
Analysis of Nonlinear Sequences and
StreamCiphers

by

Sui-Guan Teo

Bachelor of Information Technology with Distinction (QUT) – 2007

Bachelor of Information Technology (First Class Honours) (QUT) – 2008

Thesis submitted in accordance with the regulations for the
Degree of Doctor of Philosophy

Institute for Future Environments
Science and Engineering Faculty

Queensland University of Technology

7th March 2013

Keywords

Stream ciphers, keystream generators, linear feedback shift register (LFSR), nonlin-

ear feedback shift register (NLFSR), clock-control, Boolean functions, state-update

functions, output functions, keystream sequence properties, nonlinear filter gener-

ator, linearly filtered NLFSR, slid pairs, A5/1, Trivium, Mixer, summation generator,

state convergence, cryptanalysis, time-memory-data tradeoff attacks, algebraic attacks,

F4 algorithm, Gröbner basis

i

ii

Abstract

Stream ciphers are common cryptographic algorithms used to protect the confidentiality

of frame-based communications like mobile phone conversations and Internet traffic.

Stream ciphers are ideal cryptographic algorithms to encrypt these types of traffic as they

have the potential to encrypt them quickly and securely, and have low error propagation.

The main objective of this thesis is to determine whether structural features of

keystream generators affect the security provided by stream ciphers. These structural

features pertain to the state-update and output functions used in keystream generators.

Using linear sequences as keystream to encrypt messages is known to be insecure. Mod-

ern keystream generators use nonlinear sequences as keystream. The nonlinearity can

be introduced through a keystream generator’s state-update function, output function,

or both.

The first contribution of this thesis relates to nonlinear sequences produced by

the well-known Trivium stream cipher. Trivium is one of the stream ciphers selected

in a final portfolio resulting from a multi-year project in Europe called the ecrypt

project. Trivium’s structural simplicity makes it a popular cipher to cryptanalyse, but

to date, there are no attacks in the public literature which are faster than exhaustive

keysearch. Algebraic analyses are performed on the Trivium stream cipher, which uses a

nonlinear state-update and linear output function to produce keystream. Two algebraic

investigations are performed: an examination of the sliding property in the initialisation

process and algebraic analyses of Trivium-like stream ciphers using a combination of the

algebraic techniques previously applied separately by Berbain et al. and Raddum. For

certain iterations of Trivium’s state-update function, we examine the sets of slid pairs,

looking particularly to form chains of slid pairs. No chains exist for a small number

of iterations. This has implications for the period of keystreams produced by Trivium.

Secondly, using our combination of the methods of Berbain et al. and Raddum, we

analysed Trivium-like ciphers and improved on previous on previous analysis with

regards to forming systems of equations on these ciphers. Using these new systems of

iii

equations, we were able to successfully recover the initial state of Bivium-A. The attack

complexity for Bivium-B and Trivium were, however, worse than exhaustive keysearch.

We also show that the selection of stages which are used as input to the output function

and the size of registers which are used in the construction of the system of equations

affect the success of the attack.

The second contribution of this thesis is the examination of state convergence.

State convergence is an undesirable characteristic in keystream generators for stream

ciphers, as it implies that the effective session key size of the stream cipher is smaller

than the designers intended. We identify methods which can be used to detect state

convergence. As a case study, theMixer stream cipher, which uses nonlinear state-update

and output functions to produce keystream, is analysed. Mixer is found to suffer from

state convergence as the state-update function used in its initialisation process is not

one-to-one. A discussion of several other stream ciphers which are known to suffer from

state convergence is given. From our analysis of these stream ciphers, three mechanisms

which can cause state convergence are identified. The effect state convergence can have

on stream cipher cryptanalysis is examined. We show that state convergence can have a

positive effect if the goal of the attacker is to recover the initial state of the keystream

generator.

The third contribution of this thesis is the examination of the distributions of bit

patterns in the sequences produced by nonlinear filter generators (NLFGs) and linearly

filtered nonlinear feedback shift registers. We show that the selection of stages used

as input to a keystream generator’s output function can affect the distribution of bit

patterns in sequences produced by these keystream generators, and that the effect differs

for nonlinear filter generators and linearly filtered nonlinear feedback shift registers.

In the case of NLFGs, the keystream sequences produced when the output functions

take inputs from consecutive register stages are less uniform than sequences produced

by NLFGs whose output functions take inputs from unevenly spaced register stages.

The opposite is true for keystream sequences produced by linearly filtered nonlinear

feedback shift registers.

iv

For mÿ parents

v

vi

Contents

Front Matter i
Keywords . i

Abstract . iii

Table of Contents . vii

List of Figures . xi

List of Tables . xiii

List of Acronyms . xv

Declaration . xvii

Previously Published Material . xix

Acknowledgements . xxi

1 Introduction 1
1.1 Aims and objectives . 2

1.2 Results . 3

1.2.1 Contributions of Chapter 3 . 3

1.2.2 Contributions of Chapter 4 . 4

1.2.3 Contributions of Chapter 5 . 6

1.2.4 Contributions of Chapter 6 . 6

1.3 Organisation of thesis . 7

2 Background 9
2.1 Stream ciphers and keystream generators 9

2.1.1 Initialisation phase . 11

2.1.2 Keystream generation . 12

2.2 Components in keystream generators . 14

2.2.1 Boolean Functions . 14

2.2.2 State-update functions . 17

vii

2.2.3 Output functions . 21

2.3 Combining update and output functions 22

2.3.1 Linear state-update and linear output 23

2.3.2 Linear state-update and nonlinear output 23

2.3.3 Nonlinear state-update and linear output function 25

2.3.4 Nonlinear state-update and nonlinear output 26

2.4 Stream cipher cryptanalysis . 26

2.4.1 Exhaustive key search . 28

2.4.2 Guess and determine attacks . 28

2.4.3 Distinguishing attacks . 29

2.4.4 Divide and conquer attacks . 29

2.4.5 Linear cryptanalysis . 32

2.4.6 Differential cryptanalysis . 32

2.4.7 Time-memory-data tradeoff attacks 33

2.4.8 Algebraic attacks . 35

2.5 Conclusion . 39

3 m-tuple distributions in nonlinear filter generators 41
3.1 Existing analysis on m-tuple distributions of NLFGs 41

3.2 Experimental goals and design . 43

3.3 Experimental results . 46

3.4 Discussion . 50

3.5 Conclusion . 51

4 Analysis of linearly filtered nonlinear feedback shift registers 53
4.1 m-tuple Distributions in Linearly Filtered NLFSRs 54

4.1.1 Experimental goals and design 55

4.1.2 Experimental results . 57

4.1.3 Discussion . 60

4.2 Slid pairs in Trivium . 61

4.2.1 Trivium Specifications . 61

4.2.2 Overview of Slid Pairs . 64

4.2.3 Existing Work on Trivium Slid Pairs 66

4.2.4 Experiment goals . 68

4.2.5 Experimental Design . 68

4.2.6 Experimental Results . 70

viii

4.2.7 Discussion . 72

4.3 New algebraic analysis on Trivium and its variants 73

4.3.1 Bivium-A and Bivium-B . 74

4.3.2 Overview of Berbain’s et al.’s technique 75

4.3.3 Review of Raddum’s analysis of Trivium 77

4.3.4 New algebraic analysis on Bivium-A 81

4.3.5 New Algebraic Analysis on Bivium-B 90

4.3.6 New Algebraic Analysis on Trivium 93

4.3.7 Algebraic Analysis on Trivium Variants 95

4.3.8 Discussion . 103

4.4 Conclusion . 110

5 State convergence in Mixer 113
5.1 Mixer specifications . 114

5.2 State convergence in stream ciphers . 117

5.3 Analysis of Mixer . 119

5.3.1 Analysis of Mixer’s initialisation process 120

5.3.2 Analysis of Mixer’s keystream generation process 125

5.4 Summary . 126

6 State convergence and its effects on cryptanalysis 127
6.1 State convergence detection . 128

6.1.1 State transition tables . 128

6.1.2 Analysing various combinations for clocking

registers backwards . 129

6.2 Irregular clocking and state convergence 130

6.2.1 A5/1 . 130

6.2.2 Mickey . 137

6.3 Regular clocking and state convergence 140

6.3.1 Sfinks stream cipher . 140

6.3.2 F-FCSR . 143

6.3.3 Summation generator . 148

6.4 Mechanisms which can cause state convergence 150

6.4.1 Mutual clock-control . 151

6.4.2 Self-update mechanisms . 161

6.4.3 Addition-with-carry state-update operations 162

ix

6.4.4 State convergence during the loading phase 162

6.5 State convergence and stream cipher cryptanalysis 163

6.5.1 Effect on time-memory-data tradeoff attacks 164

6.5.2 Effect on correlation attacks . 169

6.5.3 Effect on algebraic attacks . 170

6.5.4 Effect on differential attacks . 171

6.6 Conclusion . 171

7 Conclusion and Future Research 175
7.1 Review of Contributions . 175

7.2 Future Directions . 178

A Truth Table output for the F3 Boolean function 181

B Experimental Results for Chapter 3 183

C Experimental Results for Section 4.1 197

Bibliography 205

x

List of Figures

2.1 Stream cipher operation . 10

2.2 Layered diagram of initialisation process 13

2.3 Diagram of a NLFSR . 20

2.4 Linear output from LFSR . 23

2.5 Nonlinear Combiner . 24

2.6 Nonlinear Filter Generator . 24

2.7 Keystream generator with nonlinear state-update and linear output

function . 26

2.8 Keystream generator with nonlinear state-update and nonlinear output

function . 27

4.1 Diagram of the Trivium stream cipher . 62

4.2 Searching for slid pairs when λ = 223 . 66

4.3 Diagram of the BiviumA/B stream cipher 74

5.1 Mixer state update functions . 116

5.2 States which converge to the same next state. 121

5.3 Mean number of loaded states per target for various α. 124

6.1 Diagram of A5/1 . 130

6.2 A5/1 preimage cases identified by Golić’s cases [51] 132

6.3 A5/1 preimage case(i) example . 132

6.4 Case i and ii: A5/1M states which have no pre-image, and one pre-image

respectively . 135

6.5 Case iii, iv, and v: A5/1M states which have two, three, and four pre-

images respectively . 135

6.6 A5/1M preimage case(i) example . 135

6.7 General diagram for the Mickey stream cipher 137

xi

6.8 Initialisation processes of Sfinks stream cipher, reproduced from the

diagram in Alhamdan et al. [2] . 142

6.9 Example of an FCSR when q = −347, d = 174, a = 8, and b = 4 144

6.10 Summation generator diagram . 148

6.11 Step-1/2 generator . 152

6.12 General structure and components of the LILI keystream generators . . 154

6.13 Structure and components of LILI-M1 . 154

6.14 LILI-M1 state at time t + 1 which has 0 pre-images 155

6.15 LILI-M1 state at time t + 1 which has 1 pre-image 155

6.16 LILI-M1 state at time t + 1 which has 2 pre-images 156

6.17 LILI-M1 state at time t + 1 which has 3 pre-images 156

6.18 LILI-M1 state at time t + 1 which has 4 pre-images 157

6.19 Structure and components of the LILI keystream generators 158

6.20 Structure and components of the LILI-M2 159

6.21 LILI-M2 state at time t + 1 which has 0 pre-images 159

6.22 LILI-M2 state at time t + 1 which has 1 pre-image 160

6.23 LILI-M2 state at time t + 1 which has 2 pre-images 160

xii

List of Tables

2.1 3-tuple distribution table for Z . 13

2.2 Truth table for Boolean function g(x0, x1, x2) 15

2.3 Properties of certain NLFSRs [48] . 20

3.1 Cryptographic characteristics of the Boolean functions 45

3.2 Tap settings used in our experiments . 45

3.3 3-tuple distribution of a NLFG sequence 46

3.4 Value of m when non-occurring m-tuples start appearing 48

4.1 Tap settings used in experiments . 57

4.2 Excerpt for Observation 4.2 . 59

4.3 Excerpt for Observation 4.3 . 59

4.4 Excerpt for Observation 4.4 . 60

4.5 Memory and time measurements for solving the system of equations

for slid pair Experiment 1 . 71

4.6 Results of Trivium slid pairs for Experiment 1 72

4.7 Results of Trivium slid pairs for Experiment 2 72

4.8 Values of q, q′, and j for Trivium-like stream ciphers 77

4.9 Details of equations for Bivium-A for various approaches 89

4.10 Time, memory, and data complexities for recovering initial state of

Bivium-A . 90

4.11 Details of equations for Bivium-B . 93

4.12 Details of equations for Trivium . 95

4.13 Values of q, q′, and j for Trivium-A, Trivium-AB 96

4.14 Details of equations for Trivium-A . 99

4.15 Details of equations for Trivium-AB . 103

4.16 Details on systems of equations in our third and fourth approaches for

Trivium-like ciphers . 107

xiii

5.1 Bounds on the predicated number of distinct initial states, nl and nu,

after an α iteration initialisation process 122

5.2 Number of Mixer loaded states for 100 target initial states. 123

5.3 Comparison of eα against nu and nl . 124

6.1 Proportions of states in A5/1 for Golić’s cases [51] 132

6.2 Proportion of available states in A5/1 after α iterations 134

6.3 Proportions of states in A5/1M . 136

6.4 220 randomly chosen states, and the number of pre-images which pro-

duce them . 139

6.5 State-transition table for certain stages in a FCSR when i ∈ Id 146

6.6 Three-tuple distribution for Ai(t + 1), Aa−1(t + 1), and Bi(t + 1) when
i ∈ Id . 146

6.7 State transition table for C(t) and keystream generation output 149

6.8 Causes of state convergence summary table 150

6.9 Output of IA and IB based on their inputs. 154

6.10 Output of LILI-M2’s IA function based on its inputs. 158

6.11 Tradeoffs for Mixer using Biryukov and Shamir’s TMDT attack 165

6.12 Original and new tradeoffs for ZUC v1.4 166

xiv

List of Acronyms

AE Authenticated Encryption

AES Advanced Encryption Standard

AND Multiplication Modulo 2

ANF Algebraic Normal Form

CONS Consecutive

DK Dunkelman and Keller

FCSR Feedback with Carry Shift Register

FPDS Full Positive Difference Set

HPC High Performance Computing

HS Hong and Sarkar

IV Initialisation Vector

LC Linear Complexity

LFSR Linear Feedback Shift Register

MAC Message Authentication Code

NIST National Institute of Standards and Technology

NLFG Nonlinear Filter Generator

NLFSR Nonlinear Feedback Shift Register

QUT Queensland University of Technology

RAM Random Access Memory

S.D Standard Deviation

TMDT Time-memory-data-tradeoff

XOR Addtional Modulo 2

xv

xvi

xvii

xviii

Previously Published Material

The following papers have been published or presented, and contain material based on

the content of this thesis.

[1] Sui-Guan Teo, Kenneth Koon-HoWong, Ed Dawson, and Leonie Simpson. State

convergence and keyspace reduction of the Mixer stream cipher. Journal of Discrete

Mathematical Sciences & Cryptography, 15(1):89–104, 2012.

[2] Sui-Guan Teo, Leonie Simpson, Kenneth Koon-HoWong, and Ed Dawson. State

Convergence and the effectiveness of Time-Memory-Data Tradeoffs. In Ajith

Abraham,Daniel Zheng, DharmaAgrawal,MohdFaizal Abdollah, EmilioCorchado,

Valentina Casola, and Choo Yun Choy, editors, Proceedings of the 7th International

Conference on Information Assurance and Security (IAS 2011), pages 92–97. IEEE,

2011. Updated version available from http://eprints.qut.edu.au/47843/.

[3] Sui-Guan Teo, Ali Al-Hamdan, Harry Bartlett, Leonie Simpson, Kenneth Koon-

Ho Wong, and Ed Dawson. State Convergence in the Initialisation of Stream

Ciphers. In Udaya Parampalli and Phillip Hawkes, editors, Information Security

and Privacy (ACISP 2011), volume 6812 of Lecture Notes in Computer Science, pages

75–88. Springer, 2011.

[4] Sui-Guan Teo, Leonie Simpson, and Ed Dawson. Bias in the Nonlinear Filter

Generator Output Sequence. In Muhammad Rezal Kamel Ariffin, Rabiah Ahmad,

Mohamad RushdanMd. Said, BokMin Goi, Swee Huay Heng, Nor Azman Abu, and

Mohd Zaki Mas’ud, editors, Proceeding of Cryptology 2010; The Second International

Cryptology Conference, pages 40–46, 2010.

xix

http://eprints.qut.edu.au/47843/

xx

Acknowledgements

The byline of this thesis contains the name of one individual. Mine. I wish I could

have included, in the same byline, all the names of all the individuals who have

supported and accompanied me on a journey which has lasted almost 4 1
2 years, but I

think the university would have none of it. Therefore the only way I can acknowledge

their help is in this section. Even then, I am not sure the words written here fully express

my gratitude to them, but here, nevertheless, is my humble attempt.

My interest in information security was first seeded when I enrolled in the Informa-

tion Security Fundamentals, and Network Security units taught by Dr. Greg Maitland.

If not for Greg, my interest in information security would not have kindled, and I would

not have started writing this thesis, let alone complete it.

I will be forever grateful to my supervisory team: Dr. Leonie Simpson, Professor

Emeritus Ed Dawson, and Dr. Kenneth Wong. Leonie is one of the best academic

wordsmith I have had the privilege of working with, and I value her comments which

have vastly improved the readability of my papers and this thesis. Ed has also provided

excellent guidance during the course of this thesis and suggested the change in research

topic whenmy research direction did not seem to fitmy original research plans. Kenneth

joinedmy supervisory team in themiddle ofmy PhD,whenmy thesis seemed destined to

have an algebraic flair to it. I am grateful to him for his tips for the Magmamathematical

software. If not for his help, the results in Sections 4.2 and 4.3 will not have been possible.

I am indebted to the innumerable suggestions they made over the years. I particularly

want to thank them for their support during the difficult month of April 2012.

I would like to thank Dr. Harry Bartlett, Dr. Ernest Foo, Associate Professor Di-

ane Donovan and Dr. Udaya Parampalli for taking part in the examination reading

committee and providing many useful suggestions for improving the quality of the

thesis, particually to Harry for his suggestions to improve the contents of Section 4.3

and Chapters 5–6.

xxi

I am extremely grateful for the financial support invested in me and this work. I sin-

cerely thank the now-defunct Faculty of Information Technology and the (also defunct)

Information Security Institute (ISI) for awarding me the Faculty of Information Techno-

logy Postgraduate Scholarship, which allowed me to put food on my (work) table and a

roof over my head. I would also like to thank the Queensland University of Technology

(QUT) for their fee-waiver scholarship, and travel grants which have allowed me to

attend conferences overseas and in Australia.

The execution of some of the computer experiments in this thesis: the experiments

in Chapter 5, and especially the experiments which required the Magma Computational

Algebra System in Sections 4.2–4.3, would not have been possible without the compu-

tational facilities provided by the QUT’s High Performance Computing & Research

Support Centre (HPC). I would particularly like to extend my gratitude to Mr. Mark

Barry and the staff from QUT HPC for their technical help in setting up Magma on the

lyra supercomputer.

I would like to acknowledge some of the work done in this thesis. The work on the

estimation of the initial state space in the original proposal of A5/1 in Section 6.2.1 is

solely the work of a fellow PhD student, Ali Alhamdan, and is included in this thesis as

part of a discussion on state convergence.

Many thanks goes to my friends and colleagues at the ISI and IFE. Fellow PhD

students like Choudary, Kaleb, Ken, Kush, Sajal and Vik Tor; staff like Andrew Clark,

Edward, Gleb, Jason Smith and Juanma are just some of the people who shared the same

office as me.

Marianne Hirschbichler occupied the desk just behind mine for a couple of years. I

will remember Marianne for her advice when things were not that rosy, and for talking

very excitedly in German in her almost-daily calls back to her home country, Austria;

and James Birkett for his (sometimes) irreverent humour.

Hüseyin Hışıl and Georg Lippold were instrumental on convincing me to switch to

using Linux for my research; I shudder to think about what might have been if I had

kept on using a Windows machine to do my research. Georg, Hüseyin and Muhammad

Reza Z’aba graciously helped me with any programming problems I encountered; I

thank them for their assistance.

Mark Branagan and Farzad Salim both endured my complaints about how bad I

thought my research progress was with good grace, and continuously encouraged me.

An honourable mention goes to Mark for his sage-like advice that a thesis has to include:

(1) Equations, (2) Tables, (3) Figures, (4) Graphs, (5) References, and (6) Footnotes.

xxii

Special thanks goes to Verona, who without complaint, brewed me a cup of cafè latte

regardless of whether it was 1 a.m. or 1 p.m., 365 days a year.

Friends outside of my office were also instrumental in helping me maintain my

sanity. The QUT Singapore Students Association (SSA) has over the years, provided an

excellent support base for Singaporean students in Queensland and has facilitated the

forging of new (and hopefully, life-long) friendships. I acknowledge the hard work put

in by the QUT SSA committees, both past and present, for organising activities for its

members, activities which formed part of my social life. The list of friends I have made

(directly or indirectly) through QUT SSA is too long to mention, so here is a SHA-3

(Keccak-256) [12] hash value of the said list:

0x72ea05727925e4baa4445b6783883b9c630c65f0dd7b3379e8f1fa4c11b08679.

Thanks to all those friends who had encouraged me and had the irrepressible belief that

the light at the end of the tunnel was not that of an oncoming train. I am grateful to

Samuel and Steve for their help during theRiverfireweekend of 2010. To the lunch/dinner

kakis1, which include but are not limited to: Anna, Desmond, Eunice, Gareth, James

Chew, Johnny, Kai Hui, Leon Ng, Natalie, Simon, Steve, Terrix, and Vanda — Thank

you making lunch/dinner a less lonely affair.

I want to acknowledge the friendships of Dilys, Hermann, and Yinghui. It really

means a lot to me.

TheGermans have a saying: “Blut ist dicker alsWasser”, or as more commonly known

in English-speaking countries: “Blood is thicker than water”. Truer words have never

been spoken. My aunts, uncles, and cousins have unfailingly encouraged me over the

years and I thank them for their support over the years.

Last, but not least, I thank my parents and sister for their love and unending support

through the years, especially to my late father who did not live long enough to see me

through to the end of this study.

•

1Kakis (its pronunciation is very similar to car keys) is a Singaporean colloquialism for companions.
Incidentally, this is the only footnote in the entire thesis.

xxiii

xxiv

Chapter 1

Introduction

In the age of digital communications, stream ciphers play an important role to protect

transmitted data. Examples of these digital telecommunications include mobile phone

communication and Internet traffic. Users of these telecommunications require the

confidential transmission of data. For example, two parties calling each other using

mobile phones require that no one can eavesdrop on their conversations. A user buying

items over the Internet may be required to send their credit card details to an online

store. In this case, the user needs an assurance that their credit card details are not read

by a third party, who could then use the credit card to make unauthorised purchases.

These forms of telecommunications typically consist of a series of frames which are

sent between the two communicating parties. Each frame is encrypted using a secret

key which has been pre-established between two parties prior to the transmission of

these frames and a publicly known value called the initialisation vector (IV). In frame-

based applications, the frame number is typically used as the IV. The stream cipher uses

this key-IV pair to produce keystream, which is combined with the frame (plaintext)

to produce an encrypted frame, also known as a ciphertext. This key should be long

enough to preclude exhaustive keysearch. The process of producing a ciphertext is called

encryption, while the reverse operation of producing a plaintext given a ciphertext, is

called decryption.

The frame-based nature of modern telecommunications make stream ciphers ideal

cryptographic algorithms as they are generally able to encrypt frame-based traffic faster

than block ciphers. The requirement for stream ciphers to be faster than block ciphers is

evident during the eSTREAM project [44], a multi-year project which identified stream

1

2 Chapter 1. Introduction

ciphers suitable for widespread adoption. One of the requirements in eSTREAM is that

any proposed stream cipher must be demonstrably superior to the AES (when used

in some appropriate mode, like counter mode) in at least one significant aspect [44].

However, the speed in which stream ciphers can encrypt frame-based traffic is not the

only criterion for selecting a stream cipher. The stream cipher’s security properties

also needs to be taken into consideration. For example, early keystream generators

for stream ciphers produced sequences which had linear mathematical relationships

between sequence bits. This could be exploited in attacks [82]. Using functions which

are not linear makes these attacks more difficult.

Due to the insecurity of encrypting messages using linear keystream sequences,

keystreams produced by modern keystream generators have to be nonlinear. However,

the properties of sequences produced bymodern stream ciphers are generally not known.

For example, the period of sequences produced by modern stream ciphers may not

have a fixed value, and designers of stream ciphers usually give an estimate of what

they believe this period may be. Another property of keystream sequences produced by

keystream generators which are not well-understood are the distribution of patterns in

the keystream sequences. In a truly random sequence, these patterns have a uniform

distribution, but in keystream sequences produced by keystream generators, this may

not be the case.

1.1 Aims and objectives

Themain objective of this thesis is to determine whether structural features of keystream

generators affect the security provided by stream ciphers. Modern keystream generators

produce nonlinear sequences, as they are considered more secure than linear sequences.

This nonlinearity can be introduced through a stream cipher’s state-update function,

output function, or both. To achieve this aim the research is split into the following

tasks:

1. The determination of security implications of nonlinear sequence properties for

Trivium [26]. Trivium is one of the stream ciphers selected in a final portfolio

resulting from the ecrypt project. Trivium’s simplicity makes it a popular cipher

to cryptanalyse, but to date, there are no attacks in the public literature which are

faster than exhaustive keysearch. In this thesis, we perform algebraic analyses

on Trivium’s state-update function and analyse its resistance to certain algebraic

attacks.

1.2. Results 3

2. The investigation of the state convergence problem in stream ciphers in detail.

The research on state convergence in stream ciphers has three objectives:

• The identification of methods which can be used to detect state convergence.

• The identification of mechanisms used in stream ciphers which can cause

state convergence.

• An investigation into the effect state convergence can have on stream cipher

cryptanalysis.

The presence of state convergence in a stream cipher indicates a potential weakness

which may be exploited in a key-recovery attack, as was demonstrated in attacks

on the stream ciphers Py, Pypy [73, 112, 113] and ZUC [110].

3. An investigation into the distribution of bit patterns in keystream generators

produced by:

• nonlinear filter generators, and

• (the complementary concept) linearly filtered nonlinear feedback shift re-

gisters.

We analyse how the selection of different:

• stages used as input to the output function, or

• feedback functions used in the keystream generator

can affect this bit pattern distribution. The presence of significant bit pattern biases

in the output sequence may be exploited in attacks ranging from distinguishing

attacks [80] to ciphertext-alone attacks [37].

1.2 Results

This thesis contains the following contributions to knowledge regarding stream cipher

analyses.

1.2.1 Contributions of Chapter 3

Some of the properties of sequences generated by keystream generators which em-

ploy linear state-update and nonlinear output functions are investigated. We specific-

ally investigate the effect different stages used as input to the output function has the

4 Chapter 1. Introduction

distribution of m-bit patterns of keystreams produced by nonlinear filter generators

(NLFGs). The almost uniform distributions of m-bit patterns for m = 1 was proved
by Simpson [105], while the non-uniform distribution of for some m-bit patterns was

demonstrated by Anderson [4]. However, factors influencing the non-uniform distri-

bution observed by Anderson in m-bit patterns for keystream sequences produced by

NLFGs are not known. We show that the m-bit patterns, for m ≥ 2 of NLFGs are biased,
regardless of the type of tap settings used, although the bias is generally greater when

the tap settings to the filter function are consecutive. In some cases, there are some

m-bit patterns which do not occur at all in the outputs. This happens for smaller values

of m when the NLFGs use consecutive tap settings than when uneven tap settings are

used, from m ≥ 8 for consecutive and m ≥ 11 for uneven tap settings, respectively. The

experiments also show that the frequency distributions of m-bit patterns for NLFGs

using consecutive tap settings are similar regardless of the size of the LFSR, but was not

the same for NLFGs using uneven tap settings.

The contents of this chapter have appeared in the following publication:

• Sui-Guan Teo, Leonie Simpson, and Ed Dawson. Bias in the Nonlinear Filter

Generator Output Sequence. In Muhammad Rezal Kamel Ariffin, Rabiah Ahmad,

Mohamad Rushdan Md. Said, Bok Min Goi, Swee Huay Heng, Nor Azman

Abu, and Mohd Zaki Mas’ud, editors, Proceeding of Cryptology 2010; The Second

International Cryptology Conference, pages 40–46, 2010.

1.2.2 Contributions of Chapter 4

We analyse keystream generators which use a nonlinear state-update function to update

the internal state and a linear output function to generate keystream. In addition to

examining the distribution of m-bit patterns produced by these keystream generators,

we analyse the well-known Trivium stream cipher [26] and variants with a similar

structure. Two investigations are performed: the sliding property of its initialisation

process is examined and algebraic analyses of Trivium-like stream ciphers is performed.

Contributions of Section 4.1

In Section 4.1, the distribution of m-bit patterns in keystream sequences formed by

linearly filtered nonlinear feedback shift registers (NLFSRs) is examined. We specifically

investigate the effect different stages used as input to the output function has the distri-

bution ofm-bit patterns for keystreams produced by linearly filtered nonlinear feedback

1.2. Results 5

shift registers. Our findings indicate that the keystream formed by these generators can

have a non-uniform distribution if the linear output function takes inputs from more

than three stages in the nonlinear feedback shift register. Non-occurring m-bit patterns

were also observed for all keystream generators used in our experiments.

Similar to the distributions of m-bit patterns in sequences produced by NLFGs, the

distributions of m-bit patterns in keystream sequences produced by linearly filtered

NLFSRs are influenced by tap settings to the linear output function. However, unlike

NLFGs, the distribution of m-bit patterns of keystreams produced by linearly filtered

NLFSRs, where the linear function takes as input, stages which form a Full Positive

Difference Set (FPDS) are generally less uniformly distributed as compared to the

distribution of m-bit patterns in the keystream produced by linear functions which take

as input, taps which are consecutive. This is in contrast to the distribution of m-bit

patterns of NLFGs.

Contributions of Section 4.2

In Section 4.2, we search for slid pairs in Trivium. We extend the work of Priemuth-

Schmid and Biryukov [92] and Zeng and Qi [115] and search for particular types of

slid pairs. We show that by forming a new system of equations, the size of the search

space for these types of slid pairs can be significantly reduced. This reduces the time

and memory requirements needed compared to searching for the same type of special

slid pairs using Priemuth-Schmid and Biryukov’s system of equations. We also show

that particular groups of slid pairs in Trivium do not exist.

Contributions of Section 4.3

In Section 4.3, we perform algebraic analyses on Trivium-like ciphers using the com-

bination of the techniques introduced by Raddum [93], and Berbain et al. [10]. We

answer Berbain et al.’s open question regarding whether it is possible to extend their

algebraic attack to ciphers which update q internal state bits at each iteration and only

output q′, where q′ < q, linear combinations of state bits at each iteration. Our attack on

Bivium-A is, to the best of our knowledge, the fastest initial state recovery attack using

the F4 algorithm which uses the least amount of keystream. We show that the success

of performing an algebraic divide-and-conquer attack on Trivium-like ciphers depends

on the relationship between the number of registers in the Trivium-like cipher, and the

distance between the stages used as inputs to the output function which generate key-

stream. By changing the taps positions to the output functions, attacks on Trivium-like

6 Chapter 1. Introduction

ciphers using the combined techniques by Raddum and Berbain et al. may be prevented.

The influence of tap settings and the state size of registers whose stages are used in the

construction of the system of equations are factors which affect the number of solutions

obtained when the system of equations is solved. These factors are discussed in detail in

Section 4.3.8.

1.2.3 Contributions of Chapter 5

The state-update functions of the Mixer stream cipher [79] are analysed. We show

that it is possible for two or more distinct key-IV pairs to generate the same Mixer

keystream due to state convergence during the initialisation process. As a consequence,

the effective session key size of Mixer is reduced. We estimate that this effective key

size, after 200 initialisation rounds, is between 2109 and 2191. This reduction in effective

key size continues during Mixer’s keystream generation due to Mixer using a shrinking

generator-like mechanism to generate keystream.

The contents of this chapter have appeared in the following publications:

• Sui-Guan Teo, Kenneth Koon-Ho Wong, Ed Dawson, and Leonie Simpson. State

convergence and keyspace reduction of the Mixer stream cipher. Journal of

Discrete Mathematical Sciences & Cryptography, 15(1):89–104, 2012.

• Sui-Guan Teo, Ali Al-Hamdan, Harry Bartlett, Leonie Simpson, Kenneth Koon-

Ho Wong, and Ed Dawson. State Convergence in the Initialisation of Stream

Ciphers. In Udaya Parampalli and Phillip Hawkes, editors, Information Security

and Privacy (ACISP 2011), volume 6812 of Lecture Notes in Computer Science, pages

75–88. Springer, 2011.

1.2.4 Contributions of Chapter 6

We study the problem of state convergence in greater detail. In Section 6.1, we identify

techniques which can be used to detect state convergence in keystream generators.

In Section 6.2, we review irregularly-clocked and regularly-clocked stream ciphers

which experience state convergence during initialisation. We perform an investigation

into a modified version of A5/1, and show why state convergence occurs in the cipher.

We also provide counter-arguments to the claim made by the designers of Mickey-v2

that increasing the state size of its Mickey-v2’s registers reduces the degree of state

convergence which occurs in Mickey-v2.

1.3. Organisation of thesis 7

In Section 6.3, we analyse regularly clocked stream ciphers which experience state

convergence. We show how the analysis on the state-update function which causes state

convergence in the F-FCSR stream cipher [77] can be also be applied to analyse the

state-update function used in the summation generator in Section 6.3.3. As a result, we

show how the summation generator suffers from state convergence.

Using the case studies and analyses in Section 6.2 and Section 6.3, we identify three

possible mechanisms which may cause state convergence in Section 6.4. These are

mutual-clock control, self-update mechanisms and addition-with-carry mechanisms. In

particular, we showwhymutual clock-control, an amalgamation ofmutual-updatemech-

anisms and clock-control mechanisms, causes state convergence when the individual

mechanisms may not cause state convergence.

In Section 6.5, we analyse the effectiveness of state convergence on stream cipher

cryptanalysis with regards to some common techniques applied to bit-based stream

ciphers. These include time-memory-data tradeoff attacks, correlation attacks, algebraic

attacks and differential attacks.

The investigation on the effect of state convergence on time-memory-data tradeoff

attacks has appeared in the following publication:

• Sui-Guan Teo, Leonie Simpson, Kenneth Koon-Ho Wong, and Ed Dawson. State

Convergence and the effectiveness of Time-Memory-Data Tradeoffs. In Ajith Ab-

raham, Daniel Zheng, Dharma Agrawal, Mohd Faizal Abdollah, Emilio Corchado,

Valentina Casola, and Choo Yun Choy, editors, Proceedings of the 7th International

Conference on Information Assurance and Security (IAS 2011), pages 92–97. IEEE,

2011. Updated version available from http://eprints.qut.edu.au/47843/.

1.3 Organisation of thesis

This thesis is organised as follows: In Chapter 2, we review concepts relevant to the

understanding of contents in this thesis. In Chapter 3, we analyse the distribution of m-

bit patterns in keystream sequences produced by nonlinear filter generators. InChapter 4,

we analyse the distribution ofm-bit patterns in keystream sequences produced by linearly

filtered nonlinear feedback shift registers. Algebraic analyses are also performed on

Trivium ciphers to determine if particular types of slid pairs exist in Trivium. Algebraic

analyses which use the combined methods of Berbain et al. and Raddum are also

performed in this chapter. In Chapter 5, the Mixer stream cipher is analysed and it is

shown why state convergence occurs during its initialisation process. In Chapter 6, the

http://eprints.qut.edu.au/47843/

8 Chapter 1. Introduction

state convergence problem in stream cipher is analysed in more detail. Chapter 7, we

summarise the research results in this thesis, and suggest directions for future research.

Chapter 2

Background

This chapter presents a review of the theory relevant to the analysis and design of

stream ciphers. We review stream ciphers, keystream generators and the various

phases involved in the initialisation and keystream generation processes in Section 2.1.

Following this, common components of a keystream generator are introduced in Sec-

tion 2.2. The components reviewed in this section include Boolean functions, Linear

Feedback Shift Registers (LFSRs), Nonlinear Feedback Shift Registers (NLFSRs), clock-

control mechanisms, and output functions. Three combinations of linear and nonlinear

components which can be used to generate keystream are described in Section 2.3. These

different combinations form a framework for the material presented in Chapters 3–5.

Techniques for cryptanalysing stream ciphers are reviewed in Section 2.4.

2.1 Stream ciphers and keystream generators

A symmetric cipher algorithm transforms a cleartext message (plaintext) to an unread-

able format called ciphertext, and vice-versa using the same secret key. The transforma-

tion of the plaintext P to ciphertext C is called encryption and the reverse operation,

the transformation from ciphertext to plaintext, is called decryption. If EK denotes

the symmetric encryption operation using the secret key K, then the encryption and

decryption functions can be described as follows:

EK(P) = C, E−1K (C) = P

9

10 Chapter 2. Background

Keystream generator

Plaintext

Keystream generator

Ciphertext Plaintext

Sender Receiver

Key IVIVKey

Figure 2.1: Stream cipher operation

In a typical communication two parties, the sender and receiver, first establish a secret

key. This secret key is established out-of-band over a secure channel using either key

transport or key agreement protocols. These protocols are beyond the scope of this

thesis and are not discussed any further in this thesis. The sender creates the ciphertext

using a given algorithm and a secret key. This ciphertext is sent over an insecure channel

to the receiver. The receiver then uses the same algorithm and secret key to decrypt the

ciphertext and recover the plaintext. An example of a symmetric key algorithm is the

stream cipher.

Stream ciphers use a keystream generator to generate keystream, which is combined

with a message to encrypt/decrypt a frame. The most common encryption and decryp-

tion function used is binary addition modulo 2, also known as the XOR operation. The

XOR function is used as it is fast and easy to implement in both hardware and software.

Furthermore, due to XOR’s commutative properties, the same device can be used to

perform both encryption and decryption functions. A stream cipher which uses the

XOR function for encryption and decryption is called a binary-additive stream cipher.

The keystream and message are then combined using the XOR operation to produce

the encrypted frame or ciphertext. To decrypt the message, the receiver must use the

same key and IV to initialise the keystream generator and produce the same keystream.

The ciphertext and keystream are then combined using XOR operations to recover the

original frame. The operation of a stream cipher is shown in Figure 2.1.

There are two types of streamciphers: synchronous streamciphers and self-synchronous

stream ciphers. For synchronous stream ciphers, the keystream is generated calculated

as some function of the internal state. For self-synchronous stream ciphers, the key-

stream is generated as some function of the internal state and the ciphertext. There

has been evidence to suggest that self-synchronous stream ciphers are less secure than

synchronous stream ciphers [35, 90]. Thus, we do not analyse self-synchronous stream

ciphers in this thesis.

2.1. Stream ciphers and keystream generators 11

Keystream generators for stream ciphers operate by maintaining an internal state

and applying update and output functions to the state. The state is generally stored in

h ≥ 1 registers. We use the notation Ri(t) to denote the contents of stage i of register
R at time t where i = 0, 1, . . . , r − 1, for an r-stage register; we also denote the register’s

state-update function by R(x). If R(x) is a linear function, the shift register is known

as a Linear Feedback Shift Register (LFSR). If R(x) is nonlinear, the shift register is a

Nonlinear Feedback Shift Register (NLFSR). The size ω of each stage can be one bit for

a binary shift registers, or more than one bit (usually a multiple of eight bits) for word-

based shift registers. The state size of register R is r × ω. The state S of the keystream

generator is of size s bits and is calculated by summing up the sizes of all the registers in

the keystream generator. This thesis focuses on the analysis of stream ciphers based on

binary shift registers. That is, each stage in a register contains ω = 1 bits.
Stream ciphers are typically used to encrypt data for frame based, real-time applica-

tions, like pay-TV signals andmobile phone communications, as they are generally faster

than block ciphers, the other symmetric cipher algorithm. A single communication

in one of these applications may consist of multiple frames. To encrypt a frame-based

communication, a single secret key K of size l bits (usually 80, 128, or 256 bits) is used for

the entire communication. Each frame in this communication will use an initialisation

vector or IV, V , of size j bits in combination with K. This key-IV pair is known as the

session key which will be used in the encryption and decryption of this frame. Let

k0, k1, . . . kl−1 represent the l-bit key and v0, v1, . . . v j−1 represent the j-bit IV used for a

particular frame. The l-bit key and j-bit IV are used as inputs in a keystream generator.

The operation of a keystream generator has two phases: an initialisation phase and a

keystream generation phase.

2.1.1 Initialisation phase

Prior to encrypting each frame in the communication, the keystream generator needs to

undergo an initialisation process, where the key-IV pair for that frame is used to form

the initial internal state of the keystream generator. The goal of the initialisation process

is to diffuse this key-IV pair across the entire state and make mathematical relationships

between the key-IV pair and the keystream hard to establish. The initialisation process

is usually performed in two phases: key and IV loading phase, and diffusion phase.

12 Chapter 2. Background

Key and IV loading phase

In the loading phase, the key and IV are loaded into the internal state of the cipher. This

phase can either be linear or nonlinear. For some keystream generators, the key-loading

and IV-loading phase are conducted simultaneously. That is, the secret key and IV are

transferred to the stream cipher’s state at the same time. At the end of this loading phase,

the keystream generator is in a loaded state. If the loading phase is well-designed and

the state size is greater or equal to l + j, one would expect that the number of possible

loaded states will be 2l+ j.

Diffusion phase

The diffusion phase consists of a number of iterations, denoted α, of the initialisation

state-update function. The value of α requires careful consideration. A small number

can be performed quickly, which is desirable in real-time applications where rekeying

is frequent. However, an initialisation process with few iterations may not provide

sufficient diffusion and could leave the cipher vulnerable to attacks such as algebraic

attacks [34] or linear cryptanalysis [83]. For example, Dinur and Shamir [39] claimed that

they were able to mount a key-recovery attack on Trivium [26] whose initial state was

produced using 767 iterations of the Trivium’s diffusion process, compared to the 1152

iterations recommended by Trivium’s designers. Similarly, Turan and Kara [109] claim

that if the Trivium diffusion process was only performed for 288 iterations, Trivium’s

keystream can be approximated with a bias of 2−31.

After the initialisation process is complete, the keystream generator is said to be in

its initial state. Following this, the keystream generation phase begins. If the diffusion

process is well-designed, the recovery of an initial state should not reveal any information

about the secret key which generated it without any significant computational effort. A

layered diagram showing the interaction between the various phases involved during

initialisation is shown in Figure 2.2.

2.1.2 Keystream generation

During keystream generation, the internal state is updated using a state-update function.

This state-update functionmay be the same state-update functionwhichwas used during

the diffusion phase, or a different one. After the state-update function is applied once, a

keystream bit is generated from the initial state, typically by applying an output function

to the internal state’s contents. This entire process continues until sufficient keystream

2.1. Stream ciphers and keystream generators 13

Session Key

IV

Loaded state of keystream generator

Initial state of keystream generator

Secret Key

Key and IV loading phase

Diffusion Phase

Keystream generation phase

Figure 2.2: Layered diagram of initialisation process

Table 2.1: 3-tuple distribution table for Z

m-tuple 000 001 010 011 100 101 110 111

Occurrences 1 2 2 1 1 1 0 0

has been generated to encrypt the frame.

Keystream sequences produced by keystream generators are commonly viewed as

a long sequence of binary digits. For example, let a 10-bit keystream sequence Z be:

Z = 0001010011. This 10 bit sequence can be divided into a series of overlapping m-bit

patterns, or, m-tuples. This thesis will use the term m-tuples to describe these patterns

hereafter. For example, when m = 3, Z consists of the following seven 3-tuples: 000,

001, 010, 101, 010, 100 and 011. Using these patterns, a frequency distribution table can

be constructed to examine the frequency of these 3-tuples. The frequency distribution

table for Z is shown in Table 2.1. These frequency distribution tables will be used to

examine the m-tuple distributions in keystream sequences produced by nonlinear filter

generators in Chapter 3 and by linearly filtered nonlinear feedback shift registers in

Section 4.1. Ideally, the m-tuple distributions will be almost uniform, for an adequate

length of keystream.

One other method of studying the properties of sequences is through the Hamming

Distance [62]. The Hamming Distance between two binary sequences of equal length

14 Chapter 2. Background

is the number of bit positions in which the sequences differ. This can be calculated by

XORing two sequences together and counting the number of ones in its result. For

example, assume we have two five-bit sequences Z0 = 010102 and Z1 = 111102. Then

Z0 ⊕ Z1 = 010102 ⊕ 111102 = 101002. The Hamming Distance between Z0 and Z1 has

weight two.

If the state size is greater than or equal to l + j, where l and j are the key and

IV sizes in bits respectively, and the state-update functions used during the diffusion

and keystream generation are well-designed, the number of distinct initial states and

keystream which can be generated will be 2l+ j. In Chapters 5 and 6, we investigate the

case where this does not happen, and discuss the security implications which arise from

this. If the state-update and output functions take as input register stages whose contents

are bit-based, the functions are called Boolean functions.

2.2 Components in keystream generators

In this section, we review components which are commonly used in modern keystream

generators. These include Boolean functions, state-update functions and output func-

tions.

2.2.1 Boolean Functions

A Boolean function g(x) ∶ Zn
2 → Z2 such that x = (x0, x1, . . . , xn−1) is a mapping from n

binary inputs to a binary output, for n > 0. A Boolean function is a common component

used for both state-update functions and output functions in keystream generators.

There are two common ways of expressing a Boolean function: the truth table and

Algebraic Normal Form (ANF). The truth table of a Boolean function is a list of the

output for all possible 2n inputs. An example of a truth table for a Boolean function

where n = 3 is shown in Table 2.2 A second expression of a nonlinear Boolean function

is the Algebraic Normal Form (ANF). For every Boolean function there is a unique

ANF representation. The ANF for a Boolean function is expressed in terms of an XOR

sum of AND products of the input variables [76]. That is,

g(x) = ⊕
I∈P(N)

aI⊗
i∈I

xi

where P(N) denotes the power set of N = {1, . . . , n} [28] and AI ∈ 0 for all I. If the ANF
contains no AND product terms, the Boolean function is a linear Boolean function. If

2.2. Components in keystream generators 15

Table 2.2: Truth table for Boolean function g(x0, x1, x2)

x0 x1 x2 g(x)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

the ANF contains at least one AND product term, the Boolean function is a nonlinear

Boolean function. For example, the ANF for the nonlinear Boolean function given by

the truth table shown in Table 2.2 is

g(x) = x1 ⊕ x0x2 ⊕ x0x1 (2.1)

Using the Algebraic Normal Form, we can determine a property of a Boolean function,

its algebraic order. The algebraic order ao of a Boolean function is defined as the number

of variables of the largest product term the Boolean function’s ANF contains [90].

The algebraic order for the Boolean function example given in Equation 2.1 is two.

Other important properties of nonlinear Boolean functions are balance, nonlinearity,

correlation immunity and resilience.

Balance

If a Boolean function is balanced, the number of zeros of the Boolean function’s output

is equal to the number of ones in the Boolean function’s output. That is, if the number

of ones (or zeros) in the list of possible outputs of an n-input Boolean function is 2n−1,

the Boolean function is said to be balanced. Checking for the balance of a Boolean

function is done by examining the Boolean function’s truth table output. For example,

the Boolean function is shown in Table 2.2 is balanced as the number of zeros and ones

is 23−1 = 4. If the Boolean function is going to be used in keystream generation in stream

ciphers, it is important that the Boolean function used is balanced (or close to balanced),

otherwise the keystream generated will be biased, which may leave the stream cipher

16 Chapter 2. Background

vulnerable to statistical attacks.

Nonlinearity

The nonlinearity of a Boolean function is an important criteria to consider when evalu-

ating the security of a stream cipher. The nonlinearity of a Boolean function is defined

as the minimum Hamming distance to any affine function [28]. That is, the minimum

number of bits in the truth table output which differ as compared to any affine function.

The definition of Hamming Distance from Section 2.1.2 can also be applied to measure

the Hamming Distance between a Boolean function and an affine function. This is done

by XORing the truth table output for the Boolean function and for any affine function

and counting the number of one’s in the result.

For example, assume we have an affine function a f defined as x0⊕x1⊕x2. The output

of a f is 011010012. To compute the Hamming Distance between g(x) and a f we XOR

both functions’ truth table output. That is 001101012 ⊕ 011010012 = 010111002. Counting
the number of one’s in the result, we know that the Hamming Distance between g(x)
and a f is four. After calculating the Hamming Distance between g(x) and all possible

affine functions, we discover that the minimum distance between g(x) and an affine

function is two. Thus, the nonlinearity of the Boolean function in Table 2.2, is two.

If the Boolean function used in a stream cipher is highly nonlinear, it may be difficult

for an attacker to approximate it with a linear function. This may make it harder to form

the linear relations necessary to perform linear cryptanalysis [56]. Similarly, a highly

nonlinear function will make solving a system of equations using algebraic attacks [31,34]

more complex.

Correlation immunity

Correlation immunity is a measure of whether the output of the Boolean function is cor-

related to a subset of the input variables. An n-input Boolean function f (x0, x1, . . . xn−1)
is said to be c-order correlation immune if each subset of c randomvariables xi0 , xi1 , . . . xic−1

with 1 ≤ i0 ≤ i1 ≤ . . . ic−1 ≤ n, the random variable P = f (x0, x1, . . . xn−1) is statistically
independent of the random vector xi0 , xi1 , . . . xic−1 [88, Definition 6.52]. For example,

in the Boolean function shown in Table 2.2, there is a correlation between the output

of the Boolean function and x2, as g(x) and x2 are the same with a probability of 0.75.

That is, the Boolean function has a correlation immunity of zero. Correlation immunity

is an important characteristic for nonlinear combiners and nonlinear filter generators.

Having a correlation immunity greater than zero may make the keystream generator res-

2.2. Components in keystream generators 17

istant to divide-and-conquer attacks. There is a tradeoff between the algebraic order of

a Boolean function and its correlation immunity. This bound is known as Siegenthaler’s

bound [100]. Assume there is a balanced n-input Boolean function of algebraic order

ao that satisfies correlation immunity of order c. Then Siegenthaler’s bound states that

ao ≤ n − c − 1. For a given value of n, this bound allows for a trade-off between the

algebraic order of a Boolean function and the correlation immunity it provides.

For example, designers who want an n = 10-input, balanced nonlinear Boolean

function can construct a function such that ao = 5. Using Siegenthaler’s bound, it is clear
that this function’s correlation immunity order can be no greater than four. However, if

the designers of a nonlinear Boolean function decide that having a nonlinear Boolean

function where a0 = 2 is acceptable, they can construct a nonlinear Boolean function

whose correlation immunity order is no greater than seven. In summary, the implications

of Siegenthaler’s bound means that designers of nonlinear Boolean functions may need

to forgo having a high alegraic order if they want a function of high order correlation

immunity, or vice-versa.

Resilience

ABoolean function is resilient if it is both correlation immune and balanced. For example,

a balanced nonlinear Boolean function which is c = 2-order correlation immune can be

described as a 2-resilient nonlinear Boolean function.

2.2.2 State-update functions

State-update functions are used to update the internal state of registers in keystream

generators. At each iteration of the state-update function, the contents of each stage are

shifted. Each time the contents of each stage are shifted, there will be a particular stage

which does not have any value. The computation of this new stage’s contents, known as

the feedback bit, is calculated as a linear or nonlinear function of the contents of other

stages prior to the register being shifted. Two common types of state-update functions

are linear and nonlinear state-update functions.

Linear update functions

Linear feedback shift registers (LFSRs) are common components in many bit-based

stream cipher designs due to their simplicity and efficiency in hardware. A binary LFSR

R has an internal state consisting of r stages, where each stage stores ω = 1 bit. Therefore,

18 Chapter 2. Background

this LFSR has a state size of s = 1×r bits. R’s feedback function or connection polynomial,

is used to update the internal state of R at each iteration. The feedback function of an

LFSR can also be converted to its characteristic polynomial

R(x) = c0xr + c1xr−1 + . . . + cr−1x + cr ,

where the coefficients cs are the feedback constants, also known as tap positions. If this

feedback function of the LFSR is primitive and the initial state is non-zero, all possible

2s − 1 non-zero internal states will be generated before a certain internal state repeats.

The period p of the sequence produced by this LFSR will be 2s − 1 [88]. This sequence

satisfies three properties, also known as Golomb’s postulates [59]:

1. The number of ones and zeros in a single period of the sequence is such that the

number of ones is 2s−1 and the number of zeros is 2s−1 − 1.

2. A run in a period of a keystream sequence is a string of consecutive 0’s or 1’s which

is neither preceded nor succeeded by the same symbol [88]. In every period, half

the runs must be of length one, a quarter of the runs must be of length two, an

eighth of the runs must be of length three, etc. In general, if the run length is

denoted as β, the proportion of runs of this length must be 1
2β , for β ≤ s − 1.

3. Assume we have two keystream sequences, Z0 and Zd , of period p = 2s − 1 for an
LFSR of length s such that Zd is a d bit shift of Z0. The number of agreements,

Na and the number of disagreements Nd between Z0 and Zd is counted. The

auto-correlation coefficient for both sequences is calculated using the formula

(
Na−Nd
p−1). The auto-correlation coefficient for all d sequences must be constant.

A sequence which satisfies all three of the properties listed above is called a maximum

length sequence or an m-sequence. Golomb’s first postulate can be extended form-tuple

distributions wherem > 1. Consider the case whenm = 2. The LFSR output sequence of

length 2s − 1 + 2 − 1 can be viewed as a series of overlapping two-tuples. For the output

sequence of an LFSR with a primitive polynomial, each of the 2-tuples 01, 10 and 11

occurs 2s−2 times, except the pattern 00, which occurs 2s−2 − 1 times. Similarly, for the

LFSR output sequence of length 2s − 1 +m − 1, each m-tuple occurs 2s−m times, except

for the all-zero m-tuple which occurs 2s−m − 1 times. The distribution of m-tuples, for

m < s, in random sequences is expected to be essentially uniform.

The benefit of using an LFSR to generate keystream is that the properties of the

keystream it generates are desirable. However, using only an LFSR to generate keystream

2.2. Components in keystream generators 19

is very insecure due to its low linear complexity. The linear complexity (LC) of a binary

sequence is defined as the length of the shortest LFSR which can generate that sequence.

Given 2 ⋅ LC bits of a binary sequence, the Berlekamp-Massey algorithm [82] can

determine the LFSR which generated that sequence with a maximum time complexity

of O(LC2). For LFSRs with a primitive feedback polynomial, LC = s, and the time

complexity of reconstructing the LFSR is O(s2).
An LFSR can either be autonomous or non-autonomous. An autonomous LFSR’s

feedback bit is calculated using only the register’s internal state values and the character-

istic polynomial. In contrast, a non-autonomous LFSR’s feedback bit is calculated as a

function of the internal state values, characteristic polynomial and some other external

input.

To provide resistance to Berlekamp-Massey attacks [82], the sequences produced

by keystream generators should have a large linear complexity. Due to the Berlekamp-

Massey attack on LFSR sequences, the sole use of an LFSR to generate keystream for

cryptographic purposes is not recommended. Some form of nonlinearity needs to be

introduced. This is done either implicitly via clock control mechanisms, or explicitly,

through the use of nonlinear state-update functions, or nonlinear Boolean functions as

output functions. In the following sections, we review common nonlinear state-update

functions used in keystream generators. These include nonlinear feedback shift registers

(NLFSRs) and clock control mechanisms.

Nonlinear update functions

Nonlinearity can be introduced into binary sequences through state-update functions

which are either explicit or implicit. Examples of explicit and implicit nonlinear state-

update functions are nonlinear feedback shift registers and clock-control mechanisms,

respectively. These are described below.

