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Abstract This paper presents a novel and practical procedure for estimating the mean

deck height to assist in automatic landing operations of a Rotorcraft Unmanned Aerial

Vehicle (RUAV) in harsh sea environments. A modified Prony Analysis (PA) proce-

dure is outlined to deal with real-time observations of deck displacement, which involves

developing an appropriate dynamic model to approach real deck motion with param-

eters identified through implementing the Forgetting Factor Recursive Least Square

(FFRLS) method. The model order is specified using a proper order-selection criterion

based on minimizing the summation of accumulated estimation errors. In addition, a

feasible threshold criterion is proposed to separate the dominant components of deck

displacement, which results in an accurate instantaneous estimation of the mean deck

position. Simulation results demonstrate that the proposed recursive procedure exhibits

satisfactory estimation performance when applied to real-time deck displacement mea-

surements, making it well suited for integration into ship-RUAV approach and landing

guidance systems.
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1 Introduction

The present research is part of an effort to develop a systematic procedure for land-

ing a RUAV on a moving platform in rough sea environments. The main challenge in

fulfilling maritime landing operations results from the complicated sea environment,

which consists of wave-excited deck displacement and turbulent gusts when the RUAV

approaches the ship superstructure. Also, the small size and all-up weight make the

RUAV more sensitive and vulnerable to external disturbances, and exacerbate the dif-

ficulty of accurate positioning and attitude control [25]. Our objective is to accurately

estimate the instantaneous mean position of the landing deck. The underlying signif-

icance is that the RUAV can match its vertical position to the instantaneous mean

position rather than the instantaneous deck displacement. This results in a smoother

trajectory and hence will lower impact stresses on landing.

A variety of real-time dynamic systems experience significant oscillations compris-

ing distinct sinusoidal components resulting from unknown nonlinearities, uncertainty

of system dynamics, and random external disturbance. Normally, a systematic frame-

work for theoretical analysis and applicable control strategy design is not directly avail-

able due to such complicated system dynamics. However, these nonlinear systems can

be approached around a set of equilibrium points using proper linear models. Develop-

ing the form of such models depends on the specific applications under consideration.

There are two mainstream approaches: the first one is to linearize the nonlinear model

by expanding the nonlinear terms around the concerned equilibrium points. These

equilibrium points are chosen to represent the typical working conditions the system

experiences, and ignoring high-order terms would not harm system dynamics. Alter-

natively, curve-fitting techniques are an option to optimally fit a linear combination of

terms to the measurements [27]. Since it takes tremendous efforts to build an accurate

system model of deck motion due to the irrational non-minimum phase transfer func-

tion between ship motion and sea elevation [26], it is preferred to use a curve-fitting

technique to analyze deck motion for real-time applications.

PA is a branch of curve-fitting techniques, which originally employs a group of

exponential terms to approximate the impulse response of a dynamic system [8]. Ap-

plication of PA in power systems has been subject to extensive investigations in a

substantial number of papers, and significant efforts, including theoretical analysis and

experimental research, have been made to deal with various practical scenarios. Hauer

et al. [8],[9] present results for modal analysis and detailed model construction of power

systems based on field measured data. The identification of modal content from oscillat-

ing power systems in various scenarios has been reported [7],[13],[21],[28]. Trudnowski

et al. [29] extend traditional PA to allow for analyzing multiple input signals. Recently,

PA was implemented to monitor power system transient harmonics, and the dominant

harmonics identified were used as the harmonic reference for harmonic selective active

filters in Ref. [18]. In contrast, a small number of papers address the use of PA in

oscillating systems other than power systems. A recursive approach to PA estimation

was employed to analyze the response of a beam to transient excitations in Ref. [4].

PA was also used for radar target identification [3,19] and signal processing [24,31].

The originality of this work lies in proposing and constructing a systematic recur-

sive framework to estimate the instantaneous mean deck position. The modified PA,

with model order specified based on minimizing the summed squared estimation er-

rors and model coefficients identified using a recursive procedure, makes it well suited

for analyzing the real deck motion. A dominant component selection criterion is pro-
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posed to choose the dominant components in the oscillating system. Simulation results

demonstrate that the proposed methodology exhibits excellent estimation performance

when applied to real-time deck motion data.

