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Abstract 12 

Isotope geochemistry is an essential part of environmental and climate change research and 13 

over the last few decades has contributed significantly to our understanding of a huge array of 14 

environmental problems, not least in palaeolimnology and limnogeology. Here we describe 15 

some of the recent developments in the use of stable isotopes in palaeo-lake research. These 16 

are: better preparation, analysis, and interpretation of biogenic silica oxygen and silicon 17 

isotopes; extraction and characterisation of specific compounds such as leaf waxes and algal 18 

lipids for isotope analysis; determining the excess of 13C-18O bonds in clumped isotopes; and 19 

the measurement of multiple isotope ratios in chironomid chitin. These advances have 20 

exciting prospects and it will be interesting to see how these techniques develop further and 21 

consequently offer a real advancement in our science over the next decade. 22 
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 24 

Introduction  25 

Isotope geochemistry has become an essential part of environmental and climate change 26 

research over the last few decades and has contributed significantly to our understanding of a 27 

huge array of environmental problems, which span the whole of Earth system science and not 28 

least in palaeolimnology and limnogeology. Continual improvements over time have been 29 

made in preparatory methods and mass spectrometry (de Groot 2004), specifically the 30 

development of simpler (less time consuming) preparation procedures, decreases in sample 31 

size, improved accuracy of measurements and better international standardisation. Now, on-32 

line systems including continuous flow and laser technology are routine and require very 33 

small sample sizes and can measure high numbers of samples often completely automatically. 34 

In addition there is an increasing move towards combined measurements of several isotopes 35 

in a sample. Here, we describe specific advancements that have, or will, in our opinion, 36 

enable significant advancements in palaeolimnology. For example; (1) better preparation, 37 

analysis, and interpretation of biogenic silica oxygen and silicon isotopes; (2) extraction and 38 

characterisation of specific compounds such as leaf waxes and algal lipids for isotope 39 

analysis; (3) determining the excess of 13C-18O bonds in clumped isotopes; and (4) 40 

measurement of multiple isotope ratios in chironomids. We summarise these significant 41 

advancements, some of which are relatively new to palaeolimnology so there are few 42 

published examples to draw upon. It will be interesting in the next decade to see which of 43 

these techniques take off and offer a real advancement in our science. 44 

Biogenic silica oxygen and silicon isotopes  45 

The use of oxygen and silicon isotopes in biogenic silica was developed by oceanographers in 46 

the 1970s and 80’s (Labeyrie 1974; Labeyrie and Juillet 1982; Labeyrie et al. 1984) 47 

following techniques developed forty to fifty years ago (see Clayton and Mayeda 1963). The 48 

oxygen (18O), silicon (30Si), carbon (13C) and nitrogen (15N) compositions of biogenic 49 

silica are increasingly being used as proxies for environmental change. 18O tends to be used 50 

as a measure of temperature/water composition variation, 30Si for productivity, and 13C and 51 

15N for nutrient cycling/source investigation. Biogenic silica is a structurally complex 52 

mineral especially for 18O measurement; carbon and nitrogen (for 13C and 15N) occur in 53 

very small quantities in organic material hosted within the structure and can be difficult to 54 

extract, while the measurement of 30Si is relatively simple (in comparison to 18O, 13C, 55 
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15N), but there are still uncertainties over the interpretation of the 30Si signal in 56 

palaeolimnology, largely as a result of the paucity of studies. However, the recent renewed 57 

effort in using biogenic silica in palaeoenvironmental research (especially diatom silica in 58 

palaeolimnology; Leng and Barker 2006) has highlighted new ways of dealing with the many 59 

issues that accompany its use. Specifically these issues are: contamination; the hydrous layer 60 

and associated maturation of diatom silica; controls on the 18O; the also the forward 61 

potential of 30Si and occluded 13C and 15N in diatom silica.  62 

 63 

Contamination of biogenic silica 64 

 65 

Much effort has been placed on diatom purification and methodological issues prior to 66 

isotope analysis (Shemesh et al. 1995; Morley et al. 2004; Lamb et al. 2005; Schleser et al. 67 

2001; Rings et al. 2004; Brewer et al. 2008; Tyler et al. 2007; van Bennekom and van der 68 

Gaast 1976; Mackay et al. 2011) as almost pure biogenic silica is required since oxygen and 69 

silicon are common elements in other components found in lake sediments (clay, silt, tephra, 70 

carbonates) and these can affect the isotope signal or in the case of organic carbon interfere 71 

with methodological procedures. While standard chemical leaching and physical separation 72 

approaches (sieving, heavy liquids) work well for samples with a high proportion of diatom 73 

silica (>10%) more sophisticated and time consuming approaches are required to clean 74 

relatively diatom poor (<10%) material, where sample sizes are small or where the 75 

contaminant is similar in size and density to the diatom silica. Relatively new approaches 76 

include SPLITT (gravitational split-flow lateral-transport), micromanipulation, and chemical 77 

mass balance modelling. SPLITT is an approach similar to heavy liquid separation (Giddings 78 

1985) whereby individual particles within a sample are separated under laminar flow of water 79 

on the basis of their density, size and shape. This approach has been successfully applied to 80 

the separation of diatoms from other particles (Schleser et al. 2001; Rings et al. 2004; Leng 81 

and Barker 2006). Perhaps most time consuming of all is the use of a micro-manipulation 82 

device attached to an inverted microscope with a cellular micro-injector system used to 83 

extract individual non diatom particles from a sample. Whilst time consuming, it potentially 84 

allows for the final stage removal of particles that are chemically and physically identical to 85 

diatoms as well as potentially allowing the separation of diatom species (Snelling et al. in 86 

press). Finally, where all other methods fail there is mass balance chemical modelling, 87 

whereby a combination of whole-rock geochemistry and electron-optical imaging provides a 88 
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method for the identification, estimation of the amounts and subsequent removal of the 89 

effects of different types of contamination (Lamb et al. 2005; Brewer et al. 2008; Mackay et 90 

al. 2011; Fig. 1). This approach only works well in samples where the contamination is low 91 

relative to the amount of diatom (<50%) and the contaminant has a uniform and consistent 92 

chemical composition. 93 

 94 

The hydrous layer and maturation of oxygen isotopes in biogenic silica 95 

 96 

Biogenic silica has an amorphous structure containing Si-O-Si bonds, Si-OH bonds and 97 

crystallization water (Knauth and Epstein 1982). These oxygen-bearing compounds (–OH 98 

and H2O) can exchange freely with water in their environment, for example with porewater 99 

during burial of diatoms (Mopper and Garlick 1971; Kawabe 1978; Mikkelsen et al. 1978; 100 

