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Abstract 

Secretion of proinflammatory cytokines by LPS activated endothelial cells contributes substantially to the 

pathogenesis of sepsis. However, the mechanism involved in this process is not well understood. In the 

present study, we determined the roles of GEF-H1 (Guanine-nucleotide exchange factor-H1)-RhoA 

signalling in LPS-induced interleukin-8 (IL-8, CXCL8) production in endothelial cells. First, we observed 

that GEF-H1 expression was upregulated in a dose- and time-dependent manner as consistent with TLR4 

(Toll-like receptor 4) expression after LPS stimulation. Afterwards, Clostridium difficile toxin B-10463 

(TcdB-10463), an inhibitor of Rho activities, reduced LPS-induced NF-κB phosphorylation. Inhibition of 

GEF-H1 and RhoA expression reduced LPS-induced NF-κB and p38 phosphorylation. TLR4 knockout 

blocked LPS-induced activity of RhoA, however, MyD88 knockout did not impair the LPS-induced activity 

of RhoA. Nevertheless, TLR4 and MyD88 knockout both significantly inhibited transactivation of NF-κB. 

GEF-H1-RhoA and MyD88 both induced significant changes in NF-κB transactivation and IL-8 synthesis. 

Co-inhibition of GEF-H1-RhoA and p38 expression produced similar inhibitory effects on LPS-induced NF-

κB transactivation and IL-8 synthesis as inhibition of p38 expression alone, thus confirming that activation of 

p38 was essential for the GEF-H1-RhoA signalling pathway to induce NF-κB transactivation and IL-8 

synthesis. Taken together, these results demonstrate that LPS-induced NF-κB activation and IL-8 synthesis in 

endothelial cells are regulated by the MyD88 pathway and GEF-H1-RhoA pathway. 

Keywords: Lipopolysaccharide; Guanine-nucleotide exchange factor; RhoA; p38; nuclear factor-κB; 

Interleukin-8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

1. Introduction 

Severe sepsis or septic shock is a common and serious consequence of gram-negative bacterial infection, 

which accounts for high mortality in critically ill patients (Wendel et al., 2007). Endothelial cells line the 

inner wall of blood vessels, helping maintain organ homeostasis. Exposed to blood flow, endothelial cells are 

the primary targets for inflammatory agents during local and systemic inflammation (Cook-Mills and Deem, 

2005). The bacterial endotoxin lipopolysaccharide (LPS), the major component of the outer surface of Gram-

negative bacteria, induces a multitude of endothelium dysfunctions, including up-regulation of adhesion 

molecules, disorder of procoagulant activity, enhanced endothelial permeability, and over-expression of 

proinflammatory mediators (Aird, 2003). Endothelial cells express chemokines that initiate the activation and 

recruitment of circulating leukocytes at sites of tissue inflammation (Ait-Oufella et al., 2010). Among these 

activities, secretion of interleukin-8 (IL-8, CXCL8) by LPS-activated endothelial cells contributes 

substantially to the development of inflammation (Baggiolini et al., 1997). IL-8 displays a chemotactic 

activity for neutrophils, which are the first line of immune cells to be recruited to inflamed areas (Smart and 

Casale 1993). IL-8 also induces neutrophils to synthesize several toxic products, such as arachidonic acid 

metabolites (Wertheim et al., 1993). Thus, during septicemia, IL-8 participates in a series of cellular 

pathological events that severely injure endothelium and surrounding tissues. However, the precise 

mechanism of LPS-induced signaling that leads to IL-8 secretion in endothelial cells is poorly understood. 

Clarification of this pathway may be of immense significance in the design of anti-inflammatory therapies 

that act by regulating chemokine responses leading to septic shock-related events.  

The Rho family of small GTPases (Rho-GTPases) act as molecular switches to control many basic cellular 

activities that are also critical to the specialized cellular functions, such as actin cytoskeleton organization, 

cell migration and adhesion, reactive oxygen species formation, and apoptosis (Hall, 1994; Fiorentini et al., 

2003; Riento and Ridley, 2003; Doe et al., 2007). Moreover, some studies have implicated RhoA, Rac1 and 

Cdc42 in signalling pathways emanating from TLR2, TLR4, TLR3, and TLR9 (Kim and Woo, 2002; Liu-

Bryan et al., 2005). The Rho-GTPases might participate in another potential mechanism for regulating TLR 

signal induction (Ruse and Knaus, 2006). NF-κB is involved in the control of a variety of genes activated 

upon inflammation including the promoter region of the IL-8 gene, NF-κB plays a central role in the 

inflammatory response to infection and tissue injury (Yasumoto et al., 1992). However, studies with TcdB-

10463, an inhibitor of Rho proteins activities, demonstrated strong anti-inflammatory effects by inhibiting 

NF-κB-translocation and activation in human endothelial cells (Hippenstiel et al., 2000), suggesting a 

potential role of Rho proteins in promoting LPS-induced inflammation (Perona et al., 1997). 

