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Cyclic AMP Effectors in African Trypanosomes Revealed by Genome-
Scale RNA Interference Library Screening for Resistance to the
Phosphodiesterase Inhibitor CpdA

Matthew K. Gould,®® Sabine Bachmaier,” Juma A. M. Ali,> Sam Alsford,® Daniel N. A. Tagoe,>¢ Jane C. Munday,*¢

Achim C. Schnaufer,® David Horn,** Michael Boshart,® Harry P. de Koning®

Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom?; Biocenter, Section
Genetics, Ludwig-Maximilians-Universitdt Minchen, Martinsried, Germany®; Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine,
London, United Kingdom<; Centre for Immunity, Infection & Evolution, Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United
Kingdom®; Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom®

One of the most promising new targets for trypanocidal drugs to emerge in recent years is the cyclic AMP (cAMP) phosphodies-
terase (PDE) activity encoded by TbrPDEB1 and TbrPDEB2. These genes were genetically confirmed as essential, and a high-
affinity inhibitor, CpdA, displays potent antitrypanosomal activity. To identify effectors of the elevated cAMP levels resulting
from CpdA action and, consequently, potential sites for adaptations giving resistance to PDE inhibitors, resistance to the drug
was induced. Selection of mutagenized trypanosomes resulted in resistance to CpdA as well as cross-resistance to membrane-
permeable cAMP analogues but not to currently used trypanocidal drugs. Resistance was not due to changes in cAMP levels or in
PDEB genes. A second approach, a genome-wide RNA interference (RNAi) library screen, returned four genes giving resistance
to CpdA upon knockdown. Validation by independent RNAIi strategies confirmed resistance to CpdA and suggested a role for the
identified cAMP Response Proteins (CARPs) in cAMP action. CARP1 is unique to kinetoplastid parasites and has predicted cy-
clic nucleotide binding-like domains, and RNAi repression resulted in >100-fold resistance. CARP2 and CARP4 are hypothetical
conserved proteins associated with the eukaryotic flagellar proteome or with flagellar function, with an orthologue of CARP4
implicated in human disease. CARP3 is a hypothetical protein, unique to Trypanosoma. CARP1 to CARP4 likely represent com-
ponents of a novel cAMP signaling pathway in the parasite. As cAMP metabolism is validated as a drug target in Trypanosoma
brucei, cAMP effectors highly divergent from the mammalian host, such as CARP1, lend themselves to further pharmacological

development.

H uman African trypanosomiasis (HAT, or sleeping sickness) is
a potentially lethal parasitic disease caused by two subspecies
of Trypanosoma brucei, T. brucei rhodesiense and T. brucei gam-
biense, which have distinct geographical distributions (1). A third
subspecies, T. brucei brucei, is noninfective to humans but, along-
side Trypanosoma vivax and Trypanosoma congolense, causes huge
economic damage through the infection of domestic animals such
as cattle, causing a disease known as Nagana or animal African
trypanosomiasis (AAT) (2). T. brucei is transmitted to its mam-
malian hosts via the mouthparts of infected blood-sucking tsetse
flies (3). Millions of people in sub-Saharan Africa are at risk of this
infection, with over 175,000 cases reported between the years 2000
and 2009 across 25 countries (4); with an estimated 3-fold under-
reporting (5), as many as half a million people could actually have
been infected. In the early stages of the infection (stage I), the
trypanosomes proliferate in the peripheral bloodstream and
lymph, causing a relatively mild disease of intermittent fever and
general malaise, but the penetration of the parasite into the central
nervous system (stage II) causes severe neurological symptoms
followed by coma and, almost invariably, death (6).

The treatment for stage I HAT is pentamidine for T. brucei
gambiense infection and suramin for T. brucei rhodesiense, but
since these compounds have at best minimal capacity to cross the
blood-brain barrier, they are not suitable for treatment of the
second stage of infection (7). Chemotherapies available for stage II
HAT are melarsoprol or eflornithine. Melarsoprol is a drug based
on arsenic and can have very severe side effects, with up to 5% of
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patients dying from reactive encephalopathy due to the drug (6).
On top of the potential toxicity, resistance to melarsoprol appears
to be increasing, with treatment failure rates as high as 37% in
some regions (8). Current models describe the loss of one or more
transporters, including the TbAT1/P2 adenosine transporter (9),
the high-affinity pentamidine transporter (HAPT) (10), and the
aquaporin TbAQP2 (11, 12) as being involved in pentamidine/
melarsoprol cross-resistance. Eflornithine is effective only against
T. brucei gambiense infections and is difficult to administer, re-
quiring hospitalization and intravenous infusions every 6 h for 2
weeks (7), although a recently introduced combination therapy of
nifurtimox and eflornithine (NECT) has reduced the treatment
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burden (13). However, NECT is still not effective against T. brucei
rhodesiense, and the need for more-effective drugs with fewer side
effects and no cross-resistance is clearly urgent.

From mammals to protozoa and prokaryotes, cyclic AMP
(cAMP) generated by adenylate cyclases is an intracellular second
messenger in cell signaling. The increase in cAMP concentration
transduces the initial stimulus down the signaling cascade by ac-
tivating or deactivating effector proteins, such as kinases. In T.
brucei brucei, a crucial role of cyclase activity, encoded by the most
abundant ESAG4 gene product and probably other members of
the large family of adenylate cyclases, is to produce extracellular
cAMP as part of the parasite’s ability to subvert the host innate
immunity upon infection (14).

