
SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2009 Society for Industrial and Applied Mathematics
Vol. 8, No. 4, pp. 1405–1433

Inverse Problems in Neural Field Theory∗

Roland Potthast† and Peter beim Graben‡

Abstract. We study inverse problems in neural field theory, i.e., the construction of synaptic weight ker-
nels yielding a prescribed neural field dynamics. We address the issues of existence, uniqueness,
and stability of solutions to the inverse problem for the Amari neural field equation as a special
case, and prove that these problems are generally ill-posed. In order to construct solutions to the
inverse problem, we first recast the Amari equation into a linear perceptron equation in an infinite-
dimensional Banach or Hilbert space. In a second step, we construct sets of biorthogonal function
systems allowing the approximation of synaptic weight kernels by a generalized Hebbian learning
rule. Numerically, this construction is implemented by the Moore–Penrose pseudoinverse method.
We demonstrate the instability of these solutions and use the Tikhonov regularization method for
stabilization and to prevent numerical overfitting. We illustrate the stable construction of kernels
by means of three instructive examples.

Key words. neural field theory, Amari equation, inverse problem, neural learning, Hebbian learning rule,
Tikhonov regularization, kernel construction

AMS subject classifications. 92B20, 68T05, 82C32, 91E40, 45K05, 93B30, 93B05, 93B35, 93B40, 65R32, 65R30

DOI. 10.1137/080731220

1. Introduction. In this paper, we address the inverse problem for neural field theories.
Neural fields are continuum limits of neural networks, which are generally described by integro-
differential equations [1, 3, 9, 10, 12, 15, 16, 21, 22, 32, 33, 40, 42]. Performing this limit for
a recurrent neural network of n leaky integrator units with activations ui(t) ∈ R [2, 4, 5, 19,
37, 41],

(1) τ
∂ui
∂t

(t) = −ui(t) +
n∑

j=1

wij f(uj(t))

with positive time constant τ > 0, synaptic weights wij , and the nonlinear squashing function
f : R → [0, 1], which is assumed to be smooth and monotonous, one obtains them-dimensional
Amari equation [1]

(2) τ
∂u

∂t
(x, t) = −u(x, t) +

∫
D
w(x, y)f(u(y, t)) dy, x ∈ D, t > 0,

with initial condition

(3) u(x, 0) = u0(x), x ∈ D.

∗Received by the editors July 25, 2008; accepted for publication (in revised form) by B. Ermentrout June 14,
2009; published electronically October 22, 2009.

http://www.siam.org/journals/siads/8-4/73122.html
†Department of Mathematics, University of Reading, Whiteknights, P.O. Box 220, Berkshire RG6 6AX, UK

(r.w.e.potthast@reading.ac.uk).
‡Department of Clinical Language Sciences, University of Reading, Harry Pitt Building, Whiteknights, P.O. Box

217, Reading RG6 6AH, UK (p.r.beimgraben@reading.ac.uk).

1405

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central Archive at the University of Reading

https://core.ac.uk/display/17204579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.siam.org/journals/siads/8-4/73122.html
mailto:r.w.e.potthast@reading.ac.uk
mailto:p.r.beimgraben@reading.ac.uk

1406 ROLAND POTTHAST AND PETER BEIM GRABEN

In (2), w(x, y) denotes the synaptic weight kernel describing the connectivity between points
y, x ∈ R

m situated in a domain D ⊂ R
m with m ∈ N.

In applications of neural networks described by (1) in the engineering or cognitive sciences,
one prescribes a certain dynamics vi(t) of the nodes (or of a subset of nodes defining an output
layer) and asks for a suitable weight matrix W = (wij) yielding the desired evolution. In other
words, one solves the inverse problem estimating W given vi(t). This is usually achieved by
means of backpropagation algorithms [5, 7, 19, 25, 27, 28, 36, 38].

Related inverse problems in neural field theories comprise the estimation of the synaptic
weight kernel w(x, y) from a prescribed dynamically evolving field v(x, t) within a time interval
[0, T], where T ∈ R or T = ∞ might be considered. Methods to solve this problem would be
mandatory for modeling transient dynamic fields in cognitive neurodynamics [6, 14, 22, 35, 39].

In this paper, we approach the inverse problem for neural fields using techniques from
functional analysis and numerical mathematics. Our approach relies upon recasting the Amari
equation (2) into a simple linear perceptron equation in an infinite-dimensional Banach or
Hilbert space. Such spaces are naturally given by BC(D) or L2(D) for the neural domain D
under consideration, and we need to investigate the infinite-dimensional operator-analogue W
of the matrix W above.

To our knowledge the field theoretical approach for neural inverse problems has not been
widely studied yet. However, we believe that the reliable solution of neural field inverse
problems on different levels of brain modeling can provide important new mathematical input
into the extremely important field of cognitive neurodynamics. This work provides a first step
in this direction by bringing together results from different communities and suggesting stable
methods for solving important basic inverse problems for the Amari neural field equation.

Let us briefly review the well-known finite-dimensional case as an excursus. Perceptrons
are one-layered neural networks with feed-forward architecture [19, 26, 34]. A linear perceptron
of n input units with activations uk (1 ≤ k ≤ n) and m output units with activations vi
(1 ≤ i ≤ m) is governed by the equation

(4) vi =
n∑

k=1

wikuk

or, in matrix notation,

(5) v = Wu,

with u ∈ R
n, v ∈ R

m, and W ∈ R
m×n.

The inverse problem of determining the synaptic weights wik for such a linear associator
can be straightforwardly solved if � distinguished orthogonal input vectors p(j) (1 ≤ j ≤ �)
should be associated with � output vectors q(j). In this case, the weight matrix is simply given
as

(6) W = η
�∑

j=1

q(j)p(j)∗ ,

where η = 1/� is the learning rate and “∗” denotes the matrix transpose. Equation (6) is called
the Hebb rule [18, 19, 20]. If, on the other hand, the input vectors p(j) are not orthogonal

INVERSE PROBLEMS IN NEURAL FIELD THEORY 1407

but still linearly independent, the solution reads

(7) W = η

�∑
j=1

q(j)M−1p(j)∗ ,

where M is the overlap matrix of the input vectors,

(8) (M)ik = η〈p(i),p(k)〉.

This solution can also be expressed by means of the Moore–Penrose pseudoinverse method [19].
In general, this problem is ill-posed and nonunique. We will provide a detailed discussion of
the phenomena for particular examples in section 6.2.

Here, we will study the kernel construction problem in an infinite-dimensional space X.
We study uniqueness and stability of the problem by investigating different types of arguments,
for example via smoothing properties of the operator W or by means of orthogonal systems
in Hilbert spaces. In particular, we derive a solvability condition which corresponds to a
generalized Hebbian learning rule. We will derive a continuous version of (7), where we work
with biorthogonal bases in Hilbert spaces. In general, this inversion will be ill-posed and needs
to be regularized, for which we will employ the Tikhonov regularization scheme.

The paper is structured as follows. In section 2 we collect basic definitions and formulate
the full field neural inverse problem as an integro-differential equation. Then, that equation is
reformulated as a kernel construction problem for a linear integral operator. Section 3 serves
to derive results on existence, uniqueness, and stability for the kernel construction problem.
In particular, here we observe the strong relationship between general results in Hilbert spaces
and the convergence of the Hebbian learning rule for training of neural fields.

In section 4 we study the case of convolution kernels. We show that this case can be
converted into an integral equation of the first kind with a compact operator. As a result the
inverse problem is ill-posed; i.e., in general there is no solution to the problem, and even if
we have a solution for given data, the solution does not depend in a stable way on the data.
Further, we show that the ill-posedness of the particular problem yields the ill-posedness of
the full field neural inverse problem.

Section 5 is dedicated to the explicit construction of approximate solutions by biortho-
normal basis functions. When sequences of patterns obtained from sampling the prescribed
solution with respect to the time variable build a Riesz basis in the underlying Hilbert space,
we obtain feasibility of the construction. We use section 6 to describe a numerical realiza-
tion of the above methods by means of the Moore–Penrose pseudoinverse or, more generally,
the Tikhonov regularization method. We demonstrate the instability of the Moore–Penrose
solution and how the difficulties can be remedied by regularization. Numerical examples
implementing the theoretical results and showing the feasibility of the tools are provided.
We conclude with three instructive examples for kernel construction problems for the Amari
equation (2).

