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Abstract 

 
Seed dormancy is defined as the incapacity of a viable seed to germinate under favourable 

conditions. It is established during seed maturation and reaches high levels in mature dry 

seeds. Dormancy is a complex adaptive trait that assures germination at proper time of the 

year at the onset of the favourable growing season. This trait is regulated by hormonal and 

environmental cues such as temperature and light. In Arabidopsis thaliana dormancy can 

be released by imbibing seeds at cold temperatures (stratification) or by storing seeds in 

dry conditions (after- ripening). The molecular mechanisms that regulate the induction and 

the release of dormancy are still poorly understood. 

Previous studies identified DELAY OF GERMINATION1 (DOG1) as a key regulator of seed 

dormancy in Arabidopsis. The dog1 mutant completely lacks seed dormancy and has no 

pleiotropic effects. DOG1 shows a seed-specific expression pattern and the abundance of its 

protein correlates with the dormancy level in freshly harvested seeds. However, this 

correlation is lacking in after-ripened seeds, suggesting that the protein activity is lost 

during after ripening (Nakabayashi et al., 2012). DOG1 encodes a protein with unknown 

function and unknown regulation. 

The phosphatase PDF1 was identified as an interactor of DOG1 in a yeast two hybrid assay. 

This thesis describes the relation between PDF1 and DOG1 which was investigated in order 

to gain further insights into the regulation of DOG1 and into the mechanisms controlling 

seed dormancy. A T-DNA insertion mutant named pdf1-1 showed increased dormancy. 

PDF1 and DOG1 were co-expressed during seed maturation, interacted in vivo and were 

shown to function in the same pathway independent from ABA. 

Two-dimensional gels analysis showed that DOG1 is targeted by two different post-

translational modifications during after ripening and after imbibition. DOG1 shifted towards 

a lower pH during after-ripening, while imbibition caused a shift towards the basic side.  

In the pdf1-1 mutant DOG1 was detected at a lower pH in comparison to Columbia, 

indicating possible increased phosphorylation levels and implying a role of PDF1 in the 

dephosphorylation of DOG1. Moreover, the shift of DOG1 caused by the after-ripening was 

not observed in the pdf1-1 mutant, suggesting that the post-translational modifications of 

DOG1 are interdependent.
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Das Ausbleiben der Keimung eines keimfähigen Samens unter vorteilhaften Bedingungen 

wird als Dormanz definiert. Diese bildet sich während der Reifung des Samens aus und 

erreicht ihren Höhepunkt in trockenen, ausgereiften Samen. Die Dormanz stellt ein 

komplexes adaptives Merkmal dar, welches die Keimung zur richtigen Jahreszeit und zu 

Beginn einer günstigen Wachstumsperiode sicherstellt. Ihre Steuerung erfolgt über 

Umgebungsreize, wie zum Beispiel Temperatur und Licht, sowie Pflanzenhormone. Bei 

Arabidopsis thaliana kann die Dormanz durch Imbibierung und Kühlung der Samen 

(Stratifizierung) oder längere Trockenlagerung (Nachreifung) durchbrochen werden. Die 

Mechanismen, welche die Induktion und das Durchbrechen der Dormanz steuern, sind auf 

molekularer Ebene immernoch wenig erforscht. 

Vorrausgehende Studien haben DELAY OF GERMINATION1 (DOG1) als einen 

Hauptregulator für Samendormanz in Arabidopsis identifiziert. Bei der dog1-Mutante bleibt 

die Dormanz vollständig und ohne pleiotrope Effekte aus. DOG1-Expression ist auf die 

Samen beschränkt und die Proteinmenge korreliert mit dem Ausmaß der Dormanz in frisch 

geernteten Samen. Jedoch fehlt diese Korrelation in nachgereiften Samen, was nahe legt, 

dass die Proteinaktivität während der Nachreife verloren geht (Nakabayashi et al., 2012). 

DOG1 codiert für ein Protein dessen Steuerung und Funktion bislang unbekannt sind.  

Die Phosphatase PDF1 wurde als DOG1-interagierendes Protein in einem Hefe-Zwei-Hybrid 

Versuch identifiziert. Diese Dissertation beschreibt das Verhältnis zwischen PDF1 und 

DOG1, welches untersucht wurde um tiefere Einsicht in die Steuerung von DOG1 und in 

Dormanz-regulierende Mechanismen zu erlangen. pdf1-1, eine T-DNA Insertionsmutante, 

wies erhöhte Dormanz auf. DOG1 und PDF1 wurden während der Reifung der Samen co-

exprimiert, sie interagieren in vivo und es konnte eine Rolle im gleichen, ABA-

unabhängigen Regulationsweg nachgewiesen werden.    

Bei Untersuchungen auf zweidimensionalen Gelen konnte gezeigt werden, dass DOG1 Ziel 

von zwei unterschiedlichen posttranslationalen Modifizierungen während der Nachreife und 

nach der Imbibition ist. DOG1 verschiebt sich in Richtung eines sauren pH´s während der 

Nachreife, wohingegen Imbibition eine Verschiebung auf die basische Seite zur Folge hat.  

In der pdf1-1-Mutante wurde DOG1 bei niedrigeren pH-Werten im Vergleich zu Columbia 

Wildtyp aufgefunden, was zum Einen die Möglichkeit einer stärkeren Phosphorylierung 

nahelegt und zum Anderen eine Rolle von PDF1 bei der Dephosphorylierung von DOG1 

impliziert. Zudem wurde die pH-Verlagerung von DOG1 während der Nachreife in der dog1-

1-Mutante nicht beobachtet. Das deutet darauf hin, dass die posttranslationalen 

Modifizierungen von DOG1 voneinander abhängig sind.  
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2D Two-dimension gel 

35S 35S promoter of the Cauliflower Mosaic Virus 

aa Amino acid 

ABA Abscisic Acid 

bp Base pair 

Ca Calcium 

cDNA Complementary Deoxyribonucleic Acid 

Col Arabidopsis thaliana Columbia accession 

Cvi Arabidopsis thaliana Cape Verde Island  

d days 

DAP Days After Pollination 

DMSO Dimethylsulfoxide 

DNA Deoxyribonucleic acid 

DTT Dithiothreitol 

E. coli Escherichia coli  

e.g  Exempli gratia 

EDTA Ethylenediamine Tetraacetic Acid 

et al. Et alii/et aliae  

F1, F2, F3 First, second, third generation after a cross 

GA Gibberellins 

GUS ß-Glucorinidase 

h Hours 

Hv Hordeum Vulgare 

IEF Isoelectric focusing 

IPG Immobilized pH gradient 

Kas Arabidopsis thaliana Kashmir accession 

kD Kilo Dalton 

LB medium Luria Bertani medium 

Ler Arabidopsis thaliana Landsberg erecta accession 

-LW Media without leucine and tryptophan  

-LWH Media without leucine, tryptophan and histidine 

M Molar 
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min Minutes 

mRNA Messanger Ribounucleic Acid 

MS Murashige-Skoog 

NIL Near Isogenic Line 

PCR Polymerase Gel Electrophoresis 

PD Physiological Dormancy 

PEG Polyethylene Glycol 

PTM  Post-translational modification 

PVDF Polyvinylidene Difluoride 

qPCR Quantitative Real time PCR 

QTL Quantitative Trait Locus/Loci 

RH Relative Humidity 

RNA Ribonucleic acid 

ROS Reactive Oxigen Species 

rpm Rotation per minute 

SDS Sodium Dodecyl Sulfate 

Ser/Thr Serine Threonine 

TCA Tricloroacetic acid 

T-DNA Transferred DNA 

Tyr Tyrosine 

U Units 

v/v Volume/volume 

w/v Weight/volume 

wt Wild type 
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ABA8’OH  ABA 8’ HYDROXYLASE  

ABI1 ABA-INSENSITIVE 1 

ABI2 ABA-INSENSITIVE 2 

ABI3 ABA-INSENSITIVE 3 

ABI4 ABA-INSENSITIVE 4 
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ABI5 ABA-INSENSITIVE 5 

AREB ABA-RESPONSIVE ELEMENT BINDING PROTEIN  

ATE ARGYNIL-tRNA:PROTEIN ARGYNILTRANSFERASE 

BZR1 BRASSINAZOLE-RESISTANT 1 

FUS3 FUSCA3 

GA3OX1 GIBBERELLIN 3-OXIDASE 1 

GA3OX2 GIBBERELLIN 3-OXIDASE 2 

HUB1 HISTONE MONO-UBIQUITINATION 1 
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LEC1 LEAFY COTYLEDON 1 
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NCED 

CYP707A 

NINE-CIS-EPOXYCAROTENOID DIOXYGENASE  

CYTOCHROME P450, FAMILY 707, SUBFAMILY A, POLYPEPTIDE 

PDF1 - 

PDF2 - 

PIL5 PHYTOCHROME INTERACTING FACTOR 3-LIKE 5 

PIN PIN-FORMED 

PRT6 PROTEOLYSIS 6 

RCAR REGULATORY COMPONENT OF ABA RECEPTOR 1 

RCN1 ROOT CURL IN NAPHTHYLPHTHALAMIC ACID 1 

RDO2 REDUCED DORMANCY 2 

RDO4 REDUCED DORMANCY 4 

SDR4 SEED DORMANCY 4 

SNRK SUCROSE NON FERMENTING1-RELATED PROTEIN KINASE 

SPT SPATULA 

TAP46 2A PHOSPHATASE ASSOCIATED PROTEIN OF 46 KD 
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1. INTRODUCTION 

1.1 Dormancy: biological and economical relevance 

Seeds act as dispersal units of the plant and provide energy for the establishment of a 

seedling.  

Timing of germination determines the start of the life cycle of a plant: winter annuals, which 

include Arabidopsis and many weeds, germinate in autumn, flower in spring and produce new 

seeds in summer when the dormancy is released; summer annuals germinate, flower and 

produce seeds during the warmest period of the year. When the germination timing is 

artificially manipulated plants are significantly altered in post germination characters such as 

timing of reproduction and size at reproduction (Donohue, 2002). 

If germination occurs under unfavorable environmental conditions, the resulting seedling 

might encounter mortality (Bewley, 1997). Seed dormancy is defined as the incapacity of a 

viable seed to germinate under favorable conditions (Finch-Savage & Leubner-Metzger, 2006) 

and is a fine-tuned mechanism that allows the seed to delay germination until the 

environmental conditions are optimal for the survival of the seedling and life cycle completion. 

The transition between dormancy and germination represents an important agricultural trait. 

Thus, strong dormancy limits the germination of the newly harvested seeds and during 

domestication crops have been selected to germinate uniform and fast in order to achieve 

rapid seedling establishment and good crop yield. As a negative consequence, selection for 

reduced dormancy resulted in undesirable traits as pre-harvest sprouting when grains 

germinate in humid conditions on the spike before harvest, causing major yield losses (Gubler 

et al., 2005). A better understanding of the molecular mechanisms regulating dormancy and 

germination is fundamental in order to obtain the desired level of dormancy in crops. 

Dormancy can be classified by morphological or physiological properties of the seeds. The 

most common type of dormancy is physiological dormancy (PD): it is found in gymnosperm 

and all angiosperm clades. In particular the non-deep physiological dormancy (e.g. in 

Arabidopsis thaliana, later on Arabidopsis) is one of the most abundant form and it can be 

released by gibberellin application, after-ripening or stratification. When the coat is artificially 

removed the embryo produce normal seedlings (Finch-Savage & Leubner-Metzger, 2006). 

Furthermore, dormancy can be classified in primary and secondary dormancy. Primary 

dormancy is acquired during seed maturation whereas secondary dormancy occurs in imbibed 

after-ripened seeds which are exposed to unfavorable environmental conditions. Up to 

nowadays, research has been focused almost exclusively on primary dormancy (Cadman et 

al., 2006). 

Dormancy is a complex trait influenced by different environmental and endogenous factors. 

The model plant Arabidopsis shows great variability in dormancy level between different 

accessions. For this reasons QTL analysis is a powerful tool to identify gene underlying 

dormancy. QTLs for seed dormancy have been identified in Arabidopsis and crops; remarkably 
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the major dormancy QTL identified in Arabidopsis, Delay of Germination1 (DOG1), has been 

cloned (Bentsink et al., 2006). 

 

 

1.1.1 Seed development in Arabidopsis thaliana 

Arabidopsis thaliana is a small flowering plant belonging to the Brassicaceae family. It is 

widely considered a model organism in plant science, mostly because of its small size, short 

generation timing and the great availability of molecular and genetic tools. Moreover, it 

produces many seeds through self-pollination (reviewed in Koornneef and Meinke, 2010). 

Under optimal growth conditions (18-25 °C) Arabidopsis fruits, called siliques, contain 40 to 60 

seeds.  

Seed development in Arabidopsis takes 20 days under normal growth conditions and consists 

of two major phases: embryogenesis and seed maturation. 

Embryogenesis begins with a double fertilization and is characterized by cell division and 

morphogenesis events which eventually lead to the development of a full size diploid embryo 

equipped with triploid endosperm (Mayer et al., 1991). At the end of the embryogenesis phase 

the cell division ceases and seed maturation begins. Dormancy is established during seed 

maturation and reaches high levels in mature seeds (Raz et al., 2001). Seed maturation is 

characterized also by the accumulation of storage compounds, acquisition of desiccation 

tolerance and decrease in water content (Goldberg et al., 1994).  ABA levels increase during 

this phase and its accumulation is required to impose dormancy, whereas maternal ABA or 

ABA application during seed development fail to induce dormancy (Karssen et al., 1983; Groot 

& Karssen, 1992; Koornneef & Karssen, 1994).  

Four transcription factors play a fundamental role in the regulation of seed maturation. These 

transcription factors, named ABA-INSENSITIVE3 (ABI3), FUSCA3 (FUS3), LEAFY COTYLEDON1 

(LEC1) and LEAFY COTYLEDON2 (LEC2), have partially redundant functions and are connected 

with ABA signaling (reviewed in Holdsworth et al., 2008). Mutants in these genes are severely 

affected in seed maturation and display decreased dormancy levels and reduced expression of 

seed dormancy proteins (Raz et al., 2001; Gutierrez et al., 2007). 

 

 

1.1.2 Control of seed dormancy in Arabidopsis thaliana 

Dormancy is regulated by a combination of different environmental and endogenous signals. 

