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CHAPTER 1. 

THE CULTIVATION OF Agahcus bisporus AND THE PREPARATION OF ITS SUBSTRATE 



The cultivation of mushrooms - history 

After being long a favourite table delicacy of epicures, cultivated 

mushrooms have taken an increased importance as an ingredient in many 

European and Oriental dishes in recent years. The low caloric value and the 

high content of unsaturated fatty acids make mushrooms extremely suitable in 

western diets. As mushrooms contain 19-40 Ζ protein on a dry-weight basis 

[44] and the protein quality is at least as good as the proteins of 

vegetables [84], they should desirably be included in the diet of people in 

developing countries. Agaricus bisporus, the white button mushroom, and 

Lentinus edodes, the Shiitake mushroom, account for 70 % and 14 %, 

respectively, of the total world production of cultivated mushrooms. The 

United States, France, and the Federal Republic of Germany are responsible 

for 50 Ζ of total world consumption of Agaricus mushrooms. Japan, Hong Kong, 

and China are the primary consumers of Lentinus mushrooms. A. bisporus was 

first domesticated in the Paris region in 1650 and then its cultivation 

developed into an industry in western countries [81]. Now the mushroom is 

grown in over 70 countries [8] and the annual production in the Netherlands 

amounted to 120 million kg in 1988 [87]. L. edodes is reported to have been 

grown in China since 800 years. It was further developed in Japan about 300 

years ago. Cultivation of other mushrooms remained limited to local 

enterprises often producing only on a small scale. For example, in Europe 

some extensive methods have been developed to grow Pleurotus ostreatus 

(oyster mushroom) and Coprinus comatus (inky cap). 

The cultivation of Agaricus bisporus has become a high-technology industry 

in western countries. Fundamental research of this mushroom has developed 

into a branch of science derived from microbiology, fermentation science, and 

environmental engineering. The nutrients for mushroom growth are provided in 

composts, which are prepared differently for different kinds of mushrooms. 

The fungi have long been known as "nature's trashburner" because of their 

role in decomposition. All fungi decompose organic substrates and without 

exception agricultural and industrial wastes are used as basic raw materials 

for the preparation of compost. 

Recently, an extended description of the modern technique of the 

cultivation of mushrooms in the Netherlands has been published [86]. In this 

chapter attention is focused on the preparation of the substrate for the 

cultivation of Agaricus bisporus in the Netherlands. 
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The ingredients for the preparation of the mushroom substrate 

General 

As Agaricus bisporus is a heterotrophic organism, it requires complex 

organic substances as a carbon and energy source. Some information is 

available about the nutritional requirements for mycelial growth in defined 

media [82], but little is known of the nutrition of the fungus in compost. 

The substrate commonly used comprises agricultural wastes, which are partly 

degraded during the preparation process. To the substrate is usually referred 

to as mushroom compost. 

Straw 

Wheat straw (Triticum aestivum), rye straw (Secale cereale), oat straw 

(Avena sativa) and barley straw (Hordeum vulgare) are all suitable for the 

production of compost. Because of their superior texture wheat straw and rye 

straw are preferred. The use of herbicides during the production of the straw 

does not influence the composting process nor the mushroom yield in a 

negative way [35]. An average composition of wheat straw is given in Table 1. 

As expected, cell wall components account for up to 82 % of the total weight 

of wheat straw. The protein and fat content is only low [85]. 

Table 1: Average composition of wheat straw [13,85]. 

Component Content' 

Cellulose 43 X 

Hemicellulose 23 % 

Other carbohydrates 8 X 

Lignin 16 X 

Ash 6 X 

Crude protein 3 Ζ 

a
) as percentage of the dry weight. 
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Horse manure 

Straw-rich horse manure is obtained from maneges and stud-farms. In order 

to avoid undesirable fungal growth in the manure during storage, collection 

is done every fortnight. The main characteristics of horse manure are 

summarized in Table 2. Other straw-rich manures, such as pig manure, are also 

suited for the preparation of mushroom compost but in The Netherlands hardly 

any other kind of straw-rich manure is available. 

Table 2: Main characteristics of horse manure used as the major constituent 

of mushroom compost [33,35]. 

mean range 

Dry matter content3 " * 

Total nitrogen content 1.3 X 

Ammonia content 0.2 X 

Bulk density 375 kg/m3 

a) values expressed as percentage of fresh weight, all other values are 

expressed as percentage of the dry weight. 

Gypsum 

The role of gypsum in mushroom composting is still not fully understood. It 

is suggested that the addition of gypsum prevents greasiness of the compost. 

Gerrits [32] found a positive effect of gypsum on the mushroom yield when the 

ammonia content of the compost is high at filling. Simultaneously this author 

observed lower pH values in composts supplemented with gypsum. 

Chicken manure 

Manure from broiler chickens, kept on wood shavings, is generally used as a 

source of nitrogen. The main characteristics of chicken manure are summarized 

in Table 3. The choice is mainly determined by the relative ease of handling 

and low costs of transport, due to the high dry matter content of this 

manure. Other manures are equally applicable but may demand slight changes 

either In the recipe or in the processing or both. 

25 - 45 % 

1.0 - 1.5 2 

0.2 - 0.3 % 

200 - 500 kg/m3 
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Table 3: Main characteristics of chicken manure, used as a constituent of 

mushroom compost [13,35]. 

range 

Dry matter content
3 

Ash content 

Total Nitrogen content 

Ammonia content 

60 Χ 

21 X 

4.5 X 

1.4 X 

30 

7 

1.7 

0.5 

85 % 

36 % 

6.5 X 

2.2 % 

a
) values expressed as percentage of fresh weight, all other 

values are expressed as percentage of the dry weight. 

Water 

Water is essential for the composting process, not only as a solvent for 

all kind of nutrients but also to enable a close contact between the solid 

substrate and microorganisms [38,53]. For the growth of Agaricus bisporus 

water is also highly needed [37]. Evaporation plays an important role in 

nutrient transport during the formation of fruit bodies [41]. A water content 

of the compost at spawning of 66 % has proven to result in an optimal 

mushroom yield [31]. Fruit bodies themselves contain 90 to 93 % of water on a 

fresh weight base [33]. 

The composting process 

General 

The preparation of mushroom compost is regarded as an essentially aerobic 

decomposition of complex organic substances by microorganisms [28,38]. The 

main objective of the composting process is to obtain a selective substrate 

for Agaricus bisporus [52,67,86]. The significance of microorganisms in the 

composting process for the selectivity of the substrate is reviewed recently 

[23]. In the Netherlands the process based on the short composting method, 

first described by Sinden and Hauser [72,73], is used. Because of shortage of 

straw-rich horse manure to fulfil the total demand for mushroom compost, a 

recipe based on wheat straw is used as well. The total amounts of the various 
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ingredients used in the two different recipes are mentioned in Table 4. The 

sequence of mixing of the ingredients during the outdoor part of the 

composting process is summarized in Figure 1. 

Table 4: Constituents used for the preparation of one ton fresh weight of 

mushroom compost (dry matter content 28 Ï). Values mentioned are 

averages [35]. 

Constituent dry matter 

percentage 

fresh dry 

weight weight 

On basis of horse manure: 

Horse manure 

Chicken manure 

Gypsum 

37 X 

60 % 

80 X 

882 kg 

88 kg 

27 kg 

326 kg 

53 kg 

22 kg 

On basis of wheat straw: 

Wheat straw 

Chicken manure 

Gypsum 

85 % 

60 X 

80 X 

322 kg 

356 kg 

27 kg 

274 kg 

214 kg 

22 kg 

Straw oretreatment 

Straw is mixed with chicken manure to bring the total nitrogen content to a 

level equal to the horse manure. Water is added for a period of 7 to 10 days. 

Phase I 

Phase I includes two subphases, known as the flat heap and the windrows. At 

the start of the flat heap treatment the pretreated straw and the horse 

manure are mixed and water is added over a period of 7 days. At the end of 

this period an additional amount of chicken manure is added together with 

gypsum. The material is mixed and stacked into windrows, with a cross-section 

of 1.8 by 1.8 m. Homogeneity is increased by mixing on day 3, 6, and 8 after 

stacking. 
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Phase II 

Phase II treatment or peak heating is also subdivided into two subphases: 

pasteurization and conditioning. During the former part the temperature is 

allowed to rise to a level of 56 0C and maintained for six hours. During the 

latter part the temperature is lowered to 45 0C by supplying more fresh air. 

This level is maintained until ammonia is absent in the effluent air. 

Usually, Phase II is completed within 7 days and the resulting compost is 

then ready for inoculation with Agaricus bisporus. Phase II can be performed 

either in growing chambers or in bulk in so-called tunnels [34]. Nowadays, 

about 50 % of the mushroom compost used in the Netherlands obtains its Phase 

II treatment in bulk. 

COHSTITUEMTS 

In kg fresh Height 

CÜMP0STIH6 TIME ІИ DAYS 

7 14 21 28 

161 kg Mheat strw 

85 kg chicken nanure 

(63 kg Mater — — 

441 kg horse nanure 

432 kg Hater — — 

88 kg chicken nanure 

27 kg gupsun — — 

1888 kg 

Phase I 

conpost 

Figure 1: Schematic representation of the outdoor composting process, 

including straw pretreatment and Phase I composting. 
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Interaction with the surroundings 

The composting process is performed outdoors on a concrete floor (Phase I) 

or indoors in tunnels or growing houses (Phase II). As a result contact with 

the surroundings is limited to gas exchange. 

According to Gerrits [31] the main contribution to the ventilation in Phase 

I is made by the chimney-effect. Because of the microbial activity heat is 

produced and as a result air moves to the top of the stack. Fresh air enters 

the stack at the sides. In Phase II gas exchange is enhanced by forced 

aeration (tunnels) or by reducing the thickness of the compost layer (growing 

house). Although air velocities between the composting particles may differ 

widely between Phase I and Phase II, gas exchange inside the straw particles 

is limited to diffusion in both phases. 

The process of air movements serves as a source of oxygen [56,65] and as a 

drain for gaseous compounds, which are set free during the composting 

process. The major representative of the latter is carbon dioxide, formed 

during the breakdown of organic matter both under aerobic and anaerobic 

conditions. The second important compound to carry away is water. Because the 

relative humidity of the incoming air is usually less than 100 per cent [41] 

and the temperature is raised by the composting material, the air tends to 

take up water during its passage through the composting material. Depending 

on the balance between the amount of water removed by this process and the 

amount of material broken down, the water content of the resulting compost 

will change [55]. 

Less important in terms of the overall mass balance of the composting 

process is the amount of ammonia emitted during the preparation process. 

Although never reported in scientific literature the loss of ammonia during 

the composting process is believed to be about 2 kg per ton of compost 

produced [Gerrits, personal communications]. Attention is drawn to the 

emission of ammonia during the last decade because of its contribution to 

acidification due to nitrification and undesirable fertilization of natural 

environments [46]. 

Besides the components mentioned above, whose chemical identity and 

behaviour is well established, a less defined group of compounds is emitted 

by the composting material usually summarized by the word stench. Although 

the contribution of this group to the mass balance is negligible, its presence 

may lead to complaints by people living nearby a composting facility [57,61]. 
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Analysis of odorous air 

Qualification and quantification of odor are time-consuming and difficult 

jobs, which can be done either by olfactometry or by analytical chemical 

techniques. During olfactometric measurements the odor strength of an air 

sample is determined by presenting serial dilutions of the sample to a panel. 

The human nose is used as a detection device [5,42]. Besides the odor 

strength also information on odor quality in terms of pleasant or unpleasant 

may be obtained. Disadvantages of this method are its time-consuming 

character and the poorly understood mechanism of interaction of odorant 

mixtures, mainly as a result of the lack of understanding of the odor 

perception process itself [1,4,49]. 

Chemical characterization of malodors are reported frequently 

[30,60,92,93]. The use of gas chromatography combined with mass spectrography 

proved to be extremely useful and an impressive number of compounds is 

identified in various air samples [2,12,66]. Among these, many samples 

originated from complex biological systems, known to produce offensive odors, 

e.g. swine and cattle confinements [54,59,70], waste water treatment plants 

[7,48] and manures [17,63,75,91]. The presence of volatile fatty acids, 

aldehydes and various volatile sulfur- and nitrogen-containing compounds was 

revealed. The odor characteristics of the pure chemicals is well documented 

[6,15,51,69,80,88] and the relation between odor strength and odorant 

concentration is given by the Weber-Fechner psychophysical power-law [14,50]. 

In this case the information about odor characteristics of mixtures is also 

rather sparse. Another disadvantage of the chemical characterization method 

is the fact that no guarantee can be obtained that chemical analysis of the 

offensive air has resulted in a complete list of components present in the 

air. As a consequence of the dilemma described above both methods are 

presently used, although the results are hard to compare. In the Netherlands 

only olfactometric measurements are approved by local and government 

authorities when testing odor emissions by environmental regulations. 

Biochemical and microbiological aspects of composting 

Composting is an ancient practice. According to Poincelot [64] the Bible 

already mentions compost several times, but insight in the fundamental 
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processes occurring during the decomposition of complex organic substances 

only came available with the introduction of modern analytical chemical 

techniques. One of the first reports on this subject was made by Waksman et 

al. in 1939 [89]. 

During the entire composting process (Phase I and II) the amount of lignin 

present does not change significantly [29]. The weight loss obtained during 

composting is a result of breakdown of cellulose and hemicellulose [10,36]. 

As indicated by Einstein et al. [27] composting is usually viewed as a 

problem of handling materials and of process configuration, without reference 

to its microbial underpinnings. As a result, temperature is allowed to reach 

values far beyond the optimum. As a control parameter for maximum composting 

rates, temperature should be preferred over e.g. gas composition [27]. The 

composting process is an example of ecological successions of microorganisms 

[22,28,39,89]. Initially a largely bacterial flora dominates. On starting 

with wheat straw viable counts are as low as 10" colony forming units/g dry 

matter, but within a few days this value increases to 10 1 0 colony forming 

units/g dry matter [11]. Among the bacteria present Bacilli species are most 

abundant [25]. At the end of Phase I actinomycetes become dominant, which 

results in a grey-white coating on the composting material, known as fire-

fang [3,25]. Thermophilic fungi show up at the end of Phase II [68] and 

Straatsma et al. [78] showed the abundance of Scytalidium thermophilum at the 

end of Phase II. Table 5 gives a compilation of microorganisms isolated from 

mushroom compost. It is meant as an Illustration of the variety of species 

which can be found in the compost. By no means it pretends to be complete; 

the number and the diversity of organisms found by isolation techniques 

primarily depends on the choice of the substrate and the culture 

circumstances. The list would be even longer if isolates, originating from 

other composting material, were to be included. For an extended description 

the reader is referred to [64,79]. 
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Table 5. Microorganisms i so lated from mushroom compost at different stages 

of composting and cropping. 

Species Phase I Phase I I Spawn run Spent conpost Ref 

Bacteria 

Bacillus coagulane a a [26] 

Bacil lus l ichemformis χ [90] 

Bacil lus stearothermophi lus d [26] 

Bacil lus subtil is a [26] 

ChromobacteriLn sp. с [26] 

Flavobactenun sp. a [26] 

Pseudomonas sp. a [26] 

S e r r a t i a sp. с [26] 

S e r r a t i a marcescens χ [90] 

Desulfovibno desulfuncans с (161 

Actinomvceten 

Excellospora f l exuosa χ [83] 

Mlcropolyspora sp. χ [90] 

Nocardia b r a s i l i e n s i s χ [18,76] 

Pseudonorcardia thermophila χ [18] 

Streptomyces albus χ [47] 

Streptomyces diastat icus χ χ [47] 

Streptomyces griseus χ [47] 

Streptomyces rectus χ [18,76] 

Streptomyces sp. (gray) b [26] 

Streptomyces thermoviolaceus χ [18,76] 

Streptomyces thermovulgans b χ [18,26,76] 

Streptomyces violaceoruber χ [18] 

Thermoactinomyces glaucus χ [18] 

Thermoactinomyces thalpophilus χ [47] 

Thermoactinomyces vulgaris a x χ [18,26,47,77] 

Thermomonospora alba χ [83] 

Thermomonospora chromagena χ [47] 

Thermomonospora curvata χ [18,76,83] 

Thermomonospora fusca χ [18,47,83] 

Thermomonospora v i r i d i s b [26] 

Thermopolyspora polyspora χ [18,76] 

Fungi 

Absidi a sp. χ [74] 

Absidi a ramosa χ [9] 

Acremom un sp. Ь [62] 

Асгетопіші butyri χ [19] 

A l t e r n a r l e tenuis χ [9,74] 

A n i x i e l ü a re t icu la ta χ [191 
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Table 5: continued 

Aspergillus sp. X b,x 119,62,90,74] 

Aspergillus amstelodami χ [9] 

Aspergillus candidus χ с [9,62] 

Aspergillus flavus χ χ [19,47] 

Aspergillus funi gat us a,χ χ a χ [9,18,26,47,62,74,76] 

Aspergillus nidulans χ χ [9,47] 

Aspergillus ochraceus с [62] 

Aspergillus repens χ [9] 

Aspergillus terreus χ χ [19,47] 

Aspergillus versicolor χ X с [9,47,62] 

Aurobasidiun pullulons d,x [9,26] 

Beauveria sp. с [62] 

Botryotrichun p i l u l i f e r i n χ [19] 

Boytrytis cinerea d [26] 

Cephalosporiun sp. d [26] 

Chaetomi LIB sp. X [74] 

Chaetomiun globosun с [62] 

Chaetoniiijn o l i v a c e m b [62] 

Chaetomim r e c t o p i t i u a χ [21] 

Chaetomiun thermophile b,x χ [9,18,26,76] 

Chromelosporim fulvum χ [19] 

Chrysosporiun sp. с [62] 

Chrysosporiun luteun χ χ [19,47] 

Chrysosporiun selon b [62] 

dadosporiun herbar i un a,χ с,ж [9,19,26,62,74] 

С l i topi lus pins i tus χ [9] 

Copri nus sp. χ [74] 

Copri nus cinereus χ [9] 

Copri nus fimentariun с [62] 

Copri nus negacephagus χ [9] 

Diehliomyces microsporus с [62] 

Doratomyces microsporus χ [19] 

Epi coccoli purpurascens χ [19] 

Fusariun sp. χ с [62,74] 

Fusariun culmorun χ [9] 

Geotrichun candidun b,x [19,62] 