However, the activation of Rho-GTPases is specifically regulated by several members of Guanine-nucleotide 

exchange factors (GEFs) (Zheng, 2001). GEF-H1 has been characterized as a Rho-specific GEF that localizes 

on microtubules (MT) and exhibits Rho-specific GDP/GTP exchange activity (Ren et al., 1998).  In its MT-

bound state, the guanosine-exchange activity of GEF-H1 is suppressed, whereas GEF-H1 release from MT 

stimulates Rho-specific GEF activity (Bokoch et al., 2002). LPS-induced TLR-mediated NF-κB-translocation 

and activation are inhibited by GEF-deficientcy (Shibolet et al., 2007).  Although the expression of GEF-H1 

and RhoA have been identified in endothelial cells, very few reports have focused on their inflammatory roles 
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in these cells. In view of previous studies that link GEF-H1-RhoA signalling with inflammation, our present 

study evaluated their roles in mediating IL-8 secretion in LPS-stimulated endothelial cells. 

In this study, we have shown that GEF-H1 and RhoA mediate LPS-induced NF-κB transactivation and IL-8 

expression via interaction between GEF-H1 and TLR4.  

 

2. Material and methods 

2.1 Cell culture and reagents  

Human umbilical vein endothelial cells (HUVECs) maintained in Dulbecco's Modified Eagle's Medium 

(DMEM) supplemented with 20% (v/v) fetal bovine serum (FBS), 100 U/ml penicillin G, and 100 U/ml 

streptomycin in a humidified 37℃, 5% CO2 incubator. DMEM and FBS were from GIBCO BRL 

(Mississauga, ON). Antibodies used in Western blotting for human GEF-H1, RhoA, p65, phospho-p65Ser536, 

phosphor-p38, p38 and MyD88 were obtained from Cell Signalling Technology. Antibodies used in Western 

blotting for TLR4 were purchased from Santa Cruz Biotechnology.  

2.2. Western blot assay 

Cultured HUVECs (3-4 ×106) were washed twice with PBS, lysed and scraped off the dishes, transferred to a 

1.5-ml tube, and centrifuged. Nuclear proteins were extracted with NE-PERTM nuclear and cytoplasmic 

extraction regents (Pierce Chemical Co., NY, USA) according to manufacturer’s instructions. The pellet was 

resuspended in SDS sample buffer and heated at 99 °C for 5 min. The eluted proteins were applied to SDS-

polyacrylamide gels and electrotransferred to nitrocellulose transfer membranes (BioScience). The 

membranes were blocked for 2 h in 2% bovine serum albumin in TBST (20 mM Tris-HCl [pH 7.6], 0.15 M 

sodium chloride, and 0.1% Tween 20), and then incubated with primary antibodies in TBST overnight. After 

washing three times with TBST, the membranes were incubated for 1 h with horseradish peroxidase-

conjugated anti-mouse or -rabbit immunoglobulin (Amersham Pharmacia Biotech) diluted 1:2000 in TBST. 

After three washes in TBST, the blot was developed with the enhanced chemiluminescence system 

(Millipore), according to the manufacturer’s instructions. 

2.3. Small interfering RNA (siRNA) transfection 

Stealth™ RNAi duplexes, against human GEF-H1, RhoA, MyD88, and p38, were obtained from Invitrogen 

(Invitrogen Life Technologies, Carlsbad, CA). All sets of RNAi molecules were transfected individually into 

HUVECs at a 50 nM concentration using Lipofectamine 2000 (Carlsbad, CA) according to the manufacturer's 

instructions. Duplex siRNA were constructed against sequences coding for GEF-H1 positions 998-1022 (5’-

AGA ACU GGC UGA UGA GCA GAU CAC C-3’),  the target sequence of siRNA for RhoA corresponding 

to positions 319-343 (5’-UGA GCA AGC AUG UCU UUC CAC AGG C-3’), the target sequence of siRNA 

for MyD88 (5’-CCG GAU GGU GGU GGU UGU CUC UGA U-3’), the target sequence of siRNA for 

TLR4 (5’-  GGG TAA GGA ATG AGC TAG TAA AGA A-3’), and for p38 (5’-GCU GAC AUA AUU 

CAC AGG GAC CUA A-3’). A scrambled negative control siRNA (5’-UUC UCC GAA CGU GUC ACG U-

3’) was also included. The abilities of the RNAi molecules to knockdown target proteins expression were 

analyzed at 48 h after transfection by western blot analysis.  
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2.4. Determination of RhoA activation by pull-down assay 