A major determinant of the dormancy status is the balance between abscisic acid (ABA) and 

GA. In general, ABA induces dormancy while GA promotes germination. Additionally, the 

importance of hormones-independent pathways started to unravel the complexity of this 

biological phenomenon. 
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Hormones pathways 

ABA is an important positive regulator of dormancy induction and maintenance and it delays 

endosperm rupture (Leubner-Metzger G., 2003). Overexpression of ABA biosynthesis genes 

can increase ABA content, leading to enhanced dormancy or delayed germination (Finkelstein 

et al., 2002) while ABA deficiency during seed maturation results in the absence of primary 

dormancy in mature seed (Kucera et al.,  2005). Moreover, as a consequence of ABA 

deficiency some mutants can display precocious germination on the mother plant (vivipary), 

e.g. aba1 and aba2 (Karssen et al., 1983; Koornneef & Karssen, 1994). Depending on the 

locus, also ABA-insensitive mutants (abi1 to abi8) display a variable level of reduced dormancy 

and function in the ABA signal transduction pathway as phosphatases (e.g. ABI1 and ABI2; 

see also section 1.2) or transcription factors (ABI3, ABI4 and ABI5; reviewed in Kucera et al., 

2005). Finally, high levels of ABA are present in the imbibed seed of the dormant accession 

Cvi and decrease when dormancy is released (Ali-Rachedi et al., 2004). 

GA positively regulates seed germination by counteracting ABA and interacting with different 

environmental signals. GA deficient biosynthesis (e.g. ga1) mutants require GA addition in the 

media to be able to germinate. Kucera et al. (2005) proposed two different functions of GA 

during germination: first GA increase growth potential of the embryo by promoting cell 

elongation and secondly it is necessary to weaken the tissues surrounding the radicle in order 

to reduce the mechanical constraint by the embryo surrounding tissues. Finally, GA 

requirements for dormancy release and germination depend on the amount of ABA produced 

in the developing seeds and upon imbibition.  

Ethylene also promotes seed germination by counteracting the effect of ABA effect. It has 

been proposed that it could act by promoting radial cell expansion or by decreasing seed base 

water potential. However, it appears to act after dormancy is released by GA (reviewed in 

Kucera et al., 2005; Linkies & Leubner-Metzger, 2012).  

 

Hormones independent pathways 

Chromatin remodeling has been shown to have an important role in the regulation of seed 

dormancy. HISTONE MONO-UBIQUITINATION 1/ REDUCED DORMANCY 4 (HUB1/RDO4) 

encodes a C3HC4 finger protein and its mutant shows several pleiotropic phenotype including 

reduced dormancy and reduced longevity. Liu et al. (2007) showed that HUB1 and its 

homologue HUB2 are required for monoubiquitination of HISTONE MONO-UBIQUITINATION 

2 (H2B) which influences the expression of specific genes. 

The gene REDUCED DORMANCY 2 (RDO2) was isolated in the same mutagenesis screen for 

reduced dormancy (Peeters et al., 2002) and encodes a transcription elongation factor SII 

(TFIIS). RDO2 and HUB1 are predicted to have a role in transcription elongation and to 

associate with the RNA polymerase II associated factor 1 complex (PAF1C). PAF1C associated  

factors are upregulated at the end of seed maturation, suggesting that they are required to 
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facilitate expression during this phase since is characterized by low metabolic activity, 

including gene transcription. This mechanism might counteract the negative effect of 

desiccation and chromatin condensation on gene expression (Liu et al., 2011). 

Recently it has been shown that during seed maturation the size of embryonic cotyledon nuclei 

decreases in association with increased chromatin condensation. ABI3 is required for the 

nuclear size reduction suggesting that this mechanism is part of the acquisition of desiccation 

tolerance (van Zanten et al., 2011).   

 

The role of seed tissues in dormancy  

Seed coverings represent a mechanical restraint for the embryo outgrowth. The growth 

potential of the embryo has to overcome this barrier to initiate the radicle protrusion upon 

imbibition. 

In Arabidopsis the testa and the endosperms have a fundamental role in imposing dormancy. 

It has been shown that the aleurone is sufficient and necessary for dormancy of imbibed seeds 

(Bethke et al., 2007). A study conducted on several mutants affected in testa shape and 

pigmentation which displayed reduced dormancy confirmed the importance of the seed coat in 

the control of dormancy and germination (Debeaujon et al., 2000).  

ABA catabolism occurs in tissues that surround the root (Okamoto et al., 2006) and it delays 

germination by inhibiting the seed envelopes rupture in Arabidopsis (reviewed in Finch-Savage 

& Leubner-Metzger, 2006; Lee et al., 2010) and, interestingly, in very distantly related species 

(see 1.1.2.3).   
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Figure 1. Scheme of the mechanism of dormancy induction and release.  
Dormancy level (in beige) increases during seed maturation when dormancy is induced (rounded rectangle 
in brown). Dormancy is released (rounded rectangle in brown) when seeds are stored in the appropriate 
conditions, leading to a widening of the germination window (in green). The plant hormone ABA and the 
dormancy factor DOG1 induce dormancy, while GA releases it and promotes germination. GA and ABA 
have antagonistic roles. Increasing ROS level during seed storage reduces seed dormancy. 
Time is indicated with a blue arrow. (Adapted from Graeber et al., 2012) 
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1.1.3 Release of seed dormancy 

Dormancy can either be quickly released in imbibed seeds (within a couple of days) or 

relatively slow in dry seeds (within weeks-months).  

The fast release of dormancy requires imbibition at species-specific temperatures and is called 

stratification. It is largely unclear how stratification drives the release of seed dormancy and 

especially the temperature sensing mechanism is unknown, but a few genes with a role in this 

process have been identified. The basic helix-loop-helix transcription factors SPT and PIL5 

have a role in cold stratification (Penfield et al. 2005). SPT is a negative regulator of 

germination that loses its repressive activity after stratification, whereas PIL5 is not 

responding to low temperatures, but represses germination in the dark after a cold treatment. 

Both transcription factors act by inhibiting the GA biosynthesis genes GA3 OXIDASE 1 

(GA3OX1) and GA3OX2 expression, thereby preventing germination (Penfield et al. 2005). 

Dormancy can be artificially released by removing constraints (i.e. embryo surrounding 

tissues) that prevent germination (scarification) or by storing seeds at room temperature 

under dry conditions (after-ripening). Increased time of after-ripening is associated with a 

widening of the conditions required for germination, resembling gradual dormancy loss (Finch-

Savage & Leubner-Metzger 2006). The time required for a complete release of dormancy 

shows a high inter- and intra-species variation. For example, in Arabidopsis the accessions 

Landsberg erecta (Ler) and Cape Verde Islands (Cvi) have very different after-ripening 

requirements. Ler needs 12 to 17 days of dry storage to achieve 50% germination while Cvi 

needs 74 to 185 days (Alonso-Blanco et al. 2003). After-ripening is effective at low moisture 

contents (MC) of about 5-15%, but is prevented in very dry seeds (Probert, 2000). It is not 

well understood whether the changes that occur within the seed during after-ripening are 

predominantly happening at the transcript or protein level, but recent findings have started to 

shed some light on this issue. 

Several transcriptome analyses showed that after-ripening affects transcript levels in dry 

seeds, resulting in the selective change of specific transcripts (Leymarie et al. 2007; Bove et 

al. 2005; Finch-Savage et al. 2007). An increase in transcript abundance during dry storage of 

seeds seems unlikely but could be explained by the occurrence of “humid pockets” whose 

existence has been proposed in dry seeds of tobacco. Such local areas with higher moisture 

levels within the seeds could allow transcriptional activities. Transient transcription and 

translation changes in dry tobacco seeds were shown for ß-1,3-glucanase (Leubner-Metzger, 

2005). However, the presence of active transcription in dry seed has to be proved yet. 

It is also possible that the quantity and quality of stored mRNAs is changed within the dry 

seed by mechanisms that do not require an active metabolism. A recent study showed that the 

selective oxidation of a subset of stored mRNAs is associated with dormancy release in 

sunflower seeds. Oxidation of mRNA can prevent their translation and lead to changes in the 

proteome after translation has been restarted during seed imbibition. Interestingly, there 
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seems to be a selective oxidation of mRNAs corresponding to genes involved in stress 

response (Bazin et al. 2011). 

Oxidative processes within the dry seed also influence proteins. Proteomic approaches have 

been used as a tool to study the dynamics of posttranslational modifications (PTMs) during 

after-ripening. PTMs have a major role in the regulation of seed development and maturation 

(Arc et al, 2011). Carbonylation is an irreversible PTM that occurs in response to oxidative 

stress and leads to a change in the enzymatic and binding properties of the protein or to its 

degradation due to a higher sensitivity to proteolytic attacks. After-ripening results in an 

accumulation of reactive oxygen species (ROS) which is associated with the carbonylation of 

specific proteins in sunflower (Oracz et al. 2007) and in Arabidopsis (Job et al. 2005). It was 

suggested that the specific carbonylation of seed storage protein helps their mobilization 

during germination by promoting their proteolytic attack (Job et al. 2005). In mammals 

carbonylation is mainly associated with aging and diseases (Stadtman 1992; Agarwal & Sohal 

1994) whereas Arabidopsis seeds still germinate and produce healthy plantlets when 

accumulating carbonylated proteins. 

The importance of the ROS-dependent pathway in after-ripening was highlighted by the 

finding that the signal transduction of hydrogen cyanide (HCN), a compound used to break 

dormancy artificially, is ROS-dependent and results in an enhanced expression of genes 

involved in ethylene signalling (Oracz et al. 2009). Moreover, Müller et al. (2009) showed that 

the ROS-producing NADPH oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. 

Interestingly, it has been shown that DELLA repressor proteins, which are negative regulators 

of GA signalling that are degraded by GA, repress ROS accumulation, leading to an enhanced 

tolerance to abiotic and biotic stress (Achard et al. 2008). Although this mechanism has not 

been demonstrated in seeds, it opens the possibility that GA can increase after-ripening by 

indirectly increasing ROS. 

The ubiquitous signaling molecule nitric oxide (NO) releases seed dormancy in many species 

and has been proposed to be an endogenous dormancy regulator (Bethke et al. 2004) that 

decreases ABA sensitivity in the endosperm of imbibed seeds (Bethke et al. 2005). Holman et 

al. (2009) proposed that NO achieves this through the N-end rule pathway and two 

components of this pathway, PROTEOLYSIS 6 (PRT6) and ARGYNIL-tRNA:PROTEIN 

ARGYNILTRANSFERASE (ATE), have been shown to regulate after-ripening and to reduce 

ABA sensitivity, implicating a role of targeted proteolysis in dormancy release. 
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1.1.4 Conservation of seed dormancy mechanisms 

The ABA pathway is very conserved among species and genes involved in its biosynthesis 

NINE-CIS-EPOXYCAROTENOID DIOXYGENASE (NCEDs) and degradation CYTOCHROME P450, 

FAMILY 707, SUBFAMILY A, POLYPEPTIDE (CYP707As) were found in all the plant studied so 

far (Nambara et al., 2010). In barley the genes HvNCED1 and HvNCED2 are involved 

respectively in the control of primary and secondary dormancy (Leymarie et al., 2008) and in 

the grass model Brachypodium distachyon BdNCED1 expression was higher in dormant 

compared to after-ripened imbibed grains (Barrero et al., 2012). Millar et al. (2006) showed 

that HvABA8’OH-1, the barley CYP707A, was differentially expressed in embryo of dormant 

and non-dormant seed and the expression was confined in the coleorhiza.  

The mechanisms controlling seed dormancy are best understood in the model plant 

Arabidopsis (see 1.1.2.1). However, since PD is present among species over the entire 

phylogenetic tree, the knowledge about molecular mechanisms underlying dormancy in 

Arabidopsis has been used to understand how these mechanisms are conserved between 

species.   

The DOG1 gene was identified as the major dormancy QTL in Arabidopsis (see 1.1.3). 

Orthologous of AtDOG1 were found in the Brassicaceae Lepidium Sativum and Brassica rapa 

and named respectively LesaDOG1 and BrDOG1. Despite the shallow dormancy of these 

species, DOG1 transcript is present in their seeds. Moreover, there is evidence that LesaDOG1 

is regulated by imbibition and ABA-inducible (Graeber et al., 2010). In rice Seed dormancy 4 

(Sdr4) was identified as a dormancy QTL and it was shown to be a key player in the regulatory 

network of seed maturation. Sdr4 is a preharvest-sprouting-resistance gene which encode a 

protein with unknown function and its expression is dependent on OsDOG1L-1, a rice 

homologue of Arabidopsis DOG1 (Sugimoto et al., 2010). Ashikawa et al. (2010) showed that 

ectopic expression of wheat and barley DOG1-like genes induces dormancy in Arabidopsis, 

indicating that monocot DOG1 is also functionally conserved. 

In Arabidopsis, the seed structures have a fundamental role in imposing dormancy (see 

1.1.2.1). The importance of seed tissues and how ABA affects them was highlighted in 

different species. In coffee seeds ABA regulates germination by inhibiting embryo growth 

potential and cap weakening (da Silva et al., 2004) and in Lepidum sativum it regulates the 

mechanical weakening of the endosperm (Graeber et al., 2010). ABA inhibits the endosperm 

weakening also in the wild tomato relative Solanum lycocarpum (Pinto et al., 2007). Barrero et 

al. (2009) suggested that the coleorhiza in barley might have the same function as the 

endosperm of Arabidopsis in regulating dormancy and germination, as it shows changes in 

ABA metabolism. 

Substantially, the dormancy mechanisms are highly conserved between different species, 

however it is not clear yet if dormancy specific genes are as conserved as the hormonal 

pathways or the seed tissues.    
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1.1.5 The seed dormancy gene DOG1 

DOG1 has been identified as a major QTL for seed dormancy in a natural variation study using 

the low dormant accession Ler and the high dormant accession Cvi. DOG1 and the underlying 

gene was isolated using a positional cloning strategy combined with mutant analysis. The 

mutant dog1 is completely non dormant and does not show any obvious pleiotropic phenotype, 

apart from a reduced seed longevity (Bentsink et al., 2006). The DOG1 QTL influences the 

natural variation that exists in seed dormancy both in laboratory and field experiments 

(Bentsink et al., 2010: Huang et al., 2010), giving further evidences that DOG1 is key 

regulator and a true marker of seed dormancy. 

DOG1 is encoded by the gene At5g45830 and is alternatively spliced into five different 

isoforms protein isoforms (Bentsink et al., 2006; Kazumi Nakabayashi, unpublished). It 

belongs to a small conserved family with unknown function; DOG1 homologues were found in 

Lepidium sativum, Brassica rapa and monocots (Sugimoto et al., 2010; Graeber et al, 2010; 

Ashikawa et al., 2010; see 1.1.2.3). 

DOG1 encodes a protein of unknown function and unknown regulation. Recently, Nakabayashi 

et al., (2012) provided new insights into the regulation of DOG1.  

