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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 SCOPE AND INTENT 

The caudate nucleus has been the subject of extensive research during the past 

decades. The finding that there is a dramatic loss of the neurotransmitter dopamine 

in forebrain structures such as the caudate nucleus in patients suffering from 

Parkinson's disease (Hornykiewicz, 1966) has stimulated experimental studies at the 

animal level on the role of the caudate nucleus in behaviour. Dysfunction of the 

caudate nucleus may result in sensory neglect, motor disorders and/or cognitive 

disturbances. Reviewing the literature, Öberg and Divac have tried to formulate a 

unifying concept of the role of the caudate by stating that the caudate nucleus 

'participates in cognitive functions', i.e. functions in associative, mnemonic or complex 

perceptual processes (Öberg and Divac, 1979). 

The broad range of behavioral effects following experimentally induced changes of 

the caudate nucleus, ranging from sensory and motor effects to cognitive alterations, 

becomes understandable when one assumes that this nucleus is actually involved in a 

universal process of behaviour programming which per se is not restricted to certain 

categories of observable behaviour. Evidence in favour of such a universal function is 

derived from animal and human studies. Since this matter is discussed elsewhere (Cools 

et al., 1984a; see also Chapter 3), only two studies will be mentioned here. In 1984, 

Cools and colleagues showed that parkinsonian patients suffered from a so-called 

'shifting aptitude disorder' which was manifested in a motor task as well as in a 
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cognitive task (Cools et al., 1984b). Primates, treated intracaudately with cholinergic 

agents, show an essentially similar shifting aptitude disorder as seen in parkinsonian 

patients, but now restricted to social interactions (van den Bereken & Cools, 1982). 

Evidence in favour of the hypothesis that the caudate nucleus is selectively involved in 

the programming ability underlying the above-mentioned 'shifting aptitude' would be 

provided by showing that in animals a dopaminergic deficiency at the level of the 

caudate nucleus may also result in a comparable shifting aptitude disorder in motor 

behaviour. 

At least some of the observed behavioral changes following a disturbed function of 

the caudate nucleus may actually result from dysfunction of other brain regions that 

are (in)directly affected by abnormal neural information derived from the caudate. 

Experimentally induced changes at the level of the caudate nucleus may alter neuronal 

activity in other brain regions that are (indirectly) innervated by the caudate nucleus 

(cf. Chevalier et al., 1985; Gale & Casu, 1981; Kelly & McCulloch, 1984, 1987; Patino 

& Garcia-Munoz, 1985; Scheel-Krüger, 1986). Distortion of the transmission and/or 

transformation of cortico-caudate signals may result in a reorganization of cortical 

activity affecting parallel (extracaudate) pathways (see Figure 1.1). In any case, the 

degree to which extracaudate brain regions become affected may depend on the degree 

of disturbance induced in the caudate. Evidence in favour of the hypothesis that 

dysfunction of the caudate nucleus may affect normal function of extracaudate brain 

regions would be provided by showing that experimentally induced alterations at the 

level of the caudate nucleus produce behavioral effects similar to that produced by 

experimentally induced changes in extracaudate brain areas. Taking these points into 

consideration, the scope of this thesis was twofold: First, it was investigated whether the 

caudate nucleus may indeed be involved in the programming ability underlying a 

'shifting aptitude' in motor behaviour. Second, it was investigated whether an 

experimentally-induced dysfunctioning caudate nucleus may indirectly produce 

disturbances at the level of other brain regions as well. 

One feature of the caudate nucleus which must be taken into consideration is its 
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Figure 1.1 Simplified scheme of neuronal circuits involving the caudate nucleus. Two functional subregions 

are shown (A, B), one of which (B) projects to the substantia nigra pars reticulata (SNR). Functional 

disturbances at the level of the latter caudate subregion may result in an abnormal activation or inhibition 

of caudato-nigral fibres, affecting in tum SNR (output) neurons. Since the latter neurons project (among 

others) to the deeper layers of the colliculus superior (CSDL), neurons located in the latter region may also 

be affected. In addition, functional disturbances at the level of the caudate nucleus may result in a 

reorganization of conical activity which in tum may activate parallel pathways (A, C). 

heterogeneous nature. At present, morphological, anatomical, neurological, physiological, 

pharmacological and behavioral data are available showing that the caudate actually 

contains several subregions. Although distinct experimental approaches produce 
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subdivisions which do not completely overlap, it seems likely that this intrinsic 

heterogeneity in fact reflects the presence of several functional subentities within the 

caudate nucleus. In view of the above-mentioned heterogeneity, we have limited our 

experiments to one caudate subregion including its output pathway (see below). 

In the caudate nucleus of cats, two distinct subregions are distinguished on the basis 

of differential behavioral changes following local application of dopaminergic drugs 

(Cools, Struyker Boudier & Van Rossum, 1976). In this thesis, attention is focused in 

particular on one subregion, namely the rostromedial part of the caudate nucleus 

(Cools, Struyker Boudier & Van Rossum, 1976). In Chapter 2, the heterogeneous 

character of the caudate nucleus with respect to its intrinsic organization, its afferent 

and efferent connections, and its role in different behaviours are discussed. Chapter 3 

describes experiments in which the role of the rostromedial part of the caudate nucleus 

in the patterning of motor behaviour is studied. In particular, the behavioral effects 

of alterations in caudate dopaminergic and glutamatergic neurotransmission are 

emphasized. Chapters 4, 5, and 6 are devoted to the second goal of this thesis. Chapter 

4 presents experiments in which the behavioral effects were analyzed following 

pharmacological treatment of a brain region innervated by the caudate nucleus, i.e. the 

substantia nigra pars reticulata (Section 4.1), and of a brain region indirectly innervated 

by the caudate, i.e. the deeper layers of the colliculus superior (Section 4.2). The latter 

structure receives fibres from the substantia nigra pars reticulata. Many caudato-nigral 

as well as nigro-collicular fibres contain the neurotransmitter gamma-aminobutyric acid 

(GABA). In order to gain insight into the behavioral changes associated with inhibition 

or excitation of these GABAergic fibres, the experiments described in Chapter 4 were 

performed. Chapter 5 presents behavioral experiments investigating intra- and 

extracaudate functional consequences of a potent, but reversible activation of dopamine 

receptors in the caudate nucleus (Section 5.1). The outcome of this study indicated that 

a strong activation of caudate dopamine receptors resulted also in functional changes 

at the level of the deeper layers of the colliculus superior. In order to verify this 

possibility, it was investigated in a subsequent study whether manipulation of collicular 

GABAergic activity produces behavioral changes similar to those observed following 
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Stimulation of dopamine receptors in the caudate nucleus (Section 5.2). Chapter 6 

presents experiments investigating the behavioral and metabolic consequences of intra-

and extracaudate functional alterations following hyperactivation of caudate neurons 

induced by the application of a potent neuro-excitatory drug to the caudate nucleus 

(Section 6.1). Further, intra- and extracaudate functional and metabolic effects following 

permanent occlusion of the middle cerebral artery were also analyzed (Section 6.2). 

In addition to the data presented in Chapter 3, Chapter 7 also considers the function 

of the caudate nucleus in the programming of behaviour. In the experiments described 

in this chapter, a first attempt was made to determine whether the role of the caudate 

nucleus extends even to the programming of electromyographic activity per se. In 

addition, data are presented demonstrating that the deeper layers of the colliculus 

superior are involved in the caudate-mediated control of muscular activity. 

1.2 CATS AS EXPERIMENTAL ANIMALS 

In all experiments presented in this thesis, cats were used as experimental animals. 

The reason for choosing the cat as the experimental animal in these studies included 

the following: 

1. In contrast to other laboratory animals such as, for instance, albino rats, cats exhibit 

a rich repertoire of behaviours allowing a detailed analysis of subtle changes in 

behaviour following experimentally induced intracerebral changes in neuronal activity. 

2. Motor behaviour of cats has been analyzed in detail resulting in a great amount of 

knowledge in this respect (cf. Armstrong, 1986; Halbertsma et al., 1976). 

3. Behavioral changes following intracerebral application of drugs has been studied 

intensively in cats during the past, especially with respect to the locus and 

neurotransmitter specificity of the chosen tools. By using the same tools, extensive 

control studies could be avoided thereby limiting the number of animals in the present 

investigations. 

4. Due to the relatively large dimensions of the cat brain it became possible to use 

local drug application as a reliable tool to induce subtle behavioral changes, even when 
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the drugs had to be administered in caudate subregions. In fact, the existence of 

distinct functional subregions within the caudate nucleus was first established in cats 

(Cools, Struyker Boudier & Van Rossum, 1976). 

The animals were derived from a breeding stock maintained by the Catholic Univer

sity of Nijmegen. At least one week before the start of the behavioral studies, the cats 

were transported from the breeding colony, which was housed on a farm, to the central 

animal laboratory of the medical faculty where they were housed in a specially designed 

room. Their age was between 10 and 12 months. In most investigations, only male cats 

were used because at this age female animals often weighed less than 2.5 kg. A mini

mum body weight of 2.5 kg was a prerequisite for implanting cannulas in a reliable 

way (see below). In practice, cats weighing at least 2.8 kg were used for the implan

tation of cannulas. The cats were housed in groups in iron wire mesh cages (length χ 

width χ height: 190 χ 120 χ 160 cm: maximum number of animals per cage = 8) which 

were duplicates of those used in the breeding colony. The condition of all animals was 

checked regularly by a veterinarian. In behaviour research in general, the well-being of 

the animals is of vital importance since any form of discomfort might directly affect the 

results of the behaviour analysis. Therefore, a number of measures were taken to avoid 

any discomfort as much as possible. For instance, the animals were extensively habitua

ted to all activity associated with the actual experiments, such as handling by the 

experimenter, transport to the experimental set-up, injection procedures, and, where 

appropriate, the behavioral procedures themselves. 

Prior to cannulation experiments, cats were equipped with intracerebrally implanted 

guide cannulas. The cannulas were implanted under pentobarbitone anaesthesia (40-

50 mg/kg) with the help of a stereotaxic instrument. The cannulas were mounted on 

the skull with help of dental acrylic cement. Postoperative control of the cats showed 

that, after a short recovery period, the behaviour was not affected as a result of the 

implantation. They showed normal righting reflexes, orienting responses and pupil 

reflexes; they reacted in the same way to the experimenter as before the operation. As 

a rule, animals were tested once a week, and they participated in maximally 5 experi-
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ments. After the final experiment, the cats were deeply anaesthetized and transcardially 

perfused with saline followed by 4% formaldehyde solution for subsequent analysis of 

the injection loci. 
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CHAPTER 2 

NEUROBIOLOGICAL ASPECTS OF THE CAUDATE NUCLEUS 

2.1 INTRODUCTION 

In rodents, the caudate nucleus is not a distinct cytoarchitectical entity, but rather 

forms together with the putamen the caudate-putamen complex or neostriatum, i.e., the 

core cell mass of the basal ganglia. In primates and carnivores, the striatum is divided 

into the caudate nucleus and the putamen by the capsula interna (Figure 2.1.1) (cf. 

Nieuwenhuys, 1977; 1988). In addition to the (neo)striatum, the globus pallidus together 

with the substantia nigra and the subthalamic nucleus are also part of the basal ganglia. 

Despite the relatively homogeneous appearance of striatal tissue - more than 95% of 

the neurons belong to the medium-sized (12-18 μιή) spiny type (Bishop, Chang & Kitai, 

1982; Dray, 1980; Groves, 1983) - biochemical, anatomical, physiological, metabolic and 

behavioural studies have revealed a very heterogeneous character of this part of the 

brain. Since this feature of heterogeneity has important implications when studying the 

role of the caudate nucleus in the programming of behaviour, this chapter will review 

some data concerning the functional diversity of the caudate nucleus in relation to its 

intrinsic organization, afférents and projections. For data based on primate or carnivore 

studies, the term caudate nucleus will be used and only in those cases where this 

particular structure is meant by the author; otherwise the more general term striatum 

will be employed. For studies using rodents, the term neostriatum will be used. 
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figure 2.1.1 Cross sections from the rat (A) and cat (B) illustrating the relative differentiation of the 

striatum. C-P, caudate-putamen complex; CN, caudate nucleus; P, putamen. (Nissl staining; bar indicates 

2 mm), (from: Graybiel & Ragsdale, 1979; with permission). 
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2.2 NEUROCHEMICAL COMPARTMENTALIZATION 

On the basis of neurochemical markers striatal tissue appears to be segregated into 

distinct compartments: islands of cell clusters labelled as 'patches' or 'striosomes', and 

a surrounding substrate labelled as 'matrix'. This was shown first in the rat neostriatum 

(Pert et al., 1976; Herkenham & Pert, 1981) but was soon this also established in 

other species such as cats, monkeys and man (Graybiel & Ragsdale, 1978). In fact, the 

rat neostriatum contains a labyrinthine system of patches marked by dense 

concentrations of opiate receptors. In 1981, Herkenham and Pert showed in the rat 

that these patches coincide with regions marked by low acetylcholinesterase (AChE) 

activity. In the cat, the striatal compartmentalization is similarly characterized by 

striosomes marked by a relatively low AChE activity and, complementary to these, a 

matrix marked by a relatively dense AChE-activity (Graybiel & Ragsdale, 1978; 

Graybiel & Ragsdale, 1979). In subsequent studies, it was found that patches can be 

distinguished from the surrounding matrix by relatively high concentrations of substance 

Ρ or relatively high enkephalin-like immunoreactivity (Graybiel et al., 1981; Gerfen, 

1984; Penny, Afsharpour & Kitai, 1986). Furthermore, the AChE-rich matrix expresses 

a relatively high NADPH-(dihydronicotinamide adenine dinucleotide phosphate) 

diaphorase activity (Sandell, Graybiel & Chesselet, 1986). Diaphorase positive neurons 

are also marked by somatostatin- and avian pancreatic polypeptide/neuropeptide Y-

like immunoreactivity (Vincent & Johansson, 1983; Vincent et al., 1983). Finally, in a 

computer-assisted morphometrical study it has recently been shown that tyrosine 

hydroxylase-, DARPP-32(dopamine- and cyclic AMP-regulated phosphoprotein, M r= 

32000)- and enkephalin-like immunoreactivity identifies patches in the rat neostriatum 

that overlap differentially in distinct parts of this nucleus. For example, the putative 

markers for presynaptic dopaminergic fibres and postsynaptic dopaminoceptive neurons, 

i.e., fibres and cells showing immunoreactivity to tyrosine hydroxylase and DARPP-

32, respectively, overlap completely in a small marginal neostriatal zone, whereas any 

consistent overlap between all three markers is absent in the central part (Agnati et 

al., 1988). An example of the three dimensional clustering of patches is illustrated in 

Figure 2.2.1. 
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However, the functional significance of the compartmentalization into patches and 

matrix is far from clear. As described below, there are indications that the distinct 

compartments are differentially innervated by the three major striatal afferent systems, 

i.e. the mesostriatal, the corticostriatal and the thalamostriatal projections. 

Figure 2.2.1 Simplified three-dimensional reconstruction of the 'patch '-network marked by a dense enke-

phalin-like immunoreactivity in the caudate nucleus of the cat. The small outlme illustrates the orientation 

of the figure. The network is based on computer-assisted reconstruction derived from serial coronal, horizon

tal and sagittal sections. L, lateral; A, anterior (from Groves et al., 1988; with permission). 

24 



23 MOSAIC DISTRIBUTION OF CAUDATE AFFERENTS AND EFFERENTS 

Afferent connections 

The dopaminergic mesostriatal projection originates in three mesencephalic cell 

groups labelled as A8, A9 and AIO according to the terminology of Dahlström and 

Fuxe (1964). As described by Ungerstedt in 1971, dopaminergic cells located in the 

substantia nigra pars compacta (A9) together with cells located in the retrorubral area 

(A8) project to the neostriatum of the rat, whereas the dopaminergic nerve endings in 

the nucleus accumbens and olfactory tubercle originate from cells located in the ventral 

tegmental area (AIO). More recent studies have refined our knowledge concerning the 

afferent projections of the caudate nucleus. For instance, terminations of AIO 

dopaminergic neurons are also found in the caudatoputamen complex, especially, but 

not exclusively, in more ventral regions (cf. Fallon & Moore, 1978; Moore & Bloom, 

1978; Szabo, 1980). These data imply that, in fact, the rat neostriatum is only partly 

'striatal': another part can be labelled as 'limbic' as a result of its dopaminergic 

innervation from the ventral tegmental area (cf. Jayaraman, 1985). Below, more detail 

regarding the projection areas of the distinct dopamine cell groups is presented. 

In 1984, Graybiel showed that in the cat caudate nucleus the pattern of immuno

reactivity in tyrosine hydroxylase, the enzyme which synthesizes dopamine, changes 

during ontogeny from 'islands' to a relatively diffuse distribution (Graybiel, 1984). In 

the mature brain, tyrosine hydroxylase-like immunoreactivity is relatively low in 

striosomes compared to the surrounding matrix (Graybiel, Hirsch & Agid, 1987). These 

data suggest that distinct dopamine subsystems develop successively (Graybiel, 1984; 

Graybiel, Hirsch & Agid, 1987). Additional evidence in favour of this suggestion was 

presented by Gerfen and coworkers in the rat (Gerfen, Herkenham & Thibault, 1987; 

Gerfen, Baimbridge & Thibault, 1987; see also Loopuijt, Sebens & Korf, 1987; Murrin 

& Zeng, 1989). In the rat mesencephalon, two distinct populations of dopamine 

neurons can be distinguished on the basis of a number of factors : (1) different periods 

of development, (2) location in the midbrain, (3) presence of histochemical markers 

and (4) neostriatal termination zones. Dopamine neurons located in the substantia 
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nigra pars compacta (i.e., the 'ventral tier groups' or ventral A9 together with 

'displaced' neurons in the substantia nigra pars reticulata) project to the patch 

compartment. They also express no Ca-binding protein immunoreactivity and develop 

relatively early during ontogeny. In contrast, dopamine cells located in the retrorubral 

area (A8), the ventral tegmental area (AIO area or 'dorsal tier cell groups', including 

neurons located in the dorsal A9 area) project to the striatal matrix. These cells express 

Ca-binding protein immunoreactivity and develop later during ontogeny (see Figure 

2.3.1). In the cat and monkey, a more or less similar distinction exists: a restricted zone 

within the medial part of the substantia nigra pars compacta, the 'densocellular zone', 

contains cells projecting to the striatal patch compartment, whereas dopamine cells 

located in the remaining lateral parts of the reticular pars compacta project preferen

tially to the matrix of the caudate nucleus. The latter also holds true for dopamine 

neurons of the A8 and AIO group. These cells project to the matrix of the dorsal and 

the ventral striatum, respectively (Jiménez-Castellanos & Graybiel, 1987; Feigenbaum 

Langer & Graybiel, 1989). 

The cerebral cortex is the source of the largest group of striatal afférents (Graybiel 

& Ragsdale, 1979). In general, all regions of the cerebral cortex project to the striatum. 

For example, the neocortex projects to the striatum via a projection originating in the 

supragranular (II and III) and infragranular (V and VI) cortical layers (Royce, 1982; 

Tanaka, 1987). Via this projection system, the sensorimotor cortical areas impinge 

directly on the dorsolateral striatum while the visual cortical area projects to the 

dorsomedial part of the striatum. In addition, the mesocortex projects predominantly 

to the medial and ventral part of the striatum with the lateral mesocortical areas 

projecting to ventral striatal areas. Finally, the allocortex projects mainly to the nucleus 

accumbens and the olfactory tubercle. In the case of the entorhinal cortex, an 

additional projection exists to the ventromedial striatum and in the case of the piriform 

cortex, subiculum and hippocampus, an additional projection to the medial part of the 

(neo)striatum has been described (McGeorge & Faull, 1989, see also Arikuni & 

Kubota, 1986; Faull, Nauta & Domesick, 1986). 
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Mesostriatal Striatonigral 

Figure 2.3.1 Schematic illustration of the compartmentat organization of the mesostriatal innervation 

(left) and striatonigral projection (right) in the rat neostriatum. Dopaminergic afférents to the neostriatal 

matrix originate from a dorsal set of midbrain neurons (x) located in the ventral tegmental area (AIO cells 

in the VTA), the dorsal tier of the substantia nigra pars compacta (dorsal A9 cells in the SNc-d), and the 

retrorubral area (A8 cells in the RR). Dopaminergic afférents to the neostriatal patches originate from the 

ventral tier of the substantia nigra pars compacta (ventral A9 cells in the SNc-v), and from the A9 

dopaminergic cells located in the substantia nigra pars reticulata (SNr). Neurons located in the neostriatal 

matrix provide inputs to the substantia nigra pars reticulata that avoid the location of the dopaminergic cells 

in both the SNc and the SNr. Neurons in the neostriatal patches provide inputs to the location of the 

dopaminergic cell bodies. (From: Gerfen, Herkenham & Thibault, 1987; with permission). 

In addition, the patch and the matrix compartment are differentially innervated by 
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the cortex (Gerfen, 1984). The patches are innervated by prelimbic cortical areas, i.e., 

parts of the cortex innervated by the amygdala and hippocampus. In contrast, the 

matrix receives afférents from the sensorimotor cortex. In addition, the corticocaudate 

projections are also topographically organized. For instance, Kubozono et al. (1986) 

found that the dorsolateral caudate nucleus of the cat receives fibres from area 4, 

whereas more central caudate parts are innervated by area 6. Finally, recent evidence 

suggests that at least in the rat both the patch and matrix compartments are innervated 

by each cortical region, but cortical neurons located in the supragranular layers project 

mainly to the matrix, while output cells located in infragranular layers send their axons 

to the striosomes (Gerfen, 1989). 

The third major innervation, and in fact the second largest, of the striatum is derived 

from the thalamus. Thalamostriatal afférents originate predominantly in the intralaminar 

nuclei (Beckstead, 1984; Jones & Leavitt, 1974; Macchi et al., 1984) and appear to 

terminate in clusters in the striatum (Kalil, 1978; Royce, 1978). In addition, the 

ventromedial-ventrolateral complex and the dorsomedial nucleus also project to the 

caudate nucleus (Fisher et al., 1983). In the cat, the suprageniculate nucleus projects 

selectively to the medial and intermediate regions (Hu & Jayaraman, 1986). The rat 

thalamostriatal projection originating in the parafascicular nucleus appears to avoid 

striosomes marked by a high opiate binding and a low acetylcholinesterase activity 

(Herkenham & Pert, 1981). This finding has also been confirmed in the cat where the 

thalamic centre median/parafascicular complex distributes its axons into the matrix 

compartment of the caudate nucleus (Beckstead, 1985). This innervation therefore 

appears to be complementary to the projection derived from the medial substantia 

nigra (Beckstead, 1985; Jiménez-Castellanos & Graybiel, 1987; see above). Finally, these 

thalamic nuclei project preferentially to patches of the ventral striatum and nucleus 

accumbens. 

Apart from the three afferent systems described above, the striatum also receives 

fibres from the pontine and caudal mesencephalic reticular formation, locus coeruleus, 

raphe nuclei, globus pallidus, subthalamic nucleus and amygdala (Dray, 1980; Fisher et 
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al., 1983; Graybiel & Ragsdale, 1979). The bulk of the amygdalostriatal fibres are 

derived from the basolateral amygdala which appears to innervate predominantly 

striosomes. In addition, the basomedial nucleus of the amygdala innervates the 

extrastriosomal matrix compartment (Ragsdale & Graybiel, 1988). 

Efferent connections 

Neurons of the caudate nucleus/neostriatum send their axons to two brain regions: 

the globus pallidus and the substantia nigra pars reticulata (Dray, 1980; Faull, Nauta 

& Domesick, 1986; Graybiel & Ragsdale, 1979; Nieuwenhuys, 1977; Percheron, Yelnik 

& François, 1984; Royce & Laine, 1984; Tulloch, Arbuthnott & Wright, 1978; for 

review: Scheel-Kriiger, 1986). In addition, striatal efferents project to the 

entopeduncular nucleus, which is the homologue to the inner and medial segment of 

the globus pallidus in primates (Graybiel & Ragsdale, 1979). The majority of striatal 

neurons (medium-sized spiny cells; Somogyi & Smith, 1979) are output neurons (Fisher 

et al., 1986a; Kitai & Kocsis, 1979; Pasik et al., 1988). Many caudate output neurons 

contain GABA as revealed by immunocytochemistry (presence of glutamate decar

boxylase, the biosynthetic enzyme for GABA: Fisher et al., 1986b; Kubota et al., 1987; 

Kita & Kitai, 1988; Oertel & Mugnaini, 1984). Other putative neurotransmitters that 

may be used by caudate efferents are substance Ρ (Kanazawa et al., 1980; Somogyi 

et al., 1982), enkephalin (Johnson, Sar & Stumpf, 1980) and dynorphyn (Vincent et al., 

1982). Recent evidence suggests that each of the output pathways is characterized by 

its own set of (putative) transmitters (for réf., see Graybiel, 1990; Smith & Bolam, 

1990). The medium spiny output neurons have axons which form extensive collateral 

networks before they leave the (neo)striatum (Katayama, Miyazaki & Tsubakawa, 1981; 

Penny, Wilson & Kitai, 1988; Preston, Bishop & Kitai, 1980; see Figure 2.3.2). In 

addition, the striatal output neurons have large dendritic fields as illustrated in Figure 

2.3.2. As is schematically depicted in Figure 2.3.3, the dendritic fields of the output 

neurons extend into the striosomes containing part of the nigrostriatal dopaminergic 

nerve endings. These connections provide a basis for a network in which the 

dopaminergic pars compacta cells are able to affect the activity of the caudate 

GABAergic output neurons. 
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Figure 2.3.2 Reconstrucnon of a neostnatal projection neuron A: Complete somatodendntic morphology and 

pamal illustration of the axon system. B: The axon-collateral plexus supenmposed on the cell's dendntic 

field (stippled). Calibration bar m A is 40 μm. Antenor (a) and dorsal (d) orientations are indicated m В. 

(From: Preston, Bishop &. Kitai, 1980; with permission). 

The striatomgral fibres originating in the patch compartment, and those derived 
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from the matrix, project to distinct divisions of the substantia nigra (Figure 2.3.1). Cells, 

located in neostriatal patches (marked by dense concentrations of opiate receptors, or 

substance P- and leu-enkephalin-like immunoreactivity) project to the dopaminergic 

cells of the substantia nigra pars compacta, whereas neostriatal neurons located in the 

matrix provide input to the substantia nigra pars reticulata (Gerfen, 1985; Gerfen, 

Herkenham & Thibault, 1987; see Figure 2.3.1). The latter findings are consistent with 

the results reported by Gustafson and coworkers who used dopamine and cyclic AMP-

Figure 2.3.3 Hypothetical distribution of caudate output neurons with their dendntic fields depicted as 

stippled circles The heavy contours show the actual location of the dopamine islands Dark circles show 

dendntic fields that did not overlap (about 10 % of randomly generated cell positions within the border of 

the caudate nucleus (From: Craybiel, 1984; with permission). 
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regulated phosphoprotein (DARPP-32 which labels neostriatal dopaminoceptive neurons 

and their projections) and tyrosine hydroxylase (which labels dopamine synthesizing 

neurons) immunoreactivity (Gustafson, Ouimet & Greengard, 1989). Finally, Desban 

and coworkers were able to show in the cat that the caudate matrix, as defined by its 

dense AChE-labelling, indeed is the source of the projection to the substantia nigra 

pars reticulata by using a combination of autoradiography and acetylcholinesterase 

staining (Desban et al., 1989). 

2.4 FELINE CAUDATE NUCLEUS: FUNCTIONAL IMPLICATIONS 

In 1976, Cools and coworkers described two subregions within the caudate nucleus 

of the cat (Cools & Janssen 1976; Cools, Struyker Boudier & Van Rossum, 1976). Both 

regions were characterized on the basis of functional and pharmacological features: the 

so-called caput nuclei caudati rostromedialis (CRM region) located in the rostromedial 

part of the caudate nucleus and the extra-CRM region of the caudate nucleus (rCRM 

Figure 2.4.1 Semi-diagrammatic outline of the functionally and pharmacologically distinct rostromedial part 

of the caudate nucleus (CRM: shaded area) and anterodorsal part (rCRM: open area) of the caudate nucleus 

(From: Cools, Struyker Boudier & van Rossum, 1976; with permission). 
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region), which dominates the anterodorsal part of the caudate (Figure 2.4.1). Each 

region is characterized by its own dopamine receptor type. The CRM region contains 

so-called DAe receptors which are selectively stimulated by apomorphine and selectively 

inhibited by low doses of butyrophenones such as haloperidol. In contrast, the rCRM 

region contains so-called DA, receptors which are selectively activated by (3,4-

dihydroxy-phenylamino)-2-imidazoIine (DPI) and selectively inhibited by ergometrine 

and piribedil. Activation of DA, receptors produces characteristic abnormal head 

movements, whereas stimulation of DAi receptors induces orofacial dyskinetic move

ments (Cools, Struyker Boudier & Van Rossum, 1976; Cools et al., 1989). In rats, 

Figure 2.4.2 Schematic localization of the stnosomes (white areas) and matrix (dotted areas; AChE staining) 

zones on rostral (A) medial (B) and caudal (C) frontal sections of the caudate nucleus in three different 

animals. The superimposition of the individual localizations of main stnosomal areas m a given frontal plane 

is represented on the right part of the figure, ca = anterior commissure. (From Desban et al, 1989; with 

permission). 
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dopamine may also act differentially in distinct neostriatal regions as suggested by the 

finding that systemic administration of apomorphine produces regional differences in 

activity in the neostriatum. For example, apomorphine decreases glucose utilization in 

dorsomedial regions, but increases glucose utilization in the ventromedial region, but 

it does not change metabolism in other neostriatal regions (Brown, Wolfson & Feld

man, 1987). The detailed study of Desban and colleagues (1989) makes it possible to 

directly compare the functionally and pharmacologically distinct regions as defined by 

Cools and coworkers on the one hand, and the biochemical compartmentalization as 

found by AChE-staining on the other hand (see Figures 2.4.1 and 2.4.2). The 

rostromedial CRM region appears to be dominated by AChE-poor striosomes, whereas 

the anterodorsal rCRM region appears to be dominated by the AChE-rich matrix 

compartment. In view of the notion that the striosomes are selectively innervated by 

the densocellular zone of the substantia nigra pars compacta (see Section 2.3), it 

seems likely that the rostromedial CRM area of the caudate nucleus is directly control

led by these dopaminergic nigrostriatal fibres. On the other hand, data reported by 

Desban and coworkers suggest that this part of the caudate nucleus selectively projects 

to the caudal (lateral) part of the substantia nigra pars reticulata (Desban et al., 1989). 

In contrast, the anterodorsal rCRM area, in which the matrix zone is most prominent, 

seems to be directly controlled by the dopaminergic fibres originating in the retrorubral 

area (A8) and ventral tegmental area (AIO) (see Section 2.3). 
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CHAPTER 3 

CAUDATE NUCLEUS AND THE PROGRAMMING OF MOTOR BEHAVIOUR 

IN CATS 

3.0 GENERAL INTRODUCTION 

Recent neurobehavioural studies have revealed that the caudate nucleus is involved 

in programming social behaviour in monkeys (Van den Bereken & Cools, 1982). 

Cholinergic agents injected into the caudate nucleus of Java monkeys living in a social 

group have been found to produce changes in the balance between social behaviour 

directed by the treated monkey and social behaviour directed by the partners of the 

treated monkey. Moreover, additional experiments in rats have indicated that the 

neostriatum determines the degree in which the animal itself directs its own behaviour; 

the experimentally-induced changes in behaviour which was directed by exteroceptive 

stimuli turned out to be the consequence of the former effect. This was demonstrated 

in experiments in which rats were forced to switch behavioural strategies in a so-called 

'swimming without escape' test. Intrastriatal injections of the dopaminergic antagonist 

haloperidol, for example, reduced the programming of behaviour strategies which were 

not directed by external stimuli. In contrast, haloperidol did not attenuate the 

programming of behaviour strategies which were directed by external stimuli. Further, 

the dopamine agonist apomorphine increased the ability to programme behaviour 

strategies which were not directed by external stimuli. According to these studies the 

rat neostriatum and the monkey caudate nucleus, respectively, appear to be selectively 

involved in the process of ordering and sequencing behaviour that is not directed by 

exteroceptive stimuli. This conclusion holds true for social behaviour repertoires of Java 
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monkeys and behaviour strategies of rats. In man, a deficient dopaminergic function at 

the level of the caudate nucleus also results in analogous deficits. Patients suffering 

from Parkinson's disease, for example, show a reduced ability to switch behavioural 

programmes without the help of external information. This "shifting aptitude disorder" 

is manifested at the level of both shifting motor pattern sequences as well as at the 

level of switching problem-solving strategies in a cognitive task (Cools et al., 1984). 

Because the caudate nucleus is known to be involved in motor behaviour, the 

question arises as to whether the caudate's role in the ability to shift behaviours not 

directed by exteroceptive stimuli also extends to the programming of motor behaviour 

in animals. During the past decade many workers postulated that the caudate nucleus 

is an important substrate for programming complex motor behaviour (Cools, Lohman 

& Van den Bereken, 1977; Olmstead et al., 1976; Schmidt, 1983; Teitelbaum, Schallert 

& Whishaw, 1983). In Section 3.1 data are presented showing that inhibition of caudate 

(rostromedial part) dopamine receptors selectively reduces the ability to switch motor 

patterns which are not directed by exteroceptive stimuli. 

Apart from the mesostriatal dopaminergic innervation, the caudate nucleus receives 

its principal afférents from the thalamus and the neocortex (see Chapter 2). The most 

extensive projection originates in the cortex. It is generally accepted that this input, 

which is derived from almost all parts of the neocortex (see Chapter 2; see also 

Arikuni & Kubota, 1986; Graybiel & Ragsdale, 1979; Jinnai & Matsuda, 1979; 

McGeorge & Faull, 1987) is excitatory and glutamatergic (Carter, 1982; Cotman et 

al., 1987; Fonnum, 1984; Hassler et al., 1982; Kerkerian, Nieoullon & Dusticier, 1983; 

Nieoullon & Dusticier, 1983; Spencer, 1986; Updyke & Lyles, 1987; Young, Bromberg 

& Penney jr., 1981). In Section 3.2 data are presented showing that stimulation of 

caudate (rostromedial part) glutamate receptors with help of the quisqualate receptor 

agonist dl-a-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) enhances 

switching motor patterns in a receptor-specific way. Finally, the interaction between 

dopamine and glutamate with respect to the animal's ability to switch motor patterns 

is studied in Section 3.3. This section presents data showing that apomorphine prevents 
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only the AMPA-induced increase in switching behaviour, but not the AMPA-induced 

incorrect limb placing movements. The data are discussed in view of the known 

importance of the caudato-nigro-collicular pathway in switching behaviour. Further, the 

data suggest that the dopaminergic modulation of glutamate activity within the 

rostromedial caudate nucleus is restricted to functional changes mediated by quisqualate 

receptors. 
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3.1 ROLE OF DOPAMINE IN SWITCHING MOTOR PATTERNS 

Summary 

Cats were trained to walk on a specially designed treadmill: the cats were able to 

collect food pellets by switching motor patterns with or without the help of 

exteroceptive stimuli inherent to the treadmill. To study the involvement of the 

rostromedial part of the caudate nucleus in switching motor patterns cats received 

bilateral intracaudate injections of haloperidol. In addition, in a final series of 

experiments, EMG recordings of two antagonistic muscles, together with recordings of 

characteristic changes in the length of one muscle, were made before and after the 

haloperidol treatment. Haloperidol resulted in a decreased number of motor patterns 

which were not directed by exteroceptive stimuli (non-exteroceptively directed motor 

patterns). This haloperidol-induced effect was dose-dependently counteracted by the 

additional intracaudate injections of apomorphine which per se remained ineffective. 

Haloperidol neither affected the number of food collecting attempts nor reduced the 

number of exteroceptively directed motor patterns. Furthermore, haloperidol did not 

affect the capacity to switch to proprioceptively directed motor patterns. Finally, 

haloperidol did not produce abnormalities in EMG and length signals recorded from 

hindlimb muscles. 

It is concluded that haloperidol selectively reduced the animal's capacity to 

'programme non-stimulus directed motor behaviour'. The data are discussed in view of 

their significance for therapy of patients with basal ganglia disorders, such as patients 

suffering from Parkinson's Disease. 

3.1.1 INTRODUCTION 

The purpose of the present study is twofold. First, it describes a new experimental 

approach to study alterations in the ability of cats to switch to motor patterns which 
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are not directed by exteroceptive stimuli. And second, it provides evidence that the 

caudate nucleus, especially the dopaminergic neurotransmission in the rostromedial part, 

is indeed involved in programming the ordering and sequencing of motor patterns 

which are not directed by exteroceptive stimuli. Switching motor patterns was 

investigated in cats trained to walk on a specially designed treadmill: the cats were able 

to collect food pellets by switching motor patterns with or without the help of 

exteroceptive stimuli inherent to the treadmill. To study the involvement of the 

rostromedial caudate nucleus in programming motor patterns cats received intracaudate 

bilateral injections of an agent known to temporarily produce a dysfunctioning of this 

structure. For this purpose the dopaminergic antagonist haloperidol was chosen in view 

of its known efficacy to selectively inhibit the transmission of information from the 

dopaminergic, nigrostriatal fibres towards their corresponding postsynaptic receptors 

within the rostromedial part of the caudate nucleus (for ref. see Cools, Struyker 

Boudier & Van Rossum, 1976). The ability of the dopaminergic agonist apomorphine 

to counteract the haloperidol-induced effect was studied in order to establish the 

dopaminergic nature of the latter effect. In a final series of experiments, EMG 

recordings of two antagonistic muscles, together with recordings of characteristic 

changes in the length of one muscle, were made before and after the haloperidol 

treatment of unrestrained cats walking on the treadmill in order to detect the possible 

occurrence of motor deficits. 

3.1.2 EXPERIMENTAL PROCEDURES 

Apparatus 

Studies on motor behaviour of cats have shown that locomotor patterns including 

changes in gait and/or coordination of limbs can be studied in cats walking on a motor-

driven treadmill. For the purpose of the present study a special apparatus was 

designed. A motor-driven treadmill of 120 cm length and 20 cm width was used; the 

treadmill was placed in a perspex enclosure (120 χ 20 χ 65 cm; see Figure 3.1.1). One 

long wall was made of transparent perspex to enable the recording of motor patterns 
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Figure 3.1.1 Treadmill and food dispenser (insel). For details, see text. 

by means of a closed video circuit. The wall in front of the cat's head contained a 

window (10 cm width, 12 cm hight at a distance of 18 cm from the bottom). A food 

dispenser was mounted below the window at the back of the front panel (see Figure 

3.1.1, inset). The food dispenser was placed in a box fitted with a ventilator (System 

PAPST type 900) to remove odour inherent to the food (specially shaped pellets; Hope 

Farms) and to produce a constant background noise. The rater manually directed the 

motor-driven food dispenser which delivered one pellet per time. In general, the 

treadmill was designed in such a way that the stepping cat was unable to see, smell or 
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note the delivery of a food pellet as long as the cat was stepping in the middle of the 

treadmill. Thus, switching from stepping to collecting food could never be directed by 

exteroceptive stimuli inherent to the delivery of the pellet. 

Animals 

Male and female cats weighing 2.5-4.5 kg were selected according to their stepping 

performance on the treadmill (1.0-1.25 km/ hr). Next, only cooperative cats were 

trained to reach the criterion, i.e. walking in the middle of the treadmill. During that 

period, the cats were rewarded initially by pellets offered manually through the window 

and later on, by pellets delivered by the food dispenser. The training was stopped as 

soon as the cat was able to collect food pellets from the food dispenser. Only cats 

which collected food in a random manner at random time-intervals were included in 

the present study. 

After the training cats were anaesthetized with sodium pentobarbitone (40-50 mg/kg) 

and stereotaxically equipped with stainless steel cannulas (outer diameter 0.8 mm; outer 

diameter of the inner cannula that extended 1 mm below the tip of the outer cannula: 

0.55 mm) into the rostromedial part of the caudate nucleus. The coordinates were: A 

15.0, L 5.0 and H 5.0 (Snider & Niemer, 1964). For further details of the method, see 

Cools, Struyker Boudier & Van Rossum, 1976). In a subgroup of six cats, EMG 

electrodes were also chronically implanted into the lateral gastrocnemius and anterior 

tibial muscles. The connecting cables were passed subcutaneously to the head and 

their sockets were embedded in acrylic cement. Additionally, metal pins were inserted 

percutaneously into the cat's calcaneus and head of tibia to allow attachment of a 

mercury-in-rubber length gauge during recording sessions. EMG and length signals were 

transmitted with the help of two battery-driven FM transmitters to FM receivers, 

decoded, amplified and recorded on magnetic tape (for further details of method, see 

Prochazka, Stevens & Wand, 1979). After two weeks, the animals were retested on the 

treadmill to check their recovery; none of the cats had to be discarded. 
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Motor behaviour on the treadmill 

In general, cats which were trained on the treadmill displayed one or more of the 

following motor patterns. 

A) Walking. The cat simply walked with constant speed somewhere in the middle of 

the treadmill. Thus, the cat maintained its ongoing motor program. 

B) Gait accelerations, type 1. The cat visually fixated a particular part of the window 

or treadmill and approached the window by accelerating its gait, thereby continuously 

fixating its originally selected target. Thus, the cat switched motor patterns thereby 

continuously matching stimuli inherent to the treadmill. These motor patterns are 

denoted as 'exteroceptively directed gait accelerations'. 

C) Gait accelerations, type 2. The cat accelerated its gait without visual fixating 

anything which could serve as an exteroceptive stimulus. Thus, the cat switched to 

motor patterns which were not directed by exteroceptive stimuli. These motor patterns 

are denoted as 'non-exteroceptively directed gait accelerations'. 

D) Gait transitions, type 1. The cat visually fixated the belt immediately in front of its 

forelegs and/or tactually fixated the front panel by making contact with its forelegs, 

thereby altering its interlimb coordination by decreasing the steplength of the forelegs 

and increasing the steplength of the hindlegs. Thus, the cat switched motor patterns, 

thereby continuously matching exteroceptive stimuli inherent to the treadmill. These 

motor patterns are denoted as 'exteroceptively directed gait transitions'. 

E) Gait transitions, type 2. The cat altered its interlimb coordination without visually 

or tactually fixating any observable, exteroceptive stimulus. Thus, the cat switched motor 

patterns which were not directed by exteroceptive stimuli. These motor patterns are 

denoted as 'non-exteroceptively directed gait transitions'. 

F) Eating behaviour. Once the cat had approached the window, the animal bent its 

head through the window in order to collect a pellet. These motor patterns are denoted 

as 'food collecting attempts'. 

Cats which performed a whole sequence as soon as they were confronted with a 

running belt or the back panel were discarded in order to exclude animals using 

conditioned stimuli for directing their motor patterns. 
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belt speed is zero, food delivery is absent 

belt speed is 1 0 - 1 25 km/hr. food delivery is present 

Figure 3.1.2 Experimental paradigm. A: point of injection time ofhalopendol m case apomorphme is given 

at B. B: point of injection time in case a single dmg is given. PRE, pre-injeclion test period. POST, post-

injection test periods. 

Design 

Twenty-four hours prior to the experiments the cats were food deprived. Each 

experiment consisted of three walking periods, each lasting 5 minutes (see Figure 3.1.2). 

The first walking period served as the control period. The second and third walking 

periods, i.e. 5 and 25 min after intracaudate injections of solvent, viz. distilled water 

(control), haloperidol (Haldol, Janssen Pharmaceutica) or apomorphine hydrochloride 

(Brocades), served as post-injection periods 1 and 2, respectively (POST 1 and POST 

2 in Figure 3.1.2). According to former experiments, in which open-field behaviour was 

analyzed, haloperidol and apomorphine are effective, dopamine-specific and locus-

specific in a dose of 12.5 ^g/5.0 μ\ and 0.6 /ig/5.0 μ\, respectively (for ref. see Cools, 

Struyker Boudier & Van Rossum, 1975, 1976). The doses were freshly prepared 

immediately before the injections were given. Dopamine specificity of the observed 

effects was tested in an additional series of experiments in which haloperidol was 

injected 5 minutes prior to apomorphine. All substances were bilaterally injected in a 

volume of 5.0 μ\ with a Hamilton syringe (outer diameter of injection needle: 0.4 mm) 

extending 2 mm below the tip of the embedded guide cannula. 
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The motor patterns on the running belt were recorded on videotape by means of 

a closed video-circuit, and subsequently analyzed. The number of each distinct type of 

motor pattern was counted. Apart from the fact that a number of experiments were 

analyzed independently by two observers, the remainder of the experiments was 

analyzed by a single observer after having reached a sufficiently high inter-rater 

reliability. Pre-injection scores were expressed as the absolute number of observed 

motor patterns. In contrast, the post-injection scores were expressed as percentage of 

the amount of motor patterns observed during the pre-injection period; in this manner 

it became possible to solve the problem of the rather large intra- and inter-individual 

variability (see Table 3.1.1 in which both the median and range of the pre-injection 

scores are presented). In case an animal failed to display a particular motor pattern 

during the pre-injection period, that animal was excluded from the evaluation of the 

drug-induced effects on that movement. The Mann-Whitney U-test was used for statis

tical analyses (two-tailed, unless otherwise indicated; Siegel, 1956). Group differences 

with ρ < 0.05 were considered to be significant. 

