

INTELLIGENT TUTORING SYSTEM FOR

LEARNING PHP

Dinesha Samanthi Weragama

B.Sc. (Eng) Hons.

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Electrical Engineering & Computer Science

Science & Engineering Faculty

Queensland University of Technology

October 2013

Intelligent Tutoring System for Learning PHP i

Keywords

Computerised learning systems, Domain module, Intelligent Tutoring Systems, PHP,

Program Analysis

ii Intelligent Tutoring System for Learning PHP

Abstract

Teaching introductory programming has challenged educators for decades. Of the

many suggested methods of improving the teaching process, individual tutoring has

proven to be very effective. However, individual tutoring with human tutors requires

a large amount of resources and is therefore impractical to use with the vast number

of students who want to learn programming. A viable alternative is to use Intelligent

Tutoring Systems (ITSs) for this purpose. Although some ITSs have been built to

teach programming, none have been developed to address the subject of web

programming, which is becoming increasingly popular. This thesis addresses this

gap by designing, building and evaluating an Intelligent Tutoring System to teach

web development using PHP.

Any system that teaches programming needs to provide practical exercises for the

students. In order for the students to learn from the system, it is necessary for them

to receive feedback on their solutions to the exercises. A major challenge here is that

a programming problem rarely has a unique solution. For a system to be effective, it

is necessary that it be capable of handling many alternative solutions to a given

programming exercise. This thesis concentrates on achieving this objective using the

theories of artificial intelligence. The system converts the student‟s solution into a

set of predicates. These predicates are then compared against an overall goal which

is also depicted as a set of predicates. Any missing predicates are used to identify

sub-goals of the programming exercise that are not met and to provide relevant

feedback.

The PHP ITS customises the instructions for individual students by providing

guidance for each student on the next best exercise he/she should attempt. This is

done by dividing the subject matter into topics and storing a probabilistic estimate as

to each student‟s current knowledge of that topic. The estimates are updated based

on each solution that the student submits for the exercises. The knowledge level of

each topic and the topics covered by each exercise are utilised to find the exercise

that has the least number of topics that are not known to the current student. This

ensures that the student will learn something new by attempting this exercise, while

reducing the amount of new material so as not to overload the student.

These concepts were used to build a web-based Intelligent Tutoring System. The

system was evaluated on two sets of students at the Queensland University of

Technology. The students were given a pre-test to measure their knowledge of the

subject matter. Then, they used the system for six weeks during their own time to

solve exercises. Finally, they were given a post-test to gauge whether their

knowledge had improved. They were also given a questionnaire to measure their

acceptance of the system.

The results of a paired t-test showed that the student‟s knowledge increased

significantly as a result of using the system. They also showed that the system‟s

gauge of the knowledge level of each student was successful in predicting their final

test scores, indicating that the gauge was fairly accurate. Analysis of qualitative data

also showed that the students were relatively satisfied with the system overall.

Although it is possible to improve the system further, the evaluation process showed

that the PHP ITS can be used effectively to teach PHP web development to beginners

in web programming.

Intelligent Tutoring System for Learning PHP iii

Table of Contents

Keywords ...i

Abstract .. ii

Table of Contents .. iii

List of Figures .. vii

List of Tables ...xi

List of Abbreviations ... xiii

Statement of Original Authorship .. xiv

Acknowledgements ... xv

CHAPTER 1 : INTRODUCTION ... 1

1.1 Background .. 1

1.2 Context ... 1

1.3 Research Goal and Objectives ... 3

1.4 Significance ... 4

1.5 Scope of the Thesis .. 5

1.6 Thesis Outline .. 6

CHAPTER 2 : LITERATURE REVIEW ... 9

2.1 Teaching Introductory Programming ... 9
2.1.1 Cognitive Requirements ... 9
2.1.2 Syntax and Semantics ... 10
2.1.3 Orientation .. 10
2.1.4 Auxiliary Skills ... 11
2.1.5 Resource Constraints .. 11

2.2 Intelligent Tutoring Systems .. 11
2.2.1 Background ... 11
2.2.2 Architecture of Intelligent Tutoring Systems ... 13
2.2.3 Domains Taught by Existing ITSs .. 15

2.3 The Domain Module .. 16
2.3.1 Static and Dynamic Program Analysis ... 16
2.3.2 Knowledge Representation ... 17
2.3.3 Intention Based Analysis .. 22

2.4 The Teaching Module .. 25
2.4.1 Feedback ... 25
2.4.2 Next Problem Selection .. 28
2.4.3 Other Forms of Support .. 29
2.4.4 Summary ... 30

2.5 The Student Module ... 30
2.5.1 Bayesian Student Modelling ... 32
2.5.2 Open Learner Models ... 33

2.6 Comparison of Existing ITSs to Teach Programming ... 34

2.7 Summary and Implications .. 37

CHAPTER 3 : RESEARCH DESIGN ... 39

3.1 Methodology .. 39

iv Intelligent Tutoring System for Learning PHP

3.2 Research Design .. 40
3.2.1 Phase One ... 40
3.2.2 Phase Two .. 40
3.2.3 Phase Three .. 43
3.2.4 Phase Four .. 43

3.3 Timeline ... 44

3.4 Chapter Summary .. 45

CHAPTER 4 : BASICS OF PROGRAM ANALYSIS ... 47

4.1 Theoretical Concepts ... 49
4.1.1 Concepts in Artificial Intelligence .. 49
4.1.2 Concepts in Database Design ... 50
4.1.3 Concepts in Language Parsing.. 52

4.2 Conventions Used in this Thesis .. 53

4.3 Outline of the Basic Program Analysis Process ... 53

4.4 Knowledge Base Structure ... 55
4.4.1 Predicates and Rules ... 55
4.4.2 Exercise Specification .. 65
4.4.3 Actions .. 66

4.5 Program Analysis ... 68
4.5.1 Initial State ... 69
4.5.2 Abstract Syntax Tree .. 70
4.5.3 Walking the AST .. 73
4.5.4 Goal Checking .. 75
4.5.5 Checking for Unnecessary Program Statements ... 77

4.6 Special Situations ... 80
4.6.1 Multiple OnPage Predicates ... 80
4.6.2 Pre and Post Increment and Decrement Operators ... 82
4.6.3 HTML Embedded Within PHP .. 84

4.7 Chapter Summary .. 84

CHAPTER 5 : SELECTION STRUCTURES .. 87

5.1 Goal Specification ... 88

5.2 Program Analysis ... 89
5.2.1 Incorrect Solutions .. 92

5.3 Alternative Solutions ... 94

5.4 Other Forms of Conditional Expressions ... 96
5.4.1 Simple Expressions Behaving as Conditional Expressions .. 97
5.4.2 Conditional Expressions with And, Or and Not .. 100

5.5 Nested Selection Structures ... 104
5.5.1 Analysis of Program a ... 105
5.5.2 Analysis of Program b ... 108
5.5.3 Correct Overall Goal for Nested Selection Structures .. 109

5.6 Switch Statements .. 111
5.6.1 Special Considerations ... 113

5.7 Handling Unnecessary Statements in Selection Structures .. 114

5.8 Chapter Summary .. 116

CHAPTER 6 : ARRAYS, FUNCTIONS AND FORMS .. 117

6.1 Arrays .. 117
6.1.1 Assigning to Array Variables ... 120
6.1.2 Array Construct .. 123

Intelligent Tutoring System for Learning PHP v

6.2 Functions .. 123
6.2.1 Predicates for Handling Functions .. 124
6.2.2 The Scope of Variables ... 127
6.2.3 Analysis of Programs that Use Functions ... 134
6.2.4 Pre-Defined Functions .. 141
6.2.5 Conditional Expressions Where the Condition is a FunctionCall 142
6.2.6 Unnecessary Statements in Functions ... 143

6.3 Forms ... 145
6.3.1 Form Definition .. 145
6.3.2 Accessing Values Passed Through Forms .. 148
6.3.3 Handling Standard Form Definitions .. 151

6.4 Chapter Summary .. 152

CHAPTER 7 : LOOPS ... 153

7.1 Types of Loops .. 153

7.2 Definite Loops ... 159
7.2.1 Predicate Definition .. 159
7.2.2 Overall Goal Specification.. 161
7.2.3 Program Analysis ... 163
7.2.4 Unnecessary Statements in Loops .. 167
7.2.5 While Loops that Behave as For Loops .. 169

7.3 Special Situations ... 170
7.3.1 Loops Where the Counter Variable Changes According to an Arithmetic

Sequence ... 170
7.3.2 Loop where the Execution of Statements Depends on the Results of Previous

Iterations ... 178

7.4 Collection Based Loops that Perform Some Action Against Every Item in the Collection

Independently Without Summarising .. 185
7.4.1 For and While Constructs ... 186
7.4.2 Foreach Construct .. 192

7.5 Collection Based Loops that Perform Some Action Against Every Item in the Collection

Independently While Summarising ... 199
7.5.1 Overall Goal Specification.. 200

7.6 Chapter Summary .. 220

CHAPTER 8 : IMPLEMENTATION OF THE PHP INTELLIGENT TUTORING SYSTEM 221

8.1 The PHP Intelligent Tutoring System .. 221
8.1.1 Exercise Selection ... 223
8.1.2 Solving an Exercise .. 225

8.2 Student module .. 228
8.2.1 Equations for Updating the Student Model .. 228
8.2.2 Assumptions ... 231
8.2.3 Updating the Student Model in the PHP ITS .. 234

8.3 Teaching Module ... 235
8.3.1 Assistance for Solving Exercises .. 236
8.3.2 Assistance for Selecting Next Exercise .. 239
8.3.3 Viewing the Suggested Solution ... 240

8.4 Implementation Details .. 240
8.4.1 Software and Tools ... 241
8.4.2 Database Structure .. 244
8.4.3 Implementation Issues .. 245

8.5 Chapter Summary .. 248

CHAPTER 9 : SYSTEM EVALUATION ... 251

9.1 Evaluation Process of the PHP Intelligent Tutoring System .. 251

vi Intelligent Tutoring System for Learning PHP

9.1.1 Participants ... 251
9.1.2 Procedures and Instruments .. 252

9.2 Different Versions of the PHP intelligent Tutoring System .. 254
9.2.1 Feedback to Students‟ Solutions ... 254
9.2.2 Selecting the Next Exercise .. 255
9.2.3 Handling Students‟ Doubt Regarding Program Analysis ... 255
9.2.4 User Interface ... 256

9.3 Results and Discussion .. 256
9.3.1 Effectiveness of the System .. 256
9.3.2 Validity of the Student Model .. 268
9.3.3 System Usage ... 270
9.3.4 Satisfaction ... 274

9.4 Chapter Summary .. 279

CHAPTER 10 : CONCLUSIONS .. 281

10.1 Research Contributions .. 282
10.1.1 Knowledge Representation ... 283
10.1.2 Student Model .. 283
10.1.3 Feedback and Individualised Instruction .. 284
10.1.4 Publications and Talks .. 285

10.2 Lessons Learned .. 286
10.2.1 System Design .. 286
10.2.2 Evaluation ... 288

10.3 Future Directions ... 288

BIBLIOGRAPHY ... 291

APPENDICES ... 299
Appendix A Introduction to Bayesian Belief Networks .. 299
Appendix B PHP Grammar ... 301
Appendix C Combined Assign Actions ... 311
Appendix D HTML Grammar ... 315
Appendix E Examples of Analysis of Selection Structures ... 326
Appendix F Examples for Analysis of Functions and Forms .. 344
Appendix G Examples for Analysis of Loops ... 350
Appendix H Implementation Details ... 359
Appendix I Pre and Post Test... 361
Appendix J Questionnaire .. 366
Appendix K Focus Group Questions ... 371
Appendix L Complete ORM Diagram ... 373

Intelligent Tutoring System for Learning PHP vii

List of Figures

Figure 2.1. Main modules of an Intelligent Tutoring System. .. 14

Figure 2.2. Generic architecture for ITS to teach programming. .. 15

Figure 4.1. Example programming exercise. .. 47

Figure 4.2. Some ORM symbols and their meanings. .. 51

Figure 4.3. Basic program analysis. .. 54

Figure 4.4. ORM diagram of key components of the assignment statement. 56

Figure 4.5. ORM diagram of expression subtypes of simple and calculate expressions. 61

Figure 4.6. ORM diagram of Boolean expression subtypes. .. 62

Figure 4.7. Predicates relevant to addition expression. ... 63

Figure 4.8. Rules for calculating the ValueOf expressions. .. 64

Figure 4.9. Display action. .. 66

Figure 4.10. Assign action... 68

Figure 4.11. Detailed version of AssignAdd action. .. 68

Figure 4.12. Subtype version of AssignAdd action. .. 68

Figure 4.13. Initial state for example program. ... 69

Figure 4.14. AST for example program. ... 72

Figure 4.15. Final state of example program. ... 76

Figure 4.16. Overall goal of example exercise. .. 76

Figure 4.17. A program with unnecessary statements. ... 77

Figure 4.18. Rules used to calculate the ValueOf the right-hand expression. 78

Figure 4.19. Rule used to find the ValueOf the echoed expression. ... 79

Figure 4.20. Status flow for example program. .. 79

Figure 4.21. Status flow for example program with unnecessary statements. 80

Figure 4.22. ORM diagram for pre and post fix expressions. ... 82

Figure 4.23. Rules for calculating the ValueOf pre and post fix expressions. 83

Figure 4.24. Example of HTML embedded within PHP. ... 84

Figure 4.25. New HTML input stream. .. 84

Figure 5.1. Boolean predicates used for comparison. ... 88

Figure 5.2. Initial state and overall goal of example program for selection. ... 89

Figure 5.3. AST for example program for selection. .. 89

Figure 5.4. Rules for converting Boolean expressions into comparison predicates. 90

Figure 5.5. Incorrect solution to example exercise for selection structures. ... 93

Figure 5.6. AST for incorrect solution to exercise. .. 93

Figure 5.7. AST for Program b in Table 5.1. .. 94

Figure 5.8. Rules for converting between equivalent expression subtypes. .. 96

Figure 5.9. A solution to the example exercise for selection structures using a conditional

statement with a SimpleExpression. ... 97

file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042505
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042506
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042507
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042509
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042511
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042513
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042514
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042515
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042516
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042517
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042518
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042519
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042520
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042521
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042522
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042523
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042524
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042525
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042526
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042527
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042529
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042530
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042531
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042532
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042533
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042534
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042535
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042536
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042537
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042538
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042539
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042540
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042540

viii Intelligent Tutoring System for Learning PHP

Figure 5.10. Rules to convert VariableExprs into comparison predicates. ... 99

Figure 5.11. Rule to handle mathematical equality. ... 99

Figure 5.12. Rules for handling complex conditional expressions. .. 101

Figure 5.13. Example exercise for selection structures with Boolean operators in the condition....... 101

Figure 5.14. Overall goal for example exercise for selection structures with Boolean operators

in the condition. .. 102

Figure 5.15. Solution to example exercise ... 102

Figure 5.16. Example exercise for nested selection structures. .. 104

Figure 5.17. Suggested initial state and overall goal for example exercise for nested selection

structures. ... 105

Figure 5.18. Relevant facts for final state of Program b. .. 109

Figure 5.19. Overall goal for example exercise for nested selection structures. 109

Figure 5.20. Example exercise for switch statements. .. 111

Figure 5.21. Suggested overall goal for example exercise. .. 112

Figure 5.22. Simplified overall goal for example exercise. .. 112

Figure 5.23. Example program for comparison operators within switch statements. 113

Figure 5.24. Example switch statement with execution falling through to next case. 114

Figure 5.25. Status flow for example selection program. ... 115

Figure 6.1. ORM diagram for arrays. ... 118

Figure 6.2. Example array exercise. ... 120

Figure 6.3. Overall goal of example array exercise. ... 120

Figure 6.4. AssignArrayVariable action. .. 121

Figure 6.5. Subtype version of AssignAddArrayVariable action. ... 122

Figure 6.6. Two forms of the array construct. .. 123

Figure 6.7. ORM diagram for functions. .. 124

Figure 6.8. Example program for function use. .. 125

Figure 6.9. Rules for handling variable scope. ... 129

Figure 6.10. A PHP program with a global variable. .. 130

Figure 6.11. Rules to calculate ValueOf expressions with scope considered. 131

Figure 6.12. Modified Assign action to include variable scope. ... 132

Figure 6.13. Modified AssignArrayVariable action to include scope. .. 132

Figure 6.14. Example exercise for functions. ... 134

Figure 6.15. Initial state for example exercise for functions. ... 135

Figure 6.16. Overall goal specification for example exercise for functions. 135

Figure 6.17. Solution to example exercise for functions. ... 136

Figure 6.18. Rule to set initial value of parameter variables. ... 137

Figure 6.19. Rule to calculate the ValueOf parameter variables. .. 140

Figure 6.20. Rule for calculating the ValueOf FunctionExprs. .. 141

Figure 6.21. PHP code that has a function expression as the condition within a selection

statement. ... 143

Figure 6.22. Rules used to find conditional expressions for FunctionExprs 143

file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042541
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042542
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042543
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042544
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042545
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042545
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042546
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042547
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042548
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042548
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042549
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042550
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042551
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042552
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042553
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042554
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042555
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042556
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042558
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042559
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042560
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042561
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042562
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042564
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042565
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042566
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042567
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042568
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042569
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042570
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042571
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042572
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042573
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042574
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042575
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042576
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042577
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042577
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042578

Intelligent Tutoring System for Learning PHP ix

Figure 6.23. Flow of statuses for example program using functions. .. 144

Figure 6.24. ORM diagram for forms. .. 146

Figure 6.25. Example exercise for forms. ... 146

Figure 6.26. Example solution to exercise for forms. .. 147

Figure 6.27. Rule to create array elements from form input elements. ... 148

Figure 6.28. Rule to set the value of the parameter variable when the value of a „isset‟ function

expression is True... 150

Figure 7.1. Classification of loops. ... 154

Figure 7.2. Predicates for handling loops with counters. .. 160

Figure 7.3. Example exercise for simple counted loop. .. 162

Figure 7.4. Overall goal for example exercise for simple counted loop. .. 162

Figure 7.5. Rules for finding the end value of a CountedLoop ... 165

Figure 7.6. Rule to find the increment of a CountedLoop .. 166

Figure 7.7. Rules to consolidate results of loop execution.. 167

Figure 7.8. Flow of statuses example program for loops. .. 169

Figure 7.9. Overall goal for example program for loops that do not execute for all values of the

counter variable. ... 172

Figure 7.10. Rules for consolidating loops that do not execute for all values of the counter

variable. .. 175

Figure 7.11. Example exercise for loops where execution depends on previous iterations. 178

Figure 7.12. Example solution for factorial exercise. ... 178

Figure 7.13. Initial state and overall goal for factorial exercise. ... 179

Figure 7.14. Rule to aggregate factorial as repeated multiplication. ... 183

Figure 7.15. Initial state and overall goal for multiplication as repeated addition. 184

Figure 7.16. Example solution for multiplication exercise. .. 184

Figure 7.17. Rule to aggregate multiplication as repeated addition. ... 185

Figure 7.18. Example exercise for for-each loop using the for construct. .. 186

Figure 7.19. Initial state and overall goal for example exercise for for-each loop using for

construct. .. 187

Figure 7.20. Example solution to exercise for for-each loop using for construct 188

Figure 7.21. Predicates for handling the foreach construct... 193

Figure 7.22. Example program for foreach construct. ... 194

Figure 7.23. Overall goal for example exercise for foreach construct. ... 195

Figure 7.24. Rules for consolidating foreach constructs. .. 198

Figure 7.25. Example exercise for a search loop. ... 199

Figure 7.26. Initial state for example exercise for collection based loops that perform some

action against every item in the collection. .. 199

Figure 7.27. Overall goal for example exercise for collection based loops that perform some

action against every item in the collection. .. 201

Figure 7.28. Rules for handling loop unrolling of the first or last element of the array...................... 209

Figure 7.29. Facts and rules for finding search results. .. 210

Figure 7.30. Rule for handling direct method of array access in search loops.................................... 219

file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042579
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042581
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042582
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042583
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042584
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042584
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042587
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042588
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042589
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042590
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042591
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042592
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042593
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042593
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042594
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042594
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042595
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042596
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042597
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042598
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042599
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042600
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042601
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042602
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042603
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042603
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042604
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042606
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042607
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042608
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042609
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042610
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042610
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042611
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042611
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042612
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042613
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042614

x Intelligent Tutoring System for Learning PHP

Figure 8.1. Banner. ... 222

Figure 8.2. Skillometer. .. 222

Figure 8.3. Exercise selection page. ... 223

Figure 8.4. Exercise search page .. 224

Figure 8.5. The solution page. .. 226

Figure 8.6. Equations for first phase of updating the student model. ... 231

Figure 8.7. Equations for calculating combined effect of two phase updating of the student

model. ... 232

Figure 8.8. Modified equations for two phase update of the student model. 233

Figure 8.9. Empirical parameter values. ... 233

Figure 8.10. Final equations for two phase updating of student model. ... 234

Figure 8.11. Single phase update of the student model for the first interaction. 235

Figure 8.12. Final equations for updating the student model based on the pre-test. 235

Figure 8.13. Software architecture used in the PHP ITS. ... 242

Figure 8.14. Database model of the PHP ITS – 1. .. 246

Figure 8.15. Database model of the PHP ITS – 2. .. 247

Figure 9.1. Average pre and post-test score. ... 259

Figure 9.2. Normal probability plot for regression analysis. .. 263

Figure 9.3. Types of help used by students. .. 271

Figure 9.4. Exercise selection mode used by each student. .. 273

Figure 9.5. Frequency of Skillometer usage by students. ... 273

Figure 9.6. Overall impression of the system. .. 274

Figure 9.7. Ease of use of the system. .. 275

Figure 9.8. Programming exercises. ... 276

Figure 9.9. Speed of response of the system. .. 276

Figure 9.10. Feedback messages. ... 277

Figure 9.11. Success in gaining student knowledge and understanding. .. 278

Figure 9.12. Look and feel. ... 278

Figure A1. A Bayesian Belief Network for pre-requisite topics. .. 300

Figure L1. Complete ORM diagram ... 373

Figure L2. Complete ORM diagram – left half... 375

Figure L3. Complete ORM diagram – right half .. 377

file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042620
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042621
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042621
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042622
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042623
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042624
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042625
file:///E:/PhDResearch/Thesis/Final/Submission/Thesis-Examiner5.doc%23_Toc368042626

Intelligent Tutoring System for Learning PHP xi

List of Tables

Table 2.1 Existing ITSs to Teach Programming ... 35

Table 3.1 Timeline for Completion of Each Phase ... 44

Table 4.1 Alternative Correct Solutions for Example Exercise ... 47

Table 4.2 Different Methods of Displaying “Hello World” on a PHP Web Page 81

Table 4.3 Modified ASTs for Pre and Post Increment and Decrement ... 83

Table 5.1 Programs to Illustrate Different Forms of the Same Conditions .. 87

Table 5.2 Alternative Solutions to Example Exercise for Nested Selection Structures 105

Table 5.3 Alternative Programs for Example Exercise ... 111

Table 5.4 Modified AST for Switch Statements ... 113

Table 6.1 AST Conversion for Array Construct .. 123

Table 7.1 Definite and Indefinite Loops in PHP ... 155

Table 7.2 Counted Loops in PHP .. 155

Table 7.3 Perform Action Against Every Item in Collection Independently 156

Table 7.4 Types of Loops Based on the Independence of Actions Performed Within the Loop 157

Table 7.5 Equivalent For and While Loops... 170

Table 7.6 Examples of Loops That Do Not Execute for all Integer Values of the Counter

Variable within the Specified Range .. 171

Table 7.7 Solutions to Example Exercise for Collection Based Loops the Perform Some Action

on Every Element while Summarising using Indirect and Direct Methods of Array

Access ... 200

Table 8.1 List of Knowledge Components ... 230

Table 8.2 Feedback Messages for Checking if a Value Entered in a Textbox is Greater than 10 238

Table 8.3 Feedback Messages for an Unnecessary Assignment Statement in Line 10 239

Table 9.1 Pre and Post-test Results for Version 1 ... 257

Table 9.2 Pre and Post-Test Results for Version 2 ... 258

Table 9.3 Initial and Final Average Learned Probabilities for Version 1 .. 259

Table 9.4 Initial and Final Average Learned Probabilities for Version 2 .. 260

Table 9.5 Number of Help Requests for Each Student .. 262

Table 9.6 Correlations Results for Improvement in Test Score and Number of Help Requests 263

Table 9.7 Total Duration of System Use for Each Student .. 265

Table 9.8. Correlation Results for Minutes Used and Improvement in Test Score 266

Table 9.9. The Number of Problems Attempted and the Number of Problems Correct for Each

Student .. 267

Table 9.10. Correlation Results for Number of Problems Attempted, Number of Problems

Correct and Improvement in Test Score ... 268

Table 9.11 Predicted and Actual Post Test Scores for Each Student for Version 1 269

Table 9.12 Predicted and Actual Post Test Scores for Each Student for Version 2 270

Table 9.13 Correlation results of Post-test Score and Predicted Post-test Score for Version 1 270

xii Intelligent Tutoring System for Learning PHP

Table 9.14 Correlation results of Post-test Score and Predicted Post-test Score for Version 2 271

Intelligent Tutoring System for Learning PHP xiii

List of Abbreviations

AI Artificial Intelligence

AST Abstract Syntax Tree

BBN Bayesian Belief Network

EBNF Extended Backus-Naur Form

FOL First-Order Logic

FOPC First-Order Predicate Calculus

HTML Hypertext Markup Language

ITS Intelligent Tutoring System

KB Knowledge Base

KC Knowledge Component

ORM Object Relational Model

PDDL Planning Domain Definition Language

PHP PHP Hypertext Processor

PHP ITS PHP Intelligent Tutoring System

QUT Queensland University of Technology

Intelligent Tutoring System for Learning PHP xv

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my principal

supervisor Dr. Jim Reye for all the support and encouragement given during the

course of my PhD studies. I would also like to thank my associate supervisor Dr.

Hasmukh Morarji for helping me to complete my studies.

I would like to especially mention Dr. Mahinda Alahakoon of the University of

Peradeniya, Sri Lanka without whose guidance and encouragement I would never

have embarked on a PhD degree. You really helped me to move forward in my

career and my life at a time when I felt that all my previous efforts were fruitless.

I would like to thank the Queensland University of Technology for providing

me with the infrastructure to complete this project as well as providing me with a

QUT Postgraduate Award and a QUT Fee Waiver Scholarship to help me through

my studies. My thanks go out to Kerrie Petersen of the Language and Learning

Support unit, all the staff at the Research Student Centre and at International Student

Services for the support extended during various times during my time at the

Queensland University of Technology.

My thanks also go out to all my friends, both in Australia and abroad, who

helped me cope with the ups and downs of my PhD studies.

Last but not least, I extend my heartfelt appreciation to my mother, my

husband Punchandra, and my two daughters Malithi and Rashmi, who stood by me

through the triumphs and defeats of the past three years. Your love and support

contributed in no small amount to the completion of this thesis.

Chapter 1 : Introduction 1

Chapter 1: Introduction

This chapter outlines the background (Section 1.1) and context (Section 1.2) of

the research, and its goals and objectives (Section 1.3). Section 1.4 describes the

significance of this research. Section 1.5 identifies the scope of the thesis. Finally,

Section 1.6 includes an outline of the remaining chapters of the thesis.

1.1 BACKGROUND

Programming is a fundamental component of any Computer Science course. It

is also incorporated into many other disciplines such as Business, Finance and

Accounting due to its widespread use in industry. However, many beginning

students find programming a very difficult subject. This is shown by the fact that

many students either drop out or fail programming courses (Miliszewska & Tan,

2007). Therefore, it is necessary to find means of making this subject less

challenging to the novice student.

The large number of people who show an interest in learning to program are

very diverse. They differ in many aspects such as age, gender, educational level and

aptitude for solving logical problems. Experience as a teacher of beginning

Computer Science students has shown that it is extremely difficult to create a single

course that caters to all their differing needs. Although one-to-one tutoring would be

a suitable means of addressing this problem, it is not a financially viable alternative.

A much better solution is to use Intelligent Tutoring Systems (ITS). An ITS is a

computerised teaching system, that offers one-to-one tutoring, by altering its

interaction with the student based on the individual‟s personal characteristics (Woolf,

2009).

1.2 CONTEXT

With the current popularity of the World Wide Web (WWW), more and more

students are showing an interest in learning to create web pages. The number of

programming languages that can be used to create web pages is very large. Of these,

PHP continues to be one of the most popular ("TIOBE Programming Community

2 Chapter 1 : Introduction

Index for December 2012,"). Therefore, PHP is a popular programming language

taught to beginning web developers.

Developing web based applications requires different methods than does

developing stand-alone applications (Wang, 2006). This usually requires the

application of several software tools such as server side scripting languages and

HTML. These technologies are often included in a single file. PHP causes difficulty

for beginning programmers since it permits HTML statements to be embedded

within PHP statements and vice versa ("PHP Manual,"). This two way transition

from one language to the other increases the number of possible ways to write code

that result in the same web page. Beginners of PHP programming need to be aware

of these possibilities and be able to transition smoothly from one tool to another.

The students who want to learn PHP are very diverse. They vary in many of

the aspects described above as well as in their previous experience in programming

in other environments. Such previous experience in developing or using other

programming environments very often causes difficulties for beginners of PHP.

Students coming from a non-web based programming background have

difficulty understanding that web pages are stateless. This means that additional

programming methods have to be used for passing data from one web page to

another. A single web page can have two sets of input data: before submitting and

after submitting. Before the page is submitted, it usually contains some display

elements. However, once the page is submitted, it contains some user-supplied data

as well. This makes it necessary to write different code for the different situations of

the web page, thereby complicating the programming task.

Unlike many other languages, PHP is a dynamically typed language. This

means that the type of a PHP variable is not fixed but can change with the value that

is held by the variable at any given time ("PHP Manual,"). This complicates the

process of comparing variables once they are given a value.

Another peculiarity in PHP is that it handles single quoted and double quoted

strings in different manners ("PHP Manual,"). Single quoted strings are taken as

standard literals. Double quoted strings can contain variables. Corresponding

literals are obtained by replacing these variables with the values they contain.

Chapter 1 : Introduction 3

The syntax of associative array elements within double quoted strings is

different from their syntax in all other instances. This makes the syntax rules for

PHP very confusing, especially for students coming from other programming

backgrounds.

This means that any course designed to teach beginners of PHP, needs to

address these peculiarities of PHP in addition to the concepts of programming in

order to ensure that the students learn effectively.

This research was undertaken with the aim of finding a solution to the problem

of teaching dynamic web development using PHP to a diverse range of individuals,

in an effective and economically feasible manner.

1.3 RESEARCH GOAL AND OBJECTIVES

Based on the analysis above, the research problem addressed by this thesis can

be defined as below.

Is it possible to create an Intelligent Tutoring System to effectively teach web

development using PHP?

In order to answer this question, the goal of this study was to build and

evaluate an Intelligent Tutoring System to teach the PHP web development language.

Since programming is a very practical subject, it was decided that programming

exercises would be used by the ITS to facilitate the process of learning. Students‟

solutions to such exercises would be analysed for correctness, and feedback would be

provided based on the results of this analysis. Throughout this thesis, any answer

submitted to a programming exercise will be considered as a „solution‟. More

support for learning would be provided through web links to relevant web pages.

The most suitable exercise for the current student would be suggested based on

his/her current level of knowledge, in order to individualise the instruction.

A significant challenge here is the variety of correct solutions for a single

programming exercise. For example, a programming exercise requiring a student to

display a grade based on marks obtained can be written in many forms. It can be

written as a series of if statements, a series of nested if-else statements or a switch

statement. Additionally, the condition within the selection structure can be written in

many forms. Similarly, a program which uses a loop can be written using for loops,

4 Chapter 1 : Introduction

while loops or do loops. Again, the condition for exiting the loop can be written in

many forms. In the case of PHP, any text to display on a web page can be written

using HTML only, PHP only or a combination of both. Therefore, the number of

correct solutions to a programming exercise can be very large. It is necessary that

the system be capable of identifying all such variations. Although simple pattern

matching mechanisms can be used to identify several equivalent solutions, this

method becomes impractical with the large number of variations that are possible in

PHP programming Therefore, the main emphasis of the research is on representing

the subject matter in a manner that makes it possible to identify such alternate

solutions. It is also important to find methods of representing the student‟s current

knowledge in order to individualise the instruction. These representations then need

to be integrated to create an actual computerised system to effectively teach PHP to

beginners with different levels of knowledge.

This meant that the main objectives of the research were to answer the

following research questions.

1. What is the best method of knowledge representation that can be used to

model the subject matter necessary to effectively teach basic PHP

programming while achieving the following?

a. Analysing alternative solutions to a given programming problem, both

correct and incorrect

b. Providing feedback based on the specific errors made by the student

2. What is a suitable student model for the above system?

3. What methods of feedback and individualised interactions are useful to

teach the above subject matter effectively through an ITS?

1.4 SIGNIFICANCE

Research in Intelligent Tutoring Systems has been growing in momentum over

the past few decades. Yet, ITSs are not a concept that is known extensively by

educators. One of the main reasons for this is that, although many ITSs have been

built, only a few are used in practical teaching situations. This indicates that there is

Chapter 1 : Introduction 5

significant room for improvement in the field of ITS. This research attempts to

improve on existing ITSs at least to a certain degree.

Existing ITSs teach in many different domains, from primary school reading

to programming and electronic circuit design. The ITSs that teach programming

languages such as Pascal, Prolog, C and Java, focus mainly on developing console

and windows applications (Corbett, 2000; Song, Hahn, Tak, & Kim, 1997; E.

Sykes, 2007). On the other hand, many computerised teaching systems that target

web programming are available ("PHP Tutorial," undated; "PHP tutorial - free," ;

"PHP/MySQL Tutorial,"). However, they present subject matter in the same way

to each student, i.e. they do not individualise the instruction. The literature does

not reveal any instance of the integration of these two ideas: i.e. ITSs that are

designed to teach web programming. Therefore, this study addresses a domain that

is totally new to ITS research.

It is essential that any ITS that teaches programming be capable of analysing

computer code written by students. As described earlier, a programming exercise

rarely has a unique solution. In order to analyse students‟ programs correctly, it is

vital that the analysis process is able to accept alternative solutions to each

programming exercise. This is true for any programming paradigm. However,

programming for the web involves added complexities to program analysis. Web

pages very often contain many technologies integrated within a single page. They

also make it necessary to consider two states for every page: one before submitting

the page and one after. Using PHP as the server side scripting language adds

further complexity since it is possible to interleave HTML and PHP code using

many combinations. All in all, the process of analysing programs written in PHP is

very complex. This thesis develops methods of program analysis that are capable

of accepting alternative solutions to a given programming exercise while also

dealing with the complexity of PHP web development.

1.5 SCOPE OF THE THESIS

Building an ITS is a very time consuming task. It has been estimated that

200 to 300 hours are required to build an ITS to do one hour of teaching (Aleven,

Sewall, & Koedinger, 2006; Murray, 1999). One of the main reasons for this is that

the knowledge base of the subject matter is usually very specific to the subject

6 Chapter 1 : Introduction

being taught. This means that a new knowledge base has to be created in order to

teach a new subject. Therefore, creating a new knowledge base to analyse

programs written in PHP is a significantly time consuming task.

As can be seen from the above description, building an ITS that teaches all

the intricacies of PHP would be extremely difficult. It is simply not possible to

complete such a task within the time constraints of a PhD. Therefore, this ITS only

teaches the main aspects of the PHP language that are required by a beginning

programmer. In particular, it teaches the concepts of assignment, selection using if,

nested if and switch statements, predefined (some) and user defined functions,

HTML form processing for text, select and submit inputs, for loops with only a

single condition, while loops which can be converted into for loops, associative and

indexed arrays and foreach loops for accessing array elements. Other parts of the

PHP language are not handled in this tutoring system. However, it does handle a

few other HTML elements such as tables and also a few HTML attributes such as

name and border. A website designed using PHP usually incorporates Javascript or

a similar client side language to handle validation and other aspects. The PHP ITS

does not teach any sort of client side scripting whatsoever.

An ITS contains a student module in order to customise its interaction for the

current student. To do this, the system ideally needs to have very good knowledge

about the student, including his/her age, gender, capabilities, emotions and

numerous other characteristics. The focus of this research is not on the detailed

design of the student module. Therefore, the student module used here considers

only the student characteristic that is most directly related to learning: i.e. the

current knowledge level of the student in the subject matter being taught.

Another function of many ITSs is to provide feedback to the student. The

feedback in this system is provided using several levels. The feedback would

support better learning if the level of feedback provided was customised based on

the current knowledge level of the student. However, since this thesis does not

focus on an advanced teaching module, such customisation is not provided.

1.6 THESIS OUTLINE

This section outlines the remainder of the thesis. Chapter 2 contains a review

of the literature that is pertinent to this research. Chapter 3 looks at the research

Chapter 1 : Introduction 7

design used and the reasons for this. The next four chapters (Chapter 4,Chapter

5,Chapter 6 and Chapter 7) provide a detailed description of the knowledge base and

how it is used to analyse PHP programs. Each of these four chapters looks at a

different set of PHP constructs and how they are modelled. Chapter 8 describes the

user interface of the system as well as the design of the student and teaching

modules. Chapter 9 discusses how the PHP ITS was evaluated and the results

obtained from this evaluation. Chapter 10 discusses the results of this evaluation and

the implications for future work. The rest of the thesis contains a set of Appendices

that further support the explanations provided throughout the thesis. It provides

detailed diagrams, further examples and detailed data that are too lengthy to

incorporate within the main body of the thesis.

Chapter 2 : Literature Review 9

Chapter 2: Literature Review

This chapter investigates the existing body of literature that is related to this

research project. It begins with an examination of why introductory programming is

a difficult subject to teach (Section 2.1). Section 2.2 looks at the concept of

Intelligent Tutoring Systems (ITSs) and how they can be used to overcome some of

these problems. Section 2.3 discusses how the domain models of existing ITSs to

teach programming are designed. Section 2.4 investigates typical features of the

teaching module of an ITS. Section 2.5 looks at the common methods of modelling

students in ITSs. Section 2.6 compares the features of existing ITSs, that teach

programming, that are pertinent to this thesis. Finally, Section 2.7 presents a

summary of the chapter and its implications.

2.1 TEACHING INTRODUCTORY PROGRAMMING

A large number of students have difficulty in learning to program. This is

shown by the fact that in 2003, 35% of students at the Queensland University of

Technology failed their first programming course (Truong, Bancroft, & Roe, 2003).

The situation is similar in Victoria University, where a large number either drop out

or fail programming courses (Miliszewska & Tan, 2007). Understanding the reason

for this difficulty has been the focus of a large body of research. This section

investigates some probable causes as to why beginning students find programming so

difficult.

Five main areas in learning computer programming, as identified by Mow

(2008), form a good basis for understanding why programming can be difficult for

beginners. These five areas are cognitive requirements, syntax and semantics,

orientation, auxiliary skills and resource constraints.

2.1.1 Cognitive Requirements

In order to write correct computer programs, students need to understand

abstract concepts then convert these into concrete solutions (Gomes & Mendes,

2007; Miliszewska & Tan, 2007). The problem must first be solved using a

conceptual approach before a computer program can be written using a particular

programming language (Mow, 2008). In doing so, students need to utilise skills in

10 Chapter 2 : Literature Review

program design and creative thinking (Al-Imamy, Alizadeh, & Nour, 2006). When

creating a solution, they need to concentrate simultaneously on the syntax and the

algorithm construction (Gomes & Mendes, 2007). This means that the entire process

requires the interaction of many cognitive skills, making it very challenging for

beginners.

2.1.2 Syntax and Semantics

The fact that exact syntax rules must be followed in order to write a correct

computer program is a concept that is very difficult for many beginners to grasp.

They often find the semantics of the many programming constructs very

complicated. Ebrahimi (1994) found that many novices had questions such as “what

is the difference among loops” and “how is a value bound to its variable”. Research

has found that some programming constructs are more difficult than others for

novices. For example, students make more mistakes with loops and conditionals

than they do with other types of statements (Spohrer et al. as cited in Robins,

Rountree, & Rountree, 2003). Arrays are another problem area with many having

trouble with confusing the subscript and the actual value stored (du Boulay as cited

in Robins et al., 2003). The fact that some programming language constructs use

words similar to standard English, but having a different semantic meaning is a

common source of confusion (Ebrahimi, 1994). The concepts of Object Oriented

Programming (OOP) are another major cause of concern for beginning programmers.

Many tend to assume that objects are automatically created and do not need to be

instantiated (Robins et al., 2003).

2.1.3 Orientation

Many students come to their first programming course with the pre-conceived

idea that programming is a difficult subject (Gomes & Mendes, 2007). Others fail to

understand the importance of the practical aspect of computer programming and

attempt to pass the subject by simply memorising textbooks (Gomes & Mendes,

2007) without writing any actual code. Such inappropriate orientation based on

incorrect practices and attitudes make programming a difficult subject for some

students.

Chapter 2 : Literature Review 11

2.1.4 Auxiliary Skills

One of the most widely accepted impediments to beginning students is the fact

that a good programmer needs to have a many auxiliary skills, among them logical

reasoning, problem solving (Gomes & Mendes, 2007; Miliszewska & Tan, 2007) and

planning (Al-Imamy et al., 2006; Ebrahimi, 1994; Ebrahimi & Schweikert, 2006;

Robins et al., 2003). In fact, Spohrer & Soloway (1986) found that the most

common source of bugs in computer programs is in plan composition. Attempting to

learn programming without developing these auxiliary capabilities is an oversight

made by many beginning students.

2.1.5 Resource Constraints

In addition to the above difficulties, the structure of existing introductory

programming courses makes it very difficult for beginners to learn the subject in any

depth. Since students in many disciplines need to know how to write computer

programs, a first programming course typically has students from varying

backgrounds with varying degrees of relevant skills. Strict time constraints imposed

by the semester system employed in many universities worldwide (Al-Imamy et al.,

2006) makes it extremely difficult to cater to the diverse needs of these students. A

large amount of the available time needs to be spent in explaining the basic concepts

and syntax, leaving very little time to build up the other necessary skills to be able to

write correct and efficient programs.

The above classification identifies the main reasons why teaching introductory

programming is proving challenging. Any solutions that are proposed to make the

subject easier must find means of overcoming at least some of these difficulties.

2.2 INTELLIGENT TUTORING SYSTEMS

2.2.1 Background

Researchers have classified the approaches to the problem of teaching novice

programmer using several methods. Mow (2008) categorised the potential

approaches to these problems into three groups: pedagogical, technological and

content-based. Pedagogical solutions focus on using different teaching strategies to

maximise learning. Technological solutions employ computer technology to create

more effective learning environments. Content-based solutions make use of the

12 Chapter 2 : Literature Review

different types of content knowledge required by students in order to facilitate

learning.

A different classification of approaches was employed by Miliszewska & Tan

(2007). They mentioned four main pedagogical techniques to support beginning

programmers: analogy, relevance, continuous reinforcement of concepts and use of

technology for teaching. Analogy refers to the use of illustrative examples of

concepts that students have seen before. Relevance refers to showing students a

purpose for what they are learning. Continuous reinforcement of concepts refers to

repeatedly reminding the students of what they have learnt. Finally, using

technology refers to the use of computer technology to support learning.

It can be seen that technology plays an important role in both these

classifications. This shows that computerised learning systems have been seen as a

way forward to the problem of teaching programming to novices.

Computerised learning systems take many forms – among them web resources

and desktop learning environments. Websites that teach various programming

subjects are ever popular because of their wide availability. They are accessible

from anywhere in the world and available for the students to use at whatever time

they require. PHP Tutorial ("PHP Tutorial," undated), PHP/MySQL Tutorial

("PHP/MySQL Tutorial,"), PHP Tutorial – free ("PHP tutorial - free,") and PHP:A

simple tutorial – manual ("PHP: A simple tutorial - manual,") are just a few of the

large number of PHP tutorials that are freely available on the Internet.

Although the websites described above provide good factual data for beginning

programmers, they provide the same set of facts in the same order for each student.

However, each student is an individual who learn at his own pace, based on his own

style. This means that, when using the above systems, as well as in a typical

classroom situation, many students are at a disadvantage since their learning needs

may differ from those considered by the class tutor. That is why individual human

tutoring is the most effective form of instruction (Corbett, 2001). In fact, a seminal

study in the field of education by Bloom (1984) found that students taught on an

individual basis achieved a final examination score that is two standard deviations

higher than those taught in a traditional classroom situation. Although individual

tutoring has this high success rate, it is extremely expensive in terms of both physical

and human resources. Therefore, such instruction is usually difficult to provide in

Chapter 2 : Literature Review 13

novice programming courses which typically consist of a large number of students.

The solution to this dilemma is to use what are known as Intelligent Tutoring

Systems (ITSs). These are computerised learning systems that alter their interaction

based on the requirements of each individual student. Therefore, they provide the

benefit of individual tutoring while reducing the additional costs.

2.2.2 Architecture of Intelligent Tutoring Systems

In order to function properly, an Intelligent Tutoring System needs to have

many modules. One common classification of the modules that comprise an ITS

(Woolf, 2009) is shown in Figure 2.1. In order to understand the functionality of

each of these modules, consider a situation where the ITS provides a problem for a

student to solve. The problem is presented through the communication module

which is what handles all interactions between the student and the ITS. Next, the

student enters his/her solution via the communication module. The teaching

module then considers this solution together with information it obtains from the

student and domain modules. The domain module contains details of the subject

matter that is taught by the ITS and therefore contains information about the correct

solution to the problem. Based on this information, the teaching module decides

whether the solution is correct or not. The student module contains information

regarding the characteristics of the current student. The teaching module uses this

information to decide what sort of feedback it should provide to the student.

Whatever the decision of the teaching module, the feedback is provided to the

student through the communication module. Meanwhile, the system forms an

opinion about the student‟s knowledge of the subject matter being taught by the

current problem. This information is updated to the student module in order to

have a more accurate model of the student.

Although this is the architecture that is used most commonly for ITSs, some

other architectures have been suggested by researchers. Of these, the architecture

suggested by Pillay (2003) is of interest since it has been developed with ITSs that

teach programming in mind. This is actually an extension of the architecture

described above and contains 10 modules as shown in Figure 2.2. The interface

module in this architecture is the same as the communication module in the previous

architecture. The domain module in the architecture in Figure 2.1 is made up of the

domain module, the problems module, the expert module and the code specification

14 Chapter 2 : Literature Review

module in Figure 2.2. In this case, the domain module is where the skills that are

tutored are stored. The problems module contains the actual problems used to teach

these skills and the expert module analyses students‟ solutions to the problems. The

code specification module is used to ensure that the architecture is independent of the

programming language used. This module stores solutions algorithms to

programming problems in a language independent manner. The explanations

module, pedagogical module and the instructional strategies module in Figure 2.2

corresponds to the single teaching module in Figure 2.1. The pedagogical and

instructional strategies contain the relevant strategies employed by the system while

the explanations module is responsible for generating the actual explanations of any

errors made by the students. The learning/ experience module is used to improve the

tutor performance over time by learning from student actions.

This architecture is specific for a tutor to teach programming. Some modules

have been incorporated in order to make it generic for all tutors that teach

programming. In general, it is not necessary to use such a generic architecture as the

requirements of a particular tutor are pre-defined. Therefore, this thesis uses the

more commonly used architecture shown in Figure 2.1.

Teaching

Module

Student

Module

Domain

Module

Communication

Module

Intelligent Tutoring System

Figure 2.1. Main modules of an Intelligent Tutoring System.

Chapter 2 : Literature Review 15

2.2.3 Domains Taught by Existing ITSs

The concept of Intelligent Tutoring Systems have been used to teach subject

matter in many domains. The Practical Algebra Tutor (Koedinger, Anderson,

Hadley, & Mark, 1997; Koedinger & Sueker, 1996) and Ms Lindquist (Heffernan)

both teach Mathematics. The Andes Physics Tutoring System (VanLehn et al., 2005)

is a successful ITS which teaches Physics. The Cardiac Tutor (Eliot, Williams, &

Woolf, 1996) teaches medical personnel how to handle cardiac arrests while CAPIT

(M. Mayo, Mitrovic, & McKenzie, 2000) teaches English grammar.

Database theory is another area that has attracted the design of many ITS. The

SQL-Tutor (Mitrovic, 1998) is one of the most successful ITS of all time and teaches

students how to write SQL queries. KERMIT and NORMIT (Mitrovic, Suraweera,

Martin, & Weerasinghe, 2004; Suraweera & Mitrovic, 2002) are ITSs that teach

theories of database design.

Code

Specification

Module

Explanations

Module

Expert Module

Problems

Module Pedagogical

Module

Instructional

Strategies

Module
Domain

Module

Learning/

Experience

Module

Student

Module

Interface

Module

Figure 2.2. Generic architecture for ITS to teach programming.

Intelligent Tutoring System

16 Chapter 2 : Literature Review

The Personal Access Tutor (Risco & Reye, 2009) is somewhat different from

other tutors in that it functions as an Add-in to Microsoft Access to teach students

how to design forms and reports.

Many tutors that teach computer programming in many different languages

have also been developed. These include the ACT Programming Tutors (Corbett,

2000), ELM-ART (Weber & Brusilovsky, 2001), C Tutor (Song et al., 1997), CPP

Tutor (Naser, 2008), JITS (E. Sykes, 2007) and J-LATTE (Holland, Mitrovic, &

Martin, 2009). It can be seen that although ITS covering many domains have been

developed previously, none of them teach web programming in any form.

2.3 THE DOMAIN MODULE

The domain module is an important component of an Intelligent Tutoring

System as it is what contains the subject matter that is being taught by the system.

Additionally, the other modules are generally built around the domain module so the

representation used here becomes very important.

When creating an ITS to teach programming, an important concept is the fact

that programming is a very practical skill and students need to be given ample

opportunity to practice in order to learn programming well (Gomes & Mendes,

2007). However, just supplying programming exercises to the students is

insufficient. In order for the students to learn from them, it should be possible to

analyse their solutions to determine if they are correct. This process of automated

program analysis is very important in ITSs that teach programming. However, it

should be noted that some other computerised systems that teach programming, and

not only ITSs, perform program analysis. This section discusses methods that have

been used by previous systems for such analysis.

2.3.1 Static and Dynamic Program Analysis

Computer programs can be analysed using static and dynamic methods. In

static analysis, the program code is typically tested against programming standards,

acceptable programming practice and efficiency guidelines. The code is not

executed at any time during the analysis. The MENO-II system (Soloway, E.M.,

Woolf, B.P., Rubin, E. and Barth., P. as cited in Wenger, 1987), the Prolog

Programming Environment (Gegg-Harrison, 1991) and the Prolog Tutor (Hong,

2004) are examples of systems that carried out static analysis. However, the process

Chapter 2 : Literature Review 17

used for static analysis is able to identify only a small number of specific solutions to

a given programming problem. This is not the scenario in the real world. Each

programming problem has many correct solutions since the many programming

constructs can be manipulated in different ways to obtain the same output.

This is the idea that is utilised in dynamic program analysis. Here, the

program is directly executed on a set of test data to see whether the expected output

is obtained. Whatever the program statements used, the program is identified as

correct as long as the output is correct. This makes dynamic analysis suitable for

identifying alternative solutions to a given problem. However, it does not consider

the exact means of arriving at the output. Therefore, the program is identified as

correct even if a very roundabout method is used. This may not be an acceptable

solution within the bounds of acceptable program practice. Additionally, it is

possible that the output for the test data is correct due to the characteristics of the

actual data values selected. It may give an incorrect output when a different set of

input data is used. This means that there is no guarantee that the program works

correctly for all values of data.

The shortcomings of each of these methods of program analysis can be reduced

by combining both for program analysis. The C-Tutor (Song et al., 1997), ELM-PE

(Weber & Möllenberg, 1995), the ELP system (Truong et al., 2003), the Basic

Instructional Program (BIP) system (Barr, A., Beard, M., and Atkinson, R.C., as

cited in Wenger, 1987) and Analyser for PROlog Programs of Students

(APROPOS2) (Looi, 1991) are examples of systems that utilise a combination of

these methods. Although the analysis provided in these systems is useful for

identifying alternate solutions to a single problem, the methods used are limited to a

particular programming language and cannot be used for others.

2.3.2 Knowledge Representation

Static analysis requires that the program code itself is analysed. In doing so, it

becomes necessary to separate the syntax rules from the semantic aspects of the

program. This means that the program needs to be represented in a manner which

enables this distinction to be made. Methods of representing the program for this

purpose have been the focus of much research in the field of using technology to

teach programming. The characteristics of a suitable representation depend on the

18 Chapter 2 : Literature Review

requirements of the user as well as external factors that affect how the knowledge is

obtained, as described below.

One main external factor of how the subject matter is represented is the origin

of that subject matter. It is the domain expert that provides the subject matter that

needs to be taught by a computerised system, based on his/her experience in

working in the application field. As pointed out by Hatzilygeroudis & Pretzas

(2004), this domain expert is typically a tutor who does not necessarily have

familiarity with knowledge engineering concepts. Therefore, it is essential that the

method of representation used is as natural as possible. It is also important that the

knowledge represented is easily updateable by the domain expert and that a solution

can be analysed in a time efficient manner. It should also support the possibility of

the system offering appropriate explanations based on the results of the program

analysis.

One of the earliest methods used to analyse computer programs was to

maintain libraries of bugs. In this method, a list of possible errors in a students‟

program are stored. The student‟s solution is analysed to see whether any of these

bugs are present. A student can write a program in an infinite number of ways, and it

is simply not possible to enumerate all possible bugs in a program. Additionally, in

order to initially develop the bug library, it is necessary to conduct empirical studies

on the types of errors made by students. Even if a library was constructed in this

manner, such bug libraries do not typically transfer well between different student

populations (Ohlsson & Mitrovic, 2007). Another problem is that it becomes

necessary to create a library of possible bugs for each exercise that needs to be

analysed. This means that a system created using this method cannot easily be

expanded to handle additional exercises. Due to all these reasons, the bug library

approach is not a very suitable method of analysing student programs for an

Intelligent Tutoring System.

The MENO-II system uses a very natural and simple method of knowledge

representation (Soloway, E.M., Woolf, B.P., Rubin, E. and Barth., P. as cited in

Wenger, 1987). Here, the student‟s solution is compared against a series of

templates that represents the correct solution. The analysis is carried out by

comparing a stored correct solution against the student‟s answer.

Chapter 2 : Literature Review 19

This method of analysis is quite effective for basic computer programs since

they were typically written using code in a single method. However, a programming

exercise very rarely has a unique solution. This becomes more apparent as the

programs become more complex. The method of analysis used in the MENO-II

system is incapable of accepting such alternate solutions to a single exercise.

Therefore, it is not a very suitable method especially with more complicated

programs.

Concepts of programming language semantics have been used to address the

problem of identifying different solutions to a single programming problem

(Winskel, 1993). Here, mathematical models of programs are used to serve as a

basis for understanding and reasoning about their behaviour. Programming language

semantics are categorised into three main strands: operational semantics,

denotational semantics and axiomatic semantics. Both operational and denotational

semantics focus on describing the meaning of the programming language.

Axiomatic semantics try to fix the meaning of a programming construct by giving

proof rules for it within a program logic. Therefore, this form is useful for proving

that a program is correct. Axiomatic semantics uses a set of logical rules known as

Hoare logic for program verification (Huth & Ryan, 2004). This process basically

starts at the end of the program and proceeds backwards. For each program

statement it encounters, it uses a rule to find the pre-condition based on the post-

condition. This method is meant to be used manually and can only be partly

automated. Additionally, it cannot be used as a basis for explaining the reason for

any identified errors. This means that axiomatic semantics by itself is not sufficient

as a basis for analysing student programs and providing appropriate feedback.

Symbolic rules are another commonly used formalism for knowledge

representation (Hatzilygeroudis & Prentzas, 2004). These are in the form of if-then

rules. They follow inference steps and are highly modular.

The cognitive tutors designed to teach programming in LISP, Pascal and

Prolog (Anderson, Corbett, Koedinger, & Pelletier, 1995; Corbett, 2000, 2001;

Corbett & Anderson, 1992), use symbolic rules of this form for knowledge

representation. They are based on the ACT-R theory of cognition (Anderson, 1993,

1996). This theory concerns declarative knowledge and procedural knowledge.

Declarative knowledge is in the form of facts. On the other hand, procedural

20 Chapter 2 : Literature Review

knowledge applies this declarative knowledge to solve problems. Therefore, it is

goal-oriented and impacts problem solving behaviour. Such knowledge can be

represented as a set of independent production rules that associate problem states and

problem-solving goals with actions and state changes. The solution to an exercise in

the cognitive tutors is stored as a set of these production rules incorporating the

underlying skills that are required to solve the exercise. As the student enters a

solution to the exercise, it is matched against this set of production rules. If the

entire solution is typed in and the production rules are matched, the solution is

identified as correct. Any discrepancy from the production rules is immediately

identified as incorrect. This approach to solution analysis is known as model tracing

since it traces through an ideal model stored in the system. Several sets of

production rules that constitute a correct solution can be stored in this manner.

However, the number of solutions that can be stored are limited and it becomes more

difficult to accept alternative solutions as the exercise get more complex.

Constraint Based Modelling (CBM) (Ohlsson & Mitrovic, 2006) is another

method of modelling the knowledge base that uses symbolic rules to represent

knowledge and identify alternative solutions to a single exercise. They contain a set

of if-then conditions which are known as relevance conditions and satisfaction

conditions. Each part of the student‟s solution is analysed to see whether the

relevance conditions are met. If so, it is again checked to see whether the

corresponding satisfaction conditions are met. Any rule where the relevance

condition is met but the satisfaction condition is not met indicates that there is an

error in the solution. This means that CBM does not rely on explicitly storing

alternative correct answers but works on analysing the result of the solution. For this

reason, it is capable of accepting multiple solution paths that arrive at the correct

answer. Although CBM is a very important method of knowledge representation in

computerised tutoring systems, its use has been primarily in the domain of database

concepts. Although it has been used to create a system to teach programming

(Holland et al., 2009), its use has been very limited compared to the much more

successful systems for database concepts.

 A main disadvantage of using symbolic rules for knowledge representation is

that, when the number of rules becomes very large, inference and knowledge

acquisition becomes difficult (Hatzilygeroudis & Prentzas, 2004).

Chapter 2 : Literature Review 21

An approach that is used extensively to identify alternate solutions to a given

problem is to convert the program code into a standardised form. The standardised

form is then compared against a solution that is stored in the same standardised form.

Different standardised forms have been proposed.

One such approach is to convert a submitted solution into a linkage graph (Jin

et al., 2012). A linkage graph is a directed acrylic graphs whose nodes represent

program statements and directed edges indicate dependencies between the different

statements. This graph is represented as a two dimensional matrix. Equivalent

programs have equal matrices, thereby allowing accepting alternative solutions to a

single exercise. However, the published work only deals with the assignment

statement. The probability that this method will be able to produce equal matrices

for logically equivalent programs using other programming structures is, as yet

doubtful.

An older system which uses the approach of converting programs into

standardised form is LAURA (Adam & Laurent, 1980). Here, the system is given an

implementation of a correct solution to a programming problem. The system

converts this into an internal representation of the corresponding calculus processes.

This is stored in the form of a graph. The student‟s program is also represented as a

graph using the calculus process that is implied by it. The graphs are then

transformed using certain rules and compared. Any differences in the transformed

graphs are used to identify errors in the student‟s program. This method of program

analysis uses heuristics for certain graph transformations. Additionally, for accurate

analysis, it is necessary to have a great knowledge of the field in which the task has a

meaning in addition to the task the program has to perform. These requirements

make this method unable to identify certain differences automatically.

Programming statements can be written in many forms using a variety of

structures. It is often useful to convert the flat structure represented by a program‟s

source code, into a structure that better represents the overall structure of the

program. An Abstract Syntax Tree (AST) is such a representation. The form of the

AST is dependent on the structure of the program. Therefore, alternative solutions to

a single program have different ASTs. Several researchers have proposed converting

these ASTs into a canonicalised form (Rivers & Koedinger, 2012; Truong et al.,

2003). This means that the AST obtained from the student‟s program is converted to

22 Chapter 2 : Literature Review

a standard form using a set of rules. Although this method seems suitable for

identifying alternative solutions to small programming problems, it is difficult to see

it being expandable for larger programs.

Computerised tutoring systems to teach Prolog have been developed with the

aim of standardising student‟s solutions in order to identify alternative solutions.

The Prolog Programming Environment (Gegg-Harrison, 1991) contains a set of

schemata that can be used to represent a Prolog program. When a student submits a

solution, it is converted to a canonical form using these schemata and is then

compared against the expected solution which is also stored in this canonical form.

In the Prolog Tutor (Hong, 2004), a single reference program is stored against each

programming exercise. A set of programming techniques, that can be used to write

Prolog programs, are also stored. When a student solution is submitted, the

programming techniques used are first identified. Then, both the student‟s solution

and the reference program are parsed using the same set of programming techniques.

The results of the two parses are then compared to identify any errors. Although

these methods of standardising solutions have proved useful, they are restricted to

Prolog programs since the concepts of schemata and programming techniques do not

translate across all programming languages.

All the methods of program analysis described in this section analyse the

student‟s code itself and do not attempt to identify what the student intended to do by

writing that particular piece of code. However, trying to understand what the student

intended to do from a particular piece of code has proved to be useful in providing

appropriate instruction.

2.3.3 Intention Based Analysis

Novice programmers make many errors while writing programs. An important

concept that is used in many teaching systems is that bugs are not properties of

programs alone but properties of the relationship between the programs and the

intentions (W. L. Johnson & Soloway, 1985). This is the idea used in systems that

perform intention based analysis. Such systems attempt to identify the purpose of

the student when writing a specific programming statement. Based on this, it then

decides whether the student is on a correct solution path even if the final solution is

not correct.

Chapter 2 : Literature Review 23

One of the oldest and most famous systems that used this approach is PROUST

(W.L. Johnson, 1990; W. L. Johnson & Soloway, 1985). Here, implementation

methods that are commonly used in writing programs are identified and stored in the

form of programming plans. These plans include both correct and incorrect versions.

Expected solutions to exercises are stored as goal decompositions consisting of these

plans and form the various interpretations of the solution. When a student submits a

solution to an exercise, it is analysed against the goal decompositions to try to

identify which interpretation the program fits into. A set of transformation rules are

also maintained to modify the code to match existing plans. Heuristics are used to

determine which interpretation a solution most closely fits into in order to determine

the intention of the student‟s program. PROUST is able to analyse many alternative

solutions by generating new interpretations based on the program it is currently

analysing. However, with the increase in the number of programming plans stored in

the system, it becomes harder to identify the actual plans used by the student. This is

mainly because the system takes a lot of time to consider all these solutions and

decide on a probable interpretation of the student‟s solution.

Results of an evaluation of PROUST showed that it was sometimes unable to

interpret the programs of the students based on the set of plans that it contained. This

meant that it could not provide appropriate error diagnosis in such cases (W. L.

Johnson, 1985). The evaluation process considered only two programs and

therefore, there is no evidence regarding how it would perform on analysing other

programs. Also, its explanations were somewhat difficult to use. It was not coupled

with a tutoring module or a student module and was described as a program

debugger and not an ITS.

The weaknesses of PROUST inspired the building of another programming

debugger – CHIRON (Sack, Soloway, & Weingrad, 1992). This attempted to solve

the problem of not being able to interpret certain programs by identifying what is

correct in the program and not what is incorrect. This meant that it did not contain a

set of mal-rules as did PROUST. A hierarchical representation of knowledge made it

possible to describe errors using a better approach than PROUST. However, the

error messages were still somewhat difficult to understand. Also, the knowledge

level of each student was not considered when displaying error messages or for any

24 Chapter 2 : Literature Review

other purpose. Although the literature describes a prototype of CHIRON, it does not

include details of any empirical evaluation to see whether it was successful.

Intention based analysis is also used in the more recent CPP-Tutor (Naser,

2008). This tutor stores a correct solution to each problem. When a student submits

a solution to a programming problem, the system calculates an edit distance between

the student‟s solution and the correct solution using pattern matching in order to

identify the intent of the student. Feedback is then provided based on this analysis.

In the C-Tutor (Song et al., 1997), the intention of each problem is stored as a goal

plan hierarchy. Once a student enters a solution to the problem, it is converted into a

similar plan hierarchy, in canonical form, by the system. This plan is then compared

against the above goal plan hierarchy in order to identify the intention of the student.

The Prolog Intelligent Tutoring System (PITS) also uses intention based

analysis to analyse Prolog programs (Looi, 1991). The program debugger of this

system first uses heuristic code matching to analyse different aspects of the program.

The errors identified here are general and apply to any programming task. During

the next stage, errors specific to the particular programming task are identified. If

code matching fails to detect the errors, dynamic analysis is performed to see if the

objective of the program is satisfied. This multi-level approach makes PITS very

versatile in identifying errors. The Java Intelligent Tutoring System (JITS) is another

e-learning system that uses intention based analysis to guide each student towards a

potentially unique solution (E. Sykes, 2007). A problem specification is stored in the

system but not a corresponding solution. JITS identifies the intent of the student

based on his/her program and attempts to guide him/her towards a solution that is

correct. JavaBugs (Suarez & Sison, 2008) is another tutor that uses intention based

analysis. Here, the student‟s solution is analysed against a set of stored correct

programs. Intentions are identifying by comparing matching classes, attributes and

methods. Any discrepancies are identified as errors. This method is only suitable for

analysing programs written using Object Oriented concepts.

Whatever the method of analysis used, the final goal of a system designed to

teach programming should be to properly identify a student‟s program as correct or

incorrect. The different methods of analysis discussed here are successful in

achieving this, to different degrees. When designing the domain module of an ITS to

Chapter 2 : Literature Review 25

teach programming, it is necessary to select a method that is suitable for the proposed

system.

2.4 THE TEACHING MODULE

As described in Section 2.2.2, the teaching module is an important component

of an ITS. This module concentrates on methods to provide better learning to

students. It utilises concepts from many different disciplines, mainly Cognitive

Science and Education.

The teaching module in an ITS to teach programming concentrates on different

aspects of teaching. This section concentrates on the aspects of the teaching module

that are relevant to the this thesis.

2.4.1 Feedback

Analysing a program alone is not sufficient for learning to occur. It is

necessary for the system to analyse the program and provide appropriate feedback.

This idea has been utilised in many systems to provide different types of feedback

and other methods of support to students using ITSs to learn programming.

One interesting study to understand what causes learning was carried out by

analysing hours and hours of tutorial dialogue (VanLehn, Siler, Murray, & Baggett,

1998). This study indicated that, in order to achieve some form of learning, students

need to make an error or reach an impasse. Many computerised tutoring systems for

programming identify such an error or impasse when a student makes a mistake in

answering an exercise on writing a computer program or asks for help. During such

events, the tutor can either indicate that an error has been made (verification) or

provide more detailed explanations about the error (elaboration) (Mason & Bruning,

2001). Although both these methods have been used in previous tutors, studies have

shown that elaboration provides better learning than simple verification (Singh et al.,

2011).

The timeliness of the feedback is another factor that plays an important role in

learning (Singh et al., 2011). Providing the proper feedback at the wrong time could

result in students becoming confused. Some tutors, such as the cognitive tutors

mentioned earlier (Anderson et al., 1995) provide feedback as and when a student

makes an error. This type of feedback is known as proactive feedback. However,

26 Chapter 2 : Literature Review

research has shown that too much help can actually prevent learning (VanLehn et al.,

1998). Additionally, proactive feedback does not allow students to realise on their

own that they have reached an impasse. Research has shown that for effective

learning, it is necessary for the students to be aware that they have some form of

knowledge deficit (VanLehn et al., 1998). Therefore, it is more beneficial to let the

student ask for feedback when s/he realises that such a deficit is present. This type of

feedback is known as on-request feedback and has been utilised in many

computerised learning systems to teach programming (referred to as „systems‟ for the

rest of this literature review) (Chee, 1994; Gegg-Harrison, 1991; Hong, 2004; Looi,

1991; Weber & Brusilovsky, 2001; Weber & Möllenberg, 1995). Such feedback has

proved beneficial since the students themselves need to determine that they need help

and are therefore more open to accepting assistance from the system.

When using elaboration to provide descriptive feedback, two main methods are

used: scaffolding and hinting (Razzaq & Heffernan, 2006). In the scaffolding

situation, students are asked questions, thereby allowing them to determine the

reason for their error. This is useful to build up the cognitive abilities of the student

as well as to correct the more immediate problem in the program. In hinting, the

system indicates to the student what is wrong. Studies have shown that students

forced to do scaffolding perform better than those given hints (Razzaq & Heffernan,

2006). However, students need a longer time to work with scaffolding. This means

that any system that uses scaffolding over hinting should ensure that students have

plenty of time to work on the problems.

Providing feedback alone is not sufficient for students to learn. Many IDEs

used for programming provide some sort of feedback through compiler error

messages. However, these messages are not very user friendly and can cause

confusion to novices. Therefore, it is essential that any feedback provided by the

system is user friendly (Truong, 2007). On the other hand, research has shown that

providing very strong hints can actually result in the students missing the opportunity

to learn (VanLehn et al., 1998). Therefore, the level of feedback is an important

consideration when providing error messages.

An important theory in Education, related to the level of feedback, is the Zone

of Proximal Development (ZPD). In this theory, Vygotsky (1978, p. 84) describes

ZPD as “the distance between the actual development level as determined by

Chapter 2 : Literature Review 27

independent problem solving and the level of potential development as determined

through problem solving under adult guidance or in collaboration with more capable

peers.” In other words, ZPD refers to the range of tasks that are too difficult for an

individual to master with his current level of knowledge, but can be mastered with

the assistance of a more skilled person. Learning occurs best when a tutor gives

guidance in the ZPD of the student. This enables the student to improve his

knowledge, thereby altering his ZPD.

The ZPD of each individual student is different. This means that, an error

message may be suitable for certain students to increase their knowledge while it can

be useless to others. Maintaining a single level of error messages, like in the ELM-

ART system (Weber & Brusilovsky, 2001), is not very beneficial to improve the

knowledge of a wide cross-section of students. In order to avoid this problem, many

systems provide a multi-levelled approach to feedback (Chee, 1994; Garner, 2007;

Kemp, Kemp, & Todd, 2009; Mason & Bruning, 2001). The actual number of levels

varies from system to system but the general concept used is the same. Students can

then obtain the most suitable level of feedback based on their particular knowledge

level. In some systems, the system automatically determines the most suitable level

for the current student and displays the error message (Suraweera & Mitrovic, 2002).

This could prove problematic as students sometimes want more detailed error

messages while at other times want just a very general hint. Therefore, it is better to

allow the students to choose the level of feedback themselves. Many systems first

provide a very general error message but allow students to manually move on to

more detailed descriptions if they desire it (Chee, 1994; Koedinger et al., 1997;

VanLehn et al., 1998; Weber & Möllenberg, 1995). This method has proved more

successful since students are in charge of their learning.

In addition to the many types of feedback provided when a student makes an

error, some systems actually go a step further and correct the errors in the student‟s

programs. The CPP-Tutor (Naser, 2008) and JITS (E. Sykes & Franek, 2004) are

examples of such systems. Both these systems first ask the student questions to

determine whether the error correction suggested by the system is acceptable to the

student before making the actual change. However, automatically correcting errors

can actually hinder student learning since students miss an opportunity to learn by

themselves (VanLehn et al., 1998).

28 Chapter 2 : Literature Review

2.4.2 Next Problem Selection

Any system that teaches using exercises needs some method to determine the

next exercise to present to the student. Many systems present the exercises to a

student in a preset order (Weber & Brusilovsky, 2001). Others present a list of

exercises and allow the students to select which exercise they want to attempt next

(Weber & Möllenberg, 1995). In both these types of systems, the next exercise

presented to the student does not depend on the abilities of the student. This method

is not very suitable since it has been shown that continually encountering problems

that they are unable to solve results in a negative psychological effect on students

(Mow, 2008).

