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Abstract 

Corneal tissue engineering has improved dramatically over recent years. It is now possible to 

apply these technological advancements to the development of superior in vitro ocular surface 

models to reduce animal testing. We aim to show the effect different substrates can have on 

the viability of expanded corneal epithelial cells and that those which more accurately mimic 

the stromal surface provide the most protection against toxic assault. Compressed collagen gel 

as a substrate for the expansion of a human epithelial cell line was compared against two well-

known substrates for modeling the ocular surface (polycarbonate membrane and conventional 

collagen gel). Cells were expanded over 10 days at which point cell stratification, cell number 

and expression of junctional proteins were assessed by electron microscopy, 

immunohistochemistry and RT-PCR. The effect of increasing concentrations of sodium lauryl 

sulphate on epithelial cell viability was quantified by MTT assay. Results showed improvement 

in terms of stratification, cell number and tight junction expression in human epithelial cells 

expanded upon either the polycarbonate membrane or compressed collagen gel when 

compared to a the use of a conventional collagen gel. However, cell viability was significantly 

higher in cells expanded upon the compressed collagen gel. We conclude that the more 
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naturalistic composition and mechanical properties of compressed collagen gels produces a 

more robust corneal model. 

 

1. Introduction 

           Since the 1940s, the accepted method for the assessment of acute eye irritation potential 

has been the Draize eye irritation test using a rabbit model (Draize, J.H. et al., 1944). However, 

the recent increase in experimental animal use, severity of the test and its limitations continues 

to present valid reasons for the sustained pursuit of alternative methods for ocular surface 

toxicity assessment. 

In vitro alternatives to the Draize method needs to allow for the testing of chemicals, cosmetics 

and pharmaceutical drugs under conditions similar to the in vivo environment. Two validated ex 

vivo models are now accepted that identify severe eye irritants, namely the Bovine Corneal 

Opacity and Permeability (BCOP) and the Isolated Chicken Eye (ICE) test methods (European 

Commission, 2007) .The bovine corneal opacity and permeability (BCOP) assay is an accepted 

alternative, but its accuracy is limited to less common severe irritants. In recent years, three 

dimensional human corneal constructs in cell culture have been reported to be useful models 

for assessment of irritancy potential (Doucet et al., 1998, 2006). More recently Nguyen et al. 

constructed a three-dimensional model using human corneal cells seeded on polycarbonate 

membrane resulting in a stratified human cornea epithelium with appropriate morphology and 

thickness (Nguyen et al., 2003). This model has subsequently been shown to be a useful 

alternative to the classic Draize test as it was able to predict the eye irritation potential of 

several established formulae belonging to various product types (Doucet, O. et al., 2006; 

Seaman, C.W. et al., 2010). However, this model does not consider the effect of the substrates 

mechanical properties on subsequent cell phenotype. It is now more widely recognized that 

cells migrate towards stiffer substrates (Pelham and Wang 1997) and that increased stiffness 

increases differentiation (Engler, AJ et al., 2006; Matthias, P. et al., 2009; Discher, D. E. et al., 

2009; Gilbert, P.M. et al., 2010). These findings indicate that simply growing cells on tissue 

culture dishes or a thin polycarbonate membrane with an elastic modulus many times greater 



than the in vivo situation is likely to have a profound effect on the cells phenotype and function 

including the effective formation of a cell barrier to toxic assault. Therefore we posit that 

seeding the corneal epithelial cells on to a more physiologically relevant substrate, in terms of 

its constituent and mechanical properties, will lead to be a better ocular model for toxicity 

testing. 

Collagen gels have been extensively studied as cell substrates for corneal cell growth due to 

their excellent biocompatibility (Kato, M.  et al., 2007; Doillon, CJ.  et al., 2003; Duan, X.  et al., 

2006; Crabb, RA.  et al., 2006; Mi, S. et al., 2010a; Li, F. et al.,2005). Matsuda et al. developed a 

rabbit corneal epithelium model using cultured rabbit corneal epithelial cells on a collagen gel 

scaffold to evaluate eye irritants in vitro (Matsuda et al., 2009). However, the greatly hydrated 

nature of this type of conventional collagen gel results in highly dispersed collagen fibers and a 

gel that is both inherently weak and difficult to manipulate (Kato, M. et al., 2007; Mi, S. et al., 

2011; Li, F. et al., 2005).  Recently, we successfully expanded bovine corneal epithelial stem 

cells on compressed collagen gels. These compressed collagen gels are denser, mechanically 

stronger and stiffer than conventional collagen gels and their resultant ultra-structure more 

closely resembles the normal corneal stroma (Mi, S. et al., 2010a; Mi, S. et al., 2010b). 