G l i o c l a d i m roseun χ [19] 

Gliomastix sp. χ [19] 

Hunicola sp. χ [74] 

Hunicola grisea-thermoidea a x a χ [18,26,47,62] 

Hunicola insolens-thermoidea с χ a [18,24,26,76] 

Hunicola lanuginosa a,χ χ b [9,18,40,62,76] 

Hyponiyces rosei lus χ [19] 

Halbranchea pulchella-sulfurea χ χ [9,20] 

Noni l i a f imicola d с [26,62] 

M o r t i e r e l l a sp. b [62] 

Mucor sp. a,x a [26,62.74] 

Mucor hiemalis b [62] 

Mucor mi eh i e χ [20] 

Hucor pus i l l us a χ [18,26,40,76] 

Hycelia s t e r i l i a Ct6 χ [9] 
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Table 5 : continued 

Hyceliophtora lutea b [62] 

Myriococcun albomyces χ [20] 

Nigrospora sp. χ [47] 

Oedocephalmi sp. b,x [19,62] 

Oidiodendrom tenui ss i un с [62] 

Paeci lofiyces sp. a χ [47,62] 

Paecjlomyces var i o t i χ [19] 

Papulaspora byssîna с,χ [19,62] 

Penici l l î u n sp. a,χ a [9,26,62,74] 

Penici Ц і ш і chrysogenm b [62] 

Penici U i u n expansim χ [47] 

Penici l l i u n oxalicun X [19] 

Peziza fulva с [62] 

Pythium sp. Ь [62] 

Rhizomucor pus i Ц us X [90] 

Rhizopus nigricans с [62] 

Scopulariopsis brevicaulis с [62] 

Scopulariopsis f imicola χ [19] 

Scytalidiun thermophilun a [78] 

Sepedoniun sp. Ь [62] 

Sondaría f imicola с [62] 

Spicaria sp. b [62] 

Sporendonema purperascens с [62] 

Sporotrichim thermophile χ χ [9,20,74] 

S t i b e l l a thermophila χ [18] 

Stysanus stemoni tes χ a [9,62] 

Talaromyces duponti χ χ [9,18] 

Talaromyces lanuginosa χ [90] 

Talaromyces thermophilus χ [20] 

Thermoascus aurantiacus χ [20] 

Thermomyces lanuginosus χ [68] 

Thermodiyces stel latus с [62] 

Thielavia sepedóni un χ [19] 

Thielavia thermophila χ [20,76] 

Toruia thermophila χ a [20,62,76] 

Trichoderma v i r i d e а с,χ χ [19,26,47,62] 

Trichoderma koningii a [62] 

Trichotheciun roseun b,x [19,62] 

Trichurus sp. χ [47] 

Τ r i churus s p i r a l i s χ [19] 

V e r t i c i l l i u n sp. с [62] 

a
) Indication of the appearance of the organism: a - abundant, b - frequent, 

с - less frequent, d - scarse, χ - no indication available. 
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The formation of most odorous compounds in complex biological syste 

coupled to breakdown of organic matter. Especially when oxygen become 

limiting, the ensuing anaerobic conditions result in putrefaction of 

matter and production of objectionable gases. The involvement of 

microorganisms in this process is well documented [43,45,71,94,95]. Ь 

and Macauley [58] found a positive correlation between odor problems 

increasing usage of nutrient-rich materials as ingredients for mushrc 

compost. Excessive initial concentrations of available nutrients did 

result in an increased nitrogen level of the final compost, implicati 

higher loss of nitrogen, probably in the form of ammonia, during the 

composting process. 

Outline of this thesis 

During the preparation of mushroom compost organic matter is degrac 

as a result carbon dioxide and water are produced. In the meantime 

considerable amounts of heat are set free. Odour nuisance and ammonii 

emission accompany this process. Until now the major part of this bre 

process is performed outdoors and the composting regime applied, is г 

of trial and error rather then a product of an in depth understanding 

microbial processes involved. The investigations described in this t\ 

undertaken to enlarge the understanding of the microbial processes w: 

special respect to the emission of gaseous compounds including odor. 

In Chapter 2 the microbiological community, present in the compost! 

material, is studied in terms of biomass content and biological acti-v 

The presence of anaerobic environments in the composting material ι 

investigated in Chapter 3 by measurements of methane in the air evol\ 

the compost stacks. The isolation and characterization of two strains 

thermophilic methanogenic bacterium from Phase I compost is describee 

Chapter 4. 

In Chapter 5 the air evolving from the compost stacks is analyzed : 

to elucidate the chemical nature of the major components, responsibl< 

pungent character of the odor. 

During the course of the investigations plans were developed and r( 
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to perform part of the outdoor composting process in a tunnel-like 

environment. This process is now known as indoor composting and it was shown 

that the resulting compost was suitable for mushroom cultivation. 

The formation of the previously identified malodorous compounds under 

laboratory circumstances is studied in Chapter 6 together with the production 

of these compounds during indoor composting. 

In Chapter 7 a mathematical model for indoor composting based on heat and 

mass balances is presented. Using general microbiological phenomena and 

parameters, derived from the conventional process, process progress and 

aeration rates for the indoor composting can be calculated. 
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The production οΓ a suitable substrate for the cultivation of the common white button mushroom, Agancus 
bisporus. Is referred to as composting. High microbiological activity causes temperatures of the composting 
material to nse as high as в0 С. At stacking, an optimal oxygen consumption rale of 140 μπιοΙ of Oj h~ ' g (dry 
weight)-1 was found in the compost at 50°(\ whereas the oxygen consumption rate of the end product was 
lower at all temperatures tested. No significant differences were observed between biomass content and 
mineralization rate of l4C<labeled glutamate of the two composts. Biomass content was shown to be а тщог 
function of both temperature and the sampling site position in the slack. On the basis of the results reported 
here, a minimal composting time of 3.3 days for the phase I process was calculated. Further suggestions are 
made to reduce the time necessary for the production of a substrate for A btsporus considerably. 

The commercially cultivated white button mushroom 
Agancus btsporus (Lange) Imbach and the closely related A 
bttorquts (Quclé!) Saccardo are grown on a special substrate, 
prepared from horse manure, wheat straw, and broiler 
chicken manure This paper will focus on the outdoor 
composting process (phase I), whereas for the total prepa­
ration of a suitable substrate for A btsporus a second 
treatment (phase II) is needed (10, 13) Traditionally, the 
substrate for mushrooms is called compost, although the 
duration of the process is much shorter than the time needed 
for the preparation of compost from sewage sludge or 
domestic refuse (1 7, 18) Including a prewetting penod of 
the straw of 14 days, the phase I process only lakes 28 days 
Nevertheless, in many aspects the preparation of mushroom 
substrate is comparable to the other composting processes 
mentioned In all of these processes, the breakdown of solid 
organic matter by microorganisms is the crucial step This 
can be accomplished either acrobically or anaerobically As 
we have shown recently, considerable concentrations of 
methane are present in the air evolving from the composting 
material (5), indicating the presence of anaerobic microen 
vironmenls It was calculated that at least 3 ^% of the loss of 
dry matter was achieved by anaerobic breakdown Although 
anaerobic microenvironments cannot be avoided m static 
compost piles, the major part of the loss of dry matter is due 
to aerobic breakdown, which results in the production of 
carbon dioxide, water, biomass, and considerable amounts 
of heat Because of the insulating character of the compost­
ing matenal and the absence of forced air movements, heat 
is transferred only slowly to the outside of the stacks As a 
result, a steady increase in temperature is observed, and 
depending on the dimensions of the stacks, temperatures as 
high as 80°C are reported (8, 11) Since the тщоту of the 
microorganisms isolated so far from this composting mate­
nal are not extremely thermophilic, it is unlikely that maxi 
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mum biological activity is exhibited at this high temperature 
In general, composting is considered to be an aerobic 
process (11), and as indicated above the contribution of 
anaerobic breakdown m the process desenbed here is only 
small Therefore, biological activity can be measured as 
oxygen consumption rate 

The oxygen consumption rates of garbage and sludge 
mixtures increase logarithmically with temperature from 20 
to 70oC, as reported by Schulze (23) This finding was 
confirmed by Jens and Regan (16) with mixed refuse for 
temperatures up to 60°C Above 60°C, a sharp drop in 
oxygen consumption rales was observed, demonstrating the 
inhibitory effect of elevated temperatures on the biological 
activity A similar profile was found by McKinley and Vestal 
(18), who used the mineralization rate of 14C-labeled gluta­
mate by municipal sewage sludge extracts as a measure for 
biological activity Optimal activity was found at a range of 
35 to 450C, while the mineralization rate drops to zero at 
6VC The formation of biomass during the composting 
process is believed to contribute to the selectivity of the 
substrate for Agancus spp and, as these fungi are known to 
produce lytic enzymes, the biomass will serve as a nutnent 
source (9, 24) A negative correlation is reported between 
biomass content and temperature above 45eC (18), another 
indication that high temperatures may be unfavorable dunng 
composting 

The aim of the present investigation was to desenbe the 
production of compost used as a substrate in mushroom 
cultivation in terms of changes of biomass content and 
biological activity and of the correlation of these parameters 
with temperature 

MATERIALS AND METHODS 
Compost samples. The compost used in this investigation 

ongmated from a large commercial compost farm, where the 
total outdoor composting process takes 28 days On this 
farm the recipe of Germs (13) is used Wheat straw is the 
major source of organic matter in the composting matenal It 
consists mainly of cellulose hemicellulose, and ligmn 36 0, 
25 3 ani l 0% of the dry matter, respectively (19) On day 0, 
wheat straw and broiler chicken manure are mixed and a 
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FIG 1 Cross section of a windrow Sampling sites are indicated 
by numbers 

prewetting penod of 14 days starts Horse manure is added 
on day 14 and water is supplemented for 7 more days On 
day 21 gypsum and additional broiler chicken manure are 
mixed through the composting material Simultaneously, the 
material is stacked in windrows with a cross section of 
approximately 2 0 by 2 0 m and the composting process is 
continued for 7 days, during which the material is mixed 
twice to increase homogeneity (13) 

Biomass estimations were performed on compost samples 
obtained at different stages of the process The correlation 
between temperature of the sampling site and the biomass 
content was studied in samples taken at different positions 
through a cross section of the windrow (Fig 1) on day 23 of 
the process just before the first mixing The temperature of 
the composting material was measured with an Impac Tas-
totherm D 700 thermometer prior to the collection of the 
samples Oxygen consumption and mineralization expen 
ments were performed with compost taken at days 21 and 28 
of the process These samples are referred to as "compost at 
stacking11 and "phase I compost,1 respectively After col­
lection, the compost samples were transferred immediately 
to the laboratory in plastic bags without any precaution to 
prevent cooling Upon arrival, each sample was mixed 
thoroughly and divided into subsamples for further analyses 

Oxygen consumption of compost. A subsample of 100 g 
(fresh weight) of compost was transferred into a 1-liter serum 
bottle and incubated in a stove for at least 1 h at the desired 
temperature Then the gas phase was replaced by air which 
was conditioned pnor to use by passage through plastic 
tubing (10 m, 6-mm inner diameter) and two water-filled 
impmgers kept at the desired temperature The bottle was 
closed with a rubber stopper As a trap for carbon dioxide 
produced by the compost, a cellulose dialysis tubing (Visk-
mg, diameter, 1 4 cm, length, 10 cm) containing 5 ml of 4 M 
sodium hydroxide was attached to the stopper inside the 
bottle Any contact of the dialysis tubing with the compost 
was avoided After closing the bottle, a connection was 
made with one end of a gas burette by inserting a hypoder­
mic needle through the stopper The other end of the gas 
burette was connected to a water-filled reservoir Volume 
changes of the gas phase were measured with the water in 
the gas burette and in the reservoir at the same level (25) 
Decrease in volume was taken as oxygen consumption 

Oxygen consumption of compost extracts. Subsamples of 40 
g (fresh weight) of compost were shaken with 1 liter of tap 
water for 10 mm Large solid particles were discarded after 
décantation of the liquid The liquid phase thus obtained is 
referred to as compost extract Oxygen consumption in the 
extract was measured with a biological oxygen monitor 

model 53 and a bath assembly 5301 (Y S I Incorporated) by 
the method of Hemnka-Wagner et al (14) No buffer or 
exogenous substrate was added to the extracts 

Mineralization rates of compost extracts. Compost extracts 
were prepared as described above Го 2 ml of extract 0 1 ml 
of L-[U '"Clglutamate (3 7 kBq, 0 38 nmol) was added m 
stoppered vials The mixture was incubated at various 
temperatures The vials were equipped with a disposable 
center well containing 0 3 ml of ethanolamme-ethylene gly­
col (1 2, vol/vol) to trap '"CO^ produced The evolution of 
"CO, was linear with lime over al least 120 mm Routinely, 
incubations were temunated after 60 mm by the addition of 
0 5 ml of 3 M perchloric acid to the medium, followed by a 
second incubation for 18 h at 4°C to ensure complete 
volatilization of C0 2 Radioactivity of "CO, was measured 
in 10 ml of toluene-mcthanol (2 1, vol/vol) containing 0 4% 
Omnifluor by means of a Philips model 4400A liquid scintil­
lation counter All counts (counts per minute) were cor­
rected to disintegrations (disintegrations per minute) by 
using the channel ratio method Mineralization rates are 
expressed as nanomolcs of glutamate mineralized per hour 
of incubation per gram (dry matter) of compost extracted 

Microbial biomass determination. Biomass formed during 
composting has been measured in several ways, including 
direct counts. ATP content and total extractable lipid phos­
phate content (18, 24) Here, total extractable lipid phos­
phate estimations are preferred because of the higher repro­
ducibility (18, 26) Total lipids were extracted from wet 
samples containing approximately 6 g of dry matter Water 
was added depending on the moisture content of the sample 
up to a total volume of 20 ml The chloroform methanol 
extraction procedure of Bligh and Oyer (3) was used After 
digestion in 30% perchloric acid for 2 h at 180°C, inorganic 
phosphate was measured colonmetncally at 830 nm, using 
the molybdate blue reaction (2) Results are expressed as 
micromolcs of P0 4 per gram (dry weight) of compost 

Analytical procedures. The gas phase was analyzed as 
desenbed by Hutten et al (15), using a Pye Unicam model 
GCV gas Chromatograph equipped with a thermal conduc­
tivity detector Dry-matter content was calculated after 
drying the compos! samples to constant weight at 70°C, 
resulting in an average dry-matter content of compost at 
stacking and phase I compost of 24 8 and 27 4%, respec­
tively 

Chemicals. Gases were obtained from Hoek Loos, 
Schiedam The Netherlands Omnilluor was purchased from 
New England Nuclear, Drcieichenheim, Federal Republic of 
Germany ι -[iVClglulamatc was obtained from the Radio­
chemical Centre, Amersham, United Kingdom All other 
chemicals used originated from Merck, Darmstadt, Federal 
Republic of Germany 

RESULTS 

A representative illustration of oxygen consumption by 
phase 1 compost at different temperatures is shown in Fig 2 
Sterilized compost (30 mm at 121Ό, used as a control, 
showed a negligible change in volume during incubation Gas 
chromatographic analyses of the gas phase, after cessation 
of the volume changes of the oxygen uptake experiments 
with untreated compost, showed the absence of both oxygen 
and carbon dioxide When the sodium hydroxide solution 
was replaced by water dunng the incubation, only small 
volume fluctuations were observed As a result, only a 
negligible net volume change over the whole incubation 
period was measured After incubation, the presence of 
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"Volume decrease ( m l ) -

100 

50 

100 

Time ( mm) 

200 

FIG 2 Volume changes obtained by incubation of phase 1 
compost at vanous temperatures ЬеГоге (closed symbols) and after 
(open symbols) sterili¿ation · O 400C Ш О Sî-C • О 60'С 

carbon dioxide and the absence of oxygen in the gas phase of 
this control were confirmed by gas chromatographic analy­
ses 

To determine whether the rate of carbon dioxide uptake 
by the sodium hydroxide solution ш the dialysis tubing was 
sufficient to trap all carbon dioxide released during incuba­
tions, empty bottles were flushed with N 2 - C 0 2 (80 20%, 
vol/vol) Volume changes caused by carbon dioxide uptake 
from the N 2 COj atmosphere ranged from 7 to 20 ml/mm 
over the temperature and time range tested (data not shown) 
As the volume changes during the experiments with un­
treated compost never exceeded the rate of 2 ml/mm, u is 
concluded that the uptake capacity ol the carbon dioxide 
trap was sufficient From the slope of the oxygen uptake 
curves (Fig 2), the oxygen consumption rate at a given 
temperature can be calculated per gram of dry weight The 
averages of expenments with both compost at stacking and 
phase I compost are shown in Fig 3 The oxygen consump-

'Oiygen consumption rale (¿imoL g dw"' h"1 ) 

20 30 Ό 50 eo 
Tenperature (eC) 

70 

FIG 3 Average oxygen consumption rales of compost at stack 
ing (•) and phase I compost ( · ) at various temperatures Bars 
represent standard error of the mean The number ol measurements 
range from 4 to 8 dw Dry weight 

TABLE 1 Oxygen consumption rale of aqueous compost 
extracls after vanous treatments measured al 

different temperatures 

Oxygen conMimption rale 
(μιηοΐ of O.g [dry wl| ' h 'l 

Treatment and 
limp ('CI 

Compost al 
stacking 

Phase I 
composi 

+KCS - K C N 

Extraction 
25 
50 
70 

Extraction + centnfugation 
115 mm 13 000 χ g A'C) 

25 
50 
70 

Extraction + centnfugation 
+ boiling (15 mm) 

25 
50 
70 

28 A 0 29 0 6 6 
63 5 1(19 49 7 15 2 

0 4 0 0 0 

0 
5 3 
0 

0 
07 
0 

0 
1 3 
0 

2 7 
1 В 
0 

0 1 
0 
0 

0 4 
1 2 
0 

Correclcd lor oxygen consumption by the elcclrode 

lion rate of the compost at slacking is higher as compared 
with phase I compost Compost at stacking showed an 
maximum oxygen consumption rate at 50oC of about 140 
μιηοΐ of 0 2 g (dry weight) - 1 h ' Above this temperature 
oxygen consumption rates declined, reaching a level of 55 
μπιοί of 0 2 g (dry weight) ' l ^ ' a t T O ' C Compost samples 
taken at the end of phase I showed an increase in oxygen 
consumption rate al temperatures up to 40°C, above 40°C, 
the oxygen consumption rate remained stable at a level of 
about 50 μπιοί of 0 2 g (dry weight) - 1 h ' 