Nonlinear feedback shift registers Nonlinear feedback shift registers (NLFSRs) use

a nonlinear function to update the internal state of the shift register. A simple five stage

NLFSR is shown in Figure 2.3, where ⊕ and ⊗ are addition and multiplication in GF(2)

respectively. The feedback function of this five stage NLFSR is f (x0, x1, x2, x3, x4) =
x0 ⊕ x1 ⊕ x2 ⊕ (x2 ⊗ x4). Given a non-zero initial state, this NLFSR will generate a

sequence of period 25 − 1 = 31 bits [40].
For certain NLFSR sequences with a period of 2s − 1, Gammel and Göttfert [49]

show that the distribution of ones and zeros, is almost equally distributed. Gammel

20 Chapter 2. Background

Table 2.3: Properties of certain NLFSRs [48]

Type of NLFSRs A B C D

Length of shift register s s s s
Period 2s − 1 2s − 1 2s − 2 2s − 2
Forbidden initialisations (0, 0, . . . , 0) (1, 1, . . . , 1) (0, 0, . . . , 0), (0, 1, 0, . . .),

(1, 1, . . . , 1) (1, 0, 1, . . .)
Linear complexity 2s − 1 2s − 1 2s − 2 2s − 2
No. of distinct cycles 2 2 3 2
Distribution of 0’s and almost almost uniform uniform
1’s in full period uniform uniform

and Göttfert [48] reviewed the properties of four types of NLFSR sequences which have

guaranteed periods. The four NLFSR types were denoted A, B, C, and D. Portions of

their review are reproduced by Table 2.3. In a 2006 paper by the same authors [49], the

m-bit pattern distribution of sequences produced by bit-based type A and B NLFSRs

were shown to be the same as a LFSR with a primitive feedback function. That is, the

all-zero m-tuple occurs 2s−m − 1 times, while all non-zero m-tuples occur 2s−m times.

However, little is known about the other properties of these sequences. For example,

when different sets of stages are used as inputs to the linear output function, what would

the distribution of m-tuples be? The answer to the question just posed, for m ≥ 2 was
not known prior to the analysis performed in this thesis. In Chapter 4 and 5, we analyse

stream ciphers which use nonlinear feedback shift registers in their design. In particular,

the effect of different selections of stages used as inputs to the linear output function

have on the distribution of m-bit tuples in keystream sequences produced by linearly

filtered nonlinear filter generators are examined in Section 4.1.

An NLFSR can either be autonomous or non-autonomous. An autonomous NLFSR’s

feedback bit is calculated as a nonlinear function of the register’s internal state value

as input. In contrast, a non-autonomous LFSR’s feedback bit calculated as a nonlinear

function of the register’s internal state value and some other external input.

x0 x1 x4x2 x3

Figure 2.3: Diagram of a NLFSR

2.2. Components in keystream generators 21

Clock control mechanisms For a regularly clocked shift register, the internal state

of the shift register is always updated once at each clock. Clock-controlled keystream

generators generally use the contents of one or more registers to control the clocking

of itself and/or other registers. For irregularly clocked shift registers, the register state

can be updated more than once or not at all at each clock, depending on the type of

mechanism used. Two examples of clock-control mechanisms are majority-decision

and integer functions.

Majority-decision Majority-decision rule mechanisms use the contents of an odd

number of register stages to determine which of two possible actions will occur. For

example, which binary shift register is clocked each time the state-update function is

invoked and which shift register is not clocked. This majority decision rule requires that

the keystream generator which uses this mechanism has an odd number of registers, so

that at least ⌈ h2 ⌉, where h is the number of registers in the keystream generator, have the

same value.

An example of the use of this majority-decision rule is in the state-update function of

A5/1. A5/1 is a stream cipher based on three LFSRs. For each shift register, one register

stage is used as the clocking tap. This clocking tap is used as input to the majority-

decision function to determine if that particular register will be clocked. If the contents

of two or more clocking taps are the same, the registers with clocking taps which agree

are clocked. In Section 6.2.1, we analyse the A5/1 stream cipher and show that this

majority-decision rule causes state convergence.

Integer function Integer functions take as input the contents of selected stages

from a binary shift register into a function, which outputs an integer value c(x). A
separate register is then clocked c(x) times. Integer functions are used in the state-

update functions of LILI-II [29] and Mixer [79]. In Chapter 5 we analyse the Mixer

stream cipher and in Section 6.4 we analyse other keystream generators which use

integer functions in their state-update functions and show that this can cause state

convergence.

2.2.3 Output functions

Output functions take input from selected stages of a keystream generator’s registers and

produce output which form the keystream during a keystream generator’s keystream

generation phase. These output functions can be linear or nonlinear. During a keystream

22 Chapter 2. Background

generator’s keystream generation phase, selected stages from a register are used as input

to the output function. We call these stages used as input to the output function tap

settings. These tap settings can be consecutive, or non-consecutive.

Let Υ = {ri ∶ 0 ≤ i ≤ n − 1} be a set of n non-negative integers, where ri is a certain

stage index in a register whose stages are used as input to the output function. There are

four methods of selecting tap settings. These are: consecutive taps, non-consecutive but

evenly spaced, non-consecutive (or uneven taps), and Full Positive Difference Set taps.

Consecutive taps If an output function takes as input, consecutive taps, the distance

between ri and ri+1 or (ri−1) will be one for values of i.

Non-consecutive but evenly-spaced taps If an output function takes as input, non-

consecutive but evenly-spaced taps, the distance between ri and ri+1 or (ri−1) will

be equidistant for all values of i.

Non-consecutive taps If an output function takes as input, non-consecutive taps, the

distance between ri and ri+1 (or ri−1) will be greater than or equal to one for all

values of i.

Full-Positive Difference taps ThetermFull-PositiveDifference Setwas used byGolić [54]

to describe the selection of stages used as input to the output function. If an output

function takes as input, taps which form a Full Positive Difference Set (FPDS),

the positive differences between ri and r′i for 0 ≤ i ≤ n − 1 and 0 ≤ i′ ≤ n − 1, are
distinct for all values of i and i′ for all cases where i ≠ i′.

2.3 Combining update and output functions

The previous sections reviewed common components used in the construction of key-

stream generators. In this section, we describe how we can combine the various com-

ponents to construct a keystream generator. We form categories based on the type of

state-update and output functions. The stream ciphers analysed in this thesis can be

grouped into one of these categories. These categories include

• Linear state-update and linear output

• Linear state-update and nonlinear output

• Nonlinear state-update and linear output

• Nonlinear state-update and nonlinear output

2.3. Combining update and output functions 23

LFSR (s stages)

f (Ri) = f (s0, s1, . . . , sn−1)
Linear function (n inputs)

❄ ❄ ❄ ❄

✲

✲ at

zt

Figure 2.4: Linear output from LFSR

2.3.1 Linear state-update and linear output

Using a linear state-update function and linear output function is a simple method for

generating keystream. Such a keystream generator is shown in Figure 2.4. Properties

of these keystream generators which take a single output for use as keystream are well-

known, and were reviewed in Section 2.2.2. Rueppel [96] showed that the sequence

produced by keystream generators which take linear combinations from selected stages

in a LFSR is a periodic sequence which can be formed by another LFSR of some length

with a different feedback function. Unfortunately, this type of keystream generator can

also be easily broken using the Berlekamp-Massey algorithm. Consequently, use of this

type of keystream generator is not recommended in secure cryptographic applications.

We give no further consideration to keystream generators of this sort in this thesis, but

include the description here for the sake of completeness.

2.3.2 Linear state-update and nonlinear output

Nonlinear combiners and nonlinear filter generators are common examples of keystream

generators which use a combination of linear state-update followed by nonlinear output.

Since the update functions for the LFSRs are linear, the security of the NLFGs and the

nonlinear combiner rely on the characteristics of the nonlinear functions. Important

characteristics for both NLFGs and nonlinear combiners include nonlinearity and

algebraic order.

The nonlinear combiner consists of two or more LFSRs and a nonlinear Boolean

function. To generate keystream, the output of each LFSR is used as input to the nonlinear

function. A diagram of a nonlinear combiner is shown in Figure 2.5. Properties of

sequences produced by nonlinear combiners were studied by Rueppel [96]. He found

that if the combiner consists of n LFSRs with primitive feedback polynomials whose

24 Chapter 2. Background

LFSR Sn−1

LFSR S1

LFSR S0

g

...

✚
✚
✚
✚✚❃

❳❳❳❳❳③

❩
❩
❩
❩❩⑦

✲

zt

an−1(t)

a1(t)

a0(t)

Figure 2.5: Nonlinear Combiner

LFSR (s stages)

f (Ri) = f (s0, s1, . . . , sn−1)
Nonlinear filter (n inputs)

❄ ❄ ❄ ❄

✲

✲ at

zt

Figure 2.6: Nonlinear Filter Generator

lengths L0, L1, . . . Ln−1 are pairwise relatively prime, the period and the linear complexity

of the sequence produced are∏n−1
i=0(2L i − 1) and g(L0, L1, . . . Ln−1) respectively, where g

is the nonlinear combiner’s Boolean filter function, evaluated over integers instead of

GF(2).

NLFGs typically consist of an LFSR and a nonlinear Boolean function. To generate

keystream, the internal state of the LFSR is first updated linearly. Selected stages from the

LFSR are used as input to the nonlinear function. The output of the nonlinear function

is used as keystream. A diagram of a NLFG is shown in Figure 2.6. An example of a

stream cipher which uses such a construction is Sfinks [21].

Some properties of nonlinear filter generators are known. Golić [54] showed that the

distribution of m-tuples, for m = 1 of an output sequence produced by a nonlinear filter

generator is almost uniform if (and only if) the n-input nonlinear Boolean function

f (x0, . . . , xn−1) is balanced for each value of (x1, . . . , xn−1), that is, if

f (x0, . . . , xn−1) = x0 ⊕ g(x2, . . . , xn−1)

or if the Boolean function f (x0, . . . , xn−1) is balanced for each value of (x0, . . . , xn−2),

2.3. Combining update and output functions 25

that is, if

f (x0, . . . , xn−1) = xn−1 ⊕ g(x0, . . . , xn−2).

Simpson [105] later showed that if the feedback function of the LFSR is primitive and

the nonlinear Boolean function is balanced, the period of the keystream produced

will be 2s − 1 and the distribution of m-tuples, when m = 1, in a single period will be

almost uniform. Less is known about the other properties of keystream sequences

generated by such a technique. For example, little is known about the distribution of

overlapping m-tuples, when m > 1, across a single period. Little is also known about

the effect different tap settings to the output functions have on the distribution of m-

tuples in keystream sequences produced by nonlinear filter generators. In Chapter 3,

we perform computer simulations to analyse these m-tuple distributions produced by

these keystream generators in more detail.

2.3.3 Nonlinear state-update and linear output function

Using a nonlinear state-update with a linear output function is another method of

generating a nonlinear keystream sequence. Instead of using a linear function to update

the internal state of the keystream generator, a nonlinear function is used. A linear

combination of state bits is then used as keystreamoutput. A diagramof such a keystream

generator is shown in Figure 2.7.

Some NLFSRs can produce a sequence which has a period of 2s − 1 [40], while other
NLFSRs produce a de Bruijn sequence [38] which has a period of 2s, and some have

much shorter periods. Gammel and Göttfert [49] proved that sequences generated by

some types of NLFSRs have good cryptographic properties like large periods, large linear

complexities and almost uniform m-tuple distributions. However, very little is known

about the properties of other types of NLFSRs. Many modern ciphers use NLFSRs

where even basic properties, such as the period are not known. Hu and Gong [72]

show that the output sequences of Grain [66] and Trivium [26] are periodic with high

probability, although proving what this period is remains an open question. Little is

also known about the distribution of overlapping m-tuples across a single period when

the linear output function takes as input more than two stages from the NLFSRs. The

effect different tap settings to the output functions have on the distribution of m-tuples

in keystream sequences produced by linearly filtered nonlinear feedback shift registers

is also an open question. In Section 4.1, we perform computer simulations to analyse

26 Chapter 2. Background

NLFSR (s stages)

f (Ri) = f (s0, s1, . . . , sn−1)
Linear function (n inputs)

❄ ❄ ❄ ❄

✲

✲ at

zt

Figure 2.7: Keystream generator with nonlinear state-update and linear output function

these m-tuple distributions produced by these keystream generators in more detail.

Examples of stream ciphers which use such a technique are Trivium [26] and its

variants. These ciphers are analysed in Section 4.2 and Section 4.3, using algebraic

techniques.

2.3.4 Nonlinear state-update and nonlinear output

A keystream generator can produce a nonlinear keystream sequence through a com-

bination of a nonlinear state-update function and a nonlinear output function. This

technique uses a nonlinear function to update the internal state of the keystream gen-

erator and uses selected stages of the keystream generator as input into a different

nonlinear function, the output of which will be used as keystream. A general diagram

of such a keystream generator is shown in Figure 2.8.

Similar to keystream generators which use a nonlinear state-update function and

linear output functions, very little is known about the properties of the keystream

these types of keystream generators produce. Since this keystream generator generates

keystream using two separate nonlinear functions, the sequence generatedmay be highly

nonlinear. This may make it resistant to algebraic attacks. However, other properties

like the period of the keystream, and the distribution of m-tuples are open questions.

The Mixer cipher [79] analysed in Chapter 5 is an example of such a generator.

2.4 Stream cipher cryptanalysis

The usual goals of stream cipher cryptanalysis are to recover either the initial state or

the secret key of the keystream generator. If the attacker recovers the initial state of

a keystream generator, they can generate keystream to decrypt only one frame of a

2.4. Stream cipher cryptanalysis 27

NLFSR (s stages)

f (Ri) = f (s0, s1, . . . , sn−1)
Nonlinear function (n inputs)

❄ ❄ ❄ ❄

✲

✲ at

zt

Figure 2.8: Keystream generator with nonlinear state-update and nonlinear output

function

communication. However, if the attacker recovers the secret key, they can reproduce

the keystream for all frames to decrypt the entire encrypted communication.

The complexity of a cryptanalytic attack can be described using a series of variables.

In this thesis, the following notation when discussing the complexity of attacks are

applied: D is the amount of data the attacker needs, P is any pre-computation time

needed before the actual attack algorithm is run, M is the memory required for the

attack, and the time needed for the attack is denoted by T .

In stream cipher cryptanalysis, it is usually assumed that the attacker has access to

the ciphertext, and possibly a certain amount of plaintext corresponding to the known

ciphertext, or an amount of keystream. A stream cipher designer needs to take into

account all of these possibilities when considering if the cipher is vulnerable to certain

attacks.

Where the attacker has access to the ciphertext, two attack types should be considered.

These are the ciphertext-only (or known-ciphertext) attack and the chosen ciphertext

attack. If it is possible to attack a stream cipher using the ciphertext-only attack, without

making use of plaintext, this means that the stream cipher’s keystream generator is

very weak. A chosen ciphertext attack allows the attacker to select ciphertexts to be

decrypted and attempts to recover the key from this ciphertext. This model is not

relevant to synchronous stream ciphers since the keystream generated is not ciphertext-

dependent. Where the attacker has possession of some plaintext and the corresponding

ciphertext, two attack types can be considered: known-plaintext attack and chosen

plaintext attack. For known plaintext attacks, an attacker gains access to an amount

of keystream by XORing the plaintext and its corresponding ciphertext. For chosen-

plaintext attacks, the attacker chooses the plaintext they want encrypted and obtains the

corresponding ciphertext. For most binary-additive stream ciphers, the outcome of the

28 Chapter 2. Background

known plaintext and chosen plaintext attacks is the same: a segment of the keystream is

also revealed.

These attack models provide the framework for generic attacks which can be applied

to stream ciphers. The attacks covered in the review are the guess-and-determine attack,

distinguishing attacks, divide-and-conquer attacks, linear cryptanalysis, differential

cryptanalysis, time-memory-data tradeoff attacks and algebraic attacks.

2.4.1 Exhaustive key search

In an exhaustive key search, an attacker tries all possible 2l secret keys to determine

which secret key can correctly decrypt an encrypted frame. A brute-force attack is an

inefficient form of attack as the value of l in modern stream ciphers is quite large, and

trying all 2l possible keys to determine which is the correct key can take a long time. A

successful attack will require that an attacker is able to recover the secret key or initial

state faster than the time needed to try all 2l possible keys.

2.4.2 Guess and determine attacks

Guess and determine attacks (G&D) are techniques used with other cryptanalytic

techniques like correlation attacks or linear cryptanalysis to recover the initial state of

the keystream generator. Thus, G&D attacks can be applied to any stream cipher which

uses linear or nonlinear components.

G&D attacks require the attacker to make assumptions about how certain values in

the internal state were produced. The attacker then guesses the values of certain register

stages and uses these guesses to determine what the contents of the remaining stages are.

Using the reconstructed internal state, the attacker produces keystream and compares it

to the observed keystream. If it matches, the attacker can be confident that they have

recovered the correct internal state. To ensure that the G&D attack on a stream cipher

has a complexity which is less than exhaustive keysearch, the number of bits guessed

should be less than the keylength l .

The attack on SNOW by Hawkes and Rose [63] is an example of a G&D attack.

SNOW [43] is a word-based stream cipher that accepts keysizes of either 128 or 256

bits. Their attack on SNOW has four phases. In the first phase, the attacker makes

assumptions on the contents of internal state of SNOW at two points in time. In the

second phase, the attacker guesses 192 bits of the internal state. In the third phase, the

attacker determines the internal state of the LFSR using the values guessed in the second

2.4. Stream cipher cryptanalysis 29

phase. In the fourth phase, the attacker tests if their guess for the LFSR’s internal state is

correct by producing a keystream and comparing it with the observed keystream. If the

keystreams match, the attacker can be confident that they have recovered the correct

keystream. If they do not match, the attacker can try further guesses in second Phase. If

the attacker exhausts their guesses in the second phase, the assumptions made in the first

phase are incorrect and the attacker returns to the first phase, makes new assumptions

about the internal state at a different point in time, and performs the attack again.

Hawkes and Rose estimate that an attack on SNOW has an estimated time complexity of

2224 operations and has a data complexity of O(295). The version of SNOW which uses

a 128 bit key to generate keystream is resistant to this G&D attack. However, the version

of SNOW which uses a 256 bit key to generate keystream is vulnerable to this attack.

2.4.3 Distinguishing attacks

The goal of a distinguishing attack is to find some statistical characteristic in the output

sequence of a keystream generator which will allow an attacker to determine if a bin-

ary sequence was generated from a particular keystream generator or a truly random

source. Statistical packages like the NIST test suite [91], Diehard statistical tests suite [81]

and CryptX [61] have a series of tests which can be applied to keystream sequences

for randomness properties. Note that passing these tests does not necessarily prove

that a keystream generator is resistant to all distinguishing attacks, but failing the test

indicates that the keystream generator has some form of bias which may be exploitable

by distinguishing attacks.

An example of a distinguishing attack is the attack onRC4byMantin and Shamir [80].

In analysing a large group of keystreams generated by RC4’s keystream generator, they

discovered that in the second byte of keystream, the zero-byte keystream sequence

occurred with a probability of 1
128 , twice the expected value of 1

256 . Using 256 output

bytes from random keys, Mantin and Shamir were able to construct a distinguisher

which is able to distinguish a RC4 keystream sequence from a truly random sequence.

2.4.4 Divide and conquer attacks

Divide and conquer attacks target an individual component of the keystream generator,

rather the keystream generator components in their entirety. For example, consider

divide and conquer attacks applied to nonlinear combiners. A particular nonlinear

combiner consists of h = 3 LFSRs, of sizes s1 = 128 bits, s2 = 64 bits and s3 = 64 bits,

30 Chapter 2. Background

giving a total state size of 256 bits. The secret key of this nonlinear combiner is the same

size as the total state size, that is, 256 bits. A brute force attack on this nonlinear combiner

will have a complexity of O(∏n
i=1(2s

i − 1)) ≈ 2256.00. In contrast, a successful divide and

conquer attack may have a reduced attack complexity of O(∑n
i=1(2s

i − 1)) ≈ 2128.00. The

divide and conquer strategy is often used in combination with other attacks. Some of

these attacks include the basic correlation attack and the fast correlation attack.

Basic correlation attack

The basic correlation attack [100] was proposed as a means to recover the initial state

of bit-based stream ciphers, usually in a divide and conquer approach on keystream

generators with multiple component parts like the nonlinear combiner. Correlation

in the context of binary sequences, is the measure of the extent two binary sequences

approximate to each other. For keystream generators, the keystream sequence is treated

as a noisy version of the output sequence of an underlying LFSR sequence. In the case

of regularly clocked keystream generators, both the output sequence of the underlying

LFSR and the keystream sequence are of the same length, so the Hamming Distance,

described in Section 2.1.2 between the two sequences can be used to measure the level

of correlation. In the case of irregularly clocked keystream generators, the Hamming

Distance cannot be used as both sequences will be of different lengths. In this case, the

Levenshtein distance can be used to determine the level of correlation between the two

sequences [52].

In the case of nonlinear combiners, the basic correlation attack will succeed when

the output of a particular LFSR is the same as the keystream bit with a probability P > 0.5.
For example, consider a nonlinear combiner consisting of three LFSRs, A, B, C, with

the nonlinear Boolean function whose ANF is given in Equation 2.1, where x0, x1 and

x2 are the outputs of A, B and C respectively. The keystream equation for this particular

nonlinear combiner is:

zt = x1 ⊕ x0x2 ⊕ x0x1

The probability that x2 = zt = 0 is 0.75. Therefore, when the keystream output from this

particular nonlinear combiner is zero, an attacker knows that there is a 75% chance that

the output of x2 is zero.

Thebasic correlation attack onnonlinear combiners using Siegenthaler’s technique [101]

requires the attacker to try all possible initial states for a particular component LFSR.

2.4. Stream cipher cryptanalysis 31

After the correlation values for all possible initial states of a particular component have

been calculated, the initial state whose correlation has a high value is most likely the

correct initial state which generated the keystream. The approach may be applied se-

quentially to multiple components. Resistance to the basic correlation attack can be

provided by ensuring that the size of individual shift register components used in the

keystream generator is larger than the size of the secret key and by using a resilient

nonlinear Boolean function

Fast correlation attack

A disadvantage of the basic correlation attack is that it requires exhaustive search of the

contents of a shift register component. If the length of the shift register(s) was larger than

the secret key size, a successful basic correlation attack will be worse than exhaustive

key search. Fast correlation attacks are a type of correlation attack which may have an

attack complexity which is faster than exhaustive key search. In the fast correlation

attack, proposed by Meier and Staffelbach [87], an attacker uses parity checks instead

of the correlation between the output of the LFSRs and the keystream. Parity checks

are any linear relationship satisfied by a LFSR sequence [87]. Certain LFSRs have a

low-weight polynomial, that is, they have a small number of non-zero coefficients in

its characteristic polynomial. If the LFSR has a low-weight polynomial, the number of

linear relationships which can be formed using the repeated squaring method [87] may

be more than the number of linear relationships which can be formed if the LFSR does

not have a low weight polynomial. The more linear relationships which can be formed,

the greater the chance of the attack succeeding. The fast correlation attack will use the

observed keystream and try to convert it to the underlying LFSR sequence. Using parity

checks previously formed using the repeated squaring method, it may be possible to

determine which bits in the keystream and the underlying polynomial are the same. An

attacker can then use error correction algorithms like those proposed by Golić et al. [57]

or Mihaljevic and Golic [89] to recover the rest of the LFSR state from the keystream.

Once a candidate internal state has been recovered, the attacker can use this internal

state to generate keystream. If this keystream sequence can successfully decrypt the

encrypted frame, the attacker can be confident that they have recovered the correct

internal state. Various fast correlation attack methods [27, 53, 98] have been proposed

since the seminal paper by Meier and Staffelbach.

An example of using a fast correlation attack on a stream cipher can be found in the

fast correlation attack on the LILI-128 [107] stream cipher by Jönsson and Johansson [78].

32 Chapter 2. Background

They claim that a fast correlation attack can recover the initial state of LILI-128 with

a complexity of about O(271). This is a successful attack against LILI-128 as the attack

complexity is less than trying all possible 2128 keys to determine which is the correct key.

2.4.5 Linear cryptanalysis

Linear cryptanalysis [83], which is normally applied to block ciphers, analyses the

linear relations of internal state bits and linear combinations of keystream bits. These

relationships are formed by approximating the nonlinear function used in the keystream

generator to linear ones. This is in contrast to correlation attacks, where an attacker

is looking for correlations between a single keystream bit and a set of internal state

bits. Similar to the fast correlation attack, once linear relations have been established,

parity-check equations can be formed and the internal state may be recovered using

iterative error-correction algorithms. Linear cryptanalysis was applied to the Bluetooth

stream cipher [19] by Golić et al. [56]. In their analyses, they can recover the 128 bit

secret key of the Bluetooth stream cipher with a complexity of about O(270), which is

faster than exhaustive key search.

2.4.6 Differential cryptanalysis

Differential cryptanalysis [16] is a technique which is commonly applied to block ciphers,

but also has applications in stream cipher cryptanalysis. Differential cryptanalysis

analyses how differences in the input (either the key, IV, or internal state) affect the

output of the cipher (this can be either the internal state or the keystream output.) In

the context of stream ciphers, there are three possible differential characteristics [13]:

• a difference in the key and/or IV generates a particular difference in the internal

state,

• a difference in the internal state generates a particular difference in the internal

state,

• a difference in the internal state generates a particular difference in the keystream

output.

If an attacker is able to find a differential characteristic which occurs with a high prob-

ability, an attacker may be able to exploit this in initial state or key recovery attacks. An

example of this is the key recovery attacks on the Py family of stream ciphers [73, 113].

2.4. Stream cipher cryptanalysis 33

2.4.7 Time-memory-data tradeoff attacks

Time-memory-data tradeoff (TMDT) attacks are performed in two phases: the pre-

computation phase and the online phase. In the pre-computation phase, a lookup

table is constructed. This table has two columns. For state recovery, the first column

consists of selected initial states of the stream cipher. For secret key recovery, the

first column consists of selected secret keys (and might also include the IV). In both

scenarios, the second column consists of a segment of keystream generated using either

the corresponding key-IV pair, initial state or internal state. In the online-phase of

the attack, the attacker compares the captured keystream to the second column of the

lookup table. If a match is detected, the attacker assumes that the obtained initial state,

internal state or key-IV pair is correct.

The complexity of a TMDT attack can be described using a series of variables. D is

the amount of data the attacker needs in the online-phase of the attack to recover the

secret key. P is the pre-computation time needed to construct the lookup table. M is the

memory needed to construct and store the table. During the online phase, the attacker

attempts to recover the initial state or secret key by searching through the lookup table.

The time taken for the search is denoted by T . The success of the attack depends on T

or M or the sum of T +M being less than 2l or 2S , depending on the particular TMDT

attack being used. Since P is a one-off operation, it is assumed that the attacker has

already pre-computed the lookup table beforehand and the time taken for this operation

is not considered when measuring the complexity of the TMDT attack. In this section,

the major TMDT attacks on stream ciphers are reviewed.

Babbage and Golić

Babbage [7] and Golić [55] independently applied the TMDT attacks to stream ciphers.

Their initial state recovery attack is referred to as the BG attack hereafter.

In the pre-computation phase, an attacker selects either M different initial states or

internal states. For each of these, the attacker produces some keystream of length s. The

attacker then stores the initial state-keystream pair in a lookup table, sorted according

to the keystream.

In the real-time phase of the attack, the attacker takes a segment of keystream of

length D + log s − 1 they have captured and uses a sliding-window to produce all D

possible keystream sub-strings of length s. The attacker then searches the lookup table

to see if any of these substrings match. If there is a match, the initial state corresponding

to the keystream sub-string is considered to be the initial state which generated the

34 Chapter 2. Background

captured keystream. If the TMDT satisfies the following equations

T ⋅M = 2s with P = M (2.2)

the attack complexity is less than that of exhaustive keysearch. To provide resistance to

this attack, both Babbage and Golić recommend that the size of the internal state of the

stream cipher should be at least twice the key size.

Biryukov and Shamir

Biryukov and Shamir [17] combine the concepts of Hellman’s TMDT attack on block

ciphers [67] and the BG attack to provide a more efficient TMDT attack on stream

ciphers. Their initial state recovery attack is referred to as the BS attack hereafter.

The pre-computation phase of the BS attack is similar to Hellman’s pre-computation

phase. The attacker defines a function f , which generates the keystream in the stream

cipher. The attacker also chooses random permutations to take place for a function h.

h is a function which maps the s-bit state to another s-bit state. The attacker defines

g = h ○ f and creates lookup tables using Hellman’s lookup table construction method.

In the online phase, the attacker uses any instance c in the D keystreams obtained and

iteratively applies g to h(c) until the s-bit value h(c)matches an entry in the second

column of the lookup table. Once a match is found, the initial state which generated the

keystream is recovered using the method used in Hellman’s online phase attack. The

tradeoff curve of the BS attack is given by:

T ⋅M2 ⋅ D2 = 22s with P = 22s

D
and 1 ≤ D2 ≤ T (2.3)

The BS attack reiterates the importance that the size of the internal state of a keystream

generator needed to be at least twice the secret key size so that TMD tradeoffs are worse

than exhaustive keysearch.

Hong and Sarkar

Hong and Sarkar’s TMDT attack [70, 71] aims to recover the secret key, as opposed

to recovering the internal state or initial state in the earlier attacks. Their secret key

recovery attack will be referred to as the HS attack hereafter.

In the pre-computation phase of the HS attack, the attacker first chooses random

session keys, storing the secret key and the IV in the first column of the lookup table.

2.4. Stream cipher cryptanalysis 35

For each key-IV pair, the attacker generates a keystream of length l + j bits, where l and

j are the lengths (in bits) of the key and IV respectively. The tradeoff curve from the

HS attack is the same as BS curve, but instead of it being an internal-state to keystream

mapping, the HS attack uses a key-IV to keystream mapping:

T = M = 22(l+ j) with D = 2 1
4 (l+ j) (2.4)

Thus, if the attacker has access to D = 2 1
4 (l+ j) bits of keystream, the attacker can recover

the secret key with a time and memory complexity of T = M = 2 1
2 (l+ j). If j < l , the

complexity of the attack is less than exhaustive key search. In order to resist the HS

attack, Hong and Sarkar recommend that the IV size is at least as long as that of the

secret key.

Dunkelman and Keller

The TMDT attack by Dunkelman and Keller [41], referred to hereafter as the DK attack,

is a secret key recovery attack. In the DK attack, an attacker constructs lookup tables

for chosen IVs. This approach is different from the HS attack, where each lookup table

would consist of arbitrary IVs. Constructing lookup tables for each IV allows the attacker

to take advantage of the fact the IV is a publicly known value. By constructing tables for

specific IVs, the following tradeoff curve is obtained.

T ⋅M2 ⋅ D2 = 22(l+ j) (2.5)

Note that this is the same tradeoff curve as the HS and BS attack. However, because of

the IV table-based approach, this approach does not use multiple keystreams and hence,

imposes no restrictions on the parameters. If T = M = D, the complexity of the attack

is less than exhaustive key search as long as 22 j < 23l . That is, a stream cipher would be

resistant to the DK attack if the j ≥ 1.5l .

2.4.8 Algebraic attacks

Algebraic attacks involve solving a series of multivariate equations with a large number

of unknowns, x0, x1, . . . xp−1, and which are related to a set of keystream bits z1, z2, . . . zq

36 Chapter 2. Background

via some functions f such that:

f0(x0, x1, . . . , xp−1, z1, z2, . . . zq) = 0
f1(x0, x1, . . . , xp−1, z1, z2, . . . zq) = 0

⋮ (2.6)

fn−1(x0, x1, . . . , xp−1, z1, z2, . . . zq) = 0

In the context of modern stream ciphers, f0, f1, . . . fn−1 are nonlinear functions, while

x0, x1, . . . , xp−1 can either be the initial state or secret key of the cipher and z1, z2, zq are

the keystream bits of the stream cipher which are assumed known. Solving this series of

equations to recover x0, x1, . . . , xp−1 is known as the algebraic attack.

Algebraic attacks were first used to attack stream ciphers by Courtois [32] and

Courtois and Meier [34]. For a successful algebraic attack, there are three steps that

need to be met. These are:

1. Pre-computation: In this phase, equations that relate key or internal state bits to

the keystream bits are generated.

2. Substitution and reduction: The keystream bits are substituted into the equations

formed in Step 1. These equations will now relate the unknown key or internal

state bits to the keystream bits. An attacker will then try to reduce the degree

of the formed equations as much as possible. Whilst one might be able to solve

the series of equations without trying to reduce the degree of the equations, the

time required to solve such equations might be more than an exhaustive search

of the entire key space. Reducing the complexity of the equations will usually

significantly reduce the time required to solve the equations.

3. Solving: In this phase, the system of equations is solved. This can be done using

algorithms such as linearisation and Gröbner basis computations [23].

If an attacker uses linearisation to solve the system of equations, they require (id) key-
stream bits, where i is the number of variables in the equation and d is the maximum

degree of the equations. The maximum number of monomials E which can appear

in the system of equations is E = ∑d
a=1 (ia). The complexity for solving the system of

equations is approximately E2.807 [108].

There are two methods an attacker can use to reduce the degree of the equations

in generated in Step 1. One method is to guess some state bits and another is to find

2.4. Stream cipher cryptanalysis 37

low-degree multiples g of the nonlinear function f . This low-degree and non-zero g

is also known as an annihilator of a Boolean function f if f ⋅ g = 0 [86] or in the case

where f ⋅ g = h where degree of h is less than the degree of f . Meier et al. introduced the

concept of algebraic immunity to measure what the degree of this annihilating function

can be. The algebraic immunity is the minimum value of d such that f or f + 1 admits

an annihilating function of degree d [86]. It is claimed that a nonlinear function with a

large algebraic immunity is resistant to algebraic attacks. However, the fast algebraic

attack on Sfinks [21] by Courtois [33] indicates that a Boolean function with a high

algebraic immunity value does not preclude a stream cipher immune from a successful

algebraic attack.

Gröbner bases and the F4 algorithm

The Gröbner basis method introduced by Buchberger [23] is a tool which can be used

to solve multivariate polynomial equations. This makes it ideal for solving systems of

nonlinear equations generated by stream ciphers. This section gives a general overview

of the Gröbner basis method and the F4 algorithm.

The main idea of the Gröbner basis approach is to transform a set of polynomials F

to another set of polynomialsG with ‘certain nice properties’ called a Gröbner basis such

that F and G generate the same ideal [24]; that is, have the same set of solutions. These

‘nice properties’ may allow problems which are difficult for the polynomial F to be easily

solved for the polynomial G. The Gröbner basis approach first describes the problem as

a set of multivariate polynomials. The second step involves the transformation of the

said multivariate polynomials before the system is solved.

Assume we have the following system of equations in GF(2):

f0 ∶ x0x1 ⊕ x2 ⊕ 1 = 0
f1 ∶ x0 ⊕ x2 ⊕ 1 = 0
f2 ∶ x1 ⊕ x2 ⊕ 0 = 0
F = { f0, f1, f2}

As we are solving a system of equations in GF(2), the field equations below are added to

38 Chapter 2. Background

the system.

x20 ⊕ x0 = 0
x21 ⊕ x1 = 0
x22 ⊕ x2 = 0

The set F becomes

F = {x0x1 ⊕ x2 ⊕ 1, x0 ⊕ x2 ⊕ 1, x1 ⊕ x2, x
2
0 ⊕ x0, x

2
1 ⊕ x1, x

2
2 ⊕ x2}

TheGröbner basis of F, which can be obtained bymathematical software likeMagma [20],

is:

G = {x0, x1 ⊕ 1, x2 ⊕ 1} (2.7)

Since F and G generate the same ideal, F and G will have the same solutions. The

elimination property in Gröbner bases ensures that, in caseG has a finite set of solutions,

G contains a univariate polynomial in x [24]. In this example, the univariate polynomials

in x contained inG is x0, x1⊕1, x2⊕1. SolvingG for x0, x1, x2 gives the following solutions:

x0 = 0, x1 = 1, x2 = 1

In this way, we can obtain all the solutions of G, and hence, of F. The Gröbner basis

method has an advantage over linearisation that the Gröbner basis method requires less

keystream to solve the system of equations than with the linearisation method and in

some cases, a solution to the system of equations can be found in less time than with

the linearisation method. These two characteristics were demonstrated by Al-Hinai [1]

in his algebraic analyses of clock-controlled stream ciphers.

The F4 algorithm [46] in Algorithm 1, reproduced here from the description in

Al-Hinai’s thesis [1], is an algorithm published by Faugère to compute a Gröbner basis.

Using theGröbner basismethod, the reduction of polynomials in the systemof equations

is performed using a pair selection strategy. Although this pair selection strategy may be

efficient for small systems of equations, it may not necessarily be the case if the system

of equations is large. In the F4 algorithm, linear algebraic techniques are used to reduce

these polynomials. The polynomials are linearised and a matrix of their coefficients is

then constructed, and the row echelon form of this matrix computed. Using this matrix,

2.5. Conclusion 39

the F4 algorithm can process the polynomials in the system of equations more efficiently,

and speed up the calculation of a Gröbner basis. This thesis uses the F4 algorithm

implemented in Magma [20] for the computation of slid pairs in Section 4.2 and the the

recovery of the initial states of some Trivium-like stream ciphers in Section 4.3.

Algorithm 1 The F4 algorithm

Inputs
1: Input: A set of polynomials F in n unknowns.

2: Output: Set of solutions to the system F = 0 for n unknowns.

Steps
1: Let G = F
2: Select a set of polynomials S from G.

3: Linearise polynomials in S and form their coefficient matrix, A.

4: Add additional reduction polynomials into A.

5: Compute the row echelon form Ã of A.

6: Form reduced polynomials S̃ of S from A.

7: Add S̃ to G and delete unnecessary polynomials in G.

8: Repeat steps 2 to 7 until G is a Gröbner basis.

9: Perform back substitution from the univariate polynomial to obtain solution to the

system of equations.

2.5 Conclusion

This chapter presented an overview of the structure of keystream generators for bin-

ary additive stream ciphers and the techniques commonly used to analyse them. In

Section 2.1, the phases involved in using a keystream generator were discussed. These

include initialisation and keystream generation. In Section 2.2.1, nonlinear Boolean

functions, a common component used to provide explicit nonlinearity in stream ciphers

was defined. Various properties of nonlinear Boolean functions were also discussed,

while in Section 2.2.2, the two types of state-update functions used to update the internal

state of shift registers were introduced. In Section 2.2.3, the various methods of select-

ing tap settings to the output function was discussed. The various ways a keystream

generator can use the components introduced in Sections 2.2.1–2.2.3 was discussed in

Section 2.3. These combinations provide a framework in which analyses of various key-

stream generators presented in this thesis is based. Common cryptanalysis techniques

used for analysing stream ciphers are reviewed in Section 2.4. These include guess

and determine attacks, distinguishing attacks, divide-and-conquer attacks, correlation

40 Chapter 2. Background

attacks, linear, and differential cryptanalysis, time-memory-data tradeoff attacks, and

algebraic attacks. In particular, the F4 algorithm will be used in the algebraic analysis in

Section 4.2 and Section 4.3. The combination of a divide-and-conquer attack and the

algebraic attack will be used in the analysis of Trivium-like stream ciphers in Section 4.3.

The effectiveness of state convergence on time-memory-data tradeoff attacks, correlation

attacks, algebraic attacks and differential attacks are investigated in Section 6.5.

Chapter 3

m-tuple distributions in nonlinear

filter generators

This chapter examines the distribution of m-tuples in keystream sequences formed

by keystream generators using a linear state-update and a nonlinear output function.

If a keystream sequence produced was truly random, the distribution of m-tuples is

expected to be uniform. The apparent randomness of the keystream generated by these

keystream generators is one of the many criteria used in evaluating the security of

a keystream generator. In particular, the uniformity of m-tuple distributions is an

important criterion, as non-uniformity of these distributions is a key indication that the

keystream sequence is not random.

This chapter is organised as follows: In Section 3.1, we describe previous work

which have been done with regards to the anaylsis ofm-tuple distributions of keystream

sequences produced by NLFGs. In Section 3.2, we describe the experimental goals and

design in our analysis of m-tuple distributions of keystream sequences produced by

NLFGs. In Section 3.3, we describe the results of our experiments, while in Section 3.4,

we discuss the potential impact of biased m-tuple distributions in keystream sequences

produced by NLFGs. Section 3.5 concludes this chapter.

3.1 Existing analysis onm-tuple distributions of NLFGs

Groth [60] investigated the application of non-linear functions to LFSRs to generate se-

quences with high linear complexities. Groth noted that certain multiplier arrangements

41

42 Chapter 3. m-tuple distributions in nonlinear filter generators

(his term for nonlinear filter generators) did not produce sequences with noise-like

characteristics. Groth’s analysis of noise-like characteristics was based on the analysis of

the distributions of run lengths. He also described a method for constructing multiplier

arrangements which had ideal noise-like characteristics. Extending the work of Groth,

Siegenthaler, Kleiner and Forré [102] show that if an LFSR of length n× r, where n and r

are arbitrary integers, has a primitive feedback function and the Boolean function used

as the output function is balanced, the keystream sequence produced by the NLFG has

an ideal distribution for non-overlapping m-tuples.

Golić [54] showed that the distribution ofm-tuples, form = 1 of keystream sequences

produced by a nonlinear filter generator is almost uniform if (and only if) the n-input

nonlinear Boolean function f (x0, . . . , xn−1) is balanced for each value of (x1, . . . , xn−1),
that is, if

f (x0, . . . , xn−1) = x0 ⊕ g(x2, . . . , xn−1)

or if the Boolean function f (x0, . . . , xn−1) is balanced for each value of (x0, . . . , xn−2),
that is, if

f (x0, . . . , xn−1) = xn−1 ⊕ g(x0, . . . , xn−2)

Simpson [105] later showed that, for any given NLFG, a balanced nonlinear Boolean

function applied to the stages of a LFSR with primitive feedback function and non-zero

initial state results in an output keystream that is close to uniform. That is, the difference

between the number of zeroes and the number of ones occurring in one period of the

keystream sequences is exactly one. Much less is known about the frequency distribution

of m-bit patterns in the NLFG output sequence for m > 1.
Anderson [4] discusses the distribution ofm-tuples in the NLFG output sequence in

the context of a correlation attack on the NLFG. Anderson considers that the common

NLFG correlation attack strategy, which regards the keystream as a series of individual

bits, discards information about the nonlinear structure of the filter function. Instead,

for a given m-input Boolean filter function, he defines an augmented function which

maps a 2m − 1-bit input to an m-bit output. To illustrate this, he constructed a NLFG.

The nonlinear 5-input Boolean function used in his NLFG had the following nonlinear

Boolean function:

x0 ⊕ x1 ⊕ (x0 ⊕ x2)(x1 ⊕ x3 ⊕ x4) ⊕ (x0 ⊕ x3)(x1 ⊕ x2)(x4)

3.2. Experimental goals and design 43

The feedback function of the nine bit LFSR used was not specified. Anderson applied

the 5-input filter function 5 times in succession, assuming that the inputs to the filter

function are from consecutive positions of the underlying sequence, although this is

not stated explicitly in the paper. For this augmented function Anderson examined the

number of inputswhich produced each 5-tuple output and reported that the distributions

were unbalanced.

For another NLFG which uses the following nonlinear Boolean function:

x0 ⊕ x1 ⊕ x2 ⊕ x0x3 ⊕ x1x4 ⊕ x2x5

Anderson noted that certain m-tuples did not occur at all, while the all-zero tuple

occurred 100 times. Leakage of state information also occurred. For example, 12 different

input states gave the same 5-tuple output. However, in all 12 cases, the contents of some

internal state stages used as input were all the same. The particular function used was a

bent function, which, due to its unbalanced nature, is not suitable as the filter function

for a nonlinear filter generator. However, it was not clear fromAnderson’s paper whether

distributions with non-occurring m-tuples are possible when balanced functions are

used. Furthermore, the relationship between the characteristics of the Boolean function

and the degree of bias in the output is not revealed.

3.2 Experimental goals and design

There are two main components of a NLFG: the LFSR and the nonlinear Boolean

function. The goal of our experiment was to determine if some properties of sequences

produced by nonlinear filter generators are affected by combination of choices in LFSR

and nonlinear Boolean functions. In particular, the following questions which can arise

when analysing output sequences produced by nonlinear filter generators are answered:

• What are the m-tuple distribution of the sequences produced by NLFGs?

• Do different choices in the LFSR feedback function and tap settings to the nonlin-

ear Boolean function affect the distribution of them-tuples of sequences produced

by NLFGs?

Our work extends the earlier work of Anderson [4], where the value of m was used

as both the number of inputs to the filter function and the length of the bit patterns

examined in the NLFG output sequence, due to the selection of inputs from consecutive

44 Chapter 3. m-tuple distributions in nonlinear filter generators

stages of the LFSR. In our investigation, we make a clear distinction between these two

parameters. We denote the number of inputs to the filter function by n, and consider

the distribution of m-tuples in the NLFG output sequence for m = {1, 2, . . . , s}, where s
is the length of the LFSR.

To provide resistance to guess-and-determine style attacks, NLFG-style designs

now commonly take the inputs to the filter from positions in the LFSR which are not

consecutive. Ideally these tap settings form a full positive difference set. The effect of

this change in the positions of the input stages of the m-tuple pattern distribution of the

NLFG output also sequence warrants further investigation.

In order to accurately determine the m-tuple distribution, it is necessary to produce

an entire period of the keystream sequence. This constrained the length of the LFSRs

used in our experiments. We chose 10 different LFSRs with lengths ranging from 13 to

20 bits for use in our experiments. The primitive polynomials used as the LFSR feedback

functions are:

R1 ∶ x13 + x4 + x3 + x1 + 1
R2 ∶ x13 + x12 + x10 + x9 + x6 + x3 + 1
R3 ∶ x15 + x10 + x5 + x1 + 1
R4 ∶ x15 + x1 + 1
R5 ∶ x16 + x5 + x3 + x2 + 1
R6 ∶ x16 + x15 + x14 + x8 + x4 + x3 + 1
R7 ∶ x18 + x5 + x2 + x1 + 1
R8 ∶ x18 + x16 + x15 + x12 + x11 + x9 + x7 + x6 + x5 + x4 + x2 + x1 + 1
R9 ∶ x20 + x19 + x4 + x3 + 1
R10 ∶ x20 + x19 + x18 + x15 + x14 + x12 + x11 + x10 + x4 + x2 + 1

The three balanced nonlinear Boolean functions which were chosen for use as nonlinear

filters appear in the cryptographic literature. We denote these F1, F2, and F3. F1 is

a 5-bit Boolean function used in the Grain stream cipher [66]. F2 is a 6-bit Boolean

function obtained from a report by Faugère and Ars [47]. F3 is a 7-bit Boolean function

3.2. Experimental goals and design 45

Table 3.1: Cryptographic characteristics of the Boolean functions

Function Algebraic order Nonlinearity Correlation immunity

F1 3 12 1

F2 3 24 0

F3 4 56 2

Table 3.2: Tap settings used in our experiments

LFSR
F1 F2 F3

T1 T2 T1 T2 T1 T2

R1 & R2 0,1,4,8,12 0,1,3,7,12 0,1,2,5,9,12 0,2,5,7,10,12 0,1,3,5,19,11,12 0,2,3,5,8,10,12
R3 & R4 0,1,4,9,14 0,4,6,13,14 0,1,4,8,10,14 0,2,3,10,13,14 0,1,4,5,10,13,14 0,2,3,7,9,11,14
R5 & R6 0,1,3,11,15 0,1,5,11,15 0,1,4,8,13,15 0,3,7,8,11,15 0,1,3,6,10,12,15 0,2,3,7,10,13,15
R7 & R8 0,3,8,13,17 0,2,5,9,17 0,2,3,8,15,17 0,1,4,10,12,17 0,1,3,9,11,14,17 0,2,8,9,12,15,17
R9 & R10 0,1,3,7,19 0,2,7,9,19 0,1,3,7,12,19 0,1,4,11,13,19 0,1,3,8,11,17,19 0,3,5,9,10,14,19

used in the Pomraranch stream cipher [75]. The ANFs of F1 and F2 are:

F1 : x1 ⊕ x4 ⊕ x0x3 ⊕ x2x3 ⊕ x3x4 ⊕ x0x1x2 ⊕ x0x2x3 ⊕ x0x2x4 ⊕ x1x2x4⊕
x2x3x4

F2 : x3 ⊕ x4 ⊕ x0x1x2 ⊕ x1x2x5 ⊕ x0x1 ⊕ x2x3 ⊕ x4x5

The ANF of F3 is omitted from this chapter due to its size. However, the truth table

output is shown in Appendix A. Specific characteristics of these three Boolean functions

(the algebraic order, nonlinearity and correlation immunity) are shown in Table 3.1.

For each of the feedback polynomials, three different sets of tap settings for the

Boolean functions were chosen. One set of tap settings used consecutive taps from the

LFSR and two sets used uneven (or FPDS where possible) taps from the LFSR. In the

uneven tap settings scenario, two sets of tap settings were used. These are denoted T1

and T2 in Table 3.2.

For each LFSR, nonlinear filter function and tap setting combination, the NLFG

was run to generate a sequence 2s − 1 +m − 1 in length. The frequency distribution of

m-tuples was calculated for m = 2–13. From this, the m-tuple which occurs least and

most frequently for m-tuples of sizes 2–13 were noted. The standard deviation of the

frequencies of occurrence is a useful summary measure for the m-tuple distribution of

46 Chapter 3. m-tuple distributions in nonlinear filter generators

Table 3.3: 3-tuple distribution of a NLFG sequence

m-tuple Expected occur-
rences

Observed occur-
rences

Standard De-
viation

Proportion of all
3-tuples

Standard deviation of
all 3-tuples

000 4095 2815

768.208

0.085 910

0.023 445

001 4096 4352 0.132 817
010 4096 4864 0.148 442
011 4096 4352 0.132 817
100 4096 4352 0.132 817
101 4096 4864 0.148 442
110 4096 4352 0.132 817
111 4096 2816 0.085 940

a sequence. The smaller the standard deviation, the closer the m-tuple distribution of

the sequence is to a uniform distribution. To enable comparisons where different sized

LFSR was used, the proportions of each m-tuple across 2m possible tuples is calculated

and the standard deviation of this proportion is also calculated.

Recall the m-tuple distribution for the maximum length sequence produced by a

LFSR is almost uniform. For example, the 3-tuple distribution for a 15-bit LFSR R3

with the nonlinear filter function F1, which takes as input consecutive taps from the

nonlinear Boolean function is given in Table 3.3. The m-tuple distribution of the NLFG

sequence generated is far from uniform. This is shown by the large standard deviation.

3.3 Experimental results

Our experiments involved 90 NLFGs, comprising combinations of 10 different LFSRs,

three nonlinear Boolean functions and three sets of tap settings for each LFSR-nonlinear

Boolean function combination. For each NLFG, a sequence of length 2s +m − 1 bits
was generated and the output sequence was examined for m-tuples for values of m

ranging from 2–13 bits. We make a number of observations based on the results of our

experiment. The factors which could impact on the m-tuple distribution include the

positions of the inputs to the filter functions, the number of inputs to the filter function,

and the length and feedback function of the LFSR. Detailed results from the experiments

can be found in Appendix B.

3.3. Experimental results 47

Observation 3.1 The m-tuple distribution of NLFG output sequences is generally

non-uniform.

Note that this observation supports the earlier findings by Anderson. We also note that

the degree of non-uniformity varies depending on the combination of LFSR feedback

function, the nonlinear filter functions and positions of input taps to the filter function.

There are a few cases when the m-tuple output of the NLFG was almost uniform for

smaller m-tuple values. For example, the 3-tuple distribution for a NLFG using the R5,

F1 and T1 combination had the m-tuple distribution expected of a maximum length

sequence. However, as the value of m increased, the distribution became less uniform.

Close to uniform distributions were more frequent when m < 4 and when uneven tap

settings were used. With the exception of one case whenm = 5, allm-tuple distributions

when m > 4 were not uniform for NLFGs which used uneven tap settings. Almost

uniform m-tuple distributions never occurred for consecutive tap settings for all m-

tuples tested.

Observation 3.2 The m-tuple distribution is less uniform when tap settings are

consecutive.

When comparing the m-tuple distribution for the output sequences obtained from

NLFGs with the same LFSR and filter function but with different positions in the LFSR

selected for inputs to the filter function, the distributions when the tap settings are

consecutive are more varied than when the tap settings are uneven. For example, in

the case for a 5-tuple distribution of a NLFG using the feedback function R3 with

consecutive tap settings and the F1 as the nonlinear filter, the least frequent 5-tuple

occurred 320 times and the most frequent 5-tuple occurred 1665 times. The standard

deviation obtained was 320.056. When the same feedback function and filter function

was used in a NLFG with uneven tap setting T1, the least frequent 5-tuple occurred

731 times and the most frequent 5-tuple occurred 1315 times. The standard deviation

obtained 133.982. For the same LFSR and nonlinear filter with the uneven tap setting T2,

the minimum obtained was 1005 and the maximum obtained was 1043 and the standard

deviation obtained 10.264. This trend was apparent for every NLFG sequence examined.

48 Chapter 3. m-tuple distributions in nonlinear filter generators

Table 3.4: Value of m when non-occurring m-tuples start appearing

Length of LFSR Minimum value of m

13 11

15 12

16 13

Observation 3.3: For some NLFGs with balanced Boolean functions, somem-tuples

do not occur.

It is possible that particularm-tuples may not appear in a NLFG output sequence. In our

experiments, we noted that this can occur when the nonlinear Boolean functions are

balanced. The number of differentm-tuples which do not appear in the output sequence

is higher for NLFGs using consecutive tap settings than when uneven tap settings are

used. For example, a NLFG using the feedback function R1, F2 Boolean function and

the consecutive tap settings has 20 non-occurring 10-bit tuples. In contrast, a NLFG

using the same feedback function and Boolean function with the T1 tap setting has only

three non-occurring 10-bit tuples.

Equivalently, the minimum value of m for which some m-tuples do not occur is

lower for consecutive tap settings than when uneven tap settings are used. For example,

when the NLFG uses the R1 feedback function with the F1 nonlinear Boolean function,

the value of m when non-occurring m-tuples occur starts at m = 8 for consecutive tap
settings. In contrast, the value ofm when non-occurringm-tuples occurs for the uneven

tap settings T1 and T2 is m = 11.
For uneven tap settings, this minimum value of m increases with the length of the

LFSR. For example, when the NLFG uses the F1 nonlinear Boolean function taking

as input selected stages from the LFSR using the tap setting T1, the value of m when

non-occurring m-tuples appear for a given LFSR length is shown in Table 3.4

As the m-tuple size increases, the number of non-occurring m-tuples also increases

for both consecutive and uneven tap settings. We also noted from our experiments that,

for a given choice of filter function and tap setting, as the size of the LFSR increased,

the number of m-tuples which do not appear in the output sequence remained constant

once a certain size was reached for the LFSRs we tested. For example, when using

consecutive tap settings, there were 17 non-occurring 10-bit m-tuples for the 6-input

Boolean function F2 when s ≥ 15, . . . , 20.

3.3. Experimental results 49

Observation 3.4: Distribution of m-tuples for NLFGs using consecutive tap set-

tings are similar regardless of the size of the LFSR.

The standard deviations of the proportions of m-tuples for NLFGs using consecutive

tap settings were similar regardless of the size of the LFSR but varied with the choice

of Boolean functions. For example, the standard deviation in terms of proportions for

various NLFGs when used with the F1 nonlinear Boolean function for m = 4 ranged
from 0.015 625 to 0.015 642.

However, this was not the case for uneven tap settings. For NLFGs using uneven

tap settings, the standard deviation of the m-tuples in terms of proportions are different

for different LFSR lengths, tap settings and Boolean functions. This difference can be

slightly or significantly different. For example, consider the example when a NLFG was

constructed using the F1 Boolean function and the R1 feedback function. When these

particular components were used with the T1 tap setting, the standard deviation for

m = 10 in terms of proportions was 0.000 352. When the T2 tap setting was used, the

standard deviation was 0.000 346. The difference between these two standard deviations,

0.000 006, is quite small.