Furthermore, the subsequent expansion of corneal stem cells produced a tissue construct with 

improved cell density, cell stratification and levels of differentiation similar to the normal 

cornea (Jones, RR et al., 2012). We now hypothesize that the more naturalistic growth of 

corneal cells on compressed collagen gels could be used for in vitro toxicity testing thereby 

forming an improvement over the established models including conventional (uncompressed) 

collagen gels or standard tissue culture plastic (e.g. polycarbonate membranes) as substrates. 

    

2.  Materials and methods  
2.1 Cell culture 

Immortalised Simian virus 40-transformed human corneal epithelial (HCE) cells (Araki-Sasaki, K 

et al., 1995) were obtained from RIKEN Biosource Center (Tsukuba, Japan). The cells were 



maintained in supplemented hormonal epithelial medium (SHEM), which comprises Dulbecco’s 

modified Eagle’s medium (DMEM)-F12 (50:50, v/v) supplemented with 15% heat-inactivated 

fetal bovine serum, bovine insulin (5 μg/ml), cholera toxin (0.1 μg/ml), recombinant human 

epidermal growth factor (10 ng/ml), and gentamicin (40 μg/ml) all purchased from Fisher 

Scientific, UK (Connon, C.J. et al., 2006). 

 2.2 Preparation of the 3D corneal epithelial model 

Conventional uncompressed collagen gels (UC) were prepared by neutralising 4 ml sterile rat-

tail type I collagen (2.2 mg/ml in 0.6% acetic acid, First link Ltd, UK) in 1 ml modified Eagle’s 

minimum essential medium (Gibco, Uk) and 0.5 ml 1M sodium hydroxide (Fisher, UK). The 

solution was gently mixed and cast into rectangular moulds (33mmx22mmx8mm) prior to 

gelling at 37oC, 0.5% CO2 for 30 minutes. Compressed collagen gels (CC) were then prepared by 

compression of these conventional gels between two layers of nylon mesh (50 μm mesh size) 

under 134g for 5 minutes at room temperature (Brown, R.A. et al., 2005) (Figure 1). 

2.3 Expansion of HCE cells on differing substrates; uncompressed collagen gel (UC), 

compressed collagen gel (CC) and polycarbonate membranes (PM) 

CC and UC gels were transferred into a 12-well tissue culture insert with a polycarbonate 

membrane (PM) base (Invitrogen, Fisher Scientific UK). The top side of each substrate (CC, UC 

and PM alone) were coated with laminin (1.5μg/cm2) for 2 hours prior to cell seeding to 

enhance cell attachment. HCE cells were seeded onto each of the substrates at a density of 

1x109/ml (0.5ml per well). After 1 week incubation submerged in media at 37 oC under 5% CO2 

and another 3 days with the level of the media reduced (air-lifted), the resulting stratified 

corneal epithelial sheets were ready for further examination (Mi, S. et al., 2010a). Relative cell 

numbers were calculated at the 10th day following stratification of the corneal epithelial sheets 

by MTT assay (Matsuda, S. et al., 2009). Relative cell number index= ([O.D. of test sample − O.D. 

of negative control] / O.D. of negative control). 

2.4 Effect of different substrates on cell viability under toxic conditions  



Following an established procedure (Matsuda, S et al., 2009), increasing concentrations of the 

known ocular irritant sodium lauryl sulphate (SLS) were applied drop wise to the surface of the 

ocular surface models (i.e. HCE cells grown on either CC, UC or PM) and then incubated at 37 oC 

under 5% CO2 for 30 minutes with excess liquid removed by blotting paper. The SLS 

concentrations used were 0.0125%, 0.025%, 0.05%, 0.125%, 0.25%, 0.5%, 1% and PBS alone as 

control (n=9). The cells within the ocular surface models were then washed with fresh media, 

followed by an MTT solution (0.5 mg/ml) and incubated for a further 3 hours (Matsuda, S et al., 

2009). Excess MTT solution was removed followed by the addition of isopropanol for 2 hours at 

room temperature. Finally 15 minutes of gentle agitation was then performed and 200 μl 

aliquots were transferred to a 96 well plate and the optical density (OD) at 540nm measured 

using a microtiter plate reader. Isopropanol was used as the blank. The resulting cell viability 

was expressed as a percentage relative to the PBS control. 

