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Abstract

The task of this paper is to develop a Time-Domain Probe Method for the recon-
struction of impenetrable scatterers. The basic idea of the method is to use pulses
in the time domain and the time-dependent response of the scatterer to reconstruct
its location and shape. The method is based on the basic causality principle of time-
dependent scattering. The method is independent of the boundary condition and is
applicable for limited aperture scattering data.

In particular, we discuss the reconstruction of the shape of a rough surface in
three dimensions from time-domain measurements of the scattered field. In practise,
measurement data is collected where the incident field is given by a pulse. We formu-
late the time-domain field reconstruction problem equivalently via frequency-domain
integral equations or via a retarded boundary integral equation based on results of
Bamberger, Ha-Duong, Lubich. In contrast to pure frequency domain methods here
we use a time-domain characterization of the unknown shape for its reconstruction.

Our paper will describe the Time-Domain Probe Method and relate it to previous
frequency-domain approaches on sampling and probe methods by Colton, Kirsch,
Ikehata, Potthast, Luke, Sylvester et al. The approach significantly extends recent
work of Chandler-Wilde and Lines (2005) and Luke and Potthast (2006) on the time-
domain point source method. We provide a complete convergence analysis for the
method for the rough surface scattering case and provide numerical simulations and
examples.

1 Introduction

We consider the scattering of a time-dependent pulse from a rough surface in three di-
mensions. It is usually easy to send waves into some area of the earth or the human body
and measure their scattered field. The task of inverse scattering theory is to explore or
visualize the structure of the unknown region and to evaluate its properties. This includes
localization and shape reconstruction of the objects and interfaces and the determination
of material parameters like density, conductivity or permittivity.

A rough surface denotes a surface which is usually a non-local perturbation of an
infinite flat surface such that the surface lies within a finite distance of the original plane.
In particular, we expect the rough scattering surface Γ to be the graph of some bounded
continuous function f : R2 → R, i.e.

(1) Γ :=
{
x = (x1, x2, x3) ∈ R3 : x3 = f(x1, x2)

}
.
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Figure 1: Basic setup for the Time-Domain Probe Method. A time-dependent pulse
at some time T is indicated by the dotted circle BR. The pulse hits the surface and
generates scattered pulses, here filling the region G. The basic idea of the Time-Domain
Probe Method is to mark the points x on ∂BR where the modulus of the time-domain
scattered field U s(x, T ) are positive in some set (T, T + ε) for some ε > 0. All these points
will then be on the unknown surface Γ. Reconstructions of U s(x, t) can be carried out by
the time-domain point source method [3] or the potential method [1].

Our goal is the reconstruction of the shape of the surface by given measurements in time.
To this end, we describe the problem settings in the time-domain and its relation to the
frequency-domain settings.

Frequency-domain problems are widely studied, for the rough surface case we refer to
[4], [5], [6], [8], [9], [10], [11], [12]. There exist many methods to solve the inverse problem,
most of which have been worked out for the bounded obstacle case. For example, iterative
methods update some reconstruction using gradients or the Fréchet derivative with respect
to the unknown boundaries [7], [26], [13]. The Point Source Method [3] and the Kirsch-
Kress Method [13] reconstruct the full field and then use the boundary condition to find
the unknown shape. Probe Methods as introduced by Ikehata, [20], Potthast, Nakamura
and others, compare [30], usually define some indicator function via particular incident
fields which can be used to construct or visualize the unknown shapes or objects. As
examples for further approaches we name Sampling Methods, [14], [31], Range Tests, [21],
[29], and Factorization Methods, [22], a survey is given in [30] and in [27].

The inverse rough surface problem in two dimension in the frequency domain is for ex-
ample discussed by DeSanto and Wombell, [16], [17], and for the periodic case by Elschner
and Yamamoto, [18]. The three-dimensional rough surface case for a single frequency is
worked out in [1]. For the numerical realization of the rough surface case we employ the
multi-section approach presented by Heinemeyer, Lindner, Potthast, [19].