Given a drug-induced effect on motor behaviour, it is evident that such a change 

might be attributed to a motor deficit. For this purpose, EMG and length signals were 

recorded before and after the treatment which produced such a change, i.e. haloperidol 

injections. 

In general, cats were used maximally five times with a minimum interval of one 

week between the trials. After finishing the experiments the cats were deeply 

anaesthetized with sodium pentobarbitone and perfused intracardially with a 4 % 

formaldehyde solution. The brains were removed and the target sites were verified 

according to previously described procedures (Cools, Struyker Boudier & Van Rossum, 

1976). 
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3.1.3 RESULTS 

Histological verification revealed that all injections were properly placed within the 

rostromedial part of the caudate nucleus; the coordinates found were: A 13.5-15.0, L 

5.5-6.5 and H 5.5-7.0 (see Figures 2.4.3 and 4.1.3). 

In general, the cats showed the following sequence during the test periods. 

(1) Walking in the middle of the treadmill. 

(2) Approaching the front panel by accelerating its gait in one of the two alternatives 

mentioned in the section Experimental Procedures (viz. non-exteroceptively or 

exteroceptively directed gait accelerations). 

(3) Adopting and maintaining a position as close as possible to the front panel by 

altering its interlimb coordination in one of the two alternatives mentioned in the 

section Materials and Methods (viz. non-exteroceptively or exteroceptively directed gait 

transitions). 

(4) Bending the head through the window in order to collect a food pellet. 

(5) Collecting the food pellet. 

(6) Either drifting backwards on the running belt in a passive manner, or decelerating 

its gait, meanwhile eating the collected pellet as quickly as possible. 

It must be taken into account that the given description portrays a full-blown sequence; 

however, cats may also 'plug-in' at different stages of this sequence. Normally, the cats 

approached the front panel several times during one test period. Since the distinct 

motor patterns were differentially affected by the chosen treatments, the results will be 

separately presented. 

Walking 

All cats showed this behaviour before and after their treatment, the limb, head and 

body movements remained undisturbed by any treatment. None of the cats showed 

either incorrect adjustments of their body positions and postures on the running belt 

or abnormal postures and positions on the standing belt at any time. The absence of 

motor impairments was confirmed by recordings of hindlimb EMG and length signals 
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Figure 3.1.3 Four steps during unobstructed walking on a treadmill before (A) and after (B) the bilateral 

intracaudate injection of 125 μg halopendollS μΐ. First trace- phases of step-cycle according to Philippson 

(1905). Second trace: lateral gastrocnemius (LG) EMG. Third trace, tibialis anterior (TA) EMG Fourth 

trace: monitored length of ankle extensors. 

in cats walking on the running belt (n=6). Since intracaudate haloperidol was the only 

effective treatment which altered the animal's ability to switch to motor patterns that 

are not directed by exteroceptive stimuli (see below), the EMG-implanted cats received 

haloperidol only. None of the six cats exhibited detectable changes of the innervation 

patterns of the recorded pair of muscles and of the muscle length after the chosen 

treatment. A typical recording is demonstrated in Figure 3.1.3. 
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Non-exteroceptively directed gait accelerations 

Since the cats did not show a significant amount of this behaviour during the pre-

injection period (Table 3.1.1), drug-induced changes could not be detected in this 

respect. However, it should be noted that the vast majority of the tested cats were able 

to show this behaviour (see Table 3.1.1). 

Exteroceptively directed gait accelerations 

The data are shown in Figure 3.1.4. This figure shows that the injection of solvent 

produced a small reduction of the pre-injection scores (15%). Neither haloperidol nor 

apomorphine produced effects different from those produced by the solvent. Also halo-

Table 3.1.1 Pre-mjection median values + range (in parentheses) of gait accelerations (exteroceptively 

directed and non-exteroceptively directed), gait transitions (exteroceptively directed and non-exteroceptively 

directed) and food collecting attempts of all cats tested. 

SLV, solvent (5 μί); HAL, haloperidol (12.5 //g/S μ]); A(0.3), apomorphine (0.3 //g/5 
μ]); A(0.6), apomorphine (0.6 /ig/5 μ\) 

SLV HAL A(0.3) A(0.6) HAL+ HAL+ 
A(0.3) A(0.6) 

non-exteroceptively 
directed gait 
accelerations 

exteroceptively 
directed gait 
accelerations 

non-exteroceptively 
directed gait 

transitions 
exteroceptively 

directed gait 
transitions 

food collecting 
attempts 

4 3 
(1-15) (1-5) 

11 15 
(3-28) (2-43) 

9 10 
(1-26) (2-26) 

13 7 
(2-20) (2-22) 

34 22 
(9-60) (6-59) 

4 5 
(2-8) (1-14) 

9 10 
(2-13) (4-18) 

17 9 
(2-40) (1-24) 

10 7 
(3-23) (5-25) 

42 35 
(13-72) (21-68) 

2 3 
(1-5) (1-8) 

18 9 
(8-25) (3-15) 

23 22 
(13-48) (11-34) 

5 6 
(3-14) (4-22) 

26 43 
(18-68) (19-53) 
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Figure 3.1.4 Median value of exteroceptivefy directed gait accelerations 5-10 mm after bilateral intracaudate 

injection of solvent 5 μΐ (S), apomorphine 0.6fig/5 μΐ (A0.6), Haloperidol 12.5 μg|5 μΐ (H12.5) and haloperi-

dol 12.5 μΙ/5 μΐ plus apomorphine 0.6 μξΙ5 μΐ (H+A). 

peridol given 5 min prior to apomorphine did not produce any significant effect in this 

respect. 

Non-exteroceptively directed gait transitions 

This motor behaviour was strongly affected by haloperidol; moreover, this halo-

peridol effect was abolished in a dose-dependent manner by apomorphine which per 

se remained ineffective. As shown in Figure 3.1.5, the scores of the haloperidol-treated 

cats were significantly lower than those of the solvent-treated cats (p< 0.02). The latter 

haloperidol effect was abolished by 0.6 μg apomorphine, but not by 0.3 μg apomor

phine (Figure 3.1.5). The time schedule for the latter experiment, in which haloperidol 

was given 5 min prior to apomorphine and, accordingly, 10 min prior to the first post-

injection test period, differed from that for the former experiments, in which haloperi-
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dol was given 5 min prior to the first post injection period. Accordingly, it became 

necessary to provide evidence that haloperidol was still effective during the chosen 

recording period in the combined haloperidol-apomorphine experiments. Therefore, 

data collected in the second post-injection period were also analyzed. As shown in 

Figure 3.1.6 haloperidol was still effective at that time; apomorphine also abolished 

this effect at that time. 

Since the number of food collecting attempts was unaffected by haloperidol in 

comparison with solvent (see below), the observed decrease in the number of non-

exteroceptively directed gait transitions allows the prediction that the number of 
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Figure 3.1.5 Medien value ofnon-exteroceptivefy directed gait transitions 5-10 mm after bilateral mtracaudate 

injections of solvent 5 μΐ (S), apomorphine 0 6 μξΙ5 μΐ (A0.6), haloperidol 125 μ§15 μΐ (Hl2.5) and 

haloperidol 125 μΙ/5 μΙ plus apomorphme 03 μφ μΐ or 0.6 μ$5 μΐ (Η+Α0.3 and H+A0.6, respectively). 

* p<0.02, drug vs solvent. +, p<002, drug combination vs haloperidol (Mann Whitney U-test, two tailed). 
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exteroceptively directed gait transitions, i.e. the only alternative to collect food, should 

be increased. For this reason, the one-tailed Mann Whitney U-test was used for 

statistical analysis in the latter case (next paragraph). 

Exteroceptively directed gait transitions 

This motor behaviour was also affected by haloperidol, although this effect was not 

abolished by apomorphine which perse remained ineffective. As shown in Figure 3.1.7 

solvent produced a 55% reduction of the pre-injection scores. However, the post-

injection scores of haloperidol-treated cats were significantly higher than those of the 

solvent-treated cats (p<0.05, one-tailed). The latter effect was not significantly 

counteracted by 0.6 μg apomorphine (Figure 3.1.7). Apomorphine itself remained with

out any effect (Figure 3.1.7). 

Figure 3.1.6 Median value of non-exteroceptively directed gait transitions 25-30 min after bilateral 

mtracaudate injections. For abbreviations, see legend Figure 3.1.5. 

52 



Food collecting attempts 

As shown in Table 3.1.2 none of the tested cats showed any significant difference 

during both post-injection test periods. However, the post-injection scores of all treated 

cats were about 50% lower than their corresponding pre-injection scores. 

Miscellaneous 

As mentioned in Section 3.1.2 (Experimental Procedures), cats which performed a 

whole sequence as soon as they were confronted with a running belt or the back panel 

were discarded in order to exclude animals using conditioned stimuli for directing their 

motor behaviour. On the basis of this criterion three haloperidol-treated cats were 

excluded from the above-mentioned analysis: these animals immediately performed a 

Figure 3.1.7 Median value of exteroceptivefy directed gait transitions 5-10 mm after bilateral mtracaudate 

mictions. For abbreviations, see legend Figure 3.1.4. * ρ<0.05, drug or drug combmalion vs solvent (Mann 

Whitney U-test, one tailed). 
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Table 3.1.2 Mean values (± SEM) of the ratio of post-injection scores (numerator) and pre-mjection scores 

(denominator) of food collecting attempts The onset of post-injection period 1 (POST 1) and post-injection 

period 2 (POST 2) was, respectively, 5 and 25 mm after mtracaudate administration of various drugs. 

The number in parentheses are the number of cats. 

DRUG POST 1 POST 2 

Solvent 

Haloperidol 12.5 

Apomorphine 0.3 

Apomorphine 0.6 
Haloperidol 12.5 

+ Apomorphine 0.3 
Haloperidol 12.5 

+ Apomorphine 0.6 

0.5 ± 0.3 (19) 

0.4 ± 0.3 (10) 

0.6 ± 0.4 (9) 

0.6 ± 0.2 (9) 

0.6 ± 0.2 (5) 

0.7 ± 0.3 (7) 

0.6 ± 0.3 (18) 

0.5 ± 0.3 (18) 

0.6 ± 0.3 (9) 

0.5 ± 0.2 (9) 

0.5 ± 0.3 (5) 

0.7 ± 0.3 (7) 

whole sequence as soon as the standing belt started to run at the beginning of the 

first and second post-injection period. In contrast to the afore-mentioned haloperidol-

treated cats, these cats had post-injection scores of non-exteroceptively directed gait 

transitions (median value 220%, n=3), that were significantly higher than those of the 

solvent-treated cats (median value 50%, η =19; ρ < 0.02). Furthermore, these cats had 

post-injection scores of food collecting attempts (median value 100%, n=3) that were 

significantly higher than those of the solvent-treated animals (median value 50%, η=19; 

p<0.02). 

3.1.4 DISCUSSION 

Treadmill design 

The present design makes it possible to distinguish motor patterns which are fully 
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dictated by exteroceptive stimuli (exteroceptively directed motor patterns) from motor 

patterns which are not dictated by these stimuli (non-exteroceptively directed motor 

patterns; see Section 3.1.2, Experimental Procedures). As described in the Section 3.1.3 

(Results), cats display both exteroceptively and non-exteroceptively directed gait 

accelerations and/or transitions. Thus deficits due to a reduced capacity to switch to 

exteroceptively directed motor patterns can be differentiated from deficits due to a 

reduced capacity to switch to non-exteroceptively directed motor patterns. 

In this context it is useful to recall that there are, in principle, various sources for 

directing motor behaviour: (a) exteroceptive stimuli, i.e. stimuli that are emitted by the 

physical environment of the organism and detected by sensory receptors for pressure, 

light, etc.; (b) proprioceptive stimuli, i.e. stimuli that are emitted by muscles, tendon 

organs and joints; they are detected by sensory receptors for the position of limbs and 

body, length of striate muscles, etc.; and (c) brain signals that are not dictated by any 

of the above-mentioned stimuli; to which degree these brain signals are anyhow 

deduced from the mentioned stimuli is still a matter of debate (Roland 1978, 

Teitelbaum, Schallert & Whishaw, 1983). Motor behaviours that are directed by 

mechanisms within the brain should be labelled as 'non-stimulus directed'. In the case 

of conditioning one must include here conditioned stimuli, i.e. stimuli that direct a 

particular chain of motor patterns as a consequence of a learning process. In this case 

one can label such a chain of motor patterns: 'stimulus-triggered'. In practice the 

patterning of motor behaviour is likely to be derived from more than one of these 

sources. First, cats execute exteroceptively directed gait accelerations and transitions; 

thus, deficits due to a reduced capacity to switch to exteroceptively directed motor 

patterns can be detected. Secondly, cats are permanently forced to adjust their postures 

and positions during walking; thus, deficits due to a reduced capacity to switch to 

proprioceptively directed motor patterns can be detected. Third, cats can show stimulus-

triggered motor patterns. As shown in Section 3.2.3 (Results: Miscellaneous), certain 

haloperidol-treated cats immediately performed a whole sequence of motor patterns as 

soon as the belt started to run. Since the sudden change in exteroceptive stimuli 

inherent to the belt was sufficient to trigger the whole sequence, it is evident that 

55 



these cats showed a response that was conditioned by the available stimulus complex. 

The validity of the latter statement is underlined by the finding that these cats showed 

a significant increased number of food collecting attempts. Given this notion, the 

present design also allows the evaluation of a reduced capacity to switch to stimulus-

triggered motor patterns. Fourth, cats with a normal capacity to switch to 

proprioceptively directed and/or stimulus-triggered motor patterns can still show a 

reduced capacity to switch to non-exteroceptively directed gait accelerations and 

transitions (see below, Caudate nucleus and programming motor behaviour). Since such 

a decrease can only be due to a reduced capacity to switch to motor patterns that are 

directed by brain signals, that are not dictated by exteroceptive and/or proprioceptive 

stimuli, such cats apparently suffer from a reduced capacity to switch to non-stimulus 

directed motor patterns. Thus, deficits due to a reduced capacity to switch to non-

stimulus directed motor patterns can also be detected. 

Apart from the mentioned advantages it is important to note the following. First, 

experimentally induced decreases in the number of a particular motor behaviour only 

reflect a reduced capacity to switch to that motor pattern in case the animals have the 

disposal of a normal capacity to execute that behaviour. In this context, it should be 

mentioned that only deprived cats display food collecting attempts; cats that are not 

deprived do not display such eating behaviour (data not shown). In other words, 

experimentally induced decreases only reflect a reduced capacity to switch to that 

motor pattern in case the state inherent to the food deprivation remains unaffected. 

Second, experimentally induced increases in the number of a particular motor 

behaviour simply reflect the increased degree in which the organism appeals to that 

motor pattern; they do not reflect an improved capacity to switch to that motor 

behaviour. Given the above-mentioned possibilities and restrictions, the present design 

creates the opportunity to study the neuronal circuitry underlying each distinct type of 

motor behaviour. According to our knowledge it is the first time that switching to 'non-

stimulus directed motor programmes' can be studied in a quantitative manner. 
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Caudate nucleus and programming motor behaviour 

Following intracaudate injections of solvent, a remarkable decrease in the number 

of non-exteroceptively and exteroceptively directed gait transitions was found: in both 

cases the reduction amounted to 50-55%. In view of the fact that caudate injections of 

solvent normally produce a very short-lasting effect (for réf., see Cools, Struyker 

Boudier & Van Rossum, 1976), it can be excluded that the noted decrease was due to 

the solvent injections, because this decrease was still present during the second post-

injection period. Since all treatments produced comparable decreases during both post-

injection periods, it is quite likely that the chosen procedure itself caused this 

phenomenon. 

Intracaudate injections of haloperidol affected two out of the six different types of 

motor patterns. The number of non-exteroceptively directed gait transitions was 

significantly decreased, whereas the number of exteroceptively directed gait transitions 

was significantly increased. The haloperidol-induced decrease in the number of non-

exteroceptively directed gait transitions was dose-dependently abolished by apomorphine 

that per se remained devoid of any significant effect. This finding showed that the 

haloperidol-induced decrease was dopamine-specific (see Section 3.1.1, Introduction); 

this fits in with earlier reported data about the potency of the chosen dose (12.5 //g) 

and volume (5 μ\; see also Section 3.1.2, Experimental Procedures) to reduce the 

functional involvement of the dopamine neurotransmission. In contrast, the haloperidol-

induced increase in the number of exteroceptively directed gait transitions was not 

attenuated by 0.6 μ% apomorphine indicating that the latter effect was not dopamine-

specific. This finding underlines the above-mentioned notion that drug-induced increases 

in the number of a particular motor pattern simply reflect the increased degree in 

which the organism applies to the capacity to switch to that motor pattern. Both sets 

of data together suggest that the haloperidol-induced increase in the number of 

exteroceptively directed gait transitions was due to alterations in brain processes 

different from the striatal, dopaminergic process. 

Apomorphine neither increased nor decreased the number of any type of the motor 
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patterns studied. Since the present design is not suitable for the detection of the 

occurrence of an improved capacity to switch motor patterns (see above: Treadmill 

design) no definite conclusion can be drawn in this respect. On the other hand, it can 

be concluded that apomorphine does not reduce the capacity to switch motor patterns. 

Considering the present data, it becomes evident that inhibiting caudate dopamine 

receptors by 12.5 /<g haloperidol selectively reduces the number of non-exteroceptively 

directed gait transitions. This effect is highly specific in terms of programming distinct 

movements because of the following. First, haloperidol did not alter the number of 

food collecting attempts, indicating that haloperidol did not influence the state inherent 

to food deprivation. Second, haloperidol did not alter the number of exteroceptively 

directed gait accelerations, indicating that haloperidol did not influence the capacity to 

switch to exteroceptively directed motor patterns. Third, haloperidol did not affect the 

execution of proprioceptively directed motor patterns as shown by the absence of (a) 

incorrect adjustments of body postures and positions on the running belt, and (b) 

abnormal body postures and positions on the standing belt, indicating that haloperidol 

did not influence the capacity to switch to proprioceptively directed motor patterns. In 

this context, it is useful to recall data reported about the substantia nigra, pars 

reticulata (see Section 4.1; Wolfarth, Kolasiewicz & Sontag, 1981; Heim et al. 1986), 

i.e. one of the main output stations of the caudate nucleus (Chapter 2). Intranigral 

injections of picrotoxin have been found to produce both incorrect body postures and 

positions on a running belt and abnormal postures and positions on firm ground. From 

this point of view, it is important to realize that, in contrast to intranigral injections of 

picrotoxin, intracaudate injections of haloperidol did not produce these symptoms. 

Fourth, haloperidol did not produce abnormalities in EMG and length signals recorded 

from the hindleg muscles, providing additional evidence that haloperidol did not 

produce motor deficits per se. 

On the basis of these data, it can be concluded that the chosen manipulation, 

intracaudate administered haloperidol (12.5 /ig), decreases the number of non-

exteroceptively directed motor patterns by selectively reducing the animal's capacity to 
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switch to non-stimulus directed motor patterns. It is proposed to denote this capacity 

as 'the ability to switch arbitrarily motor programmes'. The present study implies that 

the function of the caudate nucleus in programming non-stimulus directed behaviour 

is not limited to complex behaviour such as social interactions in Java monkeys or 

behavioral strategies in rats (see Section 3.0): this function also extends to motor 

behaviour per se. In other words, the caudate nucleus plays a crucial role in the 

cerebral organization of behaviour in its broadest sense, because it determines the 

animal's ability to switch arbitrarily behavioral programmes. 

The clinical impact of the present findings is evident: patients in whom the 

dopaminergic activity in the basal ganglia is diminished, should also have an impaired 

ability to switch arbitrarily their behaviour. Indeed, it has recently been found that 

patients suffering from Parkinson's disease show a so-called 'shifting aptitude' disorder 

that manifests itself both at the motor level and at the cognitive level (Cools et al., 

1984). Such patients are less able to switch motor, and even cognitive, programmes that 

are not directed by available, exteroceptive information. Additional evidence in this 

respect has been provided by others who have found that parkinsonian patients suffer 

from a deficient ability to shift set without external 'cues', compared to set-shifting with 

the help of exteroceptive information in eye-tracking tasks (Crawford, Henderson & 

Kennard, 1989; White et al., 1988), motor pattern tasks (Rogers & Chan, 1988; 

Benecke et al, 1987; Flowers, 1976), memory tasks (Helkala et al., 1988; Brown & 

Marsden, 1987) and cognitive tasks (Brown, 1989; Lees & Smith, 1983; Flowers & 

Robertson, 1985; Taylor, Saint-Cyr and Lang, 1986). In conclusion, the available data 

from animal and human studies together strongly suggest that the function of the 

caudate nucleus in programming behaviour arbitrarily is not limited to certain 

behavioral categories; the way in which disturbances in this universal capacity is 

manifested depends on the constraints of the test used. 

As shown in the present animal study; an impaired ability to switch to non-

exteroceptively directed motor patterns could be compensated by increasing the degree 

of switching to exteroceptively directed motor patterns. This finding opens the 
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perspective that 'learning to use exteroceptive and/or proprioceptive stimuli for 

directing behaviour' may be therapeutically effective in terms of compensating the 

reduced ability to switch arbitrarily behavioural programmes. Apart from numerous 

histories dealing with Parkinson patients, which spontaneously assess this principle, their 

exists no systematic study in this respect. Given the observations of Stern and 

colleagues (Stern, Lander & Lees, 1980) that certain patients with Parkinson's disease 

even create imaginary stimuli for that purpose, it is believed that the therapeutic 

approach mentioned may be a powerful supplement to the present day treatment of 

patients suffering from Parkinson's disease. 
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3.2 ROLE OF GLUTAMATE IN SWITCHING MOTOR PATTERNS 

Summary 

The effect of intracaudate (rostromedial part) injections of the glutamate agonist di

ci: -amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA), viz. an agonist of quis

qualate receptors, on switching behaviour was investigated. First, cats had to switch 

from hanging with the forepaws on the bar to climbing on the bar; then, they had to 

switch to walking; finally, they had to switch to jumping off the bar. AMPA induced 

limb deficits, i.e. unilateral incorrect or absent placing of the fore- and/or hindlimb, in 

part of the tested cats; in the remainder of the tested animals AMPA reduced climbing 

time. Limb deficits were prevented by the broad-spectrum glutamate antagonist kynure-

nic acid (KYN) and by the selective NMDA antagonist d-2-amino-7-phosphonohepta-

noate. 

In all cats AMPA increased the number of head movements as well as that of 

walking-restarts. These effects were counteracted only by KYN. These data show that 

part of the AMPA-induced effects were selectively mediated by quisqualate receptors. 

The present data are discussed in view of the role of the rostromedial caudate nucleus 

in switching behaviour. 

3.2.1 INTRODUCTION 

With respect to excitatory amino acids, at least three receptor subtypes have been 

postulated; they are labelled according to distinct agonists that bind preferentially to 

one subtype: the NMDA receptor, the quisqualate receptor and the kainate receptor 

(Cotman et al., 1987; Fagg, 1985; Foster & Fagg, 1984). Given the notion that 

glutamate is not an endogenous ligand for NMDA or kainate receptors (Fagg, 1985; 

Foster & Fagg, 1984; see also Olsen, Szamraj & Houser, 1987), it is likely that 

glutamate, released from corticocaudate fibres may activate quisqualate receptors. The 
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latter suggestion is underlined by two other sets of data. First, cortical stimulation 

induces excitatory responses of caudate neurons that are not mediated by NMDA 

receptors (Herrling, 1985). Second, intracaudate responses to cortical stimulation can 

be blocked by glutamate-diethyl-ester (Spencer, 1986), a substance that is reported to 

inhibit selectively quisqualate receptors (Foster & Fagg, 1984; Krogsgaard-Larsen, 

Honoré & Hansen, 1980; Krogsgaard-Larsen et al., 1982). 

Behavioral studies investigating the role of glutamate neurotransmission at the level 

of the caudate nucleus are scarce. According to Schmidt and coworkers, injections of 

relatively high doses of the selective NMDA receptor antagonist dl-2-amino-5-phospho-

novaleric acid in the rat neostriatum result in stereotyped movements resembling those 

following stimulation of dopamine receptors (Schmidt, 1986; Schmidt, Krähling & 

Ruhland, 1987). On the other hand, intrastriatal application of relatively low doses of 

the quisqualate-selective agonist dl-a-amino-3-hydroxy-5-methyl-isoxazo]e-4-propionic 

acid (AMPA; see Krogsgaard-Larsen, Honoré & Hansen, 1980; Krogsgaard-Larsen et 

al., 1982) in rats tested in a 'forced-swimming-with-escape' test has been reported to 

reduce dose-dependently the number of animals being able to escape (Cools & Peelers, 

1987). AMPA-treated rats went on with switching to different swimming behaviours. As 

shown by Cools and Peelers, the latter effect could be attenuated by pretreatment with 

the aselective glutamate antagonist kynurenic acid (KYN; see Stone & Connick, 1985; 

Turski, Herrling & Do, 1987) as well as by the selective NMDA receptor antagonist 

d-2-amino-7-phosphonoheptanoate (AP7; see Cotman et al., 1987; Fagg, 1985; Foster 

& Fagg, 1984). 

In Section 3.1, it has been hypothesized that the rostromedial caudate nucleus is 

involved in the organism's ability to switch arbitrarily from one behavioral pattern to 

the next pattern, i.e. to switch to behavioral patterns which are not continuously 

directed by exteroceptive or proprioceptive stimuli (see also Wegener, Schmidt & 

Ehret, 1988). The reports of Schmidt (1986) and of Cools and Peelers (1987) suggest 

that excitatory amino acid neurotransmission processes may also be involved in the 

latter function. In order to investigate the role of rostromedial caudate quisqualate 
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receptors in switching motor patterns we have injected AMPA bilaterally into the 

caudate nucleus of cats. Drug effects were analyzed in a relatively simple paradigm, 

i.e. the Ъаг-test', in which the animals had to switch to different motor patterns (see 

Section 3.2.2, Experimental Procedures). 

Since there are no selective quisqualate receptor antagonists available, we performed 

two sets of experiments to investigate the receptor specificity of AMPA-induced 

behavioral changes: First, it was tested whether KYN, which is known to block all 

glutamate receptor subtypes (see above), was able to block AMPA-induced behavioral 

effects. In addition, the efficacy of the NMDA-selective antagonist AP7 in counteracting 

AMPA-induced effects was investigated in order to study the possible involvement of 

NMDA receptors in AMPA-induced effects. 

3.2.2 EXPERIMENTAL PROCEDURES 

Subjects 

Male cats (weighing 3.5-5.0 kg) were selected from a laboratory breeding colony of 

the University of Nijmegen; they were 12-15 months old. The cats were housed in iron 

cages (1.9 χ 1.2 χ 1.6 m) in groups of 4-8 animals; food (Hope Farms) and water were 

available ad libitum. 

Surgical procedures 

Under sodium pentobarbitone anaesthesia (45 mg/kg i.p.) the animals were 

stereotaxically equipped with double-barrelled, stainless steel cannulas (outer diameter 

0.8 mm; outer diameter of inner cannula which extended 1 mm below the tip of the 

outer cannula: 0.55 mm) into the rostromedial part of the caudate nucleus (coordinates 

[Snider & Niemer, 1964]: A 14.5, L 5.0 and H 5.0) according to previously described 

methods (see Section 3.1.3). 
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Apparatus and procedures 

The cats were habituated during 4-6 sessions to the following procedures and set

up: the forepaws of the cat were placed on one end of a wooden bar (5 χ 5 χ 200 cm) 

situated 2 m above the ground while its hindlimbs were hanging freely. Next, the cat 

had to climb on the bar and, subsequently, to walk on the bar to the other end. At 

that end, the cat was able to jump down on a wooden platform (72 χ 107 cm) 25 cm 

below the bar; at the platform, some food pellets were offered (Brekkies, Effem B.V., 

Veghel). Each session consisted of 3 test periods that were spaced by an interval of 15 

min. During each test period, the cat had to execute 3 trials in a row; a trial consisted 

of climbing on the bar, walking towards the end of the bar and jumping off the bar. 

During training sessions, cats were also habituated to the injection procedure by 

inserting the injection needle into the cannulas without performing an actual injection. 

As soon as the cat was able to display complete trials during 3 successive test periods 

per session, training was stopped. One week later, the experiments were started. During 

an experiment, drug injections (volume 5.0 μΐ) were given bilaterally in the caudate 

nucleus of hand-fixed cats with help of a Hamilton syringe (diameter of the tip of the 

injection needle: 0.4 mm). Five min before drug-application, the first test period (PRE) 

was started. Five and 20 min after the end of the injections, the second and the third 

test period were started (POSTI and POST2, respectively). Each test period lasted 

maximally 5 min. This time-schedule was based on the outcome of pilot studies. All 

trials were recorded on video-tape with help of a closed video-circuit to allow 

subsequent detailed analysis. During recording, the cat was not able to see the 

experimenter; care was taken to avoid the occurrence of changes in the surroundings 

that could direct the behaviour of the animal. In experiments, in which the receptor 

specificity of AMPA-induced effects was analyzed, cats received 5 min prior to AMPA 

either AP7 or KYN (see below). The time-schedule of these experiments was the same 

as that of the experiments described above, except for the start of the PRE test period: 

this was started 5 min before the caudate nucleus injections of the AP7 or KYN. 

Drugs 

Cats (n=28) participated in maximally 5 experiments that were spaced by 1 week. 
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Most animals (η=21) received solvent (distilled water) during the first experiment, 

whereas the remainder of the cats (n=7) received 0.5 μg AMPA (gift from Dr. P. 

Krogsgaard-Larsen); during the second experiment, part of the solvent-treated cats 

received 1.0 //g ( n = l l ) or 0.1 /zg AMPA (n=7). During the next experiments, cats 

received one or more of the following treatments: KYN 1.0 ^g (Sigma) plus AMPA 1.0 

μξ (n=12); KYN 1.0 μξ (n=10); AP7 1.0 ¿ig (gift from Dr. J. Scheel-Krüger) plus 

AMPA 1.0 /¿g (n=8); and AP7 1.0 /ig (n=8). Whenever necessary, the pH of the 

solutions was adjusted to 7. 

Dependent variables 

1. Climbing (first phase). Climbing was considered to start as soon as the cat was 

released by the experimenter while it was hanging with its forepaws on the bar. 

Climbing was considered to be finished as soon as the animal reached a stable position 

on the bar. In case the animal was able to execute complete climbing, the time 

required to climb on the bar was expressed in seconds. Moreover, it was noted when 

the cat displayed unsuccessful climbing attempts or no hindlimb movements at all. 

2. Head movements (second phase). Following climbing, the animals executed a variable 

number of normal, non-forced head, torso and body movements before they started to 

walk towards the other end of the bar. In practice, a torso or a body movement was 

always preceded by a head movement. Therefore, only the number of head movements 

was counted. 

3. Walking (third phase). Walking was considered to start as soon the cat made its first 

step towards the other end of the bar. Walking was considered to be completed as 

soon as the cat jumped off the bar. In case the cats walked, it was analyzed how many 

times they interrupted this behaviour, viz. switched to other kinds of movements such 

as normal, non-forced head, torso and/or body movements, bar-scratching, licking the 

fur, etc.. In the present study, only the number of walking-restarts was taken into 

account. In case the cat did not start walking within 90 s, the trial was broken off. 

4. Jumping (final phase). At the end of the bar, the cats could collect food pellets by 

jumping down on a platform. It was recorded whether they landed correctly on the 
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platform. 

During each test period, three trials were executed. Accordingly, each variable was 

measured three times. At the end of each experiment, mean climbing-time during each 

test period was calculated per cat by averaging the three climbing-time scores obtained 

during that period. In order to obtain sufficient numbers per test period, the frequency 

parameters head movements and walking restarts were calculated for each cat as fol

lows: at the end of each experiment, the total number of head movements and walking 

restarts were calculated by adding the three scores of each parameter obtained during 

that period. In order to reduce the interindividual variability, the ratio of the difference 

and the sum of the mean climbing-time, total number of head movements and total 

number of walking restarts during POSTI and PRE was computed (cf. Section 3.1.3): 

POST1-PRE/POST1+ PRE. The same ratio was computed for the measures obtained 

during the POST2 test period. 

Statistics 

The data were statistically analyzed with help of the Mann Whitney U-test, two 

tailed, unless otherwise mentioned (Siegel, 1956). Experimental groups were considered 

to differ significantly in case of p<0.05. 

Histological verification 

After the end of the final experiment, the cats were deeply anaesthetized with 

pentobarbital and perfused transcardially with a 4% formaldehyde solution. 

Subsequently, the brains were removed and cross-sections were cut with help of a 

cryostat (30 μτη slices). The slices were stained with cresyl violet to allow the exact 

location of the injection loci. 

3.2.3 RESULTS 

Histology 

All injections were placed in the rostromedial part of the caudate nucleus, 
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coordinates (Snider & Niemer, 1964) A 14.0-15.0, L 4.8-5.9 and H 4.4-5.4. A 

representative example of the injection sites is illustrated in Figure 3.2.1. 

Control tests 

During control experiments, in which the solvent was injected, all tested cats were 

able to execute complete trials in a normal way during both POSTI and POST2; their 

performance was comparable to that of the cats during PRE test periods of all 

experiments. Climbing was executed without any difficulty; the cats executed 2-3 head 

movements before they started normal walking; finally, the cats jumped on the platform 

without making any misplacement. Absolute values (median plus range) of climbing 

(duration), head movements (number) and walking restarts (number) during the PRE 

test period of all experiments are presented in Table 3.2.1. 

Figure 3.2.1 Picture of a representative example of injection sites in the rostromedial part of the caudate 

nucleus. 
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Table 3.2.1 Median (+ 25-75 % range) values of mean climbing-tune, of total number of head movements 

and of total number of walking-restarts during pre-mjection (PRE) tests of all experimental groups. SLV= 

solvent (distilled water); AMPA =dl-a-amino-3-hydroxy-5-melhyl-isoxazole-4-propionic acuì; KYN=kynurenic 

acid; AP7=d-2-ammo- 7-phosphonoheptanoate. 

(n)=number of cats. 

DRUG (ug/S.O μΐ) 

SLV 

AMPA 0.1 

AMPA 0.5 

AMPA 1.0 

KYN 1.0 +AMPA 1.0 

AP7 1.0 +AMPA 1.0 

KYN 1.0 

AP7 1.0 

(n) 

(21) 

(7) 

(7) 

(H) 

(12) 

(8) 

(10) 

(8) 

CLIMBINGHEAD MOVEMENTSÍESTARTS 

(s) 

1.8 
(1.7-2.7) 

1.7 
(1.5-2.2) 

3.6 
(2.7-4.5) 

2.1 
(1.8-2.2) 

1.6 
(1.3-2.5) 

1.8 
(1.6-1.9) 

1.7 
(1.5-1.8) 

1.7 
(1.5-1.9) 

( η ) 

9 
(3-15) 

9 
(4-9) 

8 
(2-10) 

5 
(3-13) 

5 
(3-11) 

6.5 
(5-7) 
9 

(3-13) 
4.5 

(3-9) 

(π) 

0 
(0-4) 

1 
(0-5) 

1 
(1-3) 

0 
(0-3) 

1 
(1-3) 
0.5 

(0-2) 
0.5 

(0-2) 
0 

(0-2) 

In general, the AMPA-induced effects occurred only during POSTI test periods. 

Furthermore, AMPA-induced changes were not limited to either one of the three trials 

during POSTI. Therefore, the description of the results given below accounts for the 

whole POSTI period. 

AMPA-induced limb deficits 

In contrast to 0.1 and 0.5 μξ, AMPA, a dose of 1.0 μ% AMPA dramatically affected 

normal limb movements in the bar-test (Table 3.2.2). Abnormal limb movements were 

present in 6 out of 11 AMPA (1.0 /ig)-treated cats. The limb deficits occurred only 
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unilaterally: both fore- and hindlimb could be affected. During climbing, these animals 

were able to retract only one hindlimb in a normal way; they did not succeed in placing 

the other hindlimb on the bar until they made at least several attempts. However, after 

some time, the cats ultimately succeeded in climbing on the bar (see below). While 

sitting or standing on the bar, often one fore- or hindlimb slowly slipped off the bar. 

While control cats immediately retracted a freely hanging limb, these AMPA-treated 

animals did not retract the affected limb; instead, that limb gradually slipped further 

down until it was completely extended. In case the upper part of that limb accidently 

touched the bar as a result of a body movement, the limb was retracted and correctly 

placed on the bar. During walking the affected fore- and/or hindlimb was occasionally 

Table 3.2.2 Percentage of animals showing unilateral limb deficits during POSTI tests: 5-10 min after the 

intracaudate injection of SLV, Ι.ΟμεΑΜΡΑ, 1.0με KYN or 1.0μξAP7plusAMPA 1.0με (KW ami AP7 

were injected 5 min before AMPA); 10-15 min after the injection of 1.0 με KYN or 1.0 με AP7. 

(η)=number of animals. For abbreviations see legend of Table 3.2.1. 

DRUG (ug/5 μΙ) ANIMALS WITH LIMB DEFICITS 

SLV 

AMPA 0.1 

AMPA 0.5 

AMPA 1.0 

KYN 1.0 +AMPA 1.0 

AP7 1.0 +AMPA 1.0 

KYN 1.0 

AP7 1.0 

(n) 

(21) 

(7) 

(7) 

(И) 

(12) 

(8) 

(10) 

(8) 

(%) 

0 

0 

0 

55' 

0+ 

0+ 

0 

0 

*p<0.05, AMPA vs. SLV. 
+p<0.05, AMPA + KYN and AMPA + AP7 vs. AMPA 
(Fisher exact probability test, two tailed). 
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placed alongside the bar. As a result, that limb again slipped down; often the cats 

made several stepping movements 'in the air' before they managed to correctly place 

the limb on the bar. Although the occurrence of limb deficits clearly affected the ability 

to walk on the bar, it did not affect the number of restarts (see below: walking). At 

the end of the bar, they always succeeded in jumping on the platform without making 

any misplacement. The occurrence of limb deficits was prevented by the pretreatment 

of KYN or AP7; the antagonists themselves did not induce motor disturbances when 

injected alone (Table 3.2.2). 

Climbing 

Climbing-time was not affected by 0.1 or 0.5 μg AMPA. However, the ratio of 

climbing-time of those cats that showed limb deficits after 1.0 μ£ AMPA was signifi

cantly different from that of the remainder of cats treated with this dose (p=0.008). 

The ratio of climbing-time of cats displaying limb abnormalities was significantly 

increased (p<0.04) compared to that of control animals (median climbing-time during 

POSTI of solvent- and AMPA-treated cats showing limb deficits: 2.3 and 3.1 s, respec

tively). In contrast, the ratio of climbing-time of cats lacking limb deficits after 1.0 /¿g 

AMPA was significantly reduced (see Figure 3.2.2). As shown in Figure 3.2.2, the latter 

decrease in climbing-time was significantly attenuated by pretreatment of KYN. In 

contrast, AP7 was unable to counteract this AMPA-induced effect; both KYN and AP7 

were ineffective in this respect when tested alone. 

Head movements 

AMPA 0.1 or 0.5 μg did not affect the number of head movements. Cats showing 

limb deficits after 1-0 μg AMPA did not differ from those showing no deficits after this 

dose (p>0.05). For that reason, both subgroups were pooled. As shown in Figure 3.2.3, 

the ratio of the number of head movements of both subgroups together was signifi

cantly increased compared to that of control cats. In contrast to AP7, KYN was able 

to reduce this AMPA-induced increase. Both AP7 and KYN did not affect the number 

of head movements when tested alone (see Figure 3.2.3). 
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CLIMBING-TIME 
(ratio post 1-pre/post 1+pre) 

1 0 0 

0 5 0 
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g 
I-

< 
ir 

- 0 5 0 

-1 00 
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+ -ι 

KYN AP7 
1 0 1 0 

Figure 3.2.2 Ratto of the mean climbing-time (POSTl-PRE I POSTI+PRE) during POSTI: 5-10 min after 

solvent (SLV), 0.1, 0.5 or 1.0 μg AMPA, 1.0 μg KYN or 1.0 μgAP7plus 1.0 μξ AMPA (KYN and AP7 were 

injected 5 mm before AMPA); 10-15 min after 1.0 μg KYN or 1.0 μg AP7. For abbreviations see legend of 

Table 3.Z1. * p<0.02: drug vs. SLV. + p<0.05: 1 0 μg AMPA plus Kyn vs. 1.0 μg AMPA. 

Walking 

After the intracaudate application of AMPA 0.1 μ%, 6 out of 7 tested cats did 

execute normal walking; the remaining cat did not walk at all. This dose did neither 

affect the number of restarts (see Figure 3.2.4). AMPA 0.5 μg did neither affect the 

ability to execute normal walking. As illustrated in Figure 3.2.4, the number of restarts 

was significantly enhanced following 0.5 μg AMPA. After 1.0//g AMPA, 10 out of 11 

tested cats did execute walking during POSTI. Interestingly, 6 of these cats showed 

limb deficits as described above (see: AMPA-induced limb deficits). Apparently, the 

occurrence of these deficits did not prevent these cats to walk on the bar. Cats 
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displaying limb deficits following 1.0 μ g AMPA required significantly more time for 

walking (after subtracting the time when walking was interrupted) than the remaining 

animals of this test group (5.4 vs. 3.3 s: p=0.01). However, both subgroups did not 

differ with respect to the number of restarts (p>0.05); therefore, they were pooled for 

the subsequent analysis: as shown in Figure 3.2.4, 1.0 /ig AMPA significantly enhanced 

the number of restarts. KYN significantly attenuated the AMPA-induced increase in 

spite of the finding that KYN itself also enhanced the number of restarts. The KYN-

induced increase was also counteracted by AMPA. Walking was not interrupted by 

specific behaviours; before restarting cats could execute a variety of different behaviours 

Figure 3.2.3 Ratio of the total number of head movements (POSTI-PRE I POSTI+PRE) during POSTI: 

5-10 min after solvent (SLV), 0.1, 0.5 or 1.0 μ§ AMPA, 1.0 μ8 KYN or 1.0 μgAP7plus 1.0 μξ AMPA (KYN 

and AP7 were injected 5 min before AMPA); 10-15 min after 1.0 μξ KYN or 1.0 μgAP7. For abbreviations 

see legend of Table 3.2.1. * p<0.002: drug vs. SLV. + p<0.02:1.0 μgAMPA plus KYN vs. 1.0 μg AMPA. 
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such as non-forced head, torso and/or body movements, licking the fur or the forelimbs, 

scratching the bar, etc.; sometimes they made no movement at all. In contrast to KYN, 

AP7 was unable to reduce the AMPA-induced increase; moreover, this antagonist was 

ineffective in changing the number of restarts when tested alone (see Figure 3.2.4). 

Jumping 

All tested cats except from those (n=2) that did not walk at all (see above) were 

able to jump down on the platform without making any misplacement. In addition, 

these cats always collected the food pellets offered on the platform. 

NUMBER OF WALKING RESTARTS 
(ratio· post!-pre) 

1 2 0 

0 80 

О 
< 0 40 
DC 

0 00 

-0.40 
SLV AMPA AMPA AMPA AMPA AMPA KYN AP7 

0 1 0.5 10 1.0 1.0 1.0 1.0 

+ + 
KYN AP7 
1.0 1.0 

Figure 3.2.4 Ratio of the total number of walking-restarts (POSTI-PRE) during POSTI: 5-10 min after 

solvent (SLV), 0.1, 0.5 or 1.0 ßg AMPA, 1.0 ßg KYN or 1.0 μgAP7plus 1.0 μg AMPA (KYN and AP7 were 

injected 5 min before AMPA); 10-15 min after 1.0 μg KYN or 1.0 μg AP7. For abbreviations see legend of 

Table I. * p<0.05, · · p<0.02: drug vs. SLV. + p<0.002: 1.0 μζ AMPA plus Kyn vs. 1.0 μζ AMPA. 
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3.2.4 DISCUSSION 

The present results show that the selective quisqualate receptor agonist AMPA 

elicited two distinct sets of effects: 

1. The highest dose of AMPA tested, i.e. 1.0 //g, produced unilateral motor 

disturbances in fore- and hindiimbs. In contrast to other AMPA-induced effects (see 

below), these limb deficits could be prevented by KYN as well as by AP7. These 

findings confirm those of others who also found that certain AMPA-induced behavioral 

changes were blocked by AP7 (Cools & Peelers, 1987). These data show that both 

subtypes of glutamate receptors were involved in the display of limb deficits. Whether 

or not these subtypes function independently of each other remains open for future 

research (cf. Colman et al., 1987). This does not hold true for the second set of 

AMPA-induced effects: as discussed below, they were apparently mediated by only one 

subtype of glutamate receptors, viz. the quisqualate receptor. Therefore, it appears that 

the AMPA-induced limb deficits were mediated by another mechanism than the 

remaining AMPA effects. Below, we will return to this topic. 

2. Cats that were not hampered by any obvious limb deficit following caudate 

nucleus injection of 1.0 μg AMPA required less time to climb on the bar compared to 

control animals. Given the otherwise normal motor performance of AMPA-treated cats 

during climbing these findings suggest that the AMPA-induced reduction in climbing-

time was, at least partly, due to an increased ability to switch from hanging to climbing. 

The latter effect was selectively mediated by quisqualate receptors since KYN, in 

contrast to an otherwise effective dose of AP7 (see above), counteracted this AMPA-

induced effect. AMPA 1.0 μg induced an increase in the number of head movements. 