2 Research platform description

The RMAX helicopter which was originally designed for agricultural work is employed

as our research platform (Fig. 1). With a maximum take-off weight of 100KG and

payload capacity of 30KG, the RMAX helicopter is able to perform various operations

with a flight duration of 1 hour. Presently, a considerable number of variants have been

developed with similar underlying systems for different applications. e.g., agricultural

spraying, airborne surveillance. Therefore, it is an idea platform for research on RU-

AVs. Also, a moving deck simulator has been set up by our lab to replicate deck motion

dynamics. The simulator is driven by three electrical linear actuators able to deliver

up to 3000N each. So far, dynamic motion of the ship deck has been simulated satis-

factorily, and design specifications (heave of 1m and pitch of 25o) have been achieved

[5].

3 Traditional Prony Analysis

Given a sampled sequence of discrete-time system observations, numerous curve-fitting

methodologies are usually available and the form of model to be chosen depends on

dynamic variations revealed in the system and tractability of the estimation problem

corresponding to the dynamic models [6,14]. The real deck motion is sinusoidal, which

motivates us to employ a weighted sum of several sinusoidal functions to approach real

deck dynamics. The emerging PA provides a systematic means of analyzing oscillating

power systems and receives extensive applications with the advancement of modern

computational capacity [2,18,23]. This methodology can be extended to analyze dy-

namics of deck displacement.

PA was initially developed by Gaspard Riche Baron de Prony in 1795 to explain

the expansion of various gases, and provides an effective way of extracting valuable

information from a group of uniformly sampled data [17]. It adopts a series of damped

complex exponentials to approximate system dynamics, which represents system infor-

mation in terms of amplitude, frequency, phase, and damping components.

Suppose a continuous-time sequence y(t) can be approximated by a weighted linear

combination of exponential terms,

ŷ(t) =

n∑

i=1

Bie
λit, (1)

where each complex residue Bi corresponds to its complex pole λi, where i = 1, ..., n

and model order is denoted by n. The proper identification of model parameters Bi, λi,

and n enables the model to match the known measurements satisfactorily. Essentially,

our objective is to determine residues Bi, poles λi, and the model order n, such that

ŷ(t) is the optimal approximation to the measurements y(t) in the least square sense.

Practically, continuous-time data are sampled at a constant sampling period Ts. If

data are sampled at t = k̃Ts, k̃ = 0, ..., N − 1, then the discrete-time form for Eq. (1) is
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Fig. 1 RMAX helicopter approaching the moving deck simulator

ŷ(k̃Ts) =

n∑

i=1

Biz
k̃
i , (2)

zi = eλiTs , k̃ = 0, ..., N − 1, (3)

where the complex number zi is termed the discrete-time system pole, and N is the

number of measurements. For simplicity, let k = k̃Ts, then ŷ(k̃Ts) will be replaced with

ŷ(k) in the following part of the paper.

System measurements y(t) can be used to construct the Linear Prediction Model

(LPM) [18]

y(k) = a1y(k − 1) + · · ·+ any(k − n). (4)

The traditional PA consists of three fundamental steps. The first step is to de-

termine coefficients ai, i = 1, ..., n of the LPM in Eq. (4). This is paramount as the

accurate estimation of residues and poles depends on the precision of these coefficients.

Normally, the length of measurements N should satisfy

N ≥ 2n. (5)

When N = 2n, coefficients ai can be obtained by solving the LPM using the Least

Square (LS) method. As there are more measurements than required when N > 2n,

the Overdetermined Least Square (OLS) method can be employed.

In the second step, a matrix representation of sequential samples is constructed

by expanding the LPM at various time instants, and coefficients ai are acquired by

inverting the matrix Q in Eq. (6)

D = QA, (6)
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D = [y(n), y(n + 1), ..., y(N)]T , (7)

Q =




y(n− 1) y(n− 2) · · · y(0)

y(n) y(n− 1) · · · y(1)
...

...
...

...

y(N − 1) y(N − 2) · · · y(N − n)


 , (8)

A = [a1, a2, ..., an]T . (9)

The corresponding characteristic equation can be derived from coefficients ai. From

these coefficients damping factor and frequency can be acquired after zeros zi are at-

tained according to Eq. (10) through factorizing the following polynomial

zn − a1zn−1 − · · · − an−1z − an =

n∏

i=1

(1− z · z−1
i ). (10)

Continuous-time pole λi can be accessed from discrete-time pole zi. The zeros zi appear

only in the form of real numbers or complex conjugate pairs because ai in Eq. (10) are

real. Therefore, if zi is completely real, then [10]

λi =
ln zi

Ts
. (11)

Otherwise, if zi is a complex conjugate pair,

λi = αi ± jβi, (12)

αi =
ln |zi|

Ts
, βi =

1

Ts
tan−1{ zIi

zRi
}, (13)

where zi = zRi ± j · zIi.