In acoustic applications time-domain measurements are usually relatively easy to ob-
tain whereas pure frequency domain methods do not take the full advantage of the data
which are available. Here we suggest a method taking full time-measurements into account.
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It is a significant step forward compared to earlier work by Chandler-Wilde and Lines [3]
and by Luke and Potthast [25]. The Time-Domain Probe Method is a full time-domain
scheme: it is based on causality which cannot be directly used in the frequency domain.
Thus, it naturally incorporates the knowledge of scattered fields for many frequencies.

The method can be seen as an extension of the probing methods of Ikehata, Potthast,
Nakamura, Sini and others. Our approach here will not rely on a particular probe in the
time domain, but will in principle work with a large variety of incident time-dependent
fields. In particular, the probing fields here do not need to have a singularity of any type.
This avoids numerical instabilities which is one of the key problems for the realization
of the time-domain probe schemes. In contrast to engineering schemes from travel-time
tomography here we use a full reconstruction of the time-dependent scattered field U s

which is exploited for reconstructing the unknown surfaces.
As a part of the probing procedure we employ the time-domain field reconstruction

problem by frequency-domain inverse methods and Fast Fourier Transform (FFT) via
a single layer potential approach as first used by Kirsch and Kress in 1986, [13]. An
alternative has been developed with the Point Source method by Chandler-Wilde and
Lines, [3]. Here, we need to employ the Dirichlet Green’s function for the half-space
instead of the standard free-space fundamental solution for the Helmholtz equation as it
has been carried out for the forward problem, [4], [5].

For the time-domain probe method the actual boundary condition is not explicitly
used in the reconstruction algorithm. All arguments will be analogous for other type of
boundary conditions. Thus, we expect the method to be independent of the particular
physical nature of the object under consideration. Here, we will only investigate the case
of the Dirichlet boundary condition in detail and leave other boundary conditions to future
research.

Our presentation plan is as follows. In Section 2 we study the time-domain scattering
problem and describe the retarded potential boundary integral equation which is often
used to model and simulate the scattering process. Section 3 serves to summarize results
about the frequency-domain scattering problem from [4], [5], [6], [8], [9], [10]. In Section 4,
we present the Time-Domain Probe Method and in Section 5 we analyse its convergence.
Section 6 shows numerical results for the rough surface problem.

Notation. In the following x, y, z denote points in R3 with coordinates (x1, x2, x3),
(y1, y2, y3) and (z1, z2, z3). Usually the reflection of these points on the x, y-plane is denoted
by x′, y′, z′ as abbreviation for (x1, x2,−x3), (y1, y2,−y3) and (z1, z2,−z3). The orthogonal
projection of a point x ∈ R3 onto R2, namely (x1, x2), will be abreviated by a bold printed
letter x.

For 0 < β ≤ 1, let BC1,β(R2) denote the set of those bounded continuous functions
f : R2 → R whose gradients are bounded and uniformly Hölder continuous with index
β > 0. We require that the scattering surface Γ is the graph of a function f ∈ BC1,β(R2)
which is bounded by two constants f−, f+ > 0 such that

f− < f(x1, x2) < f+
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holds for every (x1, x2) ∈ R2. We assume that there exists C > f− with

‖f‖BC1,β(R2) ≤ C

and that our surfaces Γ can be represented as

(2) Γ = Γf =
{
x ∈ R3 : x3 = f(x1, x2) where f ∈ BC1,β(R2)

}
.

The domain of propagation is given by

(3) Ω :=
{
x ∈ R3 : x3 > f(x1, x2)

}
.

To indicate the dependence on f we also use the notation Ωf and note that Γ = ∂Ω.

2 The Time-Domain Problem

Let σ > 0 a constant controlling the temporal distribution of a time-dependent pulse. We
study the scattering of a pulse given by

(4) U i(x, t) = F
(

Φ(x, z, ·)g(·)
)

(t), t ∈ R

on a rough surface with the free-space fundamental solution

(5) Φ(x, y, κ) :=
1

4π

eiκ|x−y|

|x− y|
, x, y ∈ R3, x 6= y,

where we assume that g is chosen such that U i(x, t) is compactly supported and C3-smooth
with respect to time. Here, we consider the Fourier transform F with respect to frequency
or time, respectively, using capital letters for the time-dependent fields and small letters
in the frequency domain, i.e. we define

(6) v(x, κ) := (FV (x, ·))(κ) =

∫ ∞
−∞

eisκV (x, s) ds , x ∈ Ω

and thus have
V (x, t) := (F−1v(x, ·))(t) , x ∈ Ω, t ∈ R.

