

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

A Two-Stage Decomposition of High School Timetabling applied to cases in Denmark

Sørensen, Matias; Dahms, Florian H.W.

Published in:
Computers & Operations Research

Link to article, DOI:
10.1016/j.cor.2013.08.025

Publication date:
2014

Link back to DTU Orbit

Citation (APA):
Sørensen, M., & Dahms, F. H. W. (2014). A Two-Stage Decomposition of High School Timetabling applied to
cases in Denmark. Computers & Operations Research, 43, 36–49. DOI: 10.1016/j.cor.2013.08.025

http://dx.doi.org/10.1016/j.cor.2013.08.025
http://orbit.dtu.dk/en/publications/a-twostage-decomposition-of-high-school-timetabling-applied-to-cases-in-denmark(60438370-2dfb-442a-8de6-caa372c4f94c).html

A Two-Stage Decomposition of High School Timetabling applied to cases in
Denmark

Matias Sørensena,b,∗, Florian H.W. Dahmsc

a Section of Operations Research, Department of Management Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
b MaCom A/S, Vesterbrogade 48, 1., DK-1620 Copenhagen V, Denmark

c Chair of Operations Research, RWTH Aachen University, Kackertstraße 7, 52072 Aachen, Germany

Abstract

Integer Programming (IP) has been used to model educational timetabling problems since the very early days of
Operations Research. It is well recognized that these IP models in general are hard to solve, and this area of research
is dominated by heuristic solution approaches. In this paper a Two-Stage Decomposition of an IP model for a practical
case of high school timetabling is shown. This particular timetabling problem consists of assigning lectures to both a
timeslot and a classroom, which is modeled using a very large amount of binary variables. The decomposition splits
this model into two separate problems (Stage I and Stage II) with far less variables. These two separate problems are
solved in sequence, such that the solution for the Stage I model is given as input to the Stage II model, implying that
irreversible decisions are made in Stage I. However, the objective of the Stage II model is partly incorporated in the
Stage I model by exploiting that Stage II can be seen as a minimum weight maximum matching problem in a bipartite
graph. This theoretically strengthens the decomposition in terms of global optimality. The approach relies on Hall’s
theorem for the existence of matchings in bipartite graphs, which in its basic form yields an exponential amount of
constraints in the Stage I model. However, it is shown that only a small subset of these constraints is needed, making
the decomposition tractable in practice for IP solvers. To evaluate the decomposition, 100 real-life problem instances
from the database of the high school ERP system Lectio are used. Computational results show that the decomposition
performs significantly better than solving the original IP, in terms of both found solutions and bounds.

Keywords: High School Timetabling, Integer Programming, Decomposition, Bipartite Matching

1. Introduction

Integer Programming (IP) has been used to model educational timetabling problems since the very early days of
Operations Research (see e.g. Gotlieb (1962) and Lawrie (1969)). It is well recognized that these IP models in
general are hard to solve (most forms of educational timetabling are in fact NP-hard (Bardadym (1996))), and this
area of research is dominated by heuristic solution approaches.

In this paper a large IP model for a real-world case of high school timetabling is considered, which has previously
been shown to be a challenge for state-of-the-art MIP solvers. We consider a basic version of this IP, which includes
the essential constraints of most timetabling problems. An innovative decomposition of this model is shown, which
proves to be more efficient to solve.

When facing a hard IP model, decomposition is a commonly used tool to help speed up the solution procedure.
Perhaps the most successful decomposition method in recent years is Column Generation (CG). However, not many
papers on CG and timetabling models are found in the literature, and it seems that only relatively small instances have
been attempted. Papoutsis et al. (2003) uses CG to solve a Greek case of high school timetabling, with the largest
instance containing 9 class section, 21 teachers and 306 teaching hours. Santos et al. (2012) handle larger instances,

∗Corresponding author
Email address: msso@dtu.dk (Matias Sørensen)

Preprint submitted to Computers & Operations Research

but only generate lower bounds. Qualizza and Serafini (2005) describe a CG procedure for a university timetabling
problem with 63 courses and 25 timeslots. The real-world instances considered in this paper are of much larger size.

A crucial part of a CG procedure is the identification of a block-diagonal structure in the problem, otherwise the
CG procedure is most likely not efficient. For the high school timetabling problem described in this paper, it has not
been possible to identify such a structure. Therefore this paper shows a different type of decomposition, a Two-Stage
Decomposition (TSD). Such an approach was first used for timetabling applications in Lach and Lübbecke (2008)
and Lach and Lübbecke (2012) with great success for the curriculum-based university course timetabling problem.
The goal of this paper will be to modify the aforementioned approach to be applicable for the high school timetabling
problem - giving special attention to the high school system in Denmark.

The considered timetabling problem essentially consists of assigning lectures to rooms and timeslots, which is
commonly modeled using a very large amount of binary variables. There are three key points to the TSD:

• By substitution, the total amount of variables is significantly reduced, while linearity is maintained.

• Instead of solving the entire model at once, it can be solved in a two-stage fashion. I.e. both the set of variables
and constraints are divided into two distinct sets, corresponding to two smaller IPs (denoted Stage I and Stage
II, respectively).

• It will be evident that, except for two soft-constraints, this decomposition maintains optimality of the original
model.

The outline of the TSD is to first solve Stage I, which provides a solution where lectures are assigned to timetslots.
This partial solution is given as input to Stage II, which will assign rooms to the lectures, obtaining a solution for
the original problem. The drawback of this decomposition is that the timeslots assigned to lectures in Stage I are
considered as fixed by the Stage II model, which might prevent an optimal allocation of rooms to lectures. However,
by exploiting the structure of the Stage II model, the Stage I model can be constrained in such a way that some
penalties for assigning rooms to lectures are handled implicitly. Note that if all penalties for room assigning could
be handled implicitly, the approach would be exact. However, two soft-constraints are not fully incorporated, so only
a lower bound on the room penalties are known by the Stage I model. In fact, one of these soft-constraints are not
handled at all by the described approach. Despite this, it seems likely that incorporating this lower bound in the Stage
I model will provide better results overall (assuming that computing the lower bound does not have very bad influence
on the computational efforts of the used IP solver). I.e. instead of the Stage I model being completely unaware of the
penalties for room allocation, it seems better to at least incorporate some of them. Furthermore, the decomposition
of the problem into two smaller problems presents a big advantage in terms of reduction in the number of variables.
Therefore the overall benefits of the TSD out-weight the downsides, and computational results will show that it is
indeed way more effective than solving the original IP.

The contributions of this paper are the following: 1) It is shown that the approach from Lach and Lübbecke
(2008) can also be applied to a high school timetabling problem originating from a practical setting, and by extensive
computational results it is argued that the TSD is more effective than solving the original IP. Notice that a similar
composition is briefly mentioned in Sørensen and Stidsen (2013) for the same high school timetabling problem, but
this paper enhances the approach such that the theoretical maximum gap from optimality is narrowed. The presented
approach turns out to be the most efficient exact algorithm for the problem so far. 2) Generally, it is shown how this
type of decomposition can be applied to models with set-packing structure, by modifying the underlying equations
originating from Hall’s Theorem for matchings in bipartite graphs. 3) It is shown how the room-priorities of lectures
can be handled, by adding a lower bound on the corresponding penalties to the Stage I model. This facilitates the
quality of the solutions found, as shown by the computational results.

We expect that the basic structure required for applying the TSD can be found in other timetabling problems as
well, and therefore the decomposition can potentially be used more broadly than the case of high school timetabling
shown in this paper. This seems likely because the essential constraints used in the decomposition are among the most
common ones found in timetabling problems.

The paper is structured as follows. First related papers are described in Section 2. The basic IP model is introduced
in Section 3, including the essential constraints. Section 4 shows the TSD of this model, and derives the lower bound
on room allocation penalties for the Stage I model. Section 5 extends the model so it encapsulates a practical version

2

of the high school timetabling problem, defined by the online high school administration system Lectio. Section 6
shows computational results, comparing the decomposition to previous approaches for 100 problem instances taken
from the Lectio database. Section 7 concludes on our findings.

2. Related work

Integer Programming has been used to model various educational timetabling problems. However, heuristics are still
the most popular method for these problems, see surveys Schaerf (1999) and Pillay (2013). In terms of IP, de Werra
(1985) describes what is called ’a simple model’ for the class-teacher problem, and existence of solutions is proven
under certain circumstances using graph theoretical models. The problems considered are feasibility problems, and
soft constraints are not added to the models. Birbas et al. (1997) describes a ’fully defined’ IP model for Greek
secondary schools, which is evaluated on five different schools with success. Avella et al. (2007) formulates an IP
model which is used to solve small instances of various origin. The IP is solved within a VLSN algorithm, with good
results.

For the related university course timetabling problem, Daskalaki et al. (2004) presents a model which schedules
courses to timeslots and classrooms, using many so called operational rules. Three different problem instances of
significant size are all solved to optimality using CPLEX. MirHassani (2006) describes the problem for an Iranian
university, and reports good results by applying the XA solver. In Dimopoulou and Miliotis (2001) an IP model is
used to solve the timetabling problem for The Athens University of Economics and Business.

Decomposition of IP models for educational timetabling is not a very well researched topic. Burke et al. (2010)
state that: In the timetabling community, the “times first, rooms second” decomposition is a standard procedure.
However, it seems that this procedure has not been applied much in context of IP models. Burke and Newall (1999)
apply the procedure in context of an Evolutionary Algorithm for Examination Timetabling. In terms of multistage-
decompositions, the importance of Lach and Lübbecke (2008) and Lach and Lübbecke (2012) has already been
discussed. Carter (1983) presents an interesting decomposition algorithm for course timetabling with elective courses.
Stating the problem in terms of a vertex coloring problem facilitates the decomposition of the graph by cliques, such
that the subproblem defined by each clique is solved separately.

In Burke et al. (2010), experiments are conducted on disabling different combinations of soft-constraint penalties
of the Udine Course Timetabling Problem, including one where all room penalties on room allocation are disabled.
Thereby a similar decomposition to that of Lach and Lübbecke (2012) is obtained.