The influence of different treatments on oxygen consump­
tion rates of extracts prepared from compost at stacking and 
phase 1 compost is summarized in Table 1 At 25 and 50oC, 
the same tendency was observed for the oxygen consump­
tion rates of the extracts as for the untreated compost 
samples, although the absolute value of the extracts arc 
lower After centnfugation. which removes the major part of 
the microorganisms present, the oxygen consumption rate of 
both extracts was reduced over 90*^ at 25 and 50°C After an 
additional heat treatment (15 mm at 100°C), the extracts 
showed a negligible oxygen consumption rate At 70oC no 
significant oxygen consumption was observed for both ex­
tracts independent of the treatments applied The influence 
of potassium cyanide known as a strong inhibitor of the 
terminal step of the cytochrome-medialed respiratory path­
way, was studied at л final concentration of 0 5 mM At 25 
and 50oC the addition of potassium cyanide reduced the 
oxygen consumption rate over 70% Subsequent addition of 
benzohydroxamic acid (12 5 mM) did not alter the oxygen 
consumption rates significantly (data not shown) Benzohy­
droxamic acid is known as an inhibitor of the cyanide 
insensitive respiratory pathway (6 22) 

The temperature dependency of the mineralization of 
" C labeled glutamate by phase I compost extracts is shown 
in Fig 4 1 he highest mineralization rate was observed al a 
temperature range of 50 to 55°C, with a steep decline at 
higher temperatures Mean mineralization rates of extracls 
prepared from compost taken at different stages of the 
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ι- Relativ« mineralization rale (*/·)-
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FIG 4 Temperature dependence of the "C labeled glutamate 
minerdlization rates b> phase 1 compost extracts Mineralization 
rale at 55°C was set to 100Í* 

TELPIjumol P04 g d·»- ' ) -

a. i 

2 
• 4 

! * 

i · «Ч*і *4т, 
в 

30 ¿0 50 60 ТО ÍO 
Temperature ( " О 

FIG ^ Biomass content versus site temperature of compost 
samples taken 2 days after slacking Numbers refer to the sampling 
position as shown m Fig 1 TFLP Total exlraciable lipid phos 
phate dw dry weight 

process are summarized in Table 2 Taking into account the 
high standard deviations caused by heterogeneity of the 
material no significant differences were observed 

Total extractable lipid phosphate analyses were used as a 
method to study the biomass content of the composting 
material Figure 5 shows the biomass content versus the 
temperature of the sampling site Τ he data of three indepen­
dent experiments are included In general Iwo levels of 
biomass content were observed corresponding with the 
origin of the compost samples Samples taken at locations 1 
to 4 (Fig 1) covered the temperature range of 32 to 65°C but, 
with only one exception, possessed a biomass content higher 
than 2 3 p.mol of P0 4 g (dry weight)-1 Temperatures of the 
other sites were within the range of 43 to 78=C, while the 
biomass content hardly ever exceeded 2 μιηοΙ of POA g (dry 
weight)-1 The average results of biomass estimations per­
formed on samples taken over Ihe entire composting process 
are presented in Fig 6 From the start of the prewettmg 
penod up to day 18 an increase of biomass was observed 
Later in the process no significant changes in biomass 
content were measured As a result the end product phase I 
compost, contained a sixfold-higher biomass content (2 4 
μπιοΙ of PO, g [dry weight]-1) when compared with the 
starting material 

DISCUSSION 
Microbiological activity and biomass content of the com­

posting material changed during the production of compost 
used as a substrate in mushroom cultivation Both parame­
ters showed a correlation with temperature Microbiological 
activity of untreated compost was measured by oxygen 
consumption The optimal temperature of the oxygen con­
sumption rate of compost at stacking (Fig 3) coincides with 

TABLE 2 Mean mineralization rales of [14CJglutamate of vanous 
aqueous compost extracts at ЗЗ'С 

Compost 
sample 

Mineralization rale 
(mean ± SD nmol of glutamale g 

(dry wtl ' h 'I 

Day 21 
Day 24 
Day 28 

5 
12 
7 

67 i 19 
72 ± 33 
54 + 53 

the optimal temperature of the mineralization rate of phase I 
compost extracts (big 4) This temperature optimum (50°C) 
is somewhat lower than the value of З^С reported by Jens 
and Regan (16) for mixed refuse composting, but equals 
closely the reported optimal temperature for municipal sew­
age sludge composting (18) Oxygen consumption rates of 
extracts are lower than those observed with untreated com­
post This is unexpected since the gas-liquid barrier for 
oxygen diffusion is omitted and probably due to only partial 
extraction of the microbial population It is known that 
ccllulolytic microorganisms strongly adhere to fibers (17) 
Nevertheless, as the same tendency in oxygen consumption 
rate is observed in extracts compared with untreated com 
post a practical system is obtained for testing the influence 
of different treatments or additives or both The dramatic 
reduction in oxygen consumption rates after centrifugalion 
of the extracts or the addition of potassium cyanide demon­
strated the involvement of biological systems in this process 
That the addition of benzohydroxamic acid had no effect on 
the oxygen consumption rate indicates that cyamde-insensi 
live respiration does not play an important role in the 
observed oxygen consumption (22) 

4 | - TELP ( > i m o l P 0 4 g d w " 1 ) - 1 , _ -

Ù. 
0 U 1Θ 21 24 2Θ 

Composting t ime ( d a y ) 

FIG 6 Mean biomass content and standard deviation at dif 
ferenl stages during (he production of compost used as a substrate in 
mushroom cultivation TbLP Total extractable lipid phosphate, 
dw, dry weight 
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Elevated temperature is one of the most extreme environ 
mental stresses to which organisms are exposed (4) Biolog­
ical activity of compost extracts, measured as oxygen con­
sumption and mineralization of glutamate, dropped to zero 
at 70oC In untreated compost an oxygen consumption rate 
of 50 μπιοΙ of 0 2 g (dry weight) l h 1 was observed at this 
elevated temperature The prolonged biological activity may 
be due to the poor heat transfer of the composting maienal, 
resulting in a lower actual temperature on microscale Fur­
thermore, chemical reactions cannot be excluded, but until 
now only vague suggestions are made (21) 

Another illustration of the detrimental influence of the 
high temperature on biological activity is the low biomass 
content observed in samples originating from high-tempera­
ture sampling sites (Fig S) Below 65CC, data can be divided 
into two groups, depending on the position of the sampling 
site The first group consists of samples from positions 1 to 
4 (Fig 1) and is high in biomass contení, whereas the 
biomass content of the second group (samples from positions 
í to 12) does not exceed 2 μπιοΙ of P 0 4 g (dry weight) 1 As 
shown by Rändle and Flegg (20), oxygen concentrations in 
compost tend to drop steeply over a distance as small as 0 5 
m during the first days after stacking Therefore, the low 
biomass content of the second group is a result of the lack of 
oxygen in the corresponding part of the slack 

Leaving the prewelting penod out of consideration, the 
actual production of phase I compost takes 14 days or more 
(10,13). Temperatures of the composting material as high as 
70oC are reached within 1 or 2 days (13) As a result, the 
composting process will be slowed down due to thermal 
mactivation of essential microbial enzymes As the oxygen 
consumption rate of phase I compost is only 25% of the 
oxygen consumption rate of compost at stacking, the highest 
microbiological activity is exhibited immediately after mix­
ing of the constituents Since compost at stacking and phase 
I compost do not differ from each other in terms of biomass 
content (Fig 6) or mineralization rale of glutamale (Table 2), 
the observed lower value of oxygen consumption rate is 
most probably due to depletion of substrate Readily acces­
sible compounds will first be degraded, and as a result an 
accumulation of recalcitrant compounds such as cellulose 
and lignin and biomass in the composting maienal will occur 
From the observations reported here it is highly plausible 
that the composting process can be shortened Taking the 
maximum oxygen consumption rate of 140 μπιοΙ of 0 2 g (dry 
weight ) - 1 IT 1 and assuming that 30% of the dry matter 
should be degraded during the composting process (12), a 
minimal composting time of 3 3 days can be calculated 
Performing the phase I composting process at a temperature 
not exceeding 550C would reduce the composting penod by 
a factor 4 to 5 

Increase of the selectivity of the substrate for A bisporus 
is a major objective of the composting process described 
here During the composting process biomass is formed out 
of readily accessible compounds (Fig 6) and A bisporus is 
able to digest a broad range of substrates, including micro­
bial cell wall compounds (9). But, as the biomass content 
does not increase during the last 10 days of the process, 
continuation of the process after day 18 seems to be mean­
ingless Nevertheless, a continuous succession of microor­
ganisms will occur and an accumulation of killed microor­
ganisms and microbial metabolites which can act as nutrient 
source for A bisporus cannot be excluded Additional 
research is needed to confirm the desired minimal fraction of 
dry matter loss during the composting process, especially 
with respect to mushroom yield Active biomass is assumed 

to be a key index of compost selectivity, but chemical and 
physical factors (c g . straw weakening and increase of the 
water-holding capacity) may also be important 
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INTRODUCTION 

The production of ccmpost as a substrate for the cultivation of Agaricus spp. 
is considered to be an aerobic process. Rändle and Flegg (1978) reported that 
during outdoor canposting (Phase I) oxygen concentrations, measured by gas 
sampling, were greater than 5 % m 86 % of the wmdrow volume. However, con­
sidering the nature of the ccnposting material it seons unlikely that anaero­
bic conditions (anaerobic pockets) can be avoided. The presence of sulfur 
crystals m the center of ccmpost piles (Eicher 1981) supports this view. 

The end-products of anaerobic degradation are carbondioxide and methane. 
Methanogenesis, the last step in this degradation, is brought about by strict­
ly anaerobic bacteria. For an extended description of methanogenic bacteria, 
their ecology and biochemistry, we refer to the review of Archer and Harris 
(1986) . 

In this paper we report for the first time the production of methane in the 
preparation of mushroan ccmpost. To evaluate the role of anaerobic processes 
we determined the methane production and total counts of anaerobic and metha­
nogenic bacteria at several stages during ccmposting. Furthermore, the isola­
tion of a pure culture of a methanogen fron canposting material is described. 

MATERIALS AND METHODS 

Sample collection 
Air samples were taken fron the air stream escaping f rem the stacks. To mini­
mize the influence of the wind an open stainless steel barrel (I.D. 0.64 m) 
was placed on top of the stack. This barrel had an opening at the top (I.D. 
2.5 cm) and a anali sampling tube at the side, which ended m the center. The 
total height of the barrel amounted to 1.2 m. After positioning the barrel, 
the air inside the barrel was allowed to stabilize for about 15 m m before 
air sanples were taken by the use of 60 ml syringes. Ininediately after 
sampling 1 ml of ethane was injected mto the syringe to serve as 
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an internal standard. Ventilation rates were calculated from air velocities 

measured at the top opening of the barrel with a Wallac GGA-23s thermo-

anemometer. 

Compost samples were collected at different stages of the process on a 

commercial compost farm. Unless stated otherwise, samples were taken at 

about 30 cm inside the stacks. The samples were immediately transported to 

the laboratory in closed plastic bags without any precaution to prevent 

cooling. 

Incubation of compost samples 

Compost samples, taken at different places representing the same stage 

during composting, were mixed thoroughly by hand before subsamples of about 

25 g wet weight were placed into 500 ml serum bottles. The bottles were 

closed with η-butyl rubber stoppers and aluminum screw caps. In case of 

incubation under a gas atmosphere other than air, the bottle was flushed for 

5 m m with the desired gas mixture. To all bottles 1 ml of ethane was added 

to serve as an internal standard. Incubations were performed at 55
0
C unless 

indicated otherwise. 

Methane analysis 

Methane concentrations were determined gaschromatographically according to 

Hutten et al. (1981). 

Most probable number method for counting bacteria 

To estimate the number of anaerobic as well as methanogenic bacteria per g 

dry matter, 100 g of compost were shaken by hand for 15 min with 200 ml of 

tap water at room temperature. From the resulting liquid phase decimal 

dilutions were prepared in triplicate in medium. Strict anaerobic techniques 

described by Balch et al. (1979) were used. The medium for counting both 

anaerobic and methanogenic bacteria contained besides 300 ml of compost 

extract per 1 the following components (g/1): NaHCOj , 10.0; NaCl, 2.0; 

КгНРОц, 1.0; КНгРО,., 1.0; (NHi1)2S0í, 0.5; MgS0^.7H20, 0.2; СаСІ2.2Н2
0, 0.2; 

yeast extract, 0.5; glucose, 0.5; maltose, 0.5; soluble starch, 0.5; pepton, 

0.5 and L-cysteine HCI.2H2O, 0.5. The compost extract was prepared by 

shaking 50 g of compost with 400 ml of tap water for 15 m m . The resulting 

liquid was sterilized (20 min, 120
o
C) and centrifuged (10,000 χ g for 

10 min). The supernatant was added to the rest of the medium just before 

sterilization. The gas phase consisted of H
2
/C02(80%/20%). Incubations were 

performed for 5 days at 55
0
C without agitation. For determining total anaer­

obic bacteria growth was monitored by turbidity, while methane production 

served as an indicator for growth of methanogenic bacteria. Calculations 

were done by the use of the probability tables presented by de Man (1975). 

Isolation of methanoRenic bacteria 

Enrichment of methanogens was performed on Medium 1 of Balch et al. (1979) 

modified by Kiener et al. (1983) in 100 ml serum bottles. The procedures 

followed were essentially the same as described by Blotevogel et al. (1985). 

Cultures were screened for methane production and coenzyme Fi, ̂ -fluorescence 

as reported by Doddema and Vogels (1978). 

RESULTS 

Methane measurements at the commercial compost farm 

The methane concentrations measured in stationary air at several stages of 
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the Phase I composting process are summarized in Table 1, together with the 

calculated molar production rates. The methane concentration in the atmos­

phere is about 1.5 ppm (Ehhalt, 1979). The ppm values measured are the net 

result of methane production and methane consumption since oxidation of 

methane by methane oxidizing bacteria (Dalton, 1981) can not be excluded. 

Highest concentrations were recorded above the flat heap after about 3 days 

and above the "young" windrows (day 20-22). 

From the results (Table 1) an average concentration of 915 ppm for all wind­

row samples was calculated, with a mean air flow of 6.90 m
3
/m

2
.h. Assuming a 

degradation of 30% of total solids (taken as cellulose) during Phase I we 

calculated that at least 3.3% of it will be brought about by anaerobic 

processes resulting in methanogenesis. 

To get some information about the numbers of anaerobic bacteria present 

during the composting process we counted total anaerobic bacteria and 

Table 1. Methane concentrations in air escaping from the stacks at several 

stages of the outdoor composting process. 

Day 

Straw bath (0-11) 

Flat heap (12-15) 

.. .. (16-19) 

Windrows (20-22) 

(23-25) 

(26-28) 

η 

13 
27 
21 
23 
16 
22 

СНц concentration* 

ppm 

103 (16-278) 

583 (27-2515) 

4895 (77-44742) 

2249 (13-7420) 

89 (5-480) 

409 (26-1790) 

Air flow 

ni
3
/m

2
.h 

7.09 

6.80 

5.54 

6.11 

6.80 

7.78 

CHi, production 

mol/m
2
.d 

0.73 

3.96 

27.12 

13.74 

0.60 

3.18 

•Concentrations are given as mean values. Values between brackets 

indicate the range. 

pmol CH^/d g dry weight 

35 i.0 45 50 55 60 65 70 

température ('CI 

Fig . 1. Methane production r a t e s from windrow samples as a function of 
incubat ion tempera ture . 
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methanogens using the most probable number (MPN) method. Counts of methano-

gens ranged from 10
5
-10

8
/g compost (dry weight) for samples taken from straw 

bath, flat heap or windrows, while for total anaerobic bacteria values of 

lO'-lOVg compost (dry weight) were calculated. 

Experiments under laboratory conditions 

By incubation of mixed windrow samples (day 20-28) at various temperatures 

the optimum temperature for methane production was determined under labora­

tory conditions (Fig. 1). The temperature optimum was found to be ЗО-ЗЗ'С 

with a slow decrease in methane production at lower temperatures (35-45
0
C) 

and a sharp decrease at higher temperatures (60-65
0
C). No methane production 

was recorded above 70
o
C. 

The gas atmosphere in the sealed bottles (air; H
2
/C02, 80%/20% or N2/CO2, 

80%/20%) appeared to have no effect on initial methane production rate, 

however under H2/CO2 (80%/20%) production stopped after several days. 

Samples taken from the outside of a compost stack produced amounts of 

methane comparable to samples taken from the inside. 

Methane production was measured in sealed bottles under standard conditions 

(air, 55
0
C) with samples of composting material taken at different stages of 

the outdoor composting process (Fig. 2). Straw bath samples showed low 

methane production. Highest values were recorded with flat heap samples and 

samples from "young" windrows (day 22). This is in agreement with the in 

situ results presented in Table 1. During Phase I (windrows) we observed an 

overall decrease in methane production towards the end (day 28). Rather low 

production rates were measured directly after turning of the windrows. 

jimol CH^/d g dry weighf 

8OO-1 

4 11 15 U 22 

CD slraw bafh 

ШШ flat heap 

H Phase I (windrows! 

Я Phasen 

26 2β 31 ìì 35 

composting time (days) 

Fig. 2. Methane production rates during the composting process. Samples 
were taken and incubated as described in Materials and Methods. 
Arrows indicate turning of the windrows. 
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For comparison we determined methane production using samples taken at some 

stages during Phase II. At the start of Phase II (Fig. 2, day 31) values 

were comparable with values at the end of Phase I (day 27-28). Until the end 

of Phase II there was an increase in methane production (day 33 and 35). 

With full-grown compost no methane production was observed. 

Isolation of methanogenic bacteria 

From a Phase I compost extract a non-motile, rod-shaped methanogenic 

bacterium was isolated and brought into pure culture on solid incubation 

medium. Fig. 3 shows a transmission electron micrograph of the isolated 

methanogen. The isolate occurred as single cells (0.3 χ 1.8 цт) and some­

times in chains of 2-4 cells. 

Fig. 3. Transmission electronmicrograph of a methanogenic bacterium isolated 

from Phase I compost. Bar represents 1 ym. 