Schmidt et al. 1997; Brandriss et al. 1998; Moschen et al. 2006) or even with water used in 101 

the preparation of the material in the laboratory. Because of the ready exchangeability of the 102 

hydrous layer, and potentially wide ranging alteration of its isotope composition, it must be 103 

removed prior to 18O measurement (Leng and Sloane 2008) making it a complex mineral to 104 

analyse. Also the presence of this hydrous layer means that 18O may be influenced by 105 

secondary processes that lead to early diagenetic changes. Schmidt et al. (2001) described the 106 

influence of silica condensation on the isotopic composition of sedimented opal due to 107 

isotope exchange. Moschen et al. (2006) ascribed 18O enrichment of the diatomaceous silica 108 

as an effect of biogenic silica maturation (dehydroxylation i.e. reduction of Si–OH groups) 109 

after removal of the organic coatings. Sedimentary diatomaceous silica is likely to be affected 110 

by secondary processes (especially the hydrous parts), however, the predominant portion of 111 

the oxygen (c. 90%) should be bound to silicon in SiO4 tetrahedrons (forming the structurally 112 

bound oxygen and this oxygen should be more resistant to alteration). In addition progressive 113 

silica maturation does not appear to occur within sedimentary archives because we would 114 

expect (but do not see) a trend in 18O leading to a successive isotopic change through time. 115 

It might be there is a very slow progression of the maturation process after a fast initial phase 116 

of signal alteration and so that some of the 18O signal is in fact acquired soon after the 117 

formation of the biogenic silica, during early diagenesis in the water column and during early 118 

sediment burial. Dodd and Sharp (2010) showed that maturation is a process that occurs in 119 

the water column or at the latest at the sediment-water interface. They comment that in the 120 

case of deep lacustrine environments, where the bottom water remains at a nearly constant 121 
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temperature of 4oC, the re-equilibration of diatom silica with bottom conditions could reduce 122 

or remove the conflating effects of temperature on 18O recorded by palaeo-diatom silica and 123 

provide direct information on the 18O of the lake water. Overall though lake sediment 124 

records are most likely site specific and as our knowledge of the likely effects of maturation 125 

increases so does the effort in ensuring analysis is only undertaken of the tetrahedrally-126 

bonded oxygen.  127 

 128 

The removal of the effect of the exchangeable oxygen contained in hydrous groups is perhaps 129 

still the greatest analytical issue and there are two main approaches - chemical removal using 130 

a fluorination reagent, and controlled isotopic exchange with subsequent removal by a mass 131 

balance calculation. These two analytical protocols are the basis of four methods that have 132 

been established to measure 18O in biogenic silica (Chapligin et al. 2011). These methods 133 

have been developed relatively independently because there is no commercially available 134 

“off the shelf” equipment that allows for dehydration of biogenic silica prior to extraction of 135 

the oxygen isotopes and mass spectrometry. A brief summary of the methods is given below:  136 

 137 

(1) The Controlled Isotopic Exchange (CIE) method where loosely-bound oxygen is 138 

exchanged with oxygen from water vapour (and later mass balanced) before reaction with a 139 

fluorinating reagent;  (2) StepWise Fluorination (SWF) method in which the biogenic 140 

material is step heated and reacted with a fluorinating reagent; (3) inductive High-141 

Temperature carbon reduction (iHTR) in which the silica is thermally dehydrated under 142 

vacuum; and (4) inert Gas Flow Dehydration (iGFD) during which exchangeable oxygen is 143 

thermally removed under a continuous flow of helium.  144 

 145 

Generally, after the removal or fixing of the exchangeable oxygen by the methods described 146 

above, the tetrahedrally-bonded oxygen from the Si-O-Si structure is liberated either by 147 

conventional (slow reaction in heated nickel cylinders) or laser (fast reaction by laser heating) 148 

fluorination with ClF3, BrF5 or F2. The oxygen is then measured as CO2, CO or O2 by mass 149 

spectrometry. Chapligin et al. (2011) undertook an isotope standard comparison study, which 150 

shows for the first time that despite procedural and methodological differences across the 151 

eight laboratories that participated in the standard comparison study (using the 4 different 152 

methods on six working standards),  they produced data on working standards that have 153 

standard deviations for δ18O between 0.3 and 0.9‰ (1) and shows that the exchangeable 154 
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oxygen issue, at least analytically, is dealt with relatively consistently. 155 

 156 

Oxygen isotopes in diatom silica 157 

 158 

To date the most successful studies have been conducted on diatom silica in areas where the 159 

18Odiatom registers changes in the 18O composition of the lake water (rather than 160 

temperature) which is then related to other aspects of climate, for example the 161 

precipitation/evaporation balance (Rioual et al. 2001), the amount of precipitation in the 162 

tropics (Barker et al. 2001), and changes in the source of precipitation in Northern Europe 163 

(Shemesh et al. 2001a,b; Rosqvist et al. 2004; Jones et al. 2004). However, diatom oxygen 164 

signals do contain a component of temperature, although empirical studies of the 18O of 165 

diatom frustules have indicated a discrepancy in the silica–water fractionation factor between 166 

modern/cultured diatoms and sediment-derived diatom records (e.g. Schmidt et al. 2001; 167 

Moschen et al. 2005; 2006; Tyler et al. 2008). 18O values of modern diatoms collected as 168 

living specimens from natural, freshwater environments record a temperature dependent 169 

silica–water fractionation nearly identical to that reported by Brandriss et al. (1998) and 170 

