(4-Nitrophenylsulfanylmethyl)triphenylstannane and

(4-nitrophenylsulfonylmethyl)triphenylstannane: $R_{2}^{2}(X)$ rings (X is 10, 18 or 24) and $\mathrm{C}-\mathrm{H} \ldots \pi$ interactions
Janet M. S. Skakle, James L. Wardell and Solange M. S. V. Wardell

[^0]Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

(4-Nitrophenylsulfanylmethyl)triphenylstannane and (4-nitrophenylsulfonylmethyl)triphenylstannane: $R_{2}^{2}(X)$ rings (X is 10,18 or 24) and $\mathbf{C}-\mathbf{H} \cdots \pi$ interactions

Janet M. S. Skakle, ${ }^{\text {a* }}$ James L. Wardell ${ }^{\text {b }}$ and
Solange M. S. V. Wardell ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, b Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro RJ, Brazil, and ${ }^{\text {c Departamento de Química Orgânica, Instituto de Química, Universidade Federal }}$ Fluminense, 24020-150 Niterói, Rio de Janeiro, Brazil
Correspondence e-mail: j.skakle@abdn.ac.uk

Received 27 May 2002

Accepted 10 June 2002
Online 29 June 2002
In the crystal structures of (4-nitrophenylsulfanylmethyl)triphenylstannane, $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)\right]$, (I), and (4-nitrophenylsulfonylmethyl)triphenylstannane, $\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}\right.\right.$ $\mathrm{O}_{4} \mathrm{~S}$)], (II), the molecules are linked by paired $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into centrosymmetric dimers which combine to form sheets. In (I), two such dimers form to give $R_{2}^{2}(10)$ and $R_{2}^{2}(24)$ rings. In (II), similar dimers form, here with $R_{2}^{2}(10)$ and $R_{2}^{2}(18)$ rings, but with an additional dimer due to the presence of the sulfone group, giving $R_{2}^{2}(10)$ rings. In both structures, $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions lead to a doubling of the width of the sheets.

Comment

The intermolecular non-bonded interactions in a number of nitro, sulfanyl and sulfonyl aromatic derivatives have been investigated in the solid state (Kelly et al., 2002; Cannon et al., 2000, 2001; Glidewell et al., 2001; Wardell et al., 2000a,b). Continuing our studies, the structures of (4-nitrophenylsulfanylmethyl)triphenylstannane, (I), and (4-nitrophenylsulfonylmethyl)triphenylstannane, (II), have now been investigated and the results are presented here.

(I)

(II)

Both (I) (Fig. 1) and (II) (Fig. 2) crystallize in the triclinic space group $P \overline{1}$ and form sheets via similar soft interactions.

Molecules of (I) are linked by two different $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) into centrosymmetric dimers, where nitro O atoms act as acceptors. The phenyl atom C 5 at (x, y, z) acts as a hydrogen-bond donor to nitro atom O 1 at $(3-x$, $2-y,-z$), thus forming a dimer characterized by an $R_{2}^{2}(10)$ motif with an inversion centre at $\left(\frac{3}{2}, 1,0\right)$. Similarly, atom C36 at (x, y, z) acts as a donor to nitro atom O 2 at $(2-x, 1-y,-z)$, giving an $R_{2}^{2}(24)$ ring with an inversion centre at $\left(1, \frac{1}{2}, 0\right)$. These two dimers combine to form a sheet which propagates along [110] (Fig. 3). In addition, the phenyl rings of neighbouring molecules are weakly linked by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. One of these interactions extends the sheet along the z direction; atom C 15 at (x, y, z) donates to the C21-C26 phenyl ring at ($1-x, 2-y, 1-z$), with a distance of 3.661 (3) A between atom C15 and the ring centroid. Such dimers are shown in Fig. 4, and they have the effect of doubling the width of the sheets shown in Fig. 3.

Figure 1
A view of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Figure 2
A view of the molecule of (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Figure 3
Part of the crystal structure of (I) showing dimers containing $R_{2}^{2}(10)$ and $R_{2}^{2}(24)$ rings [symmetry codes: (i) $3-x, 2-y,-z$; (ii) $2-x, 1-y,-z$].

