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Issues and questions

Historically, technical progress appears to be strongly linked to

industrialization.

The latter has emerged in speci�c places and at speci�c times.

This fact makes technical progress idiosyncratic: it is

context-speci�c, appearing in given industrial sectors;

�rm-speci�c.

Where it has emerged it has shown to be cumulative and

unfolding along speci�c trajectories.
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Some characteristics

Technical progress is quite obviously knowledge-based.

More to the point, it appears to be driven by learning and

searching in various forms.

For instance: learning-by-doing and learning-by using.

All these activities require information: knowledge and learning

build upon information

The context in which this happens seems to indicate that

clustering of �rms, of industrial sectors, of population

settlements has, in fact, occurred.
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Some related phenomena

The rise of markets and related urban centres.

The growth of cities: some have grown to be very large, others

have remained small. Clearly, within a context of 'rise and fall'.

Flows of information are crucial for learning and searching to

come to pass as well as for trade to �ourish.
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An important stylized fact

The distribution of city sizes.

The distribution of scienti�c paper and of patent citations

The distribution of papers written by scientists

The distributions of WWW web pages

f (x)∼ x−γ
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Power laws and fat tails

The function shown in the previous slide is a so-called power

law.

It states that the distribution of x

a) is not random,

b) it has ' order ' ,

c) high magnitudes of x are not as improbable (as in a random

distribution)
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Some graph theory: random graphs
The emergence of graph properties.

Network theory and graphs

It has been found and robust evidence has been produced that

these power-law phenomena are due to agents' interaction and

are thus grounded on connectivity

The question to be asked: how can connectivity be studied?

We do know the importance of trade, money, clusters of

districts, cities.

We know the crucial role of information and of its �ows across

communities and �rms.

The theory of networks sheds some important light on these

issues.
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Some graph theory: random graphs
The emergence of graph properties.

Examples of graphs 1: USA airlines
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Examples of graphs 2: Social relations graph
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Some graph theory: random graphs
The emergence of graph properties.

Examples of graphs: a biological network
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Some graph theory: random graphs
The emergence of graph properties.

A benchmark case: random graphs

It is expedient to start with some de�nitions.: a graph, de�ne it

as composed by a set of nodes, P , and edges, E : G = G (P,E )

A random graph G is a graph of |P|= N nodes connected

by|E |= n edges chosen randomly from all possible edges. The

order of magnitude of the latter is:

nmax = CN.2 =
N(N−1)

2
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Random graphs of n edges

Another, interesting order of magnitude: since one can

randomly generate a graph by connecting nodes by drawing n
edges from a pool of CN.2, there are as many as CN.2 edges to

generate such a graph. This means that one can generate as

many as

CCN.2,n =
N(N−1)

2
!

n!
[
N(N−1)

2
−n

]
!

networks



The issues
Connectivity

The Watts and Strogatz Model
The Albert-Barabasi model

Conclusion

Some graph theory: random graphs
The emergence of graph properties.

Links

An example: for instance, if N = 6 and n = 3; C6,.2 = 15;

C15,3 = 455 graphs can be generated.

The interesting question: how does a random graph come into

being? More speci�cally, why is it that certain cliques or

clusters come to be when randomness prevails?

Let us introduce the following idea: nodes are initially entirely

unconnected but then proceed to connect them with some

probability p. Thus p is the probability that any two nodes be

connected.

The expected number of links:

E (#) =
N(N−1)

2
p
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The emergence of graph properties.

Graphs: basic quantities

The probability of obtaining a graph with n edges:

P(G0) = pn(1−p)
n(n−1)

2 −n

(for instance a speci�c graph from N = 6; n = 3 and p = .2;
say G0=(adf ),P(adf ) = .00055)

An important quantity: the average degree of a random graph.

How many connections, on average, is a node likely to possess

in a random graph?

A node can connect to as many as N−1 other nodes with

probability p. Hence:

< k >= p(N−1)
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Approximating p

If n edges have been successfully established, then we can

compute the probability of connection of any two nodes: since

there are N(N−1)
2

possibilities of connecting and n are the

actual ones (the favourable cases), then

p = p(N,n) =
2n

N(N−1)
≈

2n

N2

for large N.
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Subgraphs of degree k

The emergence of some properties, i.e. the shape of graph

connections: relationships.

Let us begin by asking this question: given a random graph,

what is the expected number of subgraphs made up of, say, k
nodes?