The hypothesis that DOG1 has a crucial role in seed dormancy is supported also by its seed 

specific expression. The overall quantification of the DOG1 transcripts showed that there is a 

peak in expression at 16 DAP with a subsequent reduction towards the end of seed maturation 

(Figure 2A). The transcripts quickly disappear upon imbibition.   

DOG1 protein level gradually increases during seed maturation following the trend of the 

transcripts. However, in contrast to the transcript level, it did not exhibit a reduction at the 

end of seed maturation or upon imbibition of dormant and after ripened seeds (Figure 2A, 2B, 

2C).  DOG1 protein is still detectable in the strong dormant line NIL DOG1 seeds after 13 

weeks of dry storage, when dormancy has been fully released (Figure 2B). Taken together, 

these data indicate that DOG1 accumulation correlates with dormancy in fresh but not in after 

ripened seeds. Further evidences to confirm this hypothesis came from the immunoblot 

analysis performed with the fresh seeds of the strong dormant NIL DOG1 and the less dormant 

Ler, where it is shown that DOG1 is more abundant in the strong dormant line (Figure 2D). It 

is proposed that DOG1 protein becomes modified and loses its activity during after ripening. 

Moreover, in imbibed seeds of the loss-of-function dog1-1 mutant, the induction of DOG1 is 

not able to induce dormancy. 

An in situ hybridization experiment showed that DOG1 signal was present in the vascular 

tissue of the cotyledon, hypocotyl and radicle and, consistent with this, GUS activity was also 

observed in the vascular tissue of developing seeds (16-18 days after pollination). YFP 

transgenic lines showed that DOG1 is localized mainly in the nucleus (Figure 3). 

DOG1 influences ABA and GA levels but does not regulate dormancy primarily via changes in 

hormone pathway. However, both ABA and DOG1 are required to induce seed dormancy, as 

shown from the evidence that the strong DOG1-Cvi allele does not induce dormancy in the 



 Introduction  

10 
 

aba1 background and the high DOG1 expression found in aba1 mutant. Moreover, high ABA 

accumulation does not compensate for the absence of DOG1 function. 

Finally, previous works performed in Wim Soppe laboratory identified PDF1 as an interacting 

protein of DOG1 in a yeast two hybrid assay (for detail about the yeast two hybrid see 

3.1.1.2). PDF1 is a phosphatase belonging to the family 2A (see 1.2.1). 

 

 

 

Figure 2. DOG1 transcript and protein level during seed maturation and imbibitions.   
A) Top panel: quantitative RT-PCR analysis of DOG1 expression of freshly harvested seeds during seed 
maturation and imbibition. DAP, days after pollination; ms, mature seeds (20 DAP); ds, freshly harvested 
dry seeds, imb24, 24 hours imbibed seeds. Bottom panel: DOG1 accumulation in NIL DOG1 during seed 
maturation. 
B) Top panel: germination percentage of the seeds used for the immunoblot analysis showed in the 
bottom panel. Bottom panel: DOG1 accumulation in NIL DOG1 during after ripening. 
C) Top panel: quantitative RT-PCR analysis of imbibed after ripened seeds in NIL DOG1. 
Bottom panel: DOG1 accumulation in imbibed after ripened seeds in NIL DOG1. W, week; LC, loading 
control. 
D) DOG1 transcript (top panel) and protein level (bottom panel) in mature dry seeds of Ler, dog1-1 and 
NIL DOG1. LC, loading control. 
(Adapted from Nakabayashi et al., 2012) 
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Figure 3. DOG1 localization. 
A-B) Longitudinal sections of in situ hybridization of 14 DAP seeds. Bar= 100 micrometer. 
C) GUS staining of embryo at 16-18 DAP. Bar= 200  
D) Subcellular localization of DOG1 in 18 DAP seeds. D) YFP fluorescence, E) DAPI staining, F) 
transmission channel, G) merged channels. Bar= 10.  
(Adapted from Nakabayashi et al., 2012)  
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1.2 Phosphorylation 

Posttranslational modifications (PTMs) affect a broad range of biological processes, e.g. protein 

activity, structure, stability and localization. Among the PTMs, reversible phosphorylation is by 

far the most well studied in Arabidopsis and is involved in stress responses, hormonal 

signaling, stomatal closure, cell cycle and cytokineses (de la Fuente et al., 2007). Kinases 

catalyze the addition of a phosphate group while phosphatases remove it; phosphorylation 

occurs mainly on serine, threonine and tyrosine residues.  

 

 

1.2.1 Protein phosphatases in Arabidopsis: nomenclature and functions  

Phosphatases are divided in two major groups: Ser/Thr and Tyr phosphatases. The major 

types of Ser/Thr phosphatases are Type 1 (PP1) and Type 2 (PP2), depending on their 

substrate specificity and pharmacological properties.  

PP2 group can be further classified in PP2A, 2B and 2C by their dependence on dicovalent 

cations: PP2B and PP2C needs Ca2+ and Mg2+ for activity while PP2A does not require any 

cations. Structural analysis showed that PP1, PP2A and PP2B are closely related and are 

defined as the PPP family while PP2C and other Mg2+ dependent Ser/Thr phosphatases are 

described as the PPM family (Luan, 2003). 

PP2C is the representative group of the PPM family. Higher plants produce a large and diverse 

family of PP2C-like enzymes which share low homology to the PP2C in animals, where only few 

isoforms are present. Remarkably, each plant enzyme contains a unique N-terminal extension 

(Luan, 2003).   

PP2A exist either in a heterodimer form consisting of a 36 kDa catalytic subunit and a 65 kDa 

scaffolding subunit (subunit A) or in a heterotrimer form with the catalytic subunit, the 

scaffolding subunit A and the regulatory subunit B. In general, PP2A are involved in a variety 

of different processes such as hormone-mediated growth regulation, control of cell shape and 

plant morphology, pathogen response and root cortical cell elongation (Rashotte et al., 2001; 

Kwak et al., 2002; Camilleri et al., 2002; Larsen & Cancel, 2003).  

The A subunit acts as a scaffold for the formation of the heterotrimeric complex while the B 

subunit control the localization and substrate specificity of the different holoenzymes (Farkas 

et al., 2007; Shi, 2009).  

In Arabidopsis, three genes encoding the A scaffolding subunit have been identified: ROOT 

CURL IN NAPHTHYLPHTHALAMIC ACID1 (RCN1, At1g25490), PDF1 (At3g25800) and PDF2 

(At1g13320). Mutants lacking RCN1 displays pleiotropic phenotypes including altered auxin 

transports, reduced elongation of seedling organs, increased ethylene production and 

sensitivity (Zhou et al., 2004). Also, RCN1 functions as a positive transducer of ABA signalling 

and its mutant shows reduced sensitivity to ABA during seed germination (Kwak et al., 2002). 

Interestingly, although PDF1 and PDF2 share high amino acid sequence similarity with RCN1, 
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their loss of function mutants, referred in Zhou et al. (2004) as pp2aa2-1 and pp2aa3-1 

respectively, exhibit normal phenotypes; even the double mutant does not show any evident 

phenotype. Expression analysis of the three A subunits indicated that the transcripts are 

present in every tissue with the highest abundance in roots and flowers (Zhou et al., 2004). 

 

   

1.2.2 Role of phosphorylation in seed physiology 

Although phosphorylation is very well studied, little is known about the phosphoproteome of 

dry and germinating seeds.  

The predominant phosphorylated proteins in dry mature seeds of Arabidopsis are the 12S 

cruciferins which are phosphorylated during seed maturation; Wan et al., (2007) suggested 

that this may promote their disassembly and mobilization during germination. However, de 

novo specific protein phosphorylation occurs mainly during seed germination (reviewed in Arc 

et al., 2011), because protein activities in the dry seed are reduced due to its quiescent state. 

For instance, Lu et al. (2008) conducted a phosphoproteomic analysis in germinating maize 

seeds and identified several phosphatases and kinases that showed upregulation during 

germination. 

Several studies showed that the activity of many kinases and phosphatases is associated with 

ABA response. Members of the sucrose nonfermenting1-related protein kinases (SnRKs) are 

key regulators of ABA signaling in seeds and they can be divided into three subfamilies: 

SnRK1, SnRK2 and SnRK3.  

In particular, SnRK2 is involved in the positive regulation of ABA by promoting the 

phosphorylation of the transcription factors family ABFs/AREB, including ABI5 whose 

phosphorylation affects dormancy through the regulation of dormancy related genes (Fujii et 

al., 2007; Nakashima et al., 2009). Three Arabidopsis SnRK2s (SnRK2.2, SnRK2.3, and 

SnRK2.6) are expressed mainly during seed development and germination. The triple mutant 

is highly ABA insensitive and viviparous when grown at high humidity. Strikingly the severity 

of the phenotype of the triple mutant is far stronger than the single mutants, indicating that 

these kinases are involved in different aspects in the control of dormancy (Nakashima et al., 

2009).    

ABA-INSENSITIVE1 (ABI1) and ABA-INSENSITIVE2 (ABI2) belong to the family of the protein 

phosphatases PP2Cs and they function as negative regulator of the SnRK2-mediated 

phosphorylation. The mutants abi1-1 and abi2-1 are dominant negative and display a reduced 

dormancy (Koornneef et al., 1984). The newly discovered family of ABA receptor 

PYR/PYL/RCAR inhibits the activity of PP2Cs, including ABI1 and ABI2, in an ABA-dependent 

manner and triggers the phosphorylation of downstream factors (SnRK2) together with ABA 

transcriptional responses (Ma et al., 2009; Park et al., 2009). Moreover, insertion mutants of 

these receptors are ABA-insensitive, indicating that they play a central role in seed dormancy. 
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1.3 Objectives of the thesis  

Seed dormancy prevents the seed from germinating in an unfavorable season. So far, the 

molecular mechanisms controlling seed dormancy are not well understood. The purpose of this 

thesis was to improve our understanding of seed dormancy and the molecular mechanisms 

underlying it in the model plant Arabidopsis thaliana, in order to apply this knowledge to 

agronomical important species. 

Previous studies identified DOG1 as a key regulator of seed dormancy in Arabidopsis thaliana. 

DOG1 encodes a protein of unknown function, although significant progress in our 

understanding of its regulation has been made (Nakabayashi et al., 2012). DOG1 protein 

accumulates during seed maturation and remains stable during imbibition and after ripening. 

The protein level correlates with dormancy in fresh seeds. However, its accumulation does not 

correlate with dormancy level in after ripened seeds. Also, preliminary experiments performed 

in Wim Soppe laboratory identified PDF1, a phosphatase 2A, as DOG1 interacting protein.  

As DOG1 accumulation does not correlate with dormancy level in after ripened seeds, one 

objective of this thesis was to understand how DOG1 is regulated during after ripening and 

test the hypothesis that DOG1 becomes modified and loses its activity in this stage. 

Secondly, a phosphatase 2A was identified in a preliminary yeast two hybrid screening, 

therefore the role of phosphorylation in regulating DOG1 was investigated in order to better 

understand its protein function. 
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2. MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Chemicals and antibiotics 

The chemicals were purchased from the following companies: Biorad (Hercules, USA), Invitrogen 

(Karlsruhe, Germany), MBI Fermentas (St. LeonRoth, Germany), Merck (Darmstadt, Germany), 

Promega (Mannheim, Germany), Roche (Mannheim, Germany), Sigma (Deisenhofen, Germany) and 

Carl Roth (Karlsruhe, Germany).  

 

The antibiotics were supplied by Duchefa (Haarlem, Netherlands) and used as indicated in the table 

2.1. 

 

 
Table 2.1 
 

Name Solvent 
Final concentration in 

E.coli selection medium 
(mg/l) 

Final concentration in A. 
tumefaciens selection medium 

(mg/l) 

Ampicillin (Amp) Water 100 - 

Gentamycin (Gen) Water 10 10 

Hygromycin Water 50 50 

Kanamycin Water 50 25 

Rifampicin DMSO - 50 

Spectinomycin Water 100 - 

 

 

2.1.2 Buffers and culture media 

Buffers and culture media were prepared according to Sambrook and Russel (2001). 

In addition, special solutions were prepared as following: 

 

High salt solution for RNA precipitation 
Sodium citrate 

 
  1.2 M 

NaCl 
 

  0.8 M 

DNA extraction buffer  
Tris HCl    0.2 M, pH 7.5 
NaCl   0.25 M  
EDTA   25 mM 
SDS   0.5% 
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GUS staining buffer 
Triton X-100 

 
0.2% (v/v) 

NaPO4 50 mM, pH 7.2 
K4Fe(CN)6*H20 2 mM 
K3Fe(CN)6 2 mM 
X-Gluc 
 

2 mM 

Infiltration  medium  
MS salt 1. 35 gr 
Sucrose  25 gr 
Silwet L-77 100 μl 
Water 
 

Up to 500 ml 

Blocking solution (pH= 7.5) 
Tris-Cl 

 
50 mM 

NaCl 150 mM 
Tween 20 0.25 % (v/v) 
Skim milk 
 

5% (w/v) 

IEF rehydration Buffer  
Urea 

 
9M 

Thiourea 2 M 
CHAPS 2% 
Ampholyte 1% (v/v) 
Bromophenol blue 0.002% 
DTT 
 

20 mM 

Dense SDS solution 
Tris-HCl (pH=8) 

 
100 mM 

Sucrose 30% (w/v) 
SDS 2% (w/v) 
Mercaptoethanol 
 

5% (v/v) 

Alkaline Phosphatase (AP) Visualization Solution 
Tris 

 
100 mM 

NaCl 100 mM 
Nitro Blue Tetrazolium (NBT) 0.1 mg/ml 
5-Bromo-4-Chloro-3-Indoryl-Phosphate (BCIP) 0.05 mg/ml 
MgCl2 4 mM 
N,N-Dimethylformamide 
 

1% 

Enzyme solution in mannitol solution  
Cellulase   1% 
Pectinase  
 

0.3% 

Mannitol solution  
mannitol 0.4 M 
KCl 20 mM 
Mes pH 5.7 
 

20 mM 

PEG/Ca solution   
PEG 4000 4 g 
mannitol 0.36 g 
1M Ca (NO3)2 1 ml 
Water 
 

Up to 10 ml 
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W5 solution 
NaCl 154 mM 
CaCl2*2H2O 125 mM 
KCl 5 mM 
Mes (pH=5.7) 
 

2 mM 

 
MMg solution 

 

Mannitol 0.2 M 
MgCl2*6H20 15 mM 
Mes 4 mM 

 

2.1.3 Enzymes 

All restriction enzymes were ordered from New England Biolabs (Schwalbach/ Taunus, Germany) or 

Fermentas (Massachussets, USA), Platinum Pfx DNA-Polymerase (Invitrogen, Karlsruhe, Germany),  

Taq DNA Polymerase (Ampliqon). 