In order to cater to this need, some systems look at the current knowledge level

of the student and provide the exercise that is most suitable for his/her current level

of knowledge. This is done using the concept of ZPD described in Section 2.4.1.

The subject matter is broken down into knowledge components (KCs) and the KCs

covered by each exercise are maintained. The most suitable problem for the current

student is considered to be the one with the least number of unknown KCs for that

student. Many systems automatically select the next best exercise in this manner and

present it to the student (Song et al., 1997; Weber, 1996; Wenger, 1987). Others

function on the concept of mastery learning (Anderson et al., 1995; Corbett, 2000).

These systems provide students with more and more exercises that cover the same

KCs until the student has achieved mastery of those KCs. Then, they select the next

best exercise as described above. Although this method of selecting the next best

exercise is useful in individualising the interaction, it has some disadvantages. The

system is not always a hundred percent correct in its estimate of the student‟s

knowledge. Additionally, even if the system is correct, some students may simply

not feel confident enough in using some KCs and may simply wish to practice them

more. In such situations, the system does not allow them to do so, forcing them to

work on the next best exercise. The solution to this problem is for the system to

suggest the next best exercise based on the KCs, but allow the student to select either

that or a different exercise based on his/her requirements (Naser, 2008). This method

supports the student by individualising the instruction while allowing the student to

also control his own learning.

Chapter 2 : Literature Review 29

2.4.3 Other Forms of Support

In addition to customised levels of feedback and method of next problem

selection, some systems provide other forms of support for the students to learn

effectively. This section discusses such forms of support that contribute to this

thesis.

As discussed in Section 2.1, the process of writing an entire computer program

from scratch requires the integration of many cognitive skills. This makes it more

difficult for novices (Chee, 1994; Kolling, 2010; Miliszewska & Tan, 2007; Truong,

2007). The number of skills required can be minimised by requiring beginners to

complete segments of code rather than to write complete computer programs (Al-

Imamy et al., 2006; Kolling, 2010; Truong et al., 2003). This makes it easier for

them to concentrate on fewer aspects of programming since they do not then need to

worry about the more complicated issues of designing an entire program. This

concept has been converted to computerised learning system by Kolling (2010) who

stressed the fact that such systems should never start with a blank screen. This

notion has been utilised in the Environment for Learning Programming (ELP)

(Truong et al., 2003) which presented gap exercises for students to complete. An

interesting variation of this was utilised by Garner (2007), where the students were

mainly required to select from a list of provided program statements and order them.

In addition to reducing the cognitive load, this method also made it unnecessary for

the students to remember the exact syntax of statements, thereby allowing them to

concentrate more on program design.

Many other methods have been used in technology based systems to make it

easier for the students to follow the syntax rules of the language. Some systems

provide coding templates for the students to fill in so that they are not required to

remember the intricacies of the syntax. These templates can be obtained by selecting

appropriate program statements from a set of menus (Kelleher & Pausch, 2005;

Weber & Möllenberg, 1995). The templates can then be filled in using data that is

relevant to the current exercise. Sometimes, skeleton code in the form of templates

is provided for the entire program (Al-Imamy et al., 2006). The students are then

free to insert lines into, or delete lines from, the template. More support is provided

for inserting lines by allowing the students to request templates of program

statements that are valid at a particular point. When a programming statement is

30 Chapter 2 : Literature Review

selected, the students can then complete the template as appropriate. Templates have

also been utilised to assist OOP in the Greenfoot Programming Environment

(Kolling, 2010). Here, a class template is created each time a new class is required,

thereby allowing the students to work on the implementation class without worrying

about the class declaration.

Gegg-Harrison (1991) proposed an interesting variation on the use of templates

to teach introductory programming. His environment to teach Prolog programming

uses a set of program schemata, or standard structures, used commonly in Prolog

programs. Each complex program is thought of as an extension to one or more of

these schemata. Each problem presents a combination of these schemata with blanks

that needed to be filled in by the students. A similar approach is used in the Prolog

Tutor (Hong, 2004). Instead of schemata, it uses the concept of Prolog programming

techniques, which are language dependent but specification independent coding

techniques used by Prolog programmers (Brna et al., 1991). ProPAT (Delgado &

Barros, 2004) uses a variation to this by providing a plug-in to the Eclipse

development environment. This plug-in contains templates for some well thought of

programming patterns. The focus of all of these methods is to reduce the problems

many novice students encounter due to the complex syntax of programming

languages.

2.4.4 Summary

This section described the various features of the teaching module that have

been used in systems to teach programming. Although different approaches have

been used, the actual features used in any given system depend on many factors.

These include, but are not limited to, the programming language taught, the

knowledge representation used in the system, and the variability of the students that

use the system. These factors need to be considered carefully when deciding on the

exact features of the teaching module that is suitable for any system.

2.5 THE STUDENT MODULE

Section 2.2.2 described the overall architecture of Intelligent Tutoring Systems.

It can be seen that the student module is an important component in such systems in

order to individualise the interactions based on the characteristics of the students.

Students are human beings who have many different traits such as knowledge levels,

Chapter 2 : Literature Review 31

learning styles, motivation, likes and many more. All these traits contribute to their

preferred methods of learning and should therefore theoretically be modelled in order

to individualise the interaction. In practice, this is a very difficult problem due to

many reasons (Self, 1990). Since the focus of this research is not on the design of

the student module, only the characteristic that is most directly related to learning,

the current level of knowledge of the student on the subject matter, is considered in

this thesis.

The knowledge level of a student regarding a certain domain is difficult to

measure. In order to make this measure more accurate, it is usually broken down

into separate topics or cognitive skills known as knowledge components (KCs). The

knowledge level for each of these KCs is then considered instead of an overall

knowledge level.

When measuring the knowledge level of a KC, the obvious measure is to gauge

whether the KC is known or unknown. However, in practice, it is difficult to observe

whether a person does or does not have a certain piece of knowledge. There is

always uncertainty since a person can make a mistake due to a slip or get an answer

correct by luck. This means that this uncertainty must be accounted for when

measuring the knowledge level of a certain KC (Woolf, 2009). Therefore, the

knowledge level is usually maintained as a probability that the KC is known. A

value of zero indicates that it is not known for sure, while a value of 1 indicates that

the KC is known without doubt. In practice, the knowledge level is somewhere

between these two extremes, indicating the level of confidence of the system that the

person knows the KC. In summary, this makes it possible to deal with uncertain and

vague knowledge to make evaluations.

The student model is often designed as an overlay model of the domain model.

This means that the domain being taught by the ITS is divided into certain

knowledge components and the student model measures each student‟s knowledge

level of the KC as described above. In the cognitive tutors mentioned in Section

2.3.2, knowledge tracing is commonly used practice when updating the student

knowledge. In this method, at each opportunity that the student gets to apply a

production rule, the student either knows or does not know the associated skill and

therefore gives either a correct or incorrect response (Corbett & Anderson, 1992).

However, there is always the possibility that the student applied the rule correctly by

32 Chapter 2 : Literature Review

chance or that s/he simply made a slip and did not apply the rule correctly, even if it

was known. Each production rule is associated with a single skill, thereby making it

possible to gauge the student‟s current knowledge of that skill (Corbett & Anderson,

1995).

Many methods of student modelling have been suggested in th3e literature.

These utilise many different theories such as Bayesian Belief Networks (BBN)

(Beck, Chang, Mostow, & Corbett, 2008; Corbett & Anderson, 1992, 1995;

Hatzilygeroudis & Prentzas, 2004; Reye, 2004), Item Response Theory (IRT)

(Galvez, Guzman, Conejo, & Millan, 2009; Johns, Mahadevan, & Woolf, 2006), and

many more. Although these theories and their combinations have been used in many

systems, BBNs are the basis for many successful Intelligent Tutoring Systems due to

their many useful features.

2.5.1 Bayesian Student Modelling

As described above, BBNs are very often used to model the knowledge of

students using an ITS. For the reader who is not familiar with BBNs, a concise

description is provided in Appendix A. In Bayesian evaluation, a Belief Network of

how the student gains knowledge is first constructed. They usually consider such

factors as the student‟s previous knowledge of the KC and the response (correct or

incorrect) during the current interaction. A set of equations to calculate the current

knowledge level of a student after an interaction have been developed (Reye, 1998).

These equations are actually a more generalised version of the equations specific to a

situation where the outcome of an interaction can only be correct or incorrect, that

are used in the successful cognitive tutors (Corbett & Anderson, 1992, 1995).

The above models based on BBNs assume that each KC is independent of the

other. However, in actual programming practice, this is not the case. Topics are

generally dependent on each other and form a pre-defined order. For example, it is

necessary that the student has knowledge about simple sequential statements before

s/he can proceed on to more advanced selection statements. Therefore, the student‟s

knowledge level of the sequential statement affects his/her knowledge level of the

selection statement. A method of modelling this relationship between KCs has been

proposed by Reye (2004). Since this takes additional factors into account, it

produces a more accurate measure of the student‟s knowledge of a KC.

Chapter 2 : Literature Review 33

In addition to the highly successful tutors mentioned above, variations of the

Bayesian modelling technique have been used in many other tutors (Beck et al.,

2008; Michael Mayo & Mitrovic, 2001).

Overall, the reason for using this method so extensively is that it can accurately

handle uncertainty. The theoretical basis for BBNs is also highly developed and

therefore it is expected to provide a relatively accurate student model, when

sufficient observations are available.

2.5.2 Open Learner Models

The information from the student model affects the feedback provided to the

student. However, there could be times when students disagree with the system‟s

gauge of their knowledge. This could happen due to inaccuracies in the student

model, as well as other reasons such as a student deliberately providing wrong code

in order to understand what happens better. In such situations, the feedback provided

by the system may not be appropriate for the student. If the student is unaware what

the system thinks of his/her knowledge, the student may be confused as to why this is

happening. Therefore, it can be beneficial to the students to let them know the

system‟s gauge of their knowledge. Additionally, many students feel that they have

a right to view data about themselves (Bull, 2012). Researchers have shown that

students that are provided with such a view of their student model and meta-

cognitive tips performed much better than other students (Long & Aleven, 2011). A

student model which has been made accessible to the student in this manner is

known as an „Open Learner Model‟ (OLM).

OLMs can be of three main types: inspectable, negotiated and editable. An

inspectable student model allows the student to view the system‟s idea of his/her

knowledge but does not allow him/her to alter it. An editable student model allows

the student to view as well as change his/her knowledge level manually. A

negotiated student model is in-between these two, allowing the student to negotiate

his/her knowledge with the system by providing some sort of dialogue. Research has

shown that, of these three methods, a majority of students prefer an inspectable

student model (Bull, 2012).

Open Learner Models can take many forms. It should be noted that the method

in which the model is externalised to the user can be very different from the

34 Chapter 2 : Literature Review

underlying model (Bull, 2012). The externalised model should be understandable to

the user. Many students prefer to have an overview and a detailed view as well as

details of their misconceptions. This makes it easier for students to be aware of their

general difficulties. However, students do differ in their preference, so it has been

suggested that students are offered a choice as to what views they would prefer to see

(Bull, 2012). Research has shown that students also like the model to include details

of what is expected at the current stage (Bull, 2012). Another feature that has been

used in OLMs is the ability to release it to others so that the students can make a

comparison between themselves and their counterparts (Bull, 2012).

Therefore, it can be seen that an open learner model in some form is a preferred

feature of an Intelligent Tutoring System and has proved to be valuable to students.

2.6 COMPARISON OF EXISTING ITSS TO TEACH PROGRAMMING

The above sections described the difficulties of teaching programming to

beginners and how Intelligent Tutoring Systems can be used to help this process.

Many ITSs have been built with this in mind. This section compares the features of

some of these systems.

Table 2.1 compares several existing ITSs that teach programming. It does not

look at all possible features but examines some of the main features that have been

discussed in previous sections. Note that the PROUST system mentioned in section

2.3.2 has been omitted here since it does not provide feedback based on the abilities

of each student.

One main feature that can be identified here is that some ITSs focus more on

providing instruction in a textbook-like fashion while others concentrate on practical

programming exercises. ELM-ART is the only system among these that is textbook-

like but with programming exercises incorporated into the system. This emphasises

the fact that exercises are an important feature in any ITS that teaches programming.

When analysing the systems in the table, it can be seen that many of the ITSs

provide delayed feedback. The main reason for this is that programming exercises

have many solutions. Therefore, it is very difficult to identify whether the student is

on a correct path as and when the solution is typed in. This problem does not occur

in the ACT programming tutors since it compares the student‟s program to an ideal

solution and can therefore immediately identify any deviations.

Chapter 2 : Literature Review 35

Table 2.1

Existing ITSs to Teach Programming

System Domain Feedback and Hints/Special Features Program Analysis Next Task Selection

ACT
Programming
Tutor
(Corbett,
2000)

LISP

Immediate feedback Compares against a set of
production rules

Predefined set of
exercises presented at
the end of each section

Prolog Three levels of hints

More exercises to
achieve mastery
presented based on
knowledge of current
student

Pascal Inspectable OLM

ELM-ART
(Weber &
Brusilovsky,
2001)

LISP Adaptive hypermedia Identifies semantically equivalent
solutions using plan
transformation and bug rules

Pages on electronic
textbook are colour
coded to indicate ones
suitable for the student

Feedback on request

Identifies complete and incomplete solutions and
provides hints

Several levels of hints Student may select
differently

Example based problem solving support

Editable OLM

C-Tutor
(Song et al.,
1997)

C Feedback on request Intention based analysis using
goal/plan hierarchies

System selects an
exercise or concept to
teach based on
knowledge of current
student

Bugs described using cause-effect relationships Programs converted into
canonical form

36 Chapter 2 : Literature Review

System Domain Feedback and Hints/Special Features Program Analysis Next Task Selection

 Static and dynamic analysis

CPP-Tutor
(Naser, 2008)

C++ Feedback on request Intention based analysis based on
edit distance between student’s
solution and probable intent

System selects an
exercise based on
knowledge of current
student

Modifications made to student code based on
identified intent

Modifications done only after consultation with
student

Student may request new
exercise

Possibility to run the code without analysing
program

JITS (E.
Sykes, 2007)

Java Feedback on request Intention based analysis using
parse trees

System selects an
exercise based on
knowledge of current
student

Guides student towards a potentially unique
solution based on identified intention

Automatic correction of code where appropriate

Prolog Tutor
(Hong, 2004)

Prolog Feedback on request Compare parsed version of both
the student’s solution and
reference program using a set of
common Prolog programming
techniques

System selects an
exercise based on
knowledge of current
student

Guided programming provides templates of
relevant programming techniques

Uses error messages based on incorrect
programming techniques

Chapter 2 : Literature Review 37 361

Another interesting fact is that many of the systems automatically select the

next best task for the student based on his/her current knowledge level. Since a main

task of an ITS is to individualise the interaction, this is an important feature.

However, there is evidence that some students do not feel comfortable with accepting

the system‟s suggestions. This may be due to the student preferring to practice more.

Therefore, it is good practice to provide such help while allowing the student to

select a different task as in ELM-ART and the CPP-Tutor.

Each of these systems use a different method for program analysis. Some of

the methods specified are very dependent on the programming language used while

others may be generalised across several languages. However, in order to generalise

the analysis, the languages need to have a similar structure.

Another feature is that several of the systems contain open learner models.

Although the OLM in ELM-ART is editable, the one in the highly successful ACT

programming tutors is inspectable.

These features needed to be considered carefully when deciding on features

that were desirable for the PHP Intelligent Tutoring System.

2.7 SUMMARY AND IMPLICATIONS

Teaching programming to beginners is a complex task which has proved

challenging to educators through decades. Intelligent Tutoring Systems, that

customise their instruction based on the characteristics of the current student, have

been proposed as a method of overcoming some of these challenges. An ITS

consists of four main modules: the domain module, teaching module, student module

and communications module. Each of these modules play an important role in

teaching the subject matter effectively to the students.

Many methods have been used to design the domain module in ITSs that teach

programming. A main challenge encountered here is that a programming exercise

can have many correct solutions. Although many methods have been proposed to

solve this problem, it is clear that more work needs to be carried out in this area.

In addition to analysing programs, an ITS should be capable of providing

pedagogical support for students to learn. Existing ITSs achieve this by a variety of

38 354

means. These features need to be analysed carefully to decide which of them are

most suitable for the system under consideration.

ITSs focus on customising the interaction based on the requirements of each

student. In order to do this, it is necessary to find methods of modelling the students.

Different methods have been utilised for this purpose. These methods need to be

studied to identify which of them are appropriate for the proposed system.

Although the literature showed that many ITSs have been developed to teach

programming, none focus on the intricacies of web development.

Therefore, the review of existing literature supports the fact that there is no

previous work that addresses the research problem of the thesis as defined in Section

1.3. The rest of the thesis discusses how the research project was carried out to

answer this problem.

Chapter 3: Research Design 39

Chapter 3: Research Design

This chapter describes the research design adopted to achieve the aims and

objectives stated in Section 1.3. Section 3.1 discusses the overall methodology used

in the study. Section 3.2 goes on to discuss the different phases by which the

methodology was implemented and the research methods used in each phase.

Section 3.3 gives the timeline for the implementation of the research design. Finally,

Section 3.4 gives a brief summary of the chapter.

3.1 METHODOLOGY

Research can be divided into two main categories: basic research and applied

research. Basic research involves the developing and testing of theories or

hypothesis to satisfy intellectual interests. Applied research applies knowledge to

solve practical problems. This usually results in the development of new artefacts

which utilise new theories that are formulated during the research process. The new

artefacts are then tested to obtain proof for or against the hypothesis that they solve

the underlying practical problem (Nunamaker Jr., Chen, & Purdin, 1990).

As mentioned in Section 1.2, this research addresses the practical problem of

teaching dynamic web development using PHP in an efficient and economical

manner. The artefact resulting from this research is an Intelligent Tutoring System

that teaches PHP programming. In developing this artefact, it is necessary to develop

new theories on how the different components of the ITS need to be modelled.

Therefore, this research falls into the category of applied research. It followed the

three stage model of: concept, development and impact (Nunamaker Jr. et al., 1990).

This is apparent by the objectives of the research as described in Section 1.3. The

first objective - to design a knowledge base - falls into the concept stage. The second

objective - to build the system - falls into the development stage and the third

objective - to evaluate the system - falls into the impact stage. The developed system

serves as both a proof of the concept of the fundamental research as well as an

artefact for continued research. Therefore, this research closely followed the

concepts of the Systems Development research methodology (Nunamaker Jr. et al.,

1990).

40 Chapter 3: Research Design 354

3.2 RESEARCH DESIGN

Systems Development uses a multi-methodological approach of three stages

described in the previous page. It encompasses theory building with experimentation

and observation to validate hypotheses. The research process consists of five main

steps (Nunamaker Jr. et al., 1990): construction of a conceptual framework,

development of a systems architecture, analysis and design of the system, system

building, and observation and evaluation. This research project was divided into four

phases to incorporate these five main steps of the Systems Development research

methodology.

3.2.1 Phase One

 The first phase encompassed the first two stages of the research methodology:

construction of a conceptual framework and development of a systems architecture.

This phase included the formulation of the research question and the identification of

system requirements. The main research method used was an extensive literature

survey. Available literature in ITS design was studied in detail to understand the

current state of the discipline. Since it was obvious that Artificial Intelligence (AI)

plays an important role in the design of ITSs, this subject was also studied at some

length. Existing ITSs and other computerised teaching systems that teach

programming were studied to identify the requirements of the system. The

information obtained from this literature was also used to develop a systems

architecture based on the standard architecture of an Intelligent Tutoring System as

described in Section 2.2.2.

As described earlier, a major challenge in building an ITS that teaches

programming is the ability for it to analyse computer programs written by students.

An architecture to achieve this, using theories of AI, was developed during this phase

and was used as a basis for the rest of the thesis. A detailed description of this

architecture is given in Section 4.3.

3.2.2 Phase Two

The second phase of the research design was the analysis and design of the

system. This major phase included the design of schema and knowledge bases

necessary for the system. The methods of modelling the different components of the

systems architecture were carefully studied.

Chapter 3: Research Design 41

Building an ITS is a complex task which is very time consuming. It has been

estimated that it takes 200 to 300 hours to build an ITS that provides one hour of

instruction (Aleven et al., 2006). The subject matter taught by the PHP ITS is web

development using PHP. The number of hours of instruction necessary to teach this

subject matter exhaustively is very large. Therefore, it was impossible to create a

system that was capable of achieving this within the time limitation of a PhD.

Consequently, it became necessary to narrow down the subject matter taught by the

PHP ITS. It was decided that the system would cater for novice programmers with

no prior knowledge of PHP programming. Subject matter relevant to this was then

identified to be included in the system. A PHP Grammar in Extended Backus-Naur

Form showing the sub-set of PHP that is handled by the system is shown in

Appendix B .

The next step in the design process was to find suitable representations for the

selected subject matter. It was necessary to represent this subject matter in a manner

which made it possible to analyse student answers and identify different solutions to

a given problem. Literature surveys were used to study the different methods that

had previously been used to represent subject knowledge. Of the many methods that

had been used previously, it was necessary to find a method that was flexible enough

to handle the multitude of variations possible when writing computer programs. It

was also necessary that the selected method facilitated the process of providing

appropriate feedback based on particular errors made by students. Consequently, it

was decided to use First Order Predicate Logic (FOPL) to model the knowledge

base. Although this representation had been used previously for Intelligent Tutoring

Systems, it had not been used to represent subject matter in order to analyse

computer programs.

The subject matter selected for including in the system was then studied in

detail to see how it could be modelled using FOPL. This was an iterative process.

At each step, a type of programming construct was selected and a suitable model

proposed. Then, a set of examples that demonstrate the use of this construct was

considered. These examples were traced through manually to ensure that the

proposed model could be used to analyse these programs. If any problems were

found, the model was refined and the process was repeated. This was done for all

constructs that were going to be included in the implemented system.

42 Chapter 3: Research Design 354

An effective ITS needs several modules as described in Section 2.2.2.

However, the core of this is the domain module. This is because it is impossible to

tutor properly without having a good representation of the subject matter. The

representation of the student knowledge also depends on how the subject matter is

represented. Therefore, the main focus of this thesis, and an important contribution,

is the proper design of the domain module. The other modules can then be built on

top of this core module. However, as mentioned previously, it was impossible to

create an ITS where all the modules are in their best possible form, during the time

limitations of a PhD. Therefore, it was decided that the student and teaching

modules would receive less emphasis in this thesis.

The student module models the characteristics of a student using the system.

Students are human beings who differ in many characteristics such as subject

knowledge, level of education, learning style, motivation and age. Modelling all

these traits is a very difficult problem. Therefore, this study focused on only

modelling each student‟s current knowledge of the subject matter taught by the

system.

As described in Section 2.5 many methods of student modelling have been

used in successful ITS. These representations were studied through literature

surveys. Of these methods, Bayesian student modelling was selected as the method

most suitable for the PHP ITS, based on the selected subject matter representation as

well as the functionality and success of the methods.

The teaching module concentrates on teaching methods that are adapted by the

system. Again, the many teaching methods used in previous ITSs were analysed

based on literature reviews. Of the many methods described in Section 2.4, certain

methods suitable for the system were selected. A detailed description of the methods

incorporated in the teaching module of the PHP ITS can be found in Section 8.3.

However, it was not possible to incorporate all the best methods identified from the

literature due to time limitations.

The end result of the second phase was a thorough theoretical basis for the PHP

ITS.

Chapter 3: Research Design 43

3.2.3 Phase Three

The third phase of the research was the actual system building process. During

this phase, the design and architecture of the previous two phases were put into

actual practice using available software tools and technologies. In order to do this,

existing development platforms were compared, together with their available

programming languages and tools. While identifying a suitable set of software tools,

they were studied to see how they could be integrated to build the actual system (see

Section 8.4.1).

One main component of any software system is its database. The database was

designed to meet the requirements identified in the previous phases. The system was

then built using these technologies. During this process, some issues related to

implementing the designs using the selected tools were encountered. Suitable

methods of overcoming these difficulties were also identified (see Section 8.4.2).

The final outcome of this phase was the developed PHP ITS.

3.2.4 Phase Four

The fourth phase of the research was to evaluate the system under practical use.

In order to carry out the evaluation, the PHP ITS was deployed in a QUT unit to

teach web development using PHP. The participants were selected on a voluntary

basis with the additional condition that they satisfy certain qualifying criteria to study

PHP. Ethical clearance was obtained from the University Ethics Committee as the

research required gathering data from human participants. The students that

participated in the unit were awarded marks that counted towards their final GPA and

graduation. Therefore, ethical problems would have occurred if only some students

enrolled in the unit were allowed to use the ITS. In order to avoid this problem, all

participants in the unit were allowed to use the ITS. This meant that it was

impossible to have a control group to compare against the students that were using

the ITS.

During the evaluation process, data was gathered from the students who used

the system. There are many aspects that the evaluation of an ITS needs to consider.

One important aspect was whether the students actually gained knowledge by using

the system. Pre and post-test results were the main form of data used for this

purpose. It was also necessary to evaluate the validity of the student model (Mark &

44 Chapter 3: Research Design 354

Greer, 1993). For this purpose, details of student interactions with the system were

recorded and analysed together with the pre and post-test results. The usability of the

system was also an important consideration. This was analysed using both

qualitative and quantitative responses to a questionnaire and also to questions at a

focus group discussion.

An iterative approach was taken for the evaluation and improvements. After

deploying the system during one semester, improvements were made based on the

responses received from the students who used the system. This improved system

was then deployed during the next semester. It was then evaluated using the same

methods as in the first semester. The only difference was that a focus group

discussion was not carried out during the second semester. The system was

improved further using feedback received from the second evaluation.

3.3 TIMELINE

As described in Section 3.2, the research design consists of four main phases.

Table 3.1 shows the timeline to complete each of these phases. Phase one, which

consisted of the initial literature review and identification of requirements continued

for the first 12 months of the research project. However part of phase two - the

design of knowledge base - started in parallel, during the fourth month. Phases two

and three (system building) continued throughout most of the research project and

overlapped. Phase four - the system evaluation - took place during two short periods

at 24 months and 30 months into the research respectively. Both phases two and

three were revisited after these two periods of evaluation in order to improve the

system further.

Table 3.1

Timeline for Completion of Each Phase

Time Elapsed (in
months) 3 6 9 12 15 18 21 24 27 30 33 36

Phase One

Phase Two

Phase Three

Phase Four

Chapter 3: Research Design 45

3.4 CHAPTER SUMMARY

This chapter described the research methodology used in the research and a

detailed analysis of the research design used. It also explored the time line of the

research project. The next chapters go on to discuss the outcomes of the research

process in much more detail.

Chapter 4: Basics of Program Analysis 47

Chapter 4: Basics of Program Analysis

The PHP Intelligent Tutoring System is designed to teach basic web

development to beginning programmers. This is mainly done through providing

programming exercises for the students to answer. In order to teach the subject

effectively, it is necessary for the system to analyse any answers provided by

students and provide constructive feedback.

One major issue encountered when trying to analyse program code is that a

programming exercise does not have a unique solution. Consider the example

programming exercise described in Figure 4.1. Although this is a very simple

exercise, the program can be written in many ways. Table 4.1 shows three programs

that all result in the web page described in the exercise, although some of them use

very round-about methods.

Table 4.1

Alternative Correct Solutions for Example Exercise

Program a Program b Program c

Welcome!
<?php
$x=$y+3;
echo($x);
?>

<?php
echo('Welcome!');
$x=$y+3;
echo($x);
?>

Welcome!
<?php
$z=$y+1+2;
$x=$z;
echo($x);
?>

This shows that matching a program line by line is not a very effective method

of analysing it. If a single ideal solution was maintained, many of these programs

Write a PHP program to display the string „Welcome!‟ on a web page. Next, add

3 to the value in the variable $y and store it into the variable $x. Finally, display

the value of $x. Note that the variable $y already contains a value when

execution reaches the point where the code needs to be completed.

Figure 4.1. Example programming exercise.

48 Chapter 4: Basics of Program Analysis 354

will be identified as incorrect, although they create the required web page. In order

to reason about a program, a more formal method of representation is required. The

representation selected needs to support logical reasoning about the structure of a

program. It also needs, not only to analyse the program for correctness, but to allow

providing appropriate feedback based on the actual errors made by the students.

Since this process involves logical reasoning by the computer, Artificial Intelligence

(AI) techniques are a suitable means of achieving this. Of the many representations

available in AI, First Order Predicate Logic (FOPL) is a simple representation with a

lot of flexibility. However, the literature does not reveal any attempt to use FOPL to

analyse computer programs. This thesis investigates the possibility of using FOPL

for this purpose. Chapter 4,Chapter 5,Chapter 6 and Chapter 7 explain the formal

representation used to represent in the PHP ITS and how it helps to analyse

programs. This is the knowledge base (KB) that functions as the domain module of

the PHP ITS.

This chapter concentrates on the basics of program analysis. It discusses the

process used by the PHP ITS to decide whether a student‟s answer to an exercise is

correct. It deals with some of the PHP constructs that are used in very basic

programs and how they are represented within the KB. Specifically, it discusses

display statements and assignment statements. These statements form the basis for

more advanced PHP constructs such as selections and loops which are detailed in

later chapters.

This chapter is organised in the following manner. First, Section 4.1

introduces some theoretical concepts which are important to understanding the rest of

the thesis. Section 4.2 then goes on to explain some conventions that have been used

throughout the thesis. Section 4.3 gives an outline of the process used by the PHP

ITS to analyse computer programs written by students. A more detailed description

of the process then follows. Section 4.5 expands on the process discussed in the

previous section to explain how the knowledge base of the PHP ITS is structured and

describes how this is used in program analysis. Section 4.6 discusses how some

special situations are handled and finally, Section 4.7 summarises the chapter.

Chapter 4: Basics of Program Analysis 49

4.1 THEORETICAL CONCEPTS

In order to understand the process of program analysis, it is first necessary to

have a knowledge of certain theoretical concepts that are used extensively throughout

this thesis. This section gives a brief introduction to these theoretical concepts.

4.1.1 Concepts in Artificial Intelligence

Artificial intelligence (AI) techniques attempt to build intelligent agents. The

definitions of the AI concepts described herein are taken from the book “Artificial

Intelligence a Modern Approach” (Russell & Norvig, 2010).

Logic is a general class of representations used to design knowledge bases

(KB). A knowledge base is actually a set of sentences where each sentence is

expressed in a knowledge representation language. The representation language used

throughout this research project is First-Order Logic (FOL), also called First-Order

Predicate Calculus (FOPC) or First-Order Predicate Logic (FOPL). It is assumed

that the reader is familiar with FOL, at least to the level discussed in Chapter 8 of the

above book (Russell & Norvig, 2010). Inference procedures in FOL can be used to

check whether some sentence is true given that a set of facts is true. This is the

fundamental basis for the theoretical framework of this research.

Throughout the research project, database semantics (Russell & Norvig,

2010, pp. 299-300) in First-Order Logic have been used. This means that it is

assumed that every constant symbol refers to a distinct object (unique-names

assumption). Secondly, sentences not known to be true are assumed to be false

(closed-world assumption). Thirdly, domain-closure, which means that the model

contains no more domain elements that those named by the constant symbols, is

assumed.

A state in AI is a set of facts which are true at the given point in time. The

state changes by addition of deletion of facts to the state. A searching or planning

problem in AI consists of five parts: the initial state, a set of actions, a transition

model, a goal test and a path cost (Russell & Norvig, 2010, pp. 66-68). The initial

state is the set of facts that correspond to the state the problem-solving agent starts

in. Actions are a set of actions that are applicable or that can be executed in a

given state. The transition model is a description of what each action does. The

goal test determines whether a given state is a goal state. The path cost assigns a

50 Chapter 4: Basics of Program Analysis 354

numeric value to each path where a path is a sequence of states connected by a

sequence of actions. Since the system developed in this thesis does not do

planning, the path cost is not considered here.

A plan is a sequence of actions that can be used to achieve a given goal state.

An action in such a plan can be at an abstract level and can be decomposed into

more actions at a later stage. Creating plans with such high level actions is known

as hierarchical planning. The actions that comprise the high level action at the

abstract level, is then called a sub-plan.

4.1.2 Concepts in Database Design

Object Role Modeling (ORM) (Halpin & Morgan, 2008) is a graphical method

which can be used to provide a diagram of the predicates used in the knowledge

base. Although ORM is primarily used for database design, this method has been

used for a different purpose in this research. The notations used in ORM have been

used to depict the various predicates and their relationships. The easy graphical

design of ORM makes it a suitable method of representation to be easily understood.

Only certain notations in ORM have been used in this research. Figure 4.2

shows how these symbols have been adopted to depict object types and predicates

defined in AI.

Object types have been categorised into two main groups: entity types and

value types. Entity types refer to object types that can be instantiated to create

instances of objects and are depicted using rounded rectangles with continuous lines.

Value types refer to types that can only take one of a specific set of values and are

represented using rounded rectangles with dotted lines. Predicates are relationships

between one or more of these object types. They are represented using a rectangle

divided into the number of object types that form the arguments of the predicate.

Each section of the rectangle is connected to the corresponding object type. In the

given diagram, Expression is a entity type since many expressions can be created.

ExpressionId is a value type since it will contain specific values. HasId is a

predicate that shows the relationship between the Expression and the ExpressionId.

Since it relates two object types, the rectangle is divided into two sections.

Chapter 4: Basics of Program Analysis 51

Figure 4.2. Some ORM symbols and their meanings.

Uniqueness constraints can be defined for predicates. These define which

object types contain unique values for each instance of the predicate, or in other

words, each fact. A line above a section of the rectangle indicates that the

corresponding object type has a unique value for each fact based on that predicate.

The constraints can exist for one or more object types that form the arguments of a

predicate. In Figure 4.2, the line above the HasId predicate is placed on the side of

the rectangle connected to ExpressionId. This means that each fact created based on

the HasId predicate has a unique ExpressionId.

Sub-types are object types that contain the characteristics of the main type as

well as some characteristics of their own. This is depicted by joining the sub-types

to the main-type using arrows. For example, both CalculateExpression and

BooleanExpression are sub-types of Expression in Figure 4.2. This means that both

these object types have a HasId predicate which is defined for the main type. In

addition to this, they can each have their own predicates which are specific to that

particular object type.

Expression ExpressionId

HasId

Entity Type Value Type

Predicate

Uniqueness

Constraint

Calculate

Expression

Boolean

Expression

Subtypes

GreaterExpr

Reification

GreaterThanExpression

52 Chapter 4: Basics of Program Analysis 354

Sometimes, it becomes necessary for a predicate to behave as an object.

Considering the given example, GreaterExpr is a predicate which relates two

CalculateExpressions. However, this predicate is also a sub-type of

BooleanExpression. In such cases, the predicate is reified or objectified so that it can

be used as another object. The reified predicate is given a new object name, in this

case GreaterThanExpression.

4.1.3 Concepts in Language Parsing

Language parsing concepts are used in this research project to analyse

programs written in HTML and PHP. Some definitions of key language parsing

concepts are given here. These are taken from the book „The Definitive ANTLR

Reference‟ (Parr, 2007).

A translator is a program that reads some input and emits some output. An

input is a sequence of vocabulary symbols. An input sequence is called a

sentence. A language is a well defined set of sentences. A translator is a

program that maps each input sentence in its input language to a specific output

sequence. A grammar describes the syntax of a language. It is a set of rules

where each rule describes some phrase of the language.

Grammars can be expressed using many notations. The notation used in this

research project is Extended Backus-Naur Form (EBNF).

Sometimes different portions of the input can conform to different grammars

(eg:- PHP and HTML). This is handled using the concept of island grammars.

Each grammar is defined separately and a link to the other grammar is established.

In each grammar, the input that conforms to the other grammar is defined

imprecisely as a set of characters or tokens. When this imprecise portion is

encountered, the other grammar is used to parse the input.

A program can be translated into an Abstract Syntax Tree (AST) using a

grammar. An AST is simply an internal data structure that represents a program as

a tree structure. ASTs are used in this research project for analysing programs

written by students.

Chapter 4: Basics of Program Analysis 53

4.2 CONVENTIONS USED IN THIS THESIS

This section outlines some conventions that have been used in this thesis. It

highlights conventions that are somewhat different in meaning to the standard

conventions used in the relevant disciplines. Such differences are sometimes

necessary since concepts from several disciplines are integrated into this research.

The conventions used in FOL specify that all constant symbols, predicate

symbols and function symbols begin with uppercase letters. The knowledge base in

this research does not contain any function symbols. All predicate symbols used

here also begin with uppercase letters. Constants in this research are defined using a

somewhat different notation. When the constants refer to the id of a particular

object, they begin with an uppercase letter. However, when referring to a literal

value, they are surrounded with single quotes and can begin with either an uppercase

or a lowercase letter depending on the usage. For example, the names of variables

are represented using the same case as used to define the variable within the program

code.

In standard FOL, variables begin with lowercase letters. Although many AI

variables used during this research also begin with lowercase letters, there is an

exception. Variables used within the definition of the overall goal (as described in

Section 4.4.2) are defined using all uppercase letters. This is done to eliminate the

need for using existential quantifiers in front of a large number of FOL variables. It

is assumed that FOL variables specified using all uppercase letters are existentially

quantified.

4.3 OUTLINE OF THE BASIC PROGRAM ANALYSIS PROCESS

In this research, concepts in AI are used as a basis for the formal representation

described above. The process of converting a program into this representation and

analysing it for correctness is modelled as a problem in AI. Figure 4.3 is a schematic

representation of how the AI problem is formulated. As described in Section 4.1.1, a

classical AI problem is based on states. In the PHP ITS, these states are represented

by a set of facts. Each fact is a specific instance of a predicate. The initial state is the

set of facts that are valid before the student‟s code is analysed. In situations where

the student is required to write the entire code for an exercise, the initial state is the

empty set. However, the PHP ITS contains some gap exercises. This means that

54 Chapter 4: Basics of Program Analysis 354

part of the program is already provided by the system and corresponding facts exist

before the student‟s program is analysed. These facts form the initial state for the

exercise. The goal state of the exercise is the set of facts that must be matched if the

answer submitted by the student is correct. This set of facts is defined in the overall

goal. The process of setting up the initial state and overall goal using facts in a

simple PHP exercise is described in detail in Section 4.4.

Once the student submits an answer to an exercise, it is first converted into an

Abstract Syntax Tree (AST) to make it easier to analyse. This process is explained

in more detail in Section 4.5.2. The AST is then converted into a set of

corresponding facts. The KB also contains a set of rules and actions that are used to

transition from one state to another. These are activated as and when necessary

while walking the AST. The process of walking the AST and of activating the rules

and actions are described in detail in Section 4.5. This section also describes how the

final state arrived at in this manner is compared against the overall goal to determine

if the student‟s answer is correct.

A common mistake made by students is to include unnecessary code in their

programs. In such cases, the final set of facts contains unnecessary facts that do not

contribute to the overall goal. Before reaching a decision as to whether a student‟s

Exercise Specification

Overall

Goal

Initial

State

Facts

Student’s

Answer

Rules

AST

Actions Unnecessary

Facts

Figure 4.3. Basic program analysis.

Chapter 4: Basics of Program Analysis 55

program is correct, the final state is examined to see if such unnecessary facts are

present. The process of identifying such extra facts is described in detail in Section

4.5.5.

It can be seen that this method of program analysis depends on the facts created

during the AST walking process. As long as the AST depicts the functionality of the

program, the method should be capable of analysing programs no matter what the

original programming language used. Therefore, this method should be extendable

to analyse programs written in other 3GL programming languages. The amount of

work involved would depend on the number of differences between the nodes of the

AST produced by whatever the other language and PHP. This should involve using

appropriate grammars as described in section 4.5.2 although this has not been

investigated during this PhD project.

4.4 KNOWLEDGE BASE STRUCTURE

As described above, the states in the AI problem are represented by a set of

facts. These facts are instantiations of predicates. During this research work I was

successful in defining a suitable set of predicates, rules and actions that can be used

to represent computer programs written in PHP and analyse them for correctness.

This section describes the structure of the predicates used in this KB and how they

are used to describe the initial and goal states of an exercise in the PHP ITS.

4.4.1 Predicates and Rules

The knowledge base of the PHP ITS uses a set of predicates to identify PHP

object types and their relationships. In order to make it easier to understand, these

are shown in the form of an ORM diagram (Section 4.1.2). The entire ORM diagram

that shows all the predicates is very complex and is included in Appendix LAppendix

L. In this chapter, the relevant parts of this diagram are presented with explanations

as to how the different predicates are used in program analysis.

Figure 4.4 shows the key predicates that are used in the analysis of the most

basic PHP statements, mainly display statements and assignment statements. Three

main knowledge base object types used in PHP programs are identified here:

Variables, Literals and Expressions.

 56 Chapter 4 : Basics of Program Analysis

Figure 4.4. ORM diagram of key components of the assignment statement.

Chapter 4 : Basics of Program Analysis 57

A variable is a fundamental concept in most programming languages. All but

the extremely simple computer programs use variables. Therefore, it is an important

object in the analysis of programs. Whenever a new variable is encountered, a new

knowledge base Variable object is created. The system automatically assigns each

new variable a VariableId in order to identify it uniquely. The most common type of

variable is a variable with a symbolic name such as $employee. In this research,

such variables are referred to as SimpleVariables and are modelled as a subtype of

the Variable object.

Although other subtypes of the Variable object are considered in later sections,

only SimpleVariables are considered in this chapter. Each SimpleVariable has a

symbolic name given by the HasName predicate. This name is just the name of a

local PHP variable and ignores any associated class names. Also, PHP variable

names are prefixed with a „$‟ sign. This is not included in the variable name used for

program analysis. For example, the name of the $employee variable mentioned

earlier is stored as „employee‟.

A variable contains a value except in the case when it is null. This value is

represented by the HasValue predicate. The value of a variable may change during

the life time of a program. However, the initial value of the variable sometimes

becomes important. A good example for this is when the output of the program is

dependent on the initial value of the variable. The HasInitialValue predicate is used

to preserve the very first value of the variable for this purpose. It should be noted

that a predicate to define the variable type is not used here. The reason for this is that

PHP is a loosely typed language and therefore, each variable takes the type of the

value it is holding at any given time. The type of the variable can change during the

life cycle of the variable and is not modelled in this knowledge base.

As an example, consider a situation when a variable named $x contains an

initial value of 10. Assume that the unique VariableId assigned to this Variable by

the system is VarId1. Then, based on the above description, the following facts are

created in the system.

HasName(VarId1,'x')

 HasValue(VarId1,10)

 HasInitialValue(VarId1,10)

58 Chapter 4: Basics of Program Analysis 354

Literals are another object type that is often used when writing programs. A

literal is a notation for representing a fixed value. A Literal object is also given a

unique LiteralId by the system. The fixed value of the literal is given by the

HasLitValue predicate.

As an example, consider the literal „5‟. Let the LiteralId assigned to this

Literal by the system be LitId1. Then, the following fact is created in the system.

HasLitValue(LitId1,5)

4.4.1.1 Expressions

Expressions are a key concept used in programming in most programming

languages. They are used extensively in many programming constructs. The right

hand side of an assignment statement is an expression. The comparison statements

used in selection and repetition constructs are expressions. They are used to pass

parameters to functions. A KB that cannot handle expressions would be of very little

use for program analysis. Therefore, the third key concept modelled in Figure 4.4 is

the Expression. Each Expression is again assigned a unique id known as the

ExpressionId by the system.

As described above, expressions have many forms. In order to analyse

programs correctly, it is necessary to categorise the expressions based on their type.

This categorisation is done by dividing the Expression object into subtypes as shown

in Figure 4.5. The following section describes the various subtypes of the

Expression object type.

Variables and Literals are often used as expressions in PHP programs. These

are used as all or part of the right hand side of an assignment statement or as a part of

a conditional expression. A LiteralExpr is created each time a literal is encountered.

The connection between the Literal and the LiteralExpr is established using the

HasLiteral predicate. For example, if the literal described in Section 4.4.1 is used in

an expression with an ExpressionId of ExprId1, the following fact is created.

 HasLiteral(ExprId1,LitId1)

A VariableExpr is created each time a Variable is used where any type of

expression is acceptable. A Variable on the left hand side of an assignment

expression does not result in a VariableExpr being created since an l-value is not an

expression. A VariableExpr is connected to the corresponding Variable through the

Chapter 4: Basics of Program Analysis 59

HasVariable predicate. For example, if the variable described in Section 4.4.1 is

used in an expression with an ExpressionId of ExprId2, the following fact is created.

 HasVariable(ExprId2,VarId1)

It is important to note that several VariableExprs can refer to the same

Variable as the same variable can be used in many expressions. Similarly, several

LiteralExprs can refer to the same Literal as the same literal value can be used in

many expressions. Both LiteralExprs and VariableExprs are modelled as a subtype

of a special type of expression known as a SimpleExpression.

The right hand side of assignment statements often contain some form of

calculation resulting in a value. Such calculations are also used in other types of

programming statements. These calculations are modelled as a subtype of

Expression known as a CalculateExpression.

CalculateExpressions are actually a combination of one or two other

expressions. For example, consider the expression $x+5. This is actually an

addition expression (AddExpr) which has two other expressions, $x and 5 on either

side of the addition operation. The expression on the left hand side is the

VariableExpr described above, and the expression on the right hand side is the

LiteralExpr described above. The AddExpr expression subtype is actually a

predicate with one or two expression subtypes as its arguments. This predicate is

reified as the Expression object type. Considering the above example, let the

ExpressionId of the AddExpr be ExprId3. Then, using the expressions described

previously, the reified expression is represented as below.

HasId(AddExpr(ExprId2,ExprId1),ExprId3)

Similarly, all other CalculateExpression subtypes are also predicates with one

or two other expression subtypes as arguments. If more than two expressions are

connected, they are broken into groups of two where the sub expressions are again

broken down into more sub expressions. The subtypes of the CalculateExpression

that have been implemented in the PHP ITS are shown in Figure 4.5. It can be seen

that this includes the normal mathematical expressions of AddExpr, SubtractExpr,

MultiplyExpr, DivideExpr and ModulusExpr. Although other types of mathematical

expressions are not implemented here, the same theory can be utilised in many cases

such as integer division, absolute value, factorial etc. The number of sub expressions

60 Chapter 4: Basics of Program Analysis 354

may vary but the general format remains the same. In addition to mathematical

expressions, the ConcatenateExpr and the DoubleStringExpr are also modelled as a

CalculateExpr. This is necessary to deal with PHP strings. In PHP, double quoted

string may contain variables within them. In such cases the variables need to be

replaced with their relevant values to obtain the value of the expression. Since this

can also be considered a form of calculation, such expressions are modelled as a

subtype of CalculateExpression.

Comparison statements that return a Boolean value are another common type

of expression used in computer programming. Such statements are modelled as a

subtype of an Expression known as a BooleanExpression. As with

CalculateExpressions, BooleanExpressions are also a combination of sub

expressions. The not expression (NotExpr) contains only one sub expression while

the others are made up of two sub expressions. The most common types of

BooleanExpressions are comparison expressions such as GreaterThanExpr,

GreaterThanOrEqualExpr, LessThanExpr, LessThanOrEqualExpr, EqualToExpr

and NotEqualExpr. These are then combined with Boolean operators to form not

(NotExpr), and (AndExpr) and or (OrExpr) Expressions. All these are modelled as

subtypes of the BooleanExpression and are shown in Figure 4.6.

Whatever the type of expression, it always has a value represented by the

ValueOf predicate. Very often, this value is calculated using a set of rules in the

knowledge base. The rules operate in an iterative manner to calculate the value of

expressions that contain other sub expressions.

The rules used to calculate the value of the common expression subtypes are

shown in Figure 4.8. In order to understand how they work, consider the PHP

expression $x+5 where $x already contains the value 10. The facts resulting from

this PHP code are explained above. Figure 4.7 shows the list of these facts.

Next, the rules defined in Figure 4.8 are invoked to find the value of the

expression. First, the value of the variable expression is found. This is done using

the second rule.

Chapter 4 : Basics of Program Analysis 61

Figure 4.5. ORM diagram of expression subtypes of simple and calculate expressions.

62 Chapter 4 : Basics of Program Analysis

Figure 4.6. ORM diagram of Boolean expression subtypes.

Chapter 4 : Basics of Program Analysis 63

The result of applying this rule to the currently existing predicates is shown

below.

ValueOf(ExprId2,10)

← HasVariable(ExprId2,VarId1) ∧ HasValue(VarId1,10)

Similarly, the first rule in Figure 4.8 is used to calculate the value of the literal

expression.

ValueOf(ExprId3,5)

← HasLiteral(ExprId1,LitId1) ∧ HasLitValue(LitId1,5)

Finally, the third rule in Figure 4.8 is used to calculate the value of the entire

expression. In this case, the Add(x,y,z) predicate is a predicate that returns true if the

sum of x and y result in z. So the value of the addition expression is as below.

ValueOf(AddExpr(ExprId2,ExprId1),15)

← ValueOf(ExprId2,10) ∧ ValueOf(ExprId1,5) ∧ Add(10,5,15)

A similar method is used to calculate the value of all other expression subtypes.

HasName(VarId1,'x')

HasValue(VarId1,10)

HasInitialValue(VarId1,10)

HasLitValue(LitId1,5)

HasLiteral(ExprId1,LitId1)

HasVariable(ExprId2,VarId1)

HasId(AddExpr(ExprId2,ExprId1),ExprId3)

Figure 4.7. Predicates relevant to addition expression.

64 Chapter 4 : Basics of Program Analysis

ValueOf(literalExpr,v) ←HasLiteral(literalExpr,literalId) ∧ HasLitValue(literalId,v)

ValueOf(variableExpr,v) ←HasVariable(variableExpr,VarId) ∧ HasValue(varId,v)

ValueOf(AddExpr(exprIda,exprIdb),v)

← ValueOf(exprIda,va) ∧ ValueOf(exprIdb,vb) ∧ Add(va,vb,v)

ValueOf(SubtractExpr(exprIda,exprIdb),v)

← ValueOf(exprIda,va) ∧ ValueOf(exprIdb,vb) ∧ Subtract(va,vb,v)

ValueOf(MultiplyExpr(exprIda,exprIdb),v)

← ValueOf(exprIda,va) ∧ ValueOf(exprIdb,vb) ∧ Multiply(va,vb,v)

ValueOf(DivideExpr(exprIda,exprIdb),v)
← ValueOf(exprIda,va) ∧ ValueOf(exprIdb,vb) ∧ Divide(va,vb,v)

ValueOf(ConcatenateExpr(exprIda,exprIdb),v)

← ValueOf(exprIda,va) ∧ ValueOf(exprIdb,vb) ∧ Concatenate(va,vb,v)

ValueOf(GreaterExpr(exprIda,exprIdb),v)

← ValueOf(exprIda,va) ∧ ValueOf(exprIdb,vb) ∧ Greater(va,vb,v)

ValueOf(GreaterEqualExpr(exprIda,exprIdb),v)

← ValueOf(exprIda,va) ∧ ValueOf(exprIdb,vb) ∧ GreaterEqual(va,vb,v)

ValueOf(LessExpr(exprIda,exprIdb),v)

← ValueOf(exprIda,va) ∧ ValueOf(exprIdb,vb) ∧ Less(va,vb,v)

ValueOf(LessEqualExpr(exprIda,exprIdb),v)

← ValueOf(exprIda,va) ∧ ValueOf(exprIdb,vb) ∧ LessEqual(va,vb,v)

ValueOf(EqualExpr(exprIda,exprIdb),v)
← ValueOf(exprIda,va) ∧ ValueOf(exprIdb,vb) ∧ Equal(va,vb,v)

ValueOf(NotEqualExpr(exprIda,exprIdb),v)

← ValueOf(exprIda,va) ∧ ValueOf(exprIdb,vb) ∧ NotEqual(va,vb,v)

ValueOf(NotExpr(exprIda),v) ← ValueOf(exprIda,va) ∧ Not(va,v)

ValueOf(AndExpr(exprIda,exprIdb),v)

← ValueOf(exprIda,va) ∧ ValueOf(exprIdb,vb) ∧ And(va,vb,v)

ValueOf(OrExpr(exprIda,exprIdb),v)
← ValueOf(exprIda,va) ∧ ValueOf(exprIdb,vb) ∧ Or(va,vb,v)

ValueOf(DoubleStringExpr(exprIda,exprIdb),v)

← ValueOf(exprIda,va) ∧ ValueOf(exprIdb,vb) ∧ Concatenate(va,vb,v)

Figure 4.8. Rules for calculating the ValueOf expressions.

Chapter 4 : Basics of Program Analysis 65

4.4.2 Exercise Specification

The main function of the domain module of the PHP ITS is to analyse

programs. In order to identify whether a program is correct or not, it is first

necessary to know what the program is required to do. This is defined in the exercise

specification.

The exercise specification contains a description of what needs to be done.

Additionally, it contains a goal state or overall goal that needs to be achieved for the

program to be considered correct. In order to understand how the overall goal is

specified, consider an exercise where the value of the variable $x needs to be set to

10. This means that the execution of the answer to this exercise should result in a

variable containing the value 10. In terms of the predicates described in Section

4.4.1, this is equivalent to a fact of the form HasValue(VARID,10). This component

of the overall goal that is a direct result of execution of the program code is known as

the „goal‟.

However, matching the final state against the goal does not necessarily mean

that the program code is correct. Sometimes, certain other aspects of the program

such as the structure of the program need to be of the form given in the description

for the program to be considered correct. Such structural constraints are specified in

the component of the overall goal known as „constraints‟. In this case, the name of

the variable where the required value is stored should be x. In terms of predicate

logic, this constraint is represented as HasName(VARID,'x'). So the overall goal of

the exercise, containing both the execution goal and the constraints can be given as

shown below.

Goal : HasValue(VARID,10)

Constraints : HasName(VARID,'x')

Note that the ids in the overall goal are given in uppercase. All components of

facts given in uppercase represent existentially quantified first order variables. This

convention has been assumed throughout this thesis to avoid the repeated use of

existential quantifiers in the overall goal with the intention that this notation would

be easier to understand. First order variables are especially necessary when

specifying goals and constraints since the actual ids that are created by the ITS can

take any value.

66 Chapter 4 : Basics of Program Analysis

In addition to a goal state, the exercise specification may also contain the initial

state of the program. This becomes necessary when the exercise is a gap exercise as

explained in the introduction to this section.

4.4.3 Actions

As explained in the introduction to this section, a change of program state

needs to be modelled in order to go from the initial state to the final state. AI actions

are used to model such changes. In this chapter, actions are used to model two main

program statements: assignment and display of elements on a web page.

In PHP, displaying elements in a web page is mainly achieved through the

„echo‟ and „print‟ statements which are basically synonymous except for the fact that

„print‟ behaves as if it returns a value. This difference is immaterial to the basic PHP

taught using the PHP ITS. Therefore, the Display action is executed each time an

„echo‟ or „print‟ statement is encountered in the program. The Planning Domain

Definition Language (PDDL) description of the Display action is shown in Figure

4.9. The resultant predicate is OnPage, which takes two arguments: a value and a

running counter. The value is the value of whatever expression forms the argument

for the „echo‟ or „print‟ statement. It is necessary to model this as an expression

since the argument does not necessarily have to be a literal string. It can be any form

of expression. The running counter is necessary during goal checking to ensure that

whatever is necessary is displayed on the web page in correct order. It starts at one

and is incremented by one each time a new OnPage predicate is created. This

ensures that there is a record of the order in which the statements are displayed on

the web page and is used in the final goal to ensure that the required output is

obtained.

Action(Display(expressionId),
PRECOND: value,rC,x
 (ValueOf(expressionId,value))
 ∧ HasValue(rC,x))
EFFECT: OnPage(value,x)
 ∧ Add(x,1,y)
 ∧ HasValue(rC,x) ← HasValue(rC,y))

Figure 4.9. Display action.

Chapter 4 : Basics of Program Analysis 67

A PHP program can also have HTML statements. HTML statements are either

tags or text. Any text in HTML is displayed on the web page in the same manner as

PHP „echo‟ statements. Therefore, HTML text statements are also handled using the

Display action.

The second type of action used in the knowledge base models each assignment

statement. The basic form of the assign action is shown in Figure 4.10. In this case,

the first argument is the variable on the left hand side of the assignment statement

and the second argument is the id of the expression on the right hand side of the

assignment statement. The effect of this action is based upon whether or not a

variable with the given name already exists. If it does, its value is updated to the

value of the expression on the right hand side. If not, a new variable is generated,

assigned a name and the value of the expression.

PHP also allows assignments using combined operators such as +=, -=, *=, /=

and %=. In this case, the right hand side expression is incomplete by itself and needs

to be combined with the variable on the left hand side. The += operator is

considered here to explain how these statements are modelled.

The detailed action schema used to model the combined add assignment

statement is shown in Figure 4.11. Here, the original value of the variable x is added

to the value of the expression before assigning the new value to the variable x. A

careful comparison of Figure 4.10 and Figure 4.11 shows that the combined

assignment action is actually a specialised case of the normal add action. Therefore,

the combined action is modelled as a subtype of the main add action. This version of

the action where it is modelled as a subtype is show in Figure 4.12. In this case,

since the AssignAdd action is a subtype of the Assign action, only the facts that are

different from the Assign action are shown in the action specification.

The same method is used to model the AssignSubtract, AssignMultiply,

AssignDivide and AssignModulus actions. These actions are given in Appendix C.

68 Chapter 4 : Basics of Program Analysis

4.5 PROGRAM ANALYSIS

This section describes how the predicates, rules and actions described in

Section 4.4 are used to decide whether a PHP program is correct according to the

specifications. It goes into more detail of how the predicates, rules and actions map

to the program analysis as an AI problem as shown in Figure 4.3. The initial state in

Action(Assign(x,expressionId),
PRECOND: value ValueOf(expressionId,value)
EFFECT: When variableId (HasName(variableId,'x'):
 HasValue(variableId,_) ← HasValue(variableId,value)
 ∧ when ¬ variableId(HasName(variableId,'x'):
 Generate(newVariableId)
 HasName(newVariableId,'x')
 HasValue(newVariableId,value)
 HasInitialValue(newVariableId,value))

Figure 4.10. Assign action.

Action(AssignAdd(x,expressionId),
PRECOND: value ValueOf(expressionId,value)
EFFECT: When variableId (HasName(variableId,'x')
 ∧ HasValue(variableId,value2) ∧ Add(value2,value,value1)):

HasValue(variableId, value2) ← HasValue(variableId,value1)
 ∧ when ¬ variableId(HasName(variableId,'x')

∧ HasValue(variableId,value2) ∧ Add(value2,value,value1)):
 Generate(newVariableId)

 HasName(newVariableId,'x')
 HasValue(newVariableId,value)
 HasInitialValue(newVariableId,value))

Figure 4.11. Detailed version of AssignAdd action.

AssignAdd(x,expressionId) ⊂ Assign(x,expressionId)

Action(AssignAdd(x,expressionId),
PRECOND:
EFFECT: When variableId (HasName(variableId,'x')

HasValue(variableId,value2) ∧ Add(value2,value,value1)):
 HasValue(variableId, value2) ← HasValue(variableId,value1))

Figure 4.12. Subtype version of AssignAdd action.

Chapter 4 : Basics of Program Analysis 69

this case is a set of facts which are created in the system at the start of program

analysis. The goal state is the final goal describe in Section 4.4.2.

In order to analyse the student‟s solution, it is first converted into an Abstract

Syntax Tree (AST). This AST is then walked through, node by node, creating facts

that are appropriate for each node. When the preconditions for a rule become true,

this is activated to create more facts. When the AST indicates that an action needs to

be performed and the preconditions of the action are satisfied, the relevant action

comes into effect, creating the facts that are specified in the effects of the action.

Once the walking of the AST is completed, the resulting facts represent the final

state. This final state is then compared against the overall goal. If all the facts in the

overall goal are present in the final state the overall goal is met. However, it is

possible that the program contains program statements that do not contribute towards

the final goal. The analysis process next checks to ensure that all program statements

are necessary to ensure that the overall goal is satisfied. If so, the program is

considered correct.

In order to study this process in more detail, consider the example PHP

exercise described in Figure 4.1. For the purpose of the analysis, assume that the

student‟s solution to this exercise is Program a in Table 4.1.

4.5.1 Initial State

In the given example, the variable $y contains a value at the beginning of the

program. This means that this exercise contains an initial state as described in

Section 4.4.2. The initial state in this case is specified in Figure 4.13. This uses the

predicates described above to specify that a variable named y already exists in the

system and contains a value of val_y. This symbolic value is used since no specific

value has been given in the description. Using a symbolic value ensures that the

final goal is valid, no matter what the actual value contained in the variable at this

point is.

HasName(VARID1,'y')
∧ HasValue(VARID1,val_y)
∧ HasInitialValue(VARID1,val_y)

Figure 4.13. Initial state for example program.

70 Chapter 4 : Basics of Program Analysis

The first step during program analysis is to create the initial state in the system.

When this is done, the variable symbols (denoted by the upper case letters as

described in Section 4.4.2) are replaced with actual ids. Let the id of the variable

created at this point be VarId1. Then, the list of facts after creating the initial state is

as below.

 HasName(VarId1,’y’)

 HasValue(VarId1,val_y)

 HasInitialValue(VarId1,val_y)

4.5.2 Abstract Syntax Tree

In order to analyse the solution to the exercise, it is necessary to create a list of

corresponding predicates. The first step in this process is to convert the written PHP

program code into an Abstract Syntax Tree (AST). A major barrier to convert a PHP

program into an AST is that the PHP language allows PHP and HTML code to be

embedded within each other. This means that a single grammar cannot be used to

convert the entire code to as AST. The solution to this problem is to use two island

grammars (Section 4.1.3), one for HTML and one for PHP.

The outermost part of any web page written in PHP can be thought to be

HTML. Even if the coding starts with PHP, the <HTML> tag is implicitly present in

the outermost level of the web page. This feature of HTML which allows some tags

to be present even if they are not explicitly written down is another major challenge

when converting a PHP program to an AST. Several other problems are encountered

when dealing with HTML code. Although most HTML tags have a beginning and

ending tag, some tags do not have or do not require ending tags. Others allow self-

closing (eg:-
). HTML tags can be written in both lower and upper case forms

without any error in the program. All these issues make it very difficult to write

grammars that are capable of converting programs written in PHP into ASTs.

Keeping all these in mind, an HTML grammar to handle all the tags that are

used in the PHP ITS was developed (Appendix D). This grammar also considers

attributes that are pertinent to the ITS. When a beginning PHP tag (<?php) is

encountered in the input, the grammar automatically transfers control to the PHP

grammar. The PHP grammar used in the system has not been developed during the

course of this research project. It is a grammar that is freely available on the web

Chapter 4 : Basics of Program Analysis 71

(Kuruvila, 2009). However, minor modifications have been done to handle the

return to the HTML grammar when an end PHP tag (?>) is encountered and to

eliminate some PHP constructs which are not included in the PHP ITS (Appendix B).

To analyse Program a in Table 4.1, it is converted into an AST using the two

grammars described above. This program uses HTML to write the string

„Welcome!‟ onto the web page while using PHP to perform the other operations.

This exemplifies the fact that a PHP program is an integration of both HTML and

PHP code.

The resulting AST is shown in Figure 4.14. The top part of the figure shows

the graphical representation of the AST. This is a hierarchical representation. The

bottom part shows a more concise, textual representation of the AST. This becomes

useful for very large ASTs that would otherwise occupy a large space. In this form,

each opening and closing bracket pair show a node of the AST. The first item within

the bracket is the root while the rest are child nodes. Hierarchy is shown using

nested brackets.

The top two nodes of all ASTs created using these two grammars are

„DOCUMENT‟ and „BODY‟. This does not change based on whether the actual

code contains the <html> and <body> tags or not. If the code contains a <head> tag,

a „HEAD‟ node is created, parallel with the „BODY‟ node. These are created using

the HTML grammar described above. When an open PHP code is encountered,

control is passed to the PHP grammar. This results in an AST with a root node of

„PHP‟. Therefore, the light section of the AST in Figure 4.14 is created using the

HTML grammar and the dark section is created using the PHP grammar.

This mechanism allows handling PHP code that is embedded within HTML.

However, it is also common for HTML code to be embedded within PHP. This is

usually achieved by writing the HTML code within PHP echo statements. In such

situations, it is sometimes necessary to know the result of certain PHP operations

before it is possible to convert the HTML to an AST. For example, if the HTML

code refers to a value contained in a PHP variable, this value needs to be known

before the HTML code can be converted to the relevant AST. Therefore, it is not

possible to achieve this during the first conversion. Any HTML code embedded

within PHP is treated as simple echo statements at this point.

72 Chapter 4 : Basics of Program Analysis

Although this mechanism makes it possible to handle the change of code

between HTML and PHP, there are certain situations which it cannot handle. If PHP

code is embedded within HTML attribute lists, the grammars given here or the

mechanisms described in subsequent sections are incapable of handling this.

If the program contains any syntax errors, the grammars generate errors during

the AST creation process. It is possible to identify at which line and token the error

occurred. However, the grammar files sometimes return incorrect positions, mainly

when it cannot match a token or even guess which token the program is attempting to

match. Therefore, the error position returned by the grammar is not always accurate.

Figure 4.14. AST for example program.

DOCUMENT

BODY

=

PHP

echo

$

x

+

$ 3

$

x

TEXT

Welcome!

y

(DOCUMENT (BODY (TEXT Welcome!) (PHP (= ($ x) (+ ($ y) 3)) (echo ($ x)))))

Chapter 4 : Basics of Program Analysis 73

If the AST creation process returns an error, the program is identified to have

syntax errors. The rest of the analysis process can only continue in a program free

from syntax errors.

4.5.3 Walking the AST

Once the program is converted to an AST, it is easy to walk through it node by

node. Each node is then analysed and converted to the relevant facts. The tree

walking happens from top to bottom, left to right.

The first two nodes encountered are „DOCUMENT‟ and „BODY‟. These are

nodes are just used to add structure to the AST and no predicates are created as a

result. The next node is a „TEXT‟ node which specifies that a Display action occurs.

This action operates on an expression. Therefore, an expression is created for the

actual text. Since the actual text is a literal in this case a literal is created. As

described in Section 4.4.1.1, a literal always works in conjunction with a literal

expression. Therefore, a literal expression is also created at this point. Let the id of

the generated literal be LitId1 and the id of the expression be LitExprId1. Then, the

following facts are created as described in Section 4.4.1.1.

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,'Welcome!')

Next, the value of this literal expression is found using the relevant rule as

described in Section 4.4.1.1.

ValueOf(LitExprId1,'Welcome!')

←HasLiteral(LitExprId1,LitId1) ∧ HasLitValue(LitId1,'Welcome!')

 Now, the precondition for the Display action is met (Section 4.4.3) since a

ValueOf fact is present for the expression that is the argument of the Display action.

Therefore, the action is invoked resulting in creating a new fact equal to its effect.

The second argument of the created OnPage fact is 1 since no other OnPage facts

exist in the current state.

 OnPage('Welcome!',1)

The next node analysed is „PHP‟ which has no effect on the state. Next, the „=‟

node is analysed. This results in invoking the Assign action. The first argument of

this action is the name of the variable to which a value is assigned. This is found by

74 Chapter 4 : Basics of Program Analysis

following the AST along the left hand child of the „=‟ node. The variable name is

found as the child node of the „$‟ node, in this case x. The second argument of the

action is an expression id for the right hand side of the assignment statement. This

means that an expression is created for the right hand branch of the „=‟ node. In this

case, this is a „+‟ node signifying that an add expression is created. Let the id of this

add expression be ExprId1 and the ids of the left and right hand sub expressions of

the add expression be ExprId2 and ExprId3 respectively. The child node of the left

hand expression is a „$‟ indicating that the left hand expression, or the one

corresponding to ExprId2 is a variable expression. The child node of the „$‟ node

indicates that the actual variable used in the expression is y. Considering the facts

that have already been created, it can be seen that the id of the variable y is VarId1 so

this is the variable that is connected to the variable expression. ExprId3 corresponds

to a literal expression, resulting in the creation of a literal with LitId3. The set of

resultant facts is given below.

 HasId(AddExpr(ExprId2,ExprId3),ExprId1)

 HasVariable(ExprId2,VarId1)

 HasLiteral(ExprId3,LitId3)

 HasLitValue(LitId3,3)

Now, the rules are invoked to calculate the value of all the expressions as

described in Section 4.4.1.1. This results in the following facts being created in the

system.

 ValueOf(ExprId2,val_y)

 ValueOf(ExprId3,3)

 ValueOf(ExprId1,value1) where Add(val_y,3,value1)

Now, the preconditions for the Assign action given in Section 4.4.3 are met.

Therefore, this action is invoked. The effect of the Assign action is dependent on

whether or not a variable with the name of the first argument exists. In terms of

predicates, this means that it depends on whether or not the fact

HasName(VariableId,'x') exists for some value of VariableId. Considering the

current state, no such variable exists, so the second part of the effect of the Assign

Chapter 4 : Basics of Program Analysis 75

action is invoked resulting in the generation of a variable. Let the id of this

generated variable be VarId2. Then, the following facts are created.

 HasName(VarId2,'x')

HasValue(VarId2,value1)

HasInitialValue(VarId2,value1)

The next node during the walking of the AST is the „echo‟ node. This again

results in a Display action with an expression. In this case, since the child node of

the „echo‟ node is a „$‟ node, the expression is a variable expression and the variable

corresponding to the expression is x. Let the id of the created variable expression be

VarExprId1. Then, the following fact is created.

 HasVariable(VarExprId1,VarId2)

Next, the rule to calculate the value of the variable expression is invoked as

below.

ValueOf(VarExprId1,value1)

← HasVariable(VarExprId1,VarId2) ∧ HasValue(VarId2,value1)

So the Display action is now be invoked, resulting in the following fact.

 OnPage(value1,2)

Based on this analysis, the final list of facts or the final state is shown in

Figure 4.15.

4.5.4 Goal Checking

The final step in the program analysis process is goal checking. Based on the

requirements of the exercise given in Figure 4.1, the overall goal can be specified as

shown in Figure 4.16. It should be noted that this goal should be read in conjunction

with the initial state specification in Figure 4.13. Common values in both

specifications refer to the same value. The specification (j>i) specifies the required

ordering of the output. This says that the value stored in the variable x should be

displayed after the „Welcome!‟ message. The overall goal also contains a constraint

in this instance. This is to specify the requirement that the name of the variable to

which the result of the calculation is assigned is x.

76 Chapter 4 : Basics of Program Analysis

When comparing the final state in Figure 4.15 against this overall goal

specification, it can be seen that all facts in the overall goal are present in the final

state when VALUE1=‟value1‟, VARID2=VarId2, i=1 and j=2. The constraint is also

HasName(VarId1,'y')

HasValue(VarId1,val_y)

HasInitialValue(VarId1,val_y)

OnPage('Welcome!',1)

HasId(AddExpr(ExprId2,ExprId3),ExprId1)

HasVariable(ExprId2,VarId1)

HasLiteral(ExprId3,LitId3)

HasLitValue(ExprId3,3)

ValueOf(ExprId2,val_y)

ValueOf(ExprId3,3)

ValueOf(ExprId1,value1) where Add(val_y,3,value1)

HasName(VarId2,x)

HasValue(VarId2,value1)

HasInitialValue(VarId2,value1)

HasVariable(VarExprId1,VarId2)

ValueOf(VarExprId1,value1)

OnPage(value1,2)

Figure 4.15. Final state of example program.

 Goal : OnPage('Welcome!',i)
 ∧ Add(val_y,3,VALUE1)
 ∧ HasValue(VARID2,VALUE1)

∧ OnPage(VALUE1,j)
∧ (j>i)

Constraints : HasName(VARID2,x)

Figure 4.16. Overall goal of example exercise.