DISCUSSION 

From the results presented it is evident that methane production occurred at 

all stages of the composting process (Phase I and Phase II). A good 

correlation exists between direct measurements (Table 1) and experiments 

under laboratory conditions (Fig. 2). Since methanogenesis is brought about 

by strictly anaerobic bacteria, anaerobic conditions must occur in the 

composting material. Samples taken from the outside of the compost stacks 

were as potent in methane production as samples taken from the inside and 

the presence of air did not affect methanogenesis in sealed bottles. There­

fore we assume anaerobic conditions occur in pockets inside straw fibers. 

The presence of these anaerobic micro-environments do not exclude the 

previously proposed anaerobic core of windrows (Eicher, 1981). 
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The results presented now do not allow a determination of the exact contri­
bution of anaerobic bacteria during the preparation of compost. Since 
methane is a final product of anaerobic processes, the results indicate that 
at least 3.3% of the degradation is brought about by anaerobic bacteria. The 
MPN-method revealed rather high counts of anaerobic bacteria, comparable to 
those reported for aerobic bacteria (Fermor et al., 1985). The major 
bacterial species involved in Phase I are members of the genus Bacil jus 
(Fermor et al. 1985). Some of these species isolated from compost are 
capable of growing under anaerobic conditions (Claus and Berkeley, 1986) and 
may therefore contribute to the high numbers of anaerobic bacteria. 
Full-grown compost did not produce methane. Methanogenic bacteria arc at 
this stage either inactivated or consumed. The latter is supported by Fermor 
and Wood (1981) who proved that Agancus bisporus can grow on heat-killed 
bacteria as sole source of carbon and nitrogen. 
A methanogenic bacterium was isolated. It produced high amounts of methane 
and showed typical fluorescence of coenzyme ¥¡,20 (Doddema and Vogels, 1978). 
Its shape indicates that the isolated bacterium may belong to the family 
Methanobactenaceae. More characteristics, e.g. pH-optimum, temperature 
optimum, substrate specificity and cofactor composition have to be deter­
mined in order to get more information about the exact taxonomie place of 
the isolated strain. This work is in progress. 

SUMMARY 

The production of compost as a substrate for the cultivation of Agancus 
spp. is considered to be an aerobic process. This paper reports for the 
first time the production of methane during the Phase I composting process. 
Analysis of the air present in and emerging from straw bath, flat heap and 
windrows revealed the presence of 90-4900 ppm methane. During Phase I 
(windrows) a mean production of 5.9 mol methane/m2 per day was measured. 
Total counts of anaerobic and methanogenic bacteria determined by the most 
probable number method were 107-109 and 105-10e/g compost (dry weight), 
respectively. Laboratory experiments with compost samples in sealed bottles 
revealed a optimum temperature for methane production of 50-55oC. Samples 
taken at several stages of the composting process all produced methane in 
amounts varying from 10 to 650 umol/day per g dry weight. Only full-grown 
compost did not produce methane. From windrow samples a methane bacterium 
was isolated and brought into pure culture. The results indicate that 
methane is formed during all phases of the outdoor composting process. Since 
methanogenesis is brought about by strictly anaerobic methanogenic bacteria 
it is evident that anaerobic fermentation is part of the process. The occur­
rence of anaerobic micro-environments inside straw particles is discussed. 
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1 SUMMARY 

During the first stage of the preparation of 
mushroom compost oxygen is believed to be read­
ily available However we measured methane in 
the evoking air above the compost piles and were 
able to isolate thermophilic methanogenic bactena 
from this compost The isolates grow only on H 2 
and C0 2 as energy and carbon source and do not 
require complex factors for growth On the basis 
of nutritional and morphological characteristics 
these methanogens were identified as strains of 
Methanobactenum thermoautotrophicum 

2 INTRODUCTION 

Worldwide production of edible mushrooms is 
increasing year after year In 1985 the production 

Correspondence to Ρ J L Denkx Department of Microbiology 

Faculty of Science University of Nijmegen Toemooiveld 

6525 FD Nijmegen The Netherlands 

of Agancus bisporus, the most cultivated 
mushroom in the western world, exceeded a total 
of 1228000 tons [1] Due to its high, readily 
digestible protein content and its low caloric value 
this mushroom fits well in the western diet 

Compost used as a substrate for the cultivation 
of Agancus spp is produced in a two stage pro­
cess [2] The first stage (Phase I) is done outdoors 
After wetting, the constituents are thoroughly 
mixed and placed m windrows with a cross-sec­
tion of two by two meters for 7 days The second 
phase (Phase II) is performed indoors under 
strictly controlled conditions [3] 

During Phase I the temperature in the windrows 
gradually increases to an average temperature of 
63° С at the end of Phase I Due to the inho-
mogeneity of the composting material, and the 
heal lost on the outer surface, temperature gradi­
ents of 25 to 80° С are observed It was shown 
that thermophilic bactena are abundant [2] Al­
though no forced aeration is applied in the 
windrows, Phase I is considered to be aerobic By 
means of gas sampling, oxygen concentrations are 
shown to be higher than 5% in 86% of the windrow 
volume [4] 
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However, we found up to 45000 ppm of 
methane in the evoking air above the compost 
piles [5] Methane together with carbon dioxide 
form the main end products of the anaerobic 
breakdown of organic matter [6] Since only 
methanogenic bacteria produce methane in rea­
sonable amounts we expected thermophilic 
methanogenic bactena to be present in the com­
posting material 

The aim of this investigation was to isolate and 
charactenze thermophilic methanogenic bactena 
from mushroom compost 

3 MATERIAL AND METHODS 

3 1 Total counts, enrichment and anaerobic tech­
niques 

Mushroom compost was obtained from a com­
mercial farm Immediately after sampling the 
compost was transported to the laboratory in 
closed plastic bags No precautions were taken at 
this stage to prevent cooling nor to exclude oxygen 
Compost samples were taken at the end of Phase 
I Total counts of thermophilic methanogenic 
bactena were estimated using the most probable 
number method at an incubation temperature of 
55 0 C 

Ennchment was performed by incubating 25 g 
of Phase I mushroom compost and 5 ml water m 
sealed bottles at 55° С Methane production was 
recorded daily After one week 1 ml of liquid was 
transferred into 100 ml serum bottles, filled with 
20 ml of medium 1 [7], modified according to 
Kiener and Leisinger [8] Bottles were incubated 
at 55° С under a H 2 / C 0 2 (80%/20%, v/v) atmo­
sphere in a rotary shaker (200 rpm) Growth on 
solid medium was performed by adding 2% (w/v) 
agar to the medium Plates were incubated in 
anaerobic jars at 55° С without agitation under 
the desired atmosphere The isolation of the 
methanogenic bactena was performed according 
to Blotevogel et al [9], using stnet anaerobic tech­
niques [7] 

3 2 Determination of bacterial growth and methane 
Optical density measurements at 600 nm in a 

Zeiss-M4 QUI-spectrophotometer served as indi­

cation of growth Methane was determined 
according to Hutten et al [10], using ethane as an 
internal standard 

3 3 Microscopy 
The methanogenic bactena were detected and 

viewed by epifluorescence with a Leitz Dialux 
microscope equipped with a Ploemopak К 2 3 
illuminator for incident light [11] Fixation of cells 
for scanning electron microscopy was done with 
2 5% glutaraldehyde 2-Methoxy-elhanol was used 
for dehydration The cells were dned following the 
method of critical point drying of Horndge and 
Tamm [12] and subsequently coated with gold 
Scanning electron micrographs were taken with a 
JEOL type JSM T-300 Preparation and fixation 
for transmission electron microscopy was per­
formed according to Doddema et al [13] Electron 
micrographs were taken using a Philips 300 elec­
tron microscope 

3 4 Cofactor analysis 
Methanogenic cofactors were extracted and 

analyzed by HPLC using 7,8-didemethyl-8-hy-
droxy-S-dea/anboflavin (FO) as an internal stan­
dard [14,15] 

3 5 DNA base composition 
Bacteria were disrupted by passage through a 

French pressure cell at 138 MPa. DNA was iso­
lated and punfied from the cell homogenate by 
the method of Beji et al [16] The thermal 
dcnaturation (melting point) performed by the 
standard procedure of Marmur and Doty [17] was 
used to determine the mol% G + С 

4 RESULTS 

4 1 Methane production and total counts 
Phase I compost contained up to 2 x 10 8 

thermophilic methanogenic bacteria per gram dry 
matter On the compost farm we measured an 
average of 410 ppm methane in the evoking air at 
the end of Phase I, which implies a production of 
25 μ mol methane per gram dry matter per day 
Under laboratory conditions Phase I compost 
samples produced about 6 μ mol methane per gram 
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dry matter per day Production of methane went 
on for over three weeks 

4 2 Enrichment and isolation 
Wet mounts of the cultures taken after one 

week were examined by fluorescence microscopy 
Rod-shaped, coccoid and sarcina-like methano-
gens were recognized by their autofluorescence 
Rod-shaped bacteria formed the majonty among 
the fluorescent bactena High amounts of non-flu­
orescent bacteria were present To reduce the 
growth of the latter penicillin G (80 μg/ml) and 
vancomycin (20 /ig/ml) were added after transfer 
to liquid medium After one week of incubation 
the relative amount of methanogemc bacteria had 
increased significantly, as shown by fluorescence 
microscopy In an anaerobic glove box [10] culture 
samples were streaked onto agar plates, containing 
medium 1 plus 2% (w/v) agar The plates showed 
single colonies of the same appearance after one 
week of incubation at 55° С under H2/C0 2 Pur­
ity was tested by transferring a single colony to 
liquid medium 1 with the omission of acetate and 
formate No growth was observed after 3 weeks of 
incubation at 55° С under a N 2 / C 0 2 (80%/20%, 
v/v) atmosphere Cultures in liquid medium 1 
produced high amounts of methane under Нз/СОз 
atmosphere A good correlation was found be­
tween the methane production and the increase of 
the optical density of the culture at 600 nm (data 
not shown) Therefore we used the methane pro­
duction rate as a parameter to determine the dou­
bling time in the following experiments With 
fluorescence microscopy only rod-shaped bactena 
were visible, showing a strong fluorescence All 
these observations indicated a pure culture The 
isolate was named strain CNC-1 During the above 
described procedure we isolated another methano-
gen, showing only in two aspects a difference with 
the isolate described so far The colonies on agar 
plates showed a brighter surface and the suscept­
ibility to sodium chloride was much higher A 
concentration of 0 2 M increased the doubling 
time of this isolate to 8 hours This isolate is 
referred to as strain CNC-2 The results shown 
hereafter were obtained with strain CNC-1 

Although high amounts of methane were ob­
served from enrichments on acetate as sole carbon 

source we were not yet able to isolate an aceto-
clastic methanogen 

4 3 Cell and colony morphology 
Cells stained Gram-positively and were rod-

shaped and 0 3 + 0 0 5 Χ ΐ 8 ± 0 4 μ ι η ι η size Cells 
showed the tendency to form chains of 2 or some­
times 4 cells (Fig 1A) Neither filaments nor 
motility were observed using light microscopy 
Multiplication occurred by binary fission (Fig 
ID) Colonies were yellowish green, round, convex 
and smooth on agar plates, with entire edges 
Within 7 to 9 days a colony diameter of 2 to 3 mm 
was attained Scanning electron micrographs 
showed a smooth outer surface with no evidence 
of flagella (Fig IB) The only internal structures 
visible on ullralhin sections were mesosome-hke 
bodies (Fig 1С), which may be artefacts of pre­
paration [18] 

4 4 Growth substrates and factors 
H 2 and C 0 2 were the only substrates used by 

the isolate for growth and methane production 
No growth was observed and no methane was 
formed after two weeks of incubation with for­
mate, acetate, methanol, melhylamines and CO as 
substrate The isolated bactena grew well on 
medium 2 of Balch [7] No decrease in methane 
production was observed on transfemng the 
bactena six times on this medium From this it is 
concluded that no complex factors are needed for 
growth and the isolated bactenum is capable of 
autotrophic growth 

4 5 Effect of temperature, salt and pH on growth 
and methane production rate 

Optimal temperature for growth was de­
termined under static conditions The total amount 
of methane produced during 7 h of incubation 
served as an indicator for growth The isolated 
bactenum grew with an optimal doubling time of 
about 5 h at temperatures between 65 and 70° С 
No growth was found above 80° С (Fig 2) In a 
rotary shaker at 250 rpm a doubling time of 1 2 h 
was found at 55 0 С 

Sodium chloride concentrations up to 0 7 M in 
the medium had no significant influence on the 
methane production rate At a concentration of 1 
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Fig. 1. Morphology of strajn CNC-1. (Bars represent 1 μτη) A: Interference contrast photomicrograph B: Scanning electron 

micrograph С Transmission electron micrograph of a longitudinal section; the arrows indicate the mesosome-like structures. D: 

Transmission electron micrograph showing a bacterium dunng binary fission (arrows). 

M growth was strongly retarded (Td 55 h). By 
changing the amount of sodium hydrogen 
carbonate in the buffer different pH values of the 
medium were obtained. Although the influence of 

different concentrations of sodium ions seemed to 
be minor, the total concentration of sodium ions 
was adjusted with sodium chloride to 0.57 M. 

The highest growth rates were obtained at pH 
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methane produced (>jmol/7h) 

2С0 

60 70 

temperature (0C) 

Fig 2 Methane production after 7 h of incubation as function 
of temperature Points represent the means of triplícate expen-

menls. 

Cofactor content of the isolated methanogen Meihano· 
baaenum thermoautotrophicum strain Δ Η 

Compound 

Coenzyme F 4 2 0 - 3 " b 

Coenzyme F420-2 » 

Coenzyme F420-2 ': 

Methanoptenn c 

VilaminB^-HBl 1 " 

Cofaclor content (Mmol/g protein) 

New isolate 

006 

1 11 

1 09 

92 1 

0 19 

Λ/ thermoau· 

totrophtcvm 

0 26 

2 01 

2 80 

1172 

0 07 

1 as determined by duorometnc detection at 405-470 nm 

(excitation-emission wavelengths) 
1 the number of glutamate residues in the side chain is indi­

cated by - 3 and - 2 
: as determined with UV-speclrophotometer at 250 nm 
1 HBI 5-hydroxybenzimidazolylcobaiTude 

values between 6.75 and 6.95. Good growth was 
even observed at a pH above 8.5 and as low as pH 
6.3 (Fig. 3). In the presence of SDS (sodium 
dodecyl sulfate) growth was slightly inhibited at a 
concentration of 0.015Í (w/v), and was com­
pletely absent at 0.03% (w/v), but no lysis oc­
curred up to 0.03% (w/v) SDS. 

4.6. DNA base composition and cofaclor analysis 
The mol% G + С of both the isolated bactenum 

and Methanobacterium thermoautotrophicum strain 
Λ H were determined, revealing 48.1 and 47.0 mol% 
G + С, respectively. The cofactor analysis was 
performed with HPLC-system V for the isolated 
bacterium and M. thermoautotrophicum strain ЛН, 
grown under identical conditions [15]. A striking 
resemblance between the two strains is found (Ta­
ble 1). 

рн 

Fig 3 Doubling time (Td) a£ a function of the pH pH values 
are registered pnor to the expenmenl in parallel bottles and in 
the incubated bottles immediately after the expenmenl 
Changes in pH were always less than 0.2. The mean value is 

taken as the pH of incubation. 

5. DISCUSSION 

Until now methanogens are isolated from places 
where the absence of oxygen is obvious, e.g. ther­
mal volcanic environments, sewage sludge di­
gesters, sediments and rumen [6,19]. Nevertheless 
methanogenesis is also reported for environments 
where oxygen production occurs under light 
[20,21]. Here we report the isolation of a 
methanogen from mushroom Phase I compost, an 
environment, where oxygen is believed to be read­
ily available. The high number of methanogemc 
bacteria found in Phase I compost implies that 
this population is about equal in number to the 
aerobic thermophilic population [2]. 

In pure culture, methanogens are more sensitive 
to oxygen in comparison to their natural environ­
ment. Here they often are associated with faculla-
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lively anaerobic bactena providing protection 
against oxygen. Exposure to air reduced the num­
ber of colonies formed on plate dramatically as 
shown by Kiener and Leisinger [8]. For Melhano-
bactenum thermoautotrophicum strain Marburg no 
viable bactena were found after less than one day 
of exposure The presence of methane in the evok­
ing air of the windrows is a strong evidence for the 
occurrence of anaerobic environments [5] The 
isolation of a methanogemc bacterium from the 
composling material confirms this view Although 
oxygen may be present on macro scale throughout 
the windrow, anaerobic micro niches may occur 
due to a high metabolic activity of aerobic and 
facultatively anaerobic bactena 

The isolated bactena show no significant mor­
phological and nutntional differences with M 
thermoautotrophicum strain Δ Η (22] Further evi­
dence for their similarity was obtained from the 
mol% G + С and the cofaclor content, determined 
after growth under similar conditions. The dif­
ference found in mol% G + С amounts to 11%. 
According to Schleifer and Stackebrandt [23] the 
difference should be at least 5% to distinguish 
between two different species Moreover Touzel el 
al. [24] summanzed different mol% G + С values 
including M thermoautotrophicum strains il H and 
Marburg Depending on the method used the val­
ues for M thermoautotrophicum strain A H ranged 
from 48 6 to 52%. Differences in cofactor content 
between our strain and strain A H are small com­
pared with the values of a vanety of different 
strains of methanogemc bactena [14]. 

