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Abstract

The OASIS TOSCA speci�cation aims at enhancing the por-

tability of cloud-based applications by de�ning a language to

describe and manage service orchestrations across heteroge-

neous clouds. A service template is de�ned as an orchestra-

tion of typed nodes, which can be instantiated by matching

other service templates. In this thesis, after de�ning the no-

tion of exact matching between TOSCA service templates and

node types, we de�ne three other types of matching (plug-

in, �exible and white-box ), each permitting to ignore larger

sets of non-relevant syntactic di�erences when type-checking

service templates with respect to node types. We also de-

scribe how service templates that plug-in, �exibly or white-

box match node types can be suitably adapted so as to exactly

match them.
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Chapter 1

Introduction

How to deploy and manage, in an e�cient and adaptive way, complex

multi-service applications across heterogeneous cloud environments is one

of the problems that have emerged with the cloud revolution [30]. Cur-

rently, migrating (parts of) an application from one cloud to another is a

costly and error-prone process that has to be performed manually. Part

of (if not the whole) application must be stopped in order to migrate ser-

vices (possibly along with data) to a di�erent cloud and to restart them,

taking care of synchronizing and maintaining the interoperability with

the rest of the application. As a result, cloud users tend to end up locked

into the cloud platform they are using since it is practically unfeasible

for them to migrate (parts of) their application across di�erent clouds

platforms [29].

In this scenario, OASIS recently created a Technical Committee on

Topology and Orchestration Speci�cation for Cloud Application (TOSCA),

whose goal is to ease the portability of cloud-based applications by de�n-

ing a language to describe and manage service orchestrations across

heterogeneous clouds. The �rst speci�cation of TOSCA [25] de�nes a

XML-based lanugage that permits to specify (in a vendor-agnostic way)

topology and behaviour of complex multi-cloud applications as service

1



Chapter 1. Introduction

templates that orchestrate typed nodes.

The expected impact of TOSCA on cloud service portability is well

explained in [18]. Let us think of similar attempts to deal with the lifecy-

cle of complex man-made structures (like skyscrapers or bridges). Such

structures are constructed, modi�ed, maintained, and even dismantled

using industry standard descriptions and manifests. The focus of these

documents is primarily at the conceptual level of the building itself, its

principal components, construction and maintenance, and not on how

those components (like a furnace or elevator) are actually built them-

selves. Similarly, TOSCA is designed to support the de�nition of a com-

mon, machine-readable language for service description, maintenance,

and operational management (which are the best practices needed to

support cloud services across their lifetime). In other words, TOSCA

enables the creation of an eco-system in which cloud service developers

can describe (and model) the principal components, characteristics and

requirements of a service in a standardized fashion so that the service can

be understood, installed (deployed) or removed (undeployed) by di�er-

ent types of TOSCA-compliant cloud providers with very little additional

e�ort.

As stated in the TOSCA primer [26], node types can be made concrete

by substituting them by a service template. However, while the matching

between service templates and node types is mentioned with reference to

an example ([26], page 35):

�Service template ST may substitute node type N because the

boundary of ST matches all de�ning elements of N : all prop-

erties, operations, requirements and capabilities of ST match

exactly those of N .�,

no formal de�nition of matching is given either in [25] or in [26]. A

de�nition of matching is employed in [33] to merge TOSCA services by

matching entire portions of their topology templates. The de�nition of

2



Chapter 1. Introduction

matching employed in [33] is however very strict, as two service com-

ponents are considered to match only if they expose the same quali�ed

name.

The objective of this work is to contribute to the TOSCA speci�cation

by �rst providing a formal de�nition of the notion of exact matching be-

tween TOSCA ServiceTemplate and NodeType elements, and by then ex-

tending such de�nition in order to provide three other types of matching

(plug-in, �exible and white-box ), each permitting to ignore larger sets of

non-relevant syntactic di�erences when type-checking service templates

with respect to node types. More precisely:

• the plug-in matching extends the exact one by considering a service

that "require less" and "o�ers more" than a node type compatible

with the latter;

• the �exible matching in turn extends the plug-in one by employing

ontologies to check whether di�erently named features are semanti-

cally equivalent (so as to ignore non-relevant syntactic di�erences);

• the white-box matching in turn extends the �exible one by searching

missing (equivalent) features inside the service topology. It still

employs ontologies to check whether di�erently named features can

be considered semantically equivalent. Furthermore, it employs a

recursive algorithm to detect available compositions of operations

which are semantically equivalent to needed (missing) operations.

To allow exploiting the new notions of matching not only during type-

checking but also for node instantiation, we describe how a service tem-

plate that plug-in, �exibly or white-box matches a typed node can be

suitably adapted so as to exactly match it.

The results presented in this thesis intend to contribute to the formal

de�nition of TOSCA. The di�erent types of matching de�ned in this the-

sis can be fruitfully integrated in the TOSCA implementations that are

3



Chapter 1. Introduction

currently under development (such as [27] and [32]) in order to enhance

their type-checking capabilities. More in general, the presented de�ni-

tions of matching can be exploited to implement type-checking mecha-

nism over service descriptions by taking into account, beyond functional

features, also requirements, capabilities, policies, and properties.

It is worth pointing that implementing our matching notions (e.g., as

a plug-in of TOSCA IDEs) will contribute to cloud service portability and

multi-cloud service development. Indeed, with the availability of such an

implementation, a cloud service developer will have the possibility to:

• employ more available (adapted) cloud services instead of develop-

ing her application's encompassed components,

• migrating more application's components across heterogeneous clouds

by changing the used available (adapted) cloud services, and

• choose between more di�erent cloud service providers the one which

provides the compatible service with the best quality-price ratio.

Outline

The rest of the document is organized as follows:

Chapter 2 provides an overview of the TOSCA speci�cation [25].

Chapter 3 starts by formalizing the TOSCA [25] notion of (black-box)

exact matching. It then proceeds showing two other ways to match

services from a black-box viewpoint (plug-in, �exible). Along with

these matching notions, a way to adapt available service templates

(in order to make them exactly match the desired node types) is

provided.

4



Chapter 1. Introduction

Chapter 4 extends the matching notion of Chapter 3 by moving the

viewpoint to a white-box one. A way to adapt service templates

which white-box match the desired node types is given too.

Chapter 5 shows a partial implementation of the matching procedure

in order to demonstrate the feasibility of the notions proposed in

this thesis.

Chapter 6 summarizes the contributions of this thesis, discusses the

work in related research �elds and provides some concluding re-

marks.

5



Chapter 2

Background: TOSCA

The Topology and Orchestration Speci�cation for Cloud Application

(TOSCA) [25] is an XML-based language and metamodel which can be

used to describe IT services. The main goal of the TOSCA speci�cation

is to allow a description of composite cloud-based applications and of

their management in a modular and portable fashion.

The creator of a cloud service de�nes it in a so-called service template

(Figure 2.1). This template is composed by:

• a topology template, a graph in which typed nodes represent ser-

vice's components and typed relationships connect and structure

nodes into the topology, and by

• plans, work�ows used to describe managing concerns.

The following sections describe the most important elements of the

TOSCA speci�cation [25]. Before describing the TOSCA syntax (Section

2.2), we proceed by showing the major use cases supported by this spec-

i�cation (Section 2.1). Once all the basic concepts are given, we provide

a complete TOSCA cloud service example (Section 2.3).

6



Chapter 2. Background: TOSCA

Figure 2.1: TOSCA Service template [25].

2.1 Use cases of TOSCA

In the previous paragraph we have seen which is the main use case of

TOSCA: to provide a standard support in specifying topological and

management aspects of cloud service applications. Despite this, in the

TOSCA speci�cation [25] several other supported use cases are proposed.

Service as marketable entities

According to the authors, the service template standardization will cause

the creation and spread of a market for hosted IT services.

Having a standard for topology template de�nition enables interoper-

able speci�cation of services' structure. Especially, that standard will let

7



Chapter 2. Background: TOSCA

cloud service development experts de�ne service topology models. Those

models could then be published in repositories of one or more service

providers. Each provider would map the speci�ed service topology to its

available concrete infrastructure in order to support concrete instances

of the service and adapt the management plans accordingly.

Furthermore, making a concrete instance of a topology template can

be done by running a corresponding plan (also known as build plan). So,

the service developer who creates the service template could provide this

plan too. The build plan can be adapted to the concrete environment

of a particular service provider. This is not only the case of build plans:

other management plans of a service could then be speci�ed as part of a

service template (and adapted to the providers' infrastructure).

Thus, not only the structure of a service can be de�ned in an interop-

erable manner, but also its management plans. Such a con�guration will

let consumers easily search, select and use prede�ned IT services (hosted

on cloud service providers).

Portability of service templates

TOSCA service templates standardization will support the portability of

IT service de�nitions. Observe that, as speci�ed by the TOSCA authors,

portability denotes the ability of one cloud provider to understand the

structure and behaviour of a service template created by another party

(e.g., another cloud provider, enterprise IT department, service devel-

oper).

Furthermore, if a service template is portable, this does not mean

that its encompassed components are portable too. Portability of a ser-

vice only implies that its de�nition is comprehensible in an interoperable

manner (i.e., the topology model and corresponding plans are understood

by TOSCA-compliant providers). Individual components portability has

to be ensured (if needed) via other mechanisms.

8



Chapter 2. Background: TOSCA

Service composition

Another use case speci�ed by TOSCA authors is the composition of ser-

vice templates. Since a service template provides an abstraction that

does not make assumption about the hosting environment, the deployed

service could be hosted on more than one cloud provider. This enables

an important feature: multi-cloud service applications deployment (e.g.,

large organization could use automation products from di�erent suppliers

for di�erent data centers).

2.2 TOSCA syntax

In this section we will show how cloud services can be de�ned using

TOSCA. To do it, we will follow the same notation of the TOSCA spec-

i�cation to de�ne the serialization of resources:

• characters are appended to items to indicate cardinality:

� "?" (0 or 1);

� "*" (0 or more);

� "+" (1 or more);

• vertical bars, "|", denote choice;

• parentheses, "(" and ")", are used to indicate the scope of the

operators "?", "*", "+" and "|";

• ellipses (i.e., "...") indicate points of extensibility.

De�nitions

All elements needed to de�ne a cloud service are provided in the TOSCA

De�nitions element (Listing 2.1). This element is the root of a TOSCA

9



Chapter 2. Background: TOSCA

XML document. It has a set of properties; the most important ones will

be discussed next.

1 <Definitions id="xs:ID"

2 name="xs:string"?

3 targetNamespace="xs:anyURI">

4

5 <Extensions >

6 <Extension namespace="xs:anyURI"

7 mustUnderstand="yes|no"?/> +

8 </Extensions > ?

9

10 <Import namespace="xs:anyURI"?

11 location="xs:anyURI"?

12 importType="xs:anyURI"/> *

13

14 <Types>

15 <xs:schema .../> *

16 </Types> ?

17

18 (

19 <ServiceTemplate > ... </ServiceTemplate >

20 |

21 <NodeType > ... </NodeType >

22 |

23 <NodeTypeImplementation > ...

24 </NodeTypeImplementation >

25 |

26 <RelationshipType > ... </RelationshipType >

27 |

28 <RelationshipTypeImplementation > ...

29 </RelationshipTypeImplementation >

30 |

31 <RequirementType > ... </RequirementType >

32 |

33 <CapabilityType > ... </CapabilityType >

34 |

35 <ArtifactType > ... </ArtifactType >

36 |

10



Chapter 2. Background: TOSCA

37 <ArtifactTemplate > ... </ArtifactTemplate >

38 |

39 <PolicyType > ... </PolicyType >

40 |

41 <PolicyTemplate > ... </PolicyTemplate >

42 ) +

43

44 </Definitions >

Listing 2.1: TOSCA De�nitions element high level syntax

Each De�nitions element has a unique id regarding its namespace and

(possibly) a descriptive, human-readable name. In addition, the target-

Namespace attribute declares the namespace of the De�nitions. This is

an important feature because it lets other De�nitions elements reference

this one.

The optional Import element provides means to use external De�ni-

tions, XML Schemas or WSDL de�nitions. A De�nitions element must

name all external references that it uses via Import elements.

With the optional Types element the application developer can specify

additional XML de�nitions to use throughout the De�nitions document

(e.g., as attributes in other elements). In this way, the developer does

not need to de�ne them in separate documents and import them via

Import elements. The types are XML Schema elements by default but

they could also be of arbitrary types.

The explanation of the other elements reported in Listing 2.1 is given

in the following sections.

Service templates

The ServiceTemplate element (Listing 2.2) speci�es each topological and

management aspect of a cloud application by means of TopologyTemplate

elements and Plans, respectively.

11



Chapter 2. Background: TOSCA

1 <ServiceTemplate id="xs:ID"

2 name="xs:string"?

3 targetNamespace="xs:anyURI"

4 substitutableNodeType="xs:QName"?>

5

6 <BoundaryDefinitions >

7 <Properties > ... </Properties > ?

8

9 <PropertyConstraints > ... </PropertyConstraints > ?

10

11 <Requirements > ... </Requirements > ?

12

13 <Capabilities > ... </Capabilities > ?

14

15 <Policies > ... </Policies > ?

16

17 <Interfaces > ... </Interfaces > ?

18 </BoundaryDefinitions > ?

19

20 <TopologyTemplate >

21 (

22 <NodeTemplate id="xs:ID" name="xs:string"?

23 type="xs:QName"

24 minInstances="xs:integer"?

25 maxInstances="xs:integer|xs:string"?>

26 <Properties > ... </Properties > ?

27

28 <PropertyConstraints > ... </PropertyConstraints > ?

29

30 <Requirements > ... </Requirements > ?

31

32 <Capabilities > ... </Capabilities > ?

33

34 <Policies > ... </Policies > ?

35

36 <DeploymentArtifacts > ... </DeploymentArtifacts > ?

37 </NodeTemplate >

38 |

12



Chapter 2. Background: TOSCA

39 <RelationshipTemplate id="xs:ID" name="xs:string"?

40 type="xs:QName">

41 <Properties > ... </Properties > ?

42

43 <PropertyConstraints > ... </PropertyConstraints > ?

44

45 <SourceElement ref="xs:IDREF"/>

46

47 <TargetElement ref="xs:IDREF"/>

48

49 <RelationshipConstraints > ...

50 </RelationshipConstraints > ?

51 </RelationshipTemplate >

52 ) +

53 </TopologyTemplate >

54

55 <Plans> ... </Plans> ?

56 </ServiceTemplate >

Listing 2.2: TOSCA ServiceTemplate element high level syntax

As for the De�nitions element, each ServiceTemplate element requires an

unique id in its own targetNamespace. An important additional attribute

is substitutableNodeType. This attribute speci�es the NodeType that can

be substituted by this ServiceTemplate. So, if another ServiceTemplate

contains a NodeTemplate of the speci�ed NodeType (or any NodeType

which is derived from the speci�ed one), then such NodeTemplate can be

substituted by an instance of the ServiceTemplate under de�nition.

Another way a node type can be substituted by a service template

is by matching what it exposes (Properties, Requirements, Capabilities,

Policies and Interfaces) with what a ServiceTemplate exposes. The latter

comes with the BoundaryDe�nitions element.

When the cloud application developer has speci�ed all the global

aspects, she could proceed in de�ning the topology and management

concerns.

13



Chapter 2. Background: TOSCA

Topology template A TopologyTemplate de�nes the topological struc-

ture of an IT service as a directed graph. The vertices are repre-

sented by a set of NodeTemplate elements and the directed edges

by a set of RelationshipTemplate elements1. Each edge expresses

the semantics of the relationship between nodes.

Plans The Plans element contains Plan elements specifying how to man-

age the ServiceTemplate under de�nition during its life cycle (e.g.,

how to deploy, start and stop it).

Node types

With the NodeType element (Listing 2.3) it is possible to specify a reusable

entity that de�nes the type of one or more node templates in a Ser-

viceTemplate element.

1 <NodeType name="xs:NCName"

2 targetNamespace="xs:anyURI"?

3 abstract="yes|no"?

4 final="yes|no"?>

5 <DerivedFrom typeRef="xs:QName"/> ?

6

7 <PropertiesDefinition element="xs:QName"?

8 type="xs:QName"?/> ?

9

10 <RequirementDefinitions > ... </RequirementDefinitions > ?

11

12 <CapabilityDefinitions > ... </CapabilityDefinitions > ?

13

14 <InstanceStates > ... </InstanceStates > ?

15

16 <Interfaces > ... </Interfaces > ?

17 </NodeType >

Listing 2.3: TOSCA NodeType element high level syntax.

1Both NodeTemplate elements and RelationshipTemplate elements are typed by

referring NodeType elements and RelationshipType elements, respectively.
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Each NodeType requires a unique name to be identi�ed in its own tar-

getNamespace. The NodeType under de�nition could be also speci�ed as

abstract or �nal (if needed). The former means that no instances can

be created from NodeTemplate elements that use this NodeType as their

type. The latter says that other NodeType elements must not be derived

from the under de�nition one.

With the optional DerivedFrom element, the node type developer can

implement inheritance. Con�icting de�nitions are resolved by the rule

that local new de�nition always override derived de�nitions.

The optional RequirementDe�nitions and CapabilityDe�nitions ele-

ments are used to specify which properties and capabilities the NodeType

under consideration exposes.

The InstanceStates element is used to model the life cycle of an in-

stance of this NodeType. Indeed, this element speci�es the set of states

an instance of this NodeType can occupy.

Finally, with the optional element Interfaces the developer could de-

�ne the operations which can be performed on (instances of) this Node-

Type. Such operations de�nition is given in the form of nested Interface

elements (each of which is characterized by a name and some Operation

elements).

Once the NodeType has been de�ned, it should be linked with the

executables by which is implemented. NodeTypeImplementation ele-

ments provide a collection of implementation artifacts (executables im-

plementing the interface operations) and deployment artifacts (executa-

bles needed to materialize instances of NodeTemplate elements referring

the NodeType under consideration)2.

2The respective executables are de�ned as separate ArtifactTemplate elements and

are referenced from the implementation artifacts and deployment artifacts of a Node-

TypeImplementation.
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Relationship types

As mentioned earlier, pairs of NodeTemplate elements are connected by

RelationshipTemplate elements. Each of these RelationshipTemplate el-

ements is typed by a RelationshipType element (Listing 2.4).

1 <RelationshipType name="xs:NCName"

2 targetNamespace="xs:anyURI"?

3 abstract="yes|no"?

4 final="yes|no"?>

5 <DerivedFrom typeRef="xs:QName"/> ?

6

7 <PropertiesDefinition element="xs:QName"?

8 type="xs:QName"?/> ?

9

10 <InstanceStates > ... </InstanceStates > ?

11

12 <SourceInterfaces > ... </SourceInterfaces > ?

13

14 <TargetInterfaces > ... </TargetInterfaces > ?

15

16 <ValidSource > ... </ValidSource > ?

17

18 <ValidTarget > ... </ValidTarget > ?

19 </RelationshipType >

Listing 2.4: TOSCA RelationshipType element high level syntax.

Every RelationshipType requires a unique name to be identi�ed in its

own targetNamespace. If needed, the RelationshipType under de�nition

could be speci�ed as abstract or �nal. These two attributes have the

same meaning of those appearing in NodeType elements. Furthermore,

also the meaning (and usage) of DerivedFrom, PropertiesDe�nition and

InstanceStates elements is the same of those contained in NodeType ele-

ments.

The optional SourceInterfaces and TargetInterfaces elements contain

de�nitions of manageability interfaces of a relationship of this Relation-
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shipType (in order to actually establish the relationship between the

source and the target in the deployed service). Those interface de�ni-

tions are contained in nested Interface elements, whose content is the

same as for NodeType interfaces.

With the optional ValidSource and ValidTarget elements, the service

developer can specify the type of object that is allowed as a valid origin

or target for relationships of the RelationshipType under de�nition.

Finally, the RelationshipType should be linked with the objects by

which its interfaces are implemented. This comes with a separated Rela-

tionshipTypeImplementation element. Indeed, such an element provides

the collection of executables implementing the interface operations (also

known as implementation artifacts)3.

Requirements and capabilities

Each NodeType element can declare to expose some requirements and

capabilities. As shown in Figure 2.2, they can be expressed instantiating

RequirementType and CapabilityType elements (Listing 2.5) via Require-

mentDe�nition and CapabilityDe�nition elements.

1 <RequirementType name="xs:NCName"

2 targetNamespace="xs:anyURI"?

3 abstract="yes|no"?

4 final="yes|no"?

5 requiredCapabilityType="xs:QName"?>

6 <DerivedFrom typeRef="xs:QName"/> ?

7

8 <PropertiesDefinition element="xs:QName"?

9 type="xs:QName"?/> ?

10 </RequirementType >

11

12 <CapabilityType name="xs:NCName"

3The particular executables are de�ned as separate ArtifactTemplate elements and

referenced from the implementation artifacts of a RelationshipTypeImplementation.

17



Chapter 2. Background: TOSCA

Figure 2.2: Requirement and capabilities [25]

13 targetNamespace="xs:anyURI"?

14 abstract="yes|no"?

15 final="yes|no"?>

16 <DerivedFrom typeRef="xs:QName"/> ?

17

18 <PropertiesDefinition element="xs:QName"?

19 type="xs:QName"?/> ?

20 </CapabilityType >

Listing 2.5: TOSCA RequirementType element and CapabilityType ele-

ment high level syntax.

The meaning of all the RequirementType and CapabilityType elements

common properties is the same of previous elements. The only addition is

the optional requiredCapabilityType attribute. It could be used to specify

which CapabilityType elements4 satisfy the requirement expressed by the

RequirementType element under de�nition.

4Since TOSCA supports inheritance, both the speci�ed capability type and those

types derived from it satisfy the considered requirement.
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Policies

Non-functional behaviour or QoS (Quality of Service) are de�ned in

TOSCA by means of policies. A Policy can express such diverse things

like monitoring behaviour, payment conditions, scalability, or continuous

availability, for example.

As reported in Listing 2.1, a NodeTemplate can be associated with

a set of Policies collectively expressing the non-functional behaviour or

QoS that each instance of the NodeTemplate will expose. Each Policy

speci�es the actual properties of the non-functional behaviour. These

properties are de�ned by means of a PolicyType (Listing 2.6).

1 <PolicyType name="xs:NCName"

2 policyLanguage="xs:anyURI"?

3 abstract="yes|no"? final="yes|no"?

4 targetNamespace="xs:anyURI"?>

5 <DerivedFrom typeRef="xs:QName"/> ?

6

7 <PropertiesDefinition element="xs:QName"?

8 type="xs:QName"?/>

9

10 <AppliesTo >

11 <NodeTypeReference typeRef="xs:QName"/> +

12 </AppliesTo > ?

13

14 policy type specific content ?

15 </PolicyType >

Listing 2.6: TOSCA PolicyType element high level syntax

Observe that a PolicyType could specify the non-functional behaviour it

represents via both PropertiesDe�nition and policy type speci�c content5.

Furthermore, (via the AppliesTo element) a policy type can declare the

set of NodeType elements it speci�es non-functional behaviour for. Note

5The latter uses an arbitrary language which can be speci�ed in the optional

PolicyLanguage attribute.
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that being "applicable to" does not enforce implementation (e.g., in case a

PolicyType expressing high availability is associated with a WebserverN-

odeType, an instance of the WebserverNodeType is not necessarily high

available). Whether or not an instance of a NodeType to which a Poli-

cyType is applicable will show the speci�ed non-functional behaviour, is

determined by a NodeTemplate of the corresponding NodeType.

