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Abstract

Background: Influenza vaccine policies that maximise health benefit through efficient use of limited resources are needed.
Generally, influenza vaccination programmes have targeted individuals 65 y and over and those at risk, according to World
Health Organization recommendations. We developed methods to synthesise the multiplicity of surveillance datasets in
order to evaluate how changing target populations in the seasonal vaccination programme would affect infection rate and
mortality.

Methods and Findings: Using a contemporary evidence-synthesis approach, we use virological, clinical, epidemiological,
and behavioural data to develop an age- and risk-stratified transmission model that reproduces the strain-specific behaviour
of influenza over 14 seasons in England and Wales, having accounted for the vaccination uptake over this period. We
estimate the reduction in infections and deaths achieved by the historical programme compared with no vaccination, and
the reduction had different policies been in place over the period. We find that the current programme has averted 0.39
(95% credible interval 0.34–0.45) infections per dose of vaccine and 1.74 (1.16–3.02) deaths per 1,000 doses. Targeting
transmitters by extending the current programme to 5–16-y-old children would increase the efficiency of the total
programme, resulting in an overall reduction of 0.70 (0.52–0.81) infections per dose and 1.95 (1.28–3.39) deaths per 1,000
doses. In comparison, choosing the next group most at risk (50–64-y-olds) would prevent only 0.43 (0.35–0.52) infections
per dose and 1.77 (1.15–3.14) deaths per 1,000 doses.

Conclusions: This study proposes a framework to integrate influenza surveillance data into transmission models.
Application to data from England and Wales confirms the role of children as key infection spreaders. The most efficient use
of vaccine to reduce overall influenza morbidity and mortality is thus to target children in addition to older adults.
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Introduction

Seasonal influenza is a serious public health problem globally.

In countries with an advanced health system, most of the deaths

occur among elderly adults and those with co-morbid conditions

that place them at increased risk [1,2]. Immunisation strategies

can target individuals at high risk of complications and/or key

spreaders in order to interrupt or reduce transmission. In most

countries, influenza vaccination programmes have traditionally

targeted individuals 65 y and older and those in high-risk groups,

in line with World Health Organization recommendations [3].

Following the experience with pandemic H1N1/2009 influenza,

priority groups for vaccination are now being reconsidered [4].

Children have been identified as the main spreaders of influenza

infection [5,6] and thus a potential target for vaccination, not only

for their own protection but also for the indirect protection of

others [7–9]. The annual mass vaccination of children presents

major operational and resource challenges, and thus it is

important for policy makers to be confident about the additional

population benefits likely to accrue from inducing herd protection.

The severity of each seasonal influenza epidemic is the result of a

complex interplay between background population immunity,

which is partly a function of exposure to previously circulating

cross-reactive viruses; the nature and extent of contact between

age groups; the pathogenicity of the circulating viruses; and the

impact of vaccination, which in turn is dependent on coverage and

the match between wild and vaccine strains. While vaccination

programmes are designed with a long-term perspective, some of

these parameters vary significantly from one season to another,

necessitating longitudinal datasets to ensure that vaccine policy

decisions are robust to year-to-year fluctuations. In addition, most

of the available surveillance data are designed for healthcare

monitoring and are difficult to integrate directly in dynamic

transmission models (which require information on infection,

rather than use of services). In the absence of quantitative

estimates derived from epidemiological data, models used to test

the impact of alternative vaccination programmes have thus made

substantial assumptions about background immunity, structure of

contacts, and transmissibility of the virus [7–10]. Furthermore,

given the importance of high-risk groups in contributing to the

overall burden of disease, modelling of the impact of vaccine-

induced changes in transmission on burden of disease needs to

take account of this additional population heterogeneity. Recently,

models using Bayesian evidence synthesis have been developed to

estimate the severity of influenza [11] and influenza infection

attack rates [12,13]. We combine similar Bayesian techniques with

transmission models in a novel approach that provides evidence to

inform vaccine policy decisions.

We thus apply a modern statistical approach to help disentangle

the underlying biological, epidemiological, and behavioural factors

that determine the annual patterns observed in surveillance data.

We use the experience in England and Wales, where vaccination

was targeted at high-risk groups until 2000, then extended to all

individuals $65 y, as an exemplar. Six different sources of data

are used. We use demographic data to define the structure of the

population in terms of age and risk groups. The structure of

contacts between age groups is inferred from a contact survey. The

outcomes of the model are fitted to time series of healthcare

consultations complemented by virological surveillance and

informed by vaccine uptake and match data. Finally, links

between infections and consultations are given priors using

serology data. By synthesising the evidence from these multiple

data sources across 14 influenza seasons in England and Wales, we

quantify the amount of transmission due to each age group and

assess the impact of past and proposed changes to immunisation

policy on cases and deaths.

The hypotheses we examine are whether, given the vaccination

coverage currently achieved in high-risk groups and elderly adults

in industrialized countries, there has been any material impact on

transmission and whether a more efficient deployment of vaccine

in terms of overall population morbidity and mortality would be to

target children as the key infection spreaders. The incremental

benefit of vaccinating low-risk children and/or adults as an

addition to the existing risk/age-based policy is examined for

different coverage levels.

Methods

Demography
For each of the seasons of the study, the number Wi of

individuals in the population with age i is taken from the Office for

National Statistics (http://www.ons.gov.uk). Seven age groups

were considered (,1, 1–4, 5–14, 15–24, 25–44, 45–64, 65+ y).

Each of these age groups is divided into individuals at low or high

risk of complications associated with influenza, later simply

referred to as low or high risk. Individuals are considered at high

risk if they have one of the following conditions: chronic

respiratory, heart, or renal disease; diabetes; or immunosuppres-

sion due to disease or treatment. The proportion of people in a risk

group in a particular age group is assumed to be constant over the

period of the study. We derived the proportion of individuals in a

risk group for each age group by analysing data from the Royal

College of General Practitioners (RCGP) Weekly Returns Service

over a period of 5 y (2003–2008). The numbers of people in the

different age groups and the percent classified as high risk are

given in Table 1. On the last line of the table, the actual numbers

resulting from the RCGP analysis can be seen.

Contact Survey
In 2006, a pan-European survey was conducted to measure and

compare the structure of contacts in eight different European

countries (Belgium, Finland, Germany, United Kingdom, Italy,

Luxembourg, the Netherlands, and Poland). Attention was paid to

recruiting participants representative in terms of geography, age,

and sex [14]. Recruitment methods differed between countries,

but were based in the United Kingdom on face-to-face interviews.

Participants were asked to complete diaries recording with whom

they had contacts during a day. Diaries also recorded different

information relative to those contacts. Among them, the age of the

contact was recorded, the nature of the contact (conversational or

physical contact) and the nature of the day (weekday, weekend, or

holiday). Details about the project can be found in Mossong et al.

[15]. We use data from the United Kingdom arm of the study: the

final data consisted of 1,012 participants aged 0 to 79 y who

recorded 11,876 contacts in total.

Consultations in General Practices
Since January 1967, the Weekly Returns Service of the RCGP

has monitored the activity of acute respiratory infections in general

practices. As part of this scheme, the weekly number of persons

consulting for influenza-like-illness (ILI) is recorded. For each week

of the studied period (from the influenza season 1995/1996 until

2008/2009), we obtained the size of the monitored population

included in the RCGP Weekly Return Service and the number of

individuals in that monitored population consulting for ILI

stratified in five age groups (0–4, 5–14, 15–44, 45–64, 65+ y).

Assessing Vaccination of Seasonal Influenza
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For a given season, we note by Nmon
ij the size of the monitored

population and by mij the number of people recorded as consulting

for ILI in age group i at week j in that population.

In 2008, roughly 1.7% of the total population in England and

Wales was included in the RCGP network of practices. Although

this number might seem small in comparison with other existing

surveillance networks, this sample is considered to be reasonably

representative of the whole population in terms of demography

and geography [16].