On the basis of these siimlanties the isolates 
should be regarded as strains of M thermoauto­
trophicum and they will be indicated as M ther­
moautotrophicum strain CNC-1 and M thermoau­
totrophicum strain CNC-2. 
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Large scale composting facilities иге known to cause environmental problems, mainly through pungent air 
emitted by composting material In air samp/es taken above stacks set up lo prepare compost used as a 
substrale in mushroom cultivation, several volaille compounds were identified by means of the coupled 
techniques of gas chromatography and mass speclrography Among the compounds identified, sulfur 
containing compounds [H2S, COS CH,SH. CS2, (LH^S, (CH1)2S2 and <CH,);S,| are the most conspicuous 
in causing a nuisance Quantification of these compounds was performed by concentrating a relatively small air 
sample on Тепах GC The sampling method appeared to he very useful under held conditions During the 
composting process, Ihe conienlration of the volatile sulfur compounds m emitted air ranged from 1 to 35 
μιποΙ/πΓ5 The highest concentrations were obtained at Ihe end of Ihe outdoor process Total sulfur emission 
amounted to 8 3 mg of sulfur per kg (fresh weight) of compost The end product still contained 2 58 g of sulfur 
per kg (fresh weight) of compost Suggestions about the origin of the volatile sulfur compounds are made 

Among the edible fungi Agancus spp constitute more 
than 75% of the total world production In The Netherlands 
115 000 Ions of mushrooms were produced in 1987 (15) The 
substrate for the cultivation of Agancus spp is a specially 
prepared compost Straw neh horse manure and chicken 
manure are the mam constituents As a result of the steadily 
growing demand for compost the amount of horse manure is 
no longer sufficient and therefore wheat straw has become a 
more important basic constituent The process of compost 
mg has been described in detail in previous papers (6 22) 

Dunng phase I of the composting process microbial 
degradation of readily available organic compounds is stim 
uldted by thorough wetting and mixing of the constituents 
On day zero prewetted wheat straw and horse manure are 
mixed and set up in a large pile On day 8 gypsum and 
chicken manure are added After thorough mixing the 
materia] is placed in slacks (approximately 1 8 by 1 8 m in 
cross section) for 7 more days In 2 weeks the outdoor 
process is completed resulting m a dark brown product 

In the course of phase I the temperature nscs gradually to 
an average of 630C at the end of phase I Because of heat loss 
at the outside of the stacks temperature gradients range 
from 25 to as high as 80ÜC in the inner parts of the stacks As 
a result of these temperature gradients air moves through 
the stacks and water vapor and malodorous compounds are 
transported to the environment Dunng phase I consider 
able amounts of ammonia arc released as a result of ammo 
mfication (21) but the identities of other compounds present 
in the air arc still unknown Miller and Macaulcy (13) 
compiled a list of compounds implicated in odors from 
different composting materials Among these especially 
sulfur or nitrogen containing volatile compounds are known 
to cause a nuisance at very low concentrations (23) The 
present paper deals with the identification and quantification 
of several volatile sulfur compounds present in air emitted 

* Corresponding author 

from stacks during phase 1 of the composting process 
performed to produce a substrate for mushroom cultivation 

MATFRIALS AND MFTHODS 

Sampling site Samples of effluent air above compost 
stacks were taken A bottomless stainless steel barrel (1 20 
m tall inner diameter 0 64 m) was placed on lop of the 
stacks to mimmue the influence of wind (Fig 1) The barrel 
had an opening at the top (inner diameter 2 5 cm) and a 
small sampling tube at the side which ended in the center 
After positioning of the barrel ihe air inside was allowed to 
stabilize for at least 15 min Air temperature and velocity 
were measured at ihe top opening with a Wallac GGA 23S 
thermoanemometer 

Sulfur determination To measure total organic and mor 
game sulfur contents compost samples were dried at 70oC 
and milled to pass through a 5 mm (aperture diameter) sieve 
For total sulfur analysis samples were degraded as de 
scribed by Tabatabai and Bremner (19) For inorganic sulfur 
analysis samples were treated in the same way after being 
ashed at 550oC Sulfate was measured by the inductively 
coupled plasma technique (3) Organic sulfur content was 
taken as the difference between the total and inorganic sulfur 
contents Standard addition of methionine and CaS04 

2H20 to samples resulted in recovery of 80 ± 10 and 100 ± 
11% respectively of the total sulfur estimations When 
inorganic suifur was estimated the same additions yielded 
recoveries of 2 ± 8 and 97 ± 9% respectively This proves 
that organic sulfur is completely volatilized by the ashing 
procedure 

Qualitative analysis of air samples Large volume (30-11 ter) 
air samples were obtained via the top opening of the barrel 
with a Dupont Ρ 4000 pump Air was sucked through char 
coal tubes (70 b> 4 mm [inner diameter]) consisting of two 
compartments The first contained 100 mg of charcoal and 
the second contained 50 mg and served as a control to lest 
overloading (25) Tubes were positioned near the center of 
the barrel and connected with Teflon tubing to the pump 
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pump * 1 

нч 
syringe *-- ù barrel 

compo 

FIG 1 Schematic diagram of the air sampling procedure used in 
this study for more details see the texi 

Contact of the air sampled with any material before entering 
the tubes was avoided The sample rate was adjusted to ^00 
ml/mm and was checked before and alter sampling Tubes 
were closed with Teflon plugs immediately after sampling 
and stored at 40C until analyzed The charcoal was removed 
from the tubes, and compounds bound to the charcoal were 
desorbed with a minimal amount of carbon disulfide at room 
temperature for at least 1 h Alternatively, benzyl alcohol 
was used in the same way to examine the occurrence of 
carbon disulfide in the air samples (10) Liquid samples 
obtained in this way were injected into a Hewlett-Packard 
5790A gas Chromatograph using either a flame ionization 
detector or a VG analytical 7070E mass spectrograph De­
tails of the gas chromatographic system are summan/ed in 
Table 1 (system A) The temperature of the mass spectro­
graph source and the ionization energy were 190oC and 70 
cV, respectively 

Quantitative analysis of air samples. Small-volume (60-m]) 
air samples were taken from the side opening of the barrel 
with a Monoject syringe equipped with a Teflon piston The 
sampling procedure used was that of fangerman (20) Ex­
cess water was removed by passing the sample through a 
tube containing СаСІз 2H2O Thereafter, the sample was 
passed through a tube (80-m m length, 4-mm inner diameter, 
6-mm outer diameter) containing 200 mg of Tenax GC 
(80/100 mesh) To trap volatile compounds, the Tenax tube 
was cooled in liquid nitrogen (-1% 0 C) The Tenax tubes 
were kept at - 1 % 0 C until analysis was performed Tanger 
man (20) showed a negligible loss of volatile sulfur com 
pounds on storage of the tubes for 1 week at -1960С 
Analyses were performed within 24 h on a Packard 438A gas 
Chromatograph equipped with a packed glass column The 

—Γ­
ΙΟ 20 

retention tin ϊ (mm) 

FIG 2 Typical chromatogram obtained with system Λ by injec­
tion of 1 μΙ of (he carbon disulfide phase after dcsorption Unequiv­
ocally identified peaks are numbered as follows 1 propanone 2. 
dimethyl sulfide 1 carbon disulfide, 4 bulanone ^ 4 meihylbu-
tanone, 6 benzene, 7 2-pentanone 8 dimethyl disulfide 9, di­
methyl t π su I fide 

specifications of the two different systems are summarized in 
Table 1 (systems В and C) The special design of the inlet 
system of the gas Chromatograph enabled replacement of a 
Tenax tube within seconds (20) As suggested in the litera­
ture (4, 18), the flame photometer was calibrated for every 
compound separately with authentic compounds, a range of 
40 pmol to 1 7 nmol was used Dilutions were made by using 
the single-ngid-chamber method as described by Barrait (2) 
To avoid adsorption, all glassware was treated with dichlo-
rodimelhylsilane (SÇf [wt/vol] in toluene) before use 

Chemicals. Dimethyl tnsulfide was purchased from East­
man Kodak Co , Rochester, Ν Y Al l other chemicals ong-
inated from E Merck AG, Darmstadt, Federal Republic of 
Germany 

RESULTS 

Qualitative analysis of air samples. Figure 2 shows results 
of a typical qualitative analysis with system A ( Iable 1) 
Similar analyses were performed by using the mass spectro­
graph as a detector The resulting mass spectra were com­
pared wilh those of authentic compounds to identify the 
components As additional evidence, retention times were 
checked with authentic compounds by using three gas chro­
matographic systems (Table 2) Analysis of the second 
section of the charcoal tube showed no signals other than 

TABLE 1 Gas chromatographic systems used for idenitfìcalinn and quandñcaiion of volatile compounds emitted dunng production of 
compost used as a substrate in mushroom cultivation 

System 

A 
В 

С 

Pdcking 

t P S i l t f C B 
20Я SE-30 on Chromoborb 

PNAW (60/80 mesh) 
Carbopack В HT10O (40/60 

mesh) 

Length 
(m) 

2"! 
1 <0 

2 0 0 

Column s 

Outside 
diam 
(mm) 

0 4S 
6 0 

6 0 

pecificatmns 

Inside 
diam 
(mm) 

0 32 
4 0 

4 0 

Nitrugen 
По* 

(ml/mm) 

1 ^ 
90 

90 

Gas chromalograph 
specifìtalions 

Dcleüor 

H D " 
ΓΡΙ)" 

FPD 

Detector 
temp 
C O 

300 
190 

190 

Injector 
temp 
I t ) 

270 
190 

190 

Ininal 
lemp 
C O 

40 
SO 

80 

Temp program specifications 

Intitial 
time 

tmin) 

10 
3 

1 

Temp 

('C/ 
mm) 

10 
35 

30 

Final 
lemp 
( T ) 

200 
190 

140 

Final 
lime 

(mm) 

10 
3 

27 

' FID Flame lonizahon detector 
ь ^ D Fldme photomeme dctccior 
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T A B I F 2 Physical properties and retention limes ol auiheniiL compounds idtniified in iht. 4ІІГ .іЫпе Lompost slacks dunng 
produciion of a substrate for mushroom cultivaiion 

Compound 

H>dragen suinde 
Cdrbonyl sulfide 
Ammonid 
Methanethiol 
Dimechyl sulfide 
Carbon disulfide 
Propanone 
Butanone 
Ì Melhylbutanone 
2 Pentanone 
Dimethyl disulfide 
Dimethyl tnsulfide 

Dolling pomi 
I C I 

- 6 0 7 
•¡0 2 

- 1 3 IS 
6 2 

17 1 
4 6 1 

^6 2 
79 6 
94 S 

102 0 
109 7 
1 6 V 

100*3 récognition lc\el 
Ipprn [μ||ικ.ι|> 

1 

' SS 

unis 
O l 

0 3 

3 0 0 

6 

s 

1 0 

0 0 0 6 
10 , ' 

(Mor incJi.s 
M 2t) С 

1 70 χ 10 

— 
1 67 χ 10' 
s 11 χ 10" 
2 76 χ MV 
1 60 χ 10" 
7 20 χ 10 
1 S4 χ ΙΟ4 

_ 
2 00 χ 1(1' 

— 
-

S w i m Λ 

ι 

Γ 

ϊ 

τ 

4 01 
4 ÍS 
1 7 ] 

4 84 
6 ÍS 
7 22 

10 11 
19 ÍS 

RilLOlion lime (min) 

SvsKrn В 

0 46 
0 49 

с 

1 12 
4 0 4 

1 S2 

\ 
г 

χ 

χ 

S 39 
7 10 

Svstem С 

0 49 
0 78 

χ 

1 IS 
2 9 8 

З П 

χ 

χ 

г 

t 

7 86 
26 1 

Ί hese ddla are from references 21 and 24 
* Denned as the rano between the vapor pressure at 204 and OIL \WFI recognition level both expressed in parts per milliti 
' τ not determined or not deleitable uiih the system used 
'' — Data not available m the literature 
' Datum from refereme 16 
' Datum from reference S 

(microlucrs per liter! (21) 

those resulting Ггот carbon disulfide which was used m Ihe 
desorption procedure The carbon disulfide used conidined 
small amounts of benzene (dala not shown) Application of 
benzyl alcohol as a desorption solvent revealed Ihe presence 
of carbon disulfide in the air sampled As expected the 
benicne signal at 6 63 min was not found in this analysis 
The physical and odorous properties of the components 
identified are given in Table 2 As shown by the values of the 
odor index, the sulfur compounds were much more readily 
delected by the human nose than for example ammonia or 
2 pentanone For that reason, our attention was focused on 
the volatile sulfur compounds To investigate rhe presence of 
other volatile sulfur compounds which were not trapped on 
charcoal tubes because of their low boiling points small 
volume air samples were concentrated on lenax GC at 
-1%°C Subsequent analyses on systems В and С revealed 
the presence of hydrogen sulñde carbonyl sulfide and 
methanethiol in the samples (Table 2) Identification of these 
compounds was based on their retention times on two 
different systems in combination with the use of the sulfur 
specific detector Besides the volatile sulfur compounds 
mentioned no unidentified peaks were observed 

Quantitative analysis of air samples. All of the volatile 
sulfur compounds mentioned in Table 2 were measured 
quaniitalivcly in one run on a gas Chromatograph equipped 
with a flame photometric detector using system С (Hg 1) A 
plot of the logarithm of the peak area versus the logarithm of 
the amount of sulfur injected showed a linear relationship 
over the range of 40 pmol to 1 7 nmol The slope of these 
calibration curves approached the theoretical value of 2 (20) 

To estimate the total amount of volatile sulfur compounds 
emitted dunng preparation of the mushroom substrate air 
samples were taken at different stages of the phase I com­
posting process Mixing of prewetted straw with horse 
manure occurred on day zero Air samples showed distinct 
changes in the concentrations of the volatile sulfur com 
pounds (Fig 4) During the first 5 days of the process 
dimethyl sulfide was emilted at a 10 limes higher concentra­
tion than any of the other compounds After day 5 the 
dimethyl sulñde concentration increased by a factor of only 
about 2 but Ihe concentrations of the other volatile sulfur 
compounds increased by 1 order of magnitude The total 
emission of volatile sulfur compounds per kilogram of com 

post produced was calculated on the basis of the concentra­
tions and the air flow rales through the compost slacks The 
results are presented in I able 3 Dimethyl sulfide was the 
mam tomponenl emitted during the first half of the process 
After day 10 its contribution was exceeded by methanethiol 
carbon disulfide and dimethyl disulfide Emission of di­
methyl tnsulfide was small and remained rather constant 
during the entire process The total loss of sulfur as volatile 
sulfur compounds amounted to 8 2 mg of sulfur per kg (fresh 
weight) of compost 

Total organic and inorganic sulfur analysis (n = 10) ol the 
product produced by the phase 1 composting process re 
vealcd 0 33 ± 0 81 and 2 24 ± 0 60 g of sulfur per kg (fresh 
weight) respectively 

ω 
с 

HG 

Τ ( Π Г 

О 5 25 30 
retention time (mm) 

3 Сhromalogram oblained with svstem С bv dirccl mjec 
lion of 0 1 ml of a calibralion gas mixture containing 61 pmol of 
hydrogen sulfide (peak 1) 61 pmol of carbonsl sulfide (peak 2) 61 
pmol of methaneihiol (peak 1) lOOpmolof dimethsl sulfide (peak 4) 
12S pmol of carbon disulfide (peak S) BS pmol of dimclhsl disulfide 
(peak 61 and 40 pmol of dimethyl tnsulfide (peak 7) 
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TABLE 3 Emission of volatile sulfur compounds during production of the compost used as a substrate in mushroom cultivation 

Processing pentx] 
tdavs) 

0-1 S 
3 'i-7 0 
7 0-10 s 

10 S-14 о 

Mean air flow rale 
Im' m' per hl 

4 S6 
3 97 
4 93 
7 19 

DISCUSSION 

H s 

о з 
0 1 

112 
11 1 

COS 

1 1 
1 3 
9 8 

1 1 9 

Conen ΙμιηοΙ kg [CrLSh » 

( S . CH.SH 

2 0 1 6 
1 7 0 7 
2 9 10 2 

24 3 19 8 

the air sample volume 

ι) οΓ product) оГ 

IC Η,ι S 

9 6 
6 8 

12 0 
13 4 

to 60 ml No 

tCH,NS. 

0 6 
1 3 
1 3 

26 9 

further samp 

tCH,|.S, 

0 7 
1 0 
0 8 
1 6 

e prepara-

The use of a charcoal adsorption technique, common in 
environmemal and industrial hygiene (25), appeared to be 
effective in concentrating a large range of different com­
pounds present in air emitted from stacks set up to prepare 
a mushroom substrate Application ol different desorption 
solvents provides special advantages depending on the 
analytical system used I he sensitivity of the flame ioniza­
tion detector for carbon disulfide is extremely low, as shown 
by the rather small solvent peak in Fig 2 Iherefore the 
appearance of carbon disulfide in (he beginning of the 
chromatogram does not interfere with the other components 
present However when a mass spectrograph is used as a 
detector, elution of the solvent used causes a disturbance of 
the high vacuum of the mass spectrograph prohibiting mass 
spectrographic analysis until the vacuum is restored When 
special interest is taken in the identity of components in the 
beginning of the chromatogram, the use of benzyl alcohol as 
a desorption solvent is highly favorable Use of benzyl 
alcohol in system A led to a large solvent peak at a retention 
time of about 13 mm 

Among the compounds identified (Table 2) volatile sulfur 
compounds exhibited the highest odor index, caused by a 
high vapor pressure at 20'C and a threshold as low as 10 * 
ppm (10 "* μΜιίεΓ) Organoleptic qualification of the odor of 
volatile sulfur compounds is often as foul or pungent (13 21) 
Therefore, volatile sulfur compounds have a high nuisance 
potential, even at very low concentrations Although the 
charcoal technique may be used for quantification purposes 
as well, large air sample volumes and elaborale sample 
preparation are required Use of a sulfur sensitive detector 
and a sophisticated sampling technique allowed reduction of 

•ъіо 

I 

l a 

H « hfdrDgen lulfidc 
Q< carbonai lull idi 
[13-melhinïlhiol 
• - dim it hfl sulfide 
U - carbon diiulUi 
BS = dimethyl disulfide 
ICa-dimelhrl Iniulfide 

^ Λ ί сЛЪг 

7 5 9 12 
Competimi lime Idayi) 

FIG 4 Concentrations of volatile sulfur compounds in air emit 
ted from compost slacks The bars represent means of six inde pen 
dent sampling sties and the standard errors of (he means are 
indicated Analyses were performed m triplicale al each sample sue 

lions were necessary and the Tenax sampling tubes could be 
reused several limes without loss of efficiency 

Both the air How rale through the stacks and the measured 
concentrations of most volatile sulfur compounds increased 
during the composting process Ihis implies an increase in 
the net release of these compounds by the composting 
material 

However, the total amount of sulfur (8 2 mg of S per kg 
[fresh weight]) emitted as volatile sulfur compounds was 
small compared with either the total organic (0 33 i 0 81 g of 
S per kg [fresh weight]) or the total inorganic (2 24 ± 0 60 g 
of S per kg [fresh weight]) sulfur content of the end product 
On the basis of the sulfur analyses of the basic constituents 
(straw, horse manure chicken manure, and gypsum) and the 
amounts needed to obtain 1 kg of phase I compost, organic 
and inorganic sulfur contents of 0 27 ± 0 41 and 3 09 ± 0 Я6 
g of S per kg (fresh weight) were calculated As a result of 
the high standard deviations no significant loss of cither 
organic nor inorganic sulfur was observed The high inor­
ganic sulfur content was due to addition of gypsum to (he 
manure mixture (8) Nevertheless, even when gypsum is 
omitted sufficicnl sulfur is present in the composlmg maie-
nal to account for the emission reported here Wheal straw. 
as the major constituent of the composting material (8), 
contains 1 3 * 0 4 mg of S per g of dry mailer in - 10) 
Although its conlnbulion on a sullur basis is the lowest of all 
of the constituents used, wheat straw alone accounts forO IS 
± 0 01 g of inorganic and 0 02 í 0 05 g of organic suifur per 
kg (fresh weight) in the end product As emission of volatile 
sulfur compounds cannot be avoided by elimination of sulfur 
from the malenal changes in the process will be necessary 
to reduce environmental problems 

Production of volatile sulfur compounds from various 
biologically active systems, including soils (7) breweries 
(14), and algal mats (26) has been reported I he involve­
ment of microorganisms has been reported (12), and produc­
tion of volatile sullur compounds has been stimulated by 
addition of sulfur containing amino acids ( 1 ) Further studies 
are needed to resolve the agents and substrates involved in 
the production of volatile sulfur compounds during produc-
lion of the compost used as a substrate in mushroom 
cultivation To control the production of these compounds 
and handle the air emitted indoor composting would be an 
attractive alternative Although reports about indoor com­
posting date from the early seventies on (11. 17), only 
recently were promising results obtained (9) 
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ABBREVIATIONS 

COS, carbonyl sulfide; DMDS, dimethyl disulfide; DMS, dimethyl sulfide; DMTS, 

dimethyl trisulfide; FW, fresh weight; MT, methanethiol. 