Once the general properties have been de�ned in a PolicyType, their

actual values are provided by one or more PolicyTemplate elements (List-

ing 2.7).

1 <PolicyTemplate id="xs:ID"

2 name="xs:string"?

3 type="xs:QName">

4 <Properties > ... </Properties >

5

6 <PropertyCostraints > ... </PropertyCostraints >

7

8 policy type specific content ?

9 </PolicyTemplate >

Listing 2.7: TOSCA PolicyTemplate element high level syntax.

A PolicyTemplate de�nes the invariant properties of the non-functional

behaviour to be represented. Its variant properties are setted in a Policy

element of a NodeTemplate. This is because those properties result from

the actual usage of a PolicyTemplate in the NodeTemplate under consid-

eration (e.g., a PolicyTemplate for italian customers yearly payments will

set the paymentPeriod property to �yearly� and the currency property to

�EUR�, leaving the amount property open; the amount property will be

set when the corresponding PolicyTemplate is used for a Policy within a

NodeTemplate).
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2.3 A TOSCA example

Suppose that a cloud application developer wants to build the weather

forecast cloud application in Figure 2.3. Her work starts with the creation

Figure 2.3: TOSCA cloud application example.

of a new De�nitions document (Listing 2.8) in which to put all required

elements. To enhance readability we are going to show each needed

de�nition in a separate section.

1 <Definitions name = "SampleSTDefinitions"

2 targetNamespace =

3 "http: //www.example.com/weatherSample">

4 ...

5 </Definitions >

Listing 2.8: TOSCA example De�nitions document.
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Requirement and capability types

Before writing the NodeType and RelationshipType elements needed by

the desired application, the developer must ensure she has all the neces-

sary requirement and capability types. In other words, she has to write

the AppServerRequirement, AppServerCapability and WeatherAppCapa-

bility de�nitions (Listing 2.9) and to include them in the De�nitions

element.

1 <RequirementType

2 name = "AppServerRequirement"

3 targetNamespace =

4 "http: //www.example.com/weatherSample"

5 />

6 <CapabilityType

7 name = "AppServerCapability"

8 targetNamespace =

9 "http: //www.example.com/weatherSample"

10 />

11 <CapabilityType

12 name = "WeatherAppCapability"

13 targetNamespace =

14 "http: //www.example.com/weatherSample"

15 />

Listing 2.9: TOSCA example requirement and capability types de�ni-

tions.

Please note that the exposed requirement and capabilities de�nitions

are only composed by their name. This is because they will be used only

in establishing the meaning of desired relationships.

Node types

Once requirement and capability types are de�ned, the application devel-

oper needs only one other ingredient to proceed in NodeType de�nitions:
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the properties structures de�nition (Listing 2.10).

1 <Types>

2 <xs:schema xmlns:xs="http: //www.w3.org /2001/ XMLSchema"

3 elementFormDefault="qualified"

4 attributeFormDefault="unqualified">

5 <xs:element name="ApplicationProperties">

6 <xs:complexType >

7 <xs:sequence >

8 <xs:element name="Owner"

9 type="xs:string"/>

10 <xs:element name="Name"

11 type="xs:string"/>

12 </xs:sequence >

13 </xs:complexType >

14 </xs:element >

15 <xs:element name="AppServerProperties">

16 <xs:complexType >

17 <xs:sequence >

18 <xs:element name="HostName"

19 type="xs:string"/>

20 <xs:element name="IPAddress"

21 type="xs:string"/>

22 <xs:element name="SoapPort"

23 type="xs:positiveInteger"/>

24 </xs:sequence >

25 </xs:complexType >

26 </xs:element >

27 </xs:schema >

28 </Types>

Listing 2.10: Properties structure de�nitions required in our TOSCA

example.

As the Types element is included in the De�nitions document, she

can proceed de�ning the required NodeType elements (Listing 2.11).

1 <NodeType name = "WheaterApplicationType"

2 targetNamespace =

3 "www.example.com/weatherSample">
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4

5 <PropertiesDefinition element = "ApplicationProperties"/>

6

7 <RequirementDefinitions >

8 <RequirementDefinition name = "ServerRequired"

9 type = "AppServerRequirement"/>

10 </RequirementDefinitions >

11

12 <CapabilityDefinitions >

13 <CapabilityDefinition name = "WeatherApplication"

14 type = "WeatherAppCapability"/>

15 </CapabilityDefinitions >

16

17 <InstanceStates >

18 <InstanceState state = "www.example.com/started"/>

19 <InstanceState state = "www.example.com/stopped"/>

20 </InstanceStates >

21

22 <Interfaces >

23 <Interface name = "Deployment">

24 <Operation name = "DeployApplication">

25 <InputParameters >

26 <InputParameter name = "ServerIPAddress"

27 type = "xs:string"/>

28 </InputParameters >

29 </Operation >

30 </Interface >

31 <Interface name = "GetWeather">

32 <Operation name = "GetWeather">

33 <InputParameters >

34 <InputParameter name = "City"

35 type = "xs:string"/>

36 </InputParameters >

37 <OutputParameters >

38 <OutputParameter name = "Weather"

39 type = "xs:string"/>

40 <OutputParameter name = "Temperature"

41 type = "xs:positiveInteger"/>
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42 </OutputParameters >

43 </Operation >

44 </Interface >

45

46 </NodeType >

47

48 <NodeType name = "AppServerType"

49 targetNamespace =

50 "www.example.com/weatherSample">

51

52 <PropertiesDefinition element = "AppServerProperties"/>

53

54 <CapabilityDefinitions >

55 <CapabilityDefinition name = "ServerCapability"

56 type = "AppServerCapability"/>

57 </CapabilityDefinitions >

58

59 <Interfaces >

60 <Interface name = "Installation">

61 <Operation name = "AcquireNetworkAddress">

62 <Operation name = "DeployApplicationServer">

63 </Interface >

64 </Interfaces >

65 </NodeType >

Listing 2.11: TOSCA example NodeType de�nitions.

Relationship types

Looking at Figure 2.3, we observe that the desired service topology con-

tains a relationship between theWeatherApp's requirement and the App-

Server 's capability. So, the desired relationship's type must be de�ned

by the application developer (Listing 2.12).

1 <RelationsipType name = "deployedOnType">

2 <ValidSource typeRef = "sample:AppServerRequirement"/>

3

4 <TargetSource typeRef = "sample:AppServerCapability"/>
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5 </RelationshipType >

Listing 2.12: TOSCA example RelationshipType de�nition.

Topology template

In the previous sections we have shown the type de�nitions made by the

weather forecast application developer. Now, she can proceed in instan-

tiating those types in order to build up the desired service topological

aspects (Listing 2.13).

1 <ServiceTemplate id = "SampleST">

2 <TopologyTemplate id = "SampleTopology">

3

4 <NodeTemplate id = "SampleWeatherApp"

5 name = "WeatherApp"

6 nodeType =

7 "sample:WheaterApplicationType">

8 <Properties >

9 <ApplicationProperties >

10 <Owner>Minnie <Owner >

11 <Name>Wheater Forecast Application <Name>

12 </ApplicationProperties >

13 </Properties >

14

15 <Requirements >

16 <Requirement id = "SampleServerRequirement"

17 name = "ServerRequired"

18 type =

19 "sample:AppServerRequirement"/>

20 </Requirements >

21

22 <Capabilities >

23 <Capability id = "SampleWeatherAppCapability"

24 name = "WeatherApplication"

25 type =

26 "sample:WeatherAppCapability"/>

27 </Capabilities >
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28 </NodeTemplate >

29

30 <NodeTemplate id = "SampleAppServer"

31 name = "AppServer"

32 nodeType = "sample:AppServerType">

33

34 <Capabilities >

35 <Capability id = "SampleServerCapability"

36 name = "ServerCapability"

37 type = "sample:AppServerCapability"/>

38 </Capabilities >

39 </NodeTemplate >

40

41 <RelationshipTemplate

42 id = "SampleDeployedOn"

43 relationshipType = "deployedOnType">

44 <SourceElement id = "SampleWeatherApp"/>

45 <TargetElement id = "SampleAppServer"/>

46 </RelationshipTemplate >

47

48 </TopologyTemplate >

49 ...

50 </ServiceTemplate >

Listing 2.13: TOSCA example TopologyTemplate de�nition.

Plans

Once the service topology has been de�ned, the application developer

must de�ne all desired management aspects. A possible solution to the

exposed issue is to use URI references to already existing plans (Listing

2.14).

1 <ServiceTemplate id = "SampleST">

2 ...

3 <Plans>

4 <Plan id = "SampleDeploymentPlan"

5 name = "DeploymentPlan"
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6 planType =

7 "www.example.com/Plan/Types/BuildPlan"

8 planLanguage =

9 "www.example.com/Plan/Languages/BPEL">

10 <PlanModelReference reference = "prj:DeployApp"

11 </Plan>

12 </Plans>

13 ...

14 </ServiceTemplate >

Listing 2.14: TOSCA example Plans de�nition.

Service template and boundaries

Last but not least, the application developer must ensure that her service

only exposes what she wants. This is done via the BoundaryDe�nitions

element (Listing 2.15).

1 <ServiceTemplate id = "SampleST">

2 ...

3 <BoundaryDefinitions >

4 <Properties >

5 <Owner/>

6 <PropertyMappings >

7 <PropertyMapping serviceTemplatePropertyRef =

8 "$doc/Owner"

9 targetObjectRef =

10 "SampleWeatherApp"

11 targetObjectPropertyRef =

12 "$doc//Owner"/>

13 </PropertyMappings >

14 </Properties >

15

16 <Capabilities >

17 <Capability name = "WeatherApplicationCapability"

18 ref = "SampleWeatherAppCapability" />

19 </Capabilities >

20
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21 <Interfaces >

22 <Interface name = "GetWeather">

23 <Operation name = "GetWeather">

24 <NodeOperation nodeRef = "SampleWeatherApp"

25 interfaceName = "GetWeather"

26 operationName = "GetWeather"/>

27 </Operation >

28 </Interface >

29 <Interface name = "Deployment">

30 <Operation name = "DeployApplication">

31 <Plan planRef = "SampleDeploymentPlan"/>

32 </Operation >

33 </Interface >

34 </Interfaces >

35

36 </BoundaryDefinitions >

37 </ServiceTemplate >

Listing 2.15: TOSCA example boundary de�nitions.
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NodeType black-box matching

(and adaptation)

The objective of this chapter is to give a notion of black-box match-

ing between NodeType and ServiceTemplate elements. Once this notion

is available, it can be used as a �rst step in understanding whether a

TOSCA service component could be replaced with an available cloud

service.

To provide such a compatibility notion we start by de�ning an exact

matching between the two TOSCA elements under consideration (Sec-

tion 3.1). Then, observing that there is no need to exactly match the

elements, we de�ne the notion of plug-in matching (Section 3.2). Finally,

using ontologies to ignore non-relevant syntactic di�erences, we derive

the �exible matching notion (Section 3.3).

We also describe how a ServiceTemplate that plug-in or �exibly matches

the desired NodeType can be suitably adapted so as to exactly match it.

30



Chapter 3. NodeType black-box matching (and adaptation)

3.1 Exact matching

We consider the problem of matching a NodeType N with a ServiceTem-

plate ST . The TOSCA Primer [26] gives an informal notion of matching

between these two elements. Referring to Figure 3.1, the Primer authors

Figure 3.1: ServiceTemplate substituting a NodeType [26].

say:

�Service template ST may substitute node type N because the

boundary of ST matches all de�ning elements of N : all prop-

erties, operations, requirements and capabilities of ST match

exactly those of N .�

No additional matching information is given. So, we want to formalize

this notion.

3.1.1 De�nition of exact matching

What we want to do is to de�ne an operator "≡" which takes a pair

〈NodeType, ServiceTemplate〉 and returns a truth value (which represents
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whether the two elements exactly match or not).

De�nition 3.1. A NodeType N exactly matches a ServiceTemplate ST

(N ≡ ST ) if and only if:

N .RequirementDe�nitions ≡R ST .Requirements ∧

N .CapabilityDe�nitions ≡C ST .Capabilities ∧

PolicyType applicable to N ≡PO ST .Policies ∧

N .PropertiesDe�nition ≡PR ST .Properties ∧

N .Interfaces ≡I ST .Interfaces

◦

To understand what De�nition 3.1 means, we need to analyse each of

the given conditions.

Exact matching of requirements

Looking at the syntax of the elements interested in this kind of matching

(Listing 3.1), we can de�ne the required condition.

1 <NodeType ...>

2 ...

3 <RequirementDefinitions >

4 <RequirementDefintion name = ...

5 requirementType = ...

6 lowerBound = ...

7 upperBound = ...> +

8 </RequirementDefinitions > ?

9 ...

10 </NodeType >

11

12 <ServiceTemplate >

13 ...
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14 <BoundaryDefinitions >

15 ...

16 <Requirements >

17 <Requirement name = ... ref = ...> +

18 </Requirements > ?

19 ...

20 </BoundaryDefinitions > ?

21 <TopologyTemplate >

22 <NodeTemplate ...>

23 <Requirements >

24 <Requirement id = ...

25 name = ...

26 type = ...> +

27 </Requirements > ?

28 </NodeTemplate ...> ?

29 </TopologyTemplate >

30 ...

31 </ServiceTemplate >

Listing 3.1: High level syntax of TOSCA NodeType and ServiceTemplate

elements interested in requirements matching.

The Topology and Orchestration Speci�cation for Cloud Applications

[25] says that:

�The name and type of the Requirement MUST match the

name and type of a RequirementDe�nition in the NodeType

speci�ed in the type attribute of the NodeTemplate.�

Extending this concept to our problem, we can state that each Require-

mentDe�nition in the NodeType must have the same name and type of

exactly one of the ServiceTemplate's Requirements (referred by the ref

attribute in the BoundaryDe�nitions element).

Furthermore, looking at NodeType speci�cation [25], the authors says

that the NodeType under consideration exposes also the requirements (if

not overridden) of the NodeType it is derived from. This means that its
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requirements consist of the (set theoretic) union of the requirements it

de�nes and the requirements it inherits from the parent NodeType.

The above reasoning let us de�ne the condition needed in De�nition

3.1.

De�nition 3.2. Let N be a NodeType and ST be a ServiceTemplate.

We say that

N .RequirementDe�nitions ≡R ST .Requirements

if and only if1:

1. ∀ RequirementDe�nition x ∈ N .RequirementDe�nitions

∃! Requirement y ∈ ST .Requirements :

x.name = y.name ∧ x.requirementType = y.ref.type

2. ∀ Requirement y ∈ ST .Requirements

∃! RequirementDe�nition x ∈ N .RequirementDe�nitions :

x.name = y.name ∧ x.requirementType = y.ref.type

◦

Exact matching of capabilities

The high similarity between the capabilities syntax and the requirements

one leads to the following de�nition.

De�nition 3.3. Let N be a NodeType and ST be a ServiceTemplate.

We say that

N .CapabilityDe�nitions ≡C ST .Capabilities

1Using both the conditions we ensure the one-to-one correspondence between the

requirements of the two elements.
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if and only if:

1. ∀ CapabilityDe�nition x ∈ N .CapabilityDe�nitions

∃! Capability y ∈ ST .Capabilities :

x.name = y.name ∧ x.capabilityType = y.ref.type

2. ∀ Capability y ∈ ST .Capabilities

∃! CapabilityDe�nition x ∈ N .CapabilityDe�nitions :

x.name = y.name ∧ x.capabilityType = y.ref.type

◦

Policies compatibility

As before, we need to look at the syntax of interested elements to de�ne

the policies matching condition.

1 <PolicyType name = ...

2 ...>

3 ...

4 <AppliesTo >

5 <NodeTypeReference typeRef = .../> +

6 </AppliesTo > ?

7 ...

8 </PolicyType >

9

10 <PolicyTemplate id = ...

11 name = ...

12 type = ...>

13 ...

14 </PolicyTemplate >

15

16 <ServiceTemplate >

17 ...

18 <BoundaryDefinitions >

19 ...

20 <Policies >

35



Chapter 3. NodeType black-box matching (and adaptation)

21 <Policy name = ...

22 policyType = ...

23 policyRef = ...>

24 ...

25 </Policy > +

26 </Policies > ?

27 ...

28 </BoundaryDefinitions > ?

29 ...

30 </ServiceTemplate >

Listing 3.2: High level syntax of TOSCA elements interested in policies

matching.

Looking at Listing 3.2, we immediately observe the lack of NodeType

element. In this case we have to consider PolicyType, PolicyTemplate

and ServiceTemplate elements. This is because a NodeType cannot ex-

pose any kind of policy, but a policy can specify which set of NodeType

elements it is applicable to.

Assumption 3.1. If a PolicyType PTY does not contain any AppliesTo

element, then PTY will be applicable to any NodeType.

The above consideration suggests that if we want to substitute a Node-

Type N with a ServiceTemplate ST , then the latter must expose policies

applicable to the former. So, let us de�ne the in�x operator � to indi-

cate that the PolicyType of the considered policy (on the left of �) is
applicable to the NodeType (on the right of �).

De�nition 3.4. The in�x operator

�: ({PolicyType} ∪ {PolicyTemplate})× {NodeType} → {true,false}

is de�ned as follows:

• let PTY be a PolicyType and N a NodeType. PTY � N is true
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if and only if the PTY .AppliesTo element (is empty or) contains a

NodeTypeReference toN or to a NodeType from whichN is derived;

• let PTMP be a PolicyTemplate and N a NodeType. PTMP � N is

true if and only if PTMP .type � N is true.

◦

Now we can de�ne the desired condition.

De�nition 3.5. Let N be a NodeType and ST a ServiceTemplate. The

set of PolicyTypes applicable to N exactly matches (≡PO) ST .Policies if

and only if:

∀ST .Policies.Policy x, (x.policyType � N ∨ x.policyRef � N)

◦

Exact matching of properties

Understanding how to match NodeType.PropertiesDe�nition and Ser-

viceTemplate properties requires to look at their syntax (Listing 3.3).

1 <NodeType ...>

2 ...

3 <PropertiesDefinition

4 element = ... ?

5 type = ... ?

6 />

7 ...

8 </NodeType >

9

10 <ServiceTemplate >

11 ...

12 <BoundaryDefinitions >
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13 ...

14 <Properties >

15 XML fragment

16 <PropertyMappings >

17 <PropertyMapping

18 serviceTemplatePropertyRef = ...

19 targetObjectRef = ...

20 targetPropertyRef = ...

21 /> +

22 </PropertyMappings > ?

23 </Properties > ?

24 <PropertyConstraints >

25 ...

26 </PropertyConstraints > ?

27 ...

28 </BoundaryDefinitions > ?

29 <TopologyTemplate >

30 ...

31 <NodeTemplate ...>

32 ...

33 <Properties > ... </Properties >

34 ...

35 </NodeTemplate >

36 ...

37 <RelationshipTemplate ... >

38 ...

39 <Properties > ... </Properties >

40 ...

41 </RelationshipTemplate >

42 ...

43 </TopologyTemplate >

44 ...

45 </ServiceTemplate >

Listing 3.3: High level syntax of TOSCA NodeType and ServiceTemplate

elements interested in properties matching.
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Observe that there is a di�erent properties de�nition between Node-

Type and ServiceTemplate elements:

• the former speci�es (via one of the element and type attributes)

the XML schema of the NodeType observable properties;

• the latter speci�es ServiceTemplate actual property values (and

constraints) using a XML fragment and mapping the exposed prop-

erties to the ones of nested elements (using the serviceTemplateProp-

ertyRef attribute - to refer the property de�ned in the XML frag-

ment - and targetObjectRef and targetObjectPropertyRef attributes

- to identify the property of the nested element).

This means that, because of lack of values (and constraints) in NodeType

elements, we can only match property types.

Furthermore, in the TOSCA speci�cation [25], the authors assume

that the XML type representing the NodeType properties extends the

XML type of the properties of the NodeType referenced in the Derived-

From element. This implies that we do not have to worry about what

the NodeType element inherits from its parent.

The above considerations let us de�ne the desired condition:

De�nition 3.6. Let N be a NodeType and ST a ServiceTemplate. We

say that

N .PropertiesDe�nition ≡PR ST .Properties

if and only if the XML type of ST .Properties is the same as the one

de�ned with N .PropertiesDe�nition

◦
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Exact matching of interfaces

Finally, we want to analyze Interfaces matching. So, as done before, we

need to take a look to the elements interested in this matching (Listing

3.4).

1 <NodeType ...>

2 ...

3 <DerivedFrom typeRef = ... /> ?

4 ...

5 <Interfaces >

6 <Interface name = ... >

7 <Operation name = ... >

8 <InputParameters >

9 <InputParameter

10 name = ...

11 type = ...

12 required = ... ?

13 /> +

14 </InputParameters > ?

15 <OutputParameters >

16 <OutputParameter

17 name = ...

18 type = ...

19 required = ... ?

20 /> +

21 </OutputParameters > ?

22 </Operation > +

23 </Interface > +

24 </Interfaces > ?

25 ...

26 </NodeType >

27

28 <ServiceTemplate >

29 ...

30 <BoundaryDefinitions >

31 ...

32 <Interfaces >

33 <Interface name = ... >
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34 <Operation name = ... >

35 (

36 <NodeOperation

37 nodeRef = ...

38 interfaceName = ...

39 operationName = ...

40 />

41 |

42 <RelationshipOperation

43 relationshipRef = ...

44 interfaceName = ...

45 operationName = ...

46 />

47 |

48 <Plan planRef = ... />

49 )

50 </Operation > +

51 </Interface > +

52 </Interfaces > ?

53 ...

54 </BoundaryDefinitions > ?

55 <TopologyTemplate >

56 ...

57 <NodeTemplate

58 id = ...

59 name = ...

60 type = ...

61 ...

62 >

63 ...

64 </NodeTemplate >

65 ...

66 <RelationshipTemplate

67 id = ...

68 name = ...

69 type = ...

70 ...

71 >
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72 ...

73 </RelationshipTemplate >

74 ...

75 </TopologyTemplate >

76 <Plans>

77 <Plan

78 id = ...

79 name = ...

80 ...

81 >

82 ...

83 <InputParameters >

84 <InputParameter

85 name = ...

86 type = ...

87 required = ... ?

88 /> +

89 </InputParameters > ?

90 <OutputParameters >

91 <OutputParameter

92 name = ...

93 type = ...

94 required = ... ?

95 /> +

96 </OutputParameters > ?

97 ...

98 </Plan> +

99 </Plans> ?

100 </ServiceTemplate >

Listing 3.4: High level syntax of TOSCA NodeType and ServiceTemplate

elements interested in interfaces matching.

To obtain the desired exact matching condition, we need to ensure

that both the NodeType element and the ServiceTemplate element expose

the same interfaces. In other words, we want that each NodeType inter-

face contains the same operations of exactly one of the ServiceTemplate

interfaces (and vice versa). Formally:
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De�nition 3.7. Let N be a NodeType and ST a ServiceTemplate. We

say that

N .Interfaces ≡I ST .Interfaces

if and only if:

1. ∀ Interface x ∈ N .Interfaces ∃! Interface y ∈ ST .Interfaces :

x.name = y.name ∧
∀ Operation i ∈ x ∃!Operation j ∈ y:

i ≡O j

2. ∀ Interface y ∈ ST .Interfaces ∃! Interface x ∈ N .Interfaces :

y.name = x.name ∧
∀Operation j ∈ y ∃!Operation i ∈ x:

j ≡O i

◦

The above de�nition requires to specify how two Operation elements

can be considered in the ≡O relationship.