Moschen at al. (2005) from cultured diatom samples, both indicating a mineral-water 171 

temperature coefficient of –0.2‰/°C. However, caution is needed, as described previously, 172 

some studies suggest that the signal is incorporated during sinking in the water column and/or 173 

in the bottom waters or at the sediment surface under different temperatures. Overall, while 174 

18Odiatom  is likely not a good proxy for temperature alone there are many other aspects of 175 

climate this it is ideally suited.   176 

 177 

Silicon isotopes in diatom silica 178 

 179 

In oceans there have been studies that have confirmed the link between diatom silicon 180 

utilization and 30Si compositions (De La Rocha et al. 2000; Varela et al. 2004; Cardinal et 181 

al. 2005). Consequently, 30Si data from the sedimentary records have been used as a proxy 182 

to reconstruct palaeoproductivity (or more strictly marine silicic acid use by diatoms relative 183 

to initial dissolved silicic acid concentrations; i.e. De La Rocha et al. 1998; Brzezinski et al. 184 

2002). In continental waters, there have been relatively fewer 30Si investigations, and those 185 

reported tend to be on major rivers (De La Rocha et al. 2000; Ding et al. 2004; 2011). Silicon 186 

in rivers comprises both dissolved and particulate matter, and measurement of both allows an 187 
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assessment of weathering as well as productivity-related fractionation. These studies, whilst 188 

highlighting the complexity of lake systems (potentially having several weathering 189 

component fluxes) show that 30Si values are consistent with Si concentrations (De La Rocha 190 

et al. 2000). They also suggest that Si isotope fractionation is independent of species and 191 

(direct) temperature, offering potential information on changes in nutrient supply and 192 

limnology. In palaeolimnology, studies have focused on the relationship between climate, 193 

diatom productivity, and lake mixing regimes (Alleman et al. 2005) though to date there are 194 

rather few studies to draw upon. Given the current interest in 30Si in palaeolimnology, we 195 

are likely to see a surge of studies in the years to come especially accompanying the use of 196 

18O in diatom silica (Leng and Barker 2006). 197 

 198 

One of the first studies of lacustrine 30Si is from Lake Rutundu, Mt. Kenya, over the last ~38 199 

ka, which described a small, well studied lake/catchment in order to highlight processes that 200 

may have operated at biome to continental scales during the Late Quaternary (Street-Perrott 201 

et al. 2008). A combination of lake sediment fluxes and stable isotope (13C, 15N, 18O, 202 

30Si) data showed that under glacial conditions high diatom productivity was maintained by 203 

substantial transport of dissolved SiO2 and soil nutrients from a sparse, leaky, terrestrial 204 

ecosystem. During a period of high monsoon rainfall and seasonality rapid Si cycling by fire-205 

prone grassland was associated with substantial aeolian transport of opal phytoliths by smoke 206 

plumes, but greatly reduced nutrient flux in runoff. Invasion of tall, subalpine shrubs 207 

subsequently enhanced landscape stability, leading to very low sediment fluxes of both 208 

phytoliths and diatoms. In another study Chen et al. (2012) measured δ30Si from diatoms in 209 

sediments from Lake Huguangyan, a closed crater lake in China. The results show a 210 

relationship between δ30Sidiatom, biogenic silica content and local temperature records over the 211 

last 50 years and northern hemisphere palaeotemperatures over the last 2000 years. They 212 

interpret higher δ30Sidiatom as an indication of greater dissolved silicic acid utilization at higher 213 

temperature while lower δ30Sidiatom reflects decreased utilization at lower temperature.  214 

 215 

Carbon and nitrogen isotopes in occluded organic matter in diatom silica 216 

 217 

Increasingly researchers are using isotope methods based on single organisms that use 218 

dissolved carbon and nitrogen for photosynthesis to reveal changes in the carbon and nitrogen 219 

cycle rather than bulk methods. In this context diatom frustule contains proteins (pleuralins, 220 
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silaffins and long chain polyamines) incorporated during growth that are central to silica 221 

sequestration and become entombed within the silica cell wall structure (Hecky et al. 1973; 222 

Kroger and Poulson 2008; Bridoux et al. 2010). Analyses of δ13Cdiatom (Jacot Des Combes et 223 

al. 2008; Schneider-Mor et al. 2005; Shemesh et al. 1995) and 15Ndiatom (e.g., Crosta and 224 

Shemesh 2002; Crosta et al. 2005) in Southern Ocean cores highlight the feasibility and 225 

applicability of these techniques in palaeoceanography. Pre-analysis the diatom silica has to 226 

be prepared by removing all external mucilage organic matter. Since the amount of occluded 227 

organic matter is small within diatom silica, several milligrams of material is used for the 228 

analysis. However, these methods are not generally used in palaeolimnology where more 229 

complex nutrient cycling can pose significant challenges for the interpretation of the 230 

palaeoenvironmental record. There are advantages in using the isotope composition of 231 

occluded organic matter within the silica of diatoms. It has been suggested that the isotope 232 

composition within the diatom cell walls is not affected by post depositional degradation and 233 

therefore potentially preserves an unaltered signal of surface water conditions during diatom 234 

growth (Brenner et al. 1999; Ficken et al. 2000) and in addition avoids the generally 235 

heterogeneous nature of bulk sedimentary organic matter (Hurrell et al. 2010). There are 236 

unresolved analytical issues outstanding especially with 15Ndiatom measurements, in particular 237 

the ongoing discussion of issues around the persulfate-denitrifier technique (Leng and Swann 238 

2010).  Few studies exist of isotopes in occluded organic matter in diatom silica. In a recent 239 

study of a 25,000-year sediment record from Lake Challa, Mt. Kilimanjaro, δ13Cdiatom was 240 

used in comparison with other proxy data to make inferences about the three major phases in 241 

the history of the lake (Fig. 2; Barker et al., in press).  From 25 ka to 15.8 ka years BP and 242 

from 5.5 ka to present, δ13Cdiatom, δ13Cbulk and high diatom content suggests high aquatic and 243 

terrestrial productivity.  From 15.8 to 5.5 ka the correlation between δ13Cdiatom and δ13Cbulk 244 

breaks down, suggesting carbon supply to the lake satisfied or exceeded demand from 245 

productivity. The tripartite division of the data interpreted alongside 18Odiatom show that the 246 

demand exerted by lake productivity regulated by nutrient availability and changes in carbon 247 

supplied from the catchment is forced by climate as indicated hydrological interpretation of 248 