2. The direct and the inverse problems. We study neural fields u(x, t) depending on the
space variable x ∈ D with some bounded domain D ⊂ R

m and the time t ≥ 0 governed by the

1408 ROLAND POTTHAST AND PETER BEIM GRABEN

Amari equation (2) with initial condition (3), with f : R → [0, 1] being some given smooth
and monotonous function. We define the synaptic weight operator

(9) (Wϕ)(x) :=

∫
D
w(x, y)ϕ(y) dy, x ∈ D,

which is acting on the space variable of the functions under consideration. Then, the neural
field equation (2) is given by

(10) τ
∂u

∂s
(x, t) = −u(x, t) +

{
Wf(u(·, t))

}
(x), x ∈ D, t > 0.

We employ the functions

(11) ψ(x, t) := τ
∂u

∂t
(x, t) + u(x, t), x ∈ D, t ≥ 0,

and

(12) ϕ(x, t) := f(u(x, t)), x ∈ D, t ≥ 0.

With ϕ and ψ given by (11) and (12), the neural field equation can be equivalently written as

(13) ψ =Wϕ on D × R
+.

This is a generalized inverse operator problem, whereW is an integral operator with kernel w.
The discretized version of the inverse problem (13) is the construction of a matrix W ∈ R

n×n

which satisfies

(14) ψ(j) = Wϕ(j)

for a family of elements ψ(j),ϕ(j) ∈ R
n for all j ∈ J with some index set J . This corresponds

to the perceptron equation (5).
Here, we focus on the study of the continuous problem (13) and will employ a numerical

quadrature scheme in the last section for numerical experiments. For basic results on existence
of the solution to the direct problem [31] we use the notation

BC0,1(D)× L1(D)

for the space of the kernel function w(x, y). The notation means that w(x, ·) is in L1(D) for
each x ∈ D and that the element w(x, ·) depends Lipschitz continuously on the variable x ∈ D
and is uniformly bounded on D ×D ⊂ R

m × R
m.

Let X denote either the Banach space of bounded continuous functions BC(D ×D), the
space of square integrable functions L2(D ×D), or the space BC0,1(D)× L1(D) from above.
Then we can formulate the general inverse problem for the neural field equation as follows.
Here, we consider either a finite time interval [0, T] with T ≥ 0 or infinite time intervals [0,∞),
which we denote by T = ∞. We will assume that our functions are continuous on the compact
interval [0, T]; i.e., they are bounded for finite time.

INVERSE PROBLEMS IN NEURAL FIELD THEORY 1409

Definition 2.1 (full field neural inverse problem). Given a function

v ∈ BC(D)×BC1([0, T])

for some T ∈ R
+ ∪ {∞} and with v(x, 0) = u0(x), the full field neural inverse problem is to

construct a kernel w in X such that the solution of the neural field equation (2) is given by v.

By (13) or the upcoming version (19), we obtain a reformulation of the full field neural
inverse problem into an special kind of a linear integral equation,

(15) ψ(x, t) =

∫
D
w(x, y)ϕ(y, t) dy, x ∈ D, t ∈ [0, T],

for w ∈ X. Here, we will use the first formulation (13) and note that the second formula-
tion (19) is an equivalent problem in different spaces.

Lemma 2.2. The full field neural inverse problem according to Definition 2.1 is equivalent
to a linear kernel construction (15) given functions (ψ,ϕ) in the set

U =

{(
τ
∂v

∂t
(x, t) + v(x, t), f(v(·, ·))

)
: v ∈ BC(D)×BC1([0, T])

}

for T ∈ R
+ ∪ {∞}.

Remarks. 1. Instead of restricting our attention to the set U , we can study the more
general problems where ϕ,ψ ∈ BC(D)×BC([0, T]).

2. Note that time-behavior of the neural fields v under consideration can be highly non-
linear. We will discuss this further in our numerical examples in section 6.

The study of the inverse problem given by Definition 2.1 or Lemma 2.2 includes an analysis
of uniqueness, existence, and the stability or ill-posedness of the kernel construction. For
practical applications a thorough understanding, in particular of uniqueness and stability
issues, is of great importance.

3. Existence, uniqueness, and smoothing. As a first step in studying the solvability of
the inverse problem we note some basic regularity properties of solutions to the neural field
equation.

Lemma 3.1. If f ∈ BCn, then the solution to the neural field equation (2) is in Cn(R+)
with respect to time; i.e., t �→ u(·, t) is n times continuously differentiable as a mapping from
R
+ into BC(D).

Proof. A standard tool for analysis is the reformulation of the neural field equation in
integral form. Integration over time from s = 0 to s = t yields

(16) τ
(
u(x, t)− u(x, 0)

)
= −

∫ t

0
u(x, s) ds +

{
W

(∫ t

0
f(u(·, s)) ds

)}
(x)

with x ∈ D, t ≥ 0. For later use for t ≥ 0 we define

(17) Ψ(x, t) := τu(x, t) +

∫ t

0
u(x, s) ds, x ∈ D,

1410 ROLAND POTTHAST AND PETER BEIM GRABEN

and

(18) Φ(x, t) :=

∫ t

0
f(u(·, s)) ds, x ∈ D.

Then, (10) can be rewritten in the form

(19) Ψ(·, t) =WΦ(·, t) on D

for all t ≥ 0. Now, we carry out an inductive proof. Clearly, u(x, t) is in C1 in dependence
on the time variable as a function in BC(D). Now, let u(x, t) be in Ck(R+) for some k ∈
{1, 2, . . . , n − 1}. We consider the governing equation in the form (16). If the function u on
the right-hand side is in Ck, then the field u(x, t) is in Ck+1(R+). Inductively we now obtain
that u is a Cn function on the real axis, and the proof is complete.

Corollary 3.2 (conditions on existence). For the solvability of the full field neural inverse
problem with f ∈ BCn(R+) we need that the field v is in Cn(R+) with respect to the time
variable. If v is not BCn(R+), then the inverse problem given v cannot have a solution.

The following lemma prepares the subsequent arguments.

Lemma 3.3. The norm of the operator W : BC(D) → BC(D) defined in (9) is given by

(20) ‖W‖∞ = sup
x∈D

∫
D
|w(x, y)| dy,

where BC(D) is equipped with its canonical norm ‖ϕ‖∞ := supx∈D |ϕ(x)|.
Proof. We estimate

‖Wϕ‖BC(D) = sup
x∈D

∣∣∣∣
∫
D
w(x, y)ϕ(y) dy

∣∣∣∣
≤
(
sup
x∈D

∫
D
|w(x, y)| dy

)
· sup
y∈D

|ϕ(y)|,(21)

which proves

(22) ‖W‖∞ ≤ sup
x,y∈D

∫
D
|w(x, y)| dy.

To show equality we first consider the case where w(x, y) = 0 on D ×D. We choose x0 such
that

(23)

∫
D
|w(x0, y)| dy = sup

x∈D

∫
D
|w(x, y)| dy.

Then, we define ϕ0(y) := w(x0, y)/|w(x0, y)|, which is in BC(D) and has norm ‖ϕ0‖∞ = 1.
We calculate

(24)
∣∣∣(Wϕ0)(x0)

∣∣∣ =
∣∣∣∣
∫
D
w(x0, y)

w(x0, y)

|w(x0, y)| dy
∣∣∣∣ = sup

x∈D

∫
D
|w(x0, y)| dy,

INVERSE PROBLEMS IN NEURAL FIELD THEORY 1411

which proves equality in (22) under the assumptions that w has no zeros. In the case where
w has zeros we define N := {y ∈ D : w(x0, y) = 0}. To construct an appropriate sequence of
continuous functions we define

(25) χn(y) :=

{
0, d(y,N) ≥ 1/n,
1− nd(y,N), 0 ≤ d(y,N) ≤ 1/n,

for y ∈ D \N , where d(y,N) := infz∈N |y − z|. Since N is a closed bounded set we obtain

(26)

∫
D\N

χn(y) dy ≤
∫
{y:d(y,N)≤n}

dy → 0

for n→ ∞. Then, we define

(27) ϕn(y) :=

{
(1− χn(y))

w(x0,y)
|w(x0,y)| + χn(y), d(y,N) > 0,

1, otherwise.

By construction we have ϕn ∈ BC(D) and we observe ‖ϕn‖ = 1. We calculate∣∣∣(Wϕn)(x0)
∣∣∣ =

∣∣∣∣
∫
D
w(x0, y)ϕn(y) dy

∣∣∣∣
=

∣∣∣∣
∫
D\N

w(x0, y)

[
(1− χn)

w(x0, y)

|w(x0, y)| + χn(y)

]
dy

∣∣∣∣
=

∣∣∣∣
∫
D\N

[
(1− χn)w(x0, y)

w(x0, y)

|w(x0, y)| + χn(y)w(x0, y)

]
dy

∣∣∣∣
=

∣∣∣∣
∫
D\N

(1− χn)|w(x0, y)| dy +
∫
D\N

χnw(x0, y) dy

∣∣∣∣
→
∫
D
|w(x0, y)| dy = sup

x∈D

∫
D
|w(x, y)| dy, n→ ∞,(28)

where we use (26) and w(x0, y) = 0 for y ∈ N . The limit (28) now proves equality in (22) in
the general case.