RhoA-GTP was assayed by adapting published protocols (Ren and Schwartz, 2000). Briefly, proteins were 

extracted for 3 min at 4 °C in lysis buffer (50 mM Tris-HCl, pH 7.5, 1% Triton X-100, 0.5% sodium 

deoxycholate, 0.1% SDS, 0.65 M NaCl, 10 mM MgCl2 , 10 μg/ml leupeptin, 10μg/ml aprotinin, 1 mM 

PMSF; 0.7 ml). Clarified extracts were incubated for 20 min at 4 °C with glutathione-Sepharose (Amersham 

Biosciences) coupled to bacterially expressed GST-Rho binding domain of rhotekin (RBD; 30 μg) and then 

washed five times with lysis buffer. Samples precipitated from 200 μg of total protein were resolved by 

12.5% SDS-PAGE, and bound RhoA-GTP was visualized by Western blotting with anti-RhoA antibody (Cell 

Signaling). 

2.5. Electrophoretic Mobility Shift Assay (EMSA)  

EMSA for NF-κB was performed using the Lightshift Chemiluminescent EMSA kit (Pierce) following the 

manufacturer’s protocol. Briefly, DNA was biotin labeled using the biotin 3’-end-labeling kit (Pierce) in 50 

μl reaction buffer and 5 pmol of double-stranded NF-κB oligonucleotide (5’-AGT TGA GGG GAC TTT 

CCC AGG C-3’ and 3’-TCA ACT CCC CTG AAA GGG TCC G-5’) incubated in a microfuge tube with 

10μl of 5× terminal deoxynucleotidyltransferase buffer, 5μl of 5μM biotin-N4-CTP, 10 units of diluted 

terminal deoxynucleotidyltransferase, and 25μl of ultrapure water at 37°C for 30 min. The reaction was 

stopped with 2.5μl of 0.2 M EDTA. To extract labeled DNA, 50μl of chloroform:isoamyl alcohol (24:1) were 

added to each tube and centrifuged at 13,000 ×g. The top aqueous phase containing the labeled DNA was 

further used for binding reactions. Each binding reaction contained 1×binding buffer [100 mM Tris, 500 mM 

KCl, and 10 mM DTT (pH 7.5)], 2.5% glycerol, 5 mM MgCl2, 50 ng/μl poly (deoxyinosinic-deoxy-cytidylic 

acid), 0.05% NP40, 3 μg of nuclear extract, and 20 fmol of biotin-end-labeled target DNA. The contents were 

incubated at room temperature for 20 min. To this reaction mixture, 5μl of 5× loading buffer was added, 

subjected to gel electrophoresis on a native polyacrylamide gel, and transferred to a nylon membrane. After 

transfer was completed, DNA was cross-linked to the membrane using an UV cross-linker equipped with a 

254 nm bulb. The biotin-end-labeled DNA was detected using streptavidin-horseradish peroxidase conjugate 

and a chemiluminescent substrate according to the manufacturer’s instructions. 

2.6. Reverse transcriptase polymerase chain reaction (RT-PCR) assay  

Total RNA was prepared from HUVEC cells with TRIzol reagent (Invitrogen), according to the 

manufacturer’s instructions. First-strand cDNA was synthesized using oligo (dT) 15 primer and M-MLV 

reverse transcription technique (Promega, Madison, WI) on 4 μg of total RNA in 40 μL reaction volume. Taq 

DNA Polymerase was used to amplify the resulting cDNA with a 25 μL reaction volume. The primer 

sequences were designed as follows: the 223-bp human GEF-H1 product was amplified using the following 

sequences: 5’-ACA CGC TTC CTC AGC CAG CTA TTA-3’ and 5’-AAT TGC TGG AAG CGT TTG TCT 

CGG-3’; the 283-bp human IL-8 product using the following primers: 5’-ATG ACT TCC AAG CTG GCC 

GT-3’and 5’-CCT CTT CAA AAA CTT CTC CAC ACC-3’; and the 300-bp GAPDH product using the 

following primers: 5’-GGT CTA CAT GGC AAC TGT GA-3’ and 5’-ACC AGG TGG TCT CCT CTG A-3’. 

PCR products were seen on 2% agarose gels, following electrophoresis by ethidium bromide staining, and 

photographed under ultraviolet (UV) light. 
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2.7. Quantitation of IL-8 by Enzyme linked immunosorbent assay (ELISA) 

The supernatants previously prepared were assayed for IL-8 protein content using commercial enzyme linked 

immunosorbent assay (ELISA) kits for IL-8 (BioSciences, USA) according to the manufacturer’s instructions. 

Briefly, each well of a 96-well plate was coated overnight with capture antibody before being washed with 

PBS containing 0.05% Tween; then test supernatant was added to the appropriate wells. After being 

incubated for 1 h at room temperature, the wells were washed, and a detection antibody was added and 

incubated for 1 further h at room temperature. The wells were then washed with PBS/Tween, and horseradish 

peroxidase-conjugated streptavidin was added before being incubated for 1 h at room temperature. Finally, 

the color was developed by adding peroxidase substrate to each well before reading the absorbance at 450 nm 

using a Dynatec plate reader. 