However, consider the situation when aNLFGwas constructed using the F2 Boolean

function and the R9 feedback function. When these particular components were used

with the T1 tap setting, the standard deviation for m = 4 in terms of proportions was

0.001 007. When the T2 tap setting was used, the standard deviation was 0.002 889. The

difference between these two standard deviations, 0.001 882, is large by comparison.

Observation 3.5: Distribution of m-tuples for NLFGs for a given sized LFSR us-

ing consecutive tap settings are largely unaffected by the LFSR feedback polyno-

mial.

The distribution of m-tuples for NLFGs for a fixed LFSR length using consecutive

tap settings and a fixed Boolean function are largely unaffected by the LFSR feedback

polynomial. For example, consider the m-tuple distribution, for m = 5, of NLFGs

constructed using the F2 Boolean function and the feedback functions R3 and R4. In

both examples, the standard deviation and the standard deviation in terms of proportions

is 219.335 and 0.006697 respectively.

50 Chapter 3. m-tuple distributions in nonlinear filter generators

3.4 Discussion

In this section, we consider the potential impact of biased m-tuple distributions in

the output sequences from NLFGs. These sequences are used as keystream for stream

ciphers, in initialisation functions and as building blocks for message authentication

codes (MACs). The potential impact in each case is discussed below.

Some stream ciphers use the output of NLFGs as keystream to encrypt messages.

There is a potential major flaw in this design choice if the NLFG has a highly biased

m-tuple distribution. Firstly, there is a possibility of mounting a distinguishing attack

on the keystream. An attacker who is able to perform a statistical analysis on the m-

tuple outputs might be able to mount a distinguishing attack based on the frequency

of the various m-tuples in the keystream. Another possible attack is a ciphertext-only

attack on the stream cipher. Biasedm-tuple distribution combined with the redundancy

of the plaintext may provide leakage of information to allow an attack to partially

decrypt ciphertext messages without initial knowledge of the secret key. An example of

a ciphertext-only attack which exploits biased eight-tuple distributions in RC4 [5] is the

ciphertext-only attack by Mantin and Shamir [80].

Recall our description of the initialisation phase of stream ciphers in Section 2.1.1.

Modern stream ciphers use a secret key and a publicly known IV as input to an initialisa-

tion function to generate the initial state of the keystream generator. This initialisation

function should be nonlinear. A potential problem with using the output of a nonlinear

filter for initialisation is that if some m-tuples occur more often than others, then it is

possible that some initial states will occur more often than others, resulting in biased

keystream distribution. In the case where some m-tuples do not occur at all, this means

some initial states might not occur at all for any key-iv pair, reducing the effective key

space of the stream cipher.

In recent years, stream cipher designers have proposed ciphers which aim to provide

simultaneous confidentiality and integrity protection. These are commonly called au-

thenticated encryption (AE) stream ciphers. Some AE stream ciphers use nonlinear

filter generators in components used to compute the Message Authentication Code

(MAC) tag. One example of such a cipher is Sfinks [21]. For MAC algorithms which

make use of nonlinear filters, the distribution of MAC tags for messages may not be

uniform. An attacker may be able to exploit this in a MAC collision attack. A successful

MAC collision attack may allow an attacker to generate a forged message which has

the same MAC value as an authentic message, which could deceive a third party into

believing that the contents of a forged message is authentic.

3.5. Conclusion 51

3.5 Conclusion

In this chapter, we have extended the work of Anderson, who reported that the 5-

tuple distribution a NLFG was not uniform. Anderson also observed that the m-tuple

distribution of the keystream produced by this particular NLFG was not uniform.

However, Anderson did not investigate the effect different tap settings can have on

the m-tuple distributions of keystream produced by NLFGs nor did he investigate if

non-occurringm-tuples were present for NLFGS which use balanced nonlinear Boolean

functions as output functions.

We examined the keystream produced by 90 different NLFGs. We analysed the

distribution of m-tuples in the output sequence for m = {2, 3, . . . 13}. Our investigation

came up with three main results. Firstly, we show that the m-tuple distributions of

NLFGs are non-uniform except in some cases for small values of m (where m ≤ 4),

regardless of tap settings used, although the bias is generally greater when the tap settings

to the filter function are consecutive. Secondly, in some cases, there are some m-tuples

which do not occur at all in the outputs. This happens for small m-values (m ≥ 8) if the
NLFGs use consecutive tap settings rather than uneven tap settings (m ≥ 11). Thirdly,

our experiments also show that the frequency distributions ofm-tuples for NLFGs using

consecutive tap settings are similar regardless of the size of the LFSR.

The findings in this experiment may have cryptanalytic implications. The signi-

ficant m-tuple bias in the output sequence may be exploited in attacks ranging from

distinguishing attacks [80] to ciphertext-alone attacks [37]. If a NLFG is to be used

in a cryptographic application, the use of consecutive tap settings in NLFGs is not

recommended.

In Section 4.1, we analyse the distribution of m-tuples in keystream sequences

produced by the complementary concept of the NLFG, the linearly filtered nonlinear

feedback shift register.

52 Chapter 3. m-tuple distributions in nonlinear filter generators

Chapter 4

Analysis of linearly filtered nonlinear

feedback shift registers

The complementary concept to the nonlinearly filtered LFSR sequence analysed in

Chapter 3 is a linearly filtered nonlinear feedback shift register sequence, which is

investigated in this chapter. In this case, the internal state of a component shift register

is updated using a nonlinear feedback function. Linear combinations of the values in

certain stages of this internal state form the keystream output.

When comparing the keystreams produced by an LFSR and a NLFSR, clearly the

NLFSR sequence will not be vulnerable to Berlekamp-Massey attack. Also, NLFSRs

may provide resistance to the algebraic [31, 34] and correlation attacks [87, 100] which

keystreams formed by nonlinear combinations of LFSR-only sequences are susceptible

to.

The disadvantage is that the properties of the sequences produced by the NLFSRs

used in most keystream generators are not well-known. In particular, important prop-

erties like the period of the keystream produced for some NLFSRs are not known and

designers can only estimate what this period may be. For example, in the specifications

of Trivium [26, page 261], the designers state

“Because of the fact that the internal state of Trivium evolves in a non-

linear way, its period is hard to determine.”

As this period is difficult to determine, keystream generators which use NLFSRs to

produce keystreams run the risk of producing keystream sequences with short periods.

53

54 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

The minimum period of keystream sequences produced by NLFSRs is also an open

problem.

The objective of this chapter is to analyse stream ciphers which use the model of

a linearly filtered NLFSR to generate keystream, with a specific focus on the Trivium

stream cipher. An analysis of the distributions of overlapping m-tuples for linearly

filtered NLFSR sequences is performed to determine the uniformity of its distribution.

Two separate analyses of Trivium are conducted. The first analysis investigates the

characteristics of Trivium’s state-update function, while the second analysis investigates

the security of its keystream generation process against algebraic attacks.

The contributions of this chapter are as follows. In Section 4.1, we perform an

experimental analysis of overlapping m-tuple distributions for linearly filtered NLFSR

sequences. In Section 4.2.3, we extend the work of Priemuth-Schmid and Biryukov [92]

and search for additional types of slid pairs in the Trivium cipher, and in doing so, attempt

to establish a new lower-bound on the minimum period of Trivium. In Section 4.3, we

perform a new algebraic analysis on Trivium and its scaled-down variants, Bivium-A

and Bivium-B, using the technique introduced by Berbain et al. [10] that was originally

used to attack a modified version of the Grain cipher. This technique is combined

with Raddum’s relabelling technique, that was originally applied to his analysis on

Trivium [93], to determine whether this combined technique can be applied to Trivium

and its variants.

4.1 m-tuple distributions in linearly filtered nonlinear

feedback shift registers

In Chapter 3, we analysed the m-tuple distribution of sequences produced by NLFGs.

The same questions posed at the beginning of the Chapter 3 form the basis into the

investigation of m-tuples of sequences produced by linearly filtered NLFSRs. That is:

• What are the m-tuple distributions of the sequences?

• Do choices of tap positions to the linear function affect the distribution of the

m-tuples?

In this section, we perform computer experiments simulating a series of linearly

filtered NLFSRs to answer these questions. Some properties of some NFLSR sequences

are known. These properties were reviewed in Section 2.2.2. However, Gammel and

4.1. m-tuple Distributions in Linearly Filtered NLFSRs 55

Göttfert’s paper appears to only consider the direct output functions and does not analyse

the m-tuple distribution of keystreams generated from output functions consisting of

linear combinations of the NLFSR outputs. In this section, we analyse the m-tuple

distributions of 20 different linearly filtered NLFSRs, and analyse some properties of

these sequences.

4.1.1 Experimental goals and design

There are two main components of a linearly filtered NLFSR, the NLFSR and the linear

combining function. The goal of the experiments was to determine how parameters

associated with these components affect the output sequence of the linearly filtered

NLFSR. In particular, we analyse how the number of inputs and the tap positions

for inputs into the linear combining functions affect the m-tuple distribution of the

keystream for keystream generators based on a single NLFSR.

In order to accurately determine the m-tuple distribution, it is necessary to produce

an entire period of the keystream sequence. This constrained the length of the NLFSRs

used in our experiments. Four NLFSRs, R1, R2, R3, and R4, of length s, for s equal to 22,

25, 28, and 29 bits were chosen. These NLFSRs are the same NLFSRs used in a stream

cipher designed by Gammel et al. [50] and produce sequences which have a period of

2s − 1. This allows us to compare their m-tuple distributions to the m-tuple distribution

of maximal-length LFSR sequences. The state-update functions of the four selected

NLFSRs are:

Ai(t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0(t) ⊕ A5(t) ⊕ A6(t) ⊕ A7(t) ⊕ A10(t) ⊕ A11(t)⊕
A12(t) ⊕ A13(t) ⊕ A17(t) ⊕ A20(t) ⊕ A2(t)A7(t)⊕
A4(t)A14(t) ⊕ A8(t)A9(t) ⊕ A10(t)A11(t)⊕
A1(t)A4(t)A11(t) ⊕ A1(t)A4(t)A13(t)A14(t) i = 21,
Ai+1(t) 0 ≤ i ≤ 20.

56 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

Bi(t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B0(t) ⊕ B1(t) ⊕ B3(t) ⊕ B5(t) ⊕ B6(t) ⊕ B7(t)⊕
B9(t) ⊕ B12(t) ⊕ B14(t) ⊕ B15(t) ⊕ B17(t)⊕
B18(t) ⊕ B22(t) ⊕ B1(t)B6(t) ⊕ B4(t)B13(t)⊕
B8(t)B16(t) ⊕ B12(t)B15(t) ⊕ B5(t)B11(t)B14(t)⊕
B1(t)B4(t)B11(t)B15(t) ⊕ B2(t)B5(t)B8(t)B10(t) i = 24,
Bi+1(t) 0 ≤ i ≤ 23.

Ci(t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0(t) ⊕ C1(t) ⊕ C2(t) ⊕ C7(t) ⊕ C15(t) ⊕ C17(t)⊕
C19(t) ⊕ C20(t) ⊕ C22(t) ⊕ C27(t) ⊕ C9(t)C17(t)⊕
C10(t)C18(t) ⊕ C11(t)C14(t) ⊕ C12(t)C13(t)⊕
C5(t)C14(t)C19(t) ⊕ C6(t)C10(t)C12(t)⊕
C6(t)C9(t)C17(t)C18(t) ⊕ C10(t)C12(t)C19(t)C20(t) i = 27,
Ci+1(t) 0 ≤ i ≤ 26.

Di(t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0(t) ⊕ D4(t) ⊕ D5(t) ⊕ D6(t) ⊕ D9(t) ⊕ D10(t)⊕
D11(t) ⊕ D16(t) ⊕ D18(t) ⊕ D22(t) ⊕ D25(t)⊕
D1(t)D2(t) ⊕ D3(t)D10(t) ⊕ D5(t)D8(t)D10(t) i = 28,
Di+1(t) 0 ≤ i ≤ 27.

Five types of linear output functions were chosen. The function parameters include

the number of inputs and also the position of inputs. Recall from Section 2.2.3 the

definition of a FPDS. Inputs which form a Full Positive Difference Set (FPDS) ensure

that the differences between all pair-wise indexes of stages used as inputs to the output

function are distinct. For example, inputs to a four-input output function from a ten-

stage NLFSR which form a FPDS can be {0, 1, 4, 9}.

1. A single-input output function T1, which takes the output (the 0’th stage) of each

NLFSR as the keystream bit.

2. A three input linear function T2, where the input positions form a Full Positive

Difference Set (FPDS), with the restriction that two inputs must be from the 0’th

4.1. m-tuple Distributions in Linearly Filtered NLFSRs 57

Table 4.1: Tap settings used in experiments

Taps R1 R2 R3 R4

T1 0 0 0 0

T2 0,1,21 0,1,24 0,1,27 0,1,28

T3 0,1,3,8,18,21 0,1,3,7,19,24 0,1,3,8,17,23,27 0,1,3,8,12,22,28

T4 0,1,2 0,1,2 0,1,2 0,1,2

T5 0,1,2,3,4,5,6 0,1,2,3,4,5,6 0,1,2,3,4,5,6 0,1,2,3,4,5,6

and (s − 1)’th stage of the respective NLFSRs.

3. A six or seven input linear function T3, where the input positions form a Full

Positive Difference Set (FPDS), with the restriction that two input bits must be

from the 0’th and (s − 1)’th stage of the respective NLFSRs.

4. A three input linear function T4 which takes inputs from three consecutive stages

(CONS) 0, 1, 2 of the respective NLFSRs as the output for the keystream.

5. A linear function T5 which takes inputs from seven consecutive stages in the

respective NLFSR.

The tap settings for each function T1, T2, . . . , T5 when applied to each of the selected

NLFSRs R1, R2, R3, and R4 is summarised in Table 4.1.

4.1.2 Experimental results

Our experiments consisted of forming keystream generators using one of four NLFSRs

and five different linear combining functions, giving us a total of 20 linearly filtered

nonlinear feedback shift register-based keystream generators. A sequence of 2s−1+m−1
bits for each keystream generator was generated and the output sequence was examined

form-tuples withm ranging from 2–s. We make a number of observations based on the

results of our experiment. These results are summarised in Appendix C, which records

four observations in our experiment for each of the output functions T2 to T5. These

are:

• Min: In a period of a particular keystream generator, the count for the minimum

occurrence of an m-tuple.

58 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

• Max: In a period of a particular keystream generator, the count for the maximum

occurrence of an m-tuple.

• N.O: In a period of a particular keystream generator, the number of non-occuring

m-tuples.

• S.D In a period of a particular keystream generator, the standard deviation of the

frequencies of occurrence of all m-tuples.

Observation 4.1: The m-tuple distribution of keystreams generated using single-

input linear functions are almost uniform.

Our experiments confirm Gammel and Göttfert’s results that the keystream sequence

generated using NLFSRs which have a period of 2s − 1 have an almost uniform m-tuple

distribution for sizes ranging from 1 to s. That is, given an output sequence of length

2s − 1 + m − 1 each m-tuple occurs 2s−m times, except for the all-zero m-tuple which

occurs 2s−m − 1 times. Note that this observation only holds for single-input linear

functions.

Observation 4.2: The m-tuple distribution of keystreams generated using NLF-

SRs with CONS or FPDS linear functions can be non-uniform

This phenomenon is observable in all keystream generators tested. We take the m-tuple

distributions of keystream generators using R2 with different linear functions as an

example, a portion of which is reproduced in Table 4.2. When R2 was used with the T2

linear function, almost uniform distribution of m-tuples were observed until m = 5, but
the m-tuple distributions were non-uniform from then onwards. When R2 was used

with the T4 linear function, almost uniform distribution of m-tuples were observed

until m = 23 and were non-uniform from then onwards.

Observation 4.3: The m-tuple distribution of linear functions with FPDS inputs is

less uniformly distributed than linear functions with consecutive inputs.

The m-tuple distribution of the keystream generated by linear functions which takes as

inputs, taps which form a FPDS, are generally less uniformly distributed as compared to

the m-tuple distribution of the keystream generated by linear functions which takes as

inputs taps which are consecutive. Furthermore, this non-uniformity started occurring

4.1. m-tuple Distributions in Linearly Filtered NLFSRs 59

Table 4.2: Excerpt for Observation 4.2

Uneven Taps (T2) CONS taps (T4)

m-tuple Min Max m-tuple Min Max

4 2097 151 2 097 152 21 15 16

5 1 048 575 1 048 576 22 7 8

6 523 967 524 608 23 3 4

Table 4.3: Excerpt for Observation 4.3

Uneven Taps (T3) CONS taps (T5)

m-tuple Min Max S.D m-tuple Min Max S.D

7 2097 151 2 097 152 0.088 39 21 127 128 0.000 69

8 1 048 575 1 048 576 0.062 50 22 64 32 0.000 49

9 524 128 524 448 115.377 11 23 24 40 4.109 61

earlier for keystream generators using a FPDS-input function compared to keystream

generators using a CONS-input function.

We take the m-tuple distributions for sequences produced by keystream generators

using R3 with different linear functions as an example, a portion of which is reproduced

in Table 4.3. For example, when R3 used the T5 function, the m-tuple distribution was

the same as that expected of an maximal length sequence up to m = 22. In contrast, the

m-tuple distribution of R3 when it used the FPDS linear T3 function was the same as

that for a primitive LFSR only up to m = 8.
The greater unevenness of the distribution can also be seen in the higher standard

deviation values for R3 when used with the T3 function as compared the standard

deviation values of R3 when used with the T5. For example, when m = 23, the stand-
ard deviation obtained with the T5 function is 4.109 61, as compared to the standard

deviation value of 5.639 63 obtained when the T3 function was used.

Note that this finding is the direct opposite of the experimental results of them-tuple

distribution of NLFGs performed in Chapter 3. In that chapter, Observation 3.2 noted

that the m-tuple distribution was less uniform when the tap settings were consecutive.

60 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

Table 4.4: Excerpt for Observation 4.4

Uneven Taps (T2) CONS taps (T4)

m-tuple N.O m-tuple N.O

28 36 324 779 28 16 777 216

Observation 4.4: Non-occurring m-tuples are identified for CONS, and FPDS in-

put linear functions

Non-occurring m-tuples are identified for linearly filtered NLFSRs whose output func-

tion takes as input, taps which are consecutive or FPDS. This happens regadless of the

choice of NFLSRs and linear functions. We take the m-tuple distributions of keystream

generators using R4 with different linear functions as an example, a portion of which

is reproduced in Table 4.4. For example, R4 using the T4 function had 16 777 216 non-

occurring 28-bit tuples, and R4 with the T2 function had 36 324 779 non-occurring

28-bit tuples.

4.1.3 Discussion

A common strategy to prevent guess and determine attacks for nonlinear filter generators

(NLFGs) is to use inputs to the nonlinear function which span a full positive difference

(FPDS) set. Furthermore, computer experiments performed for NLFGs in Chapter 3

show that using a NLFG with FPDS inputs to the nonlinear Boolean function can

give a more uniform m-tuple distribution compared to the m-tuple distribution of the

keystream generated NLFG with consecutive inputs to the Boolean function. However,

in the case of the keystream generators presented in this section, the opposite is true.

That is, the m-tuple distribution for sequences produced by linearly filtered NLFSRs

using FPDS inputs to the linear output function is less uniformly distributed.

Our findings can have implications for attacks commonly applied to keystream

generators. For example, based on our experiments, a linearly filtered NLFSR using a

linear function with consecutive taps will have a more uniform distribution compared

to one which uses uneven or FPDS taps. While the former may provide better resistance

against statistical attacks, the use of consecutive taps may leave it vulnerable to a guess-

and-determine attack. Inputs to a output function which form a full positive difference

set provide resistance to this [53].

4.2. Slid pairs in Trivium 61

4.2 Slid pairs in Trivium

This section presents the first of two new contributions to the analysis of the Trivium

stream cipher. Our first contribution towards the analysis of Trivium comes in the form

of searching for slid pairs in Trivium. We extend the work of Priemuth-Schmid and

Biryukov [92], and Zeng and Qi [115] and search for additional types of slid pairs. We

show that by forming a new system of equations, the size of the search space for these

types of slid pairs can be significantly reduced, and the time and memory requirements

neededwill be significantly reduced as compared to searching for the same type of special

slid pairs using Priemuth-Schmid and Biryukov’s system of equations. Through the

computation of slid pairs, we also establish a new lower bound on keystream sequences

produced by the Trivium stream cipher.

4.2.1 Trivium Specifications

Trivium [26] is a bit-based stream cipher designed by De Canniére and Preneel in 2005

and was submitted to the eSTREAM project [45]. Trivium has been selected as one of

the stream ciphers in the final portfolio. It uses an 80 bit key and a 80 bit IV to generate

keystream.

Components of Trivium

Although the original specifications of Trivium describes it as been having a single

288 bit register, there have been other representations in the public literature. The

representation of Trivium by Bernstein [11] describes Trivium as having three non-

autonomous binary NLFSRs: A, B, and C, of sizes 93, 84 and 111 bits respectively, giving

a total state size of 288 bits. Figure 4.1 shows a diagram of Trivium’s three NLFSRs, along

with its state-update (in solid lines) and keystream generation functions (in dotted lines).

State-update function of Trivium

In this thesis, to make it easier to apply Raddum’s relabelling technique described in

Section 4.3.3, the state-update function we use for Trivium is different from the Berstein’s

representation. In Berstein’s representation, the feedback bit for the respective registers

after the first iteration is represented by A0(t + 1), B0(t + 1), and C0(t + 1). In contrast,

the feedback bits in the state-update function presented in this thesis are reversed, and

62 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

Register AA1A0 A2 A24 A27

B15B6B2B1B0 Register B

C24 C45C2C1C0 Register C

zt

Figure 4.1: Diagram of the Trivium stream cipher

the feedback bits after the first iteration are represented by A93(t + 1) and B84(t + 1) and
C111(t + 1). The tap settings to the nonlinear functions are adjusted accordingly. The

state-update functions for Trivium are:

Ai(t + 1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

A24(t) ⊕ C45(t) ⊕ C0(t) ⊕ C2(t)C1(t) i = 92,
Ai+1(t) 0 ≤ i ≤ 91.

(4.1)

Bi(t + 1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

B6(t) ⊕ A27(t) ⊕ A0(t) ⊕ A1(t)A2(t) i = 83,
Bi+1(t) 0 ≤ i ≤ 82.

(4.2)

Ci(t + 1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

C24(t) ⊕ B15(t) + B0(t) ⊕ B2(t)B1(t) i = 110,
Ci+1(t) 0 ≤ i ≤ 109.

(4.3)

Initialisation of Trivium

During the key and IV loading phases, the key and IV are transferred to A and B such

that Ai(0) = ki−13 for 13 ≤ i ≤ 92 and Bi(0) = vi−4 for 4 ≤ i ≤ 83. All the remaining

registers are set to zero, with the exception of C0(0),C1(0),C2(0), which are set to one.

During the diffusion phase, 1152 iterations of Trivium’s state-update function is run and

the outputs produced during these phases are discarded.

4.2. Slid pairs in Trivium 63

Keystream generation

The state-update function for Trivium during keystream generation is the same as the

one used during initialisation. To produce a keystream bit, the following register stages

are linearly combined.

z(t) = A27(t) ⊕ A0(t) ⊕ B15(t) ⊕ B0(t) ⊕ C45(t) ⊕ C0(t) , t ≥ 0 (4.4)

The designers note that since the internal state of Trivium is updated in a nonlinear way,

the period of keystream sequences produced by Trivium is difficult to determine. They

note however, due to the way register C is loaded, the period of keystream sequences

produced by Trivium is at least 111 bits. They also claim that the probability of a key-IV

pair producing a keystream sequence of period less than 280 bits in length is 2−208. Hu

and Gong [72] claim that keystream sequences produced by Trivium are periodic with

high probability. This is clear since the state-update function is deterministic. However,

they did not establish a lower bound on what period keystream sequences produced by

Trivium may be.

Current cryptanalysis

There are no known attacks on Trivium which are faster than exhaustive keysearch. The

designers claim that a naive guess-and-determine attack on Trivium has a complexity of

2195 operations [26]. Maximov and Biryukov [84] claim that their state recovery attack

can recover the initial state of Triviumwith a time complexity of about 283.5. Raddum [93]

used an algebraic relabelling technique and techniques from graph theory and estimated

that the initial state of Trivium can be recovered in about 2164 operations. We will discuss

this relabelling method in more detail in Section 4.3.3. McDonald et al. [85] attempted

to recover the initial state by treating Trivium as a Boolean Satisfiability (SAT) problem

and used a SAT solver to recover the initial state. They estimated that the complexity of

recovering the initial state of Trivium using a SAT solver has a time complexity of about

2159.9. If the number of initialisation rounds during the diffusion phase was reduced

from 1152 to 767 rounds, Dinur and Shamir [39] claim that an algebraic cube attack can

recover the entire 80 bit secret key with a complexity faster than exhaustive keysearch.

64 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

4.2.2 Overview of Slid Pairs

Slid pairs in stream ciphers can occur during initialisation in a keystream generator. A

slid pair is a loaded state S0, which after α iterations of a state-update function, gives

another loaded state S1. If, and only if, the same state-update function is used during

keystream generation, the keystream Z1 produced by S1 will be an α bit shifted version

of the keystream Z0 produced by S0.

When the internal state of a keystream generator is viewed as a finite-state machine,

the existence of two session keys which produce keystreams which are shifted copies of

each other is not uncommon. However, as De Cannière et al. [25] note, some stream

ciphers have a property which causes these session keys to “cluster” together, instead of

distributing them evenly over the entire state space. This clustering property may make

the stream cipher more susceptible to slid pairs, which in turn may make them more

vulnerable to attacks or may allow us to determine the minimum period of keystream

sequences produced by a particular keystream generator.

Applications of slid pairs in key recovery attacks

The existence of slid pairs in stream ciphers has been used in the analysis of stream

ciphers. De Cannière et al. [25] outlined two attacks on the Grain family of stream

ciphers [65]. In the first attack, they use a related-key attack to attack Grain by exploiting

the fact that there is a mathematical relationship between two keys K1 and K2 and the

corresponding keystream, Z1 and Z2 respectively. For example, by observing Z1 and Z2,

an attacker may know that the very first key bit for both K1 and K2 is 1. Knowledge of

any particular key bit maymake recovery of the entire key easier compared to exhaustive

key search. In the case for the Grain family of stream cipher, De Cannière et al. [25] claim

that for any session key there exists another distinct session key which will produce a

α shifted copy of the keystream produced by the first session key with a probability of

2−2⋅α . They note that knowledge of the relationship between two session keys can allow

the attacker to determine particular session key bits, which may speed up the recovery

of the other session key bits due to the simpler equations which can be formed. In the

second attack, they claim that due to the sliding property in the Grain family of stream

ciphers, the cost of exhaustive keysearch can be reduced by half.

Priemuth-Schmid and Biryoukov [92] claimed that the existence of slid pairs in

Salsa20 can result in a birthday attack on Salsa20 with a 256 bit key with a complexity

of O(2192). Priemuth-Schmid and Biryoukov also describe the existence of slid pairs in

Trivium and estimate that there may be approximately 239 slid pairs which are within 221

4.2. Slid pairs in Trivium 65

bits shifts of each other. Wu and Preneel [114] apply the slid attack on LEX. They claim

that if each of approximately 260.8 IVs were used to produce 160, 000 bits of keystream,

they are able to recover the master key of LEX. Kircanski and Youssef use slide attacks to

analyse SNOW 2.0 and SNOW 3G. Their paper describes how slide attacks can be used

to recover the 256 bit secret key of SNOW 2.0 with a complexity less than exhaustive

key search.

The presence of slid pairs in stream ciphers may also allow an attacker to use an

algebraic cube attacks [39, 97] to recover the loaded state L1 of a keystream generator

which eventually produces the keystream sequence Z1. Assume that the attacker was

previously able to successfully mount an algebraic cube attack on another keystream

sequence, whose keystream sequence Z2 is an α = 100 bit shift of Z1. In this scenario, the

attacker does not need to go through the (computationally-intensive) task of recovering

the loaded state L1. Since Z1 and Z2 are 100-bit shifts apart, an attacker can simply

use the loaded state L2, and run the state-update function an additional (or fewer) 100

iterations, and obtain the loaded state L1. Note that this application of the cube attack is

only possible if the state-update function used during the diffusion, and the keystream

generation process of the stream cipher is the same. If the stream cipher uses a different

state-update function for the diffusion process and keystream generation, the sliding

property of the keystream sequences may be due to the state-update function used

during keystream generation, and running the diffusion process additional (or less)

iterations may not allow an attacker to successfully recover a correct loaded state.

Establishing the period of keystream generators using slid pairs

As was stated at the beginning of Chapter 4, the minimum period of most modern

keystream generators are difficult to establish, due to the nonlinear way the internal state

of the keystream generator is updated. To compound the issue, the size of the internal

state of modern stream cipher proposals is usually large (larger than 80 bits). This makes

it computational impractical to try all possible states of an NLFSR and measure all the

period of the keystream sequences produced by these NFLSR states.

Slid pairs may allow us to establish a lower bound on the period of keystream

sequences produced by modern keystream generators. For example, assume we have a

set of loaded states Γα , which after α iterations will give another set Θα of loaded states.

If none of the states in Γα is in Θα, that is, if Γα ∩ Θα is an empty set, we know that

there are no short cycles in the keystream generator of length α. The sets Γα and Θα can

be constructed using algebraic methods. In this thesis, we use the F4 algorithm [46]

66 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

Θα Γα′ Θα′Γα

α = 111 α′ = 112

Γλ Θλ
λ = α + α′ = 111 + 112 = 223

Figure 4.2: Searching for slid pairs when λ = 223

implemented in Magma [20] to algebraically solve systems of equations to obtain these

sets (see Section 2.4.8 for a description of the F4 algorithm) for 111 ≤ α ≤ 121.
A problemwhich can arise when trying solve this system of equations algebraically is

that the degree of the equations increases as the number of iterations of the state-update

function increases. Solving the system of equations will be infeasible if the system of

equations are complex. Consider a particular value of α, which we denote λ, for which

the system of equations is too complex to solve directly. One method to find partial

information regarding Γλ∩Θλ is to consider λ as the sum of two smaller integers, so that

λ = α + α′, where we are able to solve the equations for α and α′. Figure 4.2 illustrates

this concept for α = 111, α′ = 112, and λ = α + α′ = 111 + 112 = 223. As the state-update
function of Trivium is deterministic and the loading process of Trivium, described in

Section 4.2.1, implies that getting from one loaded state to another loaded state requires

at least 111 iterations of Trivium’s state-update function, the set Γ111 ∩ Γ112 is necessarily
an empty set. Similarly, the set Θ111 ∩Θ112 is empty. However, it is not immediately clear

if the set Γ111 ∩ Θ112 is empty. Similarly, it is unknown if the set Θ111 ∩ Γ112 is empty. If

the set Γ111 ∩Θ112 is not empty, it means that the minimum period of Trivium is at least

111 + 112 = 223. Note that if Γ111 ∩Θ112 is not empty, it does not imply that the minimum

period of Trivium is greater than 223. Similarly, if the set Γ111∩Θ112 is not empty, it means

that we are able to find state cycles which have two or more consecutive loaded states.

4.2.3 Existing Work on Trivium Slid Pairs

In Trivium, a loaded state is such that Ai(0) = ki−13 for 13 ≤ i ≤ 92, and Bi(0) = vi−4 for
4 ≤ i ≤ 83. The remaining 13 stages in A and four stages in B are set to zero. Themajority

of the contents of the 111-bit register in Trivium C are set to zero, with the exception

of the last three stages, C0,C1,C2 which are each set to one. A slid pair in Trivium is a

pair of loaded states (L1, L2) such that when L1 is loaded, after α iterations of Trivium’s

4.2. Slid pairs in Trivium 67

state-update function, L2 is obtained. Due to the format of register C in a loaded state,

α has to be greater than or equal to 111 for another loaded state to occur. In this chapter,

we use the term starting state to denote the initial loaded state and the term target state

to denote a particular loaded state which is obtained after α iterations. The set Γα is the

set of loaded states which after α iterations will give another set Θα of loaded states.

Since the state-update function of Trivium is one-to-one, both sets Γα and Θα are the

same size.

The existence of slid pairs in Trivium was first pointed out by Hong [68]. He notes

that the naïve system of equations which needs to be solved to obtain Γ111 has 128

equations in 160 variables. Solving this system of equations will allow us to determine

howmany slid pairs there are for α = 111 iterations. These equations are the 111 equations

for register C and 17 equations which satisfy the loading requirements for registers A

and B. Priemuth-Schmid and Biryukov observe that for α = 111, the last 24 bits of key
do not occur in this system of equations. These 24 bits are known as free variables and

can take on any value. An additional 16 bits are given a priori due to the 13 zeros in A

and three ones in register C. The 13 zeros are set for A42,A43, . . . ,A54 while the 3 ones

are set for B15, B16, B17. This gives us a system of 112 equations in 120 variables.

Priemuth-Schmid andBiryukov [92] used the F4 algorithm inmathematical software

Magma [20] to calculate the number of slid pairs for 111 ≤ α ≤ 115. They show that the

size of the set Γ111 and Θ111 is approximately 232. They also checked for the existence of

two particular types of slid pairs. First, they checked for slid pairs where the keys in two

states are the same after α iterations. Then they checked for slid pairs where the IV in

two states are the same after α iterations. Priemuth-Schmid and Biryukov showed that

the two particular slid pairs described did not exist for 111 ≤ α ≤ 143.
Zeng and Qi [115] extended the search for slid pairs to α = 195 iterations. In contrast

to the approach of Priemuth-Schmid and Biryukov, they used a SAT solver called Min-

iSat [42] to solve the system of equations generated by Trivium’s state-update function.

By using MiniSat to solve the system of equations, Zeng and Qi are able to search for slid

pairs without guessing any key-IV bits and solve a particular system of equations faster

than the F4 algorithm will take to solve the same system of equations. For example,

Priemuth-Schmid and Biryukov estimate that completing the search for slid pairs for

α = 115 using the F4 algorithm will take 5 529600 seconds (64 days) if 10 key/IV bits

were guessed. In contrast, Zeng and Qi were able to complete the search for slid pairs for

α = 115 in 0.03 seconds without any bit guessing. Zeng andQimake further observations

on the number of free variables which appear in the system of equations for α = 111–134.

68 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

For α = 111–134, there would be 24 − (α − 111) free variables which do not appear in the

system of equations. Thus, the set Θα (and Γα) will consist of at least 224−(α−111) loaded

states for α = 111–134. Unlike Priemuth-Schmid and Biryukov however, Zeng and Qi

did not check for slid pairs where the keys in two states are the same after α iterations,

nor did they check for slid pairs where the IV in two states are the same for α = 144–195
iterations, and the presence of such slid pairs remains an open question.

4.2.4 Experiment goals

Although the works of Priemuth-Schmid and Biryukov, and Zeng and Qi establish what

the size of Θα is, for 111 ≤ α ≤ 195, both groups of researchers did not check if Γα ∩Θα is

an empty set. The main goals of our experiments is to extend their work and determine

if a new lower bound on the period of keystream sequences produced by Trivium can

be established. We also investigate if it is possible to find state cycles which consist of

two or more consecutive loaded states. We accomplish this by performing two sets of

experiments. In these two experiments, we:

1. check if Γα ∩Θα is a empty set. That is, if any of the loaded states in Γα can also be

found in Θα.

2. check if Γα ∩Θα′ , where α ≠ α′, is an empty set. That is, if any of the loaded states

in Γα can be found in Θα′ .

4.2.5 Experimental Design

In this section, we describe the steps we used in our experiments to search for slid pairs.

Experiment 1 describes the experimental design for our first goal, while Experiment 2

describes the experimental design for our second goal.

Experiment 1

There are two phases involved in our experiments. First, a system of equations needs

to be solved. Solving this system of equations allows us to construct the set Γα, which

after α iterations, will gives us a loaded state in the set Θα. In our experiments, we use

the F4 algorithm implemented in Magma to solve this system of equations. Solving this

system of equations using Priemuth-Schmid and Biryukov’s technique requires a large

amount of memory and time for α > 112, as evidenced by the time and memory entries

for their technique in Table 4.5. Furthermore, the total number of loaded states in Γ111

4.2. Slid pairs in Trivium 69

is 5 704 253 440 ≈ 232. While the size of this set can be searched through in the second

step of our experiments using todays’ computers, it is not an optimal way of doing so

as some of the loaded states in Θα obtained using Priemuth-Schmid and Biryukov’s

approach are not in the ‘proper’ format. If we were to impose additional conditions on

what the format a loaded state needs to be, the size of Γα (and Θα) can be reduced. This

will make checking if Γα ∩Θα is an empty set faster. In this thesis, these reduced sets

are denoted Γ′α and Θ′α . The conditions for ensuring the loaded states are of the ‘proper’

format in our system of equations, for α = 111, are as follows.

• For any starting state, A42,A43, . . . ,A54 need to be zero as these will comprise the

first 13 zeros a target state’s register A needs to have after 111 iterations. Therefore,

the contents of A42,A43, . . . ,A54 in any target state need to be zero as well. The

equations describing these stages after 111 iterations can be added into our system

of equations. If for an example, the contents of A42 in a particular target state is

one, this target state will never be in the set Γα.

The equations describing the stages Ai , for 42 ≤ i ≤ 50, for the target state have
nine linear equations expressed in terms of key bits ki , for 71 ≤ i ≤ 79 respectively
and can be fixed for a starting state. The stages which contain these key bits for

any loaded state are Ai , for 84 ≤ i ≤ 92 respectively. Hence, the equations which
describe stages Ai , for 84 ≤ i ≤ 92 for a target state needs to be added into the

system of equations.

• We fix the values of three registers stages, B16, B17, and B18, as these will form the

first three ones of C after 111 iterations. The equations which describe these three

registers stages after 111 iterations need to be added into the system of equations.

For α = 111, 16 new equations need to be added to our system of equations. When

these are added to the original equations in Priemuth-Schmid and Biryukov’s approach,

the new system consists of 128 equations in 123 variables. To compare the time and

memory requirements needed to solve our system of equations with the requirements

of Priemuth-Schmid and Biryukov’s system of equations, we also solved their system of

equations using the same computer used to solve our system of equations. We used QUT

HPC’s supercomputer for the experiments. This computer is a SGI Altix XE Cluster

and the computer node which Magma runs on has an X5650@2.66 GHz 64bit Intel

Xeon processor with access to a maximum of 96 GB of RAM. The time and memory

requirements required to solve the two systems of equations are listed in Table 4.5. In

both systems of equations, we do not guess any bits. This allows us to obtain the actual

70 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

number of loaded states in Γα and Γ′α. This is in contrast to the bit-guessing approach

undertaken by Priemuth-Schmid and Biryukov, which was necessary to ensure that

they could find solutions in a feasible time.

Once Magma solves our system of equations, we can construct the set Γ′α and we

can proceed with the second step of our experiment. The second step of our experiment

involves using a C program to check if the set Γ′α ∩Θ′α is a empty set. To do this, we pick

a loaded state L1 from the set Γ′α and run it for α iterations to obtain a target state L2

in Θ′α. The program then checks if this target state can be found in Γ′α. This process is

repeated until all the loaded states in Θ′α have been used to generate a target state and

all target states have been compared to all states in Γ′α.

Experiment 2

Experiment 2 runs in two steps. First, a system of equations needs to be solved; this

system of equations allows us to construct the set Γα , which after α iterations, will gives

us a loaded state in the set Θα′ , where α ≠ α′. This set is equivalent to forming a system

of equations which, when solved, forms the set Γα+α′ where a loaded state in the set Γα+α′

forms another loaded state which can be found in the set Θα+α′ after α + α′ iterations.
The second step of Experiment 2 involves checking if a loaded state L1 ∈ Γα also

exists as a loaded state L2 ∈ Θα′ , a similar C program is used. This program picks a

loaded state from Γα′ and runs it for α′ iterations to obtain L2. L2 is then checked to see

if L2 ∈ Γα. This process is repeated until all states in Θα′ have been checked against the

states in Γα.

4.2.6 Experimental Results

Experiment 1

Table 4.6 lists the results for Experiment 1, while Table 4.5 lists the time in seconds (s)

andmemory requirements in megabytes (MB) of both Priemuth-Schmid and Biryukov’s

approach and ours. A DNF entry in the table means that we were not able to obtain

a solution using Magma either because it took too long to compute or failed to finish

due to a lack of computer memory. The Solns column gives the number of solutions

obtained when we used Magma to solve the system of equations. The β column gives

the number of free variables, that is, the number of key bits which do not occur in the

system of equations and can take on any value. Γα is the total number of loaded state’s in

each of the Priemuth-Schmid and Biryukov’s, and our work’s respective columns which

4.2. Slid pairs in Trivium 71

Table 4.5: Memory and time measurements for solving the system of equations for slid

pair Experiment 1

P-S & Biryukov This work

α Memory (MB) Time (s) Memory (MB) Time (s)

111 4915.2 5520 70.2 23
112 7782.4 22 860 151 20
113 67 584 208 080 13.8 2
114 DNF DNF 72 20
115 DNF DNF 78 17
116 DNF DNF 37 14
117 DNF DNF 35 20
118 DNF DNF 71 24
119 DNF DNF 131 97
120 DNF DNF 214 120
121 DNF DNF 4505.6 5400

after α iterations, will give another loaded state. The value of Γα can be calculated by

calculating Γα = Solns × 2β. In the case where the experiments did not finish, we give

the approximate size of the set Γα based on the calculations of Zeng and Qi. The last

column, ∣Γα ∩Θα ∣ lists the size of the set Γα ∩Θα.

The results show that for our work, when attempting to solve the system of equations

for α = 111–121, Magma was only able to obtain solutions for α = 114, 120, and 121. The

number of solutions, represented by Solns in Table 4.6 are 32, 24 and 20 respectively.

For all three cases, the set Γα ∩ Θα is an empty set. Furthermore, Table 4.5 shows

that solving our system of equations require significantly less time and memory than

compared to Priemuth-Schmid and Biryukov’s approach. For example, for α = 113,

solving Priemuth-Schmid and Biryukov’s system of equations took 67 584 seconds and

required 208080 MB of memory, whereas our technique took only two seconds and

needed only 13.8 MB of memory.

Experiment 2

Table 4.7 lists the results of Experiment 2. Γα is total number of loaded states, which

after α iterations, will give a state with a loaded format which can be found in the Θα′ ,

where α ≠ α′.
The Solns column gives the number of solutions obtained when we used Magma to

solve the system of equations. The β column gives the number of free variables, that is,

72 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

Table 4.6: Results of Trivium slid pairs for Experiment 1

P-S & Biryukov This work ∣Γα ∩Θα ∣
α Var Eqns Solns β ∣Γα ∣ Var Eqns Solns β ∣Γ′α ∣
111 120 112 340 24 5 704 253 440 122 129 0 12 0 0
112 122 113 440 23 3 690 987 520 125 128 0 14 0 0
113 124 114 848 22 3 556 769 792 127 128 0 16 0 0
114 126 115 DNF 21 ≤ 2 097 152 129 128 32 18 8 388 608 0
115 127 115 DNF 20 ≤ 1 048 576 128 128 0 19 0 0
116 128 115 DNF 19 ≤ 524 288 128 128 0 19 0 0
117 129 115 DNF 18 ≤ 262 144 129 128 0 18 0 0
118 130 115 DNF 17 ≤ 131 072 130 128 0 17 0 0
119 131 115 DNF 16 ≤ 65 536 131 128 0 16 0 0
120 132 115 DNF 15 ≤ 32 768 132 128 24 15 786 432 0
121 133 115 DNF 14 ≤ 16 384 132 128 20 14 327 680 0

Table 4.7: Results of Trivium slid pairs for Experiment 2

α α′ Solns β ∣Γα ∣ ∣Γα ∩Θα′ ∣

111 112 16 12 65 536 0
111 113 0 22 0 0
112 111 28 14 458 752 0
112 113 0 22 0 0
113 111 16 24 268 435 456 0
113 112 0 23 0 0

the number of key bits which do not occur in the system of equations and can take on

any value. Γα is the total number of loaded state’s which after α iterations, will produce

a state in Θα′ . The value of Γα can be calculated by calculating Γα = Solns × 2β. Γα ∩Θα′

lists the number of states which exists in both Γα and Θα′ . Table 4.7 shows that Magma

was able to find solutions for (α, α′) for (111,112), (112,111), and (113,111). However, upon

running the two steps of Experiment 2, we find that Γα ∩Θα′ are empty sets.

4.2.7 Discussion

In our first experiment, we have shown that the set Γα ∩Θα is empty, for 111 ≤ α ≤ 121,
and in our second experiment, we have shown that the sets Γα ∩Θ′α , for 111 ≤ α ≤ 113 and
111 ≤ α′ ≤ 113, are also empty. If any sets in either experiments were non-empty, we could

begin to form chains of sequential loaded states. If an endpoint of such a chain is also

the beginning of a chain, then we have established the period for that particular cycle.

4.3. New algebraic analysis on Trivium and its variants 73

Given the small values of α used in our experiments, we were unable to find more than

two consecutive loaded states. In particular, our second experiment allows us to find

particular slid pairs for larger α value than was explored by either Priemuth-Schmid

and Biryukov [92], or Zeng and Qi [115].

Knowledge of a slid pair L1 and L2 can also aid in an algebraic key recovery attack

as well. Cube attacks [39, 97] have been able to recover the secret key if the number

of initialisation rounds of Trivium is reduced from 1152 to 767. This allows us to use

cube attacks in conjunction with a related-key attack described in Section 4.2.2. If the

keystream Z1 produced by the loaded state L1 is the same keystream Z2 that is produced

by the loaded states L2 after (t + 767) clocks, we may be able to mount a key recovery

attack by first using a cube attack to recover the secret key of L1. Since the keystream

generation function of Trivium is the same as the initialisation function, we can load

the key for the loaded state L1 and perform 767 initialisation rounds, instead of the

1152 rounds suggested in the Trivium proposal. After 767 initialisation rounds, Trivium

should now be in the loaded state L2 which would produce the keystream z2. Since the

loading process of Trivium is linear, all 80 secret key bits (in register A) can now be

easily recovered.

4.3 New algebraic analysis on Trivium and its variants

This section presents the second of two new analyses on Trivium and Trivium-like

ciphers. Trivium-like ciphers analysed in this section include Bivium-A and Bivium-B,

which are described in Section 4.3.1 and Trivium-A and Trivium-ABwhich are described

in Section 4.3.7. Trivium-A and Trivium-AB are new variants of Trivium we introduce

in this section for our new analyses. In our analysis, we combine the algebraic technique

presented by Berbain et al. [10] to analyse the Grain family of stream ciphers and its

variants combined with the technique Raddum [93] used to analyse the Trivium stream

cipher. We show that by using an algebraic divide-and-conquer approach and solving

two systems of equations resulting from this divide-and-conquer approach sequentially,

it may be possible to break some Trivium-like ciphers faster than exhaustive keysearch.

In Section 4.3.8, we discuss exceptions to this attack and a possible countermeasure

to successful attacks. The effect distances between stages used as inputs to the output

function and the state size of Trivium-like ciphers have on the effectiveness of the new

attack are also investigated.

74 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

Register AA1A0 A2 A24 A27

B15B6B2B1B0 Register B
Bivium-B zi

Bivium-A zi

Figure 4.3: Diagram of the BiviumA/B stream cipher

4.3.1 Bivium-A and Bivium-B

To aid the analyses of Trivium-like ciphers, two scaled-down versions of Trivium, Bivium-

A and Bivium-B were introduced by Raddum [93]. Bivium-A and Bivium-B both consist

of two NLFSRs, A and B of sizes 93 and 84 bits respectively, giving a total state size of

177 bits. Figure 4.3 shows the components of Bivium-A/B, along with its state-update

(in solid lines) and keystream generation functions (in dotted lines). The state-update

functions for the two registers are as follows:

Ai(t + 1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

A24(t) ⊕ B15(t) ⊕ B0(t) ⊕ (B1(t) ⋅ B2(t)), i = 92,
Ai+1(t), 0 ≤ i ≤ 91.

(4.5)

Bi(t + 1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

B6(t) ⊕ A27(t) ⊕ A0(t) ⊕ (A1(t) ⋅ A2(t)), i = 83,
Bi+1(t), 0 ≤ i ≤ 82.

(4.6)

Initialisation of Bivium-A and B

During the key and IV loading phases, the key and IV are transferred to A and B such

that Ai(0) = ki−13 for 13 ≤ i ≤ 92 and Bi(0) = vi−4 for 4 ≤ i ≤ 83. All the remaining

registers are set to zero. During the diffusion phase, 708 iterations of the state-update

function are performed and the output produced during this phase is discarded.

4.3. New algebraic analysis on Trivium and its variants 75

Keystream generation

The state-update function for Bivium-A and Bivium-B during keystream generation is

the same as the one used during initialisation. To produce a keystream bit, the following

register stages are linearly combined. The linear function used to generate keystream

for Bivium-A is

z(t) = B15(t) ⊕ B0(t) , t ≥ 0

while the linear function used to generate keystream for Bivium-B is

z(t) = A27(t) ⊕ A0(t) ⊕ B15(t) ⊕ B0(t) , t ≥ 0

4.3.2 Overview of Berbain’s et al.’s technique

Berbain et al. [10] presented a technique of expressing new feedback bits of a NLFSR as

linear combinations of keystream bits and the internal state. For example, consider a 14

stage binary NLFSR Awith the state-update function

Ai(t + 1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

A0(t) ⊕ A1(t) ⊕ A2(t) ⊕ A7(t)A12(t), i = 13,
Ai+1(t), 0 ≤ i ≤ 12.

(4.7)

The linear output function for this NLFSR is:

z(t) = A0(t) ⊕ A4(t), for t ≥ 0 (4.8)

The initial state of this NLFSR is Ai = xi , for 0 ≤ i ≤ 13. Written in terms of initial state

bits xi , for 0 ≤ i ≤ 13, the first five feedback bits, A13(t), for 1 ≤ t ≤ 5 are:

A13(1) =x7x12 ⊕ x0 ⊕ x1 ⊕ x2 (4.9)

A13(2) =x8x13 ⊕ x1 ⊕ x2 ⊕ x3 (4.10)

A13(3) =x7x9x12 ⊕ x0x9 ⊕ x1x9 ⊕ x2x9 ⊕ x2 ⊕ x3 ⊕ x4 (4.11)

A13(4) =x8x10x13 ⊕ x1x10 ⊕ x2x10 ⊕ x3x10 ⊕ x3 ⊕ x4 ⊕ x5 (4.12)

A13(5) =x7x9x11x12 ⊕ x0x9x11 ⊕ x1x9x11 ⊕ x2x9x11⊕
x2x11 ⊕ x3x11 ⊕ x4x11 ⊕ x4 ⊕ x5 ⊕ x6 (4.13)

76 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

The degree of the equations representing the feedback bits can increase at each iteration

since each feedback bit is calculated as a function of degree two over 14 internal state

variables. In our example, the first two feedback bit equations are of degree two, the

next two are of degree three, while the last equation is of degree four. Similarly, the

degree of the keystream equations produced by this NLFSR, can also increase the more

keystream equations are obtained. This may make algebraic attack methods infeasible

as the equations become too complex. By presenting a technique which writes each

internal state bit as linear combinations of keystream and initial state bits, Berbain et al.

were able to prevent the degree of equations representing the feedback bits increasing at

each clock. These new equations representing the new feedback bits always remain as

linear equations. Consequently, the keystream equations generated will also be linear,

which may make algebraic attacks possible.

They were able to accomplish this by observing that by reordering the keystream

equations of linearly filtered NLFSRs, it is possible to represent the feedback bits in

terms of keystream bits and internal state bits. Recall the linear output function of our

toy NLFSR in Equation 4.8. At t = 10, the equation representing the 11th bit of keystream
is

z(10) = A10(0) ⊕ A13(1) (4.14)

By reordering Equation 4.14, we can obtain the first feedback bit of A:

A13(1) = A10(0) ⊕ z(10) (4.15)

Note that the feedback bit A13(1) represented by Equation 4.15 is linear, compared to

equation representing the same feedback bit in Equation 4.9, which is of degree two.

Therefore, if we were to represent the NLFSR’s first five feedback bits A13(t), for 1 ≤ t ≤ 5
as linear combinations of keystream and internal state bits, we have the following

equations:

A13(1) =A10(0) ⊕ z10

A13(2) =A11(0) ⊕ z11

A13(3) =A12(0) ⊕ z12

A13(4) =A13(0) ⊕ z13

A13(5) =A13(1) ⊕ z14 = A10(t) ⊕ z10 ⊕ z14

4.3. New algebraic analysis on Trivium and its variants 77

Table 4.8: Values of q, q′, and j for Trivium-like stream ciphers

Bivium-A Bivium-B Trivium

q 2 2 3

q′ 1 1 1

j 1 2 3

The feedback bits of our example NFLSR are now all represented as linear combinations

of keystream and internal state bits, compared to equations of degree two or greater

previously as shown in Equations 4.9–4.13.

Berbain et al. applied their attack to a modified version of Grain-128. Like the

original version of Grain-128 [64], their version of Grain-128 also uses a 128-bit secret

key. In Berbain et al.’s version of Grain-128, q = 1 bits of internal state are non-linearly
updated at each step while q = 1 linear combinations of internal state are output as

keystream. They claim that they are able to recover the initial state of this modified

version of Grain-128 with a complexity of 2105 computations and 239 bits of keystream.

Berbain et al. claim that their technique can be extended to ciphers in which q > 1 bits
of internal state are non-linearly updated at each step and q or more linear combinations

of the state are output as keystream. However, whether these techniques can be extended

to ciphers in which q > 1 bits of internal state are non-linearly updated, while only q′ < q
linear combinations of the state-bits are output remains an open question. Bivium-A,

Bivium-B, and Trivium are ideal candidates to analyse in an attempt to answer this open

question, as q′ < q in all three cases. To assist us in our algebraic analysis, we introduce

a new variable j, which describes howmany registers the keystream generation function

takes as input. The values of q′, q and j for Bivium-A, Bivium-B, and Trivium are shown

in Table 4.8.

4.3.3 Review of Raddum’s analysis of Trivium

One problem of algebraically analysing Trivium is that due to the use of NLFSRs, the

degree of the equations generated can increase at each iteration. For example, Rad-

dum [93] noted that the first α = 66 iterations representing the keystream bit of Trivium

give linear equations, the next 82 iterations, for 67 ≤ α ≤ 148 give quadratic equations
and the next 66 iterations, for 149 ≤ α ≤ 214 give cubic equations [103], and so on. The

degree of equations continues to increase in this manner as α increases.

78 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

In 2006, Raddum presented an algebraic analysis on Trivium [93], where he con-

structed a sparse system of equations and used techniques from graph theory to solve

the system of equations. To construct a sparse system of equations, Raddum used addi-

tional variables to represent the feedback bits generated at each iteration. Due to this

relabelling technique, equations representing the keystream bit will be at most quadratic,

regardless of how many keystream bits were generated.

State-update Function of Trivium

The state-update function of Trivium, described in Section 4.2.1 using Raddum’s rela-

belling technique of the first three feedback bits for regisers A, B and C are as follows:

A93 = A24 ⊕ C45 ⊕ C0 ⊕ C1C2

A94 = A25 ⊕ C46 ⊕ C1 ⊕ C2C3 (4.16)

A95 = A26 ⊕ C47 ⊕ C2 ⊕ C3C4

B84 = B6 ⊕ A27 ⊕ A0 ⊕ A1A2

B85 = B7 ⊕ A28 ⊕ A1 ⊕ A2A3 (4.17)

B86 = B8 ⊕ A29 ⊕ A2 ⊕ A3A4

C111 = C24 ⊕ B15 ⊕ B0 ⊕ B1B2

C112 = C25 ⊕ B16 ⊕ B1 ⊕ B2B3 (4.18)

C113 = C26 ⊕ B17 ⊕ B2 ⊕ B3B4

The equations representing the first three keystream bits are

z0 = A27 ⊕ A0 ⊕ B15 ⊕ B0 ⊕ C45 ⊕ C0

z1 = A28 ⊕ A1 ⊕ B16 ⊕ B1 ⊕ C46 ⊕ C1

z2 = A29 ⊕ A2 ⊕ B17 ⊕ B2 ⊕ C47 ⊕ C2

At each iteration, three new variables and four equations are introduced. After clock-

ing Trivium 288 times, we have a system of equations consisting of 1152 equations in

1152 unknowns. Raddum also noted that during the last 66 clocks, the new variables

4.3. New algebraic analysis on Trivium and its variants 79

introduced are not used in keystream generation. By dropping the variables and their

equations introduced in the last 66 clocks and only including the equation representing

the keystream bits for these 66 clocks, the system of equations can be reduced to 954

equations in 954 variables.

