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Abstract 

The aim of this longitudinal study was to determine and compare the prevalence and 

genotypic profile of antimicrobial resistant (AR) Salmonella isolates from pigs reared in 

antimicrobial free (ABF) and conventional production systems at farm, slaughter and in 

their environment.  We collected 2,889 pig fecal and 2,122 environmental samples (feed, 

water, soil, lagoon, truck and floor swabs) from 10 conventional and eight ABF 

longitudinal cohorts at different stages of production (farrowing, nursery, finishing) and 

slaughter (post-evisceration, post-chill and mesenteric lymph nodes; MLN).  In addition, 

we collected 1,363 carcass swabs and 205 lairage and truck samples at slaughter.  A total 

of 1,090 Salmonella isolates was recovered from the samples; these were isolated with a 

significantly higher prevalence in conventionally reared pigs (4.0%; n=66) and their 

environment (11.7%; n=156) compared to the ABF pigs (0.2%; n=2) and environment 

(0.6%; n=5) (P < 0.001).  Salmonella was isolated from all the stages at slaughter, 

including the post chill step, in the two production systems.  Salmonella prevalence was 

significantly higher in MLN extracted from conventional carcasses than ABF carcasses 

(P= < 0.001).  We identified a total of 24 different serotypes with S. Typhimurium, S. 

Anatum, S. Infantis, and S. Derby being predominant. The highest frequency of 

antimicrobial resistance (AR) was exhibited to tetracycline (71%), sulfisoxazole (42%) 

and streptomycin (17%).  Multidrug resistance (resistance to ≥ 3 antimicrobials; MDR) 

was detected in 27% (n=254) of the Salmonella isolates from the conventional system. 

Our study reports a low prevalence of Salmonella in both production systems in pigs on 

farms while a higher prevalence was detected among the carcasses at slaughter.  The 

dynamics of Salmonella prevalence in pigs and carcasses were reciprocated in the farm 



and slaughter environment clearly indicating an exchange of this pathogen between the 

pigs and their surroundings.  Furthermore, the phenotypic and genotypic fingerprint 

profile results underscore the potential role played by environmental factors in 

dissemination of AR Salmonella to pigs. 

 

INTRODUCTION 

Salmonella is a major bacterial foodborne pathogen causing infection in both humans and 

animals (1).  In the United States, Salmonella is responsible for the highest number of 

foodborne related illnesses with a reported 1.4 million illnesses, 15,000 hospitalizations 

and deaths of more than 500 people each year (2). It is important to note that the actual 

incidence of salmonellosis is estimated to be 38 times the number of reported cases (3). 

Emergence and persistence of antimicrobial resistant (AR) foodborne pathogens due to 

routine use of antimicrobials for therapeutic, preventive and growth purposes in 

conventional swine production is a major public health concern (4).  Multidrug resistant 

(MDR) Salmonella strains, exhibiting resistance to third generation cephalosporins, have  

been reported in commerical pigs (4-7).  With  growing consumer concerns over AR in 

bacterial pathogens from commercial swine that are given antimicrobials for prophylaxis 

and treatment, the demand for antimicrobial free (ABF) and organic products has 

increased over the past decade (8).  However, previous studies have highlighted the 

occurrence of MDR Salmonella in both ABF and organic food animal production despite 

the apparent absence of antimicrobial selection pressure (7, 9, 10).  

The prevalence of Salmonella in swine farms in the US ranges from 1.4 to 33% 

(11-13).  North Carolina is the second largest pork producing State in the US next to 



Iowa, with a 14.4% contribution to the national inventory (19). Studies in swine 

production systems have been conducted in North Carolina to report Salmonella 

prevalence (6, 7, 9).  Interestingly, a higher Salmonella prevalence (16 to 29%) has been 

reported in the swine farm environment than in fecal samples within the same farm (12).  

Salmonella prevalence at the processing plant ranges from 0% to 77% (14, 15).  In these 

studies, higher prevalence of Salmonella at slaughter was believed to be due to 

transportation stress, cross contamination and the hygienic condition of the slaughter 

facility.  Phenotypic and genotypic analyses have shown that the environment and pre-

slaughter handling, such as transport and lairage, play a significant role in the 

dissemination of this pathogen in pigs (14, 16-18).  It is quite evident that the 

environment plays a crucial role as a reservoir in transmission of AR pathogens to pigs 

all along the production chain, either directly or indirectly (6, 12, 16).  

Genotyping of Salmonella using pulsed field gel electrophoresis (PFGE) has been 

found to be effective in epidemiological studies for identifying different environmental 

factors as important in contributing to the dynamics of pathogen transmission (6, 19, 20).  

However, there is a paucity of information regarding the role of the environment in 

dissemination of AR Salmonella at farm versus slaughter in ABF and conventional 

systems.  To the authors’ knowledge, no longitudinal study has been conducted along the 

entire production chain from farrowing to slaughter to compare the prevalence, 

antimicrobial resistance and genotypic diversity of Salmonella among swine reared in 

ABF and conventional production systems and their environment.  The objectives of this 

study were to: i) determine Salmonella prevalence and serotype distribution in swine and 

their environment in two distinct swine production systems at farm and slaughter, ii) 



compare the AR profiles of isolates from swine and their environment, and iii) evaluate 

the genotypic diversity and/or similarity among Salmonella isolates from swine and their 

environment along the production chain.  

 

MATERIALS AND METHODS 

Study design and sample source  

In this longitudinal study design, a total of eight cohorts of ABF and ten cohorts of 

conventionally raised pigs were sampled in eight ABF and 30 conventional farms in 

North Carolina.  In the conventional systems, pig cohorts flowed through 3 different 

farms at different stages of production (i.e., 10 cohorts times 3 farms per cohort = 30 

farms).  The conventional farms belonged to two different large-scale companies while 

the ABF farms were owned by individual swine producers.  In the conventional system, 

pigs were reared indoors and followed an all-in-all-out (AIAO) production system.  The 

purpose of an AIAO system is to reduce disease transmission from one growth stage to 

another (21) and in order to do so the pigs were grouped together based on age, weight 

and production stage and moved from one location to another at end of each stage of 

production (i.e., farrowing, nursery and finishing stages).  Trucks were used to transport 

pigs from one farm to the next in line.  Trucks that ferried pigs were washed and cleaned 

before they arrived on a farm to load pigs.  In the ABF production system, pigs were 

housed outdoors on agricultural land and had access to the ambient environment.  Pigs 

under the ABF production system were given non pelleted feed while the conventionally 

reared pigs were provided the pelleted form.  



All the stages of pig life cycle under the ABF production system were at the same 

location but involved rotation to different pastures.  The conventionally raised pigs were 

given antimicrobials for growth, prophylaxis and therapeutic purposes, whereas ABF pigs 

raised to slaughter age were not given antimicrobials for any purpose; that is, in keeping 

with ethical standards any ABF pig requiring treatment with antimicrobials for bacterial 

infection was provided such care and subsequently removed from the herd.  