In the last step, the magnitude and phase are obtained through solving the following

linear algebra equation

Y = ΨB, (14)

Y = [y(0), y(1), ..., y(N − 1)]T , (15)

Ψ =




1 1 · · · 1

z1
1 z1

2 · · · z1
n

...
...

...
...

zN−1
1 zN−1

2 · · · zN−1
n


 , (16)

B = [B1, B2, ..., Bn]T . (17)

Here, the Vandermonde matrix Ψ is constructed based on the zeros zi of characteristic

equation (10), and appears as a square matrix in the traditional PA. Normally, if zeros

zi of Eq. (10) appear in conjugate pairs, the corresponding Bi in Eq. (17) will also

appear in conjugate forms.

The fundamental limitation of the traditional PA lies in inverting the long matrices

Q in Eq. (8) and Ψ in Eq. (16) when more measurements are available. In our case,
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the estimation involves dealing with a large number of instantaneous measurements,

which significantly exacerbates the difficulties in the real-time implementation of the

traditional PA. Also, ill-conditioned matrices may occur when inverting the above-

mentioned matrices, which would cause collapse of the traditional PA. Therefore, there

is a need to modify the traditional PA to deal with our application.

4 A modified Prony Analysis

4.1 The proposed recursive Prony Analysis

In the considered application, characteristics of deck dynamics and landing objective

make it necessary to modify the traditional PA to suit our application. The real dis-

placement of deck motion reflects slow-varying features, which reveals there is a close

relationship between the instantaneous mean position at adjacent sampling time win-

dows. The standard LS exclusively deals with measurements for a specified time window

separately, and starts estimation without consideration of previous window informa-

tion. Therefore, it is likely that estimation of instantaneous mean position is subject

to significant changes when successive data windows are processed. Therefore, the in-

accurate estimation would cause intricate maneuvering of the RUAV to adapt to the

estimated changes. Also, there are numerical problems when standard LS is employed.

The manipulation of matrix inversion suffers from singularity issues, which makes it

fail in our case. To remedy its weakness, previous window information should be sup-

plemented to improve its numerical performance. Therefore, the following factors are

significant in our case:

1. How to obtain accurate and reliable model parameters when new measurements

are collected?

2. How to carry forward system information for successive data windows to achieve

an accurate estimation?

3. How to reduce computational burden to accomplish a rapid online estimation of

instantaneous mean position to reduce hover period of the RUAV?

A possible solution to the first question is to employ the Recursive Least Square

(RLS) method which aims to estimate model coefficients such that the summation

of squared errors between measured values and estimated values reaches a minimum.

Apparently, all measurements are treated equally in the loss function, and the RLS

averages the measurements to produce the optimal estimates [30]. In our application,

where plenty of measurements are collected while the RUAV is hovering over the land-

ing deck, the variations would be submerged when old data and new data are equally

weighted. Consequently, the accumulated estimation error would increase significantly,

and the estimation course is possibly subject to collapse when a substantial number of

measurements are accumulated and processed.

For a dynamic system with parameters varying continuously and slowly, it is de-

sired to introduce the conception of forgetting factor to gradually discard effect of old

measurements, and highlight contributions of most recent measurements to dynamic

variations [30]. Moreover, the deck displacement excited by sea-wave is not a station-

ary process, and it requires the employment of the Forgetting Factor Recursive Least

Square (FFRLS) [16].

To implement the FFRLS, the vector of lagged input-output data

ϕ(t) = [y(t− 1), ..., y(t− n)]T (18)
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and coefficient vector

θ̂(t) = [â1(t), ..., ân(t)]T (19)

up to time instant t are introduced. Coefficients â1(t), ..., ân(t) will be updated re-

cursively to approach the real values a1, ..., an. The LPM can be written in a more

compact form

y(t) = θ̂T (t)ϕ(t), (20)

where θ̂(t) contains the coefficients to be determined. The loss function for FFRLS is

defined as [12],[30]

V (θ̂) =

t∑

j=1

γt−j [y(j)− θ̂T (j)ϕ(j)]2. (21)

Here, forgetting factor is denoted by parameter γ. The principle to choose γ is to select

