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INTRODUCTION 

Prostate cancer is an increasing medical problem: it is now the most commonly 

diagnosed cancer in the Western male population and the second leading cause of 

cancer deaths in man (1). Despite the increasing number of patients that manifest 

with clinical disease, only little is known about the mechanisms involved in the onset 

and progression of prostate cancer. However, it seems clear that prostate 

carcinogenesis is a multistep process leading first to histological prostate cancers that 

upon acquisition of additional malignant events develop into clinical disease (2). 

During the change of tumor phenotype from benign to malignant and eventually 

metastatic state, an accumulation of genetic changes (qualitatively as well as 

quantitatively) occurs (3). This often provides the target cell with the ability to 

circumvent controls that regulate growth thereby gaining the propensity to proliferate 

indefenitely. This increased proliferative capacity has two important consequences. 

First, there is an increased chance for the acquisition of genetic hits due to the fact 

that most genotoxic agents damage genes in cycling cells. Furthermore, the increased 

proliferative capacity is required for the outgrowth of the malignant population of 

cells. Genes implicated in uncontrolled proliferation are often identified as oncogenes 

or tumor suppressor genes. Progression to the more malignant state, i.e., acquisition 

of metastatic ability, requires that the cell can invade the surrounding tissue, spread 

through the lymphatic and/or blood circulation, extravasate and grow at secondary 

site, a process usually involving changes in other genes like those implicated in 

proteolysis, cell adhesion and cell motility. 

The identification of the genetic steps associated with the onset and progression 

of cancer is now in the focus of molecular oncological research. The tremendous 

developments in molecular biology and immunology have provided a wide variety of 

tools to identify and study the target genes implicated in prostate carcinogenesis. 

Whereas a genetic cascade for the development of colon cancer development is now 

emerging (4), the situation for prostate cancer is still unclear. Moreover, 

morphological changes occuring in the etiology of prostate cancer are not 

unequivocally recognized, i.e., can we identify a hyperproliferative stage in the 

development that precedes the outgrowth into an adenocarcinoma, a carcinoma and 

a metastatic tumor? (Figure 1). The occurence of specific genetic changes and 

whether these occur early or late in this cascade is not yet known. This chapter 

reviews the results obtained today regarding the molecular steps associated with 
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prostate cancer. We divided this in the "indirect approach" in which known genes 

with potential relevance for cancer development are discussed, and the "direct 

approach" aimed at the characterization of molecular differences between aggressive-

and non-aggressive cancers. Finally, we will discuss the potential of molecular biology 

in advanced diagnostics. 

Molecular steps associated with the progression of colorectal cancer 

res gene mutation other chrom losses 
I I 
I I 

normal hyperproliferative | early | intermediate late | carcinoma , metastasis 
epithelium epithelium adenoma adenoma adenoma 

I I I I 
I I I I 

chrom 5 gene DNA hypomethytation chrom 18 loss chrom 17 loss 

Progressional stages in prostate cancer 

adenoma 

^ v 
normal adenocarcinoma —»- carcinoma —«- metastasis 
epithelium 

\ / 
hyperproliferative 
epithelium 
(PIN?) 

Figure 1: Upper, schematic presentation of the various stages as occuring during the progression of 
colorectal cancers and the molecular steps associated with this progression (4); Lower, schematic 
presentation of the various stages as they may occur in prostate cancer. The genetic events associated 
with the progression of prostate cancer remain to be established. (PIN = prostatic intraepithelial 
neoplasia). 
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THE TNDlRECr APPROACH" : STUDY KNOWN GENES WITH POTENTIAL 

RELEVANCE FOR CANCER DEVELOPMENT 

Genes implicated in cell growth 

The most striking advantage a cancer cell has over a non-cancer cell is its 

unlimited growth potential which is presumably associated with a corrupted cell cycle 

control. Basic studies on the mechanisms of growth control might give us clues which 

genes are implicated in the onset and progression of cancer. There are several 

groups of genes that are involved in growth control. To gain insight which of these 

genes are implicated in carcinogenesis, one has to consider several hundreds of 

genes like (proto)-oncogenes, tumor suppressor genes, genes encoding growth factors, 

growth factor receptors and transcription factors. 

Oncogenes and tumor suppressor genes 

For prostate cancer several proto-oncogenes have been studied at different 

levels: proto-oncogenes can be activated to oncogenes by mutations (qualitative 

changes) but also by changes in mRNA or protein expression levels (quantitative 

changes) (3). The possible involvement of the ras-family of oncogenes and proteins 

were extensively studied for prostate cancer. Peehl and associates (5) reported on 

the presence of an activated Ki-rav oncogene in a primary prostate cancer. Recently, 

however, it was shown that the frequency of ras-mutations in prostate cancer is 

rather low (6, 7). Studies at the ras mRNA levels in the Dunning R-3327 rat 

prostate adenocarcinoma model system showed no clear correlation of over-

expression of the ras-oncogenes with tumor progression (8, 9) nor did studies in 

human prostatic carcinoma cell lines (10). Viola et al. (11) studied the ras gene 

product, p21, and showed an inverse relation between p21 r a i expression level and 

histological tumor grade. Furthermore, p21 r ' u levels correlated with the frequency of 

nodal metastases. However, the monoclonal antibody used in these experiments was 

shown to be nonspecific in subsequent studies (12). More recently, Sumiya et al. (13) 

found a higher expression of p21 r a 5 in high grade and high stage tumors although in 

high stage tumors р 2 1 п и expression did not correlate with survival. Several other 

oncogenes were studied at the mRNA level in the Dunning model system (9, 14) or 

in human prostatic carcinoma cell lines (10) but no clear correlation of expression of 

any of the oncogenes studied with tumor progression was shown. Interestingly, 

Fleming et al. (15) and Buttyan et al. (16) found increased levels of myc expression 
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in high grade prostate cancers. The implications of these findings are still unclear. 

Until now, no consistent genetic changes affecting (proto-)oncogenes are evident 

for prostate cancer. Similarly no consistent genetic changes are found in tumor 

suppressor genes: point mutations in p53, a tumor suppressor gene shown to be 

involved in several human cancers, were shown to be rare in human prostate cancers 

although in several prostate cell lines mutations in p53 were found (17). Loss of 

retinoblastoma (Rb) gene expression, presumably associated with a promoter 

deletion, was found in only one out of seven human prostate cancers and in one out 

of three cell lines, suggesting that Rb mutations are not common in prostate cancer. 

However, reintroduction of a normal Rb gene into DU 145 cells (human prostate 

cancer cell line with a mutated Rb gene) resulted in the reversion of the tumorigenic 

phenotype of the cells (18). 

In conclusion, ras and p53 mutations are by far not as frequently found in 

prostate cancer as in other solid tumors. However, future studies have to reveal 

whether prostate tumors containing ras and/or p53 mutations represent more 

aggressive subpopulations. 

Growth factors and growth factor receptors. 

The prostate is known to contain large amounts of growth factors like basic 

fibroblast growth factor (bFGF), transforming growth factor-ß (TGF-ß), transforming 

growth factor-α (TGF-a) and epidermal growth factor (EGF). Also the receptors for 

these growth factors are present in the prostate gland (review (19)). Studies by Mori 

and associates (20) showed that bFGF is expressed at elevated levels in benign 

prostate hyperplasia (BPH) compared to normal prostatic tissue, suggesting that this 

growth factor might be involved in benign growth disorders of the human prostate. 

The fact that bFGF has been shown to be mitogenic to cultured prostate epithelial 

cells (21) provides additional evidence for a possible role of bFGF in abnormal 

growth of the prostate. TGF-ß2 is also expressed at elevated levels in BPH 

compared to normal prostate (20). TGF-ß 1 is highly expressed in poorly-

differentiated rat prostate tumors when compared to well-differentiated tumors (22). 

Considering its ability to induce angiogenesis (23) cell motility (24) and deposition of 

the extracellular matrix (25), TGF-ßl might contribute to a more malignant 

phenotype (see next paragraph). EGF is expressed in both normal and malignant 

prostate tissue but especially the elevated levels of EGF-receptor and mRNA (26) in 

human prostate cancers when compared to normal prostate, might indicate a role for 
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EGF in the complex process of prostate carcinogenesis. 

A unique feature of the prostate gland is its dependence on androgens. 

Furthermore, growth and differentiation of benign and malignant prostatic epithelial 

cells are regulated by androgens. This suggests an important role for androgens and 

the androgen receptor in prostate carcinogenesis. Experiments have shown the 

androgen-regulated DNA synthesis in the ventral prostate (27) and some genes 

encoding growth factors and some non-growth factor proto-oncogenes are under 

androgenic control: androgen ablation (by castration) leading to an active process of 

cell death, is associated with increased levels of c-myc, c-fos and TGFßl mRNA (28, 

29) and also an increased number of receptor binding sites for TGFßl and EGF (30, 

31). Upon castration and readministration of androgens, transient increases in steady-

state levels of several genes like c-Ha-ras, c-Ki-ras, c-myc, c-fos and bFGF have been 

observed (32). These results suggest a complex regulation of gene expression by 

androgens and indicate that inappropriate androgenic regulation of proto-oncogenes 

and growth factors may contribute to the progression of prostate cancer. A role for 

the androgen receptor in prostate cancer has not been established: using monoclonal 

antibodies it was shown that loss of androgen receptor expression is not associated 

with the progression of prostate cancer. No correlation with tumor grade or stage 

was evident (33). 

The importance of a diffusable factor or factors synthesized in response to 

androgens by prostate stromal cells was already reported by Cunha et al. (34). Tissue 

recombinations studies indicated that these factors induce the proliferation and/or 

differentation of prostate epithelial cells. Using this technique, Chung and associates 

(35) showed that fibroblasts can play a role in the development of prostate cancer. 

They also showed that the expression of six extracellular matrix genes was decreased 

upon transformation (36), suggesting not only the involvement of paracrine growth 

factors but also of the extracellular matrix (see also next paragraph) in prostate 

carcinogenesis. Additional evidence for the presence of diffusible factors was 

reported by Djakiew and colleagues (37), who showed the stimulation of prostate 

epithelial cell growth by factors secreted by prostate stromal cells. Furthermore, 

paracrine growth stimulation is not only implicated in local growth of the prostate 

but also in the formation of metastasis: PC3 cells were shown to secrete a factor 

that stimulates the growth of bone cells, indicating that this factor might play a role 

in osteoblastic metastases as seen in prostatic cancer (38). 
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Genes implicated in invasion and metastasis 

During the progression of a tumor to a metastatic state, cancer cells have to 

acquire the ability to invade locally into small blood vessels and/or lymphatic 

systems; if the cells survive the host defence/surveillance mechanisms, they have to 

extravasate and move into surrounding organ tissue and finally proliferate to give 

rise to clinical apparent metastases (39). The acquisition of metastatic properties is 

probably due to changes in the expression of genes involved in cell attachment and 

cell motility. One might expect increasing levels of degradative enzymes (like 

proteases) or decreasing levels of their inhibitors (like TIMP = tissue inhibitors of 

metalloproteinases). The expression levels of cell adhesion molecules may change 

and also the expression of components that aid the cells in escaping host defence 

mechanisms might be important. For prostate cancer, the genes involved in the 

acquisition of metastatic abililty are largely unknown. Of the genes that might be 

important in cell attachment and cell motility, only few were studied: increased levels 

of plasminogen activors were shown in human prostatic cancers (40) and in rat 

model systems (41); secretion of collagenase by a rat prostatic epidermoid carcinoma 

in culture has been reported (42) and also elevated activities of elastase and a 

chymotrypsin-like protease were found in metastatic Dunning tumors (43). Recently, 

it was shown that E-cadherin, a calcium-dependent cell adhesion molecule is down 

regulated in invasive rat prostate cancers (44). The association of changes in the 

expression of different components of the extracellular matrix with a transformed 

phenotype of rat prostate fibroblasts (36) was already mentioned above. To be 

complete on our knowledge on invasion or metastasis related genes, it should be 

mentioned that fibronectin was found to be down modulated in metastatic prostate 

cancer cells (45) although these observations were obtained by a direct approach 

(differential hybridization analysis). 

THE "DIRECT APPROACH" : IDENTIFY MOLECULAR CHARACTERISTICS 

OF PROGRESSIONALLY ADVANCED PROSTATE CANCER CELLS 

Loss of heterozygosity 

The low mitotic index of prostate tumors and the difficulty to grow prostate 

cancers in culture, made studies on chromosomal changes associated with the onset 

and progression of prostate cancer rather difficult. Nonetheless, the involvement of 
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some specific chromosomal changes have thus been identified. As summarized by 

Brothman and associates (46), loss of chromosomes 1, 2, 5, 11 and Y, trisomy of 

chromosomes 7, 14, 20 and 22, and structural changes involving chromosomal 

segments 2p, 7q and lOq are the most common changes reported. Of these, 

deletions of 7q and lOq were found in late stage cancers (47, 48). These findings, 

however, are all based on small numbers of patients. A less complicated technique 

that overcomes the problems associated with the low mitotic index in prostate 

cancer, is allelotyping: using DNA probes that recognize Restriction Fragment 

Length Polymorphisms (RFLPs), one can identify deletions of (parts of) 

chromosomes. Using this technique, the frequent deletion of the long arm of 

chromosome 17 in colon cancer was revealed, leading to the identification of p53 as 

a potential tumor suppressor gene (49). Also a candidate tumor suppressor gene on 

chromosome 18 was identified after an initial lead obtained from RFLP analysis 

(50). RFLP analysis now provides a technique to test the observations on 

chromosome deletion in prostate cancer as mentioned above in a large group of 

patients and also to include all known chromosomal loci that are thus far reported 

to contain potential tumor suppressor genes. Carter et al. (51) showed that whereas 

the loss of chromosome 10 indeed frequently occured (30 % of cases studied) an as 

yet unreported loss of chromosome 16 was observed even more frequently. These 

results suggest that chromosome lOq and 16q should be studied in more detail to 

identify a relation between allelic loss and progression of the tumor and to identify 

candidate tumor suppressor genes located on these chromosomes. 

Monoclonal antibodies 

The development of the hybridoma technology (52) offered the ability to 

produce antibodies detecting specific antigens. Using tumor cell extracts it is possible 

to raise antibodies against tumor specific antigens. Although the use of monoclonal 

antibodies as progression markers has an established use in many disciplines, for 

prostate cancer research it is still an underexplored approach. Whereas the isolation 

of several prostate cancer monoclonal antibodies was reported (53, 54, 55), none of 

them was shown to be useful as progression markers. Although TURP-27 (55) has 

only limited value as progression marker, it was interesting to learn that the antigens 

recognized by this antibody are related to those recognized by HNK-1 (56). HNK-1 

recognizes antigens related to the neural cell adhesion molecule (N-CAM). Recently, 

a new monoclonal antibody specific to prostate cancer, PD41 was described (57). Its 
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value for diagnosis and the nature of the antigen remain to be established. 

Differential hybridization analysis 

Another direct approach to identify molecular differences associated with 

prostate tumor development is based on the comparison of steady-state mRNA 

populations, such as differential or subtraction hybridization analysis. These 

techniques enable the identification of genes expressed at different levels but do not 

allow the identification of genes aberrantly expressed. Furthermore, differential or 

subtraction hybridization analysis has several advantages: one can screen for genes 

which are upregulated as well as down regulated; the reagents which become 

available, i.e., cDNA clones, are easy to characterize by DNA sequence analysis and 

computer-assisted database comparison; finally, usefulness of the reagent in diagnosis 

can be evaluated immediately by RNA in situ hybridization. The techniques of 

differential and subtraction hybridization have been succesfully used in identifying 

genes induced by growth factors (58, 59, 60) or genes differentially expressed when 

comparing normal versus malignant tissue (61, 62). For metastasis, few reports are 

available, most of them reporting on down regulation of gene expression during 

progression. In melanoma cells with low metastatic potential, NM23 is down 

regulated (63); in metastatic mammary adenocarcinoma WDNM1 and -2 are down 

regulated (64, 65); and for rat metastasizing prostate cancer cells a down modulation 

of fibronectin was shown (45). These results indicate that as in tumorigenesis, 

suppressor genes might also be involved in metastasis (metastasis suppressor genes). 

For prostate cancer, we recently identified two cDNA clones that are overexpressed 

in metastatic rat prostate cancers (66). One of those was found to be rather specific 

for metastasizing tumors and upon DNA sequence analysis was shown to be identical 

or related to High Mobility Group protein I (Y). HMG-I(Y) is a small, non-histon, 

nuclear protein implicated in transcription and replication processes. Its 

overexpression in dedifferentiated, fast-proliferating cells was reported earlier (67). 

The value of HMG-I(Y) as progression marker needs further investigation. The 

second cDNA clone contained rat-specific LTR-like sequences and is not likely to be 

useful for human diagnosis. Interestingly, Liu & Abraham (68), studying differential 

gene expression in human prostatic cancer cell lines, identified a cDNA containing 

human endogenous retroviral sequences spliced to human calbindin. The possible 

role of retroviral sequences in prostate cancer, however, remains unclear. 
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DISCUSSION AND PERSPECTIVES 

The major questions in prostate cancer, i.e., what is the cellular origin of cancer 

and which molecular steps are implicated in its development, are essentially still 

open. There are some indications of the importance of as yet unidentified tumor 

suppressor genes and several progression markers are under investigation. However, 

the question remains whether these markers can be used in a routine setting or if 

they will require more advanced technology. 

Interphase cytogenetics 

The frequent loss of chromosomes 10 and 16 might prove to be useful 

progression markers in prostate cancer diagnosis. Since RFLP analysis is a technique 

with little feasibility for a pathological setting, interphase cytogenetics might be a 

better approach (69). This technique involves the in situ hybridization of interphase 

nuclei using chromosome specific probes and enables the study of numerical 

chromosomal aberrations. Thus a study on a large group of patients with superficial 

bladder cancer showed the frequent loss of chromosome 9 and the frequent gain of 

chromosome 1 (70). Until now, the chromosome specific probes used, often 

recognize the centromeric region of the chromosome, thereby not allowing the 

detection of arm deletions. The use of cosmid clones might enable the analysis of 

more specific regions for over/under representation of the genome in cancer cells. Of 

further importance for interphase cytogenetics is the definition of the area of 

interest, especially considering the tumor cell heterogeneity in prostate cancer. Since 

it is not clear yet whether reliable in situ interphase cytogenetics (i.e., on frozen- and 

paraffin-embedded sections) will be possible, the nuclei preparations need to be 

made from pathologically defined sections. However, the technique is potentially 

powerful to study gross genetic aberrations associated with prostate tumor 

progression. 