Sample size was calculated based on type I (α = 0.05) and type II (β = 0.20) 

allowable errors and it was estimated that 27 to 35 pigs needed to be sampled to detect a 

statistically significant difference in the proportion of Salmonella positive pigs in the two 

production systems.  We purposely selected healthy pigs at the farrowing farm with the 

aim of sampling the same cohort of 35 pigs at slaughter.   

Sampling on farm   

During each sequential visit, samples were collected from the ABF and conventional pig 

cohorts and their environment.  Sampling was carried out from October 2008 to 

December 2010 at various stages of production, including once at farrowing (7-10 day 

old), twice at each of nursery (4 and 7 weeks of age) and finishing stages (16 and 26 

weeks of age), and finally once at slaughter.  During the farrowing stage, a cohort of 35 

healthy piglets per farm (4 piglets/sow) were selected and ear tagged for identification; 

subsequently, sampling followed the same cohort of pigs at different sampling stages 

during farm and slaughter stages.  Fresh fecal samples (10 g) were collected from piglets 

using sterile fecal loops (Webster Veterinary, Devens, MA) and from their respective 

sows, using sterile gloves to aid in the determination of the transmission of Salmonella 

from sows to piglets at birth.  Similarly, fecal samples were collected from the ear tagged 



pigs twice at each of nursery and finishing stages using gloved hands.  Environmental 

samples also were collected at every stage of sampling to determine the role played by 

the environment as a reservoir and in the transmission of Salmonella to/from and among 

the pigs.  Environmental sampling at ABF and conventional farms consisted of five 

samples each of water, feed, soil and barn floor swabs.  All of the ABF farm 

environmental samples were collected outdoors whereas the conventional environmental 

samples were collected indoors, except for soil samples which were collected from 

outside the barns.  In addition to these environmental samples, lagoon (repository of 

waste water draining from the barns) and inter-farm truck samples were collected only at 

conventional farms.  Since trucks form an integral part of the pig environment, we 

sampled the four corners and the center of the truck floor by swabs pre-soaked with 

buffered peptone water (BPW; Difco, Becton Dickinson, Sparks, MD, USA).  Similarly, 

the barn floor swab samples from conventional farms and the inside of hoop structures in 

ABF farms were collected.  Overall, we collected a total of 2,889 fecal (ABF, 1,239; 

conventional, 1,650), 450 feed (ABF, 200; conventional, 250), 450 floor swabs (ABF, 

200; conventional, 250),  449 soil (ABF, 199; conventional, 250), 448 water (ABF, 198; 

conventional, 250), 245 lagoon (only conventional) and 80 inter-farm truck (only 

conventional) samples from eight ABF and 30 (representing 10 cohorts of pigs) 

conventional farms and their environment.  Samples were transported to the laboratory on 

ice at 4
o
C and processed immediately upon arrival. 

Sampling at slaughter facility  

Conventional pigs were transported to a large scale slaughter plant (9,000 pigs/day) 

which had a blast chilling facility (-30
o
C) to quickly freeze the carcasses.  The ABF pigs 



were transported to two smaller scale slaughter plants (250 pigs/day), each of which had 

an overnight chilling facility (4
o
C) to freeze the carcasses.  These smaller scale plants 

slaughtered only ABF pigs.  At slaughter, we collected carcass swabs from the same 

cohort of pigs at two stages; specifically, the post-evisceration and post-chilling stages.  

At the post-evisceration stage, we collected samples of mesenteric lymph node (MLN) 

from the pigs.  Carcass swab samples were collected by wiping at three different 

positions (jowls, belly, and ham) on each carcass using the USDA-recommended method 

(22). Environmental samples from the floor of the truck transporting the pigs to the 

processing plant and lairage floor samples were collected and processed for Salmonella 

isolation.  A total of 455 MLN (ABF, 184; conventional, 271), 454 post-evisceration 

carcasses swab (ABF, 182; conventional, 272), 454 post-chill carcasses swab (ABF, 199; 

conventional, 255), 130 lairage floor swab (ABF, 80; conventional, 50) and 75 truck floor 

swab (ABF, 35; conventional, 40) samples were collected.  Samples were transported to 

the laboratory on ice and processed within three hours of collection. 

Salmonella isolation and confirmation  

Isolation and confirmation were performed as previously described (7, 9). Briefly, the 

samples were pre-enriched by adding 90ml of buffered peptone water (BPW) (Difco, 

Becton Dickinson) to cups containing either fecal or environment samples, whereas 30 

ml of BPW was added to each bag containing either MLN or carcass swabs.  Before the 

MLN was cut into small pieces with a sterilized blade, the outside surface was cleaned 

with alcohol and flamed to avoid cross-contamination.  Pre-enriched samples were mixed 

thoroughly and incubated at 37
o
C for 24 h.  After incubation, 100µl of pre-enriched BPW 

suspension from each sample was transferred to 9.9 ml of Rappaport-Vassilliadis (RV) 



broth (Difco, Becton Dickinson) and incubated at 42
o
C for 24h.  A loopful (10µl) of 

enriched RV suspension was streaked on to a xylose lactose tergitol (XLT4) selective 

agar plate (Difco, Becton Dickinson) and incubated at 37
o
C for 24 h.  To determine the 

phenotypic and genotypic diversity of Salmonella within a positive sample we selected 

three black-colored colonies from XLT4 and characterized them biochemically by 

stabbing into triple sugar iron (TSI) and urea agar slants (Difco, Becton Dickinson).  

Biochemical testing was interpreted from the TSI and urea agar slants; colonies with a 

positive TSI and negative urea tests were confirmed as Salmonella isolates.  Further 

confirmation of Salmonella was performed by PCR amplification of a targeted 

Salmonella-specific invasive (invA) gene (23).  The confirmed Salmonella isolates were 

appropriately labeled and stored in Brucella broth (Difco, Becton Dickinson) at -80
o
C for 

further characterization.  

Salmonella serotyping 

All Salmonella isolates (n=1,090) were serotyped using one of three methods.  Initially, a 

multiplex PCR was performed to scan the entire isolate set to identify Salmonella 

Typhimurium using published primers and protocols (24, 25).  The template DNA for 

this multiplex PCR was purified using Qiagen DNeasy Blood and Tissue Kit (Qiagen, 

Germany) according to the manufacturer’s protocol.  In the second approach, PFGE 

fingerprint profiles were generated for a subset of 86 isolates and the serotypes were 

identified by matching their fingerprint profiles with a database of previously confirmed 

Salmonella serotypes (26-28).  The remaining isolates (n=684) were sent to the National 

Veterinary Services Laboratories (NVSL) for traditional phenotypic serotyping.  