Respiratory Virus RCGP Surveillance
In order to complement the syndromic surveillance, a new

surveillance activity of virological confirmation of cases was set up

starting from the 1995/1996 season. During weeks of potential

influenza activity, samples are taken from people presenting with

ILI and sent for testing to the Respiratory Virus Unit of the Health

Protection Agency. In the period considered (i.e., from the start of

the virological surveillance activity until the season 2008/2009),

the dataset includes 12,575 virological samples with recorded age

group tested, which corresponds to an average of 900 samples per

season. In total, however, during the last season, because of the

novel H1N1 pandemic, 3,395 samples were tested. If this season is

excluded, the dataset has an average of 700 samples per season.

The predominant strain in the period investigated was A/

H3N2. In every season except 2000/2001, A/H3N2 was

identified, while in several seasons either A/H1N1 or B was

absent. In any given week, the number of confirmed samples by

age group was relatively small. In addition, no samples were taken

in the age group ,1 y; most of the samples (47.7%) were taken in

the 15–44-y age group, while the younger age groups—though

higher transmitters—are less represented (9.6% and 13.7% for the

age groups 1–4 y and 5–14 y, respectively). Elderly adults (65+ y)

are under-represented (7.8%), which is a problem as the incidence

appears to be smaller in this age group. Positivity rates are difficult

to accurately quantify in this age group.

Among these tested samples, 17.3% were positive for influenza

(H3N2: 53.8%, H1N1: 11.9%, H1N2: 0.9%, H1N1pdm: 10%, B:

18.9%). In the 2002/2003 season, only seven samples were taken,

among which five were positive. However, three out of the five

samples were taken in one age group (1–4 y) at a time when the

level of ILI was extremely low (middle of May 2003).

In the rest of the manuscript, we note by nz
ij the number of

positive samples from a given subtype (A/H1N1, A/H3N2, or B)

taken among the nij samples tested at week j in the age group i.

Vaccination Uptake and Match
Coverage by age and risk group by week was taken from Joseph

et al. [17] for the seasons before 2003/2004. Figures for the 65+-y

age group from 2004/2005 onwards were taken from the Health

Protection Agency/Department of Health (HPA/DH) annual

reports on the influenza programme [18].

In order to be able to derive estimates of the vaccine efficacy for

each strain and season, data from the Health Protection Agency

were used to establish the match between the circulating and

vaccine strains (Table 2).

Serology for the Season 2003/2004 in A/H3N2
During the winter of 2003/2004, the United Kingdom

experienced an unusual level of influenza activity following the

emergence of A/Fujian/411/02-like antigenic variant strains. In

order to investigate the severity of these new drifted strains, an age-

stratified serological survey was conducted by the Health

Protection Agency using sera sampled before and after the season

[19]. Resulting data thus contain information on haemaglutination

inhibition titres and RCGP age group for 875 sera collected pre-

and post-season. The haemaglutination inhibition assays were

performed using the A/Wyoming/3/03 strain, antigenically

equivalent to the A/Fujian/411/02 strain that was circulating in

the United Kingdom during the 2003/2004 season.

Methods Overview
Based on these data sources, an inference and modelling

framework embedding social, immunisation, epidemiological, and

surveillance components was developed. A Bayesian approach to

statistical inference was adopted, as it provides the most suitable

framework for synthesising diverse sources of evidence in a

coherent manner [20]. Specifically, we utilised adaptive Markov

chain Monte Carlo (MCMC) techniques [21], which represent a

generic tool for inference from complex stochastic systems. An

attractive aspect of the Bayesian approach when coupled to the

MCMC methodology is its particular suitability for the natural

propagation of uncertainty. This is especially crucial in the present

analysis since the quantities of interest, like the final numbers of

individuals infected under different scenarios, are non-linear

functionals of the basic model parameters. Additionally, MCMC

is highly modular, thus accommodating the inclusion of a novel

algorithm for exploring the space of contact matrices (i.e., rates of

epidemiologically relevant contacts).

We use a directed acyclic graph [22] to represent the model

structure and the way the data streams are integrated in the

inference scheme (Figure 1). In what follows we refer to the

notation adopted in Figure 1 in order to identify the different

processes operating at the different levels (transmission, vaccina-

tion, epidemiology, and observational processes) of the model.

Transmission Model
A series of studies have linked routes of transmission for

infectious diseases with the structure of contacts in the community

Table 1. Sizes of the modelled population compartments by age and risk group averaged over the period of the study.

Modelled Population Age Group

,1 y 1–4 y 5–14 y 15–24 y 25–44 y 45–64 y 65+ y

Average age group size
(2003–2008)

623,779 2,525,322 6,608,728 6,603,485 15,214,371 12,578,021 8,423,248

Percent at high risk 2.1% 5.5% 9.8% 8.7% 9.2% 18.3% 45.0%

Proportion at high risk,
from RCGP surveya

723/33,780 15,837/287,075 77,197/783,844 63,206/724,292 165,827/1,803,008 301,562/1,647,783 456,654/1,013,979

aNumber of individuals at high risk of complications associated with influenza/total number of individuals surveyed.
doi:10.1371/journal.pmed.1001527.t001
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[15,23]. The assumption is that when in contact with a susceptible

individual, an infectious individual will have a probability q of

transmitting the disease. This transmission probability q will

depend on the type of contact involved (e.g., in the case of a

respiratory virus, a physical contact might be more effective in

transmitting than a conversational contact of the same duration)

and the type of pathogen.

Sociological surveys can thus replace expert opinion [24] to

characterise transmission matrices. However, though well estab-

lished for sexually transmitted diseases, where the implication and

interpretation of ‘‘contacts’’ is more obvious, the notion of

‘‘contact’’ is problematic for other diseases such as respiratory

infections. Additionally, because of sample size or biases, the

results may need some reworking in order to become directly

interpretable. For example, we demonstrated previously that the

transmission matrix of the A/H1N1/2009 virus directly inferred

from the mean contact matrix derived from the POLYMOD study

could not explain the change of dynamics during the summer

holidays [25]. However, using matrices produced from resampling

(with replacement) the original data did allow the dynamics to be

accurately captured.

We thus assume here that there exists among the possible sets a

set of resampled participants (with some participants sampled

several times) that represents an appropriate structure of contacts

in the population in terms of disease transmission. The mixing in

our model is thus described by a resampled subset of participants

from the original UK POLYMOD dataset. From this list of

participants, we uniquely derive a mixing matrix using the

methodology developed below (similar to the one described in

Wallinga et al. [23] and Hens et al. [14]).

For a set of entries resampled from the original POLYMOD

dataset, let Tj be the number of participants in class j, Ak and Ni
k

� �
be, respectively, the age and number of contacts made in age

group i for and by participant k. We can then associate to each

participant k a weight wk depending on participant age and the day

recorded in the diary:

wk~
WAk

Tj

5

Nwd
, for a weekday,

wk~
WAk

Tj

2

Nwe

, for a weekend,

8>>><>>>: ð1Þ

with Nwd and Nwe the total number of contacts recorded,

respectively, during week days and weekends, and WAk
the

number of individuals of age Ak.

The re-normalised average number of contacts per day dij made

by participants from age group j with persons in age group i

standardised for age and weekdays is

dij~

P
k:Ak[j Ni

kwkP
k:Ak[j wk

: ð2Þ

As contact making is symmetric, the number of contacts in the

population resulting from people from age group i meeting with

people from age group j is the same as the number of contacts

made by people from age group j meeting with people from age

group i. If we call cij the probability that two randomly selected

individuals in group i and j get in contact, we get by symmetry

cij = cji. By using the direct formula cij = dij/Ti, symmetry will not

usually be achieved because of reporting or participation biases.

To achieve symmetry of the contact matrix {cij}, we thus set
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cij~
1

2

dij

Ti

z
dji

Tj

� �
: ð3Þ

To obtain the transmission matrix, we finally multiply this mixing

matrix by q, describing the transmissibility of the virus, which is the

probability that a contact between an infectious person and a

susceptible person leads to transmission. The transmission matrix

is thus broken down into its biological and social components.

In this study, we consider an average contact matrix over the

epidemic season, thus not considering holiday periods or

weekends. When the epidemic is simultaneous with long periods

of holidays (as during the A/H1N1/2009 pandemic in the United

Kingdom), it is necessary to make the distinction between term

and holiday contact matrices [25].