Throughout this paper we set the wave speed equal to one. We formulate the time-domain
problem as follows.

Problem 1 (The Direct Problem in Time-Domain). Given an incident pulse U i(x, z, t)
which is C3-smooth and compactly supported with respect to time, find a solution U s ∈
H2
loc(Ω)× (C3(R) ∩ L2(R)) of

∆U s(x, t)− ∂2

∂t2
U s(x, t) = 0 , x ∈ Ω, t ∈ R(7)

U s(x, t) = −U i(x, t) , x ∈ Γ, t ∈ R.(8)
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We assume that the Fourier transform us(x, κ) of U s(x, t) uniformly satisfies the bound-
edness condition (compare [4])

(9) |us(x, κ)| ≤ c , x ∈ Ω,

with some constant c for any fixed κ, =(κ) ≥ 0, and we demand us to satisfy a limiting
absorption principle (see (19)).

Taking the Fourier transform with respect to time on both sides of the wave equation
(7) we obtain the Helmholtz equation

(10) ∆us + κ2us = 0.

and we observe

(FU i(x, ·))(κ) = Φ(x, z, κ)(Fg)(κ) , x ∈ Ω.(11)

Under the above conditions we obtain uniqueness and solvability of the time-domain prob-
lem by combining uniqueness and solvability of the frequency problems and the bounds
on the inverse as worked out in [5] by an application of the Fourier transform.

For a real-valued mapping U : Ω×R→ R it holds that (FU(x, ·))(κ) = (FU(x, ·))(−κ).
Further, in three-dimensions (in contrast to the two-dimensional case) there are no diffi-
culties arising at κ = 0 as the fundamental solution Φ(x, y, κ) has no singularity in κ = 0
and in the following we can assume that κ ∈ R.

Often, time-domain solutions to scattering problems are represented by time-domain
integral equations [2, 24, 15]. Let Γ∗ be some surface with Γ∗ ⊂ Ω. By an application of the
Fourier Transform to a single-layer potential representation in the frequency domain, every
solution of Problem 1 which allows such a representation for allmost all wave numbers κ
with a density which is in L2(R) with respect to the wave number can be represented as
a potential

U s(x, t) =
1

4π

∫ ∞
−∞

∫
Γ∗

(
δ(t− s− |x− y|)

|x− y|
− δ(t− s− |x− y′|)

|x− y′|

)
ϕ(y, s) ds(y) ds

=

∫
Γ∗

(
ϕ(y, t− |x− y|)
|x− y|

− ϕ(y′, t− |x− y′|)
|x− y′|

)
ds(y) , x ∈ Ω, t ∈ R.(12)

For the limit x approaching the boundary we derive that any density ϕ of the above
representation must satisfy the boundary integral equation

(13) Sϕ = U s|Γ∗ ,

where we define

(14) (Sϕ)(x, t) :=
1

4π

∫
Γ∗

(
ϕ(y, t− |x− y|)
|x− y|

− ϕ(y′, t− |x− y′|)
|x− y′|

)
ds(y)
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for x ∈ Γ , t ∈ R. The potential

(15) Rϕ(x, t) :=

∫
Γ∗

ϕ(y, t− |x− y|)
|x− y|

ds(y)

is known as retarded potential. For a investigation of numerical methods to solve the
retarded boundary integral equation for bounded surfaces, i.e. Γ∗ = ∂Ω where Ω is a
bounded subset of R3, we refer for example to [15]. A complete theoretical background
using Laplace transforms can be found in [2] and in [24].

Here, for simulation and inversion we employ calculations using FFT and frequency
domain methods. An application of the FFT with respect to time to equation (13) leads
to the standard single-layer boundary integral equation in the frequency domain for all
frequencies κ ∈ R. We solve this problem for κ in a uniform grid of points and employ
the inverse FFT to obtain an approximate solution to the retarded integral equation. For
more details about equivalence and estimates we refer to the arguments worked out in [25].
We also refer to [28] where this equivalence has been used to construct a time-domain filter
for field reconstruction from a family of frequency-domain filters. In the next section we
summarize some relevant results on the frequency problem for the rough surface setting.