Daskalaki and Birbas (2005) presents an approach for university timetabling, where courses are first assigned
to days (skipping some requirements for compactness), and in the following stage the timetable for each day is
treated locally (enforcing the compactness). Convincing computational results are shown. In Birbas et al. (2009),
a high school timetabling problem is solved by first allocating ’work shifts’ to teachers, and then solving the actual
timetabling problem. This is related to the type of decomposition performed in this paper. Badri (1996) uses a related
approach for university course timetabling, where faculties are first assigned to courses, and then faculties are assigned
to timeslots. However the problems solved are tiny.

Recently, high school timetabling received attention in the International Timetabling Competition 2011 (ITC2011),
see Post et al. (2012a). This competition built upon an uniform format for formulating problem instances (and their
solutions), known as XHSTT (Post et al. (2012b)). Currently, around 50 problem instances are available in this format.
The problem considered in this paper deviates from the XHSTT format in several important ways, which is beyond
the scope of this section to elaborate on. Even though many researches participated in ITC2011, it seems that all were
applying heuristics.

3. An Integer Programming Model for High School Timetabling

As the origin for our approach lies the IP model presented in Sørensen and Stidsen (2013). To make a clear presenta-
tion of the TSD, this IP model is reduced to its essential parts, which is described in the following. In Section 5, the
full IP model is shown in context of the TSD.

A set of events E is given. Each event generally represents one lecture, which is defined as a meeting between
specific resources, with a certain subject as teaching-objective. The set of resources is denotedA. The goal of the high

3

school timetabling problem is to assign each event to a room and to a timeslot, such that no conflicts among resources
occur. The set of rooms and timeslots are denoted R and T , respectively. The decision variable xe,r,t ∈ {0, 1} takes
value 1 if event e ∈ E is assigned room r ∈ R and timeslot t ∈ T . To ensure a feasible solution exists, both the set of
timeslots T and the set of rooms R are extended with a single dummy element, i.e. T = {T ∪ tD} and R = {R ∪ rD}.
This should be interpreted in the way that assigning to these dummy-elements actually means that no timeslot/room
was assigned to the event. Thereby the goal of the IP is to assign as many events as possible to a timeslot and/or a
room. From a practical point of view this is desirable, as the model is used in a decision support context where it
might not be evident how to handle infeasibility. φe,t ∈ R+ denotes the penalty for assigning event e ∈ E to timeslot
t ∈ T , and πe,r ∈ R+ denotes the penalty for assigning event e ∈ E to room r ∈ R. Major penalties are given for
assignments to the dummy-elements, i.e.

φe,tD � φe,t ∀e ∈ E, t ∈ T \ tD (1)
πe,rD � πe,r ∀e ∈ E, r ∈ R \ rD (2)

A room might be unavailable in certain timeslots, indicated by the binary parameter Gr,t ∈ {0, 1}, which takes
value 1 if room r ∈ R is available in timeslot t ∈ T , and 0 otherwise. Furthermore, a set of eligible rooms exists for
each event. Let parameter Ke,r ∈ {0, 1} take value 1 if event e ∈ E can take place in room r ∈ R, and 0 otherwise. Each
event requires a fixed set of resources. Let E′a, a ∈ A, denote the set of events where resource a participates.

We include in the model a set of constraints which will be described later, denoted by the constraint-set Pother,
slightly abusing notation. These constraints define various other important criteria, such as forbidden timeslots for
certain events, events which must be placed in the same timeslots, etc. Since these constraints are not required for
describing the decomposition, their definitions are postponed to Section 5. We allow the set of constraints Pother to
also denote soft-constraints (i.e. constraints which result in a weighted penalty in the objective function if it is not
fulfilled). Thereby these constraints contain all necessary for conditions for modeling the timetabling instances in
question, and represents a large set of distinct types of constraints. It will be argued in the next section that these
constraints can be handled in the decomposition such that optimality of the IP model is not lost, with one exception.

Model (3) shows the IP model.

IP Model for High School Timetabling (3)

min w =
∑

e∈E,r∈R,t∈T

(
φe,t + πe,r

)
xe,r,t (3a)

s.t.

(one time/room)
∑

r∈R,t∈T

xe,r,t = 1 ∀e ∈ E (3b)

(resource conf.)
∑

r∈R,e∈E′a

xe,r,t ≤ 1 ∀a ∈ A, t ∈ T \ tD (3c)

(room conf.)
∑
e∈E

xe,r,t ≤ Gr,t ∀r ∈ R \ rD, t ∈ T \ tD (3d)

(eligible rooms)
∑
t∈T

xe,r,t ≤ Ke,r ∀e ∈ E, r ∈ R (3e)

xe,r,t ∈ Pother (3f)
xe,r,t ∈ {0, 1} (3g)

The objective of the model is to minimize the overall penalty for assignments, given by (3a). Constraint (3b) specifies
that each event must be assigned exactly one timeslot and one room. Events which require the same resource cannot
be scheduled simultaneously (except in the dummy-timeslot), which is ensured by constraint (3c). A room cannot be
used by more than one event in each timeslot. This is specified in constraint (3d). The requirement for eligible rooms
is specified in constraint (3e). Constraint (3f) specifies that constraints Pother should be respected.

Theorem 3.1. The High School Timetabling Problem as specified in (3) is NP-hard.

Proof. We conduct a reduction from Vertex Coloring. Let G = (V, E) be an arbitrary graph and k be an arbitrary
number. The question of the coloring problem would now be whether it is possible to color G with k colors, such that
no two adjacent vertices share the same color.

4

Now construct a High School Timetabling instance in the following way:

• Let there be an event for every vertex, i.e. E = V .

• Make sure there are enough rooms for all events, therefore create a room for every event (i.e. |R| = |E|) and
make sure all events fit in all rooms (i.e. Ke,r = 1 ∀e ∈ E, r ∈ R), and that all rooms are available in all timeslots
(i.e. Gr,t = 1 ∀e ∈ E, r ∈ R).

• For every edge {v1, v2} ∈ E we create a resource in A (i.e. A = E). The events using this resource will be the
vertices connected by the edge (i.e. E′

{v1,v2}
= {v1, v2}).

• We use exactly k timeslots (i.e. T = {1, . . . , k}).

• The additional constraints Pother can be dropped without loss of generality, as we impose no other restrictions
on the timetabling instance. Also as we only search for a feasible solution, the soft constraints can easily be
ignored.

Now we have a direct relation between the Vertex Coloring problem and the new timetabling instance. A solution
of one problem can be transformed into a solution of the other by translating the colors of the vertices into timeslots,
and vice versa. The rooms pose no restriction as every event can be scheduled in its own room.

Therefore solving the timetabling instance would result in solving the Vertex Coloring Problem, and the High
School Timetabling problem is NP-hard.

Here we remark that Model (3) encapsulates many of the basic constraints required by most timetabling problems.
If we for instance consider the XHSTT format, the basic requirement is to assign events to timeslots and resources
(corresponding to rooms in our cases), subject to no clashes between resources. Therefore it is believed that the type
of decomposition considered in this paper can in principle be applied to other timetabling problems as well.

4. Two-Stage Decomposition of the Integer Programming model

The TSD of Model (3) is performed as follows. The model is split into two stages; In Stage I, events are assigned
to timeslots, and in Stage II, events are assigned to rooms. The respective decision variables for these stages are the
following; ye,t ∈ {0, 1} takes value 1 if event e ∈ E is assigned timeslot t ∈ T , and 0 otherwise; ze,r ∈ {0, 1} takes value
1 if event e ∈ E is assigned room r ∈ R, and 0 otherwise. This means that constraints (3b) and (3c) are part of Stage I,
and constraints (3d) and (3e) are part of Stage II.

As for constraints (3f), defined by the set Pother, it is assumed that each of the constraints in Pother is either only
touching the assignment of events to timeslots (denoted Ptimeslot) or the assignment of events to rooms (denoted Proom)
It is shown in Section 5 that this assumption holds, with one exception. This means that constraints Ptimeslot can be
fully stated in terms of variable ye,t, and constraints Proom can be fully stated in terms of variable ze,r. As constraints
Ptimeslot are part of Stage I, these are handled optimally. This is different for Proom, as those constraints are harder to
consider during Stage I. We will therefore address them with greater care in the next sections and show how we can
add weighted room allocations to the decomposed model as a good approximation.

The solution obtained from the Stage I model is given as a parameter to the Stage II model, denoted y∗e,t. The ad-
vantage of this approach is the huge reduction in the number of variables in both stages, which results in a significantly
decreased solving time. The following substitution of variables are made:∑

r∈R

xe,r,t = ye,t (Stage I) (4)

xe,r,t = y∗e,tze,r (Stage II) (5)

The objective (3a) of the original model defines a natural objective for both Stage I and Stage II, since it can be split
into two independent expressions (denoted wI and wII , respectively). If this was not the case (e.g. if an event had
different priorities for rooms depending on the timeslot it was assigned), it would complicate matters in terms of the
Stage I model.

5

To sum up, Models (6) and (7) show Stage I and Stage II, respectively.

Stage I (6)

min wI =
∑

e∈E,t∈T

φe,tye,t (6a)

s.t.

(one timeslot)
∑
t∈T

ye,t = 1 ∀e ∈ E (6b)

(resource conf.)
∑
e∈E′a

ye,t ≤ 1 ∀a ∈ A, t ∈ T \ tD (6c)

ye,t ∈ Ptimeslot (6d)
ye,t ∈ {0, 1} (6e)

Stage II (solution from Stage I is denoted y∗e,t) (7)

min wII =
∑

e∈E,r∈R

πe,rze,r (7a)

s.t.

(one room)
∑
r∈R

ze,r = 1 ∀e ∈ E (7b)

(room conf.)
∑
e∈E

y∗e,tze,r ≤ Gr,t ∀r ∈ R \ rD, t ∈ T \ tD (7c)

(eligible rooms) ze,r ≤ Ke,r ∀e ∈ E, r ∈ R (7d)
ze,r ∈ Proom (7e)
ze,r ∈ {0, 1} (7f)

The outline of the TSD is shown in Figure 1. For a variable x the star-suffixed version x∗ denotes a feasible solution.
Stage I is solved using a MIP solver to obtain a solution y∗e,t, which is given as input to the Stage II model. Note that
Stage I possesses the coloring structure from theorem 3.1. Therefore Stage I is already a hard problem in its most
basic form. Furthermore the value of the LP-relaxation of the Stage I model (denoted wI∗

LP) is a lower bound on the
original model, as the Stage I model can be seen as a relaxation. Solving the Stage II model subject to the solution of
the Stage I model obtains a solution z∗e,t, and a solution to the original model x∗e,r,t can then be derived by equations (4)
and (5).