The impact of changes in intracellular cAMP concentration on
trypanosomes is evidenced by the severe phenotypes upon altered
expression of enzymes involved in cAMP metabolism. Elevated
cAMP is degraded to AMP by phosphodiesterases (PDEs) (15), of
which there appear to be four distinct families in T. brucei brucei
(16, 17). Recently, cAMP-specific PDEs have been validated ge-
netically and pharmacologically as excellent drug targets in the
parasite (18-20). The combined activity of the two members of
the PDEB family was shown to be essential in bloodstream form
trypanosomes. Simultaneous RNA interference (RNAi) knock-
down of both PDEB genes in T. brucei brucei bloodstream forms
generated an uncontrolled and sustained increase in cAMP con-
centration, resulting in cytokinesis defects producing multinu-
clear and multiflagellated cells that eventually die (18). A similar
impaired-cytokinesis phenotype is produced by repression of ad-
enylate cyclase activity (21). This apparent paradox suggests that
fine-tuning of cAMP levels plays a role in regulation of cell divi-
sion, with extreme or deregulated concentrations in either direc-
tion being detrimental (see discussion in reference 21).

A phenotype similar to PDEB RNAI is also observed when
bloodstream form trypanosomes are exposed to CpdA, a com-
pound that inhibits both TbrPDEB proteins with nanomolar af-
finity (19). Ongoing drug development work is exploiting unique
structural differences between the trypanosomal PDEBs and the
equivalent human PDEs in order to increase selectivity (22). The
characterization of the first TbrPDE inhibitors also provided
the first pharmacological tool to specifically manipulate cAMP
levels in kinetoplastid parasites and potentially identify down-
stream effectors. One promising approach to identify pathways
involved in a drug’s action is to study drug resistance mechanisms.

In this study, two parallel approaches were used to identify
possible modes of resistance to the TbrPDEB inhibitor CpdA. The
first attempted to generate resistance by gradually increasing con-
centrations of the compound in chemically mutagenized blood-
stream form cultures, followed by characterization of the surviv-
ing cell lines. The second exploited a whole-genome RNA
interference screen for genes that confer resistance to CpdA when
knocked down. Four candidate genes were identified that were
necessary to mediate the lethal drug action of PDE inhibitors and
consequently are associated with reduced CpdA sensitivity when
knocked down by RNAI. This represents an important advance, as
downstream effector proteins of cAMP signaling have not been
previously characterized in trypanosomes. We propose that the
newly identified genes required for CpdA sensitivity encode the
first bona fide cAMP effector proteins identified in T. brucei brucei.
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MATERIALS AND METHODS

Trypanosome strains and culturing. Bloodstream forms of Trypanosoma
brucei brucei strain Lister 427 were grown at 37°Cin a 5% CO, atmosphere
in HMI-9 medium (23) supplemented with 10% fetal bovine serum
(FBS). The CpdA-resistant R0.8 line was derived from wild-type T. brucei
brucei strain Lister 427 and cultured under the same conditions as the wild
type except that 0.4 uM CpdA was added to the medium to maintain drug
pressure. Before assaying, R0.8 trypanosomes were grown in medium
without CpdA for at least 6 days (approximately 18 generations). The
RNAI cell lines based on MiTat 1.2 13-90 (24) were kept under selection
with 2.5 pug/ml Geneticin, 5 wg/ml hygromycin, and 1 wg/ml phleomycin;
0.1 pg/ml puromycin was added to the RNAI cell lines bearing a tagged
CARP allele.

RNAI construct generation and transfection. RNAi fragments were
amplified from genomic DNA of T. brucei brucei strain Lister 427 and
cloned into the p2T7-177-BLE vector (25) via BamHI and HindIII (or
Xhol in the case of CARPI) restriction sites. The RNAI target regions were
chosen as follows: Tb427tmp.01.7890, 541 bp, positions 1254 to 1794;
Tb427tmp.52.0004, 383 bp, positions 528 to 910; Tb427.07.5340, 422 bp,
positions 781 to 1202; Tb927.3.1040/60 (the TREU927 reference strain
was used here, since the respective sequence in strain Lister 427 is not fully
sequenced), 755 bp, positions 835 (Tb927.3.1040) to 395 (Tb927.3.1060)
(see Fig. 4 for schematic representations of targeting regions). Primer
sequences are available upon request. Electroporation and selection pro-
cedures were performed as described previously (26).

Tagging of CARP proteins. In situ tagging of CARPI1, CARP3, and
CARP4 was performed on pMOTag vectors using a PCR-based strategy
(27). CARP1 and CARP4 were fused to a C-terminal 3XHA (hemagglu-
tinin) tag, and CARP3 was fused to a single Tyl tag using the vectors
pMOTag2H or pMOTag2T, respectively (derivatives of the pMOTag2
vector series with puromycin resistance cassette [27]). Primers were de-
signed according to the published protocol with stretches of 60 to 80
nucleotides homologous to the 3’ end of the open reading frame (ORF) or
the beginning of the 3’ untranslated region (UTR), respectively. CARP1
was independently tagged with a 4X Tyl tag at the N terminus using the
vector p3077 (derivative of pN-PTP [28]; kindly provided by S. Kramer,
Wiirzburg). An N-terminal fragment of the CARPI ORF (positions 1 to
780) was cloned into the vector p3077 via HindIII and EcoRV restriction
sites. The construct was linearized with Swal for transfection. Tagging of
CARP2 was based on the vector p3074 (derivative of pC-PTP [28]; kindly
provided by S. Kramer, Wiirzburg) fusing a 4X Tyl tag to the C terminus
of the protein. The CARP2 ORF was cloned into the vector p3074 via
BamHI and Swal restriction sites. After exchange of the resistance cassette
from neomycin to puromycin via BstBI and Ndel restriction sites, the
construct was linearized with Xhol for transfection. All primer sequences
are available upon request.

Test compounds. CpdA and CpdB were synthesized and generously
provided by Geert-Jan Sterk, Mercachem, Netherlands. Dipyridamole,
etazolate, dibutyryl cAMP, 8-bromo-cAMP, 8-(4-cholorophenylthio)-
cAMP (8-CPT-cAMP), pentamidine, phenylarsine oxide, and dimina-
zene were obtained from Sigma-Aldrich and Fluka; melarsen oxide was a
gift from Sanofi-Aventis; suramin was a gift from Brian Cover (University
of Kent at Canterbury); nifurtimox and eflornithine were gifts from Mike
Barrett (University of Glasgow); cymelarsan was a gift from Mike Turner
(University of Glasgow). Stock solutions of all compounds were made up
in dimethyl sulfoxide (DMSO), with the solvent never exceeding 0.5%
(vol/vol) under experimental conditions.