Since there were no changes in the environment, there were no exteroceptive stimuli 

except for those induced by self-motion that could have elicited the latter movements. 

The latter effect too was specific for quisqualate receptors since KYN, but not AP7, 

counteracted the AMPA-induced enhancement. As described in Section 3.2.3, AMPA 

did not significantly affect the ability to execute walking. On the other hand, the 

number of restarts was enhanced by 0.5 as well as by 1.0 μg. The latter increase was 
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not due to AMPA-induced abnormal movements: walking was not interrupted by speci

fic kinds of behaviours (see Section 3.2.3). This enhancement was attenuated by the 

pretreatment of KYN. Again, this AMPA-induced effect was not blocked by AP7, 

implying that the latter effect too was selectively mediated by quisqualate receptors. 

Surprisingly, KYN, but not AP7, increased the number of restarts as well. KYN is 

known to antagonize effects mediated by all three receptor types (Stone & Connick, 

1985; Turski, Herrling & Do, 1987) in contrast to AP7 that blocks selectively NMDA 

receptors (Cotman et al., 1987; Fagg, 1985; Foster & Fagg, 1984). These findings open 

the perspective that the KYN-induced increase in the number of restarts was mediated 

via quisqualate or kainate receptors. AMPA in turn counteracted this KYN-induced 

effect. These data become only understandable if one assumes that the three receptor 

types are anyhow functionally linked to each other. 

In the present study, all injections were placed in the rostromedial part of the 

caudate nucleus. AP7, a substance that is known to have a low diffusion rate (Millan 

et al., 1986), was able to block the AMPA-induced limb disturbances. Accordingly, it 

is not likely that the latter effect was due to leaking of AMPA outside the target area. 

Furthermore, limb deficits were only present during the first, but not during the second, 

post-injection test period suggesting that they were not due to irreversible AMPA-

induced changes. In view of these considerations, it is important to recall that the noted 

limb deficits neither occur after intracerebral injections of dopaminergic agents into the 

rostromedial part of the caudate nucleus nor occur after experimentally-induced 

alterations in hierarchically lower order output-stations of this part of the caudate 

nucleus, viz. the substantia nigra, pars reticulata and the deeper layers of the colliculus 

superior (Section 3.1; see also Chapters 4 and 5; cf. Gelissen & Cools, 1988). In 

contrast, limb deficits comparable to those reported in the present study do occur in 

cats with unilateral lesions of the frontal cortex or transection of the pyramidal tract 

(Armstrong, 1986; Liddell & Phillips, 1944). These findings together suggest that the 

limb deficits might be due to a drug-induced change in the striato-pallido-thalamo-

cortical circuitry rather than due to a change in the striato-nigro-collicular circuitry. 
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The reverse holds true for the remaining AMPA-induced effects. Ample evidence 

is now available that both the rostromedial part of the caudate nucleus and its 

hierarchically lower order output-stations the substantia nigra pars reticulata and the 

deeper layers of the colliculus superior are essential for 'switching behaviour' (for rev. 

see Cools, 1986). The present findings suggest that AMPA enhanced the ability to 

switch behaviours: it produced an increase in switching from hanging to climbing as 

manifested in the AMPA-induced reduction in climbing-time and it produced an 

enhancement in switching from walking to other behaviours as manifested in the 

AMPA-induced increase in the number of restarts. In addition, the increase in the 

number of head movements might also be due to an AMPA-induced increase in 

switching behaviours. In other words, these data suggest that alterations in 'switching 

behaviour' might be due to a drug-induced change in the striato-nigro-collicular circuitry 

rather than due to a change in the striato-pallido-thalamo-cortical circuitry. The 

hypothesis about the differential involvement of these circuitries in limb deficits and 

'switching behaviour' respectively, is supported by the finding that the distinct subtypes 

of glutamate receptors were differentially involved in each set of effects: NMDA- as 

well as quisqualate-receptors were involved in the display of limb deficits, whereas 

only quisqualate receptors were involved in the effects upon 'switching behaviour'. 

Considering the present finding that activation of quisqualate receptors produced an 

increase in switching behaviour, it might be expected that a selective inhibition of 

quisqualate receptors induces a decrease in switching behaviour. As long as there are 

no selective quisqualate receptor antagonists available, we are not able to investigate 

the latter possibility. In this respect, it might be of interest to study the effect of the 

recently developed aminoacid receptor antagonist 6-cyano-7-nitroquinoxaline-2-3-dione 

(CNQX) which potently inhibits AMPA binding and selectively inhibits quisqualate and 

kainate, but not NMDA, induced excitation on spinal neurons (Drejer & Honoré, 1988; 

Honoré et al., 1988). In the present study, KYN was unable to produce such an effect 

in spite of the finding that this dose was effective with respect to (1) blocking AMPA-

induced effects and (2) producing an increase in the number of head movements. Since 

KYN is known to antagonize not only quisqualate receptors, but also NMDA and 

kainate receptors, it underlines the notion mentioned above that these receptors 

76 



mediate different, but related functions. 
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3 3 INTERPLAY OF DOPAMINE AND GLUTAMATE 

Summary 

Bilateral intracaudate (rostromedial part) application of the glutamate agonist dl-

a-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA), viz. an agonist of 

quisqualate receptors, affects switching behaviour in cats that have to climb on a small 

wooden bar and, subsequently, to switch to distinct patterns (see Section 3.2): it 

produces increases in switching from one pattern to another pattern (1) and it induces 

limb deficits, i.e. unilateral deficient placing of the fore- and/or hindlimb. In the present 

study, the effect of stimulating rostromedial caudate dopamine receptors on behavioral 

changes induced by caudate injections of AMPA was investigated. Therefore, the 

dopamine agonist apomorphine was injected into the rostromedial part of the caudate 

nucleus 5 min before the caudate injection of 1.0 /ig AMPA. AMPA-induced increases 

in switching behaviour were prevented by 0.6 //g, but not 0.3 μg, apomorphine. In 

contrast, AMPA-induced limb deficits were not prevented by pretreatment of apomor

phine. In view of the notion that the dopaminergic rostromedial caudate nucleus, its 

output station the substantia nigra, pars reticulata and the nigral output station the 

deeper layers of the colliculus superior are essential for switching behaviour, but not 

for the display of disturbances like AMPA-induced limb deficits, the present data 

strongly suggest that only AMPA-induced changes in switching, but not AMPA-induced 

limb deficits, are mediated by the caudato-nigro-collicular circuitry. The glutamate 

receptor-selectivity of the modulatory action of dopamine is discussed. 

33.1 INTRODUCTION 

The interaction between dopaminergic nigrostriatal terminals and glutamatergic 

corticostriatal afférents has been subjected to extensive research in the past decades 

(cf. Arbuthnott, 1984; Chesselet, 1984; Cools & Peeters, 1987; Godukhin, Zharikova & 
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Budantsef, 1984; Hirata, Yim & Mogenson, 1984; Schmidt, 1986; Schmidt, Krähling & 

Ruhland, 1987). The results of these studies have shown that these neurotransmitter 

systems are connected to each other in more than one way. Dopaminergic receptors 

are present on cortico-caudate terminals (Kornhuber & Kornhuber, 1986), although this 

has been recently disputed (Joyce & Marshall, 1987). On the other hand, evidence has 

been found that at least part of the striatal glutamate receptor population is located 

presynaptically on nigrostriatal terminals (Bouyer et al., 1984; Roberts et al., 1982). 

Changes in dopaminergic activity have been reported to modulate the release of 

glutamate (Chiodo & Berger, 1986; Kerwin et al., 1984; Rowlands & Roberts, 1980), 

but evidence for the reverse interaction, i.e. glutamate modulating the release of 

dopamine, has also been reported (Chéramy et al., 1986; Chesselet, 1984). 

The picture becomes even more complicated when taking into account the existence 

of different subtypes of glutamate receptors. Based on electrophysiological, biochemical 

and anatomical criteria, at least three glutamate receptor subtypes have been defined 

and labelled according to specific agonist properties of distinct ligands: the NMDA, the 

quisqualate and the kainate receptor (see Section 3.2; Cotman et al., 1987; Fagg, 1985; 

Foster & Fagg, 1984). In Section 3.2, evidence was presented that quisqualate receptors 

within the rostromedial part of the feline caudate nucleus are involved in programming 

behaviour. In fact, bilateral intracaudate injections of the selective quisqualate receptor 

agonist dl-a-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA; Krogsgaard 

Larsen, Honoré & Hansen, 1980; Krogsgaard Larsen et al., 1982) have been found to 

produce two sets of effects, viz. unilateral limb deficits and an increase in 'switching 

behaviour'. Limb deficits are characterized by inadequate placing responses of one fore-

and/or hindlimb during the execution of various motor patterns, and 'switching 

behaviour' is defined as the transition from one behaviour pattern to the next pattern 

(see below). Quisqualate as well as NMDA receptors are involved in the display of 

AMPA-induced limb deficits since the aselective glutamate receptor antagonist 

kynurenic acid (KYN; Stone & Connick, 1985; Turski, Herding & Do, 1987) as well 

as by the selective NMDA receptor antagonist d-2-amino-7-phosphonoheptanoate (AP7; 

Cotman et al., 1987; Fagg, 1985; Foster & Fagg, 1984) suppress the AMPA-induced 
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limb deficits. In contrast, only quisqualate receptors are involved in AMPA-induced 

increases in switching since only KYN, but not AP7, reduces AMPA-induced increases 

in switching (see Section 3.2). 

At the level of the caudate nucleus, dopamine receptors within the rostromedial part 

of this nucleus are known to control striatally derived neuronal information arriving at 

hierarchically lower order output stations such as the substantia nigra pars reticulata 

and the deeper layers of the superior colliculus (Chapters 2, 4 and 5; see also Gelissen 

& Cools, 1988). Moreover, experimentally-induced changes in caudate dopaminergic 

activity are known to affect the animal's ability to switch arbitrarily ongoing behaviour 

(Section 3.1). In contrast, changes in striatal dopamine activity have never been found 

to result in motor disturbances comparable to the AMPA-induced limb deficits. On the 

basis of these and related data, we have therefore hypothesi that the AMPA-induced 

increase in switching behaviour, but not the AMPA-induced limb deficit, is mediated 

via the caudate output station the substantia nigra pars reticulata and the nigral output 

station the deeper layers of the colliculus superior. 

The present study was undertaken in order to gain insight into the interaction 

between dopamine and glutamate at the level of the rostromedial part of the caudate 

nucleus. In view of the above-mentioned hypothesis, it was decided to investigate 

especially the effects of stimulation of caudate dopamine receptors on AMPA-induced 

increases in switching behaviour as well as on AMPA-induced limb deficits. For that 

purpose, we used an experimental design in which the behavioral effects of AMPA as 

described above occur. In short, cats have to climb on a wooden bar and, subsequently, 

to switch to distinct motor patterns in order to collect food pellets. As described in 

Section 3.3.2 (Experimental Procedures), this paradigm allows one to analyze both 

AMPA-induced limb deficits and AMPA-induced increases in switching behaviour. Five 

minutes before AMPA, apomorphine was injected into the rostromedial part of the 

caudate nucleus in order to stimulate the dopamine receptors. 
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33.2 EXPERIMENTAL PROCEDURES 

Subjects 

In the present study 28 adult male cats were used (weighing 3.5-5.0 kg) part of 

which also participated in experiments reported in Section 3.2. 

Surgical procedure 

Under sodium pentobarbitone anaesthesia (45 mg/kg i.p.) the animals were 

stereotaxically equipped with double-barrelled, stainless steel cannulas (outer diameter 

0.8 mm; outer diameter of inner cannula which extended 1 mm below the tip of the 

outer cannula: 0.55 mm) into the rostromedial part of the caudate nucleus (coordinates: 

A 14.5, L 5.0 and H 5.0; atlas of Snider & Niemer, 1964) according to previously 

reported methods (see Section 3.1.2). 

Apparatus and procedures 

All cats were habituated to the experimental set-up and injection procedures. For 

an extensive description of the experimental set-up, training and habituation procedures, 

the reader is referred to Section 3.2.2. During the experiment, each cat had to execute 

successively the following motor patterns per trial: 

1. Climbing on the bar: following the placement of the forepaws on one end of a 

wooden bar (5 χ 5 χ 200 cm) situated 2 m above the floor, the cat had to climb on the 

bar. 

2. Walking: after climbing on the bar, the cat had to walk to the other end of the 

bar. 

3. Jumping: at the end of the bar, the cat had to jump off the bar on a wooden 

platform (72 χ 107 cm) 25 cm below the bar in order to receive a reward (food 

pellets: Brekkies, Effem B.V., Veghel). Each experiment consisted of 3 test periods. 

A single test period lasting maximally 5 min consisted of 3 trials. Drug-injections 

(volume: 5.0 μΐ) were given bilaterally in the rostromedial part of the caudate nucleus 

with help of a Hamilton syringe (diameter of the injection needle: 0.4 mm). Five min 

before drug application, the first test period was started (PRE). Five and 20 min after 
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the end of the final drug injections, the second and third test period was started 

(POST! and POST2, respectively). The time-schedule was based on the results of 

previous studies. All test periods were recorded on video-tape with help of a closed 

video-circuit to allow subsequent detailed analysis. During recording the cat was not 

able to see the experimenter. Cats participated in maximally 5 experiments; the 

experiments were spaced by at least 1 week. 

Drugs 

The effects of the following drug treatments are presented: solvent (distilled water, 

n=21); 1.0 μg AMPA (gift from Dr. P. Krogsgaard-Larsen, n = l l ) , injected 5 min 

before the start of POSTI; 0.3 or 0.6 μg apomorphine (Brocades), injected 5 min 

before the application of 1.0 /ig AMPA (n=7 and n = l l , respectively); 0.6 μg 

apomorphine (n=10), injected 10 min before the start of POSTI, serving as a necessary 

control for the latter experiment, in which 0.6 μg, but not 0.3 μg, apomorphine was 

found to be effective. The highest dose of apomorphine tested, i.e. 0.6 μg, is known to 

be maximally effective, locus-specific and dopamine-specific in open field tests (see 

Cools, Struyker Boudier & Van Rossum, 1976). Apart from solvent and 1.0 ûg AMPA 

which were given in the first and the second experiment respectively, all other 

treatments including those described in the previous report were given in an at random 

order. Whenever necessary, the pH of the solutions was adjusted to 7. 

Dependent variables 

1. Climbing. Climbing was considered to start as soon as the cat was released by the 

experimenter while it was hanging with its forepaws on the bar. Climbing was 

considered to be finished as soon as the animal reached a stable position on the bar. 

In case the animal was able to execute complete climbing, the time required to climb 

on the bar was expressed in seconds. Moreover, it was noted when the cat displayed 

unsuccessful hindlimb movements or no hindlimb movements at all. 

2. Head movements. Following climbing, the animals executed a variable number of 

normal, non-forced head, torso and body movements before they started to walk 

towards the other end of the bar. In practice, a torso or a body movement was always 
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preceded by a head movement. Therefore, only the number of head movements was 

counted. 

3. Walking. Walking was considered to start as soon as the cat made its first step 

towards the other end of the bar. Walking was considered to be completed as soon as 

the cat jumped off the bar. In case the cats walked, it was analyzed how many times 

they interrupted this behaviour, viz. switched to other kinds of movements such as 

normal, non-forced head, torso and/or body movements, bar-scratching, licking the fur, 

etc.. In the present study, only the number of walking-restarts was taken into account. 

In case the cat did not start walking within 90 s, the trial was broken off. 

4. Jumping. At the end of the bar, the cats could collect food pellets by jumping down 

on a platform. It was recorded whether they landed correctly on the platform. 

During each test period, three trials were executed. Accordingly, each variable was 

measured three times. At the end of each experiment, mean climbing-time during each 

test period was calculated per cat by averaging the three climbing-time scores obtained 

during that period. In order to obtain sufficient numbers per test period, the frequency 

parameters head movements and walking restarts were calculated for each cat as 

follows: at the end of each experiment, the total number of head movements and 

walking restarts were calculated by adding the three scores of each parameter obtained 

during that period. Since AMPA-induced effects were present only during POST!, and 

not during POST2, the effect of apomorphine on AMPA-induced behavioral effects was 

analyzed only during POST!. In order to reduce the interindividual variability, the ratio 

of the difference and the sum of the mean climbing-time, total number of head 

movements and total number of walking-restarts during POST! and PRE was 

computed: POST1-PRE/ POSTl+PRE (see Section 3.1.2). 

Statistics 

The data were statistically analyzed with help of the Mann Whitney U-test, two 

tailed, unless otherwise mentioned (Siegel, 1956). Experimental groups were considered 

to differ significantly in case of p<0.05. 
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Histological verification 

After the end of the final experiment, the cats were deeply anaesthetized with 

pentobarbital and perfused transcardially with a 4% formaldehyde solution. 

Subsequently, the brains were removed and cross-sections were cut with help of a 

cryostat (30 μτη slices). The slices were stained with cresyl violet to allow exact location 

of the injection loci. 

333 RESULTS 

Histology 

All injections were placed in the rostromedial part, in the body of the caudate 

nucleus: coordinates (Snider & Niemer, 1964) A 14.0-15.0, L 4.8-5.9 and Η 4.4-5.4 (see 

Figure 3.2.1). 

Control-tests 

During PRE tests, all cats were able to execute complete trials in a normal way: all 

cats were able to climb on the bar (median climbing-time and 25-75% range of solvent-

treated cats: 1.8 and 1.7-2.7 s, respectively); they executed several head movements 

(median number and 25-75% range in solvent-treated cats: 9, 3-15, respectively) before 

they started walking; the animals hardly interrupted walking (median number of restarts 

and range in solvent-treated cats: 0 and 0-4, respectively). At the end of the bar, they 

jumped down on the platform without making any misplacement. 

Apomorphine and AMPA-induced limb deficits 

AMPA 1.0 μg induced abnormal fore- and/or hindlimb movements in POSTI in 6 

out of 11 tested cats (see also Section 3.2.3). As shown in Table 3.3.1, 0.3 and 0.6 /ig 

apomorphine were unable to change this AMPA-induced effect. On the other hand, 

apomorphine per se did not induce limb deficits in any of the tested cats (Table 3.3.1). 
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Table 3.3.1 Percentage of animals showing unilateral limb deficits during POST! tests: 5-10 mm after the 

mtracaudate injection of solvent (SLV), 1.0 ßg dl-a-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acuì 

(AMPA), 0.3 or 06 μg apomorphine (APO 0.3 and APO 0 6, respectively) plus 1 Ο μξ AMPA (APO was 

injected 5 mm before AMPA); 10-15 mm after the mjectton of APO 06. 

(η) = number of animals. 

DRUG Og/5 μΐ) ANIMALS WITH LIMB DEFICITS 

(n) (%) 

SLV (21) 0 

AMPA (11) 55' 

APO 0.3 +AMPA (7) 29 

APO 0.6 +AMPA (11) 45 

APO 0.6 (10) 0 

'р<0.05, AMPA vs. SLV. 
APO 0.3 or APO 0.6 plus AMPA vs. AMPA: n.s. (p>0.05). 
(Fisher exact probability test, two tailed). 

Climbing 

The ratio of climbing-time of AMPA-treated cats showing limb deficits differed 

significantly from that in cats devoid of such disturbances (p=0.008; see Section 3.2.3); 

in the present study, only the climbing-time of cats showing no limb disturbances was 

taken into account. In these cats the ratio of climbing-time was significantly reduced 

by 1.0 μ% AMPA (see Figure 3.3.1). As shown, 0.6 μ%, but not 0.3 /¿g, apomorphine 

attenuated this AMPA-induced effect. Climbing-time was not affected by 0.6 /ig 

apomorphine per se (see Figure 3.3.1). 

Head movements 

With respect to the number of normal head movements, animals showing limb 

deficits following 1.0 ¿ug AMPA, 0.3 /ig apomorphine + 1.0 μ% AMPA or 0.6 μ% apo-
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Figure 3.3.1 Ratio of the mean climbing-time (POSTl-PRE I POSTI +PRE) during POSTI: 5-10 min after 

Solvent (SLV), 1.0 μg AMPA, 0.3 or 0.6 μg apomorphine (APO) plus 1.0 μg AMPA (APO was injected 5 

min before AMPA);] 0-15 min after 0.6 μg apomorphine. * p<0.02: drugvs. SLV. +, p<0.02:1.ΟμζΑΜΡΑ 

plus 0.6 μg APO vs. 1.0 μg AMPA. 

morphine + 1.0 μg AMPA did not differ from those who received the same treatment 

but that did not show these disturbances. Therefore, they were pooled. Figure 3.3.2 

shows that the ratio of the number of normal head movements was significantly 

increased after 1.0 μ£ AMPA. The latter effect was reduced by 0.6 //g, but not by 0.3 

μg, apomorphine. On the other hand, 0.6 μg apomorphine per se was unable to affect 

the ratio of the number of head movements (see Figure 3.3.2). 

Walking 

Regarding the number of walking-restarts, animals showing limb deficits following 1.0 
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Figun 3.3.2 Ratio of the total number of head movements (POSTI-PRE I POSTI + PRE) during POSTI. 

5-10 mm after Solvent (SLV), 1 0 //g AMPA, 0.3 or 0.6 μg apomorphine (APO) plus 1 0 ßg AMPA (APO 

was mjected 5 mm before AMPA);10-15 mm after 0 6 μg apomorphine. *p<0 02: drug vs. SLV. + p<0.02. 

10 μζ AMPA plus 0 6 μξ APO vs 1.0 μg AMPA. 

μg AMPA, 0.3 μg apomorphine + 1.0 μg AMPA or 0.6 μg apomorphine + 1.0 μg 

AMPA did not differ from those who received the same treatment but that did not 

show these disturbances. Therefore, they were pooled. As illustrated in Figure 3.3.3, 

AMPA 1.0 μg significantly increased the number of restarts. Again the latter effect was 

reduced only by the highest dose of apomorphine, whereas it was unaffected by 0.6 μg 

apomorphine per se (see Figure 3.3.3). 

Jumping 

As a final remark, none of the treatments was able to affect normal jumping ability; 
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Figure 3.3.3 Ratio of the total number of walkmg-restarts (POSTl-PRE) during POSTI: 5-10 mm after 

Solvent (SLV), 1.0 μχ AMPA, 0.3 or 0.6 μg apomorphine (APO) plus 1.0 μg AMPA (APO was injected 5 

mm before AMPA); 10-15 min after 0.6 μg apomorphine. * p<0.002: drug vs. SLV. + p<0.02: 1.0 μg 

AMPA plus 0.6 μg APO vs. 1.0 μg AMPA. 

all cats collected the food pellets offered to them on the platform. 

33.4 DISCUSSION 

As mentioned in Section 3.3.1 (Introduction), bilateral intracaudate injections of 1.0 

/ig AMPA produced two sets of effects in cats executing a sequence of distinct motor 

patterns on the bar: it produced unilateral limb deficits in part of the tested cats and 

it induced an increase in switching behaviour. 
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AMPA-induced limb deficits 

Previously, it has been shown that the AMPA-induced limb deficits are prevented 

by the aselective glutamate receptor antagonist KYN as well as by the selective NMDA 

receptor antagonist AP7, showing that quisqualate as well as NMDA receptors are 

involved in the display of these motor disturbances (see Section 3.2). The present study 

shows that pretreatment with apomorphine did not affect the AMPA-induced limb 

disturbances. Furthermore, the bilateral intracaudate application of apomorphine per 

se did not induce comparable deficits in any of the tested cats. Since the latter dose 

of apomorphine is known to be locus-specific, dopamine-selective and maximally 

effective in open field tests (for réf., see Cools, Struyker Boudier & Van Rossum, 1976) 

these data show that dopamine receptors within the rostromedial part of the caudate 

nucleus were not involved in the display of AMPA-induced limb deficits. 

AMPA-induced increase in switching behaviour 

Apart from the limb disturbances, 1.0 μ% AMPA induced an increase in switching 

behaviour: switching from hanging to climbing in cats showing no limb deficits was 

increased as suggested by the reduction in climbing-time, and switching from walking 

to other behaviours was enhanced as shown by the increase in the number of walking-

restarts. In addition, AMPA induced an increase in the number of head movements 

that might also be due to an AMPA induced increase in switching behaviour. In 

contrast to AMPA induced limb deficits, changes in switching behaviour are known to 

be counteracted by KYN, but not by AP7, showing that the latter effect is selectively 

mediated by quisqualate receptors (Section 3.2). The present study shows that 

pretreatment with apomorphine attenuated the AMPA induced decrease in climbing-

time, counteracted the AMPA induced increase in the number of walking-restarts, and 

reduced the AMPA induced enhancement in the number of head movements. These 

data show that apomorphine attenuated AMPA induced increases in switching 

behaviour. Moreover, only 0.6 μg, but not 0.3 μ%, apomorphine affected the latter 

AMPA induced behavioral changes. In other words, only a dose of apomorphine that 

is known to be maximally effective in open field tests, i.e. 0.6 /ig, turned out to be 

effective in this respect. The latter finding is in agreement with the results of 
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iontophoretic experiments of Chiodo and Berger (1986) who found that only relatively 

high doses, but not lower doses of dopamine were able to reduce glutamate-induced 

excitatory responses of caudate neurons. The finding that apomorphine per se did not 

alter climbing-time, the number of walking-restarts and the number of head movements 

is in agreement with the outcome of former studies showing that 0.6 μ% apomorphine 

per se did not affect switching motor patterns (Section 3.1, see also Section 5.1). 

The caudato-nigro-collicular circuitry and switching behaviour 

Inhibition or activation of dopamine receptors within the rostromedial part of the 

caudate nucleus is known to affect neuronal activity arriving at the level of the 

substantia nigra pars reticulata and the deeper layers of the superior colliculus (see also 

Chapter 6). Furthermore, both the substantia nigra pars reticulata and the deeper 

layers of the superior colliculus are essential in switching behaviour (see Chapter 5; see 

also Cools, 1986; Gelissen & Cools, 1986). Moreover, inhibition of striatal dopaminergic 

activity is known to reduce the animal's ability to switch arbitrarily motor patterns 

(Section 3.1; Wegener, Schmidt & Ehret, 1988). On the basis of these data, it can be 

concluded that the results of the present study provides evidence in favour of the 

hypothesis that AMPA-induced changes in switching behaviour, but not AMPA-induced 

limb deficits, are mediated via the caudato-nigro-collicular circuitry. 

As a final remark, the results of the present study together with the fact that the 

AMPA-induced increase in switching behaviour is selectively mediated by quisqualate 

receptors suggest that the modulatory role of dopamine on glutamate activity in the 

rostromedial part of the feline caudate nucleus is restricted to functional changes 

mediated by quisqualate receptors. 
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CHAPTER 4 

THE CAUDATO-NIGRO-COLLICULAR PATHWAY 

4.0 GENERAL INTRODUCTION 

As is described in Section 2.3, the caudate nucleus projects to the globus pallidus 

and to the substantia nigra pars reticulata. Many caudatopallidal and caudatonigral 

fibres contain the neurotransmitter GABA. In turn, the substantia nigra pars reticulata 

projects to the mesencephalic reticular formation, the ventrolateral and ventromedial 

thalamic nuclei, and to the deeper layers of the colliculus superior (see Section 2.3). 

Since the colliculus superior is known to project directly as well as indirectly to the 

spinal cord (see Graham, 1977), one way in which caudate neuronal signals may 

ultimately reach the effector organs is the caudato-nigro-collicular pathway. Classically, 

the GABAergic caudatonigral pathway is considered to function as a feedback pathway 

to control the dopaminergic nigro(pars compacta)-caudate projection (see Section 4.1). 

Therefore, the first step to be taken is to investigate whether the substantia nigra pars 

reticulata indeed may serve as an output station which receives neuronal signals from, 

among others, the caudate nucleus and which, in turn, sends its information to other 

brain regions such as the deeper layers of the colliculus superior. The effects of 

intranigral injections of GABAergic compounds were investigated in the experiments 

described in Section 4.1. In order to test whether the caudatonigral pathway functions 

as part of a feedback loop or serves as a caudate output channel, the effects of 

intracaudate application of dopaminergic substances on the behavioural response 

induced by intranigral injections of GABAergic substances were also studied. 
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As mentioned, the reticular substantia nigra projects via GABAergic fibres to the 

deeper layers of the colliculus superior. In order to investigate the behavioural response 

of experimentally induced changes in the activity of the nigrocollicular pathway, the 

experiments described in Section 4.2 were performed. As discussed below (Section 4.1.4 

and 4.2.4), both intranigral application and intracollicular injection of GABAergic 

substances lead to behavioural changes which can be differentiated from each other as 

well as from those following experimentally-induced changes of dopaminergic or 

GABAergic activity within the caudate nucleus. 
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4.1 THE SUBSTANTIA NIGRA PARS RETICULATA. A FIRST ORDER OUTPUT 

STATION OF THE CAUDATE NUCLEUS: NIGRAL GABA AND MOTOR 

BEHAVIOUR 

Summary 

The behavioural consequences of unilateral injections into the substantia nigra pars 

reticulata of the GABAergic antagonist picrotoxin or the GABAergic agonist were 

investigated in cats. In addition, the involvement of striatal dopaminergic mechanisms 

in the behavioural expression of GABAergic mechanisms within the substantia nigra 

pars reticulata was investigated. Therefore, apomorphine or haloperidol were bilaterally 

administrated into the rostromedial part of the caudate nucleus of cats pretreated with 

a unilateral injection of picrotoxin or muscimol into the nigral pars reticulata. The 

pharmacological treatment of the caudate nucleus did not produce any significant 

change in the behaviour elicited from the nigra; neither the picrotoxin-induced 

asymmetric posturing, asymmetric circling, freezing and hindlimb disorder nor the 

muscimol-induced asymmetric posturing, asymmetric spinning and stereotyped licking 

were significantly affected. The latter behaviour was absent in animals with a partial 

or total destruction of the nigral pars reticulata. The present results demonstrate that 

the nigral pars reticulata does not form part and parcel of a feedback system that 

simply transmits incoming signals from the caudate nucleus towards the pars compacta, 

i.e. the origin of the dopaminergic, nigrostriatal fibres. Finally, the present study 

demonstrates that the dopaminergic activity within the caudate nucleus may only 

modify, but certainly not determine, the behavioural expression of the nigral pars 

reticulata. It is concluded that the substantia nigra pars reticulata not only transmits, 

but also transforms its incoming signals. 
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4.1.1 INTRODUCTION 

Traditionally, the substantia nigra pars reticulata is considered to be an intercalated 

station between striatonigral, GABAergic and nigrostriatal, dopaminergic fibres (Dray, 

1979). Accordingly, this brain region has been believed to act like a part of a feedback 

system that simply transmits the incoming signals from the striatum towards the nigral 

pars compacta, i.e. the origin of the nigrostriatal fibres (Andén & Stock, 1973; Dray, 

1979; Dray & Straughan, 1976; Figure 4.1.1A). Since the late seventies however, 

evidence has been presented that the substantia nigra pars reticulata also functions as 

an output station (Figure 4.1.IB) that connects the neostriatum/caudate nucleus with 

structures such as the thalamus, colliculus superior and reticular formation (Chevalier 

et al., 1985; Cools, 1978; De Montis et al., 1979; Di Chiara et al., 1978; Gale & Casu, 

1981; Garant & Gale, 1987; Garzia-Munoz, 1977; Grace & Bunney, 1985; Graybiel & 

Ragsdale, 1979; May & Hall, 1986; Olianas et al., 1978; Scheel-Krüger, Arnt & 

Magelund, 1977; Schulz, 1986; Starr, Summerhayes & Kilpatrick, 1983; Wolfarth, 

Kolasiewicz & Sontag, 1981; Williams & Faull, 1985; 1988). The latter finding might 

imply that the substantia nigra pars reticulata not only transmits, but also transforms 

input signals (Figure 4.1.1С). 

Important evidence for such a proposal would be the demonstration that the 

behavioural expression of the substantia nigra pars reticulata differs from that of any 

area sending afférents to this brain region. Recently, we have reported that unilateral 

injections of the GABA agonist muscimol into the substantia nigra pars reticulata of 

cats resulted in behavioural phenomena such as vigorous rotating of the head-to-tail 

type, unilateral twisting of the head and stereotyped licking (Wolfarth, Kolasiewicz & 

Sontag, 1981). In the same study, it was found that unilateral intranigral injections of 

GABA antagonists such as picrotoxin and bicucculine produced slow circling, unilateral 

twisting of the head, immobility and motor disturbances of the hindlimbs. Apart from 

the twisting behaviour, none of the remaining phenomena have ever been reported 

after manipulation of the caudate nucleus in cats (Cools & Van Rossum, 1970; Cools, 

Struyker Boudier & Van Rossum, 1976). 
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Figure 4.1.1 A classic hypothesis, substantia nigra, pars reticulata as intercalated station between 

stnatomgral and dopaminergic, mgrostnatal fibres В present-day hypothesis, substantia nigra pars reticulata 

as output station of the neostriatum С new hypothesis proposed m this chapter, substantia nigra pars 

reticulata as a station that transforms different input signals into new, physiologically meaningful output 

signals 

If indeed the information leaving the substantia nigra pars reticulata originates in this 

bram region as a result of its properties to transform inputs from one or more brain 

structures (Figure 4.1.1С), it becomes necessary to investigate the influence of the latter 

brain structures. In the present study, we focused our attention on the influence of the 

mgrostnatal and stnatomgral system (Figure 4.1ЛС, systems 1 and 2) Accordingly, we 

studied the effects of bilateral administration of the dopaminergic agonist apomorphine 

and the dopaminergic antagonist halopendol into the rostromedial part of the caudate 

nucleus on behaviour elicited by unilateral injections of muscimol or Picrotoxin into the 

substantia nigra pars reticulata of cats (cf. Cools, Struyker Boudier & Van Rossum, 

1976, Wolfarth, Kolasiewicz & Sontag, 1981). 
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4.1.2 EXPERIMENTAL PROCEDURES 

Animais and surgical procedure 

In order to allow intracerebral injections into conscious, freely moving animals, 25 

cats of either sex (2.8-3.5 kg) were prepared as previously described (Cools, Struyker 

Boudier & Van Rossum, 1976; Wolfarth, Kolasiewicz & Sontag, 1981). Under sodium 

pentobarbital anaesthesia (35 mg/kg, i.p.), a stainless steel cannula with external 

diameter of 0.65 mm was stereotactically implanted into the right substantia nigra pars 

reticulata (coordinates A 3.0, L 5.0, H 2.7, according to the atlas of Snider & Niemer, 

1964) in order to allow unilateral intranigral injections (1 μ\) through an injection 

needle protruding 0.1 mm below the tip of the guide cannula (Wolfarth, Kolasiewicz 

& Sontag, 1981). In addition, two stainless steel cannulas with external and internal 

diameters of 0.8 and 0.4 mm respectively were implanted into the left and right caudate 

nucleus (A 14-16, L 4-6, Η 6-8, according to Snider & Niemer, 1964) in order to allow 

bilateral intracaudate injections (5 μΐ per side) 1.0-2.0 mm below the tip of the guide 

cannulas. First, the cats were habituated to the experimental cage (90x60x60 cm) and 

injection procedures during two 1-h sessions on separate days. The experiments, in 

which the behavioural responses to intracerebral injections were analyzed in conscious, 

freely moving animals, started at least 7 days after the operation (for details: Cools, 

Struyker Boudier & Van Rossum, 1976; Wolfarth, Kolasiewicz & Sontag, 1981). In case 

a cat was used for a second or a third time, the experiments were spaced by at least 

4 days. 

Drugs 

The concentrations of intranigrally injected picrotoxin (2 //g/ μΙ; Nutr. Biochem. 

Corp.) and muscimol (0.4 μ&μ\; Serva) were chosen on the basis of the fact that the 

behaviour of these doses could be modified by the systemic administration of 

apomorphine (Wolfarth, Kolasiewicz & Sontag, 1981). The doses of intracaudate 

solutions of apomorphine (5 μ%/5μ\ per side; apomorphine hydrochloride, ACF 

Chemiefarma NV) and haloperidol (12.5 μξ/5μ\ per side, Haldol, Janssen Pharma-
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ceutica) were chosen on the basis of the fact that they are maximally effective in 

eliciting behavioural effects from the caudate nucleus, as shown in several studies (cf. 

Cools, Struyker Boudier & Van Rossum, 1976). 

Experimental design 

For reasons given in Section 4.1.3 (Results), the picrotoxin-pretreated cats received 

their intracaudate injections 50 min after the intranigral injections; the muscimol-

pretreated cats received them 90 min after the intranigral injection. The first 5 min of 

the post-injection period were not taken into account because of injection artifacts; the 

subsequent 10 min period was used for analyzing the influence of intracaudate 

injections, as the behavioural responses to such injections in naive cats fade away about 

15 min after the injection. Only cats showing the expected response to intranigral 

injections of picrotoxin and/or muscimol (Wolfarth, Kolasiewicz & Sontag, 1981) were 

used in the latter series of experiments. 

Histological procedures 

At the end of the last behavioural test, the cats were deeply anaesthetized with 

pentobarbital and subsequently transcardially perfused with a 4% formaldehyde 

solution. The dissected brains were processed to be histologically examined (20 μτη 

slices, Nissl and haematoxylin staining) in order to estimate the location of the tip of 

the injection needles. 

4.13 RESULTS 

Unilateral intranigral injection of picrotoxin resulted in effects identical to those 

reported earlier (Wolfarth, Kolasiewicz & Sontag, 1981; Table 4.1.1): (a) contralateral 

posturing implying static asymmetry of the trunk and/or neck for a minimum period of 

30 s (CP); (b) fast contralateral head turnings with eyes fixed in the head (CT); (с) 

slow contralateral circling without spinning (sCC); (d) immobility or freezing implying 

99 



Table 4.1.1 Percentage of animals showing behavioural deficits following unilateral 'effective' miramgral 

injections of picrotoxm before (pre) and after (post) bilateral intracaudate injections of distilled water, 

halopendol and apomorphine. 

No significant differences between the distinct 'post values' were found (Mann Whitney 
U-test, two tailed). 

Solvent Haloperidol Apomorphine 
(n=6) (n=6) (n=7) 

%pre %post %pre %post %pre %post 

Contra-posturing CP* 

Contra-turning CT 

Slow-circling sCC 

Freezing FR 

Hindlimb defic. HD 

HD, score" 

CP, score' 

100 

83 

50 

100 

100 

2.2±0.4 

-

100 

50 

33 

100 

100 

2.2±0.4 

-

100 

67 

17 

100 

100 

2.3 ±0.3 

174±20 

100 

67 

34 

100 

100 

2.8±0.2 

207±18 

100 

100 

0 

100 

100 

2.3 ±0.4 

160±13 

71 

86 

0 

100 

86 

1.9±0.6 

93 ±27" 

1 Implying static asymmetry of the trunk and/or neck for a minimum period of 30 s. 
ь HD, score was measured 10 min before and after the intracaudate treatment (average 
± SEM). 
0 CP, score = amount of time (s) during which CP was present in the third 5 min 
interval before (pre) and second 5 min interval after (post) the intracaudate treatment 
(mean ± SEM). 
* apomorphine, post vs apomorphine, pre: p< 0.05 (Wilcoxon matched-pairs signed-
ranks test, two tailed). 

absence of any movement including those of ears, eyes and facial muscles for a mini

mum period of 30 s (FR); and (e) motor disturbances of the hindlimbs to a greater or 

lesser extent (HD). The degree of pathology was assesses during 3 series of 3 succes

sive tests: the most serious HD implied absence of any movement of the hindlimbs 

when the forelimbs were put on a wooden bar (300 χ 5 χ 5 cm) placed 2 m above the 

floor, absence of any forward locomotion when all four limbs were placed on the bar, 

and increased clinging to the bar (HD, score 3); a moderate HD implied presence of 
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disoriented and unsuccessful movements of the hindlimbs in the above-mentioned situa

tions (HD, score 2); the least HD implied presence of disoriented, but successful, 

movements of the hindlimbs in these situations (HD, score 1). 

The severity of the overall picrotoxin-induced syndrome reached its maximum about 

40 min after the injection (at which time the HD was measured) and then remained 

unchanged for at least 120 min; for this reason, the intracaudate injections discussed 

below were given 50 min after the picrotoxin administration, histological verification 

revealed that: (a) 12 out of 14 effective injections were placed in, or within a distance 

of 1 mm from, the target area; (b) 4 out of the 5 ineffective injections were placed into 

the substantia nigra, being partly or fully destroyed; and (c) 1 out of the 5 ineffective 

injections together with 2 out of the 14 effective injections were placed more than 2 

mm beyond the borderline of the chosen target area. The label 'ineffective' refers to 

nigral injections that did not result in the display of CP, FR, and HD; both 'effective' 

and 'ineffective' injections produced asymmetric head turnings accompanied by 

asymmetric changes in the musculature of the eyes, ears and face. 

Bilateral administration of maximally effective doses of apomorphine (5.0 //g) or 

haloperidol (12.5 μg) was unable to alter the behaviour deficits elicited by an 'effective', 

intranigral injection of picrotoxin given 50 min prior earlier: the percentage of animals 

showing behaviour deficits after haloperidol or apomorphine did not significantly differ 

from that found in control experiments, in which the solvent of the dopaminergic agents 

(distilled water) was given (Table 4.1.1; Mann Whitney U test, two tailed). Comparing 

pre- and post-injection values per test-series, it turned out that only the time, during 

which the animals maintained their contralateral asymmetry, was significantly reduced 

by apomorphine (CP, score in Table 4.1.1: p< 0.05, Wilcoxon matched-pairs, signed-

ranks test, two tailed). Histological verification revealed that all injections were placed 

into the chosen target areas (Figures 4.1.2A and 3.2.1). 

Unilateral intranigral injections of muscimol resulted in effects identical to those 

reported earlier (Wolfarth, Kolasiewicz & Sontag, 1981; Table 4.1.2): (a) contralateral 
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Table 4.1.2 Percentage of animals showing behavioural deficits following unilateral 'effective' intranigral 

injections of muscimol before (pre) and after (post) bilateral intracaudate injections of distilled water, 

halopendol and apomorphme. 

No significant differences between the distinct 'post values' were found (Mann Whitney 
U-test, two tailed). 

Contra-posturing CPa 

Contra-turning CT 

Fast-circling fCC 

Licking 

Lick, scoreb 

fCC, score0 

Solvent 
(n=8) 

%pre %post 

100 

63 

100 

100 

2.1 ±0.2 

39±14 

100 

50 

100 

87 

2.0±0.4 

38±13 

Haloperidol 
(n=6) 

%pre %post 

100 

100 

100 

100 

2.3 ±0.2 

20±7 

100 

67 

100 

83 

2.2±0.5 

26±10 

Apomo 
(n= 

%pre 

100 

100 

100 

83 

2.0±0.5 

25±8 

irphine 
=6) 

%post 

100 

100 

67 

100 

2.2±0.5 

12±6d 

* Implying also postural changes into the contralateral direction. 
b Licking score: average ± SEM (see text). 
c fCC, score = number of full circles made during the first plus second 5 min interval 
before (pre) and after (post) the intracaudate treatment (average ± SEM). 
* apomorphine, post vs apomorphme, pre: p<0.05 (Wilcoxon matched-pairs signed-
ranks test, two tailed). 

posturing (CP); (b) fast contralateral head turnings with eyes fixed in the head (CT); 

(с) fast contralateral circling of the head-to-tail type (fCC); and (d) stereotyped 

behaviour such as licking. In Table 4.1.2, the average ±SEM of the maximum score 

/min throughout the pre- vs post-injection period is given: continuous licking, score 3; 

discontinuous licking spells, score 2; a single licking spell, score 1. 

The overall muscimol-induced syndrome reached its maximum about 60-80 min 

after the injection and remained then unchanged for several hours; for this reason, the 

intracaudate injections discussed below were given 90 min after the muscimol 
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administration. Following histological verification, it turned out that: (a) all 13 effective 

injections were placed in, or within a distance of 1 mm from, the target area (Figure 

4.1.2A); (b) 4 out of 7 ineffective injections were placed into the substantia nigra pars 

reticulata, being partly or fully destroyed (Figure 4.1.2B); and (c) 3 out of the 7 

ineffective injections were placed outside the target area (Figure 4.1.2C). The label 

'ineffective' refers to nigral injections that did not result in the display of CP and fCC; 

both 'effective' and 'ineffective' injections produced asymmetric head turnings by 

asymmetric changes in the musculature of the eyes, ears and face. 

Figure 4.1.2 A: representative picture of cat brain with an 'effective' injection site of muscimol (0.4 μξίμΐ) 

into the substantia nigra. B: representative picture of cat brain with an 'ineffective' injection site of muscimol 

(0.4 μ$μΙ) into the nigral pars reticulata being partially destroyed. C: representative picture of cat brain with 
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Bilateral administration of maximally effective doses of apomorphine (5.0 ^g) or 

haloperidol (12.5 μg) was unable to affect the behaviour deficits elicited by an 

'effective' intranigral injection of muscimol given 90 min earlier: the percentage of 

animals showing behaviour deficits after haloperidol or apomorphine did not signifi

cantly differ from that found in control experiments, in which the solvent of the dopa

minergic agents (distilled water) was given (Table 4.1.2; Mann Whitney U test, two 

tailed). Comparing pre- and post-injection values per test-series, it turned out that 

only the number of full circles was significantly reduced by apomorphine (fCC, score 

in Table 4.1.2: ρ < 0.05, Wilcoxon matched-pairs signed-ranks test, two tailed). Histolo

gical verification revealed that all injections were placed into the chosen target areas 

(Figures 4.1.2A and 3.2.1). 