At each step in the MCMC chain the matrix is updated by

resampling from the POLYMOD data with replacement (Figure 1,

process a) and is thus inferred within the MCMC algorithm via a

novel random-walk type of proposal on the matrix space where the

number of contacts between distinct age groups is re-normalised,

reducing potential reporting or participation biases via symmetry.

The contact matrix is combined with the demographic data and

scaled by the transmissibility of the virus to give the transmission

matrix of the virus (Figure 1, process b).

Vaccination Model
The different epidemiological compartments of the model are

split into two types of compartments based on vaccine history

(indexed by N for naive or V for vaccinated; see Figure S1 in Text

S1). As the vaccine is not 100% effective, a proportion ai of the

vaccinees become protected (we assume full protection), while the

rest 12ai remain fully susceptible. The vaccine efficacy ai depends

on age group and the degree of match between the strain in the

vaccine and the circulating strain in that year.

As in [25], we assume a 2-wk delay between infection and

development of protective antibodies. This is based on an analysis

of the dynamics of seroconversion following cases of A/H1N1pdm

infection confirmed by PCR [26]. We do not model the dynamics

of antibody production as in [12] as these measurements are done

for cases following infection rather than vaccination, and vaccine

trials usually measure level of antibodies after a longer period. The

period of 2 wk to confer protection appears to be a reasonable

assumption for our purpose.

Combining the vaccination uptake and the vaccination match

results in a time varying immunisation rate nik in age group i and

risk group k (process c). The rate of immunisation nik is assumed to

be constant over a monthly period. The total number of persons

immunised in each age group by month is taken from Joseph et al.

[17] and HPA/DH reports. For the purpose of the transmission

fitting, we assume that the change of status (whether as SV or RV)

occurs two weeks after vaccination.

A recent Cochrane review [27] suggested that vaccine efficacy

was 73% in years in which the vaccine was well matched, and 44%

in years when there was a poor match between the vaccine and

circulating strains. In addition, a recent analysis by Fleming et al.

[28] on seasonal influenza vaccine efficacy suggested that efficacy

was lower in elderly (46%) compared to younger adults (70%).

Since all of the studies included in the Cochrane review were

performed on healthy young adults, we assume that efficacy was

70% and 46% in those under 65 y and 65 y or older, respectively,

in a well-matched year, which was reduced to 42% and 28% in

poorly matching years. We assume that children were immunised

with a live attenuated influenza vaccine and that this type of

vaccine produced protection similar to that of the current trivalent

inactivated vaccine in adults.

When the age grouping of the coverage data differed from that

used in our model, we reweighted the coverage values propor-

tionally to the population sizes. Figures for the 65+-y age group

from 2004/2005 onwards are taken from the HPA/DH annual

report on the influenza programme [29]. For the coverage in high-

risk individuals under 65 y for the season 2007/2008, we used the

HPA/DH report reweighted depending on the risk group. For the

seasons 2004/2005, 2005/2006, and 2006/2007, the coverage in

each age group is taken as the figure from 2007/2008 rescaled by

the ratio of coverage in the total non-risk under-65-y population in

each year and in 2007/2008. S1 in Text S1 gives the final

coverage by age/risk group and season assumed in the analysis.

Only infants over 6 mo received vaccination. Infants under

6 mo were assumed to be fully susceptible. Possible protection by

remaining maternal antibodies was not considered.

Epidemiological Model
The transmission matrix, the immunisation rate, the suscepti-

bility profile, and the initial number of infections in the different

age groups feed into the epidemiological model (Figure 1, process

d). The susceptibility profiles and initial number of infections are

derived from the inference procedure. The epidemiological model

uses an age- and risk-specific SEIR (susceptible–exposed–infected–

recovered) epidemic model [25] with gamma-distributed latent

and infectious periods. We assumed that the background

immunity in the population (inferred by the susceptibility profiles)

results in a reduced probability of infection rather than full

protection.

The epidemiological model describing the transmission dynam-

ics of the virus is similar to that used during the 2009 pandemic

[25]. The model has a modified SEIR structure. We assume

random mixing (within an age group) between the clinical groups.

The size of these groups is given for each season by demographic

figures from the Office for National Statistics (average figures over

the period of the study are presented in Table 1). To allow the

latent and infectious periods to be gamma distributed (rather than

exponential), we assume that each of the E and I compartments

are defined by two classes (hence SEEIIR structure), with the same

rate of loss of latency (c1) and infectiousness (c2) in both groups.

Hence, the average latent period is 2/c1, and the average

infectious period is 2/c2. Following Ferguson et al. [30], we chose

c1 = 2.5 and c2 = 1.1, corresponding to a latent period of 0.8 d and

an infectious period of 1.8 d.

We assume that at the outset of the influenza epidemic a small

fraction of individuals in each age class is infectious, and the

Figure 1. Directed acyclic graph showing the link between the different modelling components, data, and parameters. Double and
simple arrows indicate, respectively, deterministic and stochastic relationships, ellipses indicate variables, and rectangles indicate data. The circled
letters indicate which relationship connects the variables or data involved. These relationships are as follows: process a, drawing with replacement;
process b, calculation of the transmission matrix by rescaling the mixing matrix obtained by reweighting for age and weekday and weekend days;
process c, derivation of the immunisation rate from uptake data and match of vaccine; process d, integration of the SEIR model of transmission;
process e, ascertainment of cases through ILI recording at GPs; process f, virological testing scheme following a hypergeometric distribution.
doi:10.1371/journal.pmed.1001527.g001
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remainder are susceptible. This fraction is obtained by scaling the

initial infectious population by a factor l. Preseasonal susceptibility

is not necessarily assumed to be absolute, and may vary by age. An

age-dependent susceptibility profile {si} is assumed, the param-

eters of which are estimated from the model-fitting process for all

strains and years, except for H3N2 in 2003/2004, for which a pre-

epidemic serological profile was available [19] (more detail about

the derivation of susceptibility priors for this year is given in

Section 2.2.3 of Text S1). As susceptibility has to be inferred, we

chose to limit the model to three age bands to avoid overfitting.

We considered an average susceptibility for children (0–14 y old),

younger adults (15–64 y old), and elderly adults (65+ y old).

Uncertainty in estimates of these quantities reflects the joint

uncertainty in the parameters from which they are derived.

Therefore, any correlation structures that may be present are

appropriately propagated. We start our model at week 35 of the

epidemiological season (rather than week 40, which is usually

considered as the starting date of the flu season) to match the start

of the epidemic with the reopening of schools, the period at which

we considered that ILI starts to increase.

The equations of the SEIR epidemiological model are given by

Equation 1 in Text S1. The model’s age-group-specific force of

infection is given by

li~qsi

X7

j~1

X2

k~1

X
X~ N,Vf g

cij I1X
jk zI2X

jk

� �
ð4Þ

where q is the transmissibility parameter, cij is the rate at which

individuals in age group i make contact with those in age group j,

and si is the susceptibility of age group i.

The incidence Zik(n) of new infections in age group i and risk

group k at week n is

Zik nð Þ~
ð7n

7 n{1ð Þ

c1 E2V
ik zE2N

ik

� 	
dt: ð5Þ

Note that the general practitioner (GP) consultation and swabbing

data are only available in five age groups. The seven age groups in

the epidemic model are thus collapsed into these five age groups

for the purpose of the observation model, by combining the ,1

and 1–4 y age groups and the 15–24 and 25–44 y age groups. (For

simplicity of notation, we do not explicitly write the step that

consists of collapsing the seven age groups into five. This leads us

to a slight abuse of notation. The i index of Zik(n) in the epidemic

model is varying between 1 and 7 and is thus different from the i

index of Zik(n) in the observation model, which is varying between

1 and 5. Passing from one to the other is simply done by adding

the sizes of the populations that are being grouped.)