18Odiatom (Fig. 2; Barker et al. in press).   249 

 250 

Compound specific isotope analysis 251 

 252 

There has been enormous growth in the application of compound specific isotope analysis 253 
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(CSIA) to lacustrine sediments; in particular, the use of δ13C to reconstruct changes in 254 

vegetation and primary productivity, and δD to track changes in aridity and precipitation. The 255 

CSIA approach relies on the extraction and quantification of organic molecules and on the 256 

assumption they can be related back to a precursor organism, especially the straight-chain 257 

hydrocarbons of n-alkanes, n-alkanols and n-alkanoic acids. The long-chain (C27–C35) n-258 

alkanes are a main component of the epicuticular waxes of higher plants (Eglinton and 259 

Hamilton 1967). In contrast, aquatic algae are dominated by shorter-chain homologues (C17–260 

C21 n-alkanes), while the mid-chain homologues (C23–C25 n-alkanes) are a dominant 261 

component of submerged aquatic macrophytes (Giger et al. 1980; Cranwell et al. 1987; 262 

Ficken et al. 2000). On the whole, these molecules are well preserved in lake sediments and 263 

once they have been identified and quantified by GC and GC/MS their isotopic composition 264 

can be determined using GC-IRMS. Both terrestrial plant leaf waxes and algal lipids 265 

therefore, can provide important insights into past environments. 266 

Carbon isotopes in leaf waxes and algal lipids 267 

The carbon isotope composition (13C) of specific compounds has predominantly been used 268 

in two ways. Firstly, the 13C of terrestrial plant leaf waxes (long-chain n-alkanes and n-269 

acids) have been used to distinguish between vegetation using different photosynthetic 270 

pathways such as C3 (Calvin-Benson pathway) and C4 (Hatch-Slack pathway) plants. As 13C 271 

of the n-alkanes differs depending on the photosynthetic pathway utilised by the plant, their 272 

isotopic composition can be used to examine changes in vegetation type. For example, the 273 

average 13C for C29 n-alkane for C3 plants is –34.7‰, while the C4 plants are 13C-enriched 274 

with an average 13C for C29 n-alkane of –21.4‰ (cf. Castañeda et al. 2009a). As changes in 275 

vegetation type are largely related to the prevailing climatic conditions such as temperature, 276 

aridity and/or atmospheric carbon dioxide (pCO2) concentrations, the 13C of plant waxes can 277 

be used to reconstruct qualitative changes in past climate. These 13C data can then be used 278 

further by taking a semi-quantitative approach using end member-mixing models to 279 

reconstruct the proportion of C4 plants present in past vegetation (and therefore the degree of 280 

aridity or pCO2) by using the 13C values constrained for C3 and C4 plants (e.g. Huang et al. 281 

2006; Castañeda et al. 2007; Sinninghe Damsté et al. 2011). 282 

 283 

The second way lipid biomarker 13C can be used is by examining the 13C of aquatic 284 

biomarkers, such as short- and mid-chain n-alkanes related to algae and submerged and 285 
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emergent macrophytes respectively, to reconstruct changes in primary productivity and 286 

carbon source. Analysis of 13C n-alkanes has several advantages over the traditional proxy 287 

for past aquatic productivity – 13C of bulk organic matter (13COM) – as the compound 288 

specific approach does not incorporate several sources of carbon (terrestrial, aquatic and 289 

bacterial) and other processes such as pH and dominant inorganic carbon species, which have 290 

the potential to influence 13COM. In fact, it is difficult to deconvolute all of the confounding 291 

factors that determine 13COM in a lake. For example, 13C-enriched values of 13COM tend to 292 

indicate increased productivity (Hollander and McKenzie 1991; Leng and Marshall 2004), 293 

but enriched 13COM values can also be caused by C4-dominated terrestrially derived organic 294 

matter, as well as the limitation of dissolved CO2 in lakes causing 13C-enrichment of 13COM 295 

as organisms begin to utilise bicarbonate (HCO3
–) as a function of pH (Meyers 2003; Aichner 296 

et al. 2010a). Conversely, the breakdown of organic matter at the water-sediment interface 297 

produces 13C-deplete CO2 (aq) that can be incorporated into the carbon pool of the lake and the 298 

subsequent 13COM would be isotopically lighter, even during a time of greater productivity 299 

(Hollander and McKenzie 1991). 13COM can also be modified by the abundance of aquatic 300 

macrophytes, which can be submerged or emergent and this leads to utilisation of CO2 from 301 

the atmosphere and inorganic carbon from the water, thus complicating the 13COM signal 302 

with respect to palaeoproductivity (Aichner et al. 2010a). Furthermore, in lakes that receive a 303 

high proportion of terrestrial organic matter, 13COM will not reflect aquatic productivity at 304 

all, but rather changes within the lakes catchment (e.g., Lake Malawi;  Castañeda et al. 305 

2009b). Therefore, examining the 13C of different component n-alkanes can elucidate the 306 

processes occurring within a lake’s carbon cycle.  307 

 308 

A recent study by Aichner et al. (2010a) analysed a sediment core from Lake Koucha, eastern 309 

Tibetan Plateau, for 13C of total organic carbon (13CTOC), total inorganic carbon (13CTIC) 310 

and the 13C of aquatic macrophyte-derived n-alkanes (13Cn-C23), to investigate the controls 311 

on the lake’s carbon cycle over the deglacial and Holocene. The authors found a correlation 312 

between TOC, total amount of n-C23 and 13CTOC and 13Cn-C23, which indicates Lake 313 

Koucha was macrophyte-dominated before 8000 cal. years BP (Fig. 3). Subsequent to this, 314 

the lake switched from a saline to freshwater system ~7200 cal. years BP and the lake began 315 

to be colonised with phytoplankton, before being dominated by algae, in particular, diatoms 316 

from 6100 cal. years BP (Fig. 3; Aichner et al., 2010a). There is a large range of 13Cn-C23  317 
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values through the record (–23.5‰ to –12.6‰), with lowest values during the greatest 318 

macrophyte abundance and the highest during the period of phytoplankton dominance. 319 