For this paper we will solve Stage II using the specified IP even though we have not established its complexity yet.
But as constructing a polynomial time algorithm for Stage II that can cope with all the additional constraints would be
out of this papers scope we will postpone this to a potentially later point in time. In the computational results section
we will see that solving Stage II will not be the time-wise bottleneck anyhow.

As previously discussed, the penalties for room allocation can be implicitly handled in Stage I, which is described
in Section 4.1. This extension of Stage I will not only allow better solutions to be found, but possibly also improve-
ments in the bounds found by means of the LP relaxation.

As an alternative approach, we remark that an iterative procedure could in principle be used, such that the solution
obtained from the Stage II model is given as input to the Stage I model, and the whole procedure is repeated. It is
however unclear how the input from the Stage II model should effect the Stage I model to obtain convergence towards
better solutions in terms of the overall objective. Furthermore, such an approach would require that both Stage I and
Stage II can be solved ’quickly’ (for the practical problem treated in this paper, computational results will show that
this is in fact not the case for the Stage I model).

4.1. Extending Stage I with room allocation

The key idea behind extending Stage I with room allocation penalties is to consider Stage II as a matching problem in
a bipartite graph. Constraints (7e) are set aside in the following, as they have not been defined yet. However, it will

6

Two-Stage Decomposition

Original model (xe,r,t)
(assign time-

slots and rooms)

Stage I (ye,t)
(assign timeslots)

timeslot
constraints

Lower bound wI∗
LP

Stage II (ze,r)
(assign rooms)

y∗e,t

room
constraints

Solution
x∗e,r,t

y∗e,t z∗e,t

Figure 1: Two-Stage Decomposition flow chart.

be seen later that these constraints does not fully obey the matching problem structure, and therefore Stage II must
be solved with a MIP solver. This means that the room penalties are only partly incorporated in Stage I, but still this
seems better than having Stage I being totally unaware of these penalties, as already discussed in Section 1.

Some basic graph notation is introduced in the following. A graph is bipartite if its set of vertices can be partitioned
into two sets A and B, such that every edge has one endpoint in A, and the other endpoint in B. A matching in a graph
is a set of edges such that no two of these edges share endpoints. A maximum matching is a matching that contains
the largest possible number of edges. The matching number ν (G) of graph G is the number of edges in a maximum
matching. For a graph with edge-weights, a minimum weighted maximum matching is a maximum matching where
the sum of the weights on the edges of the matching is minimal.

In the Stage II model (7), notice first that the only constraint which treats timeslots is constraint (7c). Since
this constraint applies to timeslots individually, Model (7) can be split into |T | independent optimization prob-
lems. Second, assume that the minimum weighted maximum matching problem of the weighted bipartite graph
Gt =

(
E ∪ R̄, Et

)
fully describes the optimization problem of timeslot t of Model (7). To recognize this, let RD be the

set of |E| distinct dummy-rooms. I.e. for each event a dummy-room is created (and a corresponding edge is added
to the graph) to ensure a matching of every event to a room will always exist. Hence the room-vertices of graph
Gt is given by R̄ = R ∪ RD. The set of edges is given by (skipping edge definitions for the dummy-room vertices)
Et =

{
e ∈ E, r ∈ R | Ke,r = 1 ∧Gr,t = 1

}
, and the weight on each edge is given by πe,r. The goal of the matching prob-

lem is to select a maximum matching with minimum weight. A trivial maximum matching will assign every event to
the dummy-room. Clearly this resembles component t ∈ T of Model (7).

Stating the Stage II model in terms of this graph allows us to exploit some well-known properties of matching
problems in bipartite graphs. In the following, notation is simplified by dropping the t-index where applicable, i.e.
we write G instead of Gt and E instead of Et. Denote by Γ (S) the neighbors of event-nodes S ⊆ E in graph G, i.e.
Γ (S) =

{
i ∈ R̄ | j ∈ S , (i, j) ∈ E

}
. Hence Γ (S) ⊆ R̄. The well-known theorem of Hall states that a bipartite graph

G =
(
E ∪ R̄, E

)
has a matching of all vertices E into R̄ if and only if |Γ (S)| ≥ |S | ∀S ⊆ E. Observe that for timeslot

t ∈ T , the variable ye,t determines whether event e ∈ E is part of graph G. Lach and Lübbecke (2012) used this
theorem to add constraints of the form∑

e∈S

ye,t ≤ |Γ (S)| ∀S ⊆ E, t ∈ T (8)

to the Stage I model to guarantee that the Stage I model would yield a feasible matching problem for every component
t ∈ T of the Stage II model. However, such constraints are redundant in our case, as we are guaranteeing that no
matter how ye,t is selected, a feasible matching will always exist (due to the dummy-rooms). Instead we modify the
expression (8) to provide a lower bound on the weighted matching problem.

7

For the bipartite graph G =
(
E ∪ R̄, E

)
(the edge-weights are set aside for now), let the deficiency of a vertex set

S ⊆ E be defined as def (S) = |S | − |Γ (S)|. Let the deficiency of G be defined as def (G) = maxS⊆E def (S). Theorem
1.3.1 of Lovász and Plummer (2009) states the following:

Theorem 4.1. The matching number of the bipartite graph G =
(
E ∪ R̄, E

)
, is ν (G) = |E| − def (G).

I.e. for the bipartite graph G, def (G) denotes the amount of vertices which are not matched in the maximum
matching.

LetW denote the ordered set of different values found in πe,r, i.e.

W =
{
w ∈ R+ | ∃e ∈ E,∃r ∈ R : πe,r = w

}
(9)

wi < w j ⇔ ord(wi) < ord(w j) ∀(wi,w j) ∈ W (10)

Notice that no restrictions are posed on the amount of different values found, but it should be remarked that for our
practical case, the cardinality ofW is small (typically below 10).

The bipartite graph G is split into subgraphs, one subgraph for each w ∈ W. A subgraph is denoted as G≤w =(
E ∪ R̄, E≤w

)
, where the set of edges are those with at least weight w,

E≤w =
{
(e, r) ∈ E | πe,r ≤ w

}
(11)

By these definitions, it is clear that∣∣∣Γ (
G≤w1

)∣∣∣ ≤ ∣∣∣Γ (
G≤w2

)∣∣∣ ≤ . . .⇒ (12)

def
(
G≤w1

)
≥ def

(
G≤w2

)
≥ . . . (13)

Using the deficiencies of these subgraphs, a lower bound on the minimum weight maximum matching can be stated.
Let aw ∈ N0 be defined as

awi =

{
ν
(
G≤wi

)
− ν

(
G≤wi−1

)
= def

(
G≤wi−1

)
− def

(
G≤wi

)
if i > 1

ν
(
G≤w1

)
= |E| − def

(
G≤w1

)
otherwise (14)

The intuition behind aw is to measure the change in the matching number when edges with weight w are added to the
subgraph G≤wi−1 . Note that 0 ≤ aw ≤ |E| for any w ∈ W, as 0 ≤ def (G≤w) ≤ |E|.

Theorem 4.2. The quantity∑
w∈W

w · aw

is a lower bound on a minimum weight maximum matching in the edge-weighted bipartite graph G.

Proof. Assume for contradiction there exists a maximum matching M with lower weight, i.e.∑
e∈M

we <
∑

w∈W

w · aw

Let bw denote the number of edges in M of weight lesser or equal w, i.e.

bw = |{e ∈ M : we ≤ w}|

Let k be the smallest number such that,

bwk >

k∑
i=1

awk

8

This number must exist since M is a cheaper matching. For the subgraph G≤wk , bwk can never exceed the matching
number ν

(
G≤wk

)
(by Theorem 4.1). We say ’exceed’ as the matching might not include precisely ν

(
G≤wk

)
edges of

weight lesser or equal wk. This gives:

bwk ≤ ν
(
G≤wk

)
= |E| − def

(
G≤wk

)
= |E| −def

(
G≤w1

)
+ def

(
G≤w1

)
− def

(
G≤w2

)
+ def

(
G≤w2

)
. . . + def

(
G≤wk−1

)︸ ︷︷ ︸
=0

−def
(
G≤wk

)
=

k∑
i=1

awi

which is a contradiction.

This lower bound is minimized in the objective of the Stage I model. Hence, any lower bound on the Stage I model is
a lower bound on the overall problem. Additional notation is needed for stating the extended Stage I model.

The neighbors of event-nodes S ⊆ E in graph Gt,≤w is denoted Γt,≤w (S) for timeslot t and weight w. Let the
variable deft,≤w ∈ N0 be the deficiency of subgraph Gt,≤w. The deficiencies for each subgraph can be determined by
adding the following constraint (follows directly from Theorem 4.1 and the definition of the deficiency for a bipartite
graph),∑

e∈S

ye,t − deft,≤w ≤
∣∣∣Γt,≤w (S)

∣∣∣ ∀S ⊆ E, t ∈ T ,w ∈ W (15)

Model (16) shows the extended model. Variables deft,≤w and at,w are specified to be continuous as they will naturally
take integer values. Obviously an exponential amount of constraints is added due to (16d), but it will be shown that
for our practical purpose, the amount of required constraints is low.

Stage I extended with Hall’s condition (16)

min wI =
∑

e∈E,t∈T

φe,tye,t +
∑

t∈T ,w∈W

wat,w (16a)

s.t.

(one timeslot)
∑
t∈T

ye,t = 1 ∀e ∈ E (16b)

(resource conf.)
∑
e∈E′a

ye,t ≤ 1 ∀a ∈ A, t ∈ T \ tD (16c)

(Hall’s)
∑
e∈S

ye,t − deft,≤w ≤
∣∣∣Γt,≤w (S)

∣∣∣ ∀S ⊆ E, t ∈ T ,w ∈ W (16d)

(LB) |E| − deft,≤w1 = at,w1 ∀t ∈ T (16e)
(LB) deft,≤w−1 − deft,≤w = at,w ∀t ∈ T ,w ∈ W, ord(w) > 1 (16f)

ye,t ∈ {0, 1} (16g)
deft,≤w, at,w ∈ R+ (16h)

Example 4.1. Below is shown an example of a bipartite graph and its subgraphs for some timeslot. Three dif-
ferent room-weights exists, W = {0, 2, 10}. Clearly, an optimal solution to the matching problem of this graph is
(e1, r1), (e2, r3), (e3, r2) with value 2. The subgraphs for weights 0 and 2 are shown, and the lower bound derived.