Molecules of (II) are also linked via intermolecular C$\mathrm{H} \cdots \mathrm{O}$ interactions. In this case, the sulfone group leads to one further bond (Table 2). Considering the nitro acceptor interactions first, phenyl atom C 5 at (x, y, z) acts as a hydrogenbond donor to nitro atom O 1 at $(-x, 1-y,-z)$, to give an $R_{2}^{2}(10)$ motif centred at $\left(0, \frac{1}{2}, 0\right)$. Similarly, atom C7 at (x, y, z) donates to the nitro atom O 2 at $(-x, 2-y,-z)$, giving an $R_{2}^{2}(18)$ ring centred at $(0,1,0)$, forming a chain along [010] (Fig. 5). Thus, the effect of the sulfone group is to alter the local conformation and thus the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonding to the second nitro O atom. In (I), a phenyl H atom from the $\mathrm{Ph}_{3} \mathrm{Sn}$ group

Figure 4
The dimers formed from $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in (I) via the symmetry translation $(1-x, 2-y, 1-z)$.

Figure 5
Part of the crystal structure of (II) showing dimers containing $R_{2}^{2}(10)$ and $R_{2}^{2}(18)$ rings [symmetry codes: (i) $-x, 1-y,-z$; (ii) $-x, 2-y,-z$].
acts as the donor, whereas in (II), the CH_{2} group is the donor, effectively contracting the size of the $R_{2}^{2}(X)$ ring.

An extra hydrogen bond occurs due to the presence of the sulfone group. Phenyl atom C 2 at (x, y, z) acts as a hydrogenbond donor to sulfone atom O 4 at $(1-x, 2-y,-z)$, forming an $R_{2}^{2}(10)$ motif with an inversion centre at $\left(\frac{1}{2}, 1,0\right)$. These three dimers thus combine to form a sheet which propagates along [110] (Fig. 6), as in the structure of (I).

Figure 6
The chains formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions in (II).

As with (I), the phenyl groups in (II) form $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions with neighbouring molecules within the sheet. In addition, atom C33 at (x, y, z) donates a hydrogen bond to the C21-C26 phenyl ring at $(2-x, 1-y, 1-z)$, with a distance of $3.361 \AA$ between the H atom and the centroid (Fig. 7), which, as in (I), has the effect of doubling the width of the sheet.

The Sn centre in (I) is four-coordinate; the bond angles, in the range $106.27(10)-114.64(8)^{\circ}$, indicate a slightly distorted tetrahedral geometry. The $\mathrm{Sn}-\mathrm{C}$ bond lengths are in the expected region and fall in a narrow range, 2.138 (2)2.172 (2) \AA. The bond lengths in (II) show a greater range, with those involving the phenyl groups being between 2.1275 (15) and 2.1371 (15) \AA, and the $\mathrm{Sn}-\mathrm{C}_{\text {alkyl }}$ length being longer than these, at $2.1815(14) \AA$. The bond angles subtended at Sn in (II) range from 101.15 (5) to 111.76 (6) ${ }^{\circ}$, again indicative of a slightly distorted tetrahedral geometry. The closest $\mathrm{Sn} \cdots \mathrm{O}_{\text {sulfone }}$ separation is $\mathrm{Sn} \cdots \mathrm{O} 4.5906$ (12) \AA, a little within the sum of the van der Waals radii of $3.70 \AA$.

A number of related triphenyl-Sn and -Ge structures have been reported, along with one related iododiphenyltin compound (CSD database, Release 5.23; Allen \& Kennard, 1993). These are $\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ (CSD refcode GESYIM; Howie \& Wardell, 1997), $\mathrm{Ph}_{3} \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right) \mathrm{CH}_{2}-$ Cl (ZIKHOQ; Aupers \& Wardell, 1995), $\mathrm{Ph}_{3} \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SO}_{2^{-}}$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ [(III), $n=2$, YEZVEE; Cox \& Wardell, 1994], $\mathrm{Ph}_{3} \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ [(III), $n=4$, YEZVII; Cox \& Wardell, 1994], $\mathrm{Ph}_{3} \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ [(III), $n=3$, ZAVHIN; Howie \& Wardell, 1994], $\mathrm{IPh}_{2} \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{3}-$ $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ (ZAVHOT; Howie \& Wardell, 1994), $\mathrm{Ph}_{3} \mathrm{Sn}-$