Induction of resistance to CpdA. Methyl methanesulfonate (MMS;
Sigma) was added to a 50-ml culture of T. brucei brucei strain Lister 427
wild-type trypanosomes in late logarithmic growth phase to give a final
concentration of 0.001% (vol/vol), and the mixture was incubated at 37°C
and 5% CO, for 1 h. Subsequently, the culture was centrifuged at room
temperature (610 X g, 10 min) and the supernatant carefully removed and
discarded in 1 M NaOH (to deactivate the mutagen). The cell pellet was
resuspended in fresh medium and washed twice by centrifugation as
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above. After the final wash, the pellet was resuspended in 50 ml medium
and incubated at 37°C, 5% CO,. During this incubation, approximately
95% of the trypanosomes died due to exposure to MMS. The remaining
trypanosomes, some of which will have been mutagenized, proliferated.
Once the surviving culture reached the late logarithmic phase of growth,
the cells were washed once, as above, and resuspended in fresh medium
containing 0.1 uM CpdA, at a cell density of 2.5 X 10* cells/ml. The
mutagenized trypanosomes were added to multiple 24-well plates and
incubated at 37°C, 5% CO,. Cell viability was checked by light microscopy
every 24 h for 5 days. Once the trypanosomes in a well reached the late
logarithmic phase of growth, they were passaged into 3 wells of a new
24-well plate with fresh medium: one containing CpdA at the screening
concentration, another at 2X the screening concentration, and the third
being a no-drug control. The cultures were thus continuously maintained
under gradually increasing (doubling), sublethal concentrations of CpdA.

Dose-response cell viability assay. The efficacies of test compounds
against various cell lines of T. brucei brucei strain Lister 427 were deter-
mined using a modified version of the alamarBlue assay described previ-
ously (29, 30). Briefly, test compounds were doubly diluted in white-
bottomed 96-well plates (Greiner) with standard culture medium. An
equal volume (100 pl) of bloodstream form trypanosomes in medium was
added to each well to give a final cell density of 1 X 10> trypanosomes/ml.
The plates were incubated for 48 h at 37°C, 5% CO,, after which 20 pl of
0.5 mM resazurin sodium salt (Sigma) in phosphate-buffered saline (PBS)
was added to each well, followed by a further 24-hour incubation under
the same conditions. RNAi lines were induced with 1 pg/ml tetracycline
(Tet; Sigma) 24 h prior to plating in test compound dilutions, and Tet was
included until the end of the experiment.

Following the final incubation, fluorescence was measured using a
FLUOstar Optima fluorimeter (BMG Labtech) with excitation and emis-
sion filters of 544 nm and 590 nm, respectively. Data were analyzed using
GraphPad Prism software, and EC,,s (effective concentrations that in-
hibit 50% of maximal growth) were derived from sigmoidal dose-re-
sponse curves with variable slopes. The EC5ys reported here are the
averages of at least three independent experiments, except for DFMO
(p,L-alpha-difluoromethylornithine [Eflornithine]), where n = 2.

Quantification of intracellular cAMP concentration. The intracellu-
lar concentration of cAMP in bloodstream form T. brucei brucei cell lines,
upon incubation with various phosphodiesterase inhibitors, was mea-
sured as described previously (19) using the Direct Cyclic AMP Enzyme
Immunoassay kit (Assay Designs). Samples were taken in duplicate, and
all assays were conducted independently at least three times.

PCR and sequencing of selected genes. Clonal cultures of the parental
wild-type T. brucei brucei Lister 427 strain and the CpdA-resistant R0.8
line were derived by limiting serial dilution, with that of the R0.8 cell line
conducted under selective pressure of 0.4 pM CpdA; genomic DNA was
extracted from each clonal cell line as described previously (31). The
proofreading polymerase KOD (Novagen) was used to amplify the genes
under standard reaction conditions. Once the cycles were completed, 1 U
GoTaq DNA polymerase (Promega) was added to each reaction mixture
and incubated at 72°C for 10 min to add adenine nucleotide overhangs to
the amplification products. The amplicons were then separated by elec-
trophoresis on a 1% (wt/vol) agarose gel, excised, gel purified, ligated into
the pGEMT-easy vector (Promega), and used to transform Escherichia coli
JM109 bacteria (Stratagene). Single bacterial colonies picked from selec-
tive agar plates were grown in 5 ml LB, after which the plasmid DNA was
extracted and purified using a miniprep kit (Qiagen). BigDye Sanger se-
quencing (Eurofins-MWG-Operon) was carried out with T7 and SP6
primers and internal primers. Each of the four genes identified by the
RNAI library screen (CARPI to -4) was also sequenced in the parental
wild-type T. brucei brucei Lister 427 and RO0.8 cell lines in a similar fashion.
All primer sequences are available upon request.

Genome-wide RNA interference screen for resistance to CpdA. De-
tailed descriptions of the T. brucei brucei RNA library and approaches to
screening have been published previously (32-34), and these methods
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were followed with only minor modifications. Briefly, a whole-genome
RNAI library in bloodstream form T. brucei brucei strain Lister 427 was
induced with 1 pug/ml Tet 24 h prior to the addition of 30 nM CpdA. While
under CpdA selection, RNAi induction was maintained throughout;
upon passage to fresh medium, the total number of cells transferred was
never below 5 X 10°, in order to maintain library complexity. Growth was
monitored daily by hemocytometer, and the cell density was adjusted as
required with fresh medium containing CpdA and Tet. The inducibility of
resistance to CpdA due to RNAI induction was assessed by monitoring
growth for 72 h in the presence and absence of 1 g/ml Tet and/or 60 nM
CpdA. The RNAi target DNA fragments were amplified from the genomic
DNA, sequenced, and identified as described previously (32).