9

e1

e2

e3

r1

r2

r3

r1
D

r2
D

r3
D

0
2
0
0
2
0

10

10

10

e1

e2

e3

r1

r2

0

0
0

0

ye1 − def≤0 ≤ 1
ye2 − def≤0 ≤ 2
ye3 − def≤0 ≤ 1
ye1 + ye2 − def≤0 ≤ 2
ye1 + ye3 − def≤0 ≤ 2
ye2 + ye3 − def≤0 ≤ 2
ye1 + ye2 + ye3 − def≤0 ≤ 2

⇒

def≤0 = 1
a0 = |E| − def≤0 = 3 − 1 = 2

e1

e2

e3

r1

r2

r3

0
2
0
0
2
0

ye1 − def≤2 ≤ 2
ye2 − def≤2 ≤ 3
ye3 − def≤2 ≤ 1
ye1 + ye2 − def≤2 ≤ 3
ye1 + ye3 − def≤2 ≤ 2
ye2 + ye3 − def≤2 ≤ 3
ye1 + ye2 + ye3 − def≤2 ≤ 3

⇒

def≤2 = 0
a2 = def≤0 − def≤2 = 1 − 0 = 1

Hence the lower bound is derived as:

LB = a00 + a22 = 2

Example 4.2. Naturally, the lower bound is not necessarily tight, as shown by the following small example.

e1

e2

r3

r4

1
2
2

For weight w1 = 1 the deficiency of G1 is def (G1) = 1 and therefore a1 = 1. As the deficiency for G2 is def (G2) = 0
we also have a2 = 1. The lower bound therefore reads 1 · 1 + 2 · 1 = 3. But obviously the only (and therefore minimal
weight) maximum matching has weight 4. In fact, by increasing the weight on the weight 2 edges, it is seen that the gap
between the lower bound and the actual minimal weight maximum matching could potentially be arbitrarily large. For
the practical problem handled later, the weights can take values {1, 2, . . . , 10}, and therefore the gap between weights
is low. The gap between the lower bound and the actual matchings obtained will be investigated experimentally.

4.2. An exact approach using Egerváry’s theorem

An an alternative approach to the derived lower bound, the theorem of Egerváry (Egerváry (1931)) can be used to
characterize the minimum weight of a matching in a bipartite graph, which deserves a mentioning in this context. The
theorem states the following ((Schrijver, 2003, Theorem 17.1), here stated as a minimum weight problem):

Theorem 4.3. Let G = (V, E) be a bipartite graph and let w : E → R+ be a weight function. Then the minimum
weight of a matching in G is equal to the maximum value of y(V), where y : V → R+ is such that

yu + yv ≤ we ∀u, v ∈ V, (u, v) ∈ E

However, since we consider a bipartite graph for each timeslot, and each bipartite graph in worst case has |E| |R|
vertices (which occurs often in practice), the amount of required constraints is of magnitude |E| |R| |T |, so this is not
a tractable approach. Furthermore, since the graph is not static (i.e. its structure depends on assignments of events to
timeslots), a min−max formulation would be required.

10

4.3. Generating Hall’s inequalities

To generate the Hall’s inequalities, it is necessary to exploit the structure of the underlying graph. I.e. we use
problem specific knowledge to overcome the requirement of enumerating all subsets of events. In the Lectio case, two
important features are known about the bipartite graphs:

• An event often has a special association with one specific room. This is either because the event is locked to
that room, or because a penalty is imposed on not assigning an event to the room it was previously assigned
to. In the later case, this means that one room has a lower weight than all other rooms for the particular event.
Hence, in the subgraph G≤w for this respective lower weight, only a single edge exists for the event. An event
with only a single adjacent edge is denoted as a singleton event from now on.

• Furthermore, predefined feature-groups of rooms exist. A feature group of rooms is devoted to a certain type
of lecture, for instance chemistry or physics, which require a room with specialized equipment. Hence many
events are adjacent to the exact same set of rooms.

These graphs are hence exploited by separately considering the inequalities induced by singleton events and the
inequalities induced by all other events, and finally those inequalities induced by combining these. The approach
is formalized below. It should be remarked that applying this type of decomposition will require exploiting at least
some properties of the underlying graph. We refer to Balas and Pulleyblank (1983), Edmonds (1965) and Lach and
Lübbecke (2008) as helpful resources in this aspect.

For a subset of rooms R ⊆ R, let Γ−1 (R) be the set of events adjacent to only rooms in R, i.e. Γ−1 (R) =

{ e ∈ E | Γ ({e}) ⊆ R }.

Theorem 4.4. The Hall inequalities∑
e∈S

ye − def ≤ |Γ (S)| ∀S ⊆ E

are fully contained in∑
e∈Γ−1(R)

ye − def ≤ |R| ∀R ⊆ R

Proof. Let S ⊆ E be any set of events. Now we let R = Γ (S). Obviously we have S ⊆ Γ−1 (R) = Γ−1 (Γ (S)). If∑
e∈Γ−1(R) ye − def ≤ |R| holds we get∑

e∈S

ye − def ≤
∑

e∈Γ−1(R)

ye − def ≤ |R| = |Γ (S)|

This means that instead of having a constraint for every subset of events we can do with a constraint for every subset
of rooms (which are considerably less).

Next we can further reduce the number of necessary constraints by exploiting symmetry between rooms. Rooms
which are adjacent to exactly the same events can be grouped, and essentially treated as one room.

Theorem 4.5. Let R1, . . . ,Rm ⊆ R be distinct (i , j ⇒ Ri ∩ R j = ∅) subsets of rooms. Let I ⊆ {1, . . . ,m} be an index
set such that⋃

i∈I

Γ−1(Ri) = Γ−1

⋃
i∈I

Ri

 (i.e. there is no event that only fits into a combination of the room sets in I)

Then the Hall constraint∑
e∈Γ−1(⋃i∈I Ri)

ye − def ≤
∣∣∣∣∣⋃

i∈I

Ri

∣∣∣∣∣
11

is dominated by∑
e∈Ri

ye − defi≤ |Ri| ∀i ∈ I∑
i∈I

defi ≤ def

where defi ∈ N0 is the deficiency of index i ∈ I, i.e. defi = def
(
Γ−1 (Ri)

)
.

Proof. First note that
∑

i∈I defi ≤ def implies∑
e∈Γ−1(⋃i∈I Ri)

ye − def ≤
∑
i∈I

∑
e∈Γ−1(Ri)

ye − defi

Next by
∑

e∈Γ−1(Ri) ye − defi ≤ |Ri| we get∑
i∈I

∑
e∈Γ−1(Ri)

ye − defi ≤
∑
i∈I

|Ri| =

∣∣∣∣∣⋃
i∈I

Ri

∣∣∣∣∣
where the later equality holds as the Ri are distinct.

Since the amount of possible ways to select I is exponential, this shows a potential way to limit the amount of
necessary inequalities.

The graphs of the Lectio instances usually have the following structure, as previously discussed: Certain events
are fixed to a specific room. These events are known as singleton events, and are denoted with the set E1. If the
singleton events are discarded, all other rooms can be grouped into groups I = {1, 2, . . . ,m}, i.e. Ri ⊆ R ∀i ∈ I, where
every room is connected to the very same events as the other rooms of the same group. In particular this means

Γ−1 (R) \E1 = ∅ ∀R (Ri, i ∈ I (17)

I.e. no event is adjacent to only a subset of rooms of the room-groups, except for the singleton events. The key
observation here is that the number of these groups of rooms is low, yielding a tractable way to generate the Hall
inequalities. By Theorem 4.4 we know that a subset of rooms fully characterises one of the Hall constraints (and that
it is sufficient to consider only those).

Corollary 4.1. Given the structure of the Lectio graphs, only the following subsets of rooms need to be considered
wrt. eq. (15) (in the altered form defined by Theorem 4.4):

(I) Γ(e) ∀e ∈ E1 (18)

(II)
⋃
i∈I

Ri ∀I ⊆ I (19)

Proof. For contradiction, let R̃ ⊆ R be any other subset of rooms, i.e.

R̃ , Γ (e) ∀e ∈ E1

R̃ ,
⋃
i∈I

Ri ∀I ⊆ I

R̃ can be decomposed into subsets R̃i, i ∈ I, such that R̃1 ⊆ R1, R̃2 ⊆ R2, . . . , R̃m ⊆ Rm and
⋃

i∈I R̃i = R̃.
For each of the decomposed room sets R̃i we can now have one of the three following cases (by eq. (17), which

disallows that R̃i , Ri and Γ−1
(
R̃i

)
\E1 , ∅):

1. R̃i = Ri

2. R̃i , Ri and Γ−1
(
R̃i

)
∩ E1 , ∅

12

3. R̃i , Ri and Γ−1
(
R̃i

)
= ∅

Let the respective indices be contained in the sets I1, I2 and I3. The rooms from the third case (R̃i, i ∈ I3) do not add
events to the left hand side of a Hall constraint and can therefore be ignored.

If combining the rooms from the first case to R′ =
⋃

i∈I1
R̃i we get one of the already considered combinations of

room groups. Now note that there is no event fitting into the combination of R′ with any of the rooms from the second
case (their Γ−1 only contains singleton events) and therefore the condition for Theorem 4.5 is met:⋃

i∈I2

Γ−1
(
R̃i

) ∪ Γ−1 (
R′

)
= Γ−1

(⋃
i∈I2

R̃i

)
∪ R′

So we now know that the Hall constraint corresponding to R̃ is unnecessary.

Algorithm (4.1) shows the implemented algorithm for generation all necessary Hall constraints according to this
construction.