γ such that the loss function V (θ̂) essentially contains those measurements mostly

relevant for current properties of the dynamic system. In particular, for a system that

varies gradually, forgetting factor can be set to a constant value ranging between 0.98

and 0.995. [12]

Following the definitions, model coefficients θ̂(t) can be estimated using the FFRLS,

and expressed as [22]

θ̂(t) = [

t∑

j=1

γt−jϕ(j)ϕT (j)]−1[

t∑

j=1

γt−jϕ(j)y(j)]. (22)

Alternatively, the FFRLS can be implemented recursively by

θ̂(t + 1) = θ̂(t) + K(t + 1)[y(t + 1)− ϕT (t + 1)θ̂(t)], (23)

K(t + 1) = P (t)ϕ(t + 1)[γ + ϕT (t + 1)P (t)ϕ(t + 1)]−1, (24)

P (t + 1) = [P (t)−K(t + 1)ϕT (t + 1)P (t)]/γ, (25)

θ̂(0) = 0, P (0) = αI. (26)

Here, matrix P (t+1) is referred to as error covariance matrix, matrix K(t+1) denotes

the updating matrix, and α is a large positive number.

Regarding the second question, the error covariance P (t) and model coefficients θ̂(t)

are initialized once for the first data window, then the FFRLS carries them forward

as the sliding window moves to the next one. This implies the model coefficient vector

θ̂(t) is slow-varying, and its components for adjacent data windows are closely related.

Therefore, error covariance matrix P (t) and estimation vector θ̂(t) carry forward system

information to improve estimation performance.

The third step of PA can be followed according to Eq. (14)-(17) once zeros of

characteristic equation are found. Similarly, the number of measurements is more than

that of the coefficients to be estimated, and RLS can be used to estimate the magnitude

Bi. However, the vector of lagged input-output data ϕ(t) in Eq. (18) is replaced with
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ρ(t) = [zt−1
1 , ..., zt−1

n ]T , (27)

which corresponds to row components in Eq. (16). It should be noticed that the vector

ρ(t) at different time instants t varies significantly. Therefore, carrying forwards error

covariance matrix and estimation vector is not proper in this step, as vector ρ(t) for

different time instants are not slow-varying. Indeed, simulation results show that the

estimation performance decreases if error covariance matrix and estimation vector are

carried forward owing to the fact that there are actually large discrepancies between

the error covariance and model coefficients at different time instants.

4.2 Determination of model order

Regarding the third question, computational burden is significantly affected by the

choice of model order n. Some available information criteria are Akaike Information

Criterion (AIC) [1] and its variant Final Prediction Error (FPE) [27], Bayes Information

Criterion (BIC) [20], i.e.,

AIC(n) = log σ2 +
2n

N
, (28)

BIC(n) = log σ2 +
n log N

N
, (29)

FPE(n) =
N + n + 1

N − n− 1
σ2, (30)

where summed squared error (SSE)

σ2 =

N−1∑

k=0

[y(k)− ŷ(k)]2. (31)

AIC and BIC aim to make a trade-off between estimation errors accumulated and

model complexity, and the optimal order is determined when they appear in a convex

trend and reach the minimum. However, in our case, AIC and BIC consistently decrease

when model order becomes large, and the estimation performance does not deteriorate.

Underlying this fact is that the extra exponential terms are actually trying to fit the

noisy signal more accurately. Therefore, a Prony model with order much larger than the

true order is still an option for estimation purpose. However, extremely large model

order causes consumption of numerous computer memory allocation, and makes it

difficult for real-time applications.

The choice of the optimal model order is subjective according to various scenar-

ios [27]. Practically, the model order should be selected such that a trade-off can be

achieved between estimation accuracy and computational burden. In our case, FPE

is a feasible option to choose the model order. Since sliding widow length N is much

larger than model order n in our case, the proper model order can be found out only

by checking the SSE

σ2 =

N−1∑

k=0

[y(k)−
n∑

i=1

Bie
λik]2. (32)



9

The estimation performance using the SSE σ2 is close to the best available approaches

which are based on maximum likelihood or on the use of eigenvector or singular value

decompositions [11].

The order selection procedure consists of two steps [11]:

1. Set the predicted model order R to be larger than the maximum number of

model order expected. This results in a set of R exponentials which are candidates of

the Prony model;

2. Out of the R exponential functions, determine the best subset of size n∗ such

that the linear combination of n∗ exponentials best approximates the measurements

in the least square sense.