De�nition 3.8. Consider two Operation elements O1 and O2. We say

that

O1 ≡O O2

if and only if

1. O1.name = O2.name

2. ∀ InputParameter a ∈ O1.InputParameters

∃! InputParameter b ∈ O2.InputParameters :

a.name = b.name ∧ a.type = b.type ∧ a.required = b.required
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3. ∀ InputParameter b ∈ O2.InputParameters

∃! InputParameter a ∈ O1.InputParameters

b.name = a.name ∧ b.type = a.type ∧ b.required = a.required

4. ∀ OutputParameter a ∈ O1.OutputParameters

∃! OutputParameter b ∈ O2.OutputParameters :

a.name = b.name ∧ a.type = b.type ∧ a.required = b.required

5. ∀ OutputParameter b ∈ O2.OutputParameters

∃! OutputParameter a ∈ O1.OutputParameters :

b.name = a.name ∧ b.type = a.type ∧ b.required = a.required

◦

3.1.2 Exact matching examples

Suppose that our TOSCA cloud application requires a node whose type is

the one in Figure 3.2. What we want to do is to check whether existing

Figure 3.2: TOSCA DBMSNodeType example.

ServiceTemplate elements can be used as substitute for NodeTemplate

elements of the speci�ed NodeType. In the following paragraphs we will

show two examples of existing ServiceTemplate to be matched2: the �rst

2For the sake of simplicity, we will consider ServiceTemplate elements not exposing

any kind of Policy.
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one will be fully compatible with the desired NodeType; the second one

will not.

Suppose that the ServiceTemplate ST in Figure 3.3 is available and

suppose that its Interface elements contains the same operations of the

ones in the DBMSNodeType. It is clear that the following condition is

Figure 3.3: TOSCA ServiceTemplate exact matching example.

true:

ST ≡ DBMSNodeType.

Let us now modify the previous ServiceTemplate ST by exposing

just another property of the nested nodes (Figure 3.4). Because of the

introduction of the new Property in ST ′ the exact matching condition

becomes false. Nevertheless, it is clear that the ServiceTemplate under
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Figure 3.4: TOSCA ServiceTemplate exact matching example (modi�ed).
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consideration (with some simply adaptation) can be used as a substitute

for the DBMSNodeType.

The problem stays in the too much strict matching condition given

in De�nition 3.1. So, we need to be more �exible (by relaxing some of

the constraints).

3.2 Plug-in matching

In the previous section we have provided a notion of full compatibility

between NodeType and ServiceTemplate elements. Then, that notion

has been applied to some examples. In the last one of these we have

observed that, despite the ServiceTemplate element under consideration

could be simply adapted to be compatible with the NodeType we want

to match, the De�nition 3.1 cannot be used. As previously reported, the

problem stays in the too much strict conditions provided by the de�nition

considered.

In this section we will relax some of the De�nition 3.1 boundaries in

order to obtain a formal de�nition of plug-in matching.

3.2.1 De�nition of plug-in matching

The objective of this section is to de�ne an operator "⊆" analogue to the
"≡" introduced in Section 3.1: it takes a pair 〈NodeType,ServiceTemplate〉
and returns a truth value (which is true if the NodeType and ServiceTem-

plate are in plug-in matching, false otherwise).

To better understand how this operator works, we have to clarify

what plug-in matching means. Consider the NodeType N and the Ser-

viceTemplate ST . Intuitively speaking, we say that N ⊆ ST if:

• ST 's policies are applicable to N ,
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• N exposes more requirements than ST , and

• N o�er less capabilities, properties and operations than ST .

If this is the case, then we can easily adapt ST (without looking inside

of it) in order to obtain a ServiceTemplate ST ′ such that N ≡ ST ′.

Observation 3.1. Please note that if N ≡ ST then there is no need of

adaptation on ST to obtain the exact matching condition. This means

that

N ≡ ST =⇒ N ⊆ ST .

Now we have all the fundamentals needed to proceed de�ning formally

what plug-in matching means.

De�nition 3.9. A NodeType N plug-in matches a ServiceTemplate ST

(N ⊆ ST ) if and only if:

N .RequirementDe�nitions ⊆R ST .Requirements ∧

N .CapabilityDe�nitions ⊆C ST .Capabilities ∧

PolicyType applicable to N ≡PO ST .Policies ∧

N .PropertiesDe�nition ⊆PR ST .Properties ∧

N .Interfaces ⊆I ST .Interfaces

◦

As before, to better understand what the above de�nition means, we

have to focus on each of the given conditions3.

3Please note that, since a NodeType N elements cannot expose policies, we still

have to check whether ServiceTemplate's policies are applicable to N (as it was in

De�nition 3.1).
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Plug-in matching of requirements

A ServiceTemplate ST can be used as a substitute for NodeType N if it

exposes less requirements than N . In other words, if ST ⊆ N then the

set of ST requirements is a subset of the set of N requirements.

Looking at TOSCA speci�cation [25] we observe that

• the semantics of the requirement only depends on its type. It fol-

lows that during requirements matching there is no need to consider

the name attribute;

• a RequirementType can inherit semantics from another Require-

mentType by means of the DerivedFrom element. This force us to

consider inheritance during our matching.

Observe that, if a RequirementType RT is derived from a Require-

mentType RT ′ then RT extends the semantics of RT ′ (e.g. the

WebServerRequirementType can be extended with the ApacheWeb-

ServerRequirementType; the former only requires a web server to

be satis�ed; the latter requires a web server with Apache software

to be satis�ed). It follows that, if we want to substitute the Node-

Type N with the ServiceTemplate ST , then the requirement types

of ST must be the same or super-types of the one of N .

So, before giving the desired formal condition, we have to de�ne an op-

erator to indicate that a TOSCA element is derived from another one.

De�nition 3.10. The in�x operator ` takes a pair of TOSCA elements

T1 and T2 and returns a truth value according to the following rules:

• T1 ` T2 = true, if T1.DerivedFrom contains a reference to T2;

• T1 ` T2 = true, if T1.DerivedFrom contains a reference to a TOSCA

element T3 such that T3 ` T2;
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• T1 ` T2 = false, otherwise.

◦

De�nition 3.11. Let N be a NodeType and ST be a ServiceTemplate.

We say that

N .RequirementDe�nitions ⊆R ST .Requirements

if and only if:

∀ Requirement y ∈ ST .Requirements

∃ RequirementDe�nition x ∈ N .RequirementDe�nitions :

x.ref.type = y.requirementType ∨

x.requirementType ` y.ref.type.

◦

Plug-in matching of capabilities

As before, the high correlation between capabilities and requirements

TOSCA syntax lets us do the same reasoning and taking the same con-

clusions. There is only one di�erence between the two cases: this time

we talk about what ST o�ers (and not what it requires). So, this time

the inclusion relationship is between the set of N capabilities and the set

of ST capabilities. Formally:

De�nition 3.12. Let N be a NodeType and ST be a ServiceTemplate.

We say that

N .CapabilityDe�nitions ⊆C ST .Capabilities

if and only if:
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∀ CapabilityDe�nition x ∈ N .CapabilityDe�nitions

∃ Capability y ∈ ST .Capabilities :

y.ref.type = x.requirementType ∨

y.ref.type ` x.requirementType.

◦

Plug-in matching of properties

Talking about exact matching, we sad that the properties XML type of

NodeType N and ServiceTemplate ST must be the same. Observe that

this a too strict condition: we only need that ST o�ers at least the same

properties as N . Indeed, if ST o�ers more properties than N , we can

hide the exceeding ones (in order to obtain the exact matching).

De�nition 3.13. Let N be a NodeType and ST be a ServiceTemplate.

We say that

N .PropertiesDe�nition ⊆PR ST .Properties

if and only if the XML type of ST .Properties extends the one de�ned via

N .PropertiesDe�nition.

◦

Plug-in matching of interfaces

In the exact matching reasoning, we want that the ServiceTemplate ST

o�ers the same interfaces as NodeType N . This is a too coarse grain

reasoning: we only need that for each operation O exposed by N exists

at least one of the ST operations which is equal to O. If this is the case,

then we can group operations in order to obtain the desired interfaces.
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This �ner grain reasoning let us give the formal interfaces plug-in

matching condition.

De�nition 3.14. Let N be a NodeType and ST be a ServiceTemplate.

We say that

N .Interfaces ⊆I ST .Interfaces

if and only if:

∀ Operation x ∈ N .Interfaces.Interface,

∃ Operation y ∈ ST .Interfaces.Interface:

x ≡O y

◦

Observation 3.2. Please note that the operation exposed by N and the

one exposed by ST sill must be in a exact match (≡O) relationship.

3.2.2 Adaptation: the oblivion boundaries approach

In the previous section we have seen a plug-in manner to check whether

a ServiceTemplate can be a substitute for a NodeType. It is worth not-

ing that such a �exibility requires the introduction of a kind of service

adaptation to let the ServiceTemplate be used in place of the NodeType.

Remember that we are facing the problem with a black-box approach.

So, we cannot modify the ServiceTemplate internally: we can only oper-

ate out of its boundaries. To show how this external adaptation is done,

we will start looking at what the NodeType o�ers (CapabilityDe�nitions,

PropertiesDe�nition and Interfaces). Once the o�erings adaptation is
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done we will consider also the adaptation of what the NodeType needs

(RequirementDe�nitions)4.

Capabilities, properties and interfaces adaptation

The idea of plug-in matching is to check whether a ServiceTemplate ST

o�ers at least the same capabilities, properties and operations as the

NodeType N we need to substitute. If this is the case, the next step is to

restrict the set of TOSCA elements o�ered by ST to only those o�ered

by N .

The desired adaptation can be done by constructing a new Ser-

viceTemplate ST ′ via the oblivion boundaries approach (Figure 3.5). The

Figure 3.5: Oblivion boundaries adaptation approach.

new service TopologyTemplate will be (by now) composed by only one

4Since we still check whether policies are exactly matched, we do not need to adapt

them.
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node: the ServiceTemplate ST we want to adapt. Once the topology is

de�ned, we have to decide what to o�er externally (via the Boundary-

De�nitions element):

• ST ′ will expose only the properties de�ned inN .PropertiesDe�nition

element;

• the set of capabilities exposed by ST ′ will be the subset of ST capa-

bilities in plug-in matching with the ones of N . Because of possible

name mismatchings, the capabilities are renamed (if needed) in

order to be the same as the ones exposed by N ;

• for each interface of N , the required operations are detected and

grouped to form the relative interface of ST ′.

Full adaptation

Let us also consider requirements in our adaptation procedure. Remem-

ber that a ServiceTemplate ST is compatible with a NodeType N only if

the latter exposes more requirements than the former. This clearly means

that this time we cannot restrict what ST exposes to what N . Indeed,

we have to transform ST in ST ′ making such a kind of requirements

addition. How can this be done?

In the previous paragraph, while we were talking about the oblivion

boundaries adaptation approach (without requirements adaptation con-

sideration), we said that we have to create a new service ST ′ in which ST

is the only NodeTemplate. To compensate missing requirements we can

introduce another node in our topology: the echo node (see Figure 3.6).

This node has no functional meaning: its only purpose is to replicate5

ST requirements and add missing requirements. With the echo node,

our new service ST ′ can expose all the requirements declared by N . This

let us say ST ′ ≡ N and then ST ′ can be a candidate for N substitution.

5This replication justi�es the name echo.
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Figure 3.6: Echo node usage in the oblivion boundaries adaptation ap-

proach.
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Concluding remark

Before concluding the discussion of the oblivion boundaries approach, we

have to make some important practical observation.

Because of our adaptation approach only requires to restrict the avail-

able service boundaries and (eventually) add some new requirements, one

could think of simplifying the ST boundaries so as to make them equal

to those desired. Is it a right approach? Let us think about what to

transform the ST speci�cation in the ST ′ one implies. If we change that

speci�cation, then we have to develop a new cloud service application

(which is clearly an extremely expensive approach). So, it is important

to maintain the ST ′ speci�cation as an adaptation of ST since this is a

valuable information for deploying the needed adaptation.

Consider now the situation in which N is a NodeType required by

a client and ST is a ServiceTemplate o�ered by a provider. Once ST ′

speci�cation has been de�ned, the client and the provider could behave

as follows:

1. the client still interacts with ST without considering the oversup-

plied features. If this is the case, no adaptation is implemented

(and the provider believes that the client does not use what she

has not required);

2. the client interacts with a cloud service application implementing

ST ′ (o�ered by the provider). Typically, this application is ob-

tained by generating an adaptor for the available application im-

plementing ST .

3.2.3 Plug-in matching (and adaptation) examples

Let us reconsider the matching example of Figure 3.4. With the too

strict exact matching conditions the compatibility checking fails. Our
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new plug-in matching (and oblivion boundaries adaptation) approach

instead makes that checking be satis�ed.

A more complete example of plug-in matching can be done with the

situation in Figure 3.7. In this case we want to match an available Ser-

viceTemplate ST with a NodeType N . The NodeType under considera-

tion has the following characteristics:

• it o�ers less properties and interfaces6 than ST ;

• it o�ers the same capabilities as ST ;

• it needs a requirement (ApacheApplicationContainerRequirement)

which type is derived from the one of the requirement exposed by

ST (ApplicationContainerRequirement).

With this con�guration we can easily verify the truth of the following

condition:

N .CapabilityDe�nitions ≡C ST .Capabilities ∧

N .RequirementDe�nitions ⊆R ST .Requirements ∧

N .PropertiesDe�nition ⊆PR ST .Properties ∧

N .Interfaces ⊆I ST .Interfaces.

In other words, we can easily check that ST ⊆ N . This means that we

can adapt the service ST in order to obtain a service ST ′ which exact

matches N (see Figure 3.8).

Let us now modify the ServiceTemplate of Figure 3.7.(b) as reported

in Figure 3.9. Suppose that:

• the GetStatistics interface of N (see Figure 3.7.(a)) contains the

only Get operation;

6For the sake of simplicity, we are assuming that Interface elements with the same

name are o�ering the same Operation elements.
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(a)

(b)

Figure 3.7: TOSCA ServiceTemplate plug-in matching example.
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Figure 3.8: TOSCA ServiceTemplate oblivion boundaries adaptation ex-

ample.
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Figure 3.9: TOSCA ServiceTemplate plug-in matching example (modi-

�ed).
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• the GetStatisticalData interface of ST contains the only GetData

operation (which is semantically equivalent7 to Get).

Clearly, with the ⊆ operator, N cannot be considered compatible with

ST . So, despite the two operation are semantically equivalent, the com-

patibility check fails.

How can we deal with this problem? So far we have worked at a

syntactic level. Introducing such a kind of semantics will let us overcome

problems such as the one previously indicated.

3.3 Flexible matching

With the examples given in Section 3.2 we have shown how the purely

syntactical matching (de�ned by the operator "⊆") could not be enough

to check whether a NodeType element can be substituted by a Ser-

viceTemplate element.

The objective of this section is to overcome the exposed problem using

some kind of semantic checking. Please note that, since:

• NodeType elements cannot specify any kind of policy, and

• requirements (capabilities) semantics is speci�ed8 via their Require-

mentType (CapabilityType),

the semantic check only a�ects properties and interface operations.

7With semantically equivalent we mean that it requires the same input parameters

and produces the same output parameters.
8As TOSCA [25] authors says.
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3.3.1 De�nition of �exible matching

What we are now going to do is to de�ne a new operator "∼=" analogue to
"⊆" and "≡" previously introduced: it takes a pair 〈NodeType,Service-
Template〉 and returns a truth value (which is true if the two input

elements are in �exible matching, false otherwise).

Understanding how the new operator works requires to clarify what

�exible matching means. Consider the NodeType N and the ServiceTem-

plate ST ; we say that N ∼= ST if the plug-in matching fails only because

of the presence of operations and/or properties which are syntactically

di�erent but semantically equivalent. So, formally, we only have to mod-

ify the "⊆" conditions about interfaces and properties.

De�nition 3.15. A NodeType N �exibly matches a ServiceTemplate ST

(N ∼= ST ) if and only if:

N .RequirementDe�nitions ⊆R ST .Requirements ∧

N .CapabilityDe�nitions ⊆C ST .Capabilities ∧

PolicyType applicable to N ≡PO ST .Policies ∧

N .PropertiesDe�nition ∼=PR ST .Properties ∧

N .Interfaces ∼=I ST .Interfaces

◦

Observation 3.3. Please note that, if two properties (or interfaces) are

syntactically (and semantically) equivalent, then they are both plug-in

and �exibly matched. This intuitively means that the following property

holds:

N ⊆ ST =⇒ N ∼= ST .

Let us clarify what the new properties and interfaces matching con-

ditions means.
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Required assumptions

Before giving the desired �exible matching conditions, we have to intro-

duce some concerns about semantics.

In the following, we will use ontologies to associate semantic meaning

to TOSCA elements under consideration. This force us to make the

following assumption.

Assumption 3.2. All cloud service applications are equipped with on-

tologies (which associate semantic meaning to all TOSCA element names

used in their de�nitions).

This let us assume that the NodeType and the ServiceTemplate we

want to match have semantics associated to their names. So, we can

proceed in checking whether their elements' semantic meaning is the

same. But, how can we perform such a checking?

Assumption 3.3. Suppose that a cross-ontology matchmaker COM is

available. This matchmaker let us verify whether two di�erent ontologies

concepts have equivalent semantic meanings.

In the following we will use the notation Ca `a Cb to indicate the

semantic checking (done by COM) between di�erent ontologies concepts

Ca and Cb, where Ca `a Cb if and only if they are semantically equivalent.

Flexible matching of properties

The De�nition 3.13 says that N .PropertiesDe�nition plug-in matches

ST .Properties if and only if the XML type of the latter extends the

one of the former. In other words, each property PN de�ned in the

N .PropertiesDe�nition element must correspond to a property PST of

the ServiceTemplate such that:

• PST .type is (the same as or) a sub-type of PN .type, and
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• PST .name is equal to PN .name.

If the �rst condition is not satis�ed, then there are no chances to adapt

the ServiceTemplate ST to make it be compatible with N . Vice versa,

if two properties do not have the same name, then we can check if they

are semantically equivalent.

De�nition 3.16. Let N be a NodeType and ST be a ServiceTemplate.

We say that

N .PropertiesDe�nition ∼=PR ST .Properties

if and only if

∀ propertyDe�nition x ∈ N.PropertiesDe�nition,

∃ property y ∈ ST.Properties :

the XML type of y extends the one de�ned by x ∧

y.name `a x.name

◦

Flexible matching of interfaces

Let us now consider the operations (and interfaces) �exible matching

problem. What we want to do is to let an operation O1 be substituted

by another operation O2 which can be considered semantically equivalent.

This semantic equivalence can be explained as follows:

• the O1 input (output) parameters number is the same as the one

of O2;

• for each O1 input (output) parameter exists a O2 input (output)

parameter of the same type which name is semantically equivalent

to the one of O1;
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De�nition 3.17. Consider two Operation elements O1 and O2. We say

that

O1
∼=O O2

if and only if the following conditions are satis�ed:

1. |{O1.InputParameters}| = |{O2.InputParameters}|

2. ∀ InputParameter bin ∈ O2.InputParameters

∃ InputParameter ain ∈ O1.InputParameters :

ain.name `a bin.name ∧ ain.type ` bin.type

3. |{O1.OutputParameters}| = |{O2.OutputParameters}|

4. ∀ OutputParameter aout ∈ O1.OutputParameters

∃ OutputParameter bout ∈ O2.OutputParameters :

bout.name `a aout.name ∧ bout.type ` aout.type

◦

So, we have all the fundamentals needed to de�ne the �exible match-

ing condition between NodeType and ServiceTemplate interfaces.

De�nition 3.18. Let N be a NodeType and ST be a ServiceTemplate.

We say that

N .Interfaces ∼=I ST .Interfaces

if and only if:

∀ Operation x ∈ N .Interfaces.Interface

∃ Operation y ∈ ST .Interfaces.Interface:

x ∼=O y

◦
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Concluding remark

Note that (by using the "`a" notation) we abstract from how the se-

mantic checking is done. To do it we can use one of the already available

cross-ontology matchmakers. In other words, according to the purpose of

this thesis, in the following we will not consider the problem of realizing a

cross-ontology matchmaker but we will consider the usage of one already

available (such as the one proposed by Martinez-Gil et al. [20]).

3.3.2 Adaptation: extended oblivion boundaries ap-

proach

In the previous subsection we have seen how it is possible to use onto-

logical semantics in order to obtain the �exible matching. What we have

done is simply modify the properties and interfaces plug-in matching

(done by the "⊆" operator) introducing the semantic checking. Simi-

larly, modifying properties and interfaces adaptation, we can reuse the

oblivion boundaries adaptation approach.

Observe that the only (but fundamental) checking modi�cation is

in the possibility for properties and operations to have di�erent names.

So, simply introducing the ServiceTemplate properties and operation re-

naming (in order to match what the NodeType exposes), the oblivion

boundaries can be reused.

3.3.3 Flexible matching (and adaptation) examples

Reconsider the failed example of Section 3.2 (Figure 3.9). With the plug-

in matching (and adaptation) approach our checking fails because of the

presence of operations which names are di�erent. Assume that:

• the operations Get and GetData do not have any input parameter,
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and

• Get and GetData expose the same number of output parameters

(and those parameters name are semantically equivalent).

Under the above assumptions the condition

Get ∼=O GetData

is true. This means that we can easily verify that N ∼= ST . So, we can

adapt the ServiceTemplate ST in order to match N with the (extended)

oblivion boundaries approach.

3.4 Concluding remarks

In this chapter we have seen three di�erent ways to black-box match

a NodeType N with a ServiceTemplate ST . Before going on with our

discussion, we have to make some observations.

3.4.1 Matching and adaptation

As reported in Figure 3.10, the proposed black-box matching (and adap-

tation) approach can be fully automated in order to generate the adapted

ST ′ ServiceTemplate. In other words, we can:

• check whether (and how) the two TOSCA elements under consid-

eration match, and

• (possibly) generate the desired ST adaptation.

Looking at Figure 3.10, we observe that, if one of the proposed black-box

matching conditions is satis�ed, then we can generate an adapted service
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Figure 3.10: Black-box matching (and adaptation) procedure.
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ST ′. This means that we always follow the approach of Figure 3.11:

instead of developing a new service, we use a (automatically generated)

adaptor A to interact with the available service ST as if it were the

desired ST ′.

Figure 3.11: Adaptation approach.

The above considerations suggest us a question: which kind of adap-

tation does A have to implement? To answer it we have to distinguish

the possible matching cases. Consider, as always, the ServiceTemplate

ST and the NodeType N .

Exact matching If N ≡ ST , then ST exposes exactly what N needs

(and so there is no need of adapting ST ). This means that, in

order to let ST ′ be the same service as ST , the generated adaptor

A must implement the identity function.

Plug-in matching If N ⊆ ST , then ST exhibits all the features needed

by N and some features that N does not need. If this is the case,

then we have to restrict what ST exposes to only what N needs.

In other words, the function that A has to implement is a �ltering

one.

Flexible matching The last matching case (N ∼= ST ) means that ST

exposes

• features that are equivalent to all those required by N (possi-

bly with di�erent names), and
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• some undesired features.

This implies that the adaptor A must implement a function which

�lters and (possibly) renames those features.