4.1.4 DISCUSSION 

In view of the fact that partial or total destruction of the substantia nigra in 8 cats 

blocked the potency of intranigrally injected GABAergic agents to elicit the behavioural 

deficits listed in Tables 4.1.1 and 4.1.2, the present results allow the conclusion that 

these drug-induced deficits were due to changes occurring within the substantia nigra 

pars reticulata. Since asymmetric head turnings accompanied by asymmetric changes in 

the facial musculature, i.e. a characteristic behavioural expression of the caudate 

nucleus function (Cools & Van Rossum, 1970; Cools, Struyker Boudier & Van Rossum, 

1976), appeared not only in animals having a partially or totally destroyed substantia 

nigra pars reticulata but also in animals receiving muscimol injections outside the sub

stantia nigra, the former conclusion does not hold true for this phenomenon; actually, 

it favours an important role for structures adjacent to the substantia nigra (cf. Lee, 

Slater & Grossman, 1981). 

The present results also demonstrate that the drug-induced changes in the dopamin

ergic activity of the rostromedial caudate nucleus do not significantly affect the overall 

behaviour elicited from the substantia nigra pars reticulata (cf. Arnt & Scheel-Krüger, 
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1979a; 1979b). This result cannot be attributed to an insufficient efficacy of the intra-

caudate treatment since the doses selected have been found to be maximally effective 

in altering the behavioural expression of the caudate function in studies which have 

been replicated several times (cf. Cools, Struyker Boudier & Van Rossum, 1976). 

Accordingly, the present study shows that those aspects of the behavioural expression 

of the reticular function, which are investigated in the present experiments, are not 

significantly affected by experimentally induced changes in the main afferent input of 

this brain region (cf. Arnt & Scheel-Kriiger, 1979a; 1979b). Although it cannot be 

excluded that absence of a point-to-point relationship between the chosen area of the 

caudate nucleus and that of the nigral pars reticulata underlies the present findings, this 

explanation seems quite unlikely. For the complex neuropil of intracaudate interneurons 

on the one hand, and the extensive dendritic field of the nigral pars reticulata on the 

other hand, form an excellent network for cross-talk between the distinct areas within 

each brain structure. Given the neuroanatomical connection between the caudate 

nucleus and the substantia nigra pars reticulata on the one hand, and the enormous 

discrepancy between the behavioural expression of these nuclei on the other hand, (for 

detailed descriptions see Cools & Van Rossum, 1970; Wolfarth, Kolasiewicz & Sontag, 

1981), we therefore reach the conclusion that the substantia nigra pars reticulata not 

only transmits, but also transforms, its incoming signals into new output signals (Figure 

4.1С). 

In view of the fact that the intranigral doses selected were rather high and, 

accordingly, might have masked the presence of any modulating, but not directing or 

determining, influence of the striatonigral input on the function of the nigra, we cannot 

ascertain whether or not the feline caudate nucleus exerts a modulating influence; 

indeed, apomorphine's ability to shorten the duration of the picrotoxin-induced 

asymmetric posturing certainly does not exclude such a striatal function (cf. Arnt & 

Scheel-Kriiger, 1979a; 1979b). Further studies in which lower doses of muscimol or 

Picrotoxin are used will be required for analyzing the presence of a modulating role of 

the rostromedial caudate nucleus. 
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Concerning the classic controversy as to what degree the nigro-striatal dopaminergic 

fibres are involved in the behavioural expression of the substantia nigra pars reticulata 

in rats (Amt & Scheel-Krüger, 1979a, 1979b; Di Chiara et al., 1978; Garcia-Munoz et 

al., 1977; Lee, Slater & Grossman, 1981; Русоск, 1980; Scheel-Krüger, Arnt & Mage-

lund, 1977; Scheel-Krüger et al., 1978; Scheel-Krüger & Magelund, 1981), the present 

results provide hard evidence that the behaviour elicited from this region in the feline 

brain is not mediated via the dopaminergic fibres arising in the nigral pars compacta 

and terminating within the caudate nucleus (Figure 4.1С, cf. Arnt & Scheel-Krüger, 

1979a, 1979b); this fits in with biochemical data showing that the nigral picrotoxin 

treatment used in the present study does not alter the intracaudate dopamine concen

trations (Kolasiewicz & Grabowska-Andén, personal communication). Nevertheless, our 

conclusion is at variance with feline studies providing evidence that the systemic 

administration of the dopaminergic agonist apomorphine affects some aspects of the 

nigral syndrome (Wolfarth, Kolasiewicz & Sontag, 1981). To explain this seeming 

discrepancy, it is useful to recall that the substantia nigra pars reticulata: (1) also 

receives non-striatal afférents from dopaminergic structures such as the nucleus 

accumbens (Troiano & Siegel, 1978; cf. Graybiel & Ragsdale, 1979); and (2) sends 

efferents to the thalamus, superior colliculus and reticular formation. In view of these 

anatomical connections we propose that the ability of systemically administrated 

apomorphine to affect the nigral syndrome is partly due to the apomorphine-induced 

changes in the overall inflow into the pars reticulata and partly due to the 

apomorphine-induced changes in structures such as the thalamus, i.e. structures 

innervated by the substantia nigra pars reticulata as well as the caudate nucleus. This 

proposal not only underlines the importance of these structures for the behavioural 

expression of the substantia nigra pars reticulata, but also offers a conceivable 

explanation for the fact that intracaudate apomorphine did reduce, but not increase 

(Wolfarth, Kolasiewicz & Sontag, 1981), the number of muscimol-induced circles of the 

head-to-tail type. For, the latter phenomenon cannot be attributed to an increased 

striato-nigral input, since such an increase is known to release GABA into the 

substantia nigra and, accordingly, should potentiate and not attenuate, effects elicited 

by intranigrally administered muscimol. 
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4.2 THE DEEPER LAYERS OF THE COLLICULUS SUPERIOR. A SECOND 

ORDER OUTPUT STATION OF THE CAUDATE NUCLEUS: COLLICULAR 

GABA AND MOTOR BEHAVIOUR 

Summary 

The behavioural response to picrotoxin (25-500 ng) injected into the deeper layers 

of the colliculus superior of freely moving cats was investigated. The maximal response 

to unilateral injections of picrotoxin (> 200 ng) was characterized by the following 

sequence of behavioural events. During the first 5 min after the injection the cat 

executed retroflexions of the contralateral ear. After 1-5 min these contralateral ear 

movements were followed by short, contralateral head movements. As time progressed 

the front part of the body, including the forelimbs, became involved in the movements 

resulting in contralateral torso movements. Finally, as the response was maximal, the 

whole body became involved in the movements resulting in contralateral body move

ments. Data are shown indicating that most of these behavioural phenomena were (1) 

dose-dependent, (2) locus-specific, and (3) GABA-specific. Bilateral injections of 

picrotoxin resulted in similar characteristic movements, but now directed towards both 

sides and/or directed 'ventrocaudally'. Finally, it was found that blindfolding the animals 

did not change the response to unilaterally injected picrotoxin. As the behavioural 

phenomena described here are dissimilar to the effects observed after experimentally-

induced alterations in GABAergic activity at the level of the substantia nigra, pars 

reticulata, it is concluded that the deeper layers of the colliculus superior, being an 

output station of the substantia nigra pars reticulata, transforms its input signals into 

new output signals. Finally, it is suggested that picrotoxin resulted in a fixed code at 

the level of the colliculus superior, forcing the animals to execute characteristic motor 

patterns. 
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4.2.1 INTRODUCTION 

The deeper layers of the colliculus superior are considered to be one of the main 

output stations of the basal ganglia (Edwards et al., 1979; Graybiel, 1978; Scheel-

Kriiger, 1983). There is substantial evidence that descending fibres from the substantia 

nigra, pars reticulata impinge upon the deeper layers of the colliculus superior 

(Chevalier et al., 1985; Deniau et al., 1977; Graybiel, 1978; May & Hall, 1986; Vincent, 

Hattori & McGeer, 1978; Williams & Faull, 1985, 1988). The deeper layers of the 

colliculus superior gives rise to ascending projections to the pretectum, the medial 

geniculata complex, the intralaminar nuclei of the thalamus, the fields of Forel, and the 

zona incerta. Descending fibres terminate in the pontine nuclei, the raphe nuclei, the 

reticular formation, and the spinal cord (for rev., see Graham, 1977). 

The substantia nigra pars reticulata receives GABAergic fibres from the caudate 

nucleus (for rev., see Scheel-Kriiger, 1983). The behavioural effects of GABAergic 

substances injected into the reticular substantia nigra of cats have been reported in the 

preceding section (Section 4.1; see also Wolfarth, Kolasiewicz & Sontag, 1981). Musci

mol, a potent GABA agonist, elicited asymmetric responses such as fast, contralateral 

head-to-tail circling, fast contralateral head turning, contralateral posturing, and 

stereotyped licking. On the other hand, picrotoxin, an agent that closes the chlorid 

channels that are opened by GABA, resulted in a characteristic behavioural state 

denoted as 'freezing', viz. absence of any movement for a period of at least 30 s. 

Furthermore, picrotoxin elicited asymmetric posturing, static head turning, and an 

inability to lift the hindlimbs when the forelimbs were put on a bar placed 2 m above 

the floor (Cools et al., 1983). Because of the dissimilarity of the behavioural response 

evoked in the caudate nucleus (Cools, Struyker Boudier & Van Rossum, 1976) and the 

substantia nigra pars reticulata, respectively, it could be concluded that the substantia 

nigra not only transmits it's incoming signals, but also transforms them into new output 

signals (Cools et al., 1983). 

As we are interested in the way in which information leaving the basal ganglia is 
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mediated downstream towards the level of the spinal cord, we focused our attention 

on the colliculus superior. The deeper layers of the colliculus superior receive 

GABAergic fibres from the substantia nigra pars reticulata (Chevalier et al., 1981; 

Vincent, Hattori & McGeer, 1978). Furthermore, there is evidence that striatonigral 

fibres project monosynaptically upon nigrocollicular output neurons (Scheel-Kriiger, 

1983; Williams & Faull, 1985), at least part of which are also GABAergic (Mize, 1988). 

In order to gain insight into the behavioural significance of this nigrocollicular 

GABAergic pathway we injected GABAergic substances into the deeper layers of the 

colliculus superior of cats. The results of these experiments may indicate whether 

information arriving at this level is also transformed into new output signals, in 

accordance to the concept obtained from the nigra studies (Section 4.1). 

4.2.2 EXPERIMENTAL PROCEDURES 

Cats of either sex (weighing 2.5-4.5 kg) were prepared as described previously 

(Cools, Struyker Boudier & Van Rossum, 1976). In order to allow intracerebral 

injections, two stainless steel cannulas (outer diameter 0.8 mm; diameter of the inner 

cannula that extended 1 mm below the tip of the outer cannula: 0.55 mm) were 

stereotactically implanted under sodium pentobarbital anaesthesia (40-50 mg/kg, i.p.) 

in each cat. In order to avoid damage to the tectum, the tip of the cannula was 

implanted into the corpus callosum (A 1.5, L 3.5, H 6.5; according to the atlas of 

Snider and Niemer, 1964). With help of a 5 μ\ Hamilton syringe (diameter if the 

injection needle with sharpened tip: 0.35 mm) small volumes (0.5-1.0 μΐ) were injected 

into the deeper layers (A 1.5, L 3.5, Η 2.5) and superficial layers (A 1.5, L 3.5, Η 4.5) 

of the colliculus superior. The colliculus superior is divided into superficial vs deeper 

layers according to the terminology of Kanaseki and Sprague (1974). One week after 

the implantation the cats were habituated to sound-tight wooden observation cage (90 

χ 60 χ 60 cm) and the injection procedure during two 1-h sessions on separate days. 

Two weeks after the implantation the experiments were started, in which the 

behavioural responses to intracollicular injected substances were analyzed in freely 
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moving cats. The dependent variables in this analysis were operationally defined items, 

viz. isolated, forced, unidirectional movements of ears, head, torso (front part of the 

body including the forelimbs) or body. These movements were labelled as being 

present/absent during a certain time-interval (see below). All data are presented as 

percentage of cats showing a particular behavioural item. Each experiment was 

recorded on video-tape with help of a closed video-circuit. Fifteen minutes before the 

intracerebral injections were administrated the cat was placed in the observation cage 

in order to readapt to the experimental surroundings. Injections were given to conscious 

animals; the injection needle was not removed until 30 s after finishing the injection. 

After the injections, the behavioural response was observed and analyzed for 30 min. 

Picrotoxin (25-500 ng/0.5 μΙ; Serva) was injected unilaterally or bilaterally. Bilateral 

injections of distilled water, viz. the solvent of picrotoxin, served as control. In case 

Picrotoxin (or muscimol, see below) was given unilaterally, the solvent was injected 

contralaterally. In case an animal was used again, the experiments were spaced by at 

least 7 days. 

In an additional series of experiments muscimol (50 ng/1.0 μ\) was injected 

ipsilaterally 20 min after the picrotoxin injection in order to determine whether 

muscimol counteracts the picrotoxin-induced behavioural response. The potency of 

muscimol in blocking the picrotoxin-induced response was analyzed from 25 till 60 min 

after the initial picrotoxin injection. 

In a final series of experiments cats were blindfolded prior to the picrotoxin 

injections by covering the eyes by means of a bandage in order to determine whether 

signals derived from visual stimuli are anyhow involved in the picrotoxin-induced 

behavioural response. 

In a separate group of cats (n=7) the tip of the guide cannulas were implanted into 

the deeper layers of the colliculus superior (A 1.5, L 3.5, Η 2.5) in order to determine 

whether picrotoxin injected into the colliculus, now being destroyed as a consequence 

of the implantation, was still effective. 
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At the end of the experiments the cats were deeply anaesthetized and perfused 

intracardially with a 4% formaldehyde solution, the dissected brains were sectioned 

(frozen slices, 40 μιτι) and stained (cresyl violet) in order to estimate the exact location 

of the tip of the injection needle. Fisher's exact probability test was used for statistical 

analysis. 

4.23 RESULTS 

Unilateral injection of picrotoxin into the colliculus superior (A 1.5-3.0, L 3.0-4.5, 

Η 2.5-3.5; see Figure 4.2.1 A) resulted in a characteristic behavioural response. The 

Figure 4.2.1 Representative picture of cat brain with injection sites into the deeper layers (A) and into the 

superficial layers (B) of the colliculus superior. 
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Figure 4.2.2 The behavioural response to a maximal effective unilateral injection of 200 ng Picrotoxin could 

be divided into different phases: A, the cat started with retroflexions of the contralateral ear, which are 

denoted as 'contralateral ear movements'. B, contralateral head movements. C, contralateral torso movements 

(front part of the body, including the forelimbs). D, contralateral body movements (maximal effect). See also 

text. 

behavioural response to picrotoxin (200 ng) is described in detail in order to illustrate 

its characteristic features. Within the first 3 min after the intracerebral injections the 

cat became markedly hypo-active. After 2-5 min the cat started to retroflex its 

contralateral ear, without displaying any other movement (see Figure 4.2.2A). These 

movements were labelled as 'contralateral ear movements'. After another 1-5 min the 

ear movements were followed by brisk, short, contralateral head turning movements 
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A contralateral EAR movements 

С contralateral TORSO movements 

P r x f r ^ i 0 2 5 SO TOO ΓΟΟ 

(n) ( 1 3 ) (7) ( 1 Ы (7) ( 1 4 ) 

В contralateral HEAD movements 

D contralateral BODY movements 

PTXlnol О 2 5 SO 100 2 0 0 

In) (13) (7) I1<i) (7) (14) 

Figure 4.2.3 Percentage of cats showing contralateral ear movements (A), head movements (B), torso 

movements (C) and body movements (D) after different doses of Picrotoxin, 0-30 min after the unilateral 

injection. *p<0.05, drug vs. solvent 

(see Figure 4.2.2B) in such a way that each subsequent contralateral head movement 

started from the position in which the preceding head movement had ended. This head 

movement was repeated several times. Finally, as the head position reached a deviation 

from the body axis of about 90°, the head was moved back to the neutral position, 

allowing the start of a new sequence of contralateral ear movements followed by 

contralateral head movements. These head movements were labelled as 'contralateral 

head movements'. As time progressed, deviations from the body axis increased resulting 

in the involvement of the front part of the body, including the forelimbs (see Figure 
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Table 4.2.1 Locus-specificity of ptcrotoxin-induced contralateral movements, percentage of affected cats. 

The numbers in parentheses refer to the number of tested cats. 

PICROTOXIN(ng/0.5 μί) COLLICULUS SUPERIOR 
Deeper layers Deeper layers, Superficial 

lesioned layers 

50-100 62 (n=26) 0 (n=7)* 

200-500 100 (n=19) - 50 (n= 4)*» 

*p<0.05, colliculus superior, deeper layers vs. colliculus superior, deeper layers 
lesioned. 
**p<0.05, colliculus superior, deeper layers vs. colliculus superior, superficial layers. 

4.2.2C). Contralateral movements in which the front part of the body was involved 

were denoted as 'contralateral torso movements'. Fifteen to 20 min after the picrotoxin 

injection not only the torso but the whole body of the cat became involved in the 

contralateral movements and some of the cats displayed tardy head-to-tail circling 

movements (see Figure 4.2.2D). These movements were labelled as 'contralateral body 

movements'. On the whole, picrotoxin (200 ng) remained effective for 60-90 min. 

Sequences of forced, contralateral movements, as described above, were frequently 

interrupted by non-forced, compensating head, torso and sometimes even body 

movements directed to the body axis. Furthermore the animals were capable of 

avoiding objects by stepping over or moving away during the time in which picrotoxin 

was effective; they were able to fixate visual stimuli in a normal way, thereby 

interrupting the forced contralateral movements for a short moment. 

As shown in Figure 4.2.3 the behavioural response to picrotoxin appeared to be 

dose-dependent. Solvent (0.5 μ\), viz. distilled water, as well as picrotoxin, 25 ng 

dissolved in 0.5 μί, remained ineffective. In contrast, picrotoxin, 50 ng, elicited 

contralateral ear (33%, n=15,· Figure 4.2.3A), head (40%, n=15; Figure 4.2.3B), torso 
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(27%, n=15; Figure 4.2.3C), and body movements (20%, n=15; Figure 4.2.3D), whereas 

a dose of 100 ng elicited contralateral ear, head, and torso movements in 86% of the 

tested cats (contralateral body movements: 71%, n=7). Finally, 200 ng picrotoxin 

resulted in contralateral ear, head and torso movements (in all tested cats, n=14). 

Contralateral body movements were observed in 78% of the tested animals. In general, 

picrotoxin injections were labelled 'effective' in case they resulted in contralateral ear, 

head, torso and/or body movements during 30 min post-injection time. 

As shown in Table 4.2.1 picrotoxin, injected into the superficial layers of the 

colliculus superior (A 1.5-3.0, L 3.0-4.5, H 4.0-5.0; see Figure 4.2.1B), was significantly 

less effective (50%, n=4 vs 100%, n=19, picrotoxin 200-500 ng injected into the 

deeper layers: ρ < 0.05). Moreover, picrotoxin remained ineffective when injected into 

the colliculus, being partly or fully destroyed (0%, n=7 vs 62%, n=16; p<0.05; see 

Table 4.2.1). 

Table 4.2.2 GABA-specificity of picrotoxin-mduced contralateral movements: percentage of affected cats. 

PTX 200, 200 ng picrotoxin (0.5 μΐ), injected at t=0 mm; MSC 50, 50 ng muscimol (μΙ), injected at t=20 

mm; solv (μΙ), solvent of muscimol, injected at f=20 mm. 

The numbers in parentheses refer to the number of cats in which the respective 
movements could be observed during 25-60 min after PTX. 

BODY PARTS 
INVOLVED 
(t=25-60min) 

Ear (n=3) 

Head (n=6) 

Torso (n=6) 

Body (n=3) 

PTX 200 (0.5) 
SLV (1.0) 

100 

100 

100 

100 

PTX 200 
MSC 50 

0* 

67 

17* 

0* 

(0.5) 
(1.0) 

PTX 200 (0.5) 
MSC 50(0.5) 

100 

100 

100 

100 

*p<0.05. 
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In a separate series of experiments, 20 min after the injection of 200 ng picrotoxin (i.e., 

when the maximal response was reached), either muscimol (50 ng dissolved in 0.5 or 

1.0 μΐ) or its solvent (1.0 μ\ distilled water) was injected at the same locus (in addition, 

the solvent was again injected contralaterally). As is shown in Table 4.2.2 muscimol 

significantly counteracted the picrotoxin-induced contralateral ear, torso and body 

movements, provided that muscimol was dissolved in a volume of 1.0 μί (p<0.05, 

muscimol vs solvent injected 20 min after picrotoxin). Contralateral head movements 

were fully abolished in 2 out of 6 cats during the observation time. In case muscimol 

was dissolved in 0.5 μ\ it remained ineffective (Table 4.2.2). 

In a final series of experiments it was found that bandaging the eyes did not alter 

the behavioural response to picrotoxin (100 ng, Table 4.2.3). 

Bilateral application of picrotoxin (200-500 ng) resulted in head movements to both 

sides (200 ng: 100%, η = 7; 500 ng: 100%, η = 12) and/or bending of head plus torso 

resulting in an anteroflexed position, thereby touching the floor with the ears (200 ng: 

86%, n = 7 ; 500 ng: 100%, n=12). In such a position some animals executed small 

head movements to both sides. Animals with strong ventroflexed torso moved 

Table 4.2.3 Bandage effects of picrotoxin-induced contralateral movements: percentage of affected cats. 

The numbers in parentheses refer to the number of tested cats. 

BODY PART 

INVOLVED 

Head 

Torso 

Body 

PTX 100 

86 (n= 

86 (n= 

71 (n = 

(0.5) 

=7) 

= 7) 

=7) 

PTX 100 (0.5) 

+ 

83 

67 

67 

bandage 

(n=6)** 

(n=6)** 

(η=6Γ* 

* Ear movements could not be assessed when the eyes were bandaged. 
** n.s. (p>0.05), bandage present vs. bandage absent. 
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sometimes backwards or, even, 'somersaulted' and jumped backwards. 

4.2.4 DISCUSSION 

The present data show that the deeper layers of the colliculus superior plays a 

crucial role in the cerebral organization of behaviour. Decreasing the GABAergic 

activity by closing the chloride channels with help of picrotoxin elicited a characteristic 

and reproducible behavioural response. In a familiar and static environment, viz. 

absence of changes in exteroceptive stimuli which could direct the behaviour, picrotoxin 

resulted in the successive appearance of contralateral movements of respectively the 

ears, the head, the torso and, finally the whole bode. Moreover, the behavioural 

response to picrotoxin appeared to be dose-dependent. In case the deeper collicular 

layers were damaged, picrotoxin remained ineffective indicating that this part of the 

colliculus superior is crucial for the expression of the picrotoxin-induced phenomena. 

This finding is in agreement with studies performed with rats, in which it was also 

found that the colliculus superior is essential for the picrotoxin-induced turning 

phenomena (Imperato & Di Chiara, 1981; Kilpatrick, Collingridge & Starr, 1982). 

Furthermore, picrotoxin was significantly less effective when injected into the superficial 

layers of the colliculus superior. Taking together these data it can be concluded that 

in our experiments the picrotoxin-induced behavioural phenomena are mediated via the 

colliculus. Probably due to diffusion picrotoxin was effective in some of the animals in 

cases in which the injection was placed in the superficial layers (see Section 4.2.3, 

Results). 

The behavioural response to picrotoxin appeared to be GABA-mediated, as it turned 

out that muscimol was able to counteract the picrotoxin-induced contralateral ear, torso 

and body movements. Although the dose of muscimol, which was 25 % of the dose of 

picrotoxin, should be potent enough to counteract the picrotoxin-induced effects (cf. 

Arnt & Scheel-Krüger, 1979; Scheel-Krüger et al., 1978), it turned out that muscimol 

had to be applied in a volume twice of that of picrotoxin to be effective. Obviously, 
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there seemed to be a certain minimum area which had to be covered by muscimol in 

order to counteract the picrotoxin-induced effects. Muscimol, which has a very low 

diffusion rate in contrast to picrotoxin, seemed unable to reach this minimum area in 

case it was injected in the same volume as picrotoxin. 

With respect to muscimol, it is of interest to realize that doses up to 400 ng, 

dissolved in 0.5 μΐ, applied unilaterally or bilaterally never resulted in the occurrence 

of forced movements in the open field test (data not shown). 

Bilateral injections of picrotoxin did not extinguish each other as might be expected 

because of the fact that unilateral injections elicited unidirectional responses. In fact, 

the behavioural response to bilaterally applied injections showed great similarity to the 

response to unilateral injections; the response differed with respect to the direction in 

which the movements were executed: 'ventrocaudal' vs contralateral. 

The behavioural response to unilaterally applied picrotoxin was not comparable to 

the behavioural phenomena observed after disturbing the GABAergic activity in the 

substantia nigra pars reticulata (&ее Section 4.1; Wolfarth, Kolasiewicz & Sontag, 1981), 

a structure that projects directly onto the deeper layers of the colliculus superior (see 

Section 4.2.1, Introduction). Given the fact that activation of striatonigral GABA 

systems results in a decrease in GABA release in the colliculus superior (Scheel-

Kriiger, 1983), intracollicular picrotoxin should reflect an increased intranigral (pars 

reticulata) GABAergic activity. However, intracollicular picrotoxin did not evoke a 

behavioural response that was comparable to the response evoked by intranigral 

muscimol. Neither the fast contralateral head-to-tail circling and the fast contralateral 

head turning nor the stereotyped sniffing, that are elicited by intranigral muscimol, were 

observed after collicular injections of picrotoxin. 

With respect to the reticular substantia nigra it was concluded that this structure, 

being an output station of the caudate nucleus, not just transmits its incoming signals 

but actually transforms them into new output signals (Section 4.1). The same holds true 
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for the deeper layers of the colliculus superior because of the following. First, the 

colliculus is considered to be an output station of the substantia nigra (see Section 4.0, 

General Introduction). Second, the behavioural expression of the deeper layers of the 

colliculus superior is dissimilar to that of the substantia nigra pars reticulata (see 

above). Both sets of data allow the conclusion that at the level of the colliculus input 

signals are again transformed into new output signals; the latter are qualitatively 

different from the former signals. 

Traditionally, the colliculus superior is considered to be a structure that transforms 

multisensory information into motor commands, for instance resulting in eye movements 

(Drager & Hubel, 1975; Gordon, 1973; McHaffie & Stein, 1982; Nagata & Kruger, 

1979; Peck, Schlag-Rey & Schlag, 1980; Stein, Goldberg & Clamann, 1976; Würz, 

1978). In those experiments, in which we bandaged the eyes of the cats, it turned out 

that blindfolding did not change the response to picrotoxin indicating that the response 

to picrotoxin was not due to disturbances of the sensory input. 

Summarizing, the present data have shown that decreasing the GABAergic activity 

within the deeper layers of the colliculus superior induced the execution of a specific 

kind of behaviour: picrotoxin, by lowering the GABAergic activity, seemed to fix a 

particular code forcing the animal to execute characteristic motor patterns. 
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CHAPTER 5 

CONSEQUENCES OF A PROGRESSIVELY DYSFUNCTIONING BRAIN STRUCTURE 

ON THE PROGRAMMING OF MOTOR BEHAVIOUR 

5.0 GENERAL INTRODUCTION 

The results of the experiments described in Chapter 3 show that decreasing the 

caudate dopaminergic activity with the help of intracerebral injections of the dopamine 

antagonist haloperidol reduces the animal's ability to arbitrarily switch motor patterns, 

i.e., to switch motor patterns which are not directed by exteroceptive, proprioceptive, 

or even conditioned stimuli. However, activation of dopamine receptors with the help 

of locally applied apomorphine in a dose of 0.6 ^g did not affect the ability to 

arbitrarily switch motor patterns in the treadmill paradigm. The latter notion is 

confirmed in the bar paradigm where it was also found that this dose of apomorphine 

was unable to affect switching behaviour (Section 3.3). On the other hand, systemic 

application of apomorphine in rats results in a "break-down' of motor behaviour (see 

Section 5.1.1). It can be hypothesized that this break-down is due to the involvement 

of caudate output stations indirectly affected by activation of caudate dopamine 

receptors. In order to provide evidence in favour of this hypothesis it was first 

investigated whether activation of caudate dopamine receptors by relatively high doses 

of apomorphine produces a break-down of the motor pattern sequence in the treadmill 

paradigm. Next, it was investigated whether a comparable break-down can be induced 

by functional changes at the level of the deeper layers of the colliculus superior. In 

Section 5.1, data are presented that intracaudate injections of relatively high doses of 
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apomorphine are able to produce a break-down of a motor pattern sequence. In 

Section 5.2 data indicating that a comparable break-down may be elicited by 

intracollicular injections of picrotoxin are presented. 
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5.1 INTRACAUDATE INJECTIONS OF APOMORPHINE 

Summary 

During the ontogeny of many mammalian species there exists a remarkable 

resemblance with respect to the strict order in the appearance of distinct motor 

patterns during development. The same sequence in motor behaviour can be observed 

when adult animals start to explore a novel environment. On the other hand, s.c. 

injections of apomorphine result in a reversed 'ontogenetic' sequence of motor patterns: 

a 'break-down' of motor behaviour (Szechtman et al., 1985). The present study 

investigated whether apomorphine, injected into the rostromedial part of the caudate 

nucleus, produces a 'break-down' of a motor pattern sequence. Therefore, cats were 

tested in a paradigm in which they executed sequences of distinct motor patterns in 

order to collect food pellets when walking on the belt of a treadmill. As only one of 

the motor patterns in the sequence is caudate-specific (see Section 3.1), disturbances 

at the level of the rostromedial caudate nucleus as well as disturbances at the level of 

other brain structures can be distinguished. In contrast to 0.6 and 2.5 μg, doses of 5.0 

and 10.0 μ£ of apomorphine resulted in the successive break-down of motor pattern 

sequences whereby not only caudate- specific, but also non-caudate specific motor 

patterns were reduced. Moreover, this regression appeared in the reversed order 

compared to the order in which distinct patterns are executed during eating behaviour. 

The regression in motor behaviour following 5.0 μg apomorphine was induced via 

caudate dopamine receptors since it could be prevented by pretreatment with 

haloperidol. Because of the fact that 5.0 and 10.0/ig of apomorphine also affected non-

caudate specific motor patterns, it is concluded that also brain structures receiving 

(in)directly caudate output signals are involved in the regression of the motor pattern 

sequence as observed in the present study. The clinical relevance of the present data 

is discussed. 
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5.1.1 INTRODUCTION 

Dopamine stimulating agents such as apomorphine and amphetamine are known 

to induce the repetitive execution of particular sets of motor patterns after i.p. or s.c. 

injections (cf. Costali & Naylor, 1973; Fray et al., 1980; Redgrave et al., 1982). Often 

these motor patterns seem to be restricted to specific body parts such as the snout 

("sniffing" movements), the tongue ("licking" movements), the mouth and jaws 

("gnawing/biting" movements), the head ("checking" movements), the forelimbs (lateral 

and forward/backward movements) or the fore- and hindlimbs ("circling" and "locomo

tion" movements) (Fray et al., 1980; Jerussi & Click, 1976; Ridley et al., 1980; 

Schoenfeld et al., 1975; Segal et al., 1980). Within the brain of mammals there are 

several neural substrates such as the striatum, the nucleus accumbens, the olfactory 

tubercle, the septum and the frontal cortex, which contain dopamine receptors (Bannon 

& Roth, 1983; Fallon & Moore, 1978; Moore & Bloom, 1978; Poitras & Parent 1978; 

Ungerstedt, 1971). Until now, it remains unclear in which way distinct responses as 

described above are determined by the involvement of different dopamine containing 

structures (cf. O'Neill & Filenz, 1985). 

According to detailed observations of Szechtman et al. (1980, 1985) the apomor-

phine-induced locomotor behaviour actually consists of several phases when rats are 

tested in an open field (in which exteroceptive stimuli are static and, accordingly, do 

not elicit changes in the ongoing behaviour). Moreover, there exists a strict order in 

which various body parts become successively excluded from the initial hyperactive 

stage. The first phase is characterized by exploration activity including vertically directed 

motor patterns. The second phase is characterized by straightforward progression, i.e. 

predominant longitudinally directed "locomotion" motor patterns: In this phase vertically 

directed motor patterns are no longer executed. The third phase is characterized by 

lateral movements predominantly executed by the head and forelimbs; the hindlimbs 

are no longer involved in the execution of the motor behaviour. During the final phase, 

only very small lateral head movements are executed, i.e. even the forelimbs are no 

longer involved in the execution of the motor behaviour. Comparable kinematic 
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processes as well as opposite versions are found in the transition in respectively out of 

relative arrest in a variety of mammalian species (Golani & Moran, 1983). For 

example, the apomorphine-induced sequence is precisely the mirror image of the 

sequence appearing in rats which start to explore a novel environment (Golani & 

Moran, 1983). The finding that the latter sequence also occurs during the ontogeny 

of the rat (Golani et al., 1981) has given rise to the suggestion that different neural 

structures become successively involved in the execution of the behaviour during the 

process of development (Szechtman et al., 1980, 1985). In fact, this principle of built-up 

of sequences of motor patterns is characteristic for the ontogeny of motor behaviour 

in vertebrates in general (Eilam, 1985; Golani et al., 1979; Golani & Moran, 1983). The 

above-mentioned data about the exploratory behaviour of rats indicate that the ability 

to (in)activate successively different neural substrates still occurs in adult individuals. 

This notion is underlined by the finding that rats with electrolytic hypothalamic lesions, 

f.i., also show the Ontogenetic' sequence of motor patterns during the recovery from 

their lesion. Since the latter technique is known to damage the nigrostriatal dopamine 

fibres (Marshall et al., 1974) these data suggest that at least neostriatal dopamine 

receptors are involved in the Ontogenetic' sequence of motor patterns during the 

recovery process. In an attempt to provide evidence in favour of the hypothesis that 

apomorphine-induced break-down of motor pattern sequences can be induced by 

stimulation of striatal dopamine receptors the present study investigated whether 

intracaudate administered apomorphine indeed produces a break-down of sequences 

of motor patterns which are normally built-up in the reversed order. For reasons 

mentioned below the cat was chosen as experimental animal. The effects of intra

caudate injections of apomorphine was analyzed in cats switching motor patterns in 

order to collect food pellets when walking on a treadmill (Section 3.1). This paradigm 

was chosen because of two reasons: First, the animals were challenged to execute an 

ordered sequence of at least six different motor patterns. Therefore, this paradigm 

allowed the detection of apomorphine-induced changes in a well defined sequence of 

distinct motor patterns in a qualitative manner. Second, previous studies have shown 

that one out of the six motor patterns, which cats normally display on the treadmill, 

disappear after an experimentally-induced inhibition of caudate (rostromedial part) 
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dopamine receptors, i.e. executing gait transitions without continuously fixating any 

external stimulus. Since only the latter motor pattern is caudate-specific (Section 3.1), 

the chosen paradigm allowed the analysis of apomorphine-induced effects in terms of 

changes that are either due to disturbances in the involvement of the caudate nucleus 

itself or due to changes in the involvement of other brain structures. Data will be 

shown that apomorphine -dopamine-specific and dose-dependent- is able to produce 

a break-down of the ordered sequence of motor patterns in a highly characteristic 

manner. It is concluded that apomorphine is able to induce a regression in sequences 

of motor patterns by interaction with caudate dopamine receptors. 

5.1.2 EXPERIMENTAL PROCEDURES 

Animals 

Male cats were trained to walk on a treadmill and to collect food pellets while the 

belt was running (speed 1.0-1,25 km/hr) as previously described (Section 3.1). Behind 

the front panel of the roofed treadmill (120 χ 20 χ 65 cm) a remote controlled food 

dispenser was attached. In order to collect a food pellet (specially shaped pellets, Hope 

Farms) the cat had to bend its head through the opening in the front panel (see Figure 

3.1.1). The food dispenser was constructed in such a way that the animal, when 

walking, was unable to note the successive deliveries of single food pellets, thus 

preventing the use of exteroceptive stimuli to direct the eating behaviour. After the 

training phase, the cats (weighting 3-4.5 kg) were anaesthetized (sodium pentobarbitone 

45 mg/kg i.p.) and stereotaxically equipped with stainless steel cannulas (outer diameter 

0.8 mm, outer diameter of inner cannula extending 1 mm below the tip of the guide 

cannula: 0.55 mm) into the rostromedial part of the caudate nucleus (A 15.0, L 5.0, Η 

5.0 according to the atlas of Snider and Niemer, 1964). Two weeks after the implanta

tion the experiments were started. Each cat was used for maximally five experiments, 

spaced by at least one week. Naive cats (n=17) received either solvent ( n = l l ) or 

apomorphine 5.0 μg (n=6). The apomorphine-treated cats also participated in the 

following experiments (see experimental paradigm): apomorphine 2.5 μξ (n=6, second 
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treatment), apomorphine 10.0 /ig (n=5, third treatment) and the combination of 

haloperidol (12.5 //g) and apomorphine (5.0 //g, n=5, fourth treatment). On the other 

hand, the solvent-treated cats also received apomorphine 0.6 /¿g (n=10, second 

treatment). Some of the latter animals (n=5) were in addition used to extend the 

apomorphine 5.0 /ig group. After the final experiments, the animals were deeply 

anaesthetized with pentobarbital and intracardially perfused with a 4% formaldehyde 

solution. After removal of the brains the target sites were verified according to 

previously described procedures (Section 3.1.2). 

Experimental paradigm 

At the beginning of the experiment (t= 0 min) the cat, which was deprived of food 

for 24 hrs, was placed on the treadmill. At t= 15, 35 and 55 min the belt was started, 

so each experiment consisted of three test periods each lasting 5 min. Bilateral 

injections (volume 5.0 μ]) were manually administered with help of a 5 μ\ Hamilton 

syringe (outer diameter of needle: 0.4 mm, protruding 1.5-2.0 mm below the tip of the 

guide cannula) to the conscious, hand-fixed animal five minutes before the start of the 

second test period. Previous studies, in which open field behaviour was analyzed, have 

shown that the effect of intracaudate apomorphine remains constant and maximally 

effective during 5 to 10 min after the injection (Cools, Struyker Boudier & Van 

Rossum, 1976). The first test period served as a control ('PRE') whereas during the 

second and the third test period (respectively 'POSTI' and 'POST2') drug effects could 

be analyzed. Freshly prepared solutions of apomorphine hydrochloride (Brocades) were 

used in each experiment (solvent was distilled water). In the present study, 

apomorphine was injected bilaterally in doses of 0, 0.6, 2,5, 5.0 and 10.0 /<g. Previous 

experiments (Cools, Struyker Boudier & Van Rossum, 1976) have shown that doses up 

to 5.0 //g are dopamine- and locus-specific when injected into the rostromedial part of 

the feline caudate nucleus whereas a dose of 15.0 μg results in addition in behavioural 

effects characteristic for another caudate subregion (the anterodorsal part of the 

nucleus). In a separate series of experiments, the dopamine specificity of the observed 

effects was established by injecting 5 min prior to apomorphine the dopaminergic 
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antagonist haloperidol (12.5 μg, Serenase, Janssen Pharmaceutica). The motor 

behaviour on the treadmill was recorded on video tape with help of a closed video-

circuit. 

Analysis 

During eating behaviour cats repeatedly executed complete sequences consisting of 

distinct motor patterns in the following order (Figure 5.1.1): 

1. Walking in the middle of the treadmill, i.e. following the speed of the belt (walking 

normally: WLKnm). 

2. Accelerating gait in order to approach the front panel (ACC). 

3. Changing the interlimb coordination by decreasing the forelimb steplength and 

increasing the hindlimb steplength, i.e. executing gait transitions (TRN). 

4. Collecting a food pellet by bending the head through the opening in the front panel 

of the treadmill enclosure, i.e. food collecting attempts (FCA). 

During these sequences animals sometimes repeated a particular pattern before they 

switched to the next motor pattern, underlining the relative independency of the display 

of the distinct motor patterns. As soon as a sequence terminated with FCA, it was 

considered to be 'complete'. In case FCA or FCA and one or more additional motor 

patterns were missing, the resulting sequence was labelled as 'incomplete'. 

Apart from certain walking patterns (see below), all walking patterns that were 

displayed during the PRE test period were labelled as 'normal' (WLKnm). Walking 

patterns were labelled as 'abnormal' in case the cat continuously touched the back 

panel with the tail and/or the hindlimbs (WLKab, see Figure 5.1.1); this motor pattern 

hardly occurred during the PRE test period. 

Although cats displayed two types of gait accelerations, i.e. those accompanied 

continuously by fixation of exteroceptive stimuli (ACCed) and those devoid of 

continuous fixation of exteroceptive stimuli (ACCnd), the latter were hardly executed 

and, accordingly, not further analyzed (see Section 3.1). In contrast, the former, in 

which the animal continuously fixated visually a particular part of the front panel, were 
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Figure 5.1.1 Sequence of motor patterns during eating behaviour of cats on the treadmill. WLKab, abnormal 

walking; WLKnm, normal walking, ACQ gait acceleration; TRN, gait transition; FCA, food collecting 

attempt. 

fully analyzed; they were labelled as 'exteroceptively directed gait accelerations'. As 

previously described (Section 3.1), cats also displayed two types of gait transitions. This 

motor pattern was labelled as 'exteroceptively directed gait transition' (TRNed) in case 

the cat continuously fixated visually and/or tactually (with forelimbs and/or whiskers) 

the front panel or the belt of the treadmill. On the other hand, the motor pattern was 

labelled as 'non-exteroceptively directed gait transition' (TRNnd) in case the cat not 

continuously fixated the front panel or the belt. Previously it has been found that 

blocking the caudate dopamine receptors by halopendol selectively decreases the 

number of TRNnd. Accordingly, only changes in the number of TRNnd reflect changes 

in the degree of involvement of the caudate nucleus in the execution of the motor 

behaviour. 

During each test period, the absolute number of these motor patterns was 

determined. Walking was scored in 3 seconds bins m order to allow a frequency 

analysis. A minimal duration of 3 s for walking was chosen in view of the observation 
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that the maximal duration of ACC, TRN and FCA was about 3 seconds (2.2 ± 1.1 s, 

N=786, which is total of ACC+TRN+FCA during all PRE test periods). Drug-induced 

changes are illustrated as changes in number of motor patterns expressed as 

percentages of total of motor patterns during that observation period. Furthermore, it 

was previously found that intra- and interindividual variability could be reduced by 

expressing post-injection values as a percentage of pre-injection values. Because of the 

fact that certain subclasses of the above mentioned motor patterns are not executed 

in the PRE test period, the following motor pattern ratio was determined: The ratio 

of the difference (post-score minus pre-score: numerator) and sum (post-score plus 

pre-score: nominator). Ratio's were compared using Mann Whitney U-test (two tailed). 

Figure 5.1.2 Distribution of injection sites within the rostromedial pan of the caudate nucleus of cats treated 

with 5.0 μξ apomorphine (only one side is shown; cross-sections according to Snider and Niemer, 1964). 

130 



5.1J RESULTS 

All injections were within the target area, coordinates: A 14.0-15.5, L 5.5-6.5, H 

5.5-7.0 (see Figure 5.1.2). 

A representative illustration of the absolute number of distinct motor patterns per 

minute during POSTI following solvent treatment is shown in Figure 5.1.3 (A, left 

panel). This figure shows the normal distribution of different motor patterns during a 

POSTI test period (which in fact was comparable to that of the PRE test periods, data 

not shown; see also Table 5.1.1). The absolute number of distinct types of sequences 

is depicted in the same figure (Figure 5.1.3 A, right panel), illustrating that complete 

Table S.I.I Absolute number of distinct motor patterns (median + range) in PRE test period (before 

administration of mtracaudate injections. 

n= number of animals; H, haloperidol 12.5 //g. For abbreviations see section 5.1.2. 

/<g PRE TEST PERIOD 
(n) WLKab WLKnm ACCed TRNed TRNnd FCA 

(И) 

0.6 

(9) 

2.5 

(6) 

5.0 

(И) 

10.0 

(5) 

5.0+H 

(5) 

0 
0-3 

0 
0-1 

0 
0-6 

0 
0-12 

0 
0-7 

1 
0-7 

10 
0-28 

7 
3-14 

4 
1-11 

14 
0-21 

8 
3-24 

5 
0-42 

14 
3-23 

10 
4-18 

22 
1-58 

21 
6-34 

15 
12-32 

15 
9-36 

13 
2-20 

7 
5-25 

1 
0-6 

2 
0-21 

2 
0-18 

8 
0-18 

10 
0-26 

9 
1-24 

5 
0-26 

7 
0-15 

2 
1-18 

17 
0-40 

38 
9-60 

35 
21-68 

30 
21-50 

20 
8-39 

13 
9-42 

48 
22-56 
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Figure 5.1.3 Representative examples of individual scores per minute of different motor patterns during 

POST! following solvent (A) or apomorphine 5 Ο μξ (В, С, left panels) as well as of absolute number of 

complete and incomplete sequences during POST! (Α-C, right panels; all panels: scale of the ordinate ranges 

from 0 to 18 as is depicted on the left side of the figure). 

sequences are mainly executed following solvent treatment. The lowest doses of 

apomorphine, i.e. 0.6 and 2.5 μg, did not induce any change in this respect. These 

doses of apomorphine neither altered the relative frequency of any particular motor 

pattern (see Figure 5.1.4) nor altered any ratio during any post-injection test period 

(Table 5.1.2 and 5.1.3): like solvent-treated cats, they repeatedly executed sequences 

of motor patterns, starting with normal walking (WLKnm) and followed by respectively 

accelerating the gait (ACCed), executing gait transitions (TRNed as well as TRNnd) 

and collecting food pellets (FCA, see also Figure 5.1.1). Accordingly, apomorphine 0.6 
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or 2.5 //g did not affect the ability to execute normal sequences of motor patterns 

during eating behaviour on the treadmill. 