SUMMARY 

Volatile sulfur compounds are known to be produced during the preparation 

of compost used as a substrate in mushroom cultivation. Because they cause 

odor problems attempts are undertaken to reduce the production of these 

compounds. The influence of temperature and various additions on the 

production of volatile sulfur compounds from composting material were tested 

on laboratory scale. The production of H2S, COS, CH-jSH and (CH^^S was proven 

to be a biological process with an optimal temperature which coincides with 

the optimal temperature for biological activity. The formation of CSo and 

(CHi^Sn was shown to be an nonbiological process. The emission of volatile 

sulfur compounds during the indoor preparation of mushroom compost appeared 

to be remarkably reduced (about 90 %) as compared to the conventional outdoor 

process. Introduction of this indoor composting process would result in a 

significant reduction in environmental pollution. 

INTRODUCTION 

Recently we reported the evolution of volatile sulfur compounds during the 

preparation of compost, used as a substrate for the edible mushroom Agar Leus 

bisporus [6]. The smell of many of these compounds is described as pungent 

[18,25] and therefore the emission of volatile compounds by composting 

facilities is a source of complaints by people living in the surroundings and 

furthermore an environmental stress. The production of volatile sulfur 

compounds from many different biological systems was reported, e.g. surface-

ripened cheeses [8], the ruminant intestinal track [20] and marine 

environments [5,15,16]. The role of microorganisms in these processes has 

been reviewed in detail [4,13]. Sulfur containing amino acids, mainly 

methionine and to a lesser extent cysteine, were shown to be the precursors 

[2,15]. In the marine environment dimethyl sulfonium propionic acid, an 
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osmoregulatory compound in algae, is the precursor for the production of DMS 

[5]. 

Furthermore, the breakdown of volatile sulfur compounds by various bacteria 

was demonstrated [14,19,21,23]. Since compost stacks are a very complex 

environment it may be anticipated that simultaneous production and 

consumption of volatile sulfur compounds occurs. Reduction of the emission of 

these compounds can be achieved by decreasing the production rate or by 

increasing the degradation rate or both. Further insight in the precise 

origin of the volatile sulfur compounds and the influence of the process 

parameters of the composting process on the production and consumption rate 

of these compounds is needed to develop a composting regime, which would 

result in a minimal emission of volatile sulfur compounds. 

The outdoor composting process presently in use was described in detail 

previously [6,11]. The constituents are mixed and placed in piles for about 

two weeks. No temperature or aeration control is performed during this 

outdoor stage (Phase I). Phase I is followed by an indoor treatment of the 

composting material in bulk (Phase II). In this phase, both temperature and 

aeration are under close control [10]. The resulting material is suitable for 

inoculation with the edible mushroom, A. bisporus. Recent research revealed 

that the duration of Phase I could be reduced by one week. Omission of the 

treatment in windrows during Phase I, followed by a standard Phase II 

treatment resulted in a substrate from which a normal yield was obtained. 

This indoor preparation of mushroom substrate is called indoor composting 

[12]. 

The aim of these investigations is to extent the knowledge on the 

production of volatile sulfur compounds during the composting process. 

Therefore the effects of the incubation temperature and different additions 

on the production of these compounds by composting material under well-

defined laboratory conditions were studied and the amount of volatile sulfur 

compounds emitted during the newly developed indoor composting process was 

quantified. 
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MATERIAL AND METHODS 

Compost samples 

Compost samples were obtained from a commercial composting facility. 

Compost samples taken at the end of Phase I and at the end of Phase II will 

be referred to as Phase I compost and Phase II compost, respectively. 

Subsamples were randomly picked from different stacks representing the same 

stage of composting and thoroughly mixed prior to analysis or compost 

incubations. 

Compost incubations 

Subsamples (10 - 100 g FW) were incubated in sealed 0.5 or 1 1 serum 

bottles for 24 hours at the temperatures indicated. Addition of methionine 

and potassium sulfate was performed by mixing the chemicals as dry powder 

among the compost (3.4 mmol.kg FW"1). The occurrence of sulfate reduction was 

tested under waterlogged conditions [3], with the use of 0.05 M phosphate 

buffer pH 7.2. Sodium molybdate, a specific inhibitor of sulfate reduction 

[1,22], was added to a final concentration of 20 mM. Sterilization was 

performed at 121 0C for 1 hour. Efficiency of sterilization is checked by 

recording oxygen consumption and carbon dioxide production versus time. After 

treatment a neglectable oxygen consumption and carbon dioxide production was 

observed within 24 hours (data not shown) indicating the complete 

inactivation of the aerobic microorganisms. 

Indoor composting 

Indoor composting was performed in the experimental tunnels described by 

Gerrits [10,12]. Straw-rich horse manure, used as the basic constituent, was 

prewetted for 5 days and then gypsum and chicken manure were added, 25 and 

100 kg per 1000 kg FW, respectively. After mixing well the material was 

placed in containers containing 1000 kg FW each. Four containers occupied one 

tunnel corresponding to 825 kg FW.m . Immediately after filling the 

temperature was allowed to raise up to 56 0C and kept at this level for 8 

hours. Then the temperature was lowered and maintained at 45 0C for six days. 

In total the indoor composting process took 160 hours. Temperature was 

controlled by regulating the supply of fresh air, no external heating was 

used. During the entire process an air recirculation rate of 140 m .m" .h 

through the composting material was maintained. As shown by Gerrits [12], 
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mushroom yields from indoor compost did not differ from yields obtained from 

conventionally prepared compost. 

Analytical procedures 

Dry weight content of the compost samples was calculated on basis of the 

weight loss after drying at 105 0C. The gaschromatographic analysis of air 

samples and calibrations with authentic volatile sulfur compounds were 

essentially the same as described previously [6]. Injections were performed 

either direct or after concentration of a large volume of the gas phase (60 

ml) on Tenax tubes [6,24]. Oxygen and carbon dioxide were analysed by means 

of a gas Chromatograph equipped with a thermal conductivity detector [7]. 

Chemicals 

Dimethyl trisulfide was purchased from Eastman Kodak Co., Rochester, N.Y. 

All other chemicals originated from E. Merck AG, Darmstadt, Federal Republic 

of Germany. 

RESULTS 

Phase I compost samples were incubated at different temperatures and the 

production of volatile sulfur compounds was measured after 24 hours. Because 

of slight fluctuations in dry matter content of the different compost samples 

used the results are expressed as /imol.kg dry matter" .day" . The average 

results are represented in Fig. 1. Maximum production of l^S and MT were 10 

to 1000 times higher (Fig. 1A) as compared with the maximum production of the 

other volatile sulfur compounds (Fig. IB). All the compounds, except CS2 and 

DMDS, show a maximum production between 56 and 70 0C. Over the temperature 

range tested CSo and DMDS showed an increasing production with temperature. 

For Phase II compost samples a similar tendency was observed (data not 

shown). To test the involvement of biological processes in the production of 

volatile sulfur compounds compost samples were sterilized prior to 

incubation. The production was measured for Phase I and Phase II compost 

samples at 56 0C and 45 0C, respectively. In Table 1 the results are 

presented together with these obtained with untreated compost, which served 

as a control. The production of all volatile sulfur compounds, except CS^ and 

DMDS, dropped dramatically upon sterilization for both composts. DMTS was not 
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found in measurable quantities in any sample. 
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Figure 1. Temperature dependence of the production of volatile sulfur 

compounds by Phase I compost (25 g FW per 0.5 1 bottle). 

Table 2 shows the results of the additions of an organic or inorganic 

sulfur compound on the production of volatile sulfur compounds by Phase I 

compost. The addition of potassium sulfate resulted in a slight increase in 

the production of H^S and DMS, while the addition of methionine resulted in a 

27-fold increase in the production of MT. Simultaneously the production of 
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Table 1. The production of v o l a t i l e sulfur compounds by Phase I and Phase II 

compost (25 g FW per 0.5 1 bot t le ) with or without s t e r i l i z a t i o n . 

Production rate* 

Compost Sterilization InciiMtion 

sample (1 h, 121 0C) temperature HjS COS NT DHS CSj DHOS DHTS 

Phase 1 - 56 31300 26 6 9 17 54 0 0 

Phase 1 • 56 0 6 0 1 49 9 0 

Phase I I - 45 9300 16 140 20 12 0 0 

Phase I I + 45 1 1 0 0 13 4 0 

Values are means of three experiments 

a 1 A„,-1 ) Values expressed as дшо1.к§ dry matter" .day 

DMDS increased about three times (Table 2). To elucidate whether the high 

production obtained for I^S was due to the presence of sulfate reducing 

bacteria, sodium molybdate was added to a final concentration of 20 mM in a 

phosphate buffer (50 mM, pH 7.2) (Table 3). Blank incubations were performed 

with a equal amount of buffer alone. The amount of buffer was sufficient to 

create a waterlogged situation for all the compost particles, so intense 

contact between the inhibitor and the microorganisms is ensured. The 

Table 2. The relative influence of additions on the production of volatile 

sulfur compounds by phase I compost at 56
 0
C (25 g FU per 0.5 1 

bottle). 

Relative increase in production rate
8 

addition 

Sulfate 2.0 nd0 1.8 3.9 nd 1.0 nd 

Methionine 1.5 nd 27 1.0 nd 2.8 nd 

a ) Values expressed as the rat io between the production obtained with and 

without addition 

) nd - not determined 
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Table 3. Influence of sodium molybdate on the production of volatile sulfur 

compounds by Phase II compost at 45 0C, measured in a waterlogged 

situation. 

Production rate8 

Addition H,S COS HT DMS CS, DMOS DHTS 

Phosphate buffer 0.05 H, pH 7.2 1050 1 108 3 1 0 0 

Phosphate buffer + Molybdate 20 nM 0 3 42 5 0 0 0 

a ) Values expressed as /imol.kg dry matter" .day" 

influence of the addition of buffer alone is small as can be seen when the 

results are compared with those for Phase II without buffer addition (Table 

1). No HoS was found in incubations to which sodium molybdate was added. 

Furthermore the production of MT was slightly reduced. Another indication 

that anaerobic processes play an important role in the production of volatile 

sulfur compounds came from time dependent measurements of the oxygen 

concentration in bottles with various amounts of Phase I or Phase II per 

bottle. These experiments revealed that oxygen was completely used within 6 

hours when 100 g FW of compost was present. In the presence of 10 g FW 

compost oxygen was still present after 2U hours at a level of about 10 2 

(data not shown). The production of volatile sulfur compounds during these 

incubations are shown in Fig. 2. The observed production of l^S and MT were 

at least 3 orders of magnitude higher under anaerobic conditions. A similar 

tendency was observed for COS, DMS and CS2 although the effect did not exceed 

one order of magnitude. 

Temperature has proven to be an important parameter in the observed 

production of volatile sulfur compounds on laboratory scale (Fig. 1). During 

indoor composting temperature is kept at values below the optimum temperature 

for the production of volatile sulfur compounds. To test the influence of the 

indoor composting regime on the total production of volatile sulfur compounds 

air samples were collected during three composting trials at different 

intervals and analysed for volatile sulfur compounds. In Fig. 3 

concentrations in the effluent air from one trial are presented as a function 

of the process time. DMS was found at highest concentrations over the entire 
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Figure 2. Production of volatile sulfur compounds compost, starting with 10 

or 100 g FW of composting material in 1 1 bottle. A: Phase I 

compost, B: Phase II compost 

process. MT was only detectable during the first two days, whereas DMDS and 

DMTS were already below the detection limit (<0.3 /imol.m' ) after one day. No 

HoS was measured in any of the air samples. From the concentrations of 

volatile sulfur compounds and the fresh air supply rate total production per 
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Figure 3. Concentrations of volatile sulfur compounds in the effluent air of 

an indoor composting process versus process time. A typical pattern 

is shown. Air samples were analysed in triplicate. 

compound was calculated and averages of three independent trials are 

presented in Table 4. The total emission of sulfur during the indoor 

composting process amounted to 23 μιηοΐ S.kg FW" . The main contribution to 

the emission of sulfur is made by DMS (45Z). 

Table 4. Mean production of volatile sulfur compounds during indoor 

preparation of a substrate for Agar Leus bisporus. 

DHOS DHTS 

indoor conpost ing 

windrows 

0 3.2*1.2 О.біО.5 10.2i3.6 2.4±0.6 0.5t0.4 1.І1І.З 

22.3 21.7 30.0 25.4 27.2 28.2 2.4 

a ) Values expressed as /imol.kg FW"*· of the end product. 
b ) Values from [6] 
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DISCUSSION 

The optimal temperature of the production of H2S, COS, MT and DMS coincides 

with the optimal temperature (50 - 56
 0
C) of biological activity determined 

by oxygen consumption and glutamate mineralization [7]. The biological origin 

of these compounds is further confirmed by the observation that a heat 

treatment strongly decreased their production (Table 1). The production of 

CS2 and DMDS increased with Increasing incubation temperature indicating an 

nonbiological formation. In several other complex biological systems similar 

observations were made [2,16,20]. The microbial origin of H2S production is 

further proved by the abolishment of the production of H2S by molybdate, a 

specific inhibitor of sulfate reducing bacteria [1,22] (Table 3). Since 

calcium sulfate is a constituent of the composting mixture [11] the 

availability of sulfate is never the limiting step in the formation of H2S 

(Table 4). Although chicken manure, another constituent [11], is relatively 

rich in protein [17] an increase in the production of MT was observed on the 

addition of methionine. The same was reported for other systems [2,3,8,13]. 

Apparently, anaerobic conditions favour the formation of volatile sulfur 

compounds. In accordance the presence of oxygen strongly reduced the 

production (Fig. 2). Previously considerable amounts of volatile sulfur 

compounds were shown to be produced during the composting process in windrows 

[6]. In this study we show that during indoor composting the concentration of 

volatile sulfur compounds decreased dramatically (Fig. 3). Presumably, the 

high recirculation rate of the air through the composting material during 

indoor composting prevents the occurrence of an anaerobic zone in the inner 

part of the composting stack [9] and in this way contributes to a reduction 

in the production of volatile sulfur compounds [17]. Even when anaerobic 

micro-environments cannot be avoided completely, the recirculation of the 

emitted air enables a close contact between volatile sulfur compounds formed 

and the composting material, possibly enhancing breakdown. Preliminary 

experiments in which small amounts of H2S were added to compost, showed a 

rapid disappearance of FUS (data not shown). Whether this is due to sorption 

to the composting material or to microbial breakdown or both is unclear and 

subject of further research. 

Recently, a total emission of volatile sulfur compounds of 256 /imol S.kg 

FW was found during the outdoor preparation of compost used as a substrate 

in mushroom cultivation [6]. Highest emissions (217 μπιοί S.kg FW"
1
) were 
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observed at the end of the process, when the material was stacked into 

windrows. On the contrary, the total emission of sulfur during the indoor 

composting process amounts to 23 μπιοί S.kg FW" . Replacing the windrow 

section of the outdoor process by the indoor process described here will 

result in a total emission of sulfur during the preparation of mushroom 

substrate of 62 μπιοί S.kg FW"
1
. This overall reduction of 76 percent would 

implicate a significant decrease in environmental pollution caused by 

composting facilities. Furthermore, the indoor preparation of mushroom 

substrate enables a better control of process parameters, resulting in a more 

constant quality of the end product and moreover, mushroom yields comparable 

to those obtained with traditionally prepared substrate. 
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SUMMARY 

The preparation of substrate for the cultivation of the edible mushroom, 

Agaricus bisporus, is referred to as composting. During this process organic 

material is broken down and a considerable amount of heat is produced. The 

process can be optimized in terms of mushroom production capacity by reducing 

loss of dry matter and shortening the process time. Conventionally, compost 

preparation takes place outside, causing emission of ammonia and odour 

nuisance. Indoor composting is a promising alternative, which also allows 

control of environmental pollution. 

On basis of heat and mass balances calculations are described with a 

mathematical model for indoor composting. Values known from the conventional 

composting process are used as input parameters and the composition of the 

resulting material is predicted, together with process characteristics such 

as process time and aeration rate. Weight loss and process temperature were 

shown to have a major effect on all output parameters. It is demonstrated 

that the process time can be greatly reduced as compared to the conventional 

process. 

INTRODUCTION 

The edible white button mushroom, Agaricus bisporus, is cultivated on 

specially prepared compost. The goal of compost preparation is focused on the 

nutritional needs of the fungus and substrate selectivity [1,2]. Therefore, 

this process differs remarkably from composting processes applied to 

municipal waste and sewage sludge, in which volume and mass reduction are the 

major goals [3] . 