Therefore, Aichner et al. (2010a) argue 13Cn-C23 is an excellent indicator of carbon-limiting 320 

conditions that lead to the assimilation of isotopically 13C-enriched carbon species (Fig. 3).  321 

 322 

The cause of this carbon limitation may be very localised (eg. within a single macrophyte 323 

bed) or could be induced by higher primary productivity. A comparison of 13Cn-C23 with 324 

13CTOC from Lake Koucha (Fig. 3) and the offset between the two (13Cn-C23 - 13CTOC) 325 

provides information about the relative contributions of aquatic macrophytes to the overall 326 

organic carbon pool. The isotopic signature of bicarbonates assimilated by macrophytes show 327 

large variations, as indicated by 13CTOC (Fig. 3), while the 13CTIC increases by 8‰ during 328 

the phytoplankton maximum (period III, Fig. 2), suggesting the more positive 13Cn-C23 values 329 

during this time are caused by enrichment of the inorganic carbon pool (Aichner et al., 330 

2010a). However, as there are multiple sources of inorganic carbon in a lake, 13CTIC will 331 

vary according to the source. Therefore the offset between 13Cn-C23 and 13CTIC provides a 332 

more robust assessment for changes in carbon-limiting conditions within Lake Koucha (Fig. 333 

3).  334 

 335 

The 13C analysis of long-, mid- and short-chain lipid biomarkers deposited in lake sediments 336 

has elucidated our understanding of past environmental changes, in particular, changes in 337 

terrestrial and aquatic vegetation. As the studies discussed above highlight, the ability to 338 

analyse specific compounds for 13C means for the first time we are beginning to understand 339 

the different parts of the carbon cycle within lake systems.  340 

 341 

Hydrogen isotopes in leaf waxes and algal lipids 342 

 343 

The deuterium isotope composition (δD) of long-chain leaf waxes and short-chain algal lipids 344 

e.g. n-alkanes and n-alkanoic acids, is increasingly being used as a proxy for past 345 

hydrological fluctuations. The δD composition of meteoric water is influenced by a number 346 

of environmental factors, such as temperature, source moisture, amount of precipitation, and 347 

continental rainout (Bowen and Revenaugh 2003). Therefore, changes in climate that affect 348 
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the isotopic composition of precipitation can be tracked using the δD composition of leaf 349 

waxes, as precipitation is the source water for higher plants, while algal lipid δD values 350 

register a change in the hydrological balance of the lake as they record surface water δD. A 351 

number of studies have demonstrated on a continental to global scale that the δD of 352 

precipitation controls the δD of plant leaf waxes (e.g., Bi et al. 2005; Sachse et al. 2006; 353 

Smith and Freeman 2006; Hou et al. 2008; Rao et al. 2009; Polissar and Freeman 2010), 354 

while the δD of lake water is an important control of algal lipid δD (e.g., Sauer et al. 2001; 355 

Huang et al. 2004; Sachse et al. 2004). These first-order relationships over a wide spatial 356 

scale suggest the δD of various biomarkers can be a powerful palaeohydrological proxy in 357 

lake sediments. However, other factors have the potential to alter the δD of leaf wax or algal 358 

lipids, such as biosynthetic fractionations, (evapo)transpiration and ecological turnover, and 359 

must be considered before full palaeoclimatic inferences can be made. 360 

 361 

As in many isotope systems, there is a fractionation between the isotope composition of water 362 

and the isotope composition of the biomarker. In the case of leaf waxes and algal lipids a 363 

biosynthetic fractionation of δD from prevailing meteoric and lake water has been 364 

documented in higher plants (Smith and Freeman 2006; Hou et al. 2008; Feakins and 365 

Sessions 2010) and algae (Zhang and Sachs 2007; Zhang et al. 2009). Determining this 366 

apparent fractionation between meteoric and/or lake water and lake sediment δD proxies is 367 

essential for the interpretation of lake-sediment δD records. Down core variations in δD can 368 

be interpreted as fluctuations in hydrology, if we assume biosynthetic fractionation of the 369 

same lipid derived from a different species is identical. If not, changes in δD can equally 370 

result from shifts in plant or algal species (ecological turnover) and the overall δD trends will 371 

therefore be driven by differences in isotopic fractionation. For example, the fractionation 372 

between meteoric water and leaf waxes originating from grasses and woody species range –373 

73‰ to –242‰ and from –57‰ to –220‰, respectively (Liu and Yang 2008), although 374 

smaller fractionations have been documented in arid and semi-arid environments (up to –375 

90‰; Feakins and Sessions 2010). These fractionations are further complicated depending on 376 

the photosynthetic pathway used by the plant (C3 vs. C4 vegetation), as studies have shown n-377 

alkanes from C4 grasses to have more positive δD values than those from C3 grasses (Smith 378 

and Freeman 2006; Liu et al. 2006a; Liu and Yang 2008; McInerney et al. 2011). However, 379 

some studies suggest C3 plants have increased δD values compared to their C4 counterparts 380 

(Chikaraihsi and Narako 2003), while others haven’t observed any difference between C3 and 381 

C4 plants (Bi et al. 2005; Rao et al. 2009). Liu and Yang (2008) suggest the main influence 382 
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on δD is the vegetation-form (i.e. tree, shrub or grass as they utilise very different source 383 

waters). A recent study by Rao et al. (2009) however found no apparent relationship between 384 

δD and vegetation type (e.g. forest vs. grassland or C3 vs. C4 plants). In an aquatic setting, 385 

culture studies have demonstrated that while algal lipid δD reflect the δD of the source water, 386 

there were systematic variations in the fractionation between the isotope composition of 387 

water and different lipid homologues within a single species (Zhang and Sachs 2007). 388 

Perhaps more importantly, Zhang and Sachs (2007) document a –90‰ to –100‰ difference 389 

in hydrogen fractionation within a single lipid class across five species of algae. The authors 390 

therefore advised caution against the use of lipids that have multiple sources (Zhang and 391 