Profound changes were found after injecting higher doses of apomorphine, i.e. 5.0 

and 10.0 /ig. Apomorphine 5.0 μg changed in a very dramatic way the ability to execute 

sequences of motor patterns during eating behaviour on the treadmill: more and more 

incomplete sequences appeared. In fact, the motor pattern sequence was broken down 

in a strict order: in subsequently executed sequences, distinct motor patterns 

disappeared in the following order: food collecting attempts, gait transitions, gait 

accelerations and, finally, normal walking patterns. In several cases, the display of 

normal walking patterns was replaced by the display of abnormal walking patterns. In 

other words 5.0 μg apomorphine resulted in a progressive break-down of the motor 

pattern sequence in the reversed order during the POST! test period. The strength of 

the apomorphine-induced break-down in motor pattern sequence differed between 

individuals: in some animals, 5.0 μg of apomorphine completely prevented the display 

of food collecting attempts (FCA) during POST!. Ultimately occurring sequences in 

these animals were almost completely confined to abnormal walking patterns (WLKab, 

Figure 5.1.4 Percentage of the mean frequency of the distinct motor patterns shown during POSTI test 

periods, Le. 5-10 min after administration of solvent (A), apomorphine 2.5 μg (B) and 5.0 μg (C). Turning 

clock-wise, the distinct motor patterns are ordered according to their appearance in the sequence. 
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Table 5.1.2 Median ratto of difference (numerator) and sum (nominator: POSTl-PRE I POSTI+PRE) of 

percentages of distinct motor patterns 5-10 mm after injection of apomorphme (O, 0.6, 25, 5.0, 10.0 μξ) and 

apomorphme (5.0 μξ) 5 mm after mjection of halopendol (Η, 1Z5 μξ). 

n= number of animals, (for abbreviations see section 5.1.2). 

//g WLKab WLKnm ACCed TRNed TRNnd FCA 

(n) 

0 
(Π) 
0.6 

(9) 
2.5 
(6) 
5.0 

(И) 
10.0 
(5) 

5.0+H 
(5) 

*p<0.05, "p<0.02: apomorphine vs. solvent; +p<0.05, ++p<0.02: apomorphine (5.0 
μ%) + Haloperidol (H, 12.5 /¿g) vs apomorphine (5.0 //g). 

0 

0 

0.09 

0.56" 

0.94" 

0.02+ 

0.50 

0.31 

0.11 

0.40 

0.38 

-0.10 

0.02 

-0.06 

0.10 

-0.21· 

-0.8Γ 

0.20++ 

-0.19 

-0.13 

0.08 

-0.04 

-1.00' 

0.01 

-0.12 

-0.04 

-0.51 

-0.51' 

-1.00" 

-0.04++ 

-0.19 

-0.14 

-0.11 

-0.82" 

-0.85' 

0.06++ 

n=3/ll). In two of these cases, abnormal walking patterns disappeared for a short 

period. Instead, these animals showed disturbances in maintaining a correct posture, i.e. 

they started swinging with head and limbs and even tried to lie down on the moving 

belt of the treadmill (data not shown). In other animals, this dose of apomorphine only 

eliminated FCA and TRN (n=2/ll). In the remaining animals (n=6/ll), 5.0 ^g apo

morphine resulted in a break-down of the sequence until only normal (n=4/ll) or 

abnormal (n=2/ll) walking patterns remained. Representative illustrations of the 

apomorphine-induced effects are shown in Figure 5.1.3 (B and C). Changes in the 

absolute number of motor patterns per minute during POSTI reflecting the successive 

disappearance of FCA, TRN and ACC (in this order) and the appearance of WLKnm 
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Table 5.1.3 Median ratio of difference (numerator) and sum (nominator: POST2-PRE IPOST2+PRE) of 

percentages of distinct motor patterns 25-30 mm after injection of apomorphine (O, 0.6, 2.5, 5.0, 10.0 fig) 

and apomorphme (5.0 ßg) 5 mm after injection ofhalopendol (H, 125 Mg). 

n= number of animals. For abbreviations see section 5.1.2. 

(n) 
WLKab WLKnm ACCed TRNed TRNnd FCA 

0 
(Π) 
0.6 

(9) 
2.5 

(6) 
5.0 

(И) 

10.0 

(5) 
5.0+H 

(5) 

0 

0 

0 

0 

0 

0.18 

0.32 

0.25 

0.04 

0.30 

0.19 

0 

0.13 

-0.26 

0.11 

-0.17 

-0.12 

-0.12 

0 

-0.02 

0.11 

0 

-0.39 

0.04 

0 

-0.17 

-0.14 

0 

-0.49 

-0.10 

-0.16 

-0.11 

-0.08 

-0.22 

-0.10 

-0.10 

are shown in Figure 5.1.3 В (left panel). This break- down of motor pattern sequences 

is also reflected in the decreased number of complete sequences and the increased 

number of incomplete sequences (right panel). A dose of 5.0 μg of apomorphine 

completely prevented the execution of FCA and TRN in the case illustrated in Figure 

5.1.3 С As time progresses, ACC are decreased whereas WLKab is increased. The 

break-down is also illustrated by the absence of complete sequences, the decreased 

number of sequences consisting of WLKnm followed by ACC and the increased num

ber of sequences solely consisting of WLKab (Figure 5.1.3 C, right panel). Thus, 

apomorphine 5.0 μξ resulted in all tested animals ( n = l l ) in a break-down of motor 

pattern sequences during eating behaviour in such a way that motor patterns 'early' in 

the sequence (i.e. normal walking patterns and accelerations) disappeared later than 

motor patterns which are executed 'late' in the sequence (i.e. transitions and food 
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collecting). However, the start as well as the end of the break-down differed between 

individuals. The overall effect of various doses of apomorphine is illustrated by changes 

in the relative number of distinct motor patterns during POSTI (see Figure 5.1.4). 

Table 5.1.2 shows that apomorphine 5.0 μ£ significantly reduced the ratio of food 

collecting attempts (FCA), non-exteroceptively directed gait transitions (TRNnd) and 

exteroceptively directed gait accelerations (ACCed) whereas the ratio of abnormal 

walking patterns (WLKab) was significantly increased. 

In POSTI, a dose of 10.0 μg apomorphine resulted in a break- down of the motor 

pattern sequence which was comparable to the effect of 5.0 //g (see Figure 5.1.4). The 

ratio of food collecting attempts (FCA), non-exteroceptively directed gait transitions 

(TRNnd) and gait accelerations (ACCed) was significantly decreased whereas the ratio 

of abnormal walking patterns (WLKab) was significantly increased. Apart from these 

effects, 10.0 ^g of apomorphine also resulted in a significantly reduced ratio of 

exteroceptively directed gait transitions (TRNed) in POSTI (Table 5.1.2). 

Normal motor pattern sequences reappeared in POST2 after 5.0 and 10.0 //g of 

apomorphine. The animals were able to execute sequences of motor patterns during 

eating behaviour, including normal walking, gait accelerations, gait transitions, and food 

collecting attempts (see Figure 5.1.5, Table 5.1.3). 

The observed regression following 5.0 //g apomorphine was prevented by pretreat

ment of 12,5 /ig haloperidol (Figure 5.1.6) indicating that this effect was induced by a 

selective interaction of apomorphine with dopamine receptors. Changes in ratio's 

following apomorphine were significantly reduced by the additional haloperidol injection 

(Table 5.1.2). Finally, the combined treatment significantly increased the ratio of 

exteroceptively directed gait transitions (TRNed) compared to solvent (p<0.05). 
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5.1.4 DISCUSSION 

Previously, it has been shown that apomorphine 0.6 μg is able to counteract 

haloperidol-specific changes in motor patterns during eating behaviour of cats on the 

treadmill (Section 3.1). Moreover, this dose of apomorphine is able to induce caudate 

and dopamine-specific effects in open field behaviour (Cools, Struyker Boudier & Van 

Rossum, 1976). The present observations reveal that this dose of apomorphine is 

ineffective in changing the animal's ability to execute sequences of motor patterns 

during eating behaviour on the treadmill. The same holds true for 2.5 μg apomorphine. 

Taking together these data, it can be concluded that stimulating dopamine receptors 

of the rostromedial caudate nucleus with help of apomorphine in doses of 0.6 and 2.5 

//g does not disturb the execution of normal motor pattern sequences during eating 

behaviour of cats on the treadmill. 

In contrast, 5.0 μg apomorphine dramatically deteriorated the ability to execute 

normal sequences. Moreover, there appeared to be a strict order in which distinct 

motor patterns were affected following apomorphine treatment. At first the break-down 

of the sequence was manifested in the disappearance of the final motor patterns, i.e. 

food collecting attempts and gait transitions. During the next phase also gait 

accelerations were reduced. Finally, even abnormal walking patterns replaced normal 

walking patterns in part of the animals. This regression in motor pattern sequences was 

probably not due to interaction of apomorphine with non-dopamine receptors nor due 

to leakage of the drug outside the target area because of the following reasons: first, 

this regression following 5.0 ^g apomorphine could be prevented by the additional 

injection of haloperidol suggesting that apomorphine induced its effect via dopamine 

receptors. Second, this dose of apomorphine is known to produce locus- as well as 

dopamine-specific effects in open field behaviour (for réf.: Cools, Struyker Boudier & 

Van Rossum, 1976) suggesting that these apomorphine induced effects are due to 

interaction with dopamine receptors within the target area. From these data it can be 

concluded that the break-down of the motor pattern sequence following 5.0 μg 

apomorphine, as is observed in the present study, resulted from a selective interaction 
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with caudate dopamine receptors. 

Furthermore, the observed regression as described above is not likely to be due to 

a change in apomorphine efficacy at the level of the dopamine receptors because of 

the following reason: previous experiments, in which open field behaviour of cats 

following unilateral intracaudate injections were analyzed, have revealed that the effect 

of apomorphine increases during the first minutes following injection, remains maximal 

between 5 and 10 min, and gradually disappears during 10 to 15 min after application 

(for réf.: Cools, Struyker Boudier & Van Rossum, 1976) suggesting that during 5 to 10 

min post injection the effective interaction of apomorphine at the level of the caudate 

nucleus dopamine receptors remains invariant. This implies that during the process of 

regression as observed in the present study the efficacy of apomorphine at the level of 

the caudate dopamine receptors also remained invariant. 

Previously, it has been shown that intracaudate haloperidol decreases the number 

of non-exteroceptively directed gait transitions and increases the number of 

exteroceptively directed gait transitions. In contrast to the former effect, the latter 

turned out not to be dopamine-specific since pretreatment with apomorphine did not 

reduce this haloperidol-induced increase (Section 3.1). The present study shows that 

even a dose of 5.0 μg apomorphine was not able to reduce this haloperidol-induced 

increase, indicating that this effect was only triggered by, but not specific for, blockade 

of the caudate dopamine receptors. Moreover, in the present study only the highest 

dose of apomorphine used (10.0/^g) induced a significant decrease of the ratio of non-

exteroceptively directed gait transitions. At present, it cannot be excluded that this 

decrease was due to leakage of apomorphine outside the target area. 

As described previously, the rostromedial caudate nucleus plays a circumscribed role 

in the organism's ability to programme arbitrarily (non-stimulus directed) behaviour. A 

dysfunctioning caudate nucleus can be manifested not only at the level of patterning 

arbitrarily motor behaviour (Cools, 1980) but also at the level of programming 

arbitrarily social behaviour (Van den Bereken and Cools, 1982) and even at the level 
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of programming arbitrarily cognitive strategies in patients suffering from Parkinson's 

disease (Cools et al., 1984). The present data show that caudate-specific motor patterns, 

i.e. TRNnd, disappeared 'early' during the regression, whereas non-caudate specific 

motor patterns, i.e. ACCed and WLKnm, disappeared 'late'. Furthermore, intracaudate 

apomorphine dose-dependently and dopamine-specific resulted in a progressive 

regression of the motor pattern sequence. This observation suggests that in the first 

stage of the regression the caudate nucleus was still involved in the programming of 

the motor behaviour as can be judged from the presence of TRNnd. Since 

apomorphine is known to be effective at that time (Cools, Struyker Boudier & Van 

Rossum, 1976), stimulation of caudate dopamine receptors per se did not disturb the 

ability to program motor behaviour arbitrarily (see also Section 3.1). In the next stage 

of the regression the caudate nucleus was no longer involved as can be judged from 

the absence of TRNnd; the presence of ACCed and WLKnm at this stage of the 

regression indicates that other brain structures, involved in the programming of these 

motor patterns, were still functioning in a normal way. As time progresses, these 

structures too were no longer involved in the programming of motor behaviour as can 

be judged from the disappearance of ACCed and the appearance of WLKab. These 

data show that a relative hyperstimulation of caudate dopamine receptors has direct 

consequences for extrastriatal structures that direct the programming of ACCed and 

WLKnm. Since the apomorphine-induced decrease of ACCed and increase of WLKab 

was inhibited by haloperidol, it can be concluded that these extrastriatal structures 

receive directly or indirectly information from the caudate nucleus, implying that the 

structures directing ACCed and WLKnm are simply output stations of the caudate 

nucleus. This reasoning does not hold true for TRNed because of afore-mentioned 

arguments (see above). 

The observation that the caudate-specific motor pattern TRNnd disappeared at a 

certain stage in the regression process is difficult to explain: it cannot be ascribed to 

an aspecific effect of an overdose of apomorphine, since haloperidol was still able to 

counteract it. Still, it is possible to understand this phenomenon by recalling the fact 

that ACCed and WLKnm were still present at the time during which TRNnd started 
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to disappear. Given the notion that the effective dose of apomorphine changed the 

caudate output and, accordingly, the activity of brain structures directing ACCed and 

WLKnm, it is not unlikely that the behavioural expression of the caudate nucleus was 

replaced by the behavioural expression of lower order structures which actually 

produced a functional 'shut- down' of the behaviour characteristic of their hierarchically 

higher order structures (for details: Cools, 1985). 

The finding that the process of regression as is shown in the present study involved 

several stages each of them characterized by its own final motor pattern (respectively 

FCA, TRN, ACC, WLKnm and WLKab) suggest that this functional 'shut-down' was 

repeated during final stages of the regression process at successively lower order output 

stations of the caudate nucleus. Thus, the regression in motor behaviour may be due 

to a subsequent elimination of motor programming functions of the caudate nucleus 

and that of its output stations. This notion is in line with the suggestion of Szechtman 

and colleagues (1980, 1985) that different neural systems are involved in 

apomorphine-induced regression in motor behaviour. 

Anyhow, the present data show that the feline caudate nucleus is a principal target 

site for apomorphine-induced behavioural regression. Future studies are needed to show 

that the rodent neostriatum plays a comparable role in i.p. injected apomorphine-

induced regression processes. 

The present study may have important clinical implications. Patients, suffering from 

Parkinson's Disease often receive L-Dopa. Several studies indicate that although this 

therapy reduces the classic symptoms such as hypokinesia and rigidity, often poor 

performance is still present in cognitive as well as in motor tests, appealing to the 

patient's ability to program arbitrarily behaviour (cf. Bowen et al., 1975; Bowen, 1976; 

Cools et al., 1984; Flowers & Robertson, 1985); in spite of the L-dopa application the 

patient's caudate nucleus apparently is not functioning in a normal way. Furthermore, 

during L-Dopa treatment about half of the parkinsonian patients develop so-called 

"On-Off'-phenomena (Lewitt & Chase, 1983), which probably are not due to chronic 
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treatment or progression in state of illness (Lang et al., 1982). Typically, 

"Off-phenomena seem to occur after peak plasma levels of L-Dopa have been reached 

(Fahn, 1974). During an "Off period, some patients do not improve following i.v. 

administration of L-Dopa or lisuride (Hardie et al., 1982) suggesting that this effect is 

not due to insufficient dopamine receptor stimulation. Considering these clinical data, 

the present study implies that these "Off-phases might reflect 'regression' processes due 

to the subsequent exclusion of the caudate nucleus as well as of other brain structures 

from motor programming as a result of the (over)activation of striatal dopamine 

receptors. 
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5.2 INTRACOLLICULAR INJECTIONS OF PICROTOXIN 

Summary 

Intracaudate injections of relatively high doses of apomorphine produce a regression 

in motor behaviour of cats collecting food pellets in a treadmill design (see Section 

5.1). It has been hypothesized that this regression is partly due to functional 

disturbances in brain regions receiving (m)directly striatal output signals. In view of this 

hypothesis, it was investigated whether experimentally-induced changes in GABAergic 

activity within the deeper layers of the colliculus superior, which is a second order 

output station of the caudate nucleus, are also able to elicit a regression in motor 

behaviour. Therefore, motor behaviour of cats was tested in the treadmill paradigm 

before and after intracollicular injections of the GABA antagonist Picrotoxin. Picrotoxin 

produced dose-dependently a regression in motor behaviour which was comparable to 

that elicited by intrastriatally injected apomorphine. The noted effects were GABA-

specific since muscimol attenuated the picrotoxin-induced regression. The present data 

are discussed in view of a model for a hierarchical organization of the brain. 

5.2.1 INTRODUCTION 

Cats repeatedly execute sequences of distinct motor patterns in order to collect food 

pellets during walking on a treadmill (see Section 3.1). Such sequences consist of the 

following motor patterns: "normal walking", whereby the cat follows the speed of the 

belt of the treadmill (1); "gait accelerations", i.e. increases in walking speed in order 

to approach the front panel of the treadmill enclosure behind which a food dispenser 

is mounted (2); "gait transitions", i.e. changes in interlimb coordination by decreasing 

the steplength of the forelimbs and increasing that of the hindlimbs (3); and, finally, 

"food collecting attempts", whereby the cat bends its head through the opening in the 

opaque front panel in order to collect a food pellet (4). In Section 3.1, it has been 
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shown that caudate nucleus injections of the dopaminergic antagonist haloperidol only 

reduce the number of one particular subclass of gait transitions, i.e. so-called 'non-

exteroceptively directed gait transitions'; the number of the remaining motor patterns 

in the sequence is not reduced. Haloperidol treated cats are still able to collect food 

pellets. Intracaudate injections of the dopaminergic agonist apomorphine have been 

found to prevent the haloperidol induced reduction. Apparently, non-exteroceptively 

directed gait transitions, but not other motor patterns, are selectively mediated by 

caudate dopamine receptors. In contrast to the rather low dose of apomorphine, viz. 

0.6 /¿g, that is able to counteract the haloperidol-induced reduction, relatively high 

doses of apomorphine, viz. 5-10 μξ, disrupt not only non-exteroceptively directed gait 

transitions, but also other motor patterns (see Section 5.1). In fact, the motor behaviour 

on the treadmill is broken down in a very particular way: the order in which the 

distinct motor patterns disappear in subsequent sequences is opposite to that in which 

they typically appear in intact sequences. Thus, apomorphine affects the distinct 

components of the sequence according to the rule 'last in, first out'. Since the 

apomorphine (5-10 /ig)-mduced 'regression' in motor behaviour as described above is 

inhibited by intracaudate injections of haloperidol despite the fact that at least some 

of the involved motor patterns are not caudate-specific (see above), it has been 

suggested that this regression is due to the distortion of information sent by the caudate 

nucleus to striatal output stations. Accordingly, we investigated whether functional 

changes at the level of an output station of the caudate nucleus also produce such a 

regression in the motor pattern sequence. 

One of the major output stations of the caudate nucleus is the substantia nigra, pars 

reticulata (Graybiel & Ragsdale, 1979; Royce & Laine, 1984; see Section 2.3). The 

reticular pars reticulata gives rise to projections towards distinct thalamic nuclei, the 

mesencephalic reticular formation and the deeper layers of the coUiculus superior 

(Beckstead & Frankfurter, 1982; Behan, Lin & Hall, 1987; Edwards et al., 1979; 

Graybiel, 1978; Hopkins & Niessen, 1976; Illing & Graybiel, 1985; May & Hall, 1984; 

Warton et al., 1983). The coUiculus superior is divided into deeper and superficial 

layers according to the terminology of Kanaseki and Sprague (1974). The deeper layers 
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of the collicuius superior serve as an important output station funnelling striatally-

derived signals as shown by studies on tonic EMG-activity (Ellenbroek et al., 1985), 

stereotyped movements (Dean, Redgrave & Eastwood, 1982; Imperato & Di Chiara, 

1981) and turning behaviour (Kilpatrick, Collingridge & Starr, 1982; Morelli et al., 

1981; Reavill et al., 1984). 

Electrophysiological (Chevalier et al., 1981; Karabelas & Moschovakis, 1985), 

biochemical (Araki, McGeer & McGeer, 1984; Vincent, Hattori & McGeer, 1978) and 

behavioural (Gelissen & Cools, 1986; 1987) studies have shown that one of the 

neurotransmitters of the caudatonigral and the nigrocollicular pathway is the inhibitory 

amino acid gamma-aminobutyric acid (GABA; for rev. see Scheel-Krijger, 1983; 1986). 

Activation of striatal dopamine receptors is reported to decrease the release of GABA 

in the deeper layers of the collicuius superior (Gale & Casu, 1981; Scheel-Krüger, 

1983). 

In the present investigation, the GABAergic antagonist picrotoxin was injected into 

the deeper layers of the collicuius superior of cats tested in the treadmill design (see 

Section 3.1 and 5.1). Picrotoxin was chosen in view of the fact that this agent is known 

to elicit dose-dependent and GABA-specific effects in a dose range from 50 to 200 ng/ 

0.5 μ]. Moreover, these doses of picrotoxin produce locus-specific effects since they are 

neither effective when injected into the upper layers of the collicuius superior nor 

effective when injected into lesioned deeper layers of the collicuius superior (see 

Section 4.2). Given these considerations, the collicular injection of 25-50 ng picrotoxin 

would appear to be a valid tool to mimic the biochemical consequences of caudate 

injections of apomorphine at the level of the deeper layers of the collicuius superior 

(Gale & Casu, 1981; Scheel-Krüger, 1983). In the present study, the GABA-specificity 

of the behavioural effects induced by 50 ng picrotoxin was studied with the help of the 

GABAergic agonist muscimol. 
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5.2.2 EXPERIMENTAL PROCEDURES 

Animals and apparatus 

Adult male cats (3.0-4.5 kg) were selected from a breeding colony of the University 

of Nijmegen. They were housed in iron cages (1.9 χ 1.2 χ 1.6 m) in groups of 4 to 7 

animals. Except during training and experiments (see below) food (Hope Farms) and 

water were present ad libitum. The apparatus was the same as has been described in 

Section 3.1 and 5.1. For an extensive description of training procedures and apparatus 

the reader is referred to Section 3.1. In short, the cats were trained to walk on the 

motor-driven belt (speed 1.0-1.25 km/hr) of a roofed treadmill (120 χ 20 χ 65 cm; see 

Figure 3.1.1). A remote-controlled food dispenser was attached at the outer side of 

the opaque front panel. The cat was able to collect food pellets (specially shaped, 

Hope Farms) by bending its head through an opening (10 χ 12 cm) in the front panel. 

The food dispenser was constructed in such a manner that the cat, while walking, was 

unable to detect the delivery of a food pellet. 

Surgical and histological procedures 

After the training phase, the cats were stereotaxically equipped with stainless steel 

cannulas under sodium pentobarbitone anaesthesia (40-45 mg/kg, i.p.). In order to avoid 

damage to the tectal tissue, the tip of the cannula (outer diameter of the guide 

cannula: 0.8 mm; diameter of the inner cannula that extended one mm below the tip 

of the guide cannula: 0.55 mm) was directed at a point 4 mm above the injection locus: 

coordinates A 1.5, L 3.5, Η 6.5 (Snider & Niemer, 1964). Two weeks after the 

implantation, the treadmill experiments were started. After the final experiment, the 

cats were deeply anaesthetized with sodium pentobarbitone and intracardially perfused 

with a 4% formaldehyde solution. Subsequently, the brains were removed and cross 

sections (30 μτη) were cut with help of a cryostat microtome (-20 oC). The slices were 

mounted onto slides and stained with cresyl violet to estimate the precise location of 

the injection spots. 
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Experimental paradigm 

The animals were deprived of food for a period of 24 hrs before the start of an 

experiment. At the beginning of each experiment (t= 0 min), the cat was placed on 

the static belt of the treadmill. An experiment consisted of three test periods which 

started at t= 15, 35 and 55 min. Each test period lasted 5 min and was recorded on 

video-tape. At the beginning of a test period the belt was activated; at the end of the 

test the belt was turned off. All solutions were bilaterally injected with help of a 

Hamilton syringe (diameter of the needle with sharpened tip: 0.4 mm; see Section 4.2). 

Each cat participated in three experiments that were spaced by at least one week. 

Seven cats received 25 and 50 ng picrotoxin (Serva; dissolved in 0.5 μ\ distilled water) 

at t= 25 min during the first and the second experiment, respectively; these cats 

received distilled water (0.5 μ\; control for the picrotoxin injections) at the same time 

during the third experiment. Seven other cats received 0.5 μί distilled water at t= 25 

min (control for the picrotoxin injection) and 1.0 μί distilled water at t= 30 min 

(control for the muscimol injection; see below) during the first experiment; 50 ng 

picrotoxin at t= 25 min and 25 ng of the GABAergic agonist muscimol (Serva; 

dissolved in 1.0 μ] distilled water) at t= 30 min during the second experiment; and 0.5 

μ\ distilled water at t= 25 min and 25 ng muscimol at t= 30 min during the third 

experiment that served as a control for the second experiment. The first test period 

(PRE) served as a control (see below). Drug-induced changes in motor behaviour were 

analyzed during the second and the third test period (POSTI and POST2, respectively). 

Doses and volume of picrotoxin and muscimol, the time-schedule as well as the locus-

specificity of the collicular injections were based on the results of the open field tests 

described in Section 4.2. 

Analysis of motor behaviour 

The behaviour on the treadmill was analyzed in the same way as has been reported 

in Section 5.1. Untreated cats repeatedly execute complete sequences of the following 

motor patterns. 

1. Walking in the middle of the treadmill, whereby the cat follows the speed of the belt 

(walking normally: WLKnm). 
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2. Accelerating gait in order to approach the front panel (ACC). 

3. Changing the interlimb coordination by decreasing the forelimb steplength and 

increasing the hindlimb steplength, i.e. executing gait transitions (TRN). 

4. Attempting to collect a food pellet by bending the head through the opening in the 

front panel of the treadmill enclosure, i.e. food collecting attempts (FCA). 

Although the motor patterns were executed in a particular sequence (see above), each 

pattern was executed in a relatively independent way. The independent nature of the 

motor patterns was demonstrated by the observation that sometimes the cats executed 

a particular pattern several times before they switched to the next pattern in the 

sequence. Walking patterns as described above were labelled as 'normal' since they 

were also present during PRE test periods (WLKnm). During 'abnormal' walking, that 

hardly occurred during PRE test periods, the cat continuously touched the back panel 

of the treadmill enclosure with its tail and/or hindlimbs (WLKab). A motor pattern 

sequence was considered to be 'complete' if it ended with FCA; it was considered to 

be 'incomplete' if FCA or one or more other motor patterns were absent. 

As described in Section 3.1 and 5.1, cats could display two types of ACC: those 

accompanied by the continuous visual fixation of a particular part of the front panel, 

i.e. 'exteroceptively directed gait accelerations' (ACCed) and those not accompanied by 

continuous fixation, i.e. 'non-exteroceptively directed gait accelerations' (ACCnd). Since 

the latter patterns were rarely executed during any test period, only ACCed's were 

analyzed. Furthermore, cats displayed two types of TRN: those accompanied by the 

continuous tactile (with forelimbs and/or whiskers) and/or visual fixation of the belt and 

front panel of the treadmill, i.e. 'exteroceptively directed gait transitions' (TRNed) and 

those not accompanied by continuous fixation, i.e. 'non-exteroceptively directed gait 

transitions' (TRNnd). 

As described in Section 5.1, striatal injections of 5-10 μg apomorphine have been 

found to produce a behavioural regression which is illustrated by the occurrence of 

time-dependent changes in the number of distinct motor patterns. Given the known 

order in which the distinct components of the sequence appear (see above), the above-
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mentioned parameters were used to provide direct information about drug-induced 

changes in the sequence under study. In addition, a frequency analysis of distinct motor 

patterns was used to study drug-induced changes in the ability to execute specific 

patterns. Therefore, the absolute number of each motor pattern was determined per 

test period. WLK was scored in 3 s bins in order to allow a frequency analysis (see 

Section 5.1). Drug effects were expressed as changes in the percentage of each motor 

pattern of total of patterns during the POST! and POST2 test period. The ratio of the 

POST-score minus the PRE-score (numerator) and the POST-score plus the PRE-

score (nominator) was calculated in order to reduce the inter- and intra-individual 

variability. Ratio's were compared using the Wilcoxon matched pairs signed ranks test 

(two tailed) or the Mann Whitney U-test (two tailed). 

5.2.2 RESULTS 

Histology 

Verification of the injection loci revealed that all injections were correctly placed in 

the deeper layers of the colliculus superior: coordinates (Snider & Niemer, 1964) A 1.0-

1.5, L 3.5-4.0, 

H 2.0-3.0 (see Figure 4.2.1 A). 

Motor behaviour during the PRE test period 

The absolute number of the distinct motor patterns (median + range) during PRE 

test periods of all experiments is shown in Table 5.2.1. There were no significant 

differences between any of the experiments with respect to the number of distinct 

patterns during PRE test periods (p>0.05). 

Motor behaviour during the POSTI test period 

Injection of solvent did not produce abnormal walking behaviour in any of the cats 

tested. A representative example of the absolute number per minute of the distinct 

motor patterns during POSTI after solvent is shown in Figure 5.2.1 (A, left panel). The 
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Table 5.2.1 Median + range of absolute number of distinct motor patterns m PRE test periods (before 

administration of distilled waten SOLV), Picrotoxin 25 and 50 ng/ 0.5 μΙ (PT25 and PT50, respectively), 

and muscimol 25 ngl 1.0 μΙ (MC25). WLKûb, abnormal walking; WLKnm, normal walking; ACCed, 

exterocepnvely directed gait accelerations; TRNed, exteroceptivefy directed gatl transitions; TRNnd, non-

exteroceptivefy directed gait transitions; FCA, food collecting attempts (see Materials and Methods). 

Seven cats participated in three experiments: PT25, PT50 and SOLVI, respectively. 
Seven other cats participated in the remaining experiments: SOLV2, PT50+MC25 and 
MC25, respectively. 

DRUG 
(ng) 

SOLV1 

PT25 

PT50 

PT50 
+MC25 
MC25 

SOLV2 

WLKab 

0 
(0-3) 

0 
(0-1) 

0 
(0-0) 

0 
(0-2) 

0 
(0-0) 

0 
(0-1) 

WLKnm 

6 
(2-47) 

6 
(0-16) 

15 
(4-41) 

0 
(0-5) 

0 
(0-5) 

1 
(0-4) 

ACCed 

16 
(5-35) 

27 
(12-35) 

18 
(12-44) 

35 
(22-48) 

26 
(13-59) 

31 
(16-45) 

PRE 
TRNed 

1 
(0-32) 

1 
(1-39) 

3 
(0-18) 

3 
(0-13) 

2 
(0-15) 

2 
(o-ii) 

TRNnd 

10 
(1-27) 

8 
(0-34) 

11 
(0-41) 

22 
(0-56) 

18 
(0-54) 

21 
(0-26) 

FCA 

24 
(15-46) 

22 
(16-55) 

22 
(11-34) 

45 
(32-67) 

43 
(39-72) 

40 
(22-50) 

'0.5 μ\ injected bilaterally 5 min after the end of the Pre test period. 
^.S μ\ injected bilaterally 5 min after the end of the Pre test period, and 1.0 μ\ injected 
bilaterally 5 min after the first injections. 

absolute number of complete and incomplete sequences is depicted in the same figure 

(5.2.1 A, right panel). The display of distinct motor patterns as well as the execution 

of sequences was comparable to those during PRE test periods in all experiments. 

In contrast to solvent, 25 ng Picrotoxin significantly affected the execution of FCA 

and WLKab during POSTI. The ratio of FCA was significantly decreased, whereas that 

of WLKab was significantly increased (Table 5.2.2). Although the ratio of the remaining 
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Figure 5.2.1 Representative examples of individual scores per minute of different motor patterns during the 

POSTI test period. Le. 10-15 min following the bilateral 0.5 μΐ solvent (A) or 50 ng/0.5 μΐ Picrotoxin (В, С; 

left panels) as well as of absolute number of complete and incomplete sequences during POSTI (Α-C; right 

panels). 

motor patterns, i.e. WLKnm, ACCed, TRNed and TRNnd, was not significantly 

changed, normal eating behaviour was clearly affected. In 4 out of 7 cats, FCA was 

strongly reduced, but not totally inhibited. In one other cat, this motor pattern was 

no longer present during POSTI: this animal executed incomplete sequences that 

terminated with TRN during the whole POST! test period. The remaining 2 cats 

displayed a regression of complete sequences which was comparable to that found after 

50 ng picrotoxin (see below). WLKab was increased in 4 out of 7 cats; however, only 

one of these animals displayed a regression in motor behaviour. Figure 5.2.2 shows the 
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Table 5.2.2 Median ratio of difference (numerator) and sum (nominator. POSTI-PRE I POSTI+PRE) of 

percentages of distinct motor patterns during the POST! test period after distilled water (05 μΐ; SOLVI), 

Picrotoxin 25 and 50 ng/ 0.5 μΐ (PT25 and PT50, respectively), picrotoxm 50 ng/O 5 μΐ 5 mm before injection 

of muscimol 25 ngll Ο μΐ (PT50 + MC25), 0.5 μΐ distilled water 5 mm before 1 ΟμΙ distilled water (SOLV2) 

and 05 μΐ distilled water 5 mm before muscimol 25 ng/1.0 μΐ (MC25) 

Note that zero means no change, a positive value represents an increase and a negative 
value represents a decrease in the relative frequency of a pattern during POSTI, 
compared to PRE. Each group consisted of 7 cats. The remaining abbreviations are 
explained in the legend of Table 5.2.1. 

DRUG WLKab WLKnm ACCed TRNed TRNnd FCA 

SOLVI 

PT25 

PT50 

PT50+MC25 

MC25 

SOLV2 

0 

1.0' 

LO'" 

0+++ 

0 

0 

-0.19 

0.16 

0.50" 

0++ 

0 

0 

0.15 

-0.06 

-0.61' 

-0.05 

0.03 

-0.02 

0 

0 

-1.0' 

0.14+ 

0 

0 

-0.10 

-0.19 

-0.74" 

0+++ 

-0.1 

0 

-0.04 

-0.19" 

-LO' 

0+ 

-0.02 

0.02 

*p<0.05, **p<0.02, ***p<0.002: PT25, PT50, MC25 and SOLV2 vs SOLVI. 
+p<0.05, ++p<0.02, + + +p<0.002: PT50 + MC25 vs PT50. 

relative frequency of distinct motor patterns. 

A higher dose of picrotoxin, i.e. 50 ng, induced in 4 out of 7 cats a regression in the 

motor pattern sequence in the following way: initially, these animals executed complete 

sequences during POSTI, but soon after the start of the test period more and more 

incomplete sequences appeared. The order in which motor patterns disappeared was 

relatively fixed; at first FCA, TRNnd and TRNed were no longer executed while the 

cats still displayed incomplete sequences that terminated with ACCed. During the next 

phase, also the latter pattern disappeared, while the frequency of WLKnm was 
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increased. During the final part of POSTI, sequences consisted of WLKnm and/or 

WLKab. Two other cats did not execute complete sequences at all during POSTI: they 

started with incomplete sequences that ended with ACCed; during POSTI, ACCed 

disappeared while the animal executed WLKnm (one cat) or WLKab (one cat) during 

the remaining part of POSTI. The 7th animal just executed a reduced number of 

complete sequences throughout POSTI (5, POSTI vs 11, PRE). In addition, this cat 

also displayed WLKab. Representative examples of the absolute number per minute 

of distinct motor patterns during POSTI are shown in Figure 5.2.1 (B and C, left 

panel). In the same illustration, the absolute number of complete and incomplete 

sequences are shown (Figure 5.2.1, В and C, right panel). Figure 5.2.2 shows the 

percentages of the mean frequencies of the distinct motor patterns. This illustration 

reveals that picrotoxin produced a shift from a predominance of FCA, TRN, ACC and 

Wlknm in controls to a predominance of WLKnm in cats treated with 50 ng picrotoxin. 

The highest dose of picrotoxin significantly reduced the ratio of ACCed, TRNed, 

TRNnd and FCA whereas it significantly increased that of WLKnm and WLKab (Table 

5.2.2). 

Figure 5.2.2 Percentage of the mean frequency of the distinct motor patterns shown during POST! test 

penods, Le. 10-15 min after the bilateral solvent 0.5 μΙ (A), picrotoxin 25 ng/0.5 μΙ (В) and 50 ng/0.5 μΙ 

(С); turning clock-wise, the distinct motor patterns are ordered according to their appearance in the sequence. 
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Motor behaviour during the POST2 test period 

During POST2, picrotoxin was effective too, since some cats still showed a regression 

in the motor pattern sequence after 25 and 50 ng (3 and 4 animals, respectively). The 

relative distribution of the distinct motor patterns during POST2 was comparable to 

that during POSTI (data not shown). In POST2, the ratio of FCA was significantly 

changed after 25 ng picrotoxin, whereas that of WLKab, TRNed, TRNnd and FCA was 

significantly affected following 50 ng picrotoxin (Table 5.2.3). 

Table 5.2.3 Median motor pattern ratio of difference (numerator) and sum (nominator POST2-PRE I 

POST2+PRE) of percentages of distinct motor patterns during the POST2 test period after distilled water 

(05 μΐ; SOLVI), picrotoxin 25 and 50 ng/ 05 μΐ (PT25 and PT50, respectively), picrotoxin 50 ng/05 μΐ 5 

mm before injection of muscimol 25 ng/1 0 μΐ (PT50 + MC25), 05 μΐ distilled water 5 mm before 1 0 μι 

distilled water (SOLV2) and 05 μΐ distilled water 5 mm before muscimol 25 ng/ 1 0 μΐ (MC25) 

Note that zero means no change, a positive value represents an increase and a negative 
value represents a decrease in the relative frequency of a pattern during POST2, 
compared to PRE. Each group consisted of 7 cats. The remaining abbreviations are 
explained in the legend of Table 5.2.1. 

DRUG 

SOLVI 

PT25 

PT50 

PT50+MC25 

MC25 

SOLV2 

WLKab 

0 

0 

1.0" 

0+++ 

0 

0 

WLKnm 

0.35 

0.18 

0.54 

0 

0 

0 

ACCed 

0.06 

-0.03 

-0.08 

-0.04 

-0.08 

-0.04 

TRNed 

0 

0 

-1.0" 

0+ 

0 

0 

TRNnd 

-0.11 

-0.16 

-0.42' 

0.12+ 

0 

0 

FCA 

-0.02 

-0.45" 

-0.27* 

OÍB^ 

0.04 

-0.03 

*p<0.05, **p<0.02: PT25, PT50, MC25 and SOLV2 vs SOLVI. 
+p<0.05, ++p<0.02, + + +p<0.002: PT50 + MC25 vs PT50. 
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Additional observations 

Apart from the above-mentioned regression effects, 5 out of 7 cats displayed 

abnormal limb movements following 50 ng picrotoxin. This effect was most pronounced 

during ACCed and WLKnm; it was characterized by the increase of the swing-phase 

of one hindlimb, as a result of an increased lifting and a short interruption of the 

movement just before touch-down. Sometimes, this effect was also present in the 

forelimb ipsilateral to the affected hindlimb. During POST2, no abnormal limb 

movements were observed. As a final remark, neither incorrect FCA's, i.e. head 

movements directed towards a food pellet without collecting a pellet, nor 'forced' head 

movements were observed in any post-injection test period. 

GABA-specificity of picrotoxin-induced effects 

The regression of motor pattern sequences during POSTI and POST2 did not occur 

in case 25 ng muscimol was injected after the application of 50 ng picrotoxin. The 

effect of picrotoxin on the ratio of WLKab, WLKnm, TRNed, TRNnd and FCA was 

significantly attenuated by muscimol (Table 5.2.2, 5.2.3). In contrast, the effect of 

picrotoxin on ACCed was not counteracted by muscimol. Finally, 25 ng muscimol itself 

did not induce changes in the execution of motor patterns during POSTI or POST2. 

5.2.4 DISCUSSION 

General 

The present study shows that injection of 50 ng picrotoxin into the deeper layers of 

the colliculus superior produced a characteristic regression in the motor pattern 

sequence of cats. The order in which the distinct motor patterns subsequently 

disappeared was opposite to that in which they typically appeared in intact sequences. 

Given the known GABA- and locus-specificity of the treatment used (see Section 4.2), 

this finding shows that the picrotoxin-induced effects were due to an inhibition of 

collicular GABAergic activity. Apart from the decrease in ACCed, all effects were 

counteracted by muscimol. The finding that intracollicular injections of 25 ng muscimol 
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alone did not alter the behaviour in the present design not only excludes the possibility 

that the muscimol-induced attenuation of the picrotoxin-induced effects was due to a 

functional rather than a pharmacological antagonism, but also indicates that this dose 

of muscimol was too low in order to significantly stimulate the GABAergic receptors 

in otherwise untreated cats. Whether this implies that the baseline activity at the level 

of the GABAergic receptors was rather high during the performance of the treadmill 

behaviour remains to be established. 

The finding that the picrotoxin-induced reduction in the number of ACCed was not 

counteracted by muscimol opens the possibility that this effect was only triggered, but 

not mediated, by the picrotoxin-induced attenuation of the GABAergic activity in the 

deeper layers of the colliculus superior. In experiments described in Section 3.1, in 

which haloperidol was injected into the caudate nucleus, a similar phenomenon has 

been observed: haloperidol produces both a dopamine-specific effect, viz. a decrease 

in TRNnd, and a dopamine-triggered change, viz. an increase in TRNed. In a follow-

up study, it has been found that caudate nucleus injections of high doses of 

apomorphine similarly affect TRNed (see Section 5.1), providing additional evidence 

that the drug-induced change in TRNed is at best triggered by, but not specific for, 

experimentally-induced alterations in caudate nucleus dopaminergic activity. A 

comparable phenomenon might underlie the picrotoxin-induced decrease in the number 

of ACCed. 

Anyhow, the overall response to Picrotoxin was comparable to that elicited by 

intracaudate injections of 10 μg apomorphine: like apomorphine, picrotoxin induced a 

regression in motor behaviour resulting in significant reductions in the number of FCA, 

TRNnd, TRNed and ACCed, and a significant increase in the number of WLKab (see 

Section 5.1). The picrotoxin-induced increase in the number of WLKnm, however, was 

not found in the apomorphine experiments. The latter effect might be due to the 

difference in the ratio's of WLKnm in the corresponding control experiments (ratio, 

picrotoxin experiments: -0.19; ratio, apomorphine experiments: +0.50), suggesting that 

there was a so-called ceiling effect in the apomorphine experiments. In this context, it 
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is useful to remark that the noted differences between the controls of the two series 

of experiments might be due to the fact that the apomorphine-treated cats were 

equipped with caudate cannulas in contrast to the picrotoxin-treated animals in the 

present study that were equipped with collicular cannulas. Anyhow, the above-

mentioned data show that the response to 50 ng picrotoxin applied to the deeper layers 

of the colliculus superior is highly comparable to the response to 10 μg apomorphine 

injected into the caudate nucleus. This finding together with the notion that 

intracollicular injections of picrotoxin are able to mimic the biochemical consequences 

of striatally-applied apomorphine at the level of the deeper layers of the colliculus 

superior (see Section 5.2.1: Introduction) suggest that collicular disturbances were also 

involved in the regression process following intracaudate administration of apomorphine. 

Specific effects of picrotoxin 

Twenty-five ng picrotoxin resulted in significant changes in the number of WLKab 

and FCA: the former increased, whereas the latter decreased. Since only deprived cats 

are displaying FCA in the treadmill set-up (see Section 3.1), it is theoretically possible 

that picrotoxin just altered the internal state inherent in food deprivation and, as a 

result, attenuated the number of FCA. However, most cats did collect food pellets 

during the first and second post injection test period, indicating that they were still 

hungry at that time. Moreover, the treated animals executed as many ACC and TRN 

as solvent-treated cats. Since these motor patterns enabled the cats to approach the 

food pellets, it appears that they were still motivated. Therefore, it is unlikely that the 

reduction in FCA was just due to drug-induced changes in food motivation. However, 

future research in which an independent measure for food motivation is used, is 

required to verify this explanation. 

Previously, collicular injections of picrotoxin (50-200 ng) have been reported to 

induce forced head movements in cats tested in an open field (see Section 4.2). In the 

present study, such movements were not seen in any of the tests. Apparently, these 

forced movements do not occur in case picrotoxin-treated cats are forced to perform 
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particular tasks (cf. Gelissen & Cools, 1986). Anyhow, the absence of these forced 

movements exclude the possibility that such movements could have hindered the cats 

to display FCA. 