The preparation of mushroom compost consists of two parts. Phase I and 

Phase II, based on methods proposed by Sinden and Hauser [U]. Phase I is 

performed outdoors in large stacks, where a rapid breakdown of organic matter 

occurs. Phase II takes place indoors under controlled conditions and is 

characterised by pasteurisation and conditioning of the compost [1,5]. 

Although economically important improvements were obtained, little is known 

about the microbial processes underlying the composting process. Especially 

during Phase I, which is performed in windrows, little or no control of the 

process parameters is possible. As a result the temperature rises to values 
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as high as 80 0C and oxygen becomes limiting, at least in the central core of 

the windrows [6]. Moreover, the evolving air is allowed to enter the 

environment freely, causing both odour nuisance and environmental pollution 

as a result of ammonia deposition [7]. In order to meet the environmental 

regulations, indoor composting has been considered as a possible alternative. 

Here the outdoor process is reduced to mixing and wetting of the 

constituents and the actual composting process takes place in tunnel-like 

fermentation rooms [8], Performing the composting process in a controlled 

environment allows control of the process and treatment of the emitted air. 

Both temperature and oxygen levels can be used to regulate the aeration rate 

through the compost. Until now the determination of process parameters has 

remained limited to bench-scale experiments for practical reasons [3,9,10]. 

The translation of the laboratory results into terms of tonnes and cubic 

metres for practical purposes is afflicted with several pitfalls. Therefore, 

mathematical models may provide better interpretation of experimental results 

and could allow prediction of system interactions [10,11]. Finger et al. [12] 

described a model for windrow composting, based on oxygen as the rate 

limiting reactant. A good correlation was found between the predicted and 

measured temperature profiles for the static composting process but attempts 

to increase the composting rate by forced aeration failed. This failure is 

probably due to the formation of channels through which the majority of the 

air escapes sideways instead of covering the distance to the top of the 

stack. Performing the composting process in a tunnel-like environment will 

overcome this problem. In the model developed and presented here, general 

microbiological phenomena are combined with parameters derived from the 

outdoor composting process [1,6,13,14]. Predictions are made for the progress 

of the indoor composting process and the influence of several input 

parameters is studied. 

DESCRIPTION AND DEFINITION OF THE MODEL 

The model describes a composting process performed in a fermentation room, 

known as a tunnel [15]. This enables the aeration of the compost with a 

variable amount of air (see Fig. 1). Throughout the calculations the 

assumption is made that time does not play a limiting role in heat or mass 

transfer processes. As a consequence the effluent air is considered fully 
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saturated with water at a temperature equal to the temperature of the 

composting material. Moreover, no heat is supposed to be lost due to 

conductive heat transfer through the walls, as its contribution is only small 

in field-scale facilities [3,16]. 

At the start of the process, composting material, with similar composition 

as in the conventional outdoor process at the stage of stacking [1], is 

placed in the tunnel. It is assumed that all material in the tunnel undergoes 

the same variations in temperature and material composition and that no 

shrinking of height takes place. Furthermore, it is supposed that after 

heating the material is kept at a constant temperature. In the model this 

temperature is 50 0C, at which an optimal aerobic and anaerobic conversion 

TAo 
air out RHo 

| FOXo 

Mmati 
OMi 
ASNi 
TMi 

Mmato 
DMo 
ASHo 
TMo 

a i r in 

Figure 1: Schematic representation of the composting process in a tunnel-like 

environment. Symbols associated with the start of the process are 

indicated at the left, where symbols referring to the end of the 

process are placed on the right sight of the diagram. For 

explanation of the symbols see Table 2. 

was found in laboratory experiments [6,13]. The heat balance is calculated on 

basis of changes relative to the starting composting material and the air at 

inlet conditions. Due to microbial activity organic matter is degraded. The 

organic matter is considered to be cellulose because of the relative 
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abundance of this component in starting material and its dominant 

contribution to the loss of weight during the composting process [17]. The 

first step in the breakdown of cellulose is its hydrolysis to glucose [18]: 
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Further breakdown can be achieved either aerobically or anaerobically 

according to the following reaction equations: 

Aerobic: C
6
H

1 2
0

6
 + 6O2 ---> 6CO2 + SHjO ΔΗΟ - -2803 kJ/Mol 

Anaerobic: CgH-^Og ---> SCOj + 3CH
4
 ΔΗ0 - - 133 kJ/Mol 

From the fact that no volatile fatty acids were found in the composting 

material, it is concluded that if any fermentative intermediates are formed, 

these are degraded to the level of carbon dioxide or methane. Therefore, the 

overall breakdown process can be summarized by the above mentioned reaction 

equations. As can be seen from the enthalpy changes, considerable amounts of 

heat are generated during the breakdown. The precise amount of heat generated 

depends on the amount of organic matter broken down during the process and 

the relative contributions of the aerobic and the anaerobic pathways to the 

process. As demonstrated recently biomass content does not change 

Table 1. Constants
3
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Symbol Value Units Description 

Dair 

Haer 

Han 

HCair 

HCdex 

HCuater 

HCwatvap 

HVuater 

HV 

MUglu 

MUwater 

qhydro 

R 

1290 g.m'·
5 

2.803.10
4
 J.Mol"

1 

1.33.10
5
 J.Mol"

1 

1.004 J.g-
1
.*"

1 

1.22 

4.184 

1.841 

2379 

0.02241 

180.16 

j π"
1
 г"

1 

J.g .к 

Ι π "
1
 If"

1 

j.g .к 

ι »-Ί г"
1 

J.g .к 

J.S 

.Mol" 

g.Mol' 

18.0153 g.Mol •1 

28170 

8.31 

J.Mol"
1 

J.Mol'
1
.*'

1 

Density of dry air at 0 С 

Molar heat of combustion of glucose 

Molar heat of glucose released during cofrplete anaerobic breakdown 

Heat capacity of dry air 

Heat capacity of dextrine 

Heat capacity of Hater 

Heat capacity of water vapour 

Heat of evaporation of water at 50
 0
C 

Molar gas vol une at 0
 0
C and 1 atmosphere 

Molecular weight of glucose 

Molecular weight of water 

Energy released during the hydrolysis of 1 Hoi glucose from cellulose 

Gas constant 

a
) Data taken from [21] 
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significantly during the composting process [13], therefore the rates of the 

breakdown processes are assumed to be constant during the entire process 

period. 

The time needed to complete the process is estimated on basis of the oxygen 

consumption rate and the methane production rate, as determined previously 

[6,13]. These rates were determined with samples taken from composting 

material processed in the conventional way. The values must be regarded as 

suboptimal determinations of the oxidative and methanogenic capacities of the 

composting material. 

MATHEMATICAL DEFINITION OF THE MODEL 

The explanation of symbols and values used in the model are summarized in 

Tables 1 and 2. 

Table 2. Parameters and their description, used in the calculations. 

Symbol Value' .a) Units Description .b) 

Aer 

ASH i 

ASHo 

BD 

DM i 

OMo 

Faer 

FOXi 

FOXo 

Fcon 

H 

Hmati 

Mmato 

HPR 

Huato 

Huate 

OCR 

0.20 

5. IO
5 

0.24 

0.21 

0.3 

2.0 

1 

7.9.10' 

1.4.10' 

6 

•4 

m

3
. m -

2
. h -

1 

U/M 

w/u 

,.•-' e > 

w/u 

w/w 

Ы/Ы 

v/v 

v/v 

u/u 

m 

9 

9 

Hol.9 dw'
1 

9 

9 

Hol.g dw'
1 

Hean aeration rate during the process 

Ash content of the starting material on dry matter base 

Ash content of the end material on dry matter base 

Bulk density of the material 

Dry matter content of the starting material 

Dry matter content of the end material 

Fraction converted by aerobic microorganisms 

Oxygen fraction in inlet air 

Oxygen fraction in outlet air 

Fraction of dry matter lost during composting 

Height of the compost stack 

Hass of the starting material 

Hass of the end material 

Methane production rate of the starting material at 50
 0
C 

Hass of water at the end of the process 

Hass of water evaporated during the process 

Oxygen consurption rate of the starting material at 50
 0
C 

tn 

16] 

[13] 
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Table 2. Continued 

Psati 

Psato 

Cheat 

Qhydro 

Qprod 

RHi 

RHo 

ТА І 

TAO 

Tcon 

TM i 

TMo 

Valr 

Vairmin 

0.81 

1.00 

15 

50 

15 

50 

Pa 

Pa 

0
C 

0
C 

h 

0
C 

0
C 

n,
3 

m
3 

Saturation pressure of uater in i n l e t a i r 

Saturation pressure of water in outlet a i r 

Energy required for heating the material to the end temperature 

Energy produced during hydrolysis of cel lulose 

Total energy produced during breakdown of glucose 

Relative hunidity of the i n l e t a i r [ U ] 

Relative hunidity of the out let a i r 

Temperature of the i n l e t a i r 

Temperature of the outlet a i r 

Time required for the desired conversion 

Temperature of the s t a r t i n g material 

Temperature of the material at the end of the process 

Volune of i n l e t a i r required to face the process settings 

Volane of i n l e t a i r required to face the oxygen demand 

a ) Values of Symbols not mentioned in th is table are calculated 

using the formulas represented in Table 3. 

) Values mentioned without reference originate from the author. 
c ) Amounts of material are expressed on fresh weight base 

unless stated otherwise, dw - dry weight. 

In Table 3 the formulas used in the model are arranged as mentioned in the 

text below. Limitations, mainly result ing from common sense considerations, 

are mentioned at the end of Table 3. Most calculat ions presented in th is 

model are based on heat and mass balance equations of the general form: 

Amount in - Amount out — Amount used - Amount formed 

This resu l ts in an overal l heat balance: 0 - Qair.out - Qheat - Qprod -

Qhydro Qair.out represents the amount of heat required to bring the air from 

the i n l e t conditions to the out let conditions. Contributions to th is term are 

made by the heat required for heating the i n l e t a ir and the water already 

present in the a ir at i n l e t conditions. Furthermore included i s the heat used 

for the evaporation of water up to the l eve l of t o t a l saturation of the air . 

Qprod and Qhydro are governed by the fraction of the dry matter l o s t during 

the process (Fcon). From the heat balance the amount of a ir necessary to face 

the process se t t ings (Vair) i s calculated. With the need for oxygen by the 
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Table 3. Formulas, sources and l imitat ions. 

Oprod + Qhydro - Qheat 
Vair = 

HUwater.HVwater RHo.Psato RHi.Psati TAo - TA i RHi.Psati.MUuater.HCuatvap 

.( ) + .(273.Dair.HCair * ) 

R TAo + 273 TAi + 273 TAi + 273 R 

Hmati . DHi . Fcon 

Oprod = . ( Faer . Haer + (1 - Faer) . Han ) 

HUglu - HWwater 

Hmati . DHi . Fcon 

Qhydro = . qhydro 

HUglu - HUuater 

Qheat = Hmati . ( DHi . HCglu + (1 - DHi) . HCwater ) . ( THo - THi > 

40H 

Psati = 101330 . exp ( 12 ) [223 
TAi + 234.6 

Hmati . DHi . Fcon . Faer . 6 . MV . (Tai + 273) 

Vaimiin = 

(HUglu - HUuater) . Foxi . 273 

Hmati . DHi . Fcon . HUuater . (6 . Faer - 1) 

Hwato = Hmati . (1 - DHi) + Hwate
 B

> 

HUglu - HUuater 

HUuater . Vair RHo . Psato RHi . Psati 

Huate = . ( ) 

R TAo + 273 TAi • 273 

Mmato = Hmati . DMi . (1 - Fcon) + Huato 

Hmati . DHi . (1 - Fcon) 

DHo = 

Hmato 

Fcon 

Tcon = 

(HUglu - HUuater) . (OCR/6 + HPR/3) 

OCR/6 

Faer = 

OCR/6 • HPR/3 

Vair . H . BD 

Аег = 

Tcon . Hmati 
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Table 3. Continued 

FOXi . Vair . 273 Mmati . DHi . Fcon . Faer . 6 (Tai + 273) . И 

FOXo = ( ) . 

(TAi + 273) . HV MUgLu - HUwater Vair . 273 

ASH i 

ASHo [17] C ) 

1 - Fcon 

A ) Vair S Vairmin 

B ) Mwato :> 0 

C ) Fcon < 1 - ASHi 

process a minimal amount of air is needed (Vairmin). This is used as the 

lower limit for Vair. 

The amount of water in the end material (Mwato) can be calculated from the 

mass balance for water, taken into account the amount of water present in the 

starting material and the incoming air, the amount of water used for the 

hydrolysis and formed during aerobic breakdown of glucose and the amount of 

water present in the outlet air. The dry matter content of the resulting 

material (DMo) is calculated on basis of the mass balance of the dry matter 

and the amount of water present in the end material. 

The time required to achieve the chosen fraction of conversion (Tcon) is 

calculated with the use of the oxygen consumption rate and the methane 

production rate. Alternatively, the fraction of conversion can be calculated 

at a given process time. The relative contribution of the aerobic breakdown 

process (Faer) can be calculated from both rates. Using the bulk density of 

the material (BD) and the height of the stack (Η), the mean aeration rate 

over the process period (Aer) is calculated, expressed as m .m" .h at 20 

0
C. The fraction of oxygen present in the outlet air (FOXo) follows from the 

mass balance equation of oxygen, neglecting the amount of oxygen present in 

the free air space of the material. Finally the ash content of the end 

product (ASHo) results from the assumption that during the composting process 

no net change in the total inorganic matter occurs [17]. 
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COMPUTER FACILITIES 

All calculations included in the model are performed in a spreadsheet-

environment. Both LOTUS-123 on IBM-like computers and LDW-power (Logical 

Design Works, inc.) on ATARI 1040 ST computers, with 1 Mbyte internal memory 

or more, are used. 

RESULTS AND DISCUSSION 

The model presented here enables the prediction of a number of parameters 

characteristic for the resulting material after a period of composting under 

defined circumstances. In Table 4 the results are presented for the standard 

Table 4. Predicted values of output parameters of the model, using the 

values of the constants and the input parameters as mentioned in 

Table 1 and 2. 

Symbol Value Unit 

Aer 

ASHo 

DMo 

Faer 

FOXo 

Mmato 

Mwato 

Mwate 

Psati 

Psato 

Qheat 

Qhydro 

Qprod 

Tcon 

Vair 

Vairmin 

66.0 

0.286 

0.270 

0.899 

0.198 

0.622 

0.454 

0.341 

1710 

12400 

122 

12.5 

1120 

71.3 

0.00470 

0.00027 

тЗ.т-г.Ь"
1 

w/w 

w/w 

w/w 

v/v 

g 

g 

g 

Pa 

Pa 

J 

J 

J 

h 

„3 
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setting of the input parameters (See Table 2) using the formulas from Table 

3. None of the limitations mentioned in Table 3 influenced the calculations 

with the standard setting of the input parameters. 

Using the formula of Tcon the progress of the composting process can be 

calculated by increasing the time stepwise, while keeping the other input 

parameters kept constant. The effect of time on the most important output 

parameters is shown in Fig. 2. In the beginning the amount of heat produced 

is not even sufficient to heat the material to the desired end temperature. 

As a consequence Vair is set to Vairmin (0.00027 nr) and the oxygen 

concentration in the outlet air will drop to zero. After about 10 hours the 

surplus of heat is carried off by fresh inlet air, simultaneously sufficient 

oxygen is provided to create a sharp increase in FOXo (Fig.2). The mean 

aeration rate gradually reaches its maximum of 70.6 m .m .h . The changes 

in DMo and ASHo are only small at the start of the process, but as Tcon 

reaches 100 h, both output parameters increase sharply. Assuming that the 

process continues at the same speed the total amount of water original 

present will be evaporated after about 160 hours of composting (DMo - 1). 

20 10 60 90 100 120 UO 160 

Process time |h] 

Figure 2: Influence of Tcon on DMo, ASHo, Vair, FOXo and Aer. Other 

parameters are kept constant at values indicated in Table 2. 

Note the difference in the scale. 
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No physical meaning can be attributed to this value as microbiological 

activity will be neglectable at a value of 0.65 or more for DMo [19]. 

Therefore, at values beyond 140 for Tcon the predicting value of the model is 

only small, but the results are presented as an illustration to what 

prolonged composting will lead to. 

In order to investigate the influence of changes in the values of the input 

parameters a sensitivity analysis is performed. The value of the depending 

output parameters is calculated as a function of changes in the input 

parameter. The results are expressed relative to the value of the output 

parameter as shown in Table 4. The relative changes in the input parameters 

and the corresponding relative changes in the output parameters are 

summarized in Table 5. As anticipated from the formulas in Table 3, the 

influence of some input parameters is straight forward, for instance the 

influence of H and BD on Aer. On the contrary, the prediction of the 

influence of changes in other input parameters may be not that simple. As can 

be seen from Table 5 Vair is mainly governed by TAo and TMo, but their 

fluctuations are kept as small as possible in practical process operation. 

More important is the effect of DMi, Fcon, and RHo on Vair. Other input 

parameters have only a small influence on Vair. 

The process time is a linear function of Fcon and is dominated by OCR. 

Because of an antagonistic effect of OCR on Vair and Tcon, the linear effect 

of OCR on Aer seems somewhat unexpected. The influence of the other input 

parameters is as expected because of their influence on Vair and Tcon, thus 

resulting in a major role for TAo and TMo. DMo is strongly influenced by DMi 

and less by Fcon and RHo. The amount of resulting material (Minato) is mainly 

governed by DMi and Fcon, all other input parameters have only a small effect 

if any on Mmato. FOXi is the only input parameter which influences FOXo in a 

noticeable way. 

The model presented does not include any recirculation of the air (See Fig. 

1). This implicates that heat and mass transfer processes are assumed to take 

place within the time of one passage of the air through the composting 

material. To enable these processes large differences in both temperature and 

moisture content between composting material and inlet air are required as a 

driving force. Because of this, gradients in temperature and moisture content 

in the composting material across the tunnel are very likely to develop. To 

reduce these gradients recirculation is used already during Phase II 

treatment in bulk [15]. Application of recirculation does not disturb the 
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Table 5. Sensitivity analyses of Valr, Tcon, Aer, DMo, Mmato and FOXo on 

basis of relative changes in the values of the input parameters. 

Results are given as a relative change to the corresponding value 

at standard settings (See table 4 ) . 