To study the mapping w �→ W of the kernel w onto the operator W we equip the space
BC(D ×D) with the norm

(29) ‖w‖BC(D×D) := sup
x∈D

∫
D
|w(x, y)| dy.

Theorem 3.4. For a bounded set D in R
m the mapping

(30) K : BC(D ×D) → BL (BC(D), BC(D)) , w �→W,

with W defined in (9) is a linear, bounded, and injective mapping but not surjective.
Proof. Clearly, the mapping K is linear, since

K(w1 + w2)ϕ =

∫
D

(
w1(·, y) + w2(·, y)

)
ϕ(y) dy

=

∫
D
w1(·, y)ϕ(y) dy +

∫
D
w2(·, y)ϕ(y) dy

= Kw1ϕ + Kw2ϕ.(31)

1412 ROLAND POTTHAST AND PETER BEIM GRABEN

We estimate

‖K(w)ϕ‖BC(D) = sup
x∈D

∣∣∣∣
∫
D
w(x, y)ϕ(y) dy

∣∣∣∣
≤ ‖w‖BC(D×D) · ‖ϕ‖∞.(32)

This shows that K is bounded from BC(D × D) into BL(BC(D), BC(D)) with ‖K‖ = 1,
where we obtain equality by looking at particular kernels w for which the supremum is ob-
tained.

To show injectivity of K assume that w is a kernel such that Wϕ = 0 for all ϕ ∈ BC(D).
We study a sequence of bounded continuous functions δz,n(·) approximating a delta function
δz. Then, we have

(33) 0 = (Wδz,n)(x) =

∫
D
w(x, y)δz,n(y) dy → w(x, z), n→ ∞,

which shows w(x, z) = 0 for all x, z ∈ D, and thus the operator K is injective.

The operator K is not surjective. This is shown by constructing examples V of bounded
linear operators which cannot be represented by integral operators with continuous kernels.
We note, for example, the point evaluation operator

(34) (V ϕ)(x) := ϕ(x), x ∈ D,

which clearly is bounded and linear but cannot be represented as an integral operator with
a continuous kernel. Further examples for bounded linear operators which cannot be written
as integral operators with continuous kernels are operators with singular kernels of various
types.

In a second step we study bounded linear operators on the space L2(D). By the Cauchy–
Schwarz inequality we obtain the norm estimate

‖Wϕ‖2L2(D) ≤
∫
D

∣∣∣∣
∫
D
w(x, y)ϕ(y) dy

∣∣∣∣
2

dx

≤
(∫

D×D
|w(x, y)|2 dy dx

)
‖ϕ‖2L2(D),(35)

which proves boundedness of the mapping

(36) K : L2(D ×D) → BL(L2(D), L2(D)), w �→W.

However, here the estimate (35) is only an upper estimate, but the norm of W is given by the
spectral radius ρ(W ∗W); compare [24].

Consider any orthonormal basis {ϕn, n ∈ N} in X. Then, every element ϕ ∈ X can be
written as

(37) ϕ =
∞∑
n=1

βnϕn, β = (β1, β2, . . .) ∈ �2.

INVERSE PROBLEMS IN NEURAL FIELD THEORY 1413

The image sequence ψn := Wϕn satisfies

(38)

∥∥∥∥∥
∞∑
n=1

βnψn

∥∥∥∥∥ ≤
∥∥∥∥∥W

∞∑
n=1

βnϕn

∥∥∥∥∥ ≤ ‖W‖ · ‖β‖�2 .

By βn = 〈ϕn, ϕ〉L2(D) =
∫
D ϕn(y)ϕ(y) dy we can write W as

(Wϕ)(x) =
∞∑
n=1

ψn(x)

∫
D
ϕn(y)ϕ(y) dy

=

∫
D

(∞∑
n=1

ψn(x)ϕn(y)

)
ϕ(y) dy, x ∈ D.(39)

In general, we cannot expect the terms in round brackets to be a function in the space
L2(D×D). For example, when ψn = ϕn for all n we get a representation of the delta function
δ(x− y) with respect to the variable y,

∫
D
ϕ(z)

(∞∑
n=1

ϕn(x)ϕn(z)

)
dz =

∞∑
n=1

ϕn(x)

∫
D
ϕn(z)ϕ(z) dz

=
∞∑
n=1

ϕn(x)βn = ϕ(x),(40)

and therefore

(41)

∞∑
n=1

ϕn(x)ϕn(z) = δ(x − z),

to be interpreted in L2(D ×D) in the sense of (40), which is not an element of L2(D ×D).

When for x fixed the sequence (ψn(x)) satisfies

(42)

∞∑
n=1

(1 + ns)2|ψn(x)|2 <∞,

we obtain a kernel which is in the Sobolev space Hs(D) with respect to the variable y. Now,
we formulate the following result, which can be seen as a special case of the theory of Hilbert–
Schmidt integral operators.

Theorem 3.5. A bounded linear operator W is an integral operator on L2(D) if and only
if the sum

(43) w(x, y) :=

∞∑
n=1

ψn(x)ϕn(y)

is convergent in L2(D ×D) for any orthonormal basis {ϕn : n ∈ N} and ψn :=Wϕn, n ∈ N.

1414 ROLAND POTTHAST AND PETER BEIM GRABEN

Proof. If the sum is convergent in L2(D×D), then we can rewrite (39) as integral operator

(Wϕ)(x) =

∫
D

(∞∑
n=1

ψn(x)ϕn(y)

)
ϕ(y) dy

=

∫
D
w(x, y)ϕ(y) dy, x ∈ D.(44)

By (35) the operator is a linear bounded operator on L2(D). Now, assume that W is an
integral operator with kernel w ∈ L2(D ×D). Then, for any orthonormal basis {ϕn : n ∈ N}
and ψn =Wϕn we obtain ψn ∈ L2(D) and

N∑
n=1

ψn(x)ϕn(y) =

N∑
n=1

(∫
D
w(x, z)ϕn(z) dz

)
ϕn(y)

=

∫
D
w(x, z)

(
N∑

n=1

ϕn(y)ϕn(z)

)
dz

→ w(x, y), x, y ∈ D, N → ∞,(45)

which, according to (40), is satisfied in L2(D ×D).
Note that the kernel construction (43) corresponds to the Hebb rule (6) for a finite linear

perceptron with orthogonal training vectors extended to infinite-dimensional function spaces.
One of the implications of the above theorem is that in general we cannot assume that we

can control the neural field over an infinite time.
Theorem 3.6. In general, the full field neural inverse problem with infinite time T = ∞ is

not solvable in BC(D ×D), BC0,α(D)× L1(D), or L2(D ×D).
Proof. We first treat the L2 case. Consider some orthonormal system {ϕn, n ∈ N} in

L2(D) constructed out of Haar-type basis functions; i.e., ϕn has values either zero or one on
D. For simplicity, here we assume that f(0) = 0; the general case can be treated analogously.
In this case f(ϕn) = c · ϕn, where c = f(1). Consider tn := n for n ∈ N and let {χn : n ∈ N}
be some Cn-smooth partition of unity,

(46) 1 =
∞∑
n=1

χn(t), t ≥ 0,

such that

(47) χn(t) =

{
1, t ∈ Bε(tn),
0, t /∈ B1−ε(tn),

with some 1/4 > ε > 0. Now, we define

(48) v(x, t) :=
∞∑
n=1

χn(t)ϕn(x), x ∈ D, t > 0.

We obtain

INVERSE PROBLEMS IN NEURAL FIELD THEORY 1415

(a) ϕ(·, tn) = f(v(·, tn)) = c · ϕn(·) for n ∈ N,
(b) dv

dt (·, tn) = 0 for n ∈ N, and thus
(c) ψ(·, tn) = ϕn for n ∈ N.

This means that to solve the full field neural inverse problem we need to construct an operator
W mapping ϕn onto c−1 ·ϕn =Wϕn for n ∈ N. However, as shown in (40) and Theorem 3.5,
the kernel w(x, y) defined in (43) is not an element of L2(D×D). This proves the statement
of the theorem for L2(D ×D).

We construct a function in BC(D) which cannot be a solution to the full field neural
inverse problem by

(49) v(x, t) := t · v0(x), t ≥ 0.