Western blot analysis. Lysates of 4 X 10° cells were separated on 10%
polyacrylamide gels and blotted onto an Immobilon-FL polyvinylidene
difluoride (PVDF) membrane (Millipore). Immunodetection of tagged
CARP proteins was performed with anti-HA (mouse monoclonal anti-
body, clone 12CA5; kindly provided by E. Kremmer, Helmholtz Center
Munich) or BB2 (Ty1 epitope [35]) antibodies in a 1:1,000 dilution. PFR-
A/C detected by the monoclonal antibody L13D6 (dilution, 1:2,500 [36])
was used as an internal loading control. Infrared detection was performed
using an IRDye 800CW goat anti-mouse IgG (H+L) secondary antibody
(1:5,000) and the Odyssey IR fluorescence scanning system (both from
LI-COR). Signals of tagged CARP proteins were normalized to the PFR-
A/Cloading control after automatic subtraction of the background values
(median left/right method) using the Odyssey software (LI-COR).

CARP gene transcript level analysis. cDNA was generated by reverse
transcription (iScript ¢cDNA synthesis kit; Bio-Rad) of RNA isolated
(NucleoSpin RNA II; Macherey-Nagel) from MiTat 1.2 Lister 427 or the
derived CpdA-resistant R0.8 cell line treated or not with 0.1 uM CpdA for
2 h. Relative expression levels of CARP messenger RNAs were determined
by quantitative real-time PCR (with the FAST SYBR green Master Mix
from Applied Biosystems and the CFX96TM Real-Time PCR Detection
system from Bio-Rad) using the following cycling parameters: [5 min at
95°C; 40 X (30 s at 95°C, 30 s at 60°C)]. TERT was used as the reference
gene (37). The primer sequences are available on request.

RESULTS

Selection for resistance to CpdA. CpdA (Fig. 1A), a tetrahy-
drophthalazinone, has been demonstrated previously to be a
highly potent inhibitor of cAMP-specific phosphodiesterase B
(PDEB) enzymes in T. brucei brucei (19). Incubation with low
concentrations of CpdA results in sustained elevation of intracel-
lular cAMP, ultimately leading to cell death and validating PDEs
as novel drug targets for potential chemotherapies against human
African trypanosomiasis (HAT) as well as animal infections (19).
In order to further dissect the mode of action of CpdA in T. brucei
brucei, as well as to identify potential modes of resistance to tetra-
hydrophthalazinones, cells resistant to CpdA were selected.
Bloodstream form trypanosomes were exposed to the chemical
mutagen MMS to generate a heterogeneous mutated population.
The culture was then exposed to a normally lethal concentration
of CpdA (0.1 uM), and the surviving trypanosomes were contin-
uously cultured in gradually increasing concentrations of the PDE
inhibitor. After 2 months of culturing, the maximum tolerated
concentration of CpdA was above 0.8 wM; a clonal cell line was
obtained by limiting dilution and termed R0.8. The resistance
phenotype was stable: it remained unaltered after 3 months of
continuous culture in CpdA-free medium and also after storage in
liquid nitrogen and subsequent thawing, as assessed by reexposure
to 0.8 wM CpdA (data not shown).

Resistance and cross-resistance characterization of the R0.8
cell line. To more precisely quantify the degree of resistance to
CpdA acquired by the R0.8 trypanosomes, in vitro efficacy assays
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FIG 1 (A and B) Chemical structures of two novel tetrahydrophthalazinone PDE inhibitors, CpdA (19) and CpdB, with their IC,s against recombinant
TbrPDEBI (G. J. Sterk, personal communication). (C) Representative dose-response curves of trypanosome killing by both PDE inhibitors and two cell-
permeable cAMP analogues assayed against wild-type bloodstream form T. brucei brucei Lister 427 strain (solid lines, filled symbols) and the CpdA-resistant R0.8

strain (dashed lines; unfilled symbols). See Table 1 for mean ECygs.

were carried out. The ECy, for CpdA had increased >17-fold
compared to the parental T. brucei brucei Lister 427 wild-type
strain, from 0.08 £ 0.01 M to 1.37 = 0.19 uM (Fig. 1C; Table 1).
Significant cross-resistance was displayed to another tetrahy-
drophthalazinone PDE inhibitor designated CpdB (Fig. 1B),
showinga 9.7-fold increase in ECs, (Fig. 1C; Table 1). Conversely,
no cross-resistance was observed with the mammalian PDE inhib-
itor dipyridamole (Table 1). However, the R0.8 cell line did dis-
play significant cross-resistance to the membrane-permeable
cAMP analogues dibutyryl-cAMP and 8-bromo-cAMP, with 7.2-
and 4.2-fold increases to their EC5s, respectively, compared to the

parental Lister 427 strain (Fig. 1C; Table 1). Conversely, no signif-
icantly different sensitivity was observed for 8-(4-chlorophenyl-
thio)-cAMP (8-CPT-cAMP) (Table 1). Nor did we observe any
significant differences in the EC5s of the trypanocidal drugs used
as controls, including the diamidines diminazene and pentami-
dine, the arsenicals cymelarsan and phenylarsine oxide, or to the
nitroheterocycle nifurtimox. A slight but statistically significant
increase in sensitivity to suramin was observed for the R0.8 cell
line (Table 1).