2.5 Scanning electron microscopy (SEM) 

The cells upon the surface of each of the ocular surface models (CC, UC and PM) after 10 days 

in culture were examined by SEM. Collagen gel samples were prepared as previously described 

(Mi, S. et al., 2010a). Initially fixed in 2.5% glutaraldehyde solution for 2 hours at 4 oC and 

washed 3 times for 10 minutes with distilled water. Samples were then postfixed with 1% 

osmium tetroxide for 2 hours and washed with distilled water 3 times before being passed 

through a graded ethanol series (50%, 70%, 90% and 100%), critical point dried and finally 

sputter coated by Au/Pd. Samples were observed in a scanning electron microscope (FEI 

Quanta FEG 600, Oragon, USA). 

2.6 Transmission electron microscopy (TEM) 

The samples were prepared as for SEM however after dehydration the ethanol was substituted 

by propylene oxide then the samples were embedded in agar 100 epoxy resin. Ultrathin 

sections (50- 70nm thick) were collected on naked copper grids, and counterstained for 1 h with 

1% uranyl acetate and 1% phosphotungstic acid, then for 20 min with Reynold’s lead citrate 

prior to examination in a JEOL transmission electron microscope (Philips CM20) (Mi, S. et al., 

2010a; Watson, M. L. 1958; Venable, J. H. and Coggeshall, R. 1965).  



2.7 Immunolabelling of ZO-1 

The ocular surface models (CC, UC and PM) were examined by immunofluorescence microscopy 

to probe for the expression of ZO-1 within the HCE cells using an approach described previously 

(Chen B, et al., 2010). Samples, after 10 days in culture, were embedded in optimal cutting 

temperature (OCT, Tissue Tek) compound and frozen at -80 oC. Prior to immunohistochemistry, 

cryostat sections 7-10 μm thick were collected onto polylysine coated slides and air-dried for 2 

hours. Sections were then fixed at -20oC in 100% methanol for 15 minutes then 100% acetone 

for 5 minutes prior to incubation with 1% (w/v) bovine serum albumin (Sigma-Aldrich, UK) at 

room temperature to block non-specific binding. Sections were then incubated overnight at 4 oC 

with primary antibody against ZO-1 (1:50, Chemicon, UK). The sections were subsequently 

incubated for 1 hour at room temperature in fluorescein isothiocyanate (FITC)-labelled 

secondary antibody (1:50, Sigma-Aldrich, UK). Finally sections were co-stained with propidium 

iodide (Sigma-Aldrich, UK) and observed by fluorescence microscopy (Carl Zeiss Meditec, 

Germany). 

2.8 RT-PCR analysis 

The PCR protocol was designed to maintain amplification in the exponential phase. The 

sequences of the PCR primers (sense and antisense, respectively) were 5′-

TGCCATTACACGGTCCTCTG-3′ and 5′-GGTTCTGCCTCATCATTTCCTC-3′ for ZO-1; 5’-

AGATCGACACCACGCTGCGC-3’and 5’-TGTCACTGGTGCACACGGCC-3’ for integrin β4; 5′-

ACCACAGTCCACGCCATCAC-3′ and 5′-TCCACCACCCTGTTGCTGTA-3′ for glyceraldehyde-3-

phosphate dehydrogenase (GPDH, internal control). 

2.9 Statistical study 

Cytotoxicity was shown as the mean ±standard error of percentage cell viability. From three 

independent experiments subsequent inspection of the means was evaluated using a two-way 

Anova with a Bonferroni post test to determine degree of significance. 

  

3. Results 



3.1 Structural characterisation of the ocular surface models 

Three-dimensional models of the ocular surface were constructed using HCE cells expanded 

upon three different substrates; polycarbonate membrane (PM), compressed collagen (CC) and 

uncompressed collagen (UC) gels. The level of HCE cell stratification upon each of the scaffolds 

is shown in figure 2.  Both the CC and PM substrates gave similar levels of cell stratification. 

However, cells grown on UC gels appeared larger and less compacted when compared to the 

cells on the other two substrates.  The relative cell number upon each of the substrates, after 

10 days in culture, which measured by MTT assay, as shown in figure 3.  There were a greater 

number of cells on the CC gels than on the UC gels, indicating that the CC gel is a better collagen 

based scaffold for cell growth, however PM supported the largest number of cells. 

3.2 HCE cell ultrastructure following expansion upon different scaffolds 

SEM was performed to analyse the epithelial surface of the three ocular surface models. The 

cells appeared flattened with visible tight junctions structures between cells grown on the PM 

and CC substrates. The surface epithelial cells grown upon the UC substrate were more round, 

less regularly spaced and did not display any obvious cell-cell junctions (Figure 4). 

TEM analysis showed that HCE cells, after expansion upon PM or CC substrates, displayed 

evidence of cell-cell tight junction formation (Figure 4). Similar structures were not seen 

between HCE cells on the UC substrate.  