Chapter 4 : Basics of Program Analysis 77

satisfied for this set of values and therefore, the program conforms to the

specifications.

4.5.5 Checking for Unnecessary Program Statements

A common mistake made by many students is to include unnecessary program

statements that are not necessary for the program to conform to the specification.

Consider the example exercise in Figure 4.1. Figure 4.17 shows an example

program with an unnecessary echo statement to display the string “The value of x is

:”. This is not a requirement specified in the exercise specification. Although this

may make the output more attractive, some such statements may actually make the

execution of the program code inefficient. Therefore, it is unadvisable to include

such unnecessary statements in program code. The system is capable of identifying

such extra statements and indicating this as an error.

 Such statements are identified in this analysis by maintaining a series of status

transitions. A new status is created, each time a PHP program statement that results

in a significant outcome is encountered. In the basic programs considered in this

chapter, a new status is created each time an „echo‟ statement or an assignment

statement is reached during analysis. An association is then created between all facts

that are newly created and the current status.

When the facts created in one status are utilised to create a new fact in another

status, a link is created between the related statuses. When a rule is activated, the

statuses associated with the facts that make up the premise of the rule are linked to

the current status. When an assignment state is encountered, any previous statuses

are linked with facts encountered when finding the value of the right hand side

expression of the assignment statement are linked to the current status. Also, if the

variable on the left hand side of the assignment expression was created in a previous

Welcome!
<?php
$x=$y+3;
echo("The value of x
is : ");
echo($x);
?>

Figure 4.17. A program with unnecessary statements.

78 Chapter 4 : Basics of Program Analysis

status, that status is linked to the current status. In the case of an „echo‟ statement,

any fact linked to finding the value of the expression being echoed is used to link

previous statuses to the current status.

For example, consider Program a in Table 4.1. At the beginning of the

analysis, a new status (known here as Status 0) is created. The facts related to the

initial state, as described in Section 4.5.1, are associated with this state. Next, a new

status (known here as Status 1) is created as soon as the assignment expression is

encountered. Any new facts created as a result of the assignment expression are

linked to Status 1.

Next consider rules used to find the value of the expression on the right hand

side of the assignment statement as described in Section 4.4.1.1. A summary of

these rules is show in Figure 4.18. When considering the first rule, the first premise

was created in the current status so there is no need to link a previous status to the

current status. However, the second premise was created as a result of the initial

state and is therefore associated with Status 0. This results in a link been created

between Status 1, which is the current status, and Status 0. Since all the premises of

the other rules are created during the analysis of the assignment statement, they do

not result in more links between statuses.

The next step in the analysis process is to create facts relevant to the echo

statement. As described above, this results in the creation of a new status, known

here as Status 2. The analysis of the echo statement results in the activation of the

rule in Figure 4.19 as described in Section 4.5.3. The second premise of this rule is a

ValueOf(ExprId2,10)

← HasVariable(ExprId2,VarId1) ∧ HasValue(VarId1,10)

ValueOf(ExprId3,5)

← HasLiteral(ExprId1,LitId1) ∧ HasLitValue(LitId1,5)

ValueOf(AddExpr(ExprId2,ExprId1),15)

← ValueOf(ExprId2,10) ∧ ValueOf(ExprId1,5) ∧ Add(10,5,15)

Figure 4.18. Rules used to calculate the ValueOf the right-hand expression.

Chapter 4 : Basics of Program Analysis 79

result of the assignment expression and therefore is associated with Status 1. This

results in a link being created between the current status (Status 2) and Status 1.

So the final flow of statuses resulting from the example program is as shown in

Figure 4.20. This shows that a path exists from all existing statuses to the status in

which the overall goal is satisfied (Status 2), indicating that all the statuses contribute

to the final goal. In such cases, the program is identified as not having any

unnecessary program statements.

Next consider the similar status flow model for the PHP program shown in

Figure 4.17. This model is shown in Figure 4.21. The ValueOf the expression in the

unnecessary echo statement depend on any previous statuses since it is an

independent literal expression. This echo statement does not contribute to the

satisfaction of the overall goal and is therefore not associated with Status 3, which is

where the overall goal is satisfied. This means that Status 2 is unnecessary to

achieving the overall goal of the program. Therefore, the program is identified as

incorrect and the program statement leading to Status 2 is identified as an

unnecessary program statement.

A similar status flow model is created during the walking of the AST for any

program as described in Section 4.5.3. Once the overall goal is satisfied, this model

is inspected to ensure that every status has a link, either direct or indirect, to the

status in which the overall goal is satisfied. If this is the case, the program is

identified as correct. If any statuses that do not link to the status where the overall

Status 1

$x=$y+3

Status 2

echo($x) Initial State

Status 0

Figure 4.20. Status flow for example program.

ValueOf(VarExprId1,'value1')

←HasVariable(VarExprId1,VarId2) ∧ HasValue(VarId2,'value1')

Figure 4.19. Rule used to find the ValueOf the echoed expression.

80 Chapter 4 : Basics of Program Analysis

goal is satisfied are encountered, the program statements that resulted in these

statuses are identified as unnecessary and the program is taken to be incorrect.

The strength in this method of program analysis lies in the fact that it can

accept many alternative solutions to the given exercise. As long as the facts defined

in the goal are present in the final state, any program will be accepted as correct, no

matter what actual statements were used. For example, if the „Welcome!‟ line was

written using an echo statement in PHP instead of as an HTML text as in Program b

in Table 4.1, the OnPage('Welcome!',1) fact would still exist. Similarly, if the

assignment statement was something of the form $x=$y+1+2 as in Program c in

Table 4.1, the necessary facts would still exist.

4.6 SPECIAL SITUATIONS

The preceding section described how a simple program is analysed using the

knowledge base in the PHP ITS. However, there are certain situations where the

analysis of even simple PHP programs becomes more complicated. This section

describes uses of PHP that need to be handled in special ways.

4.6.1 Multiple OnPage Predicates

Data on a web page can be displayed using either HTML statements or PHP

„echo‟ and „print‟ statements. These statements can take argument strings of varying

length. Therefore, a single string can be displayed on a web page using many

Status 1

$x=$y+3

Status 3

echo($x) Initial State

Status 0

Status 2

echo(“The value of x is:”)

Figure 4.21. Status flow for example program with unnecessary statements.

Chapter 4 : Basics of Program Analysis 81

combinations of statements. Table 4.2 shows two methods that can be used to

display the string “Hello World” on a PHP web page.

Table 4.2

Different Methods of Displaying “Hello World” on a PHP Web Page

Program a Program b

<?php
echo("Hello
World");
?>

<?php
echo("Hello");
echo(" World");
?>

If these two programs are converted to facts as described in Section 4.5, the

first program results in a single fact OnPage('Hello World',1) while the second

program results in two facts OnPage('Hello',1) and OnPage(' World',2). If the

objective is to display the string “Hello World” on a web page, both these programs

are correct. When specifying the overall goal, it is not possible to enumerate all the

possible combinations of facts. In this case, the overall goal is specified as

OnPage('Hello World',x). Therefore, when matching the final state against the

overall goal, the second program is identified as incorrect.

The knowledge base handles this problem by using a special method to check

for OnPage predicates included in the overall goal. First, it checks to see whether

the exact string specified in the goal is present in any OnPage facts in the system. If

so, the goal is taken to be satisfied. If this is not the case, It concatenates the OnPage

predicates in order of their second argument to see whether the string given in the

goal can be obtained. If this can be achieved, the goal is taken to be satisfied. If not,

the program is identified as incorrect.

When the overall goal is achieved by the concatenation of the first arguments

in several OnPage facts, the statuses associated with each of these predicates

contribute to achieving the overall goal. Therefore, links are created between the

current status (where the overall goal is being checked) and the statuses associated

with the contributing OnPage facts. This ensures that the new statuses created by the

corresponding echo statements are taken to contribute to the overall goal and are not

considered unnecessary.

82 Chapter 4 : Basics of Program Analysis

4.6.2 Pre and Post Increment and Decrement Operators

Pre and post increment and decrement operators are used very often in PHP

programs. Variables qualified with a pre or post increment or decrement operator

can be used as two types of PHP constructs: either as expressions or as complete

statements.

When applied to the right hand side of an assignment statement or within an

„echo‟ statement, they behave as other types of expressions. Therefore, they are

modelled as a subtype of a calculate expression. The PrePostFixExpr in Figure 4.5

is used to model this behaviour of pre and post increment and decrement operators.

In this case, the expression is not a combination of other expressions but is connected

to a variable using the HasPrePostVariable predicate, and a fix type using the

HasFixType predicate. The FixType can take the values INCREMENT or

DECREMENT. PrePostFixExpr is divided into two further subtypes, PreFixExpr

and PostFixExpr. The relevant ORM diagram is shown in Figure 4.22.

Figure 4.22. ORM diagram for pre and post fix expressions.

The value of the expression is calculated in a similar manner to other

expressions. The fix type is unimportant to calculate the value of any prefix

expression since the value of the expression is the value of the variable after the

operation. However, the fix type plays an important role in the calculation of the

value of a post fix expression since the expression value is the value of the

expression before performing the necessary operation on the variable. The rules to

calculate these values are given in Figure 4.23.

Chapter 4 : Basics of Program Analysis 83

As mentioned previously, a pre or post increment or decrement statement can

also behave as a statement of its own. In such cases, and even in the case where it

behaves as an expression, it also changes the value of the corresponding variable. In

other words, the associated variable is associated a new value based on the operator

used. This is similar to an assignment statement with the variable on the left hand

side and the variable plus or minus one on the right hand side. This is modelled

using the same principle as the assignment statement. Each time a pre or post

increment or decrement operator is encountered the AST is modified to correspond

to the relevant assignment statement. The AST created by the pre or post increment

statement and the corresponding modified AST is shown in Table 4.3.

This AST is then used in the walking process, thereby ensuring that the value

of the variable is changed appropriately.

Table 4.3

Modified ASTs for Pre and Post Increment and Decrement

Operation Original AST Modified AST

Post Increment (Postfix ++ ($ i)) (= ($ i) (+ ($ i) 1))

Post Decrement (Postfix -- ($ i)) (= ($ i) (- ($ i) 1))

Pre Increment (Prefix ++ ($ i)) (= ($ i) (+ ($ i) 1))

Pre Decrement (Prefix -- ($ i)) (= ($ i) (- ($ i) 1))

Figure 4.23. Rules for calculating the ValueOf pre and post fix expressions.

ValueOf(preExprId,v) ← HasPrePostVariable(preExprId,varId)
 ∧ HasValue(varId,v)

ValueOf(postExprId,v) ← HasPrePostVariable(postExprId,varId)
 ∧ HasFixType(postExprId,'INCREMENT')
 ∧ HasValue(varId,val1)
 ∧ Subtract(val1,1,v)

ValueOf(postExprId,v) ← HasPrePostVariable(postExprId,varId)
 ∧ HasFixType(postExprId,'DECREMENT')
 ∧ HasValue(varId,val1)
 ∧ Add(val1,1,v)

84 Chapter 4 : Basics of Program Analysis

4.6.3 HTML Embedded Within PHP

As mentioned in Section 4.5.2, the grammar files for HTML and PHP can only

handle PHP code embedded within HTML. However, it is common practice to

embed HTML within PHP code. For example, HTML tags can be embedded within

PHP echo statements as shown in Figure 4.24. In this program, the <body> tag is

opened within the HTML code while it is closed within the PHP code. Although this

seems a little unusual, it is perfectly legitimate PHP code. This becomes useful in

situations such as when the attributes of the starting tag differ based on a condition.

If this program is passed directly through the HTML grammar, it results in an

error since the HTML code is incorrect by itself. It only forms valid HTML when

the PHP echo statement is first converted to its equivalent HTML form. In order to

handle this problem, the process of AST walking is done more than once. In the first

walk through the AST, any PHP statements are converted to the corresponding

predicates. However, all HTML statements and the output of PHP echo statements

are used to create a new input stream for the HTML grammar. The new input stream

created in this manner for the example program is shown in Figure 4.25. Then, the

resultant input stream is the continuous HTML stream that is displayed on the web

page. This is then converted to another AST using the HTML grammar before

walking through this new AST.

4.7 CHAPTER SUMMARY

This chapter provided an introduction to the domain module used in the PHP

ITS. It discussed how the parts of the KB were created in a manner that enabled it to

<body>
<?php
echo(“Hello World</body>”);
?>

Figure 4.24. Example of HTML embedded within PHP.

<body>
Hello World
</body>

Figure 4.25. New HTML input stream.

Chapter 4 : Basics of Program Analysis 85

analyse answers to exercises written in PHP. The chapter also looked at how

alternative solutions to a given problem were accepted by the analysis process. The

step by step process of analysing a program was discussed. Finally, it outlined a few

special situations that were encountered in simple PHP programs and how they were

handled.

The next chapter looks at how more advanced PHP programs are analysed. It

explores how arrays, different types of selection structures and PHP functions are

modelled in the KB and how programs containing these constructs are analysed.

87 Chapter 5 : Selection Structures

Chapter 5: Selection Structures

 The previous chapter described how the system analyses a simple program

written in PHP. It concentrated on displaying data and assignment statements.

Selection structures are a more advanced type of statement that are used extensively

in writing computer programs. This chapter looks in detail at how the system

handles the different types of selection structures available in PHP. Section 5.1

describes how the goal is specified for an exercise that requires selection structures.

Section 5.2 discusses how programs with selection structures are analysed. Section

5.3 investigates how alternative solutions to a given problem are handled when the

required program uses selection structures. Section 5.4 looks at how conditional

expressions with the and, or and not Boolean operators are handled. Section 5.5

describes the analysis process for nested selection structures while Section 5.6

discusses switch statements. Section 5.7 examines how unnecessary statements in

selection structures are identified by the system. Finally, Section 5.8 summarises

how the system handles the processing of selection structures.

Selection statements check to see whether some condition is true or false

before executing a list of other statements based on the result. One of the main

challenges in handling such structures is that the same condition can be given in

many forms as shown in Table 5.1, which is an excerpt from Weragama & Reye

(2012). In this case, all three programs achieve the same objective of setting the

variable $y to 0 if the value of $x is greater than 10 and to 1 in all other instances,

given that $x is an integer. The main difficulty in the design of the knowledge base

is to be able to identify this fact since it is very likely that different solutions be

supplied by different students.

Table 5.1

Programs to Illustrate Different Forms of the Same Conditions

Program a Program b Program c
if($x>10)

$y=0;

else

$y=1;

if($x>=11)

$y=0;

else

$y=1;

if($x<=10)

$y=1;

else

$y=0;

88 Chapter 5 : Selection Structures

5.1 GOAL SPECIFICATION

As described in Section 4.5, in order to analyse whether a program is correct, it

is necessary to set an actual goal using a set of predicates. In order to do this, a set of

Boolean predicates are defined. These predicates are shown in Figure 5.1. The facts

based on these predicates come into existence only if the given condition is true. For

example, if x is greater than y, the fact GreaterThan(x,y) is created in the system. It

should be noted that x and y represent symbolic or numeric values and not PHP

variables.

The conditional nature of the goal is modelled using the First Order Logic

(FOL) concept of implication. Consider the example discussed in Table 5.1. It can

be seen that before this program can be analysed, it is necessary for the variable $x to

have a value. This is specified by the initial state of the program as described in

Section 4.5.1. The initial state and the overall goal for this program are shown in

Figure 5.2. It can be seen that the initial value of the variable x is taken to be val_x.

The constraint specifies that VARID2 represents the variable y. The goal specifies

that when val_x is greater than 10, variable y should have a value 0. The value of

variable y should be 1 when val_x is not greater than 10. However, in order to make

it easier to analyse programs, the goal is never specified using the negative forms of

predicates. This is because in practice, it is difficult to have the „not‟ form of facts as

the „not‟ form usually means the fact is false or that it is not present. Therefore, the

logical equalities in mathematics are considered and „not greater than‟ is taken to be

equivalent to „less than or equal to‟. This is apparent in the overall goal specification

in Figure 5.2.

GreaterThan(x,y)
GreaterThanOrEqual(x,y)
LessThan(x,y)
LessThanOrEqual(x,y)
EqualTo(x,y)
NotEqualTo(x,y)

Figure 5.1. Boolean predicates used for comparison.

Chapter 5 : Selection Structures 89

It is important to note that there is an exception to this rule as shown in Figure

5.1. Although the not form of the other predicates are different predicates, there is

no such not form for the EqualTo predicate. In order to avoid this problem, a

separate predicate, NotEqualTo, is defined.

5.2 PROGRAM ANALYSIS

Consider how the system analyses Program a in Table 5.1. Since an initial

state is defined, the following facts are created in the system. Assume that the id

assigned to Variable x is VarId1. This results in the following list of facts.

 HasName(VarId1,'x')

 HasValue(VarId1,val_x)

 HasInitialValue(VarId1,val_x)

Next consider how the AST created by the program is walked through. The

textual representation of the AST created by this program is given in Figure 5.3. It

can be seen that the „If‟ node contains three child nodes, the first for the condition,

the second for what to do if the condition is satisfied, and the third for what to do if

the condition is not satisfied.

Initial State : HasName(VARID1,'x')
∧ HasValue(VARID1,val_x)
∧ HasInitialValue(VARID1,val_x)

Goal : (GreaterThan(val_x,10) ⟶ HasValue(VARID2,0))
 ∧ (LessThanOrEqual(val_x,10) ⟶ HasValue(VARID2,1))

Constraints : HasName(VARID2,'y')

Figure 5.2. Initial state and overall goal of example program for selection.

(DOCUMENT (BODY (PHP (If (> ($ x) 10) (= ($ y) 0) (= ($ y) 1)))))

Figure 5.3. AST for example program for selection.

90 Chapter 5 : Selection Structures

Figure 5.4. Rules for converting Boolean expressions into comparison predicates.

GreaterThan(value1,value2)
← HasId(GreaterExpr(exprId1,exprId2),exprId3)
∧ ValueOf(exprId3,True) ∧ ValueOf(exprId1,value1) ∧ ValueOf(exprId2,value2)

LessThanOrEqual(value1,value2)

←HasId(GreaterExpr(exprId1,exprId2),exprId3)
∧ ValueOf(exprId3,false) ∧ ValueOf(exprId1,value1)∧ ValueOf(exprId2,value2)

GreaterThanOrEqual(value1,value2)
 ←HasId(GreaterEqualExpr(exprId1,exprId2),exprId3)
 ∧ ValueOf(exprId3,True) ∧ ValueOf(exprId1,value1) ∧

ValueOf(exprId2,value2)

LessThan(value1,value2)

← HasId(GreaterEqualExpr(exprId1,exprId2),exprId3)
 ∧ ValueOf(exprId3,false) ∧ ValueOf(exprId1,value1) ∧ ValueOf(exprId2,value2)

LessThanOrEqual(value1,value2)

← HasId(LessEqualExpr(exprId1,exprId2),exprId3)
∧ ValueOf(exprId3,True) ∧ ValueOf(exprId1,value1) ∧ ValueOf(exprId2,value2)

GreaterThan(value1,value2)

←HasId(LessEqualExpr(exprId1,exprId2),exprId3)
∧ ValueOf(exprId3,false) ∧ ValueOf(exprId1,value1) ∧ ValueOf(exprId2,value2)

LessThan(value1,value2)

← HasId(LessExpr(exprId1,exprId2),exprId3)
∧ ValueOf(exprId3,True) ∧ ValueOf(exprId1,value1) ∧ ValueOf(exprId2,value2)

GreaterThanOrEqual(value1,value2)

←HasId(LessExpr(exprId1,exprId2),exprId3)
∧ ValueOf(exprId3,false) ∧ ValueOf(exprId1,value1) ∧ ValueOf(exprId2,value2)

EqualTo(value1,value2)

← HasId(EqualExpr(exprId1,exprId2),exprId3)
∧ ValueOf(exprId3,True) ∧ ValueOf(exprId1,value1) ∧ ValueOf(exprId2,value2)

NotEqualTo(value1,value2)

← HasId(EqualExpr(exprId1,exprId2),exprId3)
∧ ValueOf(exprId3,false) ∧ ValueOf(exprId1,value1) ∧ ValueOf(exprId2,value2)

Chapter 5 : Selection Structures 91

When the condition node is reached, a BooleanExpression is created as

explained in Section 4.4.1.1. Let the id of this expression be ExprId1. The left hand

side of the BooleanExpression is a VariableExpr and the right hand side is a

LiteralExpr. Let the ids of these expressions be VarExprId1 and LitExprId1

respectively. Let the id of the created Literal be LitId1. Then, the following set of

facts is created.

 HasId(GreaterThanExpr(VarExprId1,LitExprId1),ExprId1)

 HasVariable(VarExprId1,VarId1)

 HasLiteral(LitExprId1,LitId1)

 HasLitValue(LitId1,10)

The values of the VariableExpr and LiteralExpr are calculated using the rules

in Figure 4.8, resulting in the following facts.

ValueOf(VarExprId1,val_x)

ValueOf(LitExprId1,10)

 Considering the semantics of the selection statement, the value of the

conditional expression is True for the second child node in the AST and False for the

third child node. Therefore, separate sets of facts are maintained for the two nodes.

First consider the second node of the AST where the conditional expression is

true. Therefore, inside this node, the following fact is present.

 ValueOf(ExprId1,True)

As mentioned previously, it is possible to write this condition in many different

ways. Therefore, working with a specific type of expression in a predicate will result

it being impossible to accept other equivalent conditional expressions. In order to

avoid this problem, the set of rules in Figure 5.4 are used to find the corresponding

more generalised predicate explained in Figure 5.1. Using the first rule here and

considering the case when the conditional expression is true, the following fact is

obtained.

 GreaterThan(val_x,10)

This predicate implies whatever facts created in the second node of the

conditional AST, i.e. the facts created by the assignment node. This node results in

92 Chapter 5 : Selection Structures

the following fact using the Assign action in Figure 4.10. Assume that the id of the

newly created Variable is VarId2.

 HasName(VarId2,'y')

 HasValue(VarId2,0)

 HasInitialValue(VarId2,0)

So the combined result for the second node of the selection section of the AST

can be written as below.

 GreaterThan(val_x,10)⟶ HasValue(VarId2,0)

Similarly, considering the third node of the selection section of the AST, the

value of the expression is False. Therefore, the following fact is created.

 ValueOf(ExprId2,False)

Using the second rule in Figure 5.4, the following fact is created.

 LessThanOrEqual(val_x,10)

Following the same procedure as above, the combined result for the third node

of the selection section of the AST can be written as below.

 LessThanOrEqual(val_x,10) ⟶ HasValue(VarId2,1)

So the final state contains the following facts.

HasName(VarId2,y)

∧ (GreaterThan(val_x,10)⟶ HasValue(VarId2,0))

∧ (LessThanOrEqual(val_x,10) ⟶ HasValue(VarId2,1))

Therefore, the overall goal is satisfied when VARID2=VarId2. This means

that the program is identified as correct.

5.2.1 Incorrect Solutions

It is essential that the system not only identifies correct programs but also

incorrect programs. In order to see how this is done, consider the example PHP

program for the above exercise shown in Figure 5.5. The corresponding AST is

shown in Figure 5.6. Upon comparison with Figure 5.3, it can be seen that only the

conditional expression is different.

Chapter 5 : Selection Structures 93

When this node is reached, a BooleanExpression containing a VariableExpr on

the left had side and a LiteralExpr on the right hand side is created as described

above. Let the ids of the BooleanExpression, VariableExpr and LiteralExpr be

ExprId1, VarExprId1 and LitExprId1 respectively. Let the id of the created Literal

be LitId1. Then, the following set of facts is created.

 HasId(GreaterEqualExpr(VarExprId1,LitExprId1),ExprId1)

 HasVariable(VarExprId1,VarId1)

 HasLiteral(LitExprId1,LitId1)

 HasLitValue(LitId1,9)

The following facts are again created when the ValueOf each of these

expressions are calculated as explained in Section 4.4.1.1.

ValueOf(VarExprId1,val_x)

 ValueOf(LitExprId1,9)

Considering the section of the AST where the conditional expression is true,

the following fact is created.

 ValueOf(ExprId1,True)

Using the first rule in Figure 5.4 the following fact is obtained.

GreaterThan(val_x,9)

if($x>9)
{
 $y=0;
}
else
{

$y=1;
}

Figure 5.5. Incorrect solution to example exercise for selection structures.

(DOCUMENT (BODY (PHP (If (> ($ x) 9) (= ($ y) 0) (= ($ y) 1)))))

Figure 5.6. AST for incorrect solution to exercise.

94 Chapter 5 : Selection Structures

Similarly, analysing the else part of the AST results in the following fact being

created.

LessThanOrEqual(val_x,9)

Since the rest of the AST is the same, the resulting final state contains the

following facts.

HasName(VarId2,y)

∧ (GreaterThan(val_x,9)⟶ HasValue(VarId2,0))

∧ (LessThanOrEqual(val_x,9) ⟶ HasValue(VarId2,1))

When comparing this set of facts against the overall goal in Figure 5.2, it can

be seen that it is not satisfied for any value of VARID2. The system therefore

identifies this program as incorrect.

Appendix E shows the analysis of several other incorrect solutions for this

programming exercise.

5.3 ALTERNATIVE SOLUTIONS

As mentioned at the start of the section, a main strength of the knowledge base

is the ability to identify different correct solutions to the same problem. In order to

illustrate this, consider how Program b in Table 5.1 is analysed. The AST created is

shown in Figure 5.7. When comparing this AST with the one in Figure 5.3 it can be

seen that the only difference is in the section corresponding to the condition of the

selection statement.

Again, when the condition node is reached, a BooleanExpression is created as

explained in Section 4.4.1.1. Let the id of this expression be ExprId1. The left hand

side of the BooleanExpression is again a VariableExpr and the right hand side is a

LiteralExpr. Let the ids of these expressions be VarExprId1 and LitExprId1

respectively. Let the id of the created Literal be LitId1. Then, the following set of

facts is created.

(DOCUMENT (BODY (PHP (If (>= ($ x) 11) (= ($ y) 0) (= ($ y) 1)))))

Figure 5.7. AST for Program b in Table 5.1.

Chapter 5 : Selection Structures 95

 HasId(GreaterEqualExpr(VarExprId1,LitExprId1),ExprId1)

 HasVariable(VarExprId1,VarId1)

 HasLiteral(LitExprId1,LitId1)

 HasLitValue(LitId1,11)

The values of the VariableExpr and LiteralExpr are calculated again using the

rules in Figure 4.8, resulting in the following facts.

 ValueOf(VarExprId1,val_x)

 ValueOf(LitExprId1,11)

Next consider the second node of the AST where the conditional expression is

true. Therefore, inside this node, the following fact is present.

 ValueOf(ExprId1,True)

Using the third rule in Figure 5.4 the following fact is obtained.

GreaterThanOrEqual(val_x,11)

A set of rules are included in the KB to handle equivalent expressions. These

rules are shown in Figure 5.8. Using the second rule in this figure, since

Subtract(11,1,10), the above fact creates the new fact given below.

GreaterThan(val_x,10)

Similarly, for the third node of the selection section of the AST, the fact

LessThan(val_x,11) is created. Again using the rules in Figure 5.8, this converts to

LessThanOrEqual(val_x,10). Since the rest of the AST is identical to that in Figure

5.3, the facts created for the two separate states are the same as before. The final

resulting state contains the following facts.

HasName(VarId2,y)

∧ (GreaterThan(val_x,10)⟶ HasValue(VarId2,0))

∧ (LessThanOrEqua(val_x,10)l ⟶ HasValue(VarId2,1))

This is identical to the final state of Program a as described in Section 5.2.

Therefore, although Program b uses a different condition than Program a, this

program is also identified as correct by the system.

96 Chapter 5 : Selection Structures

A similar analysis of Program c in Table 5.1 can be found in Appendix E.

This same method of program analysis is used to identify any solution that is made

up of equivalent expressions. This is a very powerful feature when analysing

computer programs.

5.4 OTHER FORMS OF CONDITIONAL EXPRESSIONS

Section 5.3 discusses how the knowledge base handles alternative solutions to

selection structures. However, this method only works if the conditional expression

within the if statement is an expression consisting of a comparison statement with

two expressions on either side. Several other types of conditional expressions are

also permissible within PHP. This section looks at how the knowledge base handles

this type of conditional expressions.

LessThanOrEqual(value2,value1) ← GreaterThanOrEqual(value1,value2)
GreaterThan(value1,value3) ← GreaterThanOrEqual(value1,value2)

∧ Subtract(value2,1,value3)
LessThan(value3,value1)← GreaterThanOrEqual(value1,value2)

∧ Subtract(value2,1,value3)

LessThan(value2,value1) ← GreaterThan(value1,value2)
GreaterThanOrEqual(value1,value3) ← GreaterThan(value1,value2)

∧ Add(value2,1,value3)
LessThanOrEqual(value3,value1)← GreaterThan(value1,value2)

∧ Add(value2,1,value3)

GreaterThanOrEqual(value2,value1) ← LessThanOrEqual(value1,value2)
LessThan(value1,value3) ← LessThanOrEqual(value1,value2)

∧ Add(value2,1,value3)
GreaterThan(value3,value1)← LessThanOrEqual(value1,value2)

∧ Add(value2,1,value3)

GreaterThan(value2,value1) ← LessThan(value1,value2)
LessThanOrEqual(value1,value3) ← LessThan(value1,value2)

∧ Subtract(value2,1,value3)
GreaterThanOrEqual(value3,value1)← LessThan(value1,value2)

∧ Subtract(value2,1,value3)

Figure 5.8. Rules for converting between equivalent expression subtypes.

Chapter 5 : Selection Structures 97

5.4.1 Simple Expressions Behaving as Conditional Expressions

Sometimes, the conditional expression can be a single SimpleExpression. It

can be either a LiteralExpr or a VariableExpr evaluating to True or False. Such a

program which accomplishes the same objective as the programs in Table 5.1 is

shown in Figure 5.9.

In this program, a BooleanExpression is assigned to a Variable which is then

used as a conditional statement in the selection structure. In order to see how this

program is analysed, consider that the initial state is as mentioned in Section 5.2. In

this case, an assignment is encountered before the selection structure. The right had

side of the assignment is a GreaterExpr. Let the id of this be ExprId1 and the ids of

the two sides of the expression be VarExprId1 and LitExprId1 respectively. The left

hand side of the GreaterExpr is actually a VariableExpr referring to the variable in

the initial state and the right hand side is a LiteralExpr. Let the id of the

corresponding Literal be LitId1. Then, the following facts are created.

HasId(GreateExpr(VarExprId1,LitExprId1),ExprId1)

HasVariable(VarExprId1,VarId1)

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,10)

The values of the VariableExpr and LiteralExpr are calculated again using the

rules in Figure 4.8, resulting in the following facts.

 ValueOf(VarExprId1,val_x)

$z=$x>10;
if($z)
{
 $y=0;
}
else
{

$y=1;
}

Figure 5.9. A solution to the example exercise for selection structures using a conditional

statement with a SimpleExpression.

98 Chapter 5 : Selection Structures

 ValueOf(LitExprId1,10)

Then, the ValueOf the entire expression is calculated, again using the rules in

Figure 4.8. For this purpose assume the fact Greater(val_x,10,value) is true. Then,

the following fact is created.

ValueOf(ExprId1,value)

Next, the value of this expression is assigned to a new Variable z using the

Assign action in Figure 4.10. Assume that the id of the newly created Variable is

VarId2.

 HasName(VarId2,'z')

 HasValue(VarId2,value)

 HasInitialValue(VarId2,value)

Next, an expression is created for the conditional expression in the if statement

as before. However, in this case, the conditional expression is a VariableExpr. Let

this expression have an id of VarExprId2. Since it refers to the variable created

earlier, the following fact is created.

HasVariable(VarExprId2,VarId2)

Inside the first part of the if condition, this conditional expression is true so the

following fact is valid inside this section.

ValueOf(VarExprId2,True)

The set of rules to convert Boolean expressions into corresponding comparison

predicates shown in Figure 5.4 is extended to handle situations where the conditional

expression is a simple expression as shown in Figure 5.10. The first rule in this

figure now operates on the existing facts to create the following fact.

EqualTo(value,True)

In order to handle this situation, it is also necessary to identify the

mathematical fact that if two values are equal, one of them can be used in place of

the other. The first rule in Figure 5.11 is used to achieve this. Using this rule on the

existing set of facts, the following additional fact is created.

ValueOf(ExprId1,True)

Chapter 5 : Selection Structures 99

Now, the previous rules to convert Boolean expressions to corresponding

comparison predicates shown in Figure 5.4 are activated. Using the first rule here,

the following fact is created.

GreaterThan(val_x,10)

When this condition is satisfied, the variable y is assigned a value 0. This

results in the following facts as explained in Section 5.2. Here, the id of the newly

created Variable is taken to be VarId3.

HasName(VarId3,'y')

EqualTo(value,True)
← HasId(variableExpr,varExprId1)
∧ HasVariable(varExprId1,varId1)
∧ ValueOf(varExprId1,True)
∧ HasValue(varId1,value)

EqualTo(value,False)

← HasId(variableExpr,varExprId1)
∧ HasVariable(varExprId1,varId1)
∧ ValueOf(varExprId1,False)
∧ HasValue(varId1,value)

EqualTo(value,True)

← HasId(literalExpr,litExprId1)
∧ HasLiteral(litExprId1,litId1)
∧ ValueOf(litExprId1,True)
∧ HasLitValue(litId1,value)

EqualTo(value,False)

← HasId(literalExpr,litExprId1)
∧ HasLiteral(litExprId1,litId1)
∧ ValueOf(litExprId1,False)
∧ HasLitValue(litId1,value)

Figure 5.10. Rules to convert VariableExprs into comparison predicates.

ValueOf(exprId1,True) ← ValueOf(exprId1,value) ∧ EqualTo(value,True)

ValueOf(exprId1,False) ← ValueOf(exprId1,value) ∧ EqualTo(value,False)

 Figure 5.11. Rule to handle mathematical equality.

100 Chapter 5 : Selection Structures

 HasValue(VarId3,0)

 HasInitialValue(VarId0,0)

Similarly, for the else part of the selection structure, the following fact is true.

ValueOf(VarExprId2,False)

Again using the ruless in Figure 5.10 and Figure 5.11, the following facts are

created.

EqualTo(value,False)

ValueOf(ExprId1,False)

Next, using the rules in Figure 5.4, the following fact is created.

LessThanOrEqual(val_x,10)

When this condition is satisfied, the variable y is set to the value 1, resulting in

the following facts.

HasName(VarId3,'y')

 HasValue(VarId3,1)

 HasInitialValue(VarId0,1)

So, the final state of the program in this case can be written as below.

HasName(VarId3,y)

∧ (GreaterThan(val_x,10)⟶ HasValue(VarId3,0))

∧ (LessThanOrEqual(val_x,10) ⟶ HasValue(VarId3,1))

Therefore, the overall goal is satisfied when VARID2=VarId3. This means

that the program is identified as correct.

5.4.2 Conditional Expressions with And, Or and Not

Section 5.3 discussed how to handle situations where the conditional

expression consists of a single comparison expression. However, it is common to

group several such statements with „&&‟, „||‟ and „!‟ operators to form more complex

conditional statements. A set of rules that allow handling these situations are shown

in Figure 5.12. These rules are first used to find the values of the sub expressions

and then, the rules in Figure 5.4 are used to find the relevant conditional facts.

Chapter 5 : Selection Structures 101

In order to illustrate this, consider the example exercise given in Figure 5.13.

The overall goal for this program is given in Figure 5.14. An example solution is

given in Figure 5.15.

Write a PHP program to set the variable $x to 0 if the value of $x is between 10

and 20. Note that when execution reaches the point where the code needs to be

completed, the variable $x already contains a value.

Figure 5.13. Example exercise for selection structures with Boolean operators in the condition.

ValueOf(exprId1,True) ∧ ValueOf(exprId2,True)
 ←HasId(AndExpr(exprId1,exprId2),exprId3) ∧ ValueOf(exprId3,True)

ValueOf(exprId1,False)
 ←HasId(AndExpr(exprId1,exprId2),exprId3) ∧ ValueOf(exprId3,False)

∧ ValueOf(exprId2,True)

ValueOf(exprId2,False)
 ←HasId(AndExpr(exprId1,exprId2),exprId3) ∧ ValueOf(exprId3,False)

∧ ValueOf(exprId1,True)

ValueOf(exprId1,True)
 ←HasId(OrExpr(exprId1,exprId2),exprId3) ∧ ValueOf(exprId3,True)

∧ ValueOf(exprId2,False)

ValueOf(exprId2,True)

 ←HasId(OrExpr(exprId1,exprId2),exprId3) ∧ ValueOf(exprId3,True)
∧ ValueOf(exprId1,False)

ValueOf(exprId1,False) ∧ ValueOf(exprId2,False)

 ←HasId(OrExpr(exprId1,exprId2),exprId3) ∧ ValueOf(exprId3,False)

ValueOf(exprId1,False)
 ←HasId(NotExpr(exprId1),exprId2) ∧ ValueOf(exprId2,True)

ValueOf(exprId1,True)
 ←HasId(NotExpr(exprId1),exprId2) ∧ ValueOf(exprId2,False)

Figure 5.12. Rules for handling complex conditional expressions.

102 Chapter 5 : Selection Structures

Let the initial value of the variable $x be val_x. Then, the following facts are

created as the initial state in the system.

 HasName(VarId1,'x')

 HasValue(VarId1,val_x)

 HasInitialValue(VarId1,val_x)

 When the condition node for the if condition is reached, a BooleanExpression

is created as in previous cases. However, in this case, the BooleanExpression is an

AndExpr with a GreaterEqualExpr on the left hand side and a LessEqualExpr on the

right hand side. Let the ids of the three expressions be ExprId1, ExprId2 and

ExprId3 respectively. Then, the following facts are created in the system.

HasId(AndExpr(ExprId2,ExprId3),ExprId1)

ExprId2 represents a GreaterEqualExpr with a VariableExpr on the left hand

side and a LiteralExpr on the right hand side. Let the ids of the VariableExpr and

LiteralExpr be VarExprdId2 and LitExprId2 respectively. Let the id of the created

Literal be LitId2. Then, the following facts are created.

HasId(GreaterEqualExpr(VarExprId2,LitExprId2),ExprId2)

 HasVariable(VarExprId2,VarId1)

 HasLiteral(LitExprId2,LitId2)

HasLitValue(LitId2,10)

 ((GreaterThanOrEqual(val_x,10) ∧ (LessThanOrEqual(val_x,20)) ⟶
 HasValue(VARID1,0)))

Figure 5.14. Overall goal for example exercise for selection structures with Boolean operators in the

condition.

if($x>=10 && $x<=20)
{
 $x=0;
}

Figure 5.15. Solution to example exercise

Chapter 5 : Selection Structures 103

Using the rules in Figure 4.8, the ValueOf the VariableExpr and LiteralExpr

can be found as below.

ValueOf(VarExprId2,val_x)

ValueOf(LitExprId2,10)

Similarly, ExprId3 represents a LessEqualExpr with a VariableExpr on the left

hand side and a LiteralExpr on the right hand side. Let the ids of the VariableExpr

and the LiteralExpr be VarExprId3 and LitExprId3 respectively. Let the id of the

created Literal be LitId3. Then, the following facts are created.

HasId(LessEqualExpr(VarExprId3,LitExprId3),ExprId3)

 HasVariable(VarExprId3,VarId1)

 HasLiteral(LitExprId3,LitId3)

HasLitValue(LitId3,20)

As before, the ValueOf the VariableExpr and LiteralExpr can be found as

below.

ValueOf(VarExprId3,val_x)

ValueOf(LitExprId3,20)

When considering the case where the condition is satisfied, the ValueOf

ExprId1 becomes True so the following fact is created.

ValueOf(ExprId1,True)

Now, since ExprId1 represents an AndExpr, the first rule in Figure 5.12 can be

applied to create the following facts.

ValueOf(ExprId2,True) ∧ ValueOf(ExprId2,True)

But since this is an and condition, it means that each of these facts exist

independently of each other so they can be used to generate corresponding

comparison facts using the rules in Figure 5.4.

GreaterThanOrEqual(val_x,10) ∧ LessThanOrEqual(val_x,20)

When this condition is true, the variable $x is set to zero. This results in the

following implication being created.

104 Chapter 5 : Selection Structures

GreaterThanOrEqual(val_x,10) ∧ LessThanOrEqual(val_x,20)

⟶ HasValue(VarId1,0)

Comparing this final state with the overall goal shown in Figure 5.14, it can be

seen that the overall goal is satisfied when VARID1=VarId1. Therefore, this

program is identified as correct.

It should be noted that these rules cannot handle all expressions combined by

using „&&‟ and „||‟. If an „&&‟ expression is known to be true, it is easy to ascertain

that all its sub expressions are also true. However, if an „&&‟ expression is False, all

that can be ascertained is that at least one of its sub expressions is False. If it is

known that one of the sub expressions is true, it is possible to ascertain that the other

is False. However, in all other cases, it is not possible to determine the value of the

sub expressions. Similarly, if an „||‟ expression is False, both its sub expressions are

False. However, if it is true, it is not possible to determine the value of the sub

expressions unless it is known that one of them is False. Therefore, this method of

program analysis cannot generally handle situations where an „&&‟ expression is

false or an „||‟ expression is true.

5.5 NESTED SELECTION STRUCTURES

Nested if-else structures are commonly used in programming to account for

multiple conditions. These are handled in the same manner as normal if-else

structures. The only significant aspect is the specification of the overall goal for

these structures.

Consider the example exercise given in Figure 5.16. The expected program is

program that contains a nested if-else structure as shown in Program a in Table 5.2.

Write a PHP program to display „A‟ if $marks is greater than 80. Otherwise, if

$marks is greater than 50, display „B‟. Display „F‟ in all other instances. Note

that when execution reaches the point where the code has to be completed, the

variable $marks already contains a value.

Figure 5.16. Example exercise for nested selection structures.

Chapter 5 : Selection Structures 105

Table 5.2

Alternative Solutions to Example Exercise for Nested Selection Structures

Program a Program b Program c

if($marks>80)
{

echo('A');
}
else if
($marks>50)
{

echo('B');
}
else
{

echo('F');
}

if($marks<=50)
{

echo('F');
}
else if
($marks<=80)
{

echo('B');
}
else
{

echo('A');
}

if($marks>80)
{

echo('A');
}
if($marks<=80 && $marks>50)
{

echo('B');
}
if($marks<=50)
{

echo('F');
}

Figure 5.17 shows the overall goal for this program written in the same manner

as explained in Section 5.1. In this case, the overall goal is given using a nesting

structure, similar to the one in Program a of Table 5.2. Therefore, this program is

identified as correct.

5.5.1 Analysis of Program a

Consider how Program a in Table 5.2 is analysed. As before, the initial state

results in the following facts since the variable $marks already contains a value.

HasName(VarId1,'marks')

Initial State : HasName(VARID1,'marks')
∧ HasValue(VARID1, val_m)
∧ HasInitialValue(VARID1, val_m)

Goal : (GreaterThan(val_m,80) ⟶ OnPage('A',i))
 ∧ (LessThanOrEqual(val_m,80) ⟶
 (GreaterThan(val_m,50) ⟶ OnPage('B',j))
 ∧ (LessThanOrEqual(val_m,50) ⟶OnPage('F',k)))

Figure 5.17. Suggested initial state and overall goal for example exercise for nested selection structures.

106 Chapter 5 : Selection Structures

 HasValue(VarId1,val_m)

 HasInitialValue(VarId1,val_m)

The first conditional expression results in a BooleanExpression consisting of a

VariableExpr and a LiteralExpr being created. Let the ids of these expressions be

ExprId1, VarExprId1 and LitExprId1 respectively. Let the id of the created Literal

be LitId1. Then, the following facts are created.

HasId(GreaterExpr(VarExprId1,LitExprId1),ExprId1)

 HasVariable(VarExprId1,VarId1)

 HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,80)

Finding the value of these expressions as explained in Section 4.4.1.1 results in

the following facts being created.

ValueOf(VarExprId1,val_m)

ValueOf(LitExprId1,80)

When considering the case when the condition is satisfied, the following fact is

created.

ValueOf(ExprId1,True)

This fact results in the following fact being created using the rules in Figure

5.4.

GreaterThan(val_m,80)

When this condition is satisfied, an „echo‟ statement is executed. This results

in the Display action being used to create the following fact.

 OnPage('A',1)

So the entire state for when the condition is satisfied can be written as below.

GreaterThan(val_m,80) ⟶ OnPage('A',1)

When the condition is not satisfied, i.e. in the else section, the following fact is

created.

ValueOf(ExprId1,False)

Chapter 5 : Selection Structures 107

Again using the rules in Figure 5.4, the following fact is then created in the

system for the case where the condition is not satisfied.

LessThanOrEqual(val_m,80)

At this point, another selection structure is encountered. This means that

whatever facts are created after this are implied by the above fact. The condition for

this second selection structure results in the following set of facts being created. Let

the ids of the relevant BooleanExpression, VarExpr and LitExpr be ExprId2,

VarExprId2 and LitExprId2 respectively. Let the id of the created Literal be LitId2.

HasId(GreaterExpr(VarExprId2,LitExprId2),ExprId2)

 HasVariable(VarExprId2,VarId2)

 HasLiteral(LitExprId2,LitId2)

HasLitValue(LitId2,50)

Finding the value of these expressions as explained in Section 4.4.1.1 results in

the following facts being created.

ValueOf(VarExprId2,val_m)

ValueOf(LitExprId2,50)

When this second condition is satisfied the ValueOf the expression is set to

true and this results in a comparison fact being created using the rules in Figure 5.4.

This means that the following facts are created.

ValueOf(ExprId2,True)

GreaterThan(val_m,50)

When the second condition is satisfied, a Display action is again used to create

the following fact.

OnPage('B',2)

So the result of the second condition being true can be written as below.

GreaterThan(val_m,50) ⟶ OnPage('B',2)

When the second condition is not satisfied, the Display action is used to create

the following facts.

108 Chapter 5 : Selection Structures

ValueOf(ExprId2,False)

LessThanOrEqual(val_m,50)

For this situation, the Display action results in the following fact.

OnPage('F',3)

So the state when the second condition is not satisfied is as below.

LessThanOrEqual(val_m,50) ⟶ OnPage('F',3)

Using the above description, it can be seen that the entire state for the second

condition is as below.

(GreaterThan(val_m,50) ⟶ OnPage('B',2))

∧ (LessThanOrEqual(val_m,50) ⟶ OnPage('F',3))

But as described earlier, the second condition is only satisfied if the first one is

not so this entire state is an implication of when the first condition is not satisfied.

Therefore, the final state of this program is as below.

(GreaterThan(val_m,80) ⟶ OnPage('A',1))

∧(LessThanOrEqual(val_m,80) ⟶(GreaterThan(val_m,50) ⟶ OnPage('B',2))

∧ (LessThanOrEqual(val_m,50) ⟶ OnPage('F',3)))

When comparing this final state against the overall goal in Figure 5.17, it can

be seen that it is satisfied when i=1, j=2 and k=3. Therefore, Program a is identified

as a correct solution to the exercise.

5.5.2 Analysis of Program b

Next consider another correct solution to the exercise, Program b in Table 5.2.

Using the same approach as above, it can be seen that the final state of this program

is as shown in Figure 5.18. A detailed analysis of how this final state is obtained is

given in Appendix E.

Chapter 5 : Selection Structures 109

When comparing this final state against the overall goal given in Figure 5.17, it

can be seen that it is in a different form and is therefore identified as incorrect. On

careful observation, it can be seen that the final state is dependent on the nesting

structure of the program. Different nesting structures can be used to obtain the same

final result but specifying the goal in the manner given in Figure 5.17 results in

many of these programs being identified as incorrect.

5.5.3 Correct Overall Goal for Nested Selection Structures

Due to the above difficulty, it is necessary to specify the overall goal in a

manner that makes it possible to identify all these alternatives as correct. The

solution used in this case is to remove all nesting from the overall goal and express it

using implications where the left hand side is a combination of conditional facts.

The correct overall goal for this exercise is shown in Figure 5.19.

\

\

Within a nested node, all the conditional predicates along the path of the

nesting are true. Therefore, the nesting guarantees that combined conditional facts

on the left hand side of the overall goal are true. This means that whatever method

of nesting is used, as long as the correct output is obtained, the program is identified

as correct.

For example, consider the situation in Program a where the first condition is

false. As apparent from the analysis process in Section 5.5.1, this results in the

following fact being created.

LessThanOrEqual(val_m,80)

(LessThanOrEqual(val_m,50) ⟶OnPage('F',k))
∧ (GreaterThan(val_m,50) ⟶
 (LessThanOrEqual(val_m,80) ⟶ OnPage('B',j))
 ∧ (GreaterThan(val_m,80) ⟶ OnPage('A',i)))

Figure 5.18. Relevant facts for final state of Program b.

(GreaterThan(val_m,80) ⟶ OnPage('A',i))
∧ (LessThanOrEqual(val_m),80) ∧ GreaterThan(val_m,50) ⟶ OnPage('B',j))
(LessThanOrEqual(val_m,50) ⟶OnPage('F',k))

Figure 5.19. Overall goal for example exercise for nested selection structures.

110 Chapter 5 : Selection Structures

This fact is now valid for all situations where the first condition is false. Next

consider the case where the second condition is true. As above, this results in the

following fact.

GreaterThan(val_m,50)

This means that both these facts are valid in the case where the first condition

is false but the second condition is true and together they imply the result of actions

performed during this situation. So the state corresponding to this situation can be

written as below.

LessThanOrEqual(val_m,80) ∧ GreaterThan(val_m,50) ⟶ OnPage('B',1)

Similarly, the state when both the conditions are false is as below.

LessThanOrEqual(val_m,80) ∧ LessThanOrEqual(val_m,50)⟶ OnPage('F',2)

However, considering the laws of Mathematics, the

LessThanOrEqual(val_m,80) has no effect here since it is always true when

LessThanOrEqual(val_m,50) is true. Therefore, the last statement can be modified

as below.

LessThanOrEqual(val_m,50)⟶ OnPage('F',2)

So the final state of Program a can now be written as below.

(GreaterThan(val_m,80) ⟶ OnPage('A',1))

∧ (LessThanOrEqual(val_m,80) ∧ GreaterThan(val_m,50) ⟶ OnPage('B',1))

∧ (LessThanOrEqual(val_m,50)⟶ OnPage('F',2))

When comparing against the overall goal in Figure 5.19, it can be seen that this

is satisfied when i=1, j=2 and k=3 so the program is again identified as correct.

Using a similar analysis, it can be seen that Program b in Table 5.2 results in

the following final state.

(LessThanOrEqual(val_m,50) ⟶ OnPage('F',1))

∧ (GreaterThan(val_m,50) ∧ LessThanOrEqual(val_m,80) ⟶ OnPage('B',1))

∧ (GreaterThan(val_m,80)⟶ OnPage('A',2))

Again comparing with Figure 5.19 it can be seen that the overall goal is

satisfied although the final facts are given in a different order. A detailed analysis of

Chapter 5 : Selection Structures 111

how Program c in Table 5.2 is analysed to obtain the same final state is given in

Appendix E. It can be seen that this method of specifying the overall goal is suitable

to handle all possible nesting combinations in students‟ programs.

5.6 SWITCH STATEMENTS

Switch statements are commonly used to handle situations where the

processing differs based on the value of a variable. This is similar to nested if-else

structures where the conditional expression is testing for equality. Therefore, the

same method as for nested if-else structures is used here.

Consider the example exercise given in Figure 5.20. Table 5.3 shows two

alternative solutions to this exercise. Program a uses a nested if-else structure while

Program b uses a switch statement.

Table 5.3

Alternative Programs for Example Exercise

Program a Program b

if($grade=='A')
{

echo('Excellent');
}
else if ($grade=='B')
{

echo('Good');
}
else
{

echo('Try Harder');
}

switch($grade)
{

case 'A':
echo('Excellent');
break;

case 'B':
echo('Good');
break;

default:
echo('Try Harder');

}

Write a PHP program to display „Excellent‟ if the grade is „A‟. Otherwise, if the

grade is „B‟ display „Good‟. In all other instances display „Try Harder‟. Note

that when execution reaches the point where the code has to be completed, the

variable $grade already contains a value.

Figure 5.20. Example exercise for switch statements.

112 Chapter 5 : Selection Structures

As described in Section 5.5.3, the overall goal for this exercise can be written

as shown in Figure 5.21. It has been assumed that the initial value of $grade is

val_g. However, in this case, the combined conditions on the left hand side of some

of the sub-goals consists of combinations of NotEqualTo and EqualTo predicates

with the same first argument, joined using the And operator. In practice, if a value is

equal to a certain value, it is obviously not equal to another value. Therefore, the

NotEqualTo predicate can be left out of the overall goal specification in such cases.

Figure 5.22 shows the overall goal, simplified in this manner.

Although the above section explains how the overall goal is specified for

switch statements, the AST for switch statements causes some inconvenience. Since

the case statements only contain the value of the variable that is considered and not

the equality check itself, it is necessary to manually change the AST to include

equality expressions. This is done during the AST walking process. Each time a

case expression is encountered, it is combined with the variable of the switch

statement to create a new AST that is then used to create an equality expression. The

entire original AST and the modified version of the first case expression is shown in

Table 5.4.

(EqualTo(val_g,'A') ⟶ OnPage('Excellent',i))
∧ (NotEqualTo(val_g,'A') ∧ EqualTo(val_g,'B') ⟶ OnPage('Good',j))
∧ (NotEqualTo(val_g,'A') ∧ NotEqualTo(val_g,'B') ⟶OnPage('Try Harder',k))

Figure 5.21. Suggested overall goal for example exercise.

(EqualTo(val_g,'A') ⟶ OnPage('Excellent',i))
∧ (EqualTo(val_g,'B') ⟶ OnPage('Good',j))
∧ (NotEqualTo(val_g,'A') ∧ NotEqualTo(val_g','B') ⟶OnPage('Try Harder',k))

Figure 5.22. Simplified overall goal for example exercise.

Chapter 5 : Selection Structures 113

Table 5.4

Modified AST for Switch Statements

Original AST Modified ASTs

(PHP (switch ($ grade) (case 'A'

(echo 'Excellent') break) (case 'B'

(echo 'Good') break) (default (echo

'Try Harder'))))

(== ($ grade) 'A')

(== ($ grade) 'B')

It is possible for switch statements to contain default cases. This means that

under this node, none of the equalities tested are true. This is modelled by setting all

the equality expressions that were encountered during the switch to false. Therefore,

when analysing Program b in Table 5.3, the default case results in the facts

NotEqualTo('val_g','A') and NotEqualTo('val_g','B') being created.

A detailed analysis of Program b in Table 5.3 is given in Appendix E. When

the programs are modelled in this manner, both Program a and Program b in Table

5.3 are accepted as correct solutions to the programming exercise in Figure 5.20.

5.6.1 Special Considerations

It should be noted that PHP is somewhat different to many other programming

languages in that it allows comparison operators within switch statements. Figure

5.23 is an example of such a switch statement to solve the exercise given in Figure

5.16. This type of switch statement results in an AST that is somewhat different

switch($marks)
{

case($marks>80): echo('A');
 break;

case($marks>50): echo('B');
 break;

default: echo('F');
}

Figure 5.23. Example program for comparison operators within switch statements.

114 Chapter 5 : Selection Structures

from the normal case. Since this is a more advanced PHP topic, it has been

eliminated from the scope of statements handled in this thesis.

Another issue that arises when analysing switch statements is that, unlike in

nested if-else structures, program execution can flow through from one case to

another if no „break;‟ keyword is used. Figure 5.24 shows an example of such a

program. In this case, the text 'Pass' is displayed in both the first two case

statements, i.e. if marks are greater than 80 or greater than 50. This is handled when

walking the AST. The same set of facts is created against each case that falls

through to the actual execution statements. For example, an OnPage('Pass',i) fact is

created against the conditions where the marks are greater than 80 or 50.

5.7 HANDLING UNNECESSARY STATEMENTS IN SELECTION

STRUCTURES

The analysis process described above is capable of identifying alternative

solutions to a given exercise using selection structures. However, a common mistake

made by many students is to include additional program statements that do not

contribute to achieving the overall goal. As described in Section 4.5.5, this is

handled by maintaining a set of statuses.

In case of selection statements, several new statuses are created in order to

identify the flow of execution. A new status is created immediately, when a

selection structure is encountered. The BooleanExpression corresponding to the

condition is created within the status. Two separate statuses are created for the „if‟

and „else‟ parts of an if-else structure. These statuses are linked to the status of the

switch($marks)
{

case($marks>80):
case($marks>50): echo('Pass');

 break;
default: echo('Fail');

}

Figure 5.24. Example switch statement with execution falling through to next case.

Chapter 5 : Selection Structures 115

main selection statement created above. The flow of statuses for Program a in Table

5.1 is shown in Figure 5.25.

The „if‟ part of the program can contain many statement and these can result in

the creation of one or more new statuses. Any statuses created in this manner are

linked to the main status corresponding to the „if‟ part. Similarly, any new statuses

created during the „else‟ part of the program are linked to the status corresponding to

„else‟. This process ensures that relevant links are maintained between statuses

created using nested structures.

In the case of selection structures, the status flow described above creates a

problem when identifying the status where the overall goal is satisfied. In the above

example, Status 5 is the status where the entire overall goal is satisfied. However,

Status 4 also contributes to satisfying the overall goal of the system. The divergent

paths of the structure do not depict the fact that Status 4 contributes to the goal.

Therefore, ones the final status where the overall goal is satisfied is identified, any

previous statuses in the structure that contribute to satisfying the goal are linked to

Status 1

if($x>10)

Status 2

Initial State

Status 0

Status 3 else

Status 4

$y=0

Status 5

$y=1

if

Figure 5.25. Status flow for example selection program.

116 Chapter 5 : Selection Structures

this status. In this case, a link is created between Status 4 and Status 5. This ensures

that there is a path from all statuses contributing to the overall goal to the goal status.

Statuses for switch statements are handled in a similar manner. The only

difference is that a new status is created for each „case‟ and these are linked to the

main status created at the beginning of the selection statement.

This flow of statuses is then used to identify any statuses that do not

correspond to achieving the overall goal. Such extra statuses are then indicated as

unnecessary statements in the student‟s program.

5.8 CHAPTER SUMMARY

 This chapter explored how the knowledge base of the PHP ITS deals with

selection structures which are used extensively during programming. It discussed

how selection structures can be used in a multitude of ways to achieve the same

result and how the KB identified all these as correct. It looked at nested selection

structures as well as switch statements that are used to handle a multitude of

conditions.

The next chapter looks at some more advanced structures used in PHP, namely

arrays, functions and forms. The process of depicting these structures and their

analysis is described in detail.

Chapter 6 : Arrays, Functions and Forms 117

Chapter 6: Arrays, Functions and Forms

The previous chapter looked at how commonly used selection structures are

handled in the system. This chapter goes on to investigate more advanced topics in

PHP. Section 6.1 looks at how arrays are modelled using predicates and how they

are analysed. Section 6.2 describes how both predefined and user defined PHP

functions are handled in the KB. Section 6.3 discusses how forms are modelled and

how the KB handled passing information from one web page to another. Finally

Section 6.4 summarises the chapter.

6.1 ARRAYS

In programming, arrays are used to handle collections of similar objects. They

are basically a systematic arrangement of objects. Each array element has the same

functionality as a variable. In other words, it can be used anywhere a variable is

used, on the left hand side of assignment statements as well as in expressions.

Therefore, array elements are modelled as a subtype of a Variable as shown in

Figure 6.1. An array element is called an ArrayVariable to easily identify it as a

Variable. An ArrayVariable is actually a relationship between an array, and a key.

This relationship is shown by the HasElement predicate which is reified into the

ArrayVariable object type.

PHP arrays are somewhat different from arrays found in most other

programming languages in that both indexed and associative array referencing is

permitted within the same array. This means that the key can be either an integer or

a string. Therefore, the key is divided into two further subtypes, Index for indexed

access and KeyString for associative access. When accessing array elements in a

PHP program, it is not necessary to explicitly specify the key. It is possible to use an

expression that returns a value in place of the key. This expression can take the form

of any expression such as a LiteralExpr, VariableExpr or CalculateExpression. The

association between this expression and the actual value of the key is maintained

through the HasKeyExpression predicate. When indexed access is used to access an

array element, the expression in the HasKeyExpression predicate refers to an

expression specifying the Index. Similarly, when associative access is used, the

118 Chapter 6 : Arrays, Functions and Forms

expression in the HasKeyExpression predicate refers to an expression specifying the

KeyString. A peculiarity in PHP is that, sometimes, it is possible to access an

associative array using both indexed and associative access. This is handled by

creating two separate facts, one for each type of access, in the system.

Figure 6.1. ORM diagram for arrays.

Another interesting feature of PHP is that it contains some predefined arrays in

addition to user defined arrays. Therefore, the Array is divided into two subtypes,

PreDefinedArray and UserDefinedArray. There are many predefined arrays such as

$_SERVER, $_ENV, $_GLOBALS and many more. Most of these arrays are rarely

used in basic PHP programming and have therefore not been modelled in the

knowledge base. However, two types of predefined arrays, $_POST and $_GET are

associated with HTML form processing in PHP. These are defined under a further

subtype of PreDefinedArray know as FormArray. The FormArray is divided into

two further subtypes $_GET and $_POST. In principle, it seems likely that other

types of PreDefinedArrays can be modelled in a similar manner. UserDefinedArrays

have a name that is given by the HasArrayName predicate.

Chapter 6 : Arrays, Functions and Forms 119

In order to understand the relationship between these predicates, consider a

case where a PHP program contains a reference to $myarray[5]. Since $myarray is

not a PreDefinedArray, a UserDefinedArray object is created. Let the id of this array

be ArrId1. Then, the following fact is created to specify the name of the array.

HasArrayName(ArrId1,'myarray')

The key in this case is an index – the value 5 - so an Index object is created.

Let the id of the created Index be KeyId1. The association between the Array and the

Key is then given by the following fact.

HasElement(ArrId1,KeyId1)

But as described earlier, this is reified into a Variable. Let the id of the

relevant Variable be VarId1. This results in the following reified fact.

HasVariableId(HasElement(ArrId1,KeyId1),VarId1)

So the value of the corresponding variable can now be accessed using the

HasValue(VarId1,n) fact, where n is the value assigned to the array element.

As described earlier, each key is associated with an expression. In this case,

the expression is a LiteralExpr. Let the id of the created LiteralExpr be LitExprId1.

Then, the following fact is created to show the relationship between the key and the

expression.

HasKeyExpression(KeyId1,LitExprId1)

As described in Section 4.4.1.1, each LiteralExpr is associated with a Literal.

Let the id of the created Literal be LitId1. Then, the following facts are created.

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,5)

 Using the rules in Figure 4.8, the following fact is created for the

LiteralExpr.

ValueOf(LitExprId1,5)

Therefore, it can be seen that a single array element results in a large number of

facts in the system.

120 Chapter 6 : Arrays, Functions and Forms

Consider the example PHP exercise with an array given in Figure 6.2. Using

the above predicates, the overall goal for this exercise is as shown in Figure 6.3. It

specifies that the key of the ArrayVariable should have a value of 0 while the

Variable itself should have a value of 1.

6.1.1 Assigning to Array Variables

As described above, ArrayVariables are similar to other Variables in most

operations within the knowledge base. However, when an assignment is done to an

ArrayVariable, there are several differences from a SimpleVariable. When assigning

to a SimpleVariable, it may already exist or not. When assigning to an

ArrayVariable, there are three situations that need to be considered. The first is that

the ArrayVariable already exists. The second is that the Array exists but the

corresponding ArrayVariable, i.e one with the relevant key, does not exist. The third

is that neither the array nor the key exist. In order to allow for these differences, a

separate action is used when assigning to ArrayVariables. This action is shown in

Figure 6.4.

Write a PHP program to create an array named $myarray. Assign the value 1 to

the 0
th

 element of the array.

Figure 6.2. Example array exercise.

 Goal : HasVariableId(HasElement(ARRID1,KEYID1),VARID1)
 ∧ HasKeyExpression(KEYID1,EXPRID1)
 ∧ ValueOf(EXPRID1,0)

∧ HasValue(VARID1,1)
Constraints : HasArrayName(ARRID1,'myarray')

Figure 6.3. Overall goal of example array exercise.

Chapter 6 : Arrays, Functions and Forms 121

Action(AssignArrayVariable(x,y,expressionId),
PRECOND: value ValueOf(expressionId,value)
EFFECT: when varId,arrayId,keyId,exprId
 (HasVariableId(HasElement(arrayId,keyId),varId)

∧ HasKeyExpression(keyId,exprId)
∧ ValueOf(exprId,y)
∧ HasArrayName(arrayId,'x')):

 HasValue(varId,_) ← HasValue(varId,value)
∧ when varId,arrayId,keyId,exprId

 (HasVariableId(HasElement(arrayId,y),varId)
∧ HasKeyExpression(keyId,exprId)
∧ ValueOf(exprId,y)
∧ HasArrayName(arrayId,'x')):

 Generate(newArrId)
 Generate(newVarId)
 Generate(newKeyId)
 Generate(newExprId)
 HasArrayName(newArrId,'x')
 HasVariableId(HasElement(newArrId,newKeyId),newVarId)
 HasKeyExpression(newKeyId,newExprId)
 ValueOf(newExprId,y)
 HasValue(newVarId,value)
 HasInitialValue(newVarId,value)

∧ when varId, keyId,exprId arrayId
 (HasVariableId(HasElement(arrayId,keyId),varId)

∧ HasKeyExpression(keyId,exprId)
∧ ValueOf(exprId,y)
∧ HasArrayName(arrayId,'x')):

 Generate(newVarId)
 Generate(newKeyId)
 Generate(newExprId)
 HasVariableId(HasElement(arrayId, newKeyId),newVarId)
 HasKeyExpression(newKeyId,newExprId)
 ValueOf(newExprId,y)
 HasValue(newVarId,value)
 HasInitialValue(newVarId,value))

Figure 6.4. AssignArrayVariable action.

122 Chapter 6 : Arrays, Functions and Forms

This action is very similar to the Assign action discussed in Figure 4.10. One

main difference is that it takes in three arguments, the array name, the value of the

key and the expression id of the right hand side expression, instead of the two

arguments of the standard Assign action. It then uses these arguments to check if an

ArrayVariable already exists for the given array and key. If so, it updates this

variable. The next main difference from the standard Assign action is that this

action contains two alternatives in the case where a corresponding ArrayVariable is

not found. In the first case, neither the array nor the key given in the arguments

exist. In such a case, the action creates a new Array, Key, key expression and

Variable before assigning the value of the right hand side expression. In the second

case, the array exists but no corresponding key exists. In this case, a new Key and

key expression are created before assigning the value to the ArrayVariable.

ArrayVariables as well as a SimpleVariable can make up the left hand side of

the combined assignment operators discussed in Section 4.4.3. Therefore, actions

corresponding to Figure 4.12 are defined for ArrayVariables as well. Figure 6.5

shows the subtype version of the AssignAddArrayVariable action. The only

difference from the AssignArrayVariable action is that the value that is assigned to

the variable when it already exists is the value of the expression plus the original

value of the variable. Similar actions are written for all the other combined

assignment operators as well (Appendix C).

AssignAddArrayVariable(x,y,exprId) ⊂ AssignArrayVariable(x,y,exprId)

Action(AssignAddArrayVariable(x,y,exprId),
PRECOND: value ValueOf(exprId,value)
EFFECT: when arrayId,varId,keyId,exprId
 (HasVariableId(HasElement(arrayId,keyId),varId)

∧ HasKeyExpression(keyId,exprId)
∧ ValueOf(exprId,y)
∧ HasArrayName(arrayId,'x')

 ∧ HasValue(varId,value2)∧Add(value2,value,value1)) :
 HasValue(varId,_) ← HasValue(varId,value1)

Figure 6.5. Subtype version of AssignAddArrayVariable action.

Chapter 6 : Arrays, Functions and Forms 123

6.1.2 Array Construct

PHP offers a special construct, „array‟ to assign values to an entire array in one

go. This construct is placed on the right hand side of an assignment operator, where

the left hand side contains the name of the array. The „array‟ construct can take two

forms. The first form contains a list of values separated by commas creating an

indexed array starting from index 0. The second form contains a list of key value

pairs separated by commas creating an associative array. Examples for both the

forms of use of the „array‟ construct are given in Figure 6.6.

The „array‟ construct is handled by manipulating the AST. When an „=‟ node

is encountered while walking the AST, the right hand node is inspected to see

whether it is an „array‟ node. If so, the assignment statement in AST form is

converted into several separate assignment statements in AST form with

corresponding array elements and values as child nodes. Table 6.1 shows the

original AST and the converted AST for the second example shown in Figure 6.6.

Here, the „=‟ node in the original AST is converted into two separate „=‟ nodes in the

modified AST. The left hand side of each of the converted nodes contain the array as

well as the key while the right hand side contains the relevant value. Now, the

modified AST is handled as a normal assignment to two separate ArrayVariables.

Table 6.1

AST Conversion for Array Construct

Original AST Modified AST

(PHP (= ($ b) (array (=> 'Emily'

25) (=> 'Bob' 32))))

(PHP (= ([($ b) 'Emily') 25)

(= ([($ a) 'Bob') 32))

6.2 FUNCTIONS

PHP functions can be divided into two main groups: pre-defined and user-

defined functions. Therefore, the Function object type is divided into two main

subtypes, PreDefinedFunction and UserDefinedFunction as shown in Figure 6.7. In

writing PHP programs, it is always possible to refactor a section of code into a

$a=array(25,32)
$b=array('Emily'=>25,'Bob'=>32')

Figure 6.6. Two forms of the array construct.

124 Chapter 6 : Arrays, Functions and Forms

function and call that function from other code. The scope of this thesis does not

include the analysis of such arbitrarily defined functions. UserDefinedFunctions are

only analysed if they are specified in the exercise specification. Also, such

UserDefinedFunctions are only accepted as correct if they carry out the exact tasks

given in the specification. E.g. programs are considered incorrect if parts of the main

program, as given in the specification, are transferred into a function. This is a

shortcoming in the program analysis process used here.

Figure 6.7. ORM diagram for functions.

6.2.1 Predicates for Handling Functions

When modelling functions, it is necessary to consider two distinct aspects.

Consider the PHP program with a function given in Figure 6.8. The first block of

code containing the „function‟ keyword is the function definition. This block defines

the name of the function, its parameters and what it actually does. The next block of

code is outside the function but the last line is a function call. Separate sets of

predicates are defined in the KB to handle these two situations: function definitions

and function calls.

Chapter 6 : Arrays, Functions and Forms 125

6.2.1.1 Function Definition

A function definition results in the creation of a Function object. As in other

types of objects, each Function is assigned a unique id. A Function always has a

name which is given by the HasFunctionName predicate. Very often, functions have

parameters. These are defined using the HasParameter predicate. This predicate

takes three arguments: the function id, the parameter position given by

ParamPosition, and the ParameterVariable. The ParameterVariable behaves like

other variables once it is defined in the function signature. However, its value is

taken from any values passed into the function during a function call. Therefore, it is

a Variable with some special characteristics. Due to this reason, ParameterVariables

are modelled as a third subtype of Variables. Some functions also return a value.

This value is an expression. This is modelled as a return expression given by the

HasReturnExpression predicate.

In order to illustrate this, consider the function definition in Figure 6.8 again.

Let the id of the created Function be FuncId1. This function has two

ParameterVariables. Let their ids be ParamVarId1 and ParamVarId1 respectively.

This function also has a „return‟ keyword so it returns a value of an expression. Let

the id of the return expression be RetExprId1. Then, the following facts are created.