Antimicrobial susceptibility testing  



All the confirmed Salmonella isolates (n=1,090) from pigs and the environment were 

tested against a panel of 15 antimicrobials by the broth micro dilution method (Trek 

Diagnostic Systems, Inc., Cleveland, OH).  The panel of antimicrobials tested, along with 

their respective concentration ranges increasing twofold, included: amikacin (AMI; 0.5-

64), ampicillin (AMP; 1-32), amoxicillin/clavulanic Acid (AUG; 0.5-32/16), ceftriaxone 

(AXO; 0.25-64), cefoxitin (FOX; 0.5-32),  ceftiofur (TIO; 0.25-8), chloramphenicol 

(CHL; 2-32), ciprofloxacin  (CIP; 0.015-2), gentamicin (GEN; 0.25-16), kanamycin 

(KAN; 8-64), nalidixic acid (NAL; 0.5-32), sulfisoxazole (FIS; 16-256), streptomycin 

(STR; 32-64), trimethoprim/sulfamethoxazole (SXT; 0.12/2.38-4/76), and tetracycline 

(TET; 4-32).  Briefly, 10 µl of bacterial culture (adjusted to a 0.5 McFarland standard) 

was transferred to 11 ml of Mueller-Hinton broth.  Using the Sensititre® semi-automated 

system (Trek Diagnostic Systems, Inc., Cleveland, OH), 50 µl of Mueller-Hinton broth 

was distributed to each well in a 96-well Sensititre® CMV1AGNF plate (Trek Diagnostic 

Systems, Inc., Cleveland, OH). The plates were sealed and incubated at 37
o
C for 24 h.  

Escherichia coli ATCC25922 strain was used for quality control.  The MICs were 

recorded and breakpoints were determined based on Clinical Laboratory Standards 

Institute (CLSI) recommendations where available (29). National Antimicrobial 

Resistance Monitoring System (NARMS) consensus breakpoints were used where CLSI 

breakpoints were indeterminate (5).  Those isolates exhibiting resistance to three or more 

antimicrobials were considered multidrug resistant (MDR).  

Pulsed Field Gel Electrophoresis (PFGE) analysis 

A total of 340 Salmonella isolates representing different sampling stages, types of 

samples, serotypes and AR profiles (Fig. 4) from pigs (ABF, 36; conventional, 100) and 



environment (ABF, 32; conventional, 172) were genotyped by PFGE using the CDC’s 

PulseNet protocol (30).  Briefly, Salmonella isolates were grown overnight on LB agar 

plates. The culture cells were added to cell suspension buffer (CSB) and the 

concentration was adjusted between optical densities (OD) of 0.48 - 0.52 using a Dade 

Microscan turbidity meter. The OD adjusted bacterial cell suspension (400 µl) was lysed 

using proteinase K (20mg/ml) and intact genomic DNA was digested with 50U of XbaI 

(Roche, USA) restriction enzyme in agarose-embedded plugs.  The restriction fragments 

were separated by electrophoresis in 0.5X TBE buffer, 1% ultra pure agarose (Seakem 

Gold Agarose, Lonza, Maine, USA) for 18h at 14ºC in a PFGE (CHEFF DR III, BioRad, 

USA) using pulsed times of 2.2 to 63.8s.  The XbaI digested S. Braenderup H9812 strain 

was used as the reference DNA marker.  Gels were stained with ethidium bromide (10 

mg/ml) for 30 min in 400ml of reagent grade water, followed by two washings with 

nanopure water and photographed under UV light.  The PFGE images were analyzed by 

BioNumerics software version 6.1(Applied Maths, Belgium).  Clonal relationships 

among these isolates were determined using the unweighted-pair group method using 

average linkages (UPGMA), with band position tolerance and optimization of 1.5% each. 

Statistical Analysis  

Statistical analysis was carried out using STATA version 12.1 (Stata Corp, College 

Station, Texas).  Descriptive analysis comparing farm types (ABF versus conventional) 

consisting of unique longitudinal cohorts (which were nested within each farm type) was 

carried out before pursuing multivariable analyses.  Each farm type, along with the stage 

of production and type of sample collected for isolation of Salmonella was also 

considered for descriptive analysis before forcing these variables for multivariable 



modeling.  Contingency table analyses without adjustments for clustering by cohort/farm 

type were carried out using likelihood ratio (LR) χ
2
 test statistics for each of the 

variable/s types and used to examine their association with Salmonella prevalence.  The 

LR χ
2
 test for Salmonella prevalence was also carried out for the source of sampling and 

stages of production.  Separate multivariable analyses for pigs versus their environment 

were carried out using the logistic regression procedure (XTLOGIT) with either random 

effects (RE) or generalized estimating equation (GEE) models.  The XTLOGIT 

procedure was used instead of XTMELOGIT (multi-level hierarchical logistic regression) 

because of problems achieving convergence in XTMELOGIT given the high numbers of 

zero cells in the ABF farm type.  The main effects of farm type, stage of production, and 

sample type along with their 2-way and 3-way interaction terms were tested.  The final 

full factorial RE or GEE model was constructed for both main effects and their 

interaction terms.  The final significant model (all variable sets P < 0.05) was selected 

based on the associations of these variables and their interaction terms with the 

prevalence of Salmonella.  The same procedure was repeated by forcing cohorts (farm 

types) for robust variance estimation and compared.  From the final model marginal 

predictions were obtained for the proportion of positive Salmonella and these were 

estimated with 95% confidence intervals.  The marginal means were plotted using final 

predictions from the full factorial RE or GEE models for: 1) Salmonella prevalence 

among pigs by farm type and different stages of production, 2) Salmonella prevalence in 

environmental samples by farm type and different stages of production, and 3) 

Salmonella prevalence in environmental samples by farm type and different stages of 

production accounting for sample type differences.   



 

RESULTS 

Salmonella prevalence in pigs and the environment at farms  

A total of 1,090 Salmonella isolates were isolated from the all samples collected in the 

study population.  The overall proportion of samples that were positive for Salmonella 

was higher in the conventional production system, both in pigs (66/1,650, 4%) and the 

environment (156/1,325, 11.7%) when compared to ABF pigs (2/1,239, 0.16%) and the 

environment (5/797, 0.6%).  The multivariable analysis using logistic regression 

generated the final significant model (all variables P < 0.05), which was selected based 

on the associations of these variables and their interaction terms with the estimated 

prevalence of Salmonella and plotted along with 95% confidence intervals (Fig 1-3). The 

breakdown of Salmonella isolated from pigs and the environment samples by farm, type 

of farm and stage of production are highlighted in Table 1 and Table 2, respectively. 

Overall there were statistically significant differences (P < 0.05)  between the proportion 

of samples positive for Salmonella in ABF (2/1,239, 0.16%) and conventional (66/1,650, 

4%) pigs at the following different sampling stages: farrowing (ABF, 0% ; conventional, 

6.7%), nursery 1 (ABF, 0.7% ; conventional, 8.8% ,), nursery 2 (ABF, 0.2%; 

conventional, 7.2%), finishing 1 (ABF, 0.2%; conventional, 6.7%), finishing 2 (ABF, 

0.5% ; conventional, 7.7%)  (Fig. 1).   

The overall Salmonella prevalence in the environmental samples on conventional 

farms (156/1,325, 11.7%) was higher than in the ABF farms (5/797, 0.62%).  At both 

farrowing and nursery 1 stages, all the environmental samples from the ABF production 

system were negative for Salmonella (Fig. 2).  Overall, the marginal mean predictions for 



Salmonella in the conventional farm environment were significantly higher than in the 

ABF farm environment.  At nursery 1 (ABF, 1.2%; conventional, 13.5%), finishing 1 

(ABF, 0.6%; conventional, 12.5%), finishing 2 (ABF, 1.2%; conventional, 11.8%).  On 

the conventional farms, Salmonella was successfully recovered from water, soil, feed, 

floor swabs, lagoons, and truck samples.  Among all the environmental samples, the 

Salmonella mean prediction was higher in lagoons when compared to other 

environmental samples (Fig 3); on the other hand, on ABF farms only water (nursery 1, 

4.8%) and feed (finishing 1, 0.6%; finishing 2, 1.2%) samples were positive for 

Salmonella (Fig. 3).  