3 The Direct Scattering Problem in the Frequency Domain

In the frequency domain problem we consider the scattering of an acoustic field from
the rough surface Γ. The incident field is due to a point source in z ∈ R3 defined by
ui(x, κ) = Φ(x, z, κ), where Φ is the fundamental solution of the Helmholtz equation (5).
As we have seen we can limit our attention to the case κ ≥ 0. The direct problem is to find
the scattered field us(·, κ) ∈ C2(Ω)∩C(Ω) such that the total field u(·, κ) = ui(·, κ)+us(·, κ)
is a solution of the Helmholtz equation

(16) ∆u(x, κ) + κ2u(x, κ) = 0 for x ∈ Ω.

Furthermore, the total field is required to satisfy the Dirichlet boundary condition

(17) u(x, κ) = 0 for all x ∈ Γ,

and the scattered field is supposed to be bounded in space, i.e.

(18) |us(x, κ)| ≤ c, x ∈ Ω,

for some constant c > 0 only depending on k. In the case that the wave number is a
positive real number, we follow [4] and require the limiting absorbing principle, i.e. that
for sufficiently small ε > 0 the solution with wave number κ = k0 + iε exists and the
pointwise limit

(19) u(x, k0 + iε) −→ u(x, k0), ε→ 0,

is satisfied for every x ∈ Ω.
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Problem 2 (Direct Rough Surface Scattering Problem). Let ui(·, κ) be an incident field
due to a point source at the point z ∈ Ω, i.e.

(20) ui(·, κ) = Φ(·, z, κ) .

Then, we want to find the total field u(·, κ) = ui(·, κ) + us(·, κ), such that u(·, κ) solves
the Helmholtz equation (16) and the Dirichlet boundary condition (17), the scattered part
us(·, κ) satisfies the bound (18) and, for κ > 0, the limiting absorbing principle (19) is
valid.

We can convert this scattering problem into a boundary value problem seeking the
scattered field in the form

(21) us(·, κ) = v(·, κ)− Φ(·, z′, κ) .

Then, the Dirichlet boundary condition of the direct scattering problem with the incident
field (20) yields

us(·, κ) = −Φ(x, z, κ) on Γ,

and thus, the remainder v satisfies the boundary condition

(22) v(x, κ) = Φ(x, z′, κ)− Φ(x, z, κ) =: −G(x, z, κ) , x ∈ Γ .

We remark that the total field u(·, κ) satisfies the direct scattering problem if and only
if v(·, k) solves the following boundary value problem, see [4]. Furthermore, the direct
scattering problem can be reformulated in a well-posed integral equation, see [4],[5].

Problem 3 (Boundary Value Problem). Find v(·, κ) ∈ C2(Ω)∩C(Ω), which satisfies the
Helmholtz equation (16), the boundary condition (22), the bound (18) and, for κ > 0, the
limiting absorbing principle (19).

The solvability of the frequency domain problem via a combined single- and double-
layer approach for mildly rough surfaces has been shown in [4]. The authors first use
Fourier arguments on a flat surface Γ0. It is shown that the application of a single-layer
potential on a flat surface with kernel

(23) Gh(x, y) := Φ(x, y)− Φ(x, y − h · e3), x, y ∈ Γ0,

corresponds to multiplication with its Fourier transform

(24) (FGh(·))(k) =
1

4π

(1− e−h
√
k2−κ2)√

k2 − κ2
, k = |k|.

Note that this is nonzero for h sufficiently small on k ∈ R2 and that the function at k = κ
is bounded. The operator is boundedly invertible on the set of functions whose Fourier
transform multiplied with |k| is square integrable, which corresponds to the solvability of
the single-layer potential equation Sϕ = f for f ∈ H1(R2).

For the reconstruction of U s or us, respectively, on some test surface Γ∗ (which we
choose as a compactly perturbed plane as shown in Figure 2) we need to study the solv-
ability of the single-layer boundary equation. This is carried out in the following result.
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Theorem 1. Consider the single-layer potential S with kernel Gh on a rough surface Γ∗.
Then for h sufficiently small the operator is boundedly invertible as operator L2(Γ∗) →
H1(Γ∗).