Then we obtain ψ(·, t) = v0 · (τ + t) ∼ t, but f(v(·, t)) will remain bounded for large t by
|f(s)| ≤ 1 for s ∈ R.

Remarks. 1. We remark that the function (49) is another counterexample for the case
of square integrable functions above. However, examples of a different nature provide fur-
ther insight into the overall nonexistence statement. Also, different counterexamples provide
guidance if one seeks sufficient conditions to obtain solvability of the problem.

2. If we modify the points tn and the intervals ε to depend on n, we can make the same
construction for a finite half-open interval [0, T). Thus, in general full field neural inverse
problems on half-open intervals are not solvable either.

Compactness. We conclude this section with basic compactness statements which imply
instability of the kernel construction problem if we seek kernels in spaces of differentiable
functions or in Sobolev spaces. We note that, by the compactness of the embedding

(50) BCn(D ×D) → BC(D ×D),

the mapping K considered in the spaces

(51) K : BCn(D ×D) → BL
(
BC(D), BC(D)

)
for n ≥ 1 is compact. Also, using Hs-smooth kernels in L2, we obtain compactness of the
mapping

(52) K : Hs(D ×D) → BL
(
L2(D), L2(D)

)
.

We summarize the consequences of this compactness in the following theorem.

Theorem 3.7. In the settings (51) and (52) the mapping K : w �→ W is compact. The
mapping cannot have a bounded inverse, and thus the kernel w depends unstably on the right-
hand side.

4. Special cases and consequences. The goal of this section is to study the inversion of
the neural field equation for special cases. In particular, we will investigate fields arising from
the translation of an initial pulse. As a second result we will conclude the ill-posedness of the
general problem from the ill-posedness in special cases.

1416 ROLAND POTTHAST AND PETER BEIM GRABEN

Translation of fields in time. Consider an initial field u0(x), and define the traveling wave
field

(53) u(x, t) := u0(x− vt), x ∈ D, t ≥ 0,

with v ∈ R
m [12, 15]. Then, u(x, t) describes a traveling wave in the direction v. We get

(54) ϕ(x, t) = f(u(x, t)) = f(u0(x− vt)) = ϕ0(x− vt)

and

ψ(x, t) = τ
∂u0(x− vt)

∂t
+ u0(x− vt) = ψ0(x− vt)

= −τv · ∇u0(x− vt) + u0(x− vt)(55)

for x ∈ D, t ≥ 0. We remark that if ψ0 = Wϕ0 and if the kernel w is a convolution kernel,
i.e., w(x, y) = w̃(x− y), then we obtain

ψ(x, t) = ψ0(x− vt)

=

∫
D
w(x− vt, y)ϕ0(y) dy

=

∫
D
w̃(x− vt− y)ϕ0(y) dy

=

∫
D
w̃(x− (y + vt))ϕ0(y) dy

=

∫
D
w̃(x− ỹ)ϕ0(ỹ − vt) dỹ

= (Wϕ)(x, t),(56)

where we use ỹ = y + vt. This means we need to study the equation

ψ0(x) =

∫
D
w̃(x− y)ϕ0(y) dy

=

∫
D
ϕ0(x− ỹ)w̃(ỹ) dỹ, x ∈ D,(57)

where we employed the substitution x − y = ỹ. We summarize these transformations in the
following theorem.

Theorem 4.1. Given a field u as a traveling wave (53), there is a solution of the full field
inverse neural problem with translation invariant kernel w(x, y) = w̃(x− y) if and only if the
function w̃ satisfies the integral equation (57).

The integral equation (57) is an integral equation of the first kind with a continuous or
L2 kernel. In both settings the operator is compact in BC(D) or L2(D), since it can be
approximated in norm by a finite-dimensional operator via polynomial approximations of the
kernel function w̃; compare [23]. We now summarize this result and carry it over to the inverse
neural field equation.

INVERSE PROBLEMS IN NEURAL FIELD THEORY 1417

Theorem 4.2. In general, (57) does not have a solution. The solutions depend unstably
on the right-hand side in both BC(D) and L2(D). The full field inverse neural problem with
traveling wave-type functions is ill-posed in the sense of Hadamard (compare [11]).

Proof. We define the operator

(58) (Ag)(x) :=

∫
D
ϕ0(x− y)g(y) dy, x ∈ D.

Note that the kernel density needs to be defined on a larger area,

(59) D̃ := {x− y : x, y ∈ D}.

If ϕ0 ∈ BC(D̃), then it is an integral operator with continuous kernel which is a compact
operator on BC(D). If ϕ0 ∈ L2(D̃), we first remark that in this case ϕ0(x − ·) ∈ L2(D) for
every fixed x ∈ D, and the norm of this function is smaller than ‖ϕ0‖L2(D̃). Then we estimate

‖Ag‖2L2(D) ≤
∫
D

∣∣∣∣
∫
D
ϕ0(x− y)g(y) dy

∣∣∣∣
2

dx

= |D| · ‖ϕ0‖2L2(D̃)
‖g‖2L2(D)(60)

such that A is bounded in L2(D). A polynomial approximation of the function ϕ0 on D̃ in
the norm L2(D̃) will yield a finite-dimensional operator approximation of the operator A by
some operator sequence An. Thus, A is compact in L2(D).

Now, by standard arguments from functional analysis [23] we conclude that A cannot be
surjective and that the inverse of A cannot be bounded; i.e., the solution of (57) depends
unstably on the right-hand side. Thus, the problem is ill-posed in the sense of Hadamard [11].
This completes the proof.

We first formulate a helpful little lemma.
Lemma 4.3. Let X̃ ⊂ X be Banach spaces and A : X → Y be a linear operator. We denote

Ã := A|X̃ the restriction of A to X̃ and equip X̃ with the norm induced by the norm on X.

If Ã : X̃ → Y does not have a bounded inverse on Ã(X̃), then the operator A cannot have a
bounded inverse.

Proof. If A has a bounded inverse on Y , then

(61) A−1|Ã(X̃)

is a bounded inverse of Ã. Thus A cannot have a bounded inverse.

The above lemma now has consequences for the full field neural inverse problem. We
identify X with the space of kernels w ∈ L2(D × D) and X̃ with the space of convolution
kernels w(x, y) = w̃(x− y), which is a linear subspace of X.

Lemma 4.4. The embedding

(62) I : L2(D̃) → L2(D,D), w̃(·) �→ w(x, y) := w̃(x− y)

is an injective and boundedly invertible linear mapping.

1418 ROLAND POTTHAST AND PETER BEIM GRABEN

Proof. The mapping (62) is clearly injective, since w(x, y) ≡ 0 is obtained only with w̃ ≡ 0.
The boundedness of the mapping is obtained from

‖w‖2L2(D×D) =

∫
D

∫
D
|w(x, y)|2 dy dx

=

∫
D

(∫
D
|w̃(x− y)|2 dy

)
dx

≤ |D| · ‖w̃‖2
L2(D̃)

.(63)

Next, we show that the image space I(L2(D̃)) is a closed subspace of L2(D×D). To this end
let w̃n be a sequence of convolution kernels such that

(64) wn(x, y) = w̃n(x− y) → w0(x, y), n→ ∞,

in L2(D,D). Then by

(65) w0(y + z, y) = lim
n→∞wn(y + z, y) = lim

n→∞ w̃n(z),

w0(x, y) will depend only on the difference x−y; i.e., I(L2(D̃)) is closed. Now, the boundedness
of the inverse is a consequence of the closed mapping theorem.

As a consequence of the above lemma and the isometric embedding of BC(D̃) into
BC(D×D) by w̃ �→ w(x, y) := w̃(x− y), we obtain the instability of the kernel construction
problem and thus of the full field neural inverse problem formulated in Definition 2.1.

Corollary 4.5. The full field neural inverse problem is unstable and thus ill-posed in BC(D×
D) as well as in L2(D ×D).

5. Construction of solutions. Solutions of operator equations in Banach spaces have been
studied extensively in the literature. It is well known that for ill-posed equations standard
inversion theory (see, for example, [8] for a summary of literature about the Moore–Penrose
pseudoinverse) cannot be directly applied, but one needs to use appropriate regularization;
compare, for example, [11, 13, 29, 30].

In this section we collect basic results about biorthogonal sets in Hilbert spaces, and
we study the construction of a biorthogonal set in particular for a Riesz basis of elements.
Biorthogonal sets are usually used for operator construction and are important ingredients
for understanding the unstable behavior of the solutions of our dynamic kernel construction
problem formulated in Definition 2.1.