Figure 7
The dimers formed by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in (II) via the symmetry translation ($1-x, 2-y, 1-z$).
$\mathrm{CHClCH}_{2} \mathrm{SC}_{6} \mathrm{H}_{3} \mathrm{NO}_{2}$-2-Me-4 (PAGHEK; Howie et al., 1992), $\mathrm{Ph}_{3} \mathrm{SnCH}(\mathrm{SCN}) \mathrm{CH}_{2} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2$ (PAGHIO; Howie et al., 1992), (cyclohexyl) $3_{3} \mathrm{SnCH}_{2} \mathrm{SC}_{6} \mathrm{H}_{4}{ }^{t} \mathrm{Bu}-4$ (JERMIC; Cox et al., 1990), $\mathrm{Ph}_{3} \mathrm{Ge}\left(\mathrm{CH}_{2}\right) \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ (NOJXEP; Wardell \& Cox, 1996), $\mathrm{Ph}_{3} \mathrm{SnC}(\mathrm{SMe})=\mathrm{CHC}_{6} \mathrm{H}_{5}$ (GODLOA and GODLUG; Bruhn et al., 1999), $\mathrm{Ph}_{3} \mathrm{SnC}\left(\mathrm{SCH}_{2} \mathrm{Ph}\right) \mathrm{CHCHC}\left(\mathrm{SCH}_{2} \mathrm{Ph}\right) \mathrm{SnPh}_{3}$ (POMXUK; Block et al., 1994) and $\mathrm{Ph}_{3} \mathrm{SnCH}_{2} \mathrm{CH}_{2} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ (ZUWQIR; Cox et al., 1995).

Of these, the first four (GESYIM, ZIKHOQ, YEZVEE and YEZVII) have $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds which can be considered in relation to (I) and (II). The latter four compounds (GODLOA, GODLUG, POMXUK and ZUWQIR) display $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions, while the rest do not form hydrogen bonds, as detected by PLATON (Spek, 2002).
$\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ (GESYIM), a Ge analogue to (II), forms hydrogen bonds via the CH_{2} group as donor to a sulfone O atom, thus forming simple $C(4)$ chains along [001]. No rings are formed. $\mathrm{Ph}_{3} \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-2\right) \mathrm{CH}_{2} \mathrm{Cl} \quad$ (ZIKHOQ), in which the nitro group is ortho to S , again has CH_{2} as the donor to one nitro O atom as acceptor, forming $R_{2}^{2}(16)$ dimers. The other H atom of the CH_{2} group donates to the other nitro O atom, forming a chain of dimers along [001]. $\mathrm{Ph}_{3} \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ (YEZVEE) again donates a hydrogen bond via the CH_{2} group adjacent to S to a sulfone O atom; in addition, a phenyl H atom acts as a donor to the same O atom, forming $R_{3}^{2}(13)$ groups which link to give $C(8)$ chains along [100]. In the related compound $\mathrm{Ph}_{3} \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{4}$ $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ (YEZVII), similar hydrogen bonding occurs, although here via the third CH_{2} group from S , to give an $R_{3}^{2}(16)$ motif, linking to give $C(12)$ chains along [010]. Both motifs are enlarged by the extra CH_{2} groups in the latter compound.

The products of the reactions of ω-sulfanylalkylstannanes, $R_{3} \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{~S} R^{\prime}$, with oxidants depend greatly on n and on the oxidant. For example, (II) was obtained by $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidation of (I), whereas the reaction of the related compound $\mathrm{Ph}_{3} \mathrm{Sn}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ [(IV), $n=1$] with NaIO_{4} led to cleavage of the molecule with formation of $\mathrm{Ph}_{3} \mathrm{SnCH}_{2} \mathrm{I}$ and $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{3} \mathrm{H}$ (Taylor \& Wardell, 1976; see also Peterson, 1971). The use of $3-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}$ with (IV), with $n=1$, also resulted in cleavage (Wardell, unpublished observation). In contrast, oxidations of (IV) with $n=3$ or 4 proceeded readily to the sulfones (III) with $n=3$ or 4 , or the corresponding sulfoxides, depending on the molar ratios of the reagents (Wardell \& Wigzell, 1983). Particularly sensitive to oxidants is (IV) with $n=2$. The reaction of (IV) with $n=2$ with either NaIO_{4} or $3-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}$ led to loss of ethylene (Wardell \& Wigzell, 1983). Compound (IV) with $n=2$ was, however, obtained by the addition of $\mathrm{Ph}_{3} \mathrm{SnH}$ to $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}$ $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ (Wardell \& Wigzell, 1983). The contrast between the Ge and Sn compounds is clear from the reactions of $\mathrm{Ph}_{3} M \mathrm{CH}_{2} \mathrm{SR}^{\prime}$ (M is Ge or Sn) with $3-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}$ or Br_{2}. The $\mathrm{Br}_{2}-R_{3} \mathrm{SnCH}_{2} \mathrm{~S}^{\prime}$ reactions invariably result in $\mathrm{Sn}-\mathrm{C}$ bond cleavage, while the Ge compounds can be oxidized to $\mathrm{Ph}_{3} \mathrm{GeCH}_{2} \mathrm{SO}_{m} R(m=1$ or 2$)$ by either Br_{2} in MeOH or 3- $\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}$ (Taylor \& Wardell, 1976; Wardell \& Cox, 1996).