RNA in situ hybridization 

Progression markers identified by differential/subtraction hybridization analysis, 

are isolated as cDNA clones. If they represent known genes and if antibodies against 

these genes are available, immunohistochemical studies can be performed - on fresh 

and/or archival material - to establish the importance of these progression markers. 

If, however, an unknown gene is identified or if an antibody is not available, one 
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might consider RNA in situ hybridization to study primary prostate samples. Since 

RNA molecules are extremely sensitive to degradation, the use of RNA in situ 

hybridization requires careful tissue handling. This aspect of the technique may 

impair its use in a routine setting. 

Polymerase Chain Reaction 

The polymerase chain reaction (PCR) technique has many applications and 

many publications have already shown its potential (overview: 71). The technique is 

based on the exponential amplification of small amounts of target sequences and one 

needs only little material in contrast to most standard protocols. For a diagnostic 

approach one might even consider the use of tissue-sections (72). PCR is mainly a 

simple procedure; only the adequate choice of the primers is of great importance 

and since the technique is very sensitive, one must realize that minor contaminations 

might already interfere with the results of the experiment. Also the quantification of 

the amplification is still cumbersome. 

Recently, two methods were developed, enabling the (relative easy) detection of 

point mutations. The technique of Single Strand Conformation Polymorphism PCR 

(SSCP-PCR) is based on the fact that single stranded DNA when run under non-

denaturing conditions forms a secondary conformation that will change due to 

(point) mutations (73). The various conformations have a different motility in a non-

denaturing gel and can be discriminated accordingly. Thus, Suzuki et al. (74) studied 

a great number of mutations in the rai-oncogene. When studying a gene with known 

hot-spots for mutation, the technique can be extremely useful to analyse large 

numbers of patients. The second technique, Denaturing Gradient Gel Electrophoresis 

(DGGE), is based on the fact that due to changes in nucleotide sequence, DNA-

fragments have different melting point characteristics which can be visualized when 

run in a denaturing gel (75). Recently, the slightly modified technique of Constant 

Dénaturant Gel Electrophoresis (CDGE), was used to rapidly screen for p53 

mutations in breast carcinomas (76). Considering the many applications and 

possibilities of the technique, PCR based technology is likely to become a routine 

instrument in molecular (uro)pathological analysis. 

In conclusion, there are only few markers available yet that have potential use 

in the prediction of the metastatic ability of prostate cancer cells. Considering the 

increasing number of patients that are diagnosed with prostate cancer, the 
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Identification of additional molecular markers for prostate cancer is of great 

importance. Also the development and/or improvement of discriminative screening 

techniques that can be used in a routine setting, should be stimulated, i.e., future 

studies should aim at a screening program for prostate cancer in which the 

prediction of the aggressiveness of the individual tumor has a crucial role. 

OUTLINE OF THE THESIS 

In this thesis, molecular biological approaches aiming at the identification of new 

molecular markers that may improve the prediction of the aggressiveness of prostatic 

tumors, are described. For the studies described in Chapters II through V, the 

Dunning R-3327 rat prostatic cancer model system was used. This model system 

consists of more than ten sublines, representing the various stages of prostate tumor 

progression and being characterized by parameters such as tumor growth rate, 

histology, androgen-dependency and metastatic ability. In Chapter VI is reported on 

a study using human prostate tumors to test findings obtained in the animal model 

system. 

As a first approach to identify new molecular markers for progressively 

advanced prostate tumors, the technique of differential hybridization analysis was 

applied to compare steady-state mRNA levels of the hormone-dependent, well-

differentiated, non-metastasizing Dunning R-3327-H tumor and the hormone-

independent, anaplastic, metastasizing Dunning R-3327-MatLyLu tumor. The first 

experiment revealed three cDNA clones that were overexpressed in the 

progressionally advanced MatLyLu tumor (Chapter Π). The mRNA expression 

patterns of two of the cDNA clones showed some similarities and further 

characterization of these clones revealed the relation between both cDNA clones 

(Chapter UT). A second attempt to identify differentially expressed genes, revealed 

the overexpression of vimentin in the anaplastic, invasive tumor lines of the Dunning 

R-3327 model system. This overexpression of vimentin raised some questions since 

vimentin is usually specifically expressed in tissues of mesenchymal origin, however, 

the prostate is of epithelial origin and the exclusive expression of cytokeratins would 

be expected (Chapter Г ). 

The second approach that was used to reach our goal was an indirect one: the 

expression of a known gene with potential releveance for carcinogenesis was studied. 
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As already mentioned in the introduction, several hundreds of genes may be 

considered of being implicated in carcinogenesis. The studies described in Qiapter V 

and VI deal with the expression of the Ca2+-dependent cell adhesion molecule E-

cadherin in the Dunning R-3327 model system and human tumors, respectively. E-

cadherin is involved in cell-cell interactions and is indicated to play an important 

role in invasion and metastasis. The E-cadherin expression was studied at both 

mRNA and protein levels in order to substantiate the possible involvement of E-

cadherin in the invasive and/or metastatic behaviour of prostatic tumors. 
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SUMMARY 

One of the major problems in the diagnosis of localized prostatic tumors is to 

predict the aggressiveness of an individual tumor, which is presumably associated 

with chance to progression. In an attempt to find molecular markers that are specific 

for aggressive prostatic cancer cells, we compared steady-state mRNA levels of 

progressionally related prostatic tumors. The Dunning R-3327-H subline, a relatively 

benign rat prostatic tumor, was compared to the therefrom derived highly aggressive 

MatLyLu tumor by differential hybridization analysis. The differential screening 

revealed 26 complementary DNA clones that detected transcripts overexpressed in 

MatLyLu. Upon further screening on the entire panel of Dunning R-3327 sublines, it 

appeared that three clones (pBUSl, pBUS19 and pBUS30), detected transcripts 

specifically expressed in metastatic rat prostatic tumors. The expression pattern of 

pBUS19 and pBUS30 suggested a relation between these cDNAs. Nucleotide 

sequence analysis, however, could not yet substantiate this. Computer-assisted 

comparison of the DNA sequences revealed the presence of rat long terminal 

repeat-like repetitive elements in pBUS19. The differential expression of repetitive 

elements in progressionally related tumors is interesting, yet similar findings have not 

been reported in humans malignancies. Nucleotide sequence analysis of pBUSl 

indicated that this clone is identical or related to High Mobility Group protein I(Y), 

a non-histone, nuclear protein. From recent studies it appeared that this protein 

might be implicated in replication and/or transcription processes, and is induced in 

fast proliferating/undifferentiated cells. The overexpression of HMG-I(Y) correlates 

rather with metastatic ability than with growth rate, hence it may serve as valuable 

marker to identify progressionally advanced prostate cancer cells. 
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INTRODUCTION 

Among cancer related deaths in the American male population, prostate cancer 

is the second leading cause (i.e., 11 %). Moreover, prostate cancer accounts for 21 

% of all newly diagnosed cancers in that group (highest incidence) (1). The majority 

of patients presents clinically with localized disease (Stage Α-C). Patients with truly 

localized disease (i.e., no capsular penetration, stage A-B), are amenable to curative 

radical surgery. However, a considerable fraction of this group clinically progress to a 

metastatic state. This can be explained only by the fact that at the time of surgery, 

dissemination of tumor cells had already occurred resulting in microscopic 

metastases. Identification of patients at risk for having such micrometastases is likely 

to be of great significance, since experimental therapeutical studies revealed that 

small disseminated lesions are still amenable to curative chemotherapy, whereas they 

are not later in their clinical progression (2). Clearly, adjuvant chemotherapy for all 

stage A-B patients is unacceptable since the majority of patients would be 

overtreated. 

Prediction of the aggressiveness of an individual tumor can be achieved by 

histological examination of the primary tumor. Whereas classical pathological 

grading, according to Gleason (3), is not able to discriminate tumors that do 

progress clinically from those that do not, analysis of nuclear morphometrical 

characteristics seems to be more promising (4). Another approach is to identify 

molecular characteristics specific for aggressive tumor cells. Thus far no markers are 

available that meet the demands mentioned above. 

A method that is useful to isolate and characterize molecular markers for 

progressionally advanced cancer cells is comparison of steady-state mRNA levels by 

differential or subtraction hybridization analyses. Earlier studies using the well 

characterized rat prostatic cancer Dunning R-3327 model system, revealed that 

fibronectin is down-modulated upon progression from anaplastic non-metastasizing 

rat prostate tumors to metastasizing tumors (5). So far, there are no clinical 

implications of these findings for the early steps in the progression of prostate 

cancer, since well differentiated tumors also have a low expression of fibronectin. 

Furthermore, loss of a molecular characteristic is less suitable for diagnostic 

purposes. In the present study, we used the same technique to compare the most 

benign tumor from the Dunning R-3327 rat prostatic cancer model system, the H-

tumor, with the metastatic MATLyLu tumor by differential hybridization analysis, 
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screening, in this case, for up-regulation of genes. 

The cDNA clones that detected differentially expressed genes were evaluated for 

their relation to the aggressive phenotype by screening ten Dunning R-3327 sublines. 

Finally, the cDNA clones that met the selection criteria were sequenced and the 

resulting nucleotide sequences were compared to nucleotide databases to search for 

homology with known genes. 

MATERIALS AND METHODS 

Dunning R-3327 rat prostatic tumors 

The parental tumor from which all rat prostatic tumor sublines were derived is 

the original R-3327 tumor described by Dunning (6). To denote differences in the 

history and characteristics of the various R-3327 tumors passaged at several 

institutes, the tumor lines are denoted by different letters. The G subline was 

developed by Dunning and is poorly differentiated but androgen responsive (7). The 

G subline was generously provided by Dr. Alice Claflin (University of Miami). The 

slow-growing, well-differentiated subline obtained from Dr. Arthur Bogden has been 

serially passaged at The Johns Hopkins University (Baltimore, Md) and was termed 

R-3327-H. 

The H subline is a well-differentiated, androgen-responsive tumor. The H tumor 

was shown to be a heterogeneous tumor composed of both androgen-dependent and 

-independent cells (8). By growing the H tumor in castrated rats it appeared to be 

possible to select in vivo for the androgen-independent subpopulation; the resulting 

slow-growing, well-differentiated line was termed HIS. By continuous passaging of 

HIS, random tumor progression gave rise to a moderately fast-growing, well-

differentiated tumor, HIM, and an even faster growing, moderately-differentiated 

subline, HIF. The sublines ATI and AT2 arose from the Dunning R-3327-H tumor 

passaged at Johns Hopkins (7). All these lines arose within one passage and are 

anaplastic, hormone-independently growing tumors with a low metastatic ability (7), 

i.e., less than 10% of the animals inoculated with tumor sublines develop distant 

metastases. MatLyLu (9) and MatLu (10) both arose from the ATI tumor. AT3 

arose from the HIF line. In rats, these last three sublines grow as anaplastic tumors 

with a high metastatic ability, i.e., more than 90 % of the animals inoculated with 

these tumor sublines develop distant metastases (7). The characteristics of the 
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Dunning sublines used in this study are shown in Table 1. 

Each of the tumor sublines described above is routinely passaged by inoculating 

male inbred Copenhagen (Cop) rats (Harlan Sprague-Dawley, Indianapolis, In) 

subcutaneously in the flank with a 25 mg trocar piece of the respective tumor 

subline as described before (8). Tumor samples were harvested when the respective 

tumors were growing exponentially at a tumor volume of 1-2 cc, frozen in liquid 

nitrogen and stored at -80 0C. 

mRNA isolation 

Total RNA from the Dunning tumors was isolated using the lithium-

chloride/urea procedure as described by Auffray and Rougeon (11). Poly-A+-RNA 

was purified by selection on an oligo-dT-cellulose column (12). 

Construction of cDNA library 

For the construction of the cDNA library, a strategy of adaptor ligation was 

used. According to Haymerle et al. (13) unphosphorylated adaptor oligonucleotides 

are ligated onto both vector and insert DNA. Upon removal of unligated adaptors 

and phosphorylation of the 5'-OH termini, the cDNA is ligated in the vector. 

Briefly, 10 ßg of poly-A+-RNA isolated from the MatLyLu-tumor was oligo-

d T ^ g primed and cDNA synthesis was performed according to Gubler and 

Hofman (14). To the blunt-ended cDNA, a 3-fold molar excess of SamHI-cut 

Table 1: In vivo biological characteristics of Dunning R-3327 rat prostatic cancer sublines. 

Subline 

H 
HIS 
HIM 
HIF 
G 
MATLu 
AT-1 
AT-2 
AT-3 
MATLyLu 

Histology 

Well-differentiated 
Well-differentiated 
Well-differentiated 
Moderately-differentiated 
Poorly-differentiated 
Anaplastic 
Anaplastic 
Anaplastic 
Anaplastic 
Anaplastic 

Doubling time 
(in days) 

22 ± 5 
24 ± 5 
9.0 ± 0.8 
4.8 ± 1.8 
4.0 ± 0.2 
2.7 ± 0.2 
2.5 ± 0.2 
2.5 ± 0.2 
1.8 ± 0.2 
1.5 ± 0.1 

Androgen 
responsive 

Yes 
No 
No 
No 
Yes 
No 
No 
No 
No 
No 

Metastatic 
ability-

Low 
Low 
Low 
Low 
Low 
High (lungs)" 
Low 
Low to moderate (lungs) 
High (lymph nodes & lungs) 
High (lymph nodes & lungs) 

* Low metastatic ability, <5% of s.c. inoculated rats develop distant metastases; moderate ability, 
>5%, <20%; high metastatic ability, >75% develop distant metastases. 
** Organs in the parentheses are the site of the distant metastases for the individual sublines. 
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pUC18 was added and the mixture was ethanol precipitated. After dissolving the 

vector and cDNA, a 100-fold molar excess of unphosphorylated adaptor 

oligonucleotides (fiamHI/blunt end (Boehringer)) was added. The sample was heated 

to 65 "C for 5 min and then allowed to cool down to room temperature in 10 min. 

After overnight ligation (T4-DNA-ligase) at 12 "C, the sample was heated to 65 0C 

for 5 min and loaded on a Biogel A-50 column to remove the non-ligated adaptors 

from the vector and cDNA. After eluting the column with 10 mM Tris-HCl/pH7.5-l 

mM EDTA, the fractions containing the vector and cDNA were pooled, precipitated 

and phosphorylated. Finally, the vector and the cDNA were ligated overnight and 

transformed to competent Escherichia coli (strain DH5a) cells. 

Differential screening of the cDNA library 

Approximately 10,000 colonies containing inserts were plated on nitrocellulose 

filters and 4 replicas were made. The replica filters were lysed according to 

Sambrook et al. (15). Hybridization was performed according to Hanahan and 

Meselson (16) in 40% formamid at 42 0 C for 60 h. For the differential screening, 

probes representative for the Η-tumor and the MatLyLu-tumor mRNA populations 

were prepared as follows: 1.5 μg oligo-dT^.jg was annealed to 1 μg of poly-A+-

RNA by incubation at 68 "C for 5 min and quenching on ice. First strand synthesis 

was then performed for 60 min at 37 "C in 50 mM Tris-HCl (pH=8.3), 6 mM 

MgCl2, 40 mM KCl, 1 mM DTT, 100 /ig/ml BSA, 0.6 mM of unlabeled dATP, 

dGTP, dTTP, 0.06 mM of unlabeled dCTP and 10 μ Ο of a- i 2P-dCrP (>3000 

Ci/mM) using 500 units of reverse transcriptase (BRL). Alkaline hydrolysis of the 

remaining RNA was performed for 30 min at 60 0C in 10 mM EDTA 0.3 % SDS 

and 160 mM NaOH. After addition of HAc and Tris-HCl (pH=7.5) to the final 

concentration of 140 mM and 60 mM respectively, the sample is run on a Sephadex 

G-50 spin column to remove the excess of unincorporated nucleotides. The eluate is 

ethanol precipitated and this first strand cDNA is used as a template for a random 

prime labeling reaction (17) in presence of 50 μ α a- i2P-dCTP (>3000 Ci/mM). The 

specific activity of the cDNA probes thus obtained was 0.5-1.0x10* dpm^g template 

RNA which is at least 10-fold higher than can be achieved in a reverse-transcriptase-

labeling. For the hybridization of the filters (2 replicas with probe derived from the 

Η tumor, 2 replicas with probe derived from the MatLyLu tumor), 1x10o dpm/ml 

hybridization solution was used. 
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Northern blot analysis 

Ten micrograms of total RNA was glyoxylated, size fractioned on 1 % agarose 

gels and transferred to Hybond-N (Amersham). 

Probes were made of DNA, obtained from small scale plasmid isolations or of 

purified inserts of cDNA clones, by random prime labeling reactions (17). 

Hybridizations were performed according to Church and Gilbert (18); the 

membranes were preincubated in hybridization buffer (7 % SDS, 1 % BSA, 0.5 M 

sodium-phosphate-buffer/pH=7.4, 1 mM EDTA, 100 μg/ml salmon sperm DNA) for 

1-4 hours at 65 "С. The radioactively labeled probe was added to a maximum of 

IxlO6 dpm/ml and the membranes were hybridized overnight at 65 "C. Filters were 

then washed to high stringency (i.e., buffers containing 1 % SDS, 1 mM EDTA and 

decreasing concentrations of sodium-phosphate-buffer; 0.5 M, 0.1 M, 0.05 M. Each 

wash step was performed at 65 0C for 30 min). Dehybridization was performed in 

0.1 χ Denhardt's solution, 5 mM Tris-HCl/pH=7.4, 2 mM EDTA at 65 0C. 