In a Hilbert space X with scalar product 〈·, ·〉 two linearly independent sets of functions
Q = {ϕ1, ϕ2, . . .} and R = {ρ1, ρ2, . . .} are called biorthogonal if

(66) 〈ρi, ϕk〉 = 0 for all k = i, 〈ρi, ϕi〉 = ci, i ∈ N,

where ci > 0 for i ∈ N. The construction of a biorthonormal set R to Q is usually carried out
as follows. We define

(67) Vk := span{ϕ1, . . . , ϕk−1, ϕk+1, . . .}, k ∈ N,

INVERSE PROBLEMS IN NEURAL FIELD THEORY 1419

denote its orthogonal space by V ⊥
k , and remark that X = Vk⊕V ⊥

k . We conclude that ϕk /∈ Vk,
since it is linearly independent of the other elements of Vk; thus, its orthogonal projection ρ̃k
onto V ⊥

k cannot be zero. The biorthogonal elements are now given by

(68) ρk :=
ρ̃k

‖ρ̃k‖2 .

Here the ill-posedness of the inverse problem is strongly related to the division by ‖ρ̃k‖ in (68).
We verify (68) by calculating 〈ρk, ϕi〉 = δki, k, i ∈ N, where the result is clear by definition for
i = k since ρk ∈ V ⊥

k , and for i = k we remark that ϕk = ρ̃k + ϕ̃k, where ϕ̃k ∈ Vk, which yields

(69) 〈ρ̃k, ϕk〉 = 〈ρ̃k, ρ̃k + ϕ̃k〉 = 〈ρ̃k, ρ̃k〉 = ‖ρ̃k‖2.
We have constructed the set R := {ρ1, ρ2, . . .}, which satisfies (66) with constants ci = 1,
i ∈ N. To show that the elements of R are linearly independent, assume that

∑n
j=1 βjρkj = 0

with constants βj ∈ C and kj ∈ N for j = 1, . . . , n. Then, by multiplication with ϕki for
i = 1, . . . , n we derive

(70) 0 =

〈
n∑

j=1

βjρkj , ϕki

〉
=

n∑
j=1

βj〈ρkj , ϕki〉 = βi, i = 1, . . . , n,

and thus R is linearly independent. Recall that Q is called a Riesz basis in a Hilbert space H
if there are constants c1, c2 > 0 such that

(71) c1

∞∑
j=1

|αj |2 ≤
∥∥∥∥∥

∞∑
j=1

αjϕj

∥∥∥∥∥
2

≤ c2

∞∑
j=1

|αj |2

for all α = (αj)j∈N ∈ �2. In this case the mapping

(72) A : �2 → X, α �→
∞∑
j=1

αjϕj

is a bounded and boundedly invertible mapping from �2 onto A(�2) ⊂ X. A dual operator
A′ : X → �2 with respect to the scalar products 〈·, ·〉�2 and 〈·, ·〉X is given by

(73) A′ : X → �2, ψ �→ (〈ϕj , ψ〉X
)
j∈N ,

as can be obtained from

(74) 〈Aα,ψ〉X =

∞∑
j=1

αj〈ϕj , ψ〉X = 〈α,A′ψ〉�2 .

We remark that (〈ϕj , ψ〉X)j∈N ∈ �2 since we have

(75)

∣∣∣∣∣
∑
j=1

βj〈ϕj , ψ〉X
∣∣∣∣∣ =

∣∣∣∣∣
〈 ∞∑

j=1

βjϕj , ψ

〉
X

∣∣∣∣∣ ≤ √
c2‖β‖�2‖ψ‖X

1420 ROLAND POTTHAST AND PETER BEIM GRABEN

for all β ∈ �2 via (71). We estimate

(76) 〈α,A′Aα〉�2 = 〈Aα,Aα〉X ≥ c1‖α‖2�2 ,

and thus according to the Lax–Milgram theorem the operator A′A is boundedly invertible in
�2 with a bound given by 1/c1. Note that if c1 is small, the inverse can have a large norm and
the equation is highly ill-conditioned. We calculate

(77) A′Aα =
(
〈ϕk, Aα〉X

)
k∈N

=

(∞∑
j=1

〈ϕk, ϕj〉X αj

)
k∈N

,

and thus the operation of A′A on �2 can be expressed as a matrix multiplication with M
where we employ the infinite overlap matrix (compare (8))

(78) M :=
(〈ϕk, ϕj〉

)
k,j∈N ,

which according to (76) is boundedly invertible. Then we define

(79) ρk :=

∞∑
j=1

(M−1)k,jϕj , k ∈ N,

and calculate

(80) 〈ρk, ϕi〉X =

〈 ∞∑
j=1

(M−1)k,jϕj , ϕi

〉
=

∞∑
j=1

(M−1)k,j〈ϕj , ϕi〉 = (M−1M)ki = δki

for k, i ∈ N. Equation (79) provides a constructive method for calculating the biorthonormal
basis functions.

Given two linearly independent sets of elements Q = {ϕ1, ϕ2, . . .} ⊂ X and S = {ψ1, ψ2, . . .}
⊂ X, we can now construct linear operators

(81) Vnϕ :=

n∑
j=1

ψj〈ρj , ϕ〉, V ϕ :=

∞∑
j=1

ψj〈ρj , ϕ〉,

where R = {ρ1, ρ2, . . .} is a biorthogonal basis for Q.

Lemma 5.1. The operator Vn is linear and bounded on H. If both Q and S are Riesz bases
of H, then V is linear and bounded on H as well. Further, we have

Vnϕi =

{
ψi, i = 1, . . . , n,
0, i > n.

V ϕi = ψi, i ∈ N.(82)

Proof. We first note that (〈ρj , ϕ〉)j∈N is in �2 with an argument analogous to (75). Then,
the boundedness of V is a consequence of (71) for (ψj)j∈N.

INVERSE PROBLEMS IN NEURAL FIELD THEORY 1421

6. Numerical study of kernel constructions. This final section serves to study explicit
constructions of integration kernels. We will first briefly describe our numerical realization of
the solutions. Then, we study three different basic tasks: (a) kernel construction to generate
one-dimensional state dynamics in section 6.2, (b) kernel construction for generating two-
dimensional pulses in section 6.3, and (c) kernel construction for constructing logical gates in
section 6.4. The function f will be chosen as the logistic function

(83) f(s) :=
1

1 + eβ(s−η)
, s ∈ R,

with parameters β = 10, η = 0.5 in all our examples.

6.1. Explicit Euler scheme with numerical quadrature. For the solution of the integro-
differential equation (2) we employ an explicit Euler method with numerical quadrature given
by the rectangular or trapezoidal rule.

In the two-dimensional case we choose D to be a rectangular region D = [a1, b1]×[a2, b2] ⊂
R
2 and define a grid by

(84) h1 :=
b1 − a1
n1 − 1

, h2 :=
b2 − a2
n2 − 1

and

(85) yj,k := (a1 + j · h1, a2 + k · h2) ,
for j = 0, . . . , n1 − 1, k = 0, . . . , n2 − 1. The points yj,k are reordered into a vector y ∈ R

N

with N = n1 · n2 by

(86) yξ := yj,k, ξ = n2 · j + k, j = 0, . . . , n1 − 1, k = 0, . . . , n2 − 1.

Consider the space X := L2(D) ∩ BC(D) of continuous functions on D equipped with the
maximum or the L2-norm. A continuous function u ∈ X on D is discretized and represented
by a vector u ∈ R

N defined by

(87) uξ := u(yξ), ξ = 1, . . . , N,

which defines a mapping QN : X → RN . Let χξ for ξ = 0, . . . , N1 be standard piecewise linear
hat functions on D such that

(88) χξ(y) =

{
1, y = yξ,
0, y = yη for η = ξ.

Then the vectors u can be mapped back into X by u := PNu with

(89) (PNu)(y) :=

N−1∑
ξ=1

uξχξ(y), y ∈ D.

With this mapping for continuous functions u we have the convergence PNQNu→ u on D for
N → ∞ pointwise in X, i.e., for every fixed u, both in the maximum and the L2-norms.

1422 ROLAND POTTHAST AND PETER BEIM GRABEN

For the operator W we employ a collocation scheme; i.e., the application of W to some
vector ϕ is realized by a matrix multiplication Wϕ, where the matrix W incorporates an
appropriate numerical quadrature [23] and evaluatesWϕ on the grid xj,k := yj,k, j = 0, . . . , n1,
k = 0, . . . , n2, given by (85). In general this leads to

(90) Wξ,η = w(xξ,yη)αη, ξ, η = 0, . . . , N − 1,

with quadrature weights αη, η = 0, . . . , N −1, where in the simple case of the rectangular rule
we have αη = h1 · h2.