Proof. The theorem is a direct consequence of the results of Lemma 3.3 and Theorem
3.4 in [5], where the density of the single-layer potential on a rough surface is explicitly
estimated.

4 A Time-Dependent Probe Method

Here, we first describe the field reconstruction problem in frequency domain, i.e. for
measurements of the total field u(·, κ) = ui(·, κ) + us(·, κ) for a single fixed wavenumber
κ > 0 on a finite measurements plane Γh,A with

(25) Γh,A =
{
x ∈ R3 : x3 = h, |x1| ≤ A, |x2| ≤ A

}
for a constant A > 0 our task is to reconstruct us(x, κ) in Ω. Note that we use the a-priori
information h > f+ to assure that there are no intersections between Γh and the unknown
surface Γ.

Problem 4 (The Field Reconstruction Problem, frequency domain). Suppose we know
the incident field ui(·, κ) = Φ(·, z, κ) and the scattered field us(·, κ) on the plane Γh,A for a
fixed wavenumber κ with =(κ) ≥ 0. We assume that the total field u satisfies the Dirichlet
boundary condition u = 0 on the unknown surface Γ. Then, we try to find the total field
and the surface Γ such that u is the solution of the direct problem (2) and (u − ui)(·, κ)
coincides with us(x, κ) for all x ∈ Γh,A.

We approximate the total field u(·, κ) via an single layer potential ansatz over some
auxiliary surface Γ∗ ⊂ Ω. For ϕ ∈ L2(Γ∗) the single layer potential is defined via

(26) Sϕ(x, κ) :=

∫
Γ∗
G(x, y, κ)ϕ(y) ds(y)

for all x ∈ R3. Here, the kernel G is the Dirichlet Green’s function for the Helmholtz
equation given by

(27) G(x, y, κ) = Φ(x, y, κ)− Φ(x, y′, κ) .

Let Λf be a surface given via (1). We define the projection operator for B > 0 by

PB : L2(Λf ) → L2(Λf )(28)

ϕ(x) 7→

{
ϕ(x) if x ∈ [−B,B]2 ,

0 otherwise,
(29)

where x = (x, f(x)). In particular, the restrictions of the measurements us on the plane
Γh,A can be seen as the image of the projection PAu

s ∈ PA(L2(Γh)) of the scattered field
us.
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For the solution of the inverse problem we proceed as follows. We make the ansatz

(30) us(·, κ) = v(·, κ)− Φ(·, z′, κ)

and seek the projection PAv of the remainder v in a single layer potential, i.e.

(31) PASϕ(x, κ) = PAv(x, κ) for all x ∈ Γh,A .

Since PAS is a compact operator from L2(Γ∗) → L2(Γh,A), see [1], equation (31) is ill-
posed and we require some regularisation strategy.

To solve PASϕ(x) = PAv(x) on Γh,A we apply the Tikhonov regularisation, i.e. we
solve

(32) αϕ(·, κ) + S∗PASϕ(·, κ) = S∗PAv(·, κ) on Γh,A ,

with a regularisation parameter α > 0. In the following we indicate the dependence on the
regularisation parameter α > 0 by the subscript α. Then, we approximate the function v
in the domain Ω∗ above Γ∗ via

(33) vα(x, κ) = Sϕα(x, κ) , x ∈ Ω∗ .

Now, using the ansatz (30), we obtain an approximation uα of the total field via

uα(·, κ) = ui(·, κ) + usα(·, κ)

= ui(·, κ) + Sϕα(·, κ)− Φ(·, z′, κ)

= Sϕα(·, κ) +G(·, z, κ) .(34)

Algorithm 1 (Field Reconstructions). We reconstruct the time-dependent scattered field
U s(x, t) by frequency-domain methods via the Fourier transform as follows:

1. For κ ∈ R evaluate us(x, κ) := (FU s(x, ·))(κ), x ∈ Γh,A.

2. Reconstruct the scattered field us = (u− ui)(x, κ) for x ∈ Ω and κ ∈ R.

3. Evaluate U s via U s(x, t) = F−1us(x, ·)(t).

Numerically we will employ a finite section version of the above approach, i.e. we
study a single-layer potential defined on some finite part Γ∗C of Γ∗. In the next section we
will show convergence of this finite section method to the above solution for the infinite
surface Γ∗.