 

2.1.4 Commercial Kits 

Bio-Safe Coomassie G-250 stain (BIORAD, Hercules, USA) 

BP-Clonase and LR Clonase (Invitrogen, Karlsruhe; Germany) 

cDNA synthesis 

MiniprepTM kit (Qiagen, Hilden, Germany) 

RNAqueous RNA isolation aid (Ambion, Austin, USA) 

pENTRTM  Directional TOPO Cloning Kit 

Protein assay (BIORAd, Hercules, USA) 

 

2.1.5 Primers 

The primers used in this thesis are listed in the tables below: 

 
Primers for DOG1 Sequence 5´ to 3´ 
DOG1overall_F GAGCTGATCTTGCTCACCGATGTAG 
DOG1overall_R CCGCCACCACCTGAAGATTCGTAG 
Dog1-2 Mse F TTCTTTAGGCTCGTTTATGCTTTGTGTGGTT 
Dog 1-2 Mse R CTGACTACCGAACCAAAAAATTGAATTTTAGTC 
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Primers for PDF1 
FW-570 TGAATCAATTTAATTTGTTAGTATACACACATATTGTCGT 
FW-1200 GATGAAATGTATTAGTGAAAGTAAATCGTTCTGAAATTGT 
FW-2400 CGC TGC CGT TTT AGC AAG TCT CTC TCA GA 
Start_FW ATGTCTATGATCGATGAGCCGTTGTACCCAATCGC 
Stop_RW TTAGCTAGACATCATCACATTGTCAATAGATTGTAGAGCTTG 
BF_pdf1 GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGAAGGAGATAGAACCATGTCTATGA

TCGATGAGCC 
BR_1_pdf1 GGGGACCACTTTGTACAAGAAAGCTGGGTGGCTCTACAATCTATTGACAATGTGAT

G 
BR_2_pdf2 GGGGACCACTTTGTACAAGAAAGCTGGGTGGCTAGACATCATCACATTGTCAATA 
3UTR1_r CAAGACAATGGACAAAACCCGTACCGAGGCACTCTAGTAG 
3UTR2_r TTAGTAGCAAGACAATGGACAAAACCCGTACCGAGGCAC 
1633_F TTGATCAATCGGTTGTGGAGAAGACGATTCGTCCTGGGCTTGTGG 
100_rv CCC CAA GAG CAC GAG CGA TCG TAG 
Salk_LP_pdf1 CGATGTTACGTGCCCTCTTAC 
Salk_RP_pdf1 TCTACCGAATGACCATTTTGC 
1518FW GGGCTCAGAGATTACATGCTCTAAGCTCTTACC 
600FW 
 

GAATCAGCGCATTTGAAGACCGACG 

 
 
Vectors 

 

Gal4F_AD GATGATGAAGATACCCCACCAAACCCA 
GAL4_BD AAGGTCAAAGACAGTTGACTGTATCGC 
pDONR_rv ACGTTTCCCGTTGAATATGGCTCAT 
35S-F AAGACGTTCCAACCACGTCTTC 
Yfp_156FW GACAAGCAGAAGAACGGCATCA 
Yfp_20R_rev GTCCAGCTCGACCAGGATGG 
Yfp_201R_rev 
 

GTAGTGGTTGTCGGGCAGCA 
 

 
Primers for RCN1 

 

Rcn1-start ATGGCTATGGTAGATGAACCGTTGTATCCC 
Rnc1-stop TCAGGATTGTGCTGCTGTGGAACCAT 
500F GGGGAAATTTGCTACAACTGTCGAGTC 
1000F GGGGATGGCTCCTATCCTTGGGA 
1400F ATGCAGCACTTAGTTCCCCAGGTATTG 
Salk_LP_rcn1 TATAGGATTTTTCGATGACAAGCTC   
Salk_RP_rcn1 
 

ATCTAGAGGGGTTGGATAAAGTTTG 

 
Primers for PDF2 

 

Salk_LP_pdf2 TATTTCCAAACTTTGGGGGAC 
Salk_RP_pdf2 ATGGACACAGCTTGAAGATGG 
500F GGGGAAGTTTGCTGCTACAATTGAATCAG 
1000F GGAATTATCATCAGACTCTTCTCAGCACGTCAG 
1400F AATGCAGCATATAGTTCCTCAGGTTCTAGAGA 
Pdf2_start ATGTCTATGGTTGATGAGCCTTTATACCCGAT 
Pdf2_stop TTAGCTAGACATCATCACATTGTCAATAGATTGGAG 
Pdf2_nostop GCTAGACATCATCACATTGTCAATAGATTGGAGAG 
 
 
Primers for ACTIN8 

 

RT_actin8_fw CTCAGGTATTGCAGACCGTATGAG 
RT_actin8_rev CTGGACCTGCTTCATCATACTCTG 

 

 
 



 Materials and Methods  

19 
 

2.1.6 Plasmids used in this thesis  

Vector Aim Provided by 
pDONRTM 207 Cloning of PCR fragments with 

Gateway® technology 
 

Invitrogen, Karlsruhe, 
Germany 

pLeela GW Overexpression in planta 
 

Joachim Uhrig 
(MPIPZ) 
 

pGWB3 GUS Promoter activity analysis in 
planta with GUS assay 

Kazumi Nakabayashi 
(MPIZ) 
 

pGreen DOG1 detection with HA  
antibody 
 

Kazumi Nakabayashi 
(MPIZ) 
 

pBatTL-B-sYFPn Split YFP assay in planta Joachim Uhrig 
(MPIPZ) 

 
pBatTL-B-sYFPc 

 
Split YFP assay in planta 
 

Joachim Uhrig 
(MPIPZ) 

pENSG-YFP In vivo localization study Vittoria Brambilla  
 
pENSG-CFP 

 
In vivo  localization study 
 

Vittoria Brambilla  

pACT2-attR Yeast two hybrid 
 

Csaba Koncz (MPIPZ) 

pAD2-attR Yeast two hybrid 
 

Csaba Koncz (MPIPZ) 

pENTR Cloning of PCR fragments with 
Gateway® technology  

Invitrogen 

   

 

2.1.7 Bacterial and yeast strains 

Escherichia coli strain DH5α was used for standard cloning procedures (Hanahan, 1983). 

Agrobacterium tumefaciens strain GV3101 was used for plant transformation; in addition, when 

plants were transformed with the vectors pGreen and pLeela, strains carrying the helper plasmid 

pSoup or pMP90RK were used, respectively (Koncz & Shell., 1986; Koncz et al., 1990; Hellens & 

Mullineaux., 2000). For the two hybrid screen the yeast strain pj69-4a was used. 

 

2.1.8 Antibodies 

Anti-HA primary antibody: HA Clone 16B12 Monoclonal Antibody (Covance). 

Secondary antibody: Alkaline Phosphatase conjugated goat affinity purified antibody to mouse (MP  

Biomedicals). 
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2.1.9 Plant material 

Arabidopsis accession: Columbia (Col).  

Mutants: dog1-2 (isolated by V. Raz in Wageningen University and identified as a non-dormant 

mutant carrying two nucleotide changes from C to A at the positions 332 and 334 in the first exon, 

which causes a premature stop codon), pdf1-1 (Salk_037095), pdf2 (Salk_014113), pdf1-2 pdf2 

(Salk_042724 for pdf1-2) and rcn1 (Salk_059903). All the mutants are in Columbia background. 

 

2.1.10 Software and websites 

Analysis of sequences, sequencing results, alignments, aminoacidic sequences and in silico cloning: 

Gene Runner 3.05, Clone Manager Suite 7. 

Protein analysis in silico: Phosphat, NetPhos (prediction of phosphroylation sites), Expasy 

(prediction of  isolelectric point). 

Bioinformatic tools: www.ncbi.nlm.nih.gov  

 

2.2 Methods 

2.2.1 Plant methods 

2.2.1.1 Plant growth conditions 

Plant were grown in the greenhouse where the temperature was kept in the range 18-25 °C  and 

light was provided for a minimum of 12 hours per day. When controlled growing conditions were 

required, plants were grown in special chambers (Elbanton BV, Kerkdriel, Netherlands) with 16h 

light/8h dark cycle (22˚C/16˚C). 

 

2.2.1.2 Seed germination 

For propagation, seeds were incubated for 3-4 days at 4°C in order to break dormancy and then 

directly sown on soil.  

For the dormancy test (see 2.2.1.4), freshly harvested seeds were sown on filter paper soaked with 

water in 6cm Petri Dishes and incubated in a germination chamber in controlled conditions (16 

hours light at 25°C/ 8 hours darkness at 20°) for 2 days. 
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2.1.3 Seed coat sterilization 

Seeds were rinsed few times with a solution containing 40% Sodium Hypochloride and 0.02% 

Triton X-100. Afterwards the seeds were washed with sterile water and mixed with 0.1% Agar to be 

sown on MS agar plates (1x Murashige Skoog salts (MS), 1% sucrose, 0.8% Daishin Agar, ph 5.7 

and appropriate antibiotics). All the operations were performed in sterile conditions. 

 

2.2.1.4 Seed dormancy measurement 

Freshly harvested seeds were stored in small bags in special incubators at 21°C, 50% relative 

humidity and periodically checked on their ability to germinate. For every time point, 30-40 seeds 

were sown on filter paper and incubated as described in 2.2.1.2. The total number of germinating 

and non-germinating seeds was then counted using a stereomicroscope (MZ6 from Leica, Germany) 

and the ratio plotted to a graph. 

 

2.2.1.5 Crossings of plants 

Open flowers and developing siliques were removed from the inflorescence of the mother plant 

which served as a pollen acceptor. On this inflorescence, the closed and immature buds were 

cleared from sepals, petals and stamens. The stigma was then pollinated by rubbing the anthers of 

the father plant using fine and clean forceps. 

 

2.2.1.6 Plant transformation 

Plants were transformed by floral dipping (Clough & Bent., 1998). These plants were grown in the 

greenhouse in short day conditions (8 hours light/ 16 hours dark) until the first bolts were 

developed and then transferred to long day conditions. In addition, to promote the growth of many 

secondary bolts, plants were clipped when the first shoots appeared.  

Agrobacterium was preinoculated in 1 ml of YEB (5g/l Difco, 1g/L yeast extract, 5g/L peptone, 5g/L 

sucrose, 2 mM MgSO4) containing the appropriate selective antibiotics and shaked at 28 °C for one 

day. This was added to a 100 ml culture which was subsequently grown in the same conditions for 

few days. Cells of this culture were precipitated at 5000 rpm for 30 minutes and resuspended in 

150 ml of infiltration media. The inflorescences were dipped in this mixture and wrapped in plastic 

bags for 2 days, in order to keep the optimal moisture condition to allow the infection.  Finally the 

plants were transferred to the greenhouse. 
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2.2.1.7 Selection of transformants 

Plants carrying the BASTA resistance gene were grown on soil for one week and then sprayed with 

a 200 mg/l solution of the herbicide Glufosinat.  

In order to select plants resistant to antibiotics, the seeds of these plants were sterilized as 

described in 2.2.1.3 and sown on half strength MS plates containing the appropriate antibiotics.   

 

 

2.2.2 Microscopy 

2.2.2.1 GUS assay 

Isolated embryos from plants carrying the constructs pPDF1_2:GUS and pDOG1_Cvi:GUS were 

tested for GUS activity as described in Sessions & Yanofski (1999).  

Seeds were imbibed for 1 to 2 hours in order to be able to remove the seed coat. The resulting 

isolated embryos were submerged into vials containing the GUS staining buffer and vacuum was 

applied for 1 hour to allow the penetration of the buffer. Samples were then incubated at 37 °C 

overnight and washed several times with ethanol. Embryos were clarified with a few drops of chloral 

hydrate and analysed using a Axioplan 2 microscope from Zeiss, Germany. 

 

 

2.2.2.2 Arabidopsis leaf protoplasts transient transformation 

Leaves from 4-5 weeks old plants were cut in very small parts with a clean scalpel and placed in a 

Petri dish. Afterwards the leaves were incubated with 15 ml of Enzyme Solution for 2 hours at 100 

rpm on a shaker platform. Before proceeding with the transformation, protoplasts were released by 

swirling the Petri dish by hand for 1 minute and filtrated with a nylon mesh (35-100 μm), collecting 

the flow-through in a round bottom tube. The mixture obtained after the filtration was centrifuged 

for 3 minutes at 500 rpm and washed once with 5 ml of W5 solution. A second centrifugation step 

followed and, after removing the supernatant, the protoplasts were resuspended in 1.2 ml of MMg 

solution. For every transformation 200 μl of protoplasts were pipetted in a separated round bottom 

tube where the plasmid DNA (15-30 μg) was added. An incubation of 5 minutes followed. The 

transfection was stopped by adding 500 μl of W5 solution. Afterwars, the protoplasts were washed 

2 times with W5 solution and finally resuspended in 500 μl of W5 containing 1mM of glucose in 8-

well plate ready to use for confocal laser scanning microscopy (CLSM 510 from Zeiss, Germany). 

 

2.2.2.3 Nicothiana benthamiana leaves transient transformation 

The Agrobacterium strain carrying the construct of interest was grown overnight in 5 ml of LB with 

the appropriate selective antibiotics. The bacterial cells were centrifuged at 5000 rpm for 10 
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minutes at 4 °C and resuspended in Induction Medium (10mM MgCl2, 10mM MES pH 5.6, 0.15mM 

Acetosyringon). The culture was then left at room temperature in the dark for 2 hours. Young 

healthy leaves of Nicotiana benthamiana were infiltrated with a needled syringe from the lower 

side, opposing pressure with the finger on the other side.  After three-five days the infiltrated 

leaves were harvested and analyzed using a confocal microscope. 

 

 

2.2.3 Molecular biology methods 

2.2.3.1 Genomic DNA extraction 

Genomic DNA was extracted according to Edwards et al.(1991). 400 μl of extraction buffer were 

placed in a tube together with a piece of leaf. The leaf was disrupted quickly with the help of a 

small pestle. After 5 minutes centrifugation at 14000 rpm, the supernatant was transferred in a 

new tube and mixed with 300 μl of isopropanol. The mixture was left 2 minutes at room 

temperature and centrifuged as described before. The pellet was washed with 70% ethanol and 

dried. DNA was then resuspended in 70 μl of water. 1μl was used as a template for PCR reactions.    