A feasible way to complete step 2 is to check the SSE for different order candidates

until the rate of decrease of the SSE is small. The order candidate at which SSE shows

the significant drop in rate of decrease is taken as the proper estimation of model order

n∗. It is noticed that rate of change of SSE reduces slightly when order is larger than

n∗. Meanwhile, as the order larger than n∗ is also a possible choice, it is preferred to

select small order when the curve-fitting accuracy is satisfied. By doing this, a proper

trade-off can be made between estimation accuracy and computational burden.

5 Dominant components selection criterion

The proposed recursive PA procedure produces a group of poles after being applied to

analyze real deck motion data. Since the coefficients of characteristic equation are real

values, its zeros zi appear as real values and conjugate pairs, which results in residues

and poles also taking the form of real and/or conjugate pairs. In our project which

is aimed at a successful landing, selecting the dominant residues is crucial. Here, the

arithmetic mean is not preferred as it does not indicate monotonous deck trend. Practi-

cally, the dominant residues in coefficient vector B reveal the slow-varying monotonous

tendency of mean deck displacement, and can be used to monitor and track variations

of deck displacement.

For these λi with large negative real parts, the transient responses will quickly

converge to zeros as the exponential amplitudes go to zeros rapidly. Therefore, the

dominant residues usually correspond to a subset of poles with the negative real parts

very close to imaginary axis. In the considered application, how to choose the dominant

residues is a problem. Specifically, since the absolute values of real parts of the poles

denote the distance between the poles and imaginary axis, then how far away from the

imaginary axis can be defined as dominant components should be considered.

The proposed selection criterion is to define a box threshold to determine the

dominant poles. The coefficients Bi with respect to the poles within the threshold are

taken as dominant residues. It is likely that the conjugate pole pairs also appear within

the threshold, and they should be considered. The box threshold is chosen according

to the following criterion, as is shown in Fig. 2:

1. Choose the pole with its negative real part closest to the imaginary axis, which

corresponds to the smallest horizontal distance d;

2. The threshold Lp is 5 times of the horizontal distance d.

3. The width of the rectangle Wp depends on the magnitude of rounding errors,

which takes a very small value (O(e−8)).

Poles with horizontal distance less than Lp are considered to be dominant. The

closest distance d can be found out immediately following the proposed recursive PA.
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Fig. 2 Threshold to choose dominant poles

Here, the threshold Lp is chosen from the viewpoint of reducing the order of a high-

order dynamic system [15]. In practice, poles of a dynamic system will be considered

to determine system response when their negative real parts are within 5 times of the

smallest real part. It should be noticed that when determining the dominant poles, the

PA sometimes identify them with the complex parts very close to real axis (not appear

in conjugate forms), this results from the rounding errors of the computer calculation.

These poles should be included as dominant poles. In the considered application, Wp =

1e−8 is a proper threshold. Once dominant poles are picked up, summation of the

corresponding residues represents monotonous trend of deck motion.

6 Simulation results and analysis

6.1 Model modes identification for noise-free signal

In this section, performance of the proposed estimation procedure is investigated for

the purpose of eventual applications to real scenarios. A 5th-order damping system

is constructed with known model modes: λi = −1.5, − 3 ± j4, − 3.5 ± j4.5. The

data generated by the known dynamic system are employed to evaluate how well the

proposed procedure is able to extract model modes.

The proposed estimation procedure is carried out for the noise-free data generated

by the known model. Sliding windows are constructed for FFRLS implementations. The

proper model order is sought to be identified by minimizing the SSE. As is shown in Fig.

3, SSE takes the value of 1.7647e−4 when model order n = 4, and SSE = 1.2991e−12

when n = 5. SSE is found to be around O(e−15) when a larger order is selected, and

there is no significant decrease in SSE when model order increases. Therefore, model

order n = 5 can be effectively identified by evaluating the SSE.

