, while aluminium is close to 1.5. 

  The less favorable efficiency for ironmaking may be due to the reliance on a gas-solid reduction reaction 

which require numerous pre- and post- operations (coke oven, sintering, basic oxygen furnace respectively), 

ultimately leading to temperature discontinuities and energy losses along the various steps [2]. One has to emphasize 

that these numerous steps have been developed on purpose to guarantee the impressive productivity of the blast-

furnace. As a matter of fact some ironmaking integrated plants are operating today close to what is considered an 

optimal level of energy consumption, although radically different techniques are under development to allow further 

reduction in energy intensity and GHG emissions. Interestingly, in the USA and some other countries, a significant 

reduction in energy consumption and CO2 emissions for steelmaking occurred at the end of the 20th century (Figure 

3), coinciding with a more intensive use of the electric arc furnace. This demonstrates that using electricity for 

steelmaking is a modern reality and actually provides benefits. 

 

5. The ironmaking dilemma 

 The ironmaking issue is a key challenge both from the society and engineering standpoints. The immediate 

availability of carbon sources, initially as charcoal, has tied the iron smelting operation to carbon around 4000 years 

ago [26]. This successful relationship is a gift to mankind: both carbon and iron oxide are abundant, the Gibbs 

energy of formation of iron oxide is low - it is relatively easy to reduce iron oxide to metal -, carbon provides unique 

mechanical properties to iron and finally the amount of heat generated during the combustion of carbon is sufficient 

to guarantee the production of molten metal. Without any attempts to criticize the technological and scientific 

developments that shaped the existing steel industry processing it is of interest to review the fundamental nature of 

iron extraction. 

 Adopting a holistic approach - backed-up by thermodynamics -, one can depict the extraction of iron from 

the oxide as a separation process, an operation which in principle does not require the use of another chemical. To 

be efficient, this step requires careful monitoring of the amount of chemical energy, equivalent to work in 

thermodynamic terms [30]. This is needed to separate the oxygen anions from the metal (reaction 1). 

                                                 
4 The energy index is defined here as the ratio of the actual specific energy consumption (Best Available Technique) 
to the thermodynamic minimum for the oxide separation into its constitutive elements (metal and oxygen) in the 
case of primary extraction, and minimum heat needed to melt the metal in the case of the EAF. This is a fair 
comparison for production of primary aluminium and steel since both processes rely on the use of carbon as reactant 
and ultimately produce CO2. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

5 

 
Simultaneously a definite amount of heat is needed to sustain the reaction and obtain the metal in the liquid form. 

 A carbonated chemical (carbon, or more accurately CO) was used in the early age of mankind to provide 

the work needed to conduct the separation, but its reaction with the iron oxide is difficult to master on large scale. 

An advanced reactor to operate this reaction has therefore been developed i.e. the blast-furnace (BF). 

 As noticed in the schematic of current ironmaking flow-sheet (Figure 4), a number of reactors have been 

added to the BF to produce virgin steel at high tonnage today. Indeed, to cope with the gas/solid reaction principle 

and provide high enough productivity, ancillary steps have ingenuously been designed to prepare the compounds 

needed for the reduction (lime, sintering/pelletizing and coke plant). Because the reduction temperature is achieved 

by combustion, oxygen is used in the blast, requiring nitrogen separation for better efficiency. At that stage, the 

reactants, fluxes and fuels are ready to be introduced in the BF. These preparations are required to achieve the 

simultaneous control of the three most important chemical engineering phenomena in the reduction step: 1) the 

gases, solids, and liquids pattern; 2) the advancement of the reaction and 3) the heat-balance. Despite these 

astonishing engineering developments, and because of the large affinity of carbon for iron, the level of the former 

element in the product out of the blast-furnace («pig iron») is far too high for most applications. A decarbonization 

step (basic oxygen furnace or converter) is therefore added in which oxygen is used to eliminate the excess of 

carbon reductant initially introduced. It is only after these processing steps that steel of acceptable carbon content is 

obtained, and secondary metallurgists can operate. 