Algorithm 4.1 Generating Hall’s conditions

1: input: bipartite graph G =
(
E ∪ R̄, E

)
2: output: set of sets of rooms H, which each constitute a Hall inequality
3: identify E1 of G
4: Nr =

{
e ∈ E \ E1 | r ∈ Γ (e) , ∅

}
. Identity adjacent events for each room

5: T =
{

R ⊆ R̄ | (ri, r j) ∈ R, i , j,Nri = Nr j

}
. Groups of rooms which are adjacent to the same events

6: for all S ∈ P (T) do . P (T) denotes the powerset of T , i.e. the collection of all subsets
7: H = H ∪ { r ∈ R | R ∈ S } . Add set of room (eq. (19))
8: end for
9: H = H ∪ {r} ∀r ∈ Γ

(
E1

)
. Add rooms of singleton events (eq. (18))

In Line 5 rooms are grouped. Here it should be remarked that this is done in a way that identifies the minimum number
of groups of rooms. The amount of generated inequalities is hence exponential in the number of groups of rooms. For
the Lectio high school timetabling problem, this number is in general low. However, an artificial limit of a maximum
of 12 different groups of rooms is imposed, allowing in magnitude of 212 inequalities to be generated for each timeslot.
In practice, only two problem instances are restricted by this limit ("HasserG2012" and "SlagelG2012"). The room
groups to generate inequalities are selected by ordering the room groups in terms of total number of adjacent events
to all other room groups, and taking those room groups where this number is highest. Obviously, omitting some
inequalities will not change the fact that the room allocation penalty added to Stage I is a lower bound on the objective
of Stage II.

5. Lectio High School Timetabling Problem

To establish computational results, Stage I and Stage II are extended to the full version of the Danish case of high
school timetabling described in Sørensen and Stidsen (2013). This variant of the problem is used in the timetabling
component of the high school ERP-system Lectio, and hence reflects all aspects of a practical timetabling optimization
problem. Lectio Timetabling is used by many high schools in Denmark, and this formulation of the problem has been
used in production mode for over a year. In this paper a brief introduction to each of the added constraints and
variables is given. More in-depth description and motivation can be found in Sørensen and Stidsen (2013).

This timetabling problem contains more types of constraints than what is usually found in the literature. This is
mainly related to the big number of different high schools which use it, which inevitably gives a big variety of required
features. However, a conversion scheme from this timetabling problem to the general XHSTT format is known, so the
Lectio problem fits within the general concepts of high school timetabling problems.

Extensive computational experiments have shown that the usual formulation of this timetabling problem using
a binary variable with three indices is very challenging for the commercial MIP solver Gurobi 5, which is among

13

the very best general-purpose MIP solvers according to recent benchmarks of Mittelman (2013). Therefore this
timetabling problem is a good candidate for testing the TSD approach.

5.1. Stage I

The set of timeslots T is defined by the combination of the set of days D, and the set of daily-timeslots (known as
modules) M. The set of resources A consists of teachers and students, which is also known as the set of entities.
Furthermore, the set of classes is denoted C. A class c ∈ C is a non-physical resource treating a specific teaching-
subject, and is associated with a certain set of events. Hence, an event can be viewed as a single lecture of a certain
class. Parameter Je,c ∈ {0, 1} takes value 1 if event e ∈ E is part of class c ∈ C, and 0 otherwise.

Variable va,t ∈ {0, 1} takes value 1 if entity a ∈ A is active in timeslot t ∈ T , and 0 otherwise. Variable fa,d ∈ {0, 1}
takes value 1 if entity a ∈ A has no events scheduled on events on day d ∈ D (we say that the entity has a day off, even
though he/she might be occupied by unscheduled activities, such as lecture preparation), and 0 otherwise. Variable
bc,t ∈ {0, 1} takes value 1 if class c ∈ C has at least one lecture in timeslot t ∈ T , and 0 otherwise. Variable nc,d ∈ {0, 1}
takes value if class c ∈ C has a neighbor-day conflict on day d ∈ D. A neighbor-day conflict occurs when the same
class has scheduled events on two consecutive days. Variable oa,d ∈ {0, 1} takes value 1 if entity a ∈ A has only one
event on day d ∈ D, and 0 otherwise. Days with only one lecture are undesirable and should be avoided. Variable
wc ∈ N0 is the amount which class c ∈ C is ’out of week-balance’. I.e. if the set of timeslots is made up of times from
more than one week, the amount of events of each class in each week must be equivalent (as far as possible). Variable
ha,d ∈ N0 is the amount of idle timeslots (a timeslot with no activity, but there exists both at least one earlier and one
later timeslot with activity) for entity a ∈ A on day d ∈ D. Variables ha,d, ha,d ∈ N0 denote the ordinal number of the
first and last timeslot with activity on day d ∈ D for entity a ∈ A, respectively.

The objective consists of 6 additional terms. These denote the weighted sum of entity idle slots (weight φa ∈ R+),
neighbor-day conflicts (weight ζ ∈ R+), days with only one lecture (weight ηa ∈ R+), days-off for teachers (weight
γa ∈ R+), days-off for students (weight δa ∈ R+), and class week stability (weight ι ∈ R+), respectively.

Let parameters S e and Ce be the set of events which should be scheduled in the same timeslot as event e ∈ E, and
in the timeslot immediately following event e ∈ E, respectively. Parameter Pd,d′ ∈ {0, 1} takes value 1 if day d ∈ D
and day d′ ∈ D are neighbor-days, and 0 otherwise. Parameter Rc,d ∈ {0, 1} takes value 1 if class c ∈ C is part of
some event which is locked to some timeslot on day d ∈ D, and let Nc ∈ N0 be the number of allowed neighbor-day
conflicts for class c ∈ C. Td denotes the set of timeslots on day d ∈ D. Parameter De,t ∈ {0, 1} takes value 1 if event
e ∈ E can be scheduled in timeslot t ∈ T , and 0 otherwise. Parameter Fa ∈ N0 denotes the amount of required days
off for entity a ∈ A. Parameter Wa ∈ N0 denotes the maximum amount of events which can be scheduled to entity
a ∈ A on any given day.

A class can only have one event assigned to each day, unless it is specified that multiple events should be placed
in contiguous positions. We say that such day-conflicts are infeasible. The set E′′′ ⊆ E denotes the set of events for
which day-conflicts are checked.

The most common case is that a school creates a timetable for a single week. However, some schools desire to
create a two-week timetable instead. This allows more flexibility in the planning; take for instance a class with a
nominated teaching load of three events per week. In case the school uses a two-week timetable, this class can for
instance have one double lecture in the first week, and two double lectures in the second week. d

(
T

)
and d

(
T

)
denotes the set of days in the first and in the second week, respectively. T and T denotes the timeslots in the first and
second week, respectively.

The complete Stage I model is shown in (20).

14

Stage I Lectio (20)

min wI =

∑
e∈E,t∈T

φe,tye,t +
∑

t∈T ,w∈W

wat,w +
∑

a∈A,d∈D

βaha,d + ζ
∑

c∈C,d∈D

nc,d +
∑

a∈A,d∈D

ηaoa,d

+
∑
a∈A

γa

[
|D| −

∑
d∈D

fa,d
]

+
∑

a∈A,d∈D

δa fa,d + ι
∑
c∈C

wc

(20a)

s.t.
(one timeslot)

∑
t∈T

ye,t = 1 ∀e ∈ E (20b)

(entity time aux.)
∑
e∈E′a

ye,t = va,t ∀a ∈ A, t ∈ T (20c)

(entity conf.)
∑
t∈Td

va,t + fa,d ≤ 1 ∀a ∈ A, d ∈ D (20d)

(Hall’s)
∑
e∈S

ye,t − deft,≤w ≤
∣∣∣Γt,≤w (S)

∣∣∣ ∀S ⊆ E, t ∈ T ,w ∈ W (20e)

(room alloc. lb) |E| − deft,≤w1 = at,w1 ∀t ∈ T (20f)
(room alloc. lb) deft,≤w−1 − deft,≤w = at,w ∀t ∈ T ,w ∈ W, ord(w) > 1 (20g)
(locked time) ye,t = 1 ∀e ∈ E, t ∈ T , LT e,t = 1 (20h)
(same time) ye,t − ye′,t = 0 ∀e ∈ E, e′ ∈ S e, t ∈ T (20i)

(cont. times) ye,t − ye′,t′ = 0 ∀e ∈ E, e′ ∈ Ce, (t, t′) ∈ T , dt = dt′ ,
ord(t) + 1 = ord(t′) (20j)

(n.d. conf.)
∑
t∈Td

bc,t +
∑
t∈Td′

bc,t − nc,d ≤ 1
∀c ∈ C, (d, d′) ∈ D, Pd,d′ = 1,

Rc,d + Rc,d′ ≤ 1 (20k)

(n.d. conf.)
∑
d∈D

nc,d ≤ Nc ∀c ∈ C (20l)

(forbid. times)
∑

t∈T ,De,t=0

ye,t = 0 ∀e ∈ E (20m)

(idle slots) ha,d − ha,d −
∑
t∈Td

va,t + 1 = ha,d ∀a ∈ A, d ∈ D (20n)

(idle slots) |M| − (|M| − ord(t)) va,t ≥ ha,d ∀a ∈ A, d ∈ D, t ∈ Td (20o)
(idle slots) ord(t)va,t ≤ ha,d ∀a ∈ A, d ∈ D, t ∈ Td (20p)
(days off)

∑
d∈D

fa,d ≥ Fa ∀a ∈ A (20q)

(days off)
∑
t∈Td

va,t + fa,d ≥ 1 ∀a ∈ A, d ∈ D (20r)

(day conf.)
∑

e∈E′′′
Je,cye,t ≤ bc,t ∀c ∈ C, t ∈ T (20s)

(day conf.)
∑
t∈Td

bc,t ≤ 1 ∀c ∈ C, d ∈ D (20t)

(work limit)
∑

e∈E,t∈Td

ye,t ≤ Wa ∀a ∈ A, d ∈ D (20u)

(one lecture) 2 −
∑
t∈Td

va,t − 2 fa,d ≤ oa,d ∀a ∈ A, d ∈ D (20v)

(class stabl.)
∣∣∣∣ ∑
e∈E,t∈T

Je,cye,t −
∑

e∈E,t∈T

Je,cye,t

∣∣∣∣ − 1 = wc ∀c ∈ C (20w)