The numerical discretization of (11) and (12) for fixed t ∈ R according to (87) leads to
vectors ϕ(t) and ψ(t) in R

N representing ϕ(·, t) and ψ(·, t). For � time discretization points

(91) t1 < t2 < · · · < t�

we abbreviate

(92) ϕ(s) := ϕ(ts), ψ
(s) := ψ(ts), s = 1, . . . , �.

As the next step we define the R
N×�-matrices

(93) A := (ϕ(1), . . . ,ϕ(�)) and B := (ψ(1), . . . ,ψ(�)).

The discrete version of (14) or (15) is now given by the equation

(94) B = WA

for W. We can try to calculate a solution by

(95) W = BA†,

with the Moore–Penrose pseudoinverse A† := (A∗A)−1A∗ as a consequence of A†A =
(A∗A)−1A∗A = IR�×� . However, in general A† is ill-conditioned and the condition number
quickly increases with �, which reflects the fact that the continuous operator does not have
a bounded inverse when c1 defined in (71) tends to zero. For regularization of the numerical
calculation of the operators Vn defined in (81) we use the Tikhonov inverse

(96) Rα := (αI +A∗A)−1A∗

with α > 0. For an existence proof for the inverse we refer to [23] or [13]. The regularized
kernel is now calculated by

(97) Wα = B(αI +A∗A)−1A∗.

Our numerical examples are carried out by the following steps:
1. Given a field v according to Definition 2.1 or Lemma 2.2, we first calculate ϕ and ψ

according to (11) and (12) at the points yj,k defined in (85) at time steps as defined
in (91).

INVERSE PROBLEMS IN NEURAL FIELD THEORY 1423

2. This leads to vectors ϕ(s),ψ(s) ∈ R
N for s = 1, . . . , �. Then, we define the matrices A

and B according to (93).
3. We calculate Wα according to (97). Here, we choose the regularization parameter
α > 0 by visual inspection. Automatic methods for the determination of α can be
found, for example, in [13].

4. Finally, we test the neural field by solving the initial problem (2) with kernel given
by inverse solution Wα. This leads to a solution vα(x, t) for a set of discrete points
x ∈ D and t ∈ [0, T].

It is important to note that in step 4 we need to use a different discretization for the time
variable than in the steps 1 to 3. Using the same time and space discretization for the inversion
and the tests is called inverse crime; compare [11]. If we employ the same discretization for
simulation and inversion, we do not study the full inverse dynamical problem but a much
more stable inversion of a finite-dimensional system. We will explicitly demonstrate this
phenomenon in section 6.2. Here, we need to use a regularization parameter which leads to
the desired system behavior for a wide range of time discretizations, not only for the particular
time discretization used in the inversion.

Multiple pulses and more complex processes. Steps 1–3 can be carried out with the data
for several pulses at the same time. In this case let ϕ(p,1), . . . ,ϕ(p,�) be the discretized vectors
for the pulse with index p = 1, . . . , P . We change the definition (93) into

(98) A := (ϕ(1,1), . . . ,ϕ(1,�),ϕ(2,1), . . . ,ϕ(2,�),ϕ(3,1), . . . ,ϕ(P,�))

and analogously for B. Then we continue as above. Numerical tests for this are carried out
in section 6.4.

6.2. Construction of one-dimensional order parameter dynamics. As a first example
we study a function v(x, t) defined for x ∈ [0, 2π] and t ∈ [0, T] by the continuous transition
between a finite number of linearly independent states. Consider a set of linearly indepen-
dent functions vk ∈ L2([0, 2π]) for q = 1, . . . , Q and a set of order parameters (cf. [6, 17])
λq : [0, T] → R, q = 1, . . . , Q. Often, the order parameter function λq(t) is zero outside of
some compactly supported set. Here, we choose a set of points tq ∈ [0, T], q = 1, . . . , Q, such
that 0 = t1 < t2 < · · · < tQ = T , and determine λq to be linear in each of the intervals
[tq, tq+1] for q = 1, . . . , Q− 1 with

(99) λq(tp) =

{
1, p = q,
0, otherwise;

}

i.e., we use tent functions. We define our prescribed field by

(100) v(x, t) =

Q∑
q=1

λq(t)vq(x), x ∈ [0, 2π], t ∈ [0, T],

which is piecewise continuously differentiable with respect to time. Clearly, here we need to
choose a one-dimensional version of the setting described in (84) to (97). For a numerical test
we have chosen

(101) vq(x) := sin(qx), x ∈ [0, 2π],

1424 ROLAND POTTHAST AND PETER BEIM GRABEN

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

Figure 1. As a numerical example for section 6.2 we test the solution vα(x, t) of the one-dimensional Amari
equation for x ∈ [0, 2π] at 12 time slices t, where the kernel wα(x, y), x, y ∈ [0, 2π], is reconstructed as described
in steps 1–3 in section 6.1 with � = 100 training patterns. The true dynamics is shown as a dotted line, and
the constructed dynamics is solid, where the x-axis is the space variable and the y-axis the size of the neural
fields under consideration studied without units. Here, we have used α = 1, and the time discretization for the
simulation used half of the grid size of the time discretization for the training patterns; i.e., for simulation we
employed � = 200 in (102). As a result, the basic features of the prescribed dynamics are successfully reproduced
by the simulation with the constructed neural kernel, though some smaller features in time slice 8 are not fully
captured.

for q = 1, . . . , Q = 4 or Q = 8. We employed N = 320 space points and � = 100 time steps
for training, i.e., a time discretization

(102) ts =
s

�
T, s = 1, . . . , �.

Further parameter choices have been η = 0.3, τ = 2, and T = 7. In the figures we
display the function v(x, t) or vα(x, t) on a selection of time slices given by (102) with
s = 1, 10, 19, 28, . . . , 91, 100 and � = 100.

We will use this example to explain the choice of the parameters in more detail and to
illustrate important features of the dynamical inverse problem under consideration in Figures
1, 2, 3, and 4.

Choice of the number of discretization points N and �. We need to discuss the choice of
the space dicretization N and number of time points �. Recall that we want to construct a
kernel w such that the dynamics of the system defined by w via (2) reproduces a prescribed

INVERSE PROBLEMS IN NEURAL FIELD THEORY 1425

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

(a) (b)

Figure 2. The figure demonstrates the effect of an inappropriate choice of the regularization parameter
α. We employ the same basic setup as in Figure 1. Here, we have used α = 0.1 (a) or α = 30 (b). The
time discretization for the simulation used half of the grid size used in the time discretization for the training
patterns; i.e., for simulation we employed � = 200 in (102). Here, the regularization parameters α = 0.1, 30
are either too low or too large to reproduce the desired dynamics.

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

0 2 4 6
−1

0

1

(a) (b)

Figure 3. We illustrate an inverse crime as described in section 6.2. We employ the same basic setup
as in Figure 1. Here, we have used α = 0.01 for both images. The time discretization for the simulation
uses the same grid for training and simulation (a) which gives very good results. However, if we change the
time discretization � in (102) for simulation (b) to a smaller grid constant, we see that the kernel which is
reconstructed no longer provides the correct dynamics.

dynamics. Here we demand that the training patterns ϕ(s), s = 1, . . . , �, for different time
steps be linearly independent such that the matrix A defined in (93) is invertible. In fact, this
is not a necessary condition, but having linearly dependent training patterns generates several

1426 ROLAND POTTHAST AND PETER BEIM GRABEN

Figure 4. We study the behavior of the matrices A, B, Rα, RαA, and Wα, which are calculated in the
kernel construction process for a special example defined in (100). A detailed discussion is given in section 6.2.

further questions which we avoid discussing in this work. The vectors ϕ(1), . . . ,ϕ(�), which are
elements of RN as defined in (87), can be linearly independent only if N ≥ �. But in general
we need N to be much larger than �, since ϕ(s) is a discretized version of the function v(x, ts),
x ∈ [0, 2π]. If the functions v(·, ts) for s = 1, . . . , � are linearly independent over [0, 2π], then
for sufficiently large N the vectors ϕ(s), s = 1, . . . , �, will be linearly independent. Here, for
the particular given functions (100), given �, we determined N sufficiently large such that this
is the case. For � = 100 we needed to choose N ≥ 320.

Uniqueness of the kernel W. In general, the reconstructed kernel Wα is not uniquely
determined. Only if the set of functions ϕ(1), . . . ,ϕ(�) spans the space R

N is W determined
by the given dynamics, since in this case A is bijective. Since mostly N � �, this condition
will not be satisfied. Also, consider training patterns which are zero on some part V ⊂ D
of the underlying set D. Then any kernel w̃ which has nonzero values w̃(x, y) for x, y ∈ V
only will not change the dynamics for these training patterns; i.e., it is in the nullspace of our
inverse problem. We can add w̃ to any solution and obtain an equivalent solution. Further,
functions of the type w̃ cannot be reconstructed from the given data.