3.3 Effect of SLS on cell viability within different ocular surface models 

Cell viability measurements from the three different ocular surface models, displayed a similar 

relative dose-dependent effect to increasing SLS concentrations (Figure 5). However, the IC 50 

values did differ. The IC 50 concentrations for SLS against cells grown on CC, UC, and PM were 

0.076%, 0.043% and 0.030% respectively. Cell viability was predominately higher at each SLS 

concentration for cells grown on the CC substrate. Significance values of p =0.05, p=0.001 and 

p=0.01 between CC and PM were seen at concentrations of 0.025, 0.05 and 0.125 % SLS   

 



3.4 Effect of differing substrates on Integrin β4 and ZO-1 expression within expanded HCE cells 

Immunohistochemistry results showed greater ZO-1 staining within HCE cells expanded on PC 

and CC substrates, when compared to HCE cells expanded upon UC substrates (Figure 6). PCR 

results also indicated that the ZO-1 expression was greatest from cells grown on PM substrate, 

lower from cells grown on the CC substrate and negative within UC gel model.  The same trend 

was found in integrin β4 expression, high in the PM model and low in UC gel model (Figure 7).  

 

4. Discussion 

When engineering a corneal model the substrate should be able to support levels of corneal 

epithelial cell adhesion, migration, proliferation and stratification that approach the normal 

cornea (Shah, A et al., 2008). With this in mind several efforts have been made to improve in 

vitro ocular toxicity testing. For example chorioallantoic membrane, cell-based cytotoxicity 

methods, reconstituted tissue models and isolated organ culture methods have all been 

previously suggested (Hagino, S. et al., 1999; Uchiyama, T. et al., 1999; Ohuchi, J. et al., 1999; 

Zhao, B. et al., 2009; Xu, K.P. et al., 2000).  One of the most established models uses HCE 

immortalized cells expanded upon a polycarbonate membrane at the air–liquid interface and 

satisfactory results, in concordance with recorded Draize test data, have been obtained against 

several formulated ubiquitous cosmetic products (Doucet, O. et al. 2006).  

The plastic compression of collagen gels has been shown to improve their mechanical 

properties (Brown, R.A. et al., 2005, Mi, S. et al, 2011) and has subsequently been used as a 

substrate for stem cells in the construction of an artificial tissues using including the cornea (Mi, 

S. et al., 2010a; Mi, S. et al., 2010b; Mi, S. et al, 2011). Furthermore our recent results showing 

how substrate stiffness can influence corneal epithelial differentiation suggest that tissue 

culture plastic or polycarbonate membranes may not be the most appropriate substrate for the 

construction of an accurate ocular surface (Jones, RR et al., 2012). Therefore, we investigated 

whether HCE cells expanded upon a plastically compressed collagen gel could form a useful 

model to evaluate in vitro the eye irritation potential of chemicals (sodium lauryl sulphate), by 



comparing this substrate to a conventional uncompressed collagen gel and the leading 

alternative which uses a polycarbonate membrane. 

Among the three substrates (models) tested, a similar cell morphology and ultra-structure 

were detected by both TEM and SEM between the polycarbonate membrane (PM) and 

compressed collagen (CC) groups. Tight junction structures were identified, by electron 

microscopy in these two groups only. The ZO-1 staining and PCR analysis further supported this 

observation, i.e. was positive in CC and PM groups but negative in uncompressed collagen (UC) 

group. The tight junction is a specialized structure that generally is the most apical structure of 

the junctional complex of polarized epithelia and endothelia and ZO-1 is a prominent protein 

within this complex (Harhaj, N.S. and Antonetti, D.A. et al., 2006). We have previously shown a 

lack of cell-cell contact between primary epithelial cells on UC gels suggesting this observation 

is not due to the specialized (immortalized) cell line used here (Mi S. et al, 2010b). For ocular 

surface models, the tight junction structure is very important, as these cell-cell contacts help 

form a barrier to the diffusion of molecules from the external surface of the cornea to the inner. 