 

 We therefore see that the chemical approach for steel production in a single high capacity reactor requires 

large capital investments in both the BF and its ancillary reactors and is likely to pose some challenges in reducing 

further the energy consumption [32]. Furthermore, one of the key consequences in the dependency on carbonated 

compounds is the nature of the gases ultimately emitted, CO and CO2. In the early 21st century, it is established that 

the most advanced integrated steel mills have a greenhouse gases intensity of around 1.8 tCO2.tHotRolledCoil
-1 [31]. 

 From the society perspective, the low price-point of steel - less than 0.6 $.kg-1 - and its world annual 

consumption - 1.5 billion tonnes -, make its sustainability issue of key importance: steel currently ranks number 1 

materials in terms of Greenhouse Gases impact in most developed countries. This reality has been acknowledged as 

early  as  1990’s  by  steelmakers  and  metallurgists  [32,33],  and  ultimately  lead  to  the  bold  and  pioneer  decision  of  the  

steel industry to investigate new methods for steel-production, all across the globe and with various approaches and 

targets5. Some of these approaches, interestingly, consider taking further advantage of electricity for steelmaking 

thus bridging the existing technological gap between iron and the other metals. 

 

6. Challenges in existing electrochemical techniques for metal extraction 

 The picture presented above that describes the efficiency and importance of electricity-based materials 

processing does not imply the absence of technical challenges in electrochemical technologies. 

                                                 
5 For example Ulcos (www.ulcos.org) in Europe in 2004, AISI CO2 Breakthrough (http://www.steel.org) in North 
America in 2005, Course 50 (http://www.jisf.or.jp/course50/outline/index_en.html) in Japan in 2008 

  Fe2O3 2Fe + 3
2 O2( g )
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 Metal extraction by aqueous electrochemistry suffers many limitations for high throughput and low specific 

energy consumption. The low current density - typically less than 0.05A.cm-2, the limited cell height, the large inter-

electrode distances, the presence of a physical separator between the electrodes, or the limited deposit thickness due 

to dendritic growth are individually or collectively responsible for these limitations. 

 High current densities are obtained in molten salts but in processes that produce solid metal lead to 

dendritic or powder deposits. This product form requires significant additional energy downstream for rinsing and 

salts recovery, as well as numerous pre or post-processing steps (powder handling, compaction, re-melting). The 

batch-mode of operation of these processes clearly limits their field of application. One of the key issue for the 

sustainability of molten-salts electroextraction processes is the absence of satisfactory inert anode materials, i.e. 

which could replace consumable carbon electrode and sustains oxygen evolution. This «ultimate materials» 

challenge [34], despite some pioneering efforts, remains current in particular for fluoride-based electrolyte. 

 

7. Openings: direct oxide processing at low and high temperature by electrolysis 

 Innovative approaches therefore seem requested to adapt electrolytic techniques for tonnage production of 

metals. Two paths have recently been proposed and demonstrated for iron, at low and high temperature. These 

techniques are not limited to this element by any means, but they do point the way with respect to such high tonnage 

- low cost metal. 

 At low temperature (100°C), the electrolysis of iron oxides particles in suspension was patented in 1918 

35]. It consists in the electrolysis of iron oxide particles (hematite typically) in a concentrated aqueous alkaline 

electrolyte (pH=15, 100°C). The particles are suspended at relatively high concentration and are subjected to 

electrolysis following reaction (2) on the cathode and (3) on the anode: 

   (2) 

          
     (3) 

It is only recently that an insight into the cathode reaction mechanism has been provided, revealing a topochemical 

electroreduction mechanism of an oxide slab [36] operative in absence of bulk solid-state diffusion. This 

mechanism, involving reaction of particles directly in contact with the cathode without dissolution of iron ions in the 

bulk electrolyte [37] prevents loss of efficiency through ion valence shifting between the cathode and the anode. 