HasFunctionName(FuncId1,'findTotal')

HasParameter(FuncId1,1,ParamVarId1)

HasName(ParamVarId1,'num1')

function findTotal($num1,$num2)
{

$tot=$num1+$num2;
return($tot);

}

$x=5;
$y=10;
$z=findTotal($x,$y);

Figure 6.8. Example program for function use.

126 Chapter 6 : Arrays, Functions and Forms

HasParameter(FuncId1,2,ParamVarId2)

HasName(ParamVarId2,'num2')

HasReturnExpression(FuncId1,RetExprId1)

6.2.1.2 Function Call

Each function call is represented as a collection of facts. The call itself is

modelled as a FunctionCall object instance with a unique id. Each FunctionCall

calls a function that has already been defined, either by the program itself

(UserDefinedFunction) or by PHP (PreDefinedFunction). This relationship is

established through the CallsFunction predicate. When calling a function, it is

necessary to pass values to the ParameterVariables. These values could be Literals,

other variables or even other expressions. In order to cover all these types, these are

modelled as expressions. The relationship between the FunctionCall, the position of

the passed expression and the expression itself is given using the

HasParamExpression predicate. The ParamPosition used here is the same as that

used in the HasParameter predicate in the function definition. It is possible that

functions also return some value. The value returned by the function for a particular

function call is modelled using the HasReturnValue predicate.

In order to illustrate this, again consider the program in Figure 6.8. In this

case, a call is made to the function defined in Section 6.2.1.1. Let the id of the

created FunctionCall be FuncCallId1. Then, the relationship to this function is

established using the following fact.

CallsFunction(FuncCallId1,FuncId1)

The next aspect that must be captured are the parameters that are passed. Two

parameters are passed in the example in Figure 6.8. Both are simply the values of

variables and are therefore modelled as VariableExprs. Let the ids of these

expressions be VarExprId1 and VarExprId2 respectively. Also, let the ids of the

Variables corresponding to $x and $y be VarId1 and VarId2 respectively. Then, the

following facts are created.

HasParamExpression(FuncCallId1,1,VarExprId1)

HasVariable(VarExprId1,VarId1)

HasParamExpression(FuncCallId1,2,VarExprId2)

Chapter 6 : Arrays, Functions and Forms 127

HasVariable(VarExprId2,VarId2)

Assume that, after executing of the function based on the given parameters, it

returns a value of Value1. Then, the following fact is created.

HasReturnValue(FuncCallId1,Value1)

Function calls can be made in two ways: as stand-alone calls to perform some

processing, or as parts of expressions that return a value. The above predicates are

sufficient to model stand-alone function calls. However, when the return value of a

function is used for some purpose, the function call behaves as any other type of

expression. For example, in the example program in Figure 6.8, the function call

forms the right hand side of an assignment statement. As described in Section 4.4.3,

the right hand side of assignment statements are always modelled as Expressions.

Therefore, a fourth subtype of Expression known as FunctionExpr is modelled as

explained in Section 4.4.1.1. The relationship between the function expression and

the actual FunctionCall is given through the HasFunctionCall predicate. In the

above case let the value of the created expression be FuncExprId1. This results in

the following fact being created.

HasFunctionCall(FuncExprId1,FuncCallId1)

All the facts described in this section are used together to analyse programs

that use PHP functions.

6.2.2 The Scope of Variables

When dealing with PHP programs that do not contain any functions, any

Variable that is defined once is accessible from anywhere within the program.

However, when functions are included in a program, it is necessary to consider the

scope of variables. The scope indicates which area of the program each variable is

accessible from. Several predicates and rules are used in order to model the scope of

variables.

CurrentScope is a predicate with a single argument. This argument specifies

which function is in scope at the current time during program analysis. There is no

function within the main PHP program. Therefore, the argument of CurrentScope

during the analysis of the main program is taken to be Null. Whenever a function

definition is encountered, the argument of CurrentScope becomes the id of this

128 Chapter 6 : Arrays, Functions and Forms

function. At any given state during the fact creation process, there is only one

CurrentScope fact. After all the AST nodes for the function are walked through, the

argument of CurrentScope returns to Null.

The scope of each Variable is established using the HasVariableScope

predicate. This predicate forms a relationship between the ids of the variable and the

function. Again, for Variables that are in scope within the main program, the id of

the function is replaced by Null. For example, again consider the example program

in Figure 6.8. The moment the function definition is encountered and the Function

object is created, the CurrentScope is set to the id of the function as below.

CurrentScope(FuncId1)

The ParameterVariables can both be accessed only within the function.

Therefore, each time a ParameterVariable is created, its scope is set to the

CurrentScope. This results in the following facts.

HasVariableScope(ParamVarId1,FuncId1)

HasVariableScope(ParamVarId2,FuncId1)

Any other variables that appear inside the function are also set to this scope as

described in Section 6.2.2.3 below. Once the function definition is complete and the

main program is reached, the CurrentScope is set to Null as below.

CurrentScope(Null)

Any variables encountered within the main program are set to the Null scope as

described in Section 6.2.2.3 below.

6.2.2.1 Scope of ArrayVariables

This situation is somewhat modified when considering ArrayVariables. All

ArrayVariables belonging to a single array have the same scope and the scope is

determined by where the Array itself is defined. The scope of the array is specified

using the HasArrayScope predicate. The scope that is assigned for the Array applies

to all ArrayVariables that are associated with the Array. This relationship is

established by the first rule given in Figure 6.9.

For example, consider a case where an Array with id ArrId1 is defined in the

main program. Then, its scope is defined by the fact below.

Chapter 6 : Arrays, Functions and Forms 129

HasArrayScope(ArrId1,Null)

Assume that this array contains two elements. Let the ids of the Keys

corresponding to the two elements be KeyId1 and KeyId2 respectively. Let the ids

of the corresponding Variables be VarId1 and VarId2 respectively. Then, the

following facts are created.

HasVariableId(HasElement(ArrId1,KeyId1),VarId1)

HasVariableId(HasElement(ArrId1,KeyId2),VarId2)

Then, the first rule in Figure 6.9 results in the scope of the two ArrayVariables

being set, resulting in the following facts.

HasVariableScope(VarId1,Null)

HasVariableScope(VarId2,Null)

6.2.2.2 Super-global and Global Variables

Some predefined Variables in PHP are super-globals. This means that these

Variables are always in scope, no matter where in the program they are used.

Although many such super-globals are beyond the scope of this thesis, a few are

necessary for basis PHP programming. The main super-globals used in the scope of

this thesis are actually super-global arrays, namely the $_POST and $_GET arrays

described in Section 6.1. However, it is theoretically possible to model other super-

global arrays in a similar manner.

HasVariableScope(varId1,funcId1)
← HasArrayScope(arrId1,funcId1) ∧

HasVariableId(HasElement(arrId1,keyId1),varId1)

HasVariableScope(varId1,funcId1)

← HasName(varId1,x) ∧ HasVariableScope(varId1,Null) ∧
CurrentScope(funcId1) ∧ Global(x,funcId1)

HasArrayScope(arrId1,funcId1)

← HasArrayName(arrId1,x) ∧ HasArrayScope(arrId1,Null) ∧
CurrentScope(funcId1) ∧ Global(x,funcId1)

Figure 6.9. Rules for handling variable scope.

130 Chapter 6 : Arrays, Functions and Forms

PHP also uses global variables. These are variables that are defined in the

main program but can be accessed from within a function. Before a global variable

can be accessed within a PHP function, it must be declared to be global. An example

of such a program is given in Figure 6.10. In this program, the variable $y is defined

within the main program. The „global‟ keyword before the variable $y in the

function specifies that it is a global variable. This means that any reference to $y

within the function is a reference to the same variable as is defined in the main

program.

Both super-global and global variables and arrays are handled using a special

predicate, Global. This takes two arguments, the name of the global variable and the

id of the function where it is declared global. When this fact is present, the second

and third rules in Figure 6.9 are used to specify that these Variables are also in scope

in the function that is currently being analysed.

Considering the example above, let the id of the Variable $y be VarId2. Since

it is defined within the main program, the following facts are created.

HasName(VarId2,'y')

HasVariableScope(VarId2,Null)

When the AST is being analysed, the function definition changes the

CurrentScope to the scope of the function. Let the id of the Function be FuncId1.

Then, the following fact is created.

CurrentScope(FuncId1)

Now, when the „global‟ node is encountered in the AST, the following fact is

created.

function findTotal($num1)
{
 global $y;

$tot=$num1+$y;
return($tot);

}

$x=5;
$y=10;
$z=findTotal($x);

Figure 6.10. A PHP program with a global variable.

Chapter 6 : Arrays, Functions and Forms 131

Global('y',FuncId1)

Now, the scope of the variable is also set to the function scope using the second

rule in Figure 6.9. This results in the following fact.

HasVariableScope(VarId2,FuncId1)

A similar approach is used for super-global arrays and the third rule in Figure

6.9 is used. A more detailed analysis for such a case is presented in Appendix F.

6.2.2.3 Extending Previous Rules and Actions

All rules and actions until this point did not consider the scope of variables. It

assumed that, once a variable was created, it was in scope and could therefore be

accessed from anywhere. However, with the introduction of functions, it becomes

necessary to consider the scope when dealing with variables. This means that this

aspect needs to be incorporated into some of the rules and actions discussed in

Chapter 4.

The rule to calculate the value of a VariableExpr in Section 4.4.1.1 ignored the

fact that the Variable may not be in scope. The value of VariableExpr and pre and

post fix expressions can only be found if the variable concerned is in scope.

Therefore, these rules are extended to include this fact as shown in Figure 6.11.

The scope of variables needs to be taken into account in the Assign action as

well. The existing Variable can only be updated if a Variable of the given name

exists in the current scope. This is reflected in the modified version of the Assign

action shown in Figure 6.12. The AssignArrayVariable action is also modified in a

similar manner but in this case, the HasArrayScope predicate is used as shown in

Figure 6.13. The AssignAdd action and the AssignAddArrayVariable actions are

also modified by incorporating the scope. These and other combined assignment

actions are given in Appendix C.

ValueOf(variableExprId,v) ← HasVariable(variableExprId,variableId)
∧ HasValue(variableId,v)
 ∧ CurrentScope(funcId)
 ∧ HasVariableScope(variableId,funcId)

ValueOf(preExprId,v) ← HasPrePostVariable(preExprId,varId)
 ∧ HasValue(varId,v)
 ∧ CurrentScope(funcId1)
 ∧ HasVariableScope(varId1,funcId1)

132 Chapter 6 : Arrays, Functions and Forms

 Action(AssignArrayVariable(x,y,expressionId),
PRECOND: value ValueOf(expressionId,value)
EFFECT: when varId,arrayed,keyId,exprId
 (HasVariableId(HasElement(arrayId,keyId),varId)

∧ HasKeyExpression(keyId,exprId)
∧ ValueOf(exprId,y)
∧ HasArrayName(arrayId,x)

Action(Assign(x,expressionId),
PRECOND: value ValueOf(expressionId,value) ∧ CurrentScope(funcId)
EFFECT: When variableId (HasName(variableId,'x')
 ∧ CurrentScope(funcId) ∧ HasVariableScope(variableId,funcId)):
 HasValue(variableId,_) ← HasValue(variableId,value)
 ∧ when ¬ variableId(HasName(variableId,'x')
 ∧ CurrentScope(funcId) ∧ HasVariableScope(variableId,funcId)):
 Generate(newVariableId)
 HasName(newVariableId,x)
 HasVariableScope(newVariableId,funcId)
 HasValue(newVariableId,value)
 HasInitialValue(newVariableId,value)

Figure 6.12. Modified Assign action to include variable scope.

Chapter 6 : Arrays, Functions and Forms 133

134 Chapter 6 : Arrays, Functions and Forms

6.2.3 Analysis of Programs that Use Functions

This section looks in more detail at how programs that use functions are

analysed in the system.

6.2.3.1 Overall Goal Specification

As described in Section 4.4.2, an exercise specification contains an overall goal

in order for the system to analyse potential solutions. When PreDefinedFunctions

need to be accessed in the exercise, the overall goal specification is given in the same

manner with the necessary facts. However, when the required program should

contain UserDefinedFunctions, the overall goal specification becomes a bit more

complex. The requirements of the UserDefinedFunction are given using a set of

conditions of a sub-plan. If the conditions of the sub-plan are satisfied, a new fact,

FunctionOK(..), is created. This fact is included in the overall goal to ensure that a

function conforming to the specifications is present (e.g. see first line in Figure

6.16). In order to describe this further, consider the example exercise given in

Figure 6.14.

Here, the variables $x and $y contain values when the program needs to be

written so the program has an initial state. The specification of the initial state is

given in Figure 6.15. As before, symbolic values have been considered as the initial

values of the variables $x and $y. Note that the scope has also been included in the

initial state of the program.

The overall goal in this case consists of goals, constraints and a sub-plan as

shown in Figure 6.16. The sub-plan defines the requirements for the function

definition. Once the function definition node in the AST is encountered, the state

should contain facts that are equal to the preconditions of the sub-plan. If not, an

error is identified as the sub-plan cannot be satisfied. If any such facts are present,

the function definition node of the AST node is walked through, creating relevant

Write a PHP function called findTotal that takes in two parameters and returns

their total. In the main program, call this function with the values stored in

variables $x and $y and store the result into the variable $z. Note that the

variables $x and $y already contain values when execution reaches the point

where the code needs to be completed.

Figure 6.14. Example exercise for functions.

Chapter 6 : Arrays, Functions and Forms 135

facts as described in Section 4.5.3. Next, the available facts are checked to see

whether the facts in the post-conditions of the sub-plan are present. If so, the sub-

plan is taken to be satisfied and the FunctionOK fact is created.

The overall goal of the program is to assign the value of the total of variables

$x and $y to the variable $z. This is specified by the goal. The FunctionOK fact is

HasName(VARID1,'x')
∧ CurrentScope(Null)
∧ HasValue(VARID1,val_x)
∧ HasInitialValue(VARID1,val_x)
∧ HasVariableScope(VARID1,Null)
∧ HasName(VARID2,'y')
∧ HasValue(VARID2,val_y)
∧ HasInitialValue(VARID2,val_y)
∧ HasVariableScope(VARID2,Null)

Figure 6.15. Initial state for example exercise for functions.

 Goal : FunctionOK(FUNCID1)
 ∧ Add(val_x,val_y,VALUE)
 ∧ HasValue(VARID3,VALUE)
Constraints : HasFunctionName(FUNCID1,'findTotal')

∧ HasName(VARID3,'z')
∧ HasFunctionCall(FUNCEXPRID1,FUNCID1)
∧ CallsFunction(FUNCCALLID1,FUNCID1)
∧ HasParamExpression(FUNCCALLID1,1,EXPRID1)
∧ ValueOf(EXPRID1,val_x)
∧ HasParamExpression(FUNCCALLID1,2,EXPRID2)
∧ ValueOf(EXPRID2,val_y)
∧ HasReturnValue(FUNCCALLID1,VALUE)

Conditions of Subplan(FunctionOK(FUNCID1)):
PRECOND : HasParameter(FUNCID1,1,VARID4)

∧ HasParameter(FUNCID1,2,VARID5)
∧ HasValue(VARID4, VALUEa)
∧ HasValue(VARID5, VALUEb)

POSTCOND: Add(VALUEa, VALUEb,VALUEc)
∧ HasReturnExpression(FUNCID1, RETEXPRID1)
∧ ValueOf(RETEXPRID1,VALUEc)

Figure 6.16. Overall goal specification for example exercise for functions.

136 Chapter 6 : Arrays, Functions and Forms

included in the goal since it is a requirement in this case that a function be used to

achieve this. The name of the new Variable and Function are part of the constraints

as explained in Section 4.4.2. The rest of the constraints in this case are used to

specify that the assignment to the new variable should occur using the defined

function and not using any other method. This is achieved through the

HasFunctionCall and CallsFunction predicates. The HasParamExpression predicate

and the values of the relevant expressions are used to ensure that the values of the

parameters passed during the function call are correct. The ValueOf function

expression ensures that the value returned by the function is the same one as is

assigned to the variable.

6.2.3.2 Walking the AST

In order to study the process of walking the AST, consider the program given

in Figure 6.17 as a solution to the example exercise given in Figure 6.14. This is

basically the same as the program in Figure 6.8 except for the fact that $x and $y are

not assigned values within the program but are assumed to have initial values.

The initial state of the program results in the following facts, assuming that the

ids of the variables $x and $y are VarId1 and VarId2 respectively.

CurrentScope(Null)

HasName(VarId1,'x')

HasInitialValue(VarId1,val_x)

HasValue(VarId1,val_x)

HasVariableScope(VarId1,Null)

function findTotal($num1,$num2)
{

$tot=$num1+$num2;
return($tot);

}

$z=findTotal($x,$y);

Figure 6.17. Solution to example exercise for functions.

Chapter 6 : Arrays, Functions and Forms 137

HasName(VarId2,'y')

HasInitialValue(VarId2,val_y)

HasValue(VarId2,val_y)

HasVariableScope(VarId2,Null)

The function definition is the first node of the AST to be processed and results

in the following facts as described in Section 6.2.1.1.

CurrentScope(FuncId1)

HasFunctionName(FuncId1,'findTotal')

HasParameter(FuncId1,1,ParamVarId1)

HasName(ParamVarId1,'num1')

HasParameter(FuncId1,2,ParamVarId2)

HasName(ParamVarId2,'num2')

Since the ParameterVariables are only in scope within the function, new facts

are created to indicate this.

HasVariableScope(ParamVarId1,FuncId1)

HasVariableScope(ParamVarId2,FuncId1)

In order to see whether the Function behaves as it should, it is necessary for

these ParameterVariables to be assigned values. However, there is no way to assign

exact values to these Variables during function definition. The solution that is used

here is to utilise the rule shown in Figure 6.18 to assign the name of the Variable as

the initial value of all ParameterVariables. These are then used as symbolic values

which are used when analysing the statements within the function.

The resultant facts are given below.

HasValue(ParamVarId1,'num1')

HasValue(varId1,name1)
← HasParameter(funcId1,position1,varId1) ∧ HasName(varId1,name1)
∧ HasVariableScope(varId1,funcId) ∧ CurrentScope(funcId1)

Figure 6.18. Rule to set initial value of parameter variables.

138 Chapter 6 : Arrays, Functions and Forms

HasValue(ParamVarId2,'num2')

At this point, before processing the nodes in the function, a check is made to

see whether the preconditions of a sub-plan are satisfied. When considering the

overall goal specification in Figure 6.16, it can be seen that the precondition is

satisfied when FUNCID1=FuncId1, VARID4=ParamVarId1,

VARID5=ParamVarId2, VALUEa='num1' and VALUEb='num2'. Therefore, the

analysis process continues, analysing the AST nodes resulting from the statements

within the function to create the relevant facts.

The first node corresponds to an assign statement with an AddExpr on the right

hand side. Let the id of the AddExpr be ExprId1 and the values of the VarExprs on

either side of this expression be VarExprId1 and VarExprId2 respectively. Then, the

following facts are created.

HasId(AddExpr(VarExprId1,VarExprId2),ExprId1)

HasVariable(VarExprId1,ParamVarId1)

HasVariable(VarExprId2,ParamVarId2)

The ValueOf each of these sub-expressions is then found using the rules in

Figure 6.11.

ValueOf(VarExprId1,'num1')

ValueOf(VarExprId2,'num2')

The ValueOf the AddExpr is next found using the rules in Figure 4.8Figure

4.8. Let the sum of 'num1' and 'num2' be tot so Add('num1', 'num2',tot).

ValueOf(ExprId1,tot)

 The value of this is assigned to a new variable, $tot and the following facts

are created as given in the Assign action in Figure 6.12. Let the id of the newly

created Variable be VarId1.

HasName(VarId1,'tot')

HasValue(VarId1,tot)

HasInitialValue(VarId1,tot)

HasVariableScope(VarId1,FuncId1)

Chapter 6 : Arrays, Functions and Forms 139

Next, the AST node corresponding to the return expression is analysed. Here,

the return expression is actually a VarExpr returning the $tot variable. This is used

together with the rules to find the ValueOf the expression to create the following

facts.

HasReturnExpression(FuncId1,RetExprId1)

HasVariable(RetExprId1,VarId1)

ValueOf(RetExprId1,tot)

Now, the function definition has been processed. At this point, a check is

made to see whether the post-conditions of the sub-plan are satisfied. When

comparing against the sub-plan in Figure 6.16, it can be seen that the post-conditions

are satisfied when RETEXPRID1=RetExprId1 and VALUEc=tot. This means that

the function definition matches the specifications, resulting in the following fact

being created.

FunctionOK(FuncId1)

 If at this point, the post-conditions are not satisfied, the program is identified

as incorrect. Since the post-conditions are matched, the analysis process returns to

the main program so the scope is altered as below.

CurrentScope(Null)

The main program contains an assignment so the Assign action is executed. In

this case, the right hand side of the assignment is a function call, resulting in a

FunctionExpr. Since this expression is identical to the one considered in Section

6.2.1.2, the following facts are created.

CallsFunction(FuncCallId1,FuncId1)

HasParamExpression(FuncCallId1,1,VarExprId1)

HasVariable(VarExprId1,VarId1)

HasParamExpression(FuncCallId1,2,VarExprId2)

HasVariable(VarExprId2,VarId2)

HasFunctionCall(FuncExprId1,FuncCallId1)

140 Chapter 6 : Arrays, Functions and Forms

Using the rules in Figure 6.11, the ValueOf the parameter expressions are

found as below.

ValueOf(VarExprId1,val_x)

ValueOf(VarExprId2,val_y)

Now, in order to find the output of the function, it is necessary to establish the

values of the ParameterVariables are the values passed in as parameters. This is

done using the rule shown in Figure 6.19. This results in the following facts being

created.

HasValue(ParamVarId1,val_x)

HasValue(ParamVarId2,val_y)

Next, these are matched to the preconditions of the sub-plan that was satisfied

and the corresponding post-conditions are created since the sub-plan is already

known to be satisfied. This results in the following fact being created where

Add(val_x,val_y,value).

ValueOf(RetExprId1,value)

Since the function call returns a value, the value of the return expression at this

point is assigned to the return value of the function call, resulting in the following

fact.

HasReturnValue(FuncCallId1,value)

In this case, it is necessary to find the ValueOf the function expression on the

right hand side of the assignment expression in order to carry out the assignment.

This is done using the rule shown in Figure 6.20. Using this rule, the following fact

is created.

ValueOf(FuncExprId1,value)

HasValue(varIdn,valn)
← CallsFunction(funcCallId1,funcId1)

∧ HasParamExpression(funcCallId1,n,paramExprIdn)
∧ ValueOf(paramExprIdn,valn)
∧ HasParameter(funcId1,n,varIdn)

Figure 6.19. Rule to calculate the ValueOf parameter variables.

Chapter 6 : Arrays, Functions and Forms 141

Now, the assign action results in the following facts being created. Let the

value of the new Variable be VarId3.

HasName(VarId3,'z')

HasInitialValue(VarId3,value)

HasValue(VarIde,value)

HasVariableScope(VarId1,Null)

These facts are included in the final state of the program. When comparing the

final state against the goal specified in Figure 6.16, it can be seen that the goal is

satisfied when FUNCID1=FuncId1, VALUE=value and VARID3=VarId3.

Moreover, the constraints are satisfied when the above conditions are true and when

FUNCCALLID1=FuncCallId1, EXPRID1=VarExprId1, EXPRID2=VarExprId2 and

EXPRID3=RetExprId1. Therefore, the program is identified as correct.

This process is used to analyse different types of functions. If only the

function definition is required in the specification, the second part of the analysis is

unnecessary and the program is identified as correct as long as the sub-plan is

satisfied. Several more examples of how functions are analysed can be found in

Appendix F.

6.2.4 Pre-Defined Functions

As described in Section 6.2.1, facts defining a function are created when a

function definition is encountered within the AST. However, in the case of

PreDefinedFunctions, a function definition is never encountered when walking the

AST. Only function calls for PreDefinedFunctions are embedded within the AST.

When such a FunctionCall is encountered, the post-condition of the relevant sub-

plan needs to be considered, in order to create the relevant facts. However, in this

case, since the behaviour of the function is not part of the overall goal, no sub-plan is

ValueOf(exprId1,value)
←HasFunctionCall(exprId1,funcCallId1)

 ∧ CallsFunction(funcCallId1,funcId1)
∧ HasReturnValue(funcCallId1,value)

Figure 6.20. Rule for calculating the ValueOf FunctionExprs.

142 Chapter 6 : Arrays, Functions and Forms

included in the exercise specification. Therefore, it becomes impossible to create the

facts that result from the execution of the function.

This problem is solved by storing relevant facts for PreDefinedFunctions.

Whenever a FunctionCall is encountered, it is first checked to see whether a

PreDefinedFunctions of the same name exists. If so, the relevant facts for the

function definition are created, based on data that is stored in the system. This data

contains information regarding the function name, the number of parameters, the

preconditions and the post-conditions. If the number of parameters in the function

call does not match a function definition, an error in semantic analysis (as defined in

the theory of compilers) is identified. Functions with optional parameters are

handled by storing data for all possible numbers of parameters. Then, the relevant

definition is selected based on the number of parameters in the function call. Once

the relevant function definition is selected, the corresponding facts that result from

the function definition and function execution are created based on data that is stored

with respect to the PreDefinedFunction. If no PreDefinedFunction of the name is

present, it is checked against the UserDefinedFunctions and processed as described

in Section 6.2.3.2. If no UserDefinedFunction of the same name can be found, an

error in semantic analysis is identified.

It should be noted that the number of PreDefinedFunctions that can be used in

PHP is very large. Most of these functions are never encountered within basic PHP

programs. Therefore, although the above modelling technique can theoretically be

used to model any PHP function, only the ones that are used in the exercises have

actually been modelled. The actual PHP functions modelled in this manner are isset,

intval and rand.

6.2.5 Conditional Expressions Where the Condition is a FunctionCall

Sometimes, the conditional expression within a selection statement can be a

FunctionCall. An example code is shown in Figure 6.21. In this program, the

conditional expression within the if statement is a call to the function isset which

returns True or False based on whether variable $_POST['x'] has already been set or

not. In such cases, it is necessary to determine the value returned by the function

before a suitable conditional fact can be determined as described in Section 5.2. The

rules in Figure 6.22 are used for this purpose. The value returned by the function is

set to be equal to the value of the FunctionExpr.

Chapter 6 : Arrays, Functions and Forms 143

6.2.6 Unnecessary Statements in Functions

As described in Section 4.5.5, programs sometimes contain statements that are

unnecessary to achieve the overall goal. Such statements in programs with functions

are also handled using statuses. A new status is created each time a function

definition is encountered. Any statuses created during the analysis of the function

are linked to this initial function status. In addition to normal program statements,

functions may also contain „return‟ statements. A new status is created when a

„return‟ statement is encountered.

The flow of statuses in this case is slightly different from the earlier cases due

to the use of sub-plans. As described in Section 6.2.3.2, a FunctionOK fact is created

once it is established that a sub-plan is satisfied. A new status is created just before

creating this FunctionOK fact. A link is maintained between this new status and the

status where the sub-plan was satisfied in order to establish that this path is necessary

to achieve the overall goal.

The flow of statuses for the example program in Figure 6.14 is shown in

Figure 6.23. The initial function definition creates the new status „Status 1‟. The

EqualTo(value,True)
← HasId(FunctionExpr,exprId1)

∧ ValueOf(exprId1,True)
∧ HasFunctionCall(exprId1,funcCallId1)
∧ HasReturnValue(funcCallId1,value)

EqualTo(value,False)
← HasId(FunctionExpr,exprId1)

∧ ValueOf(exprId1,False)
∧ HasFunctionCall(exprId1,funcCallId1)
∧ HasReturnValue(funcCallId1,value)

Figure 6.22. Rules used to find conditional expressions for FunctionExprs

if(isset($_POST['x']))
{
 echo('The variable has a value');
}

Figure 6.21. PHP code that has a function expression as the condition within a selection statement.

144 Chapter 6 : Arrays, Functions and Forms

assignment statement within the function results in a new status. This is linked to

Status 1 for two reasons: it is part of the function definition as well as uses the

values of the function parameters which are created within Status 1. The return

statement results in another new status. This is linked to Status 1 because it is part of

the function definition. It is also linked to Status 2 since the variable $tot created

within Status 2 is used here. At the end of the function definition, the sub-plan is

satisfied as described in Section 6.2.3.2. Now, a new status is created before the

FunctionOK fact is defined. This status is linked to Status 3 since this is the status

where the sub-plan was satisfied. Another new status is created by the assignment

statement in the main program. This status is linked to the initial status since it uses

values from the variables $x and $y created during the initial status. It is also linked

to Status 4 since FunctionOK forms a part of the overall goal. Now it can be seen

that all the statuses are linked to the status where the overall goal is satisfied, i.e.

Status 5. If any additional statements were present, they would not contain a path

leading to this status and therefore, can be identified as unnecessary. If any

unnecessary statements are present within the function, they would not lead to the

status where the sub-plan is satisfied and would therefore be identified as

unnecessary.

Status 1

function findTotal

Status 4

Initial State

Status 0

Status 3 return($tot)

Status 5

$z=findTotal($x,$y)

FunctionOK

Status 2

$tot=$num1+$num2

Figure 6.23. Flow of statuses for example program using functions.

Chapter 6 : Arrays, Functions and Forms 145

6.3 FORMS

HTML forms are an integral part of dynamic web pages. Since little work has

been done in teaching web programming using ITSs, knowledge bases to handle such

forms have not been designed. HTML forms offer a major challenge in modelling

since pages with such forms can be in one of two states: before submitting the form

and after submitting the form. The variables that are available for manipulation

depend on which of these states the form is in.

6.3.1 Form Definition

When modelling forms, it is necessary to consider the actual form and its

elements as well as the values passed from this form. Figure 6.24 shows the part of

the ORM diagram that shows the various object types related to forms. The form

itself is modelled as an object with a unique id. Each form has a method given by the

HasMethod predicate. The method is either „GET‟ or „POST‟ depending on the

method specified when creating the form.

A form has zero or more input elements, each with a unique id. The

relationship between the form and its elements is shown using the HasInputElement

predicate. Each input element has a type given by the HasInputType predicate. The

types of input elements modelled in this case are „TEXT‟, „SUBMIT‟ and

„SELECT‟. Although other input element types are possible in HTML, these are

outside the scope of this thesis. If the input type is „SELECT‟, it also contains some

options which are modelled as objects with unique ids. The options related to a

particular select element are given by the HasInputOption predicate. The value of

each option is modelled using the HasOptionValue predicate.

HTML allows defining input elements without names. However, in order to

access the values stored in these elements using PHP, it is necessary to give each

option a name. This is modelled using the HasInputName predicate.

An HTML form has an action that specifies the page onto which the form is

being submitted. The values entered into the InputElements of the form are only

accessible from within the page onto which the form is submitted. This research only

considers forms that are submitted onto the same page, i.e. action=''. I.e. does not

model forms where the form is submitted onto a different web page.

146 Chapter 6 : Arrays, Functions and Forms

Figure 6.24. ORM diagram for forms.

In order to see how these predicates are used, consider the example exercise

given in Figure 6.25. An example solution is given in Figure 6.26. The analysis of

this program is described step by step since it contains many different aspects.

Although the first part of the program contains other statements, the first step

in the analysis process is to create facts that are relevant to the form definition.

Using the above description let the id of the created Form object be FormId1. The

following fact is then created since the form uses the „POST‟ method.

HasMethod(FormId1,'POST')

Write a PHP program that contains a form that uses the POST method and

submits onto itself. The form should contain three input elements: a select list

named „item‟, a textbox named „quantity‟ and a submit button named „submit‟.

The select list should contain two items, „paper‟ and „pencil‟. The names and

values of these items should be the same. When the form is submitted, it should

display the value entered in the „quantity‟ textbox. The form should then be

displayed again so that it can be used.

Figure 6.25. Example exercise for forms.

Chapter 6 : Arrays, Functions and Forms 147

Let ids of the three created InputElements be InputId1, InputId2 and InputId3

respectively. Since the first InputElement is a select list, it also contains two options.

Let the ids of the Options be OptionId1 and OptionId2 respectively. Then, the

following facts are created.

HasInputElement(FormId1,InputId1)

HasInputName(InputId1,'item')

HasInputType(InputId1,'SELECT')

HasInputOption(InputId1,OptionId1)

HasOptionValue(OptionId1,'Paper')

HasInputOption(InputId1,OptionId2)

HasOptionValue(OptionId2,'Pencil')

The other two inputs do not contain any options and the following facts are

created.

HasInputElement(FormId1,InputId2)

HasInputName(InputId2,'quantity')

HasInputType(InputId2,'TEXT')

HasInputElement(FormId1,InputId3)

<?php
if(isset($_POST['submit']))
{
 echo($_POST['quantity']);
}
?>
<form method=post action=''>
<select name=item>
<option name=paper value=paper>paper</option>
<option name=pencil value=pencil>pencil</option>
</select>
<input type=text name=quantity>
<input type=submit name=submit>
</form>

Figure 6.26. Example solution to exercise for forms.

148 Chapter 6 : Arrays, Functions and Forms

HasInputName(InputId3,'submit’)

HasInputType(InputId3,'SUBMIT')

6.3.2 Accessing Values Passed Through Forms

The value stored in an HTML input element is accessed using a super-global

array. The name of the super-global array depends on the method used in the form.

The values stored in forms submitted using the „GET‟ method are stored in the array

$_GET while the values stored in forms submitted using the „POST‟ method are

stored in the $_POST array. Whatever the method, it is necessary to create a

FormArray object to hold the values upon submitting (for more information about

the FormArray object type, see Section 6.1). When a form is created, the relevant

subtype of form array, either $_GET or $_POST is created, based on the method

used in the form.

Considering the example above, since the „POST‟ method is used, the

FormArray named $_POST is created and associated with the form as below. Let

the id of the created $_POST array be FormArrayId1.

HasFormArray(FormId1,FormArrayId1)

When the form is submitted, this array is used to access the values stored in the

InputElements. In PHP syntax, these values are accessed using the array with the

Key containing the name of the InputElement. Therefore, facts are created to indicate

that the array has the corresponding elements. This is done using the rule in Figure

6.27.

The following facts are created for the above example using this rule. Let the

ids of the corresponding Variables be VarId1, VarId2 and VarId3 respectively. Also

HasVariableId(HasElement(formArrayId1,keyId1),varId1)
∧ HasKeyExpression(keyId1,exprId1)
∧ HasLiteral(exprId1,litId1)
∧ HasLitValue(litId1,inputName1)
←
HasInputElement(formId1,inputElementId1)
∧ HasInputName(inputElementId1,inputName1)
∧ HasFormArray(formId1,formArrayId1)

Figure 6.27. Rule to create array elements from form input elements.

Chapter 6 : Arrays, Functions and Forms 149

let the Keys of the corresponding elements be KeyId1, KeyId2 and KeyId3 and the

ids of the Expressions corresponding to the keys be ExprId1, ExprId2 and ExprId3

respectively.

HasVariableId(HasElement(FormArrayId1,KeyId1),VarId1)

HasKeyExpression(KeyId1,ExprId1)

HasLiteral(ExprId1,LitId1)

HasLitValue(LitId1,'item')

HasVariableId(HasElement(FormArrayId1,KeyId2),VarId2)

HasKeyExpression(KeyId2,ExprId2)

HasLiteral(ExprId2,LitId2)

HasLitValue(LitId2,'quantity')

HasVariableId(HasElement(FormArrayId1,KeyId3),VarId3)

HasKeyExpression(KeyId3,ExprId3)

HasLiteral(ExprId3,LitId3)

HasLitValue(LitId3,'submit')

Although these array elements exist, they only contain values when the form is

submitted. In PHP code, this is achieved by using an if condition with the „isset‟

predefined function. The „isset‟ function returns True if the variable passed in as its

argument is set and is not null. Although it is theoretically possible to pass in any

variable as the argument to this function, this research only considers the case where

a variable corresponding to an element in a FormArray is passed in. Additionally, it

is assumed that the „isset‟ function is used to check whether the „submit‟ button in

the form is pressed throughout this research. Although it is possible to consider

some other element of the form array, it is standard practice to check for the „submit‟

button. Therefore, the standard form of program considered here is as shown in

Figure 6.26.

The „isset‟ function is a function call. Therefore, the following set of facts are

created to handle the function call as described in Section 6.2.1.2. Since this is a

PreDefinedFunction, the relevant facts are created based on the stored data as

described in Section 6.2.4. Note that only the facts that are relevant to this analysis

150 Chapter 6 : Arrays, Functions and Forms

are shown. Let the id of the created Function be FuncId1 and the id of the

ParameterVariable be ParamVarId1. Let the ids of the return expression and

FunctionCall be RetExprId1 and FuncCallId1 respectively.

HasFunctionName(FuncId1,isset)

HasParameter(FuncId1,1,ParamVarId1)

HasReturnExpression(FuncId1,RetExprId1)

HasFunctionCall(FuncExprId1,FuncCallId1)

CallsFunction(FuncCallId1,FuncId1)

HasParamExpression(FuncCallId1,1,ParamExprId1)

HasVariable(ParamExprId1,VarId3)

The „isset‟ function expression resides inside a if condition. Therefore, when

considering the state inside the if condition, the value of the function expression is

True. This means that the following predicate is valid inside the condition.

ValueOf(FuncExprId1,True)

The special rule defined in Figure 6.28 is used to set the value of the variable

passed into the „isset‟ function to True if the value of the function expression is True.

This rule is executed within the if condition, resulting in the following fact.

HasValue(VarId3,True)

 When considering the semantics of PHP form processing, it is obvious that

once the submit button is pressed, all variables corresponding to input elements in

the relevant form will be set. Therefore, the rule shown in Figure 6.29 is used within

HasValue(varId1,True)
←
HasFunctionCall(funcExprId1,funcCallId1)
∧ CallsFunction(funcCallId1,funcId1)
∧ HasFunctionName(funcId1,’isset’)
∧ ValueOf(funcExprId1,True)
∧ HasParamExpression(funcCallId1,1,paramExprId1)
∧ HasVariable(paramExprId1,varId1)

Figure 6.28. Rule to set the value of the parameter variable when the value of a „isset‟ function

expression is True.

Chapter 6 : Arrays, Functions and Forms 151

the bounds of the if statement to set initial values for these variables. Since it is not

possible to set exact values for these variables, they are set to the names of the

InputElements. These form as a symbolic basis for program analysis.

In the example above the form contains two additional InputElements of type

SELECT and TEXT. Using the above rule, the following facts are now created

within the if statement.

HasValue(VarId1,'item')

HasValue(VarId2,'quantity')

Therefore, all variables within the FormArray now have values within the if

statement. This ensures that the submitted status of the form is accurately modelled.

6.3.3 Handling Standard Form Definitions

The above analysis describes how form submissions are handled as long as all

the elements of the form are known. However, as shown in Figure 6.26, it is

standard practice to write the code for form submission before defining the actual

form. This means that elements corresponding to the form have not been created by

the time the AST walking process encounters the „isset‟ function.

This problem is handled as in the case of HTML embedded within PHP

described in Section 4.6.3. The AST is walked through several times. During the

first round, any conditional statements are checked to see if the condition involves

any $_POST or $_GET variables. If so, these nodes are not analysed. Once the end

HasValue(varId2,inputName2)
←
HasInputElement(formId1,inputElementId1)
∧ HasInputName(inputElement1,inputName1)
∧ HasInputType(inputElement1,'SUBMIT')
∧ HasFormArray(formId1,formArrayId1)
∧ HasVariableId(HasElement(formArrayId1,keyId1),varId1)
∧ HasKeyExpression(keyId1,exprId1)
∧ ValueOf(exprId1,inputName1)
∧ HasValue(varId1,True)
∧ HasVariableId(HasElement(formArrayId1,keyId2),varId2)
∧ HasKeyExpression(keyId2,exprId2)
∧ ValueOf(exprId2,inputName2)

Figure 6.29. Rule to set the values of all form variables once the form is submitted.

152 Chapter 6 : Arrays, Functions and Forms

of the AST is reached, any form definitions result in the relevant facts being formed.

During the next round, the ignored AST nodes are walked through. Since the form

definitions are now complete, the analysis can proceed as described in Section 6.3.

6.4 CHAPTER SUMMARY

This chapter looked at how some more advanced PHP topics are handled

within the knowledge base. It discussed how arrays are modelled and how PHP

syntax designed to make array definitions easier are handled. It also looked at how

function definitions and function calls are handled within the knowledge base. The

final section described how form processing is modelled. All these topics have

received little focus in previous computerised learning systems.

The next chapter looks at another very often used type of program statement,

loops. It explores how different types of loops are handled and discusses the

limitations of the current knowledge base in handling loops. It is the final chapter on

how program analysis is carried out within the PHP ITS.

153 Chapter 7 : Loops

Chapter 7: Loops

The previous chapter looked at how the PHP ITS analyses programs that

contain arrays, functions and forms. This chapter looks at another common type of

construct used in programming: loops. Several types of loops are used extensively to

iterate through a set of statements as described below. However, the PHP ITS is not

capable of analysing programs written using all these types of loops. Further, the

PHP ITS does not allow recursive functions to be used as a way of implementing

loops. Recursive functions are considered to be beyond the scope of this thesis which

aims at teaching novice programmers. This chapter investigates the types of loops

that can be analysed by the PHP ITS and the process followed during the analysis.

7.1 TYPES OF LOOPS

Loops are a common structure in any modern programming language. They

can be classified using many different methods. One method is to classify them

based on the syntactic construct used to create the loop (eg:- while, do, for etc). This

method is quite useful when teaching the basics of programming. However, when

designing a knowledge base to analyse loops, it is more useful to look at the logical

model underlying the functionality of the loop and classify the loops accordingly.

Again, loops can be classified using the logical model in many different ways. A

main aim of this research project is to analyse student programs for correctness. A

classification that lends itself to such analysis is given in Figure 7.1 (personal

communications, Reye, 2012).

In this classification, loops are classified based on whether they iterate through

a collection of data items or not. Usually, loops are introduced in a collection

independent manner in introductory programming courses. However, in most real-

world applications, loops that iterate through a collection of data items are much

more common (Stavely, 1993).

Collection independent loops are further classified into definite and indefinite

loops. A definite loop is one that executes a number of times known in advance,

before entering the loop. An indefinite loop is one where the number of iterations is

not known in advance. Examples of definite and indefinite loops in PHP are shown

154 Chapter 7 : Loops

in Table 7.1. The first loop iterates exactly five times. Since the number of

iterations is known before the loop iterates, it is a definite loop. On the other hand,

the second program iterates until the variable $found is true. If it is not true, a

function (not defined here) operates on the variable $x and changes it. Since the

number of iterations depends on the return value of the function, the exact number of

iterations cannot be determined beforehand. Therefore, this is an example of an

indefinite loop.

Figure 7.1. Classification of loops.

Definite

Loops

Collection

Independent

Collection Based

Indefinite

Perform

Action

Against Every

Item in

Collection

Independentl

y

Search a

Collection

for a

Matching

Item

Rearrange

Items in

Collection

Others

Same Action

Repeated n

Times

Counted

Loop

Chapter 7 : Loops 155

Table 7.1

Definite and Indefinite Loops in PHP

Definite Loop Indefinite Loop

for($i=1;$i<=5;$i++)
{

echo("Hello");
}

$found=false;
while(!$found)
{

if($x==5)
{

$found=true;
}
else
{

$x=doFunction($x);
}

}

Definite loops can be further classified into two types. The first type of

definite loop is the most basic kind where a certain action is repeated, a given

number of times. The definite loop shown in Table 7.1 belongs to this category. The

second type of definite loop is the counted loop where a loop variable takes on

certain integer values in a range and the value of the loop variable is used within the

loop. Table 7.2 shows two examples of counted loops. In the first example, the loop

variable, $i takes successive values from 1 to 100 and each of these values are

printed inside the loop. In the second example, the value of the loop variable is

printed within the loop as in the previous case. However, the value of the counter

variable does not take on all successive values from 1 to 100. It is incremented by 10

at each iteration and therefore changes according to an arithmetic sequence.

Table 7.2

Counted Loops in PHP

Repeat for Successive Values of the

Counter Variable

Repeat for Values of the Counter

Variable Changing According to

an Arithmetic Sequence

for($i=10;$i<=100;$i++)
{

echo($i);
}

for($i=10;$i<=100;$i+=10)
{

echo($i);
}

156 Chapter 7 : Loops

Collection based loops can also be either definite or indefinite based on

whether the number of iterations are known in advance. If the size of the collection

is known in advance and every item in the collection needs to be processed, a

definite loop is used. However, it is possible to use some algorithms in the same way

whether or not the size of the collection is known in advance. Therefore, a different

classification is considered for collection based loops.

Collection based loops can logically operate on any collection of items that are

permitted by the programming language. Since only basic PHP is taught by the PHP

ITS, the only collection that is considered in this thesis is the array. Such loops can

be categorised into four main types as shown in Figure 7.1. The first type performs

actions on each item of the collection independently. It is possible that each such

item is updated as it is accessed, but the action performed in one iteration only

accesses a single item in the collection. Two example of PHP programs belonging to

this category are shown in Table 7.3. The first program simply accesses each array

element and displays it on the screen. The second program goes a step further to

summarise the array and find the maximum element.

Table 7.3

Perform Action Against Every Item in Collection Independently

Access Every Item in Array without

Summarising

Access Every Item in Array while

Summarising

$array=array(10,20,30)
for($i=0;$i<3;$i++)
{

echo($array[$i]);
}

$array=array(10,20,30);
$i=0;
$found=false;
$max=$array[0];
while(!found && $i<3)
{

if($array[$i]>$max)
{

$found=true;
$max=$array[$i];

}
else
{

$i++;
}

}

Chapter 7 : Loops 157

The second type of collection based loop searches for a matching item. Such

loops perform one action if the current item matches a specific condition and some

other action if it doesn‟t. The third type of collection based loop rearranges the items

in a collection. A loop that sorts the items in an array in ascending order is a good

example of this. Collection based loops that do not fall into any of the above

categories are classified as „Others‟.

The knowledge base of the PHP ITS is not capable of handling all these types

of loops. In its current form, it can handle all collection independent definite loops.

The outcome of such collection independent definite loops varies based on what

actually occurs within the loop. The actions performed by some loops are

independent of the result of the same action performed during a previous iteration.

In other loops, the result of one iteration depends on the results of a previous

iteration. This is especially true in cases where a loop performs some form of

aggregation of data such as adding to a variable defined outside the loop. Two

examples of these different types of loops are shown in Table 7.4.

Table 7.4

Types of Loops Based on the Independence of Actions Performed Within the Loop

Action Independent of Iteration Action Dependent on Result of

Previous Iteration

for($i=1;$i<=5;$i++)
{

echo("Hello");
}

$sum=0;
for($i=1;$i<=5;$i++)
{

$sum+=$i;
}

All loops containing independent actions can be handled by the PHP ITS.

However, in the case of loops where the action within the loop is dependent on a

previous iteration, the capabilities of the PHP ITS are limited. This sort of loop

requires a special rule to be written for each new situation as described in Section

7.3.2 below. Since the rule is dependent on the specifications of the program, it is

not possible to write an infinite number of rules to handle all situations. Therefore,

rules have been added to the KB to only handle situations that are required by the

specific set of exercises that are currently defined in the PHP ITS. Although it is

158 Chapter 7 : Loops

possible to extend the KB by adding similar rules based on the requirements of

additional exercises, they have not been included in the present system.

 The other type of loop that can be handled by the PHP ITS is collection based

loops that perform some action against every item in the collection independently. It

can handle both situations of such situations where the loops performs some

summarisation or does not do so.

The PHP ITS in its present form is incapable of handling the other types of

loops described here. More theoretical modelling needs to be carried out in order to

identify how such loops can be handled using FOPL. However, a study by Stavely

(1993) showed that over 50% of loops used in real-world programming belong to

what he classified as for-each, and other definite loops. The type of loop he

classified as for-each is synonymous to the collection based loops that perform some

action against every item in the collection independently. Stavely‟s other definite

loops are the same as collection independent definite loops described here. This

shows that the PHP ITS is capable of handling a large percentage of loops that are

encountered in practical situations.

In Computer Science theory [(Gries, 1981; Huth & Ryan, 2004), for example],

two approaches are most common for analysing loops: (a) only covering while loops

– and treating other kinds of loops as being equivalent to while loops – and reasoning

about their loop invariants; and (b) converting each loop into an equivalent recursive

formulation. Unfortunately, neither of these is really suitable for an ITS. While loop

invariants have some nice aspects for proving program correctness, most people

learn to program without ever knowing about such constructs. Trying to explain an

error to a novice, in terms of a loop invariant is unlikely to succeed. Similarly, trying

to explain an error in terms of a recursive reformulation is also unlikely to succeed.

Neither is the approach that a human tutor would use with a novice. Therefore, the

analysis process used in the PHP ITS does not consider either loop invariants or

recursive formulations. The following sections describe the process used by the PHP

ITS for this purpose in detail.

Chapter 7 : Loops 159

7.2 DEFINITE LOOPS

Definite loops form the basis for how the PHP ITS analyses all types of loops.

Other types of loops are analysed by building on the analysis process for definite

loops. This section describes how the KB analyses definite loops. Since these loops

iterate a known number of times, they depend on a counter variable that changes its

value for each iteration. Therefore, the most obvious PHP construct used for such

loops is the for construct.

7.2.1 Predicate Definition

 Figure 7.2 shows the set of predicates that are defined in the knowledge base

to handle loops that depend on a counter variable. Any type of loop results in a Loop

object with a new unique id being created. This knowledge base categorises loops

into two main sub-types: CountedLoops and ForEach. Here CountedLoops are loops

that use a counter variable to control the number of iterations of the loop. Of the

types of loops described above definite loops and collection based loops, where some

action is performed against every item in the collection, fall into this category. The

other sub-type of Loop used here is a ForEach loop. Note that these loops are a

special type of the collection based loops where some action is performed against

every item in the collection as described in Section 7.1 and refer the use of the

foreach construct in PHP. ForEach loops utilise different predicates which are not

shown in Figure 7.2 (for clarity) but are described later in Section 7.4.2. The rest of

this section discusses the predicates that are used in handling CountedLoops.

CountedLoops are again divided into two main sub-types For and While based on the

syntactic construct used within the loop.

Consider how these types of loops are used to create predicates to handle

definite loops. The number of iterations of such loops is defined using a starting

value, an ending value and an increment. The relationships between these values and

the actual loops are modelled using the HasForStartValue, HasForEndValue and

HasForIncrement predicates respectively. The relationship between the

CountedLoop and the counter Variable itself is established using the

HasLoopVariable predicate. A loop of this type is terminated using some sort of

condition. This condition is modelled as a BooleanExpression and the relationship is

modelled using the HasLoopCondition predicate.

160 Chapter 7 : Loops

Figure 7.2. Predicates for handling loops with counters.

In order to understand how these predicates are used, consider the first for loop

in Table 7.1. Let the id of the created For be ForId1. When analysing the for loop, a

new variable $i is encountered and is assigned a value 1. This results in the

following facts being created as described in Section 4.5.3. Let the id of the created

Variable be VarId1. Since scope does not play a part here as no functions are used,

the facts related to scope are ignored here.

HasName(VarId1,'i')

HasValue(VarId1,1)

HasInitialValue(VarId1,10)

This Variable is the loop variable with a starting value of 1, an ending value of

5 and an increment of 1. The following facts are created to represent these details.

HasLoopVariable(ForId1,VarId1)

HasForStartValue(ForId1,1)

HasForEndValue(ForId1,5)

HasForIncrement(ForId1,1)

The condition in the for loop results in a LessEqualExpr object being created.

Let the id of this expression be ExprId1. Let the id of the VariableExpr on the left

Chapter 7 : Loops 161

hand side of this expression be VarExprId1 and the LiteralExpr on the right hand

side be LitExprId1. Let the id of the Literal be LitId1. Then, the following facts

relevant to this expression are created as explained in Section 4.4.1.1.

HasId(LessEqualExpr(VarExprId1,LitExprId1),ExprId1)

HasVariable(VarExprId1,VarId1)

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,5)

Since this expression is the condition of the for loop, the following fact is

created.

HasLoopCondition(ForId1,ExprId1)

During the analysis process for loops, it becomes necessary to find the value of

the loop variable at the end of the first iteration. This relationship is maintained

using the HasForFirstLoopValue predicate. Another important consideration at this

time is the range of actual values of the counter variable for which the loop iterates.

This is modelled using the RepeatLoop predicate which relates the id of the loop with

the start value, end value and increment of the counter variable. The RepeatAll

predicate is used to specify that the loop repeats for all integer values of the counter

variable between start value and end value. The starting value of each variable

existing before the execution of the loop also becomes important during program

analysis. This is maintained using the HasLoopStartValue predicate.

The values of variables very often change within loops. In such cases, it

becomes necessary to assign a symbolic value for each variable as the starting value

of that variable for each iteration. This relationship is maintained using the

HasIterationValue predicate.

As in functions (Section 6.2.3.1), conditions of sub-plans are used to model the

required results of execution of loops. The LookBodyOK predicate is used to

indicate that the body of a loop performs the actions that it is supposed to, or in other

words, the conditions of the sub-plan is satisfied.

7.2.2 Overall Goal Specification

In order to understand how loops containing counter variables are analysed

within the PHP ITS, consider the example exercise given in Figure 7.3.

162 Chapter 7 : Loops

As mentioned above, the overall goal for exercises containing loops is also

specified using conditions of sub-plans. The conditions of the sub-plan define the

results of each iteration of the loop while the overall goal specifies the combined

outcome of the program. The overall goal also contains the predicate LoopBodyOK

in order to ensure that the loop performs as it is supposed to.

The overall goal for the example program above is given in Figure 7.4. The

goal itself specifies that for all values of j between 1 and 5 (i.e. for 5 iterations), an

OnPage fact should be generated. Here, the value of y is immaterial since the order

of the display does not matter. The constraints specify that a For loop should be

used and that the loop should perform the necessary function. The first constraint

could be removed if the exercise did not specify the type of loop. The second

constraint is necessary to ensure that the output has been obtained by using a loop as

expressed in the exercise. Otherwise, even if five consecutive echo statements were

written, the program would be accepted as correct. The structural constraint of

having to use a loop is controlled using the constraint.

The LoopBodyOK fact is only created if the sub-plan is satisfied. In this case,

no pre-conditions are necessary for the loop to function properly. All that is

necessary is that the string "Hello" is displayed within the loop. This is specified by

the post-condition. Again, the value of x is immaterial since the order of display

does not matter.

Write a PHP program to display the string “Hello” five times. Use a for loop.

Figure 7.3. Example exercise for simple counted loop.

 Goal : ∀ j [(1≤j≤5)→[{OnPage("Hello",Y) }]

Constraints : For(FORID1)

∧ LoopBodyOK(FORID1)

Conditions of Subplan(LookBodyOK(FORID1)):
PRECOND :
POSTCOND: OnPage("Hello",x)

Figure 7.4. Overall goal for example exercise for simple counted loop.

Chapter 7 : Loops 163

7.2.3 Program Analysis

In order to understand how such loops are analysed within the PHP ITS,

consider the example solution for the above exercise given in the first for loop in

Table 7.1. Since this program does not assume that any data is present before

executing the program segment, no initial state is specified. The following facts are

created as a result of the for loop as described in Section 7.2.1.

HasName(VarId1,'i')

HasValue(VarId1,1)

HasInitialValue(VarId1,1)

HasLoopVariable(ForId1,VarId1)

HasForStartValue(ForId1,1)

HasId(LessEqualExpr(VarExprId1,LitExprId1),ExprId1)

HasVariable(VarExprId1,VarId1)

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,5)

HasLoopCondition(ForId1,ExprId1)

Using the rules in Figure 4.8, the ValueOf the LiteralExpr is found, resulting in

the following fact.

ValueOf(LitExprId1,5)

Note that the end value and increment of the loop are not created as facts at this

point since they cannot directly be ascertained from the program statements. The

end value of the loop depends on the type of expression that is used in the condition.

A set of rules (as shown in Figure 7.5) are used to calculate the end value of the

iteration. Note that this thesis only handles counted loops with a single condition.

Therefore, the only possible types of expressions are LessExpr, LessEqualExpr,

GreaterExpr and GreaterEqualExpr.

Using the second rule given here, the following fact is created.

HasForEndValue(ForId1,5)

164 Chapter 7 : Loops

It is also necessary to find the increment of the loop to analyse the program.

The increment is again found using the rule specified in Figure 7.6. It can be seen

that, before finding this value, it is necessary to find the value of the loop variable at

the end of the first iteration. This is achieved by analysing the update condition of

the for loop using the procedure described in Chapter 4.

In this case, the update condition is a post-increment statement. As described

in Section 4.6.2, this results in an expression being created as well as an assignment

operation being performed. This assignment results in the following fact since 1 is

added to the current value of the variable. Note that only the facts pertinent to this

analysis have been described here.

HasValue(VarId1,2)

Since this is the value of the loop variable at the end of the first iteration, the

following fact is created.

HasForFirstLoopValue(ForId1,2)

Next, the rule in Figure 7.6 is activated, resulting in the following fact.

HasForIncrement(ForId1,1)

Once the facts relevant to the CountedLoop are obtained, it is necessary to

analyse the loop itself. At this point, it becomes necessary to introduce a new

notation to indicate the repetition of actions that occur within the loop. Assume that

the overall actions that occur within the loop are given by LoopActionEffects. By the

semantics of the counted loop, these actions are then repeated within the loop. The

notation used within this thesis to specify this repetition is as below.

repeat(LoopActionEffects,LoopId)

Using this notation, the effects of the overall loop in the example program can

be specified as below.

repeat(ForActionEffects,ForId1)

But ForActionEffects is the results of the analysis of what occurs inside the

loop. Therefore, the program statements within the loop are next analysed by

comparing it against the conditions of the sub-plan as in functions (Section 6.2.3.2).

Before such analysis can be performed, it is necessary to understand that any existing

Chapter 7 : Loops 165

variables can change their values within the loop. Therefore, it is incorrect to

consider the values that these variables currently have as the value that they will

contain during execution of the program statements within the loop. For analysis

purposes, symbolic values are given to any existing variables at this point. All

variables are assumed to have this symbolic value during the execution of the loop.

This is similar to the assignment of symbolic values to variables in the initial state

(Section 4.5.1).

HasForEndValue(forId1,value3)
← HasForVariable(forId1,varId1)

∧HasForCondition(forId1,exprId1)
∧HasExpression(LessExpr(varExprId1,exprId2),exprId1)
∧HasVariable(varExprId1,varId1)
∧ValueOf(exprId2,value2)
∧ Subtract(value2,1,value3)

HasForEndValue(forId1,value2)

← HasForVariable(forId1,varId1)
∧HasForCondition(forId1,exprId1)
∧HasExpression(LessEqualExpr(varExprId1,exprId2),exprId1)
∧HasVariable(varExprId1,varId1)
∧ValueOf(exprId2,value2)

HasForEndValue(forId1,value3)

← HasForVariable(forId1,varId1)
∧ HasForCondition(forId1,exprId1)
∧ HasExpression(GreaterExpr(varExprId1,exprId2),exprId1)
∧ HasVariable(varExprId1,varId1)
∧ ValueOf(exprId2,value2)
∧ Add(value2,1,value3)

HasForEndValue(forId1,value2)

← HasForVariable(forId1,varId1)
∧ HasForCondition(forId1,exprId1)
∧ HasExpression(GreaterEqualExpr(varExprId1,exprId2),exprId1)
∧ HasVariable(varExprId1,varId1)
∧ ValueOf(exprId2,value2)

Figure 7.5. Rules for finding the end value of a CountedLoop

166 Chapter 7 : Loops

For the example program, only one variable, $i, exists at this point. A

symbolic value is assigned to this variable at this point, resulting in the following

facts.

HasValue(VarId1,val_i)

HasIterationValue(ForId1,VarId1,val_i)

In this case, the sub-plan has no pre-conditions so this part of the conditions of

the sub-plan is automatically satisfied.

The next step in the analysis process is to walk through the AST representing

the actions performed by the loop. Here, this is just a simple echo statement

resulting in a Display action. The result of this action is the following fact.

OnPage("Hello",1)

This is the state of the program at the end of execution of the rule. When

comparing against the post-conditions of the sub-plan in Figure 7.4, it can be seen

that it is satisfied when x=1. Therefore, the following fact is created.

LoopBodyOK(ForId1)

At this point, a few more rules are utilised to specify the fact that repeating a

loop a given number of times results in the actions within the loop being performed

for all values of a certain variable. These rules are given in Figure 7.7.

The first rule in this figure is activated at this time to create the following fact.

RepeatLoop(ForId1,1,5,1)

The second and third rules are activated only if the loop iterates through all

integer values between a starting and ending value. In this case, the second rule is

activated, resulting in the following fact.

RepeaAll(ForId1,1,5)

HasForIncrement(forId1,value3)
← HasForVariable(forId1,varId1)

∧ HasForStartValue(forId1,value1)
∧ HasForFirstLoopValue(forId1,value2)
∧ Subtract(value2,value1,value3)

 Figure 7.6. Rule to find the increment of a CountedLoop

Chapter 7 : Loops 167

The final rule in Figure 7.7 is a generalised rule that specifies that the effects of

the loop are valid for all values of the counter variable. In this case, the

ActionEffects is actually the result of a single action and is the

OnPage("Hello",count) fact where count represents the value of the counter for

displaying elements at the start of each loop. Therefore, the final rule results in the

following facts.

∀ val_i [(1≤val_i≤5) → OnPage("Hello",count)]

The resultant state is the final state of the system. When comparing this

against the constraints in Figure 7.4, it can be seen that they are satisfied when

FORID1=ForId1. Similarly, the goal is satisfied when j=val_i and Y=count.

Therefore, this program is identified as correct.

7.2.4 Unnecessary Statements in Loops

As in the case of other constructs, it is necessary to ensure that programs that

contain loops do not contain any unnecessary statements. Since loops are handled

similar to functions, by using conditions of sub-plans, unnecessary statements are

identified using a similar method to that described in Section 6.2.6. A new status is

created each time a loop is encountered. Any statuses created during the analysis of

the loop are linked to the initial state of the loop. Once the conditions of a sub-plan

RepeatLoop(loopId1,startValue,endValue,incrementValue)
← HasForStartValue(loopId1,startValue)

 ∧ HasForEndValue(loopId1,endValue)
 ∧ HasForIncrement(loopId1,incrementValue)

RepeatAll(loopId1,startValue,n)← RepeatLoop(loopId1,startValue,n,1)

RepeatAll(loopId1,startValue,n)← RepeatLoop(loopId1,n,startValue,-1)

∀ value_i *(start≤value_i≤n) → ActionEffects]

← repeat(ActionEffects,loopId1)
∧ RepeatAll(loopId1,start,n)
∧ HasForVariable(loopId1,varId_i)
∧ HasValue(varId_i,value_i)

Figure 7.7. Rules to consolidate results of loop execution.

168 Chapter 7 : Loops

are satisfied as explained in Section 7.2.3, a new status is created before the

LoopBodyOK predicate is created. This status is linked to the status where the

conditions of the sub-plan were satisfied. However, in the case of loops, there is an

additional linking of statuses. As described in Section 7.2.3, several facts are created

through rules after the LoopBodyOK predicate. These facts depend on previously

created facts and therefore, the status at this point is also linked to any statuses that

created the facts leading to these new facts.

The flow of statuses for the first program in Table 7.1 is shown in Figure 7.8.

No initial status is present in this program since no program statements are supplied.

A new status, Status 1, is created when the for loop is encountered. The first

component of the for loop assigns a value to the counter variable. Since this is an

assignment operation, a new status, Status 2 is created. This status is linked to the

main status of the for loop, Status 1. Next, as described in Section 7.2.3, the

increment operation is activated, resulting in a new status, Status 3. Since this action

occurs on a previously created variable $i, the state is which it was created, Status 2

is linked to the current status. This status is also linked to Status 1 since it is part of

the loop. The echo statement within the loop results in another status, Status 4.

Since this is also part of the loop, it is again linked to the main status of the for loop,

Status 1. When the conditions of the sub-plan are satisfied, a new status, Status 5 is

created. Since Status 4 is the status where the conditions of the sub-plan are

satisfied, this is linked to Status 5. No other program statements are encountered

during the analysis of the program so the final status, where the overall goal is

satisfied is Status 5. However, more rules are activated during this status for

consolidating the actions within the loop. As described in Section 7.2.3, the

RepeatLoop predicate is created at this point. It can be seen from Figure 7.7 that this

depends on the HasForIncrement predicate which is created during Status 3.

Therefore, a link is created between the current status, Status 5 and Status 3. By

examining Figure 7.8, it can be seen that there is a path from all existing statuses to

this final status, Status 5. This indicates that no unnecessary statements are present

in the program.

Chapter 7 : Loops 169

7.2.5 While Loops that Behave as For Loops

It is a known fact among programmers that any for loop can be converted into

an equivalent while loop. For example, the first for loop in Table 7.1 can be written

using an equivalent while loop as shown in Table 7.5. Therefore, the analysis of

such while loops is similar to that of the equivalent for loop. The only difference

occurs when walking the AST. When a while loop is encountered, it is first checked

to see whether it is indeed a definite loop before analysis proceeds. In other words, it

is checked to see whether it has a condition which refers to a variable contained

within a LessExpr, LessEqualExpr, GreaterExpr or GreaterEqualExpr. It is next

checked to see whether the variable within the condition contains an initial value

before the while loop is reached. A final check is performed to see whether the same

variable is changed within the loop in a manner where the change happens for all

possible situations. If all these conditions are met, the system recognises that it can

analyse the while loop. Analysis then proceeds as in Section 7.2.3. The initial value

and the increment of the loop variable are set based on the statements identified

during the earlier check. A more detailed analysis of a solution to the exercise in

Figure 7.3 written using a while loop can be found in Appendix G.

Status 1

for

Status 5

Status 4 echo("Hello")

LoopBodyOK

Status 2 $i=1

Status 3 $i++

Figure 7.8. Flow of statuses example program for loops.

170 Chapter 7 : Loops

Table 7.5

Equivalent For and While Loops

For Loop While Loop

for($i=1;$i<=5;$i++)
{

echo("Hello");
}

$i=1;
while($i<=5)
{

echo("Hello");
$i++;

}

7.3 SPECIAL SITUATIONS

This section looks at some special situations that occur when analysing definite

loops. Section 7.3.1 looks at loops that iterate for a pre-defined number of times but

the value of the counter variable is changed according to an arithmetic sequence as

described in Section 7.1. Section 7.3.2 looks at loops where the results of the

execution of one iteration of the loop depend on the results of the previous iterations

as described in Section 7.1.

7.3.1 Loops Where the Counter Variable Changes According to an Arithmetic

Sequence

Sometimes, loops with counters are used to create loops that iterate for a fixed

number of times, but the actual statements of concern within it do not execute for all

integer values of the counter variable which are within the specified range.

Beginners often use two methods to achieve this. Table 7.6 shows examples of using

both these methods to display multiples of 10 between 1 and 100. The first program

does this by incrementing the counter variable by 10 after each iteration. The second

program increments the counter variable by 1 after each iteration but checks to see

whether it is divisible by 10 before executing the program statements. The PHP ITS

handles this type of situation by using rules to convert between these forms.

Figure 7.9 shows the overall goal for this program. As described in Section

7.2.2, the functionality of the loop is specified using conditions of a sub-plan.

However, in this case, it can be seen that the functionality of the loop is different

based on which method from Table 7.6 is used. In such a situation, it is possible to

specify conditions for more than one sub-plan for the same LoopBodyOK predicate.

In this case, conditions of two sub-plans have been given for the

LookBodyOK(FORID1) predicate. The first one refers to a situation similar to the

Chapter 7 : Loops 171

first program and the second one to a situation similar to the second program. If both

the pre-conditions and post-conditions of one of the sub-plans are satisfied, the

requirement for the loop is considered to me met. The LoopBodyOK predicate is

then created.

Table 7.6

Examples of Loops That Do Not Execute for all Integer Values of the Counter Variable within the

Specified Range

Increment Other Than One Modulus for Counter Variable

for($i=10;$i<=100;$i+=10)
{

echo($i);
}

for($i=1;$i<=100;$i++)
{

if($i%10==0)
{

echo($i);
 }

}

Here, the value of the counter variable is used within the loop. Therefore, the

fact that the counter variable already contains a value becomes important within the

loop. This fact is expressed as a pre-condition for both the sub-plans of the loop.

Another important difference between these programs and the programs

described previously is the fact that the order of the output is important. The

multiples of 10 need to be displayed in ascending order. This requirement is

captured in the overall goal by specifying that a variable RC has a value of

COUNT_NEW and 1 is added to this value in order to find the new position for the

OnPage predicate.

In this case, the left hand side of the implication in the goal contains two

components. The first component specifies that the output should only occur if the

value is divisible by 10 i.e. if the modulus of the value of the counter variable and 10

is 0. The second component specifies that the value should be between 10 and 100

(inclusive). This ensures that the goal specifies that only multiples of 10 between 10

and 100 are displayed.

7.3.1.1 Analysis of First Program

Consider how the first program in Table 7.6 is analysed by the system. As

explained in Section 7.2.3 the following facts are created in the system when the for

172 Chapter 7 : Loops

loop is encountered. Again note that only facts pertinent to this analysis are

presented here.

HasName(VarId1,'i')

HasValue(VarId1,10)

HasInitialValue(VarId1,10)

HasLoopVariable(ForId1,VarId1)

HasForStartValue(ForId1,10)

HasId(LessEqualExpr(VarExprId1,LitExprId1),ExprId1)

HasVariable(VarExprId1,VarId1)

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,100)

HasLoopCondition(ForId1,ExprId1)

Goal:
∀ VALUE_j
({[(Modulus(VALUE _j,10,0) ∧ (10≤ VALUE _j≤100)+ →

(HasValue(RC,COUNT_NEW) ∧
OnPage(VALUE_j,VALUE_k) ∧
Add(COUNT_NEW,1,VALUE_k)}])

Constraints:

ForLoop(FORID1) ∧ LoopBodyOK(FORID1)

Conditions of Subplan1(LoopBodyOK(FORID1)),

PRECOND : HasForVariable(FORID1,VARID_i)
 ∧HasValue(VARID_i,VALUE_i)

 POSTCOND: OnPage(VALUE_i, VALUE_x)

Conditions of Subplan2(LoopBodyOK(FORID1)),
PRECOND : HasForVariable(FORID1,VARID_i)
 ∧HasValue(VARID_i,VALUE_i)
POSTCOND: EqualTo(VALUE_x,10) ∧ Modulus(VALUE_i,10,VALUE_x) →
 OnPage(VALUE_i, VALUE_x)

Figure 7.9. Overall goal for example program for loops that do not execute for all values of the

counter variable.

Chapter 7 : Loops 173

Using the rules in Figure 4.8, the ValueOf the LiteralExpr is found, resulting in

the following fact.

ValueOf(LitExprId1,100)

Using the second rule in Figure 7.5, the following fact is created.

HasForEndValue(ForId1,100)

Next, the update condition of the for loop is analysed using the procedure in

4.6.2. The resultant Assign action creates the following fact which is relevant to this

analysis.

HasValue(VarId1,20)

Since this is the value of the loop variable at the end of the first iteration, the

following fact is created.

HasForFirstLoopValue(ForId1,20)

Next, the rule in Figure 7.6 is activated, resulting in the following fact.

HasForIncrement(ForId1,10)

Now, the loop itself is analysed. Using the notation described in Section 7.2.3,

the effect of the overall loop can be written as below.

repeat(ForActionEffects,ForId1)

The program statements within the loop are next analysed against the

conditions of the sub-plan. In order to analyse the statements within the loop it is

first necessary to consider starting values for each loop iteration for all variables that

already exist. This is achieved by assigning symbolic values to all existing variable

at this point. Let the value of $i at the beginning of each iteration be val_i. Let the

id of the variable counting the display elements be VarId_rc and the value of this

variable at the beginning of each iteration be val_rc. Then, the following facts are

created. Note that these facts are only true within the loop.