Using these systems of equations, Raddum [93] attempted to recover the initial state

of Trivium. He estimated that the complexity of the attack is about O(2164) operations.
Simonetti et al. [103] attempted to use the F4 algorithm implemented in Magma to solve

Raddum’s set of equations for Trivium, but the computation did not finish.

State-update Function of Bivium

The state-update function of Bivium-A and Bivium-B for the first three feedback bits of

registers A and B, described in Section 4.2.1, when applied with Raddum’s relabelling

technique are as follows:

A93 = A24 ⊕ B15 ⊕ B0 ⊕ B1B2

A94 = A25 ⊕ B16 ⊕ B1 ⊕ B2B3 (4.19)

A95 = A26 ⊕ B17 ⊕ B2 ⊕ B3B4

B84 = B6 ⊕ A27 ⊕ A0 ⊕ A1A2

B85 = B7 ⊕ A28 ⊕ A1 ⊕ A2A3 (4.20)

B86 = B7 ⊕ A29 ⊕ A2 ⊕ A3A4

The equations representing the first three keystream bits for Bivium-A are

z0 = B15 ⊕ B0

z1 = B16 ⊕ B1

z2 = B17 ⊕ B2

80 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

and the equations representing the first three keystream bits for Bivium-B are

z0 = A27 ⊕ A0 ⊕ B15 ⊕ B0

z1 = A28 ⊕ A1 ⊕ B16 ⊕ B1

z2 = A29 ⊕ A2 ⊕ B17 ⊕ B2

At each iteration, two new variables and one equations are introduced. After clocking

Trivium 177 times, we have a system of equations consisting of 531 equations in 531

unknowns. Similar to Trivium’s system of equations, Raddum also noted that during

the last 66 clocks, the new variables introduced are not used in keystream generation.

By dropping the variables introduced in the last 66 clocks, the system of equations can

be reduced to 399 equations in 399 unknowns.

Using these systems of equations, Raddum [93] attempted to recover the initial

state of Bivium-A and Bivium-B. He was able to recover the initial state of Bivium-

A in about a day, while it will take about 256 seconds to recover the initial state of

Bivium-B. Simonetti et al. [103] used the F4 algorithm implemented in Magma to solve

Bivium-A and Bivium-B’s system of equations. Simonetti et al. conducted two different

experiments.

Thefirst experiment involved solving a systemof equations consisting of 177 variables

in 320 equations. That is, forming a system of equations required 320 bits of keystream.

They found that for Bivium-A, if they did not guess any bits, they were able to recover

the initial state in 68 732.180 seconds, while guessing five bits, the computation finished

in 40.819 seconds. For Bivium-B, they were not able to recover the initial state if they

did not guess any bits, while guessing 56 bits allowed them to recover the initial state in

483.640 seconds.

The second experiment used Raddum’s approach, where they formed a system of

equations consisting of 2n + 177 variables in 3n equations. That is, forming a system of

equations in their second experiment required n bits of keystream. For Bivium-A, if they

did not guess any bits, they were able to solve the system of equations in 400.810 seconds

using n = 2000 bits of keystream. If they guessed two bits, they were able to solve the

system of equations in 17.930 seconds using n = 800 bits of keystream. For Bivium-B,

the computation did not finish if they did not guess any bits, whereas if they guessed 56

variables, they were able to solve the system in 1006.259 seconds using n = 2000 bits of
keystream.

4.3. New algebraic analysis on Trivium and its variants 81

4.3.4 New algebraic analysis on Bivium-A

In this section, we apply Berbain et al.’s and Raddum’s technique to Bivium-A and discuss

the effectiveness of their technique on an algebraic attack on Bivium-A.

Rewriting the equations for Bivium-A

The equation representing the first keystream bit at t = 0 is:

z0 = B0 ⊕ B15 (4.21)

Bivium-A’s keystream equation at time t depends on two stages of B, B15+t and Bt. At

t = 69, the keystream equation is

z69 = B84 ⊕ B69 (4.22)

Applying Berbain at al.’s technique to Equation 4.22, we can determine the first feedback

bit B84 by calculating

B84 = z69 ⊕ B69 (4.23)

The feedback bits for the first three feedback bits of B, when Berbain et al.’s and Raddum’s

technique are applied can be written as follows:

B84 = z69 ⊕ B69

B85 = z70 ⊕ B70 (4.24)

B86 = z71 ⊕ B71

In this section, we present three possible approaches for recovering the initial state of

Bivium-A. The first approach allows us to recover the entire initial state of Bivium-A

using one system of equations, while the second and third approach uses a divide-and-

conquer approach to form two systems of equations. The two systems of equations

are solved sequentially to recover the internal states of Bivium-B’s registers B and A

respectively.

First approach. In our first approach, we use a single system of equations to recover

the initial state of Bivium-A. In Bivium-A, using Berbain et al.’s technique, the feedback

bit of B can be expressed in terms of keystream and internal state bits of register B, as

82 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

shown in Equation 4.23. In our first approach, we combine our technique with Raddum’s

relabelling technique to represent the feedback bits of Bivium-B’s register B. Since the

feedback bits of A can not be written in as linear combinations of keystream and internal

state bits, Raddum’s relabelling technique is used to calculate the new feedback bits of

A. We start to form this system of equations with 177 variables. At each iteration, three

equations and two variables are added into the system of equations — one equation for

the keystream output bit, one variable and equation each for the feedback bits of A and

B. An algebraic representation of the first two sets of equations and variables added are:

A93 ⊕ B15 ⊕ B0 ⊕ B1B2 ⊕ A24 = 0 (4.25)

B84 = z69 ⊕ B69 (4.26)

z0 ⊕ B15 ⊕ B0 = 0 (4.27)

A94 ⊕ B16 ⊕ B1 ⊕ B2B3 ⊕ A25 = 0 (4.28)

B85 = z70 ⊕ B70 (4.29)

z1 ⊕ B16 ⊕ B1 = 0 (4.30)

After 69 clocks, the keystream equations start to cancel out and are therefore redundant

in the system of equations. To illustrate this, consider the equation describing the first

feedback B84. This equation is

B84 = z69 ⊕ B69

When we try to add the equation describing z69 at the 69’th clock into the system of

equations, we have

z69 ⊕ B69 ⊕ B84 = 0
z69 ⊕ B69 ⊕ z69 ⊕ B69 = 0

After the 69th clock, we drop the keystream equation. However, if we continued to

add remaining new variables and equations into the system of equations, we only add

two variables and equations at each iteration, which adds unnecessary complexity to

solving the system of equations as the number of variables will never match (or exceed)

the number of equations, and will always be under-defined. Thus, after 69 clocks, we

have completed the construction of the system of equations. This system of equations

4.3. New algebraic analysis on Trivium and its variants 83

consists of 207 equations in 315 equations. Solving this equation using the F4 algorithm

will yield 2108 possible solutions, which is worse than exhaustive keysearch.

Second approach. In the second approach, we use an algebraic divide-and-conquer

approach to recover the initial state of Bivium-A. This consists of two phases.

1. Form the first system of equations to recover the initial state of B.

2. For each of the possible solutions obtained in the first system of equations:

(a) Substitute the solutions in obtained in the first system of equations into a

second system of equations.

(b) Solve second system of equation to recover initial state of A.

Sequentially solving the two systems of equations may allow us to reduce the complexity

recovering the initial state of Bivium-A, since we are solving two systems of equations to

recover the internal state of B and A sequentially, compared to solving a single system

of equations to recover the initial state of A and B at the same time, as was the case in

previous approaches.

We start to form the first system of equations with 84 variables. The first 69 equations

can be expressed in terms of initial state bits and keystream bits. The first two equations

are as follows:

z0 ⊕ B15 ⊕ B0 = 0
z2 ⊕ B16 ⊕ B1 = 0

To calculate the feedback bits of B, we can use Berbain et al.’s technique to reorder the

keystream equations, the first three of which were given in Equation 4.24. After 69

clocks, we can no longer add the keystream equations into the system as these equations

would have already been used in the feedback bits of register B, and adding them again

into the system of equations is redundant. Therefore, after 69 clocks, we can stop adding

any more equations into our system, and have a final system of equations consisting of

84 variables in 69 equations. Solving this system of equations will give us 215 = 32 768
possible solutions.

Upon recovering the initial state of B, we can form the second system of equations

to recover the initial state of A, substituting the initial state bits of B recovered in the

first system of equations into the second system of equations. We start to form the

84 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

second system of equations with 93 variables. For every iteration of this second system

of equations, we add one keystream equation and use the original state-update function

for A and B to update the respective registers A and B. The first two sets of equations in

this system are

z0 ⊕ B15 ⊕ B0 = 0
z1 ⊕ B16 ⊕ B1 = 0

After 177 iterations, we have a final system of equations consisting of 93 variables and

177 equations. Note that it is not necessary to run the state-update function of B 177

times to generate 177 bits of keystream. After 111 state-update function iterations of

register B, we will have generated enough internal state bits for B to generate 177 bits of

keystream. Although this observation does not reduce the number of equations added

into the system of equations, it will allow us to reduce the complexity of the equations

generated as we are not using Raddum’s technique to keep the degree of the equations

to two. After 111 iterations, we have a system of equations consisting of 93 variables in

111 equations. Once the second system of equations is solved, the entire initial state of

Bivium-A is recovered and an attacker can use this initial state to generate keystream to

check if it matches the captured keystream.

A minor drawback of this approach is that solving the sets of equations without

knowing any correct initial state bits may not yield a unique solution. However, the

number of possible solutions is expected to be small, and wrong initial states can be

discarded by checking if the keystream generated by a candidate initial state matches the

captured keystream. The bottleneck of our new attack is the first system of equations.

If we do not know any correct initial state bits which we can use in our construction

of the system of equations, we need to try, in the worst case, all 215 possible states for

register B before the correct solution is found for the second system of equations.

If wewere to know of any fifteen correct bits of register B, the first system of equations

consisting of 69 variables in 69 equations can be constructed. This should yield a unique

solution for the first system of equations, which would also make solving for the second

system of equations using the F4 algorithm is a lot faster as it only needs to attempt to

solve one solution, as opposed to 215 possible solutions.

Third approach. In our third approach, we combine the techniques of Raddum and

Berbain et al. to recover the initial state of Bivium-A. In our second approach, we

recovered the initial state of B (the first 84 bits of register B) and did not use a new

4.3. New algebraic analysis on Trivium and its variants 85

variable to represent the feedback bits of Bivium-B’s registers. In Raddum’s technique,

the feedback bits of the registers are not written in terms of the initial state bits, but

a new variable is introduced. This, as described earlier, has the benefit of keeping the

system of equations generated in the Trivium cipher and its variants to a maximum

degree of two. For the algebraic analyses presented hereafter, we will use the combined

techniques of Raddum and Berbain et al.’s to analyse Trivium-like ciphers and do not

consider the technique described in our second approach.

Similar to our second approach, we use an algebraic divide-and-conquer approach

to recover the initial state of Bivium-A. This involves forming two system of equations

and solving them sequentially. Our third approach consists of three phases:

1. Form the first system of equations using the combined technique of Berbain and

Raddum to recover the internal state of B.

2. For each of the possible solutions obtained in the first system of equations:

(a) Substitute the solutions in obtained in the first system of equations into

a second system of equations, formed using the combined technique of

Berbain et al. and Raddum.

(b) Solve second system of equation to recover internal state of A.

Sequentially solving the two systems of equations may allow us to reduce the complexity

recovering the initial state of Bivium-A, since we are solving two systems of equations to

recover the internal state of B and A sequentially, compared to solving a single system

of equations to recover the initial state of A and B at the same time, as was the case in

previous approaches.

We start to form the first system of equations with 84 variables. For the first 69

clocks, we add two equations and one variable into the system of equations: one equation

representing the keystream, and one equation and variable representing the feedback

bit. The first two equations are:

z0 ⊕ B15 ⊕ B0 = 0 (4.31)

B84 ⊕ z69 ⊕ B69 = 0 (4.32)

z1 ⊕ B15 ⊕ B0 = 0 (4.33)

B85 ⊕ z70 ⊕ B70 = 0 (4.34)

86 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

where Equations 4.31 and 4.33 are the first two keystream equations for Bivium-B and

Equations 4.32 and 4.34 are new equations derived from our new analysis. After the

first 69 clocks, we do not need to add the subsequent keystream equations, as these

would have already been added into the system of equations and are redundant. For

the last 39 clocks, we only add the equations representing the feedback bit for B and

would have generated enough internal state bits for register B to have generated 177 bits

of keystream. This gives us a final system of equations after 108 clocks consisting of 192

variables in 177 equations. Solving this system of equations using the F4 algorithm gives

us 215 possible solutions.

Upon recovering the internal state of B, we can form the second system of equations

to recover the initial state of A, substituting the initial state bits of B recovered in the first

system of equations into the second system of equations. We start to form the second

system of equations with 93 variables. At each iteration, we add two equations and one

variable: one equation and variable relating the feedback bit of Awith the internal state

bits of A and B, and one equation relating the feedback bit of B with the internal state

bits of A and B. It is not necessary to add the keystream equations into this system of

equations, as these would have already been solved in the first system of equations. The

first two sets of equations in this system of equations are:

A93 ⊕ B15 ⊕ B0 ⊕ B1B2 ⊕ A24 = 0
B84 ⊕ A27 ⊕ A0 ⊕ A1A2 ⊕ B6 = 0

A94 ⊕ B16 ⊕ B1 ⊕ B2B3 ⊕ A25 = 0
B85 ⊕ A28 ⊕ A1 ⊕ A2A3 ⊕ B7 = 0

After 108 iterations, we have a system of equations consisting of 201 variables in 216

equations. Solving this system of equations using the F4 algorithm can recover the initial

state of A. An attacker can then use this initial state to generate some keystream, and

check if the keystream generated matches that which was captured. If it is, the attacker

can be confident they have recovered the correct initial state.

In the first system of equations, it is necessary to generate a system of equations

where there are more equations than variables. Let us assume if we had only generated

69 new variables in B. In that case, we would have 240 free variables of B in the second

system of equations. When this system of equations is solved, we would have had

240 possible solutions. Combined with the number of solutions in the first system of

4.3. New algebraic analysis on Trivium and its variants 87

equations, this gives us a total number of 215 × 240 = 255 possible solutions. While this is

still better than exhaustive keysearch, it is clearly more than the 215 possible solutions

we have to originally try in our proposed third approach.

Fourth approach. The second system of equations formed in our third approach

consists of 201 variables in 216 equations. As we have more equations than variables,

some of these equations can be removed from our second system of equations without

increasing the number of expected solutions. In this section, we investigate what effect

removing these equations and variables will have on the system of equations obtained.

At each iteration, we add two variables and one equation into the second system

of equation, which starts with 93 variables. After 93 iterations, we have the following

equations:

A93 =B15 ⊕ B0 ⊕ B1B2 ⊕ A24

B84 =A27 ⊕ A0 ⊕ A1A2 ⊕ B6

⋮
A185 =B107 ⊕ B92 ⊕ B93B94 ⊕ A116

B176 =A119 ⊕ A92 ⊕ A93A94 ⊕ B98

We are able to obtain a second system of equations consisting of 186 variables in 186

equations after 93 iterations of Bivium-A’s state-update functions. To build this second

system of equations, we need 84 + 93 = 177 variables in register B to form the second

system of equations. This means adding 177 − 84 = 93 sets of equations into our first
system of equations. We then use the same construction method used in forming the

first system of equations for our third approach to form the system of equations in our

fourth approach. This first system of equations consist of 177 variables in 162 equations.

When this first system of equations is solved, we get 215 possible solutions.

Taking into account the new step of checking how many variables are needed for

the second system of equation, our fourth approach consists of three steps. These are:

1. Determine how many equations and variables are needed in the second system of

equations.

2. Form the first system of equations using the combined technique of Berbain and

Raddum to recover the internal state of B.

3. For each of the possible solutions obtained in the first system of equations:

88 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

(a) Substitute the solutions in obtained in the first system of equations into

a second system of equations, formed using the combined technique of

Berbain et al. and Raddum.

(b) Solve the second system of equations to the recover internal state of A.

Comparison of attacks

Details of the systems of equations formed for Raddum’s approach and our third, fourth

approach are shown in Table 4.9. The linear equation column lists the number of linear

equations in the respective system of equations, while the quadratic column entry lists

lists the number of quadratic equations for the respective system of equations. The total

equation column lists the total number of equations for the respective system equations,

while the K.S. column lists the length of keystream needed to solve the relevant system

of equations. The variable column lists the number of variables in the respective system

of equations. Finally, the expected solution (Expected solns) column lists the expected

number of solutions obtained by solving the respective system of equations.

For Raddum’s technique, we need to solve a single system of equations consisting of

399 variables in 399 equations and requires 177 bits of keystream to solve it. Of these 399

equations, 177 are linear and 222 are quadratic. Our third approach requires solving two

system of equations sequentially. The first system of equations has 192 variables in 177

linear equations and requires 177 bits of keystream to solve, while the second system has

108 linear and 108 quadratic equations and does not require any keystream bits to solve.

Our fourth approach’s first system of equations has 177 variables in 162 equations and

requires 162 bits of keystream to solve. The second system has 93 linear, 93 quadratic

equations and does not require any keystream bits to solve. Since we are solving both

systems of equations separately, the complexity of our attacks may be less complex

as compared to Raddum’s technique. We evaluate these findings in our experimental

results, as is shown in Table 4.10.

We attempted, via computer experiments, to recover the initial state of Bivium-

A using five different approaches: Simonetti et al.’s [103] approach where they solved

Bivium-A’s system of equations consisting of 177 variables usingGröbner basis, Raddum’s

and all of our approaches. The time and memory complexities of the five approaches

were compared. We solve the system of equations in these techniques using the F4

algorithm implemented inMagma. In all four cases, the keystream were generated using

the same initial state. We then attempted to solve the system of equations in two ways.

1. Without guessing any bits, solve the system of equations for Bivium-A.

4.3. New algebraic analysis on Trivium and its variants 89

Table 4.9: Details of equations for Bivium-A for various approaches

Technique Linear
eqn.

Quadratic
eqn.

Total
eqn.

K.S.
(bits)

Variables Expected
Solns

Raddum 177 222 399 177 399 1

3rd approach (Step 1) 177 0 177 177 192 215

3rd approach (Step 2) 108 108 216 0 201 1

4th approach (Step 1) 162 0 162 162 177 215

4th approach (Step 2) 93 93 186 0 186 1

2. Load 15 correct initial state bits of Register B, and solve the system of equations

for Bivium-A.

The F4 algorithm implemented in Magma was used to solve these equations. Magma

runs on a SGIAltix XECluster. The nodewhichMagma runs on has anX5650@2.66GHz

64-bit Intel Xeon processor. The maximum amount of memory set in our experiments

is 87 040 MB (85 GB). Table 4.10 lists the time and memory requirements needed for

Magma to solve the system of equations. A DNF (Did Not Finish) entry signifies that

Magma was not able to solve the system of equations with allocated amount of memory

or the computation was not able to finish within 360000 seconds (100 hours). Magma

was not able to solve Raddum’s and Simonetti et al’s system of equations despite the

allocation of 87 040 MB of RAM for the experiments when we did not guess any bits

in the system of equations, whereas the second and third new approaches were able

to obtain a solution in 15 048 seconds (4.18 hours) using 120 MB of RAM, and 50040

seconds (13.9 hours) using 135.56 MB of RAM respectively.

If the 15 correct bits of B were loaded into register B, Simonetti’s, Raddum’s and our

second and third approach were able to recover the initial state within nine seconds

using at most 13.34 MB of RAM. Our fourth approach required 31.79 seconds and 113.12

MB of RAM.Magmawas not able to solve the system of equations in the fourth approach

within the allocated time of 360000 seconds (100 hours), and the log file stated that

Magma, at the point of terminating solving the system of equations, had used up 180.13

MB of memory.

There have also been several other attacks which did not use the F4 algorithm on

Bivium-A and Bivium-B, and are faster than exhaustive keysearch. Raddum [93] used

his relabelling technique along with techniques from graph theory and was able to

recover the initial state of Bivium-A in about a day and estimated that the complexity of

90 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

Table 4.10: Time, memory, and data complexities for recovering initial state of Bivium-A

No Guessing Load correct 15 bits into register B

Time (s) Memory (MB) K.S (bits) Time (s) Memory (MB) K.S (bits)

Simonetti et al. [103] DNF 87 040 177 2.16 11.16 177
Raddum [93] DNF 87 040 177 8.95 13.34 177
2nd approach 15 048 120 177 1.43 10.56 177
3rd approach 50 040 135.56 177 3.29 13.31 177
4th approach DNF 180.13 162 31.79 113.12 162

recovering the initial state of Bivium-B will take about 256 seconds (2.28 × 109 years).
McDonald et al. [85] attempted to recover the initial state of Bivium-A and Bivium-B by

treating Bivium-A and Bivium-B as a Boolean Satisfiability (SAT) problem and used

a SAT solver to recover the initial state. They were able to recover the initial state of

Bivium-A in about sixteen seconds, and estimated that the average time needed to

recover the initial state of Bivium-B was about 242.7 seconds (about 262 144 years). It

should be noted that it is diffcult to compare the effectiveness of our approaches against

the attacks by Raddum [93] and McDonald et al. [85] as these attacks were implemented

on different hardware platforms, which may have an effect on the time and memory

required to recover the initial state of Bivium-A.

4.3.5 New Algebraic Analysis on Bivium-B

The system of equations using Raddum’s relabelling technique which can be formed

for Bivium-B is the same as Bivium-A’s. That is, after 177 clocks of Bivium-B’s state-

update function, we have a single system of equations which consists of 399 equations

in 399 variables. The keystream generation function of Bivium-B takes as input one

linear combination of internal state bits: two stages from A and two stages from B. The

equation representing the first keystream bit for Bivium-B is:

z0 = A27 ⊕ A0 ⊕ B15 ⊕ B0 (4.35)

The 67th keystream bit is:

z66 = A93 ⊕ A66 ⊕ B81 ⊕ B66 (4.36)

4.3. New algebraic analysis on Trivium and its variants 91

and the 70th keystream bit is:

z69 = A96 ⊕ A69 ⊕ B84 ⊕ B69 (4.37)

Using Berbain et al.’s approach to reorder Equations 4.36 and 4.37, we can determine

the first three of register A’s feedback bit by calculating:

A93 = z66 ⊕ A66 ⊕ B81 ⊕ B66

A94 = z67 ⊕ A67 ⊕ B82 ⊕ B67 (4.38)

A95 = z68 ⊕ A68 ⊕ B83 ⊕ B68

Similarly, the first three feedback bits for register B can be calculated as:

B84 = z69 ⊕ A96 ⊕ A69 ⊕ B69

B85 = z70 ⊕ A97 ⊕ A70 ⊕ B70 (4.39)

B86 = z71 ⊕ A98 ⊕ A71 ⊕ B71

However, we can not use these both sets equations to simultaneously represent the

feedback bits for A and B. For example, calculating B84 requires knowledge of the

feedback bit A96. The equation representing A96 is:

A96 = z69 ⊕ A69 ⊕ B84 ⊕ B69 (4.40)

If we substitute Equation 4.40 into the equation representing the feedback bit B84 from

Equation 4.39, we get

B84 = z69 ⊕ z69 ⊕ A69 ⊕ B84 ⊕ B69 ⊕ A69 ⊕ B69

= B84

which does not allow us to express B84 in terms of the current internal state bits and

keystream. Therefore, our technique only allows us to express the feedback bits for a

single register in terms of internal state and keystream bits.

If we were to express the feedback bits of register A using our technique and the

feedback bits of B using Raddum’s technique, we add three equations and two variables

at each iteration into the system of equations for the first 66 clocks. The first two sets of

92 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

these equations and variables are:

B84 ⊕ A27 ⊕ A0 ⊕ A1A2 ⊕ B6 = 0 (4.41)

A93 ⊕ z66 ⊕ A66 ⊕ B81 ⊕ B66 = 0 (4.42)

z0 ⊕ A27 ⊕ A0 ⊕ B15 ⊕ B0 = 0 (4.43)

B85 ⊕ A28 ⊕ A1 ⊕ A2A3 ⊕ B7 = 0 (4.44)

A94 ⊕ z67 ⊕ A67 ⊕ B82 ⊕ B67 = 0 (4.45)

z1 ⊕ A28 ⊕ A1 ⊕ B16 ⊕ B1 = 0 (4.46)

where Equations 4.41 and 4.44 are the relabelled bits introduced using Raddum’s tech-

nique; Equations 4.42 and 4.45 are the the feedback bit equations introduced using

our approach; Equations 4.43 and 4.46 are the equations representing the first two

keystream bits respectively. Similar to the first approach used in solving Bivium-A in

Section 4.3.4, we can only add equations describing keystream equations up to z65 as

the equations describing the keystream equations from z66 are redundant. Therefore,

after 66 iterations, we have formed our system of equations for Bivium-B. This system

consist of 198 equations in 309 variables. Solving this system of equations using the F4

algorithm will give 2111 possible solutions, which is worse than exhaustive keysearch.

The comparison of both systems of equations is shown in Table 4.11. The linear equa-

tion column lists the number of linear equations in the respective system of equations,

while the quadratic column entry lists lists the number of quadratic equations for the

respective system of equations. The total equation column lists the total number of

equations for the respective system equations, while the K.S. column lists the length

of keystream needed to solve the relevant system of equations. The variable column

lists the number of variables in the respective system of equations. Finally, the expected

solution (Expected solns) column lists the expected number of solutions obtained by

solving the respective system of equations. Our system of equations has less quadratic

equations compared to Raddum’s technique: Raddum’s technique gives 222 quadratic

equations, compared 111 quadratic equations in ours. The drawback of our system of

equations however, is that we have a greater excess of variables over equations. In

Raddum’s technique, solving a system consisting of 399 variables in 399 equations will

yield a unique solution. In contrast, solving the system of equations in our approach,

which consists of 399 variables in 288 equations, using the F4 algorithm of will yield 2111

possible solutions (initial states).

4.3. New algebraic analysis on Trivium and its variants 93

Table 4.11: Details of equations for Bivium-B

Technique Linear
eqn.

Quadratic
eqn.

Total
eqn.

K.S.
(bits)

Variables Expected
solns

Raddum 177 222 399 177 399 1

Our approach 132 66 198 132 309 2111

4.3.6 New Algebraic Analysis on Trivium

Berbain et al.’s technique of expressing any internal state variable of a particular NLFSR

as a linear combination of initial state variables and keystream bits can be applied to

Trivium. For example, the equation representing the 67’th keystream bit is

z66 =A93 ⊕ A66 ⊕ B81 ⊕ B66⊕
C111 ⊕ C66 (4.47)

where A93 and C111 are the first feedback bits for A and C. If we look at the equation

representing the 70’th keystream bit, we have

z69 = A96 ⊕ A69 ⊕ B84 ⊕ B69 ⊕ C114 ⊕ C69 (4.48)

where B84 is the first new feedback bit for B. Instead of using the relations given in

Equation 4.16, 4.17 or 4.18 to update the internal state of A, B, and C, we can re-order

Equations 4.47 and 4.48 to obtain the relevant feedback bits. The three possible equations

representing the next three feedback bits for all three registers are:

A93 = z66 ⊕ A66 ⊕ B81 ⊕ B66 ⊕ C111 ⊕ C66

A94 = z67 ⊕ A67 ⊕ B82 ⊕ B67 ⊕ C112 ⊕ C67 (4.49)

A95 = z68 ⊕ A68 ⊕ B83 ⊕ B68 ⊕ C113 ⊕ C68

and

B84 = z69 ⊕ A96 ⊕ A69 ⊕ B69 ⊕ C114 ⊕ C69

B85 = z70 ⊕ A97 ⊕ A70 ⊕ B70 ⊕ C115 ⊕ C70 (4.50)

B86 = z71 ⊕ A98 ⊕ A71 ⊕ B71 ⊕ C116 ⊕ C71

94 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

and

C111 = z66 ⊕ A66 ⊕ A93 ⊕ B81 ⊕ B66 ⊕ C66

C112 = z67 ⊕ A67 ⊕ A94 ⊕ B82 ⊕ B67 ⊕ C67 (4.51)

C113 = z68 ⊕ A68 ⊕ A95 ⊕ B83 ⊕ B68 ⊕ C68

Similar to Bivium-B’s equations, we can only express the feedback bits of one register in

terms of initial state and keystream bits, as using more than one of these new equations

will cause the equations to cancel out, and leave us with the inability to express the

feedback bits in terms of initial state, and keystream bits. In the following, we express the

feedback bits of A using our approach, and the feedback bits of B and C using Raddum’s

technique. This new system of equations starts off with 288 variables and zero equations.

For each of the first 66 clocks, we add three new variables and four new equations to

the system of equations. The first two sets of equations for the first 66 clocks are:

A93 ⊕ z66 ⊕ A66 ⊕ B81 ⊕ B66 ⊕ C111 ⊕ C66 = 0 (4.52)

B84 ⊕ B6 ⊕ A27 ⊕ A0 ⊕ A1A2 = 0 (4.53)

C111 ⊕ C24 ⊕ B15 ⊕ B0 ⊕ B1B2 = 0 (4.54)

z0 ⊕ A27 ⊕ A0 ⊕ B15 ⊕ B0 ⊕ C45 ⊕ C0 = 0 (4.55)

A94 ⊕ z67 ⊕ A67 ⊕ B82 ⊕ B67 ⊕ C112 ⊕ C67 = 0 (4.56)

B85 ⊕ B7 ⊕ A28 ⊕ A1 ⊕ A2A3 = 0 (4.57)

C112 ⊕ C25 ⊕ B16 ⊕ B1 ⊕ B2B3 = 0 (4.58)

z1 ⊕ A28 ⊕ A1 ⊕ B16 ⊕ B1 ⊕ C46 ⊕ C1 = 0 (4.59)

where Equations 4.53, 4.54, 4.57 and 4.58 are the equations describing the relabelled

bits introduced using Raddum’s technique; Equations 4.52 and 4.56 are the feedback bit

equations introduced using our approach and Equations 4.55 and 4.59 are the equations

related to the keystream bits for zi , for 0 ≤ i ≤ 65. After 66 iterations, similar to

Bivium-A and Bivium-B, adding the keystream equations into the system of equations

are redundant, and we can stop adding variables and equations into the system. This

gives us a final system of equations consisting of 486 variables in 264 equations. The

comparison of both systems of equations is shown in Table 4.12. The linear equation

column lists the number of linear equations in the respective system of equations, while

4.3. New algebraic analysis on Trivium and its variants 95

Table 4.12: Details of equations for Trivium

Technique Linear
eqn.

Quadratic
eqn.

Total
eqn.

K.S.
(bits)

Variables Expected
solns

Raddum 288 666 954 288 954 1

Our approach 132 132 264 132 486 2222

the quadratic column entry lists lists the number of quadratic equations for the respective

system of equations. The total equation column lists the total number of equations for

the respective system equations, while the K.S. column lists the length of keystream

needed to solve the relevant system of equations. The variable column lists the number of

variables in the respective system of equations. Finally, the expected solution (Expected

solns) column lists the expected number of solutions obtained by solving the respective

system of equations.

Our system of equations has less quadratic equations compared to Raddum’s tech-

nique: Raddum’s technique has 666 quadratic equations, compared to 132 quadratic

equations in ours. The drawback of our system of equations however, is that our system

of equations have a greater excess of variables over equations to Raddum’s technique.

In Raddum’s technique, solving a system consisting of 954 variables in 954 equations

will yield a unique solution. In contrast, solving our system of equations consisting of

486 variables in 264 equations using the F4 algorithm will yield 2222 possible solutions,

which is worse than exhaustive keysearch.

4.3.7 Algebraic Analysis on Trivium Variants

To determine if Berbain’s technique can be applied for Trivium-like ciphers for which

j > 1 and q > 1, two alternative versions of Trivium are proposed: Trivium-A, Trivium-

AB. The two versions can be differentiated by their letters designation, with the letter

representing the register(s) whose stages are used by the linear function for keystream

generation. The state-update functions for the two ciphers are the same as the original

Trivium proposal. The equations representing the first three keystream bits of Trivium-A,

96 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

Table 4.13: Values of q, q′, and j for Trivium-A, Trivium-AB

Trivium-A Trivium-AB

q 3 3

q′ 1 1

j 1 2

Trivium-AB are:

z0 = A27 ⊕ A0

z1 = A28 ⊕ A1

z2 = A29 ⊕ A2

and

z0 = A27 ⊕ A0 ⊕ B15 ⊕ B0

z1 = A28 ⊕ A1 ⊕ B16 ⊕ B1

z2 = A29 ⊕ A2 ⊕ B17 ⊕ B2

respectively. The values of q′, q and j for Trivium-A and Trivium-B are shown in

Table 4.13.

Analysis of Trivium-A

The keystream generation equation Trivium-A can be reordered so that the feedback

bits for Trivium-A can rewritten as a linear combination of keystream and internal state

bits of register A. The first three feedback bits of Awritten in terms of keystream and

internal state bits are:

A93 = z66 ⊕ A66

A94 = z67 ⊕ A67

A95 = z68 ⊕ A68

Analysis of Trivium-A using our third approach. Our first system of equations is

used to recover the initial state of registerA. We start to form the first system of equations

4.3. New algebraic analysis on Trivium and its variants 97

with 93 variables. For the first 66 clocks, we add two equations and one variable into

the system of equations. For the next 156 iterations, we only add one equation and one

variable for the equation which describes the feedback bit for register A. We no longer

add the equations describing keystream as z66 has already been used to describe A93

in terms of internal state bits and keystream. After a total of 222 iterations, we have

calculated enough internal state bits of for register A to generate 288 bits of keystream,

and we have a system of equations consisting of 315 variables in 288 equations. Solving

this system of equations using the F4 algorithm will give us 227 possible solutions. The

first two equations in our system are:

A93 ⊕ z66 ⊕ A66 = 0 (4.60)

z0 ⊕ A27 ⊕ A0 = 0 (4.61)

A94 ⊕ z67 ⊕ A67 = 0 (4.62)

z1 ⊕ A28 ⊕ A0 = 0 (4.63)

where Equations 4.60 and 4.62 are the feedback bits introduced using our approach,

and Equations 4.61 and 4.63 are the equations related to the keystream bits for z0, for

1 ≤ i ≤ 65.
The second system of equations is used to recover the initial state of registers B and

C. As the contents of register A has already been recovered, we can substitute the values

of A into the appropriate stages. We start to form the second system of equations with

195 variables. As we are using Raddum’s relabelling technique, at each iteration, we add

two variables and three equations relating the feedback bits of A, B and C to the internal

state. The first two equations are:

A93 ⊕ A24 ⊕ C45 ⊕ C0 ⊕ C1C2 = 0
B84 ⊕ B6 ⊕ A27 ⊕ A0 ⊕ A1A2 = 0
C111 ⊕ C24 ⊕ B15 ⊕ B0 ⊕ B1B2 = 0

A94 ⊕ A25 ⊕ C46 ⊕ C1 ⊕ C2C3 = 0
B85 ⊕ B7 ⊕ A28 ⊕ A1 ⊕ A2A3 = 0
C112 ⊕ C25 ⊕ B16 ⊕ B1 ⊕ B2B3 = 0

98 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

We no longer need to add the keystream equations as both of these would have been

already recovered in the first system of equations. After 222 clocks, we have a system of

equations consisting of 639 variables in 666 equations. Solving this system of equations

using the F4 algorithm will allow us to recover the initial state of B and C. Once we

recover internal state of B and C, we use the recovered contents of A, B and C and

check if the keystream it generates is the same keystream we captured. If it is, we have

successfully recovered the initial state of Trivum-A.

Analysis of Trivium-A using our fourth approach. The second system of equations

formed in our third approach consists of 639 variables in 666 equations. As we have

more equations than variables, some of these equations can be removed from our second

system of equations without increasing the number of expected solutions. In this section,

we investigate what effect removing these equations and variables will have on the system

of equations obtained.

At each iteration, we add two variables and three equations into the second system

of equations, which starts with 195 variables. These equations are:

A93 ⊕ A24 ⊕ C45 ⊕ C0 ⊕ C1C2 = 0
B84 ⊕ B6 ⊕ A27 ⊕ A0 ⊕ A1A2 = 0
C111 ⊕ C24 ⊕ B15 ⊕ B0 ⊕ B1B2 = 0
⋮
A287 ⊕ A218 ⊕ C239 ⊕ C194 ⊕ C195C196 = 0
B278 ⊕ B200 ⊕ A221 ⊕ A194 ⊕ A195A196 = 0
C305 ⊕ C218 ⊕ B209 ⊕ B194 ⊕ B195B196 = 0

We are able to obtain a system of equations consisting of 585 variables in 585 equations

after 195 iterations of Trivium-A’s state-update functions. To build this second system of

equations, we need 93 + 195 = 288 variables in register A. This means adding 195 sets of

equations for register A into our first system of equations, using the same construction

method used in form the first system of equations in our third approach. This first

system of equations consists of 288 variables in 261 equations. Solving this system of

equations using the F4 algorithm will give us 227 possible solutions.

4.3. New algebraic analysis on Trivium and its variants 99

Table 4.14: Details of equations for Trivium-A

Technique Linear
eqn.

Quadratic
eqn.

Total
eqn.

K.S.
(bits)

Variables Expected
solns

Raddum 288 666 954 288 954 1

3rd approach (Step 1) 288 0 288 288 315 227

3rd approach (Step 2) 222 444 666 0 639 1

4th approach (Step 1) 261 0 261 261 288 227

4th approach (Step 2) 195 390 585 0 585 1

Comparison of system of equations for Trivium-A. Details of the systems of equa-

tions formed for Raddum’s and our approach to recovering the initial state of Trivium-A

are shown in Table 4.14. The linear equation column lists the number of linear equations

in the respective system of equations, while the quadratic column entry lists lists the

number of quadratic equations for the respective system of equations. The total equation

column lists the total number of equations for the respective system equations, while

the K.S. column lists the length of keystream needed to solve the relevant system of

equations. The variable column lists the number of variables in the respective system

of equations. Finally, the expected solution (Expected solns) column lists the expected

number of solutions obtained by solving the respective system of equations.

For Raddum’s technique, we need to solve a system of equations consisting of 954

variables in 954 equations and requires 288 bits of keystream. Of these 954 equations,

288 are linear and 666 are quadratic. Our third approach requires solving two separate

systems of equations: the first system consists of 288 linear equations in 315 variables

and requires 288 bits of keystream, while the second system of consists of 222 linear

equations, 444 quadratic equations in 639 variables and does not require any keystream.

Our fourth approach requires solving two separate systems of equations: the first system

consists of 261 linear equations in 288 variables and requires 261 bits of keystream,

while the second system of consists of 195 linear equations, 390 quadratic equations in

585 variables and does not require any keystream. Since we are solving both systems

of equations separately, it is expected that both our approaches will be less complex

as compared to Raddum’s technique. This is due to the fact that the first system of

equations is linear, and the second system of equations has less quadratic equations than

in Raddum’s technique.

100 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

Analysis of Trivium-AB

The keystream generation equation Trivium-AB can be reordered so that the feedback

bits for Trivium-AB can rewritten as a linear combination of keystream and internal

state bits of register A or a linear combination of keystream and internal state bits of

register B. The first three feedback bits of register Awritten in terms of keystream and

internal state bits are:

A93 = z66 ⊕ A66 ⊕ B81 ⊕ B66

A94 = z67 ⊕ A67 ⊕ B82 ⊕ B67

A95 = z68 ⊕ A68 ⊕ B83 ⊕ B68

The first three feedback bits of register B written in terms of keystream and internal state

bits are:

B84 = z69 ⊕ A96 ⊕ A69 ⊕ B69

B85 = z70 ⊕ A97 ⊕ A70 ⊕ B70

B86 = z71 ⊕ A98 ⊕ A71 ⊕ B71

Analysis of Trivium-AB using our third approach The first system of equations

recovers the internal state of A and B. Similar to Bivium-A and Trivium, we can not

use both sets of equations to simultaneously represent the feedback bits for A and B.

Therefore, we can only use Berbain et al.’s technique to express the feedback bits in terms

of keystream and internal state bits for a single register. In the first system of equations,

we express the feedback bits of register A using the combined techniques of Raddum

and Berbain et al.’s, and express the feedback bits of register B using Raddum’s technique.

For the first 66 clocks, we add two variables and three equations into the system. The

4.3. New algebraic analysis on Trivium and its variants 101

first two sets of these are:

A93 ⊕ z66 ⊕ A66 ⊕ B81 ⊕ B66 = 0 (4.64)

B84 ⊕ B6 ⊕ A27 ⊕ A0 ⊕ A1A2 = 0 (4.65)

z0 ⊕ A27 ⊕ A0 ⊕ B15 ⊕ B0 = 0 (4.66)

A94 ⊕ z67 ⊕ A67 ⊕ B82 ⊕ B67 = 0 (4.67)

B85 ⊕ B7 ⊕ A28 ⊕ A1 ⊕ A2A3 = 0 (4.68)

z1 ⊕ A28 ⊕ A1 ⊕ B16 ⊕ B1 = 0 (4.69)

where Equations 4.65 and 4.68 are the equations describing the relabelled bits introduced

using Raddum’s technique, Equations 4.64 and 4.67 are the feedback bit equations

introduced using our approach and Equations 4.66 and 4.69 are the equations related to

the keystream bits for zi , for 0 ≤ i ≤ 65. For the next 156 clocks, we drop the keystream

equations and only add the equations for the feedback bits for registers A and B. This

is due to the fact that from z66 onwards, the keystream equations have already been

used for the feedback bit equations for register A, and adding them into the system of

equations is redundant. After 222 clocks, we have a final system of equations consisting

of 621 variables in 510 equations. Solving this system of equations will give us 2111 possible

solutions.

The second system of equations recovers the internal state of register C. This system

of equations starts with 111 variables. For each of the 222 iterations, we add one variable

and two equations into the system of equations. The first two sets of equations are:

A93 ⊕ C24 ⊕ C45 ⊕ C0 ⊕ C1C2 = 0
C111 ⊕ C24 ⊕ B45 ⊕ B0 ⊕ B1B2 = 0

A94 ⊕ C25 ⊕ C46 ⊕ C1 ⊕ C2C3 = 0
C112 ⊕ C25 ⊕ B16 ⊕ B1 ⊕ B2B3 = 0

We no longer need to add the keystream equations as these would have been already

recovered in the first system of equations. We add the equations representing the

feedback bits of A into the system of equations as register A’s state-update function

takes as input stages from register C. We do not include the equations representing the

102 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

feedback bits of B as the state-update function only takes as inputs stages from A and B,

which have already been solved in the first system of equations. After 222 clocks, we

have a system of equations consisting of 333 variables in 444 equations.

Analysis of Trivium-AB using our fourth approach. Thesecond systemof equations

formed in our third approach consists of 333 variables in 444 equations. As we have

more equations than variables, some of these equations can be removed from our second

system of equations without increasing the number of expected solutions. In this section,

we investigate what effect removing these equations and variables will have on the system

of equations obtained.

At each iteration, we add two variables and three equations into the second system

of equations, which starts with 111 variables. These equations are:

A93 ⊕ C24 ⊕ C45 ⊕ C0 ⊕ C1C2 = 0
C111 ⊕ C24 ⊕ B45 ⊕ B0 ⊕ B1B2 = 0
⋮
A203 ⊕ C134 ⊕ C155 ⊕ C110 ⊕ C111C112 = 0
C221 ⊕ C134 ⊕ B155 ⊕ B110 ⊕ B111B112 = 0

We are able to obtain a system of equations consisting of 222 variables in 222 equations

after 111 iterations of Trivium-A’s state-update functions. To build this second system

of equations, we need 93 + 111 = 204 variables in register A and 45 + 111 = 156 variables
in register B to form the second system of equations. During the construction of the

first system of equations, we add 204 − 93 = 111 equations describing the feedback bits
of register A and add 156 − 84 = 72 equations describing the feedback bits of register
B. This first system of equations consists of 453 variables in 342 equations. Solving this

system of equations using the F4 algorithm will give us 2111 possible solutions.

Comparison of system of equations for Trivium-AB. Details of the systems of equa-

tions formed for Raddum’s and our approach to recovering the initial state of Trivium-AB

are shown in Table 4.15. The linear equation column lists the number of linear equations

in the respective system of equations, while the quadratic column entry lists lists the

number of quadratic equations for the respective system of equations. The total equation

column lists the total number of equations for the respective system equations, while the

K.S. column lists the length of keystreamneeded to solve the relevant systemof equations.

4.3. New algebraic analysis on Trivium and its variants 103

Table 4.15: Details of equations for Trivium-AB

Technique Linear
eqn.

Quadratic
eqn.

Total
eqn.

K.S.
(bits)

Variables Expected
Solns

Raddum 288 666 954 288 954 1

3rd approach (Step 1) 288 222 510 288 621 2111

3rd approach (Step 2) 222 222 444 0 222 1

4th approach (Step 1) 270 72 342 270 453 2111

4th approach (Step 2) 111 111 222 0 222 1

The variable column lists the number of variables in the respective system of equations.

Finally, the expected solution (Expected solns) column lists the expected number of

solutions obtained by solving the respective system of equations. For Raddum’s tech-

nique, we need to solve a system of equations consisting of 954 variables in 288 linear

and 666 quadratic equations. Solving Raddum’s system of equations requries 288 bits of

keystream. Our approaches also requires solving two separate system of equations: The

first system in our third approach consists 621 variables in 288 linear equations and 222

quadratic equations. The first system of equations in our first approach also requires 288

bits of keystream to solve, while the second system of consists 222 variables in 222 linear

equations and 222 quadratic equations. The first system in our fourth approach consists

453 variables in 270 linear equations and 72 quadratic equations. The first system of

equations in our first approach requires 270 bits of keystream to solve, while the second

system of consists 111 variables in 111 linear equations and 111 quadratic equations.

Our approaches may be less complex to solve as compared to Raddum’s system of

equations as they have less quadratic equations. The drawback of our system of equations

however, is that the first system of equations in both our approaches has a greater excess

of variables over equations compared to Raddum’s technique. In Raddum’s technique,

solving a single system consisting of 954 variables in 954 equations will yield a unique

solution. In contrast, solving the first system of equations in both our approaches will

yield 2111 possible solutions, which is worse than exhaustive keysearch.

4.3.8 Discussion

In this section, we have presented analyses on the feasibility of recovering the initial state

of Trivium-like ciphers using the combined approaches of Berbain et al. and Raddum.

The analysis was done through the approaches named the third, and fourth approach.

104 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

Our third approach did not take into account the number of variables and equations

needed for the construction of the second system of equations, leading to a system of

equations which has more equations than variables. Our fourth approach determined

how many variables and equations were needed for the second system of equations, and

adjusted the number of variables calculated in the first system of equations accordingly.

The fourth approach’s system of equations has the benefit of having less equations,

variables, and needed less keystream compared to our third approach and Raddum’s

approach.

In their paper, Berbain et al. [10] left the application of their technique to keystream

generators which updated q > 1 bits of internal state at each iteration and only output

q′ < q linear combinations of the state-bits as an open question. In this section, we have

answered this open question. We have also shown that the possibility of recovering the

initial states of some Trivium-like ciphers using our analysis with complexity less than

exhaustive keysearch depends on the relationship between j (the number of registers the

keystream generation function takes as input to generate keystream) and q (the number

of registers whose internal state is updated at each iteration).

In the case of Bivium-A, Trivium-A and Trivium-AB, where j < q, it was shown

that it may be possible to recover the initial state of the respective ciphers using the

F4 algorithm with a complexity that is less than recovering the same initial state using

Raddum’s relabelling technique. It is shown through computer simulations that the

recovery of Bivium-A’s initial state using our approaches can be significantly faster than

Raddum’s technique if the same amount of keystream is needed. We also demonstrated

a successful initial state recovery attack if an attacker knew 15 correct initial state bits of

Bivium-A’s register B and had access to 162 bits of keystream. This attack however, has a

higher time and memory complexity compared to Raddum’s technique.

In the case of Trivium-A, the actual complexity of recovering its initial state using

our technique is unknown but is expected to be less than solving it using Raddum’s

technique. The only cipher where a divide-and-conquer approach is not possible is for

Trivium-AB. When the first system of equations for Trivium-AB is solved, it gives 2111

possible solutions and trying all possible solutions to determine which is the correct

initial state is worse than exhaustive keysearch. For all three ciphers, it is possible to use

a divide-and-conquer approach as j < q. The success of solving these equations with

a complexity less than exhaustive keysearch however, would depend on the system of

equations generated. The complexity of our new approaches can be calculated as follows:

Let Tf denote the total time taken needed for the F4 algorithm to solve both systems

4.3. New algebraic analysis on Trivium and its variants 105

of equations; with T1 and T2 denoting the time needed for the F4 algorithm to solve

the first and second system of equations respectively, and NA denoting the number of

solutions obtained in solving the first system of equations. The complexity of recovering

the initial state of Trivium-like ciphers where j < q is

Tf = T1 + (NA × T2) (4.70)

In the case of Bivium-B and Trivium, j = q, and it is not possible to use a divide-and-
conquer approach to recover the initial state of the ciphers. To recover the initial state

of these ciphers using our approach requires us to solve a single system of equations.

However in the situation of j = q, using our approach to build this system of equations

has a drawback. Since a keystream equation is essentially being used to represent

a feedback bit, it does not allow us to add an additional (keystream) equation after

some iterations, and the number of variables and equations added into the system of

equations at each iteration is the same, as was demonstrated in our analysis of Bivium-B

and Trivium. If the number of variables is greater than the number of equations prior to

us not adding the keystream equation into the system, this system will always have more

variables than equations. In both Bivium-B and Trivium, trying all possible solutions

obtained to determine which is the correct initial state when the system of equations is

solved is worse than exhaustive keysearch. The complexity of recovering the initial state

of Trivium-like ciphers where j = q is

Tf = Ts + NA (4.71)

where Ts is the time taken to solve the system of equations and NA is the number of

solutions obtained when the system of equations is solved.

In our analyses of Trivium-like ciphers, the number of solutions obtained when a

particular system of equations is solved is found by counting the number of equations

and variables added at each iteration. This set of solutions can be generalised. Let SR be

the total size of the registers whose state-update is not re-written using our approach

andwhose stages are used during the construction for the particular system of equations.

For Trivium-like ciphers where j < q, this system of equations is the first system of

equations. For Trivium-like ciphers where j = q, this system of equation is the sole

system of equations obtained when we perform an algebraic analysis on them. For the

register whose feedback bit is written in terms of keystream and internal state bits, let

Dl−0 be the “distance” between the largest and stage “0”, both of which are used as input

106 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

to the output function. The size of the set of solutions, NA obtained when the system of

equations is solved is:

2SR × 2D l−0 = NA (4.72)

To illustrate this, we use the system of equations constructed for Trivium using our

approach which was analysed in Section 4.3.6. For the case of Trivium, SR will be the

combined size of registers B and C, SR = 84 + 111 = 195. Dl−0 is the “distance” between

the largest stage (A27) and A0 of register Awhich are used as inputs to Trivium’s output

function. That is, Dl−0 = 27 − 0 = 27. The total set of solutions obtained when the

respective values for SR and Dl−0 are substituted into Equation 4.72 is

2195 × 227 = 2222

which is the same size of solutions obtained in our previous analysis in Section 4.3.6.

A summary of the results on our analyses of Trivium-like ciphers with regards

to the number of equations, variables, and solutions obtained when their system of

equations are formed and solved using our approaches, and their relationship with

SR and Dl−0, is shown in Table 4.16. It shows the number of equations and variables

obtained from solving the various system of equations. For Bivium-A, Trivium-A and

Trivium-AB, this is divided into Step 1 and Step 2 for our third and fourth approaches

respectively. Since only one system of equations needs to be solved for Bivium-B and

Trivium before their initial state can be recovered, the appropriate values for the number

of equations, variables and solutions are recorded in the Step 1 of the 3rd approach

column of Table 4.16.

Relationship between inputs to output function and success of attacks

Our new attacks on Bivium-A and Trivium-A can be prevented by making changes to

the keystream output function. Recall the keystream generation equation for Bivium-A

shown in Equation 4.21 and the equation representing the first feedback bit of register B,

B84, shown in Equation 4.23. As was discussed in our previous analyses of Bivium-A

in Section 4.3.4, the number of solutions obtained when the first system of equations

is solved has an important effect on the effectiveness of our attack. If the number of

solutions obtained is less than the total number of possible keys, it may be possible to

recover the initial state of the cipher faster than exhaustive keysearch, otherwise it will

be worse than exhaustive keysearch. In our third and fourth approach, a keystream

4.3. New algebraic analysis on Trivium and its variants 107

T
a
b
le
4
.1
6
:
D
e
ta
il
s
o
n
sy
st
e
m
s
o
f
e
q
u
a
ti
o
n
s
in

o
u
r
th
ir
d
a
n
d
fo
u
rt
h
a
p
p
ro
a
ch
e
s
fo
r
T
ri
v
iu
m
-l
ik
e
c
ip
h
e
rs

Pa
ra
m
et
er
s

3r
d
ap
pr
oa
ch

(S
te
p
1)

3r
d
ap
pr
oa
ch

(S
te
p
2)

4t
h
ap
pr
oa
ch

(S
te
p
1)

4t
h
ap
pr
oa
ch

(S
te
p
2)

S R
D

l−
0

Eq
n

Va
r

So
ln

(N
A
)

Eq
n

Va
r

So
ln

Eq
n

Va
r

So
ln

(N
A
)

Eq
n

Va
r

So
ln

Bi
vi
um

-A
0

15
17
7

19
2

21
5

21
6

20
1

1
16
2

17
7

21
5

18
6

18
6

1
Bi
vi
um

-B
84

27
19
8

30
9

21
11

N
.A
.

N
.A
.

N
.A
.

N
.A
.

N
.A
.

N
.A
.

N
.A
.

N
.A
.

N
.A
.

Tr
iv
iu
m
-A

0
27

28
8

31
5

22
7

66
6

63
9

1
26
1

28
8

22
7

58
5

58
5

1
Tr
iv
iu
m
-A
B

84
27

51
0

62
1

21
11

44
4

22
2

1
34
2

45
3

21
11

22
2

22
2

1
Tr
iv
iu
m

19
5

27
26
4

48
6

22
22

N
.A
.

N
.A
.

N
.A
.

N
.A
.

N
.A
.

N
.A
.

N
.A
.

N
.A
.

N
.A
.

108 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

equation is used to represent a feedback bit, preventing us from adding keystream

equation at some future point due to it being redundant. In Equation 4.72, we showed

how it is possible to calculate the size of the set of solutions when a system of equations

is solved for Trivium-like ciphers. To make an attack on such a cipher worse than

exhaustive keysearch we need modify the output function of Trivium-like ciphers such

that this happens early on in the first system of equations. For example, suppose the

output function of Bivium-A was, instead,

z0 = B0+i ⊕ B83+i , for i ≥ 0 (4.73)

The first feedback bit B84, rewritten in terms of linear combinations of keystream and

internal state bits is now

B84 = z1 ⊕ B1

We start to form the first system of equations with 84 variables. For the first iteration,

two equations and one variable are added. From the second iteration onwards, the

keystream equation no longer needs to be added as it is already used to represent the

feedback bit of register B. From the second iteration onwards, we will only add one

variable and one equation into the system of equations. At this point, the difference

between the number of variables will always be 83 more than the number of equations.