Our results strongly indicate that the CC substrate creates a better in vitro model than the UC 

substrate based on the increased tight junction number, ZO-1 expression and improved cell 

morphology within the HCE cells. Cell morphology and tight junction number appeared similar 

between HCE cells on the PM and CC substrates. Likewise expression of Integrin β4 was also 

improved on the PM and CC substrates. These integrins plays a key role in the formation and 

stabilization of hemidesmosomes, junctional adhesion complexes involved in cell-substrate 

connection (Wilhelmsen, K. et al., 2006). ZO-1 and integrin β4 expression, as well as relative cell 

number, was highest in the PM substrate and lowest on the UC substrate. However despite this 

the IC 50 values indicated that cells grown on the CC substrate were the most resistant to SLS 

toxicity. We believe that the improved IC 50 level may be due to the cells response to a more 

biologically relevant substrate (CC gel) leading to a more robust epithelial cell layer. Previously 

we have shown the similarity in ultra-structure between the cornea and CC gel (Mi S. et al, 

2010b). The marked difference in cell number and cell adhesion proteins (ZO-1 and β4) is likely 

explained by the phenomena of durotaxis which relates to increased cell proliferation on 



substrates with increased mechanical stiffness (Pelham, R.J. and Wang, Y.-l. 1997) as the PM 

substrate is the stiffest and the UC gel is the least stiff.  

 

5. Conclusion 

 

We successfully constructed three ocular surface models using polycarbonate membrane, 

compressed collagen gels or conventional uncompressed collagen gels as substrates. The level 

of SLS irritation on the HCE cells within each of three models showed a concentration 

dependent reduction in cell viability that was concordant with data obtained from previous 

studies. According to the Draize test, the percentage viability of epithelial cells once exposed to 

sodium lauryl sulphate (SLS) is dose-dependent, which has also been verified by rabbit corneal 

epithelium cell model (Matsuda, S. et al., 2009). In this study, we chose the same seven 

concentrations. The data from our study indicate that the viability of expanded HCE cells was 

dependent on substrate composition, and that compressed collagen gels was best at preserving 

cell viability when exposed to a known toxin. Therefore our study supported the hypothesis 

that the compressed collagen gels may provide a substrate for a more accurate and sensitive in 

vitro model when compared to the conventional uncompressed collagen gel model or the 

commonly used polycarbonate membrane model. The mechanistic reasons underlying this 

improvement are likely to be due to the ability of compressed collagen gels to accurately mimic 

both the ultrastructural and mechanical properties of a natural biological substrate.  
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Figure 1: Manufacture of compressed collagen gels.  

Schematic showing how the compressed collagen (CC) gel was formed. 

 

 

Figure 2: the PI staining of a histological vertical section of the three different type model 

Three-dimensional models of the ocular surface were constructed using HCE cells expanded 

upon three different substrates; polycarbonate membrane (PM), compressed collagen (CC) and 

uncompressed collagen (UC) gels. The level of HCE cell stratification upon each of the scaffolds 

is shown.  Both the CC and PM substrates gave similar levels of cell stratification. Scale 

bar=50μm 



 

Figure 3:  Relative cell numbers of HCE-expanded on PM, CC, UC after 10 days in culture.   

Optical density readings from an MTT assay showing an increase in the relative number of 

epithelial cells expanded upon compressed collagen gels (CC) compared to uncompressed 

collagen gels (UC). Polycarbonate membrane (PM) supported the largest number of cells among 

the three type of substrate. 



 

Figure 4: TEM and SEM of the three different ocular surface models 

A) TEM showing the tight junctions between the HCE cells expanded upon  CC and PM 

substrates. No similar structure was detected in the HCE expanded upon UC gels. Arrows 

indicating position of cell-cell junctions. Scale bar =800nm. 

B) SEM was performed to analyse the epithelial surface of our artificial corneal constructs. It 

was possible to observe tight junctions on cells grown on the PM and CC surfaces however cells 

on UC gels were less regularly spaced with no obvious cell-cell junctions. Scale bar=20μm 



 

Figure 5: Effect of SLS on cell viability within different ocular surface models 

Cell viability measurements from the three different ocular surface models (CC, UC and PM), 

displayed a similar relative dose-dependent effect to increasing SLS concentrations. However, 

the IC 50 values did differ. A two-way ANOVA with Bonferonni post test was used to determine 

significance between cell viability, *=p<0.05, **=p<0.01, ***=p<0.001. 



 

Figure 6: ZO-1 staining (Green = ZO-1, Red = PI), within the three different ocular surface 

models. 

Immunohistochemistry results showed higher ZO-1 staining within HCE cells expanded on 

either the PM or CC substrates, when compared to HCE cells expanded upon UC substrates. 

Bovine limbal specimen as positive control. Scale bar=20μm. 

 



 

 Figure 7: PCR analysis of ZO-1 and Integrin beta 4 within each of ocular surface models 

PCR results also showed that the ZO-1 expression was positive in cells grown on PM and CC 

substrate and negative within cells grown on the UC substrate.  The same trend was found in 

integrin β4 expression, high in the PM model and low in UC gel model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 