Recently, it has been found that the deeper layers of the colliculus superior are 

involved in the execution of so-called 'non-externally guided targeting movements', i.e. 

goal-directed movements that are elicited but not continuously guided by exteroceptive 

stimuli (Cools, 1986; Gelissen & Cools, 1986). Since picrotoxin has been found to 

enhance the display of such movements (Gelissen & Cools, 1986), the picrotoxin-

induced decrease in FCA found in the present study cannot be ascribed to drug-

induced changes in this particular function of the deeper layers of the colliculus 

superior. 

The fact that the behavioural regression observed in the present study was not seen 

in previously performed colliculus superior experiments at our laboratory is not difficult 

to understand. The experimental paradigms used in the previous studies were fully 

inappropriate to allow the cat to display any form of behavioural regression. In 

contrast, the paradigm used in the present study was purposely chosen to investigate 

this particular phenomenon. Anyhow, these data show that the nature of the 

experimental set-up and, accordingly, the task determines whether a behavioural deficit 

becomes manifest or not. 

The caudato-nigro-collicular feedforward loop 

Previously, it was found that striatal injections of haloperidol significantly reduce the 

number of a particular motor pattern without affecting the ability to execute complete 

sequences during the treadmill task (see Section 3.1). In a subsequent study it has been 

found that intracaudate injections of 5.0/ig apomorphine produce a regression in motor 

behaviour without changing the number of certain motor patterns such as normal 

walking during the treadmill task (see Section 5.1). The same holds true for the effects 

elicited by collicular injections of 25 ng picrotoxin (present study). All these data 

together indicate that the picrotoxin-induced regression in motor behaviour was not 
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simply the consequence of the order in which distinct motor patterns had to be 

executed during the treadmill task. 

Some of the mentioned picrotoxin-induced effects, namely the increase in the 

number of WLKab and the decrease in the number of FCA, have previously been 

observed in treadmill experiments, in which the substantia nigra pars reticulata was 

manipulated (Heim et al., 1986). So, it has been found that decreasing the nigral 

GABAergic activity results in (a) abnormal body positions and postures in cats being 

free to move and (b) abnormal limb movements in cats being challenged to walk (see 

Section 4.1; see also Gelissen & Cools, 1987; Heim et al., 1986; Wolfarth, Kolasiewicz 

& Sontag, 1981). Moreover, a decrease in nigral GABAergic activity has been found 

to suppress FCA (Heim et al., 1986). As mentioned, collicular injections of picrotoxin 

too elicited such effects. Since the picrotoxin treatment used in the present study was 

selective and specific for the deeper layers of the colliculus superior (see Section 4.2), 

it can also be excluded that the picrotoxin-induced changes were due to diffusion of 

picrotoxin to the substantia nigra. Thus, the effects elicited by 25 ng picrotoxin were 

neither due to distortion of the information sent by the substantia nigra to the colliculus 

superior nor due to leakage of collicularly injected picrotoxin to the substantia nigra. 

Nevertheless, the picrotoxin treatment of the colliculus superior produced effects which 

were similar to those elicited by picrotoxin treatment of the substantia nigra. In fact, 

these data show that intracollicularly injected picrotoxin anyhow produced a 'shut-off 

of the substantia nigra pars reticulata, viz. its first order input station. Whether or not 

this phenomenon was mediated by direct or indirect colliculonigral connections remains 

open for future research (cf. Harting, 1977; Martin, 1969). 

The functional shut-off of the substantia nigra pars reticulata produced by 50 ng 

picrotoxin was even greater than that elicited by 25 ng: for, 50 ng picrotoxin resulted 

not only in effects seen after 25 ng, viz. a decrease in the number of FCA and an 

increase in the number of WLKab, but also in clearcut abnormal limb movements, viz. 

behavioural consequences of a stronger dysfunctioning nigra (Gelissen & Cools, 1987; 

Heim et al., 1986). As mentioned in the Results section, 50 ng picrotoxin also reduced 
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the number of TRNnd in a GABA-specific manner. Given the known function of the 

caudate nucleus in directing the display of the latter motor pattern (see Section 3.1), 

this finding shows that 50 ng picrotoxin even produced a functional shut-off of the 

caudate nucleus. The present data may reveal a basic principle of cerebral organization: 

particular changes in a hierarchically lower brain structure can produce a functional 

shut-off of hierarchically higher order brain structures. 

Apart from the above-mentioned effects, 50 ng picrotoxin produced changes in 

TRNed, ACCed and WLKnm, viz. effects which were not yet elicited by 25 ng 

picrotoxin. The finding that collicular injections of picrotoxin inhibited the display of 

ACCed is in agreement with previously reported data showing that such treatment 

reduces the display of externally guided targeting movements (Gelissen & Cools, 1986). 

Anyhow, as long as the brain structures mediating these effects are unknown it is not 

relevant to discuss these effects in more detail. 

Conclusions 

The present study shows that picrotoxin injected into the deeper layers of the 

colliculus superior produced a regression of motor behaviour which was comparable to 

that elicited by striatal injections of 10 /¿g apomorphine. Since collicular injections of 

picrotoxin or caudate injections of apomorphine both produce similar GABAergic 

changes at the level of the deeper layers of the colliculus superior (Gale & Casu, 1981; 

Scheel-Kriiger, 1983), it is likely that a common mechanism at the level of the colliculus 

is involved. Further studies examining the ability of collicular injections of muscimol to 

block the regression in motor behaviour elicited by intracaudate injections of 

apomorphine would clarify this point. Anyhow, the present data are in line with the 

hypothesis that experimentally-induced changes at the level of the caudate nucleus can 

produce behavioural deficits inherent in dysfunctioning output stations. It is evident that 

this notion has far reaching consequences for the interpretation of the consequences 

of the progressive pathology of psychomotor diseases such as Parkinson's disease. For 

instance, it would imply that classical parkinsonian symptoms such as hypokinesia, 

rigidity, etc. become only manifest when the caudate pathology has resulted in a 
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malfunctioning of one or more striatal output stations. 

Furthermore, the present data suggest that collicular injections of a low dose of 

picrotoxin (25 ng) produced a functional shut-off of the substantia nigra pars reticulata, 

and that the injections of a higher dose of picrotoxin (50 ng) produced, in addition, a 

functional shut-off of the caudate nucleus. Overall, the latter data might reveal a basic 

principle of the cerebral organization: changes in a hierarchically lower order brain 

structure are able to produce a functional shut-off of hierarchically higher order brain 

structures. The mechanisms underlying this principle remain to be investigated. 
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CHAPTER 6 

PROGRESSIVE PATHOLOGY IN THE CAUDATO-NIGRO-COLLICULAR PATHWAY 

6.0 GENERAL INTRODUCTION 

As shown in Chapter 5, a relatively high dose of apomorphine produces a functional 

shut-off of the caudate nucleus (Section 5.1). A comparable phenomenon could be 

observed following manipulation of the second order caudate output station, the deeper 

layers of the colliculus superior (Section 5.2) suggesting that caudate output stations 

might be involved in the regression process. However, the shut-off was present only 

when the animal had to execute a particular sequence of different motor patterns. In 

this chapter, two experiments are presented in which it was investigated whether acute 

neuropathological changes at the level of the caudate nucleus are able to produce 

functional changes at the level of caudate output stations. Open field behaviour of cats 

was analyzed immediately after the intracaudate application of the neuro-excitatory 

compound kainic acid or after the unilateral occlusion of the middle cerebral artery. 

In Section 6.1 it will be shown that intracaudate injections of kainic acid produce a 

sequence of behavioural changes characteristic of functional changes at the level of 

the rostromedial caudate nucleus, the substantia nigra pars reticulata and the deeper 

layers of the colliculus superior. In addition, metabolic activity was increased at the 

level of these three brain regions. In Section 6.2, data will be shown that unilateral 

occlusion of the middle cerebral artery also produced functional and metabolic changes 

at the level of the three afore-mentioned brain regions: However, the latter changes 

were diametrically opposite to those following kainic acid. 
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6.1 INTRACAUDATE INJECTIONS OF KAINIC ACID 

Summary. 

The acute behavioural and metabolic consequences of functional changes following 

unilateral intracaudate kainic acid at the level of the feline rostromedial caudate 

nucleus, the substantia nigra, pars reticulata and the deeper layers of the colliculus 

superior were investigated. The present study became possible since it was previously 

found that unilateral changes in neurotransmission processes in these structures all 

result in behavioural alterations that can be distinguished from each other. During the 

first 17 min after kainic acid, all animals displayed contralateral forced staccato head 

turning; these movements are characteristic for an activation of dopamine receptors 

and/or inhibition of GABA receptors in the rostromedial caudate nucleus. Between 15 

and 50 min, all animals displayed fast, uninterrupted contralateral forced head, torso 

or body turning; these movements are characteristic for an activation of nigral GABA 

receptors. From about 48 min, all animals displayed sequences of short contralateral 

forced ear, head, torso and body turnings; these movements are characteristic for an 

inhibition of collicular GABA receptors. Furthermore, most cats displayed ipsilateral 

orofacial dyskinetic movements during the whole 180 min observation period. 

Metabolism was analyzed in three cats that received [14C]-2-D-deoxyglucose 

immediately before, 5 min after or 70 min after kainic acid. Metabolism was increased 

in the ipsilateral caudate nucleus; this effect was most pronounced in the cat that 

received deoxyglucose immediately before kainic acid. Metabolic activity was increased 

in the ipsilateral substantia nigra, pars reticulata; this effect was most pronounced in 

the cat treated with deoxyglucose 5 min after kainic acid. Metabolism was increased in 

the ipsilateral deeper layers of the colliculus superior in the cat that received 

deoxyglucose 70 min after kainic acid. The present behavioural and metabolic data 

suggest that kainic acid produces an increasing pathology resulting successively in 

functional changes in the caudate nucleus, its output station the substantia nigra, pars 

reticulata and the nigral output station the deeper layers of the colliculus superior. It 
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is suggested that the successive appearance of the latter effects is inherent in the 

hierarchical order of the brain structures under study. The occurrence of orofacial 

dyskinetic movements during the whole observation period suggest that the former 

movements were not mediated via the striato-nigro-collicular pathway. Finally, 

apomorphine injected in the ipsilateral caudate nucleus one week after kainic acid, was 

significantly less effective compared to apomorphine injected one week before kainic 

acid. The clinical implications of the present data is discussed. 

6.1.1 INTRODUCTION 

Motor symptoms of central disorders like Parkinson's Disease and Huntington's 

Chorea are generally considered to have their origin in disturbances of neuronal activity 

at the level of the caudate nucleus and the putamen. This view is based in part on 

morphological studies indicating that degeneration of striatal input and/or intrinsic 

neurons occurs in patients suffering from these diseases; furthermore, clinical studies 

have supported this idea since, for instance in Parkinson's Disease, restoration of 

reduced striatal dopamine levels has been found to reduce at least partly the motor 

disturbances. Other disorders in which changes in striatal neurotransmission processes 

may be involved are, for instance, Gilles de la Tourette syndrome and tardive dyskine

sia. Considering the variety of clinical symptoms associated with all disorders mentioned 

above (Ansell, 1981; Dakof & Mendelsohn, 1986; Devinsky, 1983; Hefter et al., 1987; 

Lasker et al., 1987; Martin, 1984; Schneider, Diamond & Markham, 1987), the question 

arises whether these manifestations are primary consequences of hyper- and/or hypo-

functioning striatal systems, or whether part of these symptoms are due to secondary, 

functional alterations at the level of brain structures receiving abnormal, striatally-

derived information (cf. Lasker et al., 1987). 

Animal studies have shown that, for instance, an increased tonic EMG-activity that 

results in muscle rigidity resembling parkinsonian rigidity, can be elicited from the rat 
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neostriatum, the substantia nigra pars reticulata, the deeper layers of the colliculus 

superior and the ventromedial nucleus of the thalamus (Ellenbroek et al., 1985; 

Klockgether et al., 1986). These data stress two important issues: First, the ability to 

induce tonic EMG activity is not specific for one of the nuclei mentioned above; 

accordingly, the occurrence of such a phenomenon does not allow definite conclusions 

with respect to the possible involvement of one or more of the structures mentioned 

above. Second, functional disturbances at the level of more than one brain structure 

can only be differentiated in case unique, structure specific parameters can be analyzed 

in an independent way. Anyhow, these considerations underline the necessity to 

investigate the way in which output stations of structures, primarily affected by 

irreversible, neuropathological processes, start to dysfunction as a result of abnormal 

input signals. 

The main output stations of the caudate nucleus are the globus pallidus and the 

substantia nigra pars reticulata; one of the neurotransmitters of these pathways is 

gamma-amino-butyric acid (GABA; Gale & Casu, 1981; Graybiel & Ragsdale, 1979; 

Royce & Laine, 1984). Striatally-derived information is passed further down by the 

reticular part of the substantia nigra towards the deeper layers of the colliculus 

superior, the midbrain reticular formation and several nuclei of the thalamus; again 

GABA is one of the neurotransmitters of these pathways (Beckstead, Domesick & 

Nauta, 1979; Beckstead & Frankfurter, 1982; Edwards et al., 1979; Gale & Casu, 1981; 

Graybiel, 1978; Graybiel & Ragsdale, 1979; May & Hall, 1986). GABA is an important 

neurotransmitter of the striatal output pathways as is stressed by the findings that 

changes in striatal dopaminergic and/or GABAergic activity are known to result in 

alterations in GABAergic activity at the level of the substantia nigra (pars reticulata) 

as well as the deeper layers of the colliculus superior (Gale & Casu, 1981; Scheel-

Kriiger, 1983). In previous behaviour studies, indirect evidence has been presented that 

changes in striatal dopamine activity may have functional consequences for extrastriata] 

structures such as the substantia nigra pars reticulata and the deeper layers of the 

colliculus superior (Chapter 5.1; see also Gelissen & Cools, 1988). 
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In order to provide evidence that neuropathological changes at the level of the 

caudate nucleus indeed result in functional alterations at the level of the Substantia 

nigra pars reticulata and the Deeper layers of the colliculus superior, the present study 

was performed. The present study became possible since it was previously found that 

unilateral changes in neurotransmission processes in these structures all result in 

behavioural alterations that can be distinguished from each other (Cools, Struyker 

Boudier & Van Rossum, 1976; see Chapter 4). Therefore, the acute behavioural effect 

following intracaudate injection of the neuro-excitant kainic acid (Coyle, 1983; Foster 

& Fagg, 1984; Olney, 1981) was investigated. Furthermore, the kainate-induced 

behavioural effects inherent in disturbances at the level of the caudate nucleus, the 

substantia nigra pars reticulata and the deeper layers of the colliculus superior were 

correlated to metabolic changes occurring in these structures. For the latter purpose, 

it was decided to use only a limited number of cats (n = 3), since the effects of 

intracaudate experimentally induced changes on local metabolic activity in the caudate 

nucleus, the substantia nigra and the colliculus superior have been previously studied 

by others (Aiko et al., 1988; Kimura, McGeer & McGeer, 1980; McCulloch et al., 1982; 

Wooten & Collins, 1980). Finally, the chronic effect of kainic acid on striatal functions 

was investigated by comparing the behavioural effect of intracaudate apomorphine one 

week before and after kainic acid. 

6.1.2 EXPERIMENTAL PROCEDURES 

Surgical procedures 

Under sodium pentobarbitone anaesthesia (45 mg/kg i.p.), 10 adult male cats 

(weighing between 3.5 and 4.8 kg) were stereotaxically equipped with double-barrelled, 

stainless steel cannulas (outer diameter 0.8 mm; outer diameter, inner cannula which 

extended 1 mm below the tip of the outer cannula: 0.55 mm) into the rostromedial 

part of the caudate nucleus (coordinates [Snider & Niemer, 1964]: A 15.0, L 5.0 and 

H 5.0). 
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Behavioural experiments 

One week after the implantation, each cat was habituated to the sound-tight 

observation cage (90 χ 60 χ 60 cm) during two 1 hour sessions on separate days. The 

observation cage had a plexiglass front allowing video recording with help of a closed 

video circuit. In addition, the animals were habituated to the injection procedures. 

Intracaudate injections were always performed on the right side. Immediately before 

the injection, the inner cannula was removed. Drug solutions were injected with help 

of a 5.0 μ\ Hamilton syringe in the conscious, hand-fixed animal. The solution was 

injected in about 20 s; after that the injection needle (diameter: 0.4 mm) was left in 

place for another 10 s. After replacing the inner cannula, the cat was placed in the 

observation cage. 

Each cat underwent the following experiments, which started two weeks after the 

implantation: 

Experiment 1: To investigate the behavioural effect of stimulating dopamine receptors 

in the intact rostromedial part of the caudate nucleus, 0.6 ^g/5.0 μ\ apomorphine was 

injected. In previous studies (Cools, Struyker Boudier & Van Rossum, 1976) it was 

found that this dose induces a characteristic and dopamine specific effect (see below) 

that is maximal 10-15 min after the injection and disappears during the following 5 min. 

Before the injection, each cat (n =10) was readapted to the observation cage for 15 

min. Subsequently, apomorphine was injected as described above; after that the cat was 

placed in the observation cage. During the following 15 min, the behaviour was 

recorded on video-tape. 

Experiment 2a: To investigate the behavioural effect of direct excitation of striatal 

neurons, 1.0 /¿g/S.O μΐ kainic acid was injected one week after experiment 1. Before the 

injection, each cat (n =7) was readapted to the observation cage for 15 min. 

Subsequently, kainic acid was injected as described above; after that the cat was placed 

into the observation cage. During the following 180 min, the behaviour was recorded 

on video-tape. The dose of kainic acid as well as the length of the observation period 

were chosen on the basis of pilot studies. 

Experiment 2b: To confirm the previously reported effects of intrastriatally injected 
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kainic acid on metabolic activity, three cats received, in addition to intracaudate kainic 

acid, an i.v. injection of 175 /iCi [MC]-2-D-deoxyglucose in the following order. Cat 1: 

deoxyglucose was injected immediately before kainic acid; the animal was sacrificed 45 

min after kainic acid; cat 2: deoxyglucose was injected 5 min after kainic acid; the 

animal was sacrificed 50 min after kainic acid; cat 3: deoxyglucose was injected 70 min 

after kainic acid; the animal was sacrificed 115 min after kainic acid. The i.v. injection 

lasted about 3 minutes. After the kainic acid injection, each animal was placed in the 

observation cage. Until the cat was sacrificed, the behaviour was recorded on video

tape. The intervals between the injections were chosen on the basis of pilot studies. 

Experiment 3: To investigate the behavioural effect of stimulating dopamine receptors 

in the rostromedial part of the caudate nucleus after the kainate-induced local 

lesioning, each cat (n =7) received an intracaudate injection of 0.6 //g/5.0 μ\ 

apomorphine one week after experiment 2a. The procedure was identical to that of 

experiment 1. 

Dependent variables. 

1. Forced Turning, type 1 (FTl): Unilateral forced head turning movements that are 

interrupted at variable intervals. These movements start when the head is in line with 

the body. They are considered to be completed when the cat executes a smooth, non-

forced head movement back to the starting position. According to previous studies 

(Cools, Struyker Boudier, 1976) these movements are characteristic for unilaterally 

induced changes at the level of the Caudate nucleus. An unilateral increase in the 

dopaminergic activity or decrease in the GABAergic activity in the rostromedial part 

of the Caudate nucleus results in contralateral staccato head turning. In the present 

study, these movements are labelled as contralateral FTl movements. 

2. Forced Turning, type 2 (FT2): Unilateral head, torso or body turning. Unlike FTl 

movements, the cat continuously executes unilateral, uninterrupted and fast forced head 

turning movements which start when the head is in line with the body. After finishing 

such a turning movement, the animal executes a smooth, non-forced head movement 

back to the starting position. In case of torso-turning movements, the head remains 
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fixed in an unilateral position. In case of body-turning movements, the head as well as 

the torso remain fixed in an unilateral position. According to previous studies (see 

Chapter 3.1), a unilateral increase in GABAergic activity within the Substantia nigra 

pars reticulata results in contralateral head, torso or body turning. In the present study, 

these movements are labelled as contralateral FT2 movements. 

3. Forced Turning, type 3 (FT3): Sequences of successive unilateral ear, head, torso 

and body turning. These movements are initiated when the head is in line with the 

body. Typically, the turning movement starts with retroflexion of the ear, that is 

followed by several, short unilateral forced head turning movements with a relatively 

fixed amplitude in such a way that each subsequent movement starts from the position 

in which the preceding head movement has ended. Sometimes, when the head reaches 

a deviation of more than 90 degrees from the body axis, the cat continues to turn 

unilaterally with short movements whereby the torso (including the forelimbs) becomes 

involved in the movement. Finally, in case the cat continues to turn also the remainder 

of the body becomes involved. According to a previous study (see Chapter 3.2), an 

unilateral decrease in GABA-ergic activity within the Deeper layers of the colliculus 

superior results in contralateral ear, head, torso and body turning. In the present 

report, these movements are labelled as contralateral FT3 movements. 

4. Oro-Facial Dyskinetic (OFD) movements: Small, sometimes repetitive, contractions 

of individual muscles or small groups of muscles in the face region, that often are 

followed by tongue protrusions. According to previous studies (Cools, 1980), these 

movements can be elicited by stimulating dopamine receptors in the anterodorsal part 

of the caudate nucleus. Moreover, these movements can also be evoked from pallidal 

regions that receive projections from the latter part of the Caudate nucleus (Cools et 

al., 1989). 

The number of each type of movement during 5 min blocks was determined until 

90 min following kainic acid and until 15 min following apomorphine. With respect to 

parameter 1 to 3, the number of cats during each time-block was determined in case 

at least ten of these movements were executed; in case different types of movement 

were executed during one time block, each of them was separately taken into account. 
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Analysis of metabolic activity. 

The uptake of labelled deoxyglucose was considered to reflect local metabolic 

activity. Based upon the original report of Sokoloff and coworkers (Sokoloff et al., 

1977), the cats were sacrificed 45 min after the deoxyglucose application (175 /iCi [14C]-

2-D-deoxyglucose per cat, i.e. 50 //Ci/kg) with an overdose of pentobarbital. The skull 

was dissected and quick-frozen in isopentane at -30 "С. Cross sections (20 μπι) were 

cut from the embedded skull with help of a LKB microtome. Slices were collected with 

an intersection distance of 0.5 mm at the level of the caudate nucleus, and 0.2 mm at 

the level of the substantia nigra pars reticulata and the deeper layers of the superior 

colliculus. The sections were picked up on tape, freeze-dried at -20 0C, and exposed 

to X-ray film (Betamax, Amersham) together with standard UC microscales calibrated 

for brain tissue (Amersham) for 14 days. In this study, our aim was to detect kainic 

acid-induced unilateral changes in metabolic activity at the level of the caudate nucleus, 

the substantia nigra pars reticulata and the deeper layers of the superior colliculus. 

Furthermore, all behavioural parameters used in the present study represent unilateral 

changes in neurotransmission processes. Therefore, analysis of metabolic activity was 

limited to the comparison of optical density between both sides at the level of the 

caudate nucleus, the substantia nigra pars reticulata and the deeper layers of the 

superior colliculus. Differences in metabolism were evaluated by visual inspection of the 

autoradiograms. Since this method was insufficient for detecting metabolic changes at 

the level of the Deeper layers of the colliculus superior, this area was analyzed by 

quantitative computer-assisted densitometry (Viper system, Gesotec). The colliculus 

superior was divided into superficial and deeper layers according to the terminology of 

Kanaseki and Sprague (1974). In pilot studies it was found that collicular characteristic 

movements occurred about 50 min after kainic acid; therefore, metabolic activity in 

the deeper layers of the superior colliculus was computed in one cat that was sacrificed 

50 min after kainic acid and that did not execute these movements (cat 2) and in one 

cat that received deoxyglucose 70 min after kainic acid and that did display this 

characteristic behaviour (cat 3). In each autoradiogram, optical densities in both colliculi 

(only the deeper layers) were analyzed using the calibrated 14C-labelled polymer layers, 
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in order to determine tissue equivalent levels of activity in nCi/g. Mean value of 

deoxyglucose uptake was determined in ten consecutive autoradiograms of each cat. 

Deoxyglucose uptake at the level of the ipsilateral colliculus was expressed as a 

percentage of that at the level of the contralateral colliculus. 

Histology. 

The animals that did not receive deoxyglucose were deeply anaesthetized with 

pentobarbital and transcardially perfused with a 4% formaldehyde solution immediately 

after the final experiment. The brains were removed and cross-sections were cut with 

help of a cryostat (30 μτη slices) or, after embedding the brain in paraffine, with help 

of a microtome (15 μ m slices). The slices were subsequently stained with cresyl violet 

for analysis of injection locus and extent of kainic acid-induced intracaudate lesioning. 

Drugs. 

Apomorphine hydrochloride (Brocades) was dissolved in distilled water. Kainic acid 

(Serva) was dissolved in 0.15 M sodium-phosphate buffer, pH 7.4. A bolus of [HC]-

2-D-deoxyglucose (Amersham), dissolved in 1 ml physiological saline, was injected 

intravenously. All drug solutions were freshly prepared immediately before each 

experiment. 

Statistics. 

The effect of apomorphine before and after kainic acid was compared with help of 

the Fisher exact probability test (two tailed). In cat number two and three, differences 

in metabolic activity between the ipsilateral and contralateral Deeper layers colliculus 

superior were evaluated by comparing the deoxyglucose uptake in ten autoradiograms 

with help of the Wilcoxon matched-pairs signed-ranks test (two tailed). 
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6.13 RESULTS 

Histology 

Histological verification revealed that all injections were placed in the target area, 

with coordinates (Snider & Niemer, 1964) A 14.0-15.0, L 4.5-6.5 and H 4.5-5.5. A 

representative example of an injection site as well as the extent of the kainic acid-

induced lesion is shown in Figure 6.1.1. 

Figure 6.1.1 Representative picture of a cross-section showing cannula tracks and injection site ofkainic acid 

in the rostromedial part of the right caudate nucleus. Staining: cresyl-violet; note the extent of the lesion in 

the right caudate nucleus. 
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Figure 6.1.2 Percentage of animals 

showing contralateral forced staccato 

head turning (FTl movements) 

during 5 mm time-blocks from 0 to 

90 mm after the unilateral intra-

caudate injection of kainic acid. n = 

number of animals of total of ani

mals tested displaying FT] move

ments. 

CONTRALATERAL FT 1: S T A C C A T O HEAD Τ 
(n= 10/10) 

(*) 

90 
MIN 

Behavioural observations 

Three cats received in addition to kainic acid an i.v. injection of [14C]-2-D-

deoxyglucose (see Section 6.1.2). The display of the kainate induced movements (see 

below) was interrupted only for a short period by this injection in cats 2 and 3 (see 

Section 6.1.2: experiment 2b); the behaviour of all deoxyglucose-treated animals did not 

differ qualitatively from that of the other cats, therefore they were included in the 

behavioural analysis described below. 

Unilateral injection of 1.0 /ig kainic acid resulted in a very characteristic sequence 

of behavioural events, although there were individual differences with respect to the 

length and intensity of the various phases. Almost immediately after the injection, the 

animals started to display contralateral FTl movements (mean starting-time ±SEM: 0.5 

±1.0 min). This behaviour lasted about 17 min (mean ending-time±SEM: 17.7±7.6 

min). During this period, the total number of FTl movements was (mean ±SEM): 66.0 

±20.1. The percentage of cats displaying FTl movements during each time-block is 

shown in Figure 6.1.2. 
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C O N T R A L A T E R A L F T 2 HEAD/TORSO/BODY Τ 
ln= 10/10) 

(W 

Figure 6.1.3 Percentage of animals 

showing fast, uninterrupted contra

lateral forced head, torso or body 

turning (FT2 movements) during 5 

mm time-blocks from 0 ю 90 mm 

after the unilateral mtracaudate in

jection of kamic acid. n=number of 

animals of total of animals tested 

displaying FT2 movements. 

(%) 

80-

60-

C O N T R A L A T E R A L F T 3 E H Т В Τ 
(η=θ/ΐ0) 

Figure 6.1.4 Percentage of animals 

showing sequences of short contra

lateral forced ear, head, tono and 

body turning (FT3 movements) during 

5 mm time-blocks from 0 to 90 mm 

after the unilateral injection ofkainic 

acid n= number of animals of total 

of animals tested displaying FT3 

movements. Two cats, that were 

sacrificed 45 and SO mm after kainic 

acid, did not display this particular 

behaviour. 

During the next phase, all cats displayed contralateral FT2 movements (mean 

starting-time ±SEM: 15.1 ±7.0 min). This behaviour disappeared about 50 min after 
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the kainic acid injection (mean ending-time ±SEM: 50.2±12.8 min). During this period, 

the cats displayed on the average more than 200 FT2 movements (mean number± 

SEM: 209.8± 132.2). The percentage of cats displaying FT2 movements during each 

time-block is shown in Figure 6.1.3. 

During the final phase, which started about 48 min after the injection of kainic acid 

eight cats showed contralateral FT3 movements (mean starting time ±SEM: 47.8 ±11.7 

min). At the end of the observation period, i.e. 180 min after the injection of kainic 

acid, most cats still displayed these movements. Since the behaviour of the cats did not 

change for the remainder of the observation period, the data until 90 min after kainic 

acid are presented. Until 90 minutes after the injection, the cats displayed on the 

average more than 200 FT3 movements (mean number ±SEM: 206.9 ±98.7). The per

centage of cats displaying FT3 movements during each time-block is shown in Figure 

6.1.4. 

Figure 6.1.5 Percentage of animals 

showing tpsilateral orofacial dys-

kinetic movements during 5 mm tune-

blocks from 0 to 90 mm after the 

unilateral mtracaudate injection of 

kainic acid, η = number of animals 

of total of animals tested displaying 

these movements 

I P S I L A T E R A L OROFACIAL DYSKINETiC MOVEM 
(n-7/10) 

(») 
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TABLE 6.1.1 Percentage of animals showing contralateral forced staccato head tummg (FT1 movements) 

during 5 mm time-blocks from 0 to 15 mm after the unilateral mtracaudate injection of 0.6 μg apomorphme 

one week before (PRE-ΚΑ; n=10) and one week after (POST-ΚΑ; n=7) kamic acid. 

TIME-BLOCK PRE-KA POST-KA 

(min) (%) (%) 

0 - 5 70 29 

6 - 1 0 90 14' 

11 - 15 90 14' 

*p<0.05 (Fisher exact probability test, two tailed). 

OFD movements were always observed ipsilateral to the injected side. Seven out 

often tested cats displayed these movements. The frequency of OFD movements is 

relatively low (maximal 2 spells during one time block whereby during each spell one 

or more OFD movements may occur). The percentage of cats displaying OFD 

movements during each time-block is shown in Figure 6.1.5. 

Apomorphine 0.6 μ%, injected one week before kainic acid elicited contralateral FT1 

movements during 15 min after the intracerebral application. In contrast, one week 

after kainic acid, apomorphine elicited these movements in significantly less cats during 

the second and third time-block (Table 6.1.1). As a final remark, no abnormal 

movements were observed in any of the 15 min adaptation periods preceding the 

experiments. 

Metabolic activity. 

Evaluation of the deoxyglucose uptake revealed that at the level of the caudate 

nucleus, metabolism was enhanced on the ipsilateral side compared to the contralateral 

side. This difference was present until the most posterior parts of the head of the 

caudate nucleus. The enhancement was present in all three tested cats, but the increase 

177 



was most pronounced in the cat that had received deoxyglucose immediately before 

kainic acid. However, in the centre of the injection locus of the animals that had 

received deoxyglucose 5 and 70 min after kainic acid, metabolism was decreased. In 

these animals, an area of reduced metabolism was surrounded by an area with 

enhanced metabolic activity (compared to the contralateral side). The latter decrease 

Figure 6.1.6 Representative pictures of autoradiograms following Lv. application of ['4C]-2-D-deoxyglucose 

one min before (cat 1), five min (cat 2) and seventy min (cat 3) after kainic acid. Autoradiogram at the level 

of the injection site in the caudate nucleus (arrow) of cat 1 (A), cat 2 (B) and cat 3 (C); at the level of the 

substantia nigra pars reticulata (arrow) of cat 1 (D), cat 2 (E) and cat 3 (F). 
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Figure 6.1.7 Representative picture of an autoradiogram at the level of the deeper layers of the superior 

colliculus (arrow) of cat 3. Note that metabolic activity was only slightly increased in the ipsilateral (right) 

colliculus compared to the contralateral (¡eft) colliculus. 

was most pronounced in the cat injected 70 min after kainic acid (Figure 6.1.6). More

over, metabolic activity was also relatively enhanced at more anterior levels of the 

caudate nucleus, although the latter increase was less pronounced compared to that in 

the posterior parts (data not shown). 

Metabolism was also relatively increased in the ipsilateral substantia nigra pars 

reticulata in all three cats; the asymmetry at this level was not present at all levels in 

cat 1, that received deoxyglucose immediately before kainic acid, (Figure 6.1.6). More

over, in the latter animal, metabolic activity appeared to be the same in both colliculi. 
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Results of quantitative densitometry in cat 2 revealed no significant difference between 

both sides: density of the ipsilateral colliculus (deeper layers) was 104.0±10.8% (mean 

±SEM) of that of the contralateral colliculus (p>0.05). In contrast, in cat 3 metabolism 

in the ipsilateral colliculus (deeper layers) was 114.6±6.8% of the activity in the 

contralateral colliculus (Figure 6.1.7). Comparing both sides, the difference appeared 

to be significant: p<0.01. As a final remark, asymmetric changes in metabolism were 

present at the level of the putamen and the hippocampus in all three animals (Figure 

6.1.6). 

6.1.4 DISCUSSION 

The acute behavioural effect of an unilateral intracaudate injection of kainic acid 

could be divided into three phases that were characterized by FTl, FT2 and FT3 

movements respectively. The final phase lasted at least several hours. 

Caudate nucleus and effects of kainic acid. 

In the present study, intracaudate kainic acid elicited contralateral FTl movements 

in all tested cats during the first phase after the injection. Previously, it has been found 

that, in contrast to experimentally induced alterations in nigral or collicular GABAergic 

neurotransmission, an increase in dopaminergic activity or a decrease in GABAergic 

activity in the rostromedial part of the caudate nucleus results in contralateral FTl 

movements (see Section 6.1.2). Accordingly, the initial, excitatory (Coyle, 1983; Foster 

& Fagg, 1984; Olney, 1981) action of kainic acid may be equivalent to an activation of 

dopamine receptors and/or an inhibition of GABA receptors with respect to the ability 

to evoke contralateral FTl movements. Activation of dopamine receptors with help of 

i.v. injection of apomorphine is known to produce an increase in striatal metabolism 

(McCulloch et al., 1982). On the other hand, activation of GABA receptors with help 

of a local injection of muscimol is reported to produce a decreased metabolic activity 

at this level (Kelly & McCulloch, 1984). Accordingly, these data suggest that an 

increase in dopaminergic activity and/or a decrease in GABAergic activity may be 
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equivalent to an increase in metabolic activity at the level of the caudate nucleus. 

Furthermore, intrastriatal kainic acid is known to produce acutely an activation of local 

metabolism (Wooten & Collins, 1980), viz. an effect that was also found in the present 

study as illustrated by the relative increase in local metabolic activity in the ipsilateral 

caudate. On the basis of these data, it can be suggested that kainic acid induced 

contralateral FTl movements as a result of its excitatory action on striatal neurons. 

Substantia nigra and efTects of kainic acid. 

In the present study, intracaudate kainic acid elicited contralateral FT2 movements 

in all tested cats during the second phase after the injection. Previously, it has been 

reported that, in contrast to experimentally induced changes in striatal dopaminergic 

or GABAergic activity and experimentally induced alterations in collicular GABAergic 

neurotransmission, stimulation of nigral GABA receptors results in contralateral FT2 

movements (see Section 6.1.2). Activation of caudate dopamine receptors is known to 

result in an increased activity of the striato-nigral GABAergic pathway (Gale & Casu, 

1981; Scheel-Kriiger, 1983). In view of the finding that excitation induced by kainic 

acid may be functionally equivalent to activation of dopamine receptors (see above), 

the present data suggest that intracaudate kainic acid induced contralateral FT2 

movements by stimulation of nigral GABA receptors as a result of the activation of the 

striato-nigral GABAergic pathway. According to others, excitation of striatal neurons 

by electrical stimulation (Aiko et al., 1988) or by local injection of kainic acid (Kimura, 

McGeer & McGeer, 1980) enhances metabolic activity in the substantia nigra pars 

reticulata, whereas activation of dopamine receptors by i.v. injection of apomorphine 

is also reported to produce an increase in glucose metabolism in this brain region 

(McCulloch et al., 1982). The present study confirmed this as illustrated by the finding 

that kainic acid relatively increased metabolic activity in the ipsilateral reticular 

substantia nigra compared to its contralateral counterpart. In view of the finding that 

striatal excitation induced by kainic acid may be functionally equivalent to activation 

of dopamine receptors (see above), the present data suggest that intracaudate kainic 

acid induced an increase in metabolic activity at the level of the ipsilateral substantia 

nigra pars reticulata as a result of the activation of the GABAergic striato-nigral 
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pathway. Taking together, the present data indicate that intracaudate kainic acid 

produced indirectly a stimulation of GABA receptors of the ipsilateral nigra resulting 

in contralateral FT2 movements. 

Colliculus superior and effects of kainic acid. 

Except for two cats (cat 1 and 2) that participated in experiment 2b, and had to be 

sacrificed before the start of the third phase, intracaudate kainic acid elicited 

contralateral FT3 movements in all tested cats during the third phase after the 

injection. Previously, it has been found that, in contrast to experimentally induced 

changes in striatal dopaminergic or GABAergic activity and experimentally induced 

alterations in nigral GABAergic neurotransmission, deactivation of collicular GABAergic 

receptors results in contralateral FT3 movements (see Section 6.1.2). Activation of 

striatal dopamine receptors is known to result in a decreased activity of the GABAergic 

nigro-collicular pathway (Gale &. Casu, 1981; Scheel-Kriiger, 1983). In view of the 

finding that striatal excitation induced by kainic acid may be functionally equivalent to 

an increase in striatal dopaminergic activity (see above), the present data suggest that 

kainic acid induced contralateral FT3 movements as a result of an indirectly induced 

deactivation of ipsilateral collicular GABA receptors by decreasing the activity of the 

nigro-collicular GABAergic pathway. Furthermore, analysis of the autoradiograms 

revealed a relatively enhanced metabolism in the deeper layers of the ipsilateral 

superior colliculus of the cat that received deoxyglucose 70 min after kainic acid. In 

other words, in this animal the display of contralateral FT3 movements appeared to be 

accompanied by a relative activation of local metabolism at the level of the ipsilateral 

colliculus. In contrast, metabolism was not changed at the level of the deeper layers of 

the ipsilateral superior colliculus compared to the contralateral colliculus of the cat that 

was sacrificed 50 min after kainic acid, and that did not display FT3 movements. These 

data suggest that metabolic changes are present only in cases where functional changes 

in the colliculus are reflected in behavioural alterations. Finally, these data fit in with 

those of others (McCulloch et al., 1982), who found that activation of dopamine 

receptors by i.v. injection of apomorphine results in an increased metabolic activity in 

the deeper layers of the superior colliculus. 
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GABAergic input and changes in metabolic activity. 

Increases in glucose metabolism may result from an enhanced activity in presynaptic 

terminals and/or in excitatory postsynaptic processes (for réf., see Aiko et al., 1988). 

Moreover, even inhibitory postsynaptic processes may result in an enhanced metabolism 

(Aiko et al., 1988). Considering the present observation that at the level of the 

substantia nigra pars reticulata activation of the GABAergic input appeared to be 

accompanied by a relative increase of metabolism, whereas at the level of the deeper 

layers of the superior colliculus an inhibition of the GABAergic input appeared to be 

accompanied by a relative increase of metabolism, it remains to be investigated to 

which degree the observed metabolic changes were due to alterations in GABAergic 

input and/or GABAergic interneurons (cf.Lu et al., 1985). 

Kainic acid-induced increasing pathology. 

In general, the behavioural effects, as described above, suggest that intracaudate 

kainic acid induced acutely an increasing pathology that resulted successively in 

functional changes at the level of the caudate nucleus, the substantia nigra pars 

reticulata and the deeper layers of the superior colliculus. Moreover, these alterations 

were also reflected in changes in local metabolic activity. 

Although metabolic changes at the level of the caudate and the substantia nigra 

were found in all three animals tested, the behavioural effects, characteristic for 

functional changes at these levels disappeared in a particular sequence. These data 

suggest that once a functional disturbance at a particular brain level becomes manifest 

in behavioural alterations, behavioural changes due to dysfunctioning hierarchically 

higher-ordered brain structures are no longer present. It remains to be investigated 

whether the latter phenomenon is due to a 'shut-down' of output-signals and/or simply 

due to a competition of different behaviours. Finally, the same phenomena may have 

hindered the occurrence of behavioural alterations inherent in metabolic asymmetric 

changes at the level of the putamen and the hippocampus. 
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Orofacial dyskinetic movements. 

In the present study, kainic acid was able to induce ipsilateral OFD movements. In 

previous studies, neither changes in the rostromedial caudate dopaminergic or 

GABAergic activity nor alterations in nigral or collicular GABAergic neurotransmission 

resulted in the occurrence of orofacial dyskinetic movements as observed in the present 

study. Accordingly, these data may imply that such movements were manifestations of 

striatal neuropathological processes that were not mediated via the caudato-nigro-

collicular pathway. This notion fits in with the observation that OFD movements 

occurred during all three behavioural phases. As it has been found that OFD 

movements can be elicited by activation of dopamine receptors in the anterodorsal part 

of the caudate nucleus (Cools, 1980), as well as from pallidal regions receiving 

projections from the latter part of the Caudate nucleus (Cools et al., 1989), it is 

suggested that these movements are indeed mediated via another output pathway, that 

starts to dysfunction as a result of striatally injected kainic acid. 

Kainic acid-induced lesion. 

Previously, it has been reported that kainic acid produces neuronal lesioning, at least 

partly as a result of its neuro-excitatory action (Coyle, 1983; Foster & Fagg, 1984; 

Matyja, 1986; McGeer, McGeer & Singh, 1978; Olney, 1981; Schwarcz & Coyle, 1977; 

Wuerthele et al., 1978). As a result, metabolic activity in the rat neostriatum was 

decreased 7-10 days following local injection of kainic acid (Kimura, McGeer & 

McGeer, 1980; Wuerthele et al., 1978). In the present study, metabolic activity 

appeared to be diminished in the centre of the injection locus especially in the animal 

that received deoxyglucose 70 min after kainic acid. Furthermore, one week after kainic 

acid, intracaudate apomorphine was no longer able to elicit FT1 movements, suggesting 

local neuronal damage. Indeed evidence has been presented indicating the loss of 

cholinergic and GABAergic striatal neurons following intrastriatal kainic acid injection 

(Beai et al., 1986; Hruska & Silbergeld, 1979; Schwarcz & Coyle, 1977). 

Clinical implications. 

Summarizing, the present study suggests that kainic acid injected into the feline 
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caudate nucleus produces an increasing pathology resulting successively in functional 

changes at the level of the caudate, its output station the substantia nigra pars 

reticulata, and at the level of a nigral output station, the deeper layers of the superior 

colliculus. The present data may imply that at least part of the symptoms of central 

disorders like Parkinson's Disease and Huntington's Chorea, are derived from 

dysfunctioning extrastriatal structures as a result of a disturbed striatal input. 
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6.2 UNILATERAL OCCLUSION OF THE MIDDLE CEREBRAL ARTERY 

Summary 

Behaviour and limb placing ability were analyzed acutely and subacutely (up to 21 

days) following unilateral occlusion of the middle cerebral artery (MCA) in cats. 

Immediately following occlusion, all tested cats started to display a sequence of 

different behaviours, characteristic for (1) an ipsilateral inhibition of dopaminergic 

activity in the caudate nucleus; (2) an inhibition of GABAergic activity in the reticular 

substantia nigra; (3) a stimulation of GABA receptors in the deeper layers of the 

colliculus superior (starting-time of these phases: about 4, 12 and 25 min, respectively). 

The latter behaviour was also present subacutely. In addition, unilateral orofacial 

dyskinetic movements were observed acutely as well as subacutely. Contralateral limb 

placing was deficient in all cats 60 min postocclusion; it was at least partly restored 

subacutely. Twenty-one days after the occlusion, [14C]-2-D-deoxyglucose uptake was 

relatively reduced in the ipsilateral caudate nucleus (especially in its posterior part), the 

ipsilateral substantia nigra pars reticulata and the deeper layers of the ipsilateral 

superior colliculus. The anterior caudate nucleus appeared to be less affected than the 

posterior caudate. Metabolism was relatively reduced in the sensorimotor cortex only 

in part of the tested cats. The data show that unilateral MCA occlusion produces 

consistent functional changes in all structures studied apart from the sensorimotor 

cortex, viz. the caudate nucleus, the substantia nigra pars reticulata and the deeper 

layers of the superior colliculus. 