Observation Model
The last step of the model is to link syndromic surveillance data

with the number of infections due to circulating influenza viruses

in the population. Although GP consultations for ILI are often

used as a proxy to monitor transmission of influenza in a

population, individuals consulting for ILI and individuals infected

with one of the circulating strains from the influenza family are

typically two different sets. A large proportion of individuals

recorded as having ILI by their GP consult for symptoms resulting

from infection by pathogens other than influenza (e.g., respiratory

syncytial virus). Also, during an influenza epidemic, only a fraction

of cases present symptoms [31], among whom only a fraction will

consult in general practice. Of them, another fraction will be

recorded as ILI (others being recorded as having other respiratory

symptoms), and if PCR-tested, not all of them will end up positive

because of the sensitivity of the test. We derive hereafter a

statistical model to rigorously link syndromic surveillance and

influenza infections in the population.

The reappearance of influenza in temperate countries from one

year to another is determined by the introduction by people

travelling of some of the new variants from strains circulating

globally [32]. Patterns of circulation between the two global

hemispheres and persistence in some regions appear to be

governing the global circulation of influenza. In a country such

as the United Kingdom, this translates into exposure throughout

the year to importation from travellers. The H1N1/2009

pandemic, with its intense testing and tracking of travellers

acquiring influenza abroad, shed light on the pattern of

introduction of the virus. In-country epidemics of influenza are

characterised by a balance of constant re-introduction from

outside and local in-country transmission until a widespread

epidemic emerges (for a comparative description of the initial

phase of the epidemic during the 2009 spring in 12 European

countries, see [33]).

We thus considered that in addition to the main epidemic

modelled by the (deterministic) equations described in the previous

section, each individual in the monitored population is associated

with a weekly risk of being infected outside of the national

(deterministic) epidemic that we are modelling. This risk can be

associated with travelling abroad (e.g., in the southern hemisphere

during the influenza season in the northern summer) or with a

local outbreak independent of the national one. This risk is

modelled by a probability y that we assume, for simplicity, is

independent of time and age.

If, for ease of exposition, we describe by h the parameters of the

epidemic model, the incidence among the monitored population

of age group i at week j of new cases arising from the main

deterministic epidemic (assumed to be homogeneous across the

country) is

zhij~
Nmon

ij

N tot
ij

X2

k~1

Zik jð Þ












 ð6Þ

with h the epidemiological parameters (q, si, l, and A), Nmon
ij and

N tot
ij the size of, respectively, the monitored and the total

population in age group i and week j, and :::k k the function

rounding to the nearest integer.

At the same time, the incidence of infection acquired from

outside of the main epidemic follows a binomial law of probability

y:

zoutside
ij *Binomial Nmon

ij ,y
� �

: ð7Þ

The ascertainment of a case by the surveillance system is

dependent on two steps. First, the infected case needs to go to

the GP, and the GP needs to record the case as ILI. Second, a

swab sample has to be taken and confirmed as containing

influenza viruses. Because of these two steps, the number of

ascertained cases is usually much smaller than the number of

ascertainable cases: not all persons presenting with ILI are tested

for influenza. The number of ascertained cases depends on the

testing scheme, while the number of ascertainable cases depends

on the number of individuals with true influenza infections in the

population that present to their GP. We thus are interested in the
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number of ascertainable cases and assume that each individual in

age group i infected by the strain of influenza studied has a

probability i of being ascertainable, i.e., going to the GP, being

recorded as ILI, and having a detectable viral load (the number of

ascertainable cases is thus the number of positives that we would

get if all the patients with ILI were virologically tested for influenza

in a given week).

The number of ascertainable cases that get infected outside of

the main epidemic can then be modelled as binomial of

probability yEi as the number of cases with infection from outside

is a binomial of probability y, and the number of ascertained

cases, conditional on the number of cases, is also binomial with

probability Ei:

moutside
ij *Binomial Nmon

ij ,yEi

� �
: ð8Þ

As yei is small and Nmon
ij is big, moutside

ij can less cumbersomely be

defined by a Poisson distribution of rate Nmon
ij yEi:

moutside
ij *Poisson yEiN

mon
ij

� �
: ð9Þ

This approximation is accurate for all the values considered in this

paper.

Among the mij individuals reported with ILI at week j among

age group i, we are interested in the mz
ij who have a detectable

viral infection for a certain subtype of influenza. We assume that

they are a binomial sample from the total number of infected

(equal to zhijzzoutside
ij ) with ascertainment probability Ei, assumed

to be constant over time (Figure 1, process e). The virological

testing scheme can be seen as randomly drawing nij samples

without replacement from the population of the mij individuals

consulting for ILI, in which mz
ij have a virologically detectable

infection. The number of positive samples nz
ij that are expected

can thus be represented using a hypergeometric distribution

(Figure 1, process f). The consultation and positivity model is then

described by the following system of equations:

mz
ij * Binomial zhij ,Ei

� �
zPoisson yEiN

mon
ij

� �
nz

ij * Hypergeometric nij ,m
z
ij ,mij

� �
:

8><>: ð10Þ

A representation of the surveillance system in terms of sets is given

in Figure 2. Following this set representation, we can express Ei as

a product of elementary epidemiological quantities (derivation in

Text S1):

E&P E Aj \C\Dð Þ P D Aj \Cð Þ P C Ajð Þ P B Aj \Cð Þ ð11Þ

where P(E|A > C > D) is the GP recognition ability, P(D|A > C)

the propensity to consult among symptomatic influenza cases,

P(C|A) the proportion with symptoms among the infected, and

P(B|A > C) the sensitivity of the test against clinical influenza

cases.

Using this, we can derive an order of magnitude for E. In

Table 3, we summarise the range of values that could take the

elementary epidemiological parameters forming E and obtain

values between 0.006 and 0.05.

Reproduction Numbers and Mixing between Groups
The transmission potential of a pathogen is traditionally

summarised by way of its basic reproduction number R0, the

average number of secondary cases following the introduction of

an infectious individual in a totally susceptible large population

[34]. In a heterogeneous population, R0 will be a function of each

of the reproduction numbers within population sub-groups and of

the degree of assortativity of these sub-populations. As a result,

similar R0 values can arise from very different epidemiological

situations (see Section 2.1.4 of Text S1). We thus measured, in

addition to the basic reproduction number for the overall

population, the specific reproductive numbers for children under

15 y and adults (RC and RA, respectively) and the degree of

assortativity dR of the two subpopulations.

Generating Alternative Vaccination Scenarios
To estimate the impact of potential changes to the current

vaccination strategy, we ran for each of the 14 seasons and each of

the three strains, 1,000 simulated epidemics with parameters

sampled from the posteriors obtained using MCMC techniques. In

addition to the actual strategy (used in the fitting process), we

analysed an additional ten strategies. The ten strategies are three

‘‘basic’’ strategies and incremental extensions of them (at 15%,

30%, 50%, and 70% coverage):

N No vaccination: Nobody receives any vaccine doses.

N Pre-2000: The pre-2000 scheme is kept throughout the 14 y,

i.e., the risk groups are targeted as they were during these

years; the change to targeting the low-risk 65+-y group that

occurred in 2000 is not implemented. For the seasons 2000/

2001 to 2008/2009, the average coverage from the pre-2000

seasons is kept for this group (29.34% coverage in the low-risk

65+-y group).

N Post-2000: The post-2000 scheme is applied throughout the

14 y, i.e., the risk groups are targeted as they were during these

years; the low-risk 65+-y group is targeted in all seasons. For

the seasons 1995/1996 to 1999/2000, the coverage of 1999/

2000 is applied for this group (70% coverage in the low-risk

65+-y group).

N S1: Low-risk 0.5–4-y-olds are vaccinated at 15%, 30%, 50%,

and 70% coverage, incremental on the post-2000 scenario.

N S2: Low-risk 50–64-y-olds are vaccinated at 15%, 30%, 50%,

and 70% coverage, incremental on the post-2000 scenario.

N S3: Low-risk 5–16-y-olds are vaccinated at 15%, 30%, 50%,

and 70% coverage, incremental on the post-2000 scenario.

N S4: S1+S2, i.e., combination of scenarios 1 and 2.

N S5: S1+S3, i.e., combination of scenarios 1 and 3.

N S6: S1+S2+S3, i.e., combination of scenarios 1, 2 and 3.