In a graph of N nodes there are CN,k ways to generate graphs

of k nodes, i.e. there are

CN,k =
N!

k!(N−k)!

From the point of view of the exact shape that a graph

acquires, especially if the question is the likely relationships,

each subgraph can potentially give rise to k! other graphs .
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Subgraphs of degree k, continued

(e.g. take a graph of N = 6 (a,b,c ,d ,e, f ) nodes and consider

a subgraph ofk = 3 nodes: (adf ). The nodes in this subgraph

can also come in the shape of (afd ,daf ,dfa, fad , fda).

In actual and practical problems some allowance must be made

for the fact that some of these subgraphs have the same

relevance and thus the actual number that each graph can

really generate is
k!

a

. E.g. if only half are really di�erent, divide by 2 (a = 2) .
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Connected subgraphs

Now, the next question: what is the expected number of

connected subgraphs if the available edges to connect the k
nodes is l and the connection probability is p?

E (Xk) = CN,k
k!

a
pl =

N!

k!(N−k)!

k!

a
pl =

N!

(N−k)!

pl

a
≈

pl

a
Nk

for largeN and relatively small k .

An example, N = 100; k = 6; l = 3;
a = 1;p = .2→ E (Xk) = 10,000.000∗ .008 = 80,000

The number of possible graphs is very large but the probability

of establishing 'relationships' of as many as l links is small.
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Important properties

As it has been seen if in a random graph there happen to be n
connections, then the probability that any two nodes be

connected can be estimated to be:

p = p(N,n) ≈
2n

N2

It has been found that there exists a critical probability

pc = pc(N) below which, for p = p(N) < pc) , almost no

'property' of subgraph connections appear.

Whilst for p = p(N)≥ pc most such subgraphs connections do!
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The critical probability

To see what such a critical probability is , consider

E (Xk) = (pl/a)Nk , the expected number of subgraphs

composed of k nodes linked by l edges.

If p is very, very small, E (X ) is likely to be very small too,

almost insigni�cant. At which level of p E (X ) becomes surely

signi�cant? Consider the following critical probability:

pc(N) = cN−
k

l

where c is an arbitrary constant. It follows that

E (Xk) =
c l

a
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Trees, triangles, cycles and complete graphs

Some cases: the critical probability at which almost every

graph contains a subgraph with k nodes and l edges

- a tree of order k and (l = k−1) : pc(N) = cN−(k/(k−1))

- a cycle or order k and (l = k) : pc(N) = cN−1

a complete subgraph of order k and (l = k(k−1
2

) :

pc(N) = cN−
2

k−1
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An example

The critical probability for a graph to contain a completely

connected subgraph :

k = 10 , hence with k(k−1)
2

= 45 connections and c = 2, is

pc = 43%, if N = 1000,

pc = 26%, if N = 10000,

pc = 15,5%, if N = 100000 ; thus in graphs of many nodes,

cliques start appearing even for low probabilities of setting up

a connection.

networks



The issues
Connectivity

The Watts and Strogatz Model
The Albert-Barabasi model

Conclusion

Some graph theory: random graphs
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The degree distribution of random graphs

Question: what is the probability that a node named ki has k
degrees (connected to k other nodes)? Answer:

P(ki = k) = P(k) = CN−1,kp
k(1−p)(N−1)−k

The expected number of so connected nodes is:

E (xk) = NP(k)
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The Poisson distribution

Note that, since < k >w pN, and for N → ∞;

P(k) = e−<k>< k >k

k!

namely, a Poisson distribution.
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The average path length of random graphs.

The average path length, lrand : average distance between any

pair of nodes.

If on average the path length is lrand , then multiplying < k >,

the average degree, a number lrand of times, one counts

(approximately) all the nodes in the network N.

Hence < k >lrand = N , from which

lrand =
logN

log < k >

Thus, the average path length scales with the log of the

network size.
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The clustering coe�cient

The clustering coe�cient of a node i having ki connections
can be de�ned as the number of shared connections of i 's
neighbours over the total number of connections that i can
have:

Ci =
2Ei

ki (ki −1)

Since the expected number of i 's connections is p ki (ki−1)
2

, it

follows that Ci = p . Since p ≈ 2n
N²

and < k >= 2n
N
, it is

Ci =
< k >

N

It is clear that the average clustering coe�cient is also

Crand = p .
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Introduction
The model

A pristine world

A thought exercise: think of a world with an economic

structure hallmarked by primitive means of production and

transportation:

Simple economic units such as have been described in the �rst

lecture, with some trade taking place.

