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NOMENCLATURE 

 

BH = beam hardening 

BHC = beam hardening correction 

 

 

1. Introduction 

 

1.1 Beam hardening effect 

Most industrial X-ray tubes generate a polychromatic X-ray beam 

which is characterized by a continuous energy spectrum with certain 

bandwidth. Due to the energy dependent attenuation, lower energy 

(soft) X-rays are more easily and rapidly absorbed than high energy 

(hard) X-rays as the beam passes through a workpiece. Thus, the 

average frequency of the X-rays is shifted in the direction of higher 

energy during the propagation process; this is referred to as 

“hardening” of the X-ray beam. Because of the beam hardening (BH) 

effect, the X-ray attenuation is not strictly linearly related to the 

penetrated material thickness [5] (Fig. 1).  
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Industrial X-ray CT systems are increasingly used as dimensional measuring machines. However, micron level 

accuracy is not always achievable yet. The measurement accuracy is influenced by many factors, such as 

workpiece properties, X-ray settings, beam hardening and calibration methods [1-4]. Since most of these factors 

are mutually correlated, it remains challenging to interpret measurement results and to identify the distinct error 

sources. Since simulations allow isolating the different affecting factors, they form a useful complement to 

experimental investigations.  

Dewulf et.al [5] investigated the influence of beam hardening correction parameters on the diameter of a 

calibrated steel pin in different experimental set-ups. It was clearly shown that inappropriate beam hardening 

correction can result in significant dimensional errors. This paper confirms these results using simulations of a pin 

surrounded by a stepped cylinder: a clear discontinuity in the measured diameter of the inner pin is observed 

where it enters the surrounding material. The results are expanded with an investigation of the beam hardening 

effect on the measurement results for both inner and outer diameters of the surrounding stepped cylinder. 

Accuracy as well as the effect on the uncertainty determination are discussed. The results are compared with 

simulations using monochromatic beams in order to have a benchmark which excludes beam-hardening effects.  

In the final part of the paper, the investigations are expanded with experiments and simulations of new set-ups that 

include non-cylindrical features. 
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(b) 

Fig. 1 (a) 2D X-ray projection image of a steel cone: pixel intensity 

values (gray values) are converted to X-ray attenuation values (the 

ability of attenuating X-ray beams); (b) Attenuation profile along the 

“red line” in (a). 

 

1.2 Beam hardening correction 

Most reconstruction algorithms presume linear relationship 

between X-ray attenuation and X-ray penetration length; as a result, 

non-linear artifacts such as cupping effect (Fig. 2) and dark streaks 

(Fig. 3) are generated after reconstruction due to the BH effect. These 

artifacts strongly degrade image quality, and hinder accurate material 

analysis and defect detection. 

 

Fig. 2 Reconstructed slice of a steel cylinder and corresponding grey 

value profile along the arrow line [5].  

 

(a)                                   (b)                                 (c) 

Fig. 3 (a) 2D X-ray image of an aluminum profile with four steel 

spheres; (b) streak artifacts visible in a reconstructed CT slice of the 

red section in (a); (c) 3D CT voxel model of the objects [5]. 

Many approaches have been developed for beam hardening 

correction (BHC); ranging from the most basic hardware filtration 

method to advanced iterative reconstruction algorithms [6, 7]. 

However, taking the computational cost and effectiveness into 

consideration, the linearization technique using pre-defined 

polynomials combined with hardware pre-filtration is favored by 

most industrial users. Currently, polynomials up to the fourth order 

are being used: 

)fX + eX +dX + cX + b (a  = Y 432

   (1) 

Where X represents the initial grey value of a pixel in an X-ray 

projection image, Y represents the final grey value after linearization, 

and “a” through “f“ represent coefficients that can be fine-tuned 

depending on the severity of BH effect. A number of experience 

based BHC presets (up to second order) are listed in Table 1 [5]. 

Presets Parameters 

 a b c d e f 

1 1 0 1 0 0 0 

2 1 0 0.75 0.25 0 0 

3 1 0 0.5 0.5 0 0 

Table 1. Experience based BHC presets. Nr.1 keeps the original data; 

Nr.2 applies moderate BHC; Nr. 3 applies the severest BHC. 