DNA sequence analysis and computer analysis 

DNA fragments were ligated into the polylinker region of M13mp8-19. All of 

the DNA sequences were determined using the dideoxy sequencing method as 

described by Sanger et aL (19). The gel readings were recorded and edited using 

IntelliGenetics computer software (release 5.35). Computer comparison studies were 

performed with the EMBL (release 22) and Genbank (release 60) nucleotide 

sequence databases (20). 

RESULTS 

Differential hybridization reveals 3 MatLyLu-specific cDNA clones 

A cDNA library was constructed from the anaplastic, hormone-independent, 

metastasizing tumor MatLyLu. The library had a complexity of 10,000 recombinant 

clones, i.e., with a probability of 99 %, a mRNA expressed at a relative abundancy 

of 0.05 % will be represented in this library (21). After amplification of the library, 

approximately 10,000 colonies were plated and 4 replica filters were prepared for in 

situ colony hybridization. Sets of 2 replica filters were hybridized with cDNA probes, 

using as template poly-A+-RNA of the MatLyLu-tumor and the more benign H 

tumor (well-differentiated, hormone-sensitive, non-metastasizing). After 60 h of 
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hybridization, the filters were washed and exposed for autoradiography for 3 days 

(see Fig. 1). Extensive comparison of the resulting autoradiographs revealed 18 

clones that seemed to be differentially expressed, i.e., a signal was evident on both 

replicas hybridized with the cDNA probe derived from the MatLylu tumor and no or 

a very weak signal was detected on any of the replicas hybridized with the probe 

derived from the H tumor. Upon long exposure (14 days, 2 intensifying screens, 

Kodak XAR5) 8 additional cDNA clones appeared to detect differentially expressed 

mRNAs. 

The secondary screening of these 26 cDNA clones was a Northern assay on a 

panel of three Dunning tumors, in which cDNA-containing plasmids were 

radioactively labeled and hybridized on blots containing 10 /ig of total RNA of the 

H, AT2 (anaplastic, hormone-independent, non-metastasizing) and MatLyLu tumor. 

The expression patterns of the most significant clones are shown in Fig. 2. From this 

secondary screening it appeared that the hybridization patterns could be divided in 

three groups; no significant difference in the three tumors (i.e., false positives); 

increase in expression towards MatLyLu, whereas the increase in expression was less 

Figure 1: Differential 
screening of a cDNA library 
of the h o r m o n e -
independent, anaplastic, 
metastasizing MatLyLu-
tumor. Replicas of the 
original plating were 
hybridized to ^P-labeled 
cDNA probes prepared from 
poly-A+-RNA from the H-
tumor (hormone-dependent, 
well-differentiated, non-
metastasizing) (A + B) or 
the MatLyLu tumor (C + 
D). Arrow heads indicate 
cDNA clones whose RNAs 
are more abundant in the 
MatLylu tumor. 
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than 3-fold (e.g., Fig. 2; pBUS4, 6, 8, 17, 22); and increase in expression towards 

MatLyLu more than 5-fold (e.g.. Fig. 2; pBUSl, 10, 14, 19, 24, 25, 30). The cDNA 

clones from the last group were analyzed on Northern blots containing 10 μg of total 

RNA of normal rat prostate and ten Dunning sublines representing the different 

stages of tumor progression (see Table 1). pBUSlO, 14, 24 and 25 showed no 

consistent relation between the mRNA levels and progression of prostate cancer 

whereas the expression patterns detected with pBUSl, 19 and 30 did correlate with 

progression related parameters (i.e., growth rate, hormone dependency, histology and 

metastatic ability). 

peusi pBUS4 pBuse pBuse 
1 2 3 1 2 Я 1 2 3 1 2 3 

pBUSlO PBUS14 pBUS17 PBUS19 
1 2 3 1 2 3 1 2 3 1 2 3 

6 7 -

4.3-

PBUS22 pBUS24 pBUS25 pBUS30 
1 2 3 1 2 3 1 2 3 1 2 3 

UW(kb) 

9 4 -

6 7 -

t: 
Figure 2: Northern blot analysis of 12 
cDNA clones isolated upon 
differential hybridization. Ten μ£ of 
total RNA from the Η tumor (lane 
1), the AT-2 tumor (lane 2), and the 
MatLyLu tumor (lane 3) was loaded 
per lane. 32P-labeled DNA probes 
were derived from small scale plasmid 
isolations of the cDNA clones. 
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Expression pattern of pBUSl 

pBUSl detects a single transcript of 1.8 kb (Fig. ЗА). The expression level is 

high in all metastatic Dunning sublines tested; i.e., pBUSl transcripts are at least 10-

fold more abundant in the metastasizing tumors AT3, MatLu, and MatLyLu than in 

the anaplastic, non-metastasizing tumors ATI and AT2 (concluded from densito-

metrical scannings of longer exposures of the same autoradiograph as shown in Fig. 

ЗА). Moreover, in the hormone-responsive G and H sublines, as well as, in the lines 

HIS, HIM, and HIF that arose from the H tumor through castration-induced 

selection, no detectable levels of pBUSl transcripts were found. Also in normal 

prostate tissue no pBUSl mRNA was detectable. (Even upon longer exposure no 

signals were detected in normal prostate, G, H, HIS, HIM, or HIF.) 

2 3 -
20-

MW(kb) 
94-

6 7 -

4 3 -

B 2 3 -
2 0 -

9 4 -

6 7 -

4 3 -

гэ-

f 
^ ш и И І 

• ι I 

r ^ 2 3 -

D ^ 

Figure 3: Northern blot analysis of pBUSl 
(A), pBUS19 (B), and pBUS30 (C). Ten 
μg of total RNA of normal prostate (NP) 
and 10 Dunning tumors was loaded per 
lane. 32P-Iabeled DNA probes were 
derived from purified inserts of the cDNA 
clones. rRNA was used as an internal 
control for the amounts of RNA loaded 
(D). 
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Thus it appears that pBUSl expression is highly correlated with the metastatic 

phenotype, rather than with growth rate [e.g., MatLu has a doubling time of 2.7 

days, while ATI and AT2, which show a much lower expression, have a doubling 

time of 2.5 days (see Table 1)]. 

Expression patterns of pBUS19 and pBUS30 

Northern analyses using pBUS19 and pBUS30 as a molecular probe revealed 

expression patterns that at some points are strikingly similar, yet at other aspects 

differ significantly (Fig. 3B and C). Both probes detect a 7.0 kb transcript, 

abundantly expressed in the metastasizing AT3 and MatLyLu tumors while MatLu, a 

tumor line that metastasizes exclusively to lungs, contains no detectable transcripts. 

The 7.0 kb pBUS19/30 mRNA is expressed at much lower levels in G, HIS, HIM, 

and HIF (longer exposure, not shown in Fig. 3B, revealed a very low expression of 

the transcript). It should be noted that in G, HIS and HIM the transcript might be 

slightly smaller than 7.0 kb (see fig. 3C). The relative intensities of the transcript 

using either probe were similar (based on densitometrical scanning; data not shown). 

However, pBUS30 detected an additional transcript of 6.0 kb exclusively found in 

ATI, AT2 and HIF. The expression of this transcript is higher in ATI and AT2 than 

in the HIF tumor. Considering the data on the 7.0 kb transcript we conclude that 

pBUS19 and PBUS30 might be related cDNA clones. (For both Fig. 3B and C, the 

band seen at approximately 4.3 kb is probably due to background hybridization). 

DNA Sequence analyses of pBUSI. pBUS19 and pBUS30 

To obtain further information on the cDNA clones, the cDNA inserts were 

subcloned in M13mp8-19 and the nucleotide sequence was determined using the 

dideoxy-sequencing method. Computer-assisted comparison of the resulting 

nucleotide sequences with the EMBL and Genbank nucleotide sequence databases 

should reveal homology with known sequences. 

To investigate whether pBUS19 and pBUS30 are indeed related, we first 

compared the nucleotide sequences of these two cDNA clones. No homology was 

found between pBUS19 and 30. Furthermore, upon screening the nucleotide 

sequence databases, no homology to any of the known sequences could be found for 

pBUS30 (cDNA insert 0.5 kbp compared to a mRNA size of 6.0 and 7.0 kb). For 

pBUS19 (cDNA insert 1.4 kbp), however, the computer comparison showed the 

presence of parts of two rat-specific repetitive elements, RAL6 and RAL10 (22). As 
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outlined in Fig. 4, pBUS19 contains 289 bp of the RAL6 element (89 % homology) 

and 91 bp of the RAL10 element (92 % homology). The RAL elements are very 

homologous to one another and belong to a family of long terminal repeat-like 

sequences. It should be noted that pBUS19 and pBUS30 contain only small portions 

of the entire mRNAs of 6.0 and 7.0 kb. Since both cDNA clones contain poly-A-

tails, it is very likely that they represent the У non-coding (and probably less 

conserved) sequences of the transcripts. Hence evidence for the putative relation 

between pBUS19 and pBUS30 might come from sequence analysis of the upstream 

regions, not yet cloned. 

For pBUSl (cDNA insert 0.9 kbp) a high homology to the mouse (83 %)(23) 

and human (71 %)(24) HMG-I(Y) cDNA sequence was found (HMG-I: High 

Mobility Group protein I / HMG-Y is an isoform). A schematic representation of 

the alignment of the sequence data is shown in Fig. 5. pBUSl contains 0.9 kbp of 

the 3,-end of the murine HMG-I(Y) cDNA which is 1.7 kbp. As illustrated in Fig. 5, 

only a small part of the HMG-I(Y) cDNA is coding. pBUSl contains only non-
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Figure 4: Schematic representation of the alignment between pBUS19 and the RAL elements. In the 
lower part sequence alignments are shown. 
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Figure 5. Schematic representation of the alignment between pBUSl and HMG-I(Y). The box 
represents the coding sequences of HMG-I(Y). 

coding sequences (З'-UTR) in which, nevertheless, a high homology to mouse and 

human sequences is found, hence it is very likely that pBUSl is the rat homolog of 

HMG-I(Y). 

DISCUSSION 

Many molecular alterations appear to be associated with the process of tumor 

progression. Molecular studies on the development and progression of cancer have 

indicated several groups of genes that might be implicated in this process. These 

groups comprise oncogenes, tumor suppressor genes, genes encoding growth factors, 

growth factor receptors, transcription factors, extracellular matrix proteins, and cell 

adhesion molecules. The expression of oncogenes has been studied in both human 

primary prostate tumors (25, 26), as well as in Dunning sublines (27). Even though 

the studies on primary tumors suggested a correlation with ras and myc expression 

and tumor progression, studies on the Dunning system did not corroborate these 

findings. Our own studies (data not published) confirm these last results. 

The objective of the study described here was to identify genes that are 

specifically expressed or overexpressed in metastasizing prostatic tumors, using the 

technique of differential hybridization. In a previous experiment, this technique was 

successfully applied to compare the steady-state mRNA populations of the ATI and 

MatLyLu Dunning sublines (5). In order to be able to identify transcripts that are 

expressed at lower abundancy and to increase the specificity, we improved the 

technique of differential hybridization. Screening of 4 replicas decreased the number 

100 bp 
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of "false positives" and the alternative strategy to label the mRNA populations 

increased the sensitivity of the experiment: the threshold level for abundancy of 

mRNAs that can be detected, was decreased from 0.1-0.5 % to 0.05 % (estimation). 

Thus, comparison of the mRNA populations of the most benign Dunning tumor, the 

H tumor, and the most progressionally advanced Dunning subline MatLyLu, revealed 

26 cDNA clones that are overexpressed in the MatLyLu tumor. After selection by 

Northern blot screening, three clones appeared to detect mRNAs the expression of 

which correlate well with the metastatic phenotype. Other clones showed only a 

slight increase in expression during tumor progression. 

Two of the differentially expressed cDNA clones that met all selection criteria, 

pBUS19 and pBUS30, showed RNA expression patterns that share some 

characteristics: a high expression of a 7.0 kb transcript in the metastasizing tumors 

AT3 and MatLyLu, while MatLu, which exclusively metastasizes to lungs, shows no 

transcript; and the appearance after longer exposure of the autoradiographs, of this 

transcript in the more benign G, HIS, HIM, and HIF tumors (the size of the 

transcript in the G, HIS and HIM sublines seems to be slightly smaller than 7.0 kb). 

However, the cDNA clones differ by the fact that pBUS30 detects an additional 

transcript of 6.0 kb that is expressed in HIF and at much higher level in the 

anaplastic tumors ATI and AT2. To show a possible relationship between pBUS19 

and pBUS30, the nucleotide sequences of the cDNA clones were determined and 

compared. Even though both clones contain a poIy-A-tail, no homology could be 

found. (Further studies are necessary to establish or exclude an overlap of the two 

clones, possibly due to alternative splicing). The DNA sequences were also used for 

computer-assisted screening of nucleotide sequence databases. For pBUS30 no 

homology was found with any of the known sequences. Computer comparison of 

pBUS19, however, revealed the presence of parts of repetitive RAL elements. 

Although it is reported that these elements can be specifically expressed in rat 

tumors (22), in our rat tumor model system we see that only two of ten tumors 

show expression of this transcript. Southern blot analysis of human chromosomal 

DNA revealed that no RAL homologous elements are present in the human genome 

(data not shown). Furthermore, to our knowledge, specific expression of repetitive 

elements in human malignancies has not been shown yet. 

The expression of pBUSl correlates well with metastatic behavior: a transcript 

of 1.8 kb is expressed at very high levels in the three tested metastasizing tumors, 

the expression in the anaplastic, non-metastasizing tumors is at least 10-fold lower 
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while in the more benign tumors no transcripts are detected. DNA sequence and 

computer analysis revealed that pBUSl has a high homology with human (71 %) 

and murine (83 %) HMG-I(Y) cDNA. HMG-I belongs to the high-mobility-group 

proteins which are non-histone, chromatin binding (23). HMG-Y is an isoform of 

HMG-I, lacking 33 nt in the coding sequences. The HMG-I and -Y proteins appear 

to be members of an isoform family of proteins (all of whose members have not yet 

been fully characterized) that are probably derived by alternative splicing of a 

common precursor mRNA (28). Nucleotide sequence data of HMG-I(Y) reported 

thus far indicate that the S'-untranslated region (З'-UTR) of all of the potential 

isoforms are on a single exon, i.e., are transcribed from one gene. Thus from the 

nucleotide sequence analysis of only the З'-Ш'К it is not possible to determine 

which of the isoforms of the HMG-I family, pBUSl represents. Previous studies 

report on the possible involvement of HMG-I(Y) in metaphase chromatin 

condensation (29), in heterochromatin nucleosome phasing (30), in nuclear matrix-

DNA interactions (31) or in the З'-end processing of genes (32, 33). pl6, which is 

most likely a member of the HMG-I isoform family, is implicated in the regulation 

of the rRNA gene expression (34). Initial reports mention that HMG-I(Y) transcripts 

are most abundant in fast proliferating, undifferentiated cells (23). Moreover, 

Gianotti et al. (35, 36) suggest that HMG-I(Y) expression is rather related to a 

highly malignant phenotype than to neoplastic transformation. Comparative analysis 

of HMG-I(Y) expression in the Dunning system, in which degree of differentiation, 

growth rate, and metastatic capacity are represented in the various lines, revealed 

that, whereas the correlation between expression of HMG-I(Y) and growth 

rate/differentiation was low, there is a clear correlation with metastatic capacity, i.e., 

the highly malignant phenotype. Likewise, ATI, AT2, AT3, MatLu, and MatLyLu, 

are all anaplastic tumors; nonetheless, the more malignant sublines (i.e., metastatic) 

have significant higher levels of HMG-I(Y)-related transcripts. Hence our data 

support those of Giancotti et al. (35,36). To substantiate whether there is a 

functional relation between the expression of HMG-I(Y) and acquisition of the 

metastatic phenotype, the effects of modulation of the HMG-I expression in the 

Dunning lines (by cDNA mediated transfection) will be studied. 
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SUMMARY 

Differential hybridization analysis revealed two cDNA clones, pBUS19 and 

pBUS30, to be overexpressed in progressionally advanced rat prostatic tumors. 

Northern blot analysis suggested the clones to be related although no homology in 

nucleotide sequence could be shown. Isolation and characterization of a pBUS19-

related clone, pJG116, and computer-assisted database comparison showed that all 

three clones could be mapped within a rat-specific endogenous retrovirus. The 

importance of overexpression of retroviral sequences in advanced prostatic cancer 

remains unclear. 
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INTRODUCTION 

In our studies to identify genes that are activated during the proces of prostate 

tumor progression, we applied the technique of differential hybridization analysis to 

compare the steady-state mRNA levels of two different tumor stages. Since no well 

defined human prostate cancer progression model system is available, two sublines of 

the established Dunning R-3327 rat prostatic cancer model system (1) were used. 

The serially transplantable Dunning R-3327 sublines represent the various stages of 

prostate tumor progression. Comparing the steady-state mRNA levels of the most 

benign Dunning R-3327-H tumor (hormone-dependent, well-differentiated, non-

metastasizing), and the aggressive MatLyLu tumor (hormone-independent, anaplastic, 

metastasizing), three clones that are overexpressed in the metastatic tumors, were 

isolated (2). Two cDNA clones, pBUS19 and pBUS30, showed a striking homology 

in the mRNA expression patterns: a 7.0 kb transcript was highly expressed in the 

anaplastic, metastasizing (to lymph and lung) tumors AT3 and MatLyLu, but not in 

MatLu (metastasizes exclusively to lung). pBUS30 showed the expression of 

additional transcripts in the anaplastic, non-metastasizing tumors and, at much lower 

levels, in the well- and moderately-differentiated tumors. Nucleotide sequence 

analysis and computer-assisted comparison revealed no homology between the clones, 

although both clones contained a poly-A-tail. Screening of computer databases 

showed no homology of pBUS30 to any of the known sequences whereas pBUS19 

appeared to contain sequences homologous to a retroviral LTR-like repeat, termed 

RAL-element (3). This RAL-element was reported to belong to a new family of 

LTR-like sequences abundantly expressed in rat tumors but rarely in normal tissues. 