3.4.2 Taking semantics into account

When we talked about the �exible matching approach, we stated that on-

tologies should be used to check whether two features could be considered

(semantically) equivalent. So, the generated pairings between (semanti-

cally) equivalent features strictly depend on the given ontologies and on

the cross-ontology matchmaker. It follows that, if the input ontologies

are not so accurate as required, then some generated pairings could not

be signi�cant and should not be used in our matching (and adaptation).

How can we deal with this problem?

Looking at Figure 3.11 we can observe that when the considered Node-

Type N and ServiceTemplate ST are in �exible matching, we have to

prompt to the user the generated pairings. If she accepts the match-

maker decisions, then we can proceed in developing the adapted service

ST ′ (via the oblivion boundaries adaptation approach).

Please note that the way in which this prompting is performed strictly

depends on the matchmaker implementation. We recommend to start

giving the most probable pairings and to let the user mark and/or adjust

the wrong pairings.

3.4.3 Treatment of mismatchings

We are studying the matching problem between a NodeType N and a

ServiceTemplate ST . So far, we have introduced a methodology to check

whether those two TOSCA elements are in (one of the possible) black-box

matching. Clearly, there are cases in which N and ST do not black-box
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match. So, what can we do when none of the exposed conditions is

satis�ed? We will see how to proceed in the following chapter.
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NodeType white-box matching

(and adaptation)

The previous chapter has provided an (automatable) approach which let

us check whether a NodeType N matches a ServiceTemplate ST (without

looking "inside" ST ). In this chapter we are going to see whether, using

a white-box viewpoint, we can extend our matching procedure.

The chapter will start illustrating some examples which make the

black-box matching procedures fail (Section 4.1). Then, it will proceed

providing the white-box matching (and adaptation) approach (Sections

4.2 and 4.3). Finally, with Section 4.4, some concluding remarks are

given.

4.1 Motivating example

Let us consider the ServiceTemplate ST in Figure 4.1. Suppose now

we want to match it with the NodeType elements in Figure 4.2. Us-

ing the black-box matching conditions our checking fails because both

WAppType1 and WAppType2 expose more TOSCA elements than ST .
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Figure 4.1: Example of available ServiceTemplate.

(a)

(b)

Figure 4.2: Example of desired NodeType elements.
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Let us now try to use a white-box approach. Looking inside ST we

can easily check that:

• the WAppType2 NodeType element cannot be matched with ST

(because of the lack of Developer property presence);

• ST contains the Name (equivalent) property and the Deployment

operation required by WAppType1. More precisely, the Deploy-

ment operation can be obtained by generating a plan which com-

bines available operations.

So, if we could �nd the missing features inside the available ServiceTem-

plate, then we could extract them in order to make our service black-box

match the desired NodeType.

4.2 White-box matching (and adaptation)

Please reconsider Figure 3.10. Looking at the "no matching" case, we

observe that our matching procedure could provide us the set of un-

matched features (more precisely, those features could be given as a mul-

tiset which contains the UnmatchedRequirementSet, the UnmatchedCapa-

bilitySet, the UnmatchedOperationSet and the UnmatchedPropertySet).

As observed in the previous section, we should �nd a way to exhibit

all the unmatched required features via the boundaries of the available

ServiceTemplate (if possible). This means that for each unmatched fea-

ture under consideration we should perform two steps:

1. Matching - an equivalent feature (if present) must be detected

inside ST ;

2. Adaptation - the boundaries of ST must be modi�ed in order to

expose the desired feature.
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If this can be done, then we can reuse the black-box �exible matching

approach in order to obtain the desired adaptation of the available Ser-

viceTemplate.

Observation 4.1. Please note that (as done for �exible matching and

adaptation), we have to use some kind of semantics in order to couple

desired and available features. This means that we have to reconsider

the following (ontology-about) assumptions.

Assumption 4.1. All cloud service applications are equipped with on-

tologies (which associate semantic meaning to all TOSCA element names

used in their de�nitions).

Assumption 4.2. Suppose that a cross-ontology matcher COM is avail-

able. This matcher let us verify whether two di�erent ontologies concepts

have equivalent semantic meanings.

The above considerations give us an informal (though incomplete1)

way of matching in a white-box viewpoint. In the rest of this section we

will try to formalize this notion.

4.2.1 White-box matching condition

The objective of this subsection is to de�ne a new operator " ∼= " analogue

to those introduced for the black-box matching (Chapter 3). This new

operator takes a pair 〈NodeType,ServiceTemplate〉 and returns a truth

value. More precisely, it returns true if the two input elements are in

white-box matching, false otherwise.

As done before, we can de�ne the new operator meaning in a step-wise

way.

De�nition 4.1. A NodeType N white-box matches a ServiceTemplate

ST (N ∼= ST ) if and only if:

1As we will see, dealing with unmatched operations treatment is more complex

than simply searching (and exposing) the feature.
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N .RequirementDe�nitions ⊆R ST .Requirements ∧

N .CapabilityDe�nitions ∼=C ST .Capabilities ∧

PolicyType applicable to N ≡PO ST .Policies ∧

N .PropertiesDe�nition ∼=PR ST .Properties ∧

N .Interfaces ∼=I ST .Interfaces

◦

Observation 4.2. Please note that we still use the policies (black-box) ex-

act matching condition. As before, this is because we only have to check

whether the ServiceTemplate's policies are applicable to the considered

NodeType.

Matching of requirements

Consider the UnmatchedRequirementSet obtained when the black-box

matching procedures fail. How can we treat such set? It is worth pointing

that there is no need to search such requirements inside ST . In fact, if

the ServiceTemplate ST exposes less requirements than the NodeType N ,

then the requirement plug-in matching condition will be satis�ed. This

explains why, in De�nition 4.1, we still employ the

N .RequirementDe�nitions ⊆R ST .Requirements

condition.

Observation 4.3. As we will see, (since we employ the requirement plug-

in matching condition) the adaptation of the white-box matched Ser-

viceTemplate ST will generate a new ServiceTemplate ST ′′ such that

N ⊆ ST ′′.
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Matching of capabilities

Consider a ServiceTemplate ST and a NodeType N . To understand what

N .CapabilityDe�nitions ∼=C ST .Capabilities

means we have to think about when this kind of matching occurs. The

white-box approach will be used when the black-box �exible one fails.

This means that N exhibits some capabilities that are not visible in ST .

What can we do to overcome the above exposed problem? We have

to search inside ST the desired features. In particular, we have to look

at in-nested NodeTemplate elements. To do it we will use the notation

ST → NodeTemplate

to indicate that we are navigating2 the XML TOSCA De�nitions tree in

order to reach in-nested NodeTemplate elements.

De�nition 4.2. Let N be a NodeType and ST be a ServiceTemplate.

We say that

N .CapabilityDe�nitions ∼=C ST .Capabilities

if and only if:

∀ CapabilityDe�nition x ∈ N .CapabilityDe�nitions

(∃ Capability y ∈ ST .Capabilities :

y.ref.type = x.capabilityType ∨ y.ref.type ` x.capabilityType)

∨
(∃ Capability y ∈ ST → NodeTemplate.Capabilities :

y.ref.type = x.capabilityType ∨ y.ref.type ` x.capabilityType).

◦
2The "→" notation's meaning is analogue to that of the "//" (XPath [36]) operator

.
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Matching of properties

What we want to do now is to clarify the meaning of the following con-

dition:

N .PropertiesDe�nition ∼=PR ST .Properties

As before, we have to look inside ST to �nd the desired (unmatched)

properties. To understand which in-nested elements should be consid-

ered in properties white-box matching we have to answer to the follow-

ing question: by which kind of TOSCA elements could properties be

exhibited? The answer is: RelationshipTemplate and NodeTemplate.

De�nition 4.3. Let N be a NodeType and ST be a ServiceTemplate.

We say that

N .PropertiesDe�nition ∼=PR ST .Properties

if and only if:

∀ propertyDe�nition x ∈ N .PropertiesDe�nition

(∃ property y ∈ ST .Properties :

the XML type of y extends the one de�ned by x

∧
y.name `a x.name)

∨
(∃ property y ∈ ST → NodeTemplate.Properties :

the XML type of y extends the one de�ned by x

∧
y.name `a x.name)

∨
(∃ property y ∈ ST → RelationshipTemplate.Properties :

the XML type of y extends the one de�ned by x

78



Chapter 4. NodeType white-box matching (and adaptation)

∧
y.name `a x.name).

◦

Matching of interface operations

So far, to check whether a NodeType N white-box matches a ServiceTem-

plate ST , we only search for (black-box) missing features inside ST . If

we use the same approach to explain the meaning of:

N .Interfaces ∼=I ST .Interfaces,

then we do not consider its whole meaning; indeed, to overcome the miss-

ing interface operation problem, we should also check whether combining

(some of) the available operations is possible to obtain the desired one.

De�nition 4.4. Let N be a NodeType, ST be a ServiceTemplate and

OCST the set of all possible plans combining ST 's operations. We say

that

N .Interfaces ∼=I ST .Interfaces

if and only if:

∀ Operation x ∈ N .Interfaces.Interface

∃ Operation y ∈ ST .Interfaces.Interface:

x ∼=O y

∨
∃ Plan p ∈ OCST :

x ∼=O (Operation) p.

◦
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Observation 4.4. Please note that:

• Operation elements are compared by the black-box �exible match-

ing operator (∼=O). This is because we can look at those TOSCA

elements only from a black-box viewpoint (since they are always

shown in terms of their name and their input/output parameters);

• since the operator∼=O checks whether two operations expose equiva-

lent input/output parameters, it can be used also to check if an Op-

eration �exibly matches a Plan (provided that the latter is treated

as an Operation).

Concluding remark

Looking at the step-wise de�nition of the white-box matching operator

∼= we can intuitively derive the following implication. Let N be a Node-

Type and ST be a ServiceTemplate

N ∼= ST =⇒ N ∼= ST .

This is because the white-box matching de�nition looks for feature both

on ST .BoundaryDe�nitions and inside ST . So, if all required (equiva-

lent) features are on the boundaries of ST , then both �exible and white-

box matching condition are satis�ed.

4.2.2 Adaptation

In the previous subsection we have introduced a way to white-box match

a NodeType N and a ServiceTemplate ST . Clearly, if ST ∼= N , this

does not mean that the former can be (immediately) used as a substitute

for the latter. Indeed, we have to adapt ST in order to be used in place

of N .
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Adaptation of capabilities and properties

If we omit interface operations from consideration, then the adaptation

process simply consist in modifying the ST boundaries in order to exhibit

those features that cannot be seen from a black-box viewpoint.

Adaptation of interface operations

The above adaptation approach is not enough if used to exhibit missing

operations. This is because, despite it can be used to exhibit operations

simply hidden inside ST , it cannot solve the problem of operations taken

from OCST (viz., the set of all possible plans combining ST 's operations).

Indeed, to solve the latter problem we have to:

1. look at (all) possible plans combining ST 's operations and check

whether some of them �exibly match the unavailable operations;

2. if this is the case, store those plans inside ST and modify its bound-

aries in order to exhibit those plans as available operations.

Full adaptation

Once the white-box matching is done and the available ServiceTemplate

(ST ) boundaries have been modi�ed, we can look at ST as a (new)

ServiceTemplate ST ′′. Since the objective of white-box matching is to

modify ST in order to black-box match NodeType N , the condition

ST ′′ ∼= N

holds. It follows that we can simply reuse the (extended) oblivion bound-

aries adaptation approach in order to let ST ′′ be included in the adapted

service ST ′ (which is the one with the client interacts).
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Concluding remark

So far we have implicitly assumed to have OCST (the set of all possible

plans combining ST 's operations) to be somehow available.

In the following section we will focus on how to:

• generate (all) possible plans combining ST 's operations, and

• check whether some of them �exibly match the missing operations.

4.3 Generating plans

In this section we will provide a solution that overcomes the plan genera-

tion problem. This solution will follows the two steps approach proposed

in [5] by Brogi et al.

Functional dependency synthesis We know that each operation is

equipped with functional information (i.e., its input and output

parameters). This functional information de�nes functional depen-

dencies within and among operations. Hence, we need to represent

the relationships which state "which set of input parameters an

operation requires in order to produce a set of output parameters"

(intra-operation dependencies), as well as "which set of output pa-

rameters produced by an operation is required as input by another

one" (inter-operation dependencies).

Furthermore, in both Sections 3.3 and 4.2, we made our check-

ing using some kind of semantics3. Hence, it is also necessary to

represent those relationships that state "which parameters are se-

mantically equivalent".

3We used ontologies to describe (and compare) concepts by which our features are

annotated.
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So, we have to collect all those dependencies into a suitable data

structure. As we will see (Subsection 4.3.1), the �rst step builds

a dependency hypergraph, whose nodes represent functional at-

tributes of operations (i.e., their input/output parameters), and

whose hyperedges represent relationships among them.

Operation sequence detection Once the dependency hypergraph is

built, we can proceed with the second step. Given a missing oper-

ation O, we can explore the hypergraph to detect which operation

sequence:

• takes as input O's input parameters, and

• produces as output its output parameters.

More precisely, the parameters taken as input and produced as out-

put by the detected sequence are semantically equivalent to those

of O.

4.3.1 Functional dependency synthesis

Before describing the dependency hypergraph and how to build it, we

include hereafter the de�nitions of hypergraph, directed hypergraph and

directed hyperedge (as described in [15]).

De�nition 4.5. A hypergraph is a pair H = 〈V,E〉, where

• V = {v1, v2, ..., vn} is a set of vertices (or nodes), and

• E = {E1, E2, ..., Em}, with Ei ⊆ V for i = 1, ...,m, is a set of

hyperedges.

Note that when |Ei| = 2, i = 1, ...,m, the hypergraph is a standard

graph.

◦
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De�nition 4.6. A directed hypergraph is a hypergraph with directed

hyperedges. A directed hyperedge is an ordered pair, E = 〈X, Y 〉, of
(possibly empty) subsets of vertices. X is the tail of E, denoted by

T (E), while Y is its head, denoted by H(E).

◦

Figure 4.3 is illustrates an example of directed hyperedge with tail

{x1, x2} and head {y1, y2, y3, y4}.

Figure 4.3: A directed hyperedge.

The dependency hypergraph

A hypergraph is a suitable notation to represent parameters (as nodes)

and dependencies among them (as hyperedges). As mentioned earlier,

we have to distinguish between intra-operation and inter-operation de-

pendencies.

De�nition 4.7. A labelled directed hypergraph (E, V, l) is a directed hy-

pergraph 〈E, V 〉 with a labelling function l : E → A assigning to each

hyperedge a label from a given alphabet A.
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A labelled directed hyperedge is denoted by a triple E = 〈X, Y, a〉,
where X, Y , a denote the tail, the head and the label of E, respectively.

◦

The hyperedge labelling availability let us obtain the desired discrim-

ination.

Intra-operation dependency Let O be an Operation. The output pa-

rameters of O intra-operation depend on its input parameters. It

follows that there must exists a (Eintra) hyperedge from O.Input-

Parameters to O.OutputParameter labelled with O:

〈O.InputParameters, O.OutputParameters, O〉 ∈ Eintra.

Inter-operation dependency To understand this kind of dependency

we have to look at parameter semantics. Let p1 be an output

parameter of an operation O1 and p2 be an input parameter of

an operation O2. It is worth noting that, if p1.name is a sub-

concept of p2.name (and, obviously, p1.type is - the same type a or

- a subtype of p2.type), then the output parameter p1 can be used

as input to operation O2. The same substitution can be done if

those parameter names are semantically equivalent.

Let us consider (separately) the above stated situations:

• let p be a parameter and let OS be the set of parameters

whose names are (direct) sub-concept of p.name and whose

types are the same type as or a subtype of p.type. Then there

must exist a (Esub) hyperedge from OS to p:

〈OS, {p}, nil〉 ∈ Esub

• let p1 and p2 be two (type-compatible) parameters whose names

are semantically equivalent. Since we are working on the same
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cloud service application, we can state that the problem of

checking whether two operation names are semantically equiv-

alent is not a cross-ontology one. It follows that, if two pa-

rameters have names which are semantically equivalent, then

they will expose the same name. In other words, they will

correspond to the same node in our hypergraph. So, there is

no need of putting an hyperedge between them.

Before continuing our discussion, we have to clarify the sub-concept

of relationship. With respect to the hierarchical structure of an

ontology, c is a (direct) sub-concept of d if c is a child of d. So, Esub

hyperedges will (only) be between (type-compatible) parameters

which are in this kind of relationship.

Please note that if c is a (direct) sub-concept of e and e is a (direct)

sub-concept of d, then also c is a sub-concept of d. So, we have to

extend our sub-concept notion in terms of the dependency hyper-

graph. Namely, c is a sub-concept of d if and only if there exist a

path from c to d which consists of sub-concept relationships (i.e.,

it goes through Esub hyperedges).

Dependency hypergraph construction

We have seen what dependency hypergraph means. The next question is

how to build a dependency hypergraph.

The answer stays in the more obvious solution. Starting from the

empty hypergraph H = 〈V,E, l〉 (with V = ∅ and E = ∅), we have to
proceed for each operation O as follows:

1. for each input parameter in ∈ O.InputParameters, if in 6∈ V then

(a) add in to V ;

(b) modify E in order to make in point to the type-compatible
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parameter p (if present) such that in.name is a (direct) sub-

concept of p.name;

(c) let S ⊆ V be the set of type-compatible parameters whose

names are (direct) sub-concept of in.name. Add the

〈S, {in}, nil〉 ∈ Esub

hyperedge to E.

2. for each output parameter out ∈ O.OutputParameters, if out 6∈ V

then proceed as for input parameters.

3. add to E the hyperedge

〈O.InputParameters , O.OutputParameters , O〉 ∈ Eintra.

Please note that there is no need to consider Plans (as operations) in

this procedure. This is because Plans are in turn operation sequences.

So, they will be generated again with the operation sequence detection

phase4.

Practical considerations about complexity

While building a dependency hypergraph has exponential complexity (all

pairs of operation must be composed), since the set of service components

available operations is a static one, this procedure is executed only once.

So, the high complexity could be paid only at the start of our (white-box)

matching procedure.

Furthermore, a clever service provider could think about storing each

ServiceTemplate along with its own dependency hypergraph. If this is

the case, the matching cost will be signi�cantly reduced because the

4Furthermore, if present, plans are exhibited out of service boundaries (as available

operations). So, since they were matched from a black-box viewpoint, there is no need

to search them from a white-box one.
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hypergraph will be already available (and it won't be required to build

it).

Last (but not least), the above consideration suggest us to have the

dependency hypergraph somewhere available when we are going to start

the operation sequence detection phase. So, in the following subsection

we will explain how to perform that phase assuming the dependency

hypergraph availability (as input).

4.3.2 Operation sequence detection

We are facing the problem of white-box matching between a NodeType

N and a ServiceTemplate ST . More precisely, we are checking whether a

N 'sOperation O can be substituted by a sequence of operations inside ST

(since none of the available exposed operations �exibly matches with O).

So, we have to search in the (available) dependency hypergraph for a func-

tionally equivalent operation sequence. Before formalizing this equiva-

lence notion, we will introduce a sub-concept (and type-compatibility)

operator to increase readability.

De�nition 4.8. Let a and b be two Operation parameters. We will say

that a is (type-compatible with and) sub-concept of b (aC b) if and only

if

a.type is (the same as or) a sub-type of b.type ∧

a.name is a sub-concept of b.name.

◦

De�nition 4.9. Let O be an Operation and OS be a set of Operation

elements. Then O is functionally equivalent to OS (O ⇐ OS) if and

only if
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∀out ∈ O.OutputParameters

∃x ∈
⋃

op∈OS

op.OutputParameters :

x = out ∨ xC out

∧
∀in ∈

⋃
op∈OS

op.InputParameters

∃x ∈ ((
⋃

o∈OS

o.OutputParameters) ∪O.InputParameters):

x = in ∨ xC in

◦

Namely, we say that a set OS of Operation elements is functionally

equivalent to an Operation O if and only if:

• for each O's output parameter out there is a (type-compatible)

output parameter x which is produced by some service in OS and

whose name is (equivalent to or) a sub-concept of out.name, and

• for each Operation in OS, its input parameter names (are equiv-

alent to or) subsume the names of (type-compatible) parameters

that are given in input to O or that are produced as output by

some service in OS.

Before describing how to determine the set(s) OS we have to make

an observation. Why are we talking about sets (and not sequences) of

Operation elements? This is because the solution we are going to intro-

duce will discover all the possible (minimal) sets of Operation elements

which satisfy the functional equivalence condition. Once those sets are

available, obtaining the desired sequence is immediate. Indeed, we only

have to start from O's input parameters and add each Operation in OS

following the hyperedges of the dependency hypergraph.
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So, in the following paragraphs we will show how to discover the

minimal sets of Operation elements5.

Discovering sets of Operation elements

As one may expect, the set discovering consists of a visit of the de-

pendency hypergraph. More precisely, OperationSetsDiscovering

(Figure 4.4) visits the dependency hypergraph starting from those ver-

tices corresponding to the parameters (equivalent6 to those) outputted by

O, and it goes on by exploring backwards the hyperedges until reaching

(if possible) the input parameters that O requires. As we will see, Oper-

ationSetsDiscovering detects all the minimal sets OS of Operation

elements such that O ⇐ OS.

OperationSetsDiscovering requires �ve input parameters: the

dependency hypergraph H, the Operation to "discover" O, the set com-

position of the operations selected so far (initially empty), the set of the

needed output parameters to be generated (initially the O's outputs),

and the set of the available output parameters (initially O's inputs).

If no more output parameters need to be generated (needed = ∅), Op-
erationSetsDiscovering stores the set composition (such that O ⇐
composition) and the algorithm is stopped (lines 1-4).

Otherwise, the algorithm employs Extract7 to (non-deterministical-

5The algorithm and the relative results are an adaptation (to our problem) of those

proposed by Cor�ni [11].
6Please note that, since the Operation O comes from a di�erent environment, there

could be some mismatchings between the relative ontologies. For the sake of simplicity

(and since - according to Assumptions 3.2 and 3.3 - we can check equivalent concepts

before starting OperationSetsDiscovering), in the following we do not consider

the cross-ontology problem.
7It is worth noting that Extract implementation strictly depends on the way in

which the set needed is implemented. So, for the sake of simplicity, we assume the

availability of that procedure.
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Require: dependency hypergraph H, Operation O, set composition, set

needed, set available

1: if needed = ∅ then

2: store composition;

3: exit;

4: end if

5: out = Extract(needed);

6: Ops = {o | ∃c ∈ o.OutputParameters : c = out ∨ cC out)};
7: if Ops = ∅ then

8: fail;

9: end if

10: for all Operation op ∈ Ops do

11: composition' = composition ∪ {op};
12: for all Operation p ∈ composition do

13: R = composition'\{p};
14: if @x ∈ p.OutputParameters:

∃o ∈ O.OutputParameters :

(xC o ∧ @z ∈
⋃
r∈R

r.OutputParameters: z C o)

∨
∃i ∈

⋃
r∈R

r.InputParameters :

(xC i ∧ @z ∈
⋃
r∈R

r.OutputParameters∪O.InputParameters :

z C i)) then

15: fail

16: end if

17: end for

18: available' = available ∪op.OutputParameters;

19: needed' = {x | x ∈ (needed ∪ {y | y ∈ op.InputParameters

∧ @z ∈ O.InputParameters : zCy})
∧ @a ∈ available' : aC x};

20: OperationSetsDiscovering(H,O,composition',needed',available' );

21: end for

Figure 4.4: OperationSetsDiscovering algorithm.
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ly) withdraw an output parameter out from the set of needed outputs (line

5). Once out has been taken, OperationSetsDiscovering proceeds in

computing the setOps of the operations which produce a type-compatible

parameter whose name is a sub-concept of out.name (line 6). Afterwards,

if Ops is empty (i.e., out cannot be generated by any available operation),

then OperationSetsDiscovering fails (since the operation cannot be

matched by any sequence of available Operation elements - lines 7-9).