To verify the efficiency of estimating model poles using the proposed procedure,

30 groups of data are generated with 10 samples in each group. Figures 4-6 show the

distributions of poles for different model modes, in which the estimated poles are very

close to the real ones. Besides, the average of the estimated poles are accurate, and

corresponding standard deviations are remarkably small. It is seen that the suggested

PA is capable of estimating system poles with a high accuracy for noise-free data.
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Measurement noise is an inevitable factor significantly affecting estimation perfor-

mance of PA in the real applications [27]. In our case, a Kalman filter (KF) has been

designed to give a smooth estimation of deck position. The KF attenuates the noise

effect greatly, and makes the proposed PA work well for deck motion contaminated by

sensor noise.
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6.2 Extracting instantaneous mean position of real deck displacement

In this section, we aim to extract the mean position of real deck displacement for

which the model dynamics are unknown. The real data of deck displacement motion

were collected by the onboard inertial measurement unit for ANZAC warship operating

in a harsh sea environment. The ANZAC ship is able to embark a multi-role Sikorsky

S-70B-2 Seahawk helicopter. Therefore, ship motion data collected from ANZAC are
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Fig. 7 Geometry configuration of the landing deck

representative and provide insight into displacement motion of the landing deck. Pitch

motion η at the Center of Gravity (CG) of the ship, collected every 0.1s, is multiplied

by the moment arm Ldeck = 67.7m to produce the local deck motion, as depicted in

Fig. 7. Here, the deck displacement is expressed as

Zdeck = ZCG + R3×3




0

0

Ldeck


 , (33)

with rotation matrix

R =




cθcψ sφsθcψ − cφsψ sφsψ + cφsθcψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ


 , (34)

where c(·) = cos(·) and s(·) = sin(·), ZCG is heave at the CG. Here, pitch motion

is denoted by θ, yaw motion ψ, and roll motion φ. It can be noted that small ship

displacement at the CG will result in significant deck displacement.

For landing operations, our objective is to estimate the instantaneous mean position

accurately and rapidly. Therefore, adequate length of deck displacement data should

be collected firstly. To identify the model order more reliably, the RUAV is supposed

to hover for some time, then displacement data collected during this period are used

to identify model order. Two groups of displacement data with length of 2000 samples

are tested. It is seen from Fig. 8 that there is a significant drop in SSE when model

order is 13, and the SSE would decrease only slightly when model order is larger.

Therefore, model order is chosen to be 13 such that not only the Prony model can match

measurements accurately, but also the recursive procedure is easy to be implemented

with reduced computational burden. Generally speaking, it is found out that model

order n = 13 is suitable for most of the ship motion data.

Once the optimal order is determined, poles and residues are to be estimated using

the proposed procedure, then the dominant residues will be sought according to the

criterion described before. The instantaneous means are given in Fig. 9 and Fig. 11 for
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Fig. 8 Summed squared errors for different model orders

two different groups of real deck motion data (cyan curves). Also, the estimated deck

displacement using the proposed PA is shown on the same graphs (blue curves), it is

seen that data produced by the Prony model match the measurements well. The stan-

dard deviations are 2.95cm and 3.51cm for Fig. 9 and Fig. 11. To determine the best

time to start PA, estimation results using different data length are compared. As shown

in Fig. 10 and Fig. 12, the green curves are the estimated means when measurements

are collected until 30s (300 samples), cyan curves correspond to the estimated instanta-

neous means when measurements are collected until 60s (600 samples), and pink curves

90s (900 samples). Practically, the RUAV is supposed to hover 30s-2min before land-

ing operation is triggered. It is seen that there are oscillations evident when starting

estimation from 30 seconds, and estimation performance can be improved noticeably

after the RUAV hovers above the deck for 1 minute. However, there is no significant

enhancement for a longer hover period (90s). Therefore, it takes 60 seconds to obtain

the accurate estimation of instantaneous means in the considered applications.

Of particular interest here is the fact that the proposed procedure performs satis-

factorily for slow-varying dynamic systems due to the advantage of carrying forward

the error covariance which enables transmission of system information.

7 Conclusion and future work

In this paper we concentrate on building a proper procedure for estimating the instan-

taneous mean position of deck displacement. A modified version of PA was proposed

with model order identified by minimizing squared estimation errors and model co-

efficients determined using the FFRLS. Also, the dominant residues were found out
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Fig. 9 Extracting monotonous trend of real deck displacement (group 1)
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based on a threshold selection criterion. Simulation results justify the suitability of our

procedure for analyzing real ship motion data. The proposed estimation procedure has

been tested using real deck displacement data in the simulation. Work is in progress

to apply our methodology to extract the tendency of the moving deck simulator.

The estimation efficiency of the proposed PA can be enhanced if smoother mea-

surements are available. In real-time applications, noisy deck motion measurements

can be filtered using the KF before being processed by the proposed PA.
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