 

Salmonella prevalence in carcasses and the environment at slaughter  

Overall, the proportion of positive samples for Salmonella was significantly higher in 

MLN from conventional carcasses than ABF carcasses (P= < 0.001).  However, the 

prevalence of Salmonella in post evisceration and post chill carcass swabs was higher in 

ABF carcasses than conventional carcasses.  There was a statistically significant 

difference between the post-evisceration swabs (P=0.008) of ABF carcasses and 

conventional carcasses.  The marginal prediction for Salmonella was highest in MLN 

(ABF, 11.3%; conventional, 26.3%), post evisceration swabs (ABF, 7.1%; conventional, 

2.2%) and post chill swabs (ABF, 2.5%; conventional, 0.39%) (Fig. 1).  Salmonella were 

also isolated from the slaughter environment.  Overall, the prevalence of Salmonella was 

highest in the conventional slaughter environment (38.8%) than in ABF (18.6%) 

environmental samples, with the highest marginal prediction in lairage (ABF, 26.2%; 



conventional, 46%) followed by conventional truck (30%) samples.  On the other hand, 

no ABF truck samples tested positive for Salmonella. 

 

Identification and distribution of Salmonella serotypes 

Three different methods were used to identify the different serotypes. S. Typhimurium 

(n=320) were identified by using multiplex PCR and other serotypes by fingerprint 

profile matching and by traditional phenotypic serotyping at NSVL.  We identified 24 

Salmonella serotypes among the ABF and conventional pigs and the environment at farm 

and slaughter (Table 3).  The ABF and conventional production systems had certain 

unique Salmonella serotypes which were unevenly distributed in each of the respective 

production systems at farm and slaughter.  Certain serotypes, including S. Anatum, S. 

Infantis, and S. Typhimurium, were isolated from both production systems.  The 

predominant Salmonella serotypes in the ABF system on the farm were S. Anatum (pigs, 

60%; environment, 21.4%), S. Give (pigs, 40%; environment, 42.8%), and S. 

Typhimurium (pigs, 0; environment, 21.4%).  At slaughter, S. Anatum (carcass, 10.4%; 

environment, 28.5%) and S. Infantis (carcass, 39.5%; environment, 60.3%) were the 

predominant serotypes.  S. Give was identified only in the ABF system at farm and 

slaughter.  At ABF slaughter, we identified specific serotypes which were not found at 

the farm level such as, S. Infantis, S. Braenderup, S. Derby, S. Inverness, S. Muenchen, S. 

Newport, and S. London (Table 3).  The conventional system had a greater variety of 

serotypes at farm and slaughter (Table 3).  On the farm, the major serotypes identified 

were S. Typhimurium (pigs, 28.5% of isolates; environment, 35% of isolates), S. Infantis 

(pigs, 16.4%; environment, 13.8%), S. Anatum (pigs, 15.8%; environment, 12%), and S. 



Rissen (pigs, 3%; environment, 8.8%).  The S. Rissen serotype was reported for the first 

time in pigs in the US.  At conventional slaughter, the major serotypes were S. 

Typhimurium (carcasses, 37%; environment, 30%) followed by, S. Derby (carcasses, 

35.5%; environment, 1%), and S. Infantis (carcasses, 6.5%; environment, 48.4%).  

 

Antimicrobial Resistance profile of Salmonella 

The overall MIC distribution and prevalence of AR Salmonella isolates from pigs and 

their environment at different stages on farm and slaughter are represented in Table 4.  A 

total of 1,090 Salmonella isolates were tested (ABF, n=168; conventional, n=922) against 

a panel of 15 antimicrobials. AR was higher in conventional isolates (resistant, 80%; 

pansusceptible, 20%) when compared to ABF isolates (resistant, 27%; pansusceptible, 

73%).  Overall, Salmonella isolates exhibited a wide spectrum of AR with the highest 

frequency of resistance to TET (70.6%), followed by FIS (41.6%) and STR (17.3%).  In 

addition, Salmonella isolates exhibited resistance to β-lactams including cephalosporins 

with highest frequency of resistance to AMP (12.1%), FOX (4.4%), AXO and TIO (4% 

each).  All the isolates from both production systems were susceptible to AMI and CIP.  

A ‘squashtogram’ was generated both to illustrate and compare resistance and MIC 

distribution of Salmonella isolates from pigs and the environment in the conventional 

production system (Table 5).  Salmonella isolates from pigs and the environment 

exhibited similar AR profiles and MIC distributions for predominant antimicrobials with 

the exception of TET.  Most of the environmental isolates which were resistant to TET 

had MIC of either 16 µg/mL (0.4%) or 32 µg/mL (78%); on the other hand, the isolates 

from pigs had MIC of 32 µg/mL (1%) and >32 µg/mL (79%).  We observed the highest 



frequency of resistance in conventional isolates to TET (pigs, 80.3%; environment, 

78.3%), followed by FIS (pigs, 56%; environment, 43.4%), STR (pigs, 27.7%; 

environment, 14.5%) and AMP (pigs, 13.9%; environment, 14.1%). 

 

Distribution and association of MDR patterns with Salmonella serotypes 

We observed a higher frequency of MDR isolates from the conventional system at 

various stages of production.  Conventional isolates had different MDR patterns (27.5 %, 

254/922) associated with various serotypes.  The most common MDR patterns, 

associated serotypes and distribution are presented in Table 6.  The FIS STR TET (n=72) 

was the predominant MDR pattern we found on farm (pigs, 3%; environment, 21%) and 

slaughter (carcasses, 75%; environment, 1%) associated with the serotype S. Derby. Two 

major MDR patterns were associated with S. Anatum, namely: AMP AUG AXO FOX 

TIO TET (n=25), which was found only at the farm level (pigs, 44%; environment, 56%), 

and AMP AUG AXO FOX TIO (n=5), which was identified only with farm (40%) and 

slaughter (60%) environmental isolates.  S. Typhimurium was associated with five major 

MDR patterns, with the most common MDR pattern, AMP CHL FIS STR TET (n=41), a 

penta-resistant pattern common to S. Typhimurium DT104, found at both farm (pig, 12%; 

environment, 41%) and slaughter (carcasses, 39%; environment, 7%).  The FIS SXT TET 

(n=25) was observed in farm and slaughter environments (32%) and carcasses (36%).  

FIS STR TET (n=18) was found only at slaughter in carcasses (61%) and environment 

(39%).  Salmonella serotypes S. Anatum and S. Typhimurium with MDR patterns 

highlighting β- lactams including cephalosporins (AMP AUG AXO FOX TIO TET) were 

found only at farm level.  S. Heidelberg had a specific MDR pattern (KAN STR TET) 



that we found only in the environment (100%).  In the ABF system, we found only one 

isolate with an MDR pattern (AMP CHL FIS STR TET) associated with S. Typhimurium 

isolated from a carcass swab at slaughter. 