 

2.2.3.2 Plasmid DNA extraction 

Plasmid isolation from E. coli was done using the Plasmid Isolation Mini kit (Qiagen) according to 

the company protocol. 

 

2.2.3.4 Purification of PCR products and gel extraction of PCR fragments 

PCR fragments and gel exctracted PCR fragments were purified using the Gel Extraction kit 

(Qiagen).  

 

2.2.3.5 Total RNA extraction from dry seeds and siliques 

In order to obtain RNA from seeds and siliques, a special protocol was required to purify the RNA 

from the polysaccharides, oils and protein storage present in these tissues. 10 to 20 mg of siliques 

or seeds were grinded in a mortar with liquid nitrogen and the initial step for the exctraction was 

performed using the RNAqueousTM total RNA isolation kit (Ambion, USA).  

The resulting 100 μl of eluted RNA were quantified using the nanodrop ND-1000 Spectrophotometer 

and precipitation step followed. Here, 250 μl of isopropanol and 250 μl of high salt precipitation 

solution were added to the RNA solution in a final volume of 1ml. RNA was then recovered by 

centrifugation at 14000 rpm for 30 min at 4 °C and washed with 70% ethanol. The pellet was dried 



 Materials and Methods  

24 
 

and dissolved with water in order to have a concentration of 200 ng/μl. Afterwards a quarter 

volume of 10M lithium chloride was added to the RNA and the solution was kept on ice overnight. 

Pellet was recovered by centrifugation at 14000 rpm for 30 min at 4 °C and washed once with 2M 

lithium chloride. An additional washing with 70% ethanol followed and the pellet was finally 

dissolved in 10 μl of water.  

 

2.2.3.6 cDNA synthesis  

First strand cDNA synthesis was performed using the QuantiTect  Reverse Transcription kit following 

the manifacturer’s protocol and using 1 μg of total RNA. 

 

 
 
2.2.3.7 Standard PCR conditions 

In general, the PCR conditions were: 

 

5 minutes 
 

95 °C  

30 seconds 95 °C  
30 seconds 55-65 °C 35-40 cycles 
30 second to 1 minute 
 

68 or 72 °C  

5 minutes 
 

68 or 72 °C  

 
 

  

All the reactions were performed using a Eppendorf Mastercycler (Hamburg, Germany) and the 

general conditions as well as the enzyme used were different depending on the purpose of the PCR 

reaction.  

Standard PCRs (colony pcr and genotyping) were performed with a Taq polymerase (Ampliqon, 

Denmark) and for accurate amplification the pfx50TM (Invitrogen) or KOD (Toyobo, Japan) were 

used. 

 

2.2.3.8 Yeast two hybrid 

The yeast strain PJ69-4a was grown overnight in a 1 ml preculture of YPDA (20 g/L Difco peptone, 

10 g/L yeast extract, 2% glucose, 0,003% adenine hemisulfate solution) shaken at 30°C . This 

preculture was used to obtain a bigger culture of 50 ml shaken at the same temperature for 3-5 

hours. The yeast cells were then precipitated at 5000 rpm for 10 min and washed few times with 

sterile water in sterile conditions. Afterwards the cells were resuspended in 1 ml of 0.1M Lithium 

Acetate and, after a quick spin, dissolved in 0.5 ml of 0.1M Lithium Acetate in oder to obtain the 

competent cells. This amount would serve for 10 transformations of 50 μl each. Every aliquot was 

mixed with 240 μl of PEG 3350 (50%), 1M lithium acetate and salmon sperm DNA (2mg/ml) which 
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was boiled 10 minute before using. Finally the plasmid DNA, consisting of the bait and the prey 

(500 μg each, diluted to 50 μl final volume) was added to this mixture in order to have 400 μl as a 

total volume. The transformations were incubated at 30 °C for 30 min and 42 °C for 20 min. The 

cells were then pelleted and resupended in 200 μl of 1M sorbitol, of which 180 μl were plated on the 

–LWH plates and 20 μl were instead plated on the –LW plates. Plates were incubated at 30 °C for 

one week.  

 

 

  

2.2.4 Biochemical methods 

2.2.4.1 Protein extraction 

10 to 15 mg of seeds were placed in a mortar and grinded with liquid nitrogen and 10% sand 

(w/w). The fine powder obtained was transferred in a tube and vortexed after adding 1 ml of ice-

cold acetone; the mixture was then centrifuged at 10000 rpm for 10 min at 4°C and the 

supernatant discarded. This step was repeated and a chilled solution of 10% TCA/acetone was 

added to the pellet; a brief sonication followed. The mixture was then washed with chilled 10% 

TCA/acetone, 10% TCA/water and two times with 80% acetone. The pellet was centrifuged one last 

time in order to remove the residual acetone and suspended in 0.8 ml of dense SDS solution and 

0.8 ml of phenol. This phenol phase was collected after 45 minutes centrifugation at room 

temperature and transferred in a new tube. Proteins were precipitated overnight at -20 °C by 

adding 5 times the sample volume 0.1 M ammonium acetate/methanol. The following day the pellet 

was centrifuged at 4°C and washed two times with 0.1 M ammonium acetate/methanol and two 

times with 80% acetone. Finally the pellet was resuspended at room temperature in 50 μl of 

rehydration buffer and the total protein concentration was quantified with Bradford assay.  
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2.2.4.3 Rehydration of the immobilized pH gradient (IPG) strips and isoelectrofocusing 

(IEF)  

The rehydration step was performed overnight on the bench at RT by applying 135 μl of rehydration 

buffer to each IPG strips (Biorad, pH 4.7-5.9) and covering them with 1 ml of mineral oil to avoid 

evaporation of the sample. The following day 40 μg of protein were resuspended in 50 μl of 

rehydration buffer to achieve the suitable volume to be loaded in the sample cups. The rehydrated 

strips were placed in a cup loading tray and the IEF was performed according to the following 

conditions: 

 
 Start Voltage End Voltage Set time Ramp Temperature  
Step1 
 

0 V 250 V 30 min Rapid 20°C 

Step2 250 V 4000 V 180-300 min Slow 20°C 
 
 Start Voltage End Voltage Volt-Hours Ramp Temperature  
Step3 4000 V 4000 V 24000 V-hr Rapid 20°C 

 

 
2.2.4.5 Two-dimensional gels and Western Blot  

The separation on the second dimension was obtained by positioning the strip on the top of a small 

precast polyacrylamide gel (Nupage, Invitrogen) and applying 170 V tension for 75 min. After 

separation the gel was blotted on PVDF membrane through wet electrotransfer for 2 hours at 30 V.  

Before proceeding with the immunological reactions, the membranes were washed for 1 hour with 

Blocking Solution. Primary antibody reaction was performed by incubating the membrane overnight 

with anti-HA monoclonal antibody while for the secondary antibody reaction the membrane was 

incubated overnight with a mouse anti-IgG antibody conjugated with alkaline phosphatase.   
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3. RESULTS 

3.1 Molecular characterization of the DOG1 interactor PDF1 

3.1.1 Identification of DOG1 interacting proteins 

3.1.1.1 Preliminary work 

In search of putative interacting proteins of DOG1, a yeast two hybrid library screening was 

performed. Two cDNA libraries, one from cell culture and one from whole plant, were used in the 

screening, leading to the identification of several candidate interactors (Table 3.1). 

Among the clones showing an interaction with DOG1, many independent ones were found to 

contain the same cDNA encoding PDF1 (At3g25800), a Ser/Thr phosphatase 2A.  

Therefore, a T-DNA insertion line for PDF1 was obtained from the Arabidopsis Stock Centre. As 

shown in Figure 3.1 this line, named pdf1-1, displayed enhanced dormancy indicating that the 

phosphatase could play a role opposite to DOG1 in controlling seed dormancy.  

 

 

 

 

 

Figure 3.1. Germination assay showing that pdf1-1 displayed enhanced dormancy in comparison to the wild type. 
Data points show the average of 10 plants. Standard errors are indicated by the bars. 
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ID Symbol Description 

AT1G43170.3 ARP1 Similar to 60S ribosomal protein L3 (RPL3B) 

AT1G55360.1 none Expressed protein,  unknown function 

AT1G56045.1 none 
Ribosomal protein L41 family protein, contains 
Pfam domain PF05162: Ribosomal protein L41 

AT3G03960.1 none Chaperonin, putative 

AT3G16640.1 TCTP 
Translationally controlled tumor family protein 
 

AT3G25800.1 PDF1 

Serine/threonine protein phosphatase 2A 
(PP2A) 65 KDa regulatory subunit A, identi  
to protein phosphatase 2A 65 kDa regulato  
subunit (pDF1) GI:683502 from (Arabidops  
thaliana) 

AT4G03190.1 GRH1 F-box family protein (FBL18) 

AT4G18400.1 none Expressed protein 

AT5G11790.1 none Ndr family protein 

AT5G38420.1 none Ribulose bisphosphate carboxylase small chain 2   
RuBisCO small subunit 2B (RBCS-2B) 

 
 
Table 3.1 An initial yeast two-hybrid screening led to the identification of several putative interacting proteins of 
DOG1. Column ID, ATG number of the putative interactors. Column Symbol, abbreviation of the gene name. In bold 
is PDF1.  
 
 

These preliminary data, showing that PDF1 interacts with DOG1 in yeast and influences dormancy, have 

been used as a starting point for the work described in this chapter.  

 

 

3.1.1.2 Yeast two hybrid screen 

To confirm the interaction between PDF1 and DOG1 a yeast two hybrid co-transformation was 

performed. The study of interaction between two proteins using yeast two hybrid takes advantage of the 

properties of the GAL4 protein in Saccharomyces cerevisiae (Fields & Song, 1989). GAL4 is a 

transcription factor required for the expression of genes encoding enzymes for galactose utilization. This 

transcription factor is split in two domains, the binding domain (BD) and the activating domain (AD) 

which can be fused to putative interacting partners. When the fusion proteins are interacting, the 

reporter gene is transcribed and yeast growth occurs on selective medium.  

According to these principles, PDF1 cDNA was fused to the binding domain and co-transformed in yeast 

with a vector containing DOG1 fused to the activation domain. Yeast growth was restored on selective 
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medium (Figure 3.2), indicating that DOG1 and PDF1 were interacting in yeast. The result was 

confirmed also by exchanging the binding and the activation domain fusions. 

As mentioned in 1.2.1, PDF1 has two homologues in Arabidopsis, PDF2 and RCN1. Their amino acid 

sequences show a high homology with PDF1, of respectively 94% and 86% (Zhou et al., 2004). 

Therefore, also PDF2 and RCN1 have been tested for the interaction with DOG1. Figure 3.3 shows that 

PDF2 but not RCN1 is able to restore yeast growth. As for PDF1, the binding and the activation domain 

fusions were exchanged in order to confirm the interaction. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

Figure 3.2. Dilution series (indicated by 
the triangle) of the yeast two hybrid 
assay showing the interaction of DOG1 
with PDF1. The interaction SNF1-SNF4 is 
used as positive control while the empty 
vector functions as negative control.  
BD: binding domain; AD: activating 
domain. Yeast was grown in presence of 
5 mM AT. 

 

Figure 3.3. Yeast two hybrid assay to 
test the interaction of DOG1 with the 
Arabidopsis homologues of PDF1, 
PDF2 and RCN1. Dilution series are 
indicated by the triangle. Yeast was 
grown in presence of 5 mM AT. 
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3.1.2 Phenotypic studies of pdf1-1, pdf2, rcn1, pdf1-1 dog1 and pdf1-2 pdf2  

The 2A phosphatases PDF1 and PDF2 were identified as interacting protein of DOG1. Therefore, a 

germination assay with pdf1-1 and several related mutants was performed in order to understand 

whether PDF1 and its homologues have a role in the control of dormancy (Figure 3.4). 

The mutant pdf1-1 was tested in this experiment to confirm the enhanced dormancy shown in the 

preliminary study. In addition, pdf1-1 was crossed with dog1-2 to generate the double mutant pdf1-

1dog1 with the purpose of understanding the relationship between the two genes. The loss of function 

mutant dog1-2 was chosen because it shares the same Columbia background of pdf1-1.   

A T-DNA insertion line was obtained for RCN1 from the Nottingham Arabidopsis Stock Center.  

Homozygous mutant lines were selected by PCR using specific primers annealing to the T-DNA border 

and to the gene. This line carries an insertion in the last intron (Figure 3.5D). 

Finally, the double mutant pdf1-2pdf2 was included in the assay to understand whether PDF1 and PDF2 

have redundant function. This mutant was generated in Alison DeLong’s lab (Brown University) by 

crossing the SALK lines pdf2 and pdf1-2 (referred in Zhou et al. as pp2a3-1 and pp2a2-1 respectively) 

and provided as a line heterozygous for PDF1 and PDF2. Plants carrying the double T-DNA insertion for 

PDF1 and PDF2 were selected by PCR following the same procedure as for RCN1. As some of these 

plants were heterozygous, it was possible to obtain homozygous mutants carrying a single pdf2 

mutation and include them in the germination assay.  The mutant pdf1-2 carries an insertion in the 9th 

exon and it is different from the one used in the preliminary germination assay (Figure 3.5A and 3.5B). 

All the above mentioned mutants were grown together with the wild type in the greenhouse under the 

conditions described in 2.2.1.1. The adult plants did not show any evident growth phenotype (Figure 

3.6), confirming the observations of Zhou et al. (2004) for pdf1-1, pdf2, rcn1 and pdf1-2 pdf2. 

The germination assay showed that pdf1-1 displayed enhanced dormancy in comparison to the wild type 

Columbia. The mutant pdf2 didn’t display any evident phenotype, suggesting that PDF2 is not involved 

in the regulation of dormancy. In support to this, the double mutant pdf1-2 pdf2 showed the same 

phenotype as pdf1-1, indicating that PDF1 and PDF2 are not redundant and the enhanced dormancy 

displayed by pdf1-1 is not an allele specific phenomenon, as the double mutant was obtained by 

crossing pdf2 with pdf1-2. 

The mutant rcn1 showed an intermediate phenotype between pdf1-1 and pdf2. A dormant phenotype for 

RCN1 was expected, as it is known to function as a positive transducer of early ABA signaling (Kwak et 

al., 2002). 