The mechanism justifies the high selectivity of the process (selectivity higher than 90%), the high current densities - 

up to 1.5 A.cm-2 [38], and the advanced energetic efficiency (higher than 80%).  This last feature is partly inherited 

from the high conductivity of the sodium hydroxide electrolyte, the absence of a separator, and the availability of 

high efficiency oxygen evolving anodes for such electrolyte. This unusual electrolysis configuration, which involves 

suspension handling and particle-metal surface interactions [39] has been operated in various cell designs (plates, 

cylinders [40]) and lead to the development of  large scale innovative reactor design for iron production, which 

produces plates up to 3kg and 5 mm thickness (Figure 5). 
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 The commercial version of the process is envisioned with a vertical stacking of the cells to reduce the foot print of 

the extraction process. Meanwhile, the energy consumption has reached values (2600kWh.tFe
-1) already close to the 

thermodynamic minimum, providing another example of the sole ability of electrical technique to lead to the rapid 

development of processes with high energetic efficiency.  

 At high temperature, the concept of Molten Oxide Electrolysis (MOE) championed by Prof. D. Sadoway 

[41] has been developed for a suite of metals, including iron. The key idea is to operate in a molten oxide electrolyte 

- a slag in pyrometallurgist language - in a configuration very similar to the Hall-Héroult cell. The operating 

temperature of 1600°C allows the direct production of liquid metal in a semi-continuous manner and the presence of 

an oxide melt enables the building of a frozen side-wall. This reduces the capital-costs of such high-temperature 

reactors. The demonstration of simultaneous iron production and oxygen generation at the bench scale has been 

published recently [34, 42]. Efforts have been conducted to find an anode material that sustains the corrosive oxide 

environment [43] and the oxygen evolution at such temperature. The foreseen current density (above 2A.cm-2), the 

absence of carbon in the reactor, and the low capital costs are among the key assets of this technology and explain 

the continued interest and support of this technique by steel producers worldwide. The process operates in an 

optimized energetic set-up, i.e. it is the synthesis of an electrolytic process (for the ability to provide exactly the 

amount of work needed to decompose the oxide) and the electric arc furnace6. The corresponding minimum energy 

consumption for MOE-steel is then 2600kWh.tliquid Fe
-1 which, taking into account typical heat-losses in advanced 

high-temperature electrolysis cells (40%), translates to around 3600 kWh.tliquid Fe
-1

. In such conditions, as presented 

in Figure 6, CO2 mitigation for steelmaking could be achieved as early as 2013 for example using a natural gas 

combined cycle power plant. Thus carbon-free sources of electricity can ultimately provide GHG-free steelmaking 

thanks to electrolysis.  

 Both approaches have key common features: 1) iron ore particles are directly reduced with the 

corresponding ability to process fines or ultrafines ore, 2) perfectly controlled energetic conditions are determined 

solely by the electrolyte composition and the cell design and  3) metal of unique metallurgical composition is 

produced. It is important to realize that MOE provides the advantage of directly producing molten iron at high 

throughput in a continuous manner, making it ideally designed for tonnage metal production such as steelmaking. 

 

Conclusion 

 Electricity in materials processing has a key role that started with its mastering by mankind at significant 

scale. For the extraction of metals in particular, it is noticeable that the process efficiency and productivity have 

been significantly improved at a high pace, leading to a reduction of the corresponding energy consumption as 

illustrated for aluminium. Electricity has also become a key energy vector in steelmaking and thanks to new 

concepts in electrochemistry, one may foresee its usage for primary iron production as well. Recent results indeed 

                                                 
6 Though an electric arc furnace uses the principle of an «arc», or a plasma - high voltage and low current. This is in 
striking difference with the thermodynamic requirements for metal extraction where the energy input is ideally in 
the form of work (definite cell voltage close to the thermodynamic minimum) and the productivity has to be as high 
as possible (high current).] (to provide heat in an efficient manner), taking advantage of the thermodynamic 
principle of equivalence of work and heat at high temperature 
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suggest  that  significant  mitigation  of  the  GHG  impact  of  ironmaking  is  possible  with  ‘electrolytic  steel’,  in  particular  

in the context of a decarbonization of power generation or the creation of a CO2 emissions trading system. 