Sachs 2007). Despite this, a number of studies have shown a strong relationship between δD 392 

of short-chain lipids in surface lake sediments, which are potentially from multiple sources, 393 

and lake water δD (Huang et al. 2004; Sachse et al. 2004; Shuman et al. 2006; Hou et al. 394 

2008; Henderson et al. 2010a).  395 

 396 

The CSIA approach means it is possible to measure the δD composition of multiple 397 

compounds within the same stratigraphic layer and as a result some studies have begun to 398 

explore the use of long-chain (terrestrially-derived) and short-chain (aquatic-derived) n-399 

alkane δD as a proxy for evapotranspiration or water balance in some lakes. For example, a 400 

30‰ difference in δD between terrestrially- and aquatic-derived n-alkanes was observed 401 

across a range of small, groundwater-fed lakes in Europe (Sachse et al. 2004). As the 402 

terrestrial n-alkanes record meteoric δD, but were enriched by 30‰ compared to the aquatic 403 

n-alkane δD, the offset between the two (terrestrial δD mean  = –128‰; aquatic δD mean = –404 

157‰) is thought to derive from evapotranspiration in the terrestrial plant leaf (Sachse et al. 405 

2004). This means there is the potential to reconstruct changing evapotranspiration through 406 

time, although this assumes the moisture source for a lake doesn’t change. Mügler et al. 407 

(2008) found terrestrial n-alkanes (C29) enriched by ~30‰ compared to aquatic n-alkanes 408 

(C23) in Lake Holzmaar, a groundwater fed lake in Germany, supporting the analysis by 409 

Sachse et al. (2004). However, in the semi-arid and arid setting of the Tibetan Plateau, 410 

terrestrial n-alkanes were isotopically depleted by ~60‰ compared to aquatic n-alkanes in 411 

two lakes (Nam Co, Jiana Co) (Mügler et al. 2008). The difference in offset between C29 and 412 

C23 n-alkanes in Germany compared to Tibet results from the moisture balance of the lakes. 413 

The δD of Lake Holzmaar surface water is in isotopic equilibrium with input water 414 

(precipitation and groundwater), while Nam Co and Jiana Co are isotopically enriched by 415 

30‰ to 50‰, suggesting evaporative concentration of lake waters at these two sites. As a 416 
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result Mügler et al. (2008) suggest a positive δD C29-C23 is a good indicator of humid 417 

conditions, while a negative δD C29-C23 reflects semi-arid to arid conditions and therefore 418 

δD C29-C23 can potentially be used as a palaeoaridity indicator and to estimate the 419 

evaporation to inflow ratio to reconstruct past water balance.  420 

 421 

The influence of relative humidity and evaporative enrichment of soil and leaf water on δD 422 

can complicate the application of the δD C29-C23 approach to lake sediments. Aichner et al. 423 

(2010b) tested the application of δD C29-C23 to Tibetan lakes by examining surface sediment 424 

and aquatic macrophytes from a number of sites across the NE Tibetan Plateau. There was no 425 

observable offset between the δD of terrestrial and aquatic n-alkanes and when applied to a 426 

lake sediment record (Lake Koucha), there was also no significant offset in δD between the 427 

n-alkanes down core (Aichner et al. 2010b). The authors suggest this results from the 428 

evapotranspiration of soil and leaf water in tandem with evaporative enrichment of lake water 429 

in particularly arid environments and therefore the palaeoardity proxy of δD C29-C23 is not 430 

uniformly applicable. A number of studies have also assessed the influence of relative 431 

humidity and evaporative enrichment of soil and leaf water on δD. Hou et al. (2008) found 432 

that halving the relative humidity from 80% to 40% in a growth chamber study produced 433 

only ~7‰ enrichment in the δD of leaf wax, which they attribute to soil evaporation. 434 

However, McInerney et al. (2011) found no enrichment of δD of leaf waxes in a growth 435 

chamber, but documented enrichment in a field study as a result of changes in relative 436 

humidity. They suggest this is explained by D-enrichment of the grass source water by 437 

evaporation from soils, rather than within leaf evapotranspiration. In juxtaposition to this is a 438 

study of an arid ecosystem that suggests leaf transpiration is responsible for the D-enrichment 439 

of δD in leaf waxes, rather than soil evaporation as many plant species take up groundwater 440 

and precipitation without fractionation (Feakins and Sessions 2010). While a latitudinal study 441 

of 28 catchments of varying climate, ecosystem and vegetation types by Polissar and 442 

Freeman (2010) highlights net fractionation between the δD of leaf waxes and meteoric δD 443 

varies according to the ecosystem. Open grasslands were more sensitive to changes in aridity, 444 

whereas closed forested ecosystems have reduced soil water loss and therefore less sensitivity 445 

to evaporative enrichment (Polissar and Freeman 2010).  446 

 447 

Despite the complications highlighted above, δD is still a very useful palaeolimnological tool 448 

and continues to be successfully applied in a number of regions. However, important 449 
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consideration of the myriad of confounding factors is essential to make climatic 450 

interpretations. The δD composition of terrestrial and/or aquatic biomarkers is predominantly 451 

used in non-carbonate precipitating lake ecosystems, so it is rare to compare the δD of a leaf 452 

wax and the more traditional palaeohydrological indicator of 18O of carbonate. In a recent 453 

study, Liu et al. (2008) used a multi-isotope proxy record generated from the same core 454 

(QHN3/1) to disentangle the late Holocene climatic impact on Lake Qinghai, a large lake on 455 

the NE Tibetan Plateau. They established the D of fatty acid C28 (C28 D) as an indicator of 456 

precipitation δD and used the 18O of lake carbonate (18Ocarb) as a proxy for regional water 457 

balance (see fig. 4). The 18Ocarb record is in good accordance with other high-resolution late 458 

Holocene isotope records from Lake Qinghai (Henderson et al. 2010b). The comparison 459 

highlights coherent trends between the two proxies, although the C28 D lags the 18Ocarb 460 

record, which might reflect the time taken for the integration of terrestrial leaf waxes from the 461 

catchment into the sediment record compared to autochthonous deposition of carbonates. 462 