 

Pulsed Field Gel Electrophoresis (PFGE) 

Salmonella isolates (n=340) from pigs and the environment were genotyped by PFGE.  

Restriction analyses by XbaI produced on average 10-16 bands and distributed the 340 

isolates into 58 major clusters consisting of isolates with similar PFGE profiles, and 

another 53 unique PFGE patterns represented by a single isolate each (Fig. S1).  Two 

separate dendrograms were created representing genotypic similarity within the same 

flow at different stages of production of the two distinct production systems (Fig. 4 and 

5).  S. Infantis isolated from lairage and carcass swabs originating from ABF pigs of two 

cohorts (A2 and A3) had 100% similar fingerprint profiles (Fig. 4). Within the 

conventional production system, we found 100% genotypic similarity among S. Rissen 

isolated from pig fecal, MLN, environmental samples including feed, water, floor swab 

and lagoon at nursery 1, nursery 2, finishing 2 and slaughter representing the same flow 

(C3) (Fig. 5).  Identical fingerprint patterns were detected (cluster 14; Fig. S1) among S. 

Infantis isolates from pig and environmental samples of the same flow (C6) at different 

stages including farrowing (isolate ID: S548, 551, 575, 581and 591), nursery 1 (isolate 

ID: S783 and 789), finishing 1 (isolate ID: S963 and 984) and slaughter (isolate ID: 

S1184 and 1195).  Furthermore, we found 100% genotypic similarity among S. Infantis 

(FIS TET pattern) isolated from the conventional production system at farrowing, nursery 

1, finishing 1 and slaughter including slaughter truck samples (cluster 14; Fig. S1).  All of 



the genotypically similar pansusceptible S. Infantis isolates at slaughter were grouped in 

respective clusters (clusters 17, 18, 19, and 20; Fig. S1).  The fingerprint profile of S. 

Anatum isolated from the ABF and conventional production systems at different stages of 

production and sample type were grouped into four major clusters (clusters 9, 10, 11 and 

12; Fig. S1).  Even though the ABF and conventional slaughter facilities were different, 

we identified a fingerprint profile (cluster 10; Fig. S1) associated with S. Anatum 

highlighting 100% genotypic similarity between the ABF and conventional production 

system, which includes isolates from pigs and environment samples at farm and 

slaughter.  

 

Discussion 

This longitudinal study was conducted to determine and compare AR Salmonella at their 

phenotypic and genotypic levels, isolated from pigs and the environment of both ABF 

and conventional production systems at different stages of production from farm to 

slaughter.  The prevalence of Salmonella in the conventional pigs was significantly 

higher than the ABF pigs at both farm and slaughter, which is in contrast to an earlier 

study that reported a higher prevalence of Salmonella in an ABF production system (7).  

The low prevalence of Salmonella in outdoor ABF pigs at the farm in the present study 

was in accordance with other previous findings (9).  We observed an increase in the 

prevalence of Salmonella in the final stages of production (finishing 1&2) in the 

conventional system, similar to previous reports of higher prevalence of Salmonella 

among finishing herds.  The likely reasons include a previously infected group of pigs at 

the farm, contaminated transport vehicles or handling and close contact of pigs during 



transportation (6, 12, 31).  Higher prevalence of Salmonella in pigs during the final stages 

of production is of greater concern from a public health and food safety perspective.  

Only a few studies have been conducted to highlight the prevalence of Salmonella in the 

ABF versus the conventional farm environment (6, 7, 9, 32).  In the ABF farm 

environment, Salmonella was only detected in three feed and two water samples at 

nursery 1 and finishing stages, in contrast to the conventional farm where positive 

environmental samples were widely represented by water, soil, feed, floor swabs, lagoon 

and truck at different stages of production.  The detection of Salmonella in feed samples 

of ABF and conventional farmA higher number of conventional environmental samples 

were positive for Salmonella, in spite of strict AIAO practices. This highlights the 

potential role of the farm environment as a reservoir, which is in accordance with studies 

highlighting the persistence of Salmonella in the farm environment for several months to 

years (33, 34).  Even though the ABF pigs had access to the external environment 

throughout their production chain, the prevalence of Salmonella in pigs was low which 

may be attributed to the absence/low prevalence of Salmonella in the ABF environment. 

In our study, we found a higher prevalence of Salmonella in both production 

systems at slaughter in both pigs and the environment when compared to prevalence at 

the farm.  Factors contributing to the increased prevalence of Salmonella at slaughter 

likely include cross contamination at peri-harvest stage by trucks involved in transfer to 

the slaughtering facilities, stress experienced by the pigs during transport, cross 

contamination at lairage and at post-harvest stages (16, 17, 20).  In addition, a previous 

study highlighted that contaminated feed at the end stage of production have significant 

role in dissemination of Salmonella (19). We detected clear evidence of cross 



contamination in our study as shown in clusters 7, 8, 14, 17, 18 and 26 (Fig 4).  The MLN 

samples from both production systems had a higher prevalence of Salmonella when 

compared to fecal samples at the farm, which is in accordance with previous reports 

suggesting occurrence of Salmonella in the gastrointestinal (GI)  tract and lymphatic 

tissue in carrier pigs (6, 14, 17).  Even though the MLN and gut contents are not used for 

consumption, occurrence of Salmonella in the MLN may act as a reservoir in 

contaminating carcasses during the post-evisceration stage.  We also isolated Salmonella 

from the post-evisceration carcasses, which were cleansed with water before they were 

stored in the chilling facility.  This indicates possible cross contamination during the 

evisceration process along the slaughter chain.  The ABF slaughter facility had overnight 

chilling of the carcass, whereas the conventional slaughter facility had blast chilling.  

Blast chilling is preferred to overnight cooling because it improves the meat shelf life and 

tenderness and it prevents the growth of important foodborne pathogens on the carcass 

surface (35, 36).  Interestingly, we isolated Salmonella from both the systems in post-

chill swabs irrespective of the chilling facility type.  The occurrence of Salmonella in 

post-chill swabs (9) is of critical importance to public health and food safety, as because 

this sample closely represents the final retail product.  In this study, we also isolated 

Salmonella from truck floors, which are used to transport conventional and ABF pigs 

from farm to slaughter.  The most significant contribution to positive samples for 

Salmonella at slaughter was from lairage swabs, where pigs rest for about two hours 

before they are slaughtered.  It takes less than two hours for a particular Salmonella 

serotype to establish in the GI tract of pigs and to be shed in their feces (16, 17).  Clusters 

7 and 8 (Fig. 4) highlight similar PFGE fingerprint profiles among Salmonella isolates 



from ABF carcass and lairage swabs.  However, the detection of Salmonella in ABF 

carcass samples, despite the absence of Salmonella at the farm and in transport trucks, 

clearly highlights the role of lairage and cross-contamination of the carcasses during 

processing. 

Previous studies from Denmark reported various serotypes from organic and 

outdoor pig farming, including: S. Anatum, S. Agona, S. Derby, S. Typhimurium and S. 