N S7: Universal, i.e., everybody among the low-risk population is

vaccinated at 15%, 30%, 50%, and 70% coverage, incremen-

tal on the post-2000 scenario.

To quantify the efficiency of the assessed programmes, we

measured the reduction in infections and deaths induced by one

dose of vaccine for each of the different strategies. For this, we

used the estimated total reduction in number of infections and

deaths during the period (removing the season 2002/2003, where

virological samples are too scarce) and divided it by the numbers of

doses of vaccines given by the programme over the same period.

For the extension strategies, we took the median over the four

considered coverages (15%, 30%, 50%, and 70%).

Estimation of the Number of Deaths due to Influenza
Our model provides estimates of the number of influenza

infections ( N infec) under different vaccination scenarios for the
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period 1995–2009. In order to compare these scenarios on the

basis of the predicted number of influenza deaths ( N death), we

need the case fatality ratio (CFR = N death/ N infec) of influenza.

Ideally, because our model provides estimates of the N infec by

strain (s), age (a), and risk (r) group we would like to use CFRs

of influenza as a function of these three variables: CFRs,a,r.

However, such estimates are currently lacking in the literature,

mainly because quantifying the magnitude of both infection

and mortality attributable to influenza is not straightforward

[1].

In theory, it would be possible to extend our current framework

to include some influenza mortality data in order to estimate

N death and then deduce CFRs. Unfortunately, in contrast to the

weekly age- and strain-specific data available for influenza

morbidity, the best information on influenza mortality in England

consists only in annual, age-specific estimates for the restricted

period 1999–2009 [1]. In this context (i.e., only one data point per

year for all three strains and only two-thirds of the period

considered), it would be illusory to try to estimate annual CFRs,a,r

with our dynamical model approach. Instead, we propose to

Figure 2. Venn diagram giving a schematic representation of the different surveillance schemes and clinical statuses. The relative
proportions of the different sets vary from one week to another and are different for each age group.
doi:10.1371/journal.pmed.1001527.g002

Table 3. Order of magnitude of the ascertainment probability e derived from the elementary probabilities of measurable
underlying phenomena.

Quantity Notation Range Source

Sensitivity of virological test P(B|A > C) 0.6–0.9 Assumption

Proportion of clinical cases among
infections

P(C|A) 0.3–0.51 [31]

Propensity to consult among clinical
cases

P(D|A > C) 0.05–0.12 [39]

Sensitivity of the GP diagnostic P(E|A > C > D) 0.65–0.9 Assumption

Ascertainment probability E 0.006–0.05 Derived

doi:10.1371/journal.pmed.1001527.t003
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combine available estimates of annual Ndeath by age group in

England—obtained from a recently published regression analysis

by Hardelid et al. [1] (see Table S2 in Text S1)—with our

estimates of the annual N infec in order to construct and fit

generalised linear models whose coefficients equal the desired

CFRs.

More precisely, because there was evidence of overdispersion in

the mortality time series of Hardelid et al. [1], we start with the

following age-specific negative binomial regression model with

identity link and no intercept:

Ndeath
a tð Þ*negBinomial ma,wað Þ,

ma tð Þ~
P3

s~1

P2
r~1 bs,a,rN

infec
s,a,r tð Þ,

(
ð12Þ

where the negative binomial distribution is parametrized by its

mean (ma) and dispersion (wa), the index a denotes the age group

considered (we fit each age-specific model independently), and t

runs over the restricted period 1999–2009. Given that Ndeath
a (t)

(Hardelid et al. data) and N infec
s,a,r (t) (our model outputs) are

‘‘known’’ (with uncertainty in both sources), the objective is to

estimate the coefficients bs,a,r that, given the identity link and the

absence of intercept, correspond to the desired CFRs,a,r values.

Note that the age groups in the study of Hardelid et al. [1]

(,15, 15–44, 45–74, 75+ y) do not exactly match those of our

model (,1, 1–4, 5–14, 15–24, 25–44, 45–64, 65+ y). We tackle

this issue by (1) aggregating the three youngest age groups in our

model and (2) refitting the Hardelid et al. regression model for the

age groups 45–64 and 65+ y (H. Green, Health Protection

Agency, personal communication).

In principle, because the severity of a strain is expected to

change from one year to another, CFRs should also depend on the

season t, thus greatly increasing the number of parameters. Here,

we instead assume that the severity effect can be captured by the

overdispersion parameter wa. Such a simplification is required for

two reasons: first, we have a single (uncertain) estimate of Ndeath
a

per year, and, second, these estimates are not available before the

1999/2000 season [1]. Put another way, we assume that the

CFRs,a,r values are constant from 1999 to 2009 and can be applied

to the 1995–1999 period.

In addition, one can see that each age-specific model (Equation

12) suffers from overparametrization as it intends to estimate six

parameters (three strains times two risk groups) from only nine

data points (of the ten seasons provided by the study of Hardelid et

al. [1], only nine are used since our estimates of N infec for the

2002/2003 season are not reliable because of a lack of virological

data during that particular season). To tackle this issue, we

assumed that the risk ratio CFRs,a,2/CFRs,a,1 depends only on the

age group a and is equal to Ra: the age-specific risk ratio of the

CFRs for acute respiratory infection among patients not in a high-

risk group versus patients in a high-risk group. The Ra values were

obtained by analysing extracts from the Hospital Episode Statistics

database (Health & Social Care Information Centre) for England,

for the period April 2000–March 2009. Patients were included

when they had an acute respiratory ICD-10 diagnostic code (J0*,

J1*, J2*, J3*, J40*, J41*, J42*, J43*, J44*, J47*) in any diagnostic

fields and were divided into risk group/non-risk group based on a

risk-group-related ICD-10 code. (We used the following ICD-10

codes for risk groups [where a two-digit code is given, it includes

all ICD-10 codes beginning with that code]: D73, J4, J6, J7, J8,

Q30, Q31, Q32, Q33, Q34, Q35, Q36, Q37, I05, I06, I07, I08,

I09, I11, I12, I13, I20, I21, I22, I25, I27, I28, I3, I40, I41, I42,

I43, I44, I45, I47, I48, I49, I5, I6, Q2, N0, N11, N12, N14, N15,

N16, N18, N19, N25, Q60, Q61, K7, P788, Q44, E10, E11, E12,

E13, E14, E24, G1, G2, G3, G4, G5, G6, G7, G8, G9, N083, O24

P700, P701, P702, C, D37, D38, D39, D4, B20, B21, B22, B23,

B24, Z94, Z85, D73, Z9621, G960, D561, D578, D571, D570,

K900, D70, D71, D72, D76, D80, D81, D82, D83, D84.)

Mortality was identified by discharge method 4, and only mortality

within 30 d of admission date was considered attributable to the

admission (results of the analysis are given in Table S3 in Text S1).

Following this further simplification we obtain a new death

model, with only three coefficients to estimate:

Ndeath
a tð Þ*negBinomial ma,wað Þ,

ma tð Þ~
P3

s~1 bs,a,1 N infec
s,a,1 tð ÞzRa|N infec

s,a,2 tð Þ
h i

:

8<: ð13Þ

Finally, because the values of Ndeath
a , N infec

a , and Ra come with

confidence intervals (CIs), we need to account for this uncertainty

when computing CFRs. For each age group a, we proceed as

follows. (1) We generate K = 1,000 sample datasets Ndeath, k
a (t),

�
N infec, k

s,a,r (t),Rk
agk~1:::K , where Ndeath, k

a (t) and Rk
a are sampled

from a normal distribution with the same mean and 95% CI as in

Tables S2 and S3 of Text S1, whereas N infec, k
s,a,r (t) values are

obtained by running our model parameters sampled from the joint

posterior distribution of our MCMC analysis. (2) We fit the death

model for each replicate k by maximum likelihood using the

function glm.nb of R 2.15.1 [35].