The double mutant pdf1-1 dog1 displayed the same phenotype as dog1-2, indicating that the dog1 

mutant is epistatic to PDF1. This finding, together with the absence of a dormancy phenotype in pdf2, 

suggests that PDF1 but not PDF2 could play a role in seed dormancy by interacting with DOG1. 
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Figure 3.4. Germination test comparing the wild type Columbia with pdf1-1 and its related mutants. Data points 
show the average of three biological replicates; ten plants were grown for each genotype. Standard errors are 
indicated.  
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Figure 3.5. Graphic representation of PDF1, PDF2, RCN1 and the position of their T-DNA insertions. For every gene, 
the untranslated regions are depicted in blue and the introns are represented by a line. 
A) Representation of the PDF1 gene and the position of the T-DNA insertion of the mutant named pdf1-1 
(Salk_037095). The green triangle indicates the T-DNA insertion in the first exon. 
B) Representation of the PDF1 gene and the position of the T-DNA in the mutant named pdf1-2 (Salk_042724). The 
purple triangle indicates the insertion in the 9th exon.  
C) Graphic representation of the PDF2 gene and the position of the T-DNA insertion in the promoter (dashed line) 
(Salk_014113).  
D) Graphic representation of the RCN1 gene and the position of the T-DNA insertion in the last intron (Salk_059903).  
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Figure 3.6. Adult plant phenotype of wild type Columbia (A), pdf1-1 (B), pdf2 (C), rcn1 (D), pdf1-1 dog1 (E), pdf1-2 
pdf2 (F). All plants were grown in the greenhouse under controlled conditions. Bars= 5cm.  
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3.1.3 Expression analyses 

DOG1 is a key regulator of seed dormancy with a seed specific expression pattern (Bentsink et al., 

2006; Nakabayashi et al., 2012). The 2A phosphatase PDF1 was identified as an interacting protein of 

DOG1 in a yeast two hybrid screen and its T-DNA insertion line showed enhanced dormancy. These data 

indicated that PDF1 is likely to play a role in seed dormancy through its interaction with DOG1. However, 

to confirm that DOG1 and PDF1 are co-expressed, the transcript level of PDF1 during seed maturation 

was analyzed with qPCR assay. 

For the expression analysis, plants were grown under controlled conditions in special growth chambers 

(Elbanton) and their siliques harvested in a time course from 10 to 20 days after pollination, covering 

the complete seed maturation phase during which seed dormancy is induced. In addition, fresh and after 

ripened mature seeds of these plants were imbibed for 12 hours and included in the experiments. Total 

RNA was extracted from each sample following the procedure described in 2.2.3.5.    

 

Publicly available microarray data on the eFP browser (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) 

indicated that PDF1 is ubiquitously expressed in every tissue and its transcript abundance is constant 

throughout Arabidopsis life cycle. These data also indicate that PDF1 is expressed in dry mature seeds 

(Figure 3.7). 

Specific primers were designed to avoid cross amplification with PDF2 and RCN1, since they share high 

sequence similarity. Additionally, the qPCR conditions were optimized to have high stringency with SYBR 

green detection. 

Quantitative PCR confirmed that PDF1 was expressed in dry seeds. Moreover, it revealed that its 

expression level is constant throughout seed maturation with a decrease in imbibed seeds (Figure 3.8). 

This result confirmed that PDF1 is expressed during seed maturation and imbibition and suggests that 

PDF1 plays a role in the control of dormancy. 

In addition, the expression levels of DOG1 were checked in the wild type Columbia and in pdf1 mutant. 

For the amplification of DOG1 the primers published in Nakabayashi et al., (2012) were used; these 

primers amplified all the splicing variants of the gene.  

In the wild type Columbia DOG1 showed a peak in expression levels at mid stage of seed maturation 

while in imbibed seeds it quickly disappeared (Figure 3.9). These results are in agreement with 

Nakabayashi et al (2012) where it is shown that DOG1 has a similar pattern in the highly dormant 

genotype NIL DOG1 (see 1.1.6).  

 

http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
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Figure 3.7. PDF1 expression in different Arabidopsis tissues. Picture from the website http://bar.utoronto.ca/efp/cgi-
bin/efpWeb.cgi.  
 
 
 

 

Figure 3.8. Expression levels of PDF1 in Columbia. PDF1 expression was checked during seed maturation, in after 
ripened seeds and in imbibed seeds. Values were normalized by the housekeeping gene ACTIN8 and represent the 
average and the standard deviation of a qPCR assay of two representative biological replicates. AR, after-ripened 
seeds; fim, fresh mature imbibed seeds; arim, after-ripened imbibed seeds.  
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In pdf1-1 mutant DOG1 transcript levels is reduced in comparison to the wild type (Figure 3.10). 

However its expression shows a similar tendency by having a peak around 16-18 days after pollination 

and a fast decrease upon imbibition. 

Taken together, these data indicate that DOG1 and PDF1 are co-expressed during seed maturation and 

show a decrease in transcript levels upon imbibition. DOG1 expression in pdf1-1 mutant is not altered in 

comparison to the wild type, suggesting that PDF1 is affecting DOG1 mostly at the protein level, possibly 

by influencing its activity or stability. 

 

 

 

 

Figure 3.9. Expression levels of DOG1 in Columbia. DOG1 expression was checked during seed maturation, in after 
ripened seeds and in imbibed seeds. Values were normalized by the housekeeping gene ACTIN8 and represent the 
average and the standard deviation of a qPCR assay of two biological replicates. AR, after-ripened seeds; fim, fresh 
mature imbibed seeds; arim, after ripened imbibed seeds.  
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Figure 3.10.  Expression levels of DOG1 in the pdf1 mutant. DOG1 expression was checked during seed maturation, 
in after ripened seeds and in imbibed seeds were used. Values were normalized by the housekeeping gene ACTIN8 
and represent the average and the standard deviation of a qPCR assay of two biological replicate. AR, after ripened 
seeds; fim, fresh mature imbibed seeds; arim, after ripened imbibed seeds.  

 

 

3.1.4 Overexpression of PDF1 

To analyze the effect of constitutive increased expression of PDF1, its coding sequence was cloned in a 

vector containing the double 35S promoter. 

The construct was transformed in Columbia and several transformants were obtained. Of these 

transgenic plants, two homozygous independent lines with single insertions were selected and tested in 

a germination assay with Columbia to see how the overexpression of PDF1 could influence dormancy, 

since its loss of function leads to enhanced dormancy.  

The assay (Figure 3.11) revealed that one of the transformant lines (line 3.1) showed a significant 

reduction in the dormancy level in comparison to the wild type and pdf1-1. However the other line 

tested was very similar to Columbia and did not show any significant difference. 

One possible explanation for this could be that PDF1 was silenced in these lines and a qPCR experiment 

will be useful in a further investigation of these lines. 

 

 

seed maturation imbibition 
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Figure 3.11. Germination assay comparing the wild type Columbia with two independent homozygous PDF1 
overexpressor lines. Values are means of ten plants, bars represent standard errors.  
 

 

3.1.5 The influence of hormones on germination of pdf1-1 and pdf2 mutants 

3.1.5.1 ABA sensitivity of pdf1-1 and related mutants at germination 

Plant hormones have an essential role in the control of dormancy. In particular, ABA and GA are the 

main regulators. 

ABA is a positive regulator of seed dormancy; it accumulates during seed maturation when desiccation 

tolerance and primary dormancy are established.   

Germination assay in presence of increasing amounts of ABA is a common method used in many 

screenings to identify ABA-insensitive mutants (Koornneef et al., 1984) and, more in general, genes 

involved in the ABA signal transduction.  

Also, Kwak et al. (2002) showed that a T-DNA insertion line for RCN1 has a reduced ABA sensitivity at 

germination. This finding, together with the evidence that the rcn1 mutation impairs ABA-related 

induced stomatal closing, ABA activation of slow anion channels and ABA-induced gene expression, 

suggested that RCN1 is a general component of the ABA signaling pathway. 

The sensitivity of pdf1-1, pdf2 and pdf1-2 pdf2 was checked by performing a germination test in 

presence of ABA, in order to determine whether PDF1 and PDF2 are also involved in the ABA signaling 
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pathway. After ripened seeds of these mutants were grown with increased concentrations of ABA up to 5 

µM and their germination rate was counted after 7 days (Figure 3.12).   

The test revealed that the ABA sensitivity detected in pdf1-1 and pdf1-1pdf2 is similar to the one of the 

wild type, indicating that PDF1 and PDF2 are unlikely to be involved in ABA signaling. 

 

 

3.1.5.2 Paclobutrazol sensitivity of pdf1-1 and related mutants at germination 

GA plays a key role in dormancy release by promoting germination and counteracting ABA effects. In the 

seed it is required to overcome seed coat restriction and endosperm weakening.  

When germinated on ABA solution, pdf1-1 and pdf2 do not show difference in comparison to the wild 

type, indicating that the enhanced dormancy observed is not caused by an altered ABA signaling. 

Paclobutrazol (PAC) is a gibberellins biosynthesis inhibitor. Germination assay in presence of PAC has 

been used in many screening to identify ABA-deficient mutant, which show resistance to PAC due to 

their low ABA content (Nambara et al., 1992; Leòn-Kloosterziel et al, 1996). As a consequence, this 

method has been extensively used to indirectly measure the ABA content in seeds.  

After ripened seeds of pdf1-1, pdf2 and pdf1 pdf2 were germinated in presence of PAC up to 100 µM to 

understand whether the dormant phenotype observed was induced by a change in the ABA content.  

Figure 3.13 shows that no significant differences were detected in the sensitivity to PAC of the mutants 

in comparison to the wild type. Taken together, these results indicate that PDF1 and PDF2 are not 

involved in the ABA signaling pathway and do not have an altered ABA content. 

 

 
Figure 3.12. ABA sensitivity at germination in the mutants pdf1-1, pdf2, pdf1 pdf2 compared to the wild type. Data 

points are the average of 10 plants from each line, standard errors are indicated by the bars. 
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Figure 3.13. PAC sensitivity at germination of pdf1-1, pdf2, pdf1 pdf2 compared to the wild type. Data points are 
the average of 10 plants from each line, standard errors are indicated by the bars. 
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3.1.6 Localization studies 

Previous studies detected DOG1 promoter activity in the vascular tissue of freshly harvested seeds; 

additionally, DOG1 protein was located in the nucleus based on the fluorescence of transgenic plants 

containing YFP::DOG1 fusion (Nakabayashi et al., 2012; see 1.1.6).  

The promoter of PDF1 and its coding sequence were fused to different reporter genes in order to 

compare the spatial expression pattern of PDF1 with DOG1 and test their in vivo interaction. These 

constructs were transformed in the wild type Columbia and for each of them several transgenic plants 

were obtained. Independent homozygous lines carrying a single copy insertion were selected for further 

analysis.    

  

3.1.6.1 Analysis of the DOG1 and PDF1 promoter activities 

PDF1 and its neighboring gene (At3g25805) are separated only by a very small region of 231 bp and the 

exact size of the PDF1 promoter was not clear. Therefore, three different constructs where the genomic 

sequence of the neighboring gene was included partially or entirely were used to analyze PDF1 promoter 

activity (Figure 3.14).  

In the first construct, named pPDF1-1, a small insert containing the 5’ UTR of PDF1 and the 3’ UTR of the 

neighbor gene (At3g25805) was cloned. In the second and the third constructs, named pPDF1-2 and 

pPDF1-3, the genomic sequence of the neighbor gene was included partially or entirely. 

 

 

 

Figure 3.14. PDF1 promoter regions used for the analysis of promoter-reporter gene fusions. 
The three different constructs used for the promoter analysis of PDF1 are indicated as pPDF1_1, pPDF1_2, pPDF1_3. 
 
 
 

T3 after ripened seeds of stable transformants with all three promoter constructs were analyzed for their 

histochemical GUS activity and two independent lines were used for every construct. This showed that 

PDF1 promoter activity was present in the vascular tissue and showed some additional activity 

throughout the whole embryo, with a peak of intensity in the radicle tip (Figure 3.15A) and no difference 

in the expression pattern of the different constructs was detectable.  

PDF1 promoter activity was compared to a GUS fusion construct containing DOG1 promoter of the 

strong dormant accession Kashmir (provided by K. Nakabayashi). DOG1 signal in after ripened seeds 

was clearly detectable in the vascular tissue (Figure 3.15B), indicating that DOG1 and PDF1 promoter 

activities are overlapping.  
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Figure 3.15. Localization of GUS activity in embryos of dry after ripened seeds. Plants were transformed with the 
constructs pPDF1_2:GUS (A) and pDOG1_Cvi:GUS (B) 
 
 

 

3.1.6.2 Cellular localization of DOG1 and PDF1 

To analyze the subcellular localization of PDF1, a binary vector with the coding sequence of PDF1 under 

the control of a 35S promoter and fused to the 3’ end with the CYAN FLUORESCENT PROTEIN gene 

(CFP) was produced and transformed in wild type protoplasts with a PEG-mediated transient assay as 

described in 2.2.2.2. After the transfection, protoplasts were incubated at room temperature overnight 

and analyzed by confocal laser scanner microscopy (CLSM). CFP signal could be detected in the nucleus 

and in the cytoplasm of leaf protoplasts (Figure 3.16B).  
The construct YFP::DOG1δ was also transformed in leaf protoplasts and confirmed that DOG1 is 

localized mainly in the nucleus (Figure 3.16A) as previously shown by Nakabayashi et al., 2012. 

Moreover, this result showed that DOG1 and PDF1 co-localize in the nucleus and cytoplasm. 

A B 
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Figure 3.16. Sub-cellular localization of DOG1 (A) and PDF1 (B). The constructs YFP::DOG1δ and CFP::PDF1 were 
transformed into leaf protoplasts and the fluorescence was detected after overnight incubation. White triangles 
indicate the nucleus (N) and the cytoplasm (CP) 
 
 
 
3.1.6.3 Interaction studies in Arabidopsis protoplast                             
DOG1 and PDF1 co-localize in Arabidopsis leaf protoplasts, indicating that they could interact in vivo. To 

confirm this hypothesis, a split YFP assay was performed. 

The split YFP assay is based on the principle that the N- and the C- terminus of YFP do not 

spontaneously reconstitute a functional fluorophore. However, when fused to interacting proteins, the 

two non-functional halves are able to reconstitute the fluorophore and generate de novo fluorescence 

(reviewed in Bhat R.A. et al., 2006). This assay offers the possibility to detect interactions between 

proteins in vivo and allows the visualization of the sub-cellular location of the interaction.  

The cDNA of PDF1 was cloned in two different binary vectors containing the N-terminus and the C-

terminus of the YELLOW FLUORESCENT PROTEIN (YFP) under the control of the 35S promoter. These 

constructs were transformed in leaf protoplast either with a construct carrying the N-terminus or the C-

terminus of the YFP fused to DOG1 using the same transient assay as in 3.1.3.2.  

Confocal microscopy confirmed that the fluorescence was restored in the nucleus and in the cytoplasm, 

indicating that the interaction occurred in vivo (Figure 3.17).  