We are now prepared to introduce the Time-Domain Probe Method, which relies on
time-measurements of the scattered field U s(·, t) on the measurement plane Γh,A. To this
end we assume to know the measurements of the scattered field in time, that is

(35) U s(x, t) for all x ∈ Γh,A , t ∈ R.
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Definition 2. For a point x ∈ Ω we define the first hitting time with respect to the incident
field U i by

(36) T (x) := inf{t ∈ R : |U i(x, t)| > 0}.

For x = (x1, x2) ∈ R2 define

(37) xλ := (x1, x2, h− λ) , 0 < λ < h ,

which is called a vertical needle. Then the first hitting parameter λ∗ is defined as

(38) λ∗ := sup
xλ∈Ω

λ.

We use a grid of size hλ > 0 for the discretization of the vertical probing, i.e. we
employ

(39) λξ := hλ · ξ, ξ = 0, 1, 2, ...

Algorithm 2 (Time-Domain Probe Method). Let U s(x, t) be given for all x ∈ Γh,A and
t ∈ R. To identify points x ∈ Γ or to calculate a reconstruction frec for the surface height
function f on Q, respectively, we choose a constant hλ and ε = 2hλ (where we assume
wave speed c = 1) to carry out the following steps:

1. For every x ∈ Q:

2. we successively investigate λ = λξ for ξ = 0, 1, 2, .. given by (39):

3. with xλξ defined by (37) we reconstruct U s(xλξ , t) in the small interval t ∈ (T, T + ε)
after the first hitting time T = T (xλξ) by the methods described in Algorithm 1.

4. If |U s(xλξ , t)| = 0 for all t ∈ (T, T + ε), then we set µ(λξ) = 0 and conclude that
xλξ ∈ Ω. If there are points t such that |U s(x, t)| > 0 in the time interval (T, T + ε),
then we define µ(λξ) = 1 and we conclude that xλξ is close to Γ.

5. If µ(λξ) = 1 and µ(λη) = 0 for all η < ξ, then we define the approximation

(40) frec(x) := h− λ

to the unknown surface given by f .

To achieve a numerical algorithm we will employ a grid of points in the rectangle
Q = (a1, b1)× (a2, b2). With n1 or n2 points in x1 or x2 direction, respectively, we use the
notation

x1,j = a1 +
b1 − a1

n1 − 1
(j − 1), j = 1, ..., n1(41)

x2,` = a1 +
b2 − a2

n2 − 1
(`− 1), ` = 1, ..., n2.(42)
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We denote our horizontal grid by Qn1,n2 . For every point x ∈ Qn1,n2 we investigate the
points xλξ for ξ = 1, 2, 3, ... until µ(λξ) = 1. For the discrete version we need to make sure
that we identify points which are close to the unknown boundary Γ. To this end we need
to investigate appropriately chosen intervals (T, T + ε) depending on our discretization for
simulations. Here, we have used a fixed ε = 0.2 which was chosen by trial and error.

We will show convergence of the above algorithm in the next section.

5 Convergence of the Time-Domain Probe Method

The goal of this chapter to prove convergence of the Time-Domain Probe Method for the
reconstruction of impenetrable rough surfaces.

As before we write U sα instead of U s to indicate the dependence of the reconstructed
scattered field U s in the time-domain on the regularisation parameter α > 0. From now
on U s is the true scattered field in the time-domain. We start with the investigation of
convergence of U sα to U s.

Figure 2: We show the setting for the reconstruction of the scattered field U s(x, t). The
surface Γ∗ is supposed to be in the domain Ω, i.e. above the unknown surface Γ. The
measurement surface is ΓA. The figure shows a point x in which U s(x, t) is reconstructed
close to or on the boundary of the test surface Γ∗.