HasValue(VarId1,val_i)

HasIterationValue(ForId1,VarId1,val_i)

HasValue(VarId_rc,val_rc)

HasIterationValue(ForId1,VarId_rc,val_rc)

174 Chapter 7 : Loops

 It can be seen that the pre-condition of both the sub-plans are satisfied when

FORID1=ForId1, VARID_i=VarId1 and VALUE_i=val_i. Therefore, it is necessary

to check the conditions for both the sub-plans to see whether the post-conditions are

satisfied.

Now, a Display action occurs due to the echo statement. This results in the

following facts.

OnPage(val_i,rc2) where Add(rc,1,rc2)

When considering the post-condition of both the sub-plans it can be seen that it

is satisfied for the first sub-plan when VALUE_x=rc2. Since the conditions of one

of the sub-plans are satisfied, the following fact is created.

LoopBodyOK(ForId1)

Next, the rules specified in Figure 7.7 are activated to create the following fact.

RepeatLoop(ForId1,10,100,10)

It is necessary to compare the existing facts into the for-all form in order to

compare against the overall goal. A set of rules, as shown in Figure 7.10 are used

for this purpose.

Now, the first rule in this figure is used to create the following facts.

∀ val_i ([Modulus(val_i,10,0)∧ (10≤val_i≤100)] → ForActionEffects)

But in this case, the ForActionEffects is actually the result of a single action and

is the OnPage(val_i,rc2) fact so the following fact is created.

∀ val_i ([Modulus(val_i,10,0)∧ (10≤val_i≤100)] → OnPage(val_i,rc2))

So it can be seen that the overall goal is satisfied when FORID1=ForId1 and

the goal is satisfied when VALUE_j=val_i, RC=VarId_rc, COUNT_NEW=rc and

VALUE_k=rc2. Therefore, the program is identified as correct.

7.3.1.2 Analysis of Second Program

Next consider how the second program in Table 7.6 is analysed. The for loop

is analysed in the same way as above resulting in the following facts being created.

Chapter 7 : Loops 175

HasName(VarId1,'i')

HasValue(VarId1,1)

HasInitialValue(VarId1,1)

HasLoopVariable(ForId1,VarId1)

HasForStartValue(ForId1,1)

HasId(LessEqualExpr(VarExprId1,LitExprId1),ExprId1)

HasVariable(VarExprId1,VarId1)

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,100)

HasLoopCondition(ForId1,ExprId1)

ValueOf(LitExprId1,100)

HasForEndValue(ForId1,100)

HasForFirstLoopValue(ForId1,2)

HasForIncrement(ForId1,1)

Now, the loop itself is analysed. Using the notation described in Section 7.2.3,

the effect of the overall loop can be written as below.

∀value_i
 ([Modulus(value_i,incrementValue,0)∧ (start≤value_i≤n)+ → ForActionEffects)

←repeat(ForActionEffects,loopId1)
∧ RepeatLoop(loopId1,startValue,n,incrementValue)
∧ HasForVariable(loopId1,varId_i)
∧ HasValue(loopId1,value_i)

repeat(ActionEffects,loopId1) ∧ RepeatLoop(loopId1,newStart,newEnd,newInc) ∧
(newStart=newInc) ∧ Modulus(end,newInc,x) ∧ Subtract(end,x,newEnd)

← repeat(*EqualTo(Modulus(value_i,newInc),0)→ ActionEffects)],loopId1)
∧ HasForVariable(loopId1,varId_i)
∧ RepeatLoop(forId1,start,end,inc)

Figure 7.10. Rules for consolidating loops that do not execute for all values of the counter variable.

176 Chapter 7 : Loops

repeat(ForActionEffects,ForId1)

As before let the value of $i at the beginning of each iteration be val_i. Let the

id of the variable counting the display elements be VarId_rc and the value of this

variable at the beginning of each iteration be val_rc. Then, the following facts are

created. Note that these facts are only true within the loop.

HasValue(VarId1,val_i)

HasIterationValue(ForId1,VarId1,val_i)

HasValue(VarId_rc,val_rc)

HasIterationValue(ForId1,VarId_rc,val_rc)

 It can be seen that the pre-condition of both the sub-plans are satisfied when

FORID1=ForId1, VARID_i=VarId1 and VALUE_i=val_i. Therefore, it is necessary

to check both the sub-plans to see whether the post-conditions are satisfied.

Next, a selection is encountered and is analysed as described in 5.2. Let the id

of the created EqualExpr expression be ExprId2. Also let the id of the ModulusExpr

on the left hand side of this expression be ModExprId1 and the id of the LiteralExpr

on the right hand side be LitExprId2. Also let the id of the created Literal be LitId2.

Then, the following facts are created.

HasId(EqualExpr(ModExprId1,LitExprId2),ExprId2)

HasLiteral(LitExprId2,LitId2)

HasLitValue(LitId2,0)

Let the ids of the two expressions on either side of the ModulusExpr be

VarExprId3 and LitExprId3 respectively. Let the id of the corresponding Literal be

LitId3. Then, the following facts are created.

HasId(ModulusExpr(VarExprId3,LitExprId3),ModExprId1)

HasLiteral(LitExprId3,LitId3)

HasLitValue(LitId3,10)

HasVariable(VarExprId3,VarId1)

Then, the ValueOf the various expressions are found as below.

ValueOf(LitExprId2,0)

Chapter 7 : Loops 177

ValueOf(LitExprId3,10)

ValueOf(VarExprId3,val_i)

ValueOf(ModExprId1,val_x) where Modulus(val_i,10,val_x)

When the if condition is true, the following fact is created.

ValueOf(ExprId2,True)

Then, the rules in Figure 5.4 results in the following predicate.

EqualTo(val_x,0)

When this condition is satisfied, a Display action occurs due to the echo

statement resulting in the following facts.

OnPage(val_i,rc2) where Add(rc,1,rc2)

Therefore, the overall result of the loop can be expressed as below.

EqualTo(val_x,0) ∧ Modulus(val_i,10,val_x) → OnPage(val_i,rc2)

Therefore, the post-condition of the second sub-plan is satisfied when

VALUE_x=rc2. Since the conditions of one of the sub-plans is satisfied, the

following fact is created.

LoopBodyOK(ForId1)

In this case, the effect of the loop is actually the overall result given above so

the repetition can be expressed as below.

repeat(EqualTo(val_x,0) ∧ Modulus(val_i,10,val_x) → OnPage(val_i,rc2),ForId1)

Next, the rules specified in Figure 7.7 are activated to create the following fact.

RepeatLoop(ForId1,1,100,1)

Now, the second rule in Figure 7.10 is activated, resulting in the following

facts.

repeat(OnPage(val_i,rc2),ForId1)

RepeatLoop(ForId1,10,100,10)

Next, the first rule in Figure 7.10 is activated, resulting in the following facts.

∀ val_i ([Modulus(val_i,10,0)∧ (10≤val_i≤100)+ → ForActionEffects)

178 Chapter 7 : Loops

But in this case, the ForActionEffects is actually the result of a single action and

is the OnPage(val_i,rc2) fact so the following fact is created.

∀ val_i ([Modulus(val_i,10,0)∧ (10≤val_i≤100)] → OnPage(val_i,rc2))

So it can be seen that the overall goal is satisfied when FORID1=ForId1 and

the goal is satisfied when VALUE_j=val_i, RC=VarId_rc, COUNT_NEW=rc and

VALUE_k=rc2. Therefore, this program is also identified as correct.

7.3.2 Loop where the Execution of Statements Depends on the Results of

Previous Iterations

As mentioned in Section 7.1, the execution of the statements within some loops

depends on the result of the previous iteration of that loop. This section explores

how such programs are analysed in the PHP ITS.

7.3.2.1 Factorial as Repeated Multiplication

In order to understand how such a loop is analysed, consider the PHP exercise

defined in Figure 7.11. An example solution to this exercise is given in Figure 7.12.

Figure 7.13 shows the initial state and the overall goal for this exercise. The

initial state specifies an initial symbolic value for the variable $num as described in

Section 4.5.1. The goal specifies that a variable with a value VALUE_f should exist

Write a PHP code segment to find the factorial of a number and store the value

into a new variable. Use a for loop to perform the calculation considering that a

factorial of a number is the result of multiplying integers from 1 to that number.

Note that when execution reaches the point where the code segment needs to be

written, the variable $num contains the number whose factorial needs to be

found.

Figure 7.11. Example exercise for loops where execution depends on previous iterations.

$factorial=1;
for($i=1;$i<=$num;$i++)
{

$factorial*=$i;
}

Figure 7.12. Example solution for factorial exercise.

Chapter 7 : Loops 179

where VALUE_f is the factorial of the initial value of $num. Note that Factorial

here is a predicate similar to the Add predicate defined in Section 4.4.1.1. It is

important to note that the goal specification in this case is different to the goal

specification in 7.2.2 where it was specified as a ∀ condition. In this case, the

execution of one iteration depends on previous iterations and therefore, an aggregate

is calculated. This means that the final outcome is in aggregate form as shown

through the goal specification. This aggregate can be obtained in some other way,

for example by directly calculating the factorial using a mathematical function. The

constraints are used here to ensure that a loop of the appropriate form was used to

perform the actual calculate. It specifies that a correctly functioning for loop should

be used.

The conditions of the sub-plan specify what the loop should accomplish. The

loop should multiply the loop variable with the variable that holds the result and

store the new value to the result variable. In order to do this, both the loop variable

and the variable holding the result should have a value at the beginning of the loop.

Initial State:

HasName(VARID_n,'num')
∧ HasValue(VARID_n,VALUE_n)
∧ HasInitialValue(VARID_n,VALUE_n)

Goal:

Factorial(VALUE_n,VALUE_f)
∧ HasValue(VARID_f,VALUE_f)

Constraints:
 ForLoop(FORID1)
∧ LoopBodyOK(FORID1)

Conditions of Subplan(LoopBodyOK(FORID1)),

PRECOND : HasLoopVariable(FORID1,VARID_i)
∧ HasValue(VARID_i,VALUE_is)
∧ HasValue(VARID_f,VALUE_fs)
∧ Multiply(VALUE_fs,VALUE_is,VALUE_fe)

 POSTCOND: HasValue(VARID_f,VALUE_fe)

Figure 7.13. Initial state and overall goal for factorial exercise.

180 Chapter 7 : Loops

This is specified as the pre-condition of the loop. At the end of the execution of the

loop, the variable holding the result should contain the multiplied value as described

above. This fact is shown in the post-condition of the sub-plan.

Consider how the program in Figure 7.12 is analysed. First, the initial state

results in the following facts being created in the system. Let the id of the created

Variable be VarId1 and the symbolic value assigned to it be val_n. Note that only

facts pertinent to this analysis are presented here.

HasName(VarId1,'num')

HasValue(VarId1,val_n)

HasInitialValue(VarId1,val_n)

The first assignment statement activates an Assign action. Let the id of the

newly created Variable be VarId2. Let the id of the LiteralExpr on the right hand

side be LitExprId1 and the id of the Literal be LitId1. Then, the following facts are

created.

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,1)

Then, the ValueOf the LiteralExpr is found as below.

ValueOf(LitExprId1,1)

The Assign action then results in the following facts being created.

HasName(VarId2,'factorial')

HasValue(VarId2,1)

HasInitialValue(VarId2,1)

Next, the for loop is encountered and analysed as described in Section 7.2.3.

Let the id of the created counter variable be VarId3 and the id of the loop be ForId1.

Also let the id of the LessEqualExpr be ExprId1. Let the ids of the VariableExprs on

either side of this expression be VarExprId1 and VarExprId2 respectively. Then, the

following facts are created as described above.

HasName(VarId3,'i')

HasValue(VarId3,1)

Chapter 7 : Loops 181

HasInitialValue(VarId3,1)

HasLoopVariable(ForId1,VarId3)

HasForStartValue(ForId1,1)

HasId(LessEqualExpr(VarExprId1, VarExprId2),ExprId1)

HasVariable(VarExprId1,VarId3)

HasVariable(VarExprId2,VarId1)

HasLoopCondition(ForId1,ExprId1)

Using the rules in Figure 4.8, the ValueOf VarExprId2 is found, resulting in the

following fact.

ValueOf(VarExprId2,val_n)

Using the second rule in Figure 7.5, the following fact is created.

HasForEndValue(ForId1, val_n)

Next, the update condition of the for loop is analysed using the procedure in

4.6.2. The resultant Assign action creates the following fact which is relevant to this

analysis.

HasValue(VarId3,2)

Since this is the value of the loop variable at the end of the first iteration, the

following fact is created.

HasForFirstLoopValue(ForId1,2)

Next, the rule in Figure 7.6 is activated, resulting in the following fact.

HasForIncrement(ForId1,1)

Now, the loop itself is analysed. Using the notation described in Section 7.2.3,

the effect of the overall loop can be written as below.

repeat(ForActionEffects,ForId1)

Before the program statements within the loop can be analysed, all existing

variables should be given symbolic values to specify what they contain at the

beginning of each iteration as described in Section Error! Reference source not

found.. Let the value of $i be val_i and the value of $factorial be val_f at the

182 Chapter 7 : Loops

beginning of each iteration. Since the variable $num does not change within the

loop, a symbolic value for this variable is not required. Then, the following facts are

created within the loop.

HasValue(VarId3,val_i)

HasIterationValue(ForId1,VarId1,val_i)

HasValue(VarId2,val_f)

HasIterationValue(ForId1,VarId2,val_f)

Next, it is necessary to check whether the pre-conditions in the sub-plan are

satisfied. It can be seen that the existing facts satisfy the pre-conditions when

FORID1=ForId1, VARID_i=VarId3, VALUE_is=val_i, VARID_f=VarId2 and

VALUE_fs=val_f. The Multiply(VALUE_fs,VALUE_i,VALUE_fe) predicate is given

as a pre-condition since it needs to be true for the assignment to occur. Since this is a

mathematical fact, it will always be True. However, it is actually used to ensure that

the correct value is assigned at the end of the loop.

Now, an AssignMultiply action is activated as described in Section 4.4.3. Since

the variable on the left hand side already exists and is in scope, no new variable is

created. However, it is assigned the value of the multiplication of its current value

and the value of variable $i, resulting in the following fact being created.

HasValue(VarId1,val_new) where Multiply(val_f,val_i,val_new)

It can be seen that the post-condition of the sub-plan is now satisfied when

VALUE_fe=val_new, so the following fact is created.

LoopBodyOK(ForId1)

Next, the rules in Figure 7.7 are executed to consolidate the actions performed

by the loop, resulting in the following facts.

RepeatLoop(ForId1,1,val_n,1)

RepeatAll(ForId1,1,val_n)

In this case, the ActionEffects is the result of the assignment which is the

HasValue(VarId1,val_new) fact so the consolidated effect is as below.

∀ val_i [(1≤val_i≤val_n) → HasValue(VarId1,val_new)]

Chapter 7 : Loops 183

When considering the overall goal in Figure 7.13, it can be seen that, although

the overall goal in the previous loops was specified in this manner, the overall goal

here is specified using an aggregate form. In order to match these two states, it

becomes necessary to use a specific rule to suit the current situation. In this case, the

rule used is as shown in Figure 7.14.

By investigating the facts created in the system, it can be seen that this rule is

now activated, resulting in the following fact.

HasValue(VarId1,val_fac) where Factorial(val_n,val_fac)

When comparing this final state against the overall goal in Figure 7.13, it can

be seen that it is satisfied when VALUE_f= val_fac, VARID_f=VarId2 and

FORID1=ForId1. Therefore, the program segment is identified as correct.

7.3.2.2 Multiplication as Repeated Addition

In the analysis of the program above, it can be seen that the process of

aggregating the for-all state to the necessary factorial state involved the use of a

specific rule for this particular calculation (Figure 7.14). Therefore, although this

same method of analysis can be used for other situations where such aggregations are

performed, it becomes necessary to define specific rules for each such situation.

Such aggregations are usually used in cases where a mathematical definition

involves such iteration. Another common example of such a situation where

multiplication is treated as repeated addition. Figure 7.15 shows the overall goal for

an exercise where the student is required to write a program segment to multiply two

numbers held in the variables $a and $b.

This goal specification is very similar to the one in Figure 7.13. In this case,

the overall goal shows that the value stored in the variable should be the

HasValue(varId_x,value_m)
←HasLoopStartValue(loopId,varId_x,1)

∧ HasIterationValue(loopId,varId_x,value_xf)
∧ Factorial(end,value_m)

∧
∀ value_i *(start≤value_i≤end) → HasValue(varId_x,value_x)

∧ Multiply(value_xf,value_i,value_x)]

Figure 7.14. Rule to aggregate factorial as repeated multiplication.

184 Chapter 7 : Loops

multiplication of the initial values of the two variables. Here the program should add

the value of one variable to a running variable and iterate the number of times of the

other variable. It is possible to use the two variables provided in either direction,

resulting in two possible sub-plans.

The detailed analysis of several solutions to this exercise can be found in

Appendix G. One such solution is shown in Figure 7.16.

Initial State:

HasName(VARID_a,a)
 ∧ HasName(VARID_b,b)

∧ HasInitialValue(VARID_a,VALUE_a)
∧ HasInitialValue(VARID_b,VALUE_b)

Goal:
Multiply(VALUE_a,VALUE_b,VALUE_m)
∧ HasValue(VARID_m,VALUE_m)

Constraints:
ForLoop(FORID1)
∧ LoopBodyOK(FORID1)

Conditions of Subplan1(LoopBodyOK(FORID1),
 PRECOND : HasValue(VARID_m,VALUE_ms)

∧ Add(VALUE_ms,VALUE_a,VALUE_me)
 POSTCOND: HasValue(VARID_m,VALUE_me))

Conditions of Subplan2(LoopBodyOK(FORID1),

PRECOND : HasValue(VARID_m,VALUE_ms)
∧ Add(VALUE_ms,VALUE_b,VALUE_me)

 POSTCOND: HasValue(VARID_m,VALUE_me))

Figure 7.15. Initial state and overall goal for multiplication as repeated addition.

$multiply=0;
for($i=1;$i<=$b;$i++)
{

$multiply+=$a;
}

Figure 7.16. Example solution for multiplication exercise.

Chapter 7 : Loops 185

In general, the analysis proceeds as described in Section 7.3.2.1 until it

becomes necessary to aggregate the result. The rule used in this case is given in

Figure 7.17. This is very similar to the rule in Figure 7.14 with a few minor

differences. The for-all part of the premises of the rule checks for an addition instead

of a multiplication since repeated addition is being considered here. In this case, the

number that is added repeatedly to the running variable is fixed and does not depend

on the counter variable of the loop (Figure 7.16). Therefore, what matters is the

number of times the loop is repeated and not the exact value of the counter variable

of the loop. This is incorporated into the rule in Figure 7.17 using mathematical

predicates to specify that the resultant multiplication depends on the start and end

values of the counter variable.

Similar rules can be written to handle many other mathematical functions that

can be defined as repetitions. However, the exercises included in the PHP ITS only

consider the cases where factorial is repeated multiplication and multiplication is

repeated addition. Therefore, only rules to handle these two situations have been

included in the KB.

7.4 COLLECTION BASED LOOPS THAT PERFORM SOME ACTION

AGAINST EVERY ITEM IN THE COLLECTION INDEPENDENTLY

WITHOUT SUMMARISING

The previous section discussed how the KB handled loops described as definite

in Section 7.1. This section goes on to explain how the ideas used here are extended

to handle one of the most common types of loops in real-world programming –

collection based loop that perform some action against every item in the collection

HasValue(varId_x,value_m)
←HasLoopStartValue(loopId,varId_x,0)

∧ HasIterationValue(loopId,varId_x,value_xf)
∧ Multiply(value_z,n,value_m)
∧ Subtract(end,start,n1)
∧ Add(n1,1,n)

∧
∀ value_i *(start≤value_i≤end) → HasValue(varId_x,value_x)

∧ Add(value_xf,value_z,value_x)]

Figure 7.17. Rule to aggregate multiplication as repeated addition.

186 Chapter 7 : Loops

without summarising (Stavely, 1993). As discussed in Section 7.1, such loops iterate

through all the elements of a data structure. Since only basic PHP is taught by the

PHP ITS, the only type of data structure considered during this thesis is an array.

Therefore, this section describes how different statements that loop through the

elements of an array are analysed.

Three types of constructs are typically used to iterate through the elements of

an array in PHP: for, while and foreach. Both the for and while loops are similar to

those used for definite loops. Therefore, the analysis process is similar to that

described in Section 7.2.3. Such loops are discussed in Section 7.4.1. The other type

of construct, the foreach construct is handled a little differently in the PHP ITS. The

analysis process for such loops is described in Section 7.4.2.

7.4.1 For and While Constructs

The for and while constructs used to access array elements behave the same

way as they do in definite loops. Therefore, the predicates used here are the same as

those described in Section 7.2.1. However, very often the order of elements is

important when dealing with arrays. In order to understand how this works, consider

the example exercise given in Figure 7.18.

Figure 7.19 shows the initial state and the overall goal for this exercise. In this

case, the number of predicates is increased considerably since we are dealing with

arrays and they require a large number of predicates to define the keys, elements and

values. The somewhat lengthy initial state specifies that the array named „myarray‟

contains three elements with indexes 0, 1 and 2 and values VALUE_1, VALUE_2

and VALUE_3.

Write a PHP code segment to display all the elements of the $myarray array in

order. Note that when execution reaches the point where the code needs to be

completed, the $myarray array is initialised and contains three elements. Use a

for loop to loop through these elements and display the contents.

Figure 7.18. Example exercise for for-each loop using the for construct.

Chapter 7 : Loops 187

Initial State:

HasArrayName(ARRID_a,'myarray')
 ∧ HasVariableId(HasElement(ARRID_a,KEYID_1),VARID_1)

∧ HasKeyExpression(KEYID_1,EXPRID_1)
∧ ValueOf(EXPRID_1,0)
∧ HasValue(VARID_1,VALUE_1)
∧ HasInitialValue(VARID_1,VALUE_1)
∧ HasVariableId(HasElement(ARRID_a,KEYID_2),VARID_2)
∧ HasKeyExpression(KEYID_2,EXPRID_2)
∧ ValueOf(EXPRID_2,1)
∧ HasValue(VARID_2,VALUE_2)
∧ HasInitialValue(VARID_2,VALUE_2)
∧ HasVariableId(HasElement(ARRID_a,KEYID_3),VARID_3)
∧ HasKeyExpression(KEYID_3,EXPRID_3)
∧ ValueOf(EXPRID_3,2)
∧ HasValue(VARID_3,VALUE_3)
∧ HasInitialValue(VARID_3,VALUE_3)

Goal:
∀ j [(0≤j≤2)→
{HasVariableId(HasElement(ARRID_a,KEYID_j),VARID_j)
∧ HasKeyExpression(KEYID_j,EXPRID_j)
∧ ValueOf(EXPRID_j,j)
∧ HasValue(VARID_j,VALUE_j)
∧ OnPage(VALUE_j,Y)
∧ Add(VALUE_rc,1,Y)
∧ HasValue(VARID_rc,Y)}]

Constraints:
ForLoop(FORID1)
∧ LoopBodyOK(FORID1)

Conditions of Subplan(LoopBodyOK(FORID1),

PRECOND : HasForVariable(FORID1,VARID_i)
∧ HasValue(VARID_i,VALUE_i)

 ∧ HasVariableId(HasElement(ARRID_a,KEYID_i),VARID_n)
 ∧ HasKeyExpression(KEYID_i,EXPRID_i)
 ∧ ValueOf(EXPRID_i,VALUE_i)
 ∧ HasValue(VARID_n,VALUE_n)

∧ HasValue(VARID_rc,VALUE_r)
∧ Add(VALUE_r,1, VALUE_x)

POSTCOND: OnPage(VALUE_n,VALUE_x))

Figure 7.19. Initial state and overall goal for example exercise for for-each loop using for construct.

188 Chapter 7 : Loops

The goal in this case is very similar to that in Figure 7.4 except for the fact that

it contains the large number of predicates to handle arrays. The row counter variable

that holds the current counter used in the OnPage predicate (Section 4.4.3) is used

here to control the order. The goal specifies that 1 should be added to this before the

relevant OnPage predicate is created.

The constraints and conditions of the sub-plan are also very similar to the

previous case except for the row counter variable being included in the pre-

conditions of the sub-plan.

Consider the solution to this exercise given in Figure 7.20. Before this

program can be analysed, the facts relevant to the initial state are created as below.

Let the id of the Array be ArrId1, the ids of the three ArrayVariables be VarId1,

VarId2 and VarId3 and the ids of the relevant Keys be KeyId1,KeyId2 and KeyId3

respectively. Let the ids of the Expressions corresponding to these keys be ExprId1,

ExprId2 and ExprId3 respectively. Let the symbolic values assigned to the three

variables be val_1, val_2 and val_3 respectively.

HasArrayName(ArrId1,'myarray')

HasVariableId(HasElement(ArrId1,KeyId1),VarId1)

HasKeyExpression(KeyId1,ExprId1)

ValueOf(ExprId1,0)

HasValue(VarId1,val_1)

HasInitialValue(VarId1,val_1)

HasVariableId(HasElement(ArrId1,KeyId2),VarId2)

HasKeyExpression(KeyId2,ExprId2)

ValueOf(ExprId2,1)

for($i=0;$i<3;$i++)
{

echo($myarray[$i]);
}

Figure 7.20. Example solution to exercise for for-each loop using for construct

Chapter 7 : Loops 189

HasValue(VarId2,val_2)

HasInitialValue(VarId2,val_2)

HasVariableId(HasElement(ArrId1,KeyId3),VarId3)

HasKeyExpression(KeyId3,ExprId3)

ValueOf(ExprId3,2)

HasValue(VarId3,val_3)

HasInitialValue(VarId3,val_2)

Next, the for loop is analysed creating the following facts as explained in

Section 7.2.3. Let the id of the loop variable be VarId4 and the id of the loop be

ForId1. Let the id of the LessExpr be ExprId4 and the ids of the VariableExpr and

the LiteralExpr on either side of it be VarExprId1 and LitExprId1 respectively. Also

let the id of the created Literal be LitId1.

HasName(VarId4,'i')

HasValue(VarId4,0)

HasInitialValue(VarId4,0)

HasLoopVariable(ForId1,VarId4)

HasForStartValue(ForId1,0)

HasId(LessExpr(VarExprId1,LitExprId1),ExprId4)

HasVariable(VarExprId1,VarId4)

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,3)

HasLoopCondition(ForId1,ExprId4)

Using the rules in Figure 4.8, the ValueOf the LiteralExpr is found, resulting in

the following fact.

ValueOf(LitExprId1,3)

Using the first rule in Figure 7.5, the following fact is created.

HasForEndValue(ForId1,2)

190 Chapter 7 : Loops

Next, the update condition of the for loop is analysed using the procedure in

4.6.2. The resultant Assign action creates the following fact which is relevant to this

analysis.

HasValue(VarId4,1)

Since this is the value of the loop variable at the end of the first iteration, the

following fact is created.

HasForFirstLoopValue(ForId1,1)

Next, the rule in Figure 7.6 is activated, resulting in the following fact.

HasForIncrement(ForId1,1)

Now, the loop itself is analysed. Using the notation described in Section 7.2.3,

the effect of the overall loop can be written as below.

repeat(ForActionEffects,ForId1)

The program statements within the loop are next analysed against the

conditions of the sub-plan. In order to analyse the statements within the loop it is

first necessary to consider starting values for each loop iteration for all variables that

already exist. Let the value of $i at the beginning of each iteration be val_i. Let the

id of the variable counting the display elements be VarId_rc and the value of this

variable at the beginning of each iteration be val_rc. Then, the following facts are

created. Note that these facts are only true within the loop.

HasValue(VarId4,val_i)

HasIterationValue(ForId1,VarId4,val_i)

HasValue(VarId_rc,val_rc)

HasIterationValue(ForId1,VarId_rc,val_rc)

In this case, the loop analyses an array. At this point, it becomes necessary to

analyse the statements within the loop to see whether the key corresponding to any

array access is dependent on the loop variable or any other variable changed within

the loop. Here, the key is dependent on the loop variable. Therefore, it becomes

necessary to use the value of the loop variable to create a symbolic value for the key

during each iteration. Let the id of the expression relevant to the key during each

Chapter 7 : Loops 191

iteration be ExprId_i. In this case, this is a variable expression referring to the loop

variable so the following fact is created.

HasVariable(ExprId_i,VarId4)

 Next, the rule in Figure 4.8 is used to calculate the ValueOf this expression,

resulting in the following fact.

ValueOf(ExprId_i,val_i)

 This is the expression that is linked to the key for each iteration. Let the id of

the key for each iteration be KeyId_i. Then, the following fact is created.

HasKeyExpression(KeyId_i,ExprId_i)

As described in Section 6.1, the relationship between an array and a key

is reified to create an ArrayVariable. Therefore, the link between the key for

each iteration and the array is reified to create a new ArrayVariable with id

VarId_n as below.

HasVariableId(HasElement(ArrId1,KeyId_i),VarId_n)

For analysis purposes, it becomes necessary to consider the value of this

variable at the beginning of each iteration as described in Section 7.2.3. Let

the symbolic value assigned to this variable be val_n. Then, the following

facts are creatd.

HasValue(VarId_n,val_n)

HasIterationValue(ForId1,VarId_n,val_n)

 It can be seen that the pre-condition of the sub-plan is satisfied when

FORID1=ForId1, VARID_i=VarId4, VALUE_i=val_i, ARRID_a=ArrId1,

KEYID_i=KeyId_i, EXPRID_i=ExprId_i, VARID_n=VarId_n, VALUE_n=val_n,

VARID_rc=VarId_rc and VALUE_r=val_rc.

Now, a Display action occurs due to the echo statement. This results in the

following facts.

OnPage(val_n,rc2) where Add(rc,1,rc2)

HasValue(VarId_rc,rc2)

192 Chapter 7 : Loops

When considering the post-condition of the sub-plan it can be seen that it is

satisfied when VALUE_x=rc2. Therefore the following fact is created.

LoopBodyOK(ForId1)

Next, the rules specified in Figure 7.7 are activated to create the following fact.

RepeatLoop(ForId1,0,2,1)

RepeaAll(ForId1,0,2)

The final rule in Figure 7.7 is next activated to result in the final rule results in

the following facts. The ForActionEffects in this case are a combination of facts that

lead to the Display action.

∀ val_i [(0≤val_i≤2)
→ HasVariableId(HasElement(ArrId1,KeyId_i),VarId_n)

∧ HasKeyExpression(KeyId_i,ExprId_i)

∧ ValueOf(ExprId_i,val_i)

∧ HasValue(VarId4,val_i)

∧ OnPage(val_n,rc2)

∧ Add(rc,1,rc2)

∧ HasValue(VarId_rc,rc2)]

The resultant state is the final state of the system. When comparing this

against the overall goal in Figure 7.19, it can be seen that it is satisfied when

FORID1=ForId1, j=val_i, ARRID_a=ArrId1, KEYID_j=KeyId_i,

VARID_j=VarId_n, EXPRID_j=ExprId_i, VALUE_j=val_i, VARID_j=VarId4,

VALUE_j=val_n, Y=rc2, VALUE_rc=rc and VARID_rc=VarId_rc. Therefore, this

program is identified as correct.

While constructs are handled in a similar manner, as described in Section 7.2.5.

The only difference is again the need to use facts related to arrays and to create facts

relevant to these arrays at the beginning of the analysis of the loop.

7.4.2 Foreach Construct

As described above the elements of a collection can be accessed in PHP using

the foreach construct. Although such loops behave in the same manner as the

previously described loops logically, their different syntax makes it necessary to

define a set of new predicates to handle them.

Chapter 7 : Loops 193

7.4.2.1 Predicate Definition

The predicates used for handling the foreach construct are shown in Figure

7.21. Every foreach loop iterates through an Array. The relationship between the

loop and the array is maintained using the HasForEachArray predicate. The foreach

loop refers to the element at the current position of the array. Since array elements

are defined as a sub-type of Variable as described in Section 6.1, the

HasForEachVariable predicate is used to model the relationship between the loop

and the ArrayVariable. Sometimes, it is possible for foreach loops to refer to the

value of the key of the current array variable. This relationship is established using

the HasForEachKey predicate. The key used in a foreach construct is always a

variable. Therefore, this is maintained as a VariableExpr. The DoForEach predicate

is similar to the RepeatLoop predicate described in Section 7.2.1. It maintains a link

between the loop itself and the value of the key and the element that each iteration

accesses.

Figure 7.21. Predicates for handling the foreach construct.

7.4.2.2 Program Analysis

In order to understand how these predicates work, consider the example

exercise shown in Figure 7.18. Assume that this exercise has been extended to

require the position in the array to be displayed, along with the value for each array

element. Figure 7.22 shows an example solution to this exercise.

194 Chapter 7 : Loops

In this case, the initial state is the same as that shown in Figure 7.19. The

overall goal in this case needs to be expressed differently in order to handle that the

foreach construct is used. The number of iterations depends on the number of

elements in the array. Although it is possible to give an exact number in the overall

goal since the number of elements are known, this causes a problem during program

analysis. There is no possibility to write a generalised rule similar to Figure 7.7

since a counter variable doesn‟t exist. Therefore, this knowledge base is only

capable of handling programs that specifically require the student to use a foreach

construct and a similar program written using any other construct is not accepted.

The overall goal for this exercise is shown in Figure 7.23.

HasVariableId(HasElement(ArrId1,KeyId3),VarId3)

HasInitialValue(VarId2,val_2)

As before, the initial state results in the following facts.

HasArrayName(ArrId1,'myarray')

HasVariableId(HasElement(ArrId1,KeyId1),VarId1)

HasKeyExpression(KeyId1,ExprId1)

ValueOf(ExprId1,0)

HasValue(VarId1,val_1)

HasInitialValue(VarId1,val_1)

HasVariableId(HasElement(ArrId1,KeyId2),VarId2)

HasKeyExpression(KeyId2,ExprId2)

ValueOf(ExprId2,1)

HasValue(VarId2,val_2)

foreach($myarray as $key=>$value)
{

echo($key)
echo($myarray[$i]);

}

Figure 7.22. Example program for foreach construct.

Chapter 7 : Loops 195

HasKeyExpression(KeyId3,ExprId3)

ValueOf(ExprId3,2)

HasValue(VarId3,val_3)

HasInitialValue(VarId3,val_3)

HasForEachArray(ForEachId1,ArrId1)

Next, the foreach construct is analysed. Let the id of the loop be ForEachId1.

The following fact is created to link the loop to the array.

The foreach construct here uses both a key and a value. If no key is specified

in the syntax, a symbolic key is automatically created. The key in any foreach

construct is a VariableExpr related to a Variable. Let the ids of the VariableExpr

Goal:
∀ VALUE_j [VALUE_j ∊ Array(ARRID_a,)→
{HasVariableId(HasElement(ARRID_a,KEYID_j),VARID_j)
∧ HasKeyExpression(KEYID_j,EXPRID_j)
∧ ValueOf(EXPRID_j,j)
∧ HasValue(VARID_j,VALUE_j)
∧ OnPage(j,Y)
∧ Add(VALUE_rc,1,Y)
∧ Add(Y,1,Z)
∧ OnPage(VALUE_j,Z)}]

Constraints:
ForEachLoop(FOREACHID1)
∧ LoopBodyOK(FOREACHID1)

Conditions of Subplan(LoopBodyOK(FOREACHID1),

PRECOND : HasForEachVariable(FOREACHID1,VARID_i)
∧ HasForEachKey(FOREACHID1,KEYEXPRID_i)
∧ HasKeyExpression(KEYID_i, KEYEXPRID _i)

 ∧ HasVariableId(HasElement(ARRID_a,KEYID_i),VARID_n)
 ∧ ValueOf(KEYEXPRID _i,VALUE_i)
 ∧ HasValue(VARID_n,VALUE_n)

∧ HasValue(VARID_rc,VALUE_r)
∧ Add(VALUE_r,1, VALUE_x)
∧ Add(VALUE_x,1, VALUE_y)

POSTCOND: OnPage(VALUE_i,VALUE_x))
∧ OnPage(VALUE_n,VALUE_y))

Figure 7.23. Overall goal for example exercise for foreach construct.

196 Chapter 7 : Loops

and Variable be VariableExprId1 and VarId4 respectively. Let the id of the Key be

KeyId1. Then, the following facts are created.

HasForEachKey(ForEachId1,VarExprId1)

HasVariable(VarExprId1,VarId4)

This key expression is associated with a Key as described in Section 6.1. Let

the id of the relevant Key be KeyId1. Then, the following fact is created.

HasKeyExpression(KeyId1,VarExprId1)

Now, the relationship between the Array and Key accessed by the foreach

construct is reified into an ArrayVariable as described in Section 6.1. Let the id of

the created ArrayVariable be VarId5. Then, the following fact is created.

HasVariableId(HasElement(ArrId1,KeyId1),VarId5)

But this is the variable that is accessed within the loop so the following fact is

created.

HasForEachVariable(ForEachId1,VarId5)

Normally, an array variable is not assigned a name. However, in the case of

the foreach construct, the values within the array are accessed using a variable name

specified. Therefore, in this case, the specified name is assigned to the

ArrayVariable as below.

HasName(VarId5,'value')

In order to analyse the loop, it is necessary to define values for all existing

variables at the beginning of the loop. Here, the variables of concern within the loop

are those referring to the key, the ArrayVariable and the counter used in the Display

actions. For simplicity, only facts relevant to the initial value of these variables are

given here.

HasValue(VarId4,val_i)

HasIterationValue(ForEachId1,VarId4,val_i)

HasValue(VarId5,val_n)

HasIterationValue(ForEachId1,VarId5,val_n)

HasValue(VarId_rc,rc)

Chapter 7 : Loops 197

HasIterationValue(ForEachId1,VarId_rc,rc)

Then, using the rules in Figure 4.8, the following fact is created.

ValueOf(VarExprId1,val_i)

Next, the loop itself is analysed. The results of the repetition of the loop can be

expressed as below.

repeat(ForEachActionEffects,ForEachId1)

When considering the current state of the program, it can be seen that the pre-

conditions of the sub-plan are satisfied when FOREACHID1=ForEachId1,

VARID_i=VarId4, KEYEXPRID_i=VarExprId1, KEYID_i=KeyId1,

ARRID_a=ArrId1, VARID_n=VarId5, VALUE_i=val_i, VALUE_n=val_n,

VARID_rc=VarId_rc and VALUE_r=rc.

Here, the ForEachActionEffects are two echo statements. The first echo

statement activates a Display action resulting in the following facts.

OnPage(val_i,rc2) where Add(rc,1,rc2)

Similarly, the second Display action results in the following facts.

OnPage(val_n,rc3) where Add(rc2,1,rc3)

So it can be seen that the post-conditions of the sub-plan are satisfied when

VALUE_x=rc2 and VALUE_y=rc3. Therefore the sub-plan is satisfied and the

following fact is created.

LoopBodyOK(ForEachId1)

In the case of the foreach construct, rules similar to those in Figure 7.7 are

used to consolidate the function of the loop. These rules are shown in Figure 7.24.

The following fact is created using the first rule in this figure.

DoForEach(ForEachId1,val_i,val_n)

Using the second rule in the figure, the following fact is created.

∀ val_n [(val_n ∊ ArrId1) → ForEachActionEffects]

198 Chapter 7 : Loops

But in this case, ForEachActionEffects is the combined results of the two

Display actions so the final state can be written as below. Note that other facts that

exist in the system are also included in this representation.

∀ val_n [(val_n ∊ ArrId1) →

∧ HasVariableId(HasElement(ArrId1,KeyId1),VarId5)

∧ HasKeyExpression(KeyId1,VarExprId1)

∧ ValueOf(VarExprId1,val_i)

∧ HasValue(VarId5,val_n)

∧ OnPage(val_i,rc2)

∧ Add(rc,1,rc2)

∧ Add(rc2,1,rc3)

∧ OnPage(val_n,rc3)]

When comparing against the overall goal in Figure 7.23, it can be seen that it is

satisfied when VALUE_j=val_n, ARRID_a=ArrId1, KEYID_j=KeyId1,

VARID_j=VarId5, EXPRID_j=VarExprId1, j=val_i, VALUE_rc=rc, Y=rc2 and

Z=rc3. Therefore, the student‟s program is identified as correct.

DoForEach(forEachId1,keyValue,elementValue)
← HasForEachArray(forEachId1,arrId1)

∧ HasForEachVariable(forEachId1,varId1)
 ∧ HasForEachKey(forEachId1,exprId1)
 ∧ HasKeyExpression(keyId1,exprid1)
∧ ValueOf(exprid1,keyValue)
∧ HasVariableId(HasElement(arrId1,keyId1),varId1)
∧ HasValue(varId1,elementValue)

∀ elementValue [(elementValue ∊ arrId1) → ForEachActionEffects]
← repeat(ForEachActionEffects,forEachId1)

∧ DoForEach(forEachId1,keyValue,elementValue)
∧ HasVariableId(HasElement(arrId1,keyId1),varId1)
∧ HasValue(varId1,elementValue)

Figure 7.24. Rules for consolidating foreach constructs.

Chapter 7 : Loops 199

7.5 COLLECTION BASED LOOPS THAT PERFORM SOME ACTION

AGAINST EVERY ITEM IN THE COLLECTION INDEPENDENTLY

WHILE SUMMARISING

This section investigates how the KB in the PHP ITS handles summarising the

data in an array while accessing every element of it as described in Section 7.1. In

order to understand how such loops are analysed, consider the example exercise

given in Figure 7.25. The initial state for this exercise is given in Figure 7.26.

Write a PHP code segment to find the maximum of the elements stored in an

array $marks and store it into a variable named „max‟. Use a for loop to perform

the search. Note that when execution reaches the point where the code needs to

be completed, the array is initialised and contains four elements.

Figure 7.25. Example exercise for a search loop.

HasArrayName(ARRID_m,'marks')
∧ HasVariableId(HasElement(ARRID_m,KEYID_1),VARID_1)
∧ HasKeyExpression(KEYID_1,EXPRID_1)
∧ ValueOf(EXPRID_1,1)
∧ HasValue(VARID_1,VALUE_1)
∧ HasInitialValue(VARID_1, VALUE_1)
∧ HasVariableId(HasElement(ARRID_m,KEYID_2),VARID_2)
∧ HasKeyExpression(KEYID_2,EXPRID_2)
∧ ValueOf(EXPRID_2,2)
∧ HasValue(VARID_2,VALUE_2)
∧ HasInitialValue(VARID_2, VALUE_2)
∧ HasVariableId(HasElement(ARRID_m,KEYID_3),VARID_3)
∧ HasKeyExpression(KEYID_3,EXPRID_3)
∧ ValueOf(EXPRID_3,3)
∧ HasValue(VARID_3,VALUE_3)
∧ HasInitialValue(VARID_3, VALUE_3)
∧ HasVariableId(HasElement(ARRID_m,KEYID_4),VARID_4)
∧ HasKeyExpression(KEYID_4,EXPRID_4)
∧ ValueOf(EXPRID_4,4)
∧ HasValue(VARID_4,VALUE_4)
∧ HasInitialValue(VARID_4, VALUE_4)

Figure 7.26. Initial state for example exercise for collection based loops that perform some action

against every item in the collection.

200 Chapter 7 : Loops

Two common algorithms are used when developing solutions to exercises of

this form. Table 7.7 shows example solutions for this exercise written using these

two algorithms. The first program uses what is known as the indirect method. Here

the position of the currently selected element is stored in a variable. Then each

element of the array is accessed and compared against the element at the stored

position to see if a certain criterion is satisfied. In this case, since the aim is to find

the maximum, the criterion is to check if the element at the current array position is

larger than the element at the stored position. If the criterion is satisfied, the current

position replaces the stored position. Once all the elements have been processed, the

element at the stored position is taken to be the desired element. In the direct method

shown in the second program, the array element itself, and not its position is stored

initially. Inside the loop, the element, and not its position replaces the stored value

when the criterion is satisfied. This means that the required element is stored when

all the elements have been accessed.

Table 7.7

Solutions to Example Exercise for Collection Based Loops the Perform Some Action on Every Element

while Summarising using Indirect and Direct Methods of Array Access

Searching using Indirect Method Searching using Direct Method

$maxpos=1;
for($i=2;$i<5;$i++)
{

if($array[$i]>$array[$maxpos])
{

$maxpos=$i;
}

}
$max=$array[$maxpos];

$max=$array[1];
for($i=2;$i<5;$i++)
{

if($array[$i]>$max)
{

$max=$array[$i];
}

}

7.5.1 Overall Goal Specification

Figure 7.27 shows the overall goal for this example exercise. It is quite similar

to the goal for for-each loops but contains some noteworthy characteristics. First of

all, the goal here is also specified using a for-all term. In this case, it specifies that

for all values of j between 1 and 4 (inclusive), the element at the given position in the

array should be less than or equal to the value stored in a given variable. The

constraints go on to specify that the name of this variable is 'max'. Upon careful

consideration, it can be seen that if the variable 'max' holds the maximum value in

Chapter 7 : Loops 201

the array, this condition is always true. The constraints go on to ensure that a for

loop is used and the body of the loop functions appropriately.

As described above, two common methods, the direct and indirect methods, are

used for this type of searching. The function of the body of the loop needs to be

different based on which algorithm is being used for the search. This means that two

alternative conditions for sub-plans can be specified for the loop as discussed in

Goal:
HasValue(VARID_max,VALUE_m)
∧
∀j *(1≤j≤4)→
[{(HasVariableId(HasElement(ARRID_m,KEYID_j),VARID_j)
∧ HasKeyExpression(KEYID_j,EXPRID_j)
∧ ValueOf(EXPRID_j,j)

 ∧ HasValue(VARID_j,VALUE_j)
 ∧ LessThanOrEqual(VALUE_j, VALUE_m)
 ∧ VALUE_m ∊ Array(ARRID_m) }]]
Constraints

HasName(VARID_max,max)
∧ ForLoop(FORID1)
∧ LoopBodyOK(FORID1)

Conditions of Subplan(LoopBodyOK(FORID1)),
PRECOND :

HasLoopVariable(FORID1,VARID_i)
∧ HasValue(VARID_i,VALUE_i)
∧ HasVariableId(HasElement(ARRID_m, KEYID_i),VARID_n)
∧ HasKeyExpression(KEYID_i,EXPRID_i)
∧ ValueOf(EXPRID_i,VALUE_i)
∧ HasValue(VARID_n,VALUE_n)
∧
HasVariableId(HasElement(ARRID_m,KEYID_cpos),VARID_cmax)
∧ HasKeyExpression(KEYID_cpos,EXPRID_cpos)
∧ ValueOf(EXPRID_cpos,VALUE_cpos)
∧ HasValue(VARID_cmax,VALUE_cmax)
∧ HasValue(VARID_maxpos,VALUE_cpos)

POSTCOND:
GreaterThan(VALUE_n,VALUE_cmax)
 →HasValue(VARID_maxpos,VALUE_i)

Figure 7.27. Overall goal for example exercise for collection based loops that perform some action

against every item in the collection.

202 Chapter 7 : Loops

Section 7.3.1. However, in this case, the format of the conditions of one sub-plan

can easily be obtained from the other. The exact method of doing this is discussed

later in Section 7.5.1.2. Therefore only a single set of conditions of a sub-plan are

specified in the overall goal. The pre-conditions of the sub-plan are divided into two

sections – the unchangeable pre-conditions and the changeable preconditions. The

unchangeable pre-conditions remain the same for both sets of conditions of sub-

plans. The changeable pre-conditions and the post-condition are automatically

generated for the conditions of the second sub-plan as described later in Section

7.5.1.2. Note that part of the pre-condition in the figure is highlighted. This is the

part known as the changeable pre-condition and is automatically replaced with other

predicates if the sub-plan for the indirect method is not satisfied.

The pre-conditions for the sub-plan for searching arrays is specified assuming

that the indirect method of array access will be used. This is because the pre and

post-conditions for the direct method can easily be derived from those for the direct

method. In Figure 7.27, the pre-conditions specify that, if the element in the current

array position is greater than the element in the array position stored in the variable

indicating the current maximum, the current maximum position is updated to the

current position. In other words, this is the indirect mode of access.

7.5.1.1 Program Analysis for Indirect Method

First consider how this overall goal specification is used to analyse a solution

to the exercise written using the indirect method. Such a solution is given in the first

program in Table 7.7. The following facts are created as a result of the initial state.

HasArrayName(ArrId1,'marks')

HasVariableId(HasElement(ArrId1,KeyId1),VarId1)

HasKeyExpression(KeyId1,ExprId1)

ValueOf(ExprId1,1)

HasValue(VarId1,val_1)

HasInitialValue(VarId1,val_1)

HasVariableId(HasElement(ArrId1,KeyId2),VarId2)

HasKeyExpression(KeyId2,ExprId2)

Chapter 7 : Loops 203

ValueOf(ExprId2,2)

HasValue(VarId2,val_2)

HasInitialValue(VarId2,val_2)

HasVariableId(HasElement(ArrId1,KeyId3),VarId3)

HasKeyExpression(KeyId3,ExprId3)

ValueOf(ExprId3,3)

HasValue(VarId3,val_3)

HasInitialValue(VarId3,val_3)

HasVariableId(HasElement(ArrId1,KeyId4),VarId4)

HasKeyExpression(KeyId4,ExprId4)

ValueOf(ExprId4,4)

HasValue(VarId4,val_4)

HasInitialValue(VarId4,val_4)

The first statement encountered during program analysis is an

assignment. Let the id of the created variable be VarId_mp. Then, the

following facts are created as a result of the Assign action. Note that only the

facts relevant to this analysis are presented here.

HasName(VarId_mp,'maxpos')

HasValue(VarId_mp,1)

HasInitialValue(VarId_mp,1)

Next, a for loop is encountered. Let the id of the created loop be

ForId1. Let the id of the loop variable be VarId_i and the id of the

conditional expression be ExprId1. Let the ids of the two expressions on

either side of the conditional expression be VarExprId1 and LitExprId1

respectively. Let the id of the Literal related to the expression be LitId1.

Then, the following facts are created as described in Section 7.2.3.

HasName(VarId_i,'i')

HasValue(VarId_i,2)

204 Chapter 7 : Loops

HasInitialValue(VarId_i,2)

HasLoopVariable(ForId1,VarId_i)

HasForStartValue(ForId1,2)

HasId(LessExpr(VarExprId1,LitExprId1),ExprId1)

HasVariable(VarExprId1,VarId_i)

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,5)

HasLoopCondition(ForId1,ExprId1)

Using the rules in Figure 4.8, the ValueOf the LiteralExpr is found, resulting in

the following fact.

ValueOf(LitExprId1,5)

Using the rule in Figure 7.5, the following fact is created.

HasForEndValue(ForId1,4)

Next, the update condition of the for loop is analysed using the procedure in

4.6.2. The resultant Assign action creates the following fact which is relevant to this

analysis.

HasValue(VarId_i,3)

Since this is the value of the loop variable at the end of the first iteration, the

following fact is created.

HasForFirstLoopValue(ForId1,3)

Next, the rule in Figure 7.6 is activated, resulting in the following fact.

HasForIncrement(ForId1,1)

Now, the loop itself is analysed. Using the notation described in Section 7.2.3,

the effect of the overall loop can be written as below.

repeat(ForActionEffects,ForId1)

The program statements within the loop are next analysed against the sub-plan.

Let the starting value of VarId_i for each iteration be val_i. Let the starting value of

VarId_mp be val_mp. Then, the following facts are created.

Chapter 7 : Loops 205

HasValue(VarId_i,val_i)

HasIterationValue(ForId1,VarId_i,val_i)

HasValue(VarId_mp,val_mp)

HasIterationValue(ForId1,VarId_mp,val_mp)

In this case, the loop accesses two array variables that have key values that are

changed within the loop. Let the keys and expressions related to these keys have ids

KeyId1, KeyId2, KeyExprId1 and KeyExprId2 respectively. Then, the following

facts are created.

HasKeyExpression(KeyId1,KeyExprId1)

HasKeyExpression(KeyId2, KeyExprId2)

But the key expressions are actually variable expressions that access existing

variables so the following facts are created.

HasVariable(KeyExprId1,VarId_i)

HasVariable(KeyExprId2,VarId_mp)

Using the rules in Figure 4.8, the following facts are created.

ValueOf(KeyExprId1,val_i)

ValueOf(KeyExprId2,val_mp)

But these relationships between the array and the keys are reified to create

ArrayVariables. Let the ids of the two created ArrayVariables be VarId5 and VarId6

respectively. Then, the following facts are created.

HasVariableId(HasElement(ArrId1,KeyId1),VarId5)

HasVariableId(HasElement(ArrId1,KeyId2),VarId6)

For the purpose of analysing the loop, these variables need to be assigned

symbolic values for their initial values during each iteration of the loop. Let the

corresponding values be val_a and val_b respectively. Then, the following facts are

created.

HasValue(VarId5,val_a)

HasIterationValue(ForId1,VarId5,val_a)

206 Chapter 7 : Loops

HasValue(VarId6,val_b)

HasIterationValue(ForId1,VarId6,val_b)

When comparing the existing facts against the pre-conditions of the sub-plan, it

can be seen that they are satisfied when FORID1=ForId1, VARID_i=Varid_i,

VALUE_i=val_i, ARRID_m=ArrId1, KEYID_i=KeyId1, VARID_n=VarId5,

EXPRID_i=KeyExprId1, VALUE_n=val_a, KEYID_cpos=KeyId2,

VARID_cmax=VarId5, EXPRID_cpos=KeyExprId2, VALUE_cpos=val_mp,

VARID_cmax=VarId6, VALUE_cmax=val_b and VARID_maxpos=VarId_mp.

Next, the statements within the loop are analysed. The first statement within

the loop is an if construct which is analysed as described in Section 5.2. Let the id of

the conditional expression within the construct be ExprId2. Let the ids of the two

VariableExprs on either side of the conditional expression be VarExprId2 and

VarExprId3 respectively. Then, the following fact is created.

HasId(GreaterExpr(VarExprId2,VarExprId3),ExprId2)

Since the VariableExprs on either side of this expression refer to

ArrayVariables, it is necessary to find the corresponding ids. VarExprId2 refers to

the ArrayVariable connecting the array to the loop variable $i. From above, it can be

seen that this corresponds to the key expression KeyExprId1 which in turn

corresponds to the key KeyId1. The variable connecting the array and KeyId1 is

VarId5 so this is the variable that VarExprId2 refers to. Similarly, VarExprId3 refers

to the variable VarId6 so the following facts are created.

HasVariable(VarExprId2,VarId5)

HasVariable(VarExprId3,VarId6)

Now, the ValueOf these expressions are calculated using the rules in Figure

4.8, resulting in the following facts.

ValueOf(VarExprId2,val_a)

ValueOf(VarExprId3,val_b)

Within the if statement, the conditional expression is true so the following fact

is created.

ValueOf(ExprId2,True)

Chapter 7 : Loops 207

When this condition is true, the following fact is created, using the rules in

Figure 5.4.

GreaterThan(val_a,val_b)

The assignment statement occurs if this condition is satisfied, resulting in an

Assign action. The following predicate is then created.

HasValue(VarId_mp,val_i)

Therefore, the effects of the for action can be written as below.

GreaterThan(val_a,val_b)⟶ HasValue(VarId_mp,val_i)

So the post-condition of the sub-plan is satisfied and the following fact is

created.

LoopBodyOK(ForId1)

Now, the results of the loop are consolidated using the set of rules given in

Figure 7.7.

RepeatLoop(ForId1,2,4,1)

RepeatAll(ForId1,2,4)

∀ val_i [(2≤val_i≤4) →

(HasVariableId(HasElement(ArrId1,KeyId1),VarId5)

∧ HasKeyExpression(KeyId1,KeyExprId1)

∧ ValueOf(KeyExprId1,val_i)

∧ HasValue(VarId5,val_a)

∧ HasVariableId(HasElement(ArrId1,KeyId2),VarId6)

∧ HasKeyExpression(KeyId2,KeyExprId2)

∧ ValueOf(KeyExprId2,val_mp)

∧ HasValue(VarId6,val_b)

∧ {GreaterThan(val_a,val_b) → HasValue(VarId_mp,val_i)})]

At this point, several new rules need to be introduced in order to consolidate

this into the required form. As happens very often in search loops, the first program

in Table 7.7 assigns the first value relevant to the array (in this case the key of the

first element) to a variable and then loops through the rest of the array, ignoring the

208 Chapter 7 : Loops

first element. This is the same as performing the function for all elements of the

array and is similar to loop unrolling for the first element. Since this happens very

often in practical programming, a special rule is included to specify that these two

forms are equivalent. A similar rule is included to handle storing the data relevant to

the last element of the array and looping through the rest of the elements backwards.

Both these rules are shown in Figure 7.28.

∀ *(1≤value_i≤N) → HasVariableId(HasElement(arrId_m,keyId_i),varId_x)
∧ HasKeyExpression(keyId_i,exprId_i)
∧ ValueOf(exprId_i,value_i)
∧ ActionEffects]

←
HasVariableId(HasElement(arrId_m,keyId1),varId1)
∧ HasKeyExpression(keyId1,exprId1)
∧ ValueOf(exprId1,1)
∧ HasValue(varId1,val1)
∧ [HasLoopStartValue(loopId1,varId_m,val1)
∨ HasLoopStartValue(LoopId1,varId_m,1)]
∧ HasLoopVariable(loopId1,varId_i)
∧ HasValue(varId_i,value_i) ∧
∀ *(2≤Value_i≤N) → HasVariableId(HasElement(arrId_m,keyId_i),varId_x)

∧ HasKeyExpression(keyId_i,exprId_i)
∧ ValueOf(exprId_i,value_i)
∧ ActionEffects]

∀ *(1≤Value_i≤N) → HasVariableId(HasElement(arrId_m,keyId_i),varId_x)

∧ HasKeyExpression(keyId_i,exprId_i)
∧ ValueOf(exprId_i,value_i)
∧ ActionEffects]

←
HasVariableId(HasElement(arrId_m,keyIdN),varIdN)
∧ HasKeyExpression(keyIdN,exprIdN)
∧ ValueOf(exprIdN,n)
∧ HasValue(varIdN,valN)
∧ [HasLoopStartValue(loopId1,varId_x,valN))
∨ HasLoopStartValue(loopId1,varId_x,n)]
∧ HasLoopVariable(loopId1,varId_i)
∧ HasValue(varId_i,value_i)
∧ Subtract(n,1,n1) ∧
∀ *(1≤Value_i≤n1) → HasVariableId(HasElement(arrId_m,keyId_i),varId_x)

∧ HasKeyExpression(keyId_i,exprId_i)
∧ ValueOf(exprId_i,value_i)
∧ ActionEffects]

Chapter 7 : Loops 209

In order to understand how this works, consider the first rule in the figure. The

first section containing the premises defines an ArrayVariable with an index of 1 has

the value val1. The next part specifies some variable should exist with a value of

either 1 or val1 at the beginning of the execution of the loop. The next part specifies

that the loop should iterate over the elements of an array starting at index 2 and cause

a certain ActionEffect. When these premises are satisfied, the rule is activated to

specify that this is the same as iterating over the elements of the array starting at 1

and causing the same ActionEffect. The second rule in this figure can be explained in

the same way except that the starting value of the variable is connected to the last

element of the array.

Since the above program resulted in consolidating the array from the second to

the last element of the array, the first rule in Figure 7.28 is activated, resulting in the

following fact.

∀ val_i [(1≤val_i≤4) →

(HasVariableId(HasElement(ArrId1,KeyId1),VarId5)

∧ HasKeyExpression(KeyId1,KeyExprId1)

∧ ValueOf(KeyExprId1,val_i)

∧ HasValue(VarId5,val_a)

∧ HasVariableId(HasElement(ArrId1,KeyId2),VarId6)

∧ HasKeyExpression(KeyId2,KeyExprId2)

∧ ValueOf(KeyExprId2,val_mp)

∧ HasValue(VarId6,val_b)

∧ {GreaterThan(val_a,val_b) → HasValue(VarId_mp,val_i)})]

This state is in a form that specifies what happens within the loop and repeats it

for all values of the loop counter. However, in the case of loops that summarise

collections, what is of interest is that the selected value is a member of the array and

relates to all elements of the array based on some criterion. Several new facts and a

rule are needed to convert this given representation into a form that specifies the

necessary result. These facts and rule are shown in Figure 7.29.

Figure 7.28. Rules for handling loop unrolling of the first or last element of the array.

210 Chapter 7 : Loops

The Opposite predicate is used to define BooleanExprs that are logically

opposite to each other. For example, the opposite of ($x>10) is ($x<=10) so the

opposite of GreaterThan is LessThanOrEqual. The four facts given here define all

possible combinations of opposite for the four comparison expressions GreaterThan,

LessThan, GreaterThanOrEqual and LessThanOrEqual. These facts are then utilised

in a rule to describe the search result as mentioned earlier. The first part of the

premise of the rule specifies that the facts should repeat for all values of the counter

starting from 1. The next part specifies the value and index relevant to the

Opposite(GreaterThan,LessThanOrEqual)
Opposite(LessThan,GreaterThanOrEqual)
Opposite(GreaterThanOrEqual,LessThan)
Opposite(LessThanOrEqual,GreaterThan)

HasValue(varId_m,value_m)
∧
∀ value_i *(start≤value_i≤n) →

 [HasVariableId(HasElement(arrId_m,keyId_y),varId_z)
∧ HasKeyExpression(keyId_y,exprId_y)
∧ ValueOf(exprId_y,value_i)
∧ HasValue(varId_z,value_z)
∧ HasVariableId(HasElement(arrId_m,keyId_a),varId_b)
∧ HasKeyExpression(keyId_a,exprId_a)
∧ ValueOf(exprId_a,value_m)
∧ HasValue(varId_b,value_b)
∧ BooleanExpression2(value_z,value_b)
∧ value_m ∊ Array(arrId1)]

←
∀ value_i *(start≤value_i≤n) →
 [HasVariableId(HasElement(arrId_m,keyId_y),varId_z)

∧ HasKeyExpression(keyId_y,exprId_y)
∧ ValueOf(exprId_y,value_i)
∧ HasValue(varId_z,value_z)
∧ HasVariableId(HasElement(arrId_m,keyId_a),varId_b)
∧ HasKeyExpression(keyId_a,exprId_a)
∧ ValueOf(exprId_a,value_a)
∧ HasValue(varId_b,value_b)
∧ Opposite(BooleanExpression1,BooleanExpression2)
∧BooleanExpression1(value_z,value_b)→ HasValue(varId_m,value_i)+

Figure 7.29. Facts and rules for finding search results.

Chapter 7 : Loops 211

ArrayVariable for each value of the counter. The next part specifies the same details

for another ArrayVariable in the array. The final part of the premise depicts the

effects of the repetition. This effect is based on a condition. If the value of the

ArrayVariable at the index indicated by the loop counter is related using a particular

BooleanExpr type with the value of another ArrayVariable of the same array, another

variable is assigned the value of the counter variable. When these premises are

satisfied, the rule is fired. The result again uses the two ArrayVariables described

above. Also, all the values in the array now take on the opposite relationship to the

BooleanExpr considered in the loop effects. For example, as the check here was

whether each value in the array was larger than the value at the currently largest

position, the check was for the maximum of the array. Therefore, the greater-than

check within the loop results in all elements being less than or equal to the selected

value. The selected value obtained in this way is stored within the variable whose

value is implied by the selection within the loop. Since this value is stored in an

ArrayVariable related to the array, it is obviously a member of the array.

Upon comparing against the state of the analysis above, it can be seen that this

rule is now fired. Since the expression corresponding to BooleanExpression1 is a

GreaterThan, the expression corresponding to BooleanExpression2 is a

LessThanOrEqual so the following facts are created.

 HasValue(VarId_mp,val_mp)

∧

∀ val_i [(1≤val_i≤4) →

(HasVariableId(HasElement(ArrId1,KeyId1),VarId5)

∧ HasKeyExpression(KeyId1,KeyExprId1)

∧ ValueOf(KeyExprId1,val_i)

∧ HasValue(VarId5,val_a)

∧ HasVariableId(HasElement(ArrId1,KeyId2),VarId6)

∧ HasKeyExpression(KeyId2,KeyExprId2)

∧ ValueOf(KeyExprId2,val_mp)

∧ HasValue(VarId6,val_b)

∧ LessThanOrEqual(val_a,val_b)

∧ val_b ∊ Array(ArrId1)]]

212 Chapter 7 : Loops

Now, the last statement in the program is analysed. This is an assignment

using the Assign action. The right hand side of this action is a VariableExpr

referring to the ArrayVariable that is the connection between the given array and the

$maxpos variable. Therefore, the key expression related to the ArrayVariable is a

VariableExpr as well. Let the id of this be VarExprId_k. Then, the following fact is

created.

HasVariable(VarExprId_k,VarId_mp)

Now, the ValueOf this expression is calculated as below.

ValueOf(VarExprId_k,val_mp)

Let the key relevant to this ArrayVariable be KeyId_k and the id of the

variable be VarId_x. Then, the following facts are created.

HasVariableId(HasElement(ArrId1,KeyId_k),VarId_x)

HasKeyExpression(KeyId_k,VarExprId_k)

The values of the variables VarId_mp and VarId6 change during the iteration

of the loop. Therefore, in order to analyse the rest of the program, it becomes

necessary to assign a symbolic value to it at the end of the loop. This is similar to

assigning a symbolic value to each variable at the beginning of the iteration. Let the

values of VarId_mp and VarId6 be val_mf and val_bf at end of the execution of the

loop. Then, the following fact is created.

HasValue(VarId_x,val_bf)

Now, the Assign action results in the following facts being created.

HasName(VarId_m,'max')

HasValue(VarId_m,val_bf)

So the final state of the program is as below.

Chapter 7 : Loops 213

HasName(VarId_m,'max')

∧ HasValue(VarId_m,val_bf)

∧

∀ val_i [(1≤val_i≤4) →

(HasVariableId(HasElement(ArrId1,KeyId1),VarId5)

∧ HasKeyExpression(KeyId1,KeyExprId1)

∧ ValueOf(KeyExprId1,val_i)

∧ HasValue(VarId5,val_a)

∧ HasVariableId(HasElement(ArrId1,KeyId2),VarId6)

∧ HasKeyExpression(KeyId2,KeyExprId2)

∧ ValueOf(KeyExprId2,val_mf)

∧ HasValue(VarId6,val_bf)

∧ LessThanOrEqual(val_a,val_bf)

∧ val_b ∊ Array(ArrId1)]]

When comparing against the overall goal in Figure 7.27, it can be seen that it is

satisfied when VARID_max=VarId_m, VALUE_m=val_bf, j=val_i,

ARRID_m=ArrId1, KEYID_j=KeyId1, VARID_j=VarId5, VALUE_j=val_a and

FORID1=ForId1. Therefore, the program is identified as correct.

7.5.1.2 Program Analysis for Direct Method

The previous section discussed how searching using the indirect method is

handled within the PHP ITS. Although programs written using the direct method can

be handled by specifying an alternate set of conditions for the sub-plan, this is not

necessary. Since the format is the same, this alternate set of conditions is

automatically generated within the PHP ITS. This section describes how this process

is carried out.

In order to understand how such programs are analysed, consider the second

program in Table 7.7, which is written using the direct method. The initial state is

the same as before, resulting in the following facts.

HasArrayName(ArrId1,'marks')

HasVariableId(HasElement(ArrId1,KeyId1),VarId1)

HasKeyExpression(KeyId1,ExprId1)

214 Chapter 7 : Loops

ValueOf(ExprId1,1)

HasValue(VarId1,val_1)

HasInitialValue(VarId1,val_1)

HasVariableId(HasElement(ArrId1,KeyId2),VarId2)

HasKeyExpression(KeyId2,ExprId2)

ValueOf(ExprId2,2)

HasValue(VarId2,val_2)

HasInitialValue(VarId2,val_2)

HasVariableId(HasElement(ArrId1,KeyId3),VarId3)

HasKeyExpression(KeyId3,ExprId3)

ValueOf(ExprId3,3)

HasValue(VarId3,val_3)

HasInitialValue(VarId3,val_3)

HasVariableId(HasElement(ArrId1,KeyId4),VarId4)

HasKeyExpression(KeyId4,ExprId4)

ValueOf(ExprId4,4)

HasValue(VarId4,val_4)

HasInitialValue(VarId4,val_4)

Here, the first step in the program is an assignment statement but it assigns the

value stored in the array and not 1 as in the previous case. From the initial state, it

can be seen that the value on the right hand side of the assignment is val_1 so the

following facts are created.

HasName(VarId_m,'max')

HasValue(VarId_m,val_1)

Now, a for loop similar to the indirect method is encountered resulting in the

following facts as described in Section 7.5.1.1.

HasName(VarId_i,'i')

Chapter 7 : Loops 215

HasValue(VarId_i,2)

HasInitialValue(VarId_i,2)

HasLoopVariable(ForId1,VarId_i)

HasForStartValue(ForId1,2)

HasId(LessExpr(VarExprId1,LitExprId1),ExprId1)

HasVariable(VarExprId1,VarId_i)

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,5)

HasLoopCondition(ForId1,ExprId1)

ValueOf(LitExprId1,5)

HasForEndValue(ForId1,4)

HasValue(VarId_i,3)

HasForFirstLoopValue(ForId1,3)

HasForIncrement(ForId1,1)

Now, the loop itself is analysed. Using the notation described in Section 7.2.3,

the effect of the overall loop can be written as below.

repeat(ForActionEffects,ForId1)

As described in Section 7.5.1.1 many new facts and objects need to be

considered when analysing the loop itself. The following facts are created as a result

of this as described previously. The only difference is that a starting value is now

considered for the variable VarId_m and only the ArrayVariable corresponding to

the current loop counter is considered since this is the only ArrayVariable accessed

within the loop.

HasValue(VarId_i,val_i)

HasIterationValue(ForId1,VarId_i,val_i)

HasValue(VarId_m,val_ms)

HasIterationValue(ForId1,VarId_m,val_ms)

HasKeyExpression(KeyId1,KeyExprId1)

216 Chapter 7 : Loops

HasVariable(KeyExprId1,VarId_i)

ValueOf(KeyExprId1,val_i)

HasVariableId(HasElement(ArrId1,KeyId1),VarId5)

HasValue(VarId5,val_a)

HasIterationValue(ForId1,VarId5,val_a)

Next, it is necessary to ascertain whether the pre-conditions of the sub-plan, as

defined in Figure 7.27, are satisfied. It can be seen that although facts corresponding

to the unchangeable pre-condition are present in the present state, facts

corresponding to the unchangeable pre-condition are not present.

In the case of loops that contain a changeable pre-condition, the analysis

process deviates from the usual at this point. An alternate set of conditions for a sub-

plan is generated by changing the predicates in the changeable precondition. All the

predicates in this part of the pre-condition are replaced by a single predicate

HasValue(VARID_max,VALUE_cmax).

Now, it can be seen that the pre-conditions of this newly generated sub-plan are

satisfied by the current program when FORID1=ForId1, VARID_i=Varid_i,

VALUE_i=val_i, ARRID_m=ArrId1, KEYID_i=KeyId1, VARID_n=VarId5,

EXPRID_i=KeyExprId1, VALUE_n=val_a, VARID_max=VarId_m and

VALUE_cmax=val_ms.

Next, the statements within the loop are analysed. The first statement within

the loop is an if construct which is analysed as described in Section 5.2. Let the id of

the conditional expression within the construct be ExprId2. Let the ids of the two

VariableExprs on either side of the conditional expression be VarExprId2 and

VarExprId3 respectively. Then, the following fact is created.