If this system of equations is solved, it will give 283 possible solutions. Equation 4.72 can

also be used to determine the size of NA. In this example, the distance Dl−0 between B83

and B0 is 83. SR = 0, as the contents of register A are not used in during the construction

of the first system of equations. Therefore, substituting the values of Dl−0 and SR into

Equation 4.72 will also yield

2U = 2SR × 2D l−0 = 20 × 283 = 283

Since the set of solutions for the first system of equations is already larger than the

number of all possible keys, it is not worthwhile to generate and solve the second system

of equations. In general, for Trivium-like ciphers where j < q, if Dl−0 > 80, the number

of solutions obtained when the first system of equations is solved will be more than

the total possible number of secret keys and the complexity of the entire attack will be

worse than exhaustive keysearch. It should also be noted that Equation 4.72 only gives

an indication of how large the set of solutions will be when the system of equations is

4.3. New algebraic analysis on Trivium and its variants 109

solved. It does not take into account the complexity of solving the system of equations.

As was shown in Equation 4.70, the time T1 and T2 needs to be taken in account when

calculating the total time complexity Tf of solving the system of equation. If Tf has

a complexity which is worse than exhaustive keysearch, the cipher is still considered

secure against the our algebraic analyses.

Conversely, assume Dl−0 was a small value. We use Trivium to illustrate how this

change reduces the number of solutions obtained when the system of equations was

solved. Assume that the output function for Trivium was instead,

z0+i =Ai+1 ⊕ Ai ⊕ B15+i ⊕ Bi ⊕ C45+i ⊕ C0+i for i ≥ 0 (4.74)

We use our approach to represent the feedback bit equations for register A, and Raddum’s

method to represent the feedback bits equations for registers B and C. In this case,

Dl−0 = A1 − A0 = 1 and SR = 111 + 84 = 195. Substituting these values into Equation 4.72

will give the following value

2U = 2SR × 2D l−0 = 2195 × 21−0 = 2196

Recall from Section 4.3.6 that the size of the set of solutions when the system of equations

formed using our approach is solved was 2222. By changing the inputs to the output

function, the size of the set of solutions obtained is 2196, a 226 factor decrease in the

number of possible solutions. However, going through all 2196 possible solutions to

determine which is the correct initial state is worse than exhaustive keysearch.

For Trivium-like ciphers where j = q, Equation 4.72 allows us to determine how

many solutions are obtained when the system of equations are solved. In the case of

Trivium, the size of each register is more than 80. Therefore, changing the position of

the stages used as input into its output function such that Dl−0 is as small as possible

may not be sufficient for our algebraic analysis to succeed as 2SR will always be larger

than the number of possible secret keys. It should also be noted that Equation 4.72 only

gives an indication of how large the set of solutions when the system of equations is

solved will be. It does not take into account the complexity of solving the system of

equations. As was shown in Equation 4.71, the time Ts needs to be taken in account

when calculating the total time complexity Tf of solving the system of equation. If Tf

has a complexity which is worse than exhaustive keysearch, the cipher is still considered

secure against our algebraic analysis.

110 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

Relationship between size of registers and success of attacks

The size of the registers which are used in the formation of the first system of equations

can have an effect on the number of solutions obtainedwhen the first system of equations.

For example, assume that Trivium’s three registers, A, B, and C had lengths 198, 45 and

45 bits. During the construction of the system of equations, we rewrite the feedback bits

of register A in terms of initial state and keystream bits. Thus, Dl−0 = 27 − 0 = 27. For
this Trivium cipher, SR = 45 + 45, and NA = 290 × 227 = 2117. Recall from Section 4.3.6

that the size of the set of solutions obtained when the original system of equations using

the our approach is solved was 2222. By changing the size of the registers, the size of the

set of solutions obtained is 2117, a 2105 factor decrease in the number of possible solutions.

However, going through all 2117 possible solutions to determine which is the correct

initial state is worse than exhaustive keysearch.

4.4 Conclusion

This chapter has analysed keystream generators which use a linearly filtered nonlinear

feedback shift register to generate keystream. In Section 4.1, the m-tuple distribution

of keystream sequences formed by linearly filtered nonlinear feedback shift register

was analysed. Our findings indicate that the keystream formed by these generators

can have a non-uniform distribution if the linear output function takes as input more

than three stages in the nonlinear feedback shift register. Non-occurring m-tuples

were also observed for all keystream generators used in our experiments. Note that

these findings were also present when the m-tuple distributions of keystream sequences

formed by nonlinear filter generators (NLFGs) were analysed in Chapter 3. The m-tuple

distribution of the keystream generated by linear functions which take as input taps

which form a FPDS are generally less uniformly distributed as compared to the m-tuple

distribution of the keystream generated by linear function which take as inputs taps

which are consecutive. This is in contrast to the m-tuple distribution of NLFGs. In

the m-tuple distribution of keystreams generated by NLFSRs, the m-tuple distribution

of keystream formed by a nonlinear function which takes as inputs taps which are

consecutive is generally less uniform than them-tuple distribution of keystream formed

by a nonlinear function which takes as inputs taps which which form a full-positive

difference set.

In Section 4.2, the work on slid pairs on Trivium done by Priemuth-Schmid and

Biryukov [92] and Zeng and Qi [115] was extended. In our work, we have shown two

4.4. Conclusion 111

things. Firstly, for 111 ≤ α ≤ 121, Γα ∩Θα is a empty set. That means none of the loaded

states in the set Γα can be found in the loaded states in the set Θα , where Θα contains the

set of loaded states formed by a particular loaded state in Γα . Secondly, for 111 ≤ α ≤ 113
and 111 ≤ α′ ≤ 113, the set Γα ∩Θα′ is also empty. If any of those sets were non-empty, an

attacker may have been able to use a related-key attack to recover the initial state of a

particular keystream based on the the keystream generated by another initial state. An

example of such an attack was highlighted in Section 4.2.7. These two new investigations

have also allowed us to establish that it is not possible to have a state cycle within 225

bits of each other, which have two loaded states as its contents.

In Section 4.3, the combined algebraic techniques of Berbain [10] and Raddum [93]

were used to analyse the Trivium stream cipher and its variants through two of our new

approaches. Our analysis answers Berbain’s et al.’s open question posted at the end of

their paper which posed the question of whether their technique could be extended to

keystream generators which updated q > 1 bits of internal state at each iteration and

only output q′ < q linear combinations of the state-bits. In particular, we demonstrated

two new algebraic attacks on Bivium-A. The first attack has less time and memory

requirements than other techniques which use the F4 algorithm [46] to recover Bivium-

A’s initial state. The second attack has a higher time andmemory complexity, but requires

less keystream to recover the initial state of Bivium-A. When our new approachces is

applied to Bivium-B and Trivium however, the time taken to search through the number

of solutions the system of equations produces is worse than exhaustive key search. We

also demonstrated that if j ≠ q, it may be possible to mount a divide-and-conquer

algebraic attack which can recover the initial state of the keystream generator which has

less complexity compared to an exhaustive keysearch over the entire keyspace.

For Trivium-like ciphers, we show how the size of the registers used in the con-

struction of the first system of equations, and the selection of stages used as input to

the output function can affect the number of solutions obtained when the system of

equations is solved. By changing this distance between register stages, the complexity

of our algebraic attack can be worse than exhaustive keysearch. In other cases, even if

the distance between the register stages is as small as possible, the complexity of our

algebraic attack is still worse than exhaustive keysearch as the total state size of the

registers whose stages are used in the construction of the system of equations is larger

than the key size.

112 Chapter 4. Analysis of linearly filtered nonlinear feedback shift registers

Chapter 5

State convergence in Mixer

The previous chapters of this thesis have analysed keystream generators which either

used a linear state-update function and nonlinear output function to produce key-

stream or used nonlinear state-update function and linear output function to produce

keystream. This chapter presents our analysis for a stream cipher which uses nonlinear

functions for both state-update and output functions. Nonlinearity is introduced into

the keystream sequence through a combination of implicit and explicit methods.

This chapter analyses a stream cipher called Mixer [79] with a particular focus on

the initialisation function. A well-designed initialisation function should ensure that

each distinct session key generates a distinct keystream. If this does not occur, state

convergence has occured. State convergence is undesirable as it implies the effective

keysize of the stream cipher is reduced, decreasing the security which can be provided

by a stream cipher. If two distinct initial states of a stream cipher generates the same

keystream, this further reduces the security which the stream cipher can provide. The

keystream generation function of Mixer is also examined to determine if this occurs.

This chapter is organised as follows: In Section 5.1, we describe the specifications of

Mixer. In Section 5.2, we define what state convergence is. In Section 5.3.1, we show why

state convergence occurs in the Mixer stream cipher during its initialisation process,

while in Section 5.3, we show how two distinct Mixer initial states can produce the same

keystream. Section 5.4 concludes this chapter.

113

114 Chapter 5. State convergence in Mixer

5.1 Mixer specifications

Mixer is a binary additive stream cipher designed by Kanso in 2008 which uses both

explicit and implicit methods to provide nonlinearity. The keystream generator has two

component registers: one with linear feedback and one with nonlinear feedback. The

explicit nonlinearity comes from the use of a nonlinear feedback shift register, while

the implicit nonlinearity is derived from the use irregular clocking (a function which

controls how many times a particular shift register is clocked) of one of the component

register.

The Mixer keystream generator design has much in common with two well-known

stream ciphers, the LILI family of stream ciphers [29, 107] and Grain-80 [65]. Like both

LILI and Grain, the Mixer design is based on two shift registers. The clock-control

operation from LILI and the identical nonlinear Boolean function from Grain-80 are

used in Mixer to provide nonlinearity.

Components of Mixer

The keystream generator of Mixer is based on two binary shift registers, denoted A and

B, of lengths 128-bits and 89-bits, respectively. Register A is a regularly clocked LFSR

with the feedback function A(x). Register B is an irregularly clocked NFSR with the

feedback function B(x), with clocking controlled by register A. The feedback functions

for the two registers are as follows.

The feedback function of A is the weight 67 primitive polynomial A(x) defined as:

A(x) = 1 + x + x6 + x7 + x8 + x9 + x11 + x14 + x15 + x16 + x17

+ x18 + x23 + x25 + x29 + x30 + x35 + x36 + x39 + x40

+ x43 + x44 + x47 + x49 + x50 + x51 + x52 + x53 + x55

+ x56 + x57 + x58 + x60 + x61 + x65 + x66 + x67 + x70

+ x71 + x72 + x73 + x74 + x77 + x79 + x80 + x81 + x82

+ x87 + x90 + x94 + x96 + x102 + x103 + x104 + x105

+ x106 + x108 + x111 + x115 + x117 + x119 + x122

+ x123 + x124 + x125 + x126 + x128

where + denotes addition in GF(2).

The feedback function for NLFSR B(x) is the composition of a linear feedback

5.1. Mixer specifications 115

polynomial BL(x) and the nonlinear function BNL(x). That is, B(x) is defined as:

B(x) = BL(x) + BNL(x) (5.1)

where BL(x) is defined as:

1 + x + x39 + x42 + x53 + x55 + x80 + x83 + x89 (5.2)

and BNL(x) is:

BNL(x) =
88

∏
j=1
(1⊕ B j(t)) (5.3)

Note that BNL(x) is equal to 1 with probability 2−88. In the analysis presented in this

paper, the feedback function B(x) is approximated by BL(x), an approximation that

holds with very high probability.

The clocking of Register B is under the control of register A. An integer function,

FINT, takes the contents of w selected stages of register A as input and outputs an integer

cb, which is the number of times register B is clocked. FINT is defined as:

cb(t) = FINT = 1 + 20Ai0(t) + 21Ai1(t) + . . . + 2w−1Aiw−1(t)

where w ∈ {0, 1, . . . , 127} and i0, i1, . . . , iw−1 ∈ {0, 1, 2, . . . , 127}. Note that the Mixer

specification does not fix the value for w, nor does it specify the tap positions for the

inputs to FINT, but it does recommend thatw ∈ {2, 3, . . . 7} be used for efficiency reasons.

A nonlinear Boolean function, g(x), is used to determine whether the output of

Register B will be used or discarded. The function g(x) is defined as:

g(x) =x1 ⊕ x4 ⊕ x0x3 ⊕ x2x3 ⊕ x3x4 ⊕ x0x1x2 ⊕ x0x2x3 ⊕ x0x2x4⊕
x1x2x4 ⊕ x2x3x4

The inputs x0, x1, x2, x3, x4 at time t are the contents of the five stages of register A:

A7(t), A37(t), A73(t), A91(t) and A123(t) respectively.
Figure 5.1 illustrates the components of Mixer and the interaction of its components

during both the initialisation (includes both solid and dotted lines) and keystream

generation (solid lines only) processes.

116 Chapter 5. State convergence in Mixer

Select/Discard

g(x)
B(x)

A(x)

FINT

NLFSR BLFSR A

Figure 5.1: Mixer state update functions

Initialisation of Mixer

TheMixer initialisation process can be divided into three phases: the key loading phase,

the IV loading phase and the diffusion phase. During the key and IV loading phases,

the master secret key and IV are loaded into the shift registers.

Let the individual bits of the 128-bit key K be denoted k0, k1, . . . k127, and the indi-

vidual bits of the 64-bit IV, V be denoted by v0, v1, . . . v63. The key and IV loading phases

of Mixer are performed as follows. The master secret key, K, is loaded into register A

such that Ai = ki , for 0 ≤ i ≤ 127. The IV, V , is loaded into register B such that Bi = vi ,

for 0 ≤ i ≤ 63. The remaining stages of register B are filled with ones. TheMixer internal

state at the completion of the loading phase is in a loaded state.

To complete the initialisation process, the diffusion phase must be performed. This

involves performing 200 iterations of the initialisation state update function. Consider

St , the internal state at time t, (the contents of the two registers A(t) and B(t)).
For each iteration the following process, as shown in Figure 5.1 (with both solid and

dotted lines), is followed:

1. Clock register A once.

2. For the updated state A(t + 1), calculate:

(a) the integer value cb(t + 1) using FINT.

(b) the output of the nonlinear Boolean function g(x).

3. Clock register B cb(t + 1) times.

4. If at time t + 1, g(x) = 0 then this iteration is complete.

5. If at time t + 1, g(x) = 1 then XOR the output bit B0 of register B (after cb(t + 1)
clocks) with the contents of both register stages A127 and B88.

5.2. State convergence in stream ciphers 117

In this chapter, the XOR operation described in Step 5 is referred to as themixing

operation. This is the only operation in the initialisation state update function where

contents of the two registers are directly combined. The output bit B0 from register B

which is XORed is referred to as the mixing bit, and denoted φ.

During the initialisation phase, no keystream is produced. After 200 iterations of

the initialisation state update function, an initial state has been produced and keystream

generation can commence.

Keystream generation

During keystream generation the state update function is similar to the initialisation

state update function. The only difference is that the mixing operation is not used, and

the output of register B is used directly as the keystream. That is, for each iteration the

following process, as shown in Figure 5.1 (with solid lines only), is followed:

1. Clock register A once.

2. For the updated state A(t + 1), calculate:

(a) The integer value cb(t + 1) using FINT.

(b) The output of the nonlinear Boolean function g(x).

3. Clock register B cb(t + 1) times.

4. If at time t + 1, g(x) = 0, no keystream is produced and this iteration is complete.

5. If at time t + 1, g(x) = 1 then the output bit of B becomes the keystream bit z j.

This process continues until sufficient keystream bits have been generated to encrypt or

decrypt the message.

5.2 State convergence in stream ciphers

To prevent time-memory-data tradeoff attacks, modern stream ciphers have internal

states which are at least the size of the key-IV pair. That is, 2s ≥ 2l+ j. Since the state space
is at least the size of the space spanned by all key-IV pairs, it is reasonable to expect that

the initialisation process will be one-to-one, that is, each distinct key-IV pair should

map to a distinct state at the end of initialisation.

118 Chapter 5. State convergence in Mixer

Some initialisation processes are not one-to-one. Considering the state-update

function in the forwards direction, for a given S(t), there is a single S(t + 1). However,
when considering the reverse direction, for a given value of S(t + 1), there may be

multiple values for S(t). That is, multiple states converge during one iteration of the

initialisation state update function. If this state convergence occurs at any point during

the initialisation process, the same initial state will be attained at the end of initialisation

from different loaded key-IV pairs. Multiple distinct key-IV pairs will then generate

the same keystream. If the state-update function used during keystream generation is

not one-to-one, it is possible to have distinct initial states generate the same keystream,

further reducing the security of the keystream generator.

The term entropy is sometimes used when discussing the internal state of a key-

stream generator. Entropy is defined by Shannon as the measure of unpredictability in

information contained in a random variable [99]. More formally, assume that there is a

set X = {xi}i∈I , with each element xi appearing with probability pi , the entropy H(X)
of set X is defined by Hong and Kim [69] as:

H(X) = −∑
i∈I

pi log2(pi)

If the set X has l + j elements, we have:

H(X) = −∑
1

2l+ j
log2(

1

2l+ j
) = log2(2l+ j).

In the context of stream ciphers, the entropy H(X) is the size of the key and IV in

bits. That is, l + j, where l and j are the key and IV sizes in bits respectively. If after an

iteration of the state-update function, this entropy is still l + j, the state-update function
is one-to-one, and state covnergence does not occur. If this entropy falls below l + j,

state convergence is said to have occurred. The discussion of state entropy in the context

of state convergence in keystream generators is used in the analysis of Mickey-v2 and

the summation generator in Sections 6.2.2 and 6.3.3 respectively.

Where state convergence occurs in keystream generators for stream ciphers, there

are three possible scenarios. They are:

Scenario 1 The same secret key used with different IVs generates the same initial state.

That is, (K1,V 1) and (K1,V 2) produce the same keystream.

Scenario 2 The same IV used with different secret keys generates the same initial state.

That is, (K1,V 1) and (K2,V 1) produce the same keystream.

5.3. Analysis of Mixer 119

Scenario 3 Distinct key-IV pairs generate the same initial state. That is, (K1,V 1) and

(K2,V 2) produce the same keystream.

These scenarios are irrelevant if the attacker’s goal is initial state recovery as it will not

matter which key-IV pair generated any particular initial state. However, the attacker

will not be able to use this initial state to decrypt the rest of the communication, as the

other frames would have been encrypted using the same secret key but with a different

IV. The state recovery attack must be repeated for each frame of the communication. If

the attacker’s goal is to decrypt the entire communication, a better alternative would be

a secret key recovery attack, which can recover the actual secret key.

For Scenario 1 and Scenario 3, an attacker can, upon recovering a secret key, check if

the IV observed along with the keystream is the same as that recovered in the attack. If

it is, an attacker can be confident that they have recovered the correct key. If Scenario 2

state convergence occurs, an attacker needs to check if the recovered key can properly

decrypt other messages before the attacker can be confident they have recovered the

correct key. If they have not recovered the correct key they would need to perform

the attack again for the next frame. Alternatively, if the initialisation process is easily

invertible, an attacker could run the initialisation process backwards to recover all the

possible keys which could have generated that particular state.

5.3 Analysis of Mixer

Mixer takes a 128-bit master key, K, and a 64-bit IV, V , as inputs to the initialisation

process. The total Mixer internal state size is the sum of the lengths of registers A and B:

128+89 = 217, so there are a total of 2217 possible internal states. Since the loading process
is linear, there are a total of 2128+64 distinct loaded states. Ideally, the initialisation process

would result in 2192 distinct session keys for keystream generation, and Mixer could

produce 2192 distinct possible keystream sequences. That is, each key-IV pair should

produce a distinct keystream. However this is not the case for Mixer. This analysis

explores two main causes for the reduction in the state space of the Mixer keystream

generator: the internal state convergence that occurs during the initialisation process,

and the existence of “equivalent states” — distinct session keys which produce the same

keystream. These two problems each result in a reduction of the effective keyspace of

Mixer.

120 Chapter 5. State convergence in Mixer

5.3.1 Analysis of Mixer’s initialisation process

The analysis of the initialisation process begins with the observation that the state update

function is not one-to-one. In this section we examine the state convergence during

one iteration of the initialisation state update function, and across multiple iterations of

the initialisation process.

State transition possibilities during initialisation

TheMixer initialisation state update function requires calculation of g(x), as the up-
date of A127 and B88 with the mixing value φ is conditional on the value of g(x). The

possibilities for the state transitions from S(t) to S(t + 1) are:

1. g(x) = 0. No mixing operation occurs, regardless of the value of φ.

2. g(x) = 1 and φ = 0. The mixing operation occurs but the contents of A127 and B88

remain unchanged after the mixing operation. That is, the outcome is the same as

when g(x) = 0.

3. g(x) = 1 and φ = 1: The mixing operation occurs, and the contents of A127 and

B88 are complemented.

A is an LFSR with a primitive feedback function and g(x) is a balanced nonlinear

Boolean function. If A was autonomous, that is, no additional inputs other than the

feedback bit calculated using the characteristic polynomial of A itself is used to update

the internal state of A, then the probability that g(x) = 1 would be very close to 0.5.

After the first iteration the feedback from B complicates this. However, assuming this

probability is still very close to 0.5 and considering the four possible combinations of

g(x) and φ values, effective mixing occurs with a probability of 0.25.

Consider inverting the initialisation state update function. That is, given St+1 we

want to obtain St . Recall that A is a regularly clocked LFSR, which controls the clocking

of B. The value of g(x) at time t + 1 is readily calculated. The possibilities for the state

transitions from St+1 to St are conditional on g(x) at time t + 1 and φ:

1. At time t + 1, g(x) = 0. No mixing occurred. In this case, we use At+1 to calculate

cb(t + 1), and clock A back once and B back cb(t + 1) times.

2. At time t + 1, g(x) = 1. Mixing has occurred, but the effect depends on the value

of φ:

5.3. Analysis of Mixer 121

LFSR A

LFSR A

S1(t)

S2(t)

NLFSR B

NLFSR Bcb clocks

cb clocks

φ

φ′

x

x′

Figure 5.2: States which converge to the same next state.

(a) If φ = 0 then again use At+1 to calculate cb(t + 1), and clock A back once and

B back cb(t + 1) times.

(b) If φ = 1 then complement both A127(t + 1) and B88(t + 1), and then use

A(t + 1) to calculate cb(t + 1), and clock A back once and B back cb(t + 1)
times.

The difficulty in inverting the state update function lies with computing the value of φ.

We cannot obtain this directly from B(t + 1) as it is discarded from B after the mixing

operation. Therefore, given g(x) = 1 at time t + 1, we consider two possibilities (φ equals

0 or 1). Thus there are two possible previous states. Figure 5.2 shows the format of

two states at time t which converge to the same state at time t + 1. Note that x′ and φ′

represent the complements of x and φ respectively. The contents of the other register

stages must be the same.

Bounds on number of equivalent loaded states

For the first iteration of the diffusion phase 50% of all loaded states have g(x) = 0. Each
of these produces a distinct next state. For the other 50%, g(x) = 1 and these states can

be grouped into pairs that converge to the same next state. Thus, after the first iteration

of the state update function, the number of distinct states is only 75% of the number of

loaded states.

At the next iteration, we consider firstly those states for which g1(x) = 0. Applying
the argument above, after the second iteration the number of distinct states is 75% of

the size of this group. For the states where g1(x) = 1, the pairing argument may not hold

(some of the relevant states may have been eliminated in the previous iteration) so the

number of remaining states may be more than 75%.

Combining these results gives upper and lower bounds on the number of distinct

states after two iterations of 62.5% and 56.25% of the number of loaded states, respect-

ively. Continuing these arguments for α iterations gives lower bounds nl , and upper

122 Chapter 5. State convergence in Mixer

Table 5.1: Bounds on the predicated number of distinct initial states, nl and nu, after an

α iteration initialisation process

[b]

α 0 25 50 100 150 200

nl 2192 2181.62 2171.25 2150.50 2129.74 2109.00

nu 2192 2191.0 2191.0 2191 2191.0 2191.0

bounds nu, on the proportion of states remaining as

nl = N × 0.75α (5.4)

and

nu =
N

2
(1 + 2−α) (5.5)

where N is the number of loaded states.

Equations 5.5 and 5.4 above give an upper and lower bounds on the predicted number of

distinct initial states that will be obtained after an α iteration process. Table 5.1 provides

the computed value for nu and nl for various values of α between 0 and 200.

Computer simulations and results

As an alternative approach to estimating the degree of state convergence, we ran some

computer simulations for a reduced-round diffusion phase. We set w = 2 and took

inputs to FINT from A70 and A71. In our experiments, 100 loaded states were randomly

generated. For each loaded state, α iterations of the Mixer initialisation process were

performed, for α = 1, 2, . . . , 30. We refer to the initial state resulting from this process

as the target initial state. For each value of α and for each target obtained, the state

was clocked back α times and all loaded states which generate the same target were

recovered.

Data corresponding to α = 5, 10, 15, 20, 25 and 30 have been collated to formTable 5.2.

For each value of α, the table includes:

• The total number (Total) of loaded states found for all 100 target initial states.

• The minimum number (Min) and maximum number (Max) of loaded states

5.3. Analysis of Mixer 123

Table 5.2: Number of Mixer loaded states for 100 target initial states.

α Total Min Max Mean S.D

5 766 1 32 7.66 6.47

10 3327 2 256 33.27 35.07

15 8120 2 1024 81.20 96.52

20 14 239 4 1152 142.39 149.07

25 20 328 4 1344 203.28 211.74

30 23 180 4 1848 231.80 242.39

found for any target.

• The mean and standard deviation (S.D.) of the number of loaded states for each

target initial state.

Using the experimental results, a graph of the mean number of loaded states per

target, n, against α was plotted. Two versions of this experiment were run: one in which

candidate loaded states must conform to the specifications (with B64, . . . , B88 = 1, . . . , 1)
and another without this restriction. These are labelled Format check and No Format

check respectively in Figure 5.3. For reference, the figure also includes the graphs of

two other curves: n = 1.25α and n = 1.5α. From Table 5.1, for 200 iterations of Mixer’s

initialisation process, the lower bound on the total number of distinct states is 2109 and

the upper bound would result in 2191 distinct initial states, which is less than the total

key-space of Mixer. Table 5.2 shows that as α increases, the number of loaded states

corresponding to a target session key also increases. That is, the number of loaded states

which converge to a particular session key increases with α. Similar conclusions can

also be drawn from Table 5.1, where the total number of distinct session keys decrease

as α increases. Note that the standard deviation values recorded in Table 5.2 increases

as the value of α increases. This tells us that the rate of state convergence is not uniform

across all key-IV pairs which form the loaded states.

As a way of measuring the accuracy of our theoretical estimates on the number of

distinct initial states after an α initialisation process in Table 5.1 against our experimental

results in Table 5.2, we combined the results from both tables. The estimated number

of distinct initial states eα after an α iteration initialisation process based on the mean

number in Table 5.2 was calculated. The calculated results are shown in Table 5.3. Our

calculations show that the experimental estimate eα on the total number of distinct initial

124 Chapter 5. State convergence in Mixer

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30

N
o
.
o
f
e
q
u
iv
a
le
n
t
st
a
te
s

No. of α iterations

Format check
No Format check

y = 1.5α
y = 1.25α

Figure 5.3: Mean number of loaded states per target for various α.

Table 5.3: Comparison of eα against nu and nl

α Theoretical es-

timate (nl)

Experimental

estimate (eα)

Theoretical es-

timate (nu)

5 2189.92 2189.06 2191

10 2187.84 2186.94 2191

15 2185.77 2185.66 2191

20 2183.70 2184.85 2191

25 2181.62 2184.33 2191

30 2179.55 2184.14 2191

5.3. Analysis of Mixer 125

states after an α iteration initialisation process is always lower than the our estimated

upper bound nu on the total number of distinct initial states. However eα is, with the

exception for α = 5–15, larger than nl for all calculated values of α. We expect the

number of distinct states which can be obtained after α = 200 iterations of Mixer’s

initialisation process will be between 2109–2191.

Limitations of experiments. Our experimental sample size of 100 trials represents a

very small fraction of the 2192 possible loaded states. This, coupled with the non-uniform

rate of convergence, may have affected the accuracy of our estimate of the number of

loaded states converging to each initial state after α iterations. This may explain why our

estimates for the number of distinct initial states forMixer after an α = 5–15 initialisation
process is lower than our lower bound nl , while the other estimates of α were higher

than nl .

5.3.2 Analysis of Mixer’s keystream generation process

During keystream generation, LFSR A is autonomous. That is, there is no mixing

operation introducing values from register B into A. Therefore, state convergence due

to the ‘mixing’ operation will not occur during the keystream generation process.

Assume that β is the total number of distinct initial states we can obtain after all

2192 possible key-IV pairs have been used in initialisation. At this point, we would

expect that Mixer will produce β distinct keystreams. However, this is not the case.

This is because the Mixer keystream generator employs a shrinking-generator style

mechanism to determine whether the output of register B will be used as a keystream

bit or discarded. Thus it will also suffer from a known weakness of shrinking generators.

For the shrinking generator there exist distinct initial states, known as equivalent states,

which produce the same keystream [104].

Recall from Section 5.1, if the value of g(x) is 0, the output of register B is discarded

and no keystream is produced. It is not until the value of g(x) is 1 that the first bit
of keystream is produced. Suppose we have an initial state, S0(0), with component

register states A0(0) and B0(0). For this initial state g(x) = 1, so the first keystream bit

is produced immediately. Let the keystream produced when keystream generation is

commenced in this state be denoted Z. Now consider an alternative initial state, S1(0),
with component register states A1(0) and B1(0). Suppose for this initial state g(x) = 0,
so no keystream bit is produced. Further suppose that after the state update function is

applied, S0(0) = S1(1). That is, we are now in the state from which the production of Z

126 Chapter 5. State convergence in Mixer

began. Therefore the two distinct states S0(0) and S1(0) can be considered equivalent,

as both produce the same keystream sequence, Z.

Note that the binary sequence formed by successive outputs of g(x) is the output
of the nonlinear filter generator formed by applying g(x) to the five stages of LFSR A.

Statistics regarding run lengths for the binary sequences produced by LFSRs are well

known, but less is known regarding the distribution of a NLFSR. The analysis ofm-tuple

distributions of NLFGs in Chapter 3 show that they are not uniform for small LFSR

sizes. This implies that the number of initial states generated for each keystreammay not

uniformly distributed. However, as g(x) is balanced, we expect that P(g(x) = 0) = 0.5
so the number of distinct keystreams is expected to be about half the number of distinct

initial states, that is,
β
2 .

5.4 Summary

In this chapter we analysed Mixer, a stream cipher which uses nonlinear functions for

both updating the internal state and computing the output. It is shown that, due to

Mixer’s initialisation function not being one-to-one, state convergence occurs. This

leads to a reduction in the number of distinct initial states obtained after its initialisation

phase is complete. As the number of iterations of the initialisation process increases,

the number of distinct initial states which can be obtained decreases. We estimate that

the total number of initial states, after 200 initialisation rounds is between 2109 and 2191.

Furthermore, we also show that due to the shrinking-generator method used to generate

keystream, two distinct initial states can actually generate the same keystream. This

further reduces the effective keysize of Mixer.

To increase the stream cipher’s resistance to correlation and algebraic attacks, the

diffusion phase needs to be run for a number of iterations. This is accompanied by a

corresponding decrease in efficiency. For some applications, an appropriate tradeoff

can be identified. However, where the nonlinear function is not one-to-one, as is the

case for Mixer, increasing the number of iterations decreases the efficiency with no

corresponding increase in security.

In Chapter 6, the state convergence problem is examined in more detail. We discuss

methods which can be used to detect state convergence, and identify mechanisms which

can cause state convergence. We also analyse the impact state convergence has on stream

cipher cryptanalysis.

Chapter 6

State convergence and its effects on

cryptanalysis

Well-designed initialisation and keystreamgeneration processes for stream ciphers

should ensure that each key-IV pair generates a distinct keystream. However,

for some stream ciphers distinct key-IV pairs produce the same keystream. This phe-

nomenon, known as state convergence, was described in Section 5.2. In Chapter 5, we

showed that state convergence occurs in the stream cipher Mixer. In this chapter, we

analyse the state convergence problem in more detail.

We describe the techniques used to detect state convergence in Section 6.1. We

divide the analyses of state convergence in certain stream ciphers into two sections:

Section 6.2 analyses irregularly clocked ciphers which experience state convergence. In

particular, we show why a modified version of A5/1 which uses Step-1/2 clocking for
its diffusion phase experiences state convergence, and provide counter-arguments to

the claims made by Mickey-v2’s designers that increasing the state size of the keystream

generator’s registers reduces the degree of state convergence experienced by Mickey-v2.

In Section 6.3 we analyse regularly clocked ciphers which experience state convergence.

We give a general example of why state convergence can occur in the F-FCSR stream

cipher and the summation generator, both of which use an addition-with-carry state-

update function to update the internal state of its registers.

In Section 6.4, we classify the stream ciphers which experience state convergence

by mechanisms we identified which can cause state convergence and show why state

convergence can occur in keystream generators using such mechanisms. In Section 6.5,

127

128 Chapter 6. State convergence and its effects on cryptanalysis

we discuss the effect state convergence has on some common cryptanalytic techniques

used against bit-based stream ciphers. These include time-memory-data tradeoff attacks,

correlation attacks, algebraic attacks and differential attacks.

6.1 State convergence detection

To detect state convergence in stream ciphers, we first need to thoroughly understand

what happens when the state-update process is applied. We can take either of two

approaches: Try to find two distinct states S(t) and S′(t) which both give S(t + 1); or
given a state at time t + 1, try to determine if there are multiple pre-image states S i(t),
for i ≥ 2, which generated S(t + 1). We use two main techniques to determine if state

convergence occurs in stream ciphers. These are:

• State transition tables.

• Analysis of the possible combinations for clocking registers backwards.

6.1.1 State transition tables

One way to determine if state convergence exists in keystream generators is to take each

of the 2s initial states, run the state-update function once and obtain the 2s next states and

count how many distinct next state values occur. If each of the states occurs only once,

we can be confident that state convergence does not occur. However, constructing a state

transition table is infeasible if s is large. In this case there are two possible alternatives.

These are:

1. Construct a full state-transition table for a scaled-down version of a cipher.

2. Construct a state transition table for a small subset of registers in the full version

of the cipher.

State-transition table for a scaled-down version of a cipher

The first alternative is to implement a scaled-down version of the stream cipher. This

is only possible for some ciphers which use mechanisms which can be easily scaled

for both small and large values of s. For example, Alhamdan [3] used a scaled-down

version of A5/1 to investigate the number of distinct initial states remaining after A5/1’s
initialisation process was completed. This scaled-down version for A5/1 had a 15-bit

6.1. State convergence detection 129

internal state (LFSR lengths of 4, 5, and 6 bits) and used a similar majority-clocking

scheme used in the original A5/1. Note that the majority-clocking scheme mechanism is

not dependent on the size of s or function-dependent (as long as the LFSRs used in the

scaled-down A5/1 use primitive feedback functions, which are also used in the original

A5/1). In this case, using a scaled-down version of A5/1 provides a useful indication of

the degree of state convergence experienced in the original A5/1 cipher.

State-transition table for a small subset of a stream cipher’s registers

For certain ciphers like the F-FCSR stream cipher [6] described in Section 6.3.2, the

contents of three stages of its registers at time t+1 are determined by three other registers

stages at time t. Thus, the state-update function for these particular three stages can

be treated as a 3 × 3 S-Box (relating each 3-bit input to a 3-bit output). If this S-Box is

balanced, the state-update function is one-to-one, and state convergence is not present

in the cipher. However, if it is not balanced, as was the case in the F-FCSR cipher,

this indicates that state-convergence occurs and the state-update function should be

investigated further. Later in this chapter, we use this technique to explain why state

convergence occurs in both the F-FCSR stream cipher and the summation generator, in

Section 6.3.2 and Section 6.3.3, respectively.

6.1.2 Analysing various combinations for clocking

registers backwards

Another technique of detecting state convergence is to determine if there are multiple

pre-images for a state S(t + 1). First, we randomly populate the state S(t + 1). We then

attempt to reverse the state-update function to obtain the pre-image(s) S i(t), for i ≥ 1.
If there are more than one valid pre-images, then state convergence clearly occurs since

all of S i(t) clock to S(t + 1). Conversely, if there are no valid pre-images for S(t + 1),
it follows that at least one other state S′(t + 1) must have multiple valid pre-images

as for any state-update function modelled as a finite state machine, a total of 2s states

must have had 2s pre-images. In this thesis, we use the backwards clocking technique to

explain why state convergence occurs in A5/1, Mixer and Mickey.

130 Chapter 6. State convergence and its effects on cryptanalysis

Register A
17

Clocking tap

Register B
Clocking tap

0

Register C
Clocking tap

0

0

81318 16

7

10

10202122

2021

Figure 6.1: Diagram of A5/1

6.2 Irregular clocking and state convergence

A number of stream ciphers which use irregular clocking mechanisms are known

to experience state convergence. These ciphers include A5/1 [22], Mickey [8], and

Mixer [79]. The causes of state convergence for the stream cipher Mixer have been

discussed in Chapter 5 in detail, and hence are omitted from this chapter.

6.2.1 A5/1

A5/1 is a well-known bit based stream cipher based on three binary LFSRs; denoted A,

B and C; of lengths 19, 22, and 23 bits respectively. Hence A5/1 has a total state size of

64 bits. A single 64-bit secret key is used for each communication, and a 22-bit frame

number is used as the IV for each frame in the communication. A diagram showing the

structure of A5/1 can be found in Figure 6.1. The three registers are regularly clocked

during loading of the key and IV (frame number). Following this, a majority clocking

mechanism is used for the diffusion phase and also for keystream generation. This

majority clocking is the only nonlinear operation performed.

To implement the majority clocking scheme, each register has a clocking tap: stages

A8(t), B10(t) and C10(t). The contents of these stages determine which registers will

be clocked at the next iteration: those registers for which the clock control bits agree

with the majority value are clocked. For example, if A8(t) = 0, B10(t) = 1 and C10(t) = 0,
then the majority value is 0 and registers A and C are clocked. Thus, either two or three

registers are clocked at each step.

6.2. Irregular clocking and state convergence 131

Initialisation and keystream generation processes

As the total size of key and IV for A5/1 (64 + 22 = 86 bits) exceeds the 64 bit state size,
compression of the key-IV space into the state space occurs during the loading phases

of initialisation. In fact, as the state-update function is linear during the loading phases,

it can be shown that there are 222 key-IV pairs corresponding to each possible loaded

state. The diffusion phase involves performing 100 iterations of the initialisation state

update function using the majority clocking scheme. At the end of this phase an initial

state is obtained.

Keystream is generated as a linear combination of the contents of one stage from each

of the three registers: at time t, zt = A18(t) ⊕ B21(t) ⊕ C22(t), where ⊕ denotes binary

addition or xor. The majority clocking process continues until sufficient keystream, 228

bits, is generated to encrypt the frame. Then the keystream generator is re-initialised

using the same secret key and the next frame number, to produce keystream for the

next frame.

State convergence in A5/1

Using majority clocking as the state-update function introduces nonlinearity during

the diffusion phase and during keystream generation. In fact, it is the only nonlinear

operation in A5/1. However considering the possible prior states for given states of a

certain format or pattern reveals an interesting phenomenon. For some patterns there

are no prior states while others have one or more prior states. Clearly the state update

function is not one-to-one.

Golić [51] considered the inverse mapping for the majority clocking function and

identified some states with no pre-image and which therefore cannot be reached from

any loaded state in a single iteration. He demonstrated that these states comprise 3
8

of the loaded states of the system. Thus, the usable state space shrinks by a factor of

5
8 (from 264 to 5 × 261 ≈ 263.32) at the first iteration of the diffusion phase. Golić also

identified some states with unique pre-images and others with up to four pre-image

states. Figure 6.2 presents a graphical summary of the six cases identified by Golić.

In this figure, (Ri , R j, Rk) is any permutation of the set {A, B,C} of a particular set of
registers stages in A5/1, where the shaded stage in each register is its clocking tap. The

symbol x represents either 0 or 1, while # represents the complement of x; a blank square
represents a bit which can take either value. The proportion of loaded states for each

case in Figure 6.2 is presented in Table 6.1, along with the corresponding number of

pre-images. Note that the case identified as (i) cannot be clocked back to any valid state.

132 Chapter 6. State convergence and its effects on cryptanalysis

A9 A8 A9 A8 A9 A8 A9 A8 A9 A8 A9 A8

B11 B10

C11 C10

B11 B10

C11 C10C11 C10

B11 B10B11 B10

C11 C10C11 C10

B11 B10B11 B10

C11 C10

X

X

X

#

(i)

#

(ii)

X

X X X

X

X X

X

(iii)

X

X X

X X

(iv)

X X

X

X#

(v) (vi)

X#

X

X#

Clock

Ri

R j

Rk

Ri

R j

Rk

Ri

R j

Rk

Ri

R j

Rk

Ri

R j

Rk

Ri

R j

Rk

Figure 6.2: A5/1 preimage cases identified by Golić’s cases [51]

Table 6.1: Proportions of states in A5/1 for Golić’s cases [51]

Case (i) (ii) (iii) (iv) (v) (vi)

Proportion of states 3
8

3
8

1
32

3
32

3
32

1
32

Number of pre-images 0 1 1 2 3 4

That is, states of this form cannot be reached after the first iteration of A5/1 initialisation
state update function.

We now illustrate why a particular A5/1 state, which falls into case (i) shown in

Figure 6.3, cannot be reached after the first iteration of A5/1 state-update function.
Assume we have an A5/1 state at time t + 1 whose register stages have the following
values: A9(t + 1) = B11(t + 1) = C10(t + 1) = 1 and A8(t + 1) = B10(t + 1) = C11(t + 1) = 0.
Recall that for A5/1’s state-update function, register stages whose contents agree are
clocked once. At time t + 1, the contents of A9(t + 1) and B11(t + 1) agree, while the
contents of C11(t + 1) disagree. By applying the rules of A5/1’s majority-clocking scheme,

we clock A and B back once. That is, the contents of A9(t+ 1) and B11(t+ 1) are shifted to
A8(t) and B10(t) respectively, while the contents of A8(t + 1) and B10(t + 1) are shifted
to A7(t) and B9(t) respectively. We do not clock C back as the contents of C11(t + 1)

Clock

t + 1

01

1 0

0 1

A7A9 A8

B10B11 B9

t

0

01

1

10

A7A8A9

B9B11 B10

1 0

1 0

0 1

(t + 1)′

A7A9 A8

B9B11 B10

C11 C10 C9 C11 C10 C9 C11 C10 C9

B(t)

A(t)

C(t)

A′(t + 1)

B′(t + 1)

C′(t + 1)

A(t + 1)

B(t + 1)

C(t + 1)

Figure 6.3: A5/1 preimage case(i) example

6.2. Irregular clocking and state convergence 133

does not agree with A9(t + 1) and B11(t + 1). This single application of the majority-

clocking scheme gives us the A5/1 state with the register contents A, B, and C at time

t. The contents of the A5/1’s clocking taps at time t are A8(t) = B10(t) = C10(t) = 1. By
applying the rules of A5/1’s majority-clocking scheme to this A5/1 state, we clock all
three registers once, as the contents of the clocking taps all agree. giving us the state

at time (t + 1)′. However, the contents of A5/1’s state at time (t + 1)′, consisting of

A′(t + 1), B′(t + 1), and C′(t + 1) is not the same as A(t + 1), B(t + 1), and C(t + 1).
Therefore, the state at time t + 1 is not a state which can be attained after one iteration of

A5/1 initialisation state update function. The register stages needed for analysing the

number of pre-images which can be obtained when an A5/1 state at time t + 1 is clocked
back are A8, A9, Bi and Ci for i ∈ {10, 11}. If we were to treat these stages as a 6-tuple
and examine the possible ways we can clock A5/1’s registers backwards for each of the

26 = 64 possible values the register stages A8, A9, Bi and Ci for i ∈ {10, 11} can attain at

t + 1, we are able to obtain Golić’s six preimage cases shown in Figure 6.2.

Biryukov et al. [18] also provided convergence estimates when exploring the effi-

ciency of their proposed attacks on A5/1. They reported that, of 108 randomly chosen

states, only about 15% can be clocked back 100 iterations. That is, 85% of chosen states

could not be obtained after 100 iterations of the majority clocking process.

We extended the existing work on state convergence in A5/1 and explored the

patterns of states which can not be accessed after 2 ≤ α ≤ 6 iterations. We note that the

rate of state convergence is not uniform at each iteration. The proportion of inaccessible

states increases as α increases. Table 6.2 summarises the proportion of inaccessible

states for 1 ≤ α ≤ 6. From these results, we estimate the number of accessible states at

the end of initialisation (α = 100) to be approximately 5% of the number of loaded states.

However, an experiment by Alhamdan [3] using a scaled-down version of A5/1 yielded
an estimated number of accessible states after initialisation of approximately 19.2% of

the number of loaded states. The latter result is similar to previous experimental results

for A5/1 reported by Biryukov et al. [18].

The above analyses of the A5/1 state-update function demonstrate that increasing

the number of iterations of the state-update function during initialisation decreases the

number of distinct initial states. Also if two loaded state converge during initialisation,

the same keystream will be produced

134 Chapter 6. State convergence and its effects on cryptanalysis

Table 6.2: Proportion of available states in A5/1 after α iterations

α (number of iterations) 1 2 3 4 5 6

new proportion 3
8

3
64

9
512

57
4096

423
32768

6453
524288

inaccessible

cumulative proportion
0.375 0.422 0.439 0.453 0.466 0.479

inaccessible

proportion accessible 0.625 0.578 0.561 0.547 0.534 0.521

number of accessible
263.322 263.209 263.165 263.129 263.094 263.061

states

New analysis on occurrence of state convergence in modified A5/1

To determine if state convergence also exists when another clock-control mechanism is

employed, we analysed a modified version of A5/1 (called A5/1M). In A5/1M, majority

clocking is still used to determine how the registers will be clocked. However rather

than stop/go clocking, Step-1/2 clocking is now used. That is, all registers are clocked

twice if all the clocking taps agree, otherwise, clock the registers which agree twice, and

clock the remaining register once. For example, if A8(t) = 0, B10(t) = 1, and C10(t) = 0,
registers A and C are clocked twice, and register B is clocked once.

Our analysis of A5/1M reveals that it also suffers from state convergence and there

exist some states which have 0–4 pre-images. In this section, Case i are the states which

have no pre-image, Case ii are the states which have one pre-image, Case iii are the

states which have two pre-images, and Case iv are the states which have three pre-images

and Case v are the states which have four pre-images. Figures 6.4 list the states in Cases

i and ii and Figure 6.5 lists the states which have two, three, and four pre-images. In

these figures, (Ri , R j, Rk) is any permutation of the set {A, B, C} of registers and the

shaded stage in each register is its clocking tap. The symbol x represents either a 0 or 1,
while # represents the complement of x; a blank square represents a bit which can take

either value.

We now illustrate why a particular A5/1M state, which falls into case (i) shown in

Figure 6.6, cannot be reached after the first iteration of A5/1M state-update function.

Assume we have an A5/1M state at time t + 1 whose register stages have the following
values: A9(t + 1) = A10(t + 1) = B12(t + 1) = C11(t + 1) = 1 and B11(t + 1) = C12(t + 1) = 0.
Recall that for A5/1’s state-update function, register stages whose contents agree are

6.2. Irregular clocking and state convergence 135

clock clock clock

R j

Rk

#

#

#

Ri

R j

Rk

#

#

Ri

R j

Rk

#

#

#

#

#

#

Case i: No pre-image Case ii: One pre-image

Ri

B11B11B11

x x x

A8A9A11 A8A9A11 A8A11 A9

B10B12 B10B12 B10B12

C10C12C12 C10C10C12 C11 C11 C11

Figure 6.4: Case i and ii: A5/1M states which have no pre-image, and one pre-image

respectively

clock clock clock

R j

Rk

#

#

Ri

R j

Rk

#

#

Ri

R j

Rk

#

#

#

#

#

Ri

B11B11B11

x

A8A9A10 A8A9A10 A8A10 A9

B10B12 B10B12 B10B12

C10C12C12 C10C10C12 C11 C11 C11

#

#

x# x #

x

x

Case iii: Two pre-images Case iv: Three pre-images Case v: Four pre-images

Figure 6.5: Case iii, iv, and v: A5/1M states which have two, three, and four pre-images

respectively

clock clock clock

B11B11B11

A8A9A10 A8A9A10 A8A10 A9

B10B12 B10B12 B10B12

C10C12C12 C10C10C12 C11 C11 C11

C(t + 1)

t

C

B

A

(t + 1)′

A′(t + 1)

B′(t + 1)

C′(t + 1)

1

1

1A(t + 1)

B(t + 1) 0

0 1

t + 1

1 1

01

0 1

1 1

1 0

A7 A7 A7

B9 B9 B9

C9 C9 C9

1

Figure 6.6: A5/1M preimage case(i) example

136 Chapter 6. State convergence and its effects on cryptanalysis

Table 6.3: Proportions of states in A5/1M

Case (i) (ii) (iii) (iv) (v)

Proportion of states 3
8

13
32

3
32

3
32

1
32

Number of pre-images 0 1 2 3 4

clocked twice and the remaining stage is clocked once. This means that the contents of

each register is shifted at least once at each clock. At time t + 1, the contents of A10(t + 1)
and B12(t + 1) agree, while the contents of C12(t + 1) disagree. By applying the rules
of A5/1M’s majority-clocking scheme, we clock A and B back twice, and clock C back

once. That is, the contents of A10(t + 1) and A9(t + 1) are shifted to A8(t) and A7(t)
respectively, while the contents of B12(t + 1) and B11(t + 1) are shifted to B10(t) and
B9(t) respectively. The contents of C12(t + 1) and C11(t + 1) are shifted to C11(t) and
C10(t) respectively. This single application of the majority-clocking scheme gives us the

A5/1M state with the register contents A, B, and C at time t. The contents of the A5/1M’s

clocking taps at time t are A8(t) = B10(t) = C10(t) = 1. By applying the rules of A5/1M’s

majority-clocking scheme to this A5/1M state, we clock all three registers twice, as the

contents of the clocking taps all agree. giving us the state at time (t + 1)′. However, the
contents of A5/1M’s state at time (t + 1)′, consisting of A′(t + 1), B′(t + 1), and C′(t + 1)
is not the same as A(t + 1), B(t + 1), and C(t + 1). Therefore, the state at time t + 1 is
not a state which can be attained after one iteration of A5/1M initialisation state update

function. The register stages needed for analysing the number of pre-images which can

be obtained when an A5/1M state at time t + 1 is clocked back are A9, A10, Bi and Ci

for i ∈ {11, 12}. If we were to treat these stages as a 6-tuple and examine the possible

ways we can clock A5/1’s registers backwards for each of the 26 = 64 possible values for
which the register stages A9, A10, Bi and Ci for i ∈ {11, 12} can attain at t + 1, we are able
to obtain the five preimage cases shown in Figures 6.4 and 6.5.

The proportion of states in each case, along with the relevant number of pre-images

can be found in Table 6.3. Note that the number of pre-images for each case in A5/1M
is exactly the same as Golić’s analysis. That is, for case i, the proportion of states is 3

8 .

Similarly, 3
8 + 1

32 of states in Golić’s analysis have one pre-image; which is the same as 13
32

in A5/1M’s case (ii). Case iii, iv, and v have the same proportion of states in both A5/1
and A5/1M; 3

32 ,
3
32 , and

1
32 states respectively.

From our new analysis on A5/1M, we can see that even with a different clocking

6.2. Irregular clocking and state convergence 137

AC

BC

NLFSR B

LFSR A

z(t)

Controls how many times A is clocked

Controls how many times B is clocked

Figure 6.7: General diagram for the Mickey stream cipher

mechanism, A5/1M still suffers from state convergence. Since both A5/1 and A5/1M use

majority clocking to determine the number of times a particular register gets clocked,

state convergence in both stream ciphers could be attributed to the use of a majority

clocking technique.

6.2.2 Mickey

Mickey-v1 [8] is a bit-based stream cipher designed by Babbage and Dodd in 2005 and

was submitted to the eSTREAM project [45]. After state convergence was reported by

Hong and Kim [69] in Mickey-v1, an updated version, referred to as Mickey-v2 [9], was

submitted in 2006 and is one of the stream ciphers in the final eSTREAM portfolio.

Keystream generation process for Mickey-v1

Mickey-v1 has two 80-bit shift registers: LFSR A and NLFSR B, giving a total state size

of 160 bits. A diagram showing the components and their interactions is shown in

Figure 6.7. An 80-bit key and an 80-bit IV are used to initialise the internal state.

A keystream bit is generated as a linear combination of the contents of one stage

from each register: z(t) = A0(t) ⊕ B0(t). This is done before Mickey’s internal state

is updated. The keystream generation state-update function of Mickey-v1 is similar

to A5/1. Each register has clocking taps which are used in the calculation of a control

bit which determines how a particular register is clocked. The control bit for LFSR A,

denoted Ac , is calculated as B27 ⊕ A53. If Ac = 0, A is clocked once. If Ac = 1, the state is
updated using an operation proposed by Jansen [74], which is equivalent to clocking A

240 − 23 times. Since A is an LFSR, once the control bit for A is known, it is possible to

138 Chapter 6. State convergence and its effects on cryptanalysis

calculate A(t) given A(t + 1).
Similarly, the control bit for NLFSR B, denoted Bc , is calculated as B53(t) ⊕ A27(t).

The choice of nonlinear function used to update register B depends on the value of Bc.

The designers of Mickey note that the feedback function of B is invertible in both cases.

That is, once the control bit of B is known, it is possible to calculate the internal state

B(t) given B(t + 1). They also impose a restriction on the amount of keystream which

can be generated using a single key-IV pair: a maximum of 240 bits should be generated

before rekeying.

State convergence in Mickey-v1

State convergence in Mickey-v1 during keystream generation was reported by Hong and

Kim [69]. They claim that this state convergence is due to the fact that the state-update

function of Mickey-v1 uses two control bits, which consequently affect the very bits

used to obtain the control bits, and claim that this self-dependent operation usually

produces state convergence in the keystream generator. In their paper, they describe the

algorithm they applied to determine how many pre-images a random state has. This

algorithm is as follows:

1. Choose random states for both A and B.

2. Calculate the reverse clocking of register A, assuming the control bit is set to 0,

and call this state A′. Calculate what the state of A would have been assuming

that the control bit was 1, and call this state A′′. Do the same for register B, and

call the clocked-back states B′ and B′′, where B′ is the state B clocks back to when

the control bit is 0, and B′′ is the state B clocks back to when the control bit is 1.

3. For each of the four possible (A, B) pairs after A and B are clocked back, calculate

the two control bits, check to see if these match with the control bits actually used

and count the number of matches.

For each of 220 randomly chosen initial states, Hong andKim ran the algorithmdescribed

above. They found that some states had none, one, two, or four pre-images. None of the

220 randomly chosen inital states had three pre-images. The total number of pre-images

Hong and Kim found for the 220 randomly chosen states can be found in Table 6.4.

6.2. Irregular clocking and state convergence 139

Table 6.4: 220 randomly chosen states, and the number of pre-images which produce

them

No. of pre-images 0 1 2 3 4

No. of states 307 988 452 017 279 418 0 9153

Causes of state convergence in Mickey v1

Assume that the state of Mickey is (A(t + 1), B(t + 1)). It is noted by Hong and Kim [69]

that if the values of the controls of Ac(t) and Bc(t) were known, it would be possible

to calculate a unique pre-image for (A(t + 1), B(t + 1)). However, to calculate Ac(t)
and Bc(t), we need to know the original state (A(t), B(t)) which generated (A(t + 1),
B(t + 1)). However, given the state (A(t + 1), B(t + 1)), it is not possible to calculate

Ac(t) and Bc(t) as the state has already been updated after the values of Ac(t) and
Bc(t) were calculated. Consequently, we have to assume each possible combination of

{Ac(t), Bc(t)} integer function outputs was possible. Using each possible combination

{AC(t), Bc(t)} outputs, we clock back registers A and B and check if the integer value

output of Ac(t) and Bc(t) at time tmatch the number of times we clocked back registers

A and B. If there is more than one match, there is more than one pre-image for that

particular (A(t + 1), B(t + 1)) state.
Although their discussion focuses on the keystream generation phase, the same

approach can be used to demonstrate convergence during the 80-step diffusion phase

between key-IV loading and keystream generation. Hong and Kim present their results

in terms of entropy loss during the keystream generation process. This approach takes

into account the (estimated) distribution of reachable states as well as their number.