These economies are likely to be either fully isolated or to

entertain trade links, share information, experience and

learning, pass on or imitate techniques of production only

within a short distance.
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Ancient societies

Ancient societies roughly resemble this description. But.......

Vast empires sprang up: think of the Roman and Chinese ones

or of the Inca Empire

Of course, these were sophisticated social set-ups with complex

social arrangements, comparatively technologically advanced.

They had developed roads, bridges, communication linkages.
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Rome in the II century C.E.
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China in the Han dynasty (206 B.C.-220 A.D.)
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The Inca empire
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Introduction
The model

An ordered network

What kept them economically and culturally together? Let us

resort to an abstract model.

Assume an economic society in which nodes cluster, i.e. each

node has links with few neighbours at a short distance.

Such a network can easily be represented by a ring lattice in

which each node is immediately connected right and left with

a given number of other nodes.

Assume that this number be < k >: the average network

degree since all nodes have the same number of links.
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Relevant magnitudes

The relevant magnitudes for an ordered network

N ≫< k >≫ logN ≫ 1;

The average path length: lordered = N
2<k>

The clustering coe�cient Cordered = 2E
<k>(<k>−1) = 3

4

<k>−2
<k>−1 ,

note that the latter is 3

4
for large networks.

Since the highest the clustering coe�cient can get is 1, 3

4
is a

high clustering coe�cient.

Thus, these networks have a very high clustering coe�cient

and a very long average path length.
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Comparing random with ordered networks

It is useful to remember that a random network is scarcely

clustered, Crand = p, and that its path length is rather short,

lrand = logN
log<k> , it scales with the logarithm of N.

Should we conclude that a short average path length is always

associated with a scarcely clustered network? A long path

length with a highly clustered one?

Our pristine world is one of very long path lengths and is

highly clustered: from an economic, social and political point

of view very di�cult to control and monitor.

Can intense trade and exchange relationships arise? Can

development take place?
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The Watts and Strogatz conundrum

One might be led to think that in order to weave such a society

into a manageable social and economic body, plenty of links

across the ordered network (the circle) should be implemented.

The answer is NO! Consider the following procedure: randomly

rewire with probability ρ , barring duplications and self wiring.

This means taking an edge at random away from one node

and reconnecting it to another node at random.

Since the total number of rewirable edges is N < k > /2, i.e.
the nodes times neighbours on either side, this procedure

allows for a long range rewiring of ρ
N<k>

2
edges.
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The network is modi�ed

The question is: how does the network change as ρ is allowed

to change from 0 to 1? Note that in this last case the network

becomes entirely random.

C (ρ) and l(ρ) are expected to vary as a function of ρ , from

Cordered ≡ C (0)' 3

4
;lordered ≡ l(0) = N

2<k> to

Crand ≡ C (1) = p; lrand ≡ l(1) = logN
log<k> .

Watts and Strogatz have shown that l(ρ) drops very rapidly

with small increases in ρ while C (ρ) varies little with ρ . It

follows that there is a large interval in which l(ρ) is short and

C (ρ) is high.
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A small world

To see why this happens consider that for small ρ , the path

length scales with the system size whilst the clustering

coe�cient remains roughly constant (w 3/4).

As the network becomes more and more random the path

length begins to scale logarithmically (small changes) while

C (ρ) begins to approach the value of ρ = <k>
N

.

It is intuitively clear that the observed 'phenomenon' on the

average path length,l , depends on the system size which can

here be de�ned by < k > N on which the probability of

rewiring operates: ρ < k > N .

The world is a small world .
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Relevant quantities

The actual mathematical form has largely been left to

numerical simulations. In any case, approximations indicate

that:

l(ρ,N,< k >) v
N(1/d)

< k >)f (ρ,< k >,N)

The equivalent expression for C is more elaborate and it goes:

C (ρ) =
3< k > (< k >−1)

2< k > (2< k >−1) +8ρ < k > ²+4ρ²< k > ²

The degree distribution: it is very similar to the random graph

distribution with a peak < k >.
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Introduction: networks and the real world

Many (most?) networks are not random

The problem with the Watts and Strogatz' model is that it

applies to networks that have approximately a Poisson

distribution so that the most likely number of connections for

any given node is just the average < k >: from the point of

view of connectedness they are about the same.