Intracellular cAMP metabolism in the R0.8 strain. The intra-
cellular concentration of cAMP was monitored over time on in-

TABLE 1 Resistance and cross-resistance characterization of the R0.8 bloodstream form cell line, compared to the parental wild-type T. brucei

brucei strain Lister 427

Average EC;,, (LM)

Compound Lister 427 RO.8 Resistance factor P value®
PDE inhibitors
CpdA 0.08 = 0.01 1.4 £0.2 17.2 0.004
CpdB 0.13 = 0.03 1.28 £ 0.25 9.7 0.016
Dipyridamole 179 2.7 9.2 £ 0.8 0.5 0.059
cAMP analogues
Dibutyryl cAMP 263+ 13 1890 = 314 7.2 0.011
8-Bromo-cAMP 271+ 8 1133 *= 185 4.2 0.014
8-(4-chlorophenylthio)-cAMP 124 £ 0.4 0.25 = 0.05 0.2 0.201
Known trypanocides
Suramin 0.0212 £ 0.0008 0.0156 = 0.0005 0.7 0.001
Diminazene 0.022 = 0.007 0.011 = 0.001 0.5 0.133
Pentamidine 0.0016 £ 0.0004 0.0014 % 0.0002 0.9 0.683
Cymelarsen 0.0038 = 0.0004 0.0038 = 0.0003 1.0 1.000
Phenylarsine oxide 0.00083 = 0.00006 0.00088 = 0.00011 1.1 0.783
Nifurtimox 2.01 = 0.24 1.61 £0.08 0.8 0.246

“ For comparison of R0.8 and Lister 427.
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FIG 2 Intracellular cAMP concentrations elicited by CpdA in wild-type T. brucei brucei strain Lister 427 bloodstream form trypanosomes (A) and in the derived
CpdA-resistant R0.8 strain (B); the graphs shown are representative of three paired, independent experiments. (C) Intracellular cAMP concentrations after
incubation for 3 h with 1 pM CpdA, 1 uM CpdB, and 40 pM etazolate of Lister 427 wild-type bloodstream form trypanosomes (gray bars) or the derived
CpdA-resistant R0.8 cell line (unfilled bars); error bars show standard errors of the means; n = 3.

cubation with various concentrations of CpdA in the resistant
R0.8 cell line and its parental T. brucei brucei wild-type strain
Lister 427 (Fig. 2A and B). No significant difference (2-tailed,
paired Student’s t test) in the steady-state level of cAMP (i.e., the
no-drug controls) was detected between the two cell lines over 3 h
of observation. The addition of CpdA resulted in a rapid increase
in the intracellular cAMP concentration within 20 min in both
strains, and again no statistical differences between strains were
observed at any of the CpdA concentrations used or at any of the
time points sampled (Fig. 2A and B). CpdB also significantly
raised the intracellular cAMP concentration compared to the no-
drug control, with identical increases in both cell lines (Fig. 2C).
The intracellular cAMP levels induced with CpdB are ~10-fold
lower than upon CpdA treatment at the same concentration, as
expected from the >10-fold-lower affinity to target (the 50% in-
fective concentration [IC,,] for recombinant TbrPDEB is 3.98 nM
for CpdA and 50.12 nM for CpdB; G. J. Sterk, personal commu-
nication). The mammalian PDE inhibitor etazolate had no effect
on cAMP levels in both cell lines. The ORFs of both ThrPDEB
genes were cloned from R0.8 and wild-type cells and se-
quenced, including the predicted untranslated regions (UTR).
For TbrPDEBI, the wild-type parental strain contained two distinct
alleles, with polymorphisms at positions 738, 1362, and 1602 of the
OREF (see Fig. S1 in the supplemental material). The R0.8 strain
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appears to be homozygous, with all 9 plasmid clones having a
sequence identical to that of allele B of the wild type. Twenty-eight
allelic polymorphisms were identified in the ORF of TbrPDEB2, of
which 27 are located in four clusters in the GAF-A domain (38)
and 1 in the catalytic domain (base pair 2365; see Fig. S1 in the
supplemental material) resulting in an amino acid change (codon
789; Cysin allele A and Ser in allele B). Both alleles were present in
the R0.8 line; however, only the cysteine residue was present in
each at codon 789. Thus, while some allelic recombination events
appear to have occurred in the R0.8 cell line, no polymorphisms of
either TbrPDEB gene were identified that were present only in the
RO0.8 strain. This is consistent with the unchanged basal and PDE
inhibitor-induced cAMP concentrations in the R0.8 strain.

An RNAI screen identifies genes involved in sensitivity to
CpdA. In order to identify genes for cAMP effector proteins (e.g.,
components of a signaling cascade) rather than cAMP metabo-
lism, that confer sensitivity to CpdA, a whole-genome RNAi
screen was carried out. The bloodstream form RNAI library gen-
erated and described previously (32-34) was induced with tetra-
cycline (Tet) for 24 h before selection with 30 nM CpdA. Four days
of selection resulted in only a slight decrease in the growth rate of
the CpdA-exposed Tet-induced culture, compared to the Tet-in-
duced control without CpdA (Fig. 3A). Therefore, the selective
concentration was increased to 60 nM CpdA. Subsequently, the
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Ethidium bromide-stained agarose gel (1%, wt/vol) of the genomic PCR products
15 days in CpdA (i.e., those fragments that are associated with resistance to CpdA
the portions of the gel excised for cloning and sequencing.

population doubling time increased to over 24 h between days 5
and 11 and later returned to around 8 h (similar to control). Fif-
teen days after the initial selection with CpdA, genomic DNA was
extracted from the +Tet/+CpdA culture of surviving trypano-
somes for PCR cloning of RNAi target fragments. At the same time
point, the effect of RNAi induction on population resistance to
CpdA was analyzed (Fig. 3B). After 72 h of growth in fresh me-
dium without Tet, cell density in the culture treated with 60 nM
CpdA (—Tet/+CpdA) was 19% of that of the untreated culture
(—Tet/—CpdA). In Tet-induced cultures, growth in the presence
of 60 nM CpdA (+Tet/+CpdA) was 56% of that of the untreated
control. Thus, resistance to CpdA in the selected population is, at
least in part, due to induction of RNAi.