Newport, also observed in our ABF isolates (32, 37).  However, in the ABF system at the 

farm and slaughter, we identified the S. Give serotype which is most commonly 

associated with cattle (38).  The likely reason for this serotype was the presence of other 

animals, including cattle, on the same premises as the pigs in the ABF farms and perhaps 

outdoor access to pastures which might be an ecological niche.  In addition, identification 

of specific serotypes (Table 3) in ABF carcass and processing plant environmental 

samples, which were not detected at the farm level, suggests the role of the slaughter 

environment as a source for cross-contamination. Identification of serotypes, including: 

S. Agona, S. Braenderup, S. Deby, S. Inverness, S. Muenchen and S. Newport on ABF 

carcass which were not found at farm and slaughter environment (Table 3), attributes to 

the slaughter robots including, carcass splitter and other instruments used for processing 

the carcass as a possible source of contamination during production chain as described 

(39). We observed some common serotypes in the ABF and conventional production 

systems including S. Anatum, S. Infantis, and S. Typhimurium.  This is in accordance 

with a Centers for Disease Control and Prevention (CDC) report of  the top four 

predominant serotypes in swine (40).  In the conventional production system, we 

identified for the first time S. Rissen in pigs and the environment.  S. Rissen is one of the 



top ten serotype most commonly isolated from pigs since 2004 in Europe (41) and most 

common non-human serotype in Asian countries (42). According to the CDC annual 

report, S. Rissen was isolated from humans (< 20 isolates per year) from 1999 to 2007 

and there were no reports of its occurrence in food animals in the US (41, 43).  This 

serotype is uncommon in the US; it was reported to have entered the US in late 2008 and 

early 2009 through imported white pepper, resulting in a human outbreak in northern 

California and Nevada (44).  We identified this serotype in our samples collected in late 

2009.   

Salmonella isolates from conventional production had higher AR (80%) than 

isolates from ABF production (27%).  The use of antimicrobials in the conventional 

system for treatment and growth purposes likely results in a higher prevalence of 

Salmonella as previously reported (7, 45).  Overall, Salmonella isolates of either 

production system or production stage had the highest frequency of resistance against 

TET (71%), followed by FIS (42%) and STR (17%).  In addition, isolates exhibited 

resistance to β-lactams, including third generation cephalosporins. These results are in 

agreement with previous reports (6, 7, 46).  MIC distribution was similar for all the 

antimicrobials tested except TET, which was highest in Salmonella isolates of pig origin 

(MIC > 32 µg/mL; resistance: 80%) when compared to environmental isolates in the 

conventional system.  The possible reasons may be use of tetracyclines as growth 

promoters administered in feed of growing pigs in our study, which has been reported 

extensively in the swine industry (47, 48).  We detected a higher frequency of MDR 

isolates in the conventional system (27%) but only a single MDR isolate from the MLN 

of an ABF carcass exhibiting a penta-resistant pattern of AMP CHL FIS STR TET 



associated with S. Typhimurium.  This result is in contrast with a previous report of 

higher MDR prevalence in an ABF system (7).  In the conventional system, S. 

Typhimurium was broadly associated with the common MDR pattern of AMP CHL FIS 

STR TET at farm and slaughter as previously reported (6, 49).  This penta-resistant 

pattern is common to the S. Typhimurium phage type DT104 (50).  Identification of this 

phage type, both at farm and slaughter, is of significant public health concern because 

this phage type is commonly associated with human foodborne outbreaks worldwide (50, 

51).  Another important MDR pattern with β-lactams, including third generation 

cephalosporins (AXO TIO), was associated with S. Typhimurium and S. Anatum only in 

conventional pigs and the environment at farm level, as previously reported (6).  

Emergence of these MDR patterns resistant to β-lactams is of concern because β-lactams 

(third generation cephalosporins) are extensively used to treat human clinical Salmonella 

infections (52).  

PFGE was used to genotype a representative subset of Salmonella isolates from 

pigs and the environment.  PFGE is considered the gold standard test to determine the 

source of Salmonella in epidemiological studies (12, 14).  Therefore, we used this 

genotyping method to determine whether a similar Salmonella genotype is disseminated 

from farm to slaughter along the production chain.  Based on similar fingerprint profiles, 

Salmonella isolates in our study were grouped in 58 major clusters.  Clustering was 

consistent with serotypes and resistance patterns as reported by a previous study.  In 

addition, we observed fingerprint profile diversity among the same Salmonella serotypes 

representing different clusters as previously reported (19, 28, 33).  Within the 

conventional production system, 100% genotypic similarity was observed among S. 



Rissen serotype isolates from pig fecal and environmental samples at different stages of 

production at farm and slaughter from a single cohort (C3).  This result highlights the 

dissemination of relatively new S. Rissen serotype in pigs all along the production chain 

in the US.  It was evident that specific serotypes, including S. Anatum, S. Infantis, S. 

Tyhimurium, S. Ouakam, S. Give and S. Ohio, were able to persist in the pigs and 

environment at different stages of production based on phenotypic and genotypic 

evidence (Table 3; Fig. S1 clusters 7, 10, 14, 31, 37 and 42).  The identification of 

genotypically identical S. Infantis from the slaughter environment and carcass samples 

from the ABF system, which were not observed at the farm level, highlights the 

importance of the slaughter environment from a food safety perspective.  In an 

epidemiological study it is difficult to determine the exact mechanism and direction of 

pathogen transmission between pigs and the environment.  However, detection of the 

same genotype among pigs and environment within distinct production systems clearly 

suggests the exchange of Salmonella strains.  

To summarize, this study demonstrates the presence of AR Salmonella in ABF 

and conventional production systems at farm, slaughter and the environment though at 

much lower levels in ABF than in conventional systems. The phenotypic and genotypic 

fingerprint profile results underscore the potential role played by the environment in the 

persistence and dissemination of transmission of AR Salmonella in the two production 

systems.  We detected MDR isolates throughout all the production stages and the 

environment in the conventional system, which uses antimicrobials for prophylaxis and 

growth purposes.  The detection of AR Salmonella in ABF pigs and their environment in 

the absence of selection pressure is a concern.  At the phenotypic level, Salmonella 



isolates from the lairage floor, carcass and MLN had similar resistance patterns and 

serotypes, which were not detected at the farm level. This highlights the importance of 

the farm and slaughter environment as separate but important reservoirs and as a crucial 

link to determining the dissemination of AR Salmonella among pigs.  Future research 

should focus on environmental factors to develop a better understanding of the molecular 

epidemiology of this pathogen in the swine production environment and to reduce the 

burden of AR Salmonella on public health. 
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Table 1. Breakdown of Salmonella isolation by farm and farm type 

 

Farms
a
 Farm Type Cohorts

b
 

Frequency
c 

(N) Positive (%) 