2.8. Statistical analysis 

All data are expressed as mean ± SEM. Student’s t-test was used for all statistical analysis. Values of P < 0.05 

were considered to be statistically significant. 

 

3. Results 

3.1. LPS up-regulates expression of GEF-H1  

As GEFs are regulators of multiple cell functions and may be involved in NF-κB activation, their roles 

originating from the activated LPS-TLR signalling pathway was investigated. HUVECs were treated with 

various concentrations of LPS (0.1ng/ml-10μg/ml) for 24 h. Dose-dependent up-regulation of protein and 

mRNA expression was detected by Western blot and RT-PCR (Fig. 1A and 1B). The expression of GEF-H1 

protein and mRNA exhibited an increasing trend with alteration of the concentration of LPS. The curve 

peaked at a concentration of 100ng/ml compared with the control group (p<0.01). Subsequently, HUVECs 

were incubated with LPS (100ng/ml) at different indicated times. Immunoblot and RT-PCR analysis revealed 

that LPS up-regulated GEF-H1 expression in a time-dependent manner, peaking at 3 h after stimulation 

(Fig.1C and 1D). Interestingly, TLR4 expression was also up-regulated in a dose- and time-dependent 

manner as consistent with GEF-H1 expression after LPS stimulation.  

3.2. GEF-H1-RhoA signalling is required for LPS-induced NF-κB transactivation  

Exposure of endothelial cell monolayers to LPS (100 ng/ml) resulted in a time-dependent increase of 

cytosolic NF-κB phosphorylation, and the maximum level of phosphorylation of cytosolic NF-κB appeared at 

40 min after LPS stimulation (Fig 2A). Endothelial cells were preincubated with 0.01 to 100 ng/ml of TcdB-

10463 (inhibitor of RhoA, Cdc42, and Rac, but not other members of the Ras surperfamily of small GTP-

binding proteins) for 60 minutes prior to stimulation with 100 ng/ml LPS for 40 minutes. The TcdB-10463 

reduced LPS-related phosphorylation of NF-κB at Ser 536 in a dose-dependent manner. Although TcdB-

10463 could not completely block phosphorylation of NF-κB at Ser 536, these data indicated that Rho 

proteins were required for LPS-related phosphorylation of NF-κB in endothelial cells. (Fig 2B) 

To examine the effects of GEF-H1 and RhoA on LPS-induced NF-κB activation in more detail, we used 

GEF-H1 and RhoA specific siRNAs to observe changes in LPS-induced NF-κB activation. HUVEC cells 
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were transfected with GEF-H1 siRNA or RhoA siRNA or control siRNA for 48 hours, then treated with 

TcdB-10463 for 1 hour prior to LPS stimulation (100 ng/ml for 40 minutes). The inhibitory effects of specific 

siRNAs on target proteins were evaluated by Western blot (Fig 3A). The results presented in Fig 3B and 3C 

demonstrate that LPS treatment triggered more apparent augment of NF-κB phosphorylation at Ser 536 in the 

nucleus than LPS-untreated ECs. However, transfection alone with either GEF-H1 or RhoA siRNA both 

substantially impeded LPS-induced phosphorylation of NF-κB at Ser 536. In addition, co-transfection of 

GEF-H1 and RhoA siRNAs blocked LPS-induced phosphorylation of NF-κB to a similar extent as their 

transfection alone. Remarkably, these data indicate essential roles of GEF-H1 and RhoA in mediating LPS-

induced phosphorylation of NF-κB. 

3.3. GEF-H1-RhoA signalling regulates LPS-induced NF-κB transactivation and IL-8 expression 

through TLR4   

To determine whether TLR4 mediates LPS-induced RhoA activity, HUVECs were transiently transfected with 

TLR4 siRNA or unspecific siRNA (control siRNA).  After a 48-h incubation, cells were stimulated with 

medium alone or LPS (100 ng/ml) and then harvested. The ability of TLR4 siRNA to inhibit protein 

expression was analysed by Western blot (Fig. 4A). RhoA activity was detected by a cellular GTP-Rho assay, 

NF-κB DNA binding activity was monitored by EMSA (Fig. 4B). In endothelial cells overexpressing TLR4 

(either treated with or without LPS), was effectively inhibited by TLR4-specific siRNA. LPS significantly 

enhanced activation of RhoA into GTP-RhoA and NF-κB transactivation by a time-dependent manner, 

however, LPS-induced RhoA activation and NF-κB transactivation were significantly inhibited by transfection 

of TLR4-specific siRNA at different indicated times. These results suggest that LPS, acting through TLR4, 

subsequently stimulates RhoA activation and induces NF-κB transactivation. 