In order to gain more information on the possible role of the repetitive RAL-

elements in the progression of rat prostatic cancer, and to elucidate a possible 

relationship between pBUS19 and pBUS30, a MatLyLu cDNA library was screened 

using pBUS19 and pBUS30 as a probe to isolate additional cDNA clones that can 

be used for further characterization of the RAL-elements. 
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MATERIALS AND METHODS 

Dunning R-3327 sublines 

The phylogeny and the characteristics of the Dunning R-3327 rat prostatic 

cancer model system have already been described extensively (1, 2) and are 

summarized in Table 1. 

Screening of cDNA library 

Fifty thousand colonies of a cDNA library of the Dunning MatLyLu tumor (2) 

were screened according to Sambrook et al. (4), using either the 1.5 kb cDNA insert 

of pBUS19 or the 0.5 kb cDNA insert of pBUS30 as a probe. 

Northern blot analysis 

Total RNA was isolated using the lithium chloride/urea method as described by 

Auffray and Rougeon (5). Ten microgram of total RNA was glyoxylated, separated 

on an agarose gel by electrophoresis and transferred to Hybond-N+ (Amersham). 

Hybridizations were performed as described before (2). 

Nucleotide sequence analysis 

DNA fragments were ligated into the polylinker region of M13mp8-19. All of 

the DNA sequences were determined on both strands using the dideoxy sequencing 

Table 1: In vivo biological characteristics of Dunning R-3327 rat prostatic cancer sublines. 

Subline 

H 
HIS 
HIM 
HIF 
G 
MATLu 
AT-1 
AT-2 
AT-3 
MATLyLu 

Histology 

Well-differentiated 
Well-differentiated 
Well-differentiated 
Moderately-differentiated 
Poorly-differentiated 
Anaplastic 
Anaplastic 
Anaplastic 
Anaplastic 
Anaplastic 

Doubling time 
(in days) 

22 ± 5 
24 ± 5 
9.0 ± 0.8 
4.8 ± 1.8 
4.0 ± 0.2 
2.7 ± 0.2 
2.5 ± 0.2 
2.5 ± 0.2 
1.8 ± 0.2 
1.5 ± 0.1 

Androgen 
responsive 

Yes 
No 
No 
No 
Yes 
No 
No 
No 
No 
No 

Metastatic 
ability* 

Low 
Low 
Low 
Low 
Low 
High (lungs)" 
Low 
Low to moderate (lungs) 
High (lymph nodes & lungs) 
High (lymph nodes & lungs) 

* Low metastatic ability, <5% of s.c. inoculated rats develop distant metastases; moderate ability, 
>5%, <20%; high metastatic ability, >75% develop distant metastases. 
** Organs in the parentheses are the site of the distant metastases for the individual sublines. 
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method as described by Sanger ei aL (6). The gel readings were recorded and edited 

using IntelliGenetics computer software (release 5.35). Computer comparison studies 

were performed with the EMBL (release 28) and Genbank (release 68) nucleotide 

sequence databases (7). 

RESULTS 

Screening of the cDNA library 

About fifty thousand clones of the MatLyLu cDNA library were screened using 

either the 1.5 kb BamHl cDNA insert of pBUS19 or the 0.5 kb BamHl cDNA insert 

of pBUS30 as a probe. pBUS30 did not detect any related cDNA clones. Of 132 

pBUS19-positive clones, 24 were randomly chosen and DNA was isolated. BamHl 

and £coRI/HindIII restriction digestions revealed that we had isolated 13 different 

cDNA clones. pJG116 was selected for further characterization since it contained the 

largest insert (2.7 kb), possibly containing an overlap with pBUS30. To ascertain that 

pJG116 was indeed related to pBUS19, the insert of pJGll6 was used for Northern 

blot analysis. Interestingly, a hybridization pattern similar to the one found for 

pBUS30 was seen (see Fig. 1); in addition to the 7.0 kb transcript in the anaplastic, 

metastasizing (to lymph and lung) tumors AT3 and MatLyLu (as found for 

pBUS19), a 6.0 kb transcript was seen in the anaplastic, non-metastasizing tumors 

ATI and AT2, whereas in the more benign Dunning sublines (G, H, HIS, HIM) a 

low expression of a 6.7 kb transcript was seen. The poorly-differentiated, hormone-

independent HIF tumor expressed transcripts of 6.0 and 7.0 kb. This suggested that 

indeed pJG116 may contain sequences also present in pBUS30 and thus may help 

unravel the relation between the different clones. When pJG116 was used for a 

Southern blot analysis, a smear identical to that seen for pBUS19 and pBUS30, was 

found in the Dunning sublines whereas no signal was detected in human liver (data 

not shown), confirming the species specificity of the repetitive sequences. 

Nucleotide sequence analysis 

In order to determine the nucleotide sequence of pJG116, a restriction map was 

constructed. The map of the 3' end of pJG116 was almost identical to that 

determined for pBUS19, confirming the expected correlation with pBUSl9 and 

showing that pJG116 was a S'-end extended clone of pBUS19. Next, the nucleotide 
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Figure 1: Norlhern blot analysis of pBUS19 (A), 
pBUS30 (B) and pJG116 (C). Ten ßg of total 
RNA of normal prostate and 10 Dunning 
tumors were loaded per lane. rRNA was used as 
an internal control for the amount of RNA 
loaded (D). 

sequence of pJG116 was determined. Computer-assisted analysis of the nucleotide 

sequences of pBUS19, pBUS30 and pJG116 showed that pBUS19 and pJG116 

shared a high homology (94 %). An overlap between pJG116 and pBUS30 could not 

be found. In order to find out what was contained in the additional sequences of 

pJG116 and to perform an update search for pBUS19 and pBUS30, nucleotide 

sequences of the three clones were used for computer-assisted database comparison 

with all known sequences. This revealed the relationship between all clones: pBUS19 

and pJG116 showed homology with the RAL-elements and new retroviral sequences 

that had become available (8) made it possible to link those two clones to pBUS30. 

As shown in Figure 2, pBUS19 and pJG116 are located at the 3' end of a 7.3 kb rat 

endogenous retrovirus which contains the RAL-elements: pBUS19 has a homology of 

90.7 % over 1010 nt (of 1303 nt determined), pJG116 has a homology of 91.3 % 

over 2300 nt (of 2684 nt determined). pBUS30 is also contained within the 

endogenous retrovirus: 87 % homology over 466 nt (of 466 nt determined). This 

comparison also showed that the assumed poly-A-tail of pBUS30 is due to an 
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internal A-stretch in the retrovirus, probably allowing oligo-dT-priming. This explains 

why no evident poly-A-addition-signal could be found in pBUS30. The fact that 

pBUS30 is not located at the З'-end but is primed at an internal Α-stretch may also 

explain why no additional cDNA clones were isolated. 

RAL RAL 
g ρ e 

ι 1 1 1 

_ _ _ _ _ _ ^ ^ ^ ^ ^ _ ^ _ ^ ^ _ ^ _ ^ ^ _ ^ ^ _ _ ^ ^ _ _ RNRLTR 
pBUS19 

pBUS30 pJG116 

Figure 2: Schematic presentation of the location of pBUS19, pJG116 and pBUS30 compared to the 
endogenous retrovirus (RNRLTR) as described by Nakamuta el al. (8). Also the gag (g), pol (ρ) and 
env (e) homologous regions (as indicated by Nakamuta et al. (8)) are shown as are the positions of 
the RAL elements. [Sequence data have been deposited with the EMBL/Genbank Data libraries 
under accession nos. X62950 (pBUS19), X62951 (pBUS30), and X62952 (pJG116)]. 

DISCUSSION 

The isolation of pJG116 and an update database screening revealed the relation 

of the three cDNA clones pBUS19, pBUS30 and pJG116. All three cDNA clones 

contain parts of a rat endogenous retrovirus of 7.3 kb (RNRLTR, (8)), which was 

shown to be abundantly expressed in rat hepatic tumors whereas no expression was 

detected in normal liver. In rat prostatic tumors, we also see an overexpression of 

the retroviral sequences when compared to normal prostate, but instead of a smear 

pattern on Northern blot as found by Suzuki et al. (3), we detect transcripts of 

discrete sizes. The transcript in the anaplastic, metastasizing tumors AT3 and 

MatLyLu are approximately 7.0 kb and may represent a putative full-length 

transcript of the retroviral sequences (7.3 kb). The fact that in the anaplastic, non-

metastasizing tumors ATI and AT2 a transcript of 6.0 kb and in the more benign 

Dunning tumors a transcript of 6.7 kb is found, raises the question as to whether the 

transcripts are derived from different retroviral sequences, whether there is a change 

of transcription-start-point during tumor progression or if we are dealing with 

specific splice-products? Since pBUS19 and pJG116 are not 100 % identical, this 

suggest that there are several, highly homologous, retroviral sequences in the genome 
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of the rat, and they might give rise to different transcripts in different tumors or 

tumor stages. 

The role of the induced expression of the endogenous retroviral sequences in rat 

prostatic tumors remains to be established. Endogenous retroviral-like sequences in 

eukaryotic cells have been extensively studied (9) and it was shown that usually the 

expression of the retroviral sequences is restricted to specific stages of embryonic 

development or to specific tissues (10). However, also the specific enhancement of 

expression of repetitive sequences has been reported: the repetitive sequences are 

activated during several processes including differentiation (11), tumorigenesis (12) or 

due to induction by exogenous factors (13). On the other hand, also loss of 

expression of endogenous proviruses in tumors has been described (14). The 

involvement of deregulation of the expression of endogenous retroviral sequences has 

been shown in a variety of tumors and transformed cells (15-20), and the altered 

pattern of expression of retroviral transcripts may provide markers for the detection 

of neoplastic disease (20). On a possible functional/structural relation between the 

expression of endogenous retroviral sequences and prostate tumor progression, one 

can only speculate. It is very well possible that we are dealing with an 

epiphenomenon in that the endogenous retroviral-like sequences are activated non-

specifically. In cancer research the activation of cellular genes by promoter/enhancer 

insertion of retroviral sequences is a known mechanism but although the correlation 

is striking, i.e., in the anaplastic lines an overexpression is found, we did not find 

evidence for fusion of RAL-elements with endogenous genes. In contrast, Liu and 

Abraham (21), studying differential gene expression in human prostatic cancer cell 

lines, identified a cDNA containing human endogenous retroviral sequences spliced 

to human calbindin. The long terminal repeat (LTR) of this retroviral sequence was 

suggested to possibly activate the calbindin gene. The relation between 

overexpression of retroviral sequences and progression of rat prostatic cancer, 

however, remains elusive. 
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SUMMARY 

Differential hybridization analysis was used to identify molecular differences 

between a relative benign and a highly aggressive rat prostatic tumor derived from 

the Dunning R-3327-H adenocarcinoma. From the several differentially expressed 

mRNAs identified, we here report the characterization of pBUS51 which encodes a 

transcript highly expressed in all anaplastic Dunning tumors. Only a very low 

expression was detectable in normal rat prostate or in the differentiated tumors of 

the Dunning system. Nucleotide sequence analysis and computer-assisted database 

comparison revealed that pBUSSl was highly homologous to vimentin and therefore 

likely the rat homolog of this protein. 
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INTRODUCTION 

In cancer development, the progression of normal cells through premalignancy 

to malignancy can be characterized by several changes, biochemically as well as 

morphologically. These changes may result from alterations in cellular gene 

expression (1-3). By using the technique of differential or subtraction hybridization 

analysis, cDNA clones can be identified that represent genes whose expression is up-

or down-regulated during carcinogenesis (4, 5). In order to isolate cDNAs that are 

overexpressed in progressionally advanced prostatic cancers, we compared the 

steady-state mRNA populations of two tumors from the well characterized Dunning 

R-3327 rat prostatic cancer model system (6): the most benign Dunning subline, the 

hormone-dependent, well-differentiated, non-metastasizing H-tumor was compared to 

the most aggressive subline, the hormone-independent, anaplastic, metastasizing 

MatLyLu-tumor. In our first experiment we identified several differentially expressed 

cDNAs from which pBUSl (highly homologous to the High Mobility Group protein I 

(Y)) was shown to be a good candidate progression marker for prostate cancer (7). 

To isolate additional progression markers we performed a second differential 

screening. Amongst the cDNA clones selected for their overexpression in the 

malignant MatLyLu tumor, pBUSSl showed the most interesting expression pattern: 

a high mRNA expression in the anaplastic tumors was seen when compared to the 

low levels in normal rat prostate and the more benign sublines of the Dunning 

model system. When studying the expression of pBUSSl in a de novo arisen model 

system (derived from the Dunning-H tumor), the correlation of pBUS51 with tumor 

progression was confirmed, showing that the overexpression of pBUSSl is not merely 

a tumor-transplantation artefact. Nucleotide sequence analysis revealed pBUSSl to 

be the rat homolog of vimentin. Upon isolation of an additional cDNA clone 

(pGV40), we determined the complete coding sequence of rat vimentin which is 

highly homologous to mouse and human vimentin. 

MATERIALS AND METHODS 

Dunning R-3327 sublines 

The phytogeny and the characteristics of the Dunning R-3327 rat prostatic 

cancer model system have already been described extensively (6, 7). 
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Differential screening of cDNA library 

A cDNA library constructed from the hormone-independent, anaplastic, 

metastasizing Dunning tumor MatLyLu (7) was used for differential hybridization 

analysis. cDNA probes were made, representing the poly-A+-RNA population of the 

MatLyLu tumor and the more benign Dunning H tumor (hormone-dependent, well-

differentiated, non-metastasizing) and hybridization was performed as described 

before (7). Screening of the cDNA library in order to isolate a full-length rat 

vimentin cDNA clone, was performed according to Sambrook et al. (8). 

Northern blot analysis 

Total RNA was isolated using the lithium chloride/urea method as described by 

Auffray and Rougeon (9). Ten microgram of total RNA was glyoxylated, separated 

on an agarose gel by electrophoresis and transferred to Hybond-N+ (Amersham). 

Hybridizations were performed as described before (7). 

Nucleotide sequence analysis 

DNA fragments were ligated into the polylinker region of M13mp8-19. All of 

the DNA sequences were determined on both strands using the dideoxy sequencing 

method as described by Sanger et al (10). The gel readings were recorded and 

edited using IntelliGenetics computer software (release 5.35). Computer comparison 

studies were performed with the EMBL (release 28) and Genbank (release 68) 

nucleotide sequence databases (11). 

RESULTS AND DISCUSSION 

Differential hybridization analysis 

Comparison of the autoradiographs resulting from the differential screening 

revealed 14 cDNA clones representing genes overexpressed in the aggressive 

MatLyLu tumor. Northern blot analysis was performed on normal rat prostate and 

ten Dunning sublines to establish a possible relation of expression of these 14 cDNA 

clones to prostatic tumor progression. pBUS51 showed the most interesting 

expression pattern (see Figure 1): pBUS51 is highly expressed in all hormone-

independent, anaplastic tumors (i.e., ATI, AT2, AT3, MatLu and MatLyLu) whereas 

only a very low expression is found in normal prostate and the well or moderately 
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Figure 1: Northern blot analysis of 
pBUSSl (A). Ten fig of total RNA of 
normal prostate and 10 Dunning 
tumors were loaded per lane. rRNA 
was used as an internal control for 
the amount of RNA loaded (B). 

differentiated Dunning sublines (i.e., H, HIS, HIM, HIF, G) suggesting pBUSSl to 

correlate with a hormone-independent, anaplastic phenotype. Next the expression of 

pBUSSl was studied in a newly developed model system. Upon transplantation of 

the Dunning H tumor, a highly metastatic but still differentiated tumor, АТбрО arose 

[see chapter V]. АТбрО shows pBUSSl expression at the same level as does the H 

tumor (data not shown). A lung metastases of the АТбрО showed elevated levels of 

pBUSSl and upon further transplantation of both the original АТбрО and the lung 

metastases, anaplastic tumors arose, expressing pBUSSl at high levels. This confirms 

a correlation of pBUSSl with tumor progression, or more specific, degree of 

differentiation, and proves that the overexpression of pBUSSl is not merely due to 

tumor transplantation. 

DNA sequence analysis of pBUSSl 

To obtain further information on pBUSSl, its l.S kb insert was subcloned in 

M13mp8-19 and the nucleotide sequence was determined. Computer-assisted 

comparison of the resulting nucleotide sequences with the EMBL and Genbank 

nucleotide sequence databases revealed that pBUSSl is highly homologous to 

vimentin as characterized in different species (12-14). pBUSSl lacked approximately 

400 bp at the S'-end when compared to mouse vimentin cDNA. We rescreened the 

cDNA library and isolated an additional rat vimentin cDNA clone, pGV40, with a 

1.8 kb insert. Nucleotide sequence analysis showed that pGV40 contains the 

complete coding sequence of rat vimentin but, unfortunately, lacks (compared to 
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mouse) 55 bp at the 5-'end (5' non-coding sequences) and 52 bp at the З'-end. In 

Figure 2 a partial restriction map and the nucleotide sequence of rat vimentin cDNA 

are shown as is the location of pBUS51 and pGV40. Also the deduced amino acid 

sequence is indicated. The nucleotide sequences of the two overlapping clones 

comprise 1796 bp, not including the poly-A-tail. There is an open reading frame 

encoding a protein of 466 amino acids and a З'-end non-coding region of 315 bp. 

The nucleotide sequence of rat vimentin thus obtained, shares a high homology with 

mouse (94 %) (12), hamster (92 %) (13) and human (88 %) (14) vimentin cDNA. 

At the protein level, an even higher homology is predicted: 99 % with mouse, 99 % 

with hamster and 96 % with human vimentin. 

Human primary prostate tumors 

Since the prostate is known to be of epithelial origin, one would expect only the 

expression of cytokeratins, the intermediate filaments specifically expressed in 

epithelial tissues. The different classes of intermediate filaments are generally 

expressed only in cells of a specific origin, and also individual tumors usually express 

only a single class of intermediate filaments (15, 16). Most times, the expression of 

the specific intermediate filament is retained after neoplastic transformation, offering 

the abililty to use these proteins as markers for the origin of a tumor (15, 16). 