(d.o. stabl.)
∣∣∣∣ ∑
d∈d(T)

fa,d −
∑

d∈d
(
T

) fa,d
∣∣∣∣ ≤ 1 ∀a ∈ A (20x)

ye,t ∈ {0, 1} (20y)
va,t, fa,d, bc,t, nc,d, oa,d ∈ [0, 1] (20z)
ha,d, ha,d, ha,d,wc, deft,≤w, at,w ∈ R+ (20aa)

15

Constraint (20c) constraints the auxiliary variable va,t properly. Constraint (20d) treats entity conflicts in a slightly
changed formulation, to also constrain variable fa,d properly. Constraints (20e)-(20g) define the lower bound on
room allocation, and are similar to those previously described. Constraint (20h) ensures the assigning of events are
locked to a certain timeslot. Constraints (20i) and (20j) ensure the placement of events which must be placed in the
same/contiguous timeslots. Constraints (20k) and (20l) ensure that variable nc,d is constrained properly, and that no
more than Nc neighbor-day conflicts are scheduled for class c ∈ C. Constraint (20m) poses restrictions on timeslots for
which an entity is unavailable. Constraints (20n)-(20p) ensures that idle slots for entities are penalized accordingly.
Constraint (20q) ensures that sufficient days off is assigned to each entity. Constraint (20r) makes sure that if an entity
a ∈ A has no event on some day d ∈ D, then variable fa,d is forced to take value 1. This is necessary as this variable
is minimized in the objective. Constraints (20s) and (20t) ensure that day-conflicts for classes does not occur, and
constraints the variable bc,t properly. Constraint (20u) ensures that the limit on the amount of events assigned to a day
for entity a is respected. For an entity, days with only one event scheduled are undesirable. Constraint (20v) penalizes
days with only one events scheduled for entity a. Constraint (20w) forces week-stability for events of classes, i.e. in
case two-weeks are being planned, events for courses must be spread evenly throughout the weeks. Constraint (20x)
ensures that in case several weeks are being planned, the days off for an entity are spread evenly throughout the weeks.

5.2. Stage II

Let variable vc,r ∈ {0, 1} take value 1 if there is at least one event of which class c ∈ C participates assigned to room
r ∈ R, and 0 otherwise. Variable sc ∈ N0 is the amount of ’excess’ rooms assigned to events of class c ∈ C, i.e. the
total amount of rooms assigned minus one. This is used to enforce room stability for classes, since it is undesirable
for a class to be assigned too many different rooms. Parameter LRe,r ∈ {0, 1} takes value 1 if event e ∈ E is locked
room r ∈ R.

Stage II Lectio (21)

min wII =
∑

e∈E,r∈R

πe,rze,r + ε
∑

c

sc (21a)

s.t.

(one room)
∑
r∈R

ze,r = 1 ∀e ∈ E (21b)

(room conf.)
∑
e∈E

y∗e,tze,r ≤ Gr,t ∀r ∈ R \ rD, t ∈ T \ tD (21c)

(eligible rooms) ze,r ≤ Ke,r ∀e ∈ E, r ∈ R (21d)
(locked rooms) ze,r = 1 ∀e ∈ E, r ∈ R, LRe,r = 1 (21e)

(room stbl.)
∑

e∈E,t∈T\tD

Je,cy∗e,tze,r −
∑
e∈E

Je,cvc,r ≤ 0 ∀r ∈ R \ rD, c ∈ C (21f)

(room stbl.)
∑
r∈R

vc,r − 1 ≤ sc ∀c ∈ C (21g)

(not only room)
∑

r∈R\rD

y∗e,tD
ze,r −

∑
r∈R

LRe,r ≤ 0 ∀e ∈ E (21h)

ze,r, vc,r ∈ {0, 1} (21i)
sc ∈ R+ (21j)

Constraint (21e) ensures that events with locked rooms are assigned accordingly. Constraints (21f) and (21g) con-
straints variables vc,r and sc properly, and thereby penalizes room stability. Constraint (21h) enforces that an event
cannot be assigned a room if it not assigned to a timeslot, unless the event is locked to a specific room.

Notice that the room stability constraints (21f) and (21g) of Model (21) are not handled in any way in the Stage
I model. Additional constraints which handle these constraints would theoretically improve the decomposition. It is
however not trivial to model these constraints as a matching problem in a bipartite graph, so another approach may
be required. This is a subject for future research. Apart from the room stability constraints, all other constraints are

16

optimally handled by the decomposition, with the exception of the room allocation penalties, which are only partially
integrated in the Stage I model.

6. Computational Results

For implementation purposes, Gurobi 5.0.1 was used as MIP solver on a machine with an Intel Core i7 930@2.80GHz
CPU and 12GB of RAM, running Windows 8 64bit. Default parameter settings were used, and the interface was
C# 4.5. The problem instances have been taken directly from the Lectio database, and are the same ones used in
Sørensen and Stidsen (2013). These 100 real-world datasets provide a substantial ground for concluding on the
numerical experiments. Note that 3 of these instances are available in the XHSTT format (Post et al. (2012a)) at
http://www.utwente.nl/ctit/hstt/. We plan to make additional datasets available in this format in the future.

A time limit of 7200 seconds was imposed (6480 seconds for Stage I, and 720 seconds for Stage II), and Gurobi
was allowed to use 8 threads. For the Stage I model, the initial solution given to Gurobi consists of assigning all
events to the dummy-timeslot, except for those events locked to a specific timeslot. The initial solution for the Stage
II model is analogous; Events are assigned to the dummy-room or the room which the event is locked too. A single
run was used to establish results, as Gurobi has deterministic behavior.

Two other solution approaches are described for the same timetabling problem in Sørensen and Stidsen (2013).
These are used in comparison with the algorithm of this paper, and are briefly described below:

• The ’usual’ formulation using a three-index binary variable, denoted 3-index model in the following. This is
solved using Gurobi with standard settings, with a time limit of 7200 seconds. The objectives listed are the
result of a single run.

• An Adaptive Large Neighborhood Search heuristic, denoted ALNS in the following. The reported objectives
for this method is the average obtained over 10 runs, each run with a timelimit of 240 seconds. Hence, the
comparison of objectives wrt. this heuristic is not ’fair’, but it will be seen that even with this shorter timelimit,
the ALNS in general performs best. This method is the one currently used by the customers of Lectio.

Furthermore, we test the described decomposition both with and without the room penalties added to the Stage 1
model (i.e. Model (20) with and without equations (20e), (20f) and (20g)). Thereby an empirical test of the effect of
extending Stage I is performed. In the following, these two methods are denoted TSD and TSDRoomLB, respectively.
Notice that the results for TSD can also be found in the technical report Sørensen and Stidsen (2013).

Table 1 shows the obtained results. Table 2 summarizes some key numbers. Table 3 gives a summary for the three
exact methods. A gap between an IP objective z and a lower bound LB is calculated by 100 z−LB

z .

Table 1: Computational results. For each dataset is shown the objective ’Obj’ obtained by each method. For the
IP-based approaches, also the best found lower bounds ’LB’ are shown (i.e. for the 3-index model is shown the final
value of the LP-relaxation used internally by Gurobi, and for TSD is shown the final value of the LP-relaxation of the
Stage I model, as described in Section 4). If a solution is best overall, it is marked in bold. If a bound is best overall, it
is marked with a ’*’. For the two-stage approach of this paper is shown the runtime ’Time’ and final gap ’Gap’ found
by Gurobi for both Stage I and Stage II. For Stage II, column ’Diff.’ denotes the difference between the lower bound
for room allocation of Stage I, and the actual matching obtained by Stage II (excluding room stability). Column ’Gap’
denotes the best overall gap, i.e. the gap between the best available solution and the best available bound.

Previous methods TSDRoomLB

ALNS 3-index model TSD Stage I Stage II

Dataset Obj Obj LB Obj LB Time Gap Time Gap Diff. Obj LB Gap

AalborTG2012 6317 6118 *5946 6018 5934 >6480 0.7 4 0.0 0 6005 5941 1.0
AarhusA2011 10037 58015 - 15872 *5986 >6480 66.6 154 0.0 160 18122 5985 40.4
AarhusA2012 7971 17096 5722 8947 *6005 >6480 49.4 108 0.0 48 11936 5962 24.7
Aars2009 14900 49504 - 20780 11874 >6480 47.9 14 0.0 0 24240 *12641 15.2
Aars2010 16268 81970 - 25057 13134 >6480 42.7 22 0.0 1 24692 *14151 13.0
Aars2011 14256 77967 - 30623 9709 >6480 68.9 10 0.0 3 33790 *10501 26.3