HasId(GreaterExpr(VarExprId2,VarExprId3),ExprId2)

Since the VariableExprs on the left hand side of this expression refer to

ArrayVariables, it is necessary to find the corresponding ids. VarExprId2 refers to

the ArrayVariable connecting the array to the loop variable $i. From above, it can be

seen that this corresponds to the key expression KeyExprId1 which in turn

corresponds to the key KeyId1. The variable connecting the array and KeyId1 is

Chapter 7 : Loops 217

VarId5 so this is the variable that VarExprId2 refers to. The VariableExpr on the

right hand side refers to a SimpleVariable so the following facts are created.

HasVariable(VarExprId2,VarId5)

HasVariable(VarExprId3,VarId_m)

Now, the ValueOf these expressions are calculated using the rules in Figure

4.8, resulting in the following facts.

ValueOf(VarExprId2,val_a)

ValueOf(VarExprId3,val_ms)

Within the if statement, the conditional expression is true so the following fact

is created.

ValueOf(ExprId2,True)

When this condition is true, the following fact is created, using the rules in

Figure 5.4.

GreaterThan(val_a,val_ms)

The assignment statement occurs if this condition is satisfied, resulting in an

Assign action. The expression on the right hand side of the assignment is a

VariableExpr referring to the value of the variable at the loop counter position of the

array. From above, it can be seen that this value is val_a so the following fact is

created.

HasValue(VarId_m,val_a)

Therefore, the effects of the for action can be written as below.

GreaterThan(val_a,val_ms)⟶ HasValue(VarId_m,val_a)

Now, it is necessary to see if the post-condition of the sub-plan is satisfied.

However, in this case, we are dealing with a set of conditions of a sub-plan generated

by the system. When generating such a set of conditions, not only the changeable

pre-condition but also the right hand side of the post-condition is changed. The

generated post-condition is as below.

GreaterThan(VALUE_n,VALUE_cmax)
 →HasValue(VARID_max,VALUE_n)

218 Chapter 7 : Loops

Comparing the current state of the program against this post-condition, it can

be seen that it is satisfied so the following fact is created.

LoopBodyOK(ForId1)

Now, the results of the loop are consolidated using the set of rules given in

Figure 7.7.

RepeatLoop(ForId1,2,4,1)

RepeatAll(ForId1,2,4)

∀ val_i [(2≤val_i≤4) →

(HasVariableId(HasElement(ArrId1,KeyId1),VarId5)

∧ HasKeyExpression(KeyId1,KeyExprId1)

∧ ValueOf(KeyExprId1,val_i)

∧ HasValue(VarId5,val_a)

∧ {GreaterThan(val_a,val_ms)⟶ HasValue(VarId_m,val_a)})]

Again, it can be seen that there is a loop unrolling situation for the first element

of the array. The rule in Figure 7.28 is now activated to result in the following fact.

∀ val_i [(1≤val_i≤4) →

(HasVariableId(HasElement(ArrId1,KeyId1),VarId5)

∧ HasKeyExpression(KeyId1,KeyExprId1)

∧ ValueOf(KeyExprId1,val_i)

∧ HasValue(VarId5,val_a)

∧ {GreaterThan(val_a,val_ms)⟶ HasValue(VarId_m,val_a)})]

A rule similar to that in Figure 7.29 is specified for handling the direct search

mechanism as well. This rule is shown in Figure 7.30.

In this case, the value of the variable $max is changed within the loop and its

final value cannot be ascertained directly. For analysis purposes, it is assigned a

value after iteration of the loop, similar to HasIterationValue. Let the value of the

variable after execution of the loop be val_mf.

Chapter 7 : Loops 219

Then the above rule is activated to create the following facts.

HasValue(VarId_m,val_mf)

∧

∀ val_i [(1≤val_i≤4) →

(HasVariableId(HasElement(ArrId1,KeyId1),VarId5)

∧ HasKeyExpression(KeyId1,KeyExprId1)

∧ ValueOf(KeyExprId1,val_i)

∧ HasValue(VarId5,val_a)

∧ LessThanOrEqual(val_a,val_mf)

∧ val_mf ∊ Array(ArrId1)]

When comparing against the overall goal in Figure 7.27, it can be seen that it is

satisfied when VARID_max=VarId_m, VALUE_m=val_mf, j=val_i,

ARRID_m=ArrId1, KEYID_j=KeyId1, VARID_j=VarId5, EXPRID_j=KeyExprId1

and VALUE_j=val_a. So the program is identified as correct.

HasValue(varId_m,value_m)
∧
∀ value_i *(start≤value_i≤n) →

∧ [HasVariableId(HasElement(arrId_m,keyId_y),varId_z)
∧ HasKeyExpression(keyId_y,exprId_y)
∧ ValueOf(exprId_y,value_i)
∧ HasValue(varId_z,value_z)
∧ BooleanExpression2(value_z,value_m)
∧ value_m∊Array(arrId_m)]

←
∀ value_i *(start≤value_i≤n) →
 [HasVariableId(HasElement(arrId_m,keyId_y),varId_z)

∧ HasKeyExpression(keyId_y,exprId_y)
∧ ValueOf(exprId_y,value_i)
∧ HasValue(varId_z,value_z)
∧ HasIterationValue(loopid1,varId_m,r)
∧ Opposite(BooleanExpression1,BooleanExpression2)
∧ BooleanExpression1(value_z,r)→ HasValue(varId_m,value_z)+

Figure 7.30. Rule for handling direct method of array access in search loops.

220 Chapter 7 : Loops

This method of generating alternate sets of conditions of sub-plans to handle

direct and indirect array access can be used to analyse programs that summarise an

array to find the maximum or minimum.

7.6 CHAPTER SUMMARY

This chapter looked at how the knowledge base of the PHP ITS is designed to

handle different types of loops. Loops used in PHP programming can be categorised

based on their underlying logical model. The PHP ITS is not capable of handling all

possible types of loops but it can analyse many of the types of loops used commonly

in practical programming. This chapter first looked at how basic definite loops are

analysed. It went on to investigate how these ideas were extended to handle more

generalised loops.

This is the final chapter describing how the PHP ITS handles program analysis.

The next chapter looks at the user interfaces of the ITS and how the student and

teaching modules are designed. It also looks at some implementation details of the

system.

221 Chapter 8 : Implementation of the PHP Intelligent Tutoring System

Chapter 8: Implementation of the PHP

Intelligent Tutoring System

As discussed in Section 2.2.2, an ITS consists of four main modules : the

domain module, the student module, the teaching module and the communications

module. Chapter 4, Chapter 5, Chapter 6 and Chapter 7 described the domain

module used in the PHP Intelligent Tutoring System. This chapter describes the

communications, student and teaching modules used in the PHP Intelligent Tutoring

System. It details the actual implementation of the system, including the GUI seen

by the users. The implementation of the system is the third phase of the research

project as described in the research design (Chapter 3). Section 8.1 describes the

user interfaces of the system. Section 8.2 discusses the design of the student module

and Section 8.3 covers the teaching module in detail. Section 8.4 describes how the

various available software and tools were used to create the actual system.

8.1 THE PHP INTELLIGENT TUTORING SYSTEM

The PHP Intelligent Tutoring System (PHP ITS) is a completely web based

system that can be accessed through a web browser. In order to use the system, each

student must create a user name. They then login to the system using this user name

and the relevant password. When a student logs in for the first time, he/she is

required to complete a pre-test to gauge their current knowledge of PHP. The pre-

test is a set of multiple choice questions, each of which the student can leave blank if

they do not know the answer to the question. It is even possible to not answer any

questions if the student has no relevant knowledge.

Once a student has completed the pre-test, s/he is directed to the exercise

selection page. This page is also directly displayed on each subsequent login since

the pre-test is only permitted once per student. The student selects an exercise to

attempt and then enters PHP code for that exercise. When requested, the system

provides appropriate feedback. The student is also permitted to abandon the current

exercise and return to the exercise selection page at any time.

The system displays a banner across the top of most of its pages as shown in

Figure 8.1. This banner allows the student to select from several options. S/he can

222 Chapter 8 : Implementation of the PHP Intelligent Tutoring System

logout of the system or change password. The „Help‟ link brings up some help pages

on how to use the system. The „Skillometer‟ (Figure 8.2) allows the student to bring

up another page that displays his/her current knowledge of the topics covered by the

PHP ITS as gauged by the system.

Figure 8.1. Banner.

Figure 8.2. Skillometer.

The security of the system is handled through password protection. Each

student can set up a password and also enter the answers to two security questions

when the user name is created. A logged in student can change the password of the

current account. If the password is forgotten, it is possible to reset it using the

security questions. If this is selected, the password is reset to a default value and the

student is asked to change the password during the next login session.

The main advantage of this system is that it is web based. The system has

currently been tested in Internet Explorer, Mozilla Firefox, Opera and Google

Chapter 8 : Implementation of the PHP Intelligent Tutoring System 223

Chrome browsers. Therefore, it makes it possible for a multitude of users to access

the ITS from different platforms.

8.1.1 Exercise Selection

One main advantage of the PHP ITS is that it guides each student towards

topics that are most suitable for his or her current level of knowledge. This guidance

is done through the list of exercises. The system shows a list of exercises that it

thinks are most suitable for the logged in student. The exercises are shown in

decreasing order of suitability with prominence being given to the most suitable

exercise. This is also the exercise that is selected by default. The student may

decide to attempt another exercise from the list if s/he wishes to. The Exercise

Selection page of the PHP ITS is shown in Figure 8.3.

Figure 8.3. Exercise selection page.

Although the ITS suggests exercises based on its measure of the subject

knowledge of each student, some students may want to be in charge of selecting their

next exercises. In such cases, they can select a different exercise from the list but

since this list could be very long, they may find it difficult to find what they want. A

224 Chapter 8 : Implementation of the PHP Intelligent Tutoring System

search option is provided for this purpose. If the student decides to search for an

exercise, the page shown in Figure 8.4 is displayed. The student can now select

which topic(s) need to be covered by the exercises s/he wants to attempt. It is also

possible to choose whether to display exercises that have already been attempted/not

attempted or both and successfully completed/not completed or both.

Figure 8.4. Exercise search page

The system allows releasing the exercises in batches to the students. This is

useful because too many exercises at once may be too much for some students. Each

exercise can be assigned a date of release. Exercises which have been released, but

which have a date of release greater than a specified date, are displayed as new

exercises. The student may also select to display exercises that are new, not new or

both. Once the student selects the necessary search criteria, s/he can return to the

Chapter 8 : Implementation of the PHP Intelligent Tutoring System 225

exercise selection page. Now, this page displays a list of exercises that match the

search criteria. The student can select the exercise that s/he wants to attempt.

Once a student has chosen whether the next exercise should be suggested by

the system or searched for, this mode remains active for the current login session

unless the student explicitly changes it. This makes it easier for each student to work

based on his preference without having to choose the mode over and over again.

8.1.2 Solving an Exercise

Once an exercise is selected, the Exercise Solution page of the ITS is

displayed. This page is illustrated in Figure 8.5. The text of the selected exercise is

displayed on the top of the page. The left hand pane of the page contains the area

where the answer is to be entered and the right hand pane provides feedback to the

student. The bottom section of the page is used to display the page generated by the

student‟s code once it does not contain any syntax errors.

The answer area is divided into three sections. The darker sections on either

side contain any code that is supplied by the exercise when the exercise is a gap

exercise. The student enters code into the lighter area in the middle. All code is

analysed in conjunction with whatever is supplied by the system. If no code is

supplied by the system, the darker areas are left blank and the student needs to write

complete PHP programs.

While entering code, the student has many options. He/she may choose to save

whatever is already typed into the area for later use. The program is then saved onto

a predefined file in the server and can be reloaded into the answer area. One answer

per exercise can be saved and reloaded in this manner. The student can also erase

everything in the answer area and restart the exercise from the beginning.

When the student has entered some valid PHP code, he/she can choose to view

its output. As stated above, the output from the student‟s code is displayed in the

area at the bottom. The code is not analysed by the ITS and no feedback is provided.

Therefore, the student is responsible for deciding whether the program is correct or

not. In order for the system to analyse the solution, the student must click „Check

My Answer‟. When this button is used, the ITS analyses the student‟s answer as

described in Chapter 4.

226 Chapter 8 : Implementation of the PHP Intelligent Tutoring System

Figure 8.5. The solution page.

If the analysis results in a syntax error being identified, the position of the

syntax error is determined as described in Section 4.5.2. The node containing the

syntax error is then highlighted with an error message saying that the code contains a

syntax error in the highlighted position. The student can double click on the

highlighted node to obtain additional information about the error. This displays an

error message based on the type of error returned by the grammar. It should be noted

here that errors in semantic analysis are handled in a similar manner since they are

considered to be lightweight errors that are similar to syntax errors. For example, if

the student calls a non-existent function, or if the number of parameters in a function

call does not match the number of parameters in the corresponding function

definition, it is treated in a similar manner to a syntax error.

If no syntax errors are found, the program analysis continues as described in

Chapter 4. If any logical errors are found, it displays the error message „Your

program is incorrect‟. At this point, no further information about the error is

displayed. However, further feedback can be requested by the student if s/he

requires it.

Chapter 8 : Implementation of the PHP Intelligent Tutoring System 227

Next, the student can choose to either correct his answer by himself or ask for

hints. Hints are provided for two questions „What is Wrong‟ and „How Do I Solve

It‟. Each of these questions has two levels of hints and they can be accessed if the

student wants.

The system works on only one error at a time. This is determined by the order

of the sub-goals in the overall goal described in Section 4.4.2. During the analysis

process, these sub-goals are tested one by one in the order given in the exercise

specification as described earlier. The moment one of these sub-goals is not satisfied,

the system indicates that the program contains an error. Any further information

refers to this specific error. Other sub-goals are only analysed ones this particular

sub-goal is satisfied by the program. Links to web pages that are relevant to that

specific error are also displayed at this time.

In addition to this analysis process, the system also has two other levels of

support for students. The student can ask to view the entire solution to the exercise.

The student can also decide to display all the web links that are relevant to the given

exercise. This displays a list of links that are relevant to all the topics covered by the

exercise.

The PHP ITS is a new system. Therefore, it is possible that there are bugs in

the program code. Additionally, it is possible that a correct solution submitted by a

student is out of the scope of the thesis. In such situations, it is possible that the

system will identify a correct solution as incorrect. If the student is convinced that

his or her answer is correct but the system refuses to accept it, the student is given

the opportunity to register his concern regarding this matter. An email is then

generated to the administrator indicating the concern. These concerns can then be

handled by the administrator. If an error is present in the student‟s program, an

explanation of the error can be provided via email. If the student‟s concern proves to

be accurate, the administrator then takes action to correct the error in the system.

This is useful in order to develop the system further.

Although this is theoretically the process followed by the system, a problem

occurred during the implementation. Due to the server used being administrated by

QUT‟s IT Services section and the development team having little control over it, it

proved impossible to actually send email through this server. Although email

messages were initially generated, they were not actually sent but were automatically

228 Chapter 8 : Implementation of the PHP Intelligent Tutoring System

saved to a folder on the server. This meant that the administrator could not receive

such email messages. Therefore, the email generation feature was disabled in the

final system but the student‟s concern was recorded in the database. The

administrator then responded to such concerns by manually checking for such entries

in the database.

8.2 STUDENT MODULE

Section 8.1describes the user interface, the main focus of the communications

module, of the PHP ITS. In order to suggest exercises that are most suitable for the

student as described in Section 8.1.1, it is necessary for the system to maintain a

model of each student. This is done in the student module. This section outlines the

design of the student module in the PHP ITS.

The PHP Intelligent Tutoring System uses the concept of knowledge tracing

for the student module. As the student works with the tutoring system, it is expected

that his or her knowledge regarding relevant subject matter will change. Knowledge

tracing attempts to model this changing state of knowledge (Corbett & Anderson,

1995). In order to do this, it is necessary to break down the subject matter into some

knowledge components (KCs). The KCs selected in this research are the specific

topics of PHP programming as outlined in Table 8.1.

The actual student model used is an indication of the knowledge level of each

student regarding each of these topics. The knowledge level is maintained as a

probability. This is necessary because it is impossible to decide whether a student

definitely has or does not have knowledge about a certain KC. The probability

accounts for this uncertainty. A knowledge level of 1 indicates that the student has

mastered the topic while a knowledge level of 0 indicates that the student has

absolutely no idea of the topic.

8.2.1 Equations for Updating the Student Model

As mentioned previously, the knowledge level of the student regarding a topic

is expected to change as learning occurs through interaction with the PHP ITS. The

student model needs to be updated to reflect this change. This section describes the

process used to initialise and update the student model.

Chapter 8 : Implementation of the PHP Intelligent Tutoring System 229

In order to update the knowledge level of a student based on the interaction

with the tutor, it is necessary to have a method to map the interactions to the KCs.

This is done through the overall goal of an exercise as described in Section 4.4.2.

The overall goal is considered as a set of sub-goals that need to be achieved for the

program to be correct. Each sub-goal can be one or more facts in the exercise

specification. Each sub-goal is mapped to one or more of the topics listed in Table

8.1. When a student attempts an exercise and the final state of their solution matches

a specific sub-goal in the overall goal, the probability that the topics related to this

sub-goal are known by the student increases. Similarly, if a sub-goal is not matched,

i.e. the facts in the sub-goal are not present in the final state, the probability that the

topics related to this sub-goal are known reduces. The student model is updated in

this manner, each time a student decides to check the answer as described in Section

8.1.2.

The process used for updating the student model in the PHP ITS is a simplified

version of the model proposed by Reye (2004). It is based on the theory of Bayesian

Belief Networks (BBN). This method of modelling is necessary because the fact that

the student‟s program matched a certain sub-goal cannot be taken as a certain

indication of the student‟s knowledge of the topic. It is possible that a student made

a lucky guess. Similarly, a student can make an inadvertent slip and not match a sub-

goal although s/he knows the relevant KCs. However, given some evidence of the

prior knowledge level of a student about a particular KC, it is easier to gauge

whether such guesses or inadvertent slips were made. A probabilistic estimate as to

the actual knowledge of the student can be made based on the system‟s knowledge

about the prior knowledge level of the student. BBNs are a very useful method of

modelling such unreliable pieces of information. This model specifies that an

interaction provides clues about two distinct pieces of information. The first piece of

information is the knowledge level of the student of that KC before the relevant

interaction. This becomes important during two occasions: before the very first

interaction and when the student knowledge changes as a result of something outside

the system. This is reflected in the first phase of updating of the student model. The

second piece of information is the knowledge level of the student of the particular

KC after the relevant interaction. The second piece of information is reflected in the

second phase of the update process.

230 Chapter 8 : Implementation of the PHP Intelligent Tutoring System

Table 8.1

List of Knowledge Components

Structure of a PHP web page

Displaying data on a web page in PHP

Variables

Double quoted strings

Single quoted strings

String concatenation

Arithmetic operators

Increment/decrement operators

If-else structure

Nested if structure

Switch structure

Forms

Posting data in forms

Textbox control

Select control

Submit button

Getting data in forms

Random number generation

PHP functions

Function parameters

Returning values from functions

For construct

Nested for loops

HTML Tables

HTML borders

Dynamically adding rows to a table

While construct

Explicitly assigning data to an array

Accessing array elements

Array construct

Chapter 8 : Implementation of the PHP Intelligent Tutoring System 231

Figure 8.6 shows the equations used for the first phase of updating the student

model for the n
th

 interaction.)(
1Ln

p

 is the system‟s belief that the student already

knows the relevant KC prior to the interaction. O n
is an element in the set of

possible outcomes of the interaction.)|(
1LO nn

p

 represents the system‟s belief

that outcome O n
will occur when the student already knows the KC while

)|(
1LO nn

p
 represents the system‟s belief that this outcome will occur when the

student does not know the KC under consideration. Therefore, this equation results

in the calculation of the probability about the knowledge level of the student before

the n
th

 interaction, given an outcome.

The second phase reflects the knowledge level of the student after the

interaction. This is affected by both the state of knowledge before the interaction and

the outcome of the interaction. The final knowledge level of the student after the

interaction is a combination of the first and second phases of updating the student

model. The equations that show the combined effect of the update process are shown

in Figure 8.7. Based on the functionality,)(O n
 represents the rate of

remembering and)(On
 represents the rate of learning.

8.2.2 Assumptions

The above description is a generalised process for updating the student model

for any architecture that uses probability theory for student modelling (Reye, 1998).

However, many simplifications are made considering the particular usage in the PHP

)(1)(1

)()(
)|(

1

1

1

LO
LO

OL
nn

nn

nn p

p
p

)|(

)|(
)(

1

1

LO
LO

O
nn

nn

n p

p

Figure 8.6. Equations for first phase of updating the student model.

232 Chapter 8 : Implementation of the PHP Intelligent Tutoring System

ITS and some empirical results. In the ITS, a particular sub-goal is taken to be either

correct or incorrect as mentioned in Section 8.2.1. Therefore, there are only two

possible outcomes of an interaction: either correct or incorrect. Let C n
represent the

correct outcome and C n
 represent the incorrect outcome. It is also assumed that

the student will not forget something he or she already knows as a result of

interacting with the ITS. Therefore, the rate of remembering,)(On
 is always

assumed to be 1, i.e. no forgetting occurs. It is assumed that the probability that the

student will make the transition from the unlearned state to the learned state is

independent of the outcome.

As in any subject, the different topics have pre-requisite relationships between

them. In other words, some topics need to be learned before others can be studied.

The method of handling such pre-requisites using Dynamic Belief Networks is

described by Reye (1998). Although it would have been ideal to model these pre-

requisites, the effort required for this makes it impossible to achieve within the time

constraints of the PhD. Therefore, it has been assumed that no prerequisite

relationships exist between the different KCs. This means that there are no

conditional probabilities linking the different rules. Under these conditions, the

equations in Figure 8.7 are simplified further. Substituting the two possible values

for O n
in the resultant equation gives the two equations shown in Figure 8.8.

)(1)(1

)()()()()(
)|(

1

1

LO
LOOOO

OL
nn

nnnnn

nn p

p
p

)|()(,1 OLLO nnnn
p

)|()(,1 OLLO nnnn
p

Figure 8.7. Equations for calculating combined effect of two phase updating of the student model.

Chapter 8 : Implementation of the PHP Intelligent Tutoring System 233

As shown by Reye (2004), these are actually the equations used to update the

student model in the ACT programming tutors (Corbett & Anderson, 1992, 1995)

although the notation used is slightly different. Corbett and Anderson (1992) also

used some estimates for certain parameters in this model based on their previous

empirical results. These parameter estimates, translated into the notation used here,

is shown in Figure 8.9. Here,)(
0Lp refers to the initial probability of a student

knowing a topic, before the student uses the system for the first time. Setting this to

0.5 indicates that there is an equal chance of a student knowing or not knowing each

topic. As described above, the value of is taken to be a constant and is taken to be

independent of both the outcome and the interaction number. Similarly, the

probabilities)|(LC nn
p and 2.0)|(LC nn

p are considered to be independent

of the interaction number. By substituting these values, it can be seen that, under

these simplifications 4)(C n
 and 25.0)(C n

 .

Using these empirical values the equation for the two phase update of the

student model in Figure 8.8 is translated into the equations shown in Figure 8.10.

These are the equations that are used for the actual updating of the student model in

the PHP ITS.

))|(1)(()|()|(
11 CLCCLCL nnnnnnn

ppp

))|(1)(()|()|(
11 CLCCLCL nnnnnnn

ppp

Figure 8.8. Modified equations for two phase update of the student model.

5.0)(
0
Lp

4.0)()(CC nn

2.0)|(LC nn
p

2.0)|(LC nn
p

Figure 8.9. Empirical parameter values.

234 Chapter 8 : Implementation of the PHP Intelligent Tutoring System

8.2.3 Updating the Student Model in the PHP ITS

The previous sections described the formulation of the equations of the

equations used for updating the student model in the PHP ITS. This section

discusses the actual process used in more detail.

When a new student starts to use the PHP ITS, a student model is created for

that student. At this point, it is assumed that the probability that he or she knows

each and every topic is 0.5 as described in Section 8.2.2. Before the student can

proceed to use the system, the student model is updated to try to more accurately

reflect the knowledge of the student. This is done by getting each student to

complete a pre-test before he or she can proceed with any other interaction with the

system. As stated in Section 8.1, the pre-test consists of a set of multiple choice

questions. Each question is linked to one or more of the topics given in Table 8.1.

The student is permitted to leave the answers blank, indicating that they do not know

the answer to that particular question.

Once the student submits the answers, they are analysed to check whether they

are correct. Based on whether the answer is correct or not, the corresponding topics

in the student model are updated to reflect the system‟s belief about the student‟s

knowledge of those topics. This is done using the single phase updating of the

student model since the system does not provide any feedback on which answers are

correct and does not provide any instruction at this time. The second phase accounts

for any learning gained by the interaction with the system, and is therefore irrelevant

for the pre-test.

)(31

)(6.34.0
)|(

1

1

L
L

CL
n

n

nn p

p
p

)(75.01

)(15.04.0
)|(

1

1

L
L

CL
n

n

nn p

p
p

Figure 8.10. Final equations for two phase updating of student model.

Chapter 8 : Implementation of the PHP Intelligent Tutoring System 235

Since this is the first interaction of the student with the system, the equations in

Figure 8.6 can be re-written as shown in Figure 8.11. Substituting the values of the

parameters given in Section 8.2.2 and enumerating for the possible outcomes, this

equation reduces to the equations shown in Figure 8.12. Therefore, if the student

answered a pre-test question correctly, the probability that the student knows all

related topics is updated to 0.8. Similarly, if the student answered the question

incorrectly, the probability that the student knows all relevant topics is updated to

0.2.

Once the initial student model is established in this manner, the student is

allowed to interact with the rest of the system. From this point on, the student model

is updated using the two phase approach and the equations given in Figure 8.10.

Each time a student provides a solution to an exercise, the system checks whether

sub-goals are met as described in Section 8.2.1. If the sub-goal is met, the system

uses the first equation in Figure 8.10 to update its belief about all relevant topics. On

the other hand, if a certain sub-goal is not met, the system uses the second equation

in Figure 8.10 for the update.

8.3 TEACHING MODULE

The main purpose of a tutoring system is to increase the knowledge level of the

students that use the system. The teaching module is the component that is directly

concerned with this aspect of the system. It uses information from the domain

module to understand a student‟s interaction with the system and combines it with

)(1)(1

)()(
)|(

01

01

10

LO
LO

OL
p

p
p

 Figure 8.11. Single phase update of the student model for the first interaction.

8.0)|(
10
CLp

2.0)|(
10
CLp

Figure 8.12. Final equations for updating the student model based on the pre-test.

236 Chapter 8 : Implementation of the PHP Intelligent Tutoring System

information from the student module to decide on the best instruction to provide the

student at any given time.

The teaching module in the PHP ITS is based on methods that were utilised in

previous ITSs. No new teaching approaches have been introduced during the course

of this research project. However, existing methods have been analysed to decide on

an approach that is most suitable for the PHP ITS. The teaching module used here

consists of two main components. The first component provides assistance to

students when solving programming exercises. The second component provides

assistance to students when selecting the most suitable exercise to attempt at any

given time. The next two sections discuss each of these components.

8.3.1 Assistance for Solving Exercises

8.3.1.1 Viewing Web Pages

The PHP ITS provides many forms of support for students to help them solve

exercises. One such form of support is the ability to display relevant web pages.

Although many ITSs exist to provide problem solving practice, few provide

conceptual and procedural information, leaving this task to be predominantly

performed by teachers. In accord with the approach suggested by Gong, Beck and

Heffernan (2012), the PHP ITS addresses this problem by utilising resources that are

readily available on the Internet and providing links to these pages as and when

appropriate. This is accomplished by considering the different sub-goals that need to

be achieved in order to correctly solve an exercise. As mentioned in Section 8.2.1,

each sub-goal for the exercise is mapped to one or more topics. The system also

stores a list of web pages that contain information that is relevant to PHP

programming. Each topic is linked to one or more of these web pages. A student

can ask the system to show topics that are relevant to a particular exercise. The

system then finds a list of all topics that are covered by the exercise, and thereby a

list of web pages that are relevant to the exercise and displays links to these pages.

This makes it easier for the student to sort out which web pages he should be reading

to gain the relevant knowledge.

Asking the system to show relevant web pages also indicates that the student is

unfamiliar with the topics covered by the exercise. Therefore, the student model is

again updated as explained in Section 8.3.3.

Chapter 8 : Implementation of the PHP Intelligent Tutoring System 237

The links mentioned here are also used to provide feedback when a student

submits an incorrect solution to an exercise. As described in Section Error!

Reference source not found., the final step of program analysis is to check whether

the overall goal has been achieved. If not, there is an error in the student‟s program.

The overall goal is considered as a set of sub-goals. The relative priority of these

sub-goals is specified by the order in which they are listed. This means that sub-

goals that are listed earlier are considered to be more important than sub-goals that

are specified later. During goal checking, the sub-goals are checked in the order

specified. When a particular sub-goal is not achieved, the system finds topics that

are relevant to that specific sub-goal and thereby finds web pages with relevant

information. Links to these web pages are then displayed so that the student can read

information that is immediately related to what he got wrong.

8.3.1.2 Accessing Feedback

An important consideration in ITS research is whether a student should be

provided feedback proactively by the system or whether the system should wait for

the student to request feedback. Although many different ideas have been presented

in the literature, this research is based on the idea that a student should only be

provided detailed feedback if he or she desires it. Therefore, when a student submits

a solution to be analysed, the only form of feedback initially provided by the system

is whether the solution is correct or incorrect.

Section 8.1.2 gives an overview of this analysis. The following provides more

details. The analysis is done in two steps. First, the solution is checked to see if it

contains any syntax errors. If it does, these errors are highlighted. This syntax error

analysis is implemented through the support of the PHP and HTML grammars

described in Section 4.5.2. The grammars detect the position of any program code

that it cannot match against any of its tokens. The position and error type generated

by the grammar are matched against a suitable error message. This error message is

displayed if the student double clicks on the highlighted error to obtain further

information. This syntax error analysis process is sometimes not very reliable since

it depends on the type and position of the error identified by the grammar. This

information is highly dependent on the actual implementation of the grammar and

can result in erroneous identification of error locations. For example, if an opening

quote exists but no corresponding closing quote, the grammar is sometimes unable to

238 Chapter 8 : Implementation of the PHP Intelligent Tutoring System

pinpoint the location of the error. This results in the highlight being in a wrong

location or no highlight appearing at all. Although a relevant message is displayed in

the system, this process is a shortcoming that needs to be taken in to account in the

future.

Once the student‟s solution is syntax error free, the second step in the analysis

process takes place. At this point, any sub-goals that are not satisfied are identified

as described in Section 8.2.1. Again, the order of priority is set by the order in which

the sub-goals are listed. Analysis stops as soon as one sub-goal is not met and error

messages are only displayed for this specific sub-goal. At this point, no detailed

error messages are displayed. The displayed message only indicates whether the

solution is correct or incorrect. It is at the student‟s discretion to decide whether he

or she wants more feedback or not.

Each sub-goal is linked to four error messages, two levels for messages on

what is wrong and two on how to solve the issue. The first level in each type of

message contains a general description while the second level is more detailed and

refers to the exact error. For example, Table 8.2 shows the error messages for a sub-

goal to check for a condition if the value entered in a textbox is greater than 10.

Assume that after submitting the form, the value has been stored in the variable $x.

Table 8.2

Feedback Messages for Checking if a Value Entered in a Textbox is Greater than 10

Message Type Level Feedback Message

What is wrong? 1 Your program does not check for the necessary
condition.

What is wrong? 2 Your program does not contain a check to see
whether the value in the textbox is greater than
10.

How to solve? 1 Include a conditional statement to check
whether the value of $x is greater than 10.

How to solve? 2 Include the conditional statement if($x>10)

When the system informs a student that the program contains an error s/he can

opt to see either what is wrong with his program or how to solve the problem.

Depending on the type of message that is requested, the appropriate first level

message is displayed. The student can then request the same type of message again

Chapter 8 : Implementation of the PHP Intelligent Tutoring System 239

to display the second level message. S/he can also request the other type of message

if it is considered more appropriate.

In addition to errors that are caused by the program not satisfying certain sub-

goals, the PHP ITS also identifies unnecessary program statements in the code as

described in Section 4.5.5. In this case, the error messages depend on the type of

extra program statement. Table 8.3 shows the error messages shown by the system

for a program that contains an unnecessary assignment statement in line number 10.

Table 8.3

Feedback Messages for an Unnecessary Assignment Statement in Line 10

Message Type Level Feedback Message

What is wrong? 1 Your program contains some unnecessary code.

What is wrong? 2 Your program contains an unnecessary
assignment statement.

How to solve? 1 Delete the unnecessary assignment statement.

How to solve? 2 Delete the unnecessary assignment statement
in line 10.

In addition to displaying error messages, the program analysis process also

results in the student model being updated to indicate whether the student knows or

does not know the topics covered by the various sub-goals in the exercise.

8.3.2 Assistance for Selecting Next Exercise

An Intelligent Tutoring must be capable of varying its interaction based on the

current knowledge of the student. In the PHP ITS, this is accomplished by assisting

students to select the next best exercise that is suitable for them. The next best

exercise is selected based on the topics covered by each exercise and the probability

that the current student knows each of these topics.

In order to do this, it is necessary to find a method of identifying whether a

topic has been learnt or not. This is done by setting a threshold probability above

which the topic is taken to be in the learned state. The probability used here is 0.85.

This value is taken with the intention that a student does not have to have 100% (a

probability of 1) proof that s/he has learned the topic. Very often, students make

mistakes or slips, even though they know the subject matter. 0.85 is taken to be a

considerably high enough value to consider the topic to be in the learned state.

240 Chapter 8 : Implementation of the PHP Intelligent Tutoring System

The most suitable exercise for a student at any given time is taken to be the

exercise which covers the least number of topics that are not in the learned state. If

there is more than one problem with the same number of topics not in the learned

state, these problems are ordered randomly. The reason for selecting the problem

with the least number of topics that are unknown is that this ensures that not too

much new material is included in the exercise. This allows the students to gradually

build up their knowledge of the topics without working on an exercise that has so

many new topics that it is extremely challenging. This concept is based on

Vygotsky‟s (1978) work on the Zone of Proximal Development (ZPD). The ZPD is

the area where a student can comfortably learn. It is slightly higher than the

student‟s current level of knowledge but not too high.

All the available exercises are formed into a list in the manner described above.

The exercises at the end of the list contain a large number of unlearned topics while

the ones at the beginning of the list have fewer unlearned topics. This makes it easier

for the student to decide which exercise s/he should attempt next.

8.3.3 Viewing the Suggested Solution

If all other forms of support fail, students may wish to view the entire solution

to the exercise. This is achieved by storing an ideal solution against each exercise.

However, it should be noted that many other alternative solutions to the exercise are

also accepted as correct as explained earlier. The ideal solution is only stored in

order to provide a student with a possible solution if it is required.

When a student requests to view a solution this provides evidence that the

student is not familiar with at least some of the topics covered by this exercise.

While the evidence is a bit vague, the approach adopted here is that the student

model is updated to indicate that the student did not achieve any of the sub-goals of

the exercise specification.

8.4 IMPLEMENTATION DETAILS

The above sections describe the user interfaces of the PHP ITS and the theory

behind the student and teaching modules. This section discusses the implementation

of the system. Section 8.4.1 describes the software architecture of the system. It

looks at the programming languages and tools that integrate to result in the PHP

Intelligent Tutoring System. Section 8.4.2 discusses the structure of the database that

Chapter 8 : Implementation of the PHP Intelligent Tutoring System 241

has been used in the system. Finally, Section Error! Reference source not found.

goes on to discuss some issues that arise when implementing the models described

above using the selected software tools and how these issues were overcome.

8.4.1 Software and Tools

Figure 8.13 shows the software architecture used during the development of

the PHP ITS. As described in Section 8.1, the ITS is a web based system and

therefore, web development languages were used to create it. HTML was used to

create web pages and CSS was used to maintain consistent styles across the system.

Javascript was used for client side scripting, mainly for validating data. The dynamic

aspect of the web pages was developed using PHP ("PHP Hypertext Processor,"

2011). This language was selected for many reasons. It is free and is easily

downloadable from the web. It is also very versatile. Another benefit of using PHP

is that this is the language taught by the ITS. When PHP was used for the

development of the system as well, it was possible to execute the results of the

students‟ answers without having to include any external simulators. The PHP

interpreter used to interpret the system code was used to interpret the students‟ code

as well.

 Two external tools were used for the analysis of computer programs written by

students. As described in Section 4.5.2, grammar files are used during one part of

program analysis. These grammar files were developed using ANTLR which is a

tool that supports the creation of grammar files. ANTLR also allows the creation of

ASTs from the code supplied as a text. Although ANTLR creates outputs that are

suitable for program analysis, it is not possible to access ANTLR through PHP.

Therefore, an intermediate language was necessary to communicate between PHP

and ANTLR. The C language is known to integrate very easily with PHP and it is

also possible to access ANTLR through C. Therefore, this was selected as the

intermediary language. The ANTLR C Runtime library was used to access ANTLR

from a normal C program, so that this program could analyse the ASTs generated by

ANTLR.

242 Chapter 8 : Implementation of the PHP Intelligent Tutoring System

Figure 8.13. Software architecture used in the PHP ITS.

User Interface

PHP, HTML, CSS,

Javascript

Program Analysis

C

Grammar Files

ANTLR

Predicates and

Rules

CLIPS

Update Student Model

C
Database

MySQL

Database Access

ODBC

Grammar File Access

ANTLR C Runtime

Library

Web Server

IIS

Domain Module

Student Module

Teaching and

Communications Modules

Chapter 8 : Implementation of the PHP Intelligent Tutoring System 243

This meant that, as explained in Section 4.5.3 it was necessary to work with

predicates and rules using this C program. The C language does not contain methods

for logic programming. CLIPS (Riley, 2011) is a tool developed with the explicit

purpose of handling logic programming through the C language. This tool was used

to handle predicates and rules during program analysis. Since it can directly be

accessed using C, no intermediate software was necessary.

In addition to program analysis, another important part of the PHP ITS is the

updating of the student model. As explained in Section 8.2, this is done at the time

of the pre-test and whenever the student clicks „Check My Answer‟. It is also

updated when other buttons in the interface are pressed, as explained in Section

8.3.1. This meant that the program to update the student model needed to be called

both from the interface (PHP) and from the program analysis code (C). In order to

make it easy to access this program from both these languages, the program to update

the student model was written in C.

Several C language compilers are available and their functions slightly differ

from each other. The Integrated Development Environment (IDE) used for the

development was Eclipse ("Eclipse," 2011). The main reason for this is that it allows

working with many of the programming languages and tools used in this project at

the same time. It is possible to open PHP, HTML, Javascript, C and ANTLR files

and work with them in a single environment. The C compiler that is most suitable

for this environment is MinGW ("MinGW - Minimalist GNU for Windows,") so this

was the compiler used during the development process.

A database is an imperative part of any considerable software system. The

database management system used in the PHP ITS was MySQL ("MySQL,"). The

main reason for this is that it is also free and is the database that is used most often in

PHP applications. PHP includes a native interface to connect directly to MySQL

databases. Therefore, the database was accessed directly from the PHP interface.

However, it was also necessary to access the database through the C programs for

analysing the students‟ code as well as for updating the student model. MySQL

provides a client library for directly connecting to a C program known as

Connector/C or libmysql. Although this allowed direct connection, it caused

problems when using this library with the ANTLR C runtime library. Many clashes

in definitions occured when trying to use these libraries together. Therefore, a

244 Chapter 8 : Implementation of the PHP Intelligent Tutoring System

different method of accessing the MySQL database from a C program was necessary.

In this case, the selected method was to access the MySQL database through an Open

Database Connectivity (ODBC) connection using the MySQL ODBC connector

("Connector/ODBC,"). It should be noted that the connector used here was the 32 bit

version.

Since the PHP ITS is a web application, it needs to be deployed on a web

server. The web server used during development was Apache ("Apache,"). The

main reason for this is that the development environment is set up using XAMPP

("XAMPP,") on a Windows 7 PC. XAMPP is an integrated package which makes it

easy to install PHP, MySQL, the Apache server and several other software products

using a single installation. However, the deployment environment was somewhat

different to this. It used the IIS server installed on a Windows Server 2008 operating

system. This was necessary due to practical issues existing at the Queensland

University of Technology where this research was carried out. The server provided

for deployment was preinstalled with Windows Server 2008 and a PHP system using

IIS was already running on it. The decision to use the existing web server was taken

in order to avoid conflicts and also to make the URLs easier for the students. The

PHP ITS worked seamlessly in both the development and deployment environments.

8.4.2 Database Structure

The database used in the PHP ITS has a fairly complex structure as shown in

Figure 8.14 and Figure 8.15. Note that these figures need to be read in conjunction

with the lines reaching the right edge of Figure 8.14 joining those in the same

vertical position on the left edge of Figure 8.15. The problem_mst table is the main

table that contains exercise information. The problem_mst table is linked to the

problem_sol_ref table that contains a row each for each sub-goal in the final goal.

These sub-goals are matched to function names that are defined in CLIPS. The

relevant CLIPS function is called to check whether each sub-goal is satisfied. The

problem_message_ref table contains message references for each of the four possible

types of messages for each sub-goal as described in Section 8.3.1.2. The actual text

of the messages is stored in the message_mst table. The goal_topic_ref table

contains references to the topics that are linked to each sub-goal as described in

Section 8.2.1. The topic_mst table contains the actual topics. The

Chapter 8 : Implementation of the PHP Intelligent Tutoring System 245

topic_webpage_ref table links each topic with web pages that are defined in the

webpage_mst table.

A separate set of tables is maintained in order to handle sub-plans. The

prob_subplan_ref table creates the link between different sub-plans that are possible

for a single problem. The subplan_pre_post_ref table contains the CLIPS function

names for each sub-goal in the sub-plan while the subplan_message_ref table

contains links to all the possible types of messages when a sub-goal in the sub-plan is

not satisfied. The subplan_topic_ref table contains references to the topics that are

linked to each sub-plan sub-goal.

The next set of important tables is formed around the user_mst table which

contains details for each user. The user_topic_ref table contains the student model,

showing the knowledge level for each topic of the user. The sntx_error_dat and the

user_error_ref tables contain references to errors identified during program analysis.

The user_pretest_ref and the user_posttest_result tables contain the pre and post test

data for each user.

8.4.3 Implementation Issues

Chapter 4, Chapter 5 and Chapter 7 described the theoretical procedure for

analysing PHP programs that is used by the PHP ITS. However, some of these

theoretical aspects result in challenging situations when implemented using the

technologies described in Section 8.4.1. This section gives a brief description of

some of the more important issues and how they are solved.

During the analysis of PHP selection statements, it can be seen that the facts

that exist in the if section are different from those that exist in the else section

(Chapter 5). When handling functions (Section 6.2) or loops (Chapter 7), the facts

that exist within the sub-plan are different from those that exist outside. During

implementation, facts are handled using the CLIPS tool (Section 8.4.1). This tool

does not provide a means of separating facts into groups. Therefore, this situation is

handled by maintaining different set of facts in separate CLIPS sessions known as

environments. In other words, implications are handled by having the main set of

facts in one CLIPS environment and the implied set of facts in another CLIPS

environment. The clips_env_dat, env_fact_ref and loop_env_ref tables in the

database (Section 8.4.2) are used for the purpose of maintaining these links.

246 Chapter 8 : Implementation of the PHP Intelligent Tutoring System

Figure 8.14. Database model of the PHP ITS – 1.

Chapter 8 : Implementation of the PHP Intelligent Tutoring System 247

Figure 8.15. Database model of the PHP ITS – 2.

248 Chapter 8 : Implementation of the PHP Intelligent Tutoring System

Another important consideration is the implementation of mathematical facts

such as Add(x,y,z). As explained in Section 4.4.1.1, this predicate becomes true if z

is the sum of x and y. An infinite number of such facts need to be created in order to

handle all the possible mathematical calculations. Since this is impractical, these

facts have been implemented in the form of a symbolic calculator. The symbolic

calculator finds the sum of x and y and, thereby, the value of z. Symbolic

calculations are necessary as the initial values of some variables are given in

symbolic form as described in Section 4.4.2.

As described in Section 4.5.5, a set of statuses are maintained in order to

identify unnecessary program statements. This is implemented using a CurrentState

predicate to hold a pointer to the current status. When a new status is created, the

pointer to the previous one is lost. This means that, if unnecessary program

statements are found at the end of a program, a new status is created before the extra

statements are identified, thereby destroying the link to the status when the goal was

actually achieved. In order to avoid this problem, the overall goal is checked to see

whether it is satisfied just before a new status is created. Then, if it is satisfied, the

statement that is creating the current status is identified as an unnecessary program

statement.

As described above, the facts relevant to the if and else states are maintained in

separate CLIPS environments. This means that, if a new variable is created in both

these environments, it should be accessible in any environment that corresponds to

subsequent program statements. Therefore, at the end of a selection statement, a

check is made to see if any new variables were created in all the corresponding sub

states. If so, a new status is created and a corresponding variable is also created.

This section discussed some important implementation issued faced when

implementing the PHP ITSs theory as an actual program. However, many other

minor incompatibilities also needed to be overcome. A brief account of some of

these issues can be found in Appendix H.

8.5 CHAPTER SUMMARY

This chapter discussed the implementation of the PHP Intelligent Tutoring

System. It discussed the features and functionality of the system and how they relate

to the theoretical aspects explained in previous chapters. It discussed the design of

Chapter 8 : Implementation of the PHP Intelligent Tutoring System 249

both the student and teaching modules used in the system. It also looked at how

different programming languages and software tools were used to develop the

system. It briefly examined the database structure and also discussed some situations

where the implementation differed from the theoretical viewpoint for technical

reasons.

Chapter 9 : System Evaluation 251

Chapter 9: System Evaluation

This chapter discusses how the PHP Intelligent Tutoring System was evaluated

to see whether it achieved its objectives. Section 9.1 explains the evaluation process

in detail. It describes how the participants were selected and also discusses the

procedures and instruments that were used during the evaluation process. Section

9.2 describes the different versions of the PHP ITS and how they were used for the

purpose of analysis. Section 9.3 discusses the results of the evaluation and Section

9.4 summarises the chapter.

9.1 EVALUATION PROCESS OF THE PHP INTELLIGENT TUTORING

SYSTEM

As described in Section 3.2.4, the PHP ITS was evaluated using empirical

methods. The evaluation process addressed such aspects as the usability of the

system, improvement in student knowledge due to use of the system, the

appropriateness of the subject matter taught, the effectiveness of the teaching module

and the validity of the student module. Both qualitative and quantitative methods

were used to carry out this evaluation as outlined below.

9.1.1 Participants

The participants in the evaluation process were postgraduate students of the

Queensland University of Technology (QUT) who wanted to study web development

using PHP. The students taking the unit had no prior background in programming

using PHP. The unit was an optional advanced reading module and offered in both

the first and second semesters of 2012. It was administered during a typical 13 week

semester. The first six weeks of the unit consisted of the students using the PHP

Intelligent Tutoring System to study introductory material by themselves. They

needed to work through a set of exercises that were released each week. No lectures

or tutorials were provided by a human tutor. The ITS was used as a stand-alone

education system with links to web pages containing relevant reading material. In

the second half of the semester, the students followed a carefully selected textbook to

learn more advanced features of PHP development. They were not required to use

252 Chapter 9 : System Evaluation

the PHP ITS during this period. All the material was studied during the students‟

own time and no fixed class times were administered.

As mentioned in Section 3.2.4, two versions of the system were evaluated. The

students in the first semester worked on the first version of the system while the

students in the second semester worked on the second version. Students were

recruited by open invitation for postgraduate students undertaking the courses IT43

(Master of Information Technology) and IT44 (Master of Information Technology

(Advanced)). They needed to fulfil several requirements to be selected for the

course. They should have completed at least 48 credit points of postgraduate level IT

units. They also needed to have knowledge in basic HTML. It was also stressed

that the material was intended for students with no existing knowledge of PHP. Prior

knowledge of programming and database concepts was not required. These

requirements were used as the PHP ITS was aimed at students learning PHP for the

first time with or without prior programming experience. Based on these

requirements, 19 students worked with the first version of the system and 15 worked

with the second version. Although it would have been better to have more students,

only this number showed an interest and satisfied the necessary requirements for

participation.

9.1.2 Procedures and Instruments

The participants were required to undergo a pre-test and a post-test. The pre-

test was administered when they initially started using the PHP ITS, before they used

any of its tutoring functions. This was a multiple choice test with 19 questions

(Appendix I). The test was delivered over the web and they could do it in their own

time. At the end of the six weeks of using the PHP ITS, the students were required

to undergo a post-test. The post-test was administered as part of the mid-semester

examination for the unit. The examination contained the same 19 questions from the

pre-test, but in a different order, as well as some additional multiple choice questions

integrated into the examination. Only the 19 questions from the pre-test were

considered as constituting the post-test. The post-test was again done through the

web and administered via Blackboard. However, unlike the pre-test, the examination

had to be taken on a fixed day and time. The PHP ITS was not available to the

students during the examination.

Chapter 9 : System Evaluation 253

During the students‟ interaction with the system, their actions were recorded in

a database. The recorded data included the date and time of the interaction, the type

of interaction (i.e. login, logout, check a solution etc.) and also the actual answer

submitted by the student as well as any errors that were identified. Their knowledge

level in each topic after each interaction was also recorded.

The students were no longer required to use the PHP ITS after the mid

semester examination. A questionnaire was then opened to the students, again using

the web. It remained open for two weeks so that students could complete it in their

own time. The questionnaire was anonymous. It contained a set of multiple choice

and free-answer questions. The multiple choice questions were of two groups. The

first group required them to grade their prior knowledge of relevant subject matter on

a scale of 1 to 5, 5 being the highest. The second group required them to rate various

aspects of the PHP ITS on a 5 point Likert-type scale. The final set of questions in

the questionnaire was free-answer questions where the students were free to write

anything. The questionnaire is included as Appendix J. Thirteen responses to the

questionnaire were received for the first version of the system while six were

received for the second version.

 The answers to the questionnaires were then analysed to find areas where the

PHP ITS could be improved. In order to get a better understanding of the

weaknesses identified by the questionnaire, a focus group discussion was conducted

during the first iteration only. This was a one hour session during which the

participants came together in one room to discuss issues. The participants were

given the opportunity to say anything they liked about the overall system. Then, a

set of fixed questions (Appendix K) were asked. The discussion was recorded in

order to facilitate data collection. The students were assured that their responses

would not affect their final grades in any manner.

All participants were required to complete the pre and post-tests. They were

also all given the opportunity to complete the questionnaire although it was not

compulsory. Only three students decided to participate in the focus group due to the

difficulties of finding a time convenient to everyone, and that most of the students

would have had to make a special trip to come, to attend at that time.

254 Chapter 9 : System Evaluation

9.2 DIFFERENT VERSIONS OF THE PHP INTELLIGENT TUTORING

SYSTEM

The qualitative data gathered during system evaluation, as well as weaknesses

identified by the administrator were used to improve the PHP ITS across multiple

versions as described in Chapter 3. The first two versions of the system were

developed, evaluated as described in Section 9.1, and identified improvements were

carried out – see below. These improvements were identified mainly based on the

feedback obtained through the questionnaire and the focus group. The final version

of the system, version 3, that fixed issues emerging from the previous evaluations, is

the one that is described in this thesis. The following sections outline how the

different versions differ across particular aspects of the system.

9.2.1 Feedback to Students’ Solutions

The first version of the system had limited functionality as described below.

o It did not have the ability to identify unnecessary program statements

as described in Section 4.5.5. Even if the student‟s solution contained

unnecessary code, it was analysed as correct if the statements

necessary to achieve the objective were present.

o When a student asked that the solution be analysed, the system

immediately displayed an error message if an error was identified.

o There was only one level of error message for each error.

Student feedback on the first version indicated that they were not too happy

with the error messages provided by the system. In order to handle this problem, the

second version contained improved error messages. When a student asked that their

solution be checked, the system first indicated only whether the solution was correct

or not. The student was then allowed to ask for additional messages using the

mechanisms described in Section 8.3.1.2. This version also provided several levels

of messages for each error.

Unfortunately, subsequent student feedback for this version was similar to that

for version 1 - students were still not too satisfied with the error messages provided

by the system.

Chapter 9 : System Evaluation 255

In order to improve this further, it was felt that it would be useful if the system

could identify unnecessary program statements in students‟ code. The third version

of the system incorporates this change.

9.2.2 Selecting the Next Exercise

The first version of the PHP ITS contained only one way for students to select

the next exercise – the list of exercises suggested by the system. Feedback received

from students indicated that this list was sometimes cumbersome and some students

preferred to just select exercises based on criteria. Additionally, exercises were

removed from the list when the system was satisfied that the student knew all the

topics covered by the exercises. This was because several exercises covered the

same topics and students could therefore gain knowledge about the topics without

attempting all of them. However, it seemed that some students still preferred to work

on all the exercises in the system and wanted methods of accessing these exercises.

In order to handle this, the two modes of exercise selection described in Section 8.3.2

were introduced in version 2.

It appeared that some students also got confused when some exercises were

removed from the list of suggested exercises as described above. In order to reduce

the confusion and also to give the students an indication of what the system knew

about their knowledge, the Skillometer was introduced into the second version of the

system.

9.2.3 Handling Students’ Doubt Regarding Program Analysis

Student feedback on the first version also indicated that sometimes students felt

the system did not analyse their solutions properly, as described in Section 8.1.2.

Since this student feedback occurred long after the use of the first version, it was

impossible to ascertain whether there was an actual bug in the system or whether the

student was simply unable to identify their own error(s). The facility to record their

concern over such a program (Section 8.1.2) was incorporated into the second

version so that students could communicate such errors allowing the administrator to

ascertain whether the problem was in the system or in the student‟s code and take

necessary action. Upon analysis of errors reported by students using this method, it

was clear that the majority of time, the students were unable to identify their own

256 Chapter 9 : System Evaluation

errors. Action was taken to correct any errors in the system the few times that such

errors actually existed.

9.2.4 User Interface

In addition to these functional changes, many students using the first version

indicated that they were unhappy about the colours, images and fonts in the user

interface. Discussion at the focus group revealed that they felt that a very simple

colour combination with light colours would be preferred. Therefore, the interface of

the second version was changed accordingly to include minimum colours. However,

several students using the second version commented that they were unhappy with

the fact that the interface was dull and did not have enough colours and pictures.

Some also indicated that they were unhappy about the separate frames in which the

material was provided, while others indicated that the way the frames were structured

made it easier for them to understand the material. Some students welcomed the

simplistic and uncluttered interface with an easily navigate-able main menu while

others indicated dissatisfaction about the lack of use of complicated interface

elements like Flash. It appears that this is very dependent on personal preference and

it would be very difficult to achieve a theme that is liked by all.

9.3 RESULTS AND DISCUSSION

The analysis of this data focused on both the educational impact and the

affective responses of the students who use the system. As described in Section

9.1.2, the data gathered consisted of both qualitative and quantitative data. The next

sections describe how the data was analysed to answer the research questions

described in Section 2.7.

9.3.1 Effectiveness of the System

The main measure of the educational impact of the system was the pre and

post-test results. Table 9.1 shows these results for the first version of the system

while Table 9.2 shows these results for second version. For the first version, the

average test score increased from 6.58 to 13.58 from the pre- to the post-test, while

the standard deviation reduced from 4.83 to 2.36. For the second version, the mean

test score increased from 4.80 to 13.27 while the standard deviation changed from

5.53 to 3.92. Figure 9.1 shows a graph of the average pre- and post-test scores

Chapter 9 : System Evaluation 257

achieved by students for the two versions of the system. It can be seen that there was

an increase in the average score of the students after using the PHP ITS.

Table 9.1

Pre and Post-test Results for Version 1

Student
Pre-test Score

(out of 19)

Post-test Score

(out of 19)

1 0 13

2 14 17

3 0 13

4 9 11

5 4 12

6 9 17

7 7 10

8 14 15

9 3 12

10 0 15

11 2 14

12 9 17

13 0 14

14 10 10

15 14 17

16 7 13

17 7 12

18 6 15

19 10 11

A paired t-test with a 95% confidence interval was used to test whether the

increase in test score was significant. The test used was a one-tailed t-test since the

results showed that the test-score increased as a result of use of the system. The null

hypothesis was:

There is no difference between the pre-test and post-test scores of the students

who used the system.

The SPSS statistical package gave p-values less than 0.001 for paired t-tests on

both versions of the system. This signifies that it is extremely likely that the null

hypothesis is false and therefore, there is a significant positive difference between the

pre-test and post-test scores of the students who used the system. In other words, the

post-test scores are significantly higher the pre-test scores. As described in Section

258 Chapter 9 : System Evaluation

3.2.4, it was not possible to have a control group for ethical reasons. But the PHP

ITS was the only means of learning-by-doing provided to the students. Therefore, it

is reasonable to conclude that the increase in test scores was a direct result of using

the PHP ITS. This indicates that the PHP ITS was effective in teaching the subject

matter to the students.

Table 9.2

Pre and Post-Test Results for Version 2

Student
Pre-test Score

(out of 19)

Post-test Score

(out of 19)

 1 11 14

2 0 10

3 15 19

4 5 14

5 11 16

6 0 17

7 0 13

8 0 8

9 0 9

10 10 14

11 0 15

12 1 4

13 10 15

14 0 16

15 9 15

The learning gain of the PHP ITS was then compared against the learning gain

of the JITS (E. R. Sykes, 2006) system. Although the JITS system also works in the

programming domain, it teaches the Java language which is different to the PHP

language. The average learning gain for JITS was 28.62% while the average

learning gain for the PHP ITS was 40.25%. This shows that the PHP ITS is at least

as effective as JITS when considering the learning achieved by students.

Another test that was used to measure the effectiveness of the system was a

paired t-test comparing the initial and final probabilities that the subject matter was

learned. In this case, the student model contains data for the learned probability per

student per topic. In order to perform the t-test, the average learned probability

across all topics per student was considered. Table 9.3 shows the initial and final

Chapter 9 : System Evaluation 259

average learned probabilities for each student for the first version while Table 9.4

shows these figures for the second version of the system.

Figure 9.1. Average pre and post-test score.

Table 9.3

Initial and Final Average Learned Probabilities for Version 1

Student
Initial Average

Learned Probability

Final Average

Learned Probability

1 0.26 0.52

2 0.59 0.80

3 0.26 0.64

4 0.47 0.80

5 0.33 0.54

6 0.41 0.63

7 0.50 0.55

8 0.61 0.73

9 0.31 0.83

10 0.26 0.54

11 0.29 0.47

12 0.47 0.72

13 0.26 0.58

14 0.53 0.55

15 0.50 0.80

16 0.26 0.30

17 0.50 0.69

18 0.39 0.83

19 0.50 0.72

260 Chapter 9 : System Evaluation

Table 9.4

Initial and Final Average Learned Probabilities for Version 2

Student

Initial Average

Learned

Probability

Final Average

Learned Probability

1 0.50 0.50

2 0.49 0.74

3 0.26 0.64

4 0.61 0.77

5 0.40 0.75

6 0.46 0.54

7 0.26 0.56

8 0.26 0.62

9 0.05 0.50

10 0.26 0.69

11 0.46 0.64

12 0.26 0.60

13 0.27 0.33

14 0.44 0.44

15 0.50 0.51

16 0.45 0.67

A one-tailed paired t-test with a confidence level of 0.95 was carried out using

this data. The null hypothesis in this case was as below.

There is no difference between the initial and final learned probabilities of the

students who used the system.

Again the SPSS statistics package returned p-values less than 0.001 for both

versions, indicating that there is ample evidence the null hypothesis is false. This

means that there is a significant positive difference between the initial and final

learned probabilities. This result consolidates the fact that the students learned the

subject matter after using the system.

A paired sample t-test was carried out between the percentages of students who

got each question of the post-test correct in the two versions. The aim of this test

was to check whether there was a significant difference between the effects of the

two versions of the system. The test carried out in this case was two-tailed since the

direction of any variation could not be guessed. The confidence interval used was

0.95. The null hypothesis in this case was as below.

Chapter 9 : System Evaluation 261

There is no significant difference between the results for each question for the

two versions of the system.

The test results showed a p-value of 0.643. This meant that the evidence of the

test was not strong enough to reject the null hypothesis and a significant difference

could not be concluded.

A correlation was calculated to see whether the amount of help obtained by the

student when solving exercises had a significant impact on the improvement in test

scores. The null hypothesis tested for this correlation was as below.

There is no significant difference in the improvement of test results with the

amount of help obtained when solving exercises.

The improvement in test score was calculated as the difference between the

post-test and pre-test scores. The amount of help obtained was found by adding the

total number of help requests by the student. Table 9.5 shows the amount of help

requested by each student for both versions of the system. In this case, the types of

help considered were checking the solution, asking what is wrong, asking how to fix

it, showing relevant topics and showing the solution entirely. The number of times

the student requested to show their program‟s output was not considered here since

this can anyway be accomplished with a standard PHP Integrated Development

Environment (IDE) and was not a type of help offered by the system but merely a

way for the students to check the output of their code. A correlation was then

calculated between the number of help requests and the improvement in test score.

The results of the test are shown in Table 9.6.

It can be seen that these results are significant at the 0.05 level. This means

that there is good evidence to reject the null hypothesis. In other words, it can be

seen that there is significant difference in improvement in test score based on the

number of help requests.

262 Chapter 9 : System Evaluation

Table 9.5

Number of Help Requests for Each Student

Student

Number of Help

Requests

1 59

2 53

3 137

4 155

5 68

6 34

7 58

8 70

9 141

10 86

11 92

12 73

13 98

14 43

15 73

16 46

17 97

18 84

19 66

20 48

21 68

22 46

23 114

24 24

25 58

26 68

27 13

28 158

29 79

30 178

31 13

32 57

33 105

34 76

In order to further test this relationship, a linear regression was carried out

between the improvement in test score and the number of help requests. The results

of this analysis indicate an R value of 0.364 with a p-value of 0.034. Since the p-

value is below 0.05, the number of help requests is significant with regards to the

improvement in test score although the regression coefficient is not that large. The

normal probability plot (Figure 9.2) resulting from this analysis is close to a straight

Chapter 9 : System Evaluation 263

line, indicating that the error terms are normally distributed. This validates the

fundamental assumption in linear regression that the errors are normally distributed.

Table 9.6

Correlations Results for Improvement in Test Score and Number of Help Requests

 Test

Improvement

Number

of Help

Requests

Test

Improvement

Pearson Correlation 1 .364*

Sig. (2-tailed) .034

N 34 34

Number of Help

Requests

Pearson Correlation .364* 1

Sig. (2-tailed) .034

N 34 34

* Correlation is significant at the 0.05 level (2-tailed)

Another correlation was calculated to test whether the duration of the usage of

the system had a significant effect on the improvement in test scores. The null

hypothesis of the test was as below.

There is no significant difference in the improvement of test results with the

duration of usage of the system.

Figure 9.2. Normal probability plot for regression analysis.

264 Chapter 9 : System Evaluation

Several calculations were carried out in order to obtain the relevant data. From

the system usage information recorded in the system, the total duration of use of the

system by each student was calculated (Table 9.7). This was done by finding the

difference between each login and the subsequent logout
1
. The improvement in test

score was again calculated as described above. A correlation was then calculated

between the duration of usage and the improvement in test score. The results of this

test are shown in Table 9.8. It can be seen that this correlation was not significant

indicating that there was no reason to reject the null hypothesis. In other words, it

was not possible to say that there was a significant difference in the improvement of

test results based on the duration of usage of the system. A possible explanation for

this is that the students did not utilise the features of the system, the entire time they

were logged on. They may have spent some of this time learning the subject matter

using web resources, textbooks and other study aides. Therefore, the duration when

the students were logged on may not have been an accurate reflection of the time

they actually used the system.

A correlation test was also carried out to see whether the number of problems

attempted and the number of problems correctly completed had any significant effect

on the improvement in test score. Table 9.9 shows the number of problems

attempted and the number of problems correct for each student. These figures were

used to correlate against the improvement in test scores. The three null hypotheses

are as below.

There is no significant difference in number of problems attempted with the

number of problems correct.

There is no significant difference in the improvement of test results with the

number of problems attempted.

1
Due to a development bug, some students managed to close the system

without cleanly logging out, especially during the initial usage of the system. In such

cases a forced logout was carried out either by the administrator, or later by the

students themselves. This happened after a significant time delay, thereby making

the duration of usage unrealistic. In order to account for this problem, any time

durations of greater than 10 hours were ignored during the analysis. It should be

noted that only a very few data items were ignored in this manner and it is therefore

felt that this is a reasonable estimation based on the available data.

Chapter 9 : System Evaluation 265

There is no significant difference in the improvement of test results with the

number of problems correct.

Table 9.7

Total Duration of System Use for Each Student

Student Total Duration Used

1 5:23:06

2 5:01:16

3 9:07:45

4 14:54:34

5 8:17:26

6 12:57:18

7 9:49:45

8 4:49:21

9 11:09:57

10 3:35:59

11 0:42:51

12 19:33:50

13 10:46:57

14 0:50:34

15 11:57:09

16 21:38:27

17 5:09:30

18 20:26:04

19 8:55:17

20 6:10:22

21 2:48:33

22 10:12:46

23 9:04:08

24 3:09:51

25 6:51:45

26 3:03:00

27 3:15:20

28 10:36:17

29 5:05:55

30 12:05:12

31 7:46:32

32 10:22:58

33 9:38:07

34 14:15:20

266 Chapter 9 : System Evaluation

Table 9.8.

Correlation Results for Minutes Used and Improvement in Test Score

Minutes Used

Test

Improvem

ent

Minutes Used Pearson Correlation 1 .019

Sig. (2-tailed) .914

N 34 34

Test

Improvement

Pearson Correlation .019 1

Sig. (2-tailed) .914

N 34 34

The results of this correlation test are shown in Table 9.10. It can be seen that

the only result that is significant here is the correlation between the number of

problems attempted and the number of problems correct. This result is extremely

significant, allowing the first null hypothesis above to be rejected, meaning that there

is a significant difference between the number of problems attempted with the

number of problems correctly completed. This can easily be explained since it is

quite reasonable that the number of problems correct is related to the number of

problems attempted. However, all the other correlations are not significant,

indicating that the two other null hypotheses cannot be rejected. In other words, it

cannot be shown that there is a significant difference in the improvement in test

scores with either the number of problems attempted or the number of problems

correct.

The results of the above tests as a whole indicate that although the

improvement in test score does not seem to be affected by the duration of usage of

the system, the number of problems attempted, or the number of problems correct, it

is significantly affected by the number of help requests that the student issues.

Chapter 9 : System Evaluation 267

Table 9.9.

The Number of Problems Attempted and the Number of Problems Correct for Each Student

Student
No. of Problems

Attempted

No. of

Problems

Correct

1 28 20

2 29 23

3 33 25

4 26 11

5 32 29

6 26 20

7 32 21

8 19 8

9 23 8

10 31 18

11 31 22

12 27 18

13 32 25

14 32 29

15 30 20

16 26 23

17 29 21

18 29 23

19 32 23

20 31 30

21 28 23

22 31 30

23 29 26

24 14 4

25 31 30

26 28 22

27 7 2

28 31 30

29 31 30

30 31 30

31 15 1

32 31 0

33 31 6

34 30 27

268 Chapter 9 : System Evaluation

Table 9.10.

Correlation Results for Number of Problems Attempted, Number of Problems Correct and

Improvement in Test Score

No.

Attempted

No.

Correct

Test

Improvem

ent

No. Attempted Pearson Correlation 1 .705** .202

Sig. (2-tailed) .000 .252

N 34 34 34

 No. Correct Pearson Correlation .705** 1 .131

 Sig. (2-tailed) .000 .459

 N 34 34 34

Test

Improvement

Pearson Correlation .202 .131 1

Sig. (2-tailed) .252 .459

N 34 34 34

** Correlation is significant at the 0.01 level (2-tailed)

9.3.2 Validity of the Student Model

As explained in Section 8.2, the student model consisted of a set of

probabilities of each student knowing a topic. Each question in the post-test was

linked to one or more of these topics. A prediction was made as to whether a student

would or would not get the post-test questions correct, based on their knowledge of

the relevant topics before the post-test. In order to make this prediction, it was

necessary to determine a threshold value to decide that a student was indeed

knowledgeable in a topic. The threshold value used here was 0.85, the same value

used in the PHP ITS. When more than a question tested more than one topic, the

average probability across those topics was considered. If the final average

probability that a particular student knew the topics covered by a post-test question

was above the threshold value, it was predicted that the student would get the answer

correct.

This prediction was used to calculate a predicated post-test score for each student. The predictions

obtained in this manner were correlated using Pearson‟s correlation against the actual post-test scores

for the students. The predicted and actual post-test scores for version 1 are shown in Table 9.11 while

those for version 2 are shown in

Chapter 9 : System Evaluation 269

Table 9.12. A two-tailed test was considered in this case as the direction of any change could not be

estimated. Table 9.13 shows the results of performing this analysis using SPSS for version 1 and

Table 9.14 shows the corresponding results for version 2. It can be seen that

there is no positive correlation between the post-test score and the predicted post-test

score in the case of version 1. However, the situation is different in the case of

version 2. Here, a strong positive correlation of 0.660 exists with a significance level

of 0.007 so the correlation is significant at the 0.01 level.

Table 9.11

Predicted and Actual Post Test Scores for Each Student for Version 1

Student

Predicted Post

Test Score

Actual Post

Test Score

1 10 13

2 15 17

3 12 13

4 15 11

5 9 12

6 11 17

7 8 10

8 13 15

9 14 12

10 9 15

11 10 14

12 12 17

13 10 14

14 9 10

15 15 17

16 0 13

17 10 12

18 14 15

19 12 11

Therefore, it is possible to conclude that although the probabilities in the

student model in version 1 do not accurately reflect the students‟ knowledge, those in

version 2 provides a better estimate of the students‟ knowledge.

270 Chapter 9 : System Evaluation

Table 9.12

Predicted and Actual Post Test Scores for Each Student for Version 2

Student

Predicted Post

Test Score

Actual

Post Test

Score

1 12 14

2 11 10

3 16 19

4 10 14

5 10 16

6 10 17

7 10 13

8 0 8

9 10 9

10 9 14

11 11 15

12 0 4

13 2 15

14 9 16

15 10 15

Table 9.13

Correlation results of Post-test Score and Predicted Post-test Score for Version 1

 Post-test

score

Predicted

post-test

score

Post-test score Pearson Correlation 1 .307

Sig. (2-tailed) .201

N 19 19

Predicted post-

test score

Pearson Correlation .307 1

Sig. (2-tailed) .201

N 19 19

9.3.3 System Usage

The PHP ITS provides multiple forms of support for students as described in

Section 8.3.1. An analysis of the logged usage data was carried out to see which help

features provided by the students were most used by students. A summary of the

results showing the percentages of the number of requests for each type of help are

shown in Figure 9.3.

Chapter 9 : System Evaluation 271

Table 9.14

Correlation results of Post-test Score and Predicted Post-test Score for Version 2

 Post-test

score

Predicted

post-test

score

Post-test score Pearson Correlation 1 .660**

Sig. (2-tailed) .007

N 15 15

Predicted post-

test score

Pearson Correlation .660** 1

Sig. (2-tailed) .007

N 15 15

** Correlation is significant at the 0.01 level (2-tailed)

Figure 9.3. Types of help used by students.

It can be seen that there is very little difference between the percentage use of

different help features between the two versions. Of the different types of help

provided, close to 50% of the interactions were for checking the solution of their

code. However, few students seem to have requested further help as indicated by the

low percentage using Other Help. Here, Other Help refers to the total of displaying

272 Chapter 9 : System Evaluation

relevant topics and asking for further help on errors using either the „What is Wrong‟

or „How do I Solve It‟ buttons as described in Section 8.3.1. However, note that of

these three types of Other Help, only displaying relevant topics was available in

version 1 (Section 9.2). The slight increase in use of Other Help in version 2 could

be due to the introduction of the new features to request for further help. It can be

seen that many students also chose to display the entire solution. This indicates that

students seem to find it highly useful to see what the system thinks is a correct

solution. A possible reason for this is that they want to learn by comparing their

solution with the solution provided by the system.