However, an increasing number of reports are published, describing the coexpression 

of two classes of intermediate filaments in neoplasms (17). The overexpression of 

vimentin in rat prostate tumors suggests a coexpression of two classes of 

intermediate filaments. Coexpression of cytokeratins and vimentin has already been 

reported for normal human tissues and for several epithelial tumors (17). Also for 

benign and malignant prostatic epithelium the coexpression of vimentin and 

cytokeratins has been shown (18). However, more detailed studies will be necessary 

to investigate the potential relation of overexpression of vimentin with human 

prostate tumor progression. Especially immunohistological studies have to be 

performed to confirm that vimentin is present in the epithelial cells of prostatic 

tumors and that coexpression within cells occurs. 

Figure 2: (A) Partial restriction map of rat vimentin cDNA. H, HindU; P, ftfl; S, Si/I; Sm, Smal; X, 
ATioI. The bar indicates the vimentin-encoding region. (B) Nucleotide sequence and deduced amino 
acid sequence (in one-letter-code) of rat vimentin. The signal for polyadenylation (AATAAA) is 
underlined, the asterisk indicates the stopcodon. [Sequence data have been deposited with the 
EMBL/Genbank Data Libraries under accession no. X62953J 
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pBUS51 

pGV40 

-50 -1 
GTTCACAGCCACTGCGCCCTCGCTCTCTTCTTGCAGATCTTGCAGCCGCAGCAAGCCAGGCCACCTCGTCCTTCGAAGCC 

1 50 
ATG TCC ACC AGG TCC GTG TCC TCG TCC TCC TAC CGC AGG ATG TTC GGT GGC TCC GGC АСА TCG AGC CGG CCC AGC 

M S T R S V S S S S Y R R M F G G S G T S S R P S 

1 0 0 150 
TCC AAC CGG AGC TAT GTG ACC АСА TCC ACC CGC ACC TAC AGC СТА GGC AGC GCG CTG CGC CCC AGC ACT AGC CGC 

S N R S Y V T T S T R T Ï S L G S A L R P S T S R 

200 
AGC CTC TAT TCC TCG TCC CCG GGT GGC GCC TAT GTG ACC CGG TCC TCC GCC GTG CGC CTG CGG AGC AGC ATG CCC 

S L Y S S S P G G A T V T R S S A V R L R S S M P 

250 300 
GGC GTG CGG CTG CTG CAG GAC TCC GTG GAC TTC TCG CTG GCC GAC GCC АТС AAC ACC GAG TTC AAG AAC ACC CGC 

G V R L L O D S V D F S L A 0 A 1 N T E F K N T R 

3 5 0 
ACC AAC GAG AAG GTG GAA TTG CAG GAG CTG AAT GAC CGC TTC GCC AAC TAC АТС GAC AAG GTG CGC TTC CTC GAG 

T N E K V E L Q E l N D R F A N r I D K V R F L E 

4 0 0 4 5 0 
CAG CAG AAC AAA АТС CTG CTG GCC GAG CTC GAG CAG CTT AAG GGC CAG GGC AAG TCG CGC CTG GGC GAC CTC TAC 

Q Q N K I L L A E L E O L K G O G K S R L G D L Y 

5 0 0 
GAG GAG GAG ATG AGG GAG TTG CGC CGG CAG GTG GAT CAG CTC ACC AAT GAC AAG GCC CGT GTC GAG GTG GAG AGG 

E E E M R E L R R Q V D U L T N D K A R V E V E R 

5 5 0 6 0 0 
..._ ж. _ и . . . . ...G CGG CTG CGA GAA AAA TTG CAG GAG GAG ATG CTC CAG AGG GAG GAA GCC GA-

D N L A Ë D I M R L R E K L O E E H L O R E E A E 
GAC AAC CTG GCC GAG GAC АТС ATG CGG CTG CGA GAA AAA TTG CAG GAG GAG ATG CTC CAG AGG GAG GAA GCC GAG 

L A E D I M R L " ' " ' - - - - • « - - - . -

6 5 0 
AGC ACC CTG CAG TCA TTC AGA CAG GAT GTT GAC AAT GCT TCT CTG GCA CGT CTT GAC CTT GAA CGT AAA GTG GAA 

S T L O S F R a D V O N A S L A R L D L E R K V E 

7 0 0 7 5 0 
TCC TTG CAG GAA GAA ATT GCC TTT TTG AAG AAG CTG CAC GAT GAA GAG АТС CAG GAG CTG CAG GCC CAG ATT CAG 

S L Q E E I A F L K K L H D E E I O E L Q A Q I O 

8 0 0 
GAA CAG CAT GTC CAG АТС GAT GTG GAC GTT TCC AAG CCT GAC CTC ACC GCT GCC CTG CGT GAT GTC CGC CAG CAG 

E O H V O I D V D V S K P O L T A A L R D V R Q O 

8 5 0 9 0 0 
TAT GAA AGT GTG GCT GCC AAG AAC CTC CAG GAG GCC GAG GAA TGG TAC AAG TCC AAG TTT GCT GAC CTC TCT GAG 

Y E S V A A K N L Q E A E E U Y K S K F A D L S E 

9 5 0 
GCT GCC AAC CGG AAC AAC GAT GCC CTG CGC CAG GCA AAG CAG GAG TCA AAC GAA TAC CGG AGA CAG GTG CAG TCA 

A A N R N N D A L R Q A K U E S N E Y R R Q V O S 

1 0 0 0 1 0 5 0 
CTC ACC TGC GAA GTG GAT GCC CTT AAA GGC ACT AAT GAG TCC CTG GAG CGC CAG ATG CGT GAA ATG GAA GAG AAT 

L T C E V D A L K G T N E S L E R Q M R E M E E N 

1100 
TTT GCC CTT GAA GCT GCT AAC TAC CAG GAC ACT ATT GGC CGC CTG CAG GAT GAG АТС CAG AAC ATG AAG GAA GAG 

F A L E A A N Y Q D T I G R L O D E I Q N H K E E 

1 1 5 0 1 2 0 0 
ATG GCT CGC CAC CTT CGT GAA TAC CAG GAC CTG CTC AAT GTA AAG ATG GCT CTT GAC ATT GAG АТС GCC ACC TAC 

M A R H L R E Y O D L L N V I C M A L D I E I A T Y 

1 2 5 0 
AGG AAG CTG CTG GAA GGG GAG GAG AGC AGG ATT TCT CTG CCT CTT CCA AAC TTT TCT TCC CTG AAC CTG AGA GAA 

R K L L E G E E S R I S L P L P N F S S L N L R E 

1 3 0 0 1 3 5 0 
ACT AAC CTG GAG TCA CTT CCT CTG GTT GAC ACC CAC TCC AAA AGA АСА CTC CTG ATT AAG ACG GTT GAA ACC AGA 

T N L E S L P L V D T H S K R T L L I K T V E T R 

1 4 0 0 
GAC GGA CAG GTG АТС AAT GAG ACT TCT CAG CAC CAC GAT GAC CTT GAA TAA AAACTGCACAGGCTCAGTGCAACGGCGCAGT 

D G Q V I N E T S Q H H D D L E * 

1 4 5 0 1 5 0 0 
ACCAGCAAGAAGGAAAAAAAAATCGTATCTTAGAAAAAAGAGCTTTCAAGTGCCTTTACTGCAGTTTTCAGGAGCGCAAGATAGATCTGGGATAGAAAC 

1550 1600 
GAGCTCAGCACATAACAACTGACACCCCCAAAAGGCGTAGAAAAGGTTTACAAAATAATCTAGTTTTACGAAGAAATCTTGTGCTAGAATACTTTTTAA 

1 6 5 0 1 7 0 0 
AGTATTTTTGAATACCATTAAAACTGCTTTCTTTTTCCAGAAAATATCTGACCAACTTGTTACTGCTTCAATAAAACTTCAGAAAT(A)_ 
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SUMMARY 

Cadherins represent a family of Ca -dependent cell adhesion molecules 

involved in homotypic, homophilic cell-cell interactions. Recent studies have shown 

that the Cadherins can play a role in invasive and metastatic behaviour. Using the 

established Dunning R-3327 model system of serially transplantable rat prostate 

cancers, the expression of E- and P-cadherin in rat prostatic cancers was studied. 

Analysis within this system demonstrated that whereas E-cadherin was expressed in 

the normal rat prostate and the well- or moderately-differentiated, non-invasive 

Dunning tumors, no expression, neither at the mRNA nor at the protein level, could 

be detected in the invasive sublines. Since not all invasive Dunning tumors studied 

have metastatic ability, these results suggest that a decreased expression of E-

cadherin is correlated with invasive behaviour rather than with metastatic ability. 

Recently, genetic instability occurred in an animal bearing the well differentiated, 

androgen-responsive, slow growing, поп-metastatic Dunning R-3327-H rat prostate 

cancer resulting in the progression to an anaplastic, androgen-independent, fast 

growing, highly metastatic state. This spontaneously arising tumor, termed the AT6 

subline, in its original host was heterogeneously composed of both a well 

differentiated and an anaplastic population of cancer cells in which areas of 

squamous cell differentiation were occasionally observed. The original animal bearing 

this heterogeneous AT6 cancer developed multiple metastases, the lung metastases 

being heterogeneously composed of anaplastic and squamous cell populations. 

Cytogenetic analysis demonstrated that the lung metastases were derived from a 

specific subpopulation of cancer cells present in the original AT6 primary tumor. 

Immunohistochemical studies demonstrated that only the area of lung metastases 

displaying squamous morphology were positive for E-cadherin. In contrast, the 

anaplastic areas of the lung metastases and the metastases in other organs were E-

cadherin negative. By the first passage of the AT6 tumor only the anaplastic cells 

were present and no detectable E-cadherin mRNA or protein was found in the 

primary tumor and metastatic deposits. These results suggest that a decreased 

expression of E-cadherin is associated with the progression of prostatic cancer. 
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INTRODUCTION 

In the progression of cancer to an invasive and/or metastatic state, changes in 

cell-cell and cell-substratum interactions occur, thus indicating a critical involvement 

of cell adhesion molecules in tumor progression. Since adhesion molecules play a 

role in cell attachment, cellular motility and intercellular communication, 

uncontrolled expression of these molecules may lead to changes in cellular adhesion 

and increased motility, processes that may result in metastatic behaviour of cells. 

Several groups of adhesion molecules have been described comprising the integrins, 

adhesion molecules belonging to the immunoglobulin superfamily, the LEC-CAMs 

and the Cadherins (1, 2). Recent studies showing a functional relation between E-

cadherin and invasion render the Ca2+-dependent Cadherins of particular interest in 

the study of cancer progression. 

Three Cadherins have been cloned and extensively characterized in different 

species, namely N-, P-, and E-cadherin (2, 3). Recently, other subclasses of Cadherins 

were isolated, suggesting that this family of adhesion molecules is much larger, 

comprising at least ten different Cadherins (4-8). 

In embryos, each of the well characterized Cadherins has a specific 

spatiotemporal pattern of expression. The association or separation of cell layers is 

tightly correlated with the differential expression of Cadherins and it is proposed that 

the selective adhesion of cells through homophilic interaction of the expressed 

Cadherins is a key phenomenon in morphogenesis (3). Indeed, in vitro experiments 

have shown that the expression of recombinant Cadherins mediates cell sorting in 

model systems (9, 10). In particular, when L-cells (which have virtually no 

endogenous Cadherin activity) are transfected with E- or P-cadherin cDNAs, the E-

and P-transfectants are able to segregate from each other when mixed. 

In adult organisms, each Cadherin displays a characteristic tissue distribution 

pattern although expression is not tissue-specific. N-cadherin is predominantly 

expressed in neural tissues and cells of mesodermal origin, yet it is also detected in 

local regions of certain epithelia. E-cadherin expression is generally restricted to 

epithelial tissues. The expression of P-cadherin has been less widely studied. In mice, 

it is expressed in certain epithelia and in the mesothelium (11). Of particular interest 

is the comparative study of E- and P-cadherin expression in human epithelial tissues 

by Shimoyama et al. (12). They show that while E-cadherin is expressed in virtually 

all epithelia, expression of P-cadherin is restricted to the basal or lower layers of 
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stratified epithelia (including the prostate glandular epithelium) where both antigens 

are expressed. This study and others dealing with an analysis of E- and P-cadherin 

expression in relation to cancers suggest that expression of P-cadherin may be 

correlated with maintenance of the proliferative compartment of certain epithelia 

while E-cadherin expression is associated with general differentiation features of 

epithelia (12-14). 

Disfunction in the regulation of expression of the Cadherins might very well be 

involved in cancer development and progression. In order to gain insight into the 

role of Cadherins in the progression of prostate cancer, the expression of E- and P-

cadherin was evaluated in the Dunning R-3327 system of serially transplantable rat 

prostatic cancers. 

MATERIALS AND METHODS 

Dunning R-3327 rat prostatic tumors 

The geneaology, characteristics and maintenance of the Dunning sublines used in 

this study were as described before (15, 16). The parental tumor from which all rat 

prostatic tumor sublines were derived, is the original R-3327 tumor described by Dr. 

Dunning. The original tumor was passaged at different institutes, the tumor lines 

developing being termed after the institute. The G subline was developed by Dr. 

Dunning and is poorly differentiated, but androgen responsive. The R-3327-H is a 

slow-growing, well-differentiated, androgen responsive subline serially passaged at the 

Johns Hopkins University (Baltimore, Md). Furthermore, the Η-tumor is hetero-

geneously composed of both androgen-dependent and -independent cells. By growing 

the H tumor in castrated rats it appeared to be possible to select m vivo for the 

androgen-independent subpopulation; the resulting slow-growing, well-differentiated 

line was termed HIS. By continuous passaging of HIS, random tumor progression 

gave rise to a moderately fast-growing, well-differentiated tumor HIM, and an even 

faster growing, moderately-differentiated subline HIF. The sublines ATI and AT2 

arose from the Dunning R-3327-H tumor passaged at Johns Hopkins. All these lines 

arose within one passage and are anaplastic, androgen-independently growing tumors 

with a low metastatic ability, i.e., less than 10% of the animals inoculated with tumor 

sublines develop distant metastases. MatLyLu and MatLu both arose from the ATI 

tumor. AT3 arose from the HIF line. In rats, these last three sublines grow as 
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anaplastic tumors with a high metastatic ability, i.e., more than 90 % of the animals 

inoculated with these tumor sublines develop distant metastases. The characteristics 

of the Dunning sublines used in this study are summarized in Table 1. 

Tumor transplantation 

Primary tumors and tumors from subsequent passages were excised from tumor-

bearing animals. After removal of normal and necrotic tissue, the tumor tissue was 

cut into 20-mg pieces. An 0.5 cm incision was made in the right flank of recipient 

animals, and after separating the subcutaneous tissue by blunt dissection, the tumor 

fragment was placed subcutaneously (s.c). The incision was closed using skin clips 

(7.5 χ 1.75 mm; agrave, Michel Instruvet, Amerongen, The Netherlands). In this way 

a tumor take of 100 % was achieved. Animals were sacrificed when the tumors were 

growing exponentially. Tumors were snap frozen in liquid nitrogen and stored for 

further analysis. 

Cytogenetic analysis 

Single cell suspensions were made by mincing tumors with scissors in RPMI 

1640 containing 10 % fetal bovine serum (FBS) and colcemid (0.02 μg/ml) (all 

obtained from Life Technologies Inc.). After incubation at 37 0 C for 10 min the 

Table 1 : In vivo biological characteristics of Dunning R-3327 rat prostatic cancer sublines. 

Subline 

H 
HIS 
HIM 
HIF 
G 
AT-1 
AT-2 

AT-3 

MATLu 
MATLyLu 

Histology 

Well-differenlialed 
Well-differentiated 
Well-differentiated 
Moderately-differentiated 
Poorly-differentiated 
Anaplastic 
Anaplastic 

Anaplastic 

Anaplastic 
Anaplastic 

Doubling time 
(in days) 

22 ± 5 
24 ± 5 
9.0 ± 0.8 
4.8 ± 1.8 
4.0 ± 0.2 
2.5 ± 0.2 
2.5 ± 0.2 

1.8 ± 0.2 

2.7 ± 0.2 
1.5 ± 0.1 

: Androgen 
responsive 

Yes 
No 
No 
No 
Yes 
No 
No 

No 

No 
No 

Invasive* 

No 
No 
No 
No 
Yes 
Yes 
Yes 

Yes 

Yes 
Yes 

Metastatic 
ability·* 

Low 
Low 
Low 
Low 
Low 
Low 
Low to moderate 
(lungs)*·· 
High 
(lymph nodes & lungs) 
High (lungs) 
High 
(lymph nodes & lungs) 

* Invasiveness was histologically scored by a pathologist 
** Low metastatic ability, <5% of s.c. inoculated rats develop distant metastases; moderate ability, 
>5%, <20%; high metastatic ability, >75% develop distant metastases. 
·** Organs in the parentheses are the site of the distant metastases for the individual sublines. 
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medium was replaced with 0.075 M KCl hypotonic solution containing colcemid (0.02 

μg/ml) which was prewarmed to 37 0 C . The suspension was incubated at 37 "C for 

25 min and fixed with methanol:acetic acid (3:1). Chromosomal slides were prepared 

by dropping the cell suspension onto clean slides in a humid box. Thirty to 50 

metaphases were counted for each tumor. Chromosomes were banded using the 

trypsin-Giemsa technique (17) and arranged according to the scheme of Satoh et al. 

(18). At least five G-banded metaphases were karyotyped for each tumor. 

Northern blot analysis 

Total RNA was isolated according to Auffray and Rougeon (19). Ten /ig of total 

RNA were glyoxylated, size fractioned on 1 % agarose gels and transferred to 

Hybond-N'*' (Amersham). Hybridizations were performed as described before (16). 