Otherwise, for each operation op in Ops (line 10), the algorithm adds

op to composition (line 11) and updates the sets available and needed by

adding them the outputs of op (line 18) and the unavailable inputs of

op (line 19), respectively. Then, a new OperationSetsDiscovering

instance is started on the computed sets (line 20).

In the next paragraph, we will discuss in detail how to reject (by

failing) non-minimal operation sets (lines 12�17).

Minimality of discovered sets

As already anticipated, the role of the loop at lines 12-17 is to discard

(by failing) any non-minimal set OS of Operation elements such that

O ⇐ OS. Going on in their explanation requires to formalize the obvious

notion of minimality.

De�nition 4.10. Let O be an Operation and OS be a set of Operation

elements such that O ⇐ OS. OS is minimal if and only if

@OS ′ ⊂ OS : O ⇐ OS ′

◦

Intuitively speaking, the loop under consideration checks whether the

inclusion of the new Operation op in the set composition makes some

other Operation elements in composition not strictly necessary to obtain

O ⇐ composition.
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Observation 4.5. It is worth noting that op is certainly needed to satisfy

the condition O ⇐composition, since the set composition\{op} is not

able to produce out (line 6). Note, indeed, that OperationSetsDis-

covering does not consider the operation op (line 12).

OperationSetsDiscovering proceeds by checking, for each Oper-

ation p in composition (line 12), whether the condition at line 14 holds.

Such condition is true if all the output parameters produced by p are

already available since:

• they are generated by the other Operation elements in composi-

tion∪{op}\{p}, or

• they are provided as input parameters of O.

In other words, if the condition at lines 14 holds, then the inclusion of op

in the set of operations has made the Operation p not strictly necessary to

achieve the goal. If this is the case, OperationSetsDiscovering fails

(line 15) to avoid constructing non-minimal sets of Operation elements.

It is worth noting that, despite the condition under consideration (line

14) is quite verbose, its practical checking consists only of a few trivial

operations among small sets of data.

Last (but not least), we have to answer to the following question: are

we sure that line 14 condition is both necessary and su�cient to establish

the minimality of a set OS of operations (such that O ⇐ OS)?

Property 4.1. Let O be an Operation and let OS be a set of Operation

elements such that O ⇐ OS. OS is minimal if and only if:

∀p ∈ OS, ∃x ∈ p.OutputParameters :

(a) ∃o ∈ O.OutputParameters :

(xC o ∧ @z ∈
⋃

r∈OS\{p}
r.OutputParameters : z C o)

∨
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(b) ∃i ∈
⋃

r∈OS\{p}
r.InputParameters :

(xC i ∧
@z ∈

⋃
r∈OS\{p}

r OutputParameters ∪ O.InputParameters :

z C i))

Proof. We have to prove a ⇐⇒ relationship. So, we will proceed demonstrat-

ing the two directions separately.

(=⇒) Let us assume that OS (such that O ⇐ OS) is minimal (see De�nition

4.10). This means that the following condition holds.

∀p ∈ OS :

∃o ∈ O.OutputParameters :

@z ∈
⋃

r∈OS\{p}
r.OutputParameters: z C o)

∨
∃i ∈

⋃
r∈OS\{p}

r.InputParameters :

(@z ∈
⋃

r∈OS\{p}
r OutputParameters ∪ O.InputParameters : z C i))

Since O ⇐ OS, applying what De�nition 4.9 states, we can derive the desired

thesis.

∀p ∈ OS, ∃x ∈ p.OutputParameters:

∃o ∈ O.OutputParameters :

(xC o ∧ @z ∈
⋃

r∈OS\{p}
r.OutputParameters: z C o)

∨
∃i ∈

⋃
r∈OS\{p}

r.InputParameters :

(xC i ∧ @z ∈
⋃

r∈OS\{p}
r OutputParameters ∪ O.InputParameters :

z C i))

(=⇒) We will prove the desired property by contradiction. Let us assume that
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OS is not minimal. This means that the following condition holds.

∃p ∈ OS :

∀o ∈ O.OutputParameters :

∃z ∈
⋃

r∈OS\{p}
r.OutputParameters: z C o)

∨
∀i ∈

⋃
r∈OS\{p}

r.InputParameters :

(∃z ∈
⋃

r∈OS\{p}
r OutputParameters ∪ O.InputParameters : z C i))

Now, since

∃p ∈ OS(∀a ∈ A(∃b ∈ B : P (p, a, b))) =⇒ ∃p ∈ OS(@a ∈ A(@b ∈ B :

P (p, a, b)))

we obtain the following condition.

∃p ∈ OS :

@o ∈ O.OutputParameters :

@z ∈
⋃

r∈OS\{p}
r.OutputParameters: z C o)

∨
@i ∈

⋃
r∈OS\{p}

r.InputParameters :

(@z ∈
⋃

r∈OS\{p}
r OutputParameters ∪ O.InputParameters : z C i))

The above condition is clearly in contradiction with the (assumed) right part

of the desired property. This implies that OS is minimal.

Soundness, completeness and complexity

We are going to conclude this Subsection 4.3.2 with a (brief) discus-

sion of the OperationSetsDiscovering soundness, completeness and

complexity.
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Soundness As mentioned before, each instance of OperationSets-

Discovering stores a set of Operation elements which is function-

ally equivalent (⇐) with the searched Operation O. The following

proposition establishes the soundness of the proposed algorithm,

namely, that each stored set of operations satis�es the functional

equivalence condition (see De�nition 4.9).

Proposition 4.1. Let OS be a set of Operation elements stored

by the OperationSetsDiscovering for a given Operation O.

Then, O ⇐ OS.

Proof. The proof is organised in three steps. First, we will establish

an invariant property Φ which holds for every invocation of Opera-

tionSetsDiscovering (1). Then we will prove that Φ implies O ⇐ OS

when the algorithm terminates (2). Finally, we will demonstrate that

OperationSetsDiscovering always terminates (3).

(1) Please note that the set needed (which initially contains the de-

sired operation O output parameters) is updated whenever a new

Operation op is added to the composition set. More precisely, Op-

erationSetsDiscovering

• adds to needed the unavailable op.InputParameters, and

• removes from needed those elements with which op.OutputPa-

rameters are in the C relation.

So, whenever a recursive call of OperationSetsDiscovering is

performed, the following invariant property Φ holds.

Φ ≡ needed =

{x | x ∈ (O.OutputParameters ∪
{u | u ∈

⋃
p∈OS

p.InputParameters

∧ @v ∈ O.InputParameters : v C u})
∧ @y ∈

⋃
p∈OS

p.OutputParameters : y C x}
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where OS denotes the set of Operation elements selected so far

(i.e., the set composition).

(2) Now, we know that OperationSetsDiscovering returns the set

composition (only) when needed is empty. But, what does the

condition "needed = ∅" imply? Since Φ holds, it follows that:

@x : x ∈ (O.OutputParameters ∪
{u | u ∈

⋃
p∈OS

p.InputParameters

∧ @v ∈ O.InputParameters : v C u})
∧ @y ∈

⋃
p∈OS

p.OutputParameters : y C x}

Then, applying the following logical rules:

• @x : (x ∈ A ∪B ∧ @y ∈ C : P (x, y)) =⇒
∀x : (x ∈ A =⇒ ∃y ∈ C : P (x, y))∧
(x ∈ B =⇒ ∃y ∈ C : P (x, y)));

• ((A ∧ ¬B) =⇒ C) =⇒ (A =⇒ (B ∨ C)),

we could derive the following condition.

∀x :x ∈ O.OutputParameters =⇒
∃y ∈

⋃
p∈OS

p.OutputParameters : y C x

∧
x ∈

⋃
p∈OS

p.InputParameters =⇒

∃y ∈ (
⋃

p∈OS

p.OutputParameters ∪ O.InputParameters) :

y C x

Looking at the above logical expression, we observe that (by De�-

nition 4.9) it follows that O ⇐ OS. Hence the invariant property

Φ guarantees that when needed = ∅ then composition is a set of

services that satis�es the functional equivalence condition.

(3) To complete our proof, we have to show that OperationSets-

Discovering always terminates. First, let us remark that, if Ops

(i.e., the set of those Operation elements which produce out - or
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a parameter c such that c C out) is not empty, then none of the

operations in such a set is already contained in composition (since

if it were contained, then out would not still belong to needed).

This implies that each available Operation can be inserted in com-

position at most once.

Now, let candidates be the set of all ServiceTemplate operations

which are candidate for insertion in composition. Since each Oper-

ation can be inserted in composition at most once, the candidates

set cardinality will be decreased by one at every OperationSets-

Discovering invocation.

Then, the last recursive call of the algorithm under consideration:

• either succeeds (if needed = ∅), or

• fails (because of the absence of candidate operations).

The above introduced Proposition 4.1, along with Property 4.1, let

us derive the following result.

Proposition 4.2. Let OS be a set of Operation elements returned

by OperationSetsDiscovering for a given Operation O. Then,

OS is minimal and the condition O ⇐ OS holds.

Completeness We have shown that each result set stored by Oper-

ationSetsDiscovering satis�es the functional equivalence con-

dition. Now we have to answer to the following question: does

OperationSetsDiscovering store all the functional equivalent

minimal sets? Hereafter we will show that this is the case.

Proposition 4.3. Let OS = {O1, O2, ..., On} be a minimal set of

Operation elements such that O ⇐ OS. If there exists such a set of

operations, then it will be returned by OperationSetsDiscov-

ering.
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Proof. Suppose by contradiction that there exists a minimal operation

set OS = {O1, O2, ..., On} such that O ⇐ OS. Suppose also that OS is

not stored by OperationSetsDiscovering. Is it possible? To answer

this question we have to detect why OS can be discarded.

(A) There exists some operation Oi ∈ OS which is not selected by Op-

erationSetsDiscovering. In other words, none of the recursive

calls of the analysed algorithm extracts from the needed set a pa-

rameter outi outputted by Oi. This is possible in the following two

cases:

• Oi generates no concepts useful to match O. In other words,

it produces neither parameters which belongs to O.Output-

Parameters, nor parameters taken as input by another oper-

ation in OS. If this is the case, Oi is completely useless to

obtain O ⇐ OS. It follows the desired contradiction: the set

OS is not minimal (as assumed).

• Oi generates a parameter c useful (to obtain O ⇐ OS) but c is

also produced by another Operation Oj ∈ OS (i 6= j). Indeed,

suppose that (at some step n) OperationSetsDiscovering

extracts from the needed set a parameter out 6= c which is

produced by Oj . This causes the following steps.

(i) Oj is added to composition;

(ii) the output parameters of Pj are removed from the needed

set and added to the set of available ones.

It is worth noting that also the parameter c (if present) is

removed from needed and added to available. So, c will never

be extracted from the needed set (i.e., Oi will never be selected

by OperationSetsDiscovering). Consequently, Oi is not

strictly necessary to obtain O ⇐ OS. We earned the desired

contradiction: the set OS is not minimal (as assumed).

(B) The set (or a subset of) OS = {O1, O2, ..., On} is neither gen-

erated nor stored by OperationSetsDiscovering. Why could

this happen? Let us consider an Operation Oi ∈ OS which gener-

ates c and a Operation Oj ∈ OS (Oi 6= Oj) which generates outj
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and c. Suppose now that (at some step n) the algorithm extracts

c from the needed set and selects Oi. The algorithm then goes on

and when (at some step m > n) outj is withdrawn from needed,

OperationSetsDiscovering selects Oj . Consequently, Oi be-

comes useless, since c is also produced by Oj (Property 4.1 does

not hold). Thus, we obtain the desired contradiction (since the set

of operations OS is not minimal).

The above consideration let us take the desired conclusion: Opera-

tionSetsDiscovering stores all the minimal set of Operation elements

which are functionally equivalent (⇐) to the provided Operation O.

Worst-case (time) complexity Finally, we will outline a worst-case

analysis of the algorithm time complexity. The analysis requires to

consider a possible execution of OperationSetsDiscovering.

So, let OPS be the set of available Operation elements.

• The �rst instance of OperationSetsDiscovering extracts

a parameter out1 from the needed set. At most there exist

|OPS| operations which output the desired parameter (or a

parameter c1 such that c1 C out1). Hence, OperationSets-

Discovering splits in |OPS| instances.

• Consider now the i-th instance generated by �rst step of the

algorithm (in which composition = {Oi}). Such an instance, in
turn, withdraws a parameter out2 from the needed parameters

set. At most there exists |OPS|−1 available operations which
produce the desired parameter (or a parameter c2 such that

c2 C out2). Thus, the instance under consideration splits in

|OPS| − 1 instances.

Therefore, OperationSetsDiscovering generates

|OPS| × (|OPS| − 1)× (|OPS| − 2)× ...× 2× 1
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instances.

Furthermore, each instance complexity is dominated by the min-

imality check. This check executes at most O(|OPS|2) compar-

isons. Then, each instance of OperationSetsDiscovering costs

O(|OPS|3) (since it executes the minimality check for each opera-

tion producing the out parameter extracted from the needed set).

The above consideration let us conclude thatOperationSetsDis-

covering requires exponential time.

TOperationSetDiscovering(OPS) ∈ NP .

Practical consideration about complexity

A fussy reader could think our solution is expensive and ine�cient.

Please note that the OperationSetsDiscovering must be exe-

cuted by a service provider. In other words, it will be executed in a

cloud environment and so the computational power is - potentially - in�-

nite. This means that a clever implementation of the proposed algorithm

could exploit its recursive de�nition to enforce parallelism.

Furthermore, (in an ideal situation) each instance of OperationSets-

Discovering could be executed by a di�erent concurrent activity. If

this is the case, the time complexity will be decreased signi�cantly. In-

deed, it can (potentially) become polynomial in the number of available

operation OPS.

DIGRESSION: NP -hardness of the considered problem

Someone could think that our solution is too expensive. So, before con-

cluding, we want to show that the problem to be solved is in turn an

expensive one. More precisely, we want to discuss the NP -hardness of

such a problem. To do it, we will connect it with the subset sum problem

(which is known to be NP -hard [34]).
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For the sake of simplicity let us make the following assumptions:

◦ the hypergraph H is such that ∀i : |Ei| = 2 (i.e., H is a graph);

◦ we do not matter about semantics (i.e., we want to �nd only parameters

which have the same type and the same name).

The above assumptions simplify quite much our problem. Now we are

considering the situation of �nding a sub-graph of the (hyper-)graph H

such that its borders are composed by those vertices corresponding to the

input/output parameters of O.

Let us now simplify more our problem: we only want to determine the

above mentioned borders (i.e., the sets of nodes corresponding to the

input/output parameters of O). So, (since we are not worrying about

interconnections) we are restricting our search to only the set V of vertices.

Let us now label each node with a di�erent integer number. It follows that

the whole set of O input/output parameters could be seen as an integer

value sum (which is the sum of integer values assigned to each parameter

in the O input/output parameters set).

So, our problem now consists of �nding (one of) the subsets of V whose

value sum is equal to sum. This clearly correspond to the subset sum

problem.

Therefore, simplifying the problem under consideration we can connect

it with a well known NP -hard problem. This means that the considered

problem (of detecting a part of the dependency hypergraph such that

required) is in turn NP -hard.
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4.3.3 Example

The objective of this subsection is to show how the plan generation prob-

lem could be solved. We will proceed as follows: we will start by giving

the set of available operation and showing the relative dependency hy-

pergraph; then, we will introduce the target operation (i.e., the operation

which requires the plan generation - if possible - to be matched); �nally,

we will perform a possible execution of the OperationSetsDiscover-

ing algorithm.

The dependency hypergraph

Suppose the availability of a ServiceTemplate such that in Figure 4.1.

Furthermore, suppose that the WeatherApp's GetWeather interface ex-

hibits the operations reported in the following table.

Name Input

parameters

Output

parameters

weatherInfo {country,
city}

{weather,
umidity,

windSpeed,

temperature}
getGMT ∅ {gmt}
getTemperature {country,

city}
{temperature}

perceivedTemperature {windPower,
umidity,

temperature}

{perceived}

The above given table, along with the ontology of Figure 4.5, let us

build the desired hypergraph. According to what stated at the end of

Subsection 4.3.1, we assume the availability of the desired dependency

hypergraph (see Figure 4.6).
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Figure 4.5: Parameters ontology example.

Figure 4.6: Dependency hypergraph example.
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The target Operation

Consider the situation in which our matching procedure needs the Oper-

ation getPerceivedTemperatureAndTime which:

• takes {state, city} as input parameters set;

• outputs the {greenwichMeanTime, temperature, perceived} set of
parameters.

In the following we will refer to the desired operation as O.

Suppose now the unavailability of O in the ServiceTemplate under

consideration. This means that we have to check whether the condition

∃ Plan p ∈ OCST : x ∼=O (Operation) p.

is satis�ed. To do it, we need to solve the plan generation problem.

OperationSetsDiscovering simulation

We start observing that some O parameters are not �ndable in those

available with the ServiceTemplate under consideration. This is the case

of the "state" input parameter and the "greenwichMeanTime" output

parameter. It is worth nothing that those parameters could be matched8

with the available "country" and "gmt" parameter. So, for the sake

of simplicity, in the following we will consider an Operation O′ (which

exposes the semantically equivalent available parameters) instead of the

real Operation O.

Now, let us start the OperationSetsDiscovering algorithm. Its

�rst instance receives the following input (in addition to the dependency

hypergraph H and the target operation O′):

8With a cross-ontology matching analogue to that exposed in Sections 3.3 and 4.2.
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composition = ∅

needed = {gmt, temperature, perceived}

available = ∅

Clearly, the condition needed = ∅ is not satis�ed. Therefore, the algo-

rithm proceeds in withdrawing one of the needed outputs: "gmt", for

example. This means that the set Ops available operations (whose out-

put is equivalent to - or compatible with - "gmt") is composed only by

the getGMT operation. So, OperationSetsDiscovering adds the

�rst Operation to composition and updates the needed and available sets

(removing "gmt" and adding "gmt", respectively). Once these opera-

tions have been performed, the discovering procedure goes on with a

new instance.

The second instance of OperationSetsDiscovering receives the

following input (along with the hypergraph H and the Operation O′):

composition = {getGMT}

needed = {temperature, perceived}

available = {gmt}

As before, the set of needed output parameters is not empty. So, the

algorithm can withdraw another parameter from such set: suppose (for

example) that the parameter "perceived" is taken. As it was for the pre-

vious instance, there is only one operation that generates an equivalent

or compatible parameter: perceivedTemperature. Therefore that Oper-

ation is added to the composition set. Di�erently from before, (before

adding the new operation) the composition set is not empty. Therefore,

it must be runt the usefulness check on that operation (getGMT ) which

it is contained in composition. Obviously, this usefulness condition is not

satis�ed. So, the procedure can go on updating the needed and available

sets. More precisely:
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• "perceived" is removed from the needed set and the unavailable

input parameters of perceivedTemperature are added to the same

set;

• "perceived" is added to the available parameters set.

Then, a new instance with the computed sets is started.

The third instance of the algorithm under consideration receives the

following input (in addition to H - the dependency hypergraph - and O′

- the target operation):

composition = {getGMT, perceivedTemperature}

needed = {temperature, windPower, umidity}

available = {gmt, perceived}

Since needed 6= ∅, OperationSetsDiscovering withdraws a param-

eter from that set. Suppose the extracted parameter is "temperature".

Di�erently from before, two di�erent operations generate the desired pa-

rameter. So, we need to consider them both.

weatherInfo This operation is added to composition and the usefulness

of the already contained operations is checked. Since all of them

are useful, the execution proceeds with the usual behaviour: needed

and available are updated9 and a new instance A (whose input is

composed by the computed sets) is runt.

getTemperature Similarly as before, the sets are updated and a new

instance B is executed.

9It is worth noting what happens to the "windPower" needed parameter. Since

weatherInfo generates a parameter "windSpeed" which is in the sub-concept hyper-

graph relation, it is removed from the needed set (and "windSpeed" is added to the

available one).
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Consider the instance A. Its input (in addition to the dependency

hypergraph H and the target Operation O′) consists of:

composition = {getGMT, perceivedTemperature, weatherInfo}

needed = ∅

available = {gmt, perceived, weather, windSpeed, umidity,

temperature}

Di�erently from previous instances, needed = ∅. Therefore, the set com-
position is stored (since it is capable to exhibit - more than - the required

input/output parameter) and the A instance is stopped.

Consider now the instance B. Its input consist of (the dependency

hypergraph H, the operation O′ and):

composition = {getGMT, perceivedTemperature, getTemperature}

needed = {windPower, umidity}

available = {gmt, perceived, temperature}

As already happened, needed 6= ∅. This means that another parameter

("windPower", for example) is withdrawn from that set. Then, the set

Ops is computed and, since it contains only perceivedTemperature, that

Operation is added to composition. Once this has been done, the min-

imality checking is performed: is there any operation which makes the

composition set not minimal? Please note that the only getTemperature

output parameter is produced also by the weatherInfo operation. So,

since the minimality condition is not satis�ed, the execution is stopped

by failing.

108



Chapter 4. NodeType white-box matching (and adaptation)

Plan generation

The (possible) execution shown in the previous paragraph has produced

the storage of the following set.

composition = {getGMT, perceivedTemperature, weatherInfo}

We are going to show how to exploit this set in plan generation.

The procedure simply consist of answering iteratively to the following

question: which operations in composition are performable? Let us start

with the target operation input parameters. With this set of parame-

ters we can execute the weatherInfo and getGMT 10 operations. Then,

the available parameters set is updated with those produced by the per-

formed operations. Once this has been done, also perceivedTemperature

is performable.

With the above (simple) procedure we can generate the plan of Figure

4.7.

Figure 4.7: Example of generated plan.

10This operation does not require any input parameter.
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4.4 Concluding remarks

This chapter has provided a solution to the white-box matching prob-

lem. This solution completes the discussion about the type-checking (and

adaptation) between a NodeType N and a ServiceTemplate ST . Before

going on, it is worth to make some �nal observations.

4.4.1 A complete example

Consider the problem of matching between the ServiceTemplate ST and

the NodeType WeatherAppType (see Figure 4.8). Suppose that the

GetWeather interfaces (inside and on the boundaries of ST ) exhibit the

same operation as those of the example in Subsection 4.3.3. Further-

more, suppose that the getPerceivedTemperatureAndTime interface (of

WeatherAppType) declares to export the homonym operation (which is

the same as the target operation of the example in Subsection 4.3.3).

If we black-box match the ServiceTemplate and the NodeType un-

der consideration, then we obtain a fail (since ST does not expose the

Name property and the desired operation). In other words, accordingly

to Figure 3.10, we obtain:

unmatchedRequirementSet = ∅

unmatchedCapabilitySet = ∅

unmatchedOperationSet = {getPerceivedTemperatureAndTime}

unmatchedPropertySet = {Name}

So, we have to proceed with the white-box viewpoint approach explained

in this chapter.

First, we have to search for the Name property in the nodes inside

ST . Our property search, as mentioned in (the relative paragraph of)
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Figure 4.8: A complete matching example.
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Subsection 4.2, will not be a signature one. Indeed, we will use the cross-

ontology approach to �nd a property which is semantically equivalent

to the required one. So, suppose that the desired Name property is se-

mantically equivalent to the available HostName property of AppServer.