 

2. BHC for dimensional metrology 

 

2.1 Necessary or Not 

BHC can largely improve the image quality and makes the grey 

value of the same material appear uniform after reconstruction. On 

the other hand, the BH effect enhances edge contrast [8], since the 

material outer surface experiences a rapid gray value change; which is 

beneficial for material outer surface determination. The question 

remains: whether BHC is beneficial for dimensional metrology 

applications. 

 

2.2 Experimental investigation: the influence of BHC on 

“internal” dimensions 

The main power of industrial CT for dimensional metrology relies 

on its ability to measure internal features non-destructively. Thus, a 

simple setup (Fig. 4) has been used to investigate the influences of 

BHC on the measurement accuracy and uncertainty of internal 

dimensions. The main machine settings for scanning this setup are 

listed in Table 2.  

 

Fig. 4 2D X-ray projection image of the test setup: a calibrated 

stainless steel pin (Ø4 mm, dimensional tolerance ±1 µm) is partly 

surrounded by a stainless steel step cylinder. Thus, the middle part of 

the inner pin can be considered as an “internal” feature.  

Voltage (KV) Current (µA) Copper filter (mm) 

200 180 2 

Table 2. Main machine settings for the setup in Fig. 4. 

The original scan data (2D X-ray projections) are initially 

reconstructed using BHC preset Nr.1 (no correction) and Nr.2 

(moderate correction). After local adaptive surface determination, 

proper object alignment and voxel size correction, the diameter of the 

middle pin is measured at equidistant slices from top to bottom. Fig. 5 

plots the dimensional error (difference between the CT measured 

value and the reference value of Ø4mm) against the slice number 

(position where the measurements are taken: from top to bottom). 

Similar to our previous report [5], local dimensional variations are 

observed when the pin “enters and leaves” the surrounding step 

cylinder. Such “jump” is around 4µm if no BHC is applied, and 

around 10 µm if applying BHC preset Nr.2 (as listed in Table 1). The 
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major cause is that the surrounding material acts as an extra filter. As 

a result, the level of BH effect along the middle pin differs depending 

on the location. The difference of BH level results in a difference of 

edge offsets; this appears as a “jump” seen in Fig. 5. Non-proper 

BHC and especially over-correction can enlarge the difference 

between the inner and outer edge offsets and worsen the measurement 

uncertainty. 

It can be noticed that the direction of the “jump” is inverted for 

BHC preset Nr.1 and Nr.2. It indicates that BHC preset Nr.1 has 

insufficient correction, whereas and BHC preset Nr.2 has over-

correction; this makes it possible to eliminate these “jumps” by fine 

tuning the coefficients of the BHC polynomial. After 2 iterations, the 

“optimal” BHC coefficients are obtained: a=1, b=e=f=0, c=0.85 and 

d=0.15 (see Table 1). Significant improvement on the dimensional 

measurement results is achieved. As shown in Fig. 5, if we apply a 

constant edge offset correction term on the “purple line”, the overall 

dimensional errors are within 2.5µm. This is very close to the 

dimensional tolerance of the pin: ±1µm.  

 

Fig. 5 Comparison of dimensional measurement errors on the inner 

pin (shown in Fig. 4) using different BHC coefficient sets. Attention: 

BHC preset Nr.1 – no correction. 

 

2.3 Simulation verification 

In order to clearly identify and investigate the influence of the BH 

effect and of BHC on the dimensional measurement results, it is 

necessary to eliminate other influencing factors, such as: X-ray 

scattering, machine axes alignment and focal spot drifting. These 

conditions are almost impossible to achieve experimentally, but can 

be easily realized by X-ray CT simulation. By using the BAM-aRTist 

simulation software, a CT scan of the same object (Fig. 4) is 

simulated under the same machine settings (X-ray voltage, current, 

filter and magnification), without X-ray scattering and focal spot drift. 

During reconstruction, the BHC coefficient sets used in Section 2.2 

are reused to process the simulated data. Moreover, an X-ray source 

with a monochromatic spectrum is also simulated to serve as a 

benchmark, since it excludes BH effects.  

After local adaptive thresholding and setting up work coordinates, 

the inner pin diameter is measured in the same way as in Section 2.2. 

The measurement results are shown in Fig. 6. 