However, the records show coupled reductions in C28 D and 18Ocarb between ~1500 to 1250 463 

calendar years BP, which is coincident with a regional Little Ice Age (LIA) that has 464 

previously been documented in the lake (cf. Henderson et al. 2010b). In addition, a 465 

comparison of the C28 D and 18Ocarb records with independent temperature and salinity 466 

proxy data based on alkenones from the same QHN3/1 core (Liu et al. 2006) suggest this LIA 467 

reduction in D values resulted from changes in moisture source to the region, rather than an 468 

increase in monsoon precipitation. The alkenone data show the LIA to be cold and arid, while 469 

the isotope records suggest Lake Qinghai was fresher. As variations in C28 D and 18Ocarb 470 

can also be caused by a change in the isotope composition of input water, Liu et al. (2008) 471 

suggest there was more westerly-derived moisture, which is isotopically deplete as a result of 472 

continental rainout.  This interpretation of the isotope data during the LIA is further 473 

supported by other high-resolution records from other basins within the Lake Qinghai region 474 

(Henderson et al. 2010b), suggesting regionally coherent patterns in climate change during 475 

the LIA.  476 

 477 

Clumped isotopes in lake carbonates 478 

Stable isotope geochemistry has been used as an indicator of palaeoclimate since the work of 479 

McCrea (1950) and Urey et al. (1951) highlighted the potential for 18O to be used for 480 

palaeotemperature reconstruction. The technique has been routinely applied in 481 



16 
 

palaeolimnology of all geological ages (Leng and Marshall 2004). In lacustrine 482 

environments, stratigraphic changes in 18O values are commonly attributed to changes in 483 

temperature, air mass or precipitation/evaporation ratio. However, a perennial problem 484 

though in the quantitative interpretation of geochemical proxies for climate is that the 485 

systems are essentially underdetermined: in other words the variables that can be measured in 486 

the sediments (generally 18O and 13C in carbonates, biogenic silica, organic matter) are 487 

influenced by a wide range of interlinked environmental processes rather than a single factor. 488 

For example, a change in temperature will produce a shift in the equilibrium 18O of 489 

carbonate forming in a lake. However, the same temperature change will affect the 18O of 490 

the rainfall and may also affect rates of evaporation, both in the lake and in the catchment. 491 

All these factors will influence the 18O of the lacustrine components so a single variable 492 

cannot be ascribed. In general, therefore, it is impossible to measure the 18O of carbonates 493 

and silicates and translate the values into absolute or even relative temperature variation 494 

without making some very significant assumptions (Leng and Marshall 2004).  Thus, this 495 

conventional approach amounts to solving several unknowns (most specifically temperature 496 

and 18O of water) with a single constraint (i.e., 18O of carbonate) 497 

 Carbonate clumped-isotope thermometry has the potential to directly constrain both 498 

temperature and 18O of carbonate independently. Carbonate clumped-isotope thermometry 499 

constrains carbonate precipitation temperatures based on the temperature-dependent 500 

‘clumping’ of 13C and 18O into bonds with each other in the solid carbonate phase alone, 501 

independent of the 18O of the waters from which the mineral grew (e.g., Schauble et al. 2006; 502 

Eiler 2007). The 13C-18O bond enrichment relative to the ‘stochastic’, or random, distribution 503 

of all C and O isotopes among all possible isotopologues is determined by digesting pure 504 

carbonates and measuring the 18O, 13C, and abundance of mass-47 isotopologues (mostly 505 
13C18O16O) in product CO2. The latter, termed the 47 value, varies with carbonate growth 506 

temperature (Ghosh et al. 2006a). Few applications have been made (or at least published) 507 

within palaeolimnology to date, but one study calculated the timing of the Colorado Plateau 508 

uplift by estimating depositional temperatures of Tertiary lake sediments that blanket the 509 

plateau interior and adjacent lowlands using the carbonate clumped-isotope 510 

palaeothermometer (Huntington et al. 2010). Comparison of modern and ancient samples 511 

deposited near sea level provided an opportunity to quantify the influence of climate, and 512 

therefore assess the contribution of changes in elevation to the variations of surface 513 
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temperature on the plateau. Analysis of modern lake calcite from 350-3300 m elevation 514 

revealed a lake water carbonate temperature (LCT) lapse rate of 4.2±0.6ºC/km, while analysis 515 

of Miocene deposits from lower elevation suggests that ancient LCT lapse rate was 516 

4.1±0.7°C/km, and temperatures were 7.7±2.0ºC warmer at any elevation in comparison to 517 

temperatures predicted by the modern trend. The inferred modern cooling is consistent with 518 

other Pliocene temperature estimates, and the consistency of lapse rates through time 519 

supports the interpretation that there has been little or no elevation change (Huntington et al. 520 

2010).  521 

Multiple isotopes in chironomid head capsules  522 

The stable isotope composition of chironomid head capsules is being increasingly used in 523 

palaeoenvironmental studies. Recent advances in chironomid isotope research means that 524 

multiple isotope ratios (13C, 15N, 18O, D) can be measured from the same aliquot (Fig. 5). 525 

The advantage of the use of chironomids is that in Northern Europe in particular, carbonate 526 

lakes tend to be rare, especially those that are not evaporative, and for this reason 527 

chironomids (along with diatom silica and aquatic cellulose) are used. Chironomids have the 528 

slight advantage over diatom silica in that the individuals tend to be big enough to hand pick 529 

(so easier to clean), and unlike aquatic cellulose can be identified under microscopy. 18O and 530 

D of the chironomids have been used as a proxy for the 18O and D of the water in which 531 

they lived, from which there is the potential to reconstruct 18O precipitation (air 532 

temperature/source region) in certain types of lakes (Wooller et al. 2004; Wang et al. 2009; 533 

Verbruggen et al. 2010). In the latter study the authors explored whether 18O of chironomid  534 

capsules can be compared to 18O of bulk carbonates from Lateglacial and early Holocene 535 

sediments from Rotsee (Switzerland). Chironomid 18O indicated depleted lake water 18O 536 

during the Oldest Dryas period, the Aegelsee and Gerzensee Oscillations, and the Younger 537 