ABF 1 ABF A1 394 5.9 

ABF 2 ABF A2 333 5.1 

ABF 3 ABF A3 341 5.2 

ABF 4 ABF A4 342 5.2 

ABF 5 ABF A5 366 5.6 

ABF 6 ABF A6 344 5.2 

ABF 7 ABF A7 365 5.6 

ABF 8 ABF A8 232 3.5 

CONV 1* Conventional C1 388 5.9 

CONV 2* Conventional C2 362 5.5 

CONV 3 Conventional C3 121 1.84 

CONV 4 Conventional C3 171 2.6 

CONV 5 Conventional C3 72 1 

CONV 6 Conventional C4 195 2.9 

CONV 7 Conventional C4 119 1.8 

CONV 8 Conventional C4 67 1 

CONV 9 Conventional C5 69 1.1 

CONV 10 Conventional C5 70 1.1 

CONV 11 Conventional C5 286 4.4 

CONV 12 Conventional C6 69 1.1 

CONV 13 Conventional C6 67 1 

CONV 14 Conventional C6 239 3.6 

CONV 15 Conventional C7 37 1 

CONV 16 Conventional C7 127 1.9 

CONV 17 Conventional C7 215 3.3 

CONV 18* Conventional C8 210 3.2 

CONV 19* Conventional C8 185 2.8 

CONV 20 Conventional C9 194 2.9 

CONV 21 Conventional C9 67 1 

CONV 22 Conventional C9 122 1.9 

CONV 23* Conventional C10 183 2.8 

CONV 24* Conventional C10 197 3 
 

a
ABF1-8: Antimicrobial Free farm owned by individual farmers; CONV1-24: 

conventional farms owned by two different companies. 



*The total number of conventional farm sampled was 30. The *indicated farms sampled 

at three different locations, since the name of the farm is same they appeared as single 

farm. Therefore there are only 24 farms listed in the table.  

b
A1-8: ABF cohorts; C1-10: Conventional cohorts 

c
Frequency-No of samples collected which includes fecal, environmental and slaughter 

samples 

 

Table 2. Breakdown of Salmonella isolation by production/processing stage from 

ABF and conventional production system 

 

 

Production Stage
a
 Frequency

b 
(N) Positive (%) 

Farrowing 1,112 16.9 

Nursery1 1,026 15.6 

Nursery2 974 14.8 

Finishing1 986 14.9 

Finishing2 913 13.8 

Slaughter 672 10.21 

Post Evis 454 6.9 

Post Chill 454 6.7 

 
a
Farrowing: includes fecal samples from sows and piglets, environmental samples; 

nursery1 and 2, finishing 1and 2: includes fecal and environmental samples; salughter: 

includes mesenteric lymphnodes, lairage and truck swabs; Post Evis: post evisceration; 

Post-Chill: post chilling  

 

b
Frequency: total number of samples collected from pigs and environment 



Table 3: The distribution of Salmonella serotypes from pigs and the environmental samples at farm and slaughter (n=1,090) 

 

Serotypes Identified  

Farm Slaughter 

ABF Conventional ABF Conventional 

Pigs 

n=5 

Environment
 

n=14 

Pigs   

n=189 

Environment 

n=439 

Carcasses 

n=86 

Environment 

n=63 
  

Carcasses 

n=197 

Environment  

n=97 

S. Agona 0 0 0 0 1 (1.1) 0 

 

1 (0.5) 0 

S. Anatum 3 (60) 3 (21.4) 30 (15.8) 53 (12) 9 (10.4) 18 (28.5) 

 

6 (3) 15 (15.4) 

S. Braenderup 0 0 0 1 (0.2) 3 (3.4) 0 

 

0 0 

S. Cerro 0 0 12 (6.3) 3 (0.6) 0 0 

 

0 0 

S. Derby 0 0 4 (2.1) 31 (7) 5 (5.8) 0 

 

70 (35.5) 1 (1) 

S. Give 2 (40) 6 (42.8) 0 0 3 (3.4) 0 

 

0 0 

S. Heidelberg 0 0 0 17 (3.8) 0 0 

 

0 0 

S. Infantis 0 0 31 (16.4) 61 (13.8) 34 (39.5) 38 (60.3) 

 

13 (6.5) 47 (48.4) 

S. Inverness 0 0 0 2 (0.4) 13 (15.1) 0 

 

0 0 

S. Johannesburg 0 0 0 1 (0.2) 0 0 

 

5 (2.5) 0 

S. London 0 0 0 3 (0.6) 0 3 (4.7) 

 

0 2 (2) 

S. Mbandaka 0 0 2 (1) 2 (0.4) 0 0 

 

3 (1.5) 1 (1) 

S. Muenchen 0 0 3 (1.5) 0 11 (12.7) 0 

 

0 0 

S. Newport 0 0 0 1 (0.2) 3 (3.4) 0 

 

0 0 

S. Ohio 0 0 20 (10.5) 24 (5.4) 0 0 

 

6 (3) 1 (1) 

S. Ouakam 0 0 23 (12.1) 41 (9.3) 0 0 

 

8 (4) 0 

S. Rissen 0 0 6 (3.1) 39 (8.8) 0 0 

 

1 (0.5) 0 

S. Rough_O:r:1,5 0 0 0 0 0 1 (1.5) 

 

9 (4.5) 0 

S. Schwarzengrund 0 0 0 2 (0.4) 0 0 

 

0 0 

S. Senftenberg 0 0 4 (2.1) 2 (0.4) 0 0 

 

1 (0.5) 0 

S. Typhimurium 0 3 (21.4) 54 (28.5) 154 (35) 1 (1.1) 3 (4.7) 

 

73 (37) 30 (30.1) 

S. Typhimurium Var 5 0 2 (14.2) 0 0 0 0 

 

1 (0.5) 0 

6,7, Non motile 0 0 0 2 (0.4) 0 0 

 

0 0 

III_44:z4,z32:- 0 0 0 0 3 (3.4) 0   0 0 



Table 4: The MIC distribution (squashtogram) of Salmonella isolated from all swine samples (n=1,090)* 

 

 

*The whitened areas indicate the range of dilutions tested for each antimicrobial.  Shaded areas fall outside the range of tested 

concentrations.  The vertical bars indicate the CLSI or NARMS consensus breakpoints for resistance (R versus I and S combined).  

Numbers in the right-side shaded areas indicate the percentage of isolates with undetermined MICs known to be greater than the 

highest concentrations measured on the microbroth dilution plates.  