As described in Section 8.3.2, the PHP ITS provides two modes of selecting

the next exercise: the student can either select the next exercise based on specific

search criteria, or allow the system to suggest the next exercise. This selection was

only available in version 2 of the system so only the data from this version are

analysed here. Figure 9.4 shows a stacked bar chart of the number of times each

student selected each mode of exercise selection. It can be seen that few students

were happy to allow the system to suggest their next exercise without ever choosing

to search for an exercise. A majority of the others allowed the system to suggest the

exercise more than 50% of the time. A few preferred mostly to search for exercises

on their own.

An additional feature added to the second version of the system was the

Skillometer. In order to see whether this feature was utilised by students, a

histogram showing the number of students that used the Skillometer a given number

of times was prepared. The resultant chart is shown in Figure 9.5. This shows that

many students did not use the Skillometer at all and very few used it more than twice

during the entire unit. In the PHP ITS, the Skillometer was only available by

clicking on a link at the top of the screen and its use was not explicitly pointed out to

the students except for a mention in the help files. It seems that the Skillometer

needs to be made more visible for students to gain maximum benefit.

Chapter 9 : System Evaluation 273

Figure 9.4. Exercise selection mode used by each student.

Figure 9.5. Frequency of Skillometer usage by students.

274 Chapter 9 : System Evaluation

9.3.4 Satisfaction

In addition to the effectiveness of the system, another major component when

deciding the usability of a system for practical use is user satisfaction. The user

satisfaction of the PHP ITS was measured using both the feedback questionnaire and

the focus group as described in Section 9.1.2. The responses to the Likert questions

in the questionnaire (Appendix J) were used to create charts to gauge how the

students rated the various aspects of the system. Since it was not compulsory for the

students to provide feedback in this manner, only 13 out of the 19 students in version

1 and 6 out of the 15 students in version 2 provided feedback. The response to

version 2 proved disappointing, providing insufficient evidence to compare the two

versions of the system. Therefore, most of the analysis in this section was carried out

using the combined data from both versions. Another possible weakness of this

analysis was the fact that the students were aware that the system was built as a result

of this research, and may therefore have not wished to offend the researchers with

their answers.

Figure 9.6 shows how the students rated the system overall. It can be seen that

although only 5% rated the system as excellent, more than half the students had an

overall impression that the system was good. No students felt it was very poor.

Therefore, it can be seen that the majority were satisfied with the overall impression

of the system.

Figure 9.6. Overall impression of the system.

Chapter 9 : System Evaluation 275

The ease of use of the system was another aspect that was rated by students.

Figure 9.7 shows the ratings chosen by the students for this parameter. In this case,

it can be seen that 10% of the students thought the system was very easy to use while

a further 37% felt that it was relatively easy to use. Again, no students rated this as

very poor.

The students also rated how they felt about the quality of the programming

exercises provided by the system. The overall distribution in this case is shown in

Figure 9.8. Again, more than half the students rated the exercises as either excellent

or good and none rated them very poor.

It is extremely unlikely that students would use a computerised system that

would take unacceptable time periods to respond. Therefore, the speed of response

of the system is an important indicator as to its usability. The ratings provided by the

students for this parameter (Figure 9.9) were very similar to those for the

programming exercises.

Figure 9.7. Ease of use of the system.

276 Chapter 9 : System Evaluation

Figure 9.8. Programming exercises.

Figure 9.9. Speed of response of the system.

All the above ratings were summaries of those provided for both versions of

the system. However, as described in Section 9.2, some aspects of the second

version varied considerably from those of the first version. Therefore, it was more

appropriate to compare the ratings for the two versions for some of the questions.

A major change between the versions was how feedback was provided. The

first version immediately displayed error messages based on any identified errors

while the second version indicated that there was an error but waited for the students

to ask for further information. The ratings of the students for feedback messages

across the two versions are shown in Figure 9.10. It can be seen that about the same

percentage of students in each version felt that the feedback messages were excellent.

Chapter 9 : System Evaluation 277

However, more students felt that the feedback messages were good in version 2 than

did those in version 1. 15% of students using version 1 actually felt that the feedback

messages were very poor while none using version 2 felt that the messages were very

poor. Even though some improvement between the two versions is apparent, this

seems to be an area where further improvements should ideally be made. Given that

the students learned PHP and the overall impression of the system was good, it is a

possibility that students felt there wasn‟t sufficient information as to how they should

fix their problems. This is an area that needs to be looked into in future

developments of the system.

The next analysis was performed to gauge whether students felt the different

versions of the PHP ITS contributed to their success in gaining knowledge and

understanding. A donut chart of the ratings given by the student is shown in Figure

9.11. In this figure, it can be seen that around 50% of users in both versions felt that

their success in gaining knowledge and understanding was either excellent or good.

More students using version 1 rated this as poor than did the percentage of students

using version 2. No student using either version rated their success in gaining

knowledge and understanding as very poor.

Figure 9.10. Feedback messages.

278 Chapter 9 : System Evaluation

As mentioned in Section 9.2, the look and feel of the system was changed

considerably from the first version to the second. Figure 9.12 shows a donut graph

of the students rating for the look and feel across the two versions. It can be seen

that very few students rated the look and feel as excellent or good for either version

although a considerable number rated it as neutral. It is of some concern that many

students have rated it as very poor for both versions, indicating that more work needs

to be done in this area.

Figure 9.11. Success in gaining student knowledge and understanding.

Figure 9.12. Look and feel.

Chapter 9 : System Evaluation 279

The responses to the free-answer questions in the questionnaire (Appendix J)

and also the students‟ responses during the focus group discussion provided some

insight into what other improvements the students would like to see. Many students

responded that they would like to use similar systems in other domains in the future,

as well as recommending the PHP ITS to others. Some were of the opinion that the

system should provide theoretical instruction within it, without directing the user to

relevant external websites. Several suggested that the system be made accessible

through mobile devices. Another suggestion was that the interface be improved to

include syntax highlighting and auto-completion of keywords like in many

traditional IDEs.

The following were some additional comments that were given by students that

used the PHP ITS.

 I enjoy (sic) the self paced learning and the availability of the system.

Essentially it taught me basic PHP, rather than just reading about it.

 It is good because it provides the development environment, links to

relevant info and progressively more difficult exercises that use repetition

with small variation to increase retention.

 I enjoy (sic) the ITS, with a few improvements it will just keep getting

stronger.

These comments show that overall, the system has many positive attributes

which students feel are useful in learning introductory programming using PHP.

9.4 CHAPTER SUMMARY

This chapter described the process used to evaluate the PHP Intelligent

Tutoring System under practical use. It described the empirical evaluation and the

results of the evaluation. The next chapter analyses these results and concludes how

the PHP ITS has answered the problem of teaching introductory web development

using PHP to novices.

Chapter 10 : Conclusions 281

Chapter 10: Conclusions

Teaching introductory programming is a major challenge to educators for many

reasons. Although many methods have been suggested to overcome this challenge, it

continues to be a major problem. In particular, little research has been carried out on

methods of teaching web programming to beginners.

It is an accepted fact that students taught on a one-to-one basis learn any

subject much better than those taught using traditional classroom situations.

However, using human tutoring to do this is not very suitable to teach web

programming to beginners since it requires an enormous amount of resources. The

solution to this problem, as suggested by this research, is to use Intelligent Tutoring

Systems for this purpose. The PHP ITS is such a system that focuses on teaching the

basics of PHP programming to beginners in web development. It provides exercises

to students based on their specific requirements in order to maximise their learning.

The student‟s solutions are then analysed and appropriate feedback is given. The

feedback relates to the specific error made by the student. Four levels of feedback

are available at the student‟s request. This ensures that each student can obtain

feedback at his or her own level, thereby maximising their learning.

The major achievement in the PHP ITS is its capability of identifying a large

number of alternative solutions to a single programming exercise. It can recognise

programs written using many combinations of conditional statements as semantically

equivalent. It is capable of accepting many types or combinations of expressions for

the right hand side of assignment statements. It can handle several types of loops

that function in the same manner. It permits the use of PHP statements embedded

within HTML and vice versa.

The PHP ITS analyses not only basic procedural programming concepts but

also concepts related to creating, submitting and processing data using web forms.

This functionality is peculiar to web development and no ITS in the available

literature is capable of doing this.

282 Chapter 10 : Conclusions

10.1 RESEARCH CONTRIBUTIONS

This section discusses more specific details of the contributions of this study to

the research community in light of the research aims and objectives described in

Section 1.3. The research problem addressed by this study is reiterated as below.

Is it possible to create an Intelligent Tutoring System to effectively teach web

development using PHP?

During the course of this study, a working Intelligent Tutoring System to teach

introductory web development using PHP was developed and successfully

implemented in a PHP unit at the Queensland University of Technology. An

evaluation was conducted to test the effectiveness of the system. The results of the

evaluation showed that the test scores of the students significantly improved after

using the system.

In addition to the increase in test results, the students showed a positive attitude

towards many features of the PHP ITS such as the ease of use of the system and the

response time of the system. The fact that it is web enabled ensured that the students

were free to use it during their own time.

These overall results indicate that the system was successful in teaching the

subject matter effectively to the students, thereby achieving the primary goal of the

study.

In order to address this research problem, three main research questions as

described in Section 1.3 and repeated below were addressed.

1. What is the best method of knowledge representation that can be used to

model the subject matter necessary to effectively teach basic PHP

programming while achieving the following?

a. Analysing alternative solutions to a given programming problem, both

correct and incorrect

b. Providing feedback based on the specific errors made by the student

1. What is a suitable student model for the above system?

2. What methods of feedback and individualised interactions are useful to

teach the above subject matter effectively through an ITS?

Chapter 10 : Conclusions 283

The rest of this section investigates how the PHP ITS addresses each of these

three research questions.

10.1.1 Knowledge Representation

Programming is a practical subject and therefore, any course designed to teach

programming must include practical exercises. An ITS to teach programming should

be capable of analysing example solutions to such exercises. A major challenge

encountered here is that a single programming exercise can have many correct

solutions. The PHP ITS concentrates on analysing PHP programming solutions to

exercises that are suitable for a beginner in PHP web page development and handling

such alternate solutions. It uses theories of Artificial Intelligence to model computer

programs written using combinations of PHP and HTML, and analyses them for

correctness. It covers display and assignment statements, selection structures, arrays,

HTML forms, PHP functions and some looping constructs that are considered to be

the most common constructs used by beginners.

The methods used by the PHP ITS to analyse such programs are explained in

detail in Chapter 4, Chapter 5, Chapter 6 and Chapter 7. The examples provided in

these chapters describe how the PHP ITS is capable of handling alternative solutions

to a given exercise using many commonly used PHP constructs. Section 8.3 explains

how the results of the analysis are used to provide feedback messages that are

specific to an error made by the student.

Therefore, it can be seen that this research has established a theoretical

framework for analysing basic computer programs written in PHP and HTML and

identifying alternative solutions and errors.

Therefore, the first research question above, regarding the method of

knowledge representation to handle alternative solutions and provide appropriate

feedback is answered in this research project.

10.1.2 Student Model

Typical students in a beginning web programming course vary widely in their

prior knowledge of relevant subject matter. In order to maximise the learning, it is

important to support each student within their own Zone of Proximal Development

(see Section 2.4.1). In the PHP ITS, this support is given by showing the student the

next best exercise for their current level of knowledge. In order to do this, it is

284 Chapter 10 : Conclusions

necessary for the system to maintain a model of the current level of knowledge of

each student. This is achieved by dividing the subject matter into topics and

maintaining a probabilistic estimate as to the current level of knowledge for each

student for each topic. A more detailed description of how the student model is

designed and updated is given in Section 8.2.

In order for the selected exercises to be appropriate to the current student, the

student model needs to be accurate. The results of the evaluation of the PHP ITS

showed that the model used in the improved version of the system estimated the

knowledge level of each student quite accurately. Therefore, the second research

question regarding an appropriate student model is answered in this thesis.

However, it should be noted that, it is not claimed that the student model is

always highly accurate due to several reasons. Sometimes, students deliberately

make mistakes in their code in order to either test out theories or even to test out the

system. In doing so, they indicate to the system that they do not have knowledge

about certain topics, even if they actually do. No student modelling system is

capable of identifying such intentional errors. The student model can only be as

accurate as the evidence provided by the students.

10.1.3 Feedback and Individualised Instruction

Analysing a solution for correctness is insufficient for students to learn the

subject matter effectively. Appropriate forms of support such as feedback on errors

in the program and methods of accessing relevant factual data should be provided for

this purpose. The PHP ITS gives students the option of viewing feedback messages

regarding their errors. This feedback is provided at four levels, allowing the students

to select the level that is most suitable for them. The ITS also displays links to web

pages that contain material relevant to the current error or for solving the current

exercise. A detailed description of the support provided by the system to solve

exercises is given in Section 8.3.

The evaluation process suggested some shortcomings in the feedback provided

by the PHP ITS. Overall, the students did not seem to be satisfied by the feedback

messages. Although additional functionality for obtaining more detailed feedback

was incorporated into the second version of the system (Section 9.2) the students did

not seem to use these functions to a great degree.

Chapter 10 : Conclusions 285

The individualised instruction in the PHP ITS was provided by the system

suggesting exercises for the students (as mentioned above). The results of the

evaluation showed that many students were happy to use this feature, indicating that

they found the suggestions by the system useful to enhance their knowledge.

Therefore, it seems that although the methods of individualised instruction

provided by the PHP ITS were useful to teach the subject matter effectively, the

feedback was not of sufficient use. Therefore, more work needs to be carried out in

order to answer the third research question more thoroughly. However, the fact that

the overall ITS was effective in teaching the subject matter effectively suggests that

the feedback also proved useful at least to a certain degree.

10.1.4 Publications and Talks

The following publications and talks are a direct result of this project.

10.1.4.1 Peer-reviewed Conferences

Weragama D., & Reye, J. (2013). The PHP Intelligent Tutoring System, 16th

International Conference on Artificial Intelligence in Education, Memphis, USA

Weragama, D., & Reye, J. (2012). Designing the Knowledge Base for a PHP Tutor.

In S. Cerri, W. Clancey, G. Papadourakis & K. Panourgia (Eds.), 11th

International Conference on Intelligent Tutoring Systems (Vol. 7315, pp. 628-

629). Chania, Greece: Springer Berlin Heidelberg.

Weragama, D., & Reye, J. (2012). Design of a Knowledge Base to Teach

Programming. In S. Cerri, W. Clancey, G. Papadourakis & K. Panourgia (Eds.),

11th International Conference on Intelligent Tutoring Systems (Vol. 7315, pp.

600-602). Chania, Greece: Springer Berlin Heidelberg.

10.1.4.2 Other Talks

Weragama D. (2012), Developing Intelligent Tutoring Systems to Assist Students

Learning Programming, Talk presented at the Queensland Computing

Education Conventicle 2012, Brisbane, Australia

Weragama D. (2010), Intelligent Tutoring System for Dynamic Web Development

using PHP and MySQL, Talk presented at the Higher Degree Research Student

Consortium of the Computer Science Discipline 2010, Brisbane, Australia

Weragama D. (2012), Intelligent Tutoring System to Teach Programming, Talk

presented at the Three Minute Thesis Competition of the Queensland University

of Technology 2012, Brisbane, Australia

286 Chapter 10 : Conclusions

10.2 LESSONS LEARNED

This section looks back critically at the lessons learned during the design,

development and implementation of the PHP ITS. Section 10.2.1 highlights the pros

and cons of the system design while Section 10.2.2 looks at issues related to the

evaluation of the system.

10.2.1 System Design

As described in Section 2.3.2 many representations have been used by previous

researchers to represent the knowledge base in Intelligent Tutoring Systems designed

to teach programming. Each of these representations has many advantages but also

certain shortcomings. Therefore, an entirely new approach was utilised during the

design of the PHP ITS. The main requirement of the representation was that it be

capable of supporting logical reasoning about the structure of programs written by

students and providing appropriate feedback based on the specific errors. Artificial

Intelligence techniques seemed like a very reasonable means of achieving this

objective. Of the many formalisms available in AI, FOPL is a fairly simple yet

powerful representation. Therefore, it seemed like a good candidate to use for this

purpose, although no previous work seems to have looked at this possibility.

PHP is a language that is used in conjunction with HTML. Therefore, both

these languages needed to be considered when designing a system to analyse PHP

programs. The possible constructs in both these languages are numerous and it was

practically impossible to handle all of them during the time limitations of a PhD.

Therefore, only a subset of both these languages, that were deemed suitable for a

beginning programmer were considered. This meant that more advanced PHP topics

such as Object Oriented Programming and recursion were ignored. The subset of

PHP that is covered by the representation here is highlighted in Appendix B.

The main advantage of the formal representation of PHP programs used in this

thesis is that it is capable of identifying alternative solutions to a single programming

exercise. Since the modelling proposed here looks at the various possible

programming constructs and not at a particular set of exercises, this gives it the

flexibility to handle many more exercises than those actually implemented. The fact

that the overall goal can be broken down into a set of sub-goals allows the system to

identify the exact sub-goals that are not satisfied by a program. This gives the

Chapter 10 : Conclusions 287

possibility to provide feedback based on the specific errors made by the student. It

also allows more accurate updating of the student model since the specific sub-goals

can be linked to specific topics as described in Section 8.2.3. Another advantage is

that web pages that are directly related to the specific error made can be suggested

based on these sub-goals (Section 8.3.1.1).

The formalism used here to represent PHP programs does have certain

disadvantages. Its main weakness lies in the fact that it is incapable of handling all

types of loops, as described in Section 7.1. It can handle collection independent

definite loops and collection based loops that perform some action against every item

in a collection independently. This is a fair percentage of loops that are encountered

in practical situations. Where definite loops are concerned, the system can analyse

situations where a certain part of the loop has been unrolled. The analysis process

has some limitations even for the types of loops that can be analysed in this manner.

For example, special rules are needed in cases where some form of summarising is

done by the loop. This makes it necessary to write new rules for each such exercise,

thereby reducing the flexibility of the system (Section 7.3.2). When considering

array access, the PHP ITS can handle both direct and indirect access of array

elements. However, the searching capabilities are limited to finding a maximum or

minimum array element.

In addition to the limitations in processing loops, there are several other

situations encountered in basic PHP programs that prove difficult for the given

formalism to handle. One such issue arises when „&&‟ and „||‟ operators are used in

conditional expressions. These expressions consist of two expressions on either side

which must have a Boolean value. Although the PHP ITS can handle situations

where „&&‟ expressions are true and „||‟ expressions are false as explained in Section

5.4.2, other such expressions present a problem. Another issue encountered is when

students use arbitrary functions. Although the system has been designed to handle

user-defined functions, the analysis process involves the validation of sub-plans that

correspond to these functions (Section 6.2). Since such sub-plans are only included

when functions are required by the specification, the analysis process fails when

unexpected functions are encountered.

When considering the PHP ITS itself, one main limitation is that it does not

tailor its feedback to the needs of the individual student. Although this is a desirable

288 Chapter 10 : Conclusions

aspect for an ITS, it was beyond the scope of this thesis due to time constraints.

Additionally, better feedback and user interface design would be advantageous

improvements.

10.2.2 Evaluation

The evaluation of the PHP Intelligent Tutoring System proved very challenging

since it was conducted within a postgraduate unit which counted towards the

students‟ GPA. This meant that it was impossible to obtain ethical clearance for a

study of sufficient duration to contain a control group. Although the lack of a control

group was a major impediment to the evaluation process, the results still showed that

the ITS contributed to increasing the students‟ knowledge of the subject matter.

Another issue encountered was that the number of students was limited due to the

nature of the unit. A larger group of students would have provided a more accurate

measure as to the usefulness and usability of the system.

The number of exercises included in the system was also not that large. A

larger set of exercises would give a more accurate result, especially of whether the

system is good at selecting exercises which are appropriate for the student.

When considering the instruments used, it would have been useful to include

more data in the questionnaire. Although details about the students‟ programming

background were included, the questionnaire could not be linked to the students and

therefore, these details could not provide any meaningful gauge about the usefulness

of the system to students of different knowledge levels.

Although these limitations existed in the evaluation of the PHP ITS, the results

obtained are still useful for showing that it is a useful tool for students learning

beginning PHP.

10.3 FUTURE DIRECTIONS

Section 10.1 discusses how the results of the evaluation show that the PHP ITS

answers the research questions and the research problem to a great degree. An

important outcome of the evaluation process is that it identified some areas in which

future developments to the PHP ITS could be beneficial. The following are the areas

that have been identified for future improvement in this manner based on both my

own thoughts and student feedback.

Chapter 10 : Conclusions 289

1. Include more PHP domain knowledge in the knowledge base.

The knowledge base of the PHP ITS in its current form handles only

the PHP topics that are considered suitable for a beginning web

programmer. Future versions of the system could be developed to

handle the other forms of loops (Section 7.1), more HTML elements

such as hidden inputs and more advanced PHP concepts such as

accessing MySQL databases.

2. Include prioritising of sub-goals for feedback

The current program analysis method compares the sub-goals in the

overall goal against the final state in the order specified during the

exercise specification. Once a single sub-goal is identified as not

matched, the analysis process is terminated and feedback is provided

for that sub-goal. It may be better to continue the analysis process until

all sub-goals are checked and then prioritise the order of mismatched

sub-goals for which feedback should be provided, based on criteria

such as the student‟s current knowledge on the topics covered by each

mismatched sub-goal.

3. Include pre-requisite relationships for topics in the student module.

The current student module assumes that each topic can be studied

independently of the others. In practice, certain topics are pre-

requisites for studying other topics. Such pre-requisite relationships

could be included in the Bayesian Networks that models the student

knowledge in order to obtain a more accurate student model.

4. Investigate the students’ actions after viewing the skillometer.

The results show that the students did not use the skillometer of the

PHP ITS as much as expected. In order to understand the reason for

this, it is possible to investigate the students‟ actions after viewing the

skillometer. This would enable us to understand their reasons for

viewing the skillometer and to find methods for improving its use.

5. Include theories of pedagogy and education in the teaching module.

290 Chapter 10 : Conclusions

The current teaching module does not use the information from the

student model to customise feedback messages based on the abilities of

the student. Future versions of the PHP ITS could be developed to

utilise such knowledge and also include more theories from education

and pedagogy in order to maximise the students‟ learning. For

example, the Zone of Proximal Development (Vygotsky, 1978) can be

coupled with the current level of student knowledge to automatically

customise the level of feedback provided to the student.

6. Include more theories of UI design in the PHP ITS.

The current user interface of the system could be improved, utilising

theories of UI design.

7. Compare the PHP ITS against standard non-adaptive tutorials.

The current study only compares the learning gains of the PHP ITS. It

does not investigate whether it is better than a standard non-adaptive

tutorial in terms of either learning gains or learning time. A study

comparing the PHP ITS against several freely available non-adaptive

tutorials would be a valuable addition to validate its capability and

utility.

8. Extend the concepts of the domain module to handle other

programming languages.

One of the main outcomes of this research project is a theoretical

framework to analyse semantically equivalent programs written in PHP.

A future area of research could be to see if these concepts could be

extended to handle the analysis of programs written in other

programming languages.

Although these enhancements would make the PHP ITS a stronger system, the

evaluation results prove that the ITS in its present form is of sufficient standard to

teach PHP to beginning programmers and has achieved the predominant goal of this

thesis of analysing alternative solutions to a given programming exercise to a great

degree.

Bibliography 291

Bibliography

Adam, A., & Laurent, J.-P. (1980). LAURA, a system to debug student programs

Artificial Intelligence, 15(1–2), 75-122. doi: http://dx.doi.org/10.1016/0004-

3702(80)90019-3

Al-Imamy, S., Alizadeh, J., & Nour, M. A. (2006). On the development of a

programming teaching tool: The effect of teaching by templates on the

learning process. Journal of Information Technology Education, 5, 271-283.

http://jite.org/documents/Vol5/v5p271-283Al-Imamy115.pdf

Aleven, V., Sewall, B. M. M. J., & Koedinger, K. R. (2006). The Cognitive Tutor

Authoring Tools (CTAT): Preliminary evaluation of efficiency gains. In M.

Ikeda, K. D. Ashley & T. W. Chan (Eds.), 8th International Conference on

Intelligent Tutoring Systems Lecture Notes in Computer Science (Vol. 4053,

pp. 61-70). Berlin Heidelberg: Springer-Verlag. Retrieved from

http://www.cs.cmu.edu/~bmclaren/pubs/AlevenEtAl-CTAT-ITS2006.pdf.

doi: 10.1007/11774303

Anderson, J. R. (1993). Rules of the mind: Lawrence Erlbaum.

Anderson, J. R. (1996). The architecture of cognition Retrieved from

http://books.google.com.au/books?id=BHda99HmRpsC&printsec=frontcover

&dq=%22the+architecture+of+cognition%22&source=bl&ots=kiQVeJb2dD

&sig=QnOKor6KgleDyA2MZSIgz1o8ov4&hl=en&ei=6DbGTIy8CYe3cK6

ApbMO&sa=X&oi=book_result&ct=result&resnum=1&ved=0CB0Q6AEw

AA#v=onepage&q&f=false

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive

tutors:Lessons learned. The Journal of Learning Sciences, 4(2), 167-207.

doi:10.1207/s15327809jls0402_2

. Apache (Version 2.0). Retrieved from http://www.apache.org/

Beck, J. E., Chang, K.-m., Mostow, J., & Corbett, A. (2008). Does help help?

Introducing the Bayesian evaluation and assessment methodology. In B.

P.Woolf, E. Aïmeur, R. Nkambou & S. Lajoie (Eds.), 9th International

Conference on Intelligent Tutoring Systems (Vol. 5091, pp. 383-394). Berlin

Heidelberg: Springer-Verlag.

Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group

instruction as effective as one-to-one tutoring. Educational Researcher,

13(6), 4-16.

http://web.mit.edu/bosworth/MacData/afs.course/5/5.95/readings/bloom-two-

sigma.pdf

Brna, P., Bundy, A., Dodd, T., Eisenstadt, M., Looi, C. K., Pain, H., . . . Someren, M.

(1991). Prolog programming techniques. Instructional Science, 20(2), 111-

133.

Bull, S. (2012). Preferred Features of Open Learner Models for University Students.

In S. Cerri, W. Clancey, G. Papadourakis & K. Panourgia (Eds.), 11th

International Conference on Intelligent Tutoring Systems (Vol. 7315, pp.

411-421). Berlin Heidelberg: Springer-Verlag.

Chee, Y. S. (1994). SMALLTALKER: A Cognitive Apprenticeship Multimedia

Environment for Learning Smalltalk Programming. Educational Multimedia

and Hypermedia, 1994. Proceedings of ED-MEDIA 94--World Conference

http://dx.doi.org/10.1016/0004-3702(80)90019-3
http://dx.doi.org/10.1016/0004-3702(80)90019-3
http://jite.org/documents/Vol5/v5p271-283Al-Imamy115.pdf
http://www.cs.cmu.edu/~bmclaren/pubs/AlevenEtAl-CTAT-ITS2006.pdf
http://books.google.com.au/books?id=BHda99HmRpsC&printsec=frontcover&dq=%22the+architecture+of+cognition%22&source=bl&ots=kiQVeJb2dD&sig=QnOKor6KgleDyA2MZSIgz1o8ov4&hl=en&ei=6DbGTIy8CYe3cK6ApbMO&sa=X&oi=book_result&ct=result&resnum=1&ved=0CB0Q6AEwAA#v=onepage&q&f=false
http://books.google.com.au/books?id=BHda99HmRpsC&printsec=frontcover&dq=%22the+architecture+of+cognition%22&source=bl&ots=kiQVeJb2dD&sig=QnOKor6KgleDyA2MZSIgz1o8ov4&hl=en&ei=6DbGTIy8CYe3cK6ApbMO&sa=X&oi=book_result&ct=result&resnum=1&ved=0CB0Q6AEwAA#v=onepage&q&f=false
http://books.google.com.au/books?id=BHda99HmRpsC&printsec=frontcover&dq=%22the+architecture+of+cognition%22&source=bl&ots=kiQVeJb2dD&sig=QnOKor6KgleDyA2MZSIgz1o8ov4&hl=en&ei=6DbGTIy8CYe3cK6ApbMO&sa=X&oi=book_result&ct=result&resnum=1&ved=0CB0Q6AEwAA#v=onepage&q&f=false
http://books.google.com.au/books?id=BHda99HmRpsC&printsec=frontcover&dq=%22the+architecture+of+cognition%22&source=bl&ots=kiQVeJb2dD&sig=QnOKor6KgleDyA2MZSIgz1o8ov4&hl=en&ei=6DbGTIy8CYe3cK6ApbMO&sa=X&oi=book_result&ct=result&resnum=1&ved=0CB0Q6AEwAA#v=onepage&q&f=false
http://books.google.com.au/books?id=BHda99HmRpsC&printsec=frontcover&dq=%22the+architecture+of+cognition%22&source=bl&ots=kiQVeJb2dD&sig=QnOKor6KgleDyA2MZSIgz1o8ov4&hl=en&ei=6DbGTIy8CYe3cK6ApbMO&sa=X&oi=book_result&ct=result&resnum=1&ved=0CB0Q6AEwAA#v=onepage&q&f=false
http://www.apache.org/
http://web.mit.edu/bosworth/MacData/afs.course/5/5.95/readings/bloom-two-sigma.pdf
http://web.mit.edu/bosworth/MacData/afs.course/5/5.95/readings/bloom-two-sigma.pdf

292 Bibliography

on Educational Multimedia and Hypermedia

http://www.eric.ed.gov/ERICWebPortal/detail?accno=ED388291

. Connector/ODBC (Version 5.1.11). Retrieved from

http://www.mysql.com/downloads/connector/odbc/

Corbett, A. T. (2000). Cognitive Mastery Learning in the ACT Programming Tutor.

AAAI Technical Report SS-00-01. Cognitive Mastery Learning in the ACT

Programming Tutor

Corbett, A. T. (2001). Cognitive computer tutors:Solving the two-sigma problem. In

M. Bauer, P. J. Gmytrasiewicz & J. Vassileva (Eds.), 8th International

Conference on User ModelingLecture Notes in Computer Science, UM 2001

(Vol. 2109, pp. 137-147). Sonthofen, Germany: Springer Verlag. doi:

10.1007/3-540-44566-8

Corbett, A. T., & Anderson, J. R. (1992). Student modeling and mastery learning in a

computer-based programming tutor. In C. Frasson, G. Gauthier & G. I.

McCalla (Eds.), 2nd International Conference on Intelligent Tutoring

Systems (Vol. 608). Berlin Heidelberg: Springer-Verlag. Retrieved from

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1088&context=psychol

ogy.

Corbett, A. T., & Anderson, J. R. (1995). Knowledge tracing: Modeling the

acquisition of student knowledge. User Modeling and User - Adapted

Interaction, 4, 253-278. http://act-

r.psy.cmu.edu/papers/893/CorbettAnderson1995.pdf

Delgado, K. V., & Barros, L. N. d. (2004). ProPAT: A programming ITS based on

pedagogical patterns. In J. C. Lester, R. M. Vicari & F. Paraguacu (Eds.), 7th

International Conference on Intelligent Tutoring Systems (Vol. 3220, pp.

812-814). Berlin Heidelberg: Springer-Verlag.

Ebrahimi, A. (1994). Novice programmer errors: Language constructs and plan

composition. International Journal of Human Computer Studies, 41(4), 457-

480. doi:10.1006/ijhc.1994.1069

Ebrahimi, A., & Schweikert, C. (2006). Empirical study of novice programming with

plans and objects. Working group reports on ITiCSE on Innovation and

technology in computer science education, 52-54.

doi:10.1145/1189215.1189169

. Eclipse (Version Indigo). (2011). Retrieved from http://www.eclipse.org/

Eliot, C., Williams, K., & Woolf, B. (1996). An intelligent learning environment for

advanced cardiac life support. In M. D. James J. Cimino (Ed.), Proceedings

of the AMIA annual fall symposium (pp. 7-11): American Medical

Informatics Association.

Galvez, J., Guzman, E., Conejo, R., & Millan, E. (2009). Student knowledge

diagnosis using Item Response Theory and Constraint-Based Modeling. In V.

Dimitrova, R. Mizoguchi, B. Du Boulay & A. C. Graesser (Eds.), 14th

International Conference on Artificial Intelligence in Education (Vol. 200,

pp. 291-298). Brighton, UK: IOS Press.

Garner, S. (2007). An exploration of how a technology-facilitated part-complete

solution method supports the learning of computer programming.(Technical

report). Issues in Informing Science & Information Technology, 4, 491.

http://proceedings.informingscience.org/InSITE2007/IISITv4p491-

501Garn260.pdf

Gegg-Harrison, T. S. (1991). Learning Prolog in a schema-based environment.

Instructional Science, 20(2), 173-192. doi:10.1007/BF00120881

http://www.eric.ed.gov/ERICWebPortal/detail?accno=ED388291
http://www.mysql.com/downloads/connector/odbc/
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1088&context=psychology
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1088&context=psychology
http://act-r.psy.cmu.edu/papers/893/CorbettAnderson1995.pdf
http://act-r.psy.cmu.edu/papers/893/CorbettAnderson1995.pdf
http://www.eclipse.org/
http://proceedings.informingscience.org/InSITE2007/IISITv4p491-501Garn260.pdf
http://proceedings.informingscience.org/InSITE2007/IISITv4p491-501Garn260.pdf

Bibliography 293

Gomes, A., & Mendes, A. J. (2007). Learning to program - difficulties and solutions.

International Conference on Engineering Education – ICEE.

http://www.ineer.org/Events/ICEE2007/papers/411.pdf

Gong, Y., Beck, J., & Heffernan, N. (2012). WEBsistments: Enabling an Intelligent

Tutoring System to Excel at Explaining Rather Than Coaching. In S. Cerri,

W. Clancey, G. Papadourakis & K. Panourgia (Eds.), 11th International

Conference on Intelligent Tutoring Systems (Vol. 7315, pp. 268-273). Berlin

Heidelberg: Springer-Verlag.

Gries, D. (1981). The science of programming (Vol. 198). New York: Springer-

Verlag.

Halpin, T. A., & Morgan, T. (2008). Information modeling and relational databases.

Burlington, MA: Elsevier/Morgan Kaufman Publishers.

Hatzilygeroudis, I., & Prentzas, J. (2004). Knowledge representation requirements

for Intelligent Tutoring Systems. In J. C. Lester, R. M. Vicari & F. Paraguacu

(Eds.), 7th International Conference on Intelligent Tutoring Systems (Vol.

3220, pp. 87-97). Berlin Heidelberg: Springer-Verlag.

Heffernan, N. Ms. Lindquist : The tutor. Retrieved February 16, 2011, from

http://www.cs.cmu.edu/~neil/

Holland, J., Mitrovic, A., & Martin, B. (2009). J-LATTE: a Constraint-based Tutor

for Java. In S. C. Kong, H. Ogata, H. C. Arnseth, C. K. K. Chan, T.

Hirashima, F. Klett, J. H. M. Lee, C. C. Liu, C. K. Looi, M. Milrad, A.

Mitrovic, K. Nakabayashi, S. L. Wong & S. J. H. Yang (Eds.), 17th

International Conference on Computers in Education (pp. 142-146). Hong

Kong: Asia-Pacific Society for Computers in Education.

Hong, J. (2004). Guided programming and automated error analysis in an intelligent

Prolog tutor. International Journal of Human-Computer Studies, 61(4), 505-

534. doi:10.1016/j.ijhcs.2004.02.001

Huth, M., & Ryan, M. (2004). Logic in Computer Science - Modelling and reasoning

about systems (Second Edition ed.). Cambridge, UK: Cambridge University

Press.

Jin, W., Barnes, T., Stamper, J., Eagle, M., Johnson, M., & Lehmann, L. (2012).

Program Representation for Automatic Hint Generation for a Data-Driven

Novice Programming Tutor. In S. Cerri, W. Clancey, G. Papadourakis & K.

Panourgia (Eds.), 11th International Conference on Intelligent Tutoring

Systems (Vol. 7315, pp. 304-309). Berlin Heidelberg: Springer-Verlag.

Johns, J., Mahadevan, S., & Woolf, B. (2006). Estimating student proficiency using

an item response theory model. In M. Ikeda, K. D. Ashley & T. W. Chan

(Eds.), 8th International Conference on Intelligent Tutoring Systems (Vol.

4053, pp. 473-480). Berlin Heidelberg: Springer-Verlag

Johnson, W. L. (1985). Intention based diagnosis of errors in novice programs.

(PhD), Yale University.

Johnson, W. L. (1990). Understanding and debugging novice programs. Artificial

Intelligence, 42(1), 51-97. doi:10.1016/0004-3702(90)90094-G

Johnson, W. L., & Soloway, E. (1985). PROUST: Knowledge-based program

understanding. IEEE Transactions on Software Engineering, SE-11(3), 267 -

275 doi:10.1109/TSE.1985.232210

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming : A

taxonomy of programming environments and languages for novice

programmers. ACM Computing Surveys, 37(2), 83-137.

doi:10.1145/1089733.1089734

http://www.ineer.org/Events/ICEE2007/papers/411.pdf
http://www.cs.cmu.edu/~neil/

294 Bibliography

Kemp, R., Kemp, E., & Todd, E. (2009). Self-regulated fading in on-line learning. In

V. Dimitrova, R. Mizoguchi, B. Du Boulay & A. C. Graesser (Eds.), 14th

International Conference on Artificial Intelligence in Education (Vol. 200,

pp. 449-456). Brighton, UK: IOS Press.

Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent

tutoring goes to school in the big city. International Journal of Artificial

Intelligence in Education, 8(1), 30-43.

http://www.ijaied.org/pub/1041/file/1041_paper.pdf

Koedinger, K. R., & Sueker, E. L. F. (1996). PAT goes to college: evaluating a

cognitive tutor for developmental mathematics. In D. C. Edelson & E. A.

Domeshek (Eds.), Proceedings of the 1996 international conference on

Learning sciences (pp. 180-187). Evanston, USA: International Society of the

Learning Sciences.

Kolling, M. (2010). The Greenfoot Programming Environment. ACM Transactions

on Computing Education, 10(4), 1-21. doi:10.1145/1868358.1868361

Kuruvila, S. (2009). phpparser. Retrieved from

http://code.google.com/p/phpparser/downloads/detail?name=Php.g&can=2&

q=

Long, Y., & Aleven, V. (2011). Students‟ understanding of their student model. In G.

Biswas, S. Bull, J. Kay & A. Mitrovic (Eds.), 15th International Conference

on Artificial Intelligence in Education (Vol. 6738, pp. 179-186). Berlin

Heidelberg: Springer-Verlag.

Looi, C. K. (1991). Automatic debugging of Prolog programs in a Prolog Intelligent

Tutoring System. Instructional Science, 20(2-3), 215-263.

doi:10.1007/BF00120883

Mark, M., & Greer, J. (1993). Evaluation methodologies for intelligent tutoring

systems. Journal of Artificial Intelligence in Education, 4, 129-129.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.6842&rep=rep1

&type=pdf

Mason, B. J., & Bruning, R. (2001). Providing feedback in computer-based

instruction: What the research tells us (Vol. 6, pp. 2004): Center for

Instructional Innovation, University of Nebraska–Lincoln.

Mayo, M., & Mitrovic, A. (2001). Optimising ITS behaviour with Bayesian networks

and Decision Theory. International Journal of Artificial Intelligence in

Education, 12, 124-153. http://www.ijaied.org/pub/961/file/961_paper.pdf

Mayo, M., Mitrovic, A., & McKenzie, J. (2000). CAPIT: An intelligent tutoring

system for capitalisation and punctuation. In J. C. Kinshuk & O. T (Eds.),

Advanced Learning Technology: Design and Development Issues (pp. 151-

154). Los Alamitos, CA: IEEE Computer Society

Miliszewska, I., & Tan, G. (2007). Befriending computer programming: a proposed

approach to teaching introductory programming. Issues in Informing Science

& Information Technology, 4, 277.

http://proceedings.informingscience.org/InSITE2007/IISITv4p277-

289Mili310.pdf

. MinGW - Minimalist GNU for Windows. Retrieved from http://www.mingw.org/

Mitrovic, A. (1998). A knowledge-based teaching system for SQL. Proceedings of

ED-MEDIA, 1998, World Conference on Educational Multimedia,

Hypermedia & Telecommunications, 98, 1027-1032.

http://www.cosc.canterbury.ac.nz/tanja.mitrovic/702.pdf

http://www.ijaied.org/pub/1041/file/1041_paper.pdf
http://code.google.com/p/phpparser/downloads/detail?name=Php.g&can=2&q=
http://code.google.com/p/phpparser/downloads/detail?name=Php.g&can=2&q=
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.6842&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.6842&rep=rep1&type=pdf
http://www.ijaied.org/pub/961/file/961_paper.pdf
http://proceedings.informingscience.org/InSITE2007/IISITv4p277-289Mili310.pdf
http://proceedings.informingscience.org/InSITE2007/IISITv4p277-289Mili310.pdf
http://www.mingw.org/
http://www.cosc.canterbury.ac.nz/tanja.mitrovic/702.pdf

Bibliography 295

Mitrovic, A., Suraweera, P., Martin, B., & Weerasinghe, A. (2004). DB-Suite:

Experiences with three intelligent, web-based database tutors. Journal of

Interactive Learning Research, 15(4), 409.

Mow, I. T. C. (2008). Issues and difficulties in teaching novice computer

programming Innovative techniques in instruction technology, e-learning, e-

assessment and education (pp. 199-204). Retrieved from EBL Ebook Library

database doi:10.1007/978-1-4020-8739-4_36

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of

the art. International Journal of Artificial Intelligence in Education, 10(1),

98-129. http://www.ijaied.org/pub/991/file/991_paper.pdf

. MySQL (Version 5.5.16). Retrieved from http://www.mysql.com/

Naser, S. S. A. (2008). Developing an Intelligent Tutoring System For Students

Learning To Program in C++. Information Technology Journal, 7(7), 1055-

1060. http://docsdrive.com/pdfs/ansinet/itj/2008/1055-1060.pdf

Nunamaker Jr., J. F., Chen, M., & Purdin, T. D. M. (1990). Systems development in

information systems research. Journal of Management Information Systems,

7(3), 89-106.

Ohlsson, S., & Mitrovic, A. (2006). Constraint-based knowledge representation for

individualized instruction. Computer Science and Information Systems, 3(1),

1-22. http://www.cosc.canterbury.ac.nz/tanja.mitrovic/comsis.pdf

Ohlsson, S., & Mitrovic, A. (2007). Fidelity and efficiency of knowledge

representations for intelligent tutoring systems.

Parr, T. (2007). The Definitive ANTLR Reference - Building Domain-Specific

Languages. Raleigh-North Caroline, Dallas-Texas: The Pragmatic Bookshelf.

Parr, T. (2011). ANTLR v3 (Version 3.4). Retrieved from http://www.antlr.org

. PHP Hypertext Processor (Version 5.3.8). (2011). Retrieved from

http://www.php.net/

PHP Manual. (September 7,2012). Retrieved September 13, 2012, from

http://php.net/manual/en/index.php

PHP Tutorial. (undated). Retrieved May 13, 2010, from

http://www.w3schools.com/php/default.asp

PHP tutorial - free. Retrieved May 13, 2010, from http://www.learnphp-

tutorial.com/

PHP/MySQL Tutorial. Retrieved May 13, 2010, from

http://www.freewebmasterhelp.com/tutorials/phpmysql

PHP: A simple tutorial - manual. Retrieved May 13, 2010, from

http://php.net/manual/en/tutorial.php

Pillay, N. (2003). Developing intelligent programming tutors for novice

programmers. ACM SIGCSE Bulletin, 35(2), 78-82.

Razzaq, L., & Heffernan, N. (2006). Scaffolding vs. hints in the Assistment system.

In M. Ikeda, K. D. Ashley & T. W. Chan (Eds.), 8th International Conference

on Intelligent Tutoring Systems (Vol. 4053, pp. 635-644). Berlin Heidelberg:

Springer-Verlag.

Reye, J. (1998). Two-phase updating of student models based on dynamic belief

networks. In B. P. Goettl, H. M. Halff, C. L. Redfield & V. J. Shute (Eds.),

4th International Conference on Intelligent Tutoring Systems (Vol. 1452, pp.

274-283). Berlin Heidelberg: Springer-Verlag.

Reye, J. (2004). Student modelling based on belief networks. International Journal

of Artificial Intelligence in Education, 14(1), 63-96.

http://www.ijaied.org/pub/956/file/956_Reye04.pdf

http://www.ijaied.org/pub/991/file/991_paper.pdf
http://www.mysql.com/
http://docsdrive.com/pdfs/ansinet/itj/2008/1055-1060.pdf
http://www.cosc.canterbury.ac.nz/tanja.mitrovic/comsis.pdf
http://www.antlr.org/
http://www.php.net/
http://php.net/manual/en/index.php
http://www.w3schools.com/php/default.asp
http://www.learnphp-tutorial.com/
http://www.learnphp-tutorial.com/
http://www.freewebmasterhelp.com/tutorials/phpmysql
http://php.net/manual/en/tutorial.php
http://www.ijaied.org/pub/956/file/956_Reye04.pdf

296 Bibliography

Riley, G. (2011). CLIPS - A Tool for Building Expert Systems (Version 6.3).

Retrieved from clipsrules.sourceforge.net

Risco, S., & Reye, J. (2009). Personal Access Tutor - helping students to learn MS

Access. In V. Dimitrova, R. Mizoguchi, B. Du Boulay & A. C. Graesser

(Eds.), 14th International Conference on Artificial Intelligence in Education

(Vol. 200, pp. 541-548). Brighton, UK: IOS Press.

Rivers, K., & Koedinger, K. (2012). A Canonicalizing Model for Building

Programming Tutors. In S. Cerri, W. Clancey, G. Papadourakis & K.

Panourgia (Eds.), 11th International Conference on Intelligent Tutoring

Systems (Vol. 7315, pp. 591-593). Berlin Heidelberg: Springer-Verlag.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching

programming: A review and discussion. Computer Science Education, 13(2),

137-172. doi:10.1076/csed.13.2.137.14200

Russell, S. J., & Norvig, P. (2010). Artificial intelligence. Upper Saddle River, N.J:

Prentice Hall.

Sack, W., Soloway, E., & Weingrad, P. (1992). From PROUST to CHIRON: ITS

Design as Iterative Engineering: Intermediate Results are Important.

Computer-Assisted Instruction and Intelligent Tutoring Systems: Shared

Goals and Complementary Approaches. Lawrence Erlbaum Associates,

Hillsdale, NJ, 239-274.

Self, J. (1990). Bypassing the intractable problem of student modelling. In C. Frasson

& G. Gauthier (Eds.), Intelligent tutoring systems: At the crossroads of

artificial intelligence and education (pp. 107-123). Norwood, N.J, USA:

Ablex. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.2809&rep=rep1

&type=pdf.

Singh, R., Saleem, M., Pradhan, P., Heffernan, C., Heffernan, N., Razzaq, L., . . .

Mulcahy, C. (2011). Feedback during web-based homework: The role of

hints. In G. Biswas, S. Bull, J. Kay & A. Mitrovic (Eds.), 15th International

Conference on Artificial Intelligence in Education (Vol. 6738, pp. 328-336).

Berlin Heidelberg: Springer-Verlag.

Song, J. S., Hahn, S. H., Tak, K. Y., & Kim, J. H. (1997). An intelligent tutoring

system for introductory C language course. Computers & Education, 28(2),

93-102. doi:10.1016/s0360-1315(97)00003-1

Spohrer, J. C., & Soloway, E. (1986). Novice mistakes: Are the folk wisdoms

correct? Communications of the ACM, 29(7), 624-632.

doi:10.1145/6138.6145

Stavely, A. M. (1993). An empirical-study of iteration in applications software.

Journal of Systems and Software, 22(3), 167-177.

Suarez, M., & Sison, R. (2008). Automatic construction of a bug library for object-

oriented novice Java programmer errors. In B. P.Woolf, E. Aïmeur, R.

Nkambou & S. Lajoie (Eds.), 9th International Conference on Intelligent

Tutoring Systems (Vol. 5091, pp. 184-193). Berlin Heidelberg: Springer-

Verlag.

Suraweera, P., & Mitrovic, A. (2002). KERMIT: A constraint-based tutor for

database modeling. In S. Cerri, G. Gouardères & F. Paraguaçu (Eds.), 6th

International Conference on Intelligent Tutoring Systems (Vol. 2363, pp.

377-387). Berlin Heidelberg: Springer-Verlag.

Sykes, E. (2007). Developmental process model for the Java Intelligent Tutoring

System. Journal of Interactive Learning Research, 18(3), 399-410.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.2809&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.2809&rep=rep1&type=pdf

Bibliography 297

Sykes, E., & Franek, F. (2004). Presenting JECA: A java error correcting algorithm

for the java intelligent tutoring system. IASTED International Conference on

Advances in Computer Science and Technology.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.303&rep=rep1

&type=pdf

Sykes, E. R. (2006). Design, development and assessment of the Java Intelligent

Tutoring System. (Ph.D. NR18018), Brock University (Canada), Canada.

Available from ProQuest Dissertations and Theses database.

TIOBE Programming Community Index for December 2012. Retrieved December

18, 2012, from

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Truong, N. (2007). A web-based programming environment for novice programmers.

(Doctor of Philosophy), Queensland University of Technology, Brisbane.

Retrieved from http://eprints.qut.edu.au/16471/1/Nghi_Truong_Thesis.pdf

Truong, N., Bancroft, P., & Roe, P. (2003). A web based environment for learning to

program. Proceedings of the 26th Australasian Computer Science

Conference, 16, 255-264. http://crpit.com/confpapers/CRPITV16Truong.pdf

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., . . .

Wintersgill, M. (2005). The Andes physics tutoring system: Lessons learned

International Journal of Artificial Intelligence in Education, 15(1), 147-204.

http://www.ijaied.org/pub/1135/file/VanLehn05.pdf

VanLehn, K., Siler, S., Murray, C., & Baggett, W. (1998). What makes a tutorial

event effective. In M. A. Gernsbacher & S. Derry (Eds.), Proceedings of the

Twenty-First Annual Conference of the Cognitive Science Society (pp. 1084-

1089). Hillsdale, NJ, USA: Erlbaum. Retrieved from

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.1180&rep=rep1&typ

e=pdf.

Vygotsky, L. (1978). Interaction between learning and development. Readings on the

Development of Children, 34-41.

Wang, X. (2006). A practical way to teach web programming in computer science. J.

Comput. Small Coll., 22(1), 211-220.

Weber, G. (1996). Individual selection of examples in an intelligent learning

environment. Journal of Artificial Intelligence in Education, 7(1), 3-31.

Weber, G., & Brusilovsky, P. (2001). ELM-ART: An adaptive versatile system for

web-based instruction. International Journal of Artificial Intelligence in

Education, 12(4), 351-384. http://www.ijaied.org/pub/965/file/965_paper.pdf

Weber, G., & Möllenberg, A. (1995). ELM programming environment: A tutoring

system for LISP beginners. In K. F. Wender, F. Schmalhofer & H.-D. Böcker

(Eds.), Cognition and computer programming (pp. 373–408). Norwood, New

Jersey, USA: Ablex Publishing Corporation. Retrieved from

http://books.google.com.au/books?hl=en&lr=&id=nfysCfUVs3UC&oi=fnd&

pg=PA373&dq=ELM-

programming+environment&ots=ghdQjUqxSq&sig=U7cfBw35uAa_XPVX

We8qzsy8Ngk#v=onepage&q=ELM-

programming%20environment&f=false.

Wenger, E. (1987). Artificial intelligence and tutoring systems. Los Altos,CA:

Morgan Kaufman.

Weragama, D., & Reye, J. (2012). Design of a Knowledge Base to Teach

Programming. In S. Cerri, W. Clancey, G. Papadourakis & K. Panourgia

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.303&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.303&rep=rep1&type=pdf
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://eprints.qut.edu.au/16471/1/Nghi_Truong_Thesis.pdf
http://crpit.com/confpapers/CRPITV16Truong.pdf
http://www.ijaied.org/pub/1135/file/VanLehn05.pdf
http://www.ijaied.org/pub/965/file/965_paper.pdf
http://books.google.com.au/books?hl=en&lr=&id=nfysCfUVs3UC&oi=fnd&pg=PA373&dq=ELM-programming+environment&ots=ghdQjUqxSq&sig=U7cfBw35uAa_XPVXWe8qzsy8Ngk#v=onepage&q=ELM-programming%20environment&f=false
http://books.google.com.au/books?hl=en&lr=&id=nfysCfUVs3UC&oi=fnd&pg=PA373&dq=ELM-programming+environment&ots=ghdQjUqxSq&sig=U7cfBw35uAa_XPVXWe8qzsy8Ngk#v=onepage&q=ELM-programming%20environment&f=false
http://books.google.com.au/books?hl=en&lr=&id=nfysCfUVs3UC&oi=fnd&pg=PA373&dq=ELM-programming+environment&ots=ghdQjUqxSq&sig=U7cfBw35uAa_XPVXWe8qzsy8Ngk#v=onepage&q=ELM-programming%20environment&f=false
http://books.google.com.au/books?hl=en&lr=&id=nfysCfUVs3UC&oi=fnd&pg=PA373&dq=ELM-programming+environment&ots=ghdQjUqxSq&sig=U7cfBw35uAa_XPVXWe8qzsy8Ngk#v=onepage&q=ELM-programming%20environment&f=false
http://books.google.com.au/books?hl=en&lr=&id=nfysCfUVs3UC&oi=fnd&pg=PA373&dq=ELM-programming+environment&ots=ghdQjUqxSq&sig=U7cfBw35uAa_XPVXWe8qzsy8Ngk#v=onepage&q=ELM-programming%20environment&f=false

298 Bibliography

(Eds.), 11th International Conference on Intelligent Tutoring Systems (Vol.

7315, pp. 600-602). Berlin Heidelberg: Springer-Verlag.

Winskel, G. (1993). The Formal Semnatics of Programming Lanugages - An

Introduction. Cambridge, MA: MIT Press.

Woolf, B. P. (2009). Building intelligent interactive tutors. Burlington, MA: Morgan

Kaufman.

. XAMPP. Retrieved from http://sourceforge.net/projects/xampp

http://sourceforge.net/projects/xampp

Appendices 299

Appendices

Appendix A

Introduction to Bayesian Belief Networks

Bayesian Belief Networks (BBNs) are an important method of representation

used for student modelling in Intelligent Tutoring Systems. This appendix

describes the basic theory of BBNs. The description here is based on the book

“Artificial Intelligence a Modern Approach” (Russell & Norvig, 2010) and the

interested reader is referred to Chapter 14 of this book for further information.

Sometimes problem solving agents in AI need to handle uncertainty. This

uncertainty is usually quantified using probability theory. Probabilities that refer to

a degree of belief in propositions in the absence of any other information are called

unconditional or prior probabilities. Probabilities that refer to a degree of belief

after certain information is obtained are called conditional or posterior

probabilities.

 Probabilistic assertions are about possible worlds. A possible world is

represented using a set of variable/value pairs. Such variables used in probability

theory are called random variables. A probability distribution specifies all

possible values of a random variable in vector form. The probabilities of all

combinations of the values of two or more random variables are usually given in a

table known as the joint probability distribution. The joint probability

distribution of all possible random variables is called the full joint probability

distribution and the probability model is entirely determined by this.

As the number of random variables become higher, the full joint probability

distribution gets more and more complex. Very often, many of these random

variables are independent from each other and therefore, the joint probability

distribution contains a lot of unnecessary data. In such cases, the dependencies

among random variables in a probability distribution can be represented using a

data structure called a Bayesian Belief Network (BBN). This uses nodes to

represent the random variables and a set of directed links to show the relationships.

Each node has a conditional probability distribution that specifies the effect of the

300 Appendices

parent on the node. This means that probability distributions need to be maintained

only for the random variables that are inter-related.

Figure A1 shows a Bayesian Belief Network for how a student learns a topic.

Ln-1 is the knowledge state of the student before using the topic to solve some

problem. This influences the outcome when the student demonstrates usage of the

topic by answering a question since the outcome would depend on the student‟s

current knowledge. Assuming that the outcome contributes to learning (i.e. some

form of feedback is provided based on whether the answer was correct or not), the

learned state after this depends on both the outcome and the previous level of

knowledge. These relationships are shown by the arrows in the BBN.

Figure A1. A Bayesian Belief Network for pre-requisite topics.

Given the knowledge level of the student before demonstrating the topic as

well as the outcome of the demonstration, together with the probability

distributions at each of the nodes, the posterior probability that the student learned

the topic can be calculated. Although the actual calculation can be quite tedious,

different algorithms have been found for this purpose.

Ln-1

Learned

State

Outcome

Ln

Learned

State

Appendices 301

Appendix B

PHP Grammar

This is the grammar used for parsing the PHP component written by student

programs. The shaded parts indicate the sections of the PHP language that are not

covered by the PHP ITS.

grammar php;

tokens{
 SemiColon = ';';
 Comma = ',';
 OpenBrace = '(';
 CloseBrace = ')';
 OpenSquareBrace = '[';
 CloseSquareBrace = ']';
 OpenCurlyBrace = '{';
 CloseCurlyBrace = '}';
 ArrayAssign = '=>';
 LogicalOr = '||';
 LogicalAnd = '&&';
 ClassMember = '::';

InstanceMember = '->';
SuppressWarnings = '@';
QuestionMark = '?';

 Dollar = '$';
 Colon = ':';

Dot = '.';
Ampersand = '&';
Pipe = '|';

 Bang = '!';
 Plus = '+';
 Minus = '-';
 Asterisk = '*';
 Percent = '%';
 Forwardslash = '/';
 Tilde = '~';
 Equals = '=';
 New = 'new';

Clone = 'clone';
 Echo = 'echo';
 If = 'if';
 Else = 'else';
 ElseIf = 'elseif';
 For = 'for';
 Foreach = 'foreach';
 While = 'while';
 Do = 'do';
 Switch = 'switch';
 Case = 'case';
 Default = 'default';
 Function = 'function';
 Break = 'break';

Continue = 'continue';
Goto = 'goto';

 Return = 'return';

302 Appendices

 Global = 'global';
Static = 'static';
And = 'and';
Or = 'or';
Xor = 'xor';
Instanceof = 'instanceof';

Class = 'class';
Interface = 'interface';
Extends = 'extends';
Implements = 'implements';
Abstract = 'abstract';
Var = 'var';
Const = 'const';
Modifiers;
ClassDefinition;

 Block;
 Params;
 Apply;
 Member;
 Reference;
 Empty;
 Prefix;
 Postfix;
 IfExpression;
 Label;
Cast;

 ForInit;
 ForCondition;
 ForUpdate;
 Field;
Method;

}

prog
:statement*;

statement
 : simpleStatement? BodyString
 | '{' statement '}' -> statement
 | bracketedBlock
 | UnquotedString Colon statement -> ^(Label UnquotedString statement)
 | classDefinition
 | interfaceDefinition
 | complexStatement
 | simpleStatement ';'!
 ;

bracketedBlock
 : '{' stmts=statement* '}' -> ^(Block statement*)
 ;

interfaceDefinition

Appendices 303

 : Interface interfaceName=UnquotedString interfaceExtends?
 OpenCurlyBrace
 interfaceMember*
 CloseCurlyBrace
 -> ^(Interface $interfaceName interfaceExtends? interfaceMember*)
 ;

interfaceExtends
 : Extends^ UnquotedString (Comma! UnquotedString)*
 ;
interfaceMember
 : Const UnquotedString (Equals atom)? ';'
 -> ^(Const UnquotedString atom?)
 | fieldModifier* Function UnquotedString

parametersDefinition ';'
 -> ^(Method ^(Modifiers fieldModifier*) UnquotedString
parametersDefinition)
 ;

classDefinition
 : classModifier?
 Class className=UnquotedString
 (Extends extendsclass=UnquotedString)?
 classImplements?
 OpenCurlyBrace
 classMember*
 CloseCurlyBrace
 -> ^(Class ^(Modifiers classModifier?) $className ^(Extends
$extendsclass)? classImplements?
 classMember*
)
 ;

classImplements
 : Implements^ (UnquotedString (Comma! UnquotedString)*)
 ;

classMember
 : fieldModifier* Function UnquotedString parametersDefinition
 (bracketedBlock | ';')
 -> ^(Method ^(Modifiers fieldModifier*) UnquotedString
parametersDefinition bracketedBlock?)
 | Var Dollar UnquotedString (Equals atom)? ';'
 -> ^(Var ^(Dollar UnquotedString) atom?)
 | Const UnquotedString (Equals atom)? ';'
 -> ^(Const UnquotedString atom?)
 | fieldModifier* (Dollar UnquotedString) (Equals atom)? ';'
 -> ^(Field ^(Modifiers fieldModifier*) ^(Dollar UnquotedString)
atom?)
 ;

fieldDefinition
 : Dollar UnquotedString (Equals atom)? ';'-> ^(Field ^(Dollar
UnquotedString) atom?)
 ;

classModifier
 : 'abstract';

304 Appendices

fieldModifier
 : AccessModifier | 'abstract' | 'static'
 ;

complexStatement
 : If '(' ifCondition=expression ')' ifTrue=statement conditional?
 -> ^('if' expression $ifTrue conditional?)
 | For '(' forInit forCondition forUpdate ')' statement -> ^(For
forInit forCondition forUpdate statement)
 | Foreach '(' variable 'as' arrayEntry ')' statement -> ^(Foreach
variable arrayEntry statement)
 | While '(' whileCondition=expression? ')' statement -> ^(While
$whileCondition statement)
 | Do statement While '(' doCondition=expression ')' ';' -> ^(Do
statement $doCondition)
 | Switch '(' expression ')' '{'cases'}' -> ^(Switch expression cases)
 | functionDefinition
 ;

simpleStatement
 : Echo^ commaList
 | Global^ name (','! name)*
 | Static^ variable Equals! atom
 | Break^ Integer?
 | Continue^ Integer?
 | Goto^ UnquotedString
 | Return^ expression?
 | RequireOperator^ expression
 | expression
 ;

conditional
 : ElseIf '(' ifCondition=expression ')' ifTrue=statement conditional?
-> ^(If $ifCondition $ifTrue conditional?)
 | Else statement -> statement
 ;

forInit
 : commaList? ';' -> ^(ForInit commaList?)
 ;

forCondition
 : commaList? ';' -> ^(ForCondition commaList?)
 ;

forUpdate
 : commaList? -> ^(ForUpdate commaList?)
 ;

cases
 : casestatement* defaultcase?
 ;

casestatement
 : Case^ expression ':'! statement*
 ;

Appendices 305

defaultcase
 : (Default^ ':'! statement*)
 ;

functionDefinition
 : Function UnquotedString parametersDefinition bracketedBlock ->
 ^(Function UnquotedString parametersDefinition bracketedBlock)
 ;

parametersDefinition
 : OpenBrace (paramDef (Comma paramDef)*)? CloseBrace -> ^(Params
paramDef*)
 ;

paramDef
 : paramName (Equals^ atom)?
 ;

paramName
 : Dollar^ UnquotedString
 | Ampersand Dollar UnquotedString -> ^(Ampersand ^(Dollar
UnquotedString))
 ;

commaList
 : expression (','! expression)*
 ;

expression
 : weakLogicalOr
 ;

weakLogicalOr
 : weakLogicalXor (Or^ weakLogicalXor)*
 ;

weakLogicalXor
 : weakLogicalAnd (Xor^ weakLogicalAnd)*
 ;

weakLogicalAnd
 : assignment (And^ assignment)*
 ;

assignment
 : name ((Equals | AsignmentOperator)^ assignment)
 | ternary
 ;

ternary
 : logicalOr QuestionMark expression Colon expression -> ^(IfExpression
logicalOr expression*)
 | logicalOr
 ;

306 Appendices

logicalOr
 : logicalAnd (LogicalOr^ logicalAnd)*
 ;

logicalAnd
 : bitwiseOr (LogicalAnd^ bitwiseOr)*
 ;

bitwiseOr
 : bitWiseAnd (Pipe^ bitWiseAnd)*
 ;

bitWiseAnd
 : equalityCheck (Ampersand^ equalityCheck)*
 ;

equalityCheck
 : comparisionCheck (EqualityOperator^ comparisionCheck)?
 ;

comparisionCheck
 : bitWiseShift (ComparisionOperator^ bitWiseShift)?
 ;

bitWiseShift
 : addition (ShiftOperator^ addition)*
 ;

addition
 : multiplication ((Plus | Minus | Dot)^ multiplication)*
 ;

multiplication
 : logicalNot ((Asterisk | Forwardslash | Percent)^ logicalNot)*
 ;

logicalNot
 : Bang^ logicalNot
 | instanceOf
 ;

instanceOf
 : negateOrCast (Instanceof^ negateOrCast)?
 ;

negateOrCast
 : (Tilde | Minus | SuppressWarnings)^ increment
 | OpenBrace PrimitiveType CloseBrace increment -> ^(Cast PrimitiveType
increment)
 | OpenBrace! weakLogicalAnd CloseBrace!
 | increment
 ;

increment
 : IncrementOperator name -> ^(Prefix IncrementOperator name)
 | name IncrementOperator -> ^(Postfix IncrementOperator name)
 | newOrClone

Appendices 307

 ;

newOrClone
 : New^ nameOrFunctionCall
 | Clone^ name
 | atomOrReference
 ;

atomOrReference
 : atom
 | reference
 ;

arrayDeclaration
 : Array OpenBrace (arrayEntry (Comma arrayEntry)*)? CloseBrace ->
^(Array arrayEntry*)
 ;

arrayEntry
 : (keyValuePair | expression)
 ;

keyValuePair
 : (expression ArrayAssign expression) -> ^(ArrayAssign expression+)
 ;

atom: SingleQuotedString | DoubleQuotedString | HereDoc | Integer | Real |
Boolean | arrayDeclaration
 ;

reference
 : Ampersand^ nameOrFunctionCall
 | nameOrFunctionCall
 ;

nameOrFunctionCall
 : name OpenBrace (expression (Comma expression)*)? CloseBrace ->
^(Apply name expression*)
 | name
 ;

name: staticMemberAccess
 | memberAccess
 | variable
 ;

staticMemberAccess
 : UnquotedString '::'^ variable
 ;

memberAccess
 : variable
 (OpenSquareBrace^ expression CloseSquareBrace!
 | '->'^ UnquotedString)*
 ;

variable
 : Dollar^ variable
 | UnquotedString

308 Appendices

 ;

BodyString
: '?>' ;

MultilineComment
 : '/*' (('*' ~ '/')=>'*' | ~ '*')* '*/' ;

SinglelineComment
 : '//' (('?' ~'>')=>'?' | ~('\n'|'?'))* ;

UnixComment
 : '#' (('?' ~'>')=>'?' | ~('\n'|'?'))*
 ;

Array
 : ('a'|'A')('r'|'R')('r'|'R')('a'|'A')('y'|'Y')
 ;

RequireOperator
 : 'require' | 'require_once' | 'include' | 'include_once'
 ;

PrimitiveType
 : 'int'|'float'|'string'|'array'|'object'|'bool'
 ;

AccessModifier
 : 'public' | 'private' | 'protected'
 ;

fragment
Decimal
 :('1'..'9' ('0'..'9')*)|'0'
 ;
fragment
Hexadecimal
 : '0'('x'|'X')('0'..'9'|'a'..'f'|'A'..'F')+
 ;

fragment
Octal
 : '0'('0'..'7')+
 ;

//Minus sign added to handle negative numbers singly
Integer
 :'-'? (Octal|Decimal|Hexadecimal)
 ;

fragment
Digits
 : '0'..'9'+
 ;

Appendices 309

fragment
DNum
 :(('.' Digits)=>('.' Digits)|(Digits '.' Digits?))
 ;

fragment
Exponent_DNum
 :((Digits|DNum)('e'|'E')('+''-')?Digits)
 ;

//Minus sign added to handle negative numbers singly
Real
 : '-'? (DNum|Exponent_DNum)
 ;

Boolean
 : 'true' | 'false'
 ;

SingleQuotedString
 : '\'' (('\\' '\'')=>'\\' '\''
 | ('\\' '\\')=>'\\' '\\'
 | '\\' | ~ ('\'' | '\\'))*
 '\''
 ;

fragment
EscapeCharector
 : 'n' | 'r' | 't' | '\\' | '$' | '"' | Digits | 'x'
 ;

DoubleQuotedString
 : '"' (('\\' EscapeCharector)=> '\\' EscapeCharector
 | '\\'
 | ~('\\'|'"'))*
 '"'
 ;

HereDoc
 : '<<<' HereDocContents
 ;

UnquotedString
 : ('a'..'z' | 'A'..'Z' | '_') ('a'..'z' | 'A'..'Z' | '0'..'9' | '_')*
 ;

HereDocContents
 :;
 (UnquotedString|Eol)+
 {
 int consumed;
 pANTLR3_STRING thisString;

 consumed=0;
 if($UnquotedString!=NULL)
 {

310 Appendices

 thisString=$UnquotedString.text;
 if(number==1)
 {
 hereDocName=thisString;
 }
 else
 {
 printf("heredoc \%s\n",hereDocName->chars);
 printf("thisstring \%s\n",thisString->chars);
 if(strcmp(thisString->chars,hereDocName->chars)!=0)
 {
 CONSUME();
 consumed=1;
 }
 else
 {
 //Need to break out of rule
 return;
 }
 }
 }else
 {
 CONSUME();
 }
 if(consumed==0)
 {
 CONSUME();
 }
 };

AsignmentOperator
 : '+='|'-='|'*='|'/='|'.='|'%='|'&='|'|='|'^='|'<<='|'>>='
 ;

EqualityOperator
 : '==' | '!=' | '===' | '!=='
 ;

ComparisionOperator
 : '<' | '<=' | '>' | '>=' | '<>'
 ;

ShiftOperator
 : '<<' | '>>'
 ;

IncrementOperator
 : '--'|'++'
 ;

fragment
Eol : '\n'
 ;

WhiteSpace
 : (' '| '\t'| '\n'|'\r')*
 ;

Appendices 311 311

Appendix C

Combined Assign Actions

Note that the actions in this appendix take the scope of variables into account.