Dryas, whereas 18O-enriched 18O values were associated with sediments deposited during 538 

the Lateglacial interstadial and the early Holocene. Differences in the amplitude of variations 539 

in bulk carbonate 18O and chironomid 18O were attributed to differential temperature 540 

effects on oxygen isotope fractionation during the formation of carbonates and chironomid 541 

head capsules or seasonal changes of lake water 18O, potentially affecting 18O to different 542 

extents. 13C, 15N and D in chironomids are thought to reflect the isotopic composition of 543 

the invertebrate food, modified by trophic level, and can thus be used as a proxy for feeding 544 

ecology (Wooller et al. 2008; van Hardenbroek et al. 2010). In lakes in particular, chironomid 545 
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13C is dependent on whether the larvae fed predominantly on organic matter generated in the 546 

photic zone or whether the larvae incorporate methanotropic microorganisms (Jones et al. 547 

2008) due to living and burrowing into the sediment (Heiri et al. 2009). One of the potential 548 

down sides identified by Heiri et al. (2009) is the possibility for alteration to the chemical 549 

composition of the chitin by degradational or diagenetic processes as well as a need to 550 

investigate further the chironomid-water/food fractionation processes. 551 

Summary 552 

 553 

Isotope geochemistry has become more routine within palaeolimnology over the last few 554 

decades and it has been employed to address a diverse array of environmental issues ranging 555 

from reconstructing past climate to understanding the dynamics of food webs through time. 556 

Despite being established as an excellent palaeolimnological tool, continual improvements 557 

have occurred in the understanding of the controls on isotope ratios, sample preparation and 558 

refining of mass spectrometry techniques. But, perhaps the most important development has 559 

been the move away from workhorse ‘bulk’ isotope methods based on carbonates and organic 560 

matter, to the establishment of new proxies from lake sediments, such as, the multiple 561 

isotopes that can be extracted from biogenic silica and chironomid chitin, the carbon and 562 

hydrogen isotope analysis of specific compounds and the first steps in developing the 563 

application of carbonate isotologues in lakes. These have opened up numerous possibilities 564 

for the application of stable isotopes to new lakes. It is clear that over the last decade we have 565 

taken huge steps in understanding isotope systems, but there still remain a number of 566 

questions, especially for their application within palaeolimnology, as each lake is unique and 567 

comes with it’s own set of specific circumstances. It will be exciting to see how the field 568 

develops over the next decade as these techniques are more widely applied to lake sediment 569 

records.  570 

 571 
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 882 

Figures 883 
 884 
Figure 1. Stratigraphic profiles of proxies highlighted in the text, plotted on a radiocarbon-885 
calibrated age scale: 18Omodelled profile with associated errors linked to mass-balancing 886 
isotope measurements from Lake Baikal (see text for details); four stacked records of relative 887 
abundance of haematite- stained grains (%HSG) in North Atlantic sediments indicative of 888 
ice-rafted debris events; and 18O from NGRIP ice core. IRD numbers are according to those 889 
given in Bond et al. (2001). YD (Younger Dryas) and IACP (intra-Allerød cold period) are 890 
also given. Redrawn using data from Mackay et al. (2011). 891 
 892 
Figure 2. 25,000-year multi-isotope records from the sediments of crater Lake Challa on the 893 
eastern flank of Mt. Kilimanjaro. The combined data suggest three major phases in the 894 
history of the lake’s carbon cycle in particular the demand exerted by lake productivity 895 
regulated by nutrient availability and changes in carbon supplied from the catchment forced 896 
by climate as indicated hydrological interpretation of 18Odiatom. Oxygen-isotope ratios (δ18O) 897 
in diatom silica are plotted against a reversed axis, the δ13Cdiatom are a 10-sample running 898 
mean. Also plotted is the difference between δ13Cdiatom and δ13Cbulk, the Pearson correlation 899 
coefficient (R) between δ13Cdiatom and δ13Cbulk are based on 3000-yr moving windows of the 900 
respective data series. Redrawn using data from Barker et al. (in press). 901 

 902 
Figure 3. Comparison of 13Cn-C23, 13CTOC and 13CTIC from Lake Koucha, Tibetan Plateau. 903 
The offset between 13Cn-C23 and 13CTOC: higher values indicate a lower contribution to the 904 
organic carbon pool from aquatic macrophytes. The offset between 13Cn-C23 and 13CTIC: 905 
high values are representative of carbon-limited conditions in the lake. Grey horizontal bars 906 
signify cooling episodes documented on the Tibetan Plateau. Redrawn using data from 907 
Aichner et al. (2010a) and Mischke et al. (2008). 908 
 909 
Figure 4. Lake Qinghai Dwax and 18Ocarb. Error bars are indicated on the Dwax record.  It 910 
was established the D of fatty acid C28 (C28 D) as an indicator of precipitation δD and used 911 
the 18O of lake carbonate (18Ocarb) as a proxy for regional water balance. The comparison 912 
highlights coherent trends between the two proxies, although the C28 D lags the 18Ocarb 913 
record, which might reflect the time taken for the integration of terrestrial leaf waxes from the 914 
catchment into the sediment record compared to autochthonous deposition of carbonates. 915 
Redrawn using data from Liu et al. (2008). 916 
 917 
Figure 5. Multiple isotope data from chironomid head capsules from a lake in northeastern 918 
Iceland. (a) 13C and (b) 15N of chironomid head capsules plotted alongside the 15N and 919 
13C of the sediments; and (c) 18O of mixed insect remains, chironomid head capsules and 920 
chironomid adult remains. Large magnitude changes in 18O occurred during the Holocene at 921 
the site. Downcore shifts in 18O of chironomids do not correlate with measurements of the 922 
13C and 15N of chironomid head capsules, implying that the 18O changes were not 923 
primarily driven by changes in chironomid diet during the Holocene but more likely changes 924 
in the seasonality of precipitation, in the patterns of air masses supplying precipitation to 925 
Iceland and in the dominant mode of the North Atlantic Oscillation. Redrawn using data from 926 
Wooller et al. (2007). 927 
 928 
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