Experimental

Compound (I) was prepared from $\mathrm{Ph}_{3} \mathrm{SnCH}_{2} \mathrm{I}, \mathrm{HSC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$ and NaOEt (2 mmol scale) in $\mathrm{EtOH}(20 \mathrm{ml})$. After refluxing for 2 h , the mixture was cooled, all volatiles removed and the residue recrystallized from EtOH (m.p. 416-418 K). Analysis found: C 58.4, H 5.5, S 6.3, N 3.1%; calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{SSn}: \mathrm{C} 58.0$, H 4.1, S 6.2, N 2.7%. Spectroscopic analysis, ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{~Hz}, \mathrm{CDCl}_{3}, \delta$, p.p.m.) $2.88\left[s, 2 \mathrm{H}, J\left({ }^{119,117} \mathrm{Sn}-{ }^{1} \mathrm{H}\right)=48.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right], 7.41(m, 11 \mathrm{H}, m-\mathrm{H}+p-\mathrm{H}$ of $\mathrm{Ph}_{3} \mathrm{Sn}+2 \mathrm{H}$ from $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.60\left[\mathrm{~m}, 6 \mathrm{H}, J\left({ }^{19,117} \mathrm{Sn}-{ }^{1} \mathrm{H}\right) \sim 57 \mathrm{~Hz}, o-\mathrm{H}\right.$ of $\left.\mathrm{Ph}_{3} \mathrm{Sn}\right], 8.10\left(d, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(63.3 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right.$, δ, p.p.m.): $5.2\left(\mathrm{CH}_{2}\right), 123.8\left(\mathrm{C}_{3}\right), 124.6\left(\mathrm{C}_{2}\right), 128.9\left(m-\mathrm{C}\right.$ of $\left.\mathrm{Ph}_{3} \mathrm{Sn}\right)$, $129.7\left(p-\mathrm{C}\right.$ of $\left.\mathrm{Ph}_{3} \mathrm{Sn}\right), 136.7\left(i-\mathrm{C}\right.$ of $\left.\mathrm{Ph}_{3} \mathrm{Sn}\right), 137.0\left(o-\mathrm{C}\right.$ of $\left.\mathrm{Ph}_{3} \mathrm{Sn}\right), 144.0$ $\left(\mathrm{C}_{1}\right), 152.7\left(\mathrm{C}_{4}\right) ;{ }^{119} \mathrm{Sn}$ NMR ($93.3 \mathrm{~Hz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$, p.p.m.): -118 ; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 1578$ and $1339\left(\mathrm{NO}_{2}\right) ; \operatorname{Raman}\left(\mathrm{cm}^{-1}\right): 1587,1331$.