We obtain the distribution of the K maximum likelihood

estimates b̂bk
s,a,1~

dCFRCFRk
s,a,1 of Figure S2 in Text S1. These

distributions are used to account for uncertainty when computing

the distribution of the cumulated number of influenza deaths

Ndeath,k
tot

n o
k~1:::K

over the 1995–2009 period predicted under

each vaccination scenario:

Ndeath,k
tot ~

X14

t~1, t=7

X4

a~1

X3

s~1

dCFRCFRk
s,a,1 N infec,k

s,a,1 tð ÞzRk
a|N infec,k

s,a,2 tð Þ
h i

ð14Þ

where t = 7 corresponds to the 2002/2003 season and is therefore

excluded. The 95% credible intervals of the cumulated number of

influenza deaths Ndeath, k
tot

n o
k~1:::K

are calculated for each scenario

using the 2.5% and 97.5% quantiles of the posterior distributions

of the quantities of interest.

Statistical Inference
The multiple sources of observation give rise to an intractable

likelihood, which we explore via data augmentation [36]

techniques. In order to manage to integrate numerically the

likelihood, we rewrite the likelihood by marginalising some of the

augmented variables. Then, we derive a recursive definition of

each of the elementary components of the likelihood in order to

minimise the number of computational steps involved in the

estimation of the likelihood of the model. Finally, we modify the

summation surface of the likelihood to derive an accurate

approximation of this likelihood by truncating some of the terms

with very low probability (see Text S1 for more details of the

statistical inference). This allows us to accelerate the computation

of the likelihood in order to run 11-million-length chains for each

strain and season (1 million for the burn-in). Samples of size 1,000

are obtained by thinning the chain by 10,000.

Serology data were available for the H3N2-dominated 2003/

2004 season and facilitated inference for the transmissibility and
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ascertainment probabilities during this season. The transmissibility

between an infectious individual and a susceptible contact is

assumed to be constant irrespective of age.

For the remaining 41 subtype-seasons, the estimates of the

transmissibility and ascertainment probabilities derived from the

2004/04 H3N2 season with serology were used as priors, allowing

us to infer the age-specific susceptibility profiles at the beginning of

each of the 41 subtype-seasons.

Results

The fitted epidemics manage to reproduce the detailed

epidemiological patterns observed in the surveillance data

(Figures 3 and 4; Text S1). Reconstructed epidemics by strain

reveal the domination of A/H3N2 strains driving influenza

epidemiology in the period before the 2009 pandemic. Epidemics

from A/H3N2 strains were both more frequent and larger, while

B strains tended to result in larger epidemics every few years, and

H1N1 remained occasional but smaller in scale. The model is able

to capture the epidemiological patterns, and infer key parameters

and quantities for each strain in each season of the period. An

example of key parameters and quantities inferred from the model

is given in Figure 4 (the remaining strains/seasons can be seen in

Figures S10–S51 of Text S1). For instance, susceptibility is

generally lower in adults than in children (although this is not

always the case), and the posterior of the contact matrix is usually

relatively close to that observed in a large-scale contact survey

[16].

We found the probability of transmission between a susceptible

and an infectious person to be 0.17 (0.13–0.22). The ascertainment

probability (probability that an infected person will be recorded as

having ILI (given the propensity to consult) and have virologically

confirmed influenza (assuming that all who consult are swabbed) is

0.0106 (95% credible interval 0.0071–0.0193) among children

(,15 y), 0.0064 (0.0053–0.0154) among adults (15–64 y), and

0.0139 (0.0063–0.0436) among individuals 65 y or older.

We found that in the years where an epidemic occurred, the

specific reproductive numbers for children under 15 y and adults

(respectively, RC and RA) were equal to 1.2 (95% credible interval

0.9–1.6) and 1.1 (0.8–1.4), respectively. The degree of assortativity

dR was estimated to be 0.3 (0.2–0.4). These specific reproductive

numbers vary by subtype, with RA being smallest and very close to

1 for H1N1 (see Table 4). With the exception of H3N2 in two

seasons, RC was consistently greater than RA for the remaining 21

strain-specific seasonal outbreaks (Figure 5). Both age groups thus

contribute to transmission, with children being the key spreaders.

Table 5 and Figure 6 show the estimated number of influenza

cases and deaths occurring over the 14-y period, under the actual

Figure 3. Reconstructed epidemics for the three seasonal subtypes between September 1995 and September 2009. The fit of the
model is compared to the age-specific time series of positive ILI cases estimated from the data. For the model, the mean (red line) with 95% CIs
(shaded areas) is based on the associated binomial process. For the data, we have represented the unbiased estimator (black dots), with the 95% CI
based on a hypergeometric distribution (see Text S1).
doi:10.1371/journal.pmed.1001527.g003
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vaccination programme, and a series of alternative scenarios

(including no vaccination, which is given by the yellow line in

Figure 6). The horizontal axis on Figure 6 gives the number of

doses administered under each of the alternative vaccination

programmes. The actual vaccination programme is given by the

asterisk. Coloured circles represent additions to the current

strategy (i.e., extending vaccination to low-risk non-elderly

individuals), and coloured squares represent alternative extensions

to the pre-2000 programme (i.e., if instead of extending

vaccination to low-risk elderly individuals, vaccination had been

offered to low-risk individuals in other age groups). If the pre-2000

risk-based programme had remained in place, then an estimated

179 (95% credible interval 168–191) million cases would have

occurred, with 338,000 (95% credible interval 221,000–602,000)

influenza-related deaths. The expanded programme that included

vaccination targeted at all 65+-y-olds post-2000 is estimated to

have saved around an additional 18,000 influenza-related deaths,

though it reduced incidence only marginally (see Table 5). If,

instead, the policy had changed to vaccination of school children

(at 30% coverage), this would have significantly reduced both cases

and deaths, for about the same number of doses as were in fact

used (purple squares in Figure 6). Increasing coverage would

reduce both cases and deaths further, but at higher cost in terms of

doses used. The optimal choice among policy options (coloured

circles) is clear: vaccination of school children is the most efficient

strategy, particularly at reducing incidence, followed by the

combination strategies, which all involve childhood vaccination.

The historical programme is estimated to have prevented 0.39

(95% credible interval 0.34–0.45) infections for each dose given

and 1.74 (95% credible interval 1.16–3.02) deaths for every 1,000

doses. Extending the current programme to the low-risk age group

most at risk (50–64 y) would improve the overall efficiency of the

programme (0.43 [95% credible interval 0.35–0.52] infections

Figure 4. Inference results for H3N2 during the 1995/1996 season. (A) Comparison of the fit of the model to the age-specific time series of
positive ILI cases estimated from the data. For the model, the mean (red line) with 50% and 95% CIs (light and dark shaded areas, respectively) is
based on the associated binomial process. For the data, we have represented the unbiased estimator (black dots), with the 95% CI associated with
the hypergeometric distribution (error bars). (B) Comparison of the contact matrix of the POLYMOD study (left panel) to the resampled matrix of the
maximum likelihood MCMC sample (right panel). (C) Age-specific probability of being recorded as ILI and positive if tested and infected. (D) Age-
specific susceptibility at the beginning of the flu season. (E) Transmission coefficient (q, left panel) and derived quantities: basic (R0, middle panel) and
effective (Re(t = 0), right panel) reproduction numbers. For (C–E): the prior distribution is shown in blue, and the posterior distribution in red.
doi:10.1371/journal.pmed.1001527.g004

Table 4. Values for the specific reproductive numbers for
children under 15 y and adults (respectively, RC and RA) and
the degree of assortativity dR for the three strains circulating
averaged over all seasons for which estimates are possible
(i.e., for seasons where a significant epidemic occurred).

Quantity of
Interest Strain

H1N1 H3N2 B

RC 1.2 [0.9–1.6] 1.3 [0.9–1.7] 1.2 [0.9–1.7]

RA 1.0 [0.8–1.4] 1.1 [0.8–1.5] 1.1 [0.8–1.4]

dR 0.3 [0.2–0.4] 0.3 [0.2–0.4] 0.3 [0.2–0.4]

doi:10.1371/journal.pmed.1001527.t004
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prevented for each dose), but deaths prevented would remain at

1.77 (95% credible interval 1.15–3.14) for 1,000 doses. In

comparison, a policy extending vaccination to the main transmit-

ters (children aged 5–14 y) would prevent 0.70 (95% credible

interval 0.52–0.81) infections per dose and 1.95 (95% credible

interval 1.28–3.39) deaths per 1,000 doses given.