Inverse crimes and the time discretization for simulation. An inverse crime is a well-
known phenomenon in the theory of inverse problems; compare [11]. It arises if you solve
an inverse problem using a particular choice of discretization parameters and then test it by
solving the forward problem with the same choice of discretization parameters or vice versa.
In this case the match is usually very good, since one basically inverts a finite-dimensional
linear system. Even if the system is ill-conditioned in this case, the error is small. However,
if one uses a different choice of discretization parameters for reconstruction and testing, the
errors in the reconstruction play a much stronger role and the match is usually much worse.

For dynamical inverse problems, inverse crimes arise when the time discretization for
training the kernels and the time discretization for simulation are identical. In this case
one obtains a nearly perfect fit of the prescribed and the simulated curves. We illustrate

INVERSE PROBLEMS IN NEURAL FIELD THEORY 1427

this in Figure 3(a), where we carry out the simulation with � = 100. We then change the
time discretization for the simulation (keeping � = 100 training patterns) to � = 200 for the
simulation time steps. The result as displayed in Figure 3(b) shows that there is no match
at all—the instability of the problem fully destroys the dynamics. Here we worked with a
regularization parameter α = 0.01, which is too small to produce stable solutions. Stable
solutions are obtained with α = 1, which is demonstrated in Figure 1.

Choice and influence of the regularization parameter α. We also illustrate different choices
of the regularization parameter α in Figures 1, 2, and 3. There are various methods for the
automatic choice of α in the theory of inverse problems, but it is also common to start
with manual studies of the behavior of reconstructions when new problems are addressed.
Here, we show the behavior of reconstructions for different α in Figures 1, 2, and 3. The
reconstructions with Q = 8, N = 320, and � = 100 training patterns are stable for values
around α = 1. For values smaller than α = 0.5 the instabilities of the reconstruction impede
the desired dynamical behavior. For values larger than α = 10 the damping is too large, and
we do not get the desired results. Usually, the practicable values of α differ strongly depending
on the choice of parameters and the particular problem under consideration.

Insight into the behavior of Rα and Wα. Finally, we illustrate the particular behavior
of the matrices Rα and Wα for this example in Figure 4. For better visibility here we have
used Q = 4 functions only. The matrices A and B show the time behavior of the functions
under consideration, where the time is given by the x-axis and the y-axis shows the space
dimension. The product RαA is shown as a test; it is a damped version of the identity
matrix. The most interesting numerical result here is the particular form of the matrix Rα,
shown in the bottom left of Figure 4. We observe that the algorithm generates a kind of edge
detection. If we multiply a row a of A withRα, it will basically generate nonzero contributions
where we have a change of values between neighboring entries of a at places where you see
the red-blue lines in the graphical display of Rα. This acts as a space-sensitive edge detection
algorithm to distinguish between the different input functions at different time steps. The
matrix Wα is shown for the sake of completeness; we observe that it does not show particular
interesting features.

6.3. Two-dimensional pulse reconstruction. Next, we demonstrate inversion by con-
structing kernels for two-dimensional pulses. First, we have chosen a particular kernel

(103) w(x, y) := e−R|x−y|2 · χx≥y(x, y)− χx1<y1(x, y)− χx2<y2(x, y), x, y ∈ D,

where we use

(104) χcondition(x, y) =

{
1, condition is satisfied,
0, otherwise,

and x ≥ y if and only if x1 ≥ y1 and x2 ≥ y2. The kernel times the grid constants h1, h2 for
fixed y dependent on x is shown in Figure 5. A full plot of the kernel depending on x and y
is shown in Figure 6(right).

We construct v by starting with some initial values given by

(105) v(x, 0) =

{
1, |x− x0| ≤ c,
0, otherwise,

1428 ROLAND POTTHAST AND PETER BEIM GRABEN

Figure 5. Synaptic weight kernel reconstruction. Left column: a particular kernel generating a moving
pulse is prescribed. Right column: kernel reconstructed by Tikhonov regularization. Both kernels are plotted for
one fixed y dependent on x.

Figure 6. Original and reconstructed full weight kernel w(x, y) as defined in (95).

with some constant c > 0 and initial pulse center x0 ∈ D. Then, the time dependent pulse is
calculated by solving the forward problem (2). As training patterns we use

(106) ϕ1 := v(·, t1), . . . , ϕ� := v(·, t�)

with t1 ≤ t2 ≤ t3 ≤ · · · ≤ t�. The reconstructed kernel Wα(·, y) is zero if y is not in the path of
the pulse v, which is expected since we calculate a minimum norm solution to match the given
data. If y is in the path of v(·, t), the reconstruction has been a smoothened version of the
original kernel, as shown in Figure 5(b). This effect is well known from various inverse problems
[13, 11, 29], where regularization leads to a smoothing such that reconstructed functions are
a smoothened version of the true solutions. If y is not in the path of the prescribed pulse, we
expect the reconstructed kernel w(·, y) to vanish, since the Tikhonov regularization calculates
a solution with minimal norm. This is confirmed by our results.

Second, we have chosen a Gaussian pulse by

(107) v(x, t) := e−R|x−x0(t)|2 , t ∈ [0, T],

following a parabolic path x0(t) := (q1t, q2t − q3t
2) with constants R, q1, q2, and q3. We

have then calculated ϕ and ψ from (12) and (11) on the grid (85). As training patterns we

INVERSE PROBLEMS IN NEURAL FIELD THEORY 1429

Figure 7. Original traveling neural pulse for kernel construction problem.

Figure 8. Traveling neural pulse for kernel constructed by Moore–Penrose pseudoinverse (without regular-
ization) as given by (95).

use (106) at the times t1, . . . , t�. Then, we construct the kernel W using (97). The original
pulse at sample times t1, . . . , t12 is shown in Figure 7. We show a reconstructed pulse without
regularization in Figure 8 and a regularized construction in Figure 9. The corresponding
synaptic weight kernels are shown in Figure 10.

Clearly, even without regularization, if we keep the grid in space and time fixed, we are
able to calculate an exact match for the pulse at the times t1, . . . , t�. This is a particular
form of an inverse crime [11], where we consider original and reconstruction in the same fixed
discretization. Here, we change the time discretization for calculating the pulses after recon-
struction. In general the ill-conditioning of the matrix W leads to the high oscillations in the
reconstructed kernel as shown in Figure 8 or 10(a). However, with appropriate regularization
(where we use α = 103 in this section), we obtain nice smooth kernels as shown in Figure 10(b)
and a pulse which follows the predefined path as shown in Figure 9.

6.4. Construction of logical gates. Our final example shows the construction of a logical
gate with XOR functionality; i.e., we construct a classical nonlinear input-output relation such

1430 ROLAND POTTHAST AND PETER BEIM GRABEN

Figure 9. Traveling neural pulse for kernel constructed by Tikhonov regularization (97) with α = 103.

(a) (b)

Figure 10. Unregularized (a) and regularized (b) synaptic weight kernels for the traveling neural pulse
inverse problem.

that (1, 0) is mapped onto 1, (0, 1) is mapped onto 1, and both (0, 0) and (1, 1) are mapped
onto 0. The input is a pulse into the domain D either around the point (0, 3) or around
(0,−3). Output is collected at the point (10, 0).

For solving the inverse problem we employed the setting as described in (84) to (97) in
the version for multiple pulses (98). Here, we have used a discretization of 30 × 31 points in
the domain D and 80 time discretization points for the inverse problem. The pulse had the
form given in (107). We used regularization with α = 1. The tests in Figure 11 have been
carried out with 160 time discretization points to avoid an inverse crime. Here, a trace of the
pulse is shown; i.e., we plotted all the time slices in the same figure. The result shows that
the construction of a logical gate is possible with the linear techniques described in the above
sections.