Then, we have to modify ST boundaries in order to expose also the de-

sired (renamed) property.

Once the property search is done, we have to proceed in looking for

the desired operation. Suppose that the condition

∀ Operation x ∈ N .Interfaces.Interface

∃ Operation y ∈ ST .Interfaces.Interface:

x ∼=O y

does not hold. This means that we have to employ the OperationSets-

Discovering algorithm in order to check whether some available oper-

ation combinations let us satisfy the desired following condition.

∃ Plan p ∈ OCST :

x ∼=O (Operation) p.

So, following a behaviour analogue to the one of the example in Subsec-

tion 4.3.3, we obtain the desired plan (see Figure 4.7). Now, we have

to modify ST boundaries in order to exhibit the obtained plan as an

operation semantically equivalent to the desired one.

Please note that, once the above modi�cations has been performed,

we obtain a (new) ServiceTemplate ST ′′ which is in black-box �exible

matching with the desired WeatherAppType NodeType. So, we simply

have to employ the (extended) oblivion boundaries adaptation approach

in order to obtain the ServiceTemplate ST ′ which can be used as a sub-

stitute for the desired NodeType (see Figure 4.9).
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Figure 4.9: Complete matching example adaptation.

4.4.2 Matching and adaptation

As shown in Figure 4.10, all the matching procedure (both the black-

box part and the white-box one) is completely automatable. Using this

procedure we can generate the desired ServiceTemplate ST ′ (i.e., the

one which can be used as a substitute for the needed NodeType N) by

adapting the available ST . What kind of adaptation is performed?

While in the black-box matching case the adaptation consists (at

most) in �ltering and renaming the available feature, the white-box

matching situation is more complicated. We have seen that the opera-

tions to be performed are the following ones: extracting (inside) available

features and generating plans (if needed). So, referring Figure 3.11, the

adapter A must implement the above mentioned functionalities.
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Figure 4.10: Extended matching (and adaptation) procedure.
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4.4.3 Taking semantics into account

As for the �exible matching approach, the white-box viewpoint proce-

dure exploits ontologies to obtain the desired matchings. More precisely,

ontologies are used to:

• pair (semantically) equivalent features, and

• generate plans (which can be used as substitutes for missing oper-

ations - if possible).

Please note that the above operations exactness strictly depends on both

the input ontologies and the cross-ontology matchmaker. It follows that,

if those elements are not so accurate as required, some generated pair-

ings/plans could not be signi�cant and should not be used in our match-

ing (and adaptation) procedure.

As shown in Figure 4.10, when the considered NodeType N white-

box matches with the ServiceTemplate ST , we have to prompt to the

user the white-box matchmaker decisions taken to transform ST in a

ServiceTemplate ST ′′ which �exible matches N . If she accepts those

decisions (along with those taken with the �exible matching procedure),

then we can proceed in developing the adapted ServiceTemplate ST ′ via

the oblivion boundaries approach.

It is worth noting that the way in which the white-box decision

prompting is performed strictly depends on the matchmaker implemen-

tation. We recommend to start by submitting to the user the decisions

which are most probable and to let the user mark, adjust or discard the

wrong decisions.
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4.4.4 Practical observations

It is worth making some remarks on the usability of matching methodolo-

gies explained in Chapters 3 and 4. The black-box matching procedure

employs the available ServiceTemplate ST without doing any modi�ca-

tion on its speci�cation. This means that the adapter A (see Figure 3.11)

could be developed by both the service client and the service provider.

Conversely, the white-box matchmaker (possibly) requires to update ST

boundaries and to generate plans of available operations. In other words

it needs to work inside of ST (as recalled by the methodology name).

So, as reported in Figure 4.10, the only one who can exploit this method

to obtain the adapted ServiceTemplate ST ′ is the service provider.

Since the white-box matching procedure can only be executed by the

service provider, the execution environment is a cloud one. This im-

plies that this procedure can (ideally) count on an in�nite amount of

both computational power and storage space. So, as already mentioned

in Subsections 4.3.1 and 4.3.2, this huge amount of resources could be

employed to decrease signi�cantly the time complexity of the matching

and adaptation procedure (pre-computing and storing the dependency

hypergraph and parallelizing the OperationSetsDiscovering imple-

mentation).

4.4.5 What's next?

So far, we have explained a way to match NodeType and ServiceTemplate

elements from both a black-box viewpoint (Chapter 3) and a white-box

one (Chapter 4).

Please recall that the objective of this thesis is to �nd a way to check

whether available (TOSCA-compliant) services can be used as NodeTem-

plate components of a TOSCA multi-cloud ServiceTemplate. So, the pre-

sented matchings between node types and service templates can be seen
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as type-matchings. Those checking (and adaptation) procedures can be

used only in the �rst step of the desired complete checking. Which is the

second (and last) one? Once the type-checking is satis�ed, we have to

compare values in order to determine if they are compatible. Then, as

we will state in Chapter 6, a way to obtain the desired value comparison

between the considered TOSCA elements must be individuated.
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Proof-of-concept

implementation

As mentioned in Chapter 1, the di�erent types of matching de�ned in this

thesis should be used to develop a matchmaker to be fruitfully integrated

in the TOSCA implementations that are currently under development.

In order to enforce this observation, this Chapter 5 aims at showing the

feasibility of such (pluggable) matchmaker.

This chapter will start by showing a possible implementation of the

TOSCA basic features (viz., capabilities, requirements, policies, proper-

ties and interface operations - Section 5.1). Then, in Section 5.2, such

features are opportunely grouped to let the needed TOSCA elements

be implemented (viz., NodeType and ServiceTemplate elements). After-

wards, with Section 5.3, a possible implementation of the exact and plug-

in matchmakers is given. Finally, Section 5.4 provides some concluding

remarks.

All the following listings contain JAVA source code. The reason why

we select JAVA as source code language resides in two main factors:

• the TOSCA speci�cation implements inheritance in a way strictly
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similar to that of object-oriented languages, and

• the only TOSCA implementation currently available (see [33]) is

written in JAVA.

5.1 Implementation of basic features

This section aims at showing how the TOSCA basic features can be

implemented. So, in the following paragraphs we will show a possible

realization of capabilities, requirements, policies, properties and interface

operations.

Implementation of capabilities

We know that each component capability is identi�ed via its name and its

type. As we observe in Listing 5.1, how to name the desired capability

is not a problem: we simply have to equip the capability class with a

name �eld. But, how can we deal with the typing problem? It is worth

pointing out that, since we de�ne the abstract CapabilityType class

(which represents the generic characteristics of a capability type), we

can make each desired capability type correspond to a class derived from

the CapabilityType one. So, the capability typing comes naturally with

the class instantiation.

1 public abstract class CapabilityType {

2 protected String name;

3

4 public CapabilityType(String name) {

5 this.name = name;

6 }

7

8 public String getName (){

9 return name;

10 }
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11

12 public boolean exactMatch(CapabilityType c){

13 return (name.equals(c.getName ()) &&

14 this.getClass ()==c.getClass ());

15 }

16

17 public boolean plugInMatch(CapabilityType c) {

18 return (c.getClass (). isInstance(this ));

19 }

20 }

Listing 5.1: JAVA implementation of a generic capability (type).

Please note that the provided CapabilityType class is equipped with

two non-obvious methods: exactMatch (lines 12-15) and plugInMatch

(lines 17-19). Such methods are used in the similar-named matching

procedures (since they return a boolean which represents whether the

current capability type and the passed one satisfy the exact or plug-in1

matching condition, respectively).

Implementation of requirements

As we already mentioned in Chapter 2, there is a high similarity be-

tween capability and requirement structures. So, the requirement JAVA

implementation is analogous to the capability one (see Listing 5.2).

1 public abstract class RequirementType {

2 protected String name;

3

4 public RequirementType(String name){

5 this.name = name;

6 }

1Please remember that with the presented implementation the type of a capability

corresponds to the instantiated class. So, what we have to do (to check whether the

current capability is of a type derived from that of the passed one) is to check whether

the current object can be considered an instance of the passed object class.

120



Chapter 5. Proof-of-concept implementation

7

8 public String getName (){

9 return name;

10 }

11

12 public boolean exactMatch(RequirementType r){

13 return (name.equals(r.getName ()) &&

14 this.getClass ()==r.getClass ());

15 }

16

17 public boolean plugInMatch(RequirementType r) {

18 return (r.getClass (). isInstance(this ));

19 }

20 }

Listing 5.2: JAVA implementation of a generic requirement (type).

Implementation of policies

Please recall that (as discussed in Chapter 2) we identify each policy

via its own type. As for requirements and capabilities, we decide to

implement such a policy typing via the de�nition of a generic PolicyType

(Listing 5.3). Such a generic element is an abstract class which contains

all the features common to all the de�nable policy types (viz., the set of

nodes to which it is applicable and some management methods).

1 public abstract class PolicyType {

2 protected ArrayList <NodeType > applicabilityDomain;

3

4 public PolicyType (){

5 applicabilityDomain = new ArrayList <NodeType >();

6 }

7

8 public PolicyType(ArrayList <NodeType >

9 applicabilityDomain ){

10 this.applicabilityDomain = applicabilityDomain;

11 }
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12

13 public boolean isApplicableTo(NodeType n){

14 if(applicabilityDomain.isEmpty ())

15 return true;

16 for(int i=0; i<applicabilityDomain.size (); i++)

17 if(applicabilityDomain.get(i). getClass ()

18 .isInstance(n))

19 return true;

20 return false;

21 }

22 }

Listing 5.3: JAVA implementation of a generic policy (type).

Please focus on method isApplicableTo (lines 13-21). As antici-

pated by its name, such method is used to check whether the current

policy is applicable to the argument node n (of a certain NodeType - see

Subsection 5.2). The applicability checking consist of verifying whether:

• the current policy type is applicable to every node type (lines 14-

15), or

• the (current policy type) set of applicable node types contains a

NodeType N equal to n's type (or from which it is derived - lines

16-19).

So, we can represent each TOSCA PolicyType with a class derived

from the PolicyType one. Now, since policies matching is quite di�erent

from other feature matching, we decided to represent the whole policy

set (of a node/service template) with a separated Policies class (Listing

5.4).

1 public class Policies {

2 protected ArrayList <PolicyType > policies;

3

4 public Policies (){

5 policies = new ArrayList <PolicyType >();
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6 }

7

8 public ArrayList <PolicyType > getPolicies (){

9 return policies;

10 }

11

12 public void addPolicy(PolicyType p) {

13 policies.add(p);

14 }

15

16 public boolean areApplicableTo(NodeType n){

17 for(int i=0; i<policies.size (); i++)

18 if(! policies.get(i). isApplicableTo(n))

19 return false;

20 return true;

21 }

22 }

Listing 5.4: JAVA implementation of a set of policies.

The reason why we decided to separate such policy set implementa-

tion mainly resides in the possibility of de�ning the areApplicableTo

method. This method implements the operator≡PO (which checks whether

the current set of policies is applicable to a certain NodeType - see Section

3.1).

Implementation of properties

We know that each component property can be seen as a pair

〈name,value〉.

It is worth noting that, according to our type-checking purposes, taking

care of the value type is quite important. So, as done before, such a type

is related to a JAVA class. Please observe that, while for capabilities,

requirements and properties we needed to de�ne a generic class (viz.,
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type), here we already have it. Indeed, since we are considering "real"

values, we need to employ the (generic) Object class.

The above reported observations let us implement a TOSCA property

as shown in Listing 5.5.

1 public class Property {

2 protected String name;

3 protected Object value;

4

5 public Property(String name , Object value) {

6 this.name = name;

7 this.value = value;

8 }

9

10 public String getName () {

11 return name;

12 }

13

14 public Object getValue () {

15 return value;

16 }

17

18 public boolean exactMatch(Property p) {

19 return (name.equals(p.getName ()) &&

20 value.getClass ()==p.getValue (). getClass ());

21 }

22

23 public boolean plugInMatch(Property p) {

24 return (name.equals(p.getName ()) &&

25 p.getValue (). getClass (). isInstance(value ));

26 }

27 }

Listing 5.5: JAVA implementation of a property.

Please note that (as was for CapabilityType and RequirementType

classes) the Property class is equipped with the methods exactMatch

and plugInMatch. As before, such method returns a boolean which
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represents whether the current property and the passed one satisfy the

exact and plug-in2 (single property) matching condition, respectively.

Implementation of interface operations

TOSCA component interfaces implementation requires the realization of

three distinct elements: parameters, operations and interfaces. In the

following, we will use a bottom-up to show such implementations.

The �rst element to be modeled is the operation parameter. According

to the TOSCA speci�cation [25], we implement such a parameter as a

triple

〈name,value,required〉

where name is the parameter name, value is its value and required is a

truth value which indicates whether the user must specify the parameter

value. As before, our type-checking approach requires to take care of

value's type. So, we make it correspond to the class of the value object.

The above stated consideration let us implement the operation pa-

rameters via the OperationParameter class (Listing 5.6).

1 public class OperationParameter {

2 private String name;

3 private Object value;

4 private boolean required;

5

6 public OperationParameter(String name , Object value ,

7 boolean required ){

8 this.name=name;

9 this.value=value;

10 this.required=required;

2Please recall that the property value type corresponds to a JAVA class. So, to

obtain the plug-in matching we need to ensure that the current property value is an

instance of the passed property value class.
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11 }

12

13 public String getName (){

14 return name;

15 }

16

17 public Object getValue (){

18 return value;

19 }

20

21 public boolean isRequired (){

22 return required;

23 }

24

25 public boolean exactMatch(OperationParameter p){

26 return (name.equals(p.getName ())

27 &&

28 value.getClass ()==p.getValue (). getClass ()

29 &&

30 required ==p.isRequired ());

31

32 }

33 }

Listing 5.6: JAVA implementation of an operation parameter.

It is worth noting that, despite we perform both exact and plug-in

matching, operation parameters only require to implement the exactMatch

operation (which checks whether the current parameter and the passed

one satisfy the exact matching condition). This is because, looking at

the de�nitions in Subsections 3.1 and 3.2, we observe that both the two

matching levels employ the exact matching between parameters.

Once parameters have been implemented, we can move on with opera-

tion implementation. Intuitively speaking, each operation can be viewed

as a triple

〈name,inputParameters,outputParamters〉
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where name is the operation name, inputParameters and outputPara-

meters are the set of input and output parameters, respectively. So, we

can model such operation with the class of Listing 5.7.

1 public class Operation {

2 private String name;

3 private ArrayList <OperationParameter > inputParameters;

4 private ArrayList <OperationParameter > outputParameters;

5

6 public Operation(String name ,

7 ArrayList <OperationParameter > inputParameters ,

8 ArrayList <OperationParameter > outputParameters ){

9 this.name = name;

10 this.inputParameters = inputParameters;

11 this.outputParameters = outputParameters;

12 }

13

14 public String getName (){

15 return name;

16 }

17

18 public ArrayList <OperationParameter >

19 getInputParameters (){

20 return inputParameters;

21 }

22

23

24 public ArrayList <OperationParameter >

25 getOutputParameters (){

26 return outputParameters;

27 }

28

29

30 public boolean exactMatch(Operation op){

31 // operations names checking

32 if(!name.equals(op.getName ()))

33 return false;

34

35 // input parameters (1-to -1) checking
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36 int nInputs = inputParameters.size ();

37 if(nInputs !=op.getInputParameters (). size ())

38 return false;

39 boolean matched;

40 OperationParameter p;

41 for(int i=0; i<nInputs; i++){

42 p=inputParameters.get(i);

43 matched = false;

44 for(int j=0; j<nInputs && !matched; j++){

45 if(p.exactMatch(op.getInputParameters ()

46 .get(j)))

47 matched = true;

48 }

49 if(! matched)

50 return false;

51 }

52

53 // output parameters (1-to -1) checking

54 int nOutputs = outputParameters.size ();

55 if(nOutputs !=op.getOutputParameters (). size ())

56 return false;

57 for(int i=0; i<nOutputs; i++){

58 p=outputParameters.get(i);

59 matched = false;

60 for(int j=0; j<nOutputs && !matched; j++){

61 if(p.exactMatch(op.getOutputParameters ()

62 .get(j)))

63 matched = true;

64 }

65 if(! matched)

66 return false;

67 }

68

69 return true;

70 }

71 }

Listing 5.7: JAVA implementation of an operation parameter.
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As for parameters, both the exact and plug-in matching employ the

operations exact matching. So, only the exactMatch method is devel-

oped. Let us now focus on such a method. It starts by checking whether

the two operations are same-named (lines 31-33). Afterwards, it pro-

ceeds by looking for a one-to-one correspondence between the two opera-

tions input parameters (lines 35-51) and between their output parameters

(lines 53-67). If none of the previous matchings fail, then it returns true

(since the two operations can be considered exactly matched - line 69).

Let us now consider the interface implementation. As mentioned in

Chapter 2, each interface can be viewed as a pair

〈name,operations〉

where name is the interface name and operations is the set of inter-

face operations. This let us implement such a TOSCA basic feature as

reported in Listing 5.8.

1 public class Interface {

2 private String name;

3 private ArrayList <Operation > operations;

4

5 public Interface(String name ,

6 ArrayList <Operation > operations) {

7 this.name = name;

8 this.operations = operations;

9 }

10

11 public String getName (){

12 return name;

13 }

14

15 public ArrayList <Operation > getOperations () {

16 return operations;

17 }

18

19 public boolean exactMatch(Interface interf) {
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20 Operation op;

21 boolean matched;

22

23 // interfaces names checking

24 if(!name.equals(interf.getName ()))

25 return false;

26

27 // interfaces operations checking

28 if(operations.size ()!= interf.getOperations ()

29 .size ())

30 return false;

31 for(int i=0; i<operations.size (); i++) {

32 op = operations.get(i);

33 matched = false;

34 for(int j=0; j<interf.getOperations (). size() &&

35 !matched; j++){

36 if(op.exactMatch(interf.getOperations ()

37 .get(j)))

38 matched = true;

39 }

40 if(! matched)

41 return false;

42 }

43 return true;

44 }

45

46 public Interface plugInMatch(TOSCAComponent comp) {

47 Operation op;

48 Interface compInterf;

49 ArrayList <Operation > resultIntOps =

50 new ArrayList <Operation >();

51 boolean matched;

52

53 //for each operation op of the current interface

54 for(int oi=0; oi<operations.size (); oi++) {

55 op = operations.get(oi);

56 matched = false;

57 // there must exist an interface of comp
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58 // which contains the desired operation op

59 for(int j=0; j<comp.getInterfaces (). size() &&

60 !matched; j++){

61 compInterf = comp.getInterfaces (). get(j);

62 for(int oj=0; oj <compInterf.getOperations ()

63 .size (); oj++){

64 if(op.exactMatch(compInterf

65 .getOperations (). get(oj))) {

66 resultIntOps.add(compInterf

67 .getOperations ()

68 .get(oj));

69 matched = true;

70 }

71 }

72 }

73 if(! matched)

74 return null;

75 }

76

77 // returns the interface which contains comp

78 // operations in matching with those of the

79 // current interface

80 return new Interface(name , resultIntOps );

81 }

82 }

Listing 5.8: JAVA implementation of an interface.

As done for previous elements, Interface is equipped with two methods

(exactMatch and plugInMatch) which let the user check whether the

current interface exactly matches the passed one and whether the current

interface plug-in matches the interfaces of the passed TOSCAComponent3,

respectively. It is worth noting that, since the matching is performed in

order to develop an adapted service template, the matched operations

of the passed component are grouped in order to obtain a new interface

which exactly matches the current one. Such a new interface is then

3See Section 5.2.
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returned4.

5.2 Implementation of the needed TOSCA

components

Once the basic TOSCA features (viz., capabilities, requirements, policies,

properties and interface operations) have been developed, we can proceed

in implementing the TOSCA NodeType and ServiceTemplate elements.

So, the following paragraphs aim at illustrating (a sketch of) how to

develop in JAVA such TOSCA elements.

Please remember that we are going to implement a sketch of the

matching procedure proposed in this thesis (in order to show its - JAVA

- feasibility). More precisely, what we are going to do is to implement the

black-box exact and plug-in matching notions. So, to our purposes, re-

stricting the view of a TOSCA service component to only what it exposes

is enough5.

Abstract TOSCAComponent class

The above simple observation let us model TOSCA service components

as classes derived from the abstract TOSCAComponent one (Listing 5.9).

1 public abstract class TOSCAComponent {

2 protected ArrayList <CapabilityType > capabilities;

3 protected ArrayList <RequirementType > requirements;

4 protected ArrayList <Property > properties;

5 protected ArrayList <Interface > interfaces;

4If the matching fails, then a null interface is returned.
5Furthermore, assuming to look at TOSCA service component from a black-box

viewpoint is not so restricting as someone could think. All of the TOSCA IDE will

probably let users look at service components from both the black-box and white-box

viewpoint.
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6

7 public TOSCAComponent (){

8 capabilities = new ArrayList <CapabilityType >();

9 requirements = new ArrayList <RequirementType >();

10 properties = new ArrayList <Property >();

11 interfaces = new ArrayList <Interface >();

12 }

13

14 public ArrayList <CapabilityType > getCapabilities (){

15 return capabilities;

16 }

17

18 public ArrayList <RequirementType > getRequirements (){

19 return requirements;

20 }

21

22 public ArrayList <Property > getProperties (){

23 return properties;

24 }

25

26 public ArrayList <Interface > getInterfaces (){

27 return interfaces;

28 }

29 }

Listing 5.9: JAVA implementation of a generic service component.

Intuitively speaking, the above reported JAVA class let us model the

elements common to all the TOSCA service components. Furthermore,

this let us use such an abstract class as a generic type to be passed to

such methods which are for instance applicable to both NodeType and

ServiceTemplate elements (e.g., the plugInMatch method of the Inter-

face class).
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NodeType implementation sketch

To our type-checking purposes, a generic NodeType can be viewed as a

quadruple

〈capabilities,requirements,properties,interfaces〉.

Please note that all the needed features are already contained in the

TOSCAComponent class. So, we can develop the generic NodeType simply

extending the above mentioned class (Listing 5.10).

1 public abstract class NodeType extends TOSCAComponent{

2 public NodeType (){

3 super ();

4 }

5 }

Listing 5.10: JAVA implementation of a generic NodeType.

Once the generic (viz., abstract) NodeType has been developed, our

matchmaker user simply needs to declare each desired node type as de-

rived from it.

ServiceTemplate implementation sketch

Di�erently from NodeType elements, a ServiceTemplate could also expose

policies. So, it extends the generic TOSCAComponent adding such a �eld

(with its own management methods - Listing 5.11).

1 public abstract class ServiceTemplate

2 extends TOSCAComponent {

3 protected Policies policies;

4

5 public ServiceTemplate (){

6 super ();

7 policies = new Policies ();

8 }
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9

10 public Policies getPolicies (){

11 return policies;

12 }

13 }

Listing 5.11: JAVA implementation of a generic Service.

As was for NodeType elements, our matchmaker user simply needs to

declare each desired service template as derived from the generic (viz,

abstract) ServiceTemplate.

It is worth noting that, while both NodeType and ServiceTemplate

can be used as substitutes for the generic TOSCAComponent, thanks to

JAVA inheritance they are two distinct elements. Such a distinction is

made in order to not break the rules of the TOSCA speci�cation [25].