All three DOG1 protein variants (α, β, δ) were tested in the assay in order to see whether they could 

differentially interact with PDF1 but no significant difference could be detected. 

Following the same procedure, the interaction between DOG1 and PDF2 was checked. As for PDF1, YFP 

fluorescence was detected in the nucleus and in the cytoplasm but the signal appeared less intense 

(Figure 3.18). 
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Figure 3.17.  Confocal image of the split YFP assay showing the interaction between DOG1-YFPC and PDF1-YFPN in 
leaf protoplasts. A) Chlorophyll channel; B) YFP channel; C) Transmission channel; D) Merged channels. White 
triangles indicate the nucleus (N) and the cytoplasm (CP). Pdf1n-dog1c 
 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

  
Figure 3.18. Confocal image showing the split YFP assay of the interaction between DOG1-YFPN and PDF2-YFPC. A) 
Chlorophyll channel B) YFP channel C) Transmission channel D) Merged channels. White triangles indicate the nucleus 
(N) and the cytoplasm (CP). 
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3.1.6.4 Interaction studies in N. benthamiana leaves  

The interaction between DOG1 and PDF1 and the localization of the single proteins were not determined 

in seeds of stable transformants.  

However, the split YFP assay performed in protoplasts was carried out also in N. benthamiana leaves 

using the same constructs, in order to confirm the protoplast result.  

Figure 3.19 shows interaction of DOG1-PDF1 in the nucleus and in the cytoplasmatic strands, confirming 

what was already observed in Arabidopsis protoplasts.  

 

 

 

 

 

 

 

 

 

Figure 3.19. Confocal image of Agrobacterium-mediated transient expression assay in N. benthamiana leaves. As for 
Arabidopsis, DOG1-YFPN and PDF1-YFPC interaction occurs in nucleus (N) and cytoplasm (CP).  A) Chlorophyll channel 
B) YFP channel C) Transmission channel D) Channels merged. 
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3.2 DOG1 protein studies 

3.2.1 Analysis of DOG1 protein in Columbia with two-dimensional gels 

Seed dormancy in Arabidopsis can be released by a period of cold treatment (stratification) or by storing 

seeds in dry conditions (after ripening).  DELAY OF GERMINATION1 (DOG1) plays a central role in the 

control of seed dormancy. Remarkably, the DOG1 protein levels correlate with dormancy in freshly 

harvested seeds; however, this correlation is lacking in after ripened seeds, suggesting that the protein 

activity is lost in this stage (Nakabayashi et al., 2012). In addition, PDF1, one the three genes coding for 

the scaffolding subunit A of a PP2A phosphatase, was identified as interacting protein of DOG1 and 

therefore a possible role of phosphorylation in affecting DOG1 function was investigated. 

Proteins are subjected to a large number of enzymatic and non-enzymatic post translational 

modifications that affect different properties such as localization, stability and activity. These protein 

modifications can be investigated using two-dimensional gels by looking at quantitative or qualitative 

changes in the isoelectrofocusing of specific proteins detected as spots. Therefore, DOG1 protein was 

studied qualitatively with two-dimensional gels by comparing fresh and after ripened seeds in order to 

detect alterations related to its loss of activity during after ripening.  

As demonstrated by previous experiments performed in the Soppe lab, DOG1 is a low abundant protein 

in seeds and for this reason it has to be detected with a specific antibody. A polyclonal antibody was 

raised against DOG1; however, the antibody was not fully specific and therefore a construct with a 

tagged version of the protein was generated in the lab. This construct contains 3xHA-tagged DOG1 

under the control of the DOG1 Cvi promoter and used for transformation of Columbia and pdf1-1.  

Homozygous transgenic plants carrying the construct ProDOG1:3xHA:DOG1 in Columbia background 

were grown under controlled conditions and total proteins were extracted from fresh seeds, 16 hours 

fresh imbibed seeds and 12 weeks after-ripened dry and imbibed seeds. In order to be able to detect 

the protein effectively, two-dimensional gel electrophoresis was followed by electroblotting on PVDF 

membrane and immunostaining; DOG1 fusion protein was detected with a monoclonal anti-HA antibody 

at the expected size of 40 kDa. HA:DOG1 in fresh dry seeds of Columbia was focused at the isoelectric 

point (pI) of ~5.0 while in 16 hours fresh imbibed seeds the protein had shifted towards the basic side 

at the isoelectric point of ~5.15. In after ripened imbibed seeds it was focused at two major spots at pI 

~4.75 and 5.0 (Figure 3.20). 

These results indicate that DOG1 is targeted by two different post-translational modifications. The first 

modification occurs during after ripening and causes a shift towards the acidic side in dry and imbibed 

after ripened seeds (see A.1 and A.2 for the shift in dry seeds), indicating that the modification occurs 

primarily in dry seeds and can still be observed upon imbibition. This shift is likely to be responsible for 

DOG1 loss of activity during after-ripening. 

The second modification occurs upon imbibition and induces a shift toward the basic side that is 

consistent with a dephosphorylation event. In order to investigate the role of PDF1 in the possible 

dephosphorylation event, DOG1 protein was analyzed in the pdf1-1 mutant. 
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Figure 3.20. Two-dimensional immunodetection showing DOG1 altered isoelectrofocusing during imbibition and after 
ripening of Columbia. Total proteins were extracted from fresh and after ripened seeds of plants containing the 
ProDOG1:3xHA:DOG1 construct and DOG1 was detected with an anti-HA antibody. Here, 40 µg of total proteins were 
separated using a narrow range IPG strip and on a bis-tris 4-12% acrylamide gradient gel.  
Freshly harvested seeds or 12 weeks after-ripened seeds were imbibed for 16 hours. The shift has been observed in 
three different biological replicates. 
pH and molecular mass marker are indicated respectively on the top and on the left of the blots.  
 

 

 

3.2.2. Analysis of DOG1 protein in pdf1-1 with two-dimensional gels 

PDF1 was identified as an interacting protein of DOG1 and encodes a scaffolding subunit A of 2A 

phosphatase. A homozygous T-DNA insertion line named pdf1-1 showed increased dormancy, supporting 

the hypothesis that PDF1 plays a role in controlling seed dormancy.  

Localization studies confirmed that PDF1 and DOG1 co-localize and interact in vivo; RT-PCR analysis 

showed that DOG1 mRNA accumulation pattern was similar to the one observed in the wild-type, 

although reduced. This suggested that PDF1 was influencing DOG1 at the protein level.  

During imbibition of Columbia seeds, DOG1 had altered isoelectrofocusing and shifted towards the basic 

side. This shift is consistent with a dephosphorylation event because upon removal of negative 

phosphates the protein is likely to accumulate positive charges and migrates through the negative side.  

Total proteins were extracted from homozygous transgenic plants carrying the construct 

ProDOG1:3xHA:DOG1 in pdf1-1 background to be able to detect DOG1 with a specific antibody.  Figure 

3.21 shows that in pdf1-1 HA:DOG1 was detected at the expected size of 40 kDa and was focused at pI 

~4.9 in fresh and after ripened imbibed seeds.  

In fresh imbibed seeds of pdf1-1, HA:DOG1 was focused at a lower pH in comparison to Columbia, 

indicating possible higher phosphorylation levels, consistent with a role of PDF1 in DOG1 

desphosphorylation. Also, the shift towards lower pH during after-ripening did not occur anymore, 
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suggesting that this shift depends on DOG1 phosphorylation levels and raises the possibility that these 

two post-translational modifications observed are interdependent.   

  

 

 
 

 
Figure 3.21 Two-dimensional immunodetection comparing DOG1 isoelectrofocusing in pdf1-1 and Columbia. Total 
proteins were extracted from fresh and after ripened seeds of pdf1-1 transgenic plants containing the 
ProDOG1:3xHA:DOG1 construct to detect DOG1 with an anti-HA antibody. Here, 40 µg of total proteins were 
separated using a narrow range IPG strip and on a bis-tris 4-12% acrylamide gradient gel.  
Seeds either freshly harvested or 12 weeks after-ripened were imbibed for 16 hours. The shift has been observed in 
two different biological replicates. 
pH and molecular mass marker are indicated respectively on the top and on the left of the blots.  
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4. DISCUSSION   

Seed dormancy is a complex adaptive trait regulated by several hormonal and environmental 

factors and prevents germination during temporary advantageous environmental conditions in an 

unfavorable season. The balance between the two plant hormones abscisic acid (ABA) and 

gibberellins (GA) plays an important role: ABA is involved in the induction and maintenance of the 

dormant state, while GA promotes germination. In Arabidopsis dormancy can be released by a 

period of cold treatment (stratification) or by storing seeds in dry conditions (after ripening). 

Up to now, our understanding of the molecular mechanisms controlling seed dormancy is still 

limited. Recently, DELAY OF GERMINATION1 (DOG1) was identified as a major QTL for seed 

dormancy and it was shown to be a key regulator and a true marker for dormancy in fresh mature 

seeds of Arabidopsis (Bentsink et al., 2006; Nakabayashi et al., 2012). Its protein accumulation 

correlates with dormancy in fresh seeds but this correlation is lacking in after-ripened seeds and 

upon imbibition. DOG1 encodes a protein of unknown function and unknown regulation. 

PDF1, one of the three genes coding for the scaffolding subunit of a PP2A phosphatase, was 

identified as interacting protein of DOG1. The relation between PDF1 and DOG1 was therefore 

investigated in order to gain further insights into the regulation of DOG1 and into the mechanisms 

controlling seed dormancy. 

 

 

 

4.1 The structure and function of PP2A phosphatases  

Plants contain large and diverse families of phosphatases which are classified according to their 

substrate specificity (serine, threonine or tyrosine) and to their structure: serine/threonine-specific 

phosphoprotein phosphatase (PPP), metal ion-dependent protein phosphatase (PPM) and 

phosphotyrosine phosphatase (PTP). PP2Cs are the representative group of the PPM family and are 

known to be involved in many signaling pathways, including seed dormancy. PP2As belong to the 

PPP family and were found as either a heterodimer consisting of the catalytic subunit (PP2Ac) and 

the scaffolding subunit A or as heterotrimer with the addition of the regulatory subunit B.  This 

composition is very conserved and highly similar to the ones in mammalian enzymes (reviewed by 

Luan, 2003). Arabidopsis contains respectively 5, 3 and 17 genes coding for the catalytic subunit, 

the scaffolding subunit A and the regulatory subunit B, leading to a great variety of combinations 

with very different substrate specificity and functions. 

In mammals PP2As are the major Ser/Thr phosphatases together with PP1; also, they are highly 

conserved from yeast to humans. As in Arabidopsis, they have a very complex structure and take 

part in many signaling pathways. Recent reports have focused primarily on their role as tumor 

suppressors. Remarkably, mutations in the gene coding for the subunit A are very common in 

human tumors and have been associated with primary lung tumors, breast tumors and primary 

colon tumors. 
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In Arabidopsis, the role of PP2As has up to now not been deeply investigated and they were mostly 

linked to developmental processes and hormonal signal transduction pathways (Kwak et al, 2002; 

Camilleri et al., 2002). Over the last few years, several papers have elucidated more precisely their 

roles in these pathways. Tang et al. (2012) showed that members of the B’ regulatory subunit are 

key components of the brassinosteroids (BR) signaling pathway and they activate BR response by 

dephosphorylating BRASSINAZOLE-RESISTANT (BZR) transcription factors. The catalytic subunit 

PP2Ac-2 was identified as a negative regulator of ABA signaling and, interestingly, a T-DNA 

insertion line in this locus showed delayed seed germination and increased dormancy (Pernas et al., 

2007). Another regulatory subunit, TAP46, is involved in the TARGET OF RAPAMYCIN (TOR) 

pathway that regulates cell growth and metabolism in response to growth factors, nutrients, energy 

and environmental conditions (Ahn et al., 2011).  

Zhou et al. (2004) carried out an extensive mutant analysis of PDF1, PDF2 and RCN1, the three 

genes coding for the scaffolding subunit A of the Arabidopsis PP2A. The authors came to the 

conclusion that RCN1 performs a crucial role in different pathways, as its insertion line shows 

several defects especially in hormone signaling, despite the fact that adult plants do not show any 

evident phenotype. Mutants lacking PDF1, PDF2 or both exhibit a largely normal phenotype. A 

putative role of these genes in controlling seed dormancy or germination is not discussed in the 

paper. The work described in this thesis showed the function of PDF1 in seed dormancy. 

 

 

4.2 Analysis of the DOG1 interacting protein PDF1 and its 

homologous genes 

To investigate the regulation and function of the key dormancy regulator DOG1, a yeast two hybrid 

library screening was performed. This assay has been developed over a decade ago and since then 

broadly used in protein-protein interaction analysis because it is a relatively fast and easy technique 

to perform. It provides a straight-forward approach to study protein interaction in vivo with a fair 

resemblance to higher eukaryotic systems and it requires only the cDNA of the genes of interest. 

However, the outcome of yeast two-hybrid experiment has to be carefully evaluated as it is 

common to get false positives. In the preliminary yeast two hybrid library screening many 

independent clones that showed complementation contained the cDNA coding for PDF1 and for this 

reason the phosphatase was picked as one of the most interesting candidates. Thereafter, the 

result was confirmed several times by checking its direct interaction with DOG1.  Such interaction 

was consistent but relatively weak in yeast, possibly due to the fact that phosphorylation and 

dephosphorylation are known to be transient and reversible events. Moreover, the interaction could 

depend on certain post-translational modifications that might not occur in yeast. 

Once identified as a putative DOG1 interactor, PDF1 was tested for a possible dormancy phenotype. 

The homozygous T-DNA insertion line pdf1-1 showed enhanced dormancy in comparison to the wild 

type, indicating that PDF1 could play a role opposite to DOG1 in the control of seed dormancy. Also, 
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this result suggested that the phosphatase could function as negative regulator of DOG1 and the 

phosphorylated form of DOG1 could have increased activity. However, the enhanced dormancy 

phenotype of pdf1-1 was not very strong. The lack of a strong dormancy phenotype of this mutant 

could be due to the presence of other phosphatases that influence DOG1 redundantly or it could 

imply that phosphorylation has a minor role for DOG1 function. 

The double mutant pdf1-1 dog1 was generated to understand the relation between DOG1 and PDF1 

and showed the same phenotype as dog1-2, consistent with DOG1 and PDF1 functioning in the 

same pathway in which PDF1 requires DOG1 to exert its function.  