 

 

 

 

Acknowledgments 

The author would like to thank Profs. Claude Lupis, David Paul and Thomas Eagar for their support and help in 

editing the document. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

9 

References 

[1] H. Davy, Philosophical Transactions of the Royal Society of London, 98, (1808) 1-44 & 333-370 
[2] A. Bussy, Journal de Chimie Médicale de Pharmacie, 4, (1828) 455–456 
[3] F. Wöhler, Annalen der Physik, 89, (1828) (8) 577–582 
[4] J.G. Children, Philosophical Transactions of the Royal Society of London, 105, (1815) 363-374 
[5] H. Moissan, Comptes Rendus Académie des Sciences, séance du 28 juin 1886, 102, (1886) 1543-1544 
[6] H. Moissan, Le four électrique, (1897), G. Steinheil Editor, Paris (available on Gallica.fr) 
[7] W. Nicholson and A. Carlisle, Journal of Natural Philosophy, Chemistry and the Arts, 4, (1801) 179-187 
[8] E. W. Washburn and H. C. Urey, Proceedings of the National Academy of Sciences of the United States of 

America, 18, (1932) (7) 496-498 
[9] Cook, Watt, Stanley Patents in 1851, then Griesheim Company Patent in Germany in 1888 
[10] D. F. W. Hardie, Electrolytic Manufacture of Chemicals from Salt, The Chlorine Institute Inc, New York, 1975 
[11] S. Trasatti, Electrochimica Acta, 45, (2000) 2377-2385  
[12] L. V. Brugnatelli, The Philosophical Magazine, 21, (1805) 187  
[13] M. H. Jacobi, The London and Edinburgh Philosophical Magazine and Journal of Science, Ser. 3, (1839) (15) 
161-165 
[14] H.Y Castner, Process of manufacturing sodium and potassium, US Patent 452,030 (1891) 
[15] J. C. Downs, Electrolytic process and cell, US Patent 1,501,756 (1924) 
[16] M. Faraday, Experimental Research in Electricity. I. 1831-1838, 2nd edition R.&J Edward Taylor, (1949) 
[17] W.F. Hillebrand and T.H. Norton, Annalen der Physik und Chemie, 155, (1875) 633-639 
[18] J. Scheidemandel, Justus Liebigs Annalen der Chemie, 355, (1907) 116-136 
[19] C. M. Hall, Process of reducing aluminium by electrolysis, US Patent, 400,766 (1889) 
[20] P. L.-T. Héroult, Process of preparing aluminium bronze and other alloys, US Patent, 387,876 (1888) 
[21] W. Borchers, Electric Furnaces: The production of heat from electrical energy and the construction of electric 
furnaces, (1908, Translated by H.G. Solomon), Longmans, Green, & Co., London 
[22] W. Siemens, UK patents, 4208 (1878) and 2110 (1879) 
[23] P. L.-T. Héroult, Oscillating electric furnace, US Patent, 707,776 (1902) 
[24] C. Combes, Revue de Métallurgie, Mémoires, tome II, (1905) 1-24, Paris 
[25] R.T. Jones, Q.G. Reynolds, and T.R. Curr, Southern African Pyrometallurgy 2011, Edited by R.T. Jones & P. 
den Hoed, Southern African Institute of Mining and Metallurgy, Johannesburg, (2011) 15-32 
[26] N. Jarrett, AIChE Symposium Series, 77 (1981) 27-38 
[27] R. Nicolle, Revue de Métallurgie, 102 (2005) 199 
[28] J. De Beer, E. Worell, and K. Blok, Annual Review of Energy and Environment, 23 (1998) 123-205 
[29] J.C. Waldbaum, «The first archaeological appearance of iron and the transition to the iron age», in The Coming 
of the Age of Iron, T. A. Wertima and J.D. Muhly Editors, NewHaven and London Yale University Press, (1980) 
69-98 
[30] H. Lavelaine de Maubeuge, F. Stoesel, Jean-Pierre Birat, ULCOLYSIS: liquid steel from iron ore electrolysis in 
molten slag, LMPC 2011, International Symposium on Liquid Metal Processing and Casting, Edited by Matthew 
J.M. Krane, Rodney L. Williamson, Jean Pierre Bellot and Alain Jardy 
[31] J.-P. Birat, J.-P. Lorrain and Y. de Lassat, Revue de Métallurgie, 9, (2009), 325-336 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