Therefore, these are the actions that have been extended with predicates to handle

variable and array scope (Section 6.2.2.3)

AssignAdd(x,expressionId) ⊂ Assign(x,expressionId)

Action(AssignAdd(x,expressionId),

PRECOND:

EFFECT: When variableId (HasName(variableId,'x')

∧ HasValue(variableId,value2) ∧ Add(value2,value,value1)

∧ CurrentScope(funcId) ∧ HasVariableScope(variableId,funcId)):

 HasValue(variableId, value2) ← HasValue(variableId,value1))

AssignSubtract(x,expressionId) ⊂ Assign(x,expressionId)

Action(AssignSubtract(x,expressionId),

PRECOND:

EFFECT: When variableId (HasName(variableId,'x')

∧ HasValue(variableId,value2) ∧ Subtract(value2,value,value1)

∧ CurrentScope(funcId) ∧ HasVariableScope(variableId,funcId)):

 HasValue(variableId, value2) ← HasValue(variableId,value1))

AssignMultiply(x,expressionId) ⊂ Assign(x,expressionId)

Action(AssignMultiply(x,expressionId),

PRECOND:

EFFECT: When variableId (HasName(variableId,'x')

∧ HasValue(variableId,value2) ∧ Multiply(value2,value,value1)

∧ CurrentScope(funcId) ∧ HasVariableScope(variableId,funcId)):

 HasValue(variableId, value2) ← HasValue(variableId,value1))

312 Appendices

AssignDivide(x,expressionId) ⊂ Assign(x,expressionId)

Action(AssignDivide(x,expressionId),

PRECOND:

EFFECT: When variableId (HasName(variableId,'x')

∧ HasValue(variableId,value2) ∧ Divide(value2,value,value1)

∧ CurrentScope(funcId) ∧ HasVariableScope(variableId,funcId)):

 HasValue(variableId, value2) ← HasValue(variableId,value1))

AssignModulus(x,expressionId) ⊂ Assign(x,expressionId)

Action(AssignModulus(x,expressionId),

PRECOND:

EFFECT: When variableId (HasName(variableId,'x')

∧ HasValue(variableId,value2) ∧ (value2,value,value1)

∧ CurrentScope(funcId) ∧ HasVariableScope(variableId,funcId)):

 HasValue(variableId, value2) ← HasValue(variableId,value1))

AssignAddArrayVariable(x,y,exprId) ⊂ AssignArrayVariable(x,y,exprId)

Action(AssignAddArrayVariable(x,y,exprId),

PRECOND: value ValueOf(exprId,value)

EFFECT: when varId,arrayId,keyId,exprId

 (HasVariableId(HasElement(arrayId,keyId),varId)

∧ HasKeyExpression(keyId,exprId)

∧ ValueOf(exprId,y)

∧ HasArrayName(arrayId,'x')

∧ HasValue(varId,value2)∧Add(value2,value,value1)

∧ CurrentScope(funcId) ∧ HasVariableScope(variableId,funcId)):

 HasValue(varId,_) ← HasValue(varId,value1))

Appendices 313

AssignSubtractArrayVariable(x,y,exprId) ⊂ AssignArrayVariable(x,y,exprId)

Action(AssignSubtractArrayVariable(x,y,exprId),

PRECOND: value ValueOf(exprId,value)

EFFECT: when varId,arrayed,keyId,exprId

 (HasVariableId(HasElement(arrayId,keyId),varId)

∧ HasKeyExpression(keyId,exprId)

∧ ValueOf(exprId,y)

∧ HasArrayName(arrayId,'x')

∧ HasValue(varId,value2)∧Subtract(value2,value,value1)

∧ CurrentScope(funcId) ∧ HasVariableScope(variableId,funcId)):

 HasValue(varId,_) ← HasValue(varId,value1))

AssignMultiplyArrayVariable(x,y,exprId) ⊂ AssignArrayVariable(x,y,exprId)

Action(AssignMultiplyArrayVariable(x,y,exprId),

PRECOND: value ValueOf(exprId,value)

EFFECT: when varId,arrayed,keyId,exprId

 (HasVariableId(HasElement(arrayId,keyId),varId)

∧ HasKeyExpression(keyId,exprId)

∧ ValueOf(exprId,y)

∧ HasArrayName(arrayId,'x')

∧ HasValue(varId,value2)∧Multiply(value2,value,value1)

∧ CurrentScope(funcId) ∧ HasVariableScope(variableId,funcId)):

 HasValue(varId,_) ← HasValue(varId,value1))

314 Appendices

AssignDivideArrayVariable(x,y,exprId) ⊂ AssignArrayVariable(x,y,exprId)

Action(AssignDivideArrayVariable(x,y,exprId),

PRECOND: value ValueOf(exprId,value)

EFFECT: when varId,arrayed,keyId,exprId

(HasVariableId(HasElement(arrayId,keyId),varId)

∧ HasKeyExpression(keyId,exprId)

∧ ValueOf(exprId,y)

∧ HasArrayName(arrayId,'x')

∧ HasValue(varId,value2)∧Divide(value2,value,value1)

∧ CurrentScope(funcId) ∧ HasVariableScope(variableId,funcId)):

 HasValue(varId,_) ← HasValue(varId,value1))

AssignModulusArrayVariable(x,y,exprId) ⊂ AssignArrayVariable(x,y,exprId)

Action(AssignModulusArrayVariable(x,y,exprId),

PRECOND: value ValueOf(exprId,value)

EFFECT: when varId,arrayed,keyId,exprId

(HasVariableId(HasElement(arrayId,keyId),varId)

∧ HasKeyExpression(keyId,exprId)

∧ ValueOf(exprId,y)

∧ HasArrayName(arrayId,'x')

∧ HasValue(varId,value2)∧Modulus(value2,value,value1)

∧ CurrentScope(funcId) ∧ HasVariableScope(variableId,funcId)):

 HasValue(varId,_) ← HasValue(varId,value1))

Appendices 315

Appendix D

HTML Grammar

grammar html;

options {
 language = C;
 output = AST;
 ASTLabelType=pANTLR3_BASE_TREE;
}

tokens{
 DOCUMENT;
 HEAD;
 TITLE;
 BODY;
 HEADING;
 OLIST;
 ULIST;
 DLIST;
 DLITEM;
 TABLE;
 TROW;
 LINK;
 FORM;
 INPUTC;
 SELECT;
 OPTION;
 TEXTAREA;
 BUTTON;
 TEXT;
 ATTRIB;
 CC='>';
 CSINGLE='/>';
 DQ='"';
 EQ='=';
 PHP='PHP';
}

@parser::members
{

#include <string.h>

 ANTLR3_MARKER start;
 pANTLR3_INT_STREAM inputst;

 //check if string contains only attributes allowable for the relavant
tag
 int retattr(char *mystring, char *attributes[],int len)
 {
 char *token;
 char attr[100];
 int num,i,found;

 mystring=mystring+1;
 token=strtok(mystring,"=");
 found=1;

316 Appendices

 while(found==1 && token!=NULL)
 {
 i=0;
 num=0;
 while(num==0 && i<len)
 {
 strcpy(attr,attributes[i]);
 if(strcmp(token,attr)==0)
 num=1;
 i++;
 }
 if(num==0)
 {
 found=0;
 }
 else
 {
 token=strtok(NULL," ");
 token=strtok(NULL,"=");
 }
 }
 return num;
 }

 void handleAttributes(char *text,char *attributes[],phtmlParser ctx,int
size)
 {
 int t;
 pANTLR3_COMMON_TOKEN temp;
 SQLHANDLE stmt;
 SQLCHAR *query;
 char errortext[50];
 char sql[100];

 t=retattr(text,attributes,size);
 //If unrecognized attributes, generate a new syntax error
 if(t==0)
 {
 errcount++;
 temp=LT(-2);
 strcpy(errortext,temp->getText(temp)->chars);
 storeSyntaxError(temp->getLine(temp),temp-
>getCharPositionInLine(temp),ATTRIB_ERROR,temp-
>getText(temp),"",PARSER_ERR);
 }
 }
}

//Main HTML Document
document
@before
{
ind1=0;
ind2=0;
}
 : OHTML headstring? bodystring CHTML ->^(DOCUMENT headstring?
bodystring)
 | headstring? bodystring ->^(DOCUMENT headstring? bodystring);

Appendices 317

headstring
 : OHEAD headcontent* CHEAD ->^(HEAD headcontent*);

headcontent
 : title
 | block;

title : OTITLE text CTITLE ->^(TITLE text);

//Body elements
bodystring : phpbody? obody heading? block* CBODY -> phpbody? ^(BODY
obody heading? block*)
 | heading? block* -> ^(BODY heading? block*);
obody: OBODY STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for obody
 char
*allowedattr[]={"id","style","class","onclick","ondblclick","onload","onun
load","onmousedown","onmouseup","onkeydown","onkeypress","onkeyup"};
 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($STRING.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;

//Headings

heading : (h1|h2|h3|h4|h5|h6)+;
h1 : OH1 text* CH1 ->^(HEADING text*);
h2 : OH2 text* CH2 ->^(HEADING text*);
h3 : OH3 text* CH3 ->^(HEADING text*);
h4 : OH4 text* CH4 ->^(HEADING text*);
h5 : OH5 text* CH5 ->^(HEADING text*);
h6 : OH6 text* CH6 ->^(HEADING text*);

//Ordered list
olist : OOLIST litem+ COLIST ->^(OLIST litem+);
ulist : OULIST litem+ CULIST ->^(ULIST litem+);
litem : OLITEM text+ CLITEM -> text+;

dlist : ODLIST dlitem+ CDLIST ->^(DLIST dlitem+);
dterm : ODTERM text+ CDTERM ->text+ ;
ddef : ODDEF text+ CDDEF ->text+ ;
dlitem : dterm ddef ->^(DLITEM dterm ddef);

//Tables
table : otable (thead)? (tfoot)? (tbody) CTABLE ->^(TABLE otable thead?
tfoot? tbody);
otable: OTABLE STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for otable
 char
*allowedattr[]={"id","border","cellpadding","cellspacing","frame","width",
"style","class","onclick","ondblclick","onmousedown","onmouseup","onkeydow
n","onkeypress","onkeyup"};

318 Appendices

 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($STRING.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;

thead : othead trow* CTHEAD ->othead trow*;
othead: OTHEAD STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for othead
 char
*allowedattr[]={"id","align","valign","style","class","onclick","ondblclic
k","onfocus","onmousedown","onmouseup","onkeydown","onkeypress","onkeyup"}
;
 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($STRING.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;
tfoot : otfoot trow* CTFOOT ->otfoot trow*;
otfoot: OTFOOT STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for otfoot
 char
*allowedattr[]={"id","align","valign","style","class","onclick","ondblclic
k","onfocus","onmousedown","onmouseup","onkeydown","onkeypress","onkeyup"}
;
 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($STRING.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;
tbody : otbody trow* CTBODY ->otbody trow*
 |trow* ->trow*;
otbody: OTBODY STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for otbody
 char
*allowedattr[]={"id","align","valign","style","class","onclick","ondblclic
k","onfocus","onmousedown","onmouseup","onkeydown","onkeypress","onkeyup"}
;
 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($STRING.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;
trow : otrow trowcontent* CTROW ->^(TROW otrow trowcontent*) ;
otrow : OTROW STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for otrow
 char
*allowedattr[]={"id","align","valign","style","class","onclick","ondblclic
k","onfocus","onmousedown","onmouseup","onkeydown","onkeypress","onkeyup"}
;
 int len=sizeof(allowedattr)/sizeof(*allowedattr);

Appendices 319

 handleAttributes($STRING.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;
trowcontent
 : rcell
 | hcell;
rcell : otcell block CTCELL -> otcell block;
otcell: OTCELL STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for otcell
 char
*allowedattr[]={"id","align","colspan","rowspan","width","valign","style",
"class","onclick","ondblclick","onfocus","onmousedown","onmouseup","onkeyd
own","onkeypress","onkeyup"};
 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($STRING.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;
hcell : othcell block CTHCELL -> othcell block;
othcell: OTHCELL STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for othcell
 char
*allowedattr[]={"id","align","colspan","rowspan","width","valign","style",
"class","onclick","ondblclick","onfocus","onmousedown","onmouseup","onkeyd
own","onkeypress","onkeyup"};
 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($STRING.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;

//Text formatting
abbr : OABBR fortext* CABBR ->fortext*;
acrn : OACRY fortext* CACRY ->fortext*;
addr : OADDR fortext* CADDR ->fortext*;
bold : OBOLD fortext* CBOLD ->fortext*;
big : OBIG fortext* CBIG ->fortext*;
bquote : OBQUOTE fortext* CBQUOTE ->fortext*;
cite : OCITE fortext* CCITE ->fortext*;
code : OCODE fortext* CCODE ->fortext*;
dfn : ODFN fortext* CDFN ->fortext*;
em : OEM fortext* CEM ->fortext*;
itl : OITL fortext* CITL ->fortext*;
kbd : OKBD fortext* CKBD ->fortext*;
quote : OQUOT fortext* CQUOT ->fortext*;
smallt : OSMALL fortext* CSMALL ->fortext*;
strong : OSTRONG fortext* CSTRONG ->fortext*;
sub : OSUB fortext* CSUB ->fortext*;
sup : OSUP fortext* CSUP ->fortext*;
tt : OTT fortext* CTT ->fortext*;
pre : OPRE fortext* CPRE->fortext*;
com : OCOM fortext* CCOM->;

//Hyperlinks
link : olink text? CA ->^(LINK olink text?);

320 Appendices

olink
 : OA STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for olink
 char
*allowedattr[]={"id","name","href","target","rel","style","class","onclick
","ondblclick","onfocus","onmousedown","onmouseup","onkeydown","onkeypress
","onkeyup"};
 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($STRING.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;

//Forms
form : oform formcontent* CFORM ->^(FORM oform formcontent*);
oform : OFORM STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for oform
 char
*allowedattr[]={"id","name","action","target","method","style","class","on
click","ondblclick","onreset","onsubmit","onmousedown","onmouseup","onkeyd
own","onkeypress","onkeyup"};
 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($STRING.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;
formcontent
 : ielement|text;
ielement: label? (input|selectlist|button|textarea);
input : oinput CINPUT? ->^(INPUTC oinput);
oinput : ((b=OINPUT a=STRING? CC)|(OINPUT a=STRING? CSINGLE))
 {
 if($a!=NULL)
 {
 //Allowable attributes for oinput
 char
*allowedattr[]={"id","name","type","value","align","size","checked","disab
led","maxlength","readonly","src","tabindex","style","class","onclick","on
dblclick","onfocus","onmousedown","onmouseup","onkeydown","onkeypress","on
keyup","onselect","onchange"};
 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($a.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;

option : ooption text* COPTION -> ^(OPTION ooption text*);
ooption : OOPTION STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for ooption
 char
*allowedattr[]={"id","disabled","selected","value","label","style","class"
,"onclick","ondblclick","onmousedown","onmouseup","onkeydown","onkeypress"
,"onkeyup"};

Appendices 321

 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($STRING.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;
opgroup : (oopgroup option* COPTGROUP) -> oopgroup option*;
oopgroup: OOPTGROUP STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for ooptgroup
 char
*allowedattr[]={"id","disabled","label","style","class","onclick","ondblcl
ick","onmousedown","onmouseup","onkeydown","onkeypress","onkeyup"};
 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($STRING.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;
selectlist : oselect opcontent* CSELECT ->^(SELECT oselect opcontent*);
oselect : OSELECT STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for oselect
 char
*allowedattr[]={"id","name","disabled","multiple","size","style","class","
onclick","ondblclick","onmousedown","onmouseup","onkeydown","onkeypress","
onkeyup","onchange"};
 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($STRING.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;
opcontent
 : opgroup|option;
button : obutton text* CBUTTON ->^(BUTTON obutton);
obutton : OBUTTON STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for obutton
 char
*allowedattr[]={"id","name","disabled","type","value","style","class","onc
lick","ondblclick","onmousedown","onmouseup","onkeydown","onkeypress","onk
eyup","onfocus"};
 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($STRING.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;
textarea: otext text* CTEXT ->^(TEXTAREA otext text*);
otext : OTEXT STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for otextarea
 char
*allowedattr[]={"id","name","cols","rows","disabled","readonly","style","c
lass","onclick","ondblclick","onmousedown","onmouseup","onkeydown","onkeyp
ress","onkeyup","onfocus","onselect"};
 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($STRING.text->chars,allowedattr,ctx,len);

322 Appendices

 }
 } ->^(ATTRIB STRING)?;
label : olabel text* CLABEL;
olabel : OLABEL STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for olabel
 char
*allowedattr[]={"id","for","style","class","onclick","ondblclick","onmouse
down","onmouseup","onkeydown","onkeypress","onkeyup","onfocus"};
 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($STRING.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;

//General text rule
block:(olist|ulist|dlist|table|link|form|HR|com|phpbody|para|text);
para : opara text+ CPARA ;
opara : OPARA STRING? CC
 {
 if($STRING!=NULL)
 {
 //Allowable attributes for opara
 char
*allowedattr[]={"id","align","style","class","onclick","ondblclick","onmou
sedown","onmouseup","onkeydown","onkeypress","onkeyup"};
 int len=sizeof(allowedattr)/sizeof(*allowedattr);
 handleAttributes($STRING.text->chars,allowedattr,ctx,len);
 }
 } ->^(ATTRIB STRING)?;
fortext :
(abbr|acrn|addr|bold|big|bquote|cite|code|dfn|em|itl|kbd|quote|smallt|stro
ng|sub|sup|tt|pre|btext|BR);
text: fortext ->^(TEXT fortext);
btext: STRING;

//attribstring:(STRING|phpbody)*;

//php
phpbody
@after
{
ind2++;
}
 :PHP ->^(PHP {myphptree[ind2]});

//Main HTML Document

OHTML
 : '<HTML>'|'<html>';
CHTML: '</HTML>'|'</html>';
OHEAD
 : '<HEAD>'|'<head>';
CHEAD
 : '</HEAD>'|'</head>';

Appendices 323

OBODY
 : '<BODY'|'<body';
CBODY
 : '</BODY>'|'</body>';

//Header rules

OTITLE : '<TITLE>'|'<title>';
CTITLE : '</TITLE>'|'</title>';

//Headings
OH1 : '<H1>'|'<h1>';
OH2 : '<H2>'|'<h2>';
OH3 : '<H3>'|'<h3>';
OH4 : '<H4>'|'<h4>';
OH5 : '<H5>'|'<h5>';
OH6 : '<H6>'|'<h6>';

CH1 : '</H1>'|'</h1>';
CH2 : '</H2>'|'</h2>';
CH3 : '</H3>'|'</h3>';
CH4 : '</H4>'|'</h4>';
CH5 : '</H5>'|'</h5>';
CH6 : '</H6>'|'</h6>';

//Paragraphs and lists
OPARA : '<P'|'<p';
CPARA : '</P>'|'</p>';

OOLIST : ''|'';
OULIST : ''|'';
ODLIST : '<DL>'|'<dl>';

COLIST : ''|'';
CULIST : ''|'';
CDLIST : '</DL>'|'</dl>';

OLITEM : ''|'';
CLITEM : ''|'';
ODTERM : '<DT>'|'<dt>';
CDTERM : '</DT>'|'</dt>';
ODDEF : '<DD>'|'<dd>';
CDDEF : '</DD>'|'</dd>';

//Tables
OTABLE : '<TABLE'|'<table';
OTHEAD : '<THEAD'|'<thead';
OTHCELL : '<TH'|'<th';
OTROW : '<TR'|'<tr';
OTCELL : '<TD'|'<td';
OTFOOT : '<TFOOT'|'<tfoot>';
OTBODY : '<TBODY'|'<tbody';

CTABLE : '</TABLE>'|'</table>';
CTHEAD : '</THEAD>'|'</thead>';
CTHCELL : '</TH>'|'</th>';
CTROW : '</TR>'|'</tr>';

324 Appendices

CTCELL : '</TD>'|'</td>';
CTFOOT : '</TFOOT>'|'</tfoot>';
CTBODY : '</TBODY>'|'</tbody>';

//Text formatting
OABBR : '<ABBR>'|'<abbr>';
OACRY : '<ACRONYM>'|'<acronym>';
OADDR : '<ADDRESS>'|'<address>';
OBOLD : ''|'';
OBIG : '<BIG>'|'<big>';
OBQUOTE : '<BLOCKQUOTE>'|'<blockquote>';
OCITE : '<CITE>'|'<cite>';
OCODE : '<CODE>'|'<code>';
ODFN : '<DFN>'|'<dfn>';
OEM : ''|'';
OITL : '<I>'|'<i>';
OKBD : '<KDB>'|'<kbd>';
OQUOT : '<Q>'|'<q>';
OSMALL : '<SMALL>'|'<small>';
OSTRONG : ''|'';
OSUB : '<SUB>'|'<sub>';
OSUP : '<SUP>'|'<sup>';
OTT : '<TT>'|'<tt>';
OPRE : '<PRE>'|'<pre>';

CABBR : '</ABBR>'|'</abbr>';
CACRY : '</ACRONYM>'|'</acronym>';
CADDR : '</ADDRESS>'|'</address>';
CBOLD : ''|'';
CBIG : '</BIG>'|'</big>';
CBQUOTE : '</BLOCKQUOTE>'|'</blockquote>';
CCITE : '</CITE>'|'</cite>';
CCODE : '</CODE>'|'</code>';
CDFN : '</DFN>'|'</dfn>';
CEM : ''|'';
CITL : '</I>'|'</i>';
CKBD : '</KDB>'|'</kbd>';
CQUOT : '</Q>'|'</q>';
CSMALL : '</SMALL>'|'</small>';
CSTRONG : ''|'';
CSUB : '</SUB>'|'</sub>';
CSUP : '</SUP>'|'</sup>';
CTT : '</TT>'|'</tt>';
CPRE : '</PRE>'|'</pre>';

//Lines and Comments
HR : '<HR>'|'<hr>';
BR : '
'|'
';
OCOM : '<!--';
CCOM : '-->';

//Hyperlinks
OA : '<A'|'<a';
CA : ''|'';

//Forms
OFORM : '<FORM'|'<form';
OINPUT : '<INPUT'|'<input';
OSELECT : '<SELECT'|'<select';

Appendices 325

OOPTGROUP
 : '<OPTGROUP'|'<optgroup';
OOPTION : '<OPTION'|'<option';
OBUTTON : '<BUTTON'|'<button';
OTEXT : '<TEXTAREA'|'<textarea';
OLABEL : '<LABEL'|'<label';

CFORM : '</FORM>'|'</form>';
CINPUT:'</INPUT>'|'</input>';
CSELECT : '</SELECT>'|'</select>';
COPTGROUP
 : '</OPTGROUP>'|'</optgroup>';
COPTION : '</OPTION>'|'</option>';
CBUTTON : '</BUTTON>'|'</button>';
CTEXT : '</TEXTAREA>'|'</textarea>';
CLABEL : '</LABEL>'|'</label>';

//Begin PHP
BEGIN
@declarations
{
 pANTLR3_COMMON_TOKEN mytoken;
 pANTLR3_INPUT_STREAM in;
 pANTLR3_STRING input_string;
}
 : '<?php'{
 callPhp(INPUT);
 $channel=PHP_CHANNEL;
 input_string = (pANTLR3_STRING)"PHP";
 in = antlr3NewAsciiStringInPlaceStream(input_string,
strlen(input_string), "input text stream");
 PUSHSTREAM(in);
};

//DEFINTIONS

WS : (' '|'\t'|'\n'|'\r')+{$channel=HIDDEN;};

STRING
 : (~('<'|'>'|'\r'|'\n'|'/'))+;

fragment
WORD : LETTER+;

fragment
LETTER : ('a'..'z')|('A'..'Z');

326 Appendices

Appendix E

Examples of Analysis of Selection Structures

Exercise 1

Exercise : Write a program to set the value of variable y to 1 if variable x is

greater than 10 and to 0 otherwise.

Initial State: HasName(VarId1,'x')

 HasValue(VarId1,val_x)

 HasInitialValue(VarId1,val_x)

Goal: (GreaterThan(val_x,10) ⟶ HasValue(VARID2,0))
 ∧ (LessThanOrEqual(val_x,10) ⟶ HasValue(VARID2,1))

Constraints: HasName(VARID2,'y')

Solution 1a

if($x<=10)
{
 $y=1;
}
else
{
 $y=0;
}

AST :
 (DOCUMENT (BODY (PHP (If (<= ($ x) 10) (= ($ y) 1) (= ($ y) 0)))))

Analysis:

The first part of the AST to be analysed is the if structure. Let the

BooleanExpression created at this point have id ExprId1. Let the ids of the

VariableExpr and the LiteralExpr that make up the BooleanExpression be

VarExprId1 and LitExprId1 respective. Let the id of the created literal be LitId1.

Then, the following facts are created.

Appendices 327

HasId(LessEqualExpr(VarExprId1,LitExprId1),ExprId1)

HasVariable(VarExprId1,VarId1)

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,10)

Finding the value of these expressions as explained in Section 4.4.1.1 results in

the following facts being created.

ValueOf(VarExprId1,val_x)

ValueOf(LitExprId1,10)

Considering the section of the AST where the condition is true, the following

fact is created.

ValueOf(ExprId1,True)

This fact translates to the following fact using the rules defined in Figure 5.4.

LessThanOrEqualTo(val_x,10)

When this condition is satisfied, the assign action comes into effect

resulting in the following set of facts.

HasName(VarId2,'y')

HasValue(VarId2,1)

HasInitialValue(VarId2,1)

Since this only happens when the if condition is satisfied and therefore, the

LessThanOrEqualTo(val_x,10) fact is true, the state of the program can now be

written as below.

LessThanOrEqualTo(val_x,10)⟶ HasValue(VarId2,1)

Similarly, considering the else part of the if statement, the BooleanExpression

is false resulting in the following fact.

ValueOf(ExprId1,False)

This fact translates to the following fact using the rules in Figure 5.4.

GreaterThan(val_x,10)

328 Appendices

The next part of the if statement is satisfied when this condition is met,

resulting in the following facts.

HasName(VarId2,'y')

HasValue(VarId2,0)

HasInitialValue(VarId2,0)

Since this only happens when the BooleanExpression is false, it can be written

as an implication as below.

GreaterThan(val_x,10)⟶ HasValue(VarId2,0)

Therefore, the final state of the program contains the following facts.

HasName(VarId2,y)

∧ (LessThanOrEqual(val_x,10) ⟶ HasValue(VarId2,1))

∧ (GreaterThan(val_x,10)⟶ HasValue(VarId2,0))

Although the order is different, it can be seen that this is identical to the overall

goal of the exercise when VARID2=VarId2. Therefore, this program is identified as

correct.

Solution 1b

if($x>10)
{
 $y=1;
}
else
{
 $y=0;
}

AST :
 (DOCUMENT (BODY (PHP (If (> ($ x) 10) (= ($ y) 1) (= ($ y) 0)))))

Analysis:

The first part of the AST to be analysed is the if structure. Let the

BooleanExpression created at this point have id ExprId1. Let the ids of the

VariableExpr and the LiteralExpr that make up the BooleanExpression be

Appendices 329

VarExprId1 and LitExprId1 respective. Let the id of the created literal be LitId1.

Then, the following facts are created.

HasId(GreaterExpr(VarExprId1,LitExprId1),ExprId1)

HasVariable(VarExprId1,VarId1)

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,10)

Finding the value of these expressions as explained in Section 4.4.1.1 results in

the following facts being created.

ValueOf(VarExprId1,val_x)

ValueOf(LitExprId1,10)

Considering the section of the AST where the condition is true, the following

fact is created.

ValueOf(ExprId1,True)

This fact translates to the following fact using the rules defined in Figure 5.4.

GreaterThan(val_x,10)

When this condition is satisfied, the assign action comes into effect

resulting in the following set of facts.

HasName(VarId2,'y')

HasValue(VarId2,1)

HasInitialValue(VarId2,1)

Since this only happens when the if condition is satisfied and therefore, the

LessThanOrEqualTo(val_x,10) fact is true, the state of the program can now be

written as below.

GreaterThan(val_x,10)⟶ HasValue(VarId2,1)

Similarly, considering the else part of the if statement, the BooleanExpression

is False resulting in the following fact.

ValueOf(ExprId1,False)

330 Appendices

This fact translates to the following fact using the rules in Figure 5.4.

LessThanOrEqual(val_x,10)

The next part of the if statement is satisfied when this condition is met,

resulting in the following facts.

HasName(VarId2,'y')

HasValue(VarId2,0)

HasInitialValue(VarId2,0)

Since this only happens when the BooleanExpression is false, it can be written

as an implication as below.

LessThanOrEqual (val_x,10)⟶ HasValue(VarId2,0)

Therefore, the final state of the program contains the following facts.

HasName(VarId2,y)

∧ (GreaterThan(val_x,10)⟶ HasValue(VarId2,1))

∧ (LessThanOrEqual(val_x,10) ⟶ HasValue(VarId2,0))

When comparing this final state against the overall goal, it can be seen that the

goal is not met since the values of the variables are assigned for the wrong

conditions. Therefore, this program is identified as incorrect.

Solution 1c

if($x>10)
{
 $y=1;
}

AST :
 (DOCUMENT (BODY (PHP (If (> ($ x) 10) (= ($ y) 1)))))

Analysis:

The first part of the AST to be analysed is the if structure. Let the

BooleanExpression created at this point have id ExprId1. Let the ids of the

VariableExpr and the LiteralExpr that make up the BooleanExpression be

Appendices 331

VarExprId1 and LitExprId1 respective. Let the id of the created literal be LitId1.

Then, the following facts are created.

HasId(GreaterExpr(VarExprId1,LitExprId1),ExprId1)

HasVariable(VarExprId1,VarId1)

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,10)

Finding the value of these expressions as explained in Section 4.4.1.1 results in

the following facts being created.

ValueOf(VarExprId1,val_x)

ValueOf(LitExprId1,10)

Considering the section of the AST where the condition is true, the following

fact is created.

ValueOf(ExprId1,True)

This fact translates to the following fact using the rules defined in Figure 5.4.

GreaterThan(val_x,10)

When this condition is satisfied, the assign action comes into effect

resulting in the following set of facts.

HasName(VarId2,'y')

HasValue(VarId2,1)

HasInitialValue(VarId2,1)

Since this only happens when the if condition is satisfied and therefore, the

LessThanOrEqualTo(val_x,10) fact is true, the state of the program can now be

written as below.

GreaterThan(val_x,10)⟶ HasValue(VarId2,1)

This program does not contain an else part and therefore, nothing happens

when the condition is not satisfied. Therefore, the final state of the program contains

the following facts.

332 Appendices

HasName(VarId2,y)

∧ (GreaterThan(val_x,10)⟶ HasValue(VarId2,1))

When comparing this final state against the overall goal, it can be seen that the

goal is not met since only part of the necessary implication conditions are present.

Therefore, this program is identified as incorrect.

Exercise 2

Exercise : Write a PHP program to display „A‟ if $marks is greater than 80.

Otherwise, if $marks is greater than 50, display „B‟. Display „F‟ in all

other instances. Note that when execution reaches the point where the

code has to be completed, the variable $marks already contains a value.

Initial State: HasName(VarId1,'marks')

 HasValue(VarId1,val_m)

 HasInitialValue(VarId1,val_m)

Suggested Goal: (GreaterThan(val_m,80) ⟶ OnPage('A',i))
 ∧ (LessThanOrEqual(val_m,80) ⟶
 (GreaterThan(val_m,50) ⟶ OnPage('B',j))
 ∧ (LessThanOrEqual(val_m,50) ⟶OnPage('F',k)))

Goal: (GreaterThan(val_m,80) ⟶ OnPage('A',i))
∧ (LessThanOrEqual(val_m),80) ∧ GreaterThan(val_m,50) ⟶ OnPage('B',j))
(LessThanOrEqual(val_m,50) ⟶OnPage('F',k))

Solution 2a

if($marks<=50)
{

echo('F');
}
else if ($marks<=80)
{

echo('B');
}
else

Appendices 333

{
echo('A');

}

AST :
 (DOCUMENT (BODY (PHP (If (<= ($ marks) 50) (echo 'F') ((If (<= ($

marks) 80) (echo 'B') ((echo 'A')))))))

Analysis:

The first part of the AST to be analysed is the first if structure. Let the

BooleanExpression created at this point have id ExprId1. Let the ids of the

VariableExpr and the LiteralExpr that make up the BooleanExpression be

VarExprId1 and LitExprId1 respective. Let the id of the created literal be LitId1.

Then, the following facts are created.

HasId(LessEqualExpr(VarExprId1,LitExprId1),ExprId1)

HasVariable(VarExprId1,VarId1)

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,50)

Finding the value of these expressions as explained in Section 4.4.1.1 results in

the following facts being created.

ValueOf(VarExprId1,val_m)

ValueOf(LitExprId1,50)

When considering the case when the condition is satisfied, the following fact is

created.

ValueOf(ExprId1,True)

This fact results in the following fact being created using the rules in Figure

5.4.

LessThanOrEqual(val_m,50)

When this condition is satisfied, an „echo‟ statement is executed. This results

in the Display action being used to create the following fact.

 OnPage('F',1)

334 Appendices

So the entire state for when the condition is satisfied can be written as below.

LessThanOrEqual(val_m,50) ⟶ OnPage('F',1)

When the condition is not satisfied, i.e. in the else section, the following fact is

created.

ValueOf(ExprId1,False)

Again using the rules in Figure 5.4, the following fact is then created in the

system for the case where the condition is not satisfied.

GreaterThan(val_m,50)

At this point, another selection structure is encountered. This means that

whatever facts are created after this are implied by the above fact. The condition for

this second selection structure results in the following set of facts being created. Let

the ids of the relevant BooleanExpression, VarExpr and LitExpr be ExprId2,

VarExprId2 and LitExprId2 respectively. Let the id of the created Literal be LitId2.

HasId(LessEqualExpr(VarExprId2,LitExprId2),ExprId2)

 HasVariable(VarExprId2,VarId2)

 HasLiteral(LitExprId2,LitId2)

HasLitValue(LitId2,80)

Finding the value of these expressions as explained in Section 4.4.1.1 results in

the following facts being created.

ValueOf(VarExprId2,val_m)

ValueOf(LitExprId2,80)

When this second condition is satisfied the ValueOf the expression is set to

True and this results in a comparison fact being created using the rules in Figure 5.4.

This means that the following facts are created.

ValueOf(ExprId2,True)

LessThanOrEqual(val_m,80)

When the second condition is satisfied, a Display action is again used to create

the following fact.

Appendices 335

OnPage('B',2)

So the result of the second condition being true can be written as below.

LessThanOrEqual(val_m,80) ⟶ OnPage('B',1)

When the second condition is not satisfied, the Display action is used to create

the following facts.

ValueOf(ExprId2,False)

GreaterThan(val_m,80)

For this situation, the Display action results in the following fact.

OnPage('A',3)

So the state when the second condition is not satisfied is as below.

GreaterThan(val_m,80) ⟶ OnPage('A',3)

Using the above description, it can be seen that the entire state for the second

condition is as below.

(LessThanOrEqual(val_m,80) ⟶ OnPage('B',2))

∧ (GreaterThan(val_m,80) ⟶ OnPage('A',3))

But as described earlier, the second condition is only satisfied if the first one is

not so this entire state is an implication of when the first condition is not satisfied.

Therefore, the final state of this program is as below.

(LessThanOrEqual(val_m,50) ⟶ OnPage('A',1))

∧(GreaterThan(val_m,50) ⟶(LessThanOrEqual(val_m,80) ⟶ OnPage('B',2))

∧ (GreaterThan(val_m,80) ⟶ OnPage('F',3)))

 This final state does not satisfied either the suggested goal or the overall goal

above so the program is identified as incorrect even though it achieves the objective.

Solution 2b

if($marks>80)
{

echo('A');
}
if($marks<=80 && $marks>50)

336 Appendices

{
echo('B');

}
if($marks<=50)
{

echo('F');
}

Analysis:

The first part of the AST to be analysed is the first if structure. Let the

BooleanExpression created at this point have id ExprId1. Let the ids of the

VariableExpr and the LiteralExpr that make up the BooleanExpression be

VarExprId1 and LitExprId1 respective. Let the id of the created literal be LitId1.

Then, the following facts are created.

HasId(GreaterExpr(VarExprId1,LitExprId1),ExprId1)

 HasVariable(VarExprId1,VarId1)

 HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,80)

Finding the value of these expressions as explained in Section 4.4.1.1 results in

the following facts being created.

ValueOf(VarExprId1,val_m)

ValueOf(LitExprId1,80)

When considering the case when the condition is satisfied, the following fact is

created.

ValueOf(ExprId1,True)

This fact results in the following fact being created using the rules in Figure

5.4.

GreaterThan(val_m,80)

When this condition is satisfied, an „echo‟ statement is executed. This results

in the Display action being used to create the following fact.

 OnPage('A',1)

So the entire state for when the condition is satisfied can be written as below.

Appendices 337

GreaterThan(val_m,80) ⟶ OnPage('A',1)

The next section of the AST to be analysed is the second if condition. Here,

the BooleanExpression is an AndExpr. Let the id of this be ExprId2. Let the id of

the LessEqualExpr on the left hand side of this be ExprId3 and the id of the

GreaterExpr on the right hand side be ExprId4. Then, the following facts are

created.

HasId(AndExpr(ExprId3,ExprId4),ExprId2)

Let the ids of the VariableExpr on the left hand side of the LessEqualExpr be

VarExprId3 and the id of the LiteralExpr on the right hand side be LitExprId3.

Then, the following facts are created.

HasId(LessEqualExpr(VarExprId3,LitExprId3),ExprId3)

 HasVariable(VarExprId3,VarId1)

 HasLiteral(LitExprId3,LitId1)

Finding the value of these expressions as explained in Section 4.4.1.1 results in

the following facts being created.

ValueOf(VarExprId3,val_m)

ValueOf(LitExprId3,80)

Similarly, let the ids of the VariableExpr on the left hand side of the

GreaterExpr be VarExprId4 and the id of the LiteralExpr on the right hand side be

LitExprId4. Let the id of the created Literal be LitId2. Then, the following facts are

created.

HasId(GreaterExpr(VarExprId4,LitExprId4),ExprId4)

 HasVariable(VarExprId4,VarId1)

 HasLiteral(LitExprId4,LitId2)

HasLitValue(LitId2,50)

Finding the value of these expressions as explained in Section 4.4.1.1 results in

the following facts being created.

ValueOf(VarExprId4,val_m)

ValueOf(LitExprId4,50)

338 Appendices

When the second condition is satisfied, the following predicate is created.

ValueOf(ExprId2,True)

The rules in Figure 5.12, results in the following facts being created.

ValueOf(ExprId3,True)

ValueOf(ExprId3,True)

These facts result in the following fact being created using the rules in Figure

5.4.

LessThanOrEqual(val_m,80)

GreaterThan(val_m,50)

When this condition is satisfied, an „echo‟ statement is executed. This results

in the Display action being used to create the following fact.

 OnPage('B',2)

So the entire state for when the condition is satisfied can be written as below.

LessThanOrEqual(val_m,80) ∧ GreaterThan(val_m,50) ⟶ OnPage('B',2)

The final section of the AST to be analysed is the first if structure. Let the

BooleanExpression created at this point have id ExprId5. Let the ids of the

VariableExpr and the LiteralExpr that make up the BooleanExpression be

VarExprId5 and LitExprId5 respective.

HasId(LessEqualExpr(VarExprId5,LitExprId5),ExprId5)

 HasVariable(VarExprId5,VarId1)

 HasLiteral(LitExprId5,LitId2)

Finding the value of these expressions as explained in Section 4.4.1.1 results in

the following facts being created.

ValueOf(VarExprId5,val_m)

ValueOf(LitExprId5,50)

Appendices 339

When considering the case when the condition is satisfied, the following fact is

created.

ValueOf(ExprId5,True)

This fact results in the following fact being created using the rules in Figure

5.4.

LessThanOrEqual(val_m,50)

When this condition is satisfied, an „echo‟ statement is executed. This results

in the Display action being used to create the following fact.

 OnPage('F',3)

So the entire state for when the condition is satisfied can be written as below.

LessThanOrEqual(val_m,50)⟶ OnPage('F',3)

So the final state of the program is as below.

(GreaterThan(val_m,80) ⟶ OnPage('A',1))

∧ (LessThanOrEqual(val_m,80) ∧ GreaterThan(val_m,50) ⟶ OnPage('B',2))

∧ (LessThanOrEqual(val_m,50⟶ OnPage('F',3))

Therefore, the overall goal is satisfied when i=1, j=2 and k=3 so the program is

identified as correct.

Exercise 3

Exercise : Write a PHP program to display „Excellent‟ if the grade is „A‟. Otherwise,

if the grade is „B‟ display „Good‟. In all other instances display „Try

Harder‟. Note that when execution reaches the point where the code has to

be completed, the variable $grade already contains a value.

Initial State: HasName(VarId1,'grade')

 HasValue(VarId1,val_g)

 HasInitialValue(VarId1,val_g)

Goal: (EqualTo(val_g,'A') ⟶ OnPage('Excellent',i))
∧ (EqualTo(val_g,'B') ⟶ OnPage('Good',j))

340 Appendices

∧ (NotEqualTo(val_g,'A') ∧ NotEqualTo(val_g','B') ⟶OnPage('Try
Harder',k))

Solution 3a

switch($grade)
{

case 'A': echo('Excellent');
break;

case 'B': echo('Good');
break;

default: echo('Try Harder');
}

AST :
(PHP (switch ($ grade) (case 'A' (echo 'Excellent') break) (case 'B'

(echo 'Good') break) (default (echo 'Try Harder'))))

Analysis:

The first part of the AST to be analysed is the switch structure. When this

structure is encountered, the switch variable $grade is noted. When the first case

statement is encountered a new AST is created for the conditional expression as

below.

(== ($ grade) 'A')

Now, this is processed as an if structure with this as the condition and the

second node of the „case‟ node as what to do when the condition is satisfied.

Let the BooleanExpression created at this point have id ExprId1. Let the ids of

the VariableExpr and the LiteralExpr that make up the BooleanExpression be

VarExprId1 and LitExprId1 respective. Let the id of the created literal be LitId1.

Then, the following facts are created.

HasId(EqualExpr(VarExprId1,LitExprId1),ExprId1)

HasVariable(VarExprId1,VarId1)

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,'A')

Finding the value of these expressions as explained in Section 4.4.1.1 results in

the following facts being created.

Appendices 341

ValueOf(VarExprId1,val_g)

ValueOf(LitExprId1, 'A')

Considering the section of the AST where the condition is true, the following

fact is created.

ValueOf(ExprId1,True)

This fact translates to the following fact using the rules defined in Figure 5.4.

EqualTo(val_g,'A')

When the second condition is satisfied, a Display action is again used to create

the following fact.

OnPage('Excellent',1)

So the result of the first condition being true can be written as below.

EqualTo(val_g,'A') ⟶ OnPage('Excellent',1)

Similarly the second case node results in the following new AST for the

conditional expression.

(== ($ grade) 'B')

Let the BooleanExpression created at this point have id ExprId2. Let the ids of

the VariableExpr and the LiteralExpr that make up the BooleanExpression be

VarExprId2 and LitExprId2 respective. Let the id of the created literal be LitId2.

Then, the following facts are created.

HasId(EqualExpr(VarExprId2,LitExprId2),ExprId2)

HasVariable(VarExprId2,VarId2)

HasLiteral(LitExprId2,LitId2)

HasLitValue(LitId2,'B')

Finding the value of these expressions as explained in Section 4.4.1.1 results in

the following facts being created.

ValueOf(VarExprId1,val_g)

ValueOf(LitExprId1, 'B')

342 Appendices

Considering the section of the AST where the condition is true, the following

fact is created.

ValueOf(ExprId2,True)

This fact translates to the following fact using the rules defined in Figure 5.4.

EqualTo(val_g,'B')

When the second condition is satisfied, a Display action is again used to create

the following fact.

OnPage('Good',2)

So the result of the second condition being true can be written as below.

EqualTo(val_g,'B') ⟶ OnPage('Good',2)

The default statement results in all conditions for previous expressions being

false so the following facts are created.

ValueOf(ExprId1,False)

ValueOf(ExprId2,False)

These facts translates to the following facts using the rules defined in Figure

5.4.

NotEqualTo(val_g,'A')

NotEqualTo(val_g,'B')

In the default case, a Display action is again used to create the following fact.

OnPage('Try Harder',3)

So the result of the default section can be written as below.

NotEqualTo(val_g,'A') ∧ NotEqualTo(val_g,'B') ⟶ OnPage('Try Harder',3)

So the final state of the program is given below.

(EqualTo(val_g,'A') ⟶ OnPage('Excellent',1))

∧ (EqualTo(val_g,'B') ⟶ OnPage('Good',2))

∧ (NotEqualTo(val_g,'A') ∧ NotEqualTo(val_g,'B') ⟶ OnPage('Try Harder',3))

Appendices 343

So the overall goal is satisfied when i=1, j=2 and k=3 and the program is

identified as correct.

344 Appendices

Appendix F

Examples for Analysis of Functions and Forms

Example 1

Consider the following PHP function

function display()
{
 echo($_POST['num']);
}

When analysing this function, let the id of the Function be FuncId1. Then,

the CurrentScope is set as below.

CurrentScope(FuncId1)

When the $_POST array is encountered, an array with this name is created.

Let the id of the Array be ArrId1. Since $_POST is a super-global array, the

following facts are created.

HasArrayName(ArrId1,'$_POST')

HasArrayScope(ArrId1,Null)

Global('$_POST',FuncId1)

Now, the third rule in Figure 6.9 is used to create the following fact.

HasArrayScope(ArrId1,FuncId1)

An ArrayVariable corresponding to the array element is also created at this

point. Let the id of the ArrayVariable be ArrId1. Let the id of the corresponding

Key be KeyId1. Let the LiteralExpression corresponding to the Key have an id of

LitExprId1 and the created Literal have an id of LitId1. Then, the following facts are

created.

HasVariableId(HasElement(ArrId1,KeyId1),VarId1)

 HasKeyExpression(KeyId1,LitExprId1)

HasLiteral(LitExprId1,LitId1)

HasLiteral(LitId1,'num')

Appendices 345

Next, the first rule in Figure 6.9 is used to find the scope of the ArrayVariable

resulting in the following fact.

HasVariableScope(VarId1,FuncId1)

Now, the array element of the super-global array is in scope within the function

and therefore, can be accessed within it.

Example 2

Exercise : Write a PHP function called displayMotto that displays the text „We

are the best!‟.

Goal : FunctionOK(FUNCID1)

Constraints : HasFunctionName(FUNCID1,'displayMotto')

Conditiosn of Subplan(FunctionOK(FUNCID1)):
PRECOND :
POSTCOND: OnPage('We are the best',i)

Solution

function displayMotto()
{
 echo('We are the best!');
}

Analysis:

The function definition is the first node of the AST to be processed and results

in the following facts. Let the id of the created Function be FuncId1.

CurrentScope(FuncId1)

HasFunctionName(FuncId1,'findTotal')

Now, a check is made to see whether the preconditions of any of the sub-plans

are satisfied. Since the conditions of the sub-plan has no precondition, it is

automatically satisfied.

Next, the statements within the function are processed. The „echo‟ node results

in the Display action being activated, resulting in the following predicate.

346 Appendices

OnPage('We are the Best!',1)

Since all nodes within the function definition have now being analysed, a

check is carried out to see whether the post-conditions of the sub-plan are satisfied.

It can be seen that the post-condition is satisfied when i=1. This results in the

following fact being created.

FunctionOK(FuncId1)

This is the final state of the program. When comparing this against goal, it is

satisfied when FUNCID1=FuncId1. When comparing this state against the

constraints, these are also satisfied so the program is identified as correct.

Example 3

Exercise : Write a PHP function called d globAdd that adds the value passed in

as a parameter to the value of the global variable $x and returns the

result. Note that when execution reaches the point where the code

has to be completed, the variable $x already contains a value.

Initial State: CurrentScope(Null)

HasName(VarId1,'x')

 HasValue(VarId1,val_x)

 HasInitialValue(VarId1,val_x)

HasVariableScope(VarId1,Null)

Goal : FunctionOK(FUNCID1)

Constraints : HasFunctionName(FUNCID1,'globAdd')

Conditions of Subplan(FunctionOK(FUNCID1)):
 PRECOND : HasParameter(FUNCID1,1,VARID1)

 ∧ HasValue(VARID1, VALUEa)
 POSTCOND: Add(VALUEa, val_x,VALUEc)

 ∧ HasReturnExpression(FUNCID1, RETEXPRID1)
 ∧ ValueOf(RETEXPRID1,VALUEc)

Appendices 347

Solution

function globAdd($num)
{
 global $x;
 $tot=$num+$x;

return($tot);
}

Analysis:

The function definition is the first node of the AST to be processed and results

in the following facts.

CurrentScope(FuncId1)

HasFunctionName(FuncId1,'globAdd')

HasParameter(FuncId1,1,ParamVarId1)

HasName(ParamVarId1,'num')

Since the ParameterVariables are only in scope within the function, a new fact

is created to indicate this.

HasVariableScope(ParamVarId1,FuncId1)

Assigning values to the ParameterVariables as described in Section 6.2.3.2

results in the following fact.

HasValue(ParamVarId1,'num')

Now a check is made to see whether the preconditions of a sub-plan are

satisfied. In this case, it is satisfied when FUNCID1=FuncId1,

VARID1=ParamVarId1 and VALUEa='num'.

Next the AST nodes corresponding to the statements within the function

definition are analysed. The „global‟ definition results in the following fact.

Global('x',FuncId1)

Using the process described in Section 6.2.2.2, the following fact is created.

HasVariableScope(VarId1,FuncId1)

348 Appendices

The next node corresponds to an assign statement with an AddExpr on the right

hand side. Let the id of the AddExpr be ExprId1 and the values of the VarExprs on

either side of this expression be VarExprId1 and VarExprId2 respectively. Then, the

following facts are created.

HasId(AddExpr(VarExprId1,VarExprId2),ExprId1)

HasVariable(VarExprId1,ParamVarId1)

HasVariable(VarExprId2,VarId1)

The ValueOf each of these sub-expressions is then found using the rules in

Figure 6.11.

ValueOf(VarExprId1,'num')

ValueOf(VarExprId2,val_x)

The ValueOf the AddExpr is next found using the rules in Figure 4.8. Let the

sum of 'num' and val_x be tot so Add('num',val_x,tot).

ValueOf(ExprId1,tot)

 The value of this is assigned to a new variable, $tot and the following facts

are created as given in the Assign action in Figure 6.12. Let the id of the newly

created Variable be VarId1.

HasName(VarId2,'tot')

HasValue(VarId2,tot)

HasInitialValue(VarId2,tot)

HasVariableScope(VarId2,FuncId1)

Next, the AST node corresponding to the return expression is analysed. Here,

the return expression is actually a VarExpr returning the $tot variable. This is used

together with the rules to find the ValueOf the expression to create the following

facts.

HasReturnExpression(FuncId1,RetExprId1)

HasVariable(RetExprId1,VarId2)

ValueOf(RetExprId1,tot)

Appendices 349

Now, a check is made to see if the post-condition of the sub-plan is satisfied. It

can be seen that this is satisfied when RETEXPRID1=RetExprId1 and VALUEc=tot.

Therefore, the following fact is created.

FunctionOK(FuncId1)

This is the final state of the system. It can be seen now that the overall goal is

satisfied when FUNCID1=FuncId1 so the program is identified as correct.

350 Appendices

Appendix G

Examples for Analysis of Loops

Example 1

Goal : ∀ j *(1≤j≤5)→* ,OnPage("Hello",Y) -+

Constraints : For(FORID1)
∧ LoopBodyOK(FORID1)

Conditions of Subplan(FunctionOK(FORID1)):
PRECOND :
POSTCOND: OnPage("Hello",x)

Solution

$i=1;
while($i<=5)
{
 echo("Hello");
 $x++;
}

Analysis:

The first assignment statement results in a new variable named VarId1 being

created and assigned a value of 1, resulting in the following facts.

HasName(VarId1,'i')

HasInitialValue(VarId1,1)

HasValue(VarId1,1)

Now, a while loop is encountered. It is first checked to see whether it has a

condition with a BooleanExpression that is valid for a for loop. In this case, it is a

LessEqualExpr with a VariableExpr on the left hand side and a LiteralExpr on the

right hand side so it corresponds to the expression in a for loop. Also, the

VariableExpr in the condition refers to the variable $i, which already has a value, as

it should in a for loop.

Next, the statements within the loop are analysed to see whether the variable $i

is updated within the loop so that it updates during every instance. Since no

Appendices 351

selection expressions are found within the loop, all the statements within it are

executed at all times. There is a statement $i++, which updates the variable within

the loop. Therefore, this while loop is identified as similar to a for loop with a loop

variable of $i, resulting in the following facts being created. Let the id of the While

loop be WhileId1, the id of the Variable $i be VarId1 and the id of the

LessEqualExpr be ExprId1. Let the ids of the VariableExpr and the LiteralExpr on

either side of the LessEqualExpr be VarExprId1 and LitExprId1 respectively. Let

the id of the corresponding Literal be LitId1.

HasName(VarId1,'i')

HasValue(VarId1,1)

HasInitialValue(VarId1,1)

HasLoopVariable(WhileId1,VarId1)

HasForStartValue(WhileId1,1)

HasId(LessEqualExpr(VarExprId1,LitExprId1),ExprId1)

HasVariable(VarExprId1,VarId1)

HasLiteral(LitExprId1,LitId1)

HasLitValue(LitId1,5)

HasLoopCondition(WhileId1,ExprId1)

Using the rules in Figure 4.8, the ValueOf the LiteralExpr is found, resulting in

the following fact.

ValueOf(LitExprId1,5)

Using the rules in Figure 7.5, the following fact is created.

HasForEndValue(WhileId1,5)

Based on the analysis of the first iteration of the while loop to determine if it

corresponds to a for loop, the following fact is obtained.

HasValue(VarId1,2)

Since this is the value of the loop variable at the end of the first iteration, the

following fact is created.

352 Appendices

HasForFirstLoopValue(WhileId1,2)

Next, the rule in Figure 7.6 is activated, resulting in the following fact.

HasForIncrement(WhileId1,1)

Now, the loop itself needs to be analysed. The effects of the overall loop can

be written as below.

repeat(WhileActionEffects,WhileId1)

Now, the conditions of the sub-plan needs to be analysed. Let the value of $i at

the beginning of each iteration be val_i. Then, the following facts are created.

HasValue(VarId1,val_i)

HasIterationValue(ForId1,VarId1,val_i)

Since the conditions of the sub-plan have no pre-conditions, they are

automatically satisfied. Now, the statements within the loop need to be analysed.

The first statement is an echo statement which results in a Display action. The

following fact is created as a result of this action.

OnPage("Hello",1)

Next, the variable $i is incremented from its current value. The relevant

AssignAdd action results in the following fact.

HasValue(VarId1,val_j) where Add(val_i,1,val_j)

This is the state of the program at the end of execution of the rule. When

comparing against the conditions of the sub-plan, it can be seen that it is satisfied

when x=1. Therefore, the following fact is created.

LoopBodyOK(WhileId1)

Now, the rules in Figure 7.10 are activated to create the following facts.

RepeatLoop(WhileId1,1,5,1)

RepeaAll(WhileId1,1,5)

∀ val_i *(1≤val_i≤5) → OnPage("Hello",count)

The resultant state is the final state of the system. When comparing this

against the overall goal, it can be seen that they are satisfied when

Appendices 353

FORID1=WhileId1, j=val_i and Y=count. Therefore, this program is identified as

correct.

Exercise 2

Exercise : Write a program segment to store the result of the multiplication of

two variables $a and $b into a new variable. Use the definition of

multiplication as a result of repeated addition to use a for loop to

perform the calculation. Note that when execution reaches the point

where the code needs to be completed, the variables $a and $b

already contain a value.

Initial State: HasName(VarId1,'a')

 HasValue(VarId1,val_a)

 HasInitialValue(VarId1,val_a)

HasName(VarId2,'b')

 HasValue(VarId2,val_b)

 HasInitialValue(VarId2,val_b)

Goal:

Multiply(VALUE_a,VALUE_b,VALUE_m)
∧ HasValue(VARID_m,VALUE_m)

Constraints:

ForLoop(FORID1)
∧ LoopBodyOK(FORID1)

Conditions of Subplan1(LoopBodyOK(FORID1),
 PRECOND : HasValue(VARID_m,VALUE_ms)

∧ Add(VALUE_ms,VALUE_a,VALUE_me)
 POSTCOND: HasValue(VARID_m,VALUE_me))

Conditions of Subplan2(LoopBodyOK(FORID1),

PRECOND : HasValue(VARID_m,VALUE_ms)
∧ Add(VALUE_ms,VALUE_b,VALUE_me)

 POSTCOND: HasValue(VARID_m,VALUE_me))

354 Appendices

Solution 2a

$multiply=0;
for($i=1;$i<=$b;$i++)
{

$multiply+=$a;
}

Analysis:

The first assignment statement results in a new variable named VarId3 being

created and assigned a value of 0, resulting in the following facts.

HasName(VarId3,'multiply')

HasInitialValue(VarId3,0)

HasValue(VarId3,0)

The following facts are created as a result of the for loop as described in

Section 7.2.1. Let the id of the variable $i be VarId4. Let the id of the

LessEqualExpr be ExprId1. Also, let the VariableExprs on either side of this

expression have ids VarExprId1 and VarExprId2 respectively.

HasName(VarId4,'i')

HasValue(VarId4,1)

HasInitialValue(VarId4,1)

HasLoopVariable(ForId1,VarId4)

HasForStartValue(ForId1,1)

HasId(LessEqualExpr(VarExprId1,VarExprId2),ExprId1)

HasVariable(VarExprId1,VarId4)

HasVariable(VarExprId2,VarId2)

HasLoopCondition(ForId1,ExprId1)

Using the rules in Figure 4.8, the ValueOf the VarExprId2 is found, resulting in

the following fact.

ValueOf(VarExprId2,val_b)

Using the rule in Figure 7.5, the end value of the loop is found as below.

Appendices 355

HasForEndValue(ForId1,val_b)

Next, it is necessary to find the value of the counter variable at the end of the

first iteration. The post-increment operator results in an AssignAdd action which

creates the following fact.

HasValue(VarId4,2)

Since this is the value of the loop variable at the end of the first iteration, the

following fact is created.

HasForFirstLoopValue(ForId1,2)

Next, the rule in Figure 7.6 is activated, resulting in the following fact.

HasForIncrement(ForId1,1)

Now, the actual loop has to be analysed. The repetition of the loop can be

written as below.

repeat(ForActionEffects,ForId1)

Only two variables, $i and $multiply change their value during the loop so it is

only necessary to consider initial values for these two variables for each iteration of

the loop. Let the initial values be val_i and val_m respectively. Then, the following

facts are created.

HasValue(VarId4,val_i)

HasIterationValue(ForId1,VarId4,val_i)

HasValue(VarId3,val_m)

HasIterationValue(ForId1,VarId3,val_m)

It can be seen that at this point, the pre-conditions of both sub-plans are

satisfied. Next, the actions performed by the loop have to be analysed. Here, it is an

assignment statement resulting in a AddAssign action being activated, resulting in the

following fact.

HasValue(VarId3,val_new) where Add(val_m,val_a,val_new)

It can be seen that the post-condition of the first sub-plan is now satisfied when

VALUE_me=val_new, so the following fact is created.

LoopBodyOK(ForId1)

356 Appendices

Next, the rules in Figure 7.7 are executed to consolidate the actions performed

by the loop, resulting in the following facts.

RepeatLoop(ForId1,1,val_b,1)

RepeatAll(ForId1,1,val_b)

In this case, the ActionEffects is the result of the assignment which is the

HasValue(VarId3,val_new) fact so the consolidated effect is as below.

∀ val_i *(1≤val_i≤val_b) → HasValue(VarId3,val_new)

Next, the rule in Figure 7.17 is activated, resulting in the following fact.

HasValue(VarId3,val_mul) where Multiply(val_a,val_b,val_mul)

When comparing this final state against the overall goal, it can be seen that it is

satisfied when VALUE_m=val_mul, VARID_m=VarId3 and FORID1=ForId1.

Therefore, the program segment is identified as correct.

Solution 2b

$multiply=0;
for($i=1;$i<=$a;$i++)
{

$multiply+=$b;
}

Analysis:

The first assignment statement results in a new variable named VarId3 being

created and assigned a value of 0, resulting in the following facts.

HasName(VarId3,'multiply')

HasInitialValue(VarId3,0)

HasValue(VarId3,0)

The following facts are created as a result of the for loop as described in

Section 7.2.1. Let the id of the variable $i be VarId4. Let the id of the

LessEqualExpr be ExprId1. Also, let the VariableExprs on either side of this

expression have ids VarExprId1 and VarExprId2 respectively.

Appendices 357

HasName(VarId4,'i')

HasValue(VarId4,1)

HasInitialValue(VarId4,1)

HasLoopVariable(ForId1,VarId4)

HasForStartValue(ForId1,1)

HasId(LessEqualExpr(VarExprId1,VarExprId2),ExprId1)

HasVariable(VarExprId1,VarId4)

HasVariable(VarExprId2,VarId2)

HasLoopCondition(ForId1,ExprId1)

Using the rules in Figure 4.8, the ValueOf the VarExprId2 is found, resulting in

the following fact.

ValueOf(VarExprId2,val_a)

Using the rule in Figure 7.5, the end value of the loop is found as below.

HasForEndValue(ForId1,val_a)

Next, it is necessary to find the value of the counter variable at the end of the

first iteration. The post-increment operator results in an AssignAdd action which

creates the following fact.

HasValue(VarId4,2)

Since this is the value of the loop variable at the end of the first iteration, the

following fact is created.

HasForFirstLoopValue(ForId1,2)

Next, the rule in Figure 7.6 is activated, resulting in the following fact.

HasForIncrement(ForId1,1)

Now, the actual loop has to be analysed. The repetition of the loop can be

written as below.

repeat(ForActionEffects,ForId1)

Only two variables, $i and $multiply change their value during the loop so it is

only necessary to consider initial values for these two variables for each iteration of

358 Appendices

the loop. Let the initial values be val_i and val_m respectively. Then, the following

facts are created.

HasValue(VarId4,val_i)

HasIterationValue(ForId1,VarId4,val_i)

HasValue(VarId3,val_m)

HasIterationValue(ForId1,VarId3,val_m)

It can be seen that at this point, the pre-conditions of both sub-plans are

satisfied. Next, the actions performed by the loop have to be analysed. Here, it is an

assignment statement resulting in a AddAssign action being activated, resulting in the

following fact.

HasValue(VarId3,val_new) where Add(val_m,val_b,val_new)

It can be seen that the post-condition of the second sub-plan is now satisfied

when VALUE_me=val_new, so the following fact is created.

LoopBodyOK(ForId1)

Next, the rules in Figure 7.7 are executed to consolidate the actions performed

by the loop, resulting in the following facts.

RepeatLoop(ForId1,1,val_a,1)

RepeatAll(ForId1,1,val_a)

In this case, the ActionEffects is the result of the assignment which is the

HasValue(VarId3,val_new) fact so the consolidated effect is as below.

∀ val_i *(1≤val_i≤val_a) → HasValue(VarId3,val_new)

Next, the rule in Figure 7.17 is activated, resulting in the following fact.

HasValue(VarId3,val_mul) where Multiply(val_a,val_b,val_mul)

When comparing this final state against the overall goal, it can be seen that it is

satisfied when VALUE_m=val_mul, VARID_m=VarId3 and FORID1=ForId1.

Therefore, the program segment is identified as correct.

Appendices 359

Appendix H

Implementation Details

1. At certain times, it becomes necessary to manipulate the AST created by the

grammar files (Section 4.6.2, Section 5.6). However, the position returned by

the grammar file is used when highlighting syntax error nodes (Section 8.3.1.2).

In order to maintain accurate position information, this information from the

original node is copied on to any newly created nodes.

2. In order to analyse the program HTML attributes need to be converted into AST

form. However, the HTML grammar file treats attribute nodes as simple text.

The conversion to AST form is done during the AST walking process.

3. As mentioned in the description, the PHP grammar file used during program

analysis is one that has been downloaded from the web (Section 4.5.2). This

grammar file does not check to see whether a „$‟ sign is present before variable

names although it accepts variable names with a „$‟ sign. Therefore, no syntax

error is identified if no „$‟ sign precedes a variable name. This problem is

handled by manually checking for the „$‟ sign in all places where it is expected

and generating a syntax error.

4. Function calls can be used anywhere where expressions are expected. However,

the syntax is only correct if the function is either a pre-defined function or it has

been defined in the same program. This cannot be checked during parsing using

the grammar files. This is also checked during the AST walking process and a

syntax error is generated if an unacceptable function name is used.

5. Two types of array keys, keystrings and indexes, have been modelled in the

system (Section 6.1). However, there is no change in the program analysis,

whatever the type of key. Therefore, although this distinction has been modelled

in theory, it has been ignored during the actual system building for ease of

implementation.

6. It is possible to infinitely convert from one expression type to another when

converting between equivalent Boolean expressions as described in Section 5.3.

Therefore, this conversion is also implemented using CLIPS functions which are

executed at the time of goal checking.

360 Appendices

7. As described in Section 6.2.4, predefined functions are handled by storing a

definition. This definition contains a link to a CLIPS function that is executed

when the predefined function is called. This function creates the predicates that

result from executing the predefined function.

8. When handling function calls to user defined functions, the relevant facts are

formed by creating the post-conditions of the selected sub-plan (Section 6.2.3.2).

However, in reality, this is handled by calling a separate CLIPS function.

Appendices 361

Appendix I

Pre and Post Test

1. Which of the following delimiter syntax is PHP's default delimiter syntax

a. <?php ?>

b. <% %>

c. <? ?>

d. <script language="php"> </script>

2. The left association operator % is used in PHP for

a. percentage

b. bitwise or

c. division

d. modulus

3. To produce the output “I love the summer time”, which of the following

statement can be used?

a. <? php print ("<p> I love the summer time</p>)";?>

b. <? php $season="summer time"; print"<p> I love the $season</p>";

?>

c. <?php $message="<p> I love the summer time </p>”; echo

$message; ?>

d. All of above

4. What will be displayed?
$var = 'a';

$VAR = 'b';

echo "varVAR";

a. aa

b. bb

c. ab

d. error

5. A value that has no defined value is expressed in PHP with the following

keyword:

a. undef

b. null

c. None

d. There is no such concept in PHP

6. All variables in PHP start with which symbol?

a. !

b. $

c. &

d. %

7. Which of the following ways will add 1 to the variable $count?

a. $count++;

b. incr $count;

c. count++;

d. $count =+1

8. Which of the following is NOT a valid PHP comparison operator?

a. !=

b. >=

c. <=>

d. <>

362 Appendices

9. What will be displayed?

if ('2' == '02') {

 echo 'true';

} else {

 echo 'false';

}

a. true

b. false

10. When the statement $alive= 5; is executed, and then $alive is tested as a

boolean condition, e.g. if($alive), then

a. $alive is false

b. $alive is true

c. $alive is overflow

d. the statement is not valid

11. Which of the following method sends input to a script where the input is

displayed in the URL of the resultant page?

a. Get

b. Post

c. Both

d. None

12. How do we access the value of 'd' later?

 $a = array(

 'a',

 3 => 'b',

 1 => 'c',

 'd');

a. a[0]

b. a[4]

c. a[3]

d. a[2]

13. What will be displayed by the code below?

<?php

 FUNCTION TEST()

 {

 ECHO ‘HELLO’. ‘ WORLD!\n’;

 }

 test();

?>

a. HELLO WORLD!

b. Nothing

c. it's a compiler error

d. hello world!

14. How do you get information from a form that is submitted using the "post"

method?

a. $_POST[];

b. Request.Form;

Appendices 363

c. Request.QueryString;

d. $_GET[];

15. What value is displayed for "a" below?

<?php

 $a = 2;

 function Test($a)

 {

 echo "a = $a";

 }

 $a--;

 Test($a);

?>

a. 1

b. 2

c. 3

d. No value

16. Consider the following php webpage. Assume that this webpage is loaded

into a browser and the user enters the text „Hello‟ into the textbox and clicks

the submit button. What will then be displayed on the web page?

<?php

if(isset($_POST[‘submit’])

{

 echo($_POST[‘mytext’];

}

else

{

?>

<form action=’’ method=post>

<input type=text name=mytext>

<input type=submit name=submit>

</form>

<?php

}

?>

a. The text „Hello‟ followed by a form containing a textbox and a submit

button.

b. A form containing a textbox and a submit button with the text „Hello‟

inside the text box.

c. Only the text „Hello‟.

d. An empty form containing a textbox and a submit button

17. Which of the PHP code segments is equivalent to the code segment given

below?

<?php

switch($a)

{

case 1:$b=$b+10;

 break;

case 2:$b=$b+5;

 break;

364 Appendices

default:$b=$b+15;

}

?>

a. <?php
if($a=1)

 $b+=10;

if($a=2)

 $b+=5;

else

 $b+=15;

?>

b. <?php
if($a=1)

 $b=$b+10;

if($a=2)

 $b=$b+5;

else

 $b=$b+15;

?>

c. <?php
if($a==1)

 $b+=10;

else if($a==2)

 $b+=5;

else

 $b+=15;

?>

d. <?php
if($a==1)

 $b=$b+10;

else if($a==2)

 $b=$b+5;

else if ($a==3)

 $b=$b+15;

?>

18. Consider the following PHP code segment. Which of the PHP code segments

below will display the elements of the array in the given order?

$a[1]=’PHP’;

$a[2]=’Java’;

$a[3]=’C’;

a. foreach($a as $value)
{

echo($value);

}

Appendices 365

b. foreach($a as $value)
{

echo($a);

}

c. foreach($a as $key=>$value)
{

echo($key);

}

d. None of the above

19. Which of the following statements is incorrect regarding PHP for loops?

a. A for loop can always be converted to an equivalent while loop.

b. For loops can be nested within each other.

c. The „for‟ keyword is followed by three expressions within a pair of

brackets.

d. The condition in a for loop (the second expression within the bracket)

can never be blank.

366 Appendices

Appendix J

Questionnaire

PHP Intelligent Tutoring System

Feedback Form

This feedback form is used to obtain feedback about the PHP Intelligent Tutoring

System. Your answers will not be recorded against your username. They will be used

solely for the purpose of improving the system for future users. Your support in

submitting this feedback is highly appreciated.

Please rate your prior use of the following.

1. Programming in C (not C#)

Never used it

Very basic knowledge

Good knowledge

Very good knowledge

Expert

2. Web development using HTML

Never used it

Very basic knowledge

Good knowledge

Very good knowledge

Expert

3. PHP

Never used it

Very basic knowledge

Good knowledge

Very good knowledge

Expert

4. Database Management Systems

Never used it

Very basic knowledge

Good knowledge

Appendices 367

Very good knowledge

Expert

5. MySQL

Never used it

Very basic knowledge

Good knowledge

Very good knowledge

Expert

Please rate the following aspects of the system.

6. Overall impression of the system

Excellent

Good

Neutral

Poor

Very poor

7. Ease of use

Excellent

Good

Neutral

Poor

Very poor

8. Look and feel

Excellent

Good

Neutral

Poor

Very poor

9. Programming exercises

Excellent

Good

Neutral

368 Appendices

Poor

Very poor

10. Feedback messages

Excellent

Good

Neutral

Poor

Very poor

11. Success in gaining student knowledge and understanding

Excellent

Good

Neutral

Poor

Very poor

12. Speed of response of the system

Excellent

Good

Neutral

Poor

Very poor

Please give short descriptive answers to the following questions

13. How much time (in total across the semester) did you spend learning web

development using the Intelligent Tutoring System?

14. Do you feel that your knowledge of dynamic web development using PHP

improved as a result of using the system?

Appendices 369

15. Would you like to use a similar system again to gain better knowledge of the

subject matter?

16. Would you recommend the system be used by other students?

17. Did you feel that the feedback provided by the system was helpful in

understanding why your program was incorrect?

18. Were you happy with the system‟s suggestions for the next programming

exercise or did you often feel that you should try something else because the

system‟s suggestion was inappropriate?

19. Did you at any time feel that the system analysed your program incorrectly (i.e. it

370 Appendices

accepted a solution you knew was wrong or rejected a solution you knew was

correct)? If so, please provide more details.

20. What aspect of the user interface did you find most appealing?

21. What aspect of the user interface did you find least appealing?

22. What extra features would you most like to see added to the user interface?

23. Any other comments

Appendices 371

Appendix K

Focus Group Questions

1. What aspects of the user interface should be changed to make the system

more user-friendly?

2. How would you compare this system with any other online learning system

that you have used?

3. Do you think the learning resources supplied with this system are used

effectively to teach the subject of dynamic web development? Suggest areas

of improvement.

4. Do you think that the exercises suggested by the system are useful in

improving your knowledge?

5. What other improvements can you suggest to make the educational process

more productive?

Appendices 373

Appendix L

Complete ORM Diagram

Figure L1. Complete ORM diagram.

Appendices 375

Figure L2. Complete ORM diagram – left half

Appendices 377

Figure L3. Complete ORM diagram – right half