Most relevant networks do not have this structure. As noted

above, empirical �ndings have shown that, quite frequently,

the distribution of nodes takes the form:

P(k) = ak−γ

π(k) = a−kγ

the latter being the log-log form.
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Introduction: networks and the real world

The meaning of this distribution

Since, P(k)→ 0 only for k → ∞, it is a distribution that

exhibits values signi�cantly di�erent from zero even for very

large k 's.

In other words, in such networks there are likely to be few

nodes with high k 's, some with a sizable k , very many with a

small k , i.e. all scales of k are likely to be present.

The average < k > is not at all representative of the network

scale and the ratio of the mean to the variance tends zero.

This type of networks are often called scale-free networks.
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Introduction: networks and the real world

The question

The question arises: why is it that many networks have such a

structure?

A likely answer is. because their evolution has been such that

although they are the result of a stochastic process they do

not feature randomness but order.

Hence, the analytical task is to �nd a procedure that leads to

this result.

The following is the model conjectured by Albert and Barabasi

to deal with this issue.
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Introduction: networks and the real world

The Barabasi caper

These authors have exploited two major and historically well

established ideas:

a) networks grow, i.e. their size N increases with time;

b) attachment of newly born nodes to existing ones is

preferential, i.e. they attach to nodes that already have, in a

relative sense, many attachments.

Proceed as follows:

a.1) start with a very small number m0 of nodes and at every

time step add a new node with m edges.

b.1) the probability that the new node attaches to node i
depends onki , that is it depends on its degree.
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Introduction: networks and the real world

Probability and some dynamics

Hence, the probability that the new node attaches to node i is:

Π(ki ) =
ki

∑jkj

Thus, the growth of any node's degree is

∂ki
∂ t

= mΠ(ki ) = m
ki

∑jkj

but note that, by the above assumptions, ∑j kj = 2mt, for
m0vanishing small.
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Introduction: networks and the real world

The solution

The di�erential equation is:

∂ki
∂ t

= m
ki

∑jkj
=

ki
2t

Solving this di�erential equation by integration and by

assuming that the initial condition for every node is m at some

ti , namely k(ti ) = m:

ki (t) = m(
t

ti
)
1
2

all nodes basically evolve in the same way.
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Introduction: networks and the real world

Groping towards the nodes degree distribution

The problem is now to derive the nodes' distribution, given

that they do grow in the same way but that their initial

condition ti is di�erent.

Ask the question: what is the probability that ki (t) < k , that
is: P(ki (t) < k) ?

Since the degree depends on the initial condition, i.e. when

the node appeared in the network and started to attach: ti ,
this question can be rephrased as:

P(ki (t) < k) = P(ti >
m²t

k²
)

This is equivalent to asking: what is the probability that at

time t̄ = m²t
k²

node i has not yet appeared ? This is a very

convenient question.
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Introduction: networks and the real world

The probability of a node appearing on the scene

It is very convenient since we can then ask the question: what

is the probability of i being in the network at time t? Since at

each point in time a node is added to the network, it is:

Pi (t) =
1

m0 + t
= P(t)

the same for all i 's .

Thus, the probability that after t̄ = m²t
k²

periods any node be in

the network is t̄
m0+t

= 1

m0+t
m²t
k² and that it be not is:

P(ti >
m²t

k²
) = 1− 1

m0 + t

m²t

k²
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The frequency distribution

By di�erentiating the above :

∂P(ki (t) < k)

∂k
=

∂P(ti >
m²t
k²

)

∂k
= P(k)

i.e.

P(k) =
2m²t

m0 + t

1

k³

Asymptotically, for t→ ∞

P(k) = 2m²k -³
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Introduction: networks and the real world

A power law, scale free distribution

Setting 2m2 = α and γ = 3, it is in general:

P(k) = αk−γ

What has been derived through the above outlined procedure

is the observed family of functions f (x)∼ x−γ .
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Conclusion

In these type of networks, there are likely to be few nodes,

that is nodes whose frequency is very small, to which most

other nodes are attached

These nodes 'rule the rooster'; they are the ones who are the

source, both quantitatively and qualitatively, of information;

through which most energy �ows through (electricity grids),

that provide most interbank loans (banking networks), that set

technological paradigms (user-producer's networks), cities that

attract most population ( the Zip's law).
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Further reading:

1 Dorogovtsev S.N., Goltsev A.V., Mendes J.F.F. (2007):
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