Indeed, previous studies have demonstrated that MyD88 is a key adaptor molecule and plays a crucial role in 

TLR-mediated signalling pathways (Kawai et al., 1999). To investigate whether MyD88 is an upstream 

regulator of RhoA activation, we used endothelial cells transfected with MyD88 siRNA to analyse LPS-

stimulated activation of RhoA. Interestingly, stimulation by LPS caused no detectable difference in the 

activation of RhoA amongst the indicated times, demonstrating that MyD88 is not required for LPS-induced 

activation of RhoA (Fig. 4C). However, inhibition of MyD88 effectively blocked NF-κB DNA binding 

activity (Fig. 4D). These results suggest that MyD88 plays a role in the regulation of LPS-induced NF-κB 

transactivation, but does not effect RhoA activation. 

To further confirm the above results, HUVECs were transfected with GEF-H1, RhoA, MyD88 or control 

siRNA for 48 hours, then exposed to medium or LPS (100 ng/ml) for 40 minutes. After control siRNA 

transfection, the cells treated with medium or LPS were used as negative control and positive control 

respectively. Therefore, compared with the positive control, LPS-induced phosphorylation and DNA binding 

activity of NF-κB in nucleus was significantly inhibited by individual transfection of GEF-H1, RhoA or 

MyD88 siRNA. The results indicate that GEF-H1, RhoA and MyD88 all not only promoted phosphorylation 

of NF-κB (Fig 5A and 5B), but also increased DNA binding activity of NF-κB in endothelial cells (Fig 5C 

and 5D). Moreover, compared with individual transfection of GEF-H1, RhoA or MyD88 siRNA, co-

transfection with either GEF-H1 and MyD88 or RhoA and MyD88 siRNAs presented a more effective 

inhibition of LPS-induced phosphorylation and DNA binding activity of NF-κB (Fig 5B and 5D). These 
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results demonstrate that GEF-H1-RhoA and MyD88 both play important roles in LPS-induced 

phosphorylation and DNA binding activity of NF-κB in endothelial cells.  

In endothelial cells, IL-8 expression is tightly controlled by NF-κB and activator protein (AP)-1 (Munoz et al., 

1996; Mukaida et al., 1998). To clarify the roles of GEF-H1 and RhoA on LPS-induced IL-8 expression in 

HUVECs, we designed an IL-8 primer and amplified the cDNA for 31 cycles from total mRNA by RT-PCR. 

The primer for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was amplified for 17 cycles as an 

internal control.  The IL-8 protein within culture supernatants was detected by ELISA. As a result, compared 

with the negative control, LPS significantly enhanced expression of IL-8 mRNA and protein. Compared with 

the positive control, LPS-induced expression of IL-8 mRNA and protein were inhibited not only by 

transfection of MyD88 siRNA but also by transfection of GEF-H1 or RhoA siRNA. Furthermore, co-

inhibition of GEF-H1 and MyD88 expression more effectively blocked LPS-induced expression of IL-8 

mRNA and protein than in isolation. Similarly, co-inhibition of RhoA and MyD88 expression could produce 

more inhibitory effects on LPS-induced expression of IL-8 mRNA and protein than their individual inhibition. 

These data indicate that GEF-H1-RhoA and MyD88 both play important roles in LPS-induced expression of 

IL-8 mRNA and protein. (Fig 5E and 5F) 

3.4. GEF-H1-RhoA signalling regulates LPS-induced NF-κB transactivation and IL-8 expression 

through p38 MAPK (Mitogen Activated Protein Kinases) 

RhoA-regulated signalling can be mediated by a variety of downstream effectors (Vojtek and Cooper, 1995). 

Exposure of endothelial cells to LPS resulted in activation of several MAPKs. Activation of p38 appears to 

be of specific importance (Saha et al., 2007). 

To address whether p38 acted as a downstream effector of LPS-induced GEF-H1-RhoA signalling, p38 

phosphorylation was assessed in cell cultures treated with GEF-H1 and RhoA-specific siRNAs. In Fig 3B and 

3D, LPS triggered a substantial increase in phosphorylation of p38 when compared with LPS-untreated 

control, However, LPS-induced phosphorylation of p38 was significantly decreased not only by transfection 

with GEF-H1 or RhoA siRNA alone but also by pretreatment with TcdB-10463. Moreover, there was no 

significant difference in LPS-induced p38 phosphorylation between individual and co-transfection of GEF-

H1 and RhoA siRNAs. These results demonstrate that GEF-H1-RhoA signalling regulates LPS-induced 

phosphorylation of p38. While TcdB-10463 could suppress RhoA, Cdc42, and Rac activation, combined 

pretreatment with TcdB-10463 and RhoA siRNA did not augment inhibition of p38 phosphorylation 

compared to RhoA siRNA alone.  