They estimate that about 39 bits of entropy are lost during the 240 iterations of keystream

generation. They also display some graphical results for an estimate based only on the

number of reachable states; these results suggest that the number of distinct internal

states will reduce from 2160 to about 2122 during these 240 iterations.

Mickey-v2

In response to the attacks by Hong and Kim, the designers of Mickey-v1 released a new

version of Mickey, referred to as Mickey-v2 [9] in 2006. The register lengths of A and B

were increased to 100 bits each, and the tap positions of the clocking bits were adjusted

accordingly. The actual mutual clocking mechanism remains unchanged. As the general

140 Chapter 6. State convergence and its effects on cryptanalysis

structure and components are similar to Mickey-v1, the reader is referred to Figure 6.7

for a diagram of Mickey-v2.

Thedesigners argue that while state convergence is still possible, the expected entropy

will drop from 200 bits to about 160 bits after 240 keystream bits have been generated,

and since this is “twice the key size, . . .we no longer have a problem” [9].

This argument is clearly not correct. The initial entropy can not be larger than 160

bits of loaded key and IV data. Although the registers are now longer, as the mechanism

which causes convergence is unchanged the number of distinct states will still decrease

with additional iterations of the register update functions. In fact, the effectiveness of

their strategy requires the assumption that the initialisation phase distributes the 2160

possible loaded states randomly within the state space of size 2200. This assumption

is equivalent (under the arguments of Hong and Kim) to having started with a full

state entropy of 200 bits and then having undertaken approximately 241 state update

iterations. This then implies that the further 240 iterations (for keystream generation)

will result in an additional entropy loss of only approximately 0.6 bits (log2(2
41+240
241)).

While this is not a large enough reduction to give rise to a serious attack, it does show

that state convergence needs to be considered carefully and allowed for appropriately

when designing ciphers. It is also clear that further entropy loss (state convergence)

would result if a user of this cipher contravened the design restrictions and generated

keystream in excess of the 240 bits permitted.

6.3 Regular clocking and state convergence

In the previous section, state convergence for the ciphers examined was associated

with irregular clocking. However, the use of regular clocking is not sufficient to avoid

state convergence. In this section we analyse some regularly clocked, bit-based stream

ciphers for which state convergence occurs. These include the Sfinks [21] stream cipher,

F-FCSR [6], and the summation generator [95].

6.3.1 Sfinks stream cipher

The Sfinks stream cipher [21] was designed by Braeken et al. in 2005 and was submitted

to the eSTREAM project. It is a bit based and hardware oriented stream cipher that uses

an 80-bit secret key and 80-bit IV as inputs and has a 256-bit internal state.

This cipher is based on a regularly clocked 256-bit LFSR and a nonlinear one-to-one

inversion function INV. The INV function may considered as a 16 × 16 bit S-box, with

6.3. Regular clocking and state convergence 141

input bits (x15, . . . , x0) and output bits (y15, . . . , y0). The interactions between these

components differ between the initialisation and keystream generation processes.

Initialisation process

During initialisation, as shown in Figure 6.8, the 16 output bits from the INV function

are delayed and combined with the shift register contents so that the shift register is

updated according to the following update functions:

Ri(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R i+1(t − 1) for i ∈ {0, 1, . . . , 254} except {11, 17, 41, 52,
66, 80, 111, 118, 142, 154, 173, 179, 204,

213, 232, 247}
R i+1(t − 1) ⊕ y(i mod 16)(t − 7) for i ∈ {11, 17, 41, 52, 66, 80, 111, 118, 142,

154, 173, 179, 204, 213, 232, 247}

⊕ j R j(t − 1) for i ∈ {255} and j ∈ {212, 194, 192, 187, 163,
151, 125, 115, 107, 85, 66, 64, 52, 48, 14, 0}

State convergence in Sfinks

Alhamdan et al. [2] noted that although the individual components of the Sfinks state-

update function during initialisation are one-to-one, state convergence still occurs

because the combination of these components is not one-to-one. Combining the bits

from the LFSR and the S-box output, together with the choice of input taps to the S-box,

gives rise to state convergence during initialisation. In particular, the spacing of seven

time steps between register stages R161 (which is an S-box input bit) and R154 (which is

affected directly by an S-box output bit) makes it possible for two states which differ

in R161 at time t − 7 to converge to the same state at time t. The requirement for this

to occur is that a change in the content of the S-box input bit R161 (= x11) with all other

input bits held constant must result in a change in the S-box output bit y10. In this case,

R154(t) = R155(t − 1) ⊕ y10(t − 7) = R161(t − 7) ⊕ y10(t − 7) = R̄161(t − 7) ⊕ ȳ10(t − 7)
where R̄ and ȳ represent the complements of R and y respectively.

Alhamdan et al. [2] considered all possible pairs of S-box input bits that differ only

in bit x11 and determined the number of corresponding pairs of S-box output that

differ in bit y10. They found 273 such pairs out of a possible 215. Hence the probability

of convergence at each iteration is estimated as 273
215 = 2−6.9. Based on this result, the

estimated number of distinct states drops from 2160 after key-IV loading to approximately

2158.55 distinct states by the end of the initialisation process.

142 Chapter 6. State convergence and its effects on cryptanalysis

0

y
4 (t−

7)
y
0 (t−

7)
y
11 (t−

7)
y
1 (t−

7)
y
9 (t−

7)
y
2 (t−

7)
y
15 (t−

7)
y
6 (t−

7)
y
14 (t−

7)
y
10 (t−

7)
y
13 (t−

7)
y
3 (t−

7)
y
12 (t−

7)
y
5 (t−

7)
y
6 (t−

7)
y
7 (t−

7)

x
15

x
14

x
13

x
12

x
11

x
10

x
9

x
8

x
7

x
6

x
5

x
4 x

3
x
2

x
0

x
1

S-Box
(inversion)

16-bits

y
15

y
0

D
elay-7

16-bitsoutputto
shift

register

255

248
247

244

233
232

227

214
213
212

205
204

194
193
192

187

180
179
174
173

163
161

155
154
151
143
142
134
125
119
118

115

112
111

107
105

98
85
81
80
74
67
66
64
58
53
52

48
44

42
41

21
19
18
17
14
12
11

9
6
1
0

16-bit×
16-bit

F
ig
u
re

6
.8
:
In
itia

lisa
tio

n
p
ro
c
e
sse

s
o
f
S
fi
n
k
s
stre

a
m

c
ip
h
e
r,
re
p
ro
d
u
c
e
d
fro

m
th
e
d
ia
g
ra
m

in
A
lh
a
m
d
a
n
e
t
a
l.
[2
]

6.3. Regular clocking and state convergence 143

6.3.2 F-FCSR

The F-FSCR [6] bit-based stream cipher was designed by Arnault and Berger in 2005. It

uses a 128 bit key and a 64 bit IV, or a 96 bit key and a 64 bit IV to generate keystream,

depending on usage needs.

Description of a FCSR

The F-FCSR stream cipher is based on the operation of a Feedback with Carry Shift

Register (FCSR). FCSRs consist of two registers: a main register A and a carry register B.

The operation of a FCSR is based on the theory of 2-adic fractions of the form
p
q , where

q is a negative odd integer and 0 ≤ p ≤ ∣q∣. The period of the binary sequence generated

from the 2-adic fraction is the order of 2 modulo q. If the prime number q is such that

the order is ∣q∣ − 1, then the period of any initial state (represented by the value p) would

also be ∣q∣ − 1.
The main register A consists of a binary stages, where a is the bit length of d = ∣q∣−12 .

The carry register B has b binary stages, where b + 1 is the Hamming weight of d. Given

the binary expansion of d = ∑a−1
i=0 di ⋅ 2i , we set Id = {i∣0 ≤ i ≤ a − 2 and di = 1} and b =

#Id .

If the FCSR internal state at time t is (A(t), B(t)), the state-update function for any

FCSR will update the state at t+ 1 to (A(t+ 1), B(t + 1)) using the following state-update
function:

For 0 ≤ i ≤ a − 2 and i ∉ Id ,

• Ai(t + 1) = Ai+1(t)

For 0 ≤ i ≤ a − 2 and i ∈ Id ,

• Ai(t + 1) = Ai+1(t) ⊕ Bi(t) ⊕ A0(t)

• Bi(t + 1) = Ai+1(t)Bi(t) ⊕ Bi(t)A0(t) ⊕ A0(t)Ai+1(t))

For i = a − 1,

• Aa−1(t + 1) = A0(t)

For example, if an FCSR has q = −347, then d = 174, a = 8 and b = 4, Figure 6.9

illustrates the FCSR which would have been constructed.

144 Chapter 6. State convergence and its effects on cryptanalysis

A7 A6 A5 A4 A3 A2 A1 A0

1 1

A(t)

b5 b3 b200B(t) b1 0

1 01

0

00d 1

Figure 6.9: Example of an FCSR when q = −347, d = 174, a = 8, and b = 4

Components of F-FCSR

For the F-FCSR stream cipher proposed by Arnault and Berger,

−q = 493877400643443608888382048200783943827

The binary expansion of d = (∣q∣ + 1)/2 is:

10111001 11000110 10101001 11101010

10110111 11100010 01011111 11010110

10011110 10000110 00110110 10011010

00011000 01010110 11101100 01001010.

Register A has a = 128 stages. The Hamming weight of d is 69 and there are b = 69 − 1
stages in register B.

Initialisation of F-FCSR

During the loading phase, the key is loaded directly into A, while the IV is loaded

directly into B. Note that the length of b = 68, while F-FCSR uses a 64 bit IV. The

F-FCSR paper does not specify how a user of F-FCSR populates the remaining four

stages of B. We assume that the remaining four stages of B, that is Bi , for 64 ≤ i ≤ 67,
are set to zero. During the diffusion phase, the state-update function for the FCSR is

applied six times. Upon completion of the diffusion phase, F-FCSR is ready to begin

keystream generation.

Keystream generation

The propagation of carries provides implicit nonlinearity for the FCSR. Similar to LFSRs

however, using the FCSR output directly as keystream is insecure. Thus, the designers of

F-FCSR propose using a linear function which takes as inputs the contents of Register

A, to use as keystream output. There are four proposals for F-FCSR, namely: F-FCSR-

SF1, F-FCSR-SF8, F-FCSR-DF1, F-FCSR-DF8. The linear filters used for F-FCSR-SF1

6.3. Regular clocking and state convergence 145

and F-FCSR-SF8 are fixed and known. F-FCSR-SF1 outputs one keystream bit at each

iteration, while F-FCSR-SF8, through the use of eight independent linear filters, outputs

eight bits of keystream at each iteration. The linear filters used for F-FCSR-DF1 and

F-FCSR-DF8 are key-dependent and are derived from the secret key and an invertible

nonlinear function g. The designers of F-FCSR recommend using the AES S-box for

g. Since the AES S-box operates on bytes, we first divide K into 16 byte blocks Ki , for

i = 1, 2, . . . , 16 and compute the output of g(Ki). For the design of F-FCSR-DF8, the

eight sub-filters constructed using g(K) are used to output eight bits of keystream each

time the F-FCSR state is updated.

State convergence in F-FCSR

Thestate-convergence problem in F-FCSRwas first pointed out by Jaulmes andMuller [77].

In their paper, Jaulmes andMuller use the small FCSR described in Figure 6.9 to explain

why a FCSR state-update function is not invertible. The example they gave in their paper

only looked at some particular stages and showed how state convergence can occur. In

the example below, we extend their work and give a general example of why a FCSR

state-update function is not invertible.

Let Ai(t), Bi(t) and Ai(t + 1), Bi(t + 1) denote the contents of the i’th stage of the

main register A and carry register B at time t and t + 1 respectively. If Aa−1(t + 1) = 0,
Ai(t + 1) = Bi(t + 1) = 1, and i ∈ Id , two incompatible constraints for A0(t) at time t

must be satisfied to obtain it. Since Aa−1(t + 1) = 0, the state-update function requires

that A0(t) = 0. However, if Ai(t + 1) = Bi(t + 1) = 1, we must also have A0(t) = 1.

Since A0(t)) cannot have the value 1 and 0 at time t, the state when Aa−1(t + 1) = 0,
Ai(t + 1) = Bi(t + 1) = 1, and i ∈ Id is not invertible. Note that when i ∉ Id , the carry
register B is not updated and the state-update function for the corresponding stages Ai

of the FCSR is linear. Thus, given the state Ai(t + 1), it is easy to calculate the pre-image

state Ai(t).
The state-transition table for all possible combination values of A0(t), Ai+1(t), and

Bi(t) at time t, and the values of Aa−1(t+ 1), Ai(t+ 1), and Bi(t+ 1) at time t+ 1 if i ∈ Id ,
are shown in Table 6.5, while Table 6.6 lists the number of possible three-tuple states for

the states A0(t), Ai+1(t), and Bi(t) which lead to each possible Aa−1(t + 1), Ai(t + 1),
and Bi(t + 1) combination.

Table 6.5 and 6.6 show that the internal state values of Aa−1(t + 1) = 1, Ai(t + 1) =
Bi(t + 1) = 0, and Aa−1(t + 1) = 0, Ai(t + 1) = Bi(t + 1) = 1, are states which cannot be

reached from any combination of the states A0(t),Ai+1(t), Bi(t). In contrast, the state

146 Chapter 6. State convergence and its effects on cryptanalysis

Table 6.5: State-transition table for certain stages in a FCSR when i ∈ Id

A0(t) Ai+1(t) Bi(t) Aa−1(t + 1) Ai(t + 1) Bi(t + 1)

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 1 0

0 1 1 0 0 1

1 0 0 1 1 0

1 0 1 1 0 1

1 1 0 1 0 1

1 1 1 1 1 1

Table 6.6: Three-tuple distribution for Ai(t + 1), Aa−1(t + 1), and Bi(t + 1) when i ∈ Id

Aa−1(t + 1) Ai(t + 1) Bi(t + 1) Count

0 0 0 1

0 0 1 1

1 0 0 0

1 0 1 2

0 1 0 2

0 1 1 0

1 1 0 1

1 1 1 1

6.3. Regular clocking and state convergence 147

values for Ai(t + 1) = 0, Aa−1(t + 1) = Bi(t + 1) = 1 can be generated by two different

sets of internal states: A0(t) = Bi(t) = 1, Ai+1(t) = 0 and A0(t) = Ai+1(t) = 1, Bi(t) = 0,
while the state values for Ai(t+1) = 1, Aa−1(t+1) = Bi(t+1) = 0 can be generated by two
different sets of internal states: A0(t) = Bi(t) = 0, Ai+1(t) = 1 and A0(t) = Ai+1(t) = 0,
Bi(t) = 1. For some states, there is a one-to-one mapping at time t to t+ 1, and vice-versa
when i ∈ Id . These states are:

• Ai(t + 1) = Aa−1(t + 1) = Bi(t + 1) = 0

• Ai(t + 1) = Aa−1(t + 1) = 0, Bi(t + 1) = 1

• Ai(t + 1) = Aa−1(t + 1) = 1, Bi(t + 1) = 0

• Ai(t + 1) = Aa−1(t + 1) = Bi(t + 1) = 1

Note that during any one-to-one mapping, Ai(t + 1) = Aa−1(t + 1) and holds with

probability one. If a FCSR state at t + 1, has these values, only one previous state would
have generated that particular state.

Jaulmes and Muller [77] estimate that any two related states in F-FCSR will converge

to the same internal state with very high probability, after 128 iterations of the F-FCSR

state-update function. As a result, they also claim the same probability that after 128

iterations of the F-FCSR state-update function from any given initial state, the internal

state will be in a unique cycle and state convergence will no longer occur. Thus, if the

first 128 bits of output from the F-FCSR are discarded, there is a very large probability

that all internal states encountered from that point on will be part of a unique cycle.

Consequently, the real entropy of the internal state of F-FCSR is of log2(∣q∣ − 1) ≈ 128
bits. If both registers of an FCSR are randomly initialised, then the initial entropy is

a + b bits. In this case, Röck [94] shows that after one iteration, the entropy of the FCSR

is

a + b

2
(6.1)

She also claims if all 2a+b initial states are equally likely, a FCSR will have at least

a + 2b−a 7
12 ln(2) bits of entropy. Thus, for any given FCSR, its entropy will never go below

a. In the case of F-FCSR, its entropy will always be at least 128 + 263−128 7
12 ln(2) ≈ 128.000

bits.

148 Chapter 6. State convergence and its effects on cryptanalysis

z(t)

C(t)

C(t − 1)

LFSR B

A0(t − 1)

B0(t − 1)

LFSR A

Figure 6.10: Summation generator diagram

6.3.3 Summation generator

The summation generator [95] is a bit-based stream cipher proposed by Ruppel in

1985. The original summation generator proposed by Ruppel consisted of two binary

symmetric source output A and B of sizes a bits and b bits respectively, and a single

memory bit C. This gives the summation generator a state space S of s = a + b + 1 bits.
The keystream output from a summation generator is formed by combining the output

of A and B and the previous contents of C. Therefore, a summation generator can be

viewed as a nonlinear combiner with a single memory bit. In this section, the two binary

symmetric source outputs are assumed to be two LFSRs A and B, whose state-update

functions are implemented using primitive feedback polynomials. The output of two

LFSRs A and B of lengths a and b, at time t is combined with a memory bit C(t − 1) to
form a keystream bit z(t), and the memory bit C(t) is calculated using the following

functions respectively:

z(t) = A0(t − 1) ⊕ B0(t − 1) ⊕ C(t − 1) (6.2)

C(t) = A0(t − 1)B0(t − 1) ⊕ (A0(t − 1) ⊕ B0(t − 1))C(t − 1) (6.3)

A diagram of the summation generator can be found in Figure 6.10. Note the similarity

between these equations and those for the FCSR obtained in the previous section. In

the next section, we show why state convergence occurs in the summation generator

and estimate the loss of state entropy in the summation generator arising from this state

convergence.

State convergence in the summation generator

If the state-update functions of A and B are implemented using primitive feedback

polynomials, there is a one-to-one mapping from a particular state of either shift register

at time t to another state at time t + 1. Furthermore, the memory bit C is not used to

6.3. Regular clocking and state convergence 149

Table 6.7: State transition table for C(t) and keystream generation output

A0(t − 1) B0(t − 1) C(t − 1) C(t) z(t)

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

update A or B. Thus, no state convergence occurs in either register A and B.

However, when we consider the entire state of the keystream generator, we see that

it is possible for combinations of A0(t − 1), B0(t − 1) and C0(t − 1) to generate the same

C(t) value. Table 6.7 shows how the keystream bit z(t), and the memory bit C(t) are
calculated based on the values of A0(t − 1), B0(t − 1), and C(t − 1). From Table 6.7, we

can observe that when A0(t − 1) = B0(t − 1), the calculation of the value C(t) is not
affected by C(t − 1). Consider two distinct summation generators with states at time

t − 1 comprising A(t − 1) = A′(t), B(t) = B′(t) and C(t) ≠ C′(t). For example, let

A0(t−1) = A′0(t−1) = B′0(t−1) = B′0(t−1) = 0, andC(t−1) = 1, andC′(t−1) = 0. At time

t, A(t) = A′(t) and B(t) = B′(t) have the same values, as the state-update functions for

A and B are autonomous and are not affected by the value of C(t − 1). However, note
the value of C(t) is now 0. Hence, two distinct states A(t − 1), B(t − 1),C(t − 1), and
A′(t − 1), B′(t − 1),C′(t − 1) have now converged to the same state, and will generate

the same keystream from this point on. Likewise, the states

• A′0(t − 1) = B′0(t − 1) = 1, C(t − 1) = 0 and

• A′0(t − 1) = B′0(t − 1) = 1, C(t − 1) = 1

will also converge to the same state at the next clock step, and will produce identical

keystream from that point on. If the initial state of a summation generator was initialised

randomly, 1
2 of the states can be paired up, and each pair will generate the same state

at time t + 1. At time t + 2, 1
4 of the initial states can be paired up, and each pair will

generate the same state at time t + 3. Therefore, after two iterations of the summation

generator’s state-update function, 1
2 + (12 × 1

2) = 3
4 of the states would have experienced

150 Chapter 6. State convergence and its effects on cryptanalysis

Table 6.8: Causes of state convergence summary table

Type of mechanism Stream ciphers

Mutual clock-control • A5/1 (and A5/1M)

• Mickey-v1/v2

Self-update • Mixer

• Sfinks

Addition-with-carry

state-update

• F-FCSR

• Summation generator

state convergence. After α iterations, the summation generator would have lost (∑α
i=0

1
2α)

bits of entropy, approximately 1 bit for suitably large α. As mentioned above, if A and B

are autonomous LFSRs, state convergence will not occur in either register. In this section,

it is shown that state convergence can occur in the carry register C. Thus, the summation

generator will at most lose one bit of entropy, resulting from the state convergence caused

by C. As a result, the effective state space of the summation generator is a + b bits.

6.4 Mechanisms which can cause state

convergence

So far in this chapter we have studied stream ciphers which have state convergence

problems. Based on this study, we have identified three mechanisms which cause state

convergence. These are: .

• Mutual clock-control,

• Self-update mechanisms,

• Addition-with-carry mechanisms.

The classification of the studied stream ciphers into the three categories is shown in

Table 6.8.

6.4. Mechanisms which can cause state convergence 151

All the mechanisms shown in Table 6.8 are nonlinear operations. However, the types

of registers used in the stream ciphers can either be linear and/or nonlinear. The stream

ciphers which update the internal state in a linear way do so via the XOR operation. For

A5/1 and Mixer, this is accomplished through the feedback polynomial of the LFSR.

Note that although Mixer uses a nonlinear function to update the internal state of one

of its registers, it can be easily approximated with a linear function. Details of this

approximation can be found in Section 5.1. For Sfinks, the update of the internal state is

also accomplished through the LFSR’s feedback polynomial, alongwith the direct XORof

S-Box output bits with specified bits of the LFSR. The remaining ciphers, the summation

generator, the F-FCSR and Mickey, consist of ciphers which use a combination of linear

and nonlinear functions to update the internal state of the keystream generator. In

Section 6.4.1–6.4.3, we discuss why these mechanisms can cause state convergence in

keystream generators.

6.4.1 Mutual clock-control

Mutual clock-controlmechanisms are the combination of two differentmechanisms: mu-

tual update, and clock-control mechanisms. In this section, we discuss bothmechanisms

and discuss the situations where state convergence may or may not occur in keystream

generators which use clock-control mechanisms in their keystream generators.

Mutual-update mechanisms

Mutual-update mechanisms are mechanisms where each register is updated using input

from the stages of another register. That is, none of the registers are autonomous. A

mutual update mechanism is used for the state-update function of Trivium [26], whose

state-update equations were reviewed in Section 4.3.3. It should be noted that the

state-update function of Trivium is reversible, that is, each internal state has only one

prior state and one next state. Therefore, state convergence will not occur either during

initialisation, or keystream generation.

Clock-control mechanisms

Clock control mechanisms are used in keystream generators which have two or more

registers. They typically use an integer function which takes inputs from selected stages

of a particular register. Clock-control mechanisms can be found in ciphers like the

Step-1/2 generator proposed by Gollmann and Chambers [58], and the LILI family of

152 Chapter 6. State convergence and its effects on cryptanalysis

LFSR B z(t)LFSR A

Figure 6.11: Step-1/2 generator

stream ciphers [29, 107]. In the Step-1/2 generator, clocking register A controls how

many times the clock-controlled generator B is clocked for. If the output of A is 0, B

is clocked once, and if the output of A is 1, B is clocked twice. A diagram showing the

components in the Step-1/2 generator can be seen in Figure 6.11. State convergence will

not occur in the Step-1/2 generator, as the state-update function is bijective. Given a

state S(t + 1) at time t + 1, we perform the following operations to obtain the unique

pre-image of S(t + 1).

1. Calculate the previous output bit of A by clocking A backwards once.

2. Once the previous output bit of A is obtained, we know how many times B was

clocked, and can clock it the appropriate number of times to obtain the state at

time t.

The LILI family of stream ciphers make use of an integer function during the diffusion

and keystream generation process. At time t, this integer function IB takes as input

stages from the clock-control register A and outputs the integer value IB(t). The clock-

controlled register B is then clocked IB(t) times. Similar to the Step-1/2 register, this
state-update function is bijective. Given a state at time t+1, we perform similar operations

to obtain t + 1’s unique pre-image.

1. Calculate the state of A at time t by clocking A backwards once.

2. Once the previous state of A is obtained, calculate the integer value IB(t) obtained
at time t using the integer function, and clock B backwards that number of times.

Before we explain why state convergence occurs in mutually clock-controlled ciphers,

we discuss why state convergence does not occur in both the Step-1/2 generator, and the

LILI family of stream ciphers. In both of these keystream generators, the bijectiveness

of the state-update function is due to the fact the register A is autonomous and regularly

clocked, while register B relies on some output derived from selected stages of register

A to determine how many times to clock. Analysing the state update function for A and

B, we know that since B relies on the output of A to determine how many times B is

clocked, it would be possible for two distinct B states , B, and B′, at time t to converge

6.4. Mechanisms which can cause state convergence 153

to the same state at time t + 1 for two different clocking values obtained from register A.

However for that to happen, register A at time t+1 must have had two distinct preimages,

A and A′, at time t, since a different number of clocks would be required for the two B

distinct states at time t to be equal at t + 1. But register A can only have one pre-image at

time t, since register A is clocked regularly, so state convergence is not possible for the

state-update function in the Step-1/2 generator and the LILI family of stream ciphers. In

contrast, using outputs from a clock-controlled register to control how the clock-control

register is clocked has the potential to cause state convergence.

To illustrate why this can occur, we use modified versions of LILI, LILI-M1 and

LILI-M2, as case studies.

LILI-M1

The LILI-family of stream ciphers consists of two stream ciphers. LILI-II [107] and

LILI-128 [29]. Although both ciphers differ in the various functions used, the structure

of both ciphers can be generalised. This structure consists of two LFSRs: LFSR A, LFSR

B, a nonlinear output function g and an integer function IB. IB takes as input selected

stages from A and outputs an integer IB(t). IB(t) determines how many times register

B is clocked.

In LILI-M1, we retain these components and add an additional integer function IA,

which takes as input selected stages from register B and outputs an integer IA(t). IA(t)
determines how many times register A is clocked. The functions for IA and IB output

the integer value IA(t) and IB(t) using the following equations.

IA(t) = 2 × B12(t) + B20(t) + 1
IB(t) = 2 × A12(t) + A20(t) + 1

The outputs of IA and IB can be seen in Table 6.9. During each iteration of LILI-M1’s

state-update function, the integer values IB(t) and IA(t) are calculated from the internal

state A(t) and B(t) respectively. Registers A(t) and B(t) are then clocked IA(t) and
IB(t) times respectively. Diagrams showing the difference in structures of the original

LILI family of stream ciphers and LILI-M1 is shown in Figure 6.12 and Figure 6.13

respectively.

Why state convergence occurs in LILI-M1. Assume that the current internal state

of LILI-M1 is (A(t + 1), B(t + 1)). To calculate how many times A(t + 1) needs to be

154 Chapter 6. State convergence and its effects on cryptanalysis

Table 6.9: Output of IA and IB based on their inputs.

B12(t) B20(t) IA(t) A12(t) A20(t) IB(t)

0 0 1 0 0 1

0 1 2 0 1 2

1 0 3 1 0 3

1 1 4 1 1 4

IB

LFSR BLFSR A

g
z(t)

Figure 6.12: General structure and components of the LILI keystream generators

LFSR BLFSR A

z(t)
g

IB IA

Figure 6.13: Structure and components of LILI-M1

6.4. Mechanisms which can cause state convergence 155

0 0 0 0 0 0

Forward clock

t + 1

A B

IB IA

Forward clock

1 00 0 0 0 0 0 0 0 00 0 1

Figure 6.14: LILI-M1 state at time t + 1 which has 0 pre-images

t

A B

IB IA

Forward clock Forward clock

0 0 0 0 0 0

0 0 0 0

Forward clock

t + 1

A B

IB IA

Forward clock

0

0 1 0 0

1 1 0

1 0

0 0 0 1 0 0 0 0 0 0

0 0 10 0 0 0 0 0 0

State obtained after clocking both A(t + 1) and B(t + 1) back once.

Figure 6.15: LILI-M1 state at time t + 1 which has 1 pre-image

clocked back in LILI-M1, we need to know the value of IA(t). The determination of

IA(t) requires knowledge of what the state B(t) was, which in turn requires knowledge

of IB(t). Determining IB(t) requires knowledge of A(t) which is not possible without

knowing what IA(t). If we knew what were the values of IA(t) and IB(t) from the

states A(t + 1) and B(t + 1), we would be able to determine (A(t + 1), B(t + 1))’s unique
pre-image. However we are not able to determine the original values of IA(t) and IB(t)
from A(t + 1) and B(t + 1) as the relevant stages used in the calculation of IB and IA

have already been clocked forward. Consequently, we have to assume each possible

combination of {IA(t), IB(t)} integer function outputs was equally likely. Using each

possible combination {IA, IB} outputs, we clock back registers A and B and check if the

integer value output of IA(t) and IB(t) at time t match the number of times we clocked

back registers A and B. If there are no matches, the state (A(t + 1), B(t + 1)) has no
valid pre-images. If there is one matching pair, the state (A(t + 1), B(t + 1)) has one
unique pre-image. If there is more than one match, there is more than one pre-image

for that particular (A(t + 1), B(t + 1)) state. Figures 6.14, 6.15, 6.16, 6.17, and 6.18 show

examples of LILI-M1 states which have 0–4 pre-images respectively. In the figures, the

shaded stages represent inputs to the integer function IA and IB. The left shaded stage

in each register are the stages A12 and B12 while the shaded stage on the right in each

register represent the stages A20 and B20.

156 Chapter 6. State convergence and its effects on cryptanalysis

t

A B

IB IA

A B

IB IA

t

Forward clock Forward clock

Forward clock Forward clock

0 1 0 0 0 0 1 0

0 1 0 0 0 1

0 01 0 0 0 1 0

Forward clock

t + 1

A B

IB IA

Forward clock

0 0

0 1 0 0

1 0

1 1 1 1 1 1 11 10

1 1 1 0 1 0 1 1 1 1

1 1 1 10 0 1 11 1

State obtained after clocking A(t + 1) back twice and B(t + 1) back once.

State obtained after clocking both A(t + 1) and B(t + 1) back four times.

Figure 6.16: LILI-M1 state at time t + 1 which has 2 pre-images

t

A B

IB IA

A B

IB IA

t

Forward clock Forward clock

Forward clock Forward clock

0 1 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 0

0 01 0 0 0 0 0 0 1 0 0

Forward clock
A B

IB IA

Forward clock

t 10 0 0 0 0 0 0 0 0 0

Forward clock

t + 1

A B

IB IA

Forward clock

0 0 0 1 0 1 0 0

0 0 0 0 1 0 0 001

State obtained after clocking A(t + 1) back once and B(t + 1) back three times.

0 0 0 1 0 01 0

0 0 0 0 01 1 1 0

State obtained after clocking A(t + 1) back three times and B(t + 1) back twice.

State obtained after clocking A(t + 1) back twice times and B(t + 1) back once.

Figure 6.17: LILI-M1 state at time t + 1 which has 3 pre-images

6.4. Mechanisms which can cause state convergence 157

t

A B

IB IA

A B

IB IA

t

Forward clock Forward clock

Forward clock Forward clock

0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0

0 1 0 1 0 0 1 1 0 0 0 1 0 01 0 1 1 0 0

State obtained after clocking A(t + 1) back once and B(t + 1) back four times.

0 01 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0

Forward clock
A B

IB IA

Forward clock

t

Forward clock
A B

IB IA

Forward clock

t 10 0 0 0 01 1 1 0 0 1 0 1 0 0 1 1 0 0

010 0 1 0 011 0 0 1 0 1 0 0 1 1 0 0

State obtained after clocking A(t + 1) back four times and B(t + 1) back once.

Forward clock

t + 1

A B

IB IA

Forward clock

State obtained after clocking both A(t + 1) and B(t + 1) back twice.

State obtained after clocking both A(t + 1) and B(t + 1) back three times.

Figure 6.18: LILI-M1 state at time t + 1 which has 4 pre-images

158 Chapter 6. State convergence and its effects on cryptanalysis

Table 6.10: Output of LILI-M2’s IA function based on its inputs.

A12(t) B20(t) IB(t)

0 0 1

0 1 2

1 0 3

1 1 4

IB

LFSR BLFSR A

g
z(t)

Figure 6.19: Structure and components of the LILI keystream generators

LILI-M2

LILI-M2 retains all the components of the LILI stream ciphers. The only modification

comes from the selection of stages which are used in the clocking function IB. In the

original LILI stream ciphers, both input stages to IB came from register A. In LILI-M2,

one of the input stages comes from register A, while the other comes from register B.

The function IB is defined as

IB(t) = 2 × A12(t) + B20(t) + 1

The output of IB based on its respective inputs can be seen in Table 6.10. Thus, in LILI-

M2, register A is regularly clocked, as was the case in the original LILI stream ciphers,

while the clocking of register B is determined by IB. A comparison of the original LILI

family of stream ciphers and LILI-M2 can be seen in Figure 6.19 and 6.20 respectively.

Why state convergence occurs in LILI-M2. In LILI-M2, registerA is regularly clocked

and autonomous, while the clocking of register B is determined by the output of the

control function IB(t). Since register A is autonomous, given the state A(t + 1), it is pos-
sible to determine the unique pre-image A(t) and determine its bit contribution in the

6.4. Mechanisms which can cause state convergence 159

IB

LFSR BLFSR A

g(x) z(t)

Figure 6.20: Structure and components of the LILI-M2

t + 1 0 0 0 1 0 0 0

IB
A B

Forward clock

Figure 6.21: LILI-M2 state at time t + 1 which has 0 pre-images

calculation of the IB(t). The state convergence problem arises when we try to determine

B(t + 1)’s unique pre-image. Since we do not know what the actual value of Bc(t) was,
we are not able to determine which update function to use to clock B(t+ 1) back to B(t).
Therefore, we have to assume that either control bit value (0 or 1) is possible. Clocking

B(t+1) back assuming the control bit was 0 or 1 may yield two possible pre-images, B(t)
and B′(t). Consequently, two unique states, (A(t),B(t)) and (A(t),B′(t)) which are

obtained when clocking back register B assuming that Bc(t) was 0 and assuming Bc(t)
was 1, may yield two pre-images which when clocked forwards, give (A(t + 1), B(t + 1)).
Figures 6.21, 6.22 and 6.23 show examples of LILI-M2 states which have 0–2 pre-images

respectively. In the figures, the shaded stages represent inputs to the integer function IB.

The shaded stage in register A is A12, while the shaded stage in register B is B20.

Avoiding state convergence in mutually-clocked keystream generators

Our analyses of LILI-M1 and LILI-M2 have shown that use of stages in a particular

register as input to an integer function which controls how both registers are clocked

may allow for the occurrence of state convergence. Mickey, which uses a similar method

to determine how both of its registers are clocked, also experiences state convergence.

Therefore, it is clear that keystream generators which use mutual-clocking mechan-

isms can experience state convergence. To prevent state convergence from occurring,

it is recommended that mutual clock-control mechanisms are not used as the state-

update function for clock-controlled keystream generators. However, the traditional

160 Chapter 6. State convergence and its effects on cryptanalysis

t + 1 0

IB
A B

Forward clock

IB

1

10 1 1 1 1

1 11 10

Forward clock

0

State obtained clocking A(t + 1) back once and B(t + 1) back four times.

A B
t

Figure 6.22: LILI-M2 state at time t + 1 which has 1 pre-image

t + 1 0

IB
A B

Forward clock

IB

1 1 1

1 110

Forward clock

0

A
t 0 0 0

B

0

t 0 0 0 1 1 1

A

IB Forward clock

0
B

State obtained clocking A(t + 1) once and B(t + 1) back twice.

State obtained clocking A(t + 1) and B(t + 1) back once.

0

Figure 6.23: LILI-M2 state at time t + 1 which has 2 pre-images

6.4. Mechanisms which can cause state convergence 161

clock-control mechanism, which uses output from a regularly clocked, autonomous

register to control how another register is clocked, appears to be immune from this state

convergence problem.

6.4.2 Self-update mechanisms

Self-update operations for stream ciphers are mechanisms which use the output from a

particular register to update the same register. Self-update mechanisms can found in the

initialisation functions of Mixer [79], which was analysed in Chapter 5, and Sfinks [21].

Cause of state convergence in self-update mechanisms

In Mixer, the cause of state convergence is due to using the output bit of B in the mixing

operation. Since the output bit has already been used to update A127(t+ 1) and B88(t+ 1),
via the XOR operation, it would not be possible to determine what the actual bit was,

forcing us to assume both φ = 0 or φ = 1 were possible. To prevent this problem from

occurring, the diffusion process of Mixer should not employ the mixing operation, but

should use another method to diffuse the key-IV bits across the two registers.

In Sfinks, the self-update operation comes from the design decision of using the

outputs of the Sfinks’s S-box, after a delay of seven clocks, to update selected stages

of Sfinks’s LFSR. In Section 6.3.1, the cause of state convergence in Sfinks occurs was

discussed. The cause was due to the fact that the one of the stages used as input to the

S-box to calculate the S-box’s 16-bit output was later updated using one of the S-box’s

output bits via the XOR operation. For Sfinks, the delay of seven iterations means that

during initialisation, A154(t + 7) is updated by xoring it with the a bit from the S-box

output calculated at time t (specifically, y10(t)), of which A161(t) is one of the S-Box
inputs. Since Sfinks’ register A is a regularly clocked LFSR, A161(t) = A154(t + 7) after
seven clocks. By flipping the bit at A161(t), there is a chance that, with all other stages

in A being the same, the flipped bit in A161(t) will result in a different value in y10(t).
When y10(t) is used to update A154(t + 7), there is a chance two distinct states will

converge to the same state. The equations which have to be met for this to happen are

detailed in Section 6.3.1. Alhamdan et al. [2] suggested that one possible way of avoiding

state convergence is to change the time delay by which the stages in Sfinks’ LFSR are

updated by the S-Box output word. However, they also note that care must be taken

when selecting the amount of delay to ensure that state convergence does not re-occur.

162 Chapter 6. State convergence and its effects on cryptanalysis

6.4.3 Addition-with-carry state-update operations

The summation generator and the F-FCSR keystream generator are ciphers which use

addition with carry operations to provide nonlinearity to the cipher. For FCSR, state

convergence can occur in some registers due to the state-update function being non-

invertible. For the summation generator, state convergence will occur if the memory

bit C of the summation generator was randomly initialised. That is, if two summation

generator states had the same contents for registers A and B, and the contents of memory

bit C for the two states are complements of each other, state convergence will occur.

To prevent state convergence, register C of a summation generator has to be initialised

to a fixed value (either 0 or 1). If the memory bit C was fixed during initialisation, the

state convergence problem described above will not occur. Precise details of how state

convergence can occur in keystream ciphers which use addition-with-carry state-update

functions are described in Section 6.3.2 and Section 6.3.3. However, it should be noted

that by fixing the value of that memory bit, the state entropy will still be reduced by one

bit.

6.4.4 State convergence during the loading phase

In earlier subsections, a classification of the causes of state convergence in stream ciphers

was presented. In this section, we review some other causes of state convergence which

are not due to any particular mechanism in the keystream generator, but still happen

due to the way the key and IV are loaded into the keystream generator’s internal state.

State convergence of this type occurs in two ciphers: A5/1 [22] and LILI-II [29].

A5/1

During the loading phase in A5/1, the 64 bit key and 22 bit IV are linearly loaded into

the register. As the size of A5/1’s register is 64 bits, state compression occurs and it is

not possible for each key-IV pair to generate a unique loaded state; it can be shown

that 222 key-IV pairs correspond to each loaded state. This further compounds the

state convergence which is experienced by A5/1 during initialisation and keystream

generation. A simple fix to state compression is to ensure that the size of the internal

state in a keystream generator is at least as large as the sum of the size of the key and IV.

6.5. State convergence and stream cipher cryptanalysis 163

LILI-II

Biham and Dunkelman [13] observed that the LILI-II stream cipher may also experience

state convergence during the loading phase. During LILI-II’s loading phase, the 128

bit register A is loaded using the XOR of the 128 bit key and 128 bit IV. To load the 127

bit register B, we first drop the first bit of the key, and drop the last bit of the IV, then

XOR the two 127 bit values together. During the diffusion phase, 255 bits of output is

generated. This 255 bit value is loaded into the two registers (128 bits in A, and 127 bits

in B). The cipher is run again to produce 255 bits of output. As before, this 255 bit value

is loaded into the two registers (128 bits in A, and 127 bits in B). At this point, LILI-II is

in an initial state and ready to produce keystream.

However, the linear operation of XORing the key and IV together causes state

convergence during the loading phase. Biham and Dunkelman [13] noted that if two

distinct keys-IV pairs (K1, V 1), and (K2, V 2) satisfy the differential K1⊕K2 = V 1⊕V 2 =
1128, the 255 bit output produced during the diffusion phase will be the same for the

two key-IV pairs. Since the same 255 bit output is directly loaded into the two registers

to form the state which is used during the diffusion phase, the two key-IV pairs will

produce the same initial state and consequently, the same keystream. To prevent this

from occurring, XORing the key-IV pair during the keystream generator’s loading

process should be avoided, and a direct loading of the key and IV into a keystream

generator’s internal state should be used instead.

6.5 State convergence and stream cipher

cryptanalysis

The usual goal of stream cipher cryptanalysis is to recover either the initial state or the

secret key of a keystream generator. In Section 5.2, three possible scenarios for state

convergence in keystream generators are described. These are:

Scenario 1: The same secret key used with different IVs generates the same initial state.

Scenario 2: The same IV used with different secret keys generates the same initial state.

Scenario 3: Distinct key-IV pairs generate the same initial state.

In this section, we analyse the effectiveness of state convergence on stream cipher

cryptanalysis with regards to some common techniques applied to bit-based stream

164 Chapter 6. State convergence and its effects on cryptanalysis

ciphers. These include time-memory-data tradeoff attacks, correlation attacks, algebraic

attacks and differential attacks.

6.5.1 Effect on time-memory-data tradeoff attacks

Various time-memory-data tradeoff (TMDT) algorithms were discussed in Section 2.4.7.

These included the initial state recovery TMDTattacks by Babbage [7] andGolić [55], and

the secret key recovery TMDT attacks by Hong and Sarkar (HS) [71], and Dunkelman

and Keller (DK) [41]. We discuss the effect state convergence has on these attacks below.

Internal and initial state recovery

If the attacker wanted to perform initial state recovery rather than internal state recovery,

the parameter s can be replaced with k + v to obtain appropriate tradeoffs. There are

factors to consider when choosing whether to mount an internal or initial state TMDT

attack. An attacker selecting random internal states to store in the lookup table does not

need to spend any time running the initialisation process before the state is stored in the

lookup table, and can produce keystream directly from the chosen state. The drawback

of this approach is that the internal state selected may not be a valid initial state; that is,

one which can be formed from a key-IV pair, and the attacker wastes memory space

storing that particular state. If an attacker selects random key-IV pairs and stores the

corresponding initial state, the attacker is assured that they are storing a valid initial

state and that this initial state will generate a valid keystream sequence. However, the

attacker must spend extra computational time performing the initialisation process for

each key-IV pair chosen for the lookup table.

If the captured keystream can be found in the lookup table, the attacker uses the

corresponding state to generate sufficient keystream to decrypt the entire encrypted

frame. Any state which produces the keystream segment enables the attacker to decrypt

the remainder of that frame. However, if multiple key-IV pairs generate the same

keystream, the attacker does not know the secret key that was used and they will not be

able to decrypt other frames in the communication but will need to perform the online

phase of the TMDT attack again in order to decrypt these. If the number of distinct

initial states I is such that I < 2k+v , the tradeoff equation in Equation 2.4.7 will result

in reduced time, memory and data requirements if the attacker is aware of this and

constructs the lookup table accordingly.

An example of how the reduction in the effective initial state size due to state conver-

gence has a positive effect on TMDT initial state recovery attacks relates to the cipher

6.5. State convergence and stream cipher cryptanalysis 165

Table 6.11: Tradeoffs for Mixer using Biryukov and Shamir’s TMDT attack

Original tradeoffs New tradeoffs

s 192 bits 191 bits 109 bits

T 296 295.50 254.50

M 296 295.50 254.50

D 248 247.75 227.25

Mixer, which was analysed in Chapter 5. The estimated total number of distinct initial

states after all key-IV pairs undergo the initialisation phase is bounded by 2191 and

2109. Table 6.11 shows the possible time, memory and data requirements for initial state

recovery TMDT attacks, taking into account Mixer’s state convergence problem. It can

be seen that state convergence may result in significantly reduced time, memory and

data requirements in BS’s TMDT attack.

The non-uniform rate of state convergence, which can be observed in A5/1 and
Mixer can also be exploited to make the TMDT attack more efficient. For example,

Biryukov et al. [18] exploited the fact that A5/1 can generate some segments of keystream

more often than others, which in turn, can only have been generated by a certain subset

of initial states. By constructing a lookup table using only these initial states, a TMDT

attack can be more efficient than a TMDT attack on a stream cipher which did not have

this characteristic.

Secret key recovery

Key recovery TMDT attacks require the attacker to construct lookup tables which consist

of the secret key, IV, and the corresponding keystream it generates. If the goal of the

attacker is to recover the secret key, the attacker can apply Hong and Sarkar’s tradeoff

equation, shown in Equation 2.4, or Dunkelman and Keller’s tradeoff equation, shown in

Equation 2.5 to determine if it is possible to recover the secret key faster than exhaustive

key search. It should be noted that Hong and Sarkar impose D and T restrictions, such

that T ≥ D2, while Dunkelman and Keller do not have this restriction. State convergence

can have a positive or negative impact on the effectiveness of key recovery TMDT attacks,

depending on which state convergence scenario occurs.

166 Chapter 6. State convergence and its effects on cryptanalysis

Table 6.12: Original and new tradeoffs for ZUC v1.4

Original HS New HS Original DK New DK

l 128 bits 100 bits 66 bits 128 bits 100 bits 66 bits

T 2128 2114 297 2102.4 291.2 277.6

M 2128 2114 297 2102.4 291.2 277.6

D 264 257 248.5 2102.4 291.2 277.6

Secret key recovery and Scenario 1. When a single secret key and different IVs

generate the same keystream, the HS attack can recover the correct secret key if that

key-IV pair was one of those selected for the construction of the lookup table. After the

online phase of the TMDT attack, an attacker can check that the recovered IV is the

same as that captured along with the keystream. If it is the same IV, the attacker can

be confident that they have recovered the correct secret key and can use that secret key

with other IVs to decrypt other frames in the communication. If the IV does not match

the one recorded in the table, the attacker knows that they have recovered the wrong

secret key and would need to perform the online phase of the attack again.

A similar process happens in the DK attack. In the online phase, the attacker uses

the appropriate IV-based lookup table and checks if there is a match on the captured

keystream. If there is a match, the corresponding secret key is the correct secret key

which generated the captured keystream. The attacker can then use that same secret key

with other IVs to decrypt other encrypted frames in the communication.

Reduced secret key sizes may have a positive effect on key recovery TMDT attacks.

An example of this can be seen in the ZUC stream cipher. The ZUC stream cipher [36]

is a stream cipher which can experience Scenario 1 state convergence. The effective key

size of ZUC was estimated by Wu et al. [111] to be between 66 to 100 bits. In Table 6.12

we show the possible time, memory and data requirements for both HS and DK’s TMDT

attack when the effective key size is 66 or 100 bits and assuming the size of the IV is

unchanged at 128 bits. It can be seen that state convergence may result in reduced time,

memory and data requirements in both the HS and DK attack.

Secret key recovery and Scenario 2. Where the same keystream is generated by

different secret keys for any given IVs, the attacker does not have the confidence that

secret key they recovered is the correct one.

6.5. State convergence and stream cipher cryptanalysis 167

Let us assume that three secret keys, K1, K2 and K3, with the same IV, V 11, produce

the same keystream for a particular stream cipher. Two secret keys, K2 and K3 were se-

lected by the attacker for the construction of the lookup table. The original conversation

was encrypted with K1 and a particular frame in this conversation was encrypted with

the IV V 1. During the online phase of the attack, the attacker recovers the key K2. If

an attacker, incorrectly assuming that K2 was the actual secret key, tries to use K2 to

decrypt other frames, it should not be successful, since K2 with a different IV V 2 will

most likely not generate the same keystream as would have been generated by the K1-V 2

pair. Since K1 was not selected during the construction of the lookup table, the secret

key recovery TMDT attack in this scenario is equivalent to initial state recovery. For

the attack to succeed in this situation, the attacker has to hope that the correct secret

key was selected during the construction of the lookup table. If the correct secret key

was not used, the attacker will not be able to decrypt other encrypted frames in a single

conversation.

If γ is the number of secret keys an attacker obtains at the end of the online phase of

the attack and ε, with ε < V , being the effective IV size of the stream cipher, the HS and

DK tradeoff would be

(T + γ) ⋅M2 ⋅ D2 = 22(k+ε) (6.4)

The memory and data requirements however, remain the same as would have been

obtained in Equation 2.4.7. However, since γ possible secret keys can now appear in the

lookup table, an attacker needs to try, on average,
γ
2 keys with other IVs before they can

be certain if the secret key they are currently trying is correct.

If a keystream generator uses the same state-update function for initialisation and

keystream generation, it can be viewed as a keystream generator which performs an

extended version of the initialisation process to generate keystream. Hence, if the seg-

ment of keystream used during the construction of the lookup table matched a segment

of keystream which was captured not from the beginning of keystream generation,

the number of possible secret keys which could have generated the keystream with the

particular IV can increase. Therefore, a successful TMDT secret key recovery attack with

keystream generator which use the same state-update function for both initialisation

and keystream generation can be less likely than an attack on a keystream generator

which uses a different state-update function for initialisation and keystream generation.

168 Chapter 6. State convergence and its effects on cryptanalysis

Secret key recovery and Scenario 3. Where the keystream is generated by different

key-IV pairs, during the online phase an attacker will know if they have recovered the

correct secret key based on the publicly known IV. If τ and є, with τ < 2k and ε < 2v , are
the effective secret key and IV size respectively, the tradeoff curve would be

T ⋅M2 ⋅ D2 = 22(τ+ε) (6.5)

Similar to Scenario 1, since the attacker knows the IV used to generate the captured

keystream and assuming the secret key used to generate the captured keystream was

used during the construction of the lookup table, the attacker can be confident that the

secret key they recover during the online phase of the TMDT attack is the correct one.

Furthermore, since τ < 2k and ε < 2v , the HS and DK attacks will be less than exhaustive

key search.

Biryukov et al.’s [18] TMDT attack on A5/1 describes an attack which is able to

recover the secret key in a few minutes at most. The most expensive cost of this attack is

the pre-computation complexity, which they calculated to be

P = M ⋅
√
T = 248

where M = 236, T = 224, and 248 is the total number of initial states which will produce a

certain 16-bit output prefix (264 × 2−16). They estimated the number of distinct initial

states at the end of A5/1’s diffusion phase to be 19.2/100 × 264 ≈ 261.62 due to state

convergence. Using this new estimate, the pre-computation complexity of Biryukov et

al’s attack is reduced to 261.62 × 2−16 = 245.62. This in turn, potentially reduces the time

and memory requirements to be M = 235 and T = 221.24.

Summary

This section considered how state convergence could affect the success of TMDT attacks.

In the case of initial state TMDT attacks, an attacker potentially needs to guess a smaller

set of initial state than what was originally intended by the designers of the stream

cipher, since not all distinct key-IV pairs generate a distinct initial state. This could

result in less time, data and memory requirements needed for the initial state TMDT

attacks to succeed than previously estimated by the designers of the stream cipher. The

disadvantage of initial state TMDT attacks is if the attacker wanted to decrypt other

encrypted frames in the communication, they would need to re-run the TMDT attack for

each frame. If the attacker were to repeatedly use initial state recovery TMDT attacks to

6.5. State convergence and stream cipher cryptanalysis 169

decrypt multiple frames, it can be less efficient than secret key recovery TMDT attacks.

For secret key recovery TMDT attacks, the success of the attacks depend on the

type of scenario, as outlined in Section 5.2. Unless the convergence is such that different

secret keys with the same IV produce the same initial state, an attacker who recovers

a secret key can check if the associated IV value matches that which was observed

along with the keystream. If the IV value is the same, the attacker can be confident

that they have recovered the correct key. However, if state convergence was such that

it was possible that multiple distinct secret keys with the same IV generate the same

keystream, there is a possibility that the secret key recovered by the attacker during the

online phase of the TMDT attack is not the correct secret key. In this case, it is likely

that the attacker can only decrypt a single frame and secret key TMDT attacks maybe

less effective than claimed. The attacker can only be confident that they have actually

recovered the correct secret key if they can use it to decrypt the contents of all the frames

in the communication.

6.5.2 Effect on correlation attacks

Correlation attacks require the attacker to reconstruct the correct initial state from the

observed keystream by measuring the level of correlation between a particular initial

state and the keystream it generates. If the stream cipher suffers from state convergence,

there can be many distinct initial state which generate the same keystream. These

different initial states may not give the same level of correlation as the actual initial

state used to generate the keystream. However, since all these initial states may generate

the same keystream, the attacker can use either one to generate keystream to decrypt

the frame in the communication, without worrying if the initial state they are using

was the initial state used to encrypt the frame in the first place. Simpson et al. [104]

used a correlation attack to recover the initial states for a shrinking generator [30]

which generated a particular segment of keystream. In some cases, the correlation value

between the keystream and a certain initial state A′ was higher than the correlation value

of the actual initial state A and the said keystream. Note however, that both A and A′

produced the same keystream. Since A and A′ generate the same keystream, the attacker

can use either one to generate keystream to decrypt the frame in the communication,

without worrying if the initial state they are using was the initial state used to encrypt

the frame in the first place. Hence state convergence may make correlation attacks even

more effective for state recovery.

170 Chapter 6. State convergence and its effects on cryptanalysis

6.5.3 Effect on algebraic attacks

The usual goal of algebraic attacks, reviewed in Section 2.4.8, is to recover the initial state

of an encrypted frame in a communication. For a stream cipher which does not suffer

from state convergence, solving a system of equations should yield only one unique

solution provided enough equations are generated. If this stream cipher suffers from

state convergence during keystream generation, solving a system of equations which

has the same number of equations and variables in the previous example would yield

more than one unique solution corresponding to all possible initial states that generate

the same keystream.

The complexity of algebraic attacks depends on the technique used to solve the

system of equations. If a brute-force approach is used to solve the system of equations,

the time needed to recover an initial state is expected to decrease because the algorithm

can terminate the moment an initial state which can generate the keystream is recovered.

That is, the attacker does not need to recover the actual initial state which was originally

used to encrypt the frame, as long as the initial state recovered produces the same

keystream as the actual initial state. If an algorithm which uses a Gröbner basis-like

approach is used, like the F4 algorithm [46] described in Section 2.4.8, the time taken to

solve the full system of equations is not affected by whether or not the system contains

one or multiple solutions. If we were to use partial key-guessing with the F4 algorithm,

the time needed to solve the system of equations is expected to be in between a brute-

force approach and solving the same system of equations using the F4 algorithm without

partial key-guessing.