PCR amplification of the RNAI target fragments from the re-

TABLE 2 Systematic gene IDs of RNAI target fragments selected with CpdA

representing the RNAi target fragments in the library constructs selected after
). DNA ladder size markers on the left are denoted in base pairs. Slices refer to

sistant population gave several products, comprising at least eight
discrete visible bands following gel electrophoresis (Fig. 3C). Five
contiguous regions of the gel were excised, and the DNA was pu-
rified and cloned in E. coli. Multiple clones from each excised
region, representing all the different RNAI target fragment sizes,
were sequenced and mapped to the reference genome (39) using
TriTrypDB (40). Ten distinct RNAI target fragments were ob-
tained from the 24 clones sequenced, representing all eight bands
in the agarose gel (Table 2 and Fig. 3C). Three ORFs were identi-
fied by multiple, independent RNAi target fragments, and one was
identified by a single RNAi fragment; the genes were designated
CARPI to CARP4 for cAMP Response Protein 1 to 4, and their
identifications are listed in Table 2.

One of the genes knocked down in the CpdA-resistant cultures

Gene ID Length (no. of RNAI target fragment(s)
Gene name Strain TREU 927 Strain Lister 427 amino acids) No. Size(s) (bp)
CARP1 Tb927.11.16210 Tb427tmp.01.7890 705 3 446, 851, 1,101
CARP2 Tb927.11.12860 Tb427tmp.52.0004 302 2 736, 1,507
CARP3 Tb927.7.5340 Tb427.07.5340 498 4 386, 431, 532, 635
CARP4 Tb927.3.1040/60 Tb427.03.1040/60 779 1 780

October 2013 Volume 57 Number 10

aac.asm.org 4887


http://aac.asm.org

Gould et al.

CARP1 (Tb427tmp.01.7890)

cAMP binding domain-like

|74 A ¥ ZI

22

RNAi screen fr it

RNAi screen fragment Il

CARP2 (Th427tmp.52.0004)

RNAI screen fragment |

RNAi screen fragment Il RNAi confirmatory

CARP3 (Tb427.07.5340)

RNAIi confirmatory RNAi screen fragment lll

RNAi screen fragment |

RNAi screen fragment Il

CARP4 (Tb427.03.1040/60)

DM10
W727272272222

100 bp
100 bp
TPR-like
N
- — — — — -
RNAi screen fragment Il RNAi confirmatory RNAI screen fragment IV
100 bp
DM10 DM10 EF hand
- — - — -~
RNAi screen fragment
—
RNAIi confirmatory 100 bp

FIG 4 Maps of the genomic loci of the CARP genes, RNAi target fragments, and domain annotations. The sequence data are from tritrypdb.org; ORFs are
indicated in black. “RNAi screen fragments” were identified as described for Fig. 3C; “RNAi confirmatory fragments” are the target fragments designed for the
experiments shown in Fig. 5 and 6. Domain architecture was analyzed using Smart (smart.embl-heidelberg.de/) and Superfamily (supfam.cs.bris.ac.uk). cAMP
binding-domain-like, SSF51206; DM10, SM000676; EF hand, SSF47473; TPR-like, SCOP48452. Bar, 100 bp.

was Tb427tmp.01.7890 (CARP1; Tb927.11.16210 in T. brucei bru-
cei reference strain TREU 927), encoding a 705-amino-acid pro-
tein containing two apparently intact and one partial cyclic AMP
binding-like domains (Fig. 4) that is conserved in synteny in each
of the kinetoplastid genomes sequenced. No close orthologues
were identified in other organisms, but cyclic nucleotide-depen-
dent kinases and ion channels appear to be the most closely related
proteins outside the Kinetoplastida.

CARP2 (Tb427tmp.52.0004; Tb927.11.12860 in TREU 927)
codes for a hypothetical protein of 302 amino acids, but a down-
stream alternative start codon may produce a shorter protein of
235 amino acids (41). This corresponds to the ORF length of the
majority of CARP2 homologues that are well conserved across the
Kinetoplastida (>82% amino acid identity in all Trypanosoma
spp. and >59% identity in Leishmania spp.) and many other spe-
cies, including humans (47.7% identity). The apparent molecular
mass of the C-terminally tagged T. brucei brucei protein (see West-
ern blot in Fig. 5B) shows that the first ATG is in fact used and that
the trypanosomal CARP2 carries an N-terminal extension. There
is no known function, and no recognizable functional domains
could be identified in any of the homologues. It has been detected
in proteomes of T. brucei brucei flagellum (42) and of cytoskeletal
and plasma membrane fractions (43), as well as in an in silico
predicted proteome of the flagellar and basal body of Chlamy-
domonas reinhardtii (44, 45).

CARP3 (Tb427.07.5340; Tb927.7.5340 in TREU 927) encodes
ahypothetical protein of 498 amino acids with orthologues only in
Trypanosoma spp. and strains. A BLASTP search identified the
putative stibogluconate resistance gene family in Leishmania spp.
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as the closest homologue outside trypanosomes (Leishmania bra-
ziliensis LBRM_31_1110; 20.4% identity); amplification of this
gene family in Leishmania tarentolae resulted in resistance to an-
timony-containing drugs (46). The protein was found in the
plasma membrane-enriched fractions of bloodstream T. brucei
brucei (43) and in mitochondrial fractions of procyclic trypano-
somes (47) and is possibly palmitoylated (48). At the N-terminal
end of the protein, a weak TPR-like domain (tetratricopeptide
repeat) signature is detected. TPR domains can mediate protein-
protein interactions such as dimerization and the assembly of
multiprotein complexes (49).