Probes were radioactively labeled by nick-translation. As probes were used a 600 bp 

EcoRMAval fragment of the mouse E-cadherin cDNA (20) and the 3.2 kb £coRI 

fragment, comprising the full length mouse P-cadherin cDNA (21). 

Immunohistochemistry 

Paraffin embedded sections were deparaffinized with xylene, and rehydrated in 

ethanol (sequentially 100 % and 70 %). Frozen sections were fixed for 15 min in 3 

% paraformaldehyde. After this, both protocols are similar. After rinsing with PBS 

(2 χ 10 min), quenching in 50 mM NH^Cl in PBS for 10 minutes and again rinsing 

with PBS (2 χ 10 min), cells were permeabilized in 0.2 % Triton XI00 in PBS for 5 

min. Following rinsing with PBS (2 χ 10 min) and treatment with PBS/5 % BS A for 

30 min, the sections were incubated overnight at 4 0 C with a polyclonal rabbit 

antiserum raised against the purified 84 kDa fragment of rat E-cadherin (kindly 

provided by Dr. R. Kemler). The antibody was diluted 1 : 90 in PBS/BSA. After 

washes with PBS (2 χ 10 min), biotinylated secondary antibody (biotinylated anti-

rabbit immunoglobulin from donkey / Amersham - diluted 1 : 200 in PBS/1 % BSA) 

was applied for 30 min. Following rinsing in PBS as before, sections were incubated 

with Avidine-biotine complexes (Vectastain / Brunschwig) for 45 min. After rinsing in 

PBS (2 χ 10 min) the sections were treated with diaminobenzidine solution (diluted 1 

: 10 in PBS/0.65 % imidazol). Following rinsing with water for 5 min, sections were 

incubated with 0.5 % CuSO^ (in 0.9 % NaCl) for 5 min, rinsed with water for 5 min 

and finally counterstained with hematoxylin. 
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RESULTS 

Expression of E- and P-cadherin in established Dunning R-3327 rat prostatic cancer 

sublines 

The Dunning R-3327 model system consists of series of distinct rat prostatic 

cancers each related to the parental R-3327 tumor (15). The tumor lines differ 

widely in their biological characteristics (i.e. hormone dependency, growth rate, 

differentiation and metastatic ability) (see Table 1). Steady-state mRNA levels of E-

cadherin and P-cadherin were determined in these tumor lines (Fig. 1 and 2). In a 

Northern assay using a mouse E-cadherin probe (20), all non-invasive lines with 

some degree of differentiation, had levels of E-cadherin mRNA similar to those 

found in the normal prostate (i.e., H subline) or even higher (i.e., HIS, HIM, HIF 

sublines). The poorly differentiated G line, the anaplastic non-metastasizing tumors 

ATI and AT2, and the anaplastic metastasizing tumors AT3, MatLu and MatLyLu 

(all invasive tumor lines) did not express E-cadherin at detectable levels. It thus 

appeared that E-cadherin was not expressed in the invasive Dunning tumor lines. 
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Figure 1: Northern blot 
analysis of E-cadherin (A). 
Ten μg of total RNA of 
normal prostate (NP) and 
10 Dunning tumors were 
loaded per lane: H, HIS, 
HIM and HIF are non
invasive; G, AT-1 and AT-
2 are invasive and non-
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and metastatic. rRNA was 
used as an internal control 
for the amounts of RNA 
loaded (B). Lambda DNA 
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Similar studies using P-cadherin as a probe (21) showed expression of this gene 

in all E-cadherin expressing lines. In addition, ATI and AT2 (low metastatic 

sublines) and MatLu (metastatic line) also expressed P-cadherin. The G subline did 

not express P-cadherin (Fig. 2). 

The E-cadherin expression pattern was also studied immunohistochemically. 

Using a polyclonal antibody against rat E-cadherin, sections of the different Dunning 

sublines were stained. In the (well-) differentiated tumors the antibody clearly reacts 

with the cell membrane (Figure 5A, B) whereas in the sections of the anaplastic 

tumors no staining is found (comparable to Figure 5C, D), thereby confirming our 

results obtained by Northern analysis (see Table 2). 

Spontaneous propression of the well-differentiated Dunning R-3327-H subline to the 

anaplastic, metastatic AT6 subline is associated with specific chromosomal changes 

The Dunning R-3327 sublines have been passaged through many transplant 

generations. This serial transplantation may result in molecular changes which are 

not critically associated with the particular phenotype of any subline. The fact that 

decreased E-cadherin expression occurs, without exception, in the invasive sublines 

makes it rather unlikely that it is a trivial phenomenon. To test this more directly, 

advantage was taken from the fact that during a recent passage of the well-

differentiated, androgen-responsive, H subline, a spontaneous progression took place 

in a tumor-bearing animal, resulting in the development of an androgen-independent, 

anaplastic subline that was highly metastatic in its initial passage. This new tumor is 

termed the AT6 subline. The AT6 tumor in its original host (АТбрО) was highly 

metastatic to lymph nodes, lung, adrenals, and liver, yet its doubling time (i.e., 4 

days) was longer than the other established Dunning R-3327 metastatic sublines (i.e., 

approximately 2 days for AT3, MatLu and MatLyLu). Both the primary tumor and a 

lung metastasis from the original passage were serially transplanted and both gave 

rise to highly metastatic tumors. 

Karyotype analyses were performed on the parental AT6 tumor in its first 

passage and its lung metastases. In the primary tumor, there was a marked 

heterogeneity in the chromosomal pattern. Three subpopulations could be 

discriminated on basis of karyotype termed "A", "B", and "C" (Table 3). Relative 

proportions of the "A" through" C" populations were 24%: 50%: 24% respectively). 

The karyotypes all revealed an additional copy of chromosome 4 and deletions on 

the long arm of chromosome 3 (del(3)(q32q36)) and the short arm of chromosome 
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15 (del(15)(pl4)). Karyotype "A" could be discriminated on basis of an additional 

copy of chromosome 12, and "C" on basis of the presence of a marker chromosome. 

All karyotypes were different from the parental H subline which has a normal 

karyotype (15). 
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Figure 2: Northern blot analysis 
of P-cadherin (A). Ten pg of 
total RNA of normal prostate 
(NP) and 10 Dunning tumors 
were loaded per lane: H, HIS, 
HIM and HIF are non-invasive; 
G, AT-1 and AT-2 are invasive 
and non-metastatic; AT-3, MatLu 
and MatLyLu are invasive and 
metastatic. rRNA was used as an 
internal control for the amounts 
of RNA loaded (B). Lambda 
DNA cut with Яі^ІІІ was used 
as a molecular marker. 

Table 2: Evaluation of E-cadherin expression in the Dunning R-3327 rat prostatic cancer sublines 

Subline Histological mRNA* protein'* 
invasive 

Η 
HIS 
HIM 
HIF 
G 
AT-1 
AT-2 
AT-3 
MATLu 
MATLyLu 

No 
No 
No 
No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

* E-cadherin mRNA expression evaluated by Northern blot analysis. 
** Immunohistochemical evaluation using a polyclonal anti-E-cadherin antibody 
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Table 3: Karyotype analyses of the АТбрО tumor 

karyotype A 44 XY +4, +12, del (3)(q32q36), del 15(pl4) 
karyotype В 43 XY +4, del (3)(q32q36)> del 15(pl4) 
karyotype С 43 XY +4, del (3)(q32q36), del 15(pl4), +mar 

Interestingly, in the lung metastases only the population with karyotype "A" 

could be found. Thus, chromosomal analyses revealed that a selective enrichment of 

this subpopulation occured. We established a cell line from the lung metastasis 

(AT6-Lu), and in the first ten passages it retained its parental karyotype "A". 

Furthermore, injection of IxlO6 cells gave rise to highly metastatic tumors (lungs, 100 

%; lymph nodes and kidney, 40-60%; occasionally liver metastases). 

Expression of E- and P-cadherin in the newly arising metastatic Dunning R-3327 

AT6 subline 

Studying the E-cadherin expression in the AT6 tumor, it was demonstrated that 

in the initial host, the metastatic AT6 tumor had detectable levels of E-cadherin 

mRNA although these levels were lower than in normal prostate or in the parental 

Dunning R3327-H-tumor (see Fig. 3). In the first passage, termed AT6pl, however, 

1 2 3 4 5 6 7 8 9 10 11 12 13 

MW(kb) 
94-

Figure 3: Northern blot analysis of E-cadherin (A). Ten ¿ig of total RNA was loaded per lane. 1) 
normal prostate; 2) Dunning-H tumor; 3) АТбрО; 4) lung metastasis derived from АТбрО; 5-8) 
further transplant generations of the lung metastasis; 9-13) further transplant generations of the 
original АТбрО (AT6pl-AT6p5). rRNA was used as an internal control for the amounts of RNA 
loaded (B). Lambda DNA cut with ffindlll was used as a molecular marker. 
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no E-cadherin transcripts were detected (Fig. 3, lane 9). The AT6 lung metastases in 

the initial host also expressed E-cadherin (Figure 3, lane 4) whereas upon further 

transplantation of the lung metastases, E-cadherin expression was completely lost 

(Fig. 3, lanes 5-8). P-cadherin expression parallels this pattern, by showing expression 

in normal prostate, H tumor, and АТбрО, and no detectable levels of expression in 

the AT6 after its first passage (AT6pl and further) (data not shown). 

In order to gain more insight in the process that led to a decreased expression 

of E-cadherin, histological- (Fig. 4) and immunohistochemical (Fig. 5) analyses of the 

initial passages of AT6 and the metastases were performed. In the original host, 

AT6 was heterogeneously composed of well-differentiated cells [derived from the 

original H tumor (Fig. 4A)] and an anaplastic subpopulation (Fig. 4B) in which also 

squamous cell differentiation was evident (Fig. 4C). In the metastases only anaplastic 

tumor cells were found with exception of the lung metastases, in which the 

anaplastic cell populations (Fig. 4D) were accompanied by cell clusters with 

squamous cell differentiation (Fig. 4E). In some cases within one tumor cell focus, 

both morphotypes were evident (Fig. 4F). Immunohistochemical analyses of the lung 

metastases revealed that the anaplastic cells were negative for E-cadherin (Fig. 5C, 

D), whereas cells with the squamous morphotype stained with E-cadherin antibodies 

(Fig. 5E, F). The heterogeneous expression of E-cadherin may in fact explain the 

reduced abundance of E-cadherin mRNA in these tumors. In the subsequent 

passages, both the primary AT6 tumor as well as its metastases were homogeneously 

composed of anaplastic tumor cells, that did not express E-cadherin either at the 

mRNA or at the protein level. 

DISCUSSION 

The important role of Cadherins in invasive and metastatic behaviour of cancer 

cells and the fact that Cadherins are expressed in normal prostate, led us to study 

the expression of E- and P-cadherin in prostatic cancer using the Dunning model 

system. Comparisons within the established Dunning sublines showed a clear 

expression of E-cadherin in normal prostate and the sublines with some degree of 

differentiation and low invasive potential (H, HIS, HIM, HIF) whereas no transcripts 

were found in poorly differentiated (G), anaplastic, non-metastasizing (ATI and 

AT2), and anaplastic, metastasizing (AT3, MatLu, MatLyLu) sublines, all having a 
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high invasive potential, indicating a correlation between decreased expression of E-

cadherin and invasion rather than metastasis. These findings were confirmed at the 

protein level where a membrane staining in the (well-)differentiated, non-invasive 

Dunning sublines is seen and no reaction at all in the poorly-differentiated or 

Figure 4: Histological evaluation of AT6 in its original host, primary tumor (Α-C) and lung 
metastasis (D-F). A: subpopulation of well differentiated cells (400x). B: anaplastic subpopulation 
(400x). C: area with squamous cell differentiation (400x). D: lung metastasis comprised of anaplastic 
cells (indicated by arrow) (lOOx). E: squamous cell differentiation in lung metastasis (indicated by 
arrow) (lOOx) and F: mixed type morphology in lung metastasis (indicated by arrow) (400x). 
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anaplastic, invasive sublines. A correlation of E-cadherin loss with invasion is also 

suggested by work from Frixen et al. (14) who analyzed the expression of E-cadherin 

at both the mRNA and protein level in 25 human cell lines derived from bladder, 

colon, breast, lung and pancreatic carcinomas. They showed that the differentiation 

Figure 5: Immunohistochemical evaluation of E-cadherin expression in the lung metastasis of AT6 in 
its original host, using a polyclonal antibody against E-cadherin on frozen sections. A, C, E: 
incubation with preimmune serum. B, D, F: incubation with antibody. As positive control the 
parental Dunning-R-3327-H tumor was included (A, B). AT6 anaplastic cell populations (C, D) and 
squamous cell populations (E, F). 
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state of the cell lines (judged by their morphotype) did not perfectly correlate with 

E-cadherin expression but that there was an inverse relationship between the level of 

Cadherin expression and the extent of invasion in a collagen gel. 

For P-cadherin no obvious relation of expression with differentiation or invasion 

is seen in the Dunning model system. The coexpression of E- and P-cadherin in rat 

prostatic tumors is probably associated with the basal cell layer of the prostatic 

epithelium; in earlier studies it was shown that in the tumor lines HIS, HIM, and 

HIF, which arose through castration-induced selection of androgen-independent cells 

(15, 22), there is a specific enrichment of tumor cells with a cytokeratin expression 

pattern specific for the basal cell population. Since this enrichment for a basal cell 

population is paralleled by an increase of E- and P-cadherin expression, this can 

indicate that indeed this coexpression is specific for hyperproliferative basal layers of 

stratified epithelium as was already suggested by Shimoyama et al. (12). 

The spontaneously developed AT6 subline offered the ability to study changes in 

Cadherin expression at the time when a more aggressive tumor phenotype arose. In 

this AT6 subline a decrease of E-cadherin mRNA expression was observed in its 

initial host in both the primary tumor and the lung metastases, suggesting that a 

decreased expression of E-cadherin is associated with the progression from an 

androgen-responsive, non-metastasizing tumor to an androgen-independent, 

metastasizing tumor. The processes that led to the lower E-cadherin mRNA levels in 

the AT6 tumor were partly elucidated by detailed histological and immuno-

histochemical analyses using E-cadherin antibodies. As expected, the primary AT6 

tumor was heterogeneously composed of well differentiated, E-cadherin-positive 

areas, presumably originating from the H tumor, and anaplastic, E-cadherin-negative 

cell populations in which also a squamous cell differentiation was found. In human 

prostate cancer squamous differentiation is extremely rare. In the Dunning R-3327-H 

rat prostate cancer, however, we occasionally observed squamous differentiation 

following androgen withdrawal (unpublished observation). 

In metastases one would expect selective outgrowth of the metastatic 

subpopulation. Indeed the karyotype analyses of AT6 indicated that the lung 

metastases were derived from a subpopulation in the primary tumor. Nevertheless, 

the histology of the metastases in the original host revealed two morphotypes, i.e., 

anaplastic and squamous cells. The squamous cell morphology was never found in 

the absence of anaplastic cells, whereas the anaplastic cells were frequently found in 

the absence of squamous cell morphology. Furthermore, after the first transplant 
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generations, the squamous differentiation was completely absent. Therefore, the 

squamous populations in the original AT6 tumor are most likely derived from the 

anaplastic cells. The development of squamous morphology appears to be associated 

with reexpression of E-cadherin, thus explaining the lower levels of E-cadherin 

mRNA in mixed morphology AT6 primary tumors and metastases in the original 

host. 

The temporary decreased expression of E-cadherin suggests a role for E-

cadherin in the development of invasiveness. This is in agreement with other 

observations that heterogeneous expression of E-cadherin is related to invasive 

behaviour. Mareel et al. (23) showed that upon injection of ras transformed cells 

with an epithelial morphotype into nude mice, primary tumors developed which were 

heterogeneous with respect to Cadherin expression, i.e., E-cadherin-positive, well-

differentiated, epithelial structures as well as E-cadherin-negative, undifferentiated 

areas were present in the primary tumor and in metastases. Other interesting data 

have been obtained by Hashimoto et al. (24) working with ovarian tumor cell lines 

with low or high metastatic ability. While the low metastatic cells homogeneously 

expressed E-cadherin, the highly metastatic cell line contained both E-cadherin-

negative and E-cadherin-positive cells, a phenomenon persisting even upon 

subcloning. This shows that expression of E-cadherin can become unstable and that 

this may in fact be causally related to the metastatic phenotype. Unstable expression 

of adhesion molecules seems to be a common event in cancer progression, since mot 

only is it found for E-cadherin in gastric tumors (13), hepatocellular carcinoma (25) 

and prostatic tumors (our results) but also unstable expression of the integrin VLA-4 

is found in metastatic melanomas (26). 

Our findings suggest that E-cadherin may have an invasion/metastasis suppressor 

function also in prostate cancer development. Interestingly, restriction fragment 

length polymorphism (RFLP) analyses of 28 human prostate cancer specimen have 

shown a frequent loss of heterozygosity of the chromosomes lOq and 16q (27). The 

region involved on chromosome 16q comprises the E-cadherin locus (28). Since loss 

of heterozygosity is considered to be the hallmark of tumor suppressor gene 

inactivation, it is tempting to speculate that E-cadherin is a candidate for being an 

invasion/metastasis suppressor gene. Frequent deletions involving the same 

chromosomal region have also been detected in hepatocellular carcinomas (29-31), in 

breast cancer (32) and neuroectodermal tumors of the central nervous system (33) 

suggesting common pathological mechanisms in these malignancies. Whether there is 
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a relationship between allelic loss of E-cadherin and the deregulation of its normal 

function remains yet to be established. 
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SUMMARY 

E-cadherin is a Ca^-dependent cell adhesion molecule thought to play an 

important role in normal growth and development, via mediation of homotypic, 

homophilic cell-cell interactions. Recent studies suggest that E-cadherin may be 

involved in neoplastic progression as a suppressor of invasion and/or metastasis. We 

have previously demonstrated that the invasive phenotype of rat prostatic cancer 

cells is associated with decreased expression of E-cadherin [see chapter V]. This is of 

particular interest since the locus to which the human E-cadherin gene is mapped 

(16q21-23), is frequently involved in allelic loss in prostate cancer. 