Figure 7 shows the distribution by age and risk group of

infections and deaths averted for two of the evaluated strategies

(current and the extension to children 5–16 y old). Most of the

additional benefit in terms of infection is in the vaccinated age

group (low-risk 5–16-y-olds) but with a significant impact in young

adults (17–44-y-olds). With regards to mortality, the vast majority

of deaths averted are among low- and high-risk elderly adults (65+-

y-olds).

Discussion

Most high-income countries vaccinate high-risk individuals

and/or elderly adults against influenza. The necessity to vaccinate

annually represents a major financial and logistical challenge. This

is especially so in temperate countries where, because of the

seasonality of influenza, vaccines need to be given during a short

time window. Judging whether the existing programmes represent

a good use of these resources, and whether the programmes should

be expanded (or indeed reduced) is, however, far from straight-

forward. Individually randomised controlled trials and cohort

studies give information only on individual protection, not on the

overall effect of the intervention in the population. Cluster

randomised trials can estimate the overall effect [37], but are

expensive to conduct and are therefore rare. Before and after

studies are difficult to interpret given the variability in influenza

and vaccine match from season to season. All of these

experimental or observational studies provide no information on

alternative strategies (i.e., strategies not directly observed in the

study). Here we use a mathematical model in conjunction with a

number of detailed datasets collected over multiple seasons to fill

help this void.

The close fit of the model to the totality of the data and the

extensive simulation and analytical work undertaken to establish

the performance of the statistical approaches employed (see Text

S1) give confidence in the model’s ability to accurately reproduce a

series of counterfactual histories: in other words, the model’s

ability to predict what would have happened if an alternative

vaccination regime had been in place. While the vaccination of the

population at highest risk did significantly reduce mortality, it had

little effect on transmission. It appears that a vaccination

programme based on targeting the main transmitters, i.e.,

children, is the most efficient at reducing not only infection but

also mortality, which disproportionately affects older individuals

and those with high-risk conditions. Indeed, the results even

suggest that the change to targeting all individuals 65 y and older

that occurred in 2000 in the UK was not the best strategy.

Targeting children would likely have prevented more cases and

deaths for similar numbers of doses, even if low levels of coverage

(30%) had been achieved. Such results have clear implications for

similar countries considering their influenza vaccination policies. It

also shows that in countries, such as the US, that have introduced

a childhood programme, albeit at relatively low coverage [38],

substantial benefits to children and others in the community can

still occur. Improving coverage in children should be a priority as

Figure 5. Values (posterior distributions) of the specific
reproductive numbers for children (RC) and adults (RA) during
the study period for all strains present at an epidemic level
during the season. Epidemics are defined as including at least 1 wk
where more than 2,500 cases of influenza are estimated by surveillance

data. Vertical and horizontal dotted lines represent RC and RA = 1,
respectively. The diagonal dotted line is RC = RA.
doi:10.1371/journal.pmed.1001527.g005
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this is likely to bring the greatest benefit to the community as a

whole.

This work is based on modern developments of Bayesian

statistics allowing us to break down the influenza transmission into

biological (immunity, probability of transmission of the

virus), social (contact pattern), and healthcare (ascertainment

probabilities) parameters. This method is based on data largely

available in many other countries. It integrates a novel method to

estimate relevant contact patterns. Comparison of the posteriors of

the model with the prior shows that the use of contact survey data

such as from the POLYMOD study gives a reasonable description

of contacts involved in influenza transmission.

Some of the estimates (particularly the number of deaths) have

wide credible intervals. This is due to the uncertainty regarding

the estimation of epidemiological parameters for influenza and

difficulties in estimating the CFRs for the different age groups.

This leads to some of the estimates for the different strategies

having wide and overlapping credible intervals. However, these

estimates are not independent since they are generated from

simulations with the same epidemiological parameters and CFRs

but different vaccination scenarios. Therefore, one must focus

upon the estimate of the difference between two scenarios in order

to test for statistical significance (or lack thereof). In fact, when one

considers pairs of scenarios, the difference between each of the two

scenarios is typically statistically significant. This is not apparent

when inspecting the marginals because of the correlation structure.

For example, when compared to the non-vaccination strategy, the

median number of deaths averted per 1,000 doses is greater for

strategy S2 than for strategy S3 (1.99 versus 1.79 incremental on

the post-2000 programme and 30% coverage; see Table 2), but

they show overlapping 95% credible intervals (1.31–3.46 versus

1.17–3.18). However, when strategy S2 is pairwise compared with

strategy S3, we find that strategy S2 averts a median of 0.82 more

deaths than strategy S3 per 1,000 doses (95% credible interval

0.53–1.48). In Figures S58 and S59 of Text S1, we show a

computation of the p-values of the differences in terms of cases and

deaths averted per dose for each of the possible pairs of scenarios

from the study.

We have used only serological data tested against one A/H3N2

virus during one season. This has been used as an informative

prior for the other strains and seasons. Further serological analyses

are needed to inform the differences in transmissibility of influenza

viruses in human populations. This study provides the method-

ology to do so using largely available surveillance data combined

with serological surveys. Another assumption is that the propensity

to consult with a GP for flu-like symptoms is constant throughout

the year. Further studies involving sequential serology would help

in providing insight into this parameter.

The pattern inferred by the ascertainment probability (linked

with the propensity to consult per infection) reveals a V-shape

curve, where ascertainment probability is higher in children and

elderly adults and twice as low in adults under 65 y. The

Figure 6. Estimated number of influenza cases and deaths occurring over the 14-y period under the actual vaccination programme,
and a series of alternatives. The horizontal axis gives the size (number of doses given) of each of the alternative vaccination programmes (S1 to
S6—defined as incremental on the current programme). HR and LR refer to the high-risk and low-risk groups, respectively. The black square
represents the estimate of what would have happened if England and Wales had maintained its risk-group-specific vaccination programme
throughout the period. The black circle represents what would have happened if the post-2000 programme (targeting vaccination to high-risk and
elderly individuals) had been in place throughout the period. The actual vaccination programme is given by the asterisk. Coloured circles represent
additions to the current strategy (i.e., extending vaccination to low-risk non-elderly individuals), and coloured squares represent alternative
extensions to the pre-2000 programme (i.e., if instead of extending vaccination to low-risk elderly individuals, vaccination had been offered to low-
risk individuals in other age groups). The size of the coloured circles and squares represents the assumed coverage achieved, and the different
colours represent which age groups are targeted.
doi:10.1371/journal.pmed.1001527.g006
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ascertainment probability can be interpreted as the number of

confirmed cases resulting if everybody recorded as ILI were

virologically tested. This number is of the order of magnitude of

0.5%–1%, revealing the difficulty of understanding the underlying

transmission dynamics through a clinical surveillance system

because of the different ‘‘filters’’ (symptoms, consultation, assess-

ment of the GP, sensitivity of the test, etc.).

The calculation of the specific reproductive numbers for

children and adults alongside the degree of assortativity of the

effective contacts reveals a key characteristic of the epidemic: the

transmission is mainly driven by children, with the benefits of

vaccination greatest in this age group. Nevertheless, the degree

of assortativity of 0.3 (0 representing no contacts between

children and adults and 1 representing homogeneous mixing)

indicates that intervention in children is likely to provide strong

herd immunity for the remaining population. It should also be

noted that in this paper we have adopted a two-group

representation of the dynamics for ease of visualising the

respective role of children and adults. In the full model, we

use seven age groups.

In our model, each season and each strain circulating within

that season is modelled in isolation. However, there should be a

link between strain-specific immunity at the beginning of a season,

number of infections during that season, and immunity at the

beginning of the following season. The annual change in strain-

specific immunity is complicated by the fact that influenza strains

are drifting, generating variant viruses escaping the population

immunity. The integration of a mechanism for the building and

propagation of immunity (including interaction with the immune

history of the age group in the population) would help improve

understanding of the evolutionary dynamics of the virus and its

interaction with immunity at a population level. It should also

allow better estimates of the epidemic parameters for each season.