Continued on next page

17

Table 1 – continued from previous page
Previous methods TSDRoomLB

ALNS 3-index model TSD Stage I Stage II

Dataset Obj Obj LB Obj LB Time Gap Time Gap Diff. Obj LB Gap

Aars2012 10701 55049 - 21206 7456 >6480 60.3 21 0.0 1 20274 *8044 24.8
Alssund2010 9967 52717 - 23173 6811 >6480 67.9 324 0.0 8 21455 *6876 31.0
Alssund2012 29803 108810 - 108810 - >6480 - 6 0.0 0 108810 - -
BagsvaG2010 3960 6777 3171 3916 3063 >6480 19.4 14 0.0 9 4051 *3227 17.6
BirkerG2011 42063 119600 - 119600 - >6480 - 7 0.0 0 119600 - -
BirkerG2012 19552 110180 - 19322 15662 >6480 0.9 >720 1.0 16 18182 *17709 2.6
BjerrG2009 16877 52639 - 35514 11094 >6480 55.2 11 0.0 0 27396 *12288 27.2
BjerrG2010 4983 12868 *3928 5788 3868 >6480 33.1 13 0.0 37 5977 3925 21.2
BjerrG2011 6334 13009 *4142 9302 4060 >6480 64.8 97 0.0 20 11676 4079 34.6
BjerrG2012 8023 17200 *5055 15265 5007 >6480 71.2 160 0.0 16 17404 4991 37.0
BroendG2012 2040 2005 *1881 1929 1859 1028 0.0 17 0.0 5 1928 1877 2.4
CPHWGym2010 6775 34415 - 19363 *3759 >6480 77.4 11 0.0 0 16589 3752 44.5
CPHWGym2011 5679 38232 - 16212 4095 >6480 72.7 10 0.0 0 15046 *4103 27.8
CPHWGym2012 6762 40945 - 15543 4205 >6480 75.5 19 0.0 1 17194 *4215 37.7
CPHWHG2012 11077 46625 8157 23088 *8338 >6480 64.1 16 0.0 0 23219 8326 24.7
CPHWHTX2010 11342 27174 9179 15943 8828 >6480 52.1 7 0.0 0 19314 *9259 18.4
CPHWHTX2011 20734 22466 20460 20708 18490 >6480 0.6 6 0.0 11 20632 *20470 0.8
CPHWHTX2012 16256 25998 14481 21392 13115 >6480 35.4 4 0.0 0 22481 *14531 10.6
DetFG2012 7560 8017 *7168 7265 7018 >6480 0.7 8 0.0 68 7258 7116 1.2
DetKG2010 2947 6058 1732 4006 *1821 >6480 55.6 3 0.0 4 4102 1814 38.2
DetKG2011 2820 5594 1732 4366 1780 >6480 60.9 2 0.0 2 4577 *1781 36.8
EUCN2009 3737 7557 2911 4298 2856 >6480 40.3 4 0.0 0 5001 *2982 20.2
EUCN2010 3882 4231 3329 3463 3246 >6480 1.4 6 0.0 1 3430 *3375 1.6
EUCN2011 1468 1435 *1395 1430 1384 >6480 2.2 1 0.0 2 1426 1384 2.2
EUCN2012 3289 9430 2327 5059 *2363 >6480 60.2 4 0.0 0 5913 2359 28.2
EUCNHG2010 1505 1476 1371 1421 1368 >6480 2.1 2 0.0 0 1408 *1378 2.1
EUCS2012 3714 4689 3576 3783 3347 >6480 3.0 3 0.0 0 3695 *3584 3.0
FaaborgG2008 68124 125330 - 125330 - >6480 - 14 0.0 0 125330 - -
FalkonG2009 10449 88890 - 88890 - >6480 - 5 0.0 0 88890 - -
FalkonG2011 8584 76170 - 16543 *5183 >6480 75.9 >720 0.0 48 20758 4953 39.6
FalkonG2012 10143 100190 - 16666 *6105 >6480 58.6 >720 0.1 121 14908 6050 39.8
GUAasia2010 6527 6579 6354 6461 6035 26 0.0 >720 0.1 5 6422 *6374 0.7
GUQaqor2011 6674 19623 4537 10005 *4554 >6480 59.9 3 0.0 18 11396 4542 31.8
GUQaqor2012 5733 11488 4314 7619 4294 >6480 55.1 10 0.0 0 9650 *4324 24.6
HadersK2011 7128 51190 - 14229 *3909 >6480 76.2 >720 0.0 43 16494 3888 45.2
HasserG2010 11963 96790 - 96790 - >6480 - 6 0.0 0 96790 - -
HasserG2011 16061 99840 - 99840 - >6480 - 6 0.0 0 99840 - -
HasserG2012† 18338 112160 - 112034 - >6480 - 7 0.0 0 112160 - -
HerningG2010 37 37 *37 37 35 0 0.0 1 0.0 0 37 35 0.0
HerningG2011 15091 163785 - 23117 *9829 >6480 61.8 108 0.0 169 26410 9746 34.9
HerningG2012 13147 185433 - 14952 9763 >6480 48.4 >720 0.1 262 19834 *9817 25.3
HoejeTaG2008 2958 6292 2253 2707 2563 >6480 6.4 3 0.0 0 2775 *2587 4.4
HoejeTaG2009 9157 45260 - 26066 *5773 >6480 79.7 105 0.0 3 27779 5628 37.0
HoejeTaG2010 9862 45095 - 25678 *6188 >6480 78.1 106 0.0 5 27886 6116 37.3
HoejeTaG2011 10158 51050 - 32630 *6726 >6480 78.2 66 0.0 3 30327 6601 33.8
HoejeTaG2012 12502 72455 7592 18627 7845 >6480 79.8 9 0.0 3 39326 *7952 36.4
HorsenS2009 3111 3100 *3100 3100 2865 1 0.0 4 0.0 13 3100 3059 0.0
HorsenS2012 10056 86090 - 86090 - >6480 - 3 0.0 0 86090 - -
Johann2012 23001 92575 - 27781 18456 >6480 33.5 233 0.0 6 29491 *19590 14.8
KalundG2011 38479 126150 - 126150 - >6480 - 9 0.0 0 126150 - -
KalundG2012 26768 123010 - 123010 - >6480 - 11 0.0 0 123010 - -
KalundHG2010 5631 12103 4540 6351 4551 >6480 29.7 6 0.0 0 6605 *4642 17.6
KoebenPG2012 888 1872 637 874 642 >6480 37.9 1 0.0 2 1052 *645 26.2
KoegeH2012 11418 108347 - 20150 9096 >6480 53.7 12 0.0 0 20390 *9440 17.3
KongshoG2010 4296 8889 2411 7954 *2488 >6480 65.9 30 0.0 0 7208 2451 42.1
MariageG2009 8013 54030 - 20138 5118 >6480 69.7 >720 0.0 18 17506 *5286 34.0
MorsoeG2012 5651 42762 - 10241 3854 >6480 66.0 23 0.0 6 11674 *3947 30.2
NaerumG2008 24104 118370 - 117894 - >6480 - 7 0.0 0 117894 - -
NaerumG2009 7667 100450 - 6681 *5114 >6480 0.3 >720 6.2 0 5466 5113 6.4

Continued on next page

18

Table 1 – continued from previous page
Previous methods TSDRoomLB

ALNS 3-index model TSD Stage I Stage II

Dataset Obj Obj LB Obj LB Time Gap Time Gap Diff. Obj LB Gap

NielsSG2011 4953 10464 3323 6132 *3412 >6480 37.6 9 0.0 0 5397 3367 31.1
NielsSG2012 6952 12747 5722 8003 *5738 >6480 37.6 14 0.0 4 9192 5724 17.5
NordfynG2012 5160 8201 *4152 4890 4048 >6480 23.3 35 0.0 59 5510 4107 15.1
NyborgG2011 13944 94059 - 31809 *6129 >6480 - 7 0.0 4 85816 - 56.0
OdderCfU2010 18219 59540 - 40032 12188 >6480 66.9 66 0.0 2 38875 *12865 29.4
OdderG2009 9308 59851 - 57586 - >6480 78.1 67 0.0 67 24686 *5361 42.4
OdderG2012 12307 17402 9602 14888 8878 >6480 64.2 4 0.0 57 27199 *9688 21.3
OrdrupG2010 13663 75700 - 12936 10665 >6480 39.5 10 0.0 0 18101 *10810 16.4
OrdrupG2011 21612 116400 - 31329 16904 >6480 38.7 305 0.0 8 28884 *17692 18.1
RibeK2011 21679 61945 - 43175 16209 >6480 53.8 229 0.0 5 39107 *18055 16.7
RysenG2010 39971 110690 - 110690 - >6480 - 6 0.0 0 110690 - -
RysenG2011 22260 100313 - 25989 17756 >6480 71.4 9 0.0 5 68927 *19725 11.4
RysenG2012 19841 110111 - 22156 15115 >6480 71.7 14 0.0 15 59124 *16708 15.8
SanktAG2012 4207 4624 3415 3911 3376 >6480 0.7 >720 0.5 39 3721 *3538 4.9
SkanderG2010 7209 7708 6051 6875 5712 >6480 0.6 >720 0.5 72 6485 *6238 3.8
SkanderG2011 22525 88470 - 88470 - >6480 - 5 0.0 0 88470 - -
SkanderG2012 20138 98487 - 95319 - >6480 - 7 0.0 3 95319 - -
SkiveG2010 43120 194740 - 194740 - >6480 - 526 0.0 0 194740 - -
SlagelG2012† 32167 162960 - 162765 - >6480 - 417 0.0 0 162960 - -
SoendS2011 11776 83560 - 83560 - >6480 - 131 0.0 0 83560 - -
SoendS2012 8420 17778 *6838 11915 6647 >6480 72.5 8 0.0 4 24668 6739 18.8
StruerS2012 73361 - - 207488 - >6480 - 700 0.0 0 211960 - -
VardeG2012 10777 20933 *5921 20622 5720 >6480 72.1 12 0.0 2 20496 5668 45.1
VejenG2009 11264 69450 - 69450 - >6480 73.9 >720 0.0 7 27954 *7290 35.3
Vejlefjo2011 13514 52035 - 18043 8511 >6480 60.0 456 0.0 3 22066 *8805 34.8
VestfynG2009 5973 11606 4176 5999 4137 >6480 14.5 553 0.0 18 5032 *4211 16.3
VestfynG2010 6761 16895 *4308 5974 4225 >6480 16.3 65 0.0 21 5239 4290 17.8
VestfynG2011 7013 13624 5110 6657 4925 >6480 19.6 38 0.0 24 6522 *5159 20.9
VestfynG2012 5244 11095 4279 5212 4210 >6480 17.5 149 0.0 21 5319 *4315 17.2
ViborgK2011 14923 99170 - 99170 - >6480 - 6 0.0 0 99170 - -
ViborgTG2009 10216 19891 8695 12077 8356 >6480 34.7 45 0.0 3 13387 *8740 14.4
ViborgTG2010 4932 12727 4130 10226 3990 >6480 60.9 11 0.0 19 10665 *4146 15.9
ViborgTG2011 7478 16433 6716 9808 6204 >6480 38.8 12 0.0 13 11088 *6772 9.4
VirumG2012 27738 140883 - 32183 17770 >6480 75.3 16 0.0 9 79111 *19486 29.7
VordingbG2009 8568 17025 5457 9905 5243 >6480 33.6 10 0.0 167 8972 *5787 32.5

Avg. 44.3 0.1 17.9 22.3
† An artificial bound on the amount of Halls’ inequalities generated was enforced for tractability, see Section 4.3.

Table 2: Results summary. Note that rows ’Best solution’ and ’Best bound’ also counts draws.

ALNS 3-index model TSD TSDRoomLB

Solution found 100 99 100 100
Best solution 77 2 8 18
Bound found - 46 79 80
Best bound - 13 19 49

Table 3: Comparison of the amount of best found solutions for the exact methods. Draws are also counted.