The fourth ORF identified from the RNAI target fragments,
CARP4 (Tb927.3.1040/60), is a hypothetical gene that spans three
automatically annotated ORFs in release 5.0 of TriTrypDB (T.
brucei brucei TREU 927 strain; the respective sequence segment
of strain Lister 427 is annotated as incomplete). However, the
middle ORF appears to be a sequence contaminant disrupting a
single open reading frame encompassing Tb927.3.1040 and
Tb927.3.1060. The middle ORF is absent from all RNA sequenc-
ing (RNAseq) data on the TriTrypDB website and has no homo-
logues or orthologues in any of the other kinetoplastid genomes
on the database. The full-length Tb927.3.1040/60 ORF, on the
other hand, is conserved in synteny in all kinetoplastid genomes
sequenced to date, with amino acid identity of 53.6% in Leishma-
nia major and 96.3% in T. brucei gambiense. The combined
Tb927.3.1040/60 ORF codes for a hypothetical protein of 779
amino acids and is predicted to have three DM10 domains and
one EF-hand domain located at the C-terminal end (Fig. 4).
BLASTP and domain architecture (NCBI CDART) searches un-
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covered three other genes in T. brucei brucei strain 927 containing
the same domain architecture (Tb927.11.1430, Tb927.5.2950, and
Tb927.10.7690).

All four CARP genes confer sensitivity to CpdA. Independent
RNAIi constructs individually targeting each of the four genes
identified by the RNAI screen were generated and transfected into
the T. brucei brucei Lister 427 strain MiTat 1.2 13-90 cell line for
tetracycline-inducible expression. When possible, specific RNAi
target sequences that do not overlap the target sequences returned
from the RNAI screen were chosen (Fig. 4). For CARP4, a target
fragment covering the central part of the combined ORF
Tb927.3.1040/60 was amplified from Lister 427 genomic DNA,
sequenced, and cloned into the RNAI vector (25). This provided
proof of a contiguous ORF in strain Lister 427 and a possible
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sequence assembly error and misannotation in that region of the
reference TREU 927 genome sequence. Growth of the parental
and transfected uninduced or induced (1 pg/ml tetracycline) try-
panosomes was monitored over 120 h (Fig. 5A). CARP1 RNAi
resulted in a slight growth phenotype, which was noticeable in
part without tetracycline induction, probably the result of “leaky”
RNAI repression.

To quantify the RNAi-mediated knockdown of CARP protein
amounts, each CARP gene was tagged in situ in the respective
RNAI clone for quantitative Western blot analysis of endogenous
expression levels (Fig. 5B). RNAi induction for 24 h caused a sub-
stantial reduction of the specific tagged CARP protein (Fig. 5B).
The strongest repression was observed for CARP3 (to 5%),
whereas only a 2- to 3-fold reduction of CARP1, CARP2, or
CARP4 protein levels was detected. For CARP1, reliability of the
quantification was confirmed by several independent cell lines in
situ tagged at the N or C terminus using a 4X Tyl or 3XHA tag,
respectively (see Fig. S2 in the supplemental material). For se-
lected clones (the ones shown in Fig. 5A) the EC5, for CpdA was
determined by the alamarBlue cell viability assay with and without
induction of RNAI. As controls, several trypanocidal drugs in use
for therapy were included. No cross-resistance to pentamidine,
suramin, or DFMO (eflornithine) was observed for any of the
clones upon CARP RNAi induction. In contrast, RNAi-mediated
knockdown of all CARP genes conferred significant resistance to
CpdA (Fig. 6). The degree of resistance to CpdA was highest upon
knockdown of CARPI (117-fold; P < 0.01) and was 10.1-fold,
7.9-fold, and 5.4-fold for knockdown of CARP2, CARP3, and
CARP4, respectively. The effect of the RNAi knockdown on sen-
sitivity to lipophilic cAMP analogues was also investigated.
CARPI knockdown resulted in 5.0- and 3.7-fold increases of the
ECs, for 8-bromo-cAMP and dibutyryl-cAMP, respectively. Sim-
ilarly, CARP2 knockdown also resulted in resistance to 8-bromo-
cAMP and dibutyryl-cAMP, but to the lesser extents of 2.2- and
1.9-fold, respectively. For CARP3 and CARP4 the differences were
not significant.

Sequencing and transcript levels of candidate resistance
genes in the R0.8 cell line. Each of the four CARP genes identified
by the RNAi screen was PCR amplified from the CpdA-resistant
RO.8 cell line, cloned, and sequenced for mutations in the ORF, as
well as in any predicted UTR regions. Multiple clones for each
gene were sequenced and aligned; however, no polymorphisms
could be identified in the R0.8 strain that were not present in at
least one allele of the parental T. brucei brucei Lister 427 wild-type
strain. Similarly, quantitative PCR (qPCR) data comparing tran-
scripts of each of the four CARP genes in the wild type versus the
RO.8 cell line showed no difference in transcript abundance, either
in the presence or absence of CpdA (see Fig. S3 in the supplemen-
tal material). In conclusion, the CpdA resistance of the R0.8 line
cannot be attributed to mutations in the identified CARP genes or
to reduced CARP transcript levels. Although protein expression
remains to be investigated, it seems likely that additional genes are
involved in resistance of the R0.8 line to elevated cAMP.

DISCUSSION

In order to exploit the full therapeutic potential of PDE inhibitors
in the future, an understanding of how resistance, if any, might
arise in the field is essential. Moreover, a full understanding of the
action of any PDE-targeting trypanocides is hampered by the al-
most complete absence of information about intracellular cAMP
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signaling in T. brucei brucei and related kinetoplastids, beyond
characterization of families of adenylyl cyclases (ACs) and PDEs
(17). Two approaches were employed to investigate potential
modes of resistance: (i) mutagenesis and selection of cell lines
resistant to the trypanosomal PDE inhibitor CpdA, followed by
their characterization; and (ii) a whole-genome RNAI screen for
drug efficacy determinants of CpdA.