Furthermore, expression and phosphorylation of p38 were effectively down-regulated by transfection of p38-

specific siRNA. Inhibition of p38 expression significantly reduced phosphorylation and DNA binding activity 

of NF-κB in the nucleus. The data indicates that inhibition of p38 could cause the inactivation of NF-κB. 

Inhibition of RhoA, GEF-H1 and p38 expression all significantly blocked LPS-induced phosphorylation and 

DNA binding activity of NF-κB in the nucleus. However, co-transfection of RhoA and p38 siRNAs or GEF-

H1 and p38 siRNAs produced equivalent inhibitory effects on LPS-induced activation of p38 and NF-κB as 

transfection alone with p38 siRNA suggesting that GEF-H1-RhoA signalling mediated LPS-induced 

transactivation of NF-κB requires p38 activation. (Fig 6A, 6B, 6C and 6D) 
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While LPS-induced expression of IL-8 mRNA and protein was suppressed in p38 siRNA transfected-cells, 

co-inhibition of GEF-H1 and p38 expression did not produce further inhibition of LPS-induced IL-8 mRNA 

and protein expression. Similarly, RhoA and p38 co-inhibition also failed to produce enhanced inhibitory 

effects on LPS-induced mRNA and protein expression of IL-8 compared to their individual effects. Thus, 

p38 plays a key role in the GEF-H1-RhoA signalling cascade originating from LPS-TLR4 activation and 

leading to NF-κB transcriptional activation in order to promote expression of IL-8 mRNA and protein. (Fig 

6E and 6F) 

4. Discussion 

In the pathogenesis of sepsis, endothelial cells respond to LPS through TLR activation, promoting the release 

of pro-inflammatory cytokines such as IL-8, and monocyte chemoattractant protein-1, along with increased 

expression of adhesion molecules (Weighardt and Holzmann, 2007). IL-8 is chronically elevated in patients 

with sepsis, and acts as a highly sensitive and specific diagnostic marker of bacterial sepsis (Stryjewski et al., 

2005). However, recent studies have demonstrated that TLR signalling could be regulated by Rho GTPase 

activities (Ruse and Knaus, 2006). The activation state of Rho GTPases are in turn controlled by GEFs and 

GTPase-activating proteins (GAPs) that activate and inactivate them, respectively (Hall and Etienne-

Manneville, 2002). Both affinity-based pull down assays and a FRET (Fluorescent Resonance Energy 

Transfer)-based biosensor for activated RhoA revealed GEF-H1 possesses RhoA-specific enzymatic activity 

(Bokoch et al., 2007). In this study we focused on identifying GEF-H1-RhoA signalling components 

regulated by TLR4 ligands in endothelial cells. Our results demonstrate that LPS-induced NF-κB 

transactivation and IL-8 synthesis in human endothelial cells depended on the convergence of two signalling 

pathways, specifically, the MyD88-dependent pathway and the GEF-H1-RhoA signalling pathway.  

GEF-H1 represents a novel member of the Dbl family of guanine nucleotide exchange factors (GEFs) (Ren et 

al., 1998). Subcellular localization analysis demonstrates that GEF-H1 is associated with microtubules (MTs), 

and that MT depolymerization leads to GEF-H1 activation, accompanied by a RhoA-dependent 

reorganization of the actin cytoskeleton (Krendel et al., 2002). However, LPS could induce depolymerization 

of microtubules as early as 1 min after LPS stimulation, and this lasted for at least 4 h (Isowa et al., 2000).  In 

the present study, stimulation with LPS resulted in dose- and time-dependent up-regulation of TLR4 and 

GEF-H1 synthesis. TcdB-10463, an inhibitor of Rho proteins, dose-dependently blocked LPS-induced 

phosphorylation of NF-κB, which indicated that Rho proteins were involved in the process of LPS-induced 

phosphorylation of NF-κB. Inhibition of GEF-H1 or RhoA expression significantly reduced LPS-induced 

phosphorylation of NF-κB in the nucleus. Taken together, it seems reasonable that GEF-H1 and RhoA 

proteins are involved in LPS-induced NF-κB activation in endothelial cells. 