3-index model TSD TSDRoomLB

Best solution 16 66 52

A number of conclusions can be drawn from the numbers:

19

• For 97 instances, the solution obtained by TSDRoomLB is at least as good as the solution obtained by the 3-index
model, and for most instances significantly better.

• TSDRoomLB is generally the best method for generating bounds, finding the best bound on 49 instances overall.

• TSDRoomLB was capable of finding a lower bound for 80 instances. This means that for 20 instances, Gurobi
was unable to solve the LP-relaxation of the root node of the Stage I model within the timelimit. Table 4 shows
statistics for these instances (the presolved models). It is seen that the problems does not contain coefficients of
huge magnitude in neither the objective, system matrix, or rhs. Hence the issue seems related to the relatively
big number of constraints and variables. In average, these instances have more than 100000 constraints and
variables, hence we think its fair to consider them as large-scale. Note that if the root-LP was not solved for an
instance, the reported solution replicates the initial solution provided by us to Gurobi (Gurobi apparently starts
its solution process by verifying the feasibility of the MIP Start attributes).

• TSDRoomLB produces the best solution for 18 instances overall, while TSD produces the best solution on 8
instances. The ALNS heuristic is best on 77 instances, and is currently the best algorithm for this problem
(keep in mind the ALNS algorithm was allowed significantly less CPU time).

• Comparing the exact methods (Table 3), it is seen that it is generally not profitable to use the extended Stage I
model if the goal is to obtain good solutions. Both variants of the decomposition finds more best solutions than
the pure 3-index model.

• The Stage I model of TSDRoomLB is a challenge for Gurobi, with an average gap of 44.3% over all instances
where a LB was found. Only 4 instances are solved to optimality, and these are among the smallest instances
(see Sørensen and Stidsen (2013) for instance statistics).

• The Stage II model of TSDRoomLB is in general easy to solve. The average gap for this model over all problem
instances is 0.1%, and 89 instances are solved to optimality. This means that future research can focus on
solving the Stage I model.

• The difference between the lower bound on room allocation and the actual allocation of rooms (column ’Diff.’)
is low, compared to the magnitude of objectives in general. This means that only a small increase in solution
quality can be gained by improving the bound on room allocation.

Table 4: Statistics of the Stage I models (after presolve) where Gurobi was unable to solve the LP-relaxation of the
root-node within the timelimit (i.e. for those instances where the TSDRoomLB was unable to provide a lower bound).
Column ’Cons.’ shows the number of constraints and ’Non-zeros’ shows the amount of non-zeros in the model.
’Variables’ shows the amount of continuous, integer and binary variables. ’Obj. coef.’, ’Model coef.’, and ’RHS coef’
shows the smallest and largest coefficient in the objective function, system matrix and right-hand side, respectively.

Variables Obj. coef. Model coef. RHS coef.

Cons. Non-zeros Cont. Integer Binary Min. Max. Min. Max. Min. Max.

Min. 73293 881433 24089 52518 41121 1 84 1 4 0 6
Max. 167978 4200206 52015 252514 246874 1 1120 1 16 1 103
Avg. 118396 1967455 36918 101460 88321 1 264 1 7 1 32

As an extension to the decomposition, one could use the ALNS heuristic to provide a starting solution. Since the
ALNS heuristic is able to produce a fairly good solution quickly, this would most likely lead to improved performance.

As a loose remark, we mention that Burke et al. (2010) formulates an IP of the Udine Course Timetabling Problem
(used in the International Timetabling Competition 2007), using a three-indexed binary variable, and reports that
CPLEX 11 uses up to 6400 seconds when solving the root LP (using Dual Simplex, which is also used by Gurobi as
default). Their model is quite similar in structure to ours, so possibly this class of IP formulations contain undesirable
properties in the eyes of general-purpose MIP solvers.

20

7. Conclusion

A Two-Stage Decomposition for a real-world high school timetabling problem has been shown. This splits the Integer
Programming model into two smaller models, which reduces the number of variables significantly. Computational
results show that this approach is way more effective than solving the usual original IP with a 3-index binary variable,
in terms of both the obtained solutions and the obtained bounds. This constitutes the TSD as the best exact method
for solving this particular timetabling problem. However, the integration of the lower bound on room allocation in the
Stage I model has bad influence on the quality of solutions, but makes the decomposition capable of achieving better
lower bounds. Nevertheless this extension of the Stage I model represents interesting theory which can likely be used
in the context of decomposing other timetabling problems.

For other types of (timetabling) problems, this type of decomposition might be a way of enhancing computational
times. However, a special structure is required for applying the decomposition, which limits the set of applicable
problems. On the other hand, the advantage gained by reducing the number of variables should not be underestimated,
and we encourage researchers to attempt this type of decomposition if possible.

Approximating the room allocation penalties in the Stage I model is an interesting approach, and also sets a
possible agenda for future work; 1) Can a better approximation (or even the exact value) be found for the minimum
weight maximum matching problem representing room penalties? 2) Can the room stability penalties be incorporated
in the Stage I model? However, the most important issue for future research is a more efficient way of solving the
Stage I model. This is the bottleneck of the TSD for this particular problem.

References

Avella, P., D’Auria, B., Salerno, S., Vasilâev, I., 2007. A computational study of local search algorithms for italian high-school timetabling. Journal
of Heuristics 13, 543–556.

Badri, M. A., 1996. A two-stage multiobjective scheduling model for [faculty-course-time] assignments. European Journal of Operational Research
94 (1), 16 – 28.

Balas, E., Pulleyblank, W., 1983. The perfectly matchable subgraph polytope of a bipartite graph. Networks 13 (4), 495–516.
Bardadym, V., 1996. Computer-aided school and university timetabling: The new wave. In: Burke, E., Ross, P. (Eds.), Practice and Theory of

Automated Timetabling. Vol. 1153 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 22–45.
Birbas, T., Daskalaki, S., Housos, E., 1997. Timetabling for greek high schools. Journal of the Operational Research Society 48, 1191–1200(10).
Birbas, T., Daskalaki, S., Housos, E., April 2009. School timetabling for quality student and teacher schedules. J. of Scheduling 12, 177–197.
Burke, E., Marecek, J., Parkes, A., Rudová, H., 2010. Decomposition, reformulation, and diving in university course timetabling. Computers &

Operations Research 37 (3), 582–597.
Burke, E., Newall, J. P., 1999. A multistage evolutionary algorithm for the timetable problem. Evolutionary Computation, IEEE Transactions on

3 (1), 63–74.
Carter, M., 1983. A decomposition algorithm for practical timetabling problems. Tech. Rep. 83-06, Department of Industrial Engineering, Univer-

sity of Toronto.
Daskalaki, S., Birbas, T., 2005. Efficient solutions for a university timetabling problem through integer programming. European Journal of Opera-

tional Research 160 (1), 106 – 120.
Daskalaki, S., Birbas, T., Housos, E., 2004. An integer programming formulation for a case study in university timetabling. European Journal of

Operational Research 153, 117–135.
de Werra, D., 1985. An introduction to timetabling. European Journal of Operational Research 19 (2), 151 – 162.
Dimopoulou, M., Miliotis, P., 2001. Implementation of a university course and examination timetabling system. European Journal of Operational

Research 130 (1), 202 – 213.
Edmonds, J., 1965. Maximum matching and a polyhedron with 0, 1-vertices. Journal of Research of the National Bureau of Standards B 69,

125–130.
Egerváry, E., 1931. Matrixok kombinatorius tulajdonságairól. Matematikai és Fizikai Lapok 38, 16–28.
Gotlieb, C. C., 1962. The construction of class-teacher timetables. In: Popplewell, C. M. (Ed.), IFIP Congress. Vol. 62. North-Holland Pub. Co, pp.

73–77.
Lach, G., Lübbecke, M., 2008. Optimal university course timetables and the partial transversal polytope. In: McGeoch, C. (Ed.), Experimental

Algorithms. Vol. 5038 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 235–248.
Lach, G., Lübbecke, M., 2012. Curriculum based course timetabling: new solutions to udine benchmark instances. Annals of Operations Research

194, 255–272.
Lawrie, N. L., 1969. An integer linear programming model of a school timetabling problem. The Computer Journal 12 (4), 307–316.
Lovász, L., Plummer, M. D., 2009. Matching Theory. AMS Chelsea Publishing.
MirHassani, S., 2006. A computational approach to enhancing course timetabling with integer programming. Applied Mathematics and Computa-

tion 175 (1), 814 – 822.
Mittelman, H., Aug. 2013. Benchmarks for optimization software. http://plato.asu.edu/bench.html [Retrieved 20/8-2013].

21

Papoutsis, K., Valouxis, C., Housos, E., 2003. A column generation approach for the timetabling problem of greek high schools. The Journal of the
Operational Research Society 54 (3), 230–238.

Pillay, N., February 2013. A survey of school timetabling research. Annals of Operations Research.
Post, G., Ahmadi, S., Daskalaki, S., Kingston, J., Kyngas, J., Nurmi, C., Ranson, D., 2012a. An xml format for benchmarks in high school

timetabling. Annals of Operations Research 194, 385–397.
Post, G., Gaspero, L. D., Kingston, J. H., McCollum, B., Schaerf, A., August 2012b. The third international timetabling competition. In: Proceed-

ings of the Ninth International Conference on the Practice and Theory of Automated Timetabling (PATAT 2012). Son, Norway.
Qualizza, A., Serafini, P., 2005. A column generation scheme for faculty timetabling. In: Burke, E., Trick, M. (Eds.), Practice and Theory of

Automated Timetabling V. Vol. 3616 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 161–173.
Santos, H., Uchoa, E., Ochi, L., Maculan, N., April 2012. Strong bounds with cut and column generation for class-teacher timetabling. Annals of

Operations Research 194 (1), 399–412.
Schaerf, A., 1999. A survey of automated timetabling. Artificial Intelligence Review 13, 87–127.
Schrijver, A., 2003. Combinatorial optimization: polyhedra and efficiency. Vol. 24 of Algorithms and Combinatorics. Springer.
Sørensen, M., Stidsen, T., March 2013. Comparing solution approaches for a complete model of high school timetabling. Tech. Rep. 5.2013, DTU

Management Engineering, Technical University of Denmark.

22