If the goal of the attacker is secret key recovery, the system of equations will be

more complex, as the system of equations will need to take into account the initialisa-

tion phase, which can consist of many iterations of the state-update function in the

diffusion phase. However, since the the state-update functions for both initialisation

and keystream generation is nonlinear for modern stream ciphers, this can result in a

system of equations of high degree and solving this system of equations for a particular

stream cipher can take a longer time as compared to solving a system of equations whose

goal is initial state recovery for the same stream cipher. The equations for secret key

recovery can consist of known IV bits. If the system of equations are formed taking the

IV bits into account, the confidence of the attacker of whether the secret key recovered

is correct depends on which scenario of state-convergence, discussed at the beginning

of Section 6.5 occurs. If Scenario 1 or Scenario 3 state convergence occurs, the attacker

can be confident that the secret key recovered is correct. However, if Scenario 2 state

6.6. Conclusion 171

convergence occurs, the attacker does not have the same confidence as that same IV with

a different secret key could have also generated the keystream. The attacker would need

to check if the recovered secret key can decrypt the other frames in the communication.

If it can successfully decrypt the remaining frames, the attacker can be confident they

have correctly recovered the correct secret key.

6.5.4 Effect on differential attacks

Biham and Dunkelman propose a general framework for analysing stream ciphers using

differential cryptanalysis [13]. In their framework, one of the differential characteristics

listed which attackers could exploit was comparing the difference in two or more initial

states which were generated using two or more distinct key-IV pairs. For any given

key, the existence of IV pairs which generate the same keystream allows an attacker to

generate equations in the state bits which lead ultimately to recovery of information on

some of the key bits. The frequency with which the relevant IV pairs occur determines

the data requirements of the attack.

Successful differential attacks on the Py [14] and Pypy [15] ciphers have beenmounted

by Wu and Preneel [112, 113] and Isobe et al. [73]. Wu and Preneel [112] noted that if

two IVs with a two-byte difference satisfied certain differentials, state convergence can

occur with probability 2−23.2 after the diffusion phase is completed. The key recovery

attacks on Py and Pypy by Wu and Preneel [113] and Isobe et al. [73] exploited these

differentials in their attacks. Wu and Preneel [113] and Isobe et al. [73] noted that if the

size of the IV is 80 bits or more, the key recovery attack on Py and Pypy can be faster

than exhaustive key search. For example, in Isobe et al.’s attack, for 24 chosen 128 bit

IVs, a 128 bit secret key of Py and Pypy can be recovered with an attack complexity of

T = O(248), which is significantly less than the complexity of a brute force attack.

6.6 Conclusion

In this chapter, we have identified twomethods which cryptanalyst can use to determine

if state convergence is present in a stream cipher. Thesemethods are state transition tables

and various combinations which a register can be clocked back. We analysed several

stream ciphers known to experience state convergence and discussed why this occurs.

We showed, using a general example of why a feedback-with-carry state-update function

is not invertible and demonstrated why state convergence occurs in the summation

172 Chapter 6. State convergence and its effects on cryptanalysis

generator. We also show that the effective state size of Mickey-v2 drops below 160 bits,

contrary to the claims of the designers

From these analyses, we identified three mechanisms which cause state convergence

and the stream ciphers analysed in Section 6.2 and Section 6.3 were classified into these

mechanisms. These mechanisms are: mutual clock-control, self-update operations, and

addition-with-carry state-update operations. In particular, we demonstrate, through

modified versions of the LILI-family of stream ciphers, why mutual clock-control, an

amalgamation of mutual-update mechanisms and clock-control mechanisms, causes

state convergence when the individual mechanisms may not cause state convergence. It

is demonstrated that use of these mechanisms can cause state convergence and their use

in state-update functions in keystream generators should be avoided.

The impact state convergence may have on common stream cipher cryptanalytic

techniques like correlation attacks, time-memory-data tradeoffs, algebraic attacks, and

differential attacks are also discussed. For correlation attacks, state convergence in

stream ciphers may result in the recovering the initial state with an attack complexity

that is less than exhaustive keysearch. In the case of time-memory-data tradeoff attacks,

state convergence can have a positive impact on the efficiency of initial state recovery,

and state convergence Scenarios 1 and Scenarios 3. In the Scenario 2, the attacker needs

to try all relevant secret keys recovered during the online phase of the attack before

they can be confident that they have recovered the correct secret key. For algebraic

attacks, multiple solutions when a system of equations consisting of an equal number

of equations and variables is solved is possible; something which would not have been

possible if the stream cipher did not suffer from state convergence during its keystream

generation process. For differential attacks, if Scenario 2 state convergence occurs, the

recovery of secret key bits may be possible. Furthermore, If Scenario 2 state convergence

occurs, there is a higher chance of generating the same keystream for two different

frames in a single communication, which may allow an attacker to decrypt encrypted

frames using a ciphertext-only attack [37].

For some stream ciphers like A5/1 andMixer, the number of distinct initial states can

decrease as the number of iterations of the initialisation state update function performed

increases. This decreases the effective key-IV space of the keystream generator while

simultaneously decreasing the efficiency of the rekeying process with no corresponding

increase in security. If the state-update function used during initialisation is also used

to generate keystream, state convergence problems will continue and can result in a

further reduction of the effective key-IV space.

6.6. Conclusion 173

Avoiding state convergence requires careful analysis of the state-update functions

used during both initialisation and keystream generation to ensure that they are one-

to-one. These one-to-one state-update functions should also be carefully used. The

state convergence experienced by Sfinks is an example that demonstrates that the use of

one-to-one components in composing a state update function is not enough to ensure

that state convergence does not occur, and that designers should ensure that the overall

state update function is also one-to-one.

Current stream cipher proposals commonly include an analysis section detailing

their claimed resistance to various attacks. We recommend that future stream cipher

designers pay careful attention to the choice of state-update functions used during

initialisation and keystream generation, as functions which are not one-to-one may

make many attacks more effective than anticipated.

174 Chapter 6. State convergence and its effects on cryptanalysis

Chapter 7

Conclusion and Future Research

As presented in Section 1.1, the main aim of this research was to examine the rela-

tionship between structural features of keystream generators and security. From

this perspective, we have analysed the security provided by keystream generators whose

keystream is generated using either of three models: linear update and nonlinear output

functions, nonlinear update and linear output functions, and nonlinear update and

nonlinear output functions. We have performed both algebraic and statistical analysis

of keystream generators which use these three models. An in-depth study of state con-

vergence in keystream generator was conducted. State convergence in stream ciphers

may also lead to a reduction in security.

In this chapter, the contributions of this thesis are reviewed in Section 7.1. Directions

for future research are explored in Section 7.2.

7.1 Review of Contributions

This section summarises the contributions to knowledge regarding stream cipher ana-

lyses made in this thesis.

7.1.1 Contributions in Chapter 3

Aspects of sequences produced by keystream generators which use a linear state update

function and a nonlinear output function were examined in Chapter 3. In particular,

the m-tuple distributions for the sequences produced by nonlinear filter generators

175

176 Chapter 7. Conclusion and Future Research

are examined. Firstly, we show, given a fixed nonlinear Boolean function, the m-tuple

distributions sequences produced by any corresponding nonlinear filter generator are

non-uniform. Additionally, we show that the sequences produced by nonlinear filter

generators which use consecutive tap settings to the filter function may exhibit a larger

non-uniformity than those produced by nonlinear filter generators which use uneven

tap settings. To the best of our knowledge, a comparison of the m-tuple distribution of

nonlinear filter generator sequences which use consecutive tap settings and uneven tap

settings, respectively, has not appeared in the public literature.

7.1.2 Contributions in Chapter 4

Chapter 4 examined linearly filtered nonlinear feedback shift register keystream gen-

erators. We analyse the m-tuple distribution of keystream sequences produced by the

complementary concept of the nonlinear filter generator, the linearly filtered nonlin-

ear feedback shift register. Algebraic analysis of the Trivium stream cipher are also

performed.

Contributions of Section 4.1

In Section 4.1, the m-tuple distributions of sequences produced by linearly filtered non-

linear feedback shift register keystream generators is investigated. We show that, for a

fixed nonlinear feedback function, the m-tuple distributions of keystream sequences

produced by applying a linear output function which takes as inputs consecutive tap

settings can have a more uniform m-tuple distribution than keystream sequences pro-

duced by a linear output function which takes as inputs uneven tap settings. This is in

contrast to our findings in Chapter 3, where the sequences produced by nonlinear filter

generators which use uneven tap settings can have more uniform m-tuple distributions.

To the best of our knowledge, prior to this research, the findings in this section have not

appeared in published literature, and our study has provided further insight into the

properties of nonlinear sequences generated by linearly filtered nonlinear feedback shift

register keystream generators.

Contributions of Section 4.2

In Section 4.2, we present the first of two new analyses on Trivium-like ciphers and

search for slid pairs in Trivium [26]. We extend the work of Priemuth-Schmid and

Biryukov [92] and search for additional types of slid pairs in the Trivium cipher. A set

7.1. Review of Contributions 177

of slid pairs in Trivium is a particular sort of loaded state in the set Γα which after α

iterations, produces another sort of loaded state in the set Θα . Prior to our investigation

in this thesis, Priemuth-Schmid and Biryukov [92], and Zeng and Qi [115] were, to

our knowledge, the only researchers who investigated slid pairs in Trivium. However,

they did not investigate if any of the loaded states in Γα is present in Θα. This did not

allow both groups of researchers to establish a lower-bound on the period of keystream

sequences produced by Trivium. In our two experiments, we answered this question for

particular α values. In our first experiment, we have shown that the set Γα ∩Θα is empty,

for 111 ≤ α ≤ 121, and in our second experiment, we have shown that the sets Γα ∩Θα′ ,

for 111 ≤ α ≤ 113 and 111 ≤ α′ ≤ 113, are empty. The second experiment have allowed us

to establish that for 111 ≤ α ≤ 113, we were unable to find state cycles consisting of more

than two consecutive loaded states.

Contributions of Section 4.3

In this section, we present some new algebraic analyses on Trivium-like ciphers. We

performed algebraic analyses on Trivium-like ciphers using the combined techniques

of Berbain et al. [10] and Raddum [93]. By analysing Trivum-like ciphers using this

combination of techniques, we answer Berbain et al.’s open question regarding the

possibility of extending their attack to ciphers in which q bits are updated at each step,

while only q′ < q linear combinations of state bits are output. It is shown that the size of

the registers, tap settings, and the number of registers whose stages are used as input into

the input function all play a part in determining if the attack can succeed. For the case of

Bivium-A [93], we present two successful algebraic divide-and-conquer attacks. The first

attack requires 177 bits of keystream, and has less time and memory requirements than

attacks done by other researchers. The second attack requires more time and memory,

but requires 162 bits of keystream— 15 bits less than our first attack.

7.1.3 Contributions of Chapter 5

Chapter 5 examined keystream generators which produced keystream using a nonlinear

feedback shift register and a nonlinear output function. In particular, we analysed the

Mixer [79] stream cipher. This is an irregularly clocked, bit-based stream cipher with

an internal state size of 217 bits. We show that the state-update function used during

Mixer’s initialisation process is not one-to-one, and as a consequence, state convergence

occurs. The degree of state convergence increases as more iterations of the initialisation

state-update function are invoked. After 200 iterations, it is estimated that the number

178 Chapter 7. Conclusion and Future Research

of distinct initial states is between 2109 and 2191. We also show that this state convergence

continues during keystream generation, due to Mixer’s shrinking-generator fashion of

generating keystream.

7.1.4 Contributions of Chapter 6

Chapter 6 investigates the state convergence problem in greater detail. A short discussion

on the methods of detecting state convergence is done in Section 6.1. A discussion

of ciphers which have been known to have state convergence problems is done in

Section 6.2 and Section 6.3. In particular, for irregularly clocked ciphers, we show,

through an analysis of state-update function of A5/1 and a modified version of A5/1,
A5/1M, that majority-clock update functions can cause state convergence. We also

provide counter-arguments to the claim made by the designers of the Mickey-v2 stream

cipher, that increasing the state size of the keystream generator decreases the degree of

state convergence.

For regularly clocked ciphers, we show how the analysis on the state-update function

which causes state convergence in the F-FCSR stream cipher [77] can be also be applied

to analyse the state-update function used in the summation generator in Section 6.3.3.

As a result, we show how the summation generator suffers from state convergence.

Based on the reviews done in Section 6.2 and Section 6.3, we are able to identify three

mechanisms which cause state convergence in Section 6.4. These mechanisms are:

mutual-clock control, self-update mechanisms and addition-with-carry. In particular,

we showwhymutual clock-control, an amalgamation ofmutual-updatemechanisms and

clock-control mechanisms, causes state convergence when the individual mechanisms

do not cause state convergence.

In Section 6.5, we analyse the effectiveness of state convergence on stream cipher

cryptanalysis with regards to some common analysis techniques applied to bit-based

stream ciphers. In the case of initial state recovery, we show how state convergence may

result in the recovery of the initial state with an attack complexity which is less than

exhaustive key search for correlation, and time-memory-data tradeoff attacks.

7.2 Future Directions

The research done in this thesis provides a foundation on which the study of stream

ciphers of each model can be continued. A summary of several possible future research

directions is given below.

7.2. Future Directions 179

7.2.1 Extending our Work in Chapter 3

Our experiments conducted in Chapter 3 represent only a small subset of possible

nonlinear filter generators which can be constructed using a fixed nonlinear Boolean

function. More experiments should be performed with more feedback functions and

tap settings to verify if the trends observed in our experiments still occur. Secondly,

establishing a mathematical proof on the relationship between the feedback function,

tap settings to the nonlinear Boolean function, and properties of the nonlinear Boolean

function have on the m-tuple distribution of the sequences produced by the nonlinear

filter generator remains an open question.

7.2.2 Extending our Work in Chapter 4

Similar to the future work proposed for nonlinear filter generators, more experimental

work needs to be done to verify our findings. Secondly, there is a need for amathematical

proof thatm-tuple distributions of sequences generated by linearly filtered NLFSRs with

consecutive taps to the linear function are more uniform than linearly filtered NLFSRs

with taps which form a full positive difference set to the linear function, in the general

case

The work on slid pairs in Trivium can also be extended. Zeng and Qi [115] have

shown that, by using a SAT solver, searching for slid pairs can be more efficient than

searching for slid pairs using the Gröbner basis method. Using a SAT solver to check if

any loaded state in Γα also exists in the set of loaded states in Θα′ for α ≥ 114 and α′ ≥ 114
is future work. The use of slid pairs in algebraic attacks, discussed in Section 4.2.7 is also

an avenue for future work.

In Section 4.3, we performed an algebraic analysis using the combined methods

of Berbain et al. and Raddum and we showed what conditions were required for their

algebraic attack to succeed on Trivium-like ciphers. The second part of Berbain et al.’s

paper discussed how their technique, when used in conjunction with correlation attacks,

can be used to attack linearly filtered NLFSRs. The feasibility of their correlation attack

on Trivium-like ciphers should be investigated.

A recent paper by Simpson and Boztas [106], proposed an alternative representation

of Trivium, called Trivium-3D. Trivium-3D uses word-based shift registers, where each

register stage holds three bits. Trivium-3D updates nine bits of internal state and outputs

three bits of keystream at each iteration. In contrast, the original Trivium proposal

updates three bits of internal state and outputs one bit of keystream at each iteration.

180 Chapter 7. Conclusion and Future Research

Three interesting areas of research with regards to this new word-based represent-

ation of Trivium are proposed. Firstly, analyse Trivium-3D algebraically using our

approach. Secondly, investigate whether Trivium-3D can be broken using the correl-

ation attack proposed by Berbain et al. Thirdly, analyse whether the increase in both

the number of bits updated, and number of keystream bits output at each iteration for

Trivium-3D increases (or decreases) the security provided.

The findings in Section 4.1 indicated that some m-tuples do not occur in sequences

generated by linearly filtered NLFSRs. Whether non-occurring m-tuples are present in

sequences produced by Trivium-like ciphers also remains an open question.

7.2.3 Extending our Work in Chapter 5

In Chapter 5, we analysed the Mixer stream cipher and showed that it suffers from

state convergence. An area for future research is to investigate if the state convergence

analysis can be extended to a key or initial state recovery attack. Another possible area

of research is to investigate the m-tuple distribution of keystream sequences produced

by nonlinearly filtered nonlinear feedback shift registers in general. Questions which

can be investigated include how choices of nonlinear feedback functions, nonlinear

Boolean functions, and tap settings to the nonlinear Boolean function affect them-tuple

distribution of the keystream produced by the keystream generator.

7.2.4 Extending our Work in Chapter 6

In Chapter 6, the state convergence problem in stream ciphers was investigated in more

detail. In Section 6.4, three causes of state convergence were identified. One possible area

of future research would be to investigate if stream ciphers not reviewed in this chapter

also suffer from state convergence, and if so, examine if the cause of state convergence

is due to any of the mechanisms we have identified. Another area of future research

would be the implementation of cryptanalytic attacks on the ciphers known to suffer

from state convergence, to verify the expected reductions in time, memory and data

requirements which may arise from state convergence.

❧

Appendix A

Truth Table output for the F3 Boolean

function

Appendix A lists the output truth table for the nonlinear Boolean function F3 used for

our experiments in Chapter 3. F3 is a 7-bit Boolean function used in the Pomraranch

stream cipher [75].

0,1,1,1,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,0,0,0,0,1,0,1,1,1,1,1,0,0,

1,1,0,0,0,1,0,1,1,0,0,0,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,0,0,1,1,0,

1,0,1,0,1,1,0,0,0,0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,0,1,0,0,0,1,1,1,

0,1,1,0,0,0,0,1,1,0,0,1,1,1,1,1,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0

181

182 Appendix A. Truth Table output for the F3 Boolean function

Appendix B

Experimental Results for Chapter 3

Appendix B lists the results from the analysis of the m-tuple distribution, for m =
{2, 3, . . . 13}, for Boolean functions F1, F2 and F3 in Chapter 3.

183

LFSR
feedback
function

m-
tuple

CONS NON-CONS
T1 T2

Min Max No.
non-
occurri
ng
tuples

S.D. S.D
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D.
(Ratio)

Min Max No.no
n-
occur
ring
tuples

S.D S.D.
(Ratio)

R1 2 1791 2304 0 256.250 0.031284 2047 2048 0 0.433 0.000053 2047 2048 0 0.433 0.000053
3 703 1216 0 192.209 0.023466 1008 1040 0 15.878 0.001938 1008 1040 0 15.878 0.001938
4 255 640 0 128.125 0.015642 496 528 0 11.228 0.001371 494 530 0 11.393 0.001391

R2 2 1791 2304 0 256.250 0.031284 2047 2048 0 0.433 0.000053 2047 2048 0 0.433 0.000053
3 703 1216 0 192.209 0.023466 1023 1024 0 0.331 0.000040 1023 1024 0 0.331 0.000040
4 255 640 0 128.125 0.015642 511 512 0 0.242 0.000030 509 514 0 2.076 0.000253

R3 2 7167 9217 0 1024.250 0.031259 7679 8704 0 512.250 0.015633 8191 8192 0 0.433 0.000013
3 2815 4865 0 768.208 0.023445 3520 4672 0 367.804 0.011225 4095 4096 0 0.331 0.000010
4 1023 2561 0 512.125 0.015629 1632 2464 0 228.622 0.006977 2047 2048 0 0.242 0.000007

R4 2 7167 9216 0 1024.250 0.031259 8191 8192 0 0.433 0.000013 8191 8192 0 0.433 0.000013
3 2815 4864 0 768.208 0.023445 4095 4096 0 0.331 0.000010 4095 4096 0 0.331 0.000010
4 1023 2560 0 512.125 0.015629 2040 2056 0 7.941 0.000242 2047 2048 0 0.242 0.000007

R5 2 14335 18432 0 2048.250 0.031254 16383 16384 0 0.433 0.000007 16383 16384 0 0.433 0.000007
3 5631 9728 0 1536.208 0.023441 8191 8192 0 0.331 0.000005 8191 8192 0 0.331 0.000005
4 2047 5120 0 1024.125 0.015627 4080 4112 0 15.939 0.000243 4080 4112 0 15.939 0.000243

R6 2 14335 18432 0 2048.250 0.031254 16383 16384 0 0.433 0.000007 16383 16384 0 0.433 0.000007
3 5631 9728 0 1536.208 0.023441 8191 8192 0 0.331 0.000005 8191 8192 0 0.331 0.000005
4 2047 5120 0 1024.125 0.015627 4095 4096 0 0.242 0.000004 4095 4096 0 0.242 0.000004

R7 2 57343 73728 0 8192.250 0.031251 65535 65536 0 0.433 0.000002 65535 65536 0 0.433 0.000002
3 22527 38912 0 6144.208 0.023438 32767 32768 0 0.331 0.000001 32767 32768 0 0.331 0.000001
4 8191 20480 0 4096.125 0.015626 16383 16384 0 0.242 0.000001 16383 16384 0 0.242 0.000001

R8 2 57343 73728 0 8192.250 0.031251 65535 65536 0 0.433 0.000002 65535 65536 0 0.433 0.000002
3 22527 38912 0 6144.208 0.023438 32767 32768 0 0.331 0.000001 32767 32768 0 0.331 0.000001
4 8191 20480 0 4096.125 0.015626 16383 16384 0 0.242 0.000001 16383 16384 0 0.242 0.000001

R9 2 229375 294912 0 32768.250 0.031250 262143 262144 0 0.433 0.000000 262143 262144 0 0.433 0.000000
3 90111 155648 0 24576.208 0.023438 131071 131072 0 0.331 0.000000 129024 133120 0 2047.875 0.001953

4 32767 81920 0 16384.125 0.015625 65535 65536 0 0.242 0.000000 63488 67584 0 1448.066 0.001381
R10 2 229375 294912 0 32768.250 0.031250 262143 262144 0 0.433 0.000000 262143 262144 0 0.433 0.000000

3 90111 155648 0 24576.208 0.023438 131071 131072 0 0.331 0.000000 131071 131072 0 0.331 0.000000
4 32767 81920 0 16384.125 0.015625 65535 65536 0 0.242 0.000000 65535 65536 0 0.242 0.000000

Table 1: Distribution table for F1 (2,3,4 bit tuples)

LFSR
feedback
function

m-
tuple

CONS NON-CONS
T1 T2

Min Max No. non-
occurring
tuples

S.D. S.D
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D.
(Ratio)

Min Max No.non-
occurrin
g tuples

S.D S.D. (Ratio)

R1 5 80 416 0 80.056 0.009774 230 290 0 17.833 0.002177 242 270 0 7.299 0.000891
6 16 256 0 48.606 0.005934 103 154 0 12.619 0.001541 114 146 0 7.977 0.000974
7 4 148 0 28.873 0.003525 44 87 0 8.925 0.001090 47 78 0 6.863 0.000838

R2 5 80 416 0 80.056 0.009774 236 276 0 16.333 0.001994 242 272 0 7.860 0.000960
6 16 256 0 48.606 0.005934 101 153 0 12.560 0.001533 111 145 0 7.719 0.000942
7 4 148 0 28.873 0.003525 44 84 0 9.089 0.001110 45 84 0 6.732 0.000822

R3 5 320 1665 0 320.056 0.009768 731 1315 0 133.982 0.004089 1005 1043 0 10.264 0.000313
6 64 1024 0 194.345 0.005931 347 700 0 78.005 0.002381 496 530 0 8.300 0.000253
7 16 592 0 115.458 0.003524 166 380 0 44.267 0.001351 235 277 0 9.466 0.000289

R4 5 320 1664 0 320.056 0.009768 1007 1040 0 7.998 0.000244 980 1068 0 26.226 0.000800
6 64 1024 0 194.345 0.005931 484 544 0 17.361 0.000530 464 562 0 22.664 0.000692
7 16 592 0 115.458 0.003524 224 293 0 15.493 0.000473 213 297 0 16.530 0.000504

R5 5 640 3328 0 640.056 0.009767 2016 2096 0 22.628 0.000345 2012 2084 0 19.957 0.000305
6 128 2048 0 388.664 0.005931 962 1086 0 26.131 0.000399 984 1056 0 15.796 0.000241
7 32 1184 0 230.905 0.003523 462 561 0 19.939 0.000304 461 559 0 18.176 0.000277

R6 5 640 3328 0 640.056 0.009767 2029 2066 0 11.539 0.000176 2038 2058 0 8.271 0.000126
6 128 2048 0 388.664 0.005931 1005 1049 0 9.765 0.000149 985 1065 0 18.788 0.000287
7 32 1184 0 230.905 0.003523 483 538 0 10.089 0.000154 460 560 0 18.699 0.000285

R7 5 2560 13312 0 2560.056 0.009766 8184 8200 0 7.971 0.000030 8112 8272 0 65.932 0.000252
6 512 8192 0 1554.580 0.005930 3985 4215 0 58.325 0.000222 3924 4268 0 66.576 0.000254
7 128 4736 0 923.586 0.003523 1853 2258 0 88.290 0.000337 1922 2178 0 44.703 0.000171

R8 5 2560 13312 0 2560.056 0.009766 8128 8256 0 63.969 0.000244 8175 8208 0 16.032 0.000061
6 512 8192 0 1554.580 0.005930 3900 4284 0 87.166 0.000333 4058 4134 0 20.095 0.000077
7 128 4736 0 923.586 0.003523 1882 2189 0 64.085 0.000244 2002 2107 0 20.461 0.000078

R9 5 10240 53248 0 10240.056 0.009766 32255 33280 0 512.031 0.000488 30944 34592 0 923.516 0.000881
6 2048 32768 0 6218.244 0.005930 15808 16960 0 367.671 0.000351 15056 17583 0 544.201 0.000519

7 512 18944 0 3694.313 0.003523 7648 8768 0 273.423 0.000261 7448 8983 0 310.541 0.000296
R10 5 10240 53248 0 10240.056 0.009766 32608 32928 0 131.962 0.000126 32767 32768 0 0.174 0.000000

6 2048 32768 0 6218.244 0.005930 16208 16560 0 94.671 0.000090 16000 16768 0 383.984 0.000366
7 512 18944 0 3694.313 0.003523 8058 8338 0 60.767 0.000058 7770 8614 0 272.083 0.000259

Table 2: Distribution table for F1 (5,6,7 bit tuples)

LFSR
feedback
function

m-
tuple

CONS NON-CONS
T1 T2

Min Max No.
non-
occurri
ng
tuples

S.D. S.D
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D.
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D. (Ratio)

R1 8 0 86 1 16.772 0.002048 19 51 0 5.985 0.000731 17 45 0 5.389 0.000658
9 0 51 6 9.571 0.001168 6 30 0 4.157 0.000507 6 27 0 3.966 0.000484
10 0 31 32 5.467 0.000667 1 18 0 2.885 0.000352 1 18 0 2.834 0.000346

R2 8 0 86 1 16.772 0.002048 17 50 0 6.148 0.000751 20 47 0 5.203 0.000635
9 0 51 6 9.571 0.001168 5 29 0 4.222 0.000515 6 30 0 3.722 0.000454
10 0 31 31 5.464 0.000667 1 19 0 2.952 0.000360 0 20 0 2.695 0.000329

R3 8 0 344 1 67.072 0.002047 72 209 0 25.263 0.000771 109 149 0 8.101 0.000247
9 0 204 6 38.277 0.001168 22 120 0 15.297 0.000467 46 80 0 6.257 0.000191
10 0 122 23 21.493 0.000656 6 70 0 9.221 0.000281 15 50 0 5.078 0.000155

R4 8 0 344 1 67.072 0.002047 103 157 0 10.895 0.000333 94 167 0 12.401 0.000378
9 0 204 6 38.277 0.001168 42 90 0 8.225 0.000251 43 90 0 8.257 0.000252
10 0 122 23 21.493 0.000656 14 55 0 5.815 0.000177 16 53 0 5.997 0.000183

R5 8 0 688 1 134.139 0.002047 214 301 0 15.502 0.000237 213 297 0 16.060 0.000245
9 0 408 6 76.553 0.001168 94 163 0 11.628 0.000177 92 161 0 11.864 0.000181
10 0 244 23 42.985 0.000656 41 89 0 8.370 0.000128 40 90 0 8.376 0.000128

R6 8 0 688 1 134.139 0.002047 226 294 0 11.147 0.000170 210 301 0 13.686 0.000209
9 0 408 6 76.553 0.001168 105 163 0 9.271 0.000141 99 158 0 9.626 0.000147
10 0 244 23 42.985 0.000656 44 88 0 7.254 0.000111 42 85 0 6.983 0.000107

R7 8 0 2752 1 536.542 0.002047 883 1192 0 64.860 0.000247 955 1105 0 27.813 0.000106
9 0 1632 6 306.205 0.001168 385 650 0 43.728 0.000167 461 580 0 20.653 0.000079
10 0 976 23 171.937 0.000656 167 373 0 29.149 0.000111 214 319 0 16.127 0.000062

R8 8 0 2752 1 536.542 0.002047 891 1130 0 42.693 0.000163 975 1066 0 17.374 0.000066
9 0 1632 6 306.205 0.001168 423 600 0 28.488 0.000109 469 555 0 15.926 0.000061
10 0 976 23 171.937 0.000656 203 320 0 19.132 0.000073 203 298 0 13.616 0.000052

R9 8 0 11008 1 2416.153 0.002047 3600 4784 0 210.909 0.000201 3572 4616 0 176.886 0.000169
9 0 6528 6 1224.812 0.001168 1616 2584 0 136.766 0.000130 1740 2333 0 101.051 0.000096

10 0 3904 23 687.745 0.000656 780 1352 0 83.062 0.000079 829 1204 0 59.002 0.000056
R10 8 0 11008 1 2146.153 0.002047 3894 4292 0 81.768 0.000078 3707 4512 0 175.030 0.000167

9 0 6528 6 1224.812 0.001168 1886 2227 0 60.558 0.000058 1737 2381 0 106.320 0.000101
10 0 3904 23 687.745 0.000656 918 1136 0 39.530 0.000038 802 1263 0 65.158 0.000062

Table 3: Distribution table for F1 (8,9,10 bit tuples)

LFSR
feedback
function

m-
tuple

CONS NON-CONS
T1 T2

Min Max No.
non-
occurri
ng
tuples

S.D. S.D
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D.
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D. (Ratio)

R1 11 0 19 204 3.230 0.000394 0 12 41 2.007 0.000245 0 11 42 1.977 0.000241
12 0 16 1011 2.004 0.000245 0 9 550 1.421 0.000173 0 9 530 1.392 0.000170
13 0 10 3719 1.266 0.000155 0 7 3018 1.002 0.000122 0 7 2972 0.991 0.000121

R2 11 0 19 209 3.173 0.000387 0 13 45 2.070 0.000253 0 13 36 1.928 0.000235
12 0 13 984 1.909 0.000233 0 9 586 1.459 0.000178 0 8 507 1.359 0.000166
13 0 8 3597 1.203 0.000147 0 7 3087 1.028 0.000125 0 6 2913 0.973 0.000119

R3 11 0 74 79 11.909 0.000363 1 42 0 5.747 0.000175 5 30 0 3.821 0.000117
12 0 49 299 6.596 0.000201 0 26 11 3.643 0.000111 0 19 1 2.755 0.000084
13 0 28 1244 3.721 0.000114 0 18 244 2.317 0.000071 0 13 155 1.981 0.000060

R4 11 0 74 79 11.909 0.000363 2 35 0 4.389 0.000134 3 31 0 4.303 0.000131
12 0 48 292 6.608 0.000202 0 22 6 3.055 0.000093 0 22 2 2.987 0.000091
13 0 27 1210 3.775 0.000115 0 15 182 2.086 0.000064 0 14 154 2.054 0.000063

R5 11 0 148 79 23.817 0.000363 14 54 0 5.881 0.000090 14 55 0 5.894 0.000090
12 0 94 240 13.068 0.000199 4 35 0 4.110 0.000063 4 37 0 4.217 0.000064
13 0 53 751 7.152 0.000109 0 21 3 2.858 0.000044 0 23 6 2.932 0.000045

R6 11 0 148 79 23.817 0.000363 14 54 0 5.323 0.000081 16 51 0 5.192 0.000079
12 0 94 240 13.068 0.000199 3 35 0 3.908 0.000060 4 30 0 3.824 0.000058
13 0 59 777 7.189 0.000110 0 21 1 2.798 0.000043 0 20 1 2.772 0.000042

R7 11 0 592 79 95.266 0.000363 76 217 0 18.982 0.000072 89 177 0 11.747 0.000045
12 0 376 240 52.273 0.000199 29 127 0 12.076 0.000046 37 94 0 8.260 0.000032
13 0 222 668 28.458 0.000109 8 75 0 7.688 0.000029 12 54 0 5.753 0.000022

R8 11 0 592 79 95.266 0.000363 89 172 0 13.357 0.000051 98 160 0 10.369 0.000040
12 0 376 240 52.273 0.000199 35 100 0 9.184 0.000035 38 91 0 7.653 0.000029
13 0 222 668 28.458 0.000109 13 57 0 6.227 0.000024 13 55 0 5.533 0.000021

R9 11 0 2368 79 381.062 0.000363 344 716 0 48.442 0.000046 392 637 0 36.032 0.000034
12 0 1504 240 209.091 0.000199 164 380 0 27.685 0.000026 182 343 0 22.633 0.000022

13 0 888 668 113.832 0.000109 69 208 0 17.958 0.000017 81 185 0 14.614 0.000014
R10 11 0 2368 79 381.062 0.000363 435 603 0 25.343 0.000024 382 654 0 40.131 0.000038

12 0 1504 240 209.091 0.000199 203 321 0 16.594 0.000016 180 353 0 24.896 0.000024
13 0 888 668 113.832 0.000109 85 170 0 11.699 0.000011 78 205 0 15.543 0.000015

Table 4: Distribution table for F1 (11, 12, 13 bit tuple)

LFSR
feedback
function

m-
tuple

CONS NON-CONS
T1 T2

Min Max No.
non-
occurri
ng
tuples

S.D. S.D
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D.
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D.
(Ratio)

R1 2 1920 2176 0 127.750 0.015596 2047 2048 0 0.433 0.000053 2047 2048 0 0.433 0.000053
3 864 1183 0 95.792 0.011695 1023 1024 0 0.331 0.000040 984 1064 0 32.835 0.004009
4 368 655 0 76.616 0.009354 480 544 0 19.597 0.002393 476 555 0 23.549 0.002875

R2 2 1920 2176 0 127.750 0.015596 2047 2048 0 0.433 0.000053 2047 2048 0 0.433 0.000053
3 864 1183 0 95.792 0.011695 1007 1040 0 16.128 0.001969 992 1056 0 31.876 0.003892
4 368 655 0 76.616 0.009354 492 548 0 19.989 0.002440 484 548 0 22.881 0.002793

R3 2 7680 8704 0 511.750 0.015618 8191 8192 0 0.433 0.000013 8191 8192 0 0.433 0.000013
3 3456 4735 0 383.792 0.011713 3936 4256 0 131.788 0.004022 4095 4096 0 0.331 0.000010
4 1472 2623 0 306.816 0.009364 1888 2239 0 98.509 0.003006 2047 2048 0 0.242 0.000007

R4 2 7680 8704 0 511.750 0.015618 8191 8192 0 0.433 0.000013 8191 8192 0 0.433 0.000013
3 3456 4735 0 383.792 0.011713 3936 4256 0 131.788 0.004022 4095 4096 0 0.331 0.000010
4 1472 2623 0 306.816 0.009364 1824 2240 0 113.084 0.003451 2015 2080 0 32.063 0.000979

R5 2 15360 17408 0 1023.750 0.015621 16383 16384 0 0.433 0.000007 16383 16384 0 0.433 0.000007
3 6912 9471 0 767.792 0.011716 7679 8704 0 512.125 0.007815 8191 8192 0 0.331 0.000005
4 2944 5247 0 613.749 0.009365 3520 4673 0 367.728 0.005611 3936 4256 0 129.923 0.001983

R6 2 15360 17408 0 1023.750 0.015621 16383 16384 0 0.433 0.000007 16383 16384 0 0.433 0.000007
3 6912 9471 0 767.792 0.011716 8191 8192 0 0.331 0.000005 8160 8224 0 31.876 0.000486
4 2944 5247 0 613.749 0.009365 4063 4128 0 32.063 0.000489 3920 4304 0 134.752 0.002056

R7 2 61440 69632 0 4095.750 0.015624 65535 65536 0 0.433 0.000002 65535 65536 0 0.433 0.000002
3 27648 37887 0 3071.792 0.011718 32767 32768 0 0.331 0.000001 30976 34560 0 1279.825 0.004882
4 11776 20991 0 2455.348 0.009366 16383 16384 0 0.242 0.000001 14400 17983 0 942.673 0.003596

R8 2 61440 69632 0 4095.750 0.015624 65535 65536 0 0.433 0.000002 65535 65536 0 0.433 0.000002
3 27648 37887 0 3071.792 0.011718 32767 32768 0 0.331 0.000001 31488 34048 0 1055.363 0.004026
4 11776 20991 0 2455.348 0.009366 16383 16384 0 0.242 0.000001 14944 17632 0 771.235 0.002942

R9 2 245760 278528 0 16383.750 0.015625 262143 262144 0 0.433 0.000000 262143 262144 0 0.433 0.000000
3 110592 151551 0 12287.792 0.011719 131071 131072 0 0.331 0.000000 125952 136192 0 4221.909 0.004026

4 47104 83967 0 9821.746 0.009367 64256 66816 0 1055.561 0.001007 59904 70144 0 3028.938 0.002889
R10 2 245760 278528 0 16383.750 0.015625 262143 262144 0 0.433 0.000000 262143 262144 0 0.433 0.000000

3 110592 151551 0 12287.792 0.011719 131071 131072 0 0.331 0.000000 125952 136192 0 4221.909 0.004026
4 47104 83967 0 9821.746 0.009367 65535 65536 0 0.242 0.000000 59904 70144 0 3028.938 0.002889

Table 5: Distribution table for F2 (2,3,4 bit tuples)

LFSR
feedback
function

m-
tuple

CONS NON-CONS
T1 T2

Min Max No.
non-
occurri
ng
tuples

S.D. S.D
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D.
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D. (Ratio)

R1 5 136 336 0 54.3800 0.006690 212 308 0 25.437 0.003105 226 309 0 18.348 0.002240
6 44 204 0 36.315 0.004434 89 175 0 18.874 0.002304 91 155 0 13.881 0.001695
7 16 122 0 22.242 0.002715 35 98 0 12.718 0.001553 43 86 0 9.168 0.001119

R2 5 136 336 0 54.800 0.006690 206 314 0 25.655 0.003132 220 297 0 18.314 0.002236
6 44 204 0 36.315 0.004434 88 175 0 18.347 0.002240 104 151 0 13.106 0.001600
7 16 122 0 22.242 0.002715 35 97 0 12.104 0.001478 43 87 0 8.851 0.001081

R3 5 544 1344 0 219.335 0.006697 920 1239 0 71.236 0.002174 996 1052 0 18.324 0.000559
6 176 816 0 145.310 0.004435 451 690 0 44.625 0.001362 456 558 0 21.471 0.000655
7 67 488 0 88.987 0.002716 189 389 0 29.324 0.000895 201 203 0 18.231 0.000556

R4 5 544 1344 0 219.335 0.006697 848 1184 0 82.317 0.002512 784 1232 0 102.465 0.003127
6 176 816 0 145.310 0.004435 410 634 0 51.776 0.001580 352 800 0 76.536 0.002336
7 64 488 0 88.987 0.002716 181 345 0 33.495 0.001022 159 474 0 49.283 0.001504

R5 5 1088 2688 0 438.716 0.006694 1480 2632 0 260.116 0.003969 1828 2228 0 104.035 0.001587
6 352 1632 0 290.637 0.004435 592 1520 0 166.378 0.002539 856 1220 0 83.546 0.001275
7 128 976 0 177.982 0.002716 237 803 0 100.244 0.001530 396 638 0 54.050 0.000825

R6 5 1088 2688 0 438.716 0.006694 1944 2128 0 49.644 0.000758 1798 2230 0 106.416 0.001624
6 352 1632 0 290.637 0.004435 926 1150 0 49.829 0.000760 841 1177 0 83.802 0.001279
7 128 976 0 177.982 0.002716 423 581 0 33.979 0.000518 398 645 0 54.112 0.000826

R7 5 4352 10752 0 1755.002 0.006695 8032 8352 0 95.990 0.000366 6992 9360 0 593.674 0.002265
6 1408 6528 0 1162.601 0.004435 3832 4280 0 81.971 0.000313 3392 4752 0 355.949 0.001358
7 512 3904 0 711.948 0.002716 1840 2304 0 94.994 0.000362 1514 2501 0 210.097 0.000801

R8 5 4352 10752 0 1755.002 0.006695 8175 8208 0 16.032 0.000061 7160 9048 0 478.948 0.001827
6 1408 6528 0 1162.601 0.004435 4064 4144 0 19.609 0.000075 3480 4688 0 287.135 0.001095
7 512 3904 0 711.948 0.002716 1930 2166 0 69.253 0.000264 1706 2467 0 166.347 0.000635

R9 5 17408 43008 0 7020.145 0.006695 30912 34368 0 907.368 0.000865 28672 36096 0 1872.423 0.001786
6 5632 26112 0 4650.454 0.004435 14336 17728 0 806.993 0.000770 13984 18847 0 1105.934 0.001055

7 2048 15616 0 2847.813 0.002716 6928 9744 0 628.072 0.000599 6688 9919 0 633.344 0.000604
R10 5 17408 43008 0 7020.145 0.006695 32480 33056 0 257.965 0.000246 28752 36176 0 1868.661 0.001782

6 5632 26112 0 4650.454 0.004435 15432 17287 0 552.438 0.000527 14072 18631 0 1091.873 0.001041
7 2048 15616 0 2847.813 0.002716 7338 9365 0 470.134 0.000448 6654 9781 0 619.964 0.000591

Table 6: Distribution table for F2 (5,6,7 bit tuples)

LFSR
feedback
function

m-
tuple

CONS NON-CONS
T1 T2

Min Max No.
non-
occurri
ng
tuples

S.D. S.D
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D.
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D. (Ratio)

R1 8 4 65 0 13.144 0.001605 13 55 0 8.235 0.001005 16 47 0 6.130 0.000748
9 0 41 3 7.612 0.000929 4 34 0 5.257 0.000642 4 28 0 4.315 0.000527
10 0 23 20 4.453 0.000544 0 21 3 3.433 0.000419 0 17 3 2.955 0.000361

R2 8 4 65 0 13.144 0.001605 13 50 0 7.712 0.000942 18 48 0 5.916 0.000722
9 0 43 3 7.600 0.000928 4 34 0 5.176 0.000632 5 32 0 4.295 0.000524
10 0 23 26 4.407 0.000538 0 19 1 3.389 0.000414 1 17 0 3.017 0.000368

R3 8 16 260 0 52.585 0.001605 84 228 0 19.052 0.000581 78 165 0 12.980 0.000396
9 0 168 3 30.194 0.000921 32 138 0 12.019 0.000367 28 92 0 9.239 0.000282
10 0 91 17 17.023 0.000520 13 85 0 7.845 0.000239 10 52 0 6.377 0.000195

R4 8 16 260 0 52.585 0.001605 77 199 0 21.110 0.000644 61 274 0 30.385 0.000927
9 0 168 3 30.194 0.000921 29 109 0 12.965 0.000396 22 172 0 18.407 0.000562
10 0 91 17 17.023 0.000520 10 64 0 8.375 0.000256 10 93 0 10.923 0.000333

R5 8 32 520 0 105.173 0.001605 82 438 0 58.361 0.000891 181 359 0 33.627 0.000513
9 0 336 3 60.389 0.000921 33 234 0 33.437 0.000510 73 199 0 20.893 0.000319
10 0 182 17 34.047 0.000520 12 142 0 19.703 0.000301 26 104 0 13.012 0.000199

R6 8 32 520 0 105.173 0.001605 197 317 0 22.883 0.000349 169 348 0 33.154 0.000506
9 0 336 3 60.389 0.000921 92 182 0 15.111 0.000231 73 183 0 20.214 0.000308
10 0 182 17 34.047 0.000520 37 102 0 10.328 0.000158 25 100 0 12.342 0.000188

R7 8 128 2080 0 420.701 0.001605 785 1257 0 83.011 0.000317 705 1349 0 123.493 0.000471
9 0 1344 0 241.560 0.000921 351 691 0 56.403 0.000215 332 769 0 74.321 0.000284
10 0 728 17 136.190 0.000520 154 382 0 35.718 0.000136 113 435 0 45.149 0.000172

R8 8 128 2080 0 420.701 0.001605 883 1195 0 62.774 0.000239 800 1266 0 95.444 0.000364
9 0 1344 3 241.560 0.000921 420 627 0 42.630 0.000163 348 662 0 56.295 0.000215
10 0 728 17 136.190 0.000520 184 340 0 26.877 0.000103 162 361 0 33.831 0.000129

R9 8 512 8320 0 1682.814 0.001605 3080 5415 0 412.356 0.000393 3218 5161 0 357.407 0.000341
9 0 5376 3 966.245 0.000921 1370 3013 0 252.397 0.000241 1443 2666 0 203.722 0.000194

10 0 2912 17 544.764 0.000520 577 1638 0 155.132 0.000148 636 1390 0 118.380 0.000113
R10 8 512 8320 0 1682.814 0.001605 3367 5138 0 314.488 0.000300 3221 5096 0 344.841 0.000329

9 0 5376 3 966.245 0.000921 1502 2811 0 191.075 0.000182 1520 2640 0 190.614 0.000182
10 0 2912 17 544.764 0.000520 667 1487 0 115.196 0.000110 711 1395 0 107.391 0.000102

Table 7: Distribution table for F2 (8,9,10 bit tuples)

LFSR
feedback
function

m-
tuple

CONS NON-CONS
T1 T2

Min Max No.
non-
occurri
ng
tuples

S.D. S.D
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D.
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D. (Ratio)

R1 11 0 16 161 2.657 0.000324 0 14 74 2.299 0.000281 0 12 56 2.057 0.000251
12 0 10 843 1.644 0.000201 0 10 668 1.556 0.000190 0 9 601 1.436 0.000175
13 0 7 3346 1.086 0.000133 0 7 3161 1.057 0.000129 0 6 3040 1.002 0.000122

R2 11 0 14 162 2.647 0.000323 0 12 61 2.242 0.000274 0 14 44 2.088 0.000255
12 0 10 806 1.643 0.000201 0 10 650 1.526 0.000186 0 10 580 1.456 0.000178
13 0 6 3324 1.084 0.000132 0 8 3158 1.050 0.000128 0 7 3075 1.022 0.000125

R3 11 0 51 68 9.453 0.000288 4 51 0 5.123 0.000156 2 34 0 4.425 0.000135
12 0 31 242 5.257 0.000160 0 31 8 3.339 0.000102 0 21 4 3.076 0.000094
13 0 18 980 3.028 0.000092 0 18 244 2.230 0.000068 0 15 219 2.130 0.000065

R4 11 0 52 68 9.461 0.000289 2 41 0 5.502 0.000168 0 53 1 6.564 0.000200
12 0 32 234 5.239 0.000160 0 26 7 3.619 0.000110 0 34 24 4.085 0.000125
13 0 20 936 3.078 0.000094 0 17 260 2.387 0.00073 0 23 354 2.570 0.000078

R5 11 0 103 66 18.882 0.000288 1 86 0 11.499 0.000175 9 64 0 8.110 0.000124
12 0 63 207 10.410 0.000159 0 49 1 6.835 0.000104 3 38 0 5.169 0.000079
13 0 35 682 5.775 0.000088 0 33 53 4.211 0.000064 0 24 11 3.360 0.000051

R6 11 0 103 66 18.882 0.000288 13 59 0 6.914 0.000106 9 57 0 7.598 0.000116
12 0 59 209 10.471 0.000160 4 36 0 4.606 0.000070 2 38 0 4.847 0.000074
13 0 37 724 5.838 0.000089 0 24 9 3.178 0.000048 0 23 6 3.221 0.000049

R7 11 0 412 66 75.528 0.000288 66 209 0 21.949 0.000084 41 234 0 27.148 0.000104
12 0 240 205 41.456 0.000158 21 122 0 13.541 0.000052 18 134 0 17.138 0.000065
13 0 146 579 22.540 0.000086 9 67 0 8.347 0.000032 3 87 0 10.604 0.000040

R8 11 0 412 66 75.528 0.000288 82 180 0 16.690 0.000064 62 206 0 20.278 0.000077
12 0 240 205 41.456 0.000158 31 103 0 10.477 0.000040 23 123 0 13.141 0.000050
13 0 146 579 22.540 0.000086 12 61 0 6.746 0.000026 8 78 0 8.319 0.000032

R9 11 0 1648 0 302.114 0.000288 256 882 0 91.641 0.000087 308 788 0 70.734 0.000067
12 0 960 205 165.823 0.000158 106 483 0 56.768 0.000054 129 475 0 41.907 0.000040

13 0 584 579 90.161 0.000086 41 284 0 34.374 0.000033 50 283 0 26.610 0.000025
R10 11 0 1648 66 302.114 0.000288 309 779 0 67.017 0.000064 314 744 0 62.724 0.000060

12 0 960 205 165.823 0.000158 126 433 0 42.825 0.000041 142 410 0 36.351 0.000035
13 0 584 579 90.161 0.000086 49 240 0 26.370 0.000025 64 255 0 23.290 0.000022

Table 8: Distribution table for F2 (11, 12, 13 bit tuple)

LFSR
feedback
function

m-
tuple

CONS NON-CONS
T1 T2

Min Max No.
non-
occurri
ng
tuples

S.D. S.D
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D.
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D. (Ratio)

R1 2 1920 2176 0 127.750 0.015596 2047 2048 0 0.433 0.000053 2047 2048 0 0.433 0.000053
3 848 1135 0 97.181 0.011864 990 1058 0 31.947 0.003900 990 1058 0 31.931 0.003898
4 376 615 0 67.075 0.008189 460 557 0 26.350 0.003217 471 548 0 23.546 0.002875

R2 2 1920 2176 0 127.750 0.015596 2015 2080 0 32.252 0.003937 2016 2080 0 31.752 0.003876
3 848 1135 0 97.181 0.011864 986 1094 0 35.364 0.004317 990 1090 0 39.046 0.004767
4 376 615 0 67.075 0.008189 464 556 0 26.843 0.003277 462 568 0 28.334 0.003459

R3 2 7680 8704 0 511.750 0.015618 8191 8192 0 0.433 0.000013 8191 8192 0 0.433 0.000013
3 3392 4543 0 389.153 0.011876 4095 4096 0 0.331 0.000010 4087 4104 0 8.131 0.000248
4 1504 2463 0 268.589 0.008197 2010 2086 0 26.025 0.000794 1990 2098 0 34.969 0.001067

R4 2 7680 8704 0 511.750 0.015618 8064 8320 0 127.750 0.003899 8191 8192 0 0.433 0.000013
3 3392 4543 0 389.153 0.011876 3968 4224 0 90.333 0.002757 4088 4104 0 7.881 0.000241
4 1504 2463 0 286.589 0.008197 1914 2145 0 60.198 0.001837 2011 2077 0 19.607 0.000598

R5 2 15360 17408 0 1023.750 0.015621 16383 16384 0 0.433 0.000007 16383 16384 0 0.433 0.000007
3 6784 9087 0 778.450 0.011878 8191 8192 0 0.331 0.000005 8175 8208 0 16.128 0.000246
4 3008 4927 0 537.725 0.008198 3989 4203 0 75.554 0.001153 3959 4217 0 76.380 0.001165

R6 2 15360 17408 0 1023.750 0.015621 16383 16384 0 0.433 0.000007 16128 16640 0 255.750 0.003902
3 6784 9087 0 778.450 0.011878 8143 8240 0 48.126 0.000734 7904 8479 0 183.360 0.002802
4 3008 4927 0 537.275 0.008198 3934 4210 0 83.065 0.001267 3899 4346 0 114.655 0.001750

R7 2 61440 69632 0 4095.750 0.015624 65535 65536 0 0.433 0.000002 65535 65536 0 0.433 0.000002
3 27136 36351 0 3114.231 0.011880 32767 32768 0 0.331 0.000001 32767 32768 0 0.331 0.000001
4 12032 19711 0 2149.389 0.08199 16372 16396 0 11.940 0.000046 16267 16500 0 74.395 0.000284

R8 2 61440 69632 0 4095.750 0.015624 65535 65536 0 0.433 0.000002 65535 65536 0 0.433 0.000002
3 27136 36351 0 3114.231 0.011880 32767 32768 0 0.331 0.000001 32576 32960 0 191.875 0.000732
4 12032 19711 0 2149.389 0.008199 16383 16384 0 0.242 0.000001 16088 16680 0 156.879 0.000598

R9 2 245760 278528 0 16383.750 0.015625 262143 262144 0 0.433 0.000000 258047 266240 0 4096.250 0.003906
3 108544 145407 0 12457.354 0.011880 130816 131328 0 255.875 0.000244 126975 135168 0 2896.486 0.002762

4 48128 78847 0 8597.845 0.008200 62368 68448 0 2136.422 0.002037 62511 68656 0 1774.376 0.001692
R10 2 245760 278528 0 16383.750 0.015625 262143 262144 0 0.433 0.000000 262143 262144 0 0.433 0.000000

3 108544 145407 0 12457.354 0.011880 131071 131072 0 0.331 0.000000 131071 131072 0 0.331 0.000000
4 48128 78847 0 8597.845 0.008200 65312 65760 0 160.013 0.000153 65471 65600 0 64.063 0.000061

Table 9: Distribution table for F3 (2,3,4 bit tuples)

LFSR
feedback
function

m-
tuple

CONS NON-CONS
T1 T2

Min Max No.
non-
occurri
ng
tuples

S.D. S.D
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D.
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D. (Ratio)

R1 5 176 356 0 42.977 0.005247 199 304 0 19.773 0.002414 217 287 0 17.793 0.002172
6 84 200 0 25.952 0.003168 96 165 0 13.255 0.001618 94 155 0 12.511 0.001527
7 37 107 0 15.090 0.001842 42 94 0 9.329 0.001139 38 85 0 8.552 0.001044

R2 5 176 356 0 42.977 0.005247 222 311 0 19.819 0.002420 225 302 0 18.612 0.002272
6 84 200 0 25.952 0.003168 99 166 0 13.349 0.001630 102 156 0 11.851 0.001447
7 37 107 0 15.090 0.001842 46 87 0 8.655 0.001057 48 86 0 8.013 0.000978

R3 5 704 1424 0 172.081 0.005252 982 1081 0 25.816 0.000788 981 1076 0 26.990 0.000824
6 336 800 0 103.897 0.003171 480 559 0 18.383 0.000561 478 575 0 19.895 0.000607
7 148 428 0 60.408 0.001844 220 290 0 14.565 0.000444 228 301 0 14.887 0.000454

R4 5 704 1424 0 172.081 0.005252 937 1103 0 41.745 0.001274 989 1062 0 21.262 0.000649
6 336 800 0 103.894 0.003171 445 565 0 26.610 0.000812 471 543 0 17.379 0.000530
7 148 428 0 60.408 0.001844 202 301 0 17.555 0.000536 212 295 0 15.558 0.000475

R5 5 1408 2848 0 334.221 0.005252 1926 2203 0 62.643 0.000956 1946 2166 0 55.637 0.000849
6 672 1600 0 207.817 0.003171 932 1134 0 42.299 0.000645 954 1098 0 36.066 0.000550
7 296 856 0 120.831 0.001844 443 579 0 29.533 0.000451 442 572 0 25.480 0.000389

R6 5 1408 2848 0 344.221 0.005252 1908 2143 0 59.277 0.000905 1922 2207 0 69.419 0.001059
6 672 1600 0 207.817 0.003171 913 1100 0 39.210 0.000598 938 1128 0 41.864 0.000639
7 296 856 0 120.831 0.001844 442 572 0 25.577 0.000390 455 603 0 26.019 0.000397

R7 5 5632 11392 0 1377.058 0.005253 8111 8285 0 47.568 0.000181 8063 8340 0 65.300 0.000249
6 2688 6400 0 831.356 0.003171 3965 4183 0 46.534 0.000178 3968 4273 0 50.730 0.000194
7 1184 3424 0 483.372 0.001844 1960 2158 0 39.926 0.000152 1940 2184 0 40.198 0.000153