In general, the simulated measurement results coincide with the 

real measurements. Local dimensional variations are observed when 

the pin “enters” and “leaves” the surrounding step cylinder if BHC 

preset Nr.1 and Nr.2 are applied. By fine tuning the coefficients of the 

BHC polynomial, the dimensional measurement results can be 

improved significantly to a level that is comparable with the results of 

an ideal X-ray source (monochromatic beam).  

In general, the simulated measurement results coincide with the 

real measurements. Local dimensional variations are observed when 

the pin “enters” and “leaves” the surrounding step cylinder if BHC 

preset Nr.1 and Nr.2 are applied. By fine tuning the coefficients of the 

BHC polynomial, the dimensional measurement results can be 

significantly improved, which is comparable with the results of an 

ideal X-ray source (monochromatic beam). 

 

Fig. 6 X-ray CT simulation measurement results - Comparison of 

dimensional measurement errors on the inner pin (shown in Fig. 4) 

using different BHC coefficient sets. 

 

2.4 Analysis and summary of the previous results 

From the above results, we can conclude that appropriate BHC is 

useful for dimensional metrology applications. As shown in Fig. 5, 

the non-systematic errors are reduced from 6µm to 2µm by applying 

proper BHC. However, one has to be very careful not to over-correct 

the BH effect. Otherwise, the local dimensional variations might 

increase, for example with BHC preset Nr.2 (Fig. 5 and Fig. 6).  

BH effect is closely related to the “cupping effect”. Two 

reconstructed slices (as shown in Fig. 7-a, Section 1 represent the 

outer part, Section 2 represent the inner part), are selected for 

investigating the influence of different BHC coefficients sets on the 

“cupping effect”. The gray value profiles (after reconstruction) along 

the “red line” are plotted in Fig. 7-b for 3 different BHC coefficients 

sets. If we don’t apply BHC (preset Nr.1), there is an obvious 

difference between inner and outer attenuation profile. The difference 

is reflected by the 4µm “jump” in Fig. 5. Applying BHC preset Nr.2 

seemingly eliminates the cupping effect; however, the original gray 

values are significantly magnified. Moreover, over-correction can be 

observed (a small raise at the middle part of the blue line – Section 1). 

By fine tuning the coefficients of the BHC polynomial, it is possible 

to eliminate the cupping effect without magnifying the noise.  

If comparing Fig. 5 (real measurement) and Fig. 6 (simulation), it 

can also be noticed that in the real measurements, the non-systematic 

noise is much worse than in the simulated data. The major cause is 

related to the exclusion of X-ray scattering in our simulations. 

Furthermore, even under the ideal situation with monochromatic X-

ray beams, there is an edge offset of 4µm (Fig. 6). Although such 

systematic errors can easily be compensated, it proves that edge 

correction is necessary even without any artifacts and using local 

adaptive thresholding. 
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     (a) 

        (b) 

Fig. 7 (a) 2D X-ray projection image of the test object; (b) gray value 

profile taken on reconstructed slices (along the “arrow lines in (a)”) 

when applying BHC preset Nr.1, Nr.2 and the iterative adjustment 

Nr.2.  

 

3. Calibration workpiece  

 

3.1 Basic design concept 

There are methods to determine the “best” BHC polynomial 

coefficients, for example by looking at the horizontal center slice on 

the X-ray detector, where the sum of total attenuation along the 

central slice should be equal for each scan angle. However, this 

method requires perfect alignment between X-ray source and 

detector, plus the maximum penetration length be placed at the center 

line (to ensure the optimization calculation covers the entire data 

range: from air to maximum attenuation), these constraints are not 

very practical; moreover, such method also has difficulties when 

dealing with purely cylindrical objects, because it makes use of the 

difference of each projection images which is much less with 

cylindrical objects. 

As Section 2 concluded, it is possible to optimize the coefficients 

of the BHC polynomial by minimizing the non-systematic 

dimensional errors on the middle pin. Meanwhile, we should also 

look at the influence of such BHC on the other dimensions, for 

example, the dimensional measurement errors on the step cylinder, to 

make sure that we do not improve the measurement results of one 

particular feature while worsening the others. If significant 

improvement on overall (including both the inner pin and the hollow 

step cylinder) dimensional measurement results can be obtained, then 

a simple workpiece as shown in Fig. 4 can be used for BHC 

calibration; because the “optimal” coefficients might be reused if an 

object of the same material and similar size is scanned under the same 

machine settings (X-ray voltage, current, filter…). Furthermore, the 

final dimensional errors detected on the outer features (step cylinder 

outer diameters) and inner features (step cylinder inner hole) could be 

used for edge offset calibration. In order to verify these assumptions, 

a more accurate stainless steel hollow step cylinder was manufactured 

and calibrated by tactile CMM. Its designed dimensions are shown in 

Fig. 8. 