Propagation of immunity could also have an impact on the overall

efficiency of the vaccine programme. Annual re-vaccination could

increase the overall programme benefit by providing protection for

Figure 7. Comparison of the number of cases saved per year for the current strategy (vaccination of high-risk and 65+-y
individuals) with an extension of the current strategy that additionally targets the 5–16-y age group. Results are shown for number of
infections (morbidity) and deaths (mortality) by age and risk group.
doi:10.1371/journal.pmed.1001527.g007
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longer than one season. However, by reducing natural infections

in unvaccinated individuals, it might allow pools of susceptible

individuals to build up in particular parts of the population. This is

an area of future research.

The vaccination model developed is based on a series of

simplifying assumptions. First, protection from vaccination is

considered as absolute. Alternatives about the modelling of the

impact of vaccination exist. For example, vaccination can reduce

susceptibility or transmission. The vaccine efficacy is set to be 70%

and 42% for the individuals under 65 y and 44% and 28% for

individuals aged 65+ y during, respectively, well-matched years

and non-well-matched years, i.e., when the strain present in the

vaccine and the strain circulating differ. These values are based of

the available data for some of the existing vaccines; they are likely

to vary with the type of vaccine used (live attenuated influenza

vaccine or trivalent inactivated vaccine), the season, the age and

risk groups, and the subtype targeted.

As we have serological data for one season and subtype only,

we use the same informative prior for the transmissibility (q) of the

virus for all age groups and subtypes. This is not a problem, in

principle, as the posterior distribution of the parameter should

reflect for each subtype and season an update combining the

other sources of information with this prior. Nevertheless,

because of the identifiability problem with the background

immunity, the transmissibility prior is strongly informative and

will drive the shape of the posterior. More studies would be

needed to evaluate the respective transmissibility of the different

circulating subtypes, and possible changes from one season to the

other.

The value of the ascertainment probability (ei) is assumed in our

study to be constant over the course of the season. The underlying

assumption is that the quantities contributing to the ei remain

constant over time. One of them, the propensity to consult with a

GP if symptomatic, is likely to vary during the season. Though

there is little evidence of large variation of this number for seasonal

influenza, it has been shown that this number could vary in

particular circumstances such as a pandemic where media

coverage changes the perception of the disease among the

population where the epidemic is occurring.

To be able to translate the number of infections into expected

deaths, we used estimates from another published study on the

number of deaths from influenza during a subset of the seasons we

analysed. Ideally this number of deaths should be estimated inside

the Bayesian inference framework. Unfortunately, deaths are

difficult to attribute as the link with a particular pathogen is rarely

identified. Thus, we would need to use a non-specific measure of

deaths (such as all-cause mortality or acute respiratory illness), and

then attribute deaths to influenza, taking account of other

potential causes of death. Methods integrating time series from

other pathogens could be inserted in the current model to provide

such estimates. This work paves the way towards further

developments in that direction.

Traditional vaccination strategies against influenza have target-

ed those most at risk of serious consequences of infection. This

comprehensive modelling study, which builds on detailed strain

and age- and risk-group-specific data, suggests that with the

current level of immunisation in high-income countries, additions

to the current risk/age-based strategy should now be considered.

The most efficient way of reducing overall influenza-attributable

morbidity and mortality appears to be to target the key

spreaders—children. This strategy exploits the low reproduction

number of the influenza virus and its dependence on spread from

children who have higher levels of susceptibility and higher

contact rates. Targeting at-risk individuals and elderly adults offers

some protection to those immunised, but little to others in the

population. Adoption of more innovative strategies that aim to

block transmission (in addition to targeting those most at risk)

should be more widely adopted. Even with modest coverage,

substantial further reductions in morbidity and mortality could be

achieved.
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Editors’ Summary

Background. Every winter, millions of people catch
influenza, a viral infection of the airways. Most infected
individuals recover quickly, but seasonal influenza outbreaks
(epidemics) kill about half a million people annually. In
countries with advanced health systems, these deaths occur
mainly among elderly people and among individuals with
long-term illnesses such as asthma and heart disease that
increase the risk of complications occurring after influenza
virus infection. Epidemics of influenza occur because small
but frequent changes in the influenza virus mean that an
immune response produced one year through infection
provides only partial protection against influenza the
following year. Annual immunization with a vaccine that
contains killed influenza viruses of the major circulating
strains can greatly reduce a person’s risk of catching
influenza by preparing the immune system to respond
quickly when challenged by a live influenza virus. Conse-
quently, many countries run seasonal influenza vaccination
programs that, in line with World Health Organization
recommendations, target individuals 65 years old and older
and people in high-risk groups.

Why Was This Study Done? Is this approach the best use
of available resources? Might, for example, vaccination of
children—the main transmitters of influenza—provide more
benefit to the whole population than vaccination of elderly
people? Vaccination of children would not directly prevent
as many influenza-related deaths as vaccination of elderly
people, but it might indirectly prevent deaths in elderly
adults by inducing herd immunity—vaccination of a large
part of a population can protect unvaccinated members of
the population by reducing the chances of an infection
spreading. Policy makers need to know whether a change to
an influenza vaccination program is likely to provide
additional population benefits before altering the program.
In this evidence synthesis and modeling study, the
researchers combine (synthesize) longitudinal influenza
surveillance datasets (data collected over time) from England
and Wales, develop a mathematical model for influenza
transmission based on these data using a Bayesian statistical
approach, and use the model to evaluate the impact on
influenza infections and deaths of changes to the seasonal
influenza vaccination program in England and Wales.

What Did the Researchers Do and Find? The researchers
developed an influenza transmission model using clinical
data on influenza-like illness consultations collected in a
primary care surveillance scheme for each week of 14
influenza seasons in England and Wales, virological informa-
tion on respiratory viruses detected in a subset of patients
presenting with clinically suspected influenza, and data on
vaccination coverage in the whole population (epidemio-
logical data). They also incorporated data on social contacts
(behavioral data) and on immunity to influenza viruses in the
population (seroepidemiological data) into their model. To
estimate the impact of potential changes to the current
vaccination strategy in England and Wales, the researchers
used their model, which replicated the patterns of
disease observed in the surveillance data, to run simulated

epidemics for each influenza season and for three strains of
influenza virus under various vaccination scenarios. Com-
pared to no vaccination, the current program (vaccination of
people 65 years old and older and people in high-risk
groups) averted 0.39 infections per dose of vaccine and 1.74
deaths per 1,000 doses. Notably, the model predicted that
extension of the program to target 5–16-year-old children
would increase the efficiency of the program and would
avert 0.70 infections per dose and 1.95 deaths per 1,000
doses.

What Do These Findings Mean? The finding that the
transmission model developed by the researchers closely fit
the available surveillance data suggests that the model
should be able to predict what would have happened in
England and Wales over the study period if an alternative
vaccination regimen had been in place. The accuracy of such
predictions may be limited, however, because the vaccina-
tion model is based on a series of simplifying assumptions.
Importantly, given that influenza vaccination for children is
being rolled out in England and Wales from September 2013,
the model confirms that children are key spreaders of
influenza and suggests that a vaccination program targeting
children will reduce influenza infections and potentially
influenza deaths in the whole population. More generally,
the findings of this study support wider adoption of national
vaccination strategies designed to block influenza transmis-
sion and to target those individuals most at risk from the
complications of influenza infection.

Additional Information. Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371.journal.pmed.1001527.

N The UK National Health Service Choices website provides
information for patients about seasonal influenza and
about vaccination; Public Health England (formerly the
Health Protection Agency) provides information on
influenza surveillance in the UK, including information
about the primary care surveillance database used in this
study

N The World Health Organization provides information on
seasonal influenza (in several languages)

N The European Influenzanet is a system to monitor the
activity of influenza-like illness with the aid of volunteers
via the Internet

N The US Centers for Disease Control and Prevention also
provides information for patients and health professionals
on all aspects of seasonal influenza, including information
about vaccination and about the US influenza surveillance
system; its website contains a short video about personal
experiences of influenza

N Flu.gov, a US government website, provides access to
information on seasonal influenza and vaccination

N MedlinePlus has links to further information about
influenza and about immunization (in English and Spanish)
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