R8 5 5632 11392 0 1377.058 0.005253 8122 8262 0 40.403 0.000154 7965 8415 0 108.488 0.000414
6 2688 6400 0 831.356 0.003171 3980 4176 0 40.491 0.000154 3867 4263 0 71.141 0.000271
7 1184 3424 0 483.372 0.001844 1964 2138 0 32.524 0.000124 1897 2176 0 44.984 0.000172

R9 5 22528 45568 0 5508.405 0.005253 29947 35580 0 1517.746 0.001447 30783 34896 0 1027.430 0.000980
6 10752 25600 0 3325.509 0.003171 14539 18756 0 943.309 0.000900 14832 18143 0 660.416 0.000630

7 4736 13696 0 1933.536 0.001844 6824 9730 0 555.135 0.000529 7067 9345 0 398.233 0.000380
R10 5 22528 45568 0 5508.405 0.005253 32489 33063 0 123.809 0.000118 32665 32887 0 54.749 0.000052

6 10752 25600 0 3325.509 0.003171 16121 16620 0 105.154 0.000100 16031 16730 0 260.381 0.000248
7 4736 13696 0 1933.536 0.001844 8025 8400 0 74.757 0.000071 7858 8566 0 189.267 0.000180

Table 10: Distribution table for F3 (5,6,7 bit tuples)

LFSR
feedback
function

m-
tuple

CONS NON-CONS
T1 T2

Min Max No.
non-
occurri
ng
tuples

S.D. S.D
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D.
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D. (Ratio)

R1 8 14 59 0 8.926 0.001090 18 54 0 6.277 0.000766 13 49 0 5.885 0.000719
9 5 33 0 5.347 0.000653 6 32 0 4.346 0.000531 3 28 0 4.008 0.000489
10 1 23 0 3.389 0.000414 0 18 1 2.964 0.000362 1 17 0 2.782 0.000340

R2 8 12 63 0 8.765 0.001070 18 47 0 5.793 0.000707 19 50 0 5.663 0.000691
9 6 37 0 5.279 0.000644 5 30 0 4.027 0.000492 5 33 0 3.999 0.000488
10 0 23 1 3.355 0.000410 1 17 0 2.817 0.000344 1 22 0 2.846 0.000347

R3 8 58 228 0 34.430 0.001051 90 154 0 11.039 0.000337 102 167 0 10.849 0.000331
9 22 121 0 19.253 0.000588 40 87 0 7.933 0.000242 45 92 0 7.742 0.000236
10 7 72 0 10.811 0.000330 14 49 0 5.662 0.000173 16 52 0 5.592 0.000171

R4 8 58 228 0 34.430 0.001051 81 158 0 11.761 0.000359 95 157 0 11.646 0.000355
9 22 121 0 19.253 0.000588 31 89 0 8.124 0.000248 45 93 0 8.344 0.000255
10 9 75 0 10.866 0.000332 13 50 0 5.719 0.000175 16 50 0 5.865 0.000179

R5 8 116 456 0 68.868 0.001051 206 304 0 20.166 0.000308 209 298 0 17.707 0.000270
9 44 242 0 38.510 0.000588 90 167 0 13.464 0.000205 96 162 0 12.166 0.000186
10 17 144 0 21.282 0.000325 40 100 0 8.997 0.000137 38 88 0 8.422 0.000129

R6 8 116 456 0 68.868 0.001051 213 300 0 16.853 0.000257 202 322 0 17.163 0.000262
9 44 242 0 38.510 0.000588 98 165 0 11.274 0.000172 92 173 0 11.676 0.000178
10 17 144 0 21.282 0.000325 42 90 0 8.028 0.000122 41 93 0 8.068 0.000123

R7 8 464 1824 0 275.498 0.001051 943 1109 0 31.966 0.000122 950 1134 0 31.871 0.000122
9 176 968 0 154.054 0.000588 441 586 0 25.601 0.000098 431 595 0 23.351 0.000089
10 68 576 0 85.135 0.000325 201 318 0 18.480 0.000070 204 320 0 16.483 0.000063

R8 8 464 1824 0 275.498 0.001051 950 1139 0 28.871 0.000110 927 1105 0 32.782 0.000125
9 176 968 0 154.054 0.000588 451 581 0 22.730 0.000087 427 588 0 23.031 0.000088
10 68 576 0 85.135 0.000325 201 306 0 16.333 0.000062 196 308 0 16.002 0.000061

R9 8 1856 7296 0 1102.019 0.001051 3226 5052 0 315.350 0.000301 3388 4906 0 230.709 0.000220
9 704 3872 0 616.230 0.000588 1521 2589 0 176.842 0.000169 1617 2483 0 130.778 0.000125

10 272 2304 0 340.548 0.000325 689 1352 0 100.163 0.000096 768 1298 0 74.992 0.000072
R10 8 1856 7296 0 1102.019 0.001051 3916 4272 0 58.125 0.000056 3830 4383 0 120.261 0.000115

9 704 3872 0 616.230 0.000588 1935 2201 0 42.025 0.000040 1841 2256 0 74.240 0.000071
10 272 2304 0 340.548 0.000325 913 1133 0 30.240 0.000029 865 1159 0 45.913 0.000044

Table 11: Distribution table for F3 (8,9,10 bit tuples)

LFSR
feedback
function

m-
tuple

CONS NON-CONS
T1 T2

Min Max No.
non-
occurri
ng
tuples

S.D. S.D
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D.
(Ratio)

Min Max No.non-
occurring
tuples

S.D S.D. (Ratio)

R1 11 0 14 37 2.206 0.000269 0 14 32 2.037 0.000249 0 11 42 1.985 0.000242
12 0 10 581 1.504 0.000184 0 9 564 1.427 0.000174 0 8 570 1.403 0.000171
13 0 8 3090 1.038 0.000127 0 6 3037 1.005 0.000123 0 5 3009 0.991 0.000121

R2 11 0 15 53 2.225 0.000272 0 13 41 1.991 0.000243 0 14 34 2.000 0.000244
12 0 10 638 1.514 0.000185 0 8 564 1.407 0.000172 0 8 541 1.401 0.000171
13 0 9 3152 1.043 0.000127 0 6 3051 1.002 0.000122 0 6 2990 0.989 0.000121

R3 11 3 41 0 6.218 0.000190 4 35 0 4.148 0.000127 4 32 0 3.976 0.000121
12 0 28 7 3.739 0.000114 0 25 2 2.934 0.000090 0 20 2 2.785 0.000085
13 0 16 261 2.369 0.000072 0 20 164 2.053 0.000063 0 14 144 1.974 0.000060

R4 11 2 45 0 6.295 0.000192 5 31 0 4.087 0.000125 1 31 0 4.132 0.000126
12 0 30 6 3.788 0.000116 0 20 1 2.901 0.000089 0 19 4 2.902 0.000089
13 0 17 244 2.375 0.000072 0 13 161 2.040 0.000062 0 14 171 2.044 0.000062

R5 11 6 83 0 11.846 0.000181 15 55 0 6.028 0.000092 13 53 0 5.863 0.000089
12 1 51 0 6.782 0.000103 5 32 0 4.150 0.000063 3 31 0 4.087 0.000062
13 0 32 25 4.019 0.000061 0 22 4 2.906 0.000044 0 20 3 2.868 0.000044

R6 11 6 80 0 11.876 0.000181 16 52 0 5.661 0.000086 17 54 0 5.649 0.000086
12 0 46 2 6.770 0.000103 4 31 0 4.038 0.000062 4 32 0 3.977 0.000061
13 0 28 31 4.038 0.000062 0 21 1 2.843 0.000043 0 21 1 2.811 0.000043

R7 11 30 320 0 46.566 0.000178 84 175 0 13.072 0.000050 88 175 0 11.632 0.000044
12 8 188 0 25.258 0.000096 34 98 0 8.966 0.000034 34 98 0 8.213 0.000031
13 1 114 0 13.766 0.000053 12 56 0 6.076 0.000023 12 55 0 5.753 0.000022

R8 11 30 320 0 46.566 0.000178 92 163 0 11.429 0.000044 86 166 0 11.389 0.000043
12 8 188 0 25.258 0.000096 37 94 0 8.059 0.000031 37 96 0 8.062 0.000031
13 3 119 0 13.766 0.000053 12 60 0 5.694 0.000022 14 57 0 5.679 0.000022

R9 11 120 1280 0 186.265 0.000178 305 733 0 57.276 0.000055 375 674 0 43.603 0.000042
12 32 752 0 101.033 0.000096 139 411 0 33.462 0.000032 168 352 0 25.984 0.000025

13 14 448 0 54.409 0.000052 61 239 0 19.903 0.000019 79 191 0 15.866 0.000015
R10 11 120 1280 0 186.265 0.000178 445 609 0 21.915 0.000021 408 630 0 28.819 0.000027

12 32 752 0 101.033 0.000096 201 309 0 15.680 0.000015 193 335 0 18.564 0.000018
13 14 448 0 54.409 0.000052 87 169 0 11.113 0.000011 90 181 0 12.372 0.000012

Table 12: Distribution table for F3 (11, 12, 13 bit tuple)

196 Appendix B. Experimental Results for Chapter 3

Appendix C

Experimental Results for Section 4.1

Appendix C lists the results from the analysis of them-tuple distribution, for the linearly

filtered nonlinear feedback shift registers in Section 4.1

197

NLFSR M-
tuple

Uneven taps Consecutive taps

T2 T3 T4 T5

R1

Min Max N.O S.D Min Max N.O S.D Min Max N.O S.D Min Max N.O S.D
2 1048575 1048576 0 0.50000 1048575 1048576 0 0.50000 1048575 1048576 0 0.50000 1048575 1048576 0 0.50000

3 524287 524288 0 0.35355 524287 524288 0 0.35355 524287 524288 0 0.35355 524287 524288 0 0.35355

4 262143 262144 0 0.25000 262143 262144 0 0.25000 262143 262144 0 0.25000 262143 262144 0 0.25000

5 131071 131072 0 0.17678 131071 131072 0 0.17678 131071 131072 0 0.17678 131071 131072 0 0.17678

6 65535 65536 0 0.12500 65535 65536 0 0.12500 65535 65536 0 0.12500 65535 65536 0 0.12500

7 32735 32800 0 32.00793 32767 32768 0 0.08839 32767 32768 0 0.08839 32767 32768 0 0.08839

8 16244 16496 0 54.91645 16367 16400 0 16.00403 16383 16384 0 0.06250 16383 16384 0 0.06250

9 8017 8372 0 67.94548 8062 8322 0 67.91167 8191 8192 0 0.04419 8191 8192 0 0.04419

10 3932 4307 0 58.69262 3962 4220 0 54.77169 4095 4096 0 0.03125 4095 4096 0 0.03125

11 1919 2199 0 43.13745 1932 2137 0 39.58642 2047 2048 0 0.02210 2047 2048 0 0.02210

12 923 1147 0 30.81128 927 1114 0 29.37208 1023 1024 0 0.01562 1023 1024 0 0.01562

13 435 602 0 22.14368 429 584 0 21.42993 511 512 0 0.01105 511 512 0 0.01105

14 198 317 0 15.71891 190 315 0 15.90579 255 256 0 0.00781 255 256 0 0.00781

15 86 176 0 11.19263 82 177 0 11.43048 127 128 0 0.00552 127 128 0 0.00552

16 33 101 0 7.94320 34 103 0 8.08616 63 64 0 0.00391 63 64 0 0.00391

17 10 62 0 5.62797 11 58 0 5.70148 31 32 0 0.00276 31 32 0 0.00276

18 2 36 0 3.98779 1 36 0 4.01524 15 16 0 0.00195 10 22 0 2.44949

19 0 25 182 2.82584 0 23 149 2.83454 7 8 0 0.00138 2 14 0 2.23607

20 0 18 19108 1.99936 0 16 19363 2.00218 3 4 0 0.00098 0 11 12416 1.77218

21 0 13 283720 1.41404 0 12 283783 1.41462 0 4 196608 1.00000 0 9 252000 1.32435

22 0 9 1542758 0.99974 0 9 1543500 1.00004 0 4 1347585 0.86603 0 7 1499568 0.96935

NLFSR M-
tuple

Uneven Taps Consecutive taps

T2 T3 T4 T5

R2

Min Max N.O S.D Min Max N.O S.D Min Max N.O S.D Min Max N.O S.D
2 8388607 8388608 0 0.50000 8388607 8388608 0 0.50000 8388607 8388608 0 0.50000 8388607 8388608 0 0.50000

3 4194303 4194304 0 0.35355 4194303 4194304 0 0.35355 4194303 4194304 0 0.35355 4194303 4194304 0 0.35355

4 209715
1

2097152 0 0.25000 2097151 2097152 0 0.25000 2097151 2097152 0 0.25000 2097151 2097152 0 0.25000

5 1048575 1048576 0 0.17678 1048320 1048832 0 255.96881 1048575 1048576 0 0.17678 1048575 1048576 0 0.17678

6 523967 524608 0 320.01566 523776 524800 0 313.53470 524287 524288 0 0.12500 524287 524288 0 0.12500

7 261567 262592 0 303.59351 261152 263136 0 590.92511 262143 262144 0 0.08839 262143 262144 0 0.08839

8 130687 131520 0 217.04147 130136 131864 0 419.60553 131071 131072 0 0.06250 131071 131072 0 0.06250

9 65184 66008 0 159.52739 64776 66136 0 275.98889 65535 65536 0 0.04419 65535 65536 0 0.04419

10 32428 33256 0 131.91829 32177 33231 0 183.57896 32767 32768 0 0.03125 32767 32768 0 0.03125

11 16105 16800 0 103.42072 15950 16745 0 122.72352 16383 16384 0 0.02210 16383 16384 0 0.02210

12 7957 8465 0 79.89017 7913 8527 0 86.62540 8191 8192 0 0.01562 8191 8192 0 0.01562

13 3896 4331 0 59.09464 3882 4293 0 61.41571 4095 4096 0 0.01105 4095 4096 0 0.01105

14 1892 2205 0 42.88934 1879 2204 0 44.01164 2047 2048 0 0.00781 2047 2048 0 0.00781

15 906 1144 0 30.99203 900 1136 0 31.44050 1023 1024 0 0.00552 1023 1024 0 0.00552

16 418 612 0 22.19957 406 604 0 22.37626 511 512 0 0.00391 511 512 0 0.00391

17 192 330 0 15.82143 183 339 0 15.86420 255 256 0 0.00276 255 256 0 0.00276

18 74 182 0 11.23199 80 181 0 11.24529 127 128 0 0.00195 127 128 0 0.00195

19 31 108 0 7.95460 30 104 0 7.95780 63 64 0 0.00138 63 64 0 0.00138

20 8 63 0 5.62347 9 63 0 5.62258 31 32 0 0.00098 31 32 0 0.00098

21 1 40 0 3.96456 1 38 0 3.96313 15 16 0 0.00069 10 22 0 2.69258

22 0 28 1385 2.78251 0 25 1453 2.78089 7 8 0 0.00049 0 16 256 2.34206

23 0 18 153092 1.93635 0 18 153819 1.93552 3 4 0 0.00035 0 12 101632 1.78432

24 0 15 2268916 1.32465 0 15 2269525 1.32426 0 4 1310720 1.00000 0 9 2070336 1.27090

25 0 13 12343244 0.84624 0 11 12341336 0.84613 0 4 10702848 0.75215 0 8 12075936 0.83063

NLFSR M-
tuple

Uneven taps Consecutive taps

T2 T3 T4 T5

R3

Min Max N.O S.D Min Max N.O S.D Min Max N.O S.D Min Max N.O S.D
2 67108863 67108864 0 0.00000 67108863 67108864 0 0.00000 67108863 67108864 0 0.00000 67108863 67108864 0 0.00000

3 33554431 33554432 0 0.00000 33554431 33554432 0 0.00000 33554431 33554432 0 0.00000 33554431 33554432 0 0.00000

4 16777215 16777216 0 0.25000 16777215 16777216 0 0.25000 16777215 16777216 0 0.25000 16777215 16777216 0 0.25000

5 8388607 8388608 0 0.17678 8388607 8388608 0 0.17678 8388607 8388608 0 0.17678 8388607 8388608 0 0.17678

6 4194303 4194304 0 0.12500 4194303 4194304 0 0.12500 4194303 4194304 0 0.12500 4194303 4194304 0 0.12500

7 2097151 2097152 0 0.08839 2097151 2097152 0 0.08839 2097151 2097152 0 0.08839 2097151 2097152 0 0.08839

8 1048575 1048576 0 0.06250 1048575 1048576 0 0.06250 1048575 1048576 0 0.06250 1048575 1048576 0 0.06250

9 523984 524592 0 192.66762 524128 524448 0 115.37711 524287 524288 0 0.04419 524287 524288 0 0.04419

10 261616 262656 0 226.06218 261648 262480 0 218.28458 262143 262144 0 0.03125 262143 262144 0 0.03125

11 130584 131600 0 223.63388 130494 131594 0 182.58170 131071 131072 0 0.02210 131071 131072 0 0.02210

12 64918 66220 0 235.64700 64870 66156 0 190.80722 65535 65536 0 0.01562 65535 65536 0 0.01562

13 32237 33410 0 180.09283 32264 33246 0 156.43924 32767 32768 0 0.01105 32767 32768 0 0.01105

14 15910 16829 0 129.92024 15934 16803 0 115.99477 16383 16384 0 0.00781 16383 16384 0 0.00781

15 7799 8560 0 91.59654 7844 8502 0 85.19328 8191 8192 0 0.00552 8191 8192 0 0.00552

16 3821 4370 0 64.47517 3847 4365 0 61.54081 4095 4096 0 0.00391 4095 4096 0 0.00391

17 1862 2237 0 45.34310 1857 2231 0 44.31337 2047 2048 0 0.00276 2047 2048 0 0.00276

18 896 1173 0 31.93825 890 1184 0 31.60216 1023 1024 0 0.00195 1023 1024 0 0.00195

19 417 622 0 22.57020 395 634 0 22.43503 511 512 0 0.00138 511 512 0 0.00138

20 185 343 0 15.97071 183 332 0 15.90561 255 256 0 0.00098 255 256 0 0.00098

21 76 187 0 11.29915 68 193 0 11.26741 127 128 0 0.00069 127 128 0 0.00069

22 29 111 0 7.99192 27 110 0 7.97446 63 64 0 0.00049 63 64 0 0.00049

23 7 67 0 5.64855 8 65 0 5.63963 31 32 0 0.00035 24 40 0 4.10961

24 0 43 3 3.98937 0 41 3 3.98437 15 16 0 0.00024 6 27 0 3.69015

25 0 28 11308 2.79025 0 27 11268 2.78799 7 8 0 0.00017 0 19 11264 2.74970

NLFSR M-
tuple

Uneven taps Consecutive taps

T2 T3 T4 T5

R3

Min Max N.O S.D Min Max N.O S.D Min Max N.O S.D Min Max N.O S.D
26 0 19 122997 1.85203 0 20 1228000 1.85106 3 4 0 0.00012 0 15 1332225 1.86495

27 0 14 18163580 1.04143 0 15 18156695 1.04124 0 4 8388608 0.70711 0 12 18697985 1.04792

28 0 11 98745333 0.62132 0 12 98741925 0.62130 0 4 85131265 0.50153 0 9 99815169 0.62388

NLFSR M-
tuple

Uneven taps Consecutive taps

T2 T3 T4 T5

R4

Min Max N.O S.D Min Max N.O S.D Min Max N.O S.D Min Max N.O S.D

2 134217727 134217728 0 0.00000 134217727 134217728 0 0.00000 134217727 134217728 0 0.00000 134217727 134217728 0 0.00000

3 67108863 67108864 0 0.00000 67108863 67108864 0 0.00000 67108863 67108864 0 0.00000 67108863 67108864 0 0.00000

4 33554431 33554432 0 0.00000 33554431 33554432 0 0.00000 33554431 33554432 0 0.00000 33554431 33554432 0 0.00000

5 16777215 16777216 0 0.17678 16777215 16777216 0 0.17678 16777215 16777216 0 0.17678 16777215 16777216 0 0.17678

6 8388607 8388608 0 0.12500 8388607 8388608 0 0.12500 8388607 8388608 0 0.12500 8388607 8388608 0 0.12500

7 4194303 4194304 0 0.08839 4194303 4194304 0 0.08839 4194303 4194304 0 0.08839 4194303 4194304 0 0.08839

8 2097151 2097152 0 0.06250 2097151 2097152 0 0.06250 2097151 2097152 0 0.06250 2097151 2097152 0 0.06250

9 1048575 1048576 0 0.04419 1048575 1048576 0 0.04419 1048575 1048576 0 0.04419 1048575 1048576 0 0.04419

10 524287 524288 0 0.03125 524287 524288 0 0.03125 524287 524288 0 0.03125 524287 524288 0 0.03125

11 262143 262144 0 0.02210 262143 262144 0 0.02210 262143 262144 0 0.02210 262143 262144 0 0.02210

12 131007 131136 0 64.00024 130880 131264 0 143.1084
6

131071 131072 0 0.01562 131071 131072 0 0.01562

13 65312 65824 0 121.85253 65280 65792 0 110.8512
5

65535 65536 0 0.01105 65535 65536 0 0.01105

14 32472 33032 0 121.32613 32484 32924 0 84.75847 32767 32768 0 0.00781 32767 32768 0 0.00781

15 16070 16710 0 106.77424 16134 16618 0 72.83916 16383 16384 0 0.00552 16383 16384 0 0.00552

16 7893 8465 0 84.95203 8012 8392 0 61.94783 8191 8192 0 0.00391 8191 8192 0 0.00391

17 3886 4327 0 65.07114 3918 4308 0 50.08730 4095 4096 0 0.00276 4095 4096 0 0.00276

18 1876 2241 0 46.33252 1878 2207 0 38.51984 2047 2048 0 0.00195 2047 2048 0 0.00195

19 894 1170 0 32.56383 897 1155 0 28.61381 1023 1024 0 0.00138 1023 1024 0 0.00138

20 407 620 0 22.86748 416 613 0 21.00669 511 512 0 0.00098 511 512 0 0.00098

21 178 338 0 16.09214 185 336 0 15.30773 255 256 0 0.00069 255 256 0 0.00069

22 76 190 0 11.34546 72 186 0 11.03585 127 128 0 0.00049 127 128 0 0.00049

23 26 110 0 8.01013 27 110 0 7.88894 63 64 0 0.00035 63 64 0 0.00035

24 6 66 0 5.64077 7 65 0 5.59462 31 32 0 0.00024 31 32 0 0.00024

25 0 42 6 3.89895 0 42 5 3.88132 15 16 0 0.00017 12 19 0 1.47667

NLFSR M-
tuple

Uneven taps Consecutive taps

T2 T3 T4 T5

R4

Min Max N.O S.D Min Max N.O S.D Min Max N.O S.D Min Max N.O S.D
26 0 28 22617 2.56072 0 29 22122 2.55436 7 8 0 0.00012 2 13 0 1.40098

27 0 20 2457513 1.57248 0 19 2446993 1.57099 3 4 0 0.00009 0 9 196608 1.13687

28 0 16 36324779 1.00031 0 15 36286321 1.00001 0 4 16777216 0.50000 0 7 21987329 0.73856

29 0 11 197501555 0.58383 0 12 197444574 0.58323 0 4 169869312 0.38017 0 6 172785665 0.43752

204 Appendix C. Experimental Results for Section 4.1

Bibliography

[1] Sultan Al-Hinai. Algebraic Attacks on Clock-Controlled Stream Ciphers. PhD

thesis, Queensland University of Technology, 2007.

[2] Ali Alhamdan, Harry Bartlett, Leonie Simpson, Ed Dawson, and Kenneth Koon-

HoWong. State convergence in the initialisation of the Sfinks stream cipher. In

Josef Pieprzyk and Clark Thomborson, editors, Australasian Information Security

Conference (AISC 2012), volume 125, pages 27–31. Australian Computer Society,

2012.

[3] Ali Alhamdan. A study of the initialization process of the A5/1 stream cipher.

Master’s thesis, Queensland University of Technology, 2008.

[4] Ross Anderson. Searching for the Optimum Correlation Attack. In Bart Preneel,

editor, Fast Software Encryption (FSE 1994), volume 1008 of Lecture Notes in

Computer Science, pages 137–143. Springer, 1995.

[5] Anonymous. RC4 Source Code. Cypherpunks mailing list, 1994.

Available from http://web.archive.org/web/20080404222417/http://

cypherpunks.venona.com/date/1994/09/msg00304.html.

[6] François Arnault and Thierry P. Berger. F-FCSR: design of a new class of stream

ciphers. In Henri Gilbert and Helena Handschuh, editors, Fast Software Encryp-

tion (FSE 2005), volume 3557 of Lecture Notes in Computer Science, pages 83–97.

Springer, 2005.

[7] S.H. Babbage. Improved “Exhaustive Search” Attacks on Stream Ciphers. In

European Convention on Security and Detection, pages 161–166, 1995.

[8] Steve Babbage and Matthew Dodd. The stream cipher MICKEY (version 1).

eSTREAM, ECRYPT Stream Cipher Project, Report 2005/015, 2005. Available
from http://www.ecrypt.eu.org/stream/ciphers/mickey/mickey.pdf.

205

http://web.archive.org/web/20080404222417/http://cypherpunks.venona.com/date/1994/09/msg00304.html
http://web.archive.org/web/20080404222417/http://cypherpunks.venona.com/date/1994/09/msg00304.html
http://www.ecrypt.eu.org/stream/ciphers/mickey/mickey.pdf

206 BIBLIOGRAPHY

[9] Steve Babbage and Matthew Dodd. The stream cipher MICKEY 2.0,

2006. Available from http://www.ecrypt.eu.org/stream/p3ciphers/

mickey/mickey_p3.pdf.

[10] Côme Berbain, Henri Gilbert, and Antoine Joux. Algebraic and Correlation

Attacks against Linearly Filtered Non Linear Feedback Shift Registers. In

Roberto Maria Avanzi, Liam Keliher, and Francesco Sica, editors, Selected Areas

in Cryptography (SAC 2008), volume 5381 of Lecture Notes in Computer Science,

pages 184–198. Springer, 2009.

[11] Daniel Bernstein. A reformulation of TRIVIUM. Submission to Phorum: ecrypt

forum, 2006. Available from http://www.ecrypt.eu.org/stream/phorum/

read.php?1,448.

[12] Guido Bertoni, JoanDaemen,Michaël Peeters, andGilles VanAssche. TheKeccak

sponge function family, 2012. Available from http://keccak.noekeon.org/.

[13] Eli Biham and Orr Dunkelman. Differential Cryptanalysis in Stream Ciphers.

Cryptology ePrint Archive, Report 2007/218, June 2007. Available from http:

//eprint.iacr.org/2007/218.pdf.

[14] Eli Biham and Jennifer Seberry. Py (Roo) : A Fast and Secure StreamCipherUsing

Rolling Arrays. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/023,

2005. Available from http://www.ecrypt.eu.org/stream/ciphers/py/py.

ps.

[15] Eli Biham and Jennifer Seberry. Pypy: Another Version of Py. eSTREAM,

ECRYPT Stream Cipher Project, Report 2006/038, 2006. Available from http:

//www.ecrypt.eu.org/stream/papersdir/2006/038.pdf.

[16] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosys-

tems. In Alfred Menezes and Scott A. Vanstone, editors, Advances in Cryptology

— CRYPTO ’90, volume 537 of Lecture Notes in Computer Science, pages 2–21.

Springer, 1990.

[17] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data Tradeoffs

for Stream Ciphers. In Tatsuaki Okamoto, editor, Advances in Cryptology —

ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 1–13.

Springer, 2000.

http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.ecrypt.eu.org/stream/phorum/read.php?1,448
http://www.ecrypt.eu.org/stream/phorum/read.php?1,448
http://keccak.noekeon.org/
http://eprint.iacr.org/2007/218.pdf
http://eprint.iacr.org/2007/218.pdf
http://www.ecrypt.eu.org/stream/ciphers/py/py.ps
http://www.ecrypt.eu.org/stream/ciphers/py/py.ps
http://www.ecrypt.eu.org/stream/papersdir/2006/038.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/038.pdf

BIBLIOGRAPHY 207

[18] Alex Biryukov, Adi Shamir, and David Wagner. Real Time Cryptanalysis of A5/1
on a PC. In Bruce Schneier, editor, Fast Software Encryption (FSE 2000), volume

1978 of Lecture Notes in Computer Science, pages 1–18. Springer, 2001.

[19] Bluetooth®. Specification of the Bluetooth System Version 1.1, 2001. Available

from http://www.tscm.com/BluetoothSpec.pdf.

[20] Wieb Bosma, John J. Cannon, and Catherine Playoust. The Magma algebra

system. I. The user language. Journal of Symbolic Computation, 24(3-4):235–265,

1997. Computational algebra and number theory (London, 1993).

[21] An Braeken, Joseph Lano, Nele Mentens, Bart Preneel, and Ingrid Verbauwhede.

SFINKS : A Synchronous Stream Cipher for Restricted Hardware Environments.

eSTREAM, ECRYPT Stream Cipher Project, Report 2005/026, 2005. Available
from http://www.ecrypt.eu.org/stream/ciphers/sfinks/sfinks.ps.

[22] Marc Briceno, Ian Goldberg, and David Wagner. A pedagogical implementation

of A5/1, 1999. Available from http://cryptome.org/jya/a51-pi.htm.

[23] Bruno Buchberger. An Algorithm for finding the Bases Elements of the Residue

Class Modulo a Zero Dimensional Polynomial Ideal. Phd thesis, University of

Innsbruck, Austria, 1965.

[24] Bruno Buchberger. Gröbner bases: A short introduction for systems theor-

ists. In Roberto Moreno-Díaz, Bruno Buchberger, and José Luis Freire, ed-

itors, Computer Aided Systems Theory — EUROCAST 2001, volume 2178 of

Lecture Notes in Computer Science, pages 1–19. Springer, 2001. Available from

http://people.reed.edu/~davidp/pcmi/buchberger.pdf.

[25] Christophe De Cannière, Özgül Küçük, and Bart Preneel. Analysis of Grain’s

Initialization Algorithm. In Serge Vaudenay, editor, Progress in Cryptology —

AFRICACRYPT 2008, volume 5023 of Lecture Notes in Computer Science, pages

276–289. Springer, 2008.

[26] Christophe De Canniére and Bart Preneel. Trivium. In Matthew J. B. Robshaw

and Olivier Billet, editors, New Stream Cipher Designs: The eSTREAM Finalists,

volume 4986 of Lecture Notes in Computer Science, pages 244–266. Springer, 2008.

[27] Anne Canteaut and Michaël Trabbia. Improved Fast Correlation Attacks Using

Parity-Check Equations of Weight 4 and 5. In Bart Preneel, editor, Advances in

http://www.tscm.com/BluetoothSpec.pdf
http://www.ecrypt.eu.org/stream/ciphers/sfinks/sfinks.ps
http://cryptome.org/jya/a51-pi.htm
http://people.reed.edu/~davidp/pcmi/buchberger.pdf

208 BIBLIOGRAPHY

Cryptology — EUROCRYPT 2000, number 1807 in Lecture Notes in Computer

Science, pages 573–588. Springer, 2000.

[28] Claude Carlet. Boolean functions for cryptography and error correcting codes,

2007. Available from http://www-rocq.inria.fr/codes/Claude.Carlet/

chap-fcts-Bool.pdf.

[29] Andrew Clark, Ed Dawson, Joanne Fuller, Jovan Dj. Golić, Hoon Jae Lee, William

Millan, Sang-Jae Moon, and Leonie Simpson. The LILI-II Keystream Generator.

In Lynn Margaret Batten and Jennifer Seberry, editors, Information Security and

Privacy (ACISP 2002), volume 2384 of Lecture Notes in Computer Science, pages

25–39. Springer, 2002.

[30] Don Coppersmith, Hugo Krawczyk, and Yishay Mansour. The shrinking gen-

erator. In Douglas R. Stinson, editor, Advances in Cryptology — CRYPTO ’93,

volume 773 of Lecture Notes in Computer Science, pages 22–39. Springer, 1994.

[31] Nicolas T. Courtois. Fast Algebraic Attacks on Stream Ciphers with Linear

Feedback. In Dan Boneh, editor, Advances in Cryptology — CRYPTO 2003,

volume 2729 of Lecture Notes in Computer Science, pages 176–194. Springer, 2003.

[32] Nicolas T. Courtois. Higher Order Correlation Attacks, XL Algorithm and

Cryptanalysis of Toyocrypt. In Pil Joong Lee and Chae Hoon Lim, editors,

Information Security and Cryptology — ICISC 2002, volume 2587 of Lecture Notes

in Computer Science, pages 182–199. Springer, 2003.

[33] Nicolas T. Courtois. Cryptanalysis of Sfinks. In Dongho Won and Seungjoo

Kim, editors, Information Security and Cryptology — ICISC 2005, volume 3935

of Lecture Notes in Computer Science, pages 261–269. Springer, 2006.

[34] Nicolas T. Courtois and Willi Meier. Algebraic Attacks on Stream Ciphers with

Linear Feedback. In Eli Biham, editor, Advances in Cryptology — EUROCRYPT

2003, volume 2656 of Lecture Notes in Computer Science, pages 345–359. Springer,

2003.

[35] Joan Daemen, Joseph Lano, and Bart Preneel. Chosen Ciphertext Attack on

SSS. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/045, July 2005.
Available from http://www.ecrypt.eu.org/stream/papersdir/045.pdf.

http://www-rocq.inria.fr/codes/Claude.Carlet/chap-fcts-Bool.pdf
http://www-rocq.inria.fr/codes/Claude.Carlet/chap-fcts-Bool.pdf
http://www.ecrypt.eu.org/stream/papersdir/045.pdf

BIBLIOGRAPHY 209

[36] Data Assurance and Communication Security Research Center. ZUC 1.4 Specific-

ation, 2010. Available from http://www.gsmworld.com/documents/EEA3_

EIA3_ZUC_v1_4.pdf.

[37] Ed Dawson and Lauren Nielsen. Automated Cryptanalysis of XOR Plaintext

Strings. Cryptologia, 20(2):165–181, April 1996.

[38] Nicolaas Govert de Bruijn. A combinatorial problem. Proc. Koninklijke Neder-

landse Akademie v. Wetenschappen, 49:758–764, 1946.

[39] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Polynomials.

In Antoine Joux, editor, Advances in Cryptology — EUROCRYPT 2009, volume

5479 of Lecture Notes in Computer Science, pages 278–299. Springer, 2009.

[40] Elena Dubrova. A List of Maximum Period NLFSRs. Cryptology ePrint Archive,

Report 2012/166, 2012. Available from http://eprint.iacr.org/2012/166.

pdf.

[41] Orr Dunkelman and Nathan Keller. Treatment of the Initial Value in Time-

Memory-Data TradeoffAttacks on StreamCiphers. Information Processing Letters,

107(5):133–137, 2008.

[42] Niklas Eén and Niklas Sörensson. MiniSat — A SAT Solver with Conflict-Clause

Minimization. Poster presented at Theory and Applications of Satisfiability

Testing Conference (SAT 2005), 2005. Available from http://minisat.se/

Main.html.

[43] Patrik Ekdahl and Thomas Johansson. Snow — a new stream cipher, 2000.

Available from https://www.cosic.esat.kuleuven.be/nessie/workshop/

submissions/snow.zip.

[44] eSTREAM. eCRYPT NoE: Preliminary Call for Stream Cipher Primitives, 2005.

Available from http://www.ecrypt.eu.org/stream/call/.

[45] European Network of Excellence for Cryptology. The eSTREAM Project. Avail-

able from http://www.ecrypt.eu.org/stream/index.html.

[46] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases

F4. Journal of Pure and Applied Algebra, 139:61–88, 1999.

http://www.gsmworld.com/documents/EEA3_EIA3_ZUC_v1_4.pdf
http://www.gsmworld.com/documents/EEA3_EIA3_ZUC_v1_4.pdf
http://eprint.iacr.org/2012/166.pdf
http://eprint.iacr.org/2012/166.pdf
http://minisat.se/Main.html
http://minisat.se/Main.html
https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions/snow.zip
https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions/snow.zip
http://www.ecrypt.eu.org/stream/call/
http://www.ecrypt.eu.org/stream/index.html

210 BIBLIOGRAPHY

[47] Jean-Charles Faugère and Gwénolé Ars. An Algebraic Cryptanalysis of Nonlinear

Filter Generators using Gröbner bases. Technical report, Institut National De

Recherche En Informatique Et En Automatique, 2003. Available from http:

//hal.inria.fr/docs/00/07/18/48/PDF/RR-4739.pdf.

[48] BerndtM. Gammel and Rainer Göttfert. Combining Certain Nonlinear Feedback

Shift Registers. Proceedings of SASC 2004, 2004. Available from http://www.

matpack.de/achterbahn/Gammel_Goettfert_SASC2004.pdf.

[49] Berndt M. Gammel and Rainer Göttfert. Linear filtering of nonlinear shift-

register sequences. In Øyvind Ytrehus, editor, Coding and Cryptography, WCC

2005, volume 3969 of Lecture Notes in Computer Science, pages 354–370. Springer,

2006.

[50] Berndt M. Gammel, Rainer Göttfert, and O. Kniffler. An NLFSR-based stream

cipher. In International Symposium on Circuits and Systems (ISCAS 2006), pages

2917–2920, 2006.

[51] J.D Golić. Cryptanalysis of Three Mutually Clock-Controlled Stop/Go Shift

Registers. IEEE Transactions on Information Theory, 46(3):1081–1090, 2002.

[52] J.D Golić andMiodrag J. Mihaljevic. A Generalized Correlation Attack on a Class

of Stream Ciphers Based on the Levenshtein Distance. Journal of Cryptology,

3(3):201–212, 1991.

[53] J.D Golić, Mahmoud Salmasizadeh, Leone Simpson, and Ed Dawson. Fast Cor-

relation Attacks on Nonlinear Filter Generators. Information Processing Letters,

64(1):37–42, 1997.

[54] Jovan Dj. Golić. On the Security of Nonlinear Filter Generators. In Dieter

Gollmann, editor, Fast Software Encryption (FSE 1996), volume 1039 of Lecture

Notes in Computer Science, pages 173–188. Springer, 1996.

[55] Jovan Dj. Golić. Cryptanalysis of Alleged A5 Stream Cipher. In Walter Fumy,

editor, Advances in Cryptology — EUROCRYPT ’97, volume 1233 of Lecture Notes

in Computer Science, pages 239–255. Springer, 1997.

[56] Jovan Dj. Golić, Vittorio Bagini, and Guglielmo Morgari. Linear Cryptanalysis

of Bluetooth Stream Cipher. In Lars R. Knudsen, editor, Advances in Cryptology

http://hal.inria.fr/docs/00/07/18/48/PDF/RR-4739.pdf
http://hal.inria.fr/docs/00/07/18/48/PDF/RR-4739.pdf
http://www.matpack.de/achterbahn/Gammel_Goettfert_SASC2004.pdf
http://www.matpack.de/achterbahn/Gammel_Goettfert_SASC2004.pdf

BIBLIOGRAPHY 211

— EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages

238–255. Springer, 2002.

[57] Jovan Dj. Golic, Mahmoud Salmasizadeh, Andrew Clark, Abdollah Khodkar, and

Ed Dawson. Discrete Optimisation and Fast Correlation Attacks. In Ed Dawson

and Jovan Dj. Golic, editors, Cryptography: Policy and Algorithms, volume 1029

of Lecture Notes in Computer Science. Springer, 1995.

[58] Dieter Gollmann and Willam G. Chambers. Clock-Controlled Shift Registers: A

Review. IEEE Journal on Selected Areas in Communications, 7(4):525–533, 1989.

[59] SolomonW. Golomb. Shift Register Sequences. Holden-Day, 1967.

[60] Edward J Gorth. Generation of Binary Sequences With Controllable Complexity.

IEEE Transactions on Information Theory, IT-17(3):288–296, 1971.

[61] Helen Gustafson, Ed Dawson, Lauren Nielsen, andWilliam J. Caelli. A computer

package for measuring the strength of encryption algorithms. Computers &

Security, 13(8):687–697, 1994.

[62] Richard Wesley Hamming. Error detecting and error correction codes. Bell

System Technical Journal, 29(2):147–160, 1950.

[63] Philip Hawkes and Gregory G Rose. Guess-and-Determine Attacks on SNOW.

In Kaisa Nyberg and HowardM. Heys, editors, SAC 2002, volume 2595 of Lecture

Notes in Computer Science, pages 37–46. Springer, 2002.

[64] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A

Stream Cipher Proposal: Grain-128. eSTREAM, ECRYPT Stream Cipher Pro-

ject, 2006. Available from http://www.ecrypt.eu.org/stream/p3ciphers/

grain/Grain128_p3.pdf.

[65] Martin Hell, Thomas Johansson, AlexanderMaximov, andWilli Meier. The Grain

Family of Stream Ciphers. In Matthew Robshaw and Olivier Billet, editors, New

Stream Cipher Designs: The eSTREAM Finalists, volume 4986 of Lecture Notes in

Computer Science, pages 191–209. Springer, 2008.

[66] Martin Hell, Thomas Johansson, and Willi Meier. Grain – A Stream Cipher

for Constrained Environments. eSTREAM, ECRYPT Stream Cipher Project,

Report 2005/010, 2005. Available from http://www.ecrypt.eu.org/stream/

p3ciphers/grain/Grain_p3.pdf.

http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain128_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain128_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf

212 BIBLIOGRAPHY

[67] Martin E. Hellman. A Cryptanalytic Time-Memory Trade-Off. IEEE Transactions

on Information Theory, 26(4):401–406, July 1980.

[68] Jin Hong. certain pairs of key-IV pairs for Trivium. eSTREAM Phorum, 2005.

Available from http://http://www.ecrypt.eu.org/stream/phorum/read.

php?1,152,154.

[69] Jin Hong andWoo-Hwan Kim. TMD-Tradeoff and State Entropy Loss Considera-

tions of Streamcipher MICKEY. In Subhamoy Maitra, C. E. Veni Madhavan, and

Ramarathnam Venkatesan, editors, INDOCRYPT 2005, volume 3797 of Lecture

Notes in Computer Science, pages 169–182. Springer, 2005.

[70] Jin Hong and Palash Sarkar. New Applications of Time Memory Data Tradeoffs.

In Bimal K. Roy, editor, Advances in Cryptology — ASIACRYPT 2005, volume

3788 of Lecture Notes in Computer Science, pages 353–372. Springer, 2005.

[71] Jin Hong and Palash Sarkar. Rediscovery of TimeMemory Tradeoffs. Cryptology

ePrint Archive, Report 2005/090, July 2008. Available from http://eprint.

iacr.org/2005/090.pdf.

[72] Honggang Hu and Guang Gong. Periods on Two Kinds of Nonlinear Feedback

Shift Registers with Time Varying Feedback Functions. International Journal of

Foundations of Computer Science, 22(6):1317–1329, 2011.

[73] Takanori Isobe, Toshihiro Ohigashi, Hidenori Kuwakado, and Masakatu Morii.

How to Break Py and Pypy by a Chosen-IV Attack. eSTREAM, ECRYPT Stream

Cipher Project, Report 2007/035, 2007. Available from http://www.ecrypt.

eu.org/stream/papersdir/2007/035.pdf.

[74] Cees J.A. Jansen. Stream Cipher Design: Make your LFSRs jump! Presented at

SASC 2004, 2004. Available from http://www.ecrypt.eu.org/stvl/sasc/.

[75] Cees J.A. Jansen, Tor Helleseth, and Alexander Kholosha. Cascade Jump Con-

trolled Sequence Generator and Pomaranch Stream Cipher (Version 2). eS-

TREAM, ECRYPT Stream Cipher Project, Report 2006/006, 2006. Available
from http://www.ecrypt.eu.org/stream/papersdir/2006/006.pdf.

[76] C.J.A. Jansen and D.E. Boekke. The Algebraic Normal Form of Arbitrary Func-

tions of Finite Fields. In Proceedings 8th Symposium on Information Theory in the

Benelux, pages 69–76, 1987.

http://http://www.ecrypt.eu.org/stream/phorum/read.php?1,152,154
http://http://www.ecrypt.eu.org/stream/phorum/read.php?1,152,154
http://eprint.iacr.org/2005/090.pdf
http://eprint.iacr.org/2005/090.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/035.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/035.pdf
http://www.ecrypt.eu.org/stvl/sasc/
http://www.ecrypt.eu.org/stream/papersdir/2006/006.pdf

BIBLIOGRAPHY 213

[77] Éliane Jaulmes and Frédéric Muller. Cryptanalysis of the F-FCSR Stream Cipher

Family. In Bart Preneel and Stafford E. Tavares, editor, Selected Areas in Cryp-

tography (SAC 2005), volume 3897 of Lecture Notes in Computer Science, pages

20–35. Springer, 2006.

[78] Fredrik Jönsson and Thomas Johansson. A fast correlation attack on LILI-128.

Information Processing Letters, 81(3):127–132, February 2002.

[79] Ali A. Kanso. Mixer — A new stream cipher. Journal of Discrete Mathematical

Sciences and Cryptography, 11(2):159–179, 2008.

[80] Itsik Mantin and Adi Shamir. A Practical Attack on Broadcast RC4. In Mitsuri

Matsui, editor, Fast Software Encryption (FSE 2002), volume 2355 of Lecture Notes

in Computer Science, pages 152–164. Springer, 2002.

[81] George Marsaglia. The Marsaglia Random Number CDROM including the

Diehard Battery of Tests of Randomness, 1995. Available from http://www.

stat.fsu.edu/pub/diehard/.

[82] James L. Massey. Shift-Register Synthesis and BCH decoding. IEEE Transactions

on Information Theory, 15(1):122–127, January 1969.

[83] Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Tor Helleseth,

editor, Advances in Cryptology — EUROCRYPT ’93, volume 765 of Lecture Notes

in Computer Science, pages 386–398. Springer, 1994.

[84] Alexander Maximov and Alex Biryukov. Two Trivial Attacks on Trivium. In

Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors, Selected Areas in

Cryptography — SAC 2007, volume 4876 of Lecture Notes in Computer Science,

pages 36–55. Springer, 2007.

[85] Cameron McDonald, Chris Charnes, and Josef Pieprzyk. An Algebraic Analysis

of Trivium Ciphers based on the Boolean Satisfiability Problem. Cryptology

ePrint Archive, Report 2007/129, 2007. Available from http://eprint.iacr.

org/2007/129.

[86] Willi Meier, Enes Pasalic, and Claude Carlet. Algebraic Attacks and Decompos-

ition of Boolean Functions. In Christian Cachin and Jan Camenisch, editors,

Advances in Cryptology — EUROCRYPT 2004, volume 3027 of Lecture Notes in

Computer Science, pages 474–491. Springer, 2004.

http://www.stat.fsu.edu/pub/diehard/
http://www.stat.fsu.edu/pub/diehard/
http://eprint.iacr.org/2007/129
http://eprint.iacr.org/2007/129

214 BIBLIOGRAPHY

[87] Willi Meier and Othmar Staffelbach. Fast Correlation Attacks on Certain Stream

Ciphers. Journal of Cryptology, 1(3):159–176, October 1989.

[88] Alfred Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of

Applied Cryptography. CRC Press, 1996.

[89] Miodrag J. Mihaljevic and Jovan Dj. Golic. A Fast Iterative Algorithm For A Shift

Register Initial State Reconstruction Given The Nosiy Output Sequence. In Jen-

nifer Seberry and Josef Pieprzyk, editors, Advances in Cryptology — AUSCRYPT

’90, volume 453 of Lecture Notes in Computer Science. Springer, 1990.

[90] William L. Millan. Analysis and Design of Boolean Functions for Cryptographic

Applications. PhD thesis, Queensland University of Technology, 1997.

[91] National Institute of Standards and Technology. A Statistical Test Suite for the Val-

idation of RandomNumber Generators and Pseudo RandomNumber Generators

for Cryptographic Applications, December 2008. Available from http://csrc.

nist.gov/publications/nistpubs/800-22-rev1/SP800-22rev1.pdf.

[92] Deike Priemuth-Schmid and Alex Biryukov. Slid Pairs in Salsa20 and Trivium.

In Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors, Progress

in Cryptology — INDOCRYPT 2008, volume 5365 of Lecture Notes in Computer

Science, pages 1–14. Springer, 2008.

[93] Havard Raddum. Cryptanalytic Results on Trivium. eSTREAM, ECRYPT Stream

Cipher Project, Report 2006/039, 2006. Available from http://www.ecrypt.

eu.org/stream/papersdir/2006/039.ps.

[94] Andrea Röck. Entropy of the Internal State of an FCSR in Galois Representation.

In Kaisa Nyberg, editor, Fast Software Encryption (FSE 2005), volume 5086 of

Lecture Notes in Computer Science, pages 343–362. Springer, 2008.

[95] Rainer A. Rueppel. Correlation Immunity and the Summation Generator. In

Hugh C. Williams, editor, Advances in Cryptology — CRYPTO ’85, volume 218 of

Lecture Notes in Computer Science, pages 260–272. Springer, 1985.

[96] Rainer A. Rueppel. Analysis and Design of Stream Ciphers. Springer, 1986.

[97] S. S. Bedi and N. Rajesh Pillai. Cube Attacks on Trivium. Cryptology ePrint

Archive, Report 2009/015, 2009. Available from http://eprint.iacr.org/

2009/015.pdf.

http://csrc.nist.gov/publications/nistpubs/800-22-rev1/SP800-22rev1.pdf
http://csrc.nist.gov/publications/nistpubs/800-22-rev1/SP800-22rev1.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/039.ps
http://www.ecrypt.eu.org/stream/papersdir/2006/039.ps
http://eprint.iacr.org/2009/015.pdf
http://eprint.iacr.org/2009/015.pdf

BIBLIOGRAPHY 215

[98] Mahmoud Salmasizadeh, Leonie Simpson, Jovan Dj. Golić, and Ed Dawson. Fast

Correlation Attacks and Multiple Linear Approximations. In Vijay Varadharajan,

Josef Pieprzyk, and YiMu, editors, Information Security and Privacy (ACISP 1997),

volume 1270 of Lecture Notes in Computer Science, pages 228–239. Springer, 1997.

[99] Claude Elwood Shannon. A Mathematical Theory of Communication. The Bell

System Technical Journal, 27(3):379–423, 1948.

[100] T Siegenthaler. Correlation-Immunity of Nonlinear Combining Functions for

Cryptographic Applications. IEEE Transactions on Information Theory, IT-

30(5):776–780, 1984.

[101] T Siegenthaler. Decrypting a Class of Stream Ciphers Using Ciphertext Only.

IEEE Transactions on Computers, 34(1):81–85, January 1985.

[102] Thomas Siegenthaler, AmsteinWalthert Kleiner, and Réjane Forré. Generation of

Binary SequenceswithControllable Complexity and Ideal r-TupelDistribution. In

David Chaum andWyn L. Price, editors, Advances in Cryptology— EUROCRYPT

’87, volume 304 of Lecture Notes in Computer Science, pages 15–23. Springer, 1988.

[103] Ilaria Simonetti, Ludovic Perret, and Jean Charles Faugr̀e. Algebraic Attack

Against Trivium. In First International Conference on Symbolic Computation

and Cryptography, SCC 2008, LMIB, pages 95–102, 2008. Available from http:

//www-salsa.lip6.fr/~jcf/Papers/SCC08c.pdf.

[104] Leone Simpson, Jovan Dj. Golić, and Ed Dawson. A Probabilistic Correlation

Attack on the Shrinking Generator. In Colin Boyd and Ed Dawson, editors,

Information Security and Privacy (ACISP 98), volume 1438 of Lecture Notes in

Computer Science, pages 147–158. Springer, 1998.

[105] Leonie Simpson. Divide and Conquer Attacks on Shift Register Based Stream

Ciphers. PhD thesis, Queensland University of Technology, January 2000.

[106] Leonie Simpson and Serdar Boztas. State cycles, initialization and the Trivium

stream cipher. Cryptography and Communications, 4(3-4):245–258, 2012.

[107] Leonie Simpson, Ed Dawson, Jovan Dj. Golić, and William Millan. LILI Key-

stream Generator. In Douglas R. Stinson and Stafford Tavares, editors, SAC -

Selected Areas in Cryptograpy (SAC 2000), volume 2012 of Lecture Notes in Com-

puter Science, pages 248–261. Springer, 2000.

http://www-salsa.lip6.fr/~jcf/Papers/SCC08c.pdf
http://www-salsa.lip6.fr/~jcf/Papers/SCC08c.pdf

216 BIBLIOGRAPHY

[108] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,

13(4):354–356, 1969.

[109] Meltem Sönmez Turan and Orhun Kara. Linear approximations for 2-round

trivium. In Atilla Elci, Siddika Berna Ors, and Bart Preneel, editors, Proceedings

of the First International Conference on Security of Information and Networks (SIN

2007), pages 96–105. Trafford Publishing, 2007.

[110] Hongjun Wu, Tao Huang, Phuong Ha Nguyen, Huaxiong Wang, and San Ling.

Differential Attacks against Stream Cipher ZUC. In Xiaoyun Wang and Kazue

Sako, editors, Advances in Cryptology — ASIACRYPT 2012, Lecture Notes in

Computer Science, pages 262–277. Springer, 2012.

[111] HongjunWu, Phuong-Ha Nguyen, HuaxiongWang, and San Ling. Cryptanalysis

of Stream Cipher ZUC in the 3GPP Confidentiality & Integrity Algorithms 128-

EEA3 & 128-EIA3. Presented at the Rump Session of Asiacrypt 2010, 2010.

[112] Hongjun Wu and Bart Preneel. Attacking the IV Setup of Pypy and Pypy. eS-

TREAM, ECRYPT Stream Cipher Project, Report 2006/050, 2006. Available

from http://www.ecrypt.eu.org/stream/papersdir/2006/050.pdf.

[113] Hongjun Wu and Bart Preneel. Key Recovery Attack on Py and Pypy with

Chosen IVs. eSTREAM, ECRYPT StreamCipher Project, Report 2006/052, 2006.
Available from http://www.ecrypt.eu.org/stream/papersdir/2006/052.

pdf.

[114] Hongjun Wu and Bart Preneel. Resynchronization Attacks on WG and LEX.

In Matthew J. B. Robshaw, editor, Fast Software Encryption (FSE 2006), volume

4047 of Lecture Notes in Computer Science, pages 422–432. Springer, 2006.

[115] Wen Zeng and Wenfeng Qi. Finding slid pairs in trivium with MiniSat. Science

China Information Sciences, pages 1–8, 2012.

http://www.ecrypt.eu.org/stream/papersdir/2006/050.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/052.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/052.pdf

	Front Matter
	Keywords
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Declaration
	Previously Published Material
	Acknowledgements

	Introduction
	Aims and objectives
	Results
	Organisation of thesis

	Background
	Stream ciphers and keystream generators
	Components in keystream generators
	Combining update and output functions
	Stream cipher cryptanalysis
	Conclusion

	m-tuple distributions in nonlinear filter generators
	Existing analysis on m-tuple distributions of NLFGs
	Experimental goals and design
	Experimental results
	Discussion
	Conclusion

	Analysis of linearly filtered nonlinear feedback shift registers
	m-tuple Distributions in Linearly Filtered NLFSRs
	Slid pairs in Trivium
	New algebraic analysis on Trivium and its variants
	Conclusion

	State convergence in Mixer
	Mixer specifications
	State convergence in stream ciphers
	Analysis of Mixer
	Summary

	State convergence and its effects on cryptanalysis
	State convergence detection
	Irregular clocking and state convergence
	Regular clocking and state convergence
	Mechanisms which can cause state convergence
	State convergence and stream cipher cryptanalysis
	Conclusion

	Conclusion and Future Research
	Review of Contributions
	Future Directions

	Truth Table output for the F3 Boolean function
	Experimental Results for Chapter 3
	Experimental Results for Section 4.1
	Bibliography