5.3 Implementation of the matchmakers

Sections 5.1 and 5.2 have provided all the ground needed to implement

the exact and plug-in matchmakers. To develop such matchmakers, we

will follow the same extensive approach used in Chapter 3. In other

words, we will develop the desired matchmakers following the class hier-

archy of Figure 5.1.

Abstract Matchmaker class

Before giving the employable matchmakers, we provide an abstract Match-

maker (Listing 5.12) which de�nes the common characteristics of each

deployed matchmaker.

1 public abstract class Matchmaker {

2 // TOSCA elements to be matched

3 protected NodeType n;
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Figure 5.1: UML diagram of the developed matchmakers.
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4 protected ServiceTemplate st;

5

6 // variables needed to perform matching of capabilities

7 protected Result capMatchResult;

8 protected ArrayList <CapabilityType >

9 unmatchedCapabilities;

10 // variables needed to perform matching of requirements

11 protected Result reqMatchResult;

12 protected ArrayList <RequirementType >

13 unmatchedRequirements;

14 // variables needed to perform matching of policies

15 protected Result polMatchResult;

16 // variables needed to perform matching of properties

17 protected Result propMatchResult;

18 protected ArrayList <Property > unmatchedProperties;

19 // variables needed to perform matching of interfaces

20 protected Result intMatchResult;

21 protected ArrayList <Interface > unmatchedInterfaces;

22

23 public enum Result {

24 EXACT ,

25 PLUGIN ,

26 NOMATCH

27 };

28

29 public Matchmaker(NodeType n, ServiceTemplate st) {

30 this.n = n;

31 this.st = st;

32

33 // matching variables are initialized to null

34 capMatchResult = null;

35 unmatchedCapabilities = null;

36 reqMatchResult = null;

37 unmatchedRequirements = null;

38 polMatchResult = null;

39 propMatchResult = null;

40 unmatchedProperties = null;

41 intMatchResult = null;
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42 unmatchedInterfaces = null;

43 }

44

45 public ArrayList <CapabilityType >

46 getUnmatchedCapabilities (){

47 return unmatchedCapabilities;

48 }

49

50 public ArrayList <RequirementType >

51 getUnmatchedRequirements (){

52 return unmatchedRequirements;

53 }

54

55 public ArrayList <Property > getUnmatchedProperties (){

56 return unmatchedProperties;

57 }

58

59 public ArrayList <Interface > getUnmatchedInterfaces (){

60 return unmatchedInterfaces;

61 }

62

63 public abstract Result match ();

64 }

Listing 5.12: JAVA implementation of the abstract Matchmaker.

Please note that for each basic feature (to be matched) we de�ne two

�elds: result and unmatcheds6. Intuitively speaking, such �elds will be

used in the derived classes to indicate which kind of matching has been

obtained (viz., exact, plug-in or unmatched) and (in case of unmatched)

which features are left unmatched.

Finally, it is worth noting that the matchmethod is declared abstract.

So, (thanks to JAVA inheritance) the derived classes must declare a

method which overrides it.

6Since policies matching only consists in checking whether they are applicable to

n, only the result �eld is de�ned.
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Implementation of the exact matchmaker

The �rst matchmaker to implement is the exact one (viz., the "≡" of

Section 3.1). The source code7 of such a matchmaker is reported in

Listings 5.13 and 5.14.

1 public class ExactMatchmaker extends Matchmaker {

2 // needed to perform exact matching of capabilities

3 protected ArrayList <CapabilityType >

4 exactMatchedCapabilities;

5 // needed to perform exact matching of requirements

6 protected ArrayList <RequirementType >

7 exactMatchedRequirements;

8 // needed to perform exact matching of properties

9 protected ArrayList <Property > exactMatchedProperties;

10 // needed to perform exact matching of interfaces

11 protected ArrayList <Interface > exactMatchedInterfaces;

12

13 public ExactMatchmaker(NodeType n,

14 ServiceTemplate st) {

15 super(n,st);

16

17 // matching variables are initialized to null

18 exactMatchedCapabilities = null;

19 exactMatchedRequirements = null;

20 exactMatchedProperties = null;

21 exactMatchedInterfaces = null;

22 }

23

24 public ArrayList <CapabilityType >

25 getExactMatchedCapabilities (){

26 return exactMatchedCapabilities;

27 }

28

29 public ArrayList <RequirementType >

30 getExactMatchedRequirements (){

31 return exactMatchedRequirements;

7To better understand the unexplained source code please look at inline comments.
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32 }

33

34 public ArrayList <Property >

35 getExactMatchedProperties (){

36 return exactMatchedProperties;

37 }

38

39 public ArrayList <Interface >

40 getExactMatchedInterfaces (){

41 return exactMatchedInterfaces;

42 }

43

44 private Result exactMatchCapabilities (){

45 exactMatchedCapabilities =

46 new ArrayList <CapabilityType >();

47 unmatchedCapabilities =

48 new ArrayList <CapabilityType >();

49

50 // takes the sets of capabilities

51 ArrayList <CapabilityType > nCaps =

52 n.getCapabilities ();

53 ArrayList <CapabilityType > stCaps =

54 st.getCapabilities ();

55

56 // checks whether such sets exactly match

57 CapabilityType cap;

58 for(int i=0; i<nCaps.size (); i++){

59 cap = nCaps.get(i);

60 boolean matched = false;

61 for(int j=0; j<stCaps.size() && !matched; j++){

62 if(cap.exactMatch(stCaps.get(j))){

63 exactMatchedCapabilities.add(stCaps

64 .get(j));

65 matched = true;

66 }

67 }

68 if(! matched)

69 unmatchedCapabilities.add(cap);
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70 }

71

72 //if ST and N expose the same number of

73 // capabilities and there are no unmatched

74 // capabilities , then the result is an

75 //"exact" match.

76 if(nCaps.size ()== stCaps.size() &&

77 unmatchedCapabilities.isEmpty ()){

78 return Result.EXACT;

79 }

80 // otherwise there is "no -match"

81 return Result.NOMATCH;

82 }

Listing 5.13: JAVA implementation of the ExactMatchmaker (1).

Let us focus on the exactMatchCapabilities method (which returns

a Result to indicate whether the capabilities of NodeType n and those

of the ServiceTemplate st exactly match). We know that, intuitively

speaking,

n.CapabilityDe�nitions ≡C st.Capabilities

if and only if the capabilities of n are in a one-to-one correspondence

with those of st. To obtain such a one-to-one correspondence we simply

have to check whether

• for each capability cap of n there exists a capability of st which is

in exactMatching with cap (lines 56-70), and

• n exposes the same number of capabilities as st does (lines 76-77).

If this is the case, then we obtain that n exactly matches st (line 79).

Otherwise, we obtain the unmatched case (line 81).

It is worth noting that, if a capability is matched, then the relative

capability of st is stored in the exactMatchedCapabilities set (in order
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to ease st adaptation - lines 62-64). Otherwise, the unmatched capability

cap of n is stored in the unmatchedCapabilities set (lines 68-79).

Please note that, as reported in Listing 5.14, the requirements, prop-

erties and interfaces matching (lines 84-121, 129-164 and 166-201, respec-

tively) is analogous to the one above presented. This is clearly not the

case of policies: we know that, intuitively speaking,

PolicyType applicable to n ≡PO st.Policies

consists in checking whether st's policies are of a type applicable to n

(lines 123-127).

84 private Result exactMatchRequirements (){

85 exactMatchedRequirements =

86 new ArrayList <RequirementType >();

87 unmatchedRequirements =

88 new ArrayList <RequirementType >();

89

90 // takes the sets of requirements

91 ArrayList <RequirementType > nReqs =

92 n.getRequirements ();

93 ArrayList <RequirementType > stReqs =

94 st.getRequirements ();

95

96 // checks whether such sets exactly match

97 RequirementType req;

98 for(int i=0; i<stReqs.size (); i++){

99 req = stReqs.get(i);

100 boolean matched = false;

101 for(int j=0; j<nReqs.size() && !matched; j++){

102 if(req.exactMatch(stReqs.get(j))){

103 exactMatchedRequirements.add(req);

104 matched = true;

105 }

106 }

107 if(! matched)

108 unmatchedRequirements.add(req);
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109 }

110

111 //if ST and N expose the same number of

112 // requirements and there are no unmatched

113 // requirements , then the result is an

114 //"exact" match.

115 if(stReqs.size ()== nReqs.size() &&

116 unmatchedRequirements.isEmpty ()){

117 return Result.EXACT;

118 }

119 // otherwise there is "no -match"

120 return Result.NOMATCH;

121 }

122

123 protected Result exactMatchPolicies (){

124 if(st.getPolicies (). areApplicableTo(n))

125 return Result.EXACT;

126 return Result.NOMATCH;

127 }

128

129 protected Result exactMatchProperties (){

130 exactMatchedProperties = new ArrayList <Property >();

131 unmatchedProperties = new ArrayList <Property >();

132

133 // takes the sets of properties

134 ArrayList <Property > nProps = n.getProperties ();

135 ArrayList <Property > stProps = st.getProperties ();

136

137 // checks whether such sets exactly match

138 Property prop;

139 for(int i=0; i<nProps.size (); i++){

140 prop = nProps.get(i);

141 boolean matched = false;

142 for(int j=0; j<stProps.size() &&

143 !matched; j++){

144 if(prop.exactMatch(stProps.get(j))){

145 exactMatchedProperties.add(stProps

146 .get(j));
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147 matched = true;

148 }

149 }

150 if(! matched)

151 unmatchedProperties.add(prop);

152 }

153

154 //if ST and N expose the same number of

155 // properties and there are no unmatched

156 // properties , then the result is an

157 //"exact" match.

158 if(nProps.size ()== stProps.size() &&

159 unmatchedProperties.isEmpty ()){

160 return Result.EXACT;

161 }

162 // otherwise there is "no match"

163 return Result.NOMATCH;

164 }

165

166 protected Result exactMatchInterfaces (){

167 exactMatchedInterfaces =

168 new ArrayList <Interface >();

169 unmatchedInterfaces =

170 new ArrayList <Interface >();

171

172 // takes the sets of interfaces

173 ArrayList <Interface > nInts = n.getInterfaces ();

174 ArrayList <Interface > stInts = st.getInterfaces ();

175

176 // checks whether such sets exactly match

177 Interface interf;

178 for(int i=0; i<nInts.size (); i++){

179 interf = nInts.get(i);

180 boolean matched = false;

181 for(int j=0; j<stInts.size() && !matched; j++){

182 if(interf.exactMatch(stInts.get(j))){

183 exactMatchedInterfaces.add(stInts

184 .get(j));
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185 matched = true;

186 }

187 }

188 if(! matched)

189 unmatchedInterfaces.add(interf );

190 }

191 //if ST and N expose the same number of

192 // interfaces and there are no unmatched

193 // interfaces , then the result is an

194 //"exact" match.

195 if(nInts.size ()== stInts.size() &&

196 unmatchedInterfaces.isEmpty ()){

197 return Result.EXACT;

198 }

199 // otherwise there is "no match"

200 return Result.NOMATCH;

201 }

202

203 @Override

204 public Result match() {

205 //if the policies exposed by ST are not

206 // applicable to N, then we can stop our

207 // matching procedure.

208 polMatchResult = this.exactMatchPolicies ();

209 if(polMatchResult == Result.NOMATCH)

210 return Result.NOMATCH;

211

212 //otherwise , exactly match each kind of feature

213 capMatchResult = this.exactMatchCapabilities ();

214 reqMatchResult = this.exactMatchRequirements ();

215 propMatchResult = this.exactMatchProperties ();

216 intMatchResult = this.exactMatchInterfaces ();

217

218 //and check whether is an "exact" match

219 if(capMatchResult == Result.EXACT &&

220 reqMatchResult == Result.EXACT &&

221 propMatchResult == Result.EXACT &&

222 intMatchResult == Result.EXACT)
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223 return Result.EXACT;

224 return Result.NOMATCH;

225 }

226 }

Listing 5.14: JAVA implementation of the ExactMatchmaker (2).

Once the features exact matching has been de�ned, we can override the

match method to implement the

n ≡ st

expression. So, after having checked whether st's policies are applicable

to n (lines 205-210), we invoke private methods to check whether the

capabilities, requirements, properties and interfaces of n exactly matches

those of st (lines 213-216). Once this has been performed, we can employ

partial results to compute the overall matching Result (lines 219-224).

Implementation of the plug-in matchmaker

So far, we developed the exact matchmaker. Now, we want to extend it

in order to obtain the plug-in one (Listings 5.15 and 5.16).

1 public class PlugInMatchmaker extends ExactMatchmaker {

2 // needed to perform plugin matching of capabilities

3 protected ArrayList <CapabilityType >

4 pluginMatchedCapabilities;

5 // needed to perform plugin matching of requirements

6 protected ArrayList <RequirementType >

7 pluginMatchedRequirements;

8 // needed to perform plugin matching of properties

9 protected ArrayList <Property >

10 pluginMatchedProperties;

11 // needed to perform plugin matching of interfaces

12 protected ArrayList <Interface >

13 pluginMatchedInterfaces;
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14

15 public PlugInMatchmaker(NodeType n,

16 ServiceTemplate st) {

17 super(n,st);

18

19 // matching variables are initialized to null

20 pluginMatchedCapabilities = null;

21 pluginMatchedRequirements = null;

22 pluginMatchedProperties = null;

23 pluginMatchedInterfaces = null;

24 }

25

26 public ArrayList <CapabilityType >

27 getPlugInMatchedCapabilities (){

28 return pluginMatchedCapabilities;

29 }

30

31 public ArrayList <RequirementType >

32 getPlugInMatchedRequirements (){

33 return pluginMatchedRequirements;

34 }

35

36 public ArrayList <Property >

37 getPlugInMatchedProperties (){

38 return pluginMatchedProperties;

39 }

40

41 public ArrayList <Interface >

42 getPlugInMatchedInterfaces (){

43 return pluginMatchedInterfaces;

44 }

45

46 private Result plugInMatchCapabilities () {

47 pluginMatchedCapabilities =

48 new ArrayList <CapabilityType >();

49

50 //if the capabilities of N "exact" matches those

51 //of ST , then the result is an "exact" matching
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52 if(capMatchResult == Result.EXACT)

53 return Result.EXACT;

54

55 //otherwise , if the "exact" matching fails only

56 // because ST offers more capabilities than N,

57 //then the "plugin" matching is satisfied.

58 if(unmatchedCapabilities.isEmpty ())

59 return Result.PLUGIN;

60

61 //otherwise , we have to check whether the

62 // unmatchedCapabilities of N let us obtain

63 //the "plugin" matching

64 ArrayList <CapabilityType > unmatcheds =

65 new ArrayList <CapabilityType >();

66 ArrayList <CapabilityType > stCaps =

67 st.getCapabilities ();

68 CapabilityType cap;

69 boolean matched;

70 for(int i=0; i<unmatchedCapabilities.size (); i++) {

71 cap = unmatchedCapabilities.get(i);

72 matched = false;

73 for(int j=0; j<stCaps.size() &&

74 !matched; j++) {

75 if(stCaps.get(j). plugInMatch(cap)) {

76 pluginMatchedCapabilities.add(stCaps

77 .get(j));

78 matched = true;

79 }

80 }

81 if(! matched)

82 unmatcheds.add(cap);

83 }

84 unmatchedCapabilities = unmatcheds;

85

86 //if there are no unmatchedCapabilities , then

87 //the plugin match is obtained.

88 if(unmatchedCapabilities.isEmpty ())

89 return Result.PLUGIN;
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90 return Result.NOMATCH;

91 }

Listing 5.15: JAVA implementation of the PlugInMatchmaker (1).

Let us focus on the plugInMatchCapabilities method (which returns

a Result to indicate whether the capabilities of the NodeType n plug-

in match those of the ServiceTemplate st). We know that, intuitively

speaking,

n.CapabilityDe�nitions ⊆C st.Capabilities

if and only if for each capability cap of n there exists a capability of st

which is in plugInMatching with cap (lines 55-84). If this is the case,

then we obtain that n exactly matches st (lines 86-89). Otherwise, we

obtain the unmatched case (line 90). Please note that, if the capabilities

of n exactly match those of st, then there is no need to proceed with the

plug-in matching (lines 50-53).

As before, the way in which requirements, properties and interfaces

matching is implemented (lines 93-136, 138-182 and 184-224) is analogous

to the capabilities one (Listing 5.16).

93 private Result plugInMatchRequirements () {

94 pluginMatchedRequirements =

95 new ArrayList <RequirementType >();

96

97 //if the requirements of ST "exact" matches those

98 //of N, then the result is an "exact" matching

99 if(reqMatchResult == Result.EXACT)

100 return Result.EXACT;

101

102 //otherwise , if the "exact" matching fails only

103 // because N exhibits more requirements than ST ,

104 //then the "plugin" matching is satisfied.

105 if(unmatchedRequirements.isEmpty ())

106 return Result.PLUGIN;
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107

108 //otherwise , we have to check whether the

109 // unmatchedRequirements of ST let us obtain

110 //the "plugin" matching

111 ArrayList <RequirementType > unmatcheds =

112 new ArrayList <RequirementType >();

113 ArrayList <RequirementType > nReqs =

114 n.getRequirements ();

115 RequirementType req;

116 boolean matched;

117 for(int i=0; i<unmatchedRequirements.size (); i++) {

118 req = unmatchedRequirements.get(i);

119 matched = false;

120 for(int j=0; j<nReqs.size() && !matched; j++) {

121 if(nReqs.get(j). plugInMatch(req)) {

122 pluginMatchedRequirements.add(req);

123 matched = true;

124 }

125 }

126 if(! matched)

127 unmatcheds.add(req);

128 }

129 unmatchedRequirements = unmatcheds;

130

131 //if there are no unmatchedRequirements , then

132 //the "plugin" match is obtained.

133 if(unmatchedRequirements.isEmpty ())

134 return Result.PLUGIN;

135 return Result.NOMATCH;

136 }

137

138 private Result plugInMatchProperties () {

139 pluginMatchedProperties =

140 new ArrayList <Property >();

141

142 //if the properties of N "exact" matches those

143 //of ST , then the result is an "exact" matching

144 if(propMatchResult == Result.EXACT)
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145 return Result.EXACT;

146

147 //otherwise , if the "exact" matching fails only

148 // because ST offers more properties than N,

149 //then the "plugin" matching is satisfied.

150 if(unmatchedProperties.isEmpty ())

151 return Result.PLUGIN;

152

153 //otherwise , we have to check whether the

154 // unmatchedProperties of N let us obtain

155 //the "plugin" matching

156 ArrayList <Property > unmatcheds =

157 new ArrayList <Property >();

158 ArrayList <Property > stProps = st.getProperties ();

159 Property prop;

160 boolean matched;

161 for(int i=0; i<unmatchedProperties.size (); i++) {

162 prop = unmatchedProperties.get(i);

163 matched = false;

164 for(int j=0; j<stProps.size() &&

165 !matched; j++) {

166 if(stProps.get(j). plugInMatch(prop)) {

167 pluginMatchedProperties.add(stProps

168 .get(j));

169 matched = true;

170 }

171 }

172 if(! matched)

173 unmatcheds.add(prop);

174 }

175 unmatchedProperties = unmatcheds;

176

177 //if there are no unmatchedProperties , then

178 //the "plugin" match is obtained.

179 if(unmatchedProperties.isEmpty ())

180 return Result.PLUGIN;

181 return Result.NOMATCH;

182 }
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183

184 private Result plugInMatchInterfaces () {

185 pluginMatchedInterfaces =

186 new ArrayList <Interface >();

187

188 //if the interfaces of N "exact" matches those

189 //of ST , then the result is an "exact" matching

190 if(intMatchResult == Result.EXACT)

191 return Result.EXACT;

192

193 //otherwise , if the "exact" matching fails only

194 // because ST offers more interfaces than N,

195 //then the "plugin" matching is satisfied.

196 if(unmatchedInterfaces.isEmpty ())

197 return Result.PLUGIN;

198

199 //otherwise , we have to check whether the

200 // unmatchedInterfaces of N let us obtain

201 //the "plugin" matching

202 ArrayList <Interface > unmatcheds =

203 new ArrayList <Interface >();

204 ArrayList <Interface > stInts = st.getInterfaces ();

205 Interface interf;

206 Interface matched;

207 for(int i=0; i<unmatchedInterfaces.size (); i++) {

208 interf = unmatchedInterfaces.get(i);

209 //the "plugin" matching is performed by the

210 // class "Interface"

211 matched = interf.plugInMatch(st);

212 if(matched ==null)

213 unmatcheds.add(interf );

214 else

215 pluginMatchedInterfaces.add(matched );

216 }

217 unmatchedInterfaces = unmatcheds;

218

219 //if there are no unmatchedInterfaces , then

220 //the plugin match is obtained.
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221 if(unmatchedInterfaces.isEmpty ())

222 return Result.PLUGIN;

223 return Result.NOMATCH;

224 }

225

226 @Override

227 public Result match() {

228 Result superRes = super.match ();

229

230 //if ST "exactly" matches N, then we do

231 //not need to proceed further.

232 if(superRes == Result.EXACT)

233 return Result.EXACT;

234

235 //otherwise , if the policies exposed by ST

236 //are not applicable to N, then we can

237 //stop our matching procedure.

238 if(polMatchResult == Result.NOMATCH)

239 return Result.NOMATCH;

240

241 //otherwise , "plugin" match each kind of feature

242 capMatchResult = plugInMatchCapabilities ();

243 reqMatchResult = plugInMatchRequirements ();

244 propMatchResult = plugInMatchProperties ();

245 intMatchResult = plugInMatchInterfaces ();

246

247 if((( capMatchResult == Result.EXACT ||

248 capMatchResult == Result.PLUGIN ))

249 &&

250 (( reqMatchResult == Result.EXACT ||

251 reqMatchResult == Result.PLUGIN ))

252 &&

253 (( propMatchResult == Result.EXACT ||

254 propMatchResult == Result.PLUGIN ))

255 &&

256 (( intMatchResult == Result.EXACT ||

257 intMatchResult == Result.PLUGIN )))

258 return Result.PLUGIN;
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259 return Result.NOMATCH;

260 }

261 }

Listing 5.16: JAVA implementation of the PlugInMatchmaker (2).

Once the features plug-in matching has been de�ned, we can override the

match method to implement the

n ⊆ st

expression. So, after having checked whether n exact matches st (lines

230-233) and whether st's policies are applicable to n (lines 235-239), we

invoke private methods to check whether the capabilities, requirements,

properties and interfaces of n plug-in matches those of st (lines 242-245).

Once this has been performed, we can employ partial results to compute

the overall matching Result (lines 247-259).

5.4 Concluding remarks

So far, we provide a (tested8) JAVA implementation of the black-box

exact and plug-in matching notions. It is worth noting that the computed

matching sets (such as exactMatchedCapabilities, pluginMatched-

Capabilities and unmatchedCapabilities) will be employed in the

development of the st adaptation and of the other matching notions.

How to do it is out of the purposes of this chapter (since we only want

to demonstrate the feasibility of the proposed matching procedure).

8Appendix A shows an example of made tests.
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Conclusions

Before concluding, it is worth making some �nal remarks so as to:

• summarize the contributions of this thesis to the TOSCA speci�-

cation (Section 6.1),

• discuss related work (Section 6.2), and

• provide an overview of possible future work (Section 6.3).