Exposure of endothelial cells to LPS-TLR4 signalling can selectively activate the MyD88-dependent pathway 

and MyD88-independent pathway (Akira and Takeda, 2004).  Previous studies have found TLR4-induced 

activation of Cdc42 and Rac appears to be independent of MyD88, and LPS-TLR4 complexes provoke 

phagocytosis of macrophages though Cdc42/Rac pathway (Kong L and Ge BX, 2008). In the study presented, 

inhibition of TLR4 expression not only significantly reduced LPS-induced RhoA activities, but also blocked 

LPS-induced transactivation of NF-κB. These data indicate that TLR4 plays a pivotal role in regulating LPS-

induced activation of RhoA. However, inhibition of MyD88 expression did not significantly block LPS-
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induced RhoA activities, although MyD88 knockout significantly suppressed LPS-induced transactivation of 

NF-κB. These data suggest that LPS interacts with TLR4 to activate GEF-H1, then promoting RhoA 

signalling to NF-κB phosphorylation through a MyD88-independent pathway.  However, compared with 

inhibition of GEF-H1 or RhoA expression, not only co-inhibition of RhoA and MyD88 but also co-inhibition 

of GEF-H1 and MyD88 produced more inhibitory effects on LPS-induced NF-κB transactivation and IL-8 

synthesis. Taken together, GEF-H1-RhoA signalling and MyD88 signalling both regulate LPS-induced NF-

κB transactivation and IL-8 synthesis, however, MyD88 does not involve LPS-induced RhoA activation.  

In numerous instances, p38 has been cited as an upstream NF-κB regulatory kinase. We further verified 

whether p38 activation is required in the LPS-induced GEF-H1-RhoA signalling cascade within endothelial 

cells. Our results have shown that inhibition of GEF-H1 or RhoA expression by specific siRNAs significantly 

reduced LPS-induced phosphorylation of p38, suggesting that LPS mediates activation of p38 in part through 

GEF-H1-RhoA signalling. However, pretreatment with TcdB-10463 did not enhance the inhibitory effect of 

RhoA siRNA on phosphorylation of p38, which implied that Rac and Cdc42 might play roles in the 

activation of NF-κB in a p38-independent manner.  

However, activation of NF-κB is not contingent on p38 activity (Goebeler et al., 2001), which has been 

reported in previous studies (Saha et al., 2003; Rajan et al., 2008).  For this reason, we need to demonstrate 

whether GEF-H1-RhoA-mediated phosphorylation of p38 could lead to NF-κB transactivation and IL-8 

synthesis. As a result, suppression of p38 by specific siRNA has a direct inhibitory effect on LPS-induced 

NF-κB transactivation and IL-8 synthesis in the present study. Moreover, co-inhibition of RhoA and p38 

expression did not produce an augmented inhibitory effect on LPS-induced NF-κB transactivation and IL-8 

synthesis than inhibition of p38 expression alone. Inhibition of NF-κB transactivation and IL-8 synthesis was 

also observed in endothelial cells co-transfected with GEF-H1 and p38 siRNAs. These data indicated that p38 

as a downstream effector was essential for GEF-H1-RhoA-mediated NF-κB transactivation and IL-8 

synthesis after exposure to LPS. 

5. Conclusions 

The present study further illustrates the complicated LPS-induced signalling involved in NF-κB 

transactivation and IL-8 expression. On one hand, LPS increases p38 phosphorylation, NF-κB transactivation 

and IL-8 expression, steps that require functionally activate GEF-H1 and RhoA and MyD88. While on the 

other hand, MyD88 is not involved in LPS-induced GEF-H1-RhoA signalling to p38 activation. Taken 

together, the data presented here suggest the existence of at least two LPS-induced pathways in endothelial 

cells that lead to NF-κB-dependent IL-8 expression through p38 phosphorylation: MyD88 signalling pathway 

and GEF-H1-RhoA signalling pathway. 
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Figures 

 

Fig. 1. LPS induced GEF-H1 and TLR4 expression in dose- and time-dependent manners in endothelial 

cells. (A) Expression of GEF-H1 and TLR4 after treatment with different concentrations of LPS in endothelial 

cells for 24 hours, and peak appeared at concentration of 100 ng/ml. (B) GEF-H1 mRNA expressed in a similar 

dose-dependent manner. (C) Expression of GEF-H1 and TLR4 in different indicated time points after 

stimulation of LPS with concentrations of 100 ng/ml in endothelial cells, and maximum expression appeared at 

3 hours. (D). GEF-H1 mRNA expressed in a similar time-dependent manner. (* P<0.05 versus negative 

control). Data shown are representative of four independent experiments. 
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Fig. 2. Inhibition of Rho proteins blocks LPS-induced phosphorylation of NF-κB in endothelial cells. (A) 

HUVECs were exposed to 100 ng/ml LPS for the indicated times. LPS induced a time-dependent increase of 

phosphorylation of NF-κB at Ser-536 (phospho-p65Ser-536) within 120 minutes in cytoplasmic extractions, and 

the maximum level of phospho-p65Ser-536 appeared at 40 min after LPS stimulation. (B) Cells were preincubated 

with 0.01 to 100 ng/ml of TcdB-10463 (inhibitor of RhoA, Cdc42, and Rac) for 60 minutes prior to stimulation 

with 100 ng/ml LPS for 40 minutes. The TcdB-10463 inhibited LPS-related phospho-p65Ser-536 in HUVECs in a 

dose-dependent manner. Treatment alone with medium or LPS was used as a negative control or positive 

control. (* P<0.05 versus negative control; # P<0.05 versus positive control). Data shown are representative of 

four independent experiments.  
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Fig. 3. GEF-H1-RhoA signalling is required for LPS-induced NF-κB and p38 phosphorylation. (A) 