A substantial level of resistance to CpdA was induced in T.
brucei brucei, resulting in the R0.8 cell line. Resistance to CpdA
conferred cross-resistance to another tetrahydrophthalazinone
PDE inhibitor, CpdB, identified in the same high-throughput
screen with recombinant TbrPDEB. Not surprisingly, resistance
to one PDE inhibitor gives resistance to the entire inhibitor class;
indeed, two additional related tetrahydrophthalazinone com-
pounds also showed similar cross-resistance profiles (data not
shown). On exposure to tetrahydrophthalazinones, the cAMP
level in the wild-type and resistant R0.8 populations increase sim-
ilarly, indicating that resistance is not caused by mutated PDEs or
adapted PDE expression. Thus, in the R0.8 cell line, resistance
must be based on tolerating high intracellular cAMP. This is also
compatible with the cross-resistance observed for the cAMP ana-
logues dibutyryl cAMP and 8-bromo cAMP and consistent with
the lack of mutations in the PDEB gene sequences in the R0.8
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trypanosomes. The absence of an effect of etazolate on cAMP lev-
els in T. brucei brucei shows that this compound, previously re-
ported to inhibit T. brucei brucei PDEB1 (50), does not, in fact, act
as an effective PDE inhibitor on T. brucei brucei cells.

Given that CpdA is quite lipophilic, it is expected to diffuse rather
than be transported across the plasma membrane, so that uptake-
related resistance is not possible, in contrast to actively accumulated
trypanocidal drug classes like the diamidines (51). Importantly, no
cross-resistance was observed with the current trypanosomiasis
drugs, including diamidines, arsenicals, suramin, and nifurtimox,
showing that PDE inhibitors have a distinct mechanism of resis-
tance. Thus, combinations with current drugs could significantly
delay the onset of treatment failures and/or improve the effective-
ness of the currently unsatisfactory armamentarium against HAT.

Surprisingly, the R0.8 line was not resistant to the cAMP ana-
logue 8-CPT-cAMP, which is widely used as a cAMP agonist in
mammalian cells and induces cell cycle arrest and stumpy stage
development in T. brucei brucei (52). However, it has been shown
that products of intracellular hydrolysis of 8-CPT-cAMP are re-
sponsible for growth inhibition, by a cAMP-independent mecha-
nism (53). The observed lack of cross-resistance to 8-CPT-cAMP
corroborates this. This analogue does not qualify as a cAMP ago-
nist in trypanosomes, and hence the lack of cross-resistance is
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compatible with CpdA resistance resulting from changes in cAMP
effector proteins.

RNAI library screening has proven to be a powerful approach
for uncovering novel genes involved in the mode of action of
many of the current trypanocides (11, 32, 34) and, consequently,
candidates for changes associated with resistance. While the spe-
cific target of CpdA is the PDEB family of proteins (19), the targets
of the resulting increase in cAMP were unknown. In this study,
RNAI library screening uncovered four putative cCAMP target or
effector proteins. Although cAMP metabolism has been validated
as a drug target in trypanosomes (18, 19) and the signaling mole-
cule has important roles in cell division and cytokinesis (19, 21),
this is the first time that cAMP response proteins have been iden-
tified in this pathogen, showing the power of this genomic ap-
proach.

Knockdown by RNAi of CARPI resulted in >100-fold in-
creases in ECg, for CpdA. The prediction of cyclic nucleotide
binding-like domains in CARP1 is clearly suggestive of a pivotal
part to play in the cAMP signaling cascade by this protein, al-
though cAMP binding will need to be experimentally verified.
This is particularly significant, as all the cAMP effectors widely
conserved among other organisms either have no detectable or-
thologues in the T. brucei brucei genome (EPAC and cNMP-gated
ion channels) or are refractory to cAMP and have acquired a dis-
tinct mode of regulation (protein kinase A [PKA]-like kinase [54];
S. Bachmaier and M. Boshart, unpublished data). CARP1 may
thus be part of the first second-messenger signaling cascade to be
delineated in kinetoplastids. We propose that the CARP2 to -4
proteins, whose repression resulted in more-moderate but still
highly significant CpdA resistance, are likely to be part of the same
signaling pathway as CARP1 or even associated in a complex.
CARP2 and CARP4 are both predicted as conserved proteins in
motile flagella of several organisms, along with the three other 3X
DM10 domain-containing proteins similar to CARP4 (55). This
may link to the cytokinesis phenotype resulting from aberrant
cAMP levels (19, 21), since a crucial role for the trypanosome
flagellum in cytokinesis is well documented (56). The localization
of TbrPDEB1 and B2 (18) and adenylate cyclases (57) to the fla-
gellum is consistent with this hypothesis. For CARP2, we provide
the first functional assignment for this highly conserved eukary-
otic flagellar protein of previously unknown function. Interest-
ingly, a human homologue of CARP4, EFHCI, has been shown to
be a component of axonemes and cilia, with mutations in EFHC1
being implicated in juvenile myoclonic epilepsy (58, 59). This sug-
gests that T. brucei brucei may be an exciting model organism to
further investigate the functions of these critical, but poorly char-
acterized, DM 10 domain-containing proteins.

In summary, resistance to PDE inhibitors by bloodstream form
T. brucei brucei can occur and has been found downstream of the
PDEs in the cAMP signaling cascade, which is currently undefined
in trypanosomes. However, four potential downstream cAMP ef-
fector proteins are already reported here, and reduced expression
of any one of them by RNAi results in resistance to PDE inhibitors.
While much work needs to be done to fully characterize these
proteins, they could potentially be the first bona fide downstream
cAMP effector proteins identified in Trypanosoma brucei and pro-
vide the first step to mapping the downstream cAMP signaling
cascade. As no mutations or changes in transcript level in any of
the four CARP genes could be detected in the resistant R0.8 cell
line, analysis of such lines may reveal additional components of
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that pathway in the future. Finally, CARP1 may be a good drug
target in its own right, as it is specific to kinetoplastid parasites and
appears to have cyclic nucleotide binding-like pockets. The huge
experience of the pharmaceutical industry in designing inhibitors
and activators for cNMP-binding proteins would be a distinct
advantage in this case.
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