6.1 Summary of contributions

In this thesis, after de�ning the notion of exact matching between TOSCA

ServiceTemplate and NodeType elements, we have de�ned three other

types of matching (plug-in, �exible and white-box ), each permitting to

ignore larger sets of non-relevant syntactic di�erences when type-checking

ServiceTemplate elements with respect to node types. More precisely:

• the plug-in matching extends the exact one by considering a Servi-

ceTemplate that "require less" and "o�ers more" than a NodeType

compatible with the latter;
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• the �exible matching in turn extends the plug-in one by employing

ontologies to check whether di�erently named features are semanti-

cally equivalent (so as to ignore non-relevant syntactic di�erences);

• the white-box matching in turn extends the �exible one by searching

missing (equivalent) features inside the service topology. It still

employs ontologies to check whether di�erently named features can

be considered semantically equivalent. Furthermore, it employs a

recursive algorithm to detect available compositions of operations

which are semantically equivalent to needed (missing) operations.

Furthermore, we have also described how a ServiceTemplate that plug-in,

�exibly or white-box matches a NodeType can be suitably adapted so as

to exactly match it.

As we already mentioned at the very beginning of this work, the pre-

sented results intend to contribute to the formal de�nition of TOSCA.

More precisely, the di�erent types of matching de�ned in this thesis

can be used to develop a matchmaker to be fruitfully integrated in the

TOSCA implementations that are currently under development (such as

the Valesca editor [32] and the OpenTOSCA IDE [27]) in order to en-

hance their typed node matching capabilities. The development of such

(pluggable) matchmaker will contribute to cloud service portability and

multi-cloud service development. Indeed, with the availability of such an

implementation, a cloud service developer will have the possibility to:

• employ more available (adapted) cloud services instead of develop-

ing her application's encompassed components,

• migrate more application's components across heterogeneous clo-

uds by changing the used available (adapted) cloud services, and

• choose between more di�erent cloud service providers the one which

provides the compatible service with the best quality-price ratio.
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6.2 Related work

Service matching

As we already mentioned at the very beginning of this thesis, our work

started from the observation that while the matching between ServiceTem-

plate and NodeType elements is indicated in [26] as a way to instantiate

TOSCA NodeType elements, no (formal) de�nition of matching is given

either in [25] or in [26]. A concrete de�nition of matching for TOSCA

is used in [33] to de�ne a way to merge TOSCA services by matching

entire portions of their topology templates. The de�nition of matching of

single service components employed in [33] is however very strict, as two

service components are considered to match only if they expose the same

quali�ed name. This work aims at contributing to the TOSCA speci�ca-

tion by proposing four de�nitions of matching between ServiceTemplate

and NodeType elements, each identifying larger sets of ServiceTemplate

elements that can be adapted so as to (exactly) match a NodeType.

The problem of how to match (Web) services has been extensively

studied in recent years. Many approaches are ontology-aware [28], like for

instance the ontology-aware matchmaker for OWL-S services described

in [16]. Other approaches are behaviour-aware, like the (ontology-aware)

trace-based matching of YAWL services de�ned in [9], the (ontology-

aware) behavioural congruence for OWL-S services de�ned in [3], or the

graph transformation based matching de�ned in [12] and the heuristic

black-box matching described in [14] for WS-BPEL processes. The main

di�erence between the aforementioned approaches and ours is the type

of information considered when matching single nodes. The matching

levels considered for instance in [16] and [14] are all de�ned in terms of

input and output data, while we consider also technology requirements

and capabilities, properties and policies.

On the other hand, many proposals of QoS-aware service matching

157



Chapter 6. Conclusions

have been developed, like for instance [19] or [23]. Generally speaking, the

notion of matching de�ned in the present thesis di�ers from most QoS-

aware matching approaches since it compares types rather than actual

values of extra-functional features (like QoS). A type-based de�nition

of matching is de�ned in [13] to type check stream �ows for interactive

distributed multimedia applications. While the context of [13] is di�erent

from ours, two of the matching conditions considered in [13] resemble

our notions of exact and plug-in matching, even if for simpler service

abstractions.

Summing up, to the best of our knowledge, our de�nition of matching

is the �rst de�nition of (TOSCA) node matching to take into account

both functional and extra-functional features, by relying both on types

and on ontologies to overcome non-relevant syntactic information.

Service adaptation

As we already mentioned (in Sections 3.2 and 3.3) a ServiceTemplate ST

that plug-in or �exibly matches a NodeType N can be adapted into a new

ServiceTemplate ST ′ that exactly matches N . The adaptation technique

basically consists of creating a new ServiceTemplate ST ′ that includes

ST as internal node, and of suitably exposing (via BoundaryDe�nitions)

the capabilities, policies, properties, and interfaces of the NodeType to be

matched. The transformation implemented by such adaptation vaguely

reminds the adaptation techniques described in [9] and [10] to implement

(more complex) input-output and behaviour transformations of YAWL

work�ows, respectively.

Furthermore, as we discussed in Chapter 4, the adaptation needed to

transform a ServiceTemplate ST that white-box matches a NodeType N

into a new ServiceTemplate ST ′ that exactlymatchesN requires to gener-

ate a plan to combine a set of operations into an input-output behaviour

equivalent to a given operation. As seen, such plans can be generated by
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adapting the ontology-aware discovery algorithm presented in [5].

6.3 Future work

The whole thesis orbits on the de�nition of matchmaking procedures

between NodeType and ServiceTemplate elements. A (tested) partial1

implementation of such matchmaking procedures is described in Chap-

ter 5. Completing the implementation of the whole matchmaker is one

direction for immediate future work.

Furthermore, we employed plan generation only when white-box mat-

ching the operations of node types and service templates. As someone

could note, such a plan generation should be employed also when we

(black-box) plug-in/�exibly match such features. Suitably integrating

the OperationSetsDiscovering algorithm with such matching pro-

cedures is another extension left for future work.

Finally, we restricted our work to service type-checking. It is clear

that a full-�edged matchmaker will need to employ also values when

comparing services. To do it, we have to move the focus from Node-

Type elements to NodeTemplate ones (see Figure 6.1). Since the type of

NodeTemplate elements is known, we do not encounter problems when

type-checking it with respect to service templates. But, how can we

match values? To consider more than trivial equality comparison, we

have to de�ne a way to indicate how to match those features. As an ex-

ample, we could think of some kind of (policies/properties) "contracts"

to indicate the way in which each single feature value should be matched.

A de�nition of such contracts is another possible extension of this work.

1Please recall that the objective of such an implementation objective is only to

show the JAVA feasibility of the matchmaker.
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Figure 6.1: Complete matching (and adaptation) procedure.
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Example of test of the

proof-of-concept

implementation

Chapter 5 has shown a (tested) partial implementation of the matchmak-

ing procedure. This Appendix aims at showing an example of the tests

which can be executed on such an implementation.

Consider the node type and service templates in Figure A.1 and sup-

pose that all services exhibit a policy (of type RapidCalculatorPolicy-

Type) which is applicable to CalculatorNodeType. Looking at the de�ni-

tions in Chapter 3, we observe that the following conditions hold:

CalculatorNodeType ≡ Service,

CalculatorNodeType 6≡ ServiceBis,

CalculatorNodeType ⊆ ServiceBis, and

CalculatorNodeType 6⊆ ServiceTer.

We are going to show that, employing the developed (partial) match-

maker, we obtain such results.
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(a)

(b)

(c)

(d)

Figure A.1: Node type and service templates employed in testing the

proof-of-concept implementation.
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A.1 Implementation of the needed input

This section will show how to represent the considered services (Figure

A.1) in JAVA.

Implementation of basic features

Looking at the problem de�nition, we observe that (in order to represent

the desired services) we need to develop some basic features.

First, we need to implement the required CalculatorCapabilityType

(Listing A.1) and ExtendedCalculatorCapabilityType (Listing A.2). To

do it, we have to suitably extend the generic CapabilityType class.

1 public class CalculatorCapabilityType

2 extends CapabilityType {

3 public CalculatorCapabilityType(String name){

4 super(name);

5 }

6 }

Listing A.1: JAVA implementation of the CalculatorCapabilityType.

1 public class ExtendedCalculatorCapabilityType

2 extends CalculatorCapabilityType {

3 public ExtendedCalculatorCapabilityType(String name){

4 super(name);

5 }

6 }

Listing A.2: JAVA implementation of the ExtendedCalculatorCapa-

bilityType.

Then, we have to implement the type of the policy1 exposed by all

services (Listing A.3).

1Please recall that such a policy type is assumed to be applicable to the Calcula-

torNodeType.
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1 public class RapidCalculatorPolicyType extends PolicyType {

2 public RapidCalculatorPolicyType () {

3 super ();

4 applicabilityDomain.add(new CalculatorNodeType ());

5 }

6 }

Listing A.3: JAVA implementation of the RapidCalculatorPolicyType.

Now, we have all the ground needed to implement the desired node

type and service templates.

Implementation of CalculatorNodeType

The JAVA source code which implements the CalculatorNodeType is

shown in Listing A.4.

1 public class CalculatorNodeType extends NodeType {

2 public CalculatorNodeType () {

3 super ();

4 // capabilities

5 CapabilityType calcCap = new

6 CalculatorCapabilityType(

7 "CalculatorCapability");

8 capabilities.add(calcCap );

9

10 // properties

11 Property owner = new Property("Owner","");

12 properties.add(owner);

13 Property devYear = new Property("DevelopmentYear",

14 new Integer (0));

15 properties.add(devYear );

16

17 // interfaces

18 //Add operation

19 OperationParameter add1 = new

20 OperationParameter("a",
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21 new Integer (0),

22 true);

23 OperationParameter add2 = new

24 OperationParameter("b",

25 new Integer (0),

26 true);

27 ArrayList <OperationParameter > addInputs = new

28 ArrayList <OperationParameter >();

29 addInputs.add(add1);

30 addInputs.add(add2);

31 OperationParameter addRes = new

32 OperationParameter("sum",

33 new Integer (0),

34 true);

35 ArrayList <OperationParameter > addOutputs = new

36 ArrayList <OperationParameter >();

37 addOutputs.add(addRes );

38 Operation add = new Operation("Add", addInputs ,

39 addOutputs );

40 //Sub operation

41 OperationParameter sub1 = new

42 OperationParameter("a",

43 new Integer (0),

44 true);

45 OperationParameter sub2 = new

46 OperationParameter("b",

47 new Integer (0),

48 true);

49 ArrayList <OperationParameter > subInputs = new

50 ArrayList <OperationParameter >();

51 subInputs.add(sub1);

52 subInputs.add(sub2);

53 OperationParameter subRes = new

54 OperationParameter("diff",

55 new Integer (0),

56 true);

57 ArrayList <OperationParameter > subOutputs = new

58 ArrayList <OperationParameter >();
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59 subOutputs.add(subRes );

60 Operation sub = new Operation("Sub", subInputs ,

61 subOutputs );

62 // AddSub interface

63 ArrayList <Operation > ops = new

64 ArrayList <Operation >();

65 ops.add(add);

66 ops.add(sub);

67 Interface addSub = new Interface("AddSub", ops);

68 interfaces.add(addSub );

69 }

70 }

Listing A.4: JAVA implementation of the CalculatorNodeType.

Implementation of Service

The available Service is implemented in JAVA as shown in Listing A.5.

1 public class Service extends ServiceTemplate {

2 public Service () {

3 super ();

4 // capabilities

5 CapabilityType calcCap = new

6 CalculatorCapabilityType(

7 "CalculatorCapability");

8 capabilities.add(calcCap );

9

10 // policies

11 PolicyType rapid = new RapidCalculatorPolicyType ();

12 policies.addPolicy(rapid);

13

14 // properties

15 Property owner = new Property("Owner","Goofy");

16 properties.add(owner);

17 Property devYear = new Property("DevelopmentYear",

18 new Integer (2013));

19 properties.add(devYear );
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20

21 // interfaces

22 //Add operation

23 OperationParameter add1 = new

24 OperationParameter("a",

25 new Integer (0),

26 true);

27 OperationParameter add2 = new

28 OperationParameter("b",

29 new Integer (0),

30 true);

31 ArrayList <OperationParameter > addInputs = new

32 ArrayList <OperationParameter >();

33 addInputs.add(add1);

34 addInputs.add(add2);

35 OperationParameter addRes = new

36 OperationParameter("sum",

37 new Integer (0),

38 true);

39 ArrayList <OperationParameter > addOutputs = new

40 ArrayList <OperationParameter >();

41 addOutputs.add(addRes );

42 Operation add = new Operation("Add", addInputs ,

43 addOutputs );

44 //Sub operation

45 OperationParameter sub1 = new

46 OperationParameter("a",

47 new Integer (0),

48 true);

49 OperationParameter sub2 = new

50 OperationParameter("b",

51 new Integer (0),

52 true);

53 ArrayList <OperationParameter > subInputs = new

54 ArrayList <OperationParameter >();

55 subInputs.add(sub1);

56 subInputs.add(sub2);

57 OperationParameter subRes = new
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58 OperationParameter("diff",

59 new Integer (0),

60 true);

61 ArrayList <OperationParameter > subOutputs = new

62 ArrayList <OperationParameter >();

63 subOutputs.add(subRes );

64 Operation sub = new Operation("Sub", subInputs ,

65 subOutputs );

66 // AddSub interface

67 ArrayList <Operation > ops = new

68 ArrayList <Operation >();

69 ops.add(add);

70 ops.add(sub);

71 Interface addSub = new Interface("AddSub", ops);

72 interfaces.add(addSub );

73 }

74 }

Listing A.5: JAVA implementation of Service.

Implementation of ServiceBis

Looking at Figure A.1, we observe that ServiceBis di�ers from Service

since:

• it exposes a capability whose type is derived from that of the ca-

pability of Service,

• it exhibits an additional Name property, and

• it splits the AddSub interface into two distinct interfaces and adds

a new operation Mul (contained in a homonym interface).

So, if we (suitably) modify the Service's source code, then we obtain

ServiceBis (Listing A.6).
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1 public class ServiceBis extends ServiceTemplate {

2 public ServiceBis () {

3 super ();

4 // capabilities

5 CapabilityType calcCap = new

6 ExtendedCalculatorCapabilityType(

7 "ExtendedCalculatorCapability");

8 capabilities.add(calcCap );

9

10 // policies

11 PolicyType rapid = new RapidCalculatorPolicyType ();

12 policies.addPolicy(rapid);

13

14 // properties

15 Property owner = new Property("Owner","Goofy");

16 properties.add(owner);

17 Property name = new Property("Name","ServiceBis");

18 properties.add(name);

19 Property devYear = new Property("DevelopmentYear",

20 new Integer (2013));

21 properties.add(devYear );

22

23 // interfaces

24 //Add operation

25 OperationParameter add1 = new

26 OperationParameter("a",

27 new Integer (0),

28 true);

29 OperationParameter add2 = new

30 OperationParameter("b",

31 new Integer (0),

32 true);

33 ArrayList <OperationParameter > addInputs = new

34 ArrayList <OperationParameter >();

35 addInputs.add(add1);

36 addInputs.add(add2);

37 OperationParameter addRes = new

38 OperationParameter("sum",
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39 new Integer (0),

40 true);

41 ArrayList <OperationParameter > addOutputs = new

42 ArrayList <OperationParameter >();

43 addOutputs.add(addRes );

44 Operation add = new Operation("Add", addInputs ,

45 addOutputs );

46 //Sub operation

47 OperationParameter sub1 = new

48 OperationParameter("a",

49 new Integer (0),

50 true);

51 OperationParameter sub2 = new

52 OperationParameter("b",

53 new Integer (0),

54 true);

55 ArrayList <OperationParameter > subInputs = new

56 ArrayList <OperationParameter >();

57 subInputs.add(sub1);

58 subInputs.add(sub2);

59 OperationParameter subRes = new

60 OperationParameter("diff",

61 new Integer (0),

62 true);

63 ArrayList <OperationParameter > subOutputs = new

64 ArrayList <OperationParameter >();

65 subOutputs.add(subRes );

66 Operation sub = new Operation("Sub", subInputs ,

67 subOutputs );

68 //Mul operation

69 OperationParameter mul1 = new

70 OperationParameter("a",

71 new Integer (0),

72 true);

73 OperationParameter mul2 = new

74 OperationParameter("b",

75 new Integer (0),

76 true);
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77 ArrayList <OperationParameter > mulInputs = new

78 ArrayList <OperationParameter >();

79 mulInputs.add(sub1);

80 mulInputs.add(sub2);

81 OperationParameter mulRes = new

82 OperationParameter("prod",

83 new Integer (0),

84 true);

85 ArrayList <OperationParameter > mulOutputs = new

86 ArrayList <OperationParameter >();

87 mulOutputs.add(mulRes );

88 Operation mul = new Operation("Mul", mulInputs ,

89 mulOutputs );

90 //Add interface

91 ArrayList <Operation > opsAdd = new

92 ArrayList <Operation >();

93 opsAdd.add(add);

94 Interface addInt = new Interface("Add", opsAdd );

95 interfaces.add(addInt );

96 //Sub interface

97 ArrayList <Operation > opsSub = new

98 ArrayList <Operation >();

99 opsSub.add(sub);

100 Interface subInt = new Interface("Sub", opsSub );

101 interfaces.add(subInt );

102 //Mul interface

103 ArrayList <Operation > opsMul = new

104 ArrayList <Operation >();

105 opsMul.add(add);

106 Interface mulInt = new Interface("Mul", opsMul );

107 interfaces.add(mulInt );

108 }

109 }

Listing A.6: JAVA implementation of ServiceBis.
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Implementation of ServiceTer

Looking at Figure A.1, we observe that ServiceTer di�ers from ServiceBis

since it exposes the property YearOfDevelopment instead of the Devel-

opmentYear one. So, the source code of ServiceTer (Listing A.7) can be

simply obtained by opportunely modifying line 19 of ServiceBis source

code.

1 public class ServiceTer extends ServiceTemplate {

2 public ServiceTer () {

3 super ();

4 // capabilities

5 CapabilityType calcCap = new

6 ExtendedCalculatorCapabilityType(

7 "ExtendedCalculatorCapability");

8 capabilities.add(calcCap );

9

10 // policies

11 PolicyType rapid = new RapidCalculatorPolicyType ();

12 policies.addPolicy(rapid);

13

14 // properties

15 Property owner = new Property("Owner","Goofy");

16 properties.add(owner);

17 Property name = new Property("Name","ServiceBis");

18 properties.add(name);

19 Property devYear = new Property(

20 "YearOfDevelopment",

21 new Integer (2013));

22 properties.add(devYear );

23

24 // interfaces

25 //Add operation

26 OperationParameter add1 = new

27 OperationParameter("a",

28 new Integer (0),

29 true);

30 OperationParameter add2 = new
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31 OperationParameter("b",

32 new Integer (0),

33 true);

34 ArrayList <OperationParameter > addInputs = new

35 ArrayList <OperationParameter >();

36 addInputs.add(add1);

37 addInputs.add(add2);

38 OperationParameter addRes = new

39 OperationParameter("sum",

40 new Integer (0),

41 true);

42 ArrayList <OperationParameter > addOutputs = new

43 ArrayList <OperationParameter >();

44 addOutputs.add(addRes );

45 Operation add = new Operation("Add", addInputs ,

46 addOutputs );

47 //Sub operation

48 OperationParameter sub1 = new

49 OperationParameter("a",

50 new Integer (0),

51 true);

52 OperationParameter sub2 = new

53 OperationParameter("b",

54 new Integer (0),

55 true);

56 ArrayList <OperationParameter > subInputs = new

57 ArrayList <OperationParameter >();

58 subInputs.add(sub1);

59 subInputs.add(sub2);

60 OperationParameter subRes = new

61 OperationParameter("diff",

62 new Integer (0),

63 true);

64 ArrayList <OperationParameter > subOutputs = new

65 ArrayList <OperationParameter >();

66 subOutputs.add(subRes );

67 Operation sub = new Operation("Sub", subInputs ,

68 subOutputs );
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69 //Mul operation

70 OperationParameter mul1 = new

71 OperationParameter("a",

72 new Integer (0),

73 true);

74 OperationParameter mul2 = new

75 OperationParameter("b",

76 new Integer (0),

77 true);

78 ArrayList <OperationParameter > mulInputs = new

79 ArrayList <OperationParameter >();

80 mulInputs.add(sub1);

81 mulInputs.add(sub2);

82 OperationParameter mulRes = new

83 OperationParameter("prod",

84 new Integer (0),

85 true);

86 ArrayList <OperationParameter > mulOutputs = new

87 ArrayList <OperationParameter >();

88 mulOutputs.add(mulRes );

89 Operation mul = new Operation("Mul", mulInputs ,

90 mulOutputs );

91 //Add interface

92 ArrayList <Operation > opsAdd = new

93 ArrayList <Operation >();

94 opsAdd.add(add);

95 Interface addInt = new Interface("Add", opsAdd );

96 interfaces.add(addInt );

97 //Sub interface

98 ArrayList <Operation > opsSub = new

99 ArrayList <Operation >();

100 opsSub.add(sub);

101 Interface subInt = new Interface("Sub", opsSub );

102 interfaces.add(subInt );

103 //Mul interface

104 ArrayList <Operation > opsMul = new

105 ArrayList <Operation >();

106 opsMul.add(add);
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107 Interface mulInt = new Interface("Mul", opsMul );

108 interfaces.add(mulInt );

109 }

110 }

Listing A.7: JAVA implementation of ServiceTer.

A.2 Implementation of the Test

As mentioned at the very beginning of this Appendix A, we want to show

that the following conditions hold:

CalculatorNodeType ≡ Service (1),

CalculatorNodeType 6≡ ServiceBis (2),

CalculatorNodeType ⊆ ServiceBis (3), and

CalculatorNodeType 6⊆ ServiceTer (4).

To do it, we developed the runnable Test class (Listing A.8).

1 public class Test {

2 public static void main(String [] args) {

3 // needed inputs

4 CalculatorNodeType n = new CalculatorNodeType ();

5 Service s = new Service ();

6 ServiceBis sBis = new ServiceBis ();

7 ServiceTer sTer = new ServiceTer ();

8

9 // needed to store matching results

10 Matchmaker.Result res;

11

12 //test (1)

13 System.out.print("Test (1):");

14 ExactMatchmaker ex = new ExactMatchmaker(n, s);

15 res = ex.match ();
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16 if(res == ExactMatchmaker.Result.EXACT)

17 System.out.println("OK!");

18 else

19 System.out.println("KO!");

20

21 //test (2)

22 System.out.print("Test (2):");

23 ExactMatchmaker ex2 = new ExactMatchmaker(n, sBis);

24 res = ex2.match ();

25 if(res == ExactMatchmaker.Result.NOMATCH)

26 System.out.println("OK!");

27 else

28 System.out.println("KO!");

29

30 //test (3)

31 System.out.print("Test (3):");

32 PlugInMatchmaker pl = new PlugInMatchmaker(n,

33 sBis);

34 res = pl.match ();

35 if(res == ExactMatchmaker.Result.PLUGIN)

36 System.out.println("OK!");

37 else

38 System.out.println("KO!");

39

40 //test (4)

41 System.out.print("Test (4):");

42 PlugInMatchmaker pl2 = new PlugInMatchmaker(n,

43 sTer);

44 res = pl2.match ();

45 if(res == ExactMatchmaker.Result.NOMATCH)

46 System.out.println("OK!");

47 else

48 System.out.println("KO!");

49 }

50 }

Listing A.8: JAVA implementation of the Test.
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A.3 Concluding remarks

Running the presented Test JAVA code we obtain what shown in Fig-

ure A.2. So, with this Appendix A, we have shown how the provided

Figure A.2: Test results.

implementation (despite it is partial) let us perform some comparison

tests.
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