Theorem 3. Consider the setting shown in Figure 2. Let U i be an incident pulse and U sC,α
the reconstructed field using the single-layer approach applied with the truncated surface

(43) Γ∗C := {x ∈ Γ∗, |x1| ≤ C}.

If the test surface Γ∗ is in Ω there exists a function C0(α) with

(44) C0(α)→∞, α→ 0
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such that for all C(α) ≥ C0(α) we obtain the convergence

(45)
∣∣U sC,α(x, t)

∣∣→ |U s(x, t)| for α→ 0,

for every x above or on Γ∗.

Proof. For C = ∞ we can choose h > 0 such that the single-layer equation Sϕ = us

from Γ∗ onto Γh,A has a unique solution in L2(Γ∗). In this case we obtain convergence of
the reconstruction for a fixed frequency κ from the standard properties of the Tikhonov
regularisation [23].

Denote the Tikhonov operator for Γ∗ by Rα, i.e. Rα := (αI + S∗PAS)−1S∗PA, and
the Tikhonov operator arising from SC := SPC based on Γ∗C by RCα . In particular RCα
is given by RCα := (αI + PCS

∗PASPC)−1PCS
∗PA. Let ϕα be the regularized density for

Γ∗, for which we know convergence ϕα → ϕ towards the true solution ϕ on Γ∗ for α→ 0.
Then, we have pointwise convergence

(46) RCα → Rα, C →∞

and thus

(47) ϕCα := RCαu
s → ϕα, C →∞.

This now shows that we have ϕ
C(α)
α → ϕ when C(α) is chosen appropriately. Finally,

we remark that we obtain reconstructions with error estimates uniformly for compact
intervals of frequencies with a norm of the inverse operator bounded by Cκ with some
constant C, compare [5]. Since the fields are assumed to be in C3(R) with respect to time
they decay proportional to κ−3 in frequency on the boundary and proportional to κ−2 in
the domain Ω. Thus, applying the inverse Fourier transform we obtain convergence for
the time-dependent fields as well.

We base our arguments on the following basic properties of the wave equation [32].

Theorem 4 (Range of Influence). Let D be any subset of Ω and t > 0. Then, the values
of any solution U s(x, t) in D of problem 1 depend only on the values of the total field
U(x, s) for s ∈ [0, t] in the set

(48) Dt :=
{
x ∈ R3 : dist(x,D) < t

}
.

Proof. The statement is a consequence of the effects in hyperbolic equations to propagate
along the characteristics of the equation, compare for example Theorem 14.1 in [32]. Here,
the characteristics are the lines

(49) |x− x0| = t, t ≥ 0

shown in Figure 3 (a) and the domain Dt is the maximal domain from which points in
D can be reached by an influence travelling along the characteristics in the time interval
[0, t].
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(a) (b)

Figure 3: We visualize the characteristics of the wave equation, where we used a wave
speed c = 1. (a) The field at the point x0 = (1, 2) is influenced by the field in the dottet
region below. It is influencing the field in the dotted cone above x0. If the field is zero in
the lower cone, then it must be zero at x0. (b) Consider an incident field emerging from z0

which reached x0 at time T . The image shows the situation at T + δT , where the sphere
of influence of the incident field is visualized by the large circle. The scattered field arising
at T from x0 can reach the sphere indicated by the dotted smaller circle.

Lemma 5. Let U i be an incident spherical pulse as given by (4) which is compactly
supported in time. For every point x ∈ Ω we have that

(50) U s(x, t) = 0 for all t < T (x).

Proof. Consider the setting as visualized in Figure 3. The statement is a simple conse-
quence of the fact that for a spherical pulse the total field U(x, t) is zero in space-time
range of influence of (x, T (x)). Thus, for t < T (x) the scattered field U s(x, t) can never
by positive in x.

Theorem 6 (Convergence of Time-Domain Probe Method). The Time-Domain Probe
Method as described in Algorithm 2 provides a complete reconstruction of the surface Γ
above the rectangle Q in the sense that for hλ → 0 we have convergence

(51) frec,hλ(x)→ f(x), hλ → 0, x ∈ Q.