Compound (II) was obtained by $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidation (30% solution in water) of (I) in a mixed $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ medium. After stirring the reaction mixture overnight at room temperature, all volatiles were removed and the residue was recrystallized from EtOH (m.p. 472$475 \mathrm{~K})$. Spectroscopic analysis, ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right.$, δ, p.p.m.): $3.44\left[s, 2 \mathrm{H}, J\left({ }^{119,117} \mathrm{Sn}-{ }^{1} \mathrm{H}\right)=41.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right], 7.43(m, 9 \mathrm{H}, p-\mathrm{H}+m-\mathrm{H}$ of $\left.\mathrm{Ph}_{3} \mathrm{Sn}\right), 7.63\left[m, 6 \mathrm{H}, J\left({ }^{119,117} \mathrm{Sn}-{ }^{1} \mathrm{H}\right) \sim 60 \mathrm{~Hz}, o-\mathrm{H}\right.$ of $\left.\mathrm{Ph}_{3} \mathrm{Sn}\right], 8.06$ $\left(d, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.28\left(m, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR ($63.3 \mathrm{~Hz}, \mathrm{CDCl}_{3}, \delta$, p.p.m.): $44.5\left(\mathrm{CH}_{2}\right), 124.4\left(\mathrm{C}_{3}\right), 128.2\left(\mathrm{C}_{2}\right), 129.0$ $\left(m-\mathrm{C}\right.$ of $\left.\mathrm{Ph}_{3} \mathrm{Sn}\right), 129.9\left(p-\mathrm{C}\right.$ of $\left.\mathrm{Ph}_{3} \mathrm{Sn}\right), 135.8\left(i-\mathrm{C}\right.$ of $\left.\mathrm{Ph}_{3} \mathrm{Sn}\right), 137.0(o-\mathrm{C}$ of $\mathrm{Ph}_{3} \mathrm{Sn}$), C_{4} and C_{1} not observed; IR (Nujol mull, cm^{-1}): 1527 and $1304\left(\mathrm{NO}_{2}\right), 1377$ and $1145\left(\mathrm{SO}_{2}\right)$.

Compound (I)

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)\right]$	$Z=2$
$M_{r}=518.18$	$D_{x}=1.555 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=6.6442(1) \AA$	Cell parameters from 12524
$b=10.3070(2) \AA$	reflections
$c=17.2597(4) \AA$	$\theta=2.9-27.5^{\circ}$
$\alpha=100.3385(8)^{\circ}$	$\mu=1.27 \mathrm{~mm}^{-1}$
$\beta=98.6403(9)^{\circ}$	$T=150(2) \mathrm{K}$
$\gamma=103.6969(16)^{\circ}$	Needle, yellow
$V=1106.51(4) \AA^{\circ}$	$0.40 \times 0.10 \times 0.03 \mathrm{~mm}$

$V=1106.51$ (4) A ${ }^{3}$
$0.40 \times 0.10 \times 0.03 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector diffractometer

5030 independent reflections 4460 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-8 \rightarrow 8$
$k=-13 \rightarrow 13$
$l=-22 \rightarrow 22$

Refinement

Refinement on $F^{2} \quad \mathrm{H}$-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.079$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0434 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.82 \mathrm{e}^{\mathrm{A}}{ }^{-3}$
$\Delta \rho_{\min }=-1.39 \mathrm{e}^{-3}$

5030 reflections
271 parameters

Compound (II)

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{4} \mathrm{~S}\right)\right.$]	$Z=2$
$M_{r}=550.18$	$D_{x}=1.606 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=6.8715$ (4) \AA	Cell parameters from 10598
$b=9.9680$ (5) \AA	reflections
$c=17.6403$ (10) \AA	$\theta=2.3-28.9^{\circ}$
$\alpha=81.0264(19)^{\circ}$	$\mu=1.25 \mathrm{~mm}^{-1}$
$\beta=89.4798$ (19) ${ }^{\circ}$	$T=120$ (2) K
$\gamma=72.5146(17)^{\circ}$	Block, colourless
$V=1137.42$ (11) \AA^{3}	$0.5 \times 0.3 \times 0.3 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer	5261 independent reflections 5061 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$\theta_{\text {max }}=28.9^{\circ}$
(SADABS; Sheldrick, 1997)	$h=-9 \rightarrow 8$
$T_{\text {min }}=0.674, T_{\text {max }}=0.688$	$k=-13 \rightarrow 13$
10598 measured reflections	$l=-23 \rightarrow 23$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0246 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$	+ 0.5422P]
$w R\left(F^{2}\right)=0.046$	where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=1.10$	$(\Delta / \sigma)_{\text {max }}=0.002$
5261 reflections	$\Delta \rho_{\text {max }}=0.38 \mathrm{e} \AA^{-3}$
289 parameters	$\Delta \rho_{\text {min }}=-0.61 \mathrm{e}^{\text {® }}{ }^{-3}$

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 4^{\text {i }}$	0.95	2.58	3.2753 (19)	131
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 1^{\text {ii }}$	0.95	2.48	3.204 (2)	133
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 2{ }^{\text {iii }}$	0.99	2.36	3.3163 (19)	161

Symmetry codes: (i) $1-x, 2-y,-z$; (ii) $-x, 1-y,-z$; (iii) $-x, 2-y,-z$.