To further characterize a potentially important role of E-cadherin as an 

invasion/metastasis suppressor gene in the progression of prostate cancer we 

analyzed E-cadherin expression at the protein and mRNA level in non-malignant and 

malignant specimens of human prostatic tissue. In 40 of 84 tumors, 

immunohistochemical studies showed reduced E-cadherin staining when compared to 

non-malignant prostate which uniformly stained strongly positive. In this study a 

significant correlation was found between decreasing expression of E-cadherin and 

increasing Gleason score of the tumors. Decreased levels of E-cadherin were also 

detected in 6 of 8 metastatic deposits of prostate cancer. These results indicate that 

in most, but not all prostate cancers, tumor progression is accompanied by 

decreasing levels of E-cadherin protein. Interestingly, in 16 primary tumors in which 

mRNA levels were simultaneously assayed, there was no significant correlation 

between E-cadherin mRNA expression and diminished protein staining. These results 

suggest that the observed decrease in E-cadherin staining intensity cannot easily be 

explained by transcriptional inhibition of the E-cadherin gene and therefore other 

mechanisms should be considered. 
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INTRODUCTION 

Cadherins are cell surface glycoproteins involved in homophilic-homotypic Ca -

dependent cell-cell adhesion (1). These molecules play an essential role in embryonic 

development and morphogenesis and in maintenance of the normal structure and 

function of adult tissues (2, 3). 

Thus far, more than ten subclasses of Cadherins have been identified (4-9). Until 

now, three of them, E-, N-, and P-cadherin, have been well characterized and shown 

to share a common basic structure and mediate cell-cell binding in a homophilic and 

subclass-specific manner (10). E-cadherin is also known as uvomorulin (11), L-CAM 

(12), cell-CAM 120/80 (13) or Arc-1 (14). Its expression is restricted to epithelial 

tissues. Only a few epithelia such as that at proximal tubules, in which clear 

boundaries between cells cannot be seen at the light microscopic level, do not 

express E-cadherin (15, 16). Although E-cadherin can be detected in almost all 

human epithelial cells, its expression levels are different in various anatomic sites 

and may be influenced by maturation or malignant transformation of cells (17). 

In a study on a variety of human cancer cell lines, Frixen et al. found that non

invasive cell lines expressed E-cadherin whereas invasive carcinoma cell lines had lost 

E-cadherin expression. Invasiveness of these latter cells could be prevented by 

transfection with E-cadherin cDNA (18). Recent studies showed that a highly un

differentiated liver carcinoma lacked E-cadherin expression (19) as did poorly-

differentiated squamous cell carcinomas of the head and neck (20) while only a few 

of undifferentiated gastric carcinomas did not express E-cadherin immuno-

histochemically (21). Our previous study using the Dunning R-3327 rat prostatic 

cancer model system revealed expression of E-cadherin mRNA in the well- and 

poorly-differentiated sublines with low invasive potential, while all established lines 

with high invasive potential had no detectable levels of E-cadherin transcripts. These 

findings are confirmed at the protein level. In tumor lines derived from a de novo 

arisen metastatic subline (АТбрО) E-cadherin expression was also decreased (22). 

Another relevant finding is the fact that in human prostate cancer, the chromosomal 

segment most frequently implicated in allelic loss (16q22-24) harbors the E-cadherin 

gene, which supports an invasion/metastasis suppressor function for E-cadherin (23, 

24). To further substantiate a possible important role of E-cadherin in prostate 

cancer development, we evaluated the expression of E-cadherin in human prostatic 

cancer tissues by immunohistochemical and Northern blot analysis. 
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MATERIALS AND METHODS 

Surgical Specimens 

We used snap frozen tissues of 84 human prostatic carcinoma specimens as well 

as 8 metastatic lesions in lymph nodes [7] and testis [1]. Twentythree non-malignant 

prostate specimens were also included in this investigation. All of these tissues were 

obtained at the time of surgery. Serial sections from the frozen tissues were cut on a 

cryostat at 4-6 μιη and air dried. The sections were stored at -20 "C until use. 

Antibodies 

L-CAM (Uvomorulin) monoclonal (Euro-diagnostics BV, The Netherlands), a 

monoclonal antibody against E-cadherin was used for immunohistochemical staining. 

In addition, some sections were stained with another monoclonal antibody against E-

cadherin, HECD-1 (a kind gift from Dr. S. Hirohashi, Tokyo, Japan). 

Immunohistochemistrv 

Immunohistochemistry was performed at room temperature. The sections were 

fixed with acetone for 10 min and air dried. Preincubations were done with normal 

rabbit serum diluted 1:10 with PBS for 30 min. The sections were subsequently 

incubated with primary mAb diluted 1:10 for 1 h. After rinsing with PBS the sections 

were incubated with rabbit anti-mouse immunoglobulin peroxydase (Dakopatts A/S, 

Denmark/ diluted 1:100) for 30 min, and rinsed again with PBS before staining with 

diaminobenzidine 0.6 mg/ml in 0.65% imidazol/PBS containing 25 μΐ H2O2 for 5 min. 

Following brief rinsing with water, sections were incubated with 0.5% CuSO^ (in 

0.9% NaCl) for 5 min. After rinsing briefly with water, the sections were counter-

stained with hematoxylin, dehydrated and mounted. Primary antibody and rabbit anti-

mouse immunoglobulin peroxydase were diluted with 1% BS A/PBS. 

Immunohistochemical criteria of E-cadherin expression 

Staining was scored positive (+) if >90% of the tumor cells stained with an 

intensity comparable to non-malignant prostate. If 10-90% and <10% of the cancer 

cells were positively stained, it was scored as heterogeneous and negative (-) 

respectively. In cases with two different patterns of Gleason grade, the staining score 

was determined toward the poorest grade. 
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Histopathological grading 

One section from each serial sections for the immunohistochemical analysis was 

stained with hematoxylin and eosin to determine the histopathological grading using 

the Gleason score (25). The tumor specimens score ranged from 4 to 10, while two 

of the metastatic tissues were determined as Gleason 4, and six as Gleason 8. 

Northern blot analysis 

For the Northern blot analysis tumor material was step sectioned. Samples 

containing > 70 % of cancer cells were used for isolation of total RNA according to 

Auffray and Rougeon (26). Ten ßg of total RNA was glyoxylated and loaded on a 1 

% agarose gel. After capillary transfer onto Hybond-N+ (Amersham), RNA was 

fixed by UV-irradiation and blots were hybridized with a human E-cadherin probe 

pV962 (27), kindly provided by Dr. R. Kemler (Freiburg, FRG). For quantification 

of the levels of expression of E-cadherin, autoradiographs were scanned using an 

LKB 2202 Ultrascan laser densitometer connected with an LKB 2202 recording 

integrator. After quantification of the autoradiographs, the amount of rRNA was 

used as a reference to correct the quantity of RNA as described before (28). 

RESULTS 

E-cadherin expression in non-malipnant and malignant prostatic tissue: immuno

histochemical evaluation 

E-cadherin in non-malignant prostate 

Samples of non-malignant prostatic tissue either obtained after cysto-

prostatectomy or radical prostatectomy were examined for E-cadherin expression 

immunohistochemically. E-cadherin was strongly expressed in all epithelial cells with 

a typical diversity between the basal and luminal epithelial layer. The staining was 

localized on the membrane, particularly at areas of cell-cell contact, the basal cells 

reacting more strongly than the luminal cells (Fig. 1). 

E-cadherin in prostatic carcinoma 

84 prostatic carcinomas which consisted of 8 Gleason 4, 4 Gleason 5, 15 

Gleason 6, 14 Gleason 7, 26 Gleason 8, 8 Gleason 9 and 9 Gleason 10 were 
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Figure 1: Immunohistochemical detection of E-cadherin expression in non-malignant human 
prostate tissue using an anti-L-CAM (Uvomorulin) monoclonal antibody (400x). 

examined immunohistochemically using an anti-L-CAM (Uvomorulin) mAb. E-

cadherin was strongly and uniformly expressed in all of the Gleason 4 (Fig. 2A, B) 

and 5 (Fig. 2C, D) tumor samples at the cell-to-cell borders (Table 1). The staining 

pattern and intensity were similar to those observed in non-malignant prostatic 

tissue. 

In high grade prostate cancer, E-cadherin expression evaluated immuno

histochemically could discriminate three groups of cancers (Table 1): In the Gleason 

6 cases, 13 tumors (87%) stained strongly positive as did 11 (79%) and 8 tumors 

(31%) of Gleason 7 and 8 respectively. This strong staining is similar to that found 

in non-malignant prostate and low grade prostate cancers. Interestingly, however, 2 

tumors (13%) of Gleason 6, 3 tumors (21%) of Gleason 7 and 13 tumors (50%) of 

Gleason 8 showed a staining pattern that was significantly different. We termed this 

pattern heterogeneous (Fig. 2E) and 5 (19%) cases of Gleason 8 had no detectable 

staining with the antibody at all (Fig. 2F). In the group of Gleason 9 and 10 cancers, 

we never found a strong expression of E-cadherin. In 4 (50%) cases of Gleason 9 

and 5 (55%) cases of Gleason 10 a heterogeneous staining was found (Fig. 2G). 

Four (50%) and 4 (45%) cases of Gleason 9 and 10 respectively, did not express E-

cadherin at all (Fig. 2H). 

84 



Figure 2: Immunohistochemical detection of E-cadherin expression in prostate cancer (A - H) and 
metastatic tissue (I - J) using an anti-L-CAM (Uvomorulin) monoclonal antibody. A, B: Gleason 
score 4 tumor (200x, 400x); C, D: Gleason score 5 tumor (200x, 400x) showing positive and 
homogeneous staining; E, F: Heterogeneous and negative staining of the Gleason score 8 tumor 
(400x); G, H: Heterogeneous and negative staining of the Gleason score 10 tumor (400x); I: 
Metastatic deposit in lymph node consisting of moderately differentiated prostatic adenocarcinoma 
cells showing heterogeneous staining (400x); J: Metastatic deposit in testicle consisting of moderately 
differentiated prostatic adenocarcinoma cells showing heterogeneous staining (400x). 
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Table 1: E-cadherin staining in primary and metastatic lesions of prostate tumors. 

E-cadhcrin expression* 

Primary tumors 
Gleason score 

4 
5 
6 
7 
8 
9 
10 

Overall 

Metastatic 
lesions 

+ 

8 
4 
13 (87%) 
11 (79%) 
8 (31%) 

44 (52%) 

2 (25%) 

heterogeneous 

2 (13%) 
3 (21%) 
13 (50%) 
4 (50%) 
5 (55%) 

27 (32%) 

5 (62%) 

5 (19%) 
4 (50%) 
4 (45%) 

13 (16%) 

1 (12%) 

tot 

8 
4 
15 
14 
26 
8 
9 

84 

8 

* Immunohistochemical criteria of E-cadherin expression in prostate cancer: when more than 90%, 
90-10% and <10% of the cancer cells were positively stained, it was regarded as +, heterogeneous 
and -, respectively. 

E-cadherin in prostatic cancer metastatic tissue 

Since it is difficult to obtain prostate cancer metastases we could study only a 

limited number of metastases that originated from prostate cancers. Six of eight of 

the prostatic cancer metastatic tissues showed either no or a heterogeneous staining 

with anti-E-cadherin antibodies (Table 1; Fig. 21, J). Those with heterogeneous 

staining showed a low-intensity, diffuse staining pattern in which the cell borders 

were only barely marked. The two remaining metastatic deposits consisted of well 

differentiated prostatic adenocarcinoma cells which stained strongly for E-cadherin. 

E-cadherin mRNA in prostate cancer. 

The immunohistochemical findings using anti-E-cadherin antibodies clearly 

indicate a decreased expression of membrane-bound E-cadherin in high grade 

prostate cancers. The mechanisms that lead to this decreased expression are 

unknown. To gain insight in the level at which decrease of E-cadherin is caused, we 

studied steady-state mRNA levels of E-cadherin in human prostate cancers. We used 

a Northern assay on pathologically scored (step sectioned) material. From 16 cancers 

that were scored immunohistochemically, mRNA was thus analyzed. The results are 
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summarized in Table 2. Surprisingly, it appeared that there was no relation between 

steady-state E-cadherin mRNA levels and the immunohistochemically scored E-

cadherin expression. In some cases of high grade cancers, there was even a higher 

level of E-cadherin transcripts than in non-malignant tissues. Moreover, there was no 

statistical significant difference of E-cadherin mRNA levels in low grade venus high 

grade cancers, also no obvious difference in E-cadherin mRNA levels between the 

non-malignant and malignant prostatic tissues was found. 

Table 2: Steady-state E-cadherin mRNA level of human non-malignant and malignant prostatic 
tissues. 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Gleason 

N** 
4 
4 
5 
6 
6 
6 
6 
8 
8 
8 
8 
8 
8 
8 
10 

Protein score* 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

heterogeneous 
heterogeneous 
heterogeneous 

+ 
+ 
-
-
-

mRNA level 

3,8 
2,1 
14,8 
6,6 
10,5 
11,2 
2,3 
6,4 
7,8 
6,5 
1.8 
5,5 
3,6 
2,7 
4.2 
18,8 

* Immunohistochemical criteria of E-cadherin expression in prostate cancer: when more than 90%, 
90-10% and <10% of the cancer cells were positively stained, it was regarded as +, heterogeneous 
and -, respectively. 
** non-malignant prostate tissue. 

DISCUSSION 

E-cadherin is thought to play an important role in normal growth and 

development. Alternatively, when deregulated, it can contribute to the invasive 

potential, and therefore, E-cadherin can be considered as a candidate 

invasion/metastasis suppressor. Moreover, the fact that chromosome locus 16q22, to 

which the E-cadherin gene is mapped, is frequently involved in allelic loss in 

prostatic cancer, prompted us to examine the expression of E-cadherin in non-
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malignant and malignant human prostate tissues. In this study we evaluated E-

cadherin expression immunohistochemically and by Northern blot analysis. Using 

anti-E-cadherin antibodies, we found that all of the non-malignant prostatic tissues 

stained positively. 

All of the well-differentiated (Gleason score 4) and 28 of 33 (85%) moderately-

differentiated (Gleason score 5-7) prostatic cancers stained with similar intensity as 

found in non-malignant prostatic tissue. The poorly-differentiated prostatic cancer 

tissues (Gleason score 8 and 9) showed decreased expression of E-cadherin. Only 8 

of 34 (24%) showed a strong staining while 50% showed heterogeneous and 26% 

showed no detectable staining with the antibody. Moreover, none of the anaplastic 

prostatic tissues (Gleason score 10) had a strong E-cadherin expression. Five of 9 

(55%) stained heterogeneously and the other 45% did not express E-cadherin. From 

this we can conclude that as in the Dunning R-3327 rat prostatic cancer model 

system (22), E-cadherin expression is decreased in high grade malignant lesions of 

the prostate. Also for several other human cancers, a decreased expression of E-

cadherin was reported (19-21). 

In a previous study we showed that during progression of rat prostate cancer the 

decrease in E-cadherin expression resulted from unstable expression rather than 

from a complete shut off of expression. The Northern analysis presented here clearly 

shows that a complete shut off of transcription is not evident in human prostate 

cancers. Sometimes E-cadherin mRNA expression levels are even elevated in the 

high grade tumors studied. Several mechanisms could explain these findings, e.g., a 

subpopulation of E-cadherin-negative cells could in fact be present but an abundance 

of E-cadherin-expressing cells might mask this population. Alternatively, the lack of 

membrane-bound E-cadherin could be caused by posttranscriptional mechanisms, 

including either decreased translational efficiency or lack of proper post

transcriptional modification. Presence of non-functional E-cadherin could also be 

explained by mutations in the gene. Especially in light of the fact that the E-

cadherin locus is frequently lost in prostate cancer (23, 24) it is tempting to 

speculate that the last mechanism causes the decreased expression. Structural studies 

on E-cadherin mutations are hampered by the fact the nucleotide sequence from the 

human E-cadherin cDNA is not yet known. 

In conclusion, the fact that E-cadherin can function as an invasion/metastasis 

suppressor experimentally (18, 20, 29-33), is encoded for by a genomic region 

(chromosome 16q21-23) demonstrating loss of heterozygosity in prostate cancers (23, 
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24), and, as shown in this study, has reduced protein expression in high grade 

prostate cancers, make this molecule a candidate invasion/metastasis suppressor in 

prostate cancer. Although we have demonstrated that the reduced expression of E-

cadherin is not due to complete transcriptional inhibition, further studies are ongoing 

in order to elucidate the specific mechanisms of reduced E-cadherin expression in 

high grade prostate cancers. 
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SUMMARY 

As described in Chapter I, prostate cancer is an increasing medical problem, yet 

little is known about the mechanisms involved in the onset and progression of this 

disease. In order to gain insight in the genetic changes associated with development 

of cancer in this gland and to contribute to a more accurate diagnosis of patients 

with prostate cancer, we aimed at the identification of molecular markers associated 

with the process of prostate tumor development, that might be useful in predicting 

the aggressiveness of individual prostatic lesions. To achieve this goal, two 

approaches were used, i.e., differential hybridization analysis as a "direct approach" 

and the studies on the expression of a known gene (E-cadherin) with potential 

relevance for carcinogenesis as an "indirect approach". 

Chapter II describes the technique of differential hybridization analysis and its 

application to compare steady-state mRNA levels of a relative benign and a highly 

malignant subline of the Dunning R-3327 rat prostatic cancer model system. Three 

cDNA clones overexpressed in the highly malignant tumor were isolated; pBUSl was 

shown to be specifically overexpressed in the anaplastic, metastatic sublines of the 

Dunning model system, whereas no mRNA was detected in the relatively benign 

tumors. Nucleotide sequence analysis and computer-assisted database-comparison 

revealed pBUSl to be highly homologous to the High Mobility Group protein I(Y). 