PDF1 has two homologues in Arabidopsis, PDF2 and RCN1 of which only PDF2 also showed 

interaction with DOG1. Despite this interaction, the insertion mutant pdf2 had a similar dormancy 

level as the wild type Columbia, suggesting that it does not have a role in seed dormancy. The 

absence of a dormancy phenotype could be explained by the fact that PDF2 shows low expression in 

seeds (data from http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). This hypothesis has still to be 

confirmed by RT-PCR analysis. In contrast, RCN1 did not show any interaction with DOG1 but a 

shallow dormancy was present in its T-DNA insertion mutant. RCN1 is known to be part of the ABA 

signaling pathway (Kwak et al., 2002) and this result suggests that it plays a role in seed dormancy 

by decreasing ABA signaling.  

To understand whether PDF1 and PDF2 could have redundant functions, the double mutant pdf1-2  

pdf2 was tested in a germination assay but it did not show any additive dormant phenotype. 

Altogether, these data suggest that PDF1 and RCN1 play a role in seed dormancy but function in 

different pathways, while PDF2 does not seem to have a role. 

In addition, the mutants pdf1-1, pdf2 and pdf1-2 pdf2 were germinated in presence of ABA or PAC 

to understand if their enhanced dormancy was caused by an alteration in ABA signaling or content. 

No difference in sensitivity was detected, indicating that the pathway where DOG1 and PDF1 

function is independent from ABA. This result is in agreement with Nakabayashi et al. (2012) where 

the authors conclude that DOG1 and ABA function in largely independent pathways. 

As previously mentioned, the yeast two hybrid system is a fast and easy technique to test protein-

protein interaction. However, the chance to get false positives is high when, for example, the 

protein of interest is able to activate transcription by its own (auto-activation). Therefore, the 

ability of PDF1 to bind DOG1 was investigated in vivo with a split YFP transient assay in Arabidopsis 

protoplast. Here, the interaction was detected both in the cytoplasm and in the nucleus, where 

PDF1 and DOG1 were co-localizing.  

In Nakabayashi et al., (2012) localization studies of plants containing the YFP:DOG1 fusion showed 

that the protein is mainly detected in the nucleus, while in the work described here DOG1 is present 

also in the cytoplasm, where the binding with PDF1 is occurring as well. Although reporter-gene 

fusions are widely used to analyze the spatial regulation of a gene, there is a chance to encounter 

overexpression artifacts (e.g. protein aggregations and saturation of protein targeting machinery) 

because all the fusion proteins were driven by 35S promoter. In order to clarify this issue, future 

experiments are required using constructs where YFP is fused to the coding region of PDF1 

http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi
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expressed under its own promoter; also, stable transformants will help to perform the localizations 

and the binding studies in embryos. 

Promoter activity studies indicated that the PDF1 promoter is able to drive expression in the 

vascular system of the embryo where it overlapped with DOG1 promoter activity. This experiment 

was performed using three fusion constructs containing promoter regions with different sizes. The 

constructs gave the same localization pattern, suggesting that the cis-regulatory elements were 

located in the shortest region cloned. 

 

The expression of PDF1 was investigated during seed maturation. Publicly available microarray data 

showed that the phosphatase is ubiquitously expressed, consistent with the fact that PDF1 has 

different functions and does not have only DOG1 as target. Recent studies have highlighted how 

PDF1 and its gene family are involved in the regulation of PIN-FORMED (PIN) phosphorylation state 

and auxin transport (Dai et al., 2012; Michniewicz et al., 2007). Because of its ubiquitous 

expression and diverse function, it will be of interest to investigate PDF1 expression pattern during 

seed development more in detail. 

The RT-PCR analysis performed indicated that PDF1 expression level is constant throughout seed 

maturation and decrease upon imbibition. Interestingly, a phosphoproteomic study conducted in 

germinating maize seeds demonstrated that, among the phosphatases identified, the corresponding 

gene coding for the PP2A regulatory subunit A was downregulated (Lu et al., 2008). 

In addition, the expression of DOG1 was quantified in pdf1-1 mutant and, surprisingly, its 

expression was reduced. The mutant pdf1-1 showed enhanced dormancy, therefore DOG1 would be 

more likely upregulated in this mutant. These data demonstrate that a negative feedback regulation 

exists between PDF1 and DOG1, as it was also observed between aba1 and dog1 mutant analyzed 

in Nakabayashi et al. (2012). 

 

 
4.3 DOG1 undergoes different post-translational modifications  

In Arabidopsis, seed development is completed in 20 days under standard growing conditions and 

ends with seed maturation when the desiccation tolerance is acquired. This stage is very important 

because it allows the seed to survive adverse environmental conditions. During seed maturation, 

dormancy is established and reaches high levels in dry seeds. The mature dry seed requires a 

period of dry storage (after-ripening) to break dormancy completely. Upon imbibition, when 

dormancy is fully released, the seed is able to restart all the metabolic activities. 

Analysis of seed proteomes revealed the importance of protein post-translational modifications 

(PTMs). PTMs represent a major form of metabolic control in higher eukaryotes and recently “-

omics” investigations have illustrated how they contribute to the high complexity of the seed 

proteome and generate a large diversity of protein functions. For example, in Arabidopsis only three 

genes encode for 12S cruciferins. However, more than 100 spots corresponding to these proteins 

have been identified on two-dimensional gels (Arc et al., 2011). In addition, a very poor correlation 
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between the proteins theoretical and the observed isoelectric point was found, demonstrating the 

major impact of PTMs (Galland et al., 2012; www.seed-proteome.com).  

In the present study, the DOG1 protein was analyzed by two-dimensional gels in order to detect 

possible post-translational modifications responsible for its loss of activity during after-ripening. 

 

 

4.3.1 DOG1 is modified during after ripening 

DOG1 fused to the HA epitope was analyzed in fresh and after-ripened seeds on two-dimensional 

gels in order to investigate potential modifications occurring during after-ripening that could be 

responsible for its loss of activity, as hypothesized by Nakabayashi et al. (2012). The experiments 

conducted so far showed that DOG1 shifted towards a lower pH during after-ripening, indicating 

that the alteration occurred primarily in dry seeds and could still be detected upon imbibition. 

Moreover, these data indicated that DOG1 is targeted by a PTM that is likely to cause its loss of 

activity during seed storage.   

Since a long time, non-enzymatic reactions like lipid peroxidation are known to occur in dry seeds 

where the absence of water does not allow metabolic activities (Wilson & McDonald, 1986). Recent 

studies have highlighted the importance of non-enzymatic oxidation during the after-ripening of 

Arabidopsis and sunflower seeds. Here, after-ripening was found to be associated with an 

accumulation of ROS and resulted in the carbonylation of specific proteins (Oracz et al., 2007). 

Irreversible oxidative carbonylation plays an important role in protein turnover and promotes the 

degradation or inhibition of aberrant, damaged or unnecessary proteins (Arc et al., 2011). In 

Arabidopsis dry seeds, specific subunits of the 12S cruciferins are the major target of carbonylation 

and this facilitates their mobilization during germination.  

For the above mentioned reasons, oxidation is considered a likely candidate in DOG1 modification 

during after-ripening and the shift observed is consistent with this hypothesis. 

 

 

4.3.2 DOG1 is modified upon imbibition 

The comparison between dry and imbibed seeds revealed that DOG1 is targeted by a second PTM 

causing a shift towards the basic side. This shift was detected during imbibition of both fresh and 

after-ripened seeds. This work described the identification of PDF1, a 2A phosphatase interacting 

with DOG1 in vitro and in vivo. A homozygous T-DNA insertion line at this locus, named pdf1-1, 

showed increased dormancy, supporting the hypothesis that PDF1 plays a role in seed dormancy. 

The shift observed upon imbibition in wild type seeds is consistent with a dephosphorylation event, 

because the protein accumulates positive charges upon removal of negatively charged phosphates. 

In order to confirm that PDF1 is responsible for the shift observed during imbibition, the DOG1 

protein was analyzed by two-dimensional gels in imbibed seed of pdf1-1. In fresh imbibed seeds of 

this mutant DOG1 was focused at a lower pH in comparison to Col fresh imbibed seeds, suggesting 
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that the absence of the PP2A phosphatase prevents dephosphorylation upon imbibition and leads to 

enhanced dormancy. According to this hypothesis, in dry seeds DOG1 would be phosphorylated and 

active, while it would become dephosphorylated and inactive after imbibition. 

Reversible phosphorylation is involved in the regulation of different cellular functions, including 

protein activity, stability and localization. The auxin transporter PIN-FORMED3 (PIN3) requires 

phosphorylation for its biological function; mutations in the phosphorylatable residues disrupt its 

subcellular trafficking and caused severe defects in the PIN3-mediated processes (Ganguly et al., 

2012). In addition, RCN1, PDF1 and PDF2 are part of a novel PP6-type phosphatase complex that 

directly regulates PIN phosphorylation (Dai et al., 2012).  

In general, the phosphorylation proteome of dry and imbibed seeds is poorly documented. 

However, a recent comparative study of seed maturation in Arabidopsis, rapeseed and soybean 

showed that most of the phosphoproteins identified were observed at the first stages of seed 

maturation, while a large portion of the late-maturation phosphopeptides were corresponding to 

late-embryogenesis-abundant (LEA) proteins, indicating that phosphorylation might play a role in 

the transition from seed maturation to a quiescent state (Meyer et al., 2012). De novo 

phosphorylation occurs mainly during germination (Arc et al., 2011). However DOG1 could still be 

phosphorylated during seed maturation, similar to 12S cruciferins that are known to be 

phosphorylated during this stage (Wan et al., 2007). Lu et al., (2008) in a phosphoproteomic 

investigation of germinating maize seeds, showed that the regulatory subunit A of a PP2A 

phosphatase was identified during germination. Interestingly, this phosphatase is highly expressed 

right after imbibition and gradually downregulated thereafter. The same tendency was observed for 

PDF1 and could suggest that the phosphatase has a peak of activity immediately at the start of 

imbibition when it dephosphorylates DOG1. To confirm this hypothesis, the isoelectric focusing of 

DOG1 will be analysed after different imbibition timing (e.g. 2, 4, 8, 12 and 24 hours after 

imbibition), as in the experiments performed up to now its isoelectrofocusing was investigated only 

after 16 hours of imbibition.  

The data presented here provide indirect evidence that DOG1 is subjected to dephosphorylation 

upon imbibition.  However, the mechanism by which PDF1 specifically affects DOG1 function is still 

an open question. According to the pdf1-1 and pdf1-1 dog1 phenotypes, PDF1 functions as a 

negative regulator of DOG1 but, on the other hand, the dormancy phenotype displayed by pdf1-1 is 

not very strong and, as mentioned before, there might be other phosphatases that function 

redundantly with PDF1 in the regulation of DOG1. Another possibility could be that phosphorylation 

enhances DOG1 activity but it is not strictly required for its regulation. Moreover, the experiments 

performed in this thesis illustrated how DOG1 is affected after 16 hours imbibition. The conditions 

used in these experiments might not be the ones where PDF1 and phosphorylation are most 

important; therefore, in the future, the isoelectrofocusing of DOG1 will be analysed under different 

conditions. For example, the effect of PDF1 could be temperature-dependent and therefore stronger 

during stratification. 
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Nakabayashi et al. (2012) suggested that DOG1 acts during imbibition by inhibiting germination; 

therefore, removal of phosphates upon imbibition could result in a loss of function leading to a 

promotion of germination. Nevertheless, the possibility that DOG1 acts during seed maturation is 

still open, because the authors also show that it affects ABA and transcript levels in dry seeds. 

Furthermore, the hypothesized dephosphorylation was observed also in fresh seeds where 

germination does not occur but DOG1 seems to be dephosphorylated as well, suggesting that this 

modification is not related to dormancy but prevent DOG1 activity during downstream processes 

triggered by germination. In the pdf1-1 mutant, the shift during after-ripening was not observed, 

supporting the hypothesis that phosphorylation might reduce or prevent the oxidation effect. These 

data raise the possibility that the modifications that target DOG1 are interdependent, however more 

investigations are needed to confirm this hypothesis. 

 

4.3.3. Future directions to confirm DOG1 post-translational modifications 

The two-dimensional gels performed so far illustrated DOG1 changes only in a qualitative way. To 

identify precisely which kind of PTMs affects DOG1, additional experiments are required.  

The HA antibody used to detect HA:DOG1 revealed to be very specific, therefore DOG1 will be 

immunoprecipitated and subsequently analyzed by mass spectrometry. This will identify also the 

amino acids which are specifically targeted by dephosphorylation and by oxidation. In addition, 

protein carbonylation is a widely used marker to detect oxidative damages and sensitive methods 

for its detection have been developed (Levine et al., 1994). It occurs by direct oxidative attack on 

lysine, arginine, proline and threonine or by secondary reactions via reactive carbohydrates or lipids 

on cysteine, histidine and lysine that lead to the formation of protein carbonyl derivatives 

(Johansson et al., 2004; Job et al., 2005).   

DOG1 is known to be regulated at many different levels: transcriptionally, post-transcriptionally and 

at the protein level (Nakabayashi et al., 2012). The present study contributed to improve our 

understanding of the regulation of DOG1 on a post-transcriptional level during after-ripening and 

upon imbibition, where oxidative processes and phosphorylation are likely to be involved.            
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Appendix A.1. Two-dimensional immunodetection showing DOG1 altered isoelectrofocusing during after 
ripening in Columbia.   
In after ripened dry seeds, DOG1 is detected as a major spot at pI ~4.85 plus several minor spots and it is 
shifted towards the acidic side as observed in after ripened imbibed seeds.  
Total proteins were extracted from fresh and after ripened seeds of plants containing the ProDOG1:3xHA:DOG1 
construct and DOG1 was detected with an anti-HA antibody. Here, 40 µg of total proteins were separated on a 
bis-tris 4-12% acrylamide gradient gel using a narrow range IPG strips. Seeds were imbibed for 16 hours and 
ripened for 12 weeks. The shift has been observed in three different biological replicates. pH and molecular 
mass marker are indicated respectively on the top and on the left of the blots.  
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Appendix A.2. Two-dimensional immunodetection showing DOG1 altered isoelectrofocusing upon imbibition in 
Columbia. When after ripened seeds are imbibed, DOG1 shifts towards the basic side as already oberserved with 
fresh seeds. 
Total proteins were extracted from fresh and after ripened seeds of plants containing the ProDOG1:3xHA:DOG1 
construct and DOG1 was detected with an anti-HA antibody. Here, 40 µg of total proteins were separated on a 
bis-tris 4-12% acrylamide gradient gel using a narrow range IPG strips. Seeds were imbibed for 16 hours and 
ripened for 12 weeks. The shift has been observed in three different biological replicates. pH and molecular 
mass marker are indicated respectively on the top and on the left of the blots. 
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