 
Fig. 8 The designed dimensions of the stainless steel hollow step 

cylinder. The complete calibration workpiece (shown in Fig. 9(a)) 

includes this step cylinder and the previously used stainless steel pin. 

 

3.2 Dimensional measurement results 

The complete calibration workpiece is shown in Fig. 9(a), it 

consists of the above mentioned hollow step cylinder (Fig. 8) and a 

well calibrated center pin (dimensional tolerance ±1µm). The 

machine settings for scanning this workpiece are listed in Table 3. X-

ray CT simulation with the same settings but using monochromatic 

beam was performed and serves as a benchmark for comparison.  

Voltage (KV) Current (µA) Copper filter (mm) 

210 195 2 

Table 3. Main machine settings for the setup in Fig. 9(a). 

The diameter of the center pin is measured in the same way as 

described in Section 2.2 (circle diameters at equidistant slices from 

top to bottom); measurement results are shown in Fig. 9(b). The 

sudden “jumps” are used as a tool for defining the optimal 

coefficients for the BHC polynomial (iteratively adjusting the 

coefficients to eliminate these jumps). The inner hole and outer step 

cylinder diameters are also measured (as cylinders instead of circles) 

and plotted in Fig. 9(c). The idea is to check if the optimized BHC 

coefficients can also improve these dimensional measurement results; 

furthermore, they can be used for calculating the edge correction 

terms for internal and external features. From Fig. 9(b), we can see 

that the non-systematic dimensional errors are significantly reduced 

(from 7µm to 2µm) after optimizing the BHC coefficients. The 
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difference between the “green line” and the “red line” (the 

monochromatic simulation results) might be due to the fact that the 

simulations are not “perfect” simulations of the actual object 

(material), detector, focal spot…Another reason is that X-ray 

scattering are excluded in our simulations. Similar results can be 

found on the step cylinder in Fig. 9(c): between BHC preset Nr.1 and 

optimized BHC coefficients, the average outer cylinder edge offsets 

are improved by around 3µm (from 5 µm to -2 µm); the edge offset 

of the inner hole is reduced by 8µm (from -13 µm to -5 µm). Thus, 

after proper BHC, the overall dimensional (both systematic and non-

systematic) errors are reduced to within 5µm. This can be further 

improved by applying edge offset correction terms. The results prove 

that the simple setup (a well calibrated pin partly surrounded by 

another hollow cylinder) can function as BHC calibration object to 

optimize the coefficients of the BHC polynomial. The 

monochromatic CT simulation for this case was performed using 

simulation software developed at KULeuven.   

 

 
(a) 

(b) 

(c) 

Fig. 9 (a) 2D projection image of the calibration workpiece; (b) 

dimensional errors on the inner pin: its diameter is measured (as 

circles) from top to bottom at equidistance slices; (c) dimensional 

errors on the step cylinder: the diameters of the 5 outer cylinders and 

the inner hole are measured (as cylinders) and compared with the 

CMM measurement results. For the results in both (b) and (c), the 

scan data of the real measurement are processed in two ways: without 

BHC (BHC preset Nr. 1), and with fine-tuned BHC coefficients: a=1, 

b=e=f=0, c=0.82 and d=0.18. 

4. Case study 

The calibration workpiece described in Section 3 can have two 

major functions: 

1. If the target objects have the same material compositions, similar 

sizes and are scanned under the same machine settings (X-ray 

voltage, current, filter…), then the calibration workpiece can be used 

to optimize the coefficients of the BHC polynomial. This can help to 

minimize errors caused by BH effect. 

2. The CT measurement errors on the inner hole and outer cylinders 

might be used to calculate the edge offset correction terms for 

bidirectional dimensions (dimensions that are sensitive to the surface 

determination).  

 

4.1 Workpiece description 

A stainless steel step gauge (Fig. 10) is used to test the above 

mentioned two functions of the calibration workpiece (shown in Fig. 