Proof. Assume that xλ ∈ Ω above Q. Then according to Lemma 5 the scattered field
U s(xλ, t) is zero for t < T (x) and since U i(x, t) is zero for t < T (x) the same is true for
the total field. Further, we want to show that U s(x, t) is zero even in a small neighbourhood
(T (x)− ε, T (x) + ε)) of T (x). Consider Figure 1, where the evolution of the field U s(x, t)
is visualized. For any point x ∈ ∂BR with x ∈ Ω the influence arising from the incident
field U i needs some time t > T (x) to reach T (x). This is due to the triangle inequality
which states that

(52) |z0 − x̃|+ |x̃− x| > |z0 − x|
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for any point x̃ ∈ Γ and travel times are calculated by division of the distance by the wave
speed c (where T (x) = |z0 − x|/c). This proves that µ(λ) = 0 for xλ ∈ Ω.

Now, consider a point xλ ∈ Γ. Then we know that the scattered field satisfies U s(x, t) =
−U i(x, t) and by definition of the first hitting time T (x) we know that in some interval
(T (x), T (x) + ε) we have |U i(x, t)| > 0. This proves that µ(λ) = 1 for this case. Finally,
from both cases and the setup of the needle search which is starting with λ = 0 we obtain
convergence of the Time-Domain Probe Method.

6 Numerical Study of the Time-Domain Probe Method

Our goal here is to show examples for the numerical realization for the Probe Method. We
discretize the frequency interval K = [−κmax, κmax] using a step size hκ = κmax/N with
2N frequency points. Our frequency grid it thus given by

(53) κn = n · hκ, n = −N, ..., N − 1

and we obtain a corresponding time grid by tn by

(54) tn = n · ht, n = −N, ..., N − 1

with time-stepsize ht. The location of the point source for our simulation is (−3, 0, 10)
or (0, 0, 13), respectively, and we choose σ = 15 or σ = 4, respectively, for the Gaussian
pulse density. We use forward code developed by Heinemeyer, Lindner and Potthast [19]
to calculate the scattered field in the time-domain U s(x, tn), n = −N, ..., N − 1, for a
selection of grid points x in the measurement patch Γh,A at height h = 10, where we used
A = 5.

For our numerical implementation we have realized a simplified version of the field
reconstruction by a fixed choice of the auxiliary surface Γ∗ below the unknown surface for
the reconstruction of the scattered field us. We first calculate the frequency components
by FFT from the time-domain measurements

(55) us(x, κn) = F(U s(x, ·))(κn) , n = −N, ..., N − 1, x ∈ Γh,A .

Then, we reconstruct the scattered field us(x, κn) for x ∈ Q ⊂ R3 where Q is a three-
dimensional grid. For every fixed x ∈ Q we evaluate

(56) U s(x, tn) = F−1(us(x, ·))(tn) .

The second part of the numerical implementation is the probing procedure. We chose
some fixed constant ε = 0.2. For every point x in Q we evaluate the first hitting time
T (x) and investigate U s(x, t) for t ∈ J := (T (x), T (x) + ε). We set µ(x) = 1 for those
points for which |U s(x, t)| > ρ in J , where ρ is some numerical threshold which we use to
discriminate U s(x, t) = 0 and |U s(x, t)| > 0.

We present simulations where the unknown surface consists of a hill and a valley. We
use frequencies from 0 to 6 with a stepsize h = 0.15. In Figure 4 we presents a visualization
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of the incident pulse in (a). The pictures (b), (c) and (d) show time slices of the scattered
field at three different times t1, ..., t3. This confirms the arguments demonstrated in Figure
1.

The points which are identified as boundary points by the Time-Domain Probe Method
are visualized in Figure 5. Figure (a) shows a slice plot along x2 = 0. In (b) we show
a horizontal view onto the reconstructions which proves that the location and height of
the hill and valley are correctly found. Finally, a complete reconstruction of the height
function is visualized in (c). The numerical results confirm the feasibility of the Time-
Domain Probe Method.

The reconstructions here are comparable to frequency domain reconstructions for ex-
ample by the point source method (c.f. [30], [31]) when we know and use the Dirichlet
boundary condition. However, here we do not need to use this condition, so we are in a
different setting where standard frequency domain algorithms do not work. A comparison
to methods like the range test or the no-response test (compare [30]) needs to be part of
future research.
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