Input 

paremeter 

BD 

DMi 
F con 

H 
MPR 
OCR 

RHÌ 
RHo 

TAI 

TAO 

IHi 

TMo 

1 -50Х
а 

I -57 

1 -
56 

1
 6 

| -10 

1 "5 
1 84 

Ι -β 
I 407 

1 -3 
| 450 

-10X 

Va 

-11 

-11 

1 

-1 

-1 

10 

-2 

28 

-1 

31 

5% 

г 

6 

6 

-1 

1 

1 

1 

11 

0 

-12 

10X 

11 

11 

-1 

-21 

-22 

50X| 

I 

I 
57 | 

56 | 

I 
"5 I 

\J 
3
b
l 

I 
12 1 
-65 | 

31 
-68 | 

-50X 

-50 

5 

82 

-10X 

Tcon 

-10 

1 

10 

5* 

5 

-1 

-4 

10X 

10 

-1 

-8 

50X| 

50 | 

-5 | 

-31 | 

-50X 

-50 

-57 

-12 

-50 

0 

-50 

-5 

84 

-8 

407 

-3 

450 

-10X 

Aer 

-10 

-11 

-1 

-10 

0 

-10 

-1 

10 

-2 

28 

-1 

31 

5X 

5 

6 

1 

5 

-0 

5 

0 

1 

11 

0 

12 

10X 

10 

11 

1 

10 

-0 

10 

1 

2 

-21 

1 

-22 

50% 

1 

50 | 

57 I 
4 
50 | 

-0 | 

50 | 

3
b
l 

1 
12 1 
-65 

3 
-68 

Input 

parameter 

DM) 

FOX i 

Fcon 

MPR 

OCR 

RHi 

RHO 

ТАІ 

TAO 

ТИІ 

TMO 

| -50X 

1 "
63 

| -10 

| 3 

1 "5 
| 1 

ι -* 
1 -

2 

1 "7 
1 -1 
I -3 

-10X 

DMo 

-16 

-2 

1 

-1 

0 

-1 

-0 

-1 

-0 

-0 

5X 

9 

1 

-0 

0 

-0 

0 

1 

0 

0 

10X 

18 

3 

-1 

0 

-0 

0 

1 

0 

0 

50X| 

1 

132 | 

1 
20 | 

- 2 | 

21 
-0b| 

1 
2 1 

*l 
ι 1 
-0 | 

-50X 

34 

34 

-3 

-1 

12 

-10X SX 

Mmato 

7 

-1 

-0 

0 

0 

-3 

-3 

0 

-0 

0 

-0 

-1 

-0 

-0 

10X 

-7 

-7 

1 

-0 

0 

-0 

-1 

-0 

-0 

50X| 

1 

-34 | 

1 
-34 | 

2 1 

•
2
J 

0
b
| 

1 
-2 1 

•6 1 

-ι 1 
-0 | 

-50X 

-2 

-54 

-1 

0 

-0 

-0 

4 

-0 

6 

-0 

6 

-10X 

-0 

-11 

-0 

0 

-0 

-0 

1 

-0 

2 

-0 

2 

5X 

FOXo 

0 

5 

0 

-0 

0 

0 

0 

-1 

0 

-1 

10X 

0 

11 

0 

-0 

0 

0 

0 

-2 

0 

-2 

50% 

0 

54 

0 

-0 

0 

o
b 

1 

-16 

0 

-18 

a
) Relative change in the value of the input parameter as tabulated in 

Table 2 

') Relative change calculated with a RHi 
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principle of the calculations of the model. As the only consequence for the 

model Vair, Vairmin and Aer should be seen as net values at the inlet of the 

system. The practical implication of recirculation is a much higher electric 

power input, because as the air velocity increases the pressure drop across 

the material increases according to a power law of the air velocity [20]. 

The process time is calculated on basis of OCR and MPR, both measured under 

laboratory conditions with fresh substrate. The assumption that these rates 

remain constant during the entire process is based on the observation that 

the biomass content of the composting material does not change significantly 

during the process [13]. In the conventional process high temperatures will 

slow down the microbial process. This inhibitory condition is prevented by 

indoor composting. Therefore, in our opinion the conclusion is permitted that 

the composting process can be performed in a remarkably shorter time as 

compared to the two weeks used now. 

When Phase I is replaced by indoor composting performed under controlled 

conditions as stated above, the opportunity arises to combine Phase I and 

Phase II. A slightly lower process temperature would be optimal for growth of 

Scytalidium thennophiluni, a fungus used as an indicator for compost 

selectivity [2]. A further reduction of the overall process time may lead to 

a lower loss in organic matter during composting. Additional research is 

needed to validate the model described above and to optimize the indoor 

composting process. The latter implicates a maximum yield of A. bisporus 

achieved by maximum compost selectivity and a minimum loss of organic matter 

during the composting process. 
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SUMMARY AND CONCLUDING REMARKS 

The cultivation of edible mushrooms has developed into a modern industry in 

western countries. This counts in particular for the white button mushroom, 

Agaricus bisporus. The substrate used for its production is prepared by a 

composting process of mainly agricultural waste materials. Both the recipe 

and the composting regime are results of trial and error rather than based on 

in depth understanding of the nutritional requirements of A. bisporus or the 

microbiological underpinnings of the composting process. Nevertheless, the 

substrate obtained is highly suitable for the cultivation of mushrooms. 

In the Netherlands the preparation of the substrate Is concentrated on two 

locations, resulting in a weekly production of over 10,000 tons compost at 

the largest site. The combination of this large scale production process and 

the use of manures as ingredients, has given rise to complaints about 

malodors in the neighbourhood. The research project described in this thesis 

was undertaken to elucidate the chemical nature of the malodor and to enlarge 

the understanding of the microbial processes involved in the composting 

process and more specific in the production of the malodor. 

The chemical nature of the malodor was resolved by concentrating large 

quantities of air evolving from the compost stacks on acivated charcoal. 

After extraction with various solvents, samples were analysed by means of gas 

chromatography and the single components were identified with a mass 

spectrometer. As a result eight different components were identified, all 

ketones or volatile sulfur compounds. Especially the members of this last 

group of compounds (carbon disulfide, dimethyl sulfide, dimethyl disulfide 

and dimethyl trisulfide) are known for their low recognition levels and the 

pungent character of their smell. By sulfur-specific analysis of air samples 

additional volatile sulfur compounds were found (hydrogen sulfide, carbonyl 

sulfide and methanethiol). Concentrations of volatile sulfur compounds in the 

air evolving from the composting stacks ranged from 1 to 35 μπιοΐ/πι . In 

general the concentration of the volatile sulfur compounds tended to increase 

with increasing composting time. In all stages the concentration of dimethyl 

sulfide was highest. The total emission of sulfur as volatile sulfur 

compounds amounted to 8.3 mg of sulfur per kg (fresh weight) of compost 

produced. Because of the high sulfur content of the ingredients relative to 

the amount of sulfur mentioned above, it is very unlikely that changes in the 
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recipe alone can cause a significant reduction of the emission of volatile 

sulfur compounds during the composting process. 

The reduced character of the volatile sulfur compounds found, indicated the 

local absence of oxygen in the composting material. An additional evidence 

for the occurrence of anaerobic processes was obtained by measurements of 

methane in the air evolving from the compost stacks. Methane concentrations 

up to 4.5 % (v/v) were found. From the total emission of methane during the 

composting process it was calculated that at least 3.3 X of the total 

breakdown was performed by anaerobic microorganisms. From the composting 

material two strains of thermophilic methanogenic bacteria were isolated and 

characterised. Both strains proved to belong to the species Mechanobacterlum 

thermoautotrophicum. This species was first described in 1972 but its 

isolation from such an aerobic environment was not reported before. 

One of the major aims of the composting process is to increase the 

selectivity of the substrate for A. bisporus. The breakdown of readily 

accessible compounds with the simultaneous formation of biomass are believed 

to contribute to this selectivity. The presence of anaerobic environments in 

the composting material implies a suboptimal production of biomass, as the 

energy yield under anaerobic conditions is remarkably lower than under 

aerobic conditions. By means of biomass estimations, based on the 

quantification of total extractable lipid phosphate, it was demonstrated that 

the distribution of biomass coincided with places favourable for optimal 

biological activity both with respect to temperature and oxygen supply. 

Oxygen consumption rates and mineralisation rates of glutamate were shown to 

reach a maximum between 50 to 55 0C. As temperature reaches values up to 

80 0C in the compost stacks it may be clear that the breakdown of organic 

matter is considerably slowed down by thermal inactivation of enzymes. In 

order to tackle problems associated with the emission of malodorous compounds 

during the outdoor part of the composting process, changes have been made in 

the composting regime. The thoroughly mixed material is transferred to a 

fully climatized fermentation room known as a tunnel. Calculations, based on 

mass and heat balances, showed that temperature could be kept under control 

by adjusting the supply of fresh air, without creating anaerobic conditions 

on macroscale. This process is now known as indoor composting and the 

resulting substrate has been shown to be equally suitable for mushroom 

cultivation. Due to the optimal process conditions the duration of composting 

is reduced by one week. An additional advantage of the indoor composting 
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system is the reduction of the total emission of volatile sulfur compounds 

during this process by a factor ten. Until now it is unclear whether this is 

the result of lower production rates, due to better optimized process 

conditions, or an enhanced breakdown as a result of recirculation of the air 

through the composting material. 

During the conventional outdoor process considerable amounts of ammonia 

were released by the composting material. Although it is expected that 

similar quantities of ammonia will be released during indoor composting, 

highly efficient systems are available to remove the ammonia from the 

effluent air. Therefore, the introduction of indoor composting for the 

preparation of the substrate for A. bisporus implies a major contribution to 

the reduction of environmental pollution by composting facilities. 
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SAMENVATTING EN KONKLUSIES 

De bereiding van het substraat voor de champignon is een proces dat ontwik­

keld is op basis van jarenlange ervaring. Aldus is men gekomen tot een produkt, 

waarop de champignon uitstekend groeit en dat binnen de wereld van de champig­

nonteelt bekend staat als champignonkompost. In hoofdstuk 1 wordt ingegaan op 

de gebruikte ingrediënten en de procesvoering tijdens de kompostering. 

Het gebruik van de term kompostering kan aanleiding geven tot verwarring 

met afvalverwerkingstechnieken. Daarbij staat een volume- en massareduktie 

voorop, terwijl het gevormde eindprodukt in het algemeen slechts een geringe 

marktwaarde vertegenwoordigt. Bij de bereiding van champignonkompost ligt de 

nadruk op het verkrijgen van een selektief substraat en volume- en massareduk­

tie zijn daaraan ondergeschikt. De marktwaarde van de champignonkompost is 

aanzienlijk hoger dan die van andere kompostsoorten. 

Uiteraard zijn er ook een aantal overeenkomsten tussen beide processen. Zo 

treedt bij elke kompostering afbraak van organisch materiaal op onder invloed 

van mikro-organismen. Daarbij is zuurstof nodig en worden onder andere 

kooldioxyde en warmte gevormd. Ter illustratie van de soortenrijkdom in een 

komposthoop is een tabel opgenomen met mikro-organismen, die uit champignon­

kompost geïsoleerd zijn (HS 1). Hoewel de veranderende omstandigheden in een 

komposthoop aanleiding kunnen zijn voor verschuivingen in de populatieopbouw 

van de aanwezige biomassa, is met behulp van biomassametingen aangetoond dat 

na circa twee weken er geen toename meer optrad in de totale hoeveelheid 

biomassa (HS 2). Wel bleek dat de biomassa op dat tijdstip nog niet homogeen 

over de komposthoop verdeeld was, hetgeen aangeeft dat er plekken in de 

komposthoop zijn, die gunstig zijn voor biomassa-ontwikkeling en plekken die 

daarvoor minder geschikt zijn. Een belangrijke parameter, die hierop van 

invloed is, is de temperatuur. Door middel van laboratoriumonderzoek aan 

verse kompostmonsters werd een optimum in biologische aktiviteit bij een 

temperatuur van 50 tot 55 0C gevonden. Een ander bewijs voor het voorkomen 

van plekken met minder gunstige omstandigheden voor snelle aangroei van 

biomassa werd verkregen door de lucht boven komposthopen te onderzoeken. 

Hierin werden aanzienlijke hoeveelheid methaan gevonden (HS 3). Methaan kan 

alleen gevormd worden onder zuurstofloze omstandigheden. Onder deze omstan­

digheden verkrijgen de mikro-organismen slechts weinig energie uit de omzet­

ting van organische stof met als gevolg dat hun groei trager is dan die van 

mikro-organismen die organische stof omzetten onder gelijktijdig gebruik van 
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zuurstof. Gezien de hoge temperaturen die in de komposthopen kunnen voorkomen 

(70-80 0C is geen uitzondering), was het interessant om na te gaan welke 

methanogenen in champignonkompost voorkomen. Na isolatie en karakterisatie 

van twee reinkweken bleken beide tot de reeds eerder beschreven thermofiele 

bakteriesoort Methanobacterium thermoautotrophicum te behoren (HS 4). Nieuw 

is wel hun isolatie uit een omgeving die op makroschaal als zuurstofrijk 

omschreven wordt. Deze schijnbare tegenspraak is te verklaren door de hoge 

biologische aktiviteit in het komposterend materiaal. Het idee is dat een 

strodeeltje bedekt is met een aantal lagen bakcerien. De zuurstof, die de 

hoop binnendringt, wordt geheel opgebruikt door bakteriën in de buitenste 

lagen, zodat onderliggende lagen volledige verstoken blijven van zuurstof. 

Naast het reukloze methaan en kooldioxyde zijn er in de uittredende lucht 

boven een komposthoop ook verbindingen aanwezig, die een sterk prikkelend 

effekt op de neusslijmvliezen uitoefenen. Aangezien de pH van de kompost in 

het algemeen tussen 7 en 8 ligt is het niet erg waarschijnlijk dat vluchtige 

vetzuren verantwoordelijk zijn voor de stank. Pogingen om vluchtige vetzuren 

aan te tonen in het komposterend materiaal zijn nooit suksesvol geweest. 

Omdat het vermoeden bestond dat de verbindingen, die verantwoordelijk zijn 

voor de stank, slechts in zeer lage koncentratles in de lucht voorkomen, werd 

de lucht eerst gekoncentreerd voordat analyses uitgevoerd werden (HS 5). Met 

behulp van een gaschromatograaf gekoppeld aan een massaspektrometer werd de 

identiteit van een aantal stoffen vastgesteld. Van de stoffen, die in de 

hoogste koncentratie aangetroffen werden, bleek een opvallend aantal tot de 

zwavelhoudende stoffen te behoren (met name: dimethylsulfide, dimethyldisul-

fide, dlmethyltrisulfide en koolstofdisulfide). Van een groot aantal stoffen 

uit deze kategorie is bekend dat ze een bijzonder sterke geur bezitten. Zo 

is dimethylsulfide reeds herkenbaar bij een koncentratie van 1 volumedeel 

per 10 miljoen delen lucht. Bij nadere analyses, waarbij speciaal naar 

zwavelhoudende vluchtige verbindingen gekeken werd, werden ook waterstofsulfi 

de, carbonylsulfide en methaanthiol gevonden. Aangetoond werd dat met name 

het laatste deel van de buitenkompostering (de dijken) een grote bijdrage 

levert tot de emissie van zwavelhoudende verbindingen. Op grond van zwavelana 

lyses van het komposterend materiaal werd duidelijk dat de hoeveelheid 

zwavel die op deze manier uit de kompost ontwijkt zo klein is ten opzichte 

van de totaal aanwezige zwavel, dat het onwaarschijnlijk is dat verandering 

van de receptuur alleen leidt tot een belangrijke reduktie in de emissie van 

bovenbedoelde zwavelhoudende verbindingen. Uit laboratoriumonderzoek volgde 
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dat de temperatuur een belangrijke faktor vormde bij het ontstaan van de 

vluchtige zwavelverbindingen (HS 6). Gaandeweg het onderzoek werd het steeds 

duidelijker dat kleine ingrepen in de huidige buitenkompostering niet konden 

leiden tot de gewenste vermindering van uitstoot van milieubelastende stof­

fen. Bovendien voltrekt de buitenkompostering zich onder, voor mikrobiolo­

gische processen, allerminst ideale omstandigheden. Zowel de zuurstofvoor­

ziening als de temperatuur staan een optimale omzettingssnelheid in de weg. 

Om die reden zijn plannen uitgewerkt om een deel van de buitenkompostering in 

geklimatiseerde ruimtes uit te voeren. Dit proces is intussen bekend als 

"indoorkompostering". Een belangrijk voordeel voor de procesvoering is de 

betere kontrole op de voortgang van het proces. Verder kan de uitstoot van 

milieubelastende stoffen gereduceerd worden door het toepassen van afgasrei­

niging. Voor het verwijderen van ammoniak uit de lucht zijn zeer efficiente 

systemen voorhanden. Bij het indoorproces bleken aanzienlijk minder vluchti­

ge zwavelverbindingen uitgestoten te worden dan bij het buitenproces (HS 6). 

Of dit een gevolg is van een verlaagde produktie of een verhoogde afbraak van 

deze verbindingen bij indoorkompostering is nog niet duidelijk. Op grond van 

kennis van het traditionele buitenproces en van enkele mikrobiologische 

processen is een model voor de indoorkompostering opgesteld, waaruit volgt 

dat de gewenste omzetting van organisch materiaal onder optimale omstandighe­

den binnen enkele dagen te realiseren is (HS 7). Dit betekent een aanzienlij­

ke tijdwinst ten opzichte van het huidige proces. 

Naar aanleiding van de in dit proefschrift beschreven resultaten kan 

gekonkludeerd worden dat: 

a) omzettingen in de dijkfase geen aanleiding geven tot een netto biomassa-

aangroei maar wel leiden tot een afname van de aanwezige hoeveelheid 

organische stof. 

b) anaerobe processen gedurende het gehele komposteringsproces een rol 

spelen. 

c) vluchtige zwavelverbindingen voorkomen in de lucht boven het komposte­

rend materiaal. 

d) de vorming van vluchtige zwavelverbindingen met name plaats vindt uit 

organische zwavelverbindingen. 

e) de emissie van vluchtige zwavelverbindingen bij indoorkompostering aan­

zienlijk lager is dan bij het konventionele proces. 

f) door optimalisatie van de procesvoering tijdens de indoorkompostering 

een belangrijke tijdwinst geboekt kan worden. 
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