10 

[32] J.-P. Birat, M. Antoine, A. Dubs, H. Gaye, Y. de Lassat, R. Nicolle and J.-L. Roth, Revue de Métallurgie-

Cahiers  d’Informations  Techniques, 90, (1993), 411-421 
[33] C.H.P. Lupis, Metallurgical and Materials Transactions B, 30, (1997) 841-857  
[34] D.R. Sadoway, Journal of Metals, 53 (2001) (5), 34-35  
[35] Estelle, US Patent 1,275,161, (1918) 
[36] A. Allanore, H. Lavelaine, G. Valentin, J.P. Birat and F. Lapicque, Electrochimica Acta, 55, (2010) 4007- 4013  
[37] A. Allanore, H. Lavelaine, G. Valentin, J.P. Birat and F. Lapicque, Journal of the Electrochemical Society, 154, 
(2007) 187-193  
[38] B. Yuan, O. E. Kongstein, and G. M. Haarberg, Journal of the Electrochemical Society, 156, (2009) 64 
[39] A.Allanore, J. Feng, H. Lavelaine and K. Ogle, Journal of the Electrochemical Society, 157, (2010) 24-30 
[40] A. Allanore, H. Lavelaine, G. Valentin and F. Lapicque, Journal of Applied Electrochemistry, 40, (2010) 1957-
1966 
[41] D.R. Sadoway, Journal of Metals, 43 (1991) 15-19  
[42] D. Wang, A.J. Gmitter, and D.R. Sadoway, J. Electrochem. Soc., 158, (2011) 51-54  
[43] H. Kim, J. Paramore, A. Allanore, and D.R. Sadoway, J. Electrochem. Soc., 158, (2011) 101-105 
 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

11 

List of Figures 
 

Figure 1. Selective timeline of development in electricity generation (top), application of electricity for isolation of 

elements  (bottom,  ‘I’),  demonstration  of  process  principles  (bottom,  ‘P’)  and  industrial  applications  (bottom,  ‘A’).  

Sources are cited in the text. 

 

Figure 2. Chronological variation of the specific energy efficiency index (ratio between the actual specific energy 

consumption and the thermodynamic minimum,  6.6, 3.5 and 22.9 MJ/t for primary iron (BF), iron remelting (EAF) 

and aluminium (HH) respectively ([[26], AISI and [31] ), line and symbols on the left axis) and the reactor 

productivity index (ratio based on the 1990 value, provided by [27] and [30], histogram on the right axis). 

 

Figure 3. Chronological variation of the share of the electric arc furnace route (square) and the specific energy 

consumption for steel production (ratio between the actual specific energy consumption and the value in 1990, 

circles) in the United States [AISI and Iron and Steel Technology].  

 

Figure 4. Simplified flow-sheet of an integrated steel plant for production of virgin steel based on iron ore reduction 

by coal in a blast-furnace reactor. 

 

Figure 5. Deposits obtained by alkaline electrolysis of iron oxide particles in suspension, in a rotating cylinder (a, 

scale bar 2cm, deposit of 1.5kg and 5mm thickness) or parallel plates configuration (b, scale bar 10cm, deposit of 

3.5kg and 5 mm thickness). 

 

Figure 6. CO2 mitigation by electrolytic route (4000 kWh.tFe
-1) depending on the power generation source 

(in parenthesis, GHG content in gCO2.kWh-1) 
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