HUVECs were transfected with specific siRNAs (RhoA, MyD88 or GEF-H1 siRNAs) or control siRNA for 48 

h, and abilities of specific siRNAs were detected by western blot assays. (B) After transfection with specific 

siRNAs and control siRNA, HUVECs were treated with TcdB-10463 (10 ng/ml) for 60 min prior to LPS 

stimulation (100 ng/ml) for 40 minutes. Phosphorylation of p65 at Ser 536 was determined by immunoblotting 

of cell nuclear extracts (Nucl. Ext.), and β-actin protein was used as loading control. Cytosolic extracts (Cyto. 

Ext.) were immunoblotted with antibodies for phospho-p38 and p38 antibodies. β-actin protein was used as 

loading control. The levels of p65 and p38 phosphorylation were represented as a histogram according to band 

intensities as shown in (C) and (D). After control siRNA transfection, the cells treated with medium or LPS 

were used as negative control or positive control respectively. (* P<0.05 versus negative control; # P<0.05 

versus positive control). Data shown are representative of four independent experiments. 
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Fig. 4. TLR4 regulates LPS-induced RhoA activity and NF-κB transactivation. (A) HUVECs transfected 

with TLR4 siRNA were treated with medium or LPS (100 ng/ml) for indicated times, and GTPase RhoA 

activity assay was performed as described above. There was a significant difference in RhoA activity between 

control siRNA and TLR4 siRNA. (B) Inhibition of TLR4 expression significantly reduced NF-κB DNA binding 

activity. The results of EMSA were represented in a histogram. (C) Inhibition of MyD88 expression did not 

block LPS-induced GTPase RhoA activity. (D) NF-κB DNA binding activity was monitored by EMSA. 

Inhibition of MyD88 expression significantly reduced LPS-induced NF-κB activity. (* p<0.05 versus negative 

control; # p<0.05 versus corresponding control siRNA; NS, no significance). Data shown are representative of 

four independent experiments. 
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Fig. 5. GEF-H1-RhoA and MyD88 both regulate LPS-induced NF-κB transactivation and IL-8 synthesis. 

(A) HUVECs transfected with specific siRNAs (RhoA, MyD88 or GEF-H1 siRNAs) or negative control siRNA 

(control RNAi) or left untransfected (control) for 48 h, and ability of MyD88 siRNA was detected by Western 

blotting. After transfection, HUVECs were treated with media or LPS (100 ng/ml) for 40 minutes. 

Phosphorylation of p65 at Ser 536 (phospho-p65Ser-536) was determined by immunoblotting in cell nuclear 

extracts (Nucl. Ext.), and the results were represented as a histogram in (B)  according to band intensities. (C) 

Nuclear extracts were incubated with NF-κB-specific, biotinylated, double-stranded oligonucleotides, and 

detected by EMSA, and the results were represented as a histogram in (D) according to band intensities. (E) IL-

8 mRNA was amplified for 31 cycles in total RNA by RT-PCR assay.  GAPDH mRNA was amplified for 17 

cycles as an internal control. (F) Secretion of IL-8 in supernatants was detected by ELISA. After control siRNA 

transfection, the cells treated with medium or LPS were used as negative control or positive control respectively. 

(*P<0.05 versus negative control; # P<0.05 versus positive control). Data shown are representative of four 

independent experiments. 
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Fig. 6. GEF-H1-RhoA signalling regulates LPS-induced NF-κB phosphorylation through p38 activation. 

(A) HUVECs transfected with specific siRNAs (RhoA, p38 or GEF-H1 siRNA) or negative control siRNA 

(control RNAi) or left untransfected (control) for 48 h, and ability of p38 siRNA was detected by western blot 

assays. After transfection, HUVECs were treated with media or LPS (100 ng/ml) for 40 min. Phospho-p65Ser-536 

was determined by immunoblotting of cell nuclear extracts (Nucl. Ext.), and the levels of phospho-p65Ser-536 

were evaluated by the band intensities in (B). (C) DNA binding activity of NF-κB was detected by EMSA, and 

the results were represented as a histogram in (D) according to band intensities. (E) IL-8 mRNA was examined 

by RT-PCR assay.  GAPDH mRNA was used as an internal control. (F) Secretion of IL-8 in supernatants was 

detected by ELISA.  After control siRNA transfection, the cells treated with medium or LPS were used as 

negative control or positive control respectively. (*P<0.05 versus negative control; # P<0.05 versus positive 

control; NS, no significance). Data shown are representative of four independent experiments. 