6.2.1 INTRODUCTION 

The caudate nucleus sends neuronal information to several output stations, such as 

the substantia nigra, pars reticulata, and the globus pallidus (Graybiel & Ragsdale, 

1979; Royce & Laine, 1984). The substantia nigra pars reticulata in turn, sends its 

output signals towards the deeper layers of the colliculus superior, the midbrain 

186 



reticular formation and several thalamic nuclei (Beckstead, Domesick & Nauta, 1979; 

Beckstead & Frankfurter, 1982; Edwards, Ginsburgh & Henkel, 1979; Graybiel, 1978; 

May & Hall, 1986; see Section 2.3). The inhibitory amino acid gamma-aminobutyric 

acid (GABA) is one of the neurotransmitters of the caudato-nigral as well as the 

nigrocollicular pathway (Chevalier et al., 1981; Kim et al., 1971; Yoshida & Precht, 

1971; for review, see Gale & Casu, 1981; Scheel-Krüger, 1983). An experimentally 

induced decrease in striatal dopaminergic activity induces an inhibition of the 

caudatonigral GABAergic pathway; the resulting decreased release of GABA at the 

level of the nigral pars reticulata disinhibits in turn the nigrocollicular GABAergic fibres 

(Gale & Casu, 1981; Scheel-Krüger, 1983). In case the caudate nucleus produces 

abnormal output signals as a result of pathological disturbances in striatal neuronal 

functions it might be expected that structures directly innervated by the caudate, such 

as the substantia nigra pars reticulata, also start to dysfunction as a result of the 

abnormal input signals. In turn, the substantia nigra pars reticulata may then start to 

produce abnormal output signals resulting in dysfunctioning nigral output stations, such 

as the deeper layers of the colliculus superior (see Chapter 5; see also Gelissen & 

Cools, 1988). Therefore, it might be expected that at least part of the symptoms, 

inherent in striatal neuropathological processes characteristic for disorders like 

Parkinson's Disease or Huntington's Chorea, are actually due to functional disturbances 

of brain regions receiving (in)directly caudate output signals (cf. Lasker et al., 1987). 

Recently, it has been found that an experimentally induced neuropathological change 

at the level of the caudate nucleus resulted acutely in functional alterations at the level 

of the caudate, the substantia nigra pars reticulata and the deeper layers of the 

superior colliculus (see Section 6.1). Unilateral injections of the neuro-excitant kainic 

acid (Coyle, 1983; Foster & Fagg, 1984; Obey, 1971) into the rostromedial part of the 

caudate nucleus in cats resulted successively in behavioural changes characteristic for 

(a) an activation of striatal dopamine receptors, (b) an activation of nigral GABA 

receptors and (c) an inhibition of collicular GABA receptors (starting ± 1, 15 and 48 

min after the kainic acid injection, respectively). Furthermore, the observed behavioural 

changes were accompanied by a relative increase in metabolic activity at the level of 
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the caudate nucleus, the substantia nigra pars reticulata and the deeper layers of the 

superior colliculus as shown by the drug-induced changes in [14C]-2-D-deoxyglucose 

uptake. On the basis of these data, it has been concluded that striatally injected kainic 

acid produced a progressive pathology resulting successively in functional changes in the 

rostromedial caudate nucleus, the substantia nigra pars reticulata and the deeper layers 

of the superior colliculus (Section 6.1). 

In order to investigate whether the above-mentioned progressive pathology is actually 

due to the distorted information sent by the caudate nucleus to its output stations 

rather than due to typical features of the neurotoxin used, it was decided to study 

whether a completely different manipulation with striatal tissue results also in 

behavioural and metabolic alterations inherent in disturbances at the level of caudate 

output stations such as the substantia nigra, and at the level of nigral output stations, 

such as the colliculus superior. Because of the following reasons we focused our 

attention on the effects of focal ischemia induced by unilateral occlusion of the middle 

cerebral artery (MCA) in cats: 

1. MCA occlusion produces neuronal lesioning in a limited number of structures such 

as the dorsolateral neostriatum in rats (Shibuya, Arita & Yamamoto, 1987; Shigeno et 

al., 1985; Tyson et al., 1984). In the feline caudate nucleus MCA occlusion results in 

neuronal lesioning especially in the posterior part, i.e. the part containing the 

rostromedial subregion that controls the striatal output signals directed to the substantia 

nigra pars reticularis (Berkelbach van der Sprenkel & Tulleken, 1988); the anterodorsal 

region, i.e. a caudate subregion that is located rostral from the anterior commissure and 

that projects to output stations other than the substantia nigra is less affected (J.W. 

Berkelbach van der Sprenkel, HJ. Groenewegen and C.A.F. Tulleken, subm.). 

2. The ischemic insult resulting from MCA occlusion never includes the substantia nigra 

and the superior colliculus, allowing the possibility to study behavioural and metabolic 

consequences of remote functional alterations due to abnormal output signals derived 

from structures located within the ischemic region (cf. Kogure et al., 1974; Kühl et al, 

1980; Metter et al., 1985; Pozzilli et al., 1987; Pulsinelli, Levi & Duffy, 1982; Shigeno 

188 



et al., 1985). 

3. Evidence is available that metabolic activity at the level of the caudate nucleus, the 

substantia nigra pars reticulata and the deeper layers of the superior colliculus is 

affected following MCA occlusion (Nakayama et al., 1987; Pulsinelli, Levy & Duffy, 

1982; Shibuya, Anta & Yamamoto; 1987; Shigeno et al., 1985). 

4. Experimentally induced changes at the level of the caudate nucleus, the substantia 

nigra pars reticulata and the deeper layers of the superior colliculus all result in 

behavioural changes that can be distinguished from each other (Cools, Struyker 

Boudier, 1976; see Chapter 4). Accordingly, functional changes at the level of these 

structures following MCA occlusion can be differentiated. 

In the present study, the acute and subacute (up to 21 days) behavioural alterations 

after unilateral MCA occlusion were analyzed in cats. In addition, the behavioural 

changes induced by MCA occlusion inherent in alterations at the level of the caudate, 

the substantia nigra and the superior colliculus were correlated to chronic metabolic 

changes in these structures 21 days after occlusion. Apart from striatal lesioning as 

described above, MCA occlusion is also known to damage -to a variable extent- parts 

of the frontal cortex. Since frontal cortex lesions as well as extensive lesions of the 

caudate nucleus may result in deficient limb placing abilities (Armstrong, 1986; Bard, 

1933; Villablanca et al., 1976), it was investigated whether the occlusion also affected 

the latter ability. 

6.2.2 EXPERIMENTAL PROCEDURES 

Five female cats weighing 3-4 kg were used in the present study. Each animal 

underwent occlusion of the right MCA. 

Implantation of occluding device 

The occluding device was implanted in fluothane (2%) anaesthetized cats as 

previously described (Berkelbach van der Sprenkel & Tulleken, 1988). The optic 
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foramen was approached subperiostally, leaving the orbital contents intact. A burrhole 

was made on the laterosuperior side of the optic canal. After opening the dura and 

preparation of the MCA from the arachnoid, a 5-0 silk thread was put around the 

MCA and led to the vertex through a silicon tube. The ligature was placed proximal 

to the lenticulostriatal arteries. 

Occlusion procedure 

After at least two weeks during which the animals were habituated to the 

behavioural tests (see below), the MCA was occluded while the animal was conscious. 

After local anaesthesia (about 2 ml Xylocaine 2% intracutaneously), a small incision was 

made through the skin to expose the silicon tube containing the thread which, at its 

other end, was put around the proximal MCA. By gentle traction to the thread, the 

MCA was occluded. Subsequently, the thread was fixed and the incision was closed 

using two wound clips. About 3 min after the occlusion, open field observation started 

(see below). The method of MCA occlusion in conscious cats, as used in the present 

study, has been proven to produce consistent and reproducible infarcts at least in the 

posterior part of the caudate nucleus (Berkelbach van der Sprenkel & Tulleken, 1988). 

Behavioural experiments 

Upon complete recovery from the implantation of the occluding device (see above), 

placing responses, righting reflexes, food intake and reactivity to visual and acoustic 

stimuli were controlled. Since all operated cats showed normal responses, all animals 

were subsequently habituated to the observation cage (90 χ 60 χ 60 cm) during two one 

hour sessions on separate days. The observation cage had a plexiglass front allowing 

video recording with help of a closed videocircuit. During the habituation sessions, 

abnormal movements, such as those described below, were never observed. Therefore, 

we did not include an additional sham-operated group of cats since each animal used 

in the present study served as its own control. 

The cats participated in the following experiments: 

Experiment 1: About 3 min after the completion of the occlusion procedure (see 
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above) the animal was placed in the observation cage. Open-field behaviour was 

recorded on videotape for 60 min to detect whether caudate-, nigral- and/or collicular-

specific effects appeared (see below). This recording session was followed by the limb 

placing tests (based on the methods described by Villabianca et al., 1976). The ability 

to walk on a small bar and to place the limbs correctly was measured by placing the 

cat on a wooden bar (200 χ 5 χ 5 cm) which was situated about two meters above the 

floor. The animal was allowed to walk on the bar towards the other end where it was 

rewarded with food pellets. This procedure was performed three times (bar placing). 

In case of misplacing the affected limb was noted. Next, the animal was gently fixated 

by the experimenter in such a way that only one limb was hanging freely without the 

cat being able to see that limb. Tactile placing was tested by slightly touching the edge 

of a wooden table with the dorsum of the paw. This was performed three times. At 

first the left forelimb was tested, next the right forelimb, then the left hindlimb and 

finally the right hindlimb. In case of absence of correct placing in at least two out of 

three attempts the affected limb was noted. In case tactile placing did not occur, 

proprioceptive placing was tested. Therefore the animal was fixated in the same way 

as described above and, subsequently, moved slowly forwards whereby the freely 

hanging limb continuously made contact with the edge of the table. In case placing did 

not occur, the limb was 'dragged' along the surface of the table whereby the limb was 

extremely moved in the shoulder or the hip. Proprioceptive placing was tested three 

times, but only in the limbs that failed to react on tactile stimulation. In case of 

absence of placing in at least two out of three attempts the affected limb was noted. 

Finally, visual placing of each forelimb was tested by moving the cat, which now was 

allowed to move its head freely, from a short distance towards the surface of the table, 

whereby one forelimb was fixated. Visual placing was tested three times before the 

other (right) forelimb was tested in the same way. In case of absence of placing in at 

least two out of three attempts the affected limb was noted. 

Experiment 2a: To investigate the subacute effects of MCA occlusion, each animal 

was readapted to the observation cage for 15 min one day after the occlusion. 

Immediately following this readaptation period, open-field behaviour was recorded 

during 15 min for subsequent analysis. Immediately following the recording session, limb 
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placing was tested using the same procedure as described above (see Experiment 1). 

Experiment 2b: The same as experiment 2a, but now 3 days after the occlusion. 

Experiment 2c: The same as experiment 2a, but now on day 8 (n=3) or day 11 

(n=2) after the occlusion. 

Experiment 2d: The same as experiment 2a, but now on day 18 (n=l) or day 21 

(n=2) after the occlusion. 

Experiment 3: In order to investigate chronic changes in local metabolic activity 

following MCA occlusion in the brain regions under study all cats (n=5) received an 

i.v. injection of [14C]-2-D-deoxyglucose 21 days after the occlusion. Therefore, the cats 

were lightly anaesthetized with fluothane (1.7 %). Catheters were introduced in the 

femoral artery and vein and tunnelled to a small cutaneous incision on the back, close 

to the tail. The cats were allowed to recover from the anaesthesia for four hours before 

they received an injection of 175 //Ci ['4C]-2-D-deoxyglucose (Amersham; dissolved in 

one ml saline). During the following 45 min the cats were lying quietly in a small box. 

After this period the cats were sacrificed with an overdose of pentobarbital. Next, the 

skull was dissected and quick-frozen in isopentane (-30 "C); cross sections (20 μτη) were 

cut on an LKB microtome and subsequently processed for densitometric analysis of 

labelled deoxyglucose uptake according to previously reported procedures (see Section 

6.1.2). The sections (caudate nucleus and sensorimotor cortex: intersection distance 500 

μιη; substantia nigra and superior colliculus: intersection distance 200/<m) were exposed 

to X-ray film (Betamax, Amersham) together with standardized 14C microscales 

(Amersham) for 14 days. 

Dependent variables open Held test 

In principle, only overt behavioural effects which render superfluous double-blind 

analysis because of their pathological nature were taken into account. 

1. FT1; Forced Turning, type 1: Abnormal, 'forced' head turning movements that start 

when the head is in line with the body. They are considered to be completed when the 

cat executes a smooth, non-forced head movement back to the starting position. 

Typically, these movements are interrupted at variable intervals. According to previous 
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studies (for réf., see Cools, Struyker Boudier & Van Rossum, 1976) ipsilateral FT1 

movements as defined above are characteristic for an unilateral decrease in the 

dopaminergic activity or increase in the GABAergic activity in the rostromedial part of 

the caudate nucleus. 

2. FT2; Forced Turning, type 2: Abnormal, 'forced' head, torso or body turning. In 

contrast to FT1 movements, unilateral FT2 head movements are uninterrupted, fast 

'forced' head turning movements which start when the head is in line with the body. 

Such a turning movement is considered to be completed in case the animal executes 

a smooth, non-forced head movement back to the starting position. In case of torso 

(including the forelimbs) or body turning movements, the head or the head and torso, 

respectively, remain fixed in an unilateral position. According to previous studies (see 

Section 4.1; see also Wolfarth, Kolasiewicz & Sontag, 1981), contralateral FT2 

movements as defined above are characteristic for an unilateral increase in GABAergic 

activity within the substantia nigra pars reticulata. 

3. Freezing behaviour: Absence of any movement for a period of at least 30 seconds. 

Freezing behaviour occurs typically into the midst of a non-forced movement. According 

to previous studies (Section 4.1; see also Wolfarth, Kolasiewicz & Sontag, 1981), this 

behaviour is characteristic for a decrease in GABAergic activity within the substantia 

nigra pars reticulata. 

4. Forced Turning, type 3 (FT3): This turning behaviour is characterized by sequences 

of successive, abnormal 'forced' ear, head, torso and body turning movements. These 

movements are initiated when the head is in line with the body. Typically, the turning 

movement starts with retroflexion of the ear, that is followed by several, short unilateral 

forced head turning movements with a relatively fixed amplitude in such a way that 

each subsequent movement starts from the position in which the preceding head 

movement has ended. In case the head reaches a deviation of more than 90 degrees 

from the body axis, the cat sometimes continues to turn unilaterally with short 

movements whereby the torso becomes involved in the movement. Finally, in case the 

cat continues to tum the remainder of the body becomes also involved. According to 

a previous study (Section 4.2) contralateral FT3 movements as defined above are 

characteristic for an unilateral decrease in GABAergic activity within the deeper layers 
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of the superior colliculus. 

5. Hypo-activity: In case the cat displays less than four normal and/or abnormal 

movements per minute, its behaviour is labelled as a state of hypo-activity. During 

control sessions, cats execute more than four (normal) movements per minute in an 

open field test. Thus, all movements executed by the cat are taken into account. 

According to previous studies (Cools et al., 1984; Gelissen & Cools, 1986), an increased 

intracollicular GABAergic activity induces a state in which the behaviour of the animal 

is fully directed by changes in exteroceptive stimuli. In case the animal is placed in a 

familiar environment and there are no changes in exteroceptive stimuli, the behaviour 

is characterized by a state of hypo-activity. 

6. Oro-Facial Dyskinetic (OFD) movements: Small movements in the face region as 

a result of (repetitive) contractions of individual muscles or small groups of muscles. 

Such movements are often followed by tongue protrusions. According to previous 

studies these movements can be elicited by stimulating dopamine receptors in the 

anterodorsal part of the caudate nucleus or inhibition of GABA receptors within the 

subcommissural part of the globus pallidus (Cools et al., 1989). 

The number of FT1, FT2 and FT3 movements was determined for each cat until 

60 min after the occlusion. Subsequently, the percentage of animals showing a 

particular behaviour during 10 min time-blocks until 60 min post-occlusion was 

determined and presented graphically (see Section 6.2.2, Results). In addition, the 

number of cats that displayed one of the above-mentioned effects during the 15 min 

observation period on day 1, 3, 8-11 and 18-21 post-occlusion was determined. In case 

different behavioural effects were displayed during one time-block or observation period 

they were separately taken into account. 

Analysis of metabolic activity 

The uptake of labelled deoxyglucose was considered to reflect local metabolic 

activity. In this study, our purpose was to detect whether or not chronic asymmetric 

changes in metabolic activity occur at the level of the rostromedial caudate nucleus, the 

anterodorsal part of the caudate, the substantia nigra pars reticulata and the deeper 
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layers of the superior colliculus as a result of the MCA occlusion. Thus, the posterior 

caudate nucleus, i.e., caudal to the anterior commissure and encompassing the 

rostromedial region, and the anterior caudate, i.e., rostral to the anterior commissure 

and encompassing the anterodorsal region, were analyzed separately. In addition, 

deoxyglucose uptake at the level of the sensorimotor cortex (gyri sigmoideus and 

coronalis) was determined. 

The colliculus superior was divided into superficial and deeper layers according to 

the terminology of Kanaseki and Sprague (1974). For each region, changes in metabolic 

activity were analyzed using the same method as has been reported previously (Section 

6.1). Uptake of [14C]-2-D-deoxyglucose was analyzed with help of computer-assisted 

densitometry (Viper System, Gesotec) by using the calibrated 14C-labelled polymer 

layers in order to determine tissue equivalent levels of activity in nCi/g. For each 

region, the mean value of deoxyglucose uptake was determined in 10 consecutive 

autoradiograms of each cat. Deoxyglucose uptake of the region ipsilateral to the 

occlusion was expressed as a percentage of that of its contralateral counterpart. In 

brain structures containing areas completely devoid of any deoxyglucose uptake as a 

result of the ischemia, only the tissue of that structure surrounding this area was used 

for the uptake analysis. 

6.23 RESULTS 

Open field behaviour: acute effects 

Immediately following occlusion, four out of five cats showed contralateral 

hemiparesis as well as slipping and misplacing of the contralateral fore- and hindlimb. 

In addition, three of these animals showed difficulty in maintaining an upright posture 

during this period. Overall, these symptoms only occurred during the first 12 min of the 

observation period (data not shown). Moreover, after a relatively hyperactive initial 

stage all cats adopted a sitting or lying posture. One cat immediately lied down after 

it was placed in the observation cage; this animal did not show the limb or posture 
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Figure 6.2.1 Percentage of animals 

showing ipsilateral FTl movements m 

the open field test during 10 min 

tune-blocks from 0 to 60 min, and 

during one 15 min time-block per day 

1, 3, and 8-11 days following MCA 

occlusion, η = number of animals of 

total of animals tested displaying 

these movements. 
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abnormalities as described above. 

Apart from the effects mentioned above, unilateral MCA occlusion induced a 

sequence of behavioural changes that was present in all occluded animals (see below). 

All animals showed ipsilateral FTl movements (mean number ± SEM: 20.2 ± 6.7); the 

latter movements occurred only acutely following occlusion, between 1 (mean starting-

time ± SEM: 3.8 ± 1.8 min) and 14 min (mean ± SEM: 10.0 ± 1.9 min; see Figure 

6.2.1). 

The next phase following occlusion was characterized by the display of freezing 

behaviour which occurred in all cats between 5 and 25 min after the start of the 

observation period (mean starting time ± SEM: 11.8 ± 2.6 min; mean duration of this 

phase ± SEM: 15.6 ± 3.0 min; see Figure 6.2.2). 

During the final part of the observation period, the behaviour of all tested cats was 

characterized by hypo-activity. Mean start-time of this phase (±SEM) was 24.6 (±6.1) 
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Figure ((.2.2 Percentage of anunals 

showing freezing behaviour in the 

open field test during 10 mm time-

blocks from 0 to 60 min, and during 
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and 8-11 days followmg MCA occlu

sion n= number of animals of total 

of animals tested displaymg these 
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Figure 6.2.3 Percentage of animals 

showmg hypo-actmty m the open 

field test during 10 mm time-blocks 

from 0 to 60 mm, and during one 15 

mm time-block per day 1, 3, and 8-

11 days followmg MCA occlusion. 

n= number of animals of total of 

animals tested displaying these 

movements. 

min (see Figure 6.2.3). In general, the cats adopted a lying posture during this phase 

and hardly moved for the remainder of the observation time (Table 6.1.1). However, 
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Figure 6.2.4 Percentage of animals 

showing ipsilateral FT3 movements m 

the open field test during 10 mm 

time-blocks from 0 to 60 mm, and 

during one 15 mm time-block per day 

1, 3, and 8-11 days following MCA 

occlusion. n= number of animals of 

total of animals tested displaying 

these movements. 

when challenged, for instance by the approach of the experimenter, all cats executed 

ipsilateral FT3 movements (data not shown). These movements also appeared when 

the cat was handled, such as during the limb placing tests. 

Apart from the effects described above, two cats (number 1 and 3) displayed 

ipsilateral FT3 movements (mean number ± SEM: 13.0 ± 0.0; Figure 6.2.4) during a 

short period (lasting 6 and 9 min, respectively) between the second and the final 

behavioural phase. 

During the open-field observation, all cats displayed unilateral OFD movements. 

OFD movements were displayed at the contralateral as well as at the ipsilateral side 

during the first 60 min following the occlusion (Figure 6.2.5). 

Open-field behaviour: subacute effects 

One day following occlusion, three out of five cats showed hypo-activity (Figure 6.2.3, 

Table 6.2.1), whereas one animal displayed ipsilateral FT3 movements during the open 

IPSILATERAL FT 3 ΕΠ,ΤΒ T 

(n=5/5) 
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field test (Figure 6.2.4). The results of the remaining observations, viz. 3, 8-11 and 18-

21 days post-occlusion, are depicted in Table 6.2.1 and Figures 6.2.1-6.2.4. 

During the subacute observations all cats (n= 5) again displayed ipsilateral FT3 

movements when handled (data not shown). As shown in Figure 6.2.5, ipsilateral 

dyskinetic movements were displayed subacutely by only one cat whereas contralateral 

OFD movements were displayed subacutely by four animals. Finally, FT2 movements 

were not observed during any of the open field tests. 

Limb placing tests: acute effects 

Unilateral MCA occlusion clearly affected limb-placing abilities (Table 6.2.2): during 

bar walking, all cats (n= 5) had difficulty with correctly placing the contralateral limbs 

on the bar. Frequently, the fore- and/or the hindlimb slipped from the bar; often, the 

animals remained in an awkward posture because they did not retract the affected limb 

Table 6.2.1 Changes in open field behaviour elicited by focal ischemia from 50 to 60 min, and during 15 

min on day 1, 3, 8-11 and 18-21 following occlusion of the right MCA'. 

HYPO, hypo-activity; FR, freezing behaviour; ipsi FT3, ipsilateral forced turning 
movements, type 3 (see Section 6.2.2). O, no abnormal behaviour; -, not tested. 

CAT 

1 

2 

3 

4 

5 

50-60 min 

HYPO 

HYPO 

HYPO 

HYPO 

HYPO 

day 1 

0 

HYPO 

ipsi FT3 

HYPO 

HYPO 

day 3 

FR 

ipsi РГЗ 

ipsi F13 

HYPO 

HYPO 

day 8-11 

HYPO 

0 

ipsi K13 

ipsi FT3 

0 

day 18-21 

HYPO 

ipsi FT3 

ipsi FT3 

-

-

'Note that changes in open field behaviour displayed between 0 and 60 min after 
occlusion are illustrated in Figures 6.2.1-6.2.5. 
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O R O - F A C I A L DYSKINCTIC MOVfcMENTS 

CONTRAL· 
(n-4/5) 

*>SIL. 
In-4/5) 

Figure 6.2.5 Percentage of animals 

showing OFD movements m the open 

field test during 10 mm time-blocks 

from 0 to 60 min, and during one 15 

min time-block per day 1, 3, and 8-

11 days following MCA occlusion. 

n= number of animals of total of 

animals tested displaying these 

movements. 

that was hanging alongside of the bar. Tactile placing too was deficient in all tested 

cats: they did not lift their contralateral fore- and hindlimb when the dorsum touched 

the edge of the table. Only one out of five cats showed intact proprioceptive placing; 

all other tested cats did not make any attempt to place the contralateral fore- and 

hindlimb after proprioceptive stimulation. On the other hand, placing reactions of the 

ipsilateral limbs were fully intact. Finally, visual placing was not affected; in fact, 

disturbed visual placing never occurred. 

Limb placing tests: subacute effects 

One day after the occlusion limb placing was recovered in part of the animals (Table 

6.2.2). Moreover, on the bar only forelimb placing was still reduced, whereas hindlimb 

placing was already intact. Tactile as well as proprioceptive placing was absent in part 

of the animals (3 and 2 cats, respectively). The results of the remaining tests are 

presented in Table 6.2.2. As shown, there was a significant improvement of contralat

eral forelimb placing responses as well as of bar-placing of the contralateral hindlimb; 
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Table 6.2.2 Percentage of cats (n=5) showing intact contralateral limb placing 60 min, 1 day, 3 and 8-11 

days after MCA occlusion. 

BAR* 

60 min 0 

Day 1 60 

Day 3 80 

Day 8-1180 

Ρ 

FORELIMB 

TAC* 

0 

40 

80 

100 

* · 

PROP 

20 

60 

80 

100 

* 

BAR' 

0 

100 

100 

100 

*** 

HINDLIMB 

T A C 

0 

40 

60 

60 

n.s. 

PROP 

20 

60 

60 

80 

n.s. 

'bar placing; btactile placing; ""proprioceptive placing (see Section 6.2.2). *, p< 0.05; **, 
p<0.02; n-s., not significant (p>0.05): Cochran Q test (Siegel, 1956). 

on the other hand, tactile and proprioceptive placing of the hindlimb did not 

improve significantly. 

Metabolic effects 

Unilateral MCA occlusion produced in all cats areas completely devoid of deoxy-

glucose uptake as a result of the ischemia in the caudate nucleus, temporal and insular 

regions of the cortex, the putamen, the globus pallidus, the internal capsule and the 

claustrum. Whereas the size of these areas in the posterior part of the caudate was 

comparable between different cats, their extent was rather variable in the anterior part 

of the caudate nucleus as well as in the other areas mentioned. The level of resolution 

revealed by the analysis of the autoradiograms as used in the present study was too low 

in order to correlate individual-specific behavioural effects with individual-specific 

changes in the glucose uptake. On the other hand, it was evidently sufficient to detect 

common effects throughout the tested population of cats. Representative autoradio-

grams at the level of the caudate nucleus are shown in Figure 6.2.6. As mentioned 

before, the posterior caudate nucleus was always severely affected after the occlusion 
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whereas the anterior part appeared to be less affected. Figure 6.2.7 shows a 

representative autoradiogram at the level of the substantia nigra pars reticulata and the 

deeper layers of the colliculus superior. No infarction was detected at the level at the 

level of the substantia nigra pars reticulata or the deeper layers of the colliculus 

superior. As illustrated in Figure 6.2.8, consistent relative reductions were observed in 

all areas studied, except for the sensorimotor cortex. At the level of the anterior 

caudate nucleus, uptake was significantly less at the occluded side compared to that of 

its contralateral counterpart in all occluded cats (Figure 6.2.8). The same holds true for 

Figure 6.2.6 Representative ['4C]-2-D-deoxyglucose autoradiograms at the level of the antenor (A, B) and 

the posterior caudate nucleus (C, D) of cat number 3. 
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Figure 6.2.7 Representative [,4C]-2-D-deoxyglucose autoradiograms at the level of the substantia nigra pars 

reticulata (lower arrow) and the deeper layers of the colliculus superior (upper arrow) of cat number 2. 

Differences in optical density are expressed in different grey tones (minimum activity: black; maximum activity: 

white) in order to illustrate the relative hypo-activity at the level of the substantia nigra pars reticulata and 

the deeper layers of the colliculus superior at the occluded (right) side compared to the non-occluded (left) 

side. 

the posterior caudate nucleus (Figure 6.2.8). Moreover, the relative decrease in 

deoxyglucose uptake in the anterior part appeared to be less than that in the posterior 

caudate in most cats. At the level of the substantia nigra and the colliculus superior, 

the uptake at the occluded side was also significantly less than that at the contralateral 

side in all cats (Figure 6.2.8). 
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A. SFNSCflIMOTOH ΟΟΗΤΈΧ 

Β: AMTeRIOR CAUDATE NUCLEUS 

D SUBSTANTIA NGKA PAHS RETICULATA 

С POSTERIOR CAUDATE MXXBJS 

Ь CCXLICU.US SUPERIOR (DEEPER LAYERS) 

Figure 6.2.8 Ipsilateral f'4C]-2-D-deoxyglucose uptake three weeks after permanent occlusion of the right 

MCA depicted as the percentage of the uptake in the corresponding region at the contralateral side (mean 

± SEM of ten slices per region). Values of uptake in the following regions are shown: sensorimotor cortex 

(A), anterior caudate nucleus (B), posterior caudate nucleus (C), substantia nigra pars reticulata (D) and 

deeper layers of the colliculus superior (E). Values are shown per cat. *, p<0.01 (Wilcoxon matched-pairs 

signed-ranks test, two tailed; Siegel, 1956). 
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6.2.4 DISCUSSION 

The present study shows that permanent unilateral occlusion of the MCA in 

conscious cats produced a reproducible ischemic infarct in the ipsilateral posterior part 

of the caudate nucleus. In addition, the present data confirm the previously reported 

findings of others that MCA occlusion does not result in ischemic infarcts at the level 

of the substantia nigra and/or the colliculus superior (Kogure et al., 1974; Kühl et al., 

1980; Shigeno et al., 1985). 

Focal cerebral ischemia as a result of occluding the right MCA resulted, apart from 

the well-known symptoms such as hemiparesis (Crowell et al., 1970; Tyson et al., 1984; 

Yamamoto et al., 1988), in a characteristic, reproducible sequence of behavioural events 

which was present in all tested animals. Moreover, these behavioural changes were not 

present before the actual occlusion showing that the implantation of the occluding 

device itself had no effect in this respect. Below, the data will be discussed in view of 

the consequences of unilateral MCA occlusion for the integrity of the caudate nucleus, 

the substantia nigra pars reticulata and the deeper layers of the superior colliculus. 

Caudate nucleus and effects of MCA occlusion 

MCA occlusion induced ipsilateral FT1 movements in all cats during the first phase 

after the occlusion. Previously, it has been shown that inhibition of dopamine receptors 

and/or stimulation of GABA receptors in the rostromedial part of the caudate results 

in ipsilateral FT1 movements (see Section 6.2.2, Experimental procedures). Neither 

experimentally induced changes in the substantia nigra nor in the colliculus superior do 

result in such movements (see Chapter 4; see also Wolfarth, Kolasiewicz & Sontag, 

1981). Accordingly, these data suggest that MCA occlusion affected striatal neuronal 

activity in a way comparable to inhibition of dopamine receptors and/or stimulation of 

GABA receptors. In this context, it is of interest to note that both stimulation of 

striatal GABA receptors (Kelly & McCulloch, 1984) and cerebral ischemia (Crowell et 

al., 1970; Osborne et al., 1987; Pulsinelli, Levy & Duffy, 1982; Shigeno et al., 1985; 

Symon, Pasztor & Branston, 1974; Tyson et al., 1984) can reduce local metabolic 
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activity in the striatum of acutely treated animals. The present data suggest that striatal 

metabolism was still reduced 21 days following MCA occlusion. 

Substantia nigra and efTects of MCA occlusion 

MCA occlusion induced freezing behaviour in all cats during the second phase 

following the acute occlusion. Previously, it has been shown that inhibition of GABA 

receptors within the substantia nigra pars reticulata results in freezing behaviour (see 

Section 6.2.2, Experimental procedures). Neither experimentally induced changes in the 

caudate nor in the superior colliculus do induce such behaviour (Section 3.2; Cools, 

Struyker Boudier & Van Rossum, 1976). In view of the fact that MCA occlusion does 

not produce ischemic insults in the substantia nigra (see Section 6.2.1, Introduction), 

these data suggest that MCA occlusion might have indirectly decreased the release of 

nigral GABA. Such a decrease is indeed the consequence of inhibition of striatal 

dopamine receptors and/or stimulation of striatal GABA receptors (Gale & Casu, 1981; 

Scheel-Kriiger, 1983), viz. an effect that appears to be mimicked after MCA occlusion 

(see above: Caudate nucleus and effects of MCA occlusion section). Given this 

suggestion, one would expect that MCA occlusion and stimulation of striatal GABA 

receptors similarly affect the metabolic activity within the substantia nigra pars 

reticulata. This is indeed the case: both acute MCA occlusion (Diemer & Siemkowicz, 

1980; Shibuya, Arita & Yamamoto, 1987; Shigeno et al., 1985) and stimulation of 

striatal GABA receptors (Kelly & McCulloch, 1984)) have been found to enhance 

nigral metabolism. However, the present study shows that there was a consistent 

dysbalance in metabolism at the level of the substantia nigra pars reticulata: 

deoxyglucose uptake was decreased ipsilaterally and/or increased contralaterally 21 days 

following occlusion (cf. Nakayama et al., 1987). This finding may be explained by 

considering the subacute consequences of MCA occlusion for the GABAceptive cells 

in the pars reticulata of the substantia nigra. As discussed above, MCA occlusion might 

have reduced the release of nigral GABA and, accordingly, disinhibited the 

GABAceptive cells in the pars reticulata. As a consequence, the latter cells might 

become hyperactive. Since hypermetabolism can ultimately result in neuronal death (cf. 

Coyle et al., 1981; Foster & Fagg, 1984; Ingvar, Folbergrova & Siesjö, 1987; McGeer, 

206 



McGeer & Singh, 1978; Olney, 1971), it is not unlikely that such a secondary 

hypermetabolic damage to the substantia nigra pars reticulata might have caused the 

metabolic decrease in the substantia nigra pars reticulata found three weeks after the 

occlusion. In order to test the latter possibility detailed histological analyses are in 

progress. The finding of Tamura and colleagues, that one week after unilateral MCA 

occlusion a marked atrophy of the ipsilateral substantia nigra can be found in rats fits 

in with this suggestion (Tamura et al., 1990). 

Colliculus superior and effects of MCA occlusion 

During the final behavioural phase following the acute MCA occlusion, all cats 

displayed hypo-activity; in addition, all cats displayed unilateral FT3 movements that 

were triggered by changes in exteroceptive stimuli. Both the hypo-activity as well as the 

latter movements were also observed during the subacute tests, up to 21 days following 

occlusion. Previously, it has been found that stimulation of GABA receptors within the 

deeper layers of the superior colliculus results in a state in which the cat's behaviour 

is fully directed by changes in exteroceptive stimuli. In case of absence of exteroceptive 

stimuli the behaviour of the animal is characterized by hypo-activity (Cools et al., 1984; 

Gelissen & Cools, 1986). Neither experimentally induced changes in the caudate 

nucleus nor in the substantia nigra pars reticulata do induce hypo-activity or FT3 

movements (Section 4.1; see also Cools, Struyker Boudier & Van Rossum, 1976; 

Wolfarth, Kolasiewicz & Sontag, 1981). In view of the fact that MCA occlusion does 

not produce ischemic insults in the colliculus superior (see Section 6.2.1, Introduction), 

these data suggest that MCA occlusion might have indirectly enhanced the release of 

GABA in this region. Such an enhancement is indeed the consequence of a reduced 

GABAergic activity at the level of the substantia nigra pars reticulata (Gale & Casu, 

1981; Scheel-Kriiger, 1983), viz. an effect that appears to occur after MCA occlusion 

(see above: Substantia nigra and effects of MCA occlusion section). Since the latter is 

in turn the consequence of an inhibition of striatal dopamine receptors and/or 

stimulation of striatal GABA receptors, viz. an effect that also appears to be mimicked 

by MCA occlusion (see above: Caudate nucleus and effects of MCA occlusion section), 

one would expect that both MCA occlusion and stimulation of striatal GABA receptors 
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similarly affect collicular metabolism. This is indeed the case: both (transient) unilateral 

occlusion (Pulsinelli, Levy & Duffy, 1982) and unilateral stimulation of striatal GABA 

receptors (Kelly & McCulloch, 1984) have been found to reduce the metabolic activity 

in the ipsilateral superior colliculus. The present study suggests that the latter reduction 

was still present 21 days following occlusion. Since the FT3 movements were solely 

directed towards the occluded side, it appears that MCA occlusion actually produced 

a dysbalance between the left and right colliculus. Given the earlier reported finding 

that FT3 movements that are elicited from the deeper layers of the superior colliculus 

are always directed away from the side at which the GABAergic activity is inhibited 

(Section 4.2), the present findings suggest that the MCA occlusion produced a 

dysbalance marked by a relative GABAergic hyperactivity at the occluded side and/or 

by a relative GABAergic hypo-activity at the non-occluded side. In line with the latter 

suggestion is the finding that striatal lesions actually produce an increase in metabolic 

activity in the deeper layers of the contralateral superior colliculus (Kelly & McCulloch, 

1987). In this context, however, it has to be stressed that it is not possible to ascribe 

the demonstrated asymmetries in metabolism to unilateral and/or bilateral changes in 

metabolic activity because of methodological constraints. 

Orofacial dyskinetic movements 

In the present study, OFD movements were elicited at both sides during 60 min post 

occlusion, whereas they were mainly displayed at the contralateral side subacutely. In 

previous studies, such movements have never been observed after experimentally 

induced changes at the level of the rostromedial part of the caudate nucleus, the 

substantia nigra pars reticulata or the deeper layers of the superior colliculus (Chapter 

3; see also Cools et al, 1984; Wolfarth, Kolasiewicz & Sontag, 1981). Moreover, OFD 

movements were displayed during all behavioural phases acutely as well as subacutely 

after MCA occlusion. These data together suggest that the latter movements were not 

mediated by the caudato-nigro-collicular circuitry. On the other hand, ipsilateral OFD 

movements are elicited by unilateral activation of dopamine receptors within the 

anterodorsal part of the feline caudate as well as by inhibition of GABA receptors 

within the so-called subcommissural part of the globus pallidus, i.e. a region that 
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receives output signals from the anterodorsal part of the caudate nucleus (Cools et al., 

1989). The present study also shows that metabolism was relatively decreased in the 

ipsilateral anterior caudate nucleus, i.e. the striatal part that encompasses the 

anterodorsal region. These data suggest that the OFD movements under discussion 

were induced by functional changes at the level of the anterodorsal part of the caudate 

and/or at the level of one of its output stations. 

Limb placing deficits 

Contralateral bar-placing deficits, as found in the present study, have never been 

observed following experimentally induced changes in dopaminergic activity at the level 

of the caudate nucleus, or alterations in GABAergic activity at the level of the 

substantia nigra pars reticulata or the deeper layers of the superior colliculus (see 

Sections 3.2, 3.3, 4.1; see also Gelissen & Cools, 1986; 1988). Accordingly, these data 

suggest that at least deficient bar-placing responses were not induced by functional 

disturbances in the caudato-nigro-collicular pathway. On the other hand, deficient limb 

placing does occur after large lesions of the frontal cortex (Armstrong, 1986; Bard, 

1933; Villablanca et al., 1976) or after more than 70 % ablation of the striatum 

(Villablanca et al., 1976). In the present study, deficient contralateral forelimb and 

hindlimb placing responses were present acutely; forelimb placing as well as hindlimb 

bar-placing improved subacutely. In contrast to the present findings, limb placing 

deficits following crude caudate and cortical lesions last at least several months (for 

rev., see Armstrong, 1986). Following pyramidotomy, recovery of contralateral limb 

placing does not occur at all (Liddell & Phillips, 1944). The latter fact together with 

the present finding that the occlusion always affected only the contralateral limbs may 

imply that these effects were actually due to changes in neuronal activity in cortical 

regions and/or damage to extra-striatal cortical efferents. The present finding that 

metabolic activity appears to be relatively reduced in the ipsilateral sensorimotor cortex 

21 days following the occlusion in part of the cats fits in with the latter suggestion. 

Increasing pathology induced by MCA occlusion 

Focal ischemia as a result of the unilateral occlusion of the MCA induced acutely 
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an increasing pathology resulting successively in functional changes at the level of the 

rostromedial part of the caudate nucleus, the substantia nigra pars reticulata and the 

deeper layers of the superior colliculus. In addition, metabolism appeared to be 

reduced at the level of these structures 21 days after the occlusion. The present data 

show that MCA occlusion not only produced metabolic disturbances in structures within 

the ischemic region such as the caudate nucleus, but also in brain regions located 

remote from the insult such as the substantia nigra and the superior colliculus. The 

finding that behavioural effects characteristic for remote output stations of the caudate 

were still present subacutely, opens the perspective that at least part of the symptoms 

in human beings with MCA occlusion may be due to dysfunctioning output stations of 

the ischemic area rather than due to the ischemic area itself. Accordingly, drugs 

affecting these output stations might have a therapeutic value in such patients. 

In Section 6.1, we have reported that unilateral intrastriatal injections of kainic acid 

induced acutely the successive display of the following abnormal movements: (1) 

contralateral FT1 movements, viz. movements that are characteristic for a stimulation 

of striatal dopamine receptors and/or inhibition of striatal GABA receptors; (2) 

contralateral FT2 movements, viz. movements that are characteristic for a stimulation 

of substantia nigra pars reticulata GABA receptors; and (3) contralateral FT3 

movements, viz. movements that are characteristic for an ipsilateral inhibition of deeper 

layers of the colliculus superior GABA receptors. Comparing the behavioural changes 

following intrastriatal injections of kainic acid with those elicited acutely by unilateral 

MCA occlusion (see above), it appears that MCA occlusion produces successive 

functional alterations at the level of the caudate nucleus, the substantia nigra pars 

reticulata and the deeper layers of the superior colliculus which are diametrically 

opposite to those found after kainic acid. As discussed in Section 6.1, the kainic acid-

induced effects could be ascribed to its neuro-excitatory effects, but not to its lesioning 

effects. Anyhow, these data indicate that the progressive pathology acutely induced by 

striatal injections of kainic acid are not due to typical features of this neurotoxin, but 

are indeed due to the resulted distortion of information sent by the caudate towards 

output stations such as the reticular substantia and the deeper layers of the superior 
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colliculus. The same holds true for the progressive pathology induced by MCA 

occlusion: However, in the latter case the distortion of information results from the 

occlusion-induced cell death in the caudate nucleus. In other words, the successive 

appearance of the behavioural and metabolic changes in the substantia nigra and the 

superior colliculus following striatal manipulation appears to be inherent in the 

hierarchical order of the brain structures under discussion (see Section 5.1, 6.1; cf. 

Cools et al., 1984). This notion implies that at least part of the symptoms inherent in 

central disorders such as Parkinson's Disease or Huntington's Chorea, may actually be 

due to disturbed functioning of striatal output stations. 
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CHAPTER 7 

CAUDATE NUCLEUS AND ТЛЕ PROGRAMMING OF MUSCLE ACTIVITY 

Summary 

The effect of intracaudate injections of the dopaminergic antagonist haloperidol on 

muscle activity was investigated in cats that had to jump down from different heights, 

i.e. 60, 90 and 120 cm. Electromyographic (EMG) activity of an elbow extensor was 

used as a dependent variable. The EMG patterns of each cat were averaged per jump 

height. Two prelanding bursts, i.e. burst 1 and burst2, and one postlanding part labelled 

as burst3 could be distinguished in the resulting records: these bursts were separately 

analyzed. Haloperidol treatment produced two types of effects: First, it reduced the 

postlanding part of burst2 during jumps from all three jump levels. This subtle, but 

consistent effect was dopamine-specific and required a certain GABAergic activity at 

the level of the deeper layers of the colliculus superior. Second, haloperidol also 

produced the following changes in the EMG patterns: an earlier termination of burst2 

during 90 and 120 cm jumps; a reduction in the prelanding part of burst2 during 90 

cm jumps; an increase in burst3 in some of the tests. Type В effects were neither 

dopamine-specific nor funnelled via the striato-nigro-collicular pathway. A reduced 

ability to program arbitrarily behaviour is suggested to give rise to the haloperidol-

induced dopamine-specific changes in EMG activity. 
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7.1 INTRODUCTION 

In order to control landing from a fall or a jump, limb muscles are activated in a 

specific way. After impact, electromyographic (EMG) activity is at least in part 

controlled by reflex mechanisms in the limb muscles and tendons (Dietz, Noth & 

Schmidtbleicher, 1981; Greenwood & Hopkins, 1976; Lewis et al., 1979). However, 

prior to landing vestibular stimuli seem to play an important role, especially in the case 

of unexpected falls. After a sudden unexpected fall, for example, the onset of 

prelanding EMG activity starts after a fixed delay following release. However, the first 

part of the EMG signal is absent following labyrinthectomy. These findings suggest that 

especially the initial phase of the signal is controlled by vestibular information (man: 

Greenwood & Hopkins, 1976; Melvill-Jones & Watt, 1971; monkey: Lacour, Xeni & 

Hugon, 1978; cat: Watt, 1976). In the case of self-initiated falls or jumps-downs 

repeatedly executed from a particular height, prelanding muscle activity is fixed in 

relation to the moment of impact, but not to the moment of release. Accordingly, 

vestibular stimuli are less important in the programming of prelanding muscle 

contractions during landing from self-initiated falls or jumps (man: Dietz & Noth 1978; 

monkey: Laursen et al., 1978; cat: McKinley, Smith & Gregor, 1983). Dietz and Noth 

(1978) even suggested that the vestibulospinal reflex was suppressed as a result of a 

learning process during self-initiated falls. This suggestion is supported by the finding 

that during self-initiated falls from semi-randomly varied heights, the onset of 

prelanding muscle contractions, being defined in relation to the moment of impact, 

begin earlier when the fall trajectory is increased (Dietz, Noth & Schmidtbleicher, 

1981). Further, conditioning processes also seem to play an important role in the 

control of prelanding EMG activity since the display of EMG activity does not depend 

on visual information as long as the height is known (Dietz & Noth, 1978; McKinley 

& Smith, 1983). Finally, Greenwood and Hopkins (1976) showed that prelanding EMG 

activity during unexpected falls is comprised of two bursts consisting of a first peak 

related to the moment of release and, as suggested before, likely to depend on 

vestibular stimuli and a second peak related to the moment of landing and most likely 

controlled by other mechanisms (cf. Dietz & Noth, 1978; Greenwood & Hopkins, 1976; 
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Lacour, Xeriy & Hugon, 1978; McKinley & Smith, 1983; McKinley, Smith & Gregor, 

1983; Melvill Jones & Watt, 1971). Taken together, these reports show that the first 

part of prelanding EMG activity during a fall or jump is controlled, at least partly, by 

vestibular stimuli provided the task is not conditioned, whereas the final part of the 

preprogrammed EMG pattern is controlled, at least partly, by central programming 

mechanisms (cf. Dietz & Noth, 1978; Greenwood & Hopkins, 1976; Lacour, Xerri & 

Hugon, 1978; McKinley, Smith & Gregor, 1983; Melvill Jones & Watt, 1971). In this 

context it is relevant to note that several studies on anaesthetized cats have shown that 

supraspinal centres such as the substantia nigra and the colliculus superior are directly 

involved in the control of skeletomotor (alpha) and/or fusimotor (gamma) motoneuron 

activity (cf. Alstermark et al. 1984a, 1984b; Schwarz, Sontag & Wand, 1984a, 1984b; 

Sontag et al., 1984; Wagner & Kalmring, 1968; York, 1973). Thus, the analysis of 

perilanding EMG activity during experimentally induced changes in brain regions may 

provide insight in the way in which such structures are involved in the programming of 

muscle activity. 