Structure (I) was solved using Patterson methods (SHELXS86; Sheldrick, 1990) in P1, and then the coordinates were converted to $P \overline{1}$. All H atoms were placed in geometrically calculated positions, with $\mathrm{C}-\mathrm{H}$ distances of 0.95 (phenyl) and $0.99 \AA\left(\mathrm{CH}_{2}\right)$, and refined using a riding model.

For compound (I), data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: $S H E L X S 86$. For compound (II), data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX in OSCAIL (McArdle, 1994, 2000) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC X-ray Crystallographic Service, University of Southampton, England, for the collection of data, and acknowledge the use of the EPSRC Chemical Database Service at Daresbury (Fletcher et al., 1996). JLW and SMSVW thank CNPq for support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1559). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Aupers, J. H. \& Wardell, J. L. (1995). Acta Cryst. C51, 2559-2561.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Block, E., Guo, C.-X., Thiruvazhi, M. \& Toscano, P. J. (1994). J. Am. Chem. Soc. 116, 9403-9404.
Bruhn, C., Steinborn, D., Lébl, T. \& Holeček, J. (1999). Acta Cryst. C55, 363365.

Bruker (1999). SMART and SAINT. Versions 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.
Cannon, D., Glidewell, C., Low, J. N. \& Wardell, J. L. (2000). Acta Cryst. C56, 1267-1268.
Cannon, D., Low, J. N., McWilliam, S. A., Skakle, J. M. S., Wardell, J. L. \& Glidewell, C. (2001). Acta Cryst. C57, 600-603.
Cox, P. J., Doidge-Harrison, S. M. S. V., Nowell, I. W., Howie, R. A., Randall, A. P. \& Wardell, J. L. (1990). Inorg. Chim. Acta, 172, 225-232.

Cox, P. J. \& Wardell, J. L. (1994). J. Organomet. Chem. 482, 221-226.
Cox, P. J., Wardell, J. L., Adam, D. \& Muir, K. W. (1995). J. Chem. Crystallgr. 25, 487-491.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Fletcher, D. A., McMeeking, R. F. \& Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.
Glidewell, C., Harrison, W. T. A., Low, J. N., Sime, J. G. \& Wardell, J. L. (2001). Acta Cryst. B57, 190-200.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Howie, R. A. \& Wardell, J. L. (1994). Main Group Met. Chem. 17, 571-582.
Howie, R. A. \& Wardell, J. L. (1997). Z. Kristallogr. New Cryst. Struct. 212, 379-380.
Howie, R. A., Wardell, J. L., Zanetti, E., Cox, P. J. \& Doidge-Harrison, S. M. S. V. (1992). J. Organomet. Chem. 431, 27-40.

Kelly, C. J., Skakle, J. M. S., Wardell, J. L., Wardell, S. M. S. V., Low, J. N. \& Glidewell, C. (2002). Acta Cryst. B58, 94-108.
McArdle, P. (1994). J. Appl. Cryst. 27, 438-439.
McArdle, P. (2000). OSCAIL for Windows. National University of Ireland, Galway, Ireland.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Peterson, D. J. (1971). J. Organomet. Chem. 26, 215-223.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97 and SADABS. University of Göttingen, Germany.
Spek, A. L. (2002). PLATON. Version of 2002. University of Utrecht, The Netherlands.
Taylor, R. D. \& Wardell, J. L. (1976). J. Chem. Soc. Dalton Trans. pp. 13451351.

Wardell, J. L. \& Cox, P. J. (1996). J. Organomet. Chem. 515, 253-258.
Wardell, J. L., Low, J. N. \& Glidewell, C. (2000a). Acta Cryst. C56, 679-681.
Wardell, J. L., Low, J. N. \& Glidewell, C. (2000b). Acta Cryst. C56, 862-864.
Wardell, J. L. \& Wigzell, J. McM. (1983). J. Organomet. Chem. 244, 225-233.

[^0]: Copyright © International Union of Crystallography
 Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