**The MIC represents for the first antibiotic (of two). 

Antimicrobials
a
 

  
% 

Resistant  

Distribution of MICs in µg/mL (%) 

0.015 0.03 0.06 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 512 

AMI 0.0            0.6 65.2 30.8 2.9 0.4 0.0  0.0  0.0  0.0     

AMP 12.1              78.4 5.0 4.4 0.1 0.0 0.3 11.8       

AUG** 4.1              82.7 3.2 2.0 1.3 6.7 2.9 1.2       

AXO 4.0          95.7 0.1 0.2 0.1 0.0 0.1 0.6 3.1 0.0 0.2     

CHL 5.0                1.3 32.9 58.9 2.0 0.4 4.6       

CIP 0.0  92.2 4.7 0.9 0.3 0.1 1.7 0.1 0.0 0.0               

FIS 41.6                      0.8 0.8 53.6 1.9 1.3 41.6 

FOX 4.4            

 

1.3 17.3 73.8 2.1 1.2 0.6 3.9       

GEN 0.5          63.5 30.6 4.5 0.1 0.0 0.8 0.1 0.4         

KAN 2.1                    97.8 0.0 0.0 0.1 2.1     

NAL 1.9            0.3 

 

21.6 75.1 1.0 0.2 0.2 1.7       

STR 17.3                        82.7 4.5 12.8 

 

  

SXT** 3.1        94.5 0.3 0.8 1.1 0.2 3.1 

 

            

TET 70.6                  29.4 0.0 0.0 0.7 69.9       

TIO 3.9        0.1 0.4 11.3 82.5 1.7 0.2 0.0 3.9           



a
AMI: Amikacin, AMP: Ampicillin, AUG: Amoxicillin/Clavulanic Acid, AXO: Ceftriaxone, CHL: Chloramphenicol, CIP: 

Ciprofloxacin, FIS: Sulfisoxazole, FOX: Cefoxitin, GEN:  Gentamicin, KAN: Kanamycin, NAL: Nalidixic acid, STR: Streptomycin, 

SXT: Trimethoprim/sulfamethaxazole, TET: Tetracycline, TIO: Ceftiofur. 

Table 5: Comparison of resistance and MIC distribution (squashtogram) for Salmonella isolated from the conventional 

production system at farm and slaughter (pigs n=386; environment n=536)* 

Antimicrobials
c
 Source 

% 

Resistant 

Distribution of MICs in µg/mL (%) 

0.015 0.03 0.06 0.13 0.25 0.5 1 2 4 8 16 32 64 128 256 512 

AMP 
Pigs

a
 13.9             76.2 3.9 6 0 0 0.2 13.7       

Environment
b
 14.1             76.6 5.4 3.5 0.2 0 0.4 13.8       

AXO 
Pigs 4.1         50.5 0 0 0.2 0 0 0.2 3.6 0 0.2     

Environment 5         94.4 0 0 0.2 0 0.2 1.1 3.7 0       

CHL 
Pigs 8               0.7 34.9 54.4 1.8 0.7 7.2       

Environment 4.1               1.1 35 56.9 2.7 1.1 3.9       

FIS 
Pigs 55.9                     0 0.8 43.2 0 0 79.5 

Environment 43.4                     0.7 0.4 55.4 0 0 43.4 

FOX 
Pigs 4.4           0 0.2 20.7 71 2.5 1 0.5 3.8       

Environment 5.2           0 1.5 13.2 76.3 2 1.6 0.4 4.8       

STR 
Pigs 27.7                       72.2 4.4 23.3     

Environment 14.5                       85.4 5.2 9.3     

TET 
Pigs 80.3                 19.6 0 0 1 79.2       

Environment 78.3                 21.6 0 0.4 78         

TIO 
Pigs 4.1       0 0.2 8.5 84.1 2.3 0 0 4.1           

Environment 4.8       0 0.2 11 82 1.8 0.4 0 4.8           



*The whitened areas indicate the range of dilutions tested for each antimicrobial.  Shaded areas fall outside the range of tested 

concentrations.  The vertical bars indicate the CLSI or NARMS consensus breakpoints for resistance (R versus I and S combined).  

Numbers in the right-side shaded areas indicate the percentage of isolates with undetermined MICs known to be greater than the 

highest concentrations measured on the microbroth dilution plates.  

a
Pigs includes isolates from conventional pig fecal (n=189) at the farm and carcass samples (n=197) at slaughter 

b
Environment includes isolates from conventional farm (n=439) and slaughter (n=97) environments 

c
AMI: Amikacin, AMP: Ampicillin, AXO: Ceftriaxone, CHL: Chloramphenicol, FIS: Sulfisoxazole, FOX: Cefoxitin, STR: 

Streptomycin, TET: Tetracycline, TIO: Ceftiofur. 

 

 

 

 

 

 

 

 



Table 6: Distribution of Salmonella serotypes associated with predominant MDR patterns in conventional production system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a
AMP: Ampicillin, AUG: Amoxicillin/Clavulanic Acid, AXO: Ceftriaxone, CHL: Chloramphenicol, FIS: Sulfisoxazole, FOX: 

Cefoxitin, KAN: Kanamycin, NAL: Nalidixic acid, STR: Streptomycin, TET: Tetracycline, TIO: Ceftiofur. 

 

 

 

 

 

 

 

 

 

            

    Farm Slaughter 

Serotypes (n) Predominant MDR patterns
a
 (n) Pigs (%) Environment (%) Carcasses (%) Environment (%) 

S. Anatum (103) AMP AUG AXO FOX TIO TET (25) 11 (44) 14 (56) 0 0 

AMP AUG AXO FOX TIO (5) 0 2 (40) 0 3 (60) 
S. Typhimurium (311) AMP AUG AXO FOX TIO TET (7) 3 (43) 4 (57) 0 0 

AMP FIS NAL STR TET (13) 3 (23) 8 (61) 1 (8) 0 

AMP CHL FIS STR TET (41) 5 (12) 17 (41) 16 (39) 3 (7) 

FIS SXT TET (25) 0 8 (32) 9 (36) 8 (32) 

FIS STR TET (18) 0 0 11 (61) 7 (39) 
S. Derby (106) FIS STR TET (72) 2 (3) 15 (21) 54 (75) 1 (1) 
S. Heidelberg (17) KAN STR TET (11) 0 11 (100) 0 0 



Figure 1: Salmonella prevalence among pigs at farm and slaughter 

 

 

MLN: mesenteric lymphnode 

 

 

 

 

 

 

 

 

 



Figure 2: Salmonella prevalence in the environment at farm and slaughter 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3: Salmonella prevalence among environmental samples at farm and 

slaughter 

 

 

 

 

 

 

 

 

 

 



 

Figure 4. Dendrogram showing genotypic similarity among Salmonella isolated from 

ABF systems at various stages of production  

 

 

a
AMI: Amikacin, AMP: Ampicillin, AUG: Amoxicillin/Clavulanic Acid, AXO: 

Ceftriaxone, CHL: Chloramphenicol, CIP: Ciprofloxacin, FIS: Sulfisoxazole, FOX: 

Cefoxitin, GEN:  Gentamicin, KAN: Kanamycin, NAL: Nalidixic acid, STR: 

Streptomycin, SXT: Trimethoprim/sulfamethaxazole, TET: Tetracycline, TIO: Ceftiofur. 

b
A2 and A3: ABF cohort  

 

 

 

 

 

 

 

 



 

Figure 5. Dendrogram showing genotypic similarity among Salmonella isolated from 

conventional system at various stages of productions  

 

a
AMI: Amikacin, AMP: Ampicillin, AUG: Amoxicillin/Clavulanic Acid, AXO: 

Ceftriaxone, CHL: Chloramphenicol, CIP: Ciprofloxacin, FIS: Sulfisoxazole, FOX: 

Cefoxitin, GEN:  Gentamicin, KAN: Kanamycin, NAL: Nalidixic acid, STR: 

Streptomycin, SXT: Trimethoprim/sulfamethaxazole, TET: Tetracycline, TIO: Ceftiofur. 

b
MLN: mesenteric lymphnode 

c
C3: conventional cohort  
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