7. Conclusion. In this paper, we discussed inverse problems for a broad class of neural
field theories described by the Amari equation (2), where synaptic weight kernels are to
be constructed from prescribed solutions of the forward problem. By recasting the Amari
equation into a linear perceptron equation in function space, we were able (a) to analyze
the ill-posedness of the inverse problem, (b) to study generalized Hebbian learning as an
appropriate linear training algorithm, and (c) to employ Tikhonov regularization for stable
numerical implementations. We demonstrated the technique by means of three instructive

INVERSE PROBLEMS IN NEURAL FIELD THEORY 1431

(a) (b)

(c) (d)

Figure 11. We show a trace of the constructed potential for three different neural pulses establishing a
logical gate with the XOR functionality; i.e., either pulse entering at (0, 3) or (0,−3) is transmitted through
the neural tissue layer to the point (10, 0), but both pulses inserted simultaneously lead to extinction; i.e., they
are not transmitted. The kernel w(·, y) for y = (1, 3.1) is shown in (d)—here an active potential in the point
(1, 3.1) inhibits the potential at points around (1,−3).

examples: (i) temporal transitions between static spatial activation patterns governed by
an order parameter dynamics, (ii) kernel reconstruction for a traveling Gaussian pulse, and
(iii) solution of the logical XOR problem by linear means.

To our knowledge inverse problems in neural field theory have not been widely studied yet.
Most work has been done in studying the forward problem under particular assumptions such
as homogeneous and isotropic convolution kernels [1, 9, 10, 12, 15, 16, 21, 22, 33, 40, 42]. On
the other hand, highly nonlinear and computationally expensive gradient inversion methods,
such as backpropagation, are used in connectionist applications of neural networks, e.g., in
order to solve the XOR problem [5, 7, 19, 25, 27, 28, 36, 38]. In contrast, our study shows
that such persistent problems can be straightforwardly tackled by linear methods within the
domain of neural field theory.

Therefore, we think that reliable solutions of neural field inverse problems on different
levels of brain modeling can provide important new mathematical input into the extremely
important field of cognitive neurodynamics. Our work provides a first step in this direction
by bringing together results from different communities and suggesting stable methods for
solving important basic inverse problems for neural field equations.

1432 ROLAND POTTHAST AND PETER BEIM GRABEN

REFERENCES

[1] S.-I. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biolog. Cybernet., 27
(1977), pp. 77–87.

[2] J. A. Anderson and E. Rosenfeld, eds., Neurocomputing. Foundations of Research, Vol. 1, MIT
Press, Cambridge, MA, 1988.

[3] P. beim Graben, Foundations of neurophysics, in Lectures in Supercomputational Neuroscience: Dy-
namics in Complex Brain Networks, P. beim Graben, C. Zhou, M. Thiel, and J. Kurths, eds., Springer,
Berlin, 2008, pp. 3–48.

[4] P. beim Graben and J. Kurths, Simulating global properties of electroencephalograms with minimal
random neural networks, Neurocomputing, 71 (2008), pp. 999–1007.

[5] P. beim Graben, T. Liebscher, and J. Kurths, Neural and cognitive modeling with networks of
leaky integrator units, in Lectures in Supercomputational Neuroscience: Dynamics in Complex Brain
Networks, P. beim Graben, C. Zhou, M. Thiel, and J. Kurths, eds., Springer, Berlin, 2008, pp.
195–223.

[6] P. beim Graben, D. Pinotsis, D. Saddy, and R. Potthast, Language processing with dynamic fields,
Cognitive Neurodynamics, 2 (2008), pp. 79–88.

[7] H. Bersini, M. Saerens, and L. G. Sotelino, Hopfield net generation, encoding and classification of
temporal trajectories, IEEE Trans. Neural Networks, 5 (1994), pp. 945–953.

[8] E. Boasso, On the Moore-Penrose inverse, EP Banach space operators, and EP Banach algebra elements,
J. Math. Anal. Appl., 339 (2008), pp. 1003–1014.

[9] M. Breakspear, J. A. Roberts, J. R. Terry, S. Rodrigues, N. Mahant, and P. A. Robinson, A
unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation
analysis, Cerebral Cortex, 16 (2006), pp. 1296–1313.

[10] P. C. Bressloff, Bloch waves, periodic feature maps, and cortical pattern formation, Phys. Rev. Lett.,
89 (2002), paper 088101.

[11] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag,
New York, Berlin, 1998.

[12] S. Coombes, G. J. Lord, and M. R. Owen, Waves and bumps in neuronal networks with axo-dendritic
synaptic interactions, Phys. D, 178 (2003), pp. 219–241.

[13] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Springer, Berlin, 1996.
[14] W. Erlhagen and G. Schöner, Dynamic field theory of movement preparation, Psych. Rev., 109 (2002),

pp. 545–572.
[15] G. B. Ermentrout and J. B. McLeod, Existence and uniqueness of travelling waves for a neural

network, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), pp. 461–478.
[16] J. S. Griffith, A field theory of neural nets: I. Derivation of field equations, Bull. Math. Biophys., 25

(1963), pp. 111–120.
[17] H. Haken, Synergetics. An Introduction, Springer, New York, 1983.
[18] D. O. Hebb, The Organization of Behavior, Wiley, New York, 1949; partly reprinted in [2].
[19] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural Computation, Perseus

Books, Cambridge, MA, 1991.
[20] J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities,

Proc. Natl. Acad. Sci. USA, 79 (1982), pp. 2554–2558.
[21] A. Hutt and F. M. Atay, Analysis of nonlocal neural fields for both general and gamma-distributed

connectivities, Phys. D, 203 (2005), pp. 30–54.
[22] V. K. Jirsa and H. Haken, Field theory of electromagnetic brain activity, Phys. Rev. Lett., 77 (1996),

pp. 960–963.
[23] R. Kress, Linear Integral Equations, Springer, Berlin, 1989.
[24] R. Kress, Numerical Analysis, Springer, Berlin, 1998.
[25] T. Liebscher, Modeling reaction times with neural networks using leaky integrator units, in Proceedings

of the 18th Twente Workshop on Language Technology (TWLT 18), K. Jokinen, D. Heylen, and A.
Nijholt, eds., University of Twente, Twente, The Netherlands, 2000, pp. 81–94.

[26] M. Minsky and S. Papert, Perceptrons, MIT Press, Cambridge, MA, 1969; partly reprinted in [2].
[27] B. A. Pearlmutter, Learning state space trajectories in recurrent neural networks, Neural Comput., 1

(1989), pp. 263–269.

INVERSE PROBLEMS IN NEURAL FIELD THEORY 1433

[28] B. A. Pearlmutter, Gradient calculations for dynamic recurrent neural networks: A survey, IEEE
Trans. Neural Networks, 6 (1995), pp. 1212–1228.

[29] R. Potthast, Point-Sources and Multipoles in Inverse Scattering Theory, Chapman & Hall, London,
2001.

[30] R. Potthast, Topical review: A survey on sampling and probe methods for inverse problems, Inverse
Problems, 22 (2006), pp. R1–R47.

[31] R. Potthast and P. beim Graben, Existence and properties of solutions for neural field equations,
Math. Methods Appl. Sci., to appear; DOI: 10.1002/mmm.1199.

[32] K. A. Richardson, S. J. Schiff, and B. J. Gluckman, Control of traveling waves in the mammalian
cortex, Phys. Rev. Lett., 94 (2005), paper 028103.

[33] P. A. Robinson, C. J. Rennie, and J. J. Wright, Propagation and stability of waves of electrical
activity in the cerebral cortex, Phys. Rev. E, 56 (1997), pp. 826–840.

[34] F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the
brain, Phys. Rev., 65 (1958), pp. 386–408; also reprinted in [2].

[35] G. Schöner and E. Thelen, Using dynamic field theory to rethink infant habituation, Psych. Rev., 113
(2006), pp. 273–299.

[36] L. G. Sotelino, M. Saerens, and H. Bersini, Classification of temporal trajectories by continuous-time
recurrent nets, Neural Networks, 7 (1994), pp. 767–776.

[37] R. B. Stein, K. V. Leung, D. Mangeron, and M. N. Oğuztöreli, Improved neuronal models for
studying neural networks, Kybernetik, 15 (1974), pp. 1–9.

[38] G.-Z. Sun, H.-H. Chen, and Y.-C. Le, A fast online learning algorithm for recurrent neural networks,
in Proceedings of the International Joint Conference on Neural Networks (IJCNN 91), Vol. 2, 1991,
pp. 13–18.

[39] E. Thelen, G. Schöner, C. Scheier, and L. B. Smith, The dynamics of embodiment: A field theory
of infant perseverative reaching, Behavioral Brain Sci., 24 (2001), pp. 1–86.

[40] N. A. Venkov, S. Coombes, and P. C. Matthews, Dynamic instabilities in scalar neural field equations
with space-dependent delays, Phys. D, 232 (2007), pp. 1–15.

[41] H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model
neurons, Biophys. J., 12 (1972), pp. 1–24.

[42] H. R. Wilson and J. D. Cowan, A mathematical theory of the functional dynamics of cortical and
thalamic nervous tissue, Kybernetik, 13 (1973), pp. 55–80.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