Chapter 3 (Section 3.1) presented evidence that the feline caudate nucleus is 

selectively involved in the ability to switch motor patterns which are not dictated by 

exteroceptive stimuli. Additional studies have demonstrated that this programming 

function extends to behaviour strategies in rats (Cools, 1980), social interactions in 

monkeys (Van den Bereken & Cools, 1982) and motor and cognitive strategies in man 

(Cools et al., 1984). On the basis of these and related data it has been concluded that 

the caudate nucleus programmes motor behaviour in a highly specific manner: It directs 

the ability to program arbitrarily behaviour. 

In view of these data the question arose whether the above-mentioned role of the 

caudate nucleus also becomes manifest at the level of muscle activity. If so, it would 

become possible to use task-specific changes in EMG activity as additional tools in the 

diagnosis of a dysfunctioning caudate nucleus in man. Because of technical reasons, it 

was impossible to use the motor task employed previously to delineate the above-

mentioned programming function of the caudate nucleus. In the present study we 
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analyzed the effects of intracaudate injections of haloperidol upon EMG activity in 

the lateral head of the triceps brachii, a forelimb extensor muscle, of cats during 

landing on a platform. This model was chosen for the following reasons. First, it is a 

classic paradigm which is well-studied. Second, the caudate nucleus sends information 

to the substantia nigra pars reticulata and the deeper layers of the colliculus superior, 

that is structures known to be directly involved in the control of the spinal motor 

elements. And, thirdly, evidence is available that at least part of the perilanding EMG 

activity during jump-downs is neither fully dictated by vestibular stimuli nor by stimuli 

derived from receptors within the forelimbs. 

The animals were required to jump off a platform before and after the intracaudate 

application of haloperidol. Jump height was varied throughout the test sessions in order 

to avoid conditioning of the task. In order to establish the dopamine receptor specificity 

of haloperidol-induced changes in EMG patterns, caudate injections of the dopamine 

agonist apomorphine were given 5 min after haloperidol in an additional series of 

experiments. 

In a final series of experiments, it was investigated whether the deeper layers of the 

colliculus superior, a structure receiving neuronal information derived from the striatal 

output station the substantia nigra pars reticulata (Edwards et al., 1979; Graybiel, 1978; 

Graybiel & Ragsdale, 1979; Royce & Laine, 1984; see Section 2.3) were involved in 

haloperidol-induced changes in EMG activity. Inhibition of striatal dopaminergic 

receptors is known to result ultimately in an activation of collicular gamma-aminobutyric 

acid (GABA) receptors (Gale & Casu, 1981; Scheel-Krüger, 1983). Thus, it was decided 

to study the effect of intracollicular injections of the GABAergic antagonist picrotoxin 

on haloperidol-induced changes in EMG patterns. Data will be presented showing that 

intracaudate injections of haloperidol produce subtle changes in perilanding EMG 

activity which are, in some cases, dopamine-specific. Moreover, only the latter changes 

appeared to be mediated via the deeper layers of the colliculus superior. 
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7.2 EXPERIMENTAL PROCEDURES 

Apparatus 

The starting platform consisted of a wooden plank (14 χ 32 cm) which could be 

adjusted to a height of 60-120 cm above the landing platform. The landing platform (65 

χ 65 cm) was situated immediately in front of the starting platform and consisted of a 

thin (1 mm) metal plate that covered a second, thick (6.5 mm) metal plate. In order 

to detect the moment of landing, the two plates of the landing platform were separated 

from each other using air pressure. Air pressure was adjusted in such a way that both 

plates were pressed together at the slightest touch, triggering an electronic signal which 

indicated the moment of landing. Care was taken to assure that the air pressure was 

held constant throughout all experiments. 

Animals 

Male cats (n= 20) were selected from the laboratory breeding colony of the 

University of Nijmegen. They were housed in iron cages (1.9 χ 1.2 χ 1.6 m) in groups 

of maximally four animals. Food (Hope Farms) and water were present ad lib. Only 

cooperative cats were used in the present study. During four to seven training sessions 

on separate days, they were habituated to the experimental set-up. A training session 

lasted 60 min and consisted of three tests interspaced by an interval of 15 min. Fifteen 

minutes before the first test and during the intertest intervals, the cat was placed in a 

wooden observation cage (90 χ 60 χ 60 cm). During each 5 min test, the cat was 

repeatedly placed on the starting platform to jump down onto the landing platform 

where it was rewarded with a few food pellets (Brekkies, Effem B.V., Etten-Leur, The 

Netherlands). Initially, the starting platform was mounted 60 cm above the landing 

platform; as soon as the animal jumped down without hesitation onto the landing 

platform, the height of the starting platform was increased to 90 cm and, finally, to 120 

cm. During the next sessions, the height of the starting platform was varied in a fixed 

order to avoid conditioning of the jump distance as much as possible (cf. Dietz & 

Noth, 1978; McKinley & Smith, 1983). During each training test, the cat had to 

execute 12 jumps from varying heights in the following order: 60-90-120-90-60-120-60-
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120-90-120-90-60 cm. In this way, 4 jumps from every height were executed per test. 

As soon as the cat was able to execute 12 correct jumps per test during one session, 

training was stopped. 

Implantation of cannulas 

The trained cats were stereotaxically equipped (under sodium pentobarbital anaesthesia, 

45 mg/kg, IP) with stainless steel cannulas (outer diameter 0.8 mm). In the first group 

of cats (n= 8), the tip of the cannulas was placed into the rostromedial part of the 

caudate nucleus, with coordinates: A 14.5, L 5.0, H 5.0 (according to the atlas of Snider 

and Niemer, 1964; see also Chapter 3). In a second group, cats (n= 12) were equipped 

with caudate cannulas as well as with cannulas aimed at the deeper layers of the 

superior colliculus. The colliculus superior is divided into superficial and deeper layers 

according to the terminology of Kanaseki and Sprague (1974). In order to avoid 

damage to the tectal tissue, the tips of the latter cannulas were implanted just above 

the colliculi: A 1.5, L 3.5, H 6.5 (Snider and Niemer 1964; see Section 4.2). 

Injection procedure and drugs 

Drugs were bilaterally injected with the help of a 5.0 μΐ Hamilton syringe (diameter 

of the injection needle: 0.4 mm; see Chapter 3). The volume of the caudate injections 

was 5.0 μ]. Drug solutions were injected into the deeper layers of the superior colliculus 

(A 1.5, L 3.5, Η 2.5) using a Hamilton syringe with a sharpened tip (see Section 4.2). 

Vehicle (distilled water) injections into the caudate nucleus and/or the deeper layers 

of the superior colliculus served as a control. Doses and time schedule were based on 

the outcome of previous studies. The doses used were: 12.5 μ§/5.0 μί haloperidol 

(Haldol, Janssen Pharmaceutica), 0.6μ&5.0μ\ apomorphine (Brocades) and 0.1/ig/0.5 

μί picrotoxin (Serva). These concentrations were maximally effective in previous 

behavioural experiments (see Section 3.1 and 4.2). All solutions were freshly prepared 

immediately before each experiment. Each cat participated in maximally 4 experiments 

that were spaced one week apart. The order of experiments in which the cats 

participated as well as the injection time of the different drugs are shown in Table 7.1. 
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Implantation οΓ EMG electrodes 

During the same surgical session (see: Implantation of cannulas), the cats were also 

equipped with a pair of chronic EMG electrodes implanted into the lateral head of the 

right triceps brachii, an elbow extensor muscle of the forelimb. The electrodes were 

made of teflon-insulated, stainless-steel wires (AS 632 SS, Cooner Wire, Chabworth, 

USA). The electrodes were implanted following the method of Betts and coworkers 

(1976), with some modifications. After exposure of the muscle, the electrodes were 

subcutaneously passed from a multi-pin connector attached on the skull to the forelimb. 

Next, a hypodermic needle was passed through the muscle. One electrode was threaded 

into the tip of the needle; subsequently, the needle was removed. The same procedure 

was repeated for the implantation of the second electrode. The insulated ends were 

knotted together and, after scraping off a small portion (about 2 mm) of the insulation, 

the wires were retracted until both uninsulated parts were embedded in the muscle and 

the knotted ends were resting on the surface of the muscle. The electrodes were 

implanted in such a way that the distance between both uninsulated ends was 5-6 mm. 

In addition, a grounding electrode was implanted in the vicinity of the recording 

electrodes. The animals were allowed to recover for a period of at least one week 

before the experiments were started. 

Experimental design 

The experimental design was identical to the final training session. At t=0 min the 

experiment was started by placing the cat into the observation cage in order to adapt 

to the experimental surroundings. The first test (PRE-injection test) that served as a 

control was started at t=15 min. Drug solutions and/or solvent were injected between 

t=20 and t=30 min (see Table 7.1 in which the exact time schedule of the distinct 

treatments is presented). The second and third test, during which the drug effects could 

be analyzed, were started at t=35 min (POST-injection testi) and t=55 min (POST-

injection test2), respectively. The cat was placed in the observation cage during the 15 

min intertest intervals. 
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TABLE 7.1 Schematic representation of the order m which various drugs were tested and their injection 

times (CN-mj: bilateral injections into the caudate nucleus; CSDL-inj: bilateral injections into the deeper 

layers of the colliculus superior). Stv= solvent (te. distilled water); Hal= haloperidol 115 μξΙ5 μΐ; Apo= 

apomorphine 0.6 μξΙ5 μΐ; Ptx= picrotoxm 0.1 μξ/0.5 μι 

The number of cats per experimental group is given in parentheses. 

Expe
riment 

1 

2 

3 

4 

GROUP 1 
CN-inj CN-inj 

t=25 min t=30 min 

Slv 

Hal 

Hal 

Slv 

Slv 

Slv 

Apo 

Apo 

(n) 

(8) 

(8) 

(7) 

(5) 

GROUP 2 
CSDL-inj CN-inj 
t=20 min t=25 min(n) 

Ptx Slv 

Ptx Hal 

Slv Slv 

(12) 

(10) 

(8) 

EMG recording and analysis 

Immediately before a test, a multiwire cable was attached to the head contact. EMG 

activity was amplified and filtered (high pass filter: 80 Hz; low pass filter: 1000 Hz). 

The trigger signal provided by the landing platform was used to sample EMG activity 

from 250 ms before until 250 ms after impact with the help of a personal computer 

(A/D sampling rate: 4000 Hz). For each jump height, EMG records were analyzed in 

several steps. First, the myograms recorded during each test were rectified and 

averaged per cat in order to reduce the intraindividual variability. In general, the 

averaged records (AEMG) were characterized by two bursts of activity which started 

before landing, and several bursts of activity which started after impact. The bursts that 

started before landing were labelled as burst 1 and burst2 and the bursts that started 

after landing were taken together and labelled as burst3. The second step in the 

analysis consisted of the determination of the start and the end of these bursts by visual 

inspection of the AEMG records on the screen using a cursor. The start of burst 1 and 

the end of burst3 were defined as an increase of more than 200% respectively a 

decrease to less than 200% of average baseline activity; baseline activity was 
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determined during the first 50 ms of the records, i.e., between 250 and 200 ms before 

landing. Since we were interested in burst2 (see Section 7.1, Introduction), the start and 

the end of this part of the myogram was determined as described below. In view of the 

fact that the AEMG records did not reach a level below 200% of average baseline 

activity between distinct bursts we used an alternative method to determine the onset 

and the offset of burst2. The onset of burst2, which always started prior to landing, was 

determined as follows (the moment of onset of burst2 was also considered to be the 

moment of offset of burstl): At first, the time-point at which burst2 was maximal was 

determined. Starting from that point, the amplitude of the signal was traced backwards: 

as soon as a 'time-point of minimum activity' was reached, it was considered to be the 

moment of onset of burst2. A 'time-point of minimum activity' is characterized by a 

change of the slope from negative to positive and an amplitude less than 50 % of the 

peak value of burst2. The offset of burst2 which terminated always after landing, was 

determined in the same way (the moment of offset of burst2 was also considered to 

be the moment of onset of burst3): starting from the time-point at which burst2 

reached its maximum, the amplitude was traced forwards until again a point of 

minimum activity was reached. 

In a third step, the EMG activity was integrated to determine experimentally-

induced changes in the amount of EMG activity. The integrated EMG (IEMG) activity 

of burstl, the prelanding part of burst2 (i.e., that part of burst2 which occurred 

immediately before the moment of landing), the postlanding part of burst2 (i.e., that 

part of burst2 that was present immediately after touch-down) and of burst3 were 

separately computed. Since none of the treatments prevented the cats from landing 

successfully (See Section 7.3, Results), we expected no dramatic changes in the overall 

perilanding EMG activity. Our interest was especially concerned with the possibility that 

the total amount of muscle activity might be rearranged between the distinct parts of 

the myograms. Therefore, we expressed the IEMG activity of the distinct bursts as a 

percentage of that of the overall EMG signal. In step four of the analysis, drug effects 

were analyzed for each part of the myogram separately using the following ratio which 

was calculated per cat, per jump height and per experiment: IEMG (POST-injection 
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testi) / lEMG (PRE-injection test). Such a ratio has previously been found to be a 

valid tool for correcting possible pre-drug differences. Drug effects during POST-

injection test2 were evaluated in the same way by computing the ratio IEMG (POST-

injection test2) / IEMG (PRE-injection test). 

In case the raw EMG signal showed abnormal spikes such as artifacts due to 

movements of the electrodes, the experimental data of that animal were discarded. 

Histology 

After the final experiment, the cats were deeply anaesthetized with an overdose of 

pentobarbital and perfused transcardially with a 4 % formaldehyde solution. The brains 

were removed and slices were cut (30 μτή) on a freezing microtome. After staining with 

cresyl violet, the exact location of the injection sites was determined. 

Statistics 

Drug effects were determined using the Mann Whitney U-test (two tailed), unless 

otherwise mentioned. 

73 RESULTS 

Histology 

Verification of the injection sites revealed that all injections were correctly placed 

within the rostromedial part of the caudate nucleus [coordinates (according to the atlas 

of Snider and Niemer, 1964) found were: A 14.0-15.0; L 5.0-5.5; Η 4.5-5.5; see Figures 

3.2.1 and 5.1.2]. The same holds true for the injections placed in the deeper layers of 

the superior colliculus [coordinates (Snider & Niemer, 1964) found were: A 0.5-1.5; L 

3.0-4.5; Η 2.0-3.0; see Figure 4.2.1A]. 

General description of the EMG recordings 

Figure 7.1 shows raw EMG signals of representative jumps from 60, 90 and 120 cm 
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recorded during a PRE-injection test. Figure 7.2 shows an example of the averaged 

EMG signals of four jumps before (A) and after (B) haloperidol treatment. As des

cribed in Section 7.2 (Experimental Procedures), only the latter signals were used for 

the analysis of the haloperidol-induced changes. As shown, the myograms contain two 

prelanding burst, i.e., burstl and burst2, respectively, with burst2 continuing after 

ι.Λ|Η*Α»ηίή -»ψ—IMtr 

-**- -^^МЩ) 

^ Ц ^ ' * ^*"^ » 

J! 
50 ms 

Figure 7.1 Raw EMG records of representative jumps from a height of 60 (A), 90 (B) and 120 cm (C) of 

cat 476 during the PRE-injection test of the solvent experiment. The moment of landing is indicated by the 

vertical bar (arrow). 
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TABLE 7.2 Mean ± SEM of onsei and offset times of burst 1, burst2 and burst3 (ms, with respect to the 

moment of landing) of averaged (n= 4) myograms per cat and per jump height during PRE tests of solvent-

treated cats (n=]6). 

JUMP 
HEIGHT 

60 cm 

90 cm 

120 cm 

• 
Ρ 

onset Burstl 
(ms) 

70.2 ±29.2 

79.6 ±21.0 

91.3 ±26.7 

< 0.001 

onset Burst2 
(ms) 

14.7 ±6.6 

16.1 ±5.4 

17.2 ±5.5 

>0.05 

offset Burst2 
(ms) 

5.9 ±2.4 

4.8 ±3.0 

5.5 ±2.4 

>0.05 

offset Burst3 
(ms) 

135.5 ±31.6 

120.8 ±29.2 

105.3 ±28.6 

<0.001 

'Friedman two way analysis of variance. 

impact. After landing, butst2 is followed by several other, smaller bursts labelled 

together as burst3. 

Table 7.2 shows the mean (± SEM) onset and offset times of burstl, burst2 and 

burst3 of the AEMG signals obtained during Pre-injection tests of solvent-treated cats 

(animals from group 1 plus group 2: n=16). There appeared to be a significant 

difference in onset of burstl as well as offset of bursts. Apparently, muscle activity 

started earlier and terminated earlier when jump height was increased. 

In addition, the IEMG activity of burstl, the prelanding part and the postlanding 

part of burst2 was significantly enhanced when jump height was increased (Table 7.3). 

In contrast, IEMG of bursts was not affected by jump height. 

None of the treatments described below prevented the cats from jumping down 

and landing on the platform in a normal way despite of the drug-induced changes in 

EMG activity (see below). During PRE-injection tests, there were no significant 

224 



differences per jump level between experimental groups with respect to onset and 

offset of various parts of the myograms. 

Extensor EMG activity during POST-injection testi 

Neither intracaudate injections of haloperidol or apomorphine nor collicular 

injections of picrotoxin affected the onset of burstl and burst2 or the offset of burst3 

during the POST-injection testi, i.e., 10-15 min after the intracerebral injections. The 

only effect noted was a more rapid offset of burstZ in haloperidol-treated cats during 

90 cm jumps [median offset time, solvent (6.3 ms) vs haloperidol (4.3 ms) treated cats: 

p<0.05] as well as during 120 cm jumps [median offset time, solvent (8.3 ms) vs 

haloperidol (6.3 ms) treated cats: p<0.01]. Neither intracaudate injections of 

apomorphine nor intracollicular injections of picrotoxin prevented these effects. 

Haloperidol did affect the integrated signals of several bursts; especially the 

postlanding part of burst2 was affected (Figure 7.2). As described below, the latter 

effect was dopamine-specific. Table 7.4 presents the median values of IEMG ratio's of 

Table 7.3 Mean ± SEM of IEMG activity (mVrm) of burstl, prelandmg and postlanding pan of burst2 

and bursts of averaged (n=4) myograms per cat and per jump height during PRE tests of solvent-treated cats 

(n=I6). 

JUMP PRELANDING POSTLANDING 
HEIGHT BURST1 BURST2 BURST2 BURST3 

60 cm 

90 cm 

120 cm 

Ρ 

"Friedman two way analysis of variance. 
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30.9 ±27.3 

63.4 ±49.3 

91.9 ±69.0 

<0.001 

21.5 ±17.6 

25.1 ±14.3 

30.3 ±18.6 

<0.01 

9.6 ±8.1 

6.7 ±6.3 

11.1 ±6.6 

<0.05 

86.5 ±53.3 

96.8 ±58.6 

97.8 ±56.2 

>0.05 



burstl, the prelanding and the postlanding part of burst2, bursts and the complete 

myogram for each jump level. None of the treatments affected the IEMG activity of 

burstl (Table 7.4A). The prelanding IEMG of burst2 was significantly reduced by 

haloperidol during 90 cm, but not 60 and 120 cm jumps as shown in Table 7.4B. This 

effect of haloperidol was neither prevented by apomorphine nor by picrotoxin, which 

per se did not induce any significant effect. Furthermore, haloperidol significantly 

reduced prelanding IEMG activity of burst2 during 60 cm jumps only in picrotoxin-

, 
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J," 
W N T 

i 

\ 
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Figure 7.2 Representative examples of rectified and averaged myograms of four 120 cm jump-downs of cat 

433 during the PRE-injection test (A) and during the POST-injection test! (B), i.e. 10-15 mm after CN-

injections of 12.5 μξΙ5.0 μΐ haloperidol. The moment of landing is indicated by an arrow. In addition, the 

onset of burstl and burst2 as well as the offset ofburst2 and bursts are indicated by thm vertical lines. Bars 

indicate 50 ms (abscissa) and 25 mV (ordinate). 
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Table 7.4 Median value (25-75% range) of the ratio of (¡EMG activity during the POST-mjection test!) 

I (IEMG activity during the PRE-injection test) of burst 1, the prelanding part ofburst2 and the postlandmg 

part of burstZ bursts and of the complete AEMG per jump height CN. mtracaudate injections at t= 25 

(Hal, halopendol 12 5 μ$5 μ!; or Slv, solvent 5 μΙ) and/or t= SO mm (Apo, apomorphine 0 6 μg|5 μΙ), 

CSDLICN· mtracolhcular injections at t= 20 mm (Ptx, picrotoxm 01 μ^05 μΙ; or Slv 05 μΙ) and 

mtracaudate mjecnons at t= 25 min (Hal) 

Differences were tested per jump level. * ρ < 0.05; " ρ < 0.02; "" ρ < 0.002: drug vs. 
corresponding control experiment. + p<0.05; + + p<0.02: Hal/Apo and Ptx/Hal vs Hal. 

-n пч· "о п.'П m- Няі/Ptv ν« Ptv 0 ρ < 0.05; 0O ρ < 0.02: Hal/Ptx vs Ptx. 

INJECTIONS 

CN: 
Slv/Slv 

Hal/Slv 
Hal/Apo 
Slv/Apo 

CSD1VCN: 
Slv/Slv 
Ptx/Slv 

Ptx/Hal 

INJECTIONS 

CN: 
Slv/Slv 

Hal/Slv 
Hal/Apo 
Slv/Apo 

CSDIVCN: 
Slv/Slv 
Ptx/Slv 

Ptx/Hal 

60 cm 

0.94 (0.94-1.01) 
1.12 (0.85-1.17) 
1.05 (0.94-1.15) 
0.84 (0.82-1.01) 

1.02 (0.81-1.17) 
0.86 (0.81-1.03) 
0.72 (0.68-0.86) 

B: 

60 cm 

0.82 (0.74-1.20) 
0.84 (0.70-1.12) 
0.80 (0.56-0.91) 
0.85 (0.80-1.00) 

0.83 (0.71-1.18) 
1.14 (1.10-1.17) 
0.9200 (0.79-1.00) 

A: BURST1 
JUMP LEVEL 

90 cm 

0.95 (0.91-0.97) 
0.96 (0.90-0.97) 
1.05 (0.94-1.06) 
1.00 (0.97-1.05) 

0.97 (0.85-1.00) 
0.97 (0.85-1.00) 
0.97 (0.82-1.01) 

120 cm 

0.94 (0.91-1.01) 
0.95 (0.93-1.00) 
0.93 (0.88-1.01) 
1.00 (0.96-1.04) 

1.02 (0.94-1.11) 
1.02 (0.92-0.98) 
0.90 (0.83-0.95) 

BURST2 PRELANDING PART 
JUMP LEVEL 

90 cm 

1.25 (1.13-1.25) 
0.87* (0.76-0.93) 
1.00 (0.92-1.09) 
1.00 (0.82-1.13) 

1.00 (1.00-1.07) 
1.13 (0.83-1.29) 
0.67"° (0.60-1.00) 

120 cm 

0.89 (0.86-0.93) 

0.83 (0.73-1.14) 
1.17 (1.07-1.30) 
0.89 (0.88-0.92) 

1.02 (1.00-1.08) 
0.90 (0.83-1.00) 
1.00 (0.91-1.26) 
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Table 7.4 (continued). 

INJECTIONS 

CN: 
Slv/Slv 

Hal/Slv 
Hal/Apo 
Slv/Apo 

CSD1VCN: 
Slv/Slv 
Ptx/Slv 

Ptx/Hal 

INJECTIONS 

CN: 
Slv/Slv 

Hal/Slv 
Hal/Apo 
Slv/Apo 

CSDL/CN: 
Slv/Slv 
Ptx/Slv 

Ptx/Hal 

INJECTIONS 

CN: 
Slv/Slv 

Hal/Slv 
Hal/Apo 
Slv/Apo 

CSDL/CN: 
Slv/Slv 
Ptx/Slv 

Ptx/Hal 

C: 

60 cm 

1.29 (0.93-1.33) 
0.50" (0.29-0.67) 
0.67 (0.42-0.83) 
1.00 (1.00-1.10) 

0.86 (0.67-1.00) 
0.78 (0.70-0.80) 
1.04+ (0.75-1.33) 

60 cm 

1.03 (0.97-1.05) 
1.07 (0.94-1.08) 
1.08 (0.99-1.18) 
1.08 (1.00-1.11) 

1.06 (0.98-1.10) 
1.09 (0.93-1.19) 
1Λ9+° (1.16-1.21) 

60 cm 

1.19 (1.02-1.24) 
1.15 (1.05-1.16) 
1.10 (1.01-1.16) 
1.01 (1.00-1.08) 

1.05 (0.99-1.13) 
1.11 (1.04-1.16) 
0.89++O0 (0.86-1.00) 

BURST2 POSTLANDING PART 
JUMP LEVEL 

90 cm 

1.17 (1.00-1.33) 
0.47*" (0.40-0.50) 

0.89++ (0.77-1.00) 
1.00 (0.71-1.07) 

1.10 (1.00-1.35) 
0.83 (0.64-1.25) 
1.0()++ (0.79-1.13) 

D: BURSTS 
JUMP I FVEL 

90 cm 

1.02 (0.95-1.06) 
1.08' (1.04-1.17) 
1.02 (0.96-1.08) 
1.09 (0.98-1.12) 

0.97 (0.93-1.02) 
1.00 (0.98-1.02) 
1.00 (0.96-1.08) 

E: TOTAL MYOGRAM 
JUMP LEVEL 

90 cm 

1.00 (0.90-1.01) 
1.12 (0.99-1.16) 
1.05 (1.02-1.13) 
0.99 (0.95-1.06) 

1.08 (1.04-1.10) 
1.02 (0.99-1.06) 
1.01 (0.90-1.03) 

120 cm 

1.17 (1.17-1.33) 
0.83** (0.71-0.83) 
1.13+ (0.82-1.25) 
1.00 (0.88-1.20) 

0.86 (0.71-1.00) 
0.85 (0.80-1.00) 
0.80 (0.60-1.09) 

120 cm 

1.02 (1.02-1.05) 
1.06 (1.00-1.09) 
1.05 (0.91-1.10) 
1.06 (0.94-1.08) 

0.99 (0.96-1.00) 
1.05 (0.94-1.06) 
1.10 (0.98-1.15) 

120 cm 

1.03 (0.88-1.12) 
1.10 (0.97-1.13) 
1.00 (0.99-1.10) 
1.04 (1.02-1.08) 

1.05 (0.99-1.08) 
1.06 (1.02-1.08) 
0.99 (0.87-1.04) 
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pretreated cats. The combined treatment of picrotoxin and haloperidol significantly 

reduced prelanding IEMG activity of burst2 during 90 cm jumps. 

Table 7.4C shows that haloperidol produced significant effects upon the IEMG 

activity of the postlanding part of burst2, which were consistently present during jumps 

of all three levels. Moreover, these changes were counteracted by additional 

intracaudate injections of apomorphine as well as intracollicular application of 

picrotoxin. Thus, haloperidol significantly reduced postlanding IEMG activity of burst2 

during 60 cm jumps, 90 cm jumps and 120 cm jumps. In addition, the haloperidol-

induced reduction in 90 and 120 cm jumps was significantly counteracted by 

apomorphine. The same holds true for 60 cm jumps, although it was not yet significant 

(p>0.05). Furthermore, the reduction following haloperidol was significantly prevented 

by picrotoxin injected into the deeper layers of the superior colliculus. Finally, neither 

apomorphine nor picrotoxin per se did affect the postlanding part of burst2. 

Table 7.4D shows that haloperidol significantly increased the IEMG activity of burst3 

during 90 cm jumps. The latter effect was neither present during 60 or 120 cm jumps 

nor could be prevented by apomorphine or picrotoxin. Finally, the combined treatment 

of intracollicular picrotoxin and intracaudate haloperidol significantly reduced the IEMG 

activity of burst3 only in 60 cm jumps. 

Table 7.4E shows that the IEMG activity of the complete myograms are only 

significantly affected during 60 cm jumps after the combined treatment of picrotoxin 

and haloperidol. 

Extensor EMG activity during POST-injection test! 

Analysis of the data collected during the POST-injection test2 revealed that, apart 

from those shown in Table 7.5, most haloperidol-induced effects were no longer 

present. This table reveals that haloperidol still reduced the postlanding IEMG activity 

of burst2 during 90 cm jumps as well as during 120 cm jumps. Moreover, both 

apomorphine and picrotoxin were still able to counteract these effects. 
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Table 7.5 Median value (25-75% range) of the ratio (POST-mjection test2 I PRE-mjecnon test) of IEMG 

activity of the postlandmg part of burst2 for 90 and 120 cm jumps. ' p<0.05; " p<002: drug vs 

corresponding control experiment. * p<0.05; *+ p<0.02: HallApo and Ptz/Hal vs Hal/Slv. 

For abbreviations, see legend of Table 7.4. 

INJECTIONS 

CN: 

CSDL/CN: 

Slv/Slv 
Hal/Slv 

Hal/Apo 
Slv/Apo 

Slv/Slv 
Ptx/Slv 
Ptx/Hal 

JUMP LEVEL 
90 cm 

1.06 (1.00-1.31) 
0.44" (0.40-0.71) 
1.33+ (1.20-1.93) 
0.93 (0.69-1.00) 

0.90 (0.80-1.00) 
0.86 (0.83-1.17) 
1.20+ (0.89-1.50) 

120 cm 

1.00 (1.00-1.00) 
0.50" (0.29-0.80) 
0.75+ (0.63-1.00) 
1.33 (1.14-1.42) 

0.81 (0.75-1.00) 
1.00 (1.00-1.25) 

1.27++ (1.00-1.33) 

7.4 DISCUSSION 

Genera] considerations 

Jump height did have a clearcut effect on forelimb extensor EMG activity prior to, 

and immediately after landing. The EMG signal started and terminated earlier and 

IEMG activity of burst! and burst2 was enhanced when jump height was increased. 

Absence of a fixed relation between onset of EMG activity and moment of landing 

during jumps from different heights, as found in the present study, may imply that 

vestibular stimuli were involved in the control of at least part of the signal (see Section 

7.1, Introduction). 

In contrast to the present findings, it has been reported that the onset of prelanding 

extensor activity is related to the moment of landing, but not to the moment of 

take-off. On the basis of these findings, McKinley and colleagues have suggested that 

the timing of prelanding activity is triggered by visual information (McKinley & Smith, 

1983; McKinley, Smith & Gregor, 1983). In view of the fact that in the present study 
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the onset of prelanding EMG activity was height-dependent, it is unlikely that visual 

information triggered the timing of prelanding muscle activity in our paradigm. The 

difference between the outcome of McKinley's experiments and that of the present 

study is easy to understand in view of the following. In contrast to McKinley's paradigm 

in which cats had to perform continuous series of 31-42 jumps of a single height, we 

purposely used a paradigm, in which cats were never allowed to jump successively from 

the same height. In other words, our paradigm actually prevented the use of visual 

information to trigger the prelanding EMG activity. 

In the present study, the offset of burst2 appeared about 5-6 ms after impact. 

According to McKinley, Smith and Gregor (1983), the first postlanding burst in the cat 

lateral triceps muscle does not start until about 18 ms after landing from jump-downs. 

The latter delay is comparable to that found for the onset of stretch reflex responses 

of cat hindlimb extensor muscles after landing from a fall (Prochazka et al., 1977). 

According to Laursen and coworkers (1978), monkey extensor EMG activity following 

a jump-down is not of reflexive origin until at least 20 ms after impact. In human 

subjects, short-latency responses do not occur until 20-30 ms after landing from self-

initiated falls (Dietz, Noth & Schmidtbleicher, 1981). Considering these reports, it 

seems unlikely that spinal stretch reflexes were involved in the postlanding part of 

burst2 as defined in the present study. Therefore, it is suggested that this part of the 

EMG signal was programmed before the cat touched the landing platform. 

Haloperidol and perilanding EMG activity 

Apart from the finding that intracaudate injections of the dopaminergic antagonist 

haloperidol did not affect EMG activity of burst 1, it produced two types of effects: 

A. Effects which were consistently present during jumps of all three levels (1) and 

which could be prevented by intracaudate application of apomorphine (2) as well as 

by intracoUicular injections of picrotoxin (3). B. Effects which were not consistently 

present during jumps from all three levels (1) and which were not counteracted by 

apomorphine (2) or picrotoxin (3). 
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Type В effects were apparently not dopamine-specific since the dopaminergic agonist 

apomorphine was unable to counteract these effects. Furthermore, type В effects were 

apparently not funnelled via striato-nigro-collicular fibres since inhibition of GABA at 

the level of the deeper layers of the colliculus superior could not interfere with the 

effects induced by haloperidol injections into the caudate nucleus. It can be argued that 

the type В effects were either behavioural consequences of an aspecific action of 

haloperidol within the caudate nucleus or behavioural consequences of changes 

occurring outside the caudate nucleus which per se were elicited by a specific action 

of haloperidol within the caudate. Since both the dose and volume of haloperidol are 

known to elicit dopamine- and locus-specific effects (Cools, Struyker Boudier & van 

Rossum, 1976), only the latter possibility remains. In fact, there is already evidence that 

similar injections of haloperidol are able to elicit behavioural effects in such a manner 

(see Section 3.1). 

The postlanding part of burst2 was significantly affected by haloperidol during jumps 

of all three levels (type A effects). Moreover, the latter effect appeared to be selec

tively mediated by dopamine receptors of the caudate nucleus since an otherwise 

ineffective dose of apomorphine was able to prevent the haloperidol-induced decrease 

in at least two out of the three jump levels tested. Finally, the haloperidol-induced 

reduction was prevented by inhibition of collicular GABAergic activity with the help of 

Picrotoxin, i.e., a treatment unable to affect EMG patterns when tested alone. The 

latter data show that the haloperidol-induced decrease apparently required a certain 

GABAergic activity at the level of the deeper layers of the superior colliculus. Taking 

these findings together it appears justified to conclude that the haloperidol-induced type 

A effects upon the postlanding part of burst2 were consistent, dopamine-specific and 

inherent in the (rostromedial) caudate nucleus which is known to funnel its information 

via the striato-nigro-collicular fibres downstream in the brain (cf. Cools, 1986; Heim et 

al., 1986). 

First order and lower order output stations of the caudate nucleus have been found 

to control spinal motor elements in anaesthetized animals (Alstermark, Lundberg & 
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Sasaki, 1984a, 1984b; Schwarz, Sontag & Wand, 1984a; Sontag et al., 1984; Wagner & 

Kalmring, 1968; York, 1973). The present data reveal that the caudate nucleus itself 

exerts such a control, even in awake animals. As shown previously, decreasing caudate 

dopaminergic activity by means of intracaudate injections of haloperidol selectively 

inhibits switching to motor patterns which are not dictated by exteroceptive stimuli (see 

Section 3.1). As mentioned in Section 7.1 (Introduction), these effects are considered 

to be the manifestation of a deficient ability to arbitrarily program motor behaviour and 

known to be funnelled via the deeper layers of the colliculus superior (see Chapter 3 

and 5). The present study shows that a similar treatment affected only the postlanding 

part of burst2 in a dopamine-specific manner. The present study also shows that the 

deeper layers of the colliculus superior play a role in the dopamine-specific changes in 

the perilanding muscle activity. These data together lead to the suggestion that 

perilanding EMG activity of the triceps brachii during self-initiated jump-downs is the 

manifestation of changes in the ability of the caudate nucleus to arbitrarily program 

motor behaviour. Given the role of exteroceptive and proprioceptive stimuli in directing 

a large part of the perilanding EMG activity it is not amazing that the intracaudate 

injections of haloperidol produced only minor changes in the recorded EMG activity. 

Given the present data, it makes sense to assess paradigms in which a far greater part 

of the EMG activity is not directed by exteroceptive and\or proprioceptive stimuli. 

The present study opens the perspective that EMG activity which is not dictated by 

exteroceptive or proprioceptive stimuli may serve as a tool in studies on patients with 

basal ganglia diseases, such as patients suffering from Parkinson's Disease or 

Huntington's Chorea. In this respect, it is of interest to recall the report of Dietz and 

coworkers who detected abnormalities in 'preprogrammed' EMG activity during a 

simple motor task in parkinsonian patients (Dietz, Quintern & Berger, 1985) and of 

Noth and colleagues (Noth, Podoll & Friedemann, 1985), who found deficient long-

latency responses in Huntington patients. 
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CHAPTER 8 

SUMMARY AND CONCLUSIONS 

Functional disturbances at the level of the mammalian caudate nucleus result in a 

variety of behavioural effects ranging from sensory neglect to motor disorders and/or 

cognitive disturbances. In Chapter 1, several factors were discussed which may underlie 

the diversity of the reported behavioural effects following experimental manipulation 

of the caudate nucleus. (1) The caudate nucleus may be involved in a universal 

programming ability which per se is not restricted to certain categories of observable 

behaviour. (2) At least part of the behavioural changes following experimentally-

induced alterations at the level of the caudate nucleus may be due to functional 

changes at the level of other brain regions which start to dysfunction as a result of 

distorted neuronal information directly and indirectly received from the affected 

caudate. The goal of this thesis was to investigate both possibilities. 

In Chapter 2 the literature concerning the heterogeneous character of the caudate 

nucleus was discussed. Caudate tissue can be divided into 'patches' or 'striosomes' and 

surrounding 'matrix' with the help of neurochemical markers. Striosomes and matrix 

are differentially innervated by mesencephalic dopaminergic cell groups. In addition, 

cortico- and thalamocaudate projections innervate both compartments differentially. 

Moreover, caudate cells located in patches and matrix appear to project to different 

subregions within the target regions, i.e. the substantia nigra pars reticulata and the 

globus pallidus. Apart from morphological and anatomical data, behavioural data were 

also reviewed showing that at least two functional subregions can be distinguished 

within the caudate nucleus, i.e. the rostromedial region and the anterodorsal region. 
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Comparing the subdivisions based on functional, behavioural studies on the one hand, 

and the subdivisions based on histochemical techniques and anatomical characteristics 

on the other hand it seems that patches predominate in the rostromedial region 

whereas the matrix predominates in the anterodorsal region. In the present thesis, 

attention was focused on the role of the rostromedial part of the caudate nucleus on 

the control and modulation of behaviour using the cat as an experimental model. 

In Chapter 3, experiments were described in which the role of the rostromedial 

caudate nucleus in switching motor patterns was investigated. In Section 3.1, 

experiments were described in which cats were trained to walk on a specially-designed 

treadmill test situation. They were able to collect food pellets by switching motor 

patterns with or without the help of exteroceptive stimuli inherent to the treadmill. 

Intracaudate (rostromedial region) injections of the dopaminergic antagonist halopendol 

were given in order to study the involvement of the dopaminergic caudate nucleus in 

switching motor patterns. Results indicate that haloperidol selectively decreased the 

number of so-called 'non-exteroceptively directed motor patterns'. This reduction 

appeared to be dopamine-specific since intracaudate application of the dopamine 

agonist apomorphine was able to prevent this effect in a dose-dependent way. 

Moreover, haloperidol did not affect the number of food collecting attempts indicating 

that this treatment did not influence the motivational state inherent in food deprivation. 

Furthermore, haloperidol did not reduce the number of so-called 'exteroceptively 

directed motor patterns' and this indicated that the capacity to switch patterns with 

the help of exteroceptive stimuli was not reduced. In addition, absence of incorrect 

adjustments of body postures and positions on the belt indicated that haloperidol did 

not affect the capacity to switch to proprioceptively directed motor patterns. Finally, 

haloperidol did not produce abnormal electromyographic or length signals in hindlimb 

muscles of cats walking on the belt of the treadmill. These data show that, as far as 

normal walking movements are concerned, intracaudate haloperidol did not produce 

limb deficits per se. On the basis of these observations it was concluded that haloperidol 

selectively reduced the animal's capacity to 'program non-stimulus directed motor 

behaviour'. That is, haloperidol selectively reduced the ability to arbitrarily switch 
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motor patterns. The data from animal and human studies together strongly suggest that 

the function of the caudate nucleus in arbitrarily programming behaviour is not limited 

to certain behavioural categories. The manner in which disturbances in this universal 

programming capacity are manifested in behaviour appears to depend on the 

constraints of the test used. 

Experiments investigating the role of the glutamatergic corticocaudate pathway in 

switching behaviour are presented in Section 3.2. Several glutamate receptor subtypes 

have been described including the quisqualate receptor, the N-Methyl-D-Aspartate 

(NMDA) receptor and the kainate receptor. Many corticocaudate fibres are known 

to activate caudate quisqualate receptors. Therefore, the effect of intracaudate 

injections of the selective quisqualate receptor agonist dl-a-Amino-3-hydroxy-5-Methyl-

isoxazole-4-Propionic Acid (AMPA) on switching behaviour was studied. Cats were 

tested in a 'bar paradigm' in which they had to switch to different motor patterns, for 

example, switching from hanging to climbing, from sitting to walking and, finally, from 

walking to jumping. During the test, there were no changes in exteroceptive stimuli 

which could have directed the behaviour of the animal under study. Intracaudate 

application of AMPA reduced the time required to climb on the bar (in cats which did 

not show abnormal limb movements) and increased the number of head movements 

as well as that of walking-restarts. These data suggest that AMPA enhanced the ability 

to switch behaviours. Apart from changes in switching behaviour, AMPA produced 

abnormal limb movements in some of the treated cats. AMPA-induced changes in 

switching behaviour could be attenuated by additional intracaudate injections of 

kynurenic acid, i.e., a broad spectrum excitatory amino acid receptor antagonist, but not 

by d-2-amino-7-phosphonoheptanoate (AP7), i.e., a specific NMDA receptor antagonist. 

In contrast, abnormal limb movements were prevented by pretreatment with either 

kynurenic acid or AP7. 

In Section 3.3, experiments were presented in which the interplay of dopamine and 

glutamate on switching behaviour was investigated. In these studies, the effects of 

intracaudate injections of apomorphine on behavioural changes induced by caudate 
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injections of AMPA were analyzed. Results indicated that AMPA-induced increases in 

switching behaviour were dose-dependently prevented by apomorphine. In contrast, 

AMPA-induced limb deficits were not attenuated by apomorphine. The results 

described in Section 3.2 and 3.3 showed that quisqualate receptors were involved in 

switching behaviour whereas quisqualate as well as NMDA receptors were involved in 

AMPA-induced limb disturbances. The fact that apomorphine was able to prevent the 

AMPA-induced changes in switching behaviour but not the AMPA-induced limb deficits 

suggests that the two phenomena are mediated by different pathways. It was suggested 

that the AMPA-induced changes in switching behaviour are mediated by caudato-

nigro-collicular fibres and that the AMPA-induced limb deficits are funnelled via the 

caudato-nigro-thalamo-cortical pathway. 

Chapter 4 described experiments in which attention was focused on two brain 

regions receiving direct or indirect caudate nucleus-derived neuronal information, i.e. 

the substantia nigra pars reticulata and the deeper layers of the colliculus superior, 

respectively. Many caudatonigral as well as nigrocollicular fibres contain the inhibitory 

neurotransmitter gamma-aminobutyric acid (GABA). In Section 4.1, it was investigated 

whether the reticular substantia nigra indeed mediates caudate output signals and 

whether it also serves as part of a negative feed-back system controlling the activity of 

the dopaminergic cells of the nigral pars compacta projecting to the caudate nucleus. 

The data showed that intracaudate injections of apomorphine or haloperidol had no 

effect on the behavioural changes produced by alterations in GABAergic activity 

induced at the level of the substantia