HMG-I(Y) is a non-histon, chromatin-binding protein that is implicated in 

transcription and/or replication processes. Furthermore, HMG-I(Y) was reported to 

be highly abundant in fast-proliferating, undifferentiated cells. pBUS19 was highly 

expressed in two of three metastatic Dunning sublines studied and nucleotide 

sequence analysis showed pBUS19 to contain parts of RAL-elements which are rat-

specific repetitive elements. pBUS30 detected transcripts of the same size as 

pBUS19 in the two metastatic sublines but also showed additional bands in the 

anaplastic, non-metastasizing tumors and, at a lower expression level, in some 

hormone-independent, moderately-differentiated, non-metastasizing tumors. 

Nucleotide sequence analysis showed no homology between pBUS30 and pBUS19 

and no homology of pBUS30 with any of the known sequences was found. 

Chapter ΠΙ reports on the attempt made to reveal the possible relation between 

pBUS19 and pBUS30. Using pBUS19 as a probe, a cDNA-library was screened and 

pJG116 was isolated. Northern blot analysis showed pJG116 to have an expression 
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pattern similar to pBUS30, however, nucleotide sequence analysis of pJG116 could 

not confirm any relation between the clones. Computer-assisted database-comparison 

finally revealed their relationship; additional nucleotide sequence data on the RAL· 

elements had become available, indicating the elements to be part of a 7.3 kb rat-

specific endogenous retrovirus and it was shown that pBUS19, pJG116 and pBUS30 

contained parts of this endogenous retrovirus. Since the retroviral sequences are rat-

specific, it is unlikely that the cDNA clones are useful for human diagnosis. 

Chapter IV describes the results of a second differential hybridization analysis 

and in particular the identification of vimentin as being overexpressed in anaplastic 

rat prostatic tumors. Furthermore, the complete coding sequence of rat vimentin was 

determined and was shown to be highly conserved between rat, mouse, hamster and 

human. The overexpression of vimentin in prostatic tumors is puzzling since the 

prostate is of epithelial origin and the exclusive expression of cytokeratins would be 

expected. Vimentin is normally expressed in tissues of mesenchymal origin and in 

cells in tissue culture. Although most times the expression of the specific 

intermediate filaments is retained upon neoplastic transformation, an increasing 

number of studies dealing with coexpression of two classes of intermediate filaments 

in neoplasms, are reported. Also for prostate cancer a study on the coexpression of 

vimentin and cytokeratins was reported. However, more detailed (immunohisto-

chemical) studies have to be performed to confirm that coexpression of vimentin and 

cytokeratins within epithelial cells of prostatic tumors occurs and to establish the 

potential role of vimentin overexpression in human prostatic tumors. 

In the progression of cancer, acquisition of metastatic ability is an important 

event and several genes might be implicated in this process. Considering the many 

reports on a potential role of the Ca2+-dependent cell adhesion molecule E-cadherin 

in invasion suppression and the fact that the E-cadherin gene is mapped to the 

human chromosomal segment 16q21-23 which is frequently deleted in prostatic 

tumors, it is tempting to speculate that E-cadherin is a potential invasion/metastasis 

suppressor gene implicated in prostate cancer development. In order to test this 

hypothesis, we decided to study the expression of E-cadherin in both our animal 

model system as well as in human prostatic tumors. 

Chapter V deals with the expression of E-cadherin in rat prostatic tumors. In 

the established Dunning R-3327 model system E-cadherin mRNA was expressed in 

the well- and moderately differentiated tumors with low invasive potential whereas 
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no expression was seen in the anaplastic and metastasizing tumors with a high 

invasive potential. These results were confirmed at the protein level: using an E-

cadherin polyclonal antibody, clear staining of the non-invasive Dunning sublines was 

seen whereas the invasive lines were negative. During a recent passage of the 

androgen-dependent, well-differentiated, non-metastasizing Dunning-H tumor, a 

spontaneous progression to an androgen-independent, highly metastatic tumor took 

place. This new tumor was termed AT6. In the original passage of the AT6 tumor 

(АТбрО) and in a lung metastasis derived from this tumor, E-cadherin was expressed 

although at lower levels than in the H-tumor. Histological studies demonstrated 

АТбрО to be composed of well-differentiated areas and an anaplastic cell population 

in which sometimes squamous cell differentiation was seen. The lung metastasis was 

shown to be composed of clusters of anaplastic cells accompanied by squamous cell 

populations. Immunohistochemical studies on the lung metastasis revealed the 

anaplastic tumor cells to be E-cadherin-negative whereas the squamous cells were E-

cadherin-positive. Upon further transplantation of both the original tumor and the 

lung metastasis, anaplastic, metastatic tumors arose, no longer expressing E-cadherin 

at either the mRNA or protein level. These results suggest a decreased expression of 

E-cadherin to be associated with the progression of prostate cancer to an invasive 

phenotype. 

In Chapter VI we further substantiated this hypothesis by studying the 

expression of E-cadherin in human prostatic tumors. Immunohistochemical studies on 

non-malignant prostate specimens showed a strong expression of E-cadherin in all 

epithelial cells, the staining being localized at the membranes. In low grade tumors 

E-cadherin was also strongly expressed, the staining pattern and intensity being 

similar as observed in the non-malignant samples. In high grade tumors often only 

weak, heterogeneous or no detectable staining was found. Also in undifferentiated 

metastatic tissue only a weak heterogeneous or no E-cadherin expression was 

detected. Interestingly, when studying the mRNA expression levels of E-cadherin in 

some of the tumor specimens by Northern blot analysis, it was shown that high 

grade tumors did express E-cadherin mRNA so the decreased protein e/pression 

could not easily be explained by a decreased expression of the mRNA. In 

conclusion, decreased levels of E-cadherin protein expression in high grade tumors 

suggest prostate tumor progression to be accompanied by decreased expression of E-

cadherin, however, the mechanism that causes this decrease remain elusive. In order 

to gain insight in these mechanisms, we are now focussing on the isolation and 
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characterization of the human E-cadherin cDNA to search for point mutations, and 

the human E-cadherin gene promoter to study gene regulation. 

Summarizing, two candidates for the determination of the biological 

aggressiveness of prostatic tumors have resulted from the studies described in this 

thesis, i.e., HMG-I(Y) and E-cadherin. The upregulation of HMG-I(Y) in metastatic 

tumors suggests the involvement of HMG-I(Y) in the acquistion of a highly 

malignant phenotype. Overexpression of HMG-I(Y) in (parts of) human prostate 

tumors may, therefore, be a bad prognosticator. The downregulation of E-cadherin 

correlates with an invasive phenotype of rat prostatic tumors and decreased 

expression of E-cadherin in (parts of) the human primary tumors may indicate the 

more aggressive subpopulation of cells within a tumor. Although the differential 

expression of HMG-I(Y) and E-cadherin in prostate cancer, are promising findings, 

their predictive value remains to be established. 
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SAMENVATTING 

Zoals beschreven in Hoofdstuk I is er, ondanks het feit dat prostaatkanker een 

toenemend medisch probleem vormt, weinig bekend over de mechanismen die 

betrokken zijn bij het ontstaan en de progressie van deze ziekte. Om inzicht te 

krijgen in de genetische veranderingen die geassocieerd zijn met de ontwikkeling van 

kanker in deze klier, hebben we ons gericht op de identificatie van moleculaire 

markers die betrokken zijn bij het proces van prostaattumor-ontwikkeling en die 

mogelijk bruikbaar zijn bij het voorspellen van de aggressiviteit van prostaattumoren. 

Om dit doel te bereiken is gekozen voor twee benaderingswijzen nl. differentiële 

hybridisatie-analyse als een "directe aanpak" en het bestuderen van de expressie van 

een bekend gen (E-cadherine) dat mogelijk een rol speelt in de carcinogenese, als 

een "indirecte aanpak". 

Hoofdstuk Π beschrijft de techniek van differentiële hybridisatie-analyse en de 

toepassing ervan om steady-state mRNA-niveaus te vergelijken van een relatief 

goedaardige en een uiterst kwaadaardige sublijn van het Dunning R-3327 ratte-

prostaatkanker-modelsysteem. Er werden drie cDNA-klonen geïsoleerd die hoger tot 

expressie kwamen in de uiterst kwaadaardige tumoren: pBUSl bleek specifiek 

verhoogd tot expressie te komen in de anaplastische, metastaserende sublijnen van 

het Dunning modelsysteem, terwijl er geen mRNA aangetoond kon worden in de 

relatief goedaardige tumoren. Nucleotidevolgorde-bepaling en databank-vergelijkingen 

met behulp van de computer, lieten zien dat pBUSl zeer homoloog was met het 

High Mobility Group protein I(Y) [Hoge-Mobiliteits-Groep-eiwit I (Y)]. HMG-I(Y) 

is een niet-histon, chromatine-bindend eiwit dat mogelijk betrokken is bij transcriptie-

en/of replicatie-processen. Verder was eerder gerapporteerd dat HMG-I(Y) in grote 

hoeveelheden voorkomt in snel prolifererende, ongedifferentieerde cellen. pBUS19 

kwam hoog tot expressie in twee van de drie bestudeerde, metastaserende Dunning 

sublijnen en nucleotidevolgorde-bepaling toonde aan dat pBUS19 gedeeltes van 

RAL-elementen, welke rat-specifieke repetitieve elementen zijn, bevatte. pBUS30 

detecteerde transcripten van dezelfde grootte als pBUS19 in de metastaserende 

tumoren maar toonde verder additionele banden in de anaplastische, niet-

metastaserende tumoren en, op een lager expressie-niveau, in enkele hormoon-

onafhankelijke, matig gedifferentieerde, niet-metastaserende tumoren. Nucleotide-

volgorde-analyse kon geen homologie aantonen tussen pBUS30 en pBUS19 en ook 

97 



werd geen homologie van pBUS30 met een van alle tot nu toe bekende sequenties 

gevonden. 

Hoofdstuk Ш rapporteert over de poging die werd ondernomen om de 

mogelijke relatie tussen pBUS19 en pBUS30 te ontrafelen. pBUS19 werd gebruikt 

als probe om een cDNA-bibliotheek te screenen waarbij pJG116 werd geïsoleerd. 

Northern blot-analyse toonde dat pJG116 een expressie-patroon had vergelijkbaar 

met dat van pBUS30, echter nucleotidevolgorde-bepaling van pJG116 kon geen 

enkele relatie tussen beide klonen bevestigen. Databank-vergelijkingen met behulp 

van de computer, onthulden uiteindelijk hun relatie: additionele nucleotidevolgorde-

gegevens over de RAL-elementen waren beschikbaar gekomen en toonden aan dat 

de elementen onderdeel waren van een 7300 base-paren groot rat-specifiek 

endogeen retrovirus en het kon worden getoond dat pBUS19, pJG116 en pBUS30 

gedeelten van dit endogene retrovirus bevatten. Aangezien de retrovirale sequenties 

rat-specifiek zijn, is het niet te verwachten dat de cDNA-klonen bruikbaar zijn voor 

humane diagnose-stelling. 

Hoofdstuk IV beschrijft de resultaten van een tweede differentiële hybridisatie 

analyse en in het bijzonder de identificatie van vimentine als een eiwit dat verhoogd 

tot expressie komt in anaplastische ratte-prostaattumoren. Verder werd de complete 

coderende nucleotidevolgorde van ratte-vimentine bepaald en werd getoond dat deze 

sequentie zeer sterk geconserveerd is tussen rat, muis, hamster en mens. De 

overexpressie van vimentine in prostaattumoren is verwarrend gezien het feit dat de 

prostaat van epitheliale oorsprong is en eigenlijk de exclusieve expressie van 

cytokeratines verwacht zou worden. Vimentine komt normaal tot expressie in 

weefsels van mesenchymale oorsprong en in cellen in weefselkweek. Alhoewel de 

expressie van de specifieke intermediaire filamenten meestal behouden blijft na 

neoplastische transformatie, verschijnt er een toenemend aantal publicaties die co-

expressie van 2 klassen van intermediaire filamenten in neoplasmata beschrijven. 

Ook voor prostaatkanker is er een studie over de co-expressie van vimentine en 

cytokeratines gepubliceerd. Er zullen echter meer gedetailleerde (immunohisto-

chemische) studies moet worden uitgevoerd, om te bevestigen dat co-expressie van 

vimentine en cytokeratines in epitheliale cellen van prostaattumoren voorkomt en om 

een mogelijke rol van vimentine-overexpressie in humane prostaattumoren vast te 

stellen. 
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In de progressie van kanker is het verkrijgen van metastaserende capaciteit een 

belangrijke gebeurtenis waarbij verschillende genen betrokken zouden kunnen zijn. 

Gezien de vele publicaties over de mogelijke rol van het Ca2+-afhankelijke cel-

adhesiemolecuul E-cadherine in invasie-suppressie en het feit dat het E-cadherine-

gen gelocaliseerd is op het humane chromosomale segment 16q21-23 hetgeen 

frequent gedeleteerd is in prostaattumoren, is het verleidelijk te speculeren dat E-

cadherine een potentieel invasie/metastase-suppressor-gen is, betrokken bij 

prostaattumor-ontwikkeling. Om deze hypothese te testen hebben we besloten de 

expressie van E-cadherine in zowel ons diermodelsysteem alsook in humane 

prostaattumoren te bestuderen. 

Hoofdstuk V behandelt de expressie van E-cadherine in ratte-prostaattumoren. 

In het gevestigde Dunning R-3327 modelsysteem bleek E-cadherine tot expressie te 

komen in de goed- en matig-gedifferentieerde tumoren met lage invasieve capaciteit 

terwijl geen expressie kon worden aangetoond in de anaplastische en metastaserende 

tumoren met hoge invasieve potentie. Deze resultaten werden bevestigd op eiwit

niveau: gebruikmakend van een E-cadherine polyklonaal antilichaam, werd een 

sterke aankleuring van de niet-invasieve Dunning sublijnen waargenomen terwijl de 

invasieve lijnen negatief waren. Tijdens een recente passage van de androgeen-

afhankelijke, goed gedifferentieerde, niet metastaserende Dunning H-tumor, trad een 

spontane progressie naar een androgeen-onafhankelijke, metastaserende tumor op. 

De nieuw ontstane tumor werd AT6 genoemd. In de originele passage van de AT6 

tumor (АТбрО) en in een daarvan afgeleide longmetastase, kwam E-cadherine tot 

expressie, alhoewel in geringere hoeveelheden dan in de H-tumor. Met behulp van 

histologische studies werd aangetoond dat АТбрО samengesteld was uit goed-

gedifferentiëerde gebieden en een anaplastische celpopulatie waarin af en toe 

squameuze celdifferentiatie zichtbaar was. De longmetastase bleek te zijn 

samengesteld uit clusters van anaplastische cellen die vergezeld werden door 

squameuze celpopulaties. Immunohistochemische studies aan de longmetastase lieten 

zien dat de anaplastiche tumorcellen E-cadherine-negatief waren terwijl de 

squameuze cellen positief kleurden met het E-cadherine-antilichaam. Na het verder 

doorplanten van zowel de originele tumor als de longmetastase, ontstonden 

anaplastische, metastaserende tumoren die geen E-cadherine meer tot expressie 

brachten, noch op mRNA-, noch op eiwitniveau. Deze resultaten suggereren dat een 

verminderde expressie van E-cadherine geassocieerd zou zijn met de progressie van 

prostaatkanker naar een invasief fenotype. 
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In Hoofdstuk VI hebben we deze hypothese verder getest door de expressie van 

E-cadherine in humane prostaattumoren te bestuderen. Immunohistochemische 

studies aan niet-kwaadaardige prostaatweefsels toonden een sterke expressie van E-

cadherine in alle epitheliale cellen waarbij de kleuring vooral aan de membraan was 

gelocaliseerd. In laag-gradige tumoren kwam E-cadherine ook sterk tot expressie 

waarbij het kleuringspatroon en -intensiteit hetzelfde waren als in de niet-

kwaadaardige weefsels. In hoog-gradige tumoren echter werd vaak slechts een 

zwakke, heterogene of zelfs geen kleuring gevonden. Ook in ongedifferentieerd, 

metastaserend weefsel werd vaak slechts een zwakke, heterogene of helemaal geen 

kleuring gedetecteerd. Bij het bestuderen van de mRNA expressie niveaus van E-

cadherine in sommige tumorsamples door middel van Northern blot analyse, was het 

interessant te zien dat hoog-gradige tumoren E-cadherine mRNA tot expressie 

brachten zodat de verlaagde eiwit-expressie niet eenvoudigweg kon worden verklaard 

door een verlaagde expressie van het mRNA. Concluderend kan men stellen dat de 

verlaagde niveaus van E-cadherine eiwit-expressie in hoog-gradige tumoren 

suggereren dat prostaattumor-progressie gepaard gaat met een verlaagde expressie 

van E-cadherine, waarbij het mechanisme dat deze verlaging veroorzaakt, vooralsnog 

onbekend blijft. Om inzicht te krijgen in deze mechanismen, richten we momenteel 

onze aandacht op de isolatie en karakterisatie van het humane E-cadherine cDNA 

om te zoeken naar puntmutaties, en van de humane E-cadherine promoter om gen-

regulatie te bestuderen. 

Samenvattend kan men stellen dat de studies beschreven in dit proefschrift 

hebben geresulteerd in de identificatie van twee kandidaten voor het bepalen van de 

biologische aggressiviteit van prostaattumoren, te weten HMG-I(Y) en E-cadherine. 

De verhoogde expressie van HMG-I(Y) in metastaserende tumoren suggereert de 

betrokkenheid van HMG-I(Y) in het verkrijgen van een uiterst maligne phenotype. 

Overexpressie van HMG-I(Y) in (gedeelten van) humane prostaattumoren zou 

daarom beschouwd kunnen worden als een slecht voorteken. Een verminderde 

expressie van E-cadherine correleert met een invasief phenotype in ratte-

prostaattumoren en een afname van de expressie van E-cadherine in (gedeelten van) 

humane primaire tumoren zou een indicatie kunnen zijn voor een meer aggressieve 

subpopulatie van cellen binnen een tumor. Alhoewel de differentiële expressie van 

HMG-I(Y) en E-cadherine in prostaattumoren veelbelovende vindingen zijn, moet 

hun voorspellende waarde nog worden bepaald. 
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