9(a)). The designed dimensions are shown below: 

(a) 

 
(b) 

 
(c) 

Fig. 10 (a) a photo of the step gauge and its designed dimensions; (b) 

indication of the unidirectional distances (edge independent) and 

bidirectional distances (edge dependent); (c) two types of edge 

dependent distances on the step gauge. Theoretically, type 1 and 2 

have opposite edge offsets.  

4.2 Dimensional measurement results 

The step gauge is scanned using the same machine settings as the 

calibration workpiece. During reconstruction, the scan data are 

processed in two ways: without BHC (BHC preset Nr.1); and with 

“optimized” BHC polynomial coefficients (calculated from the 

calibration workpiece shown in Fig. 9(a)).  After local adaptive 

surface determination and voxel size correction, 10 unidirectional 

distances and 11 bidirectional distances are measured and compared 

with reference CMM measurements. Moreover, an X-ray CT 

simulation with monochromatic beam has been performed and its 

results are set as the benchmark for analyzing the other measurement 

results.  
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(a) 

(b) 

Fig. 11 (a) dimensional measurement results for 10 unidirectional 

distances: without BHC, with optimized BHC polynomial coefficients, 

and with monochromatic X-ray beam; (b) dimensional measurement 

results for 11 bidirectional distances: without BHC, with optimized 

BHC polynomial coefficients, monochromatic X-ray beam. The top 

half are “type 1” distances, the bottom half are “type 2” distances. 

Type 1 and 2 are as defined in Fig. 10(c). 

There are several conclusions that can be drawn from Fig. 11(a): 

1. The non-systematic errors are slightly reduced (from 3µm range to 

1.5µm range) when applying the “optimized” BHC polynomial 

coefficients (a=1, b=e=f=0, c=0.82 and d=0.18, same as in Fig. 9 for 

the calibration workpiece). 

2. Compared with the dimensional measurement results of the 

monochromatic X-ray beam simulation, there is still space for 

improvement; for example by reducing scattering noise, minimizing 

focal spot drifting and eliminating machine axes’ misalignment. 

The information that we can get from Fig. 11(b) are: 

1. When measuring distances between parallel planes, the positive 

and negative edge offset errors often have similar absolute value. 

Thus, the sum of two distances, one with positive edge offset and the 

other one with negative edge offset, are often used for voxel size 

correction. However, this trick cannot be generalized for objects with 

other kinds of features. Taking the calibration object (Fig. 9(a)) as an 

example (object with cylindrical features), the inner hole edge offset 

doesn’t necessarily equal the outer cylinder’s edge offset.  

2. The optimized BHC polynomial coefficients calculated from the 

calibration workpiece can reduce the dimensional errors by half 

(variation range from ±15µm to ±7.5µm).  

3. Applying the edge offset terms (identified by the calibration 

workpiece) can improve the dimensional measurement results but 

cannot eliminate the edge errors completely. The cause could be that 

we are using edge correction terms calculated from cylinders to 

correct edge errors of plane distances. 

5. Discussion and conclusion 

This paper investigated the influence of BH effect and BHC on 

the dimensional measurement results for both internal and external 

features. The results verify our previous findings [5] which show that 

improper BHC can significantly worsen the accuracy and uncertainty 

of dimensional measurements.  

Furthermore, a calibration workpiece (a hollow stepped cylinder 

together with a center pin, Fig. 9(a)) is developed for optimizing the 

coefficients of BHC polynomial and calculating the edge offset 

correction term. This concept is then tested using a stainless steel step 

gauge of similar size scanned under the same machine settings. On 

one hand, the optimized BHC coefficients turns out to be successful; 

on the other hand, the edge offset correction term calculated from the 

calibration workpiece can reduce but not completely eliminate the 

edge errors for plane distances. This might be due to feature 

dependent errors, differences in X-ray scattering and other 

influencing factors. The setup shown in Fig. 9(a) and the step gauge 

(Fig. 10) can both function as calibration workpiece for edge 

correction term calculation, while the former can also provide an 

experimental way to optimize the coefficients of BHC polynomial. 

It is found through our investigation that internal and external 

features often have different edge offsets, this might be due to BH 

effect, X-ray scattering and the applied surface determination 

algorithm. Thus, single edge correction term is insufficient for objects 

with complex internal and external features. 

It has to be mentioned that X-ray CT simulation plays an 

important role in helping us interpret our experimental results and 

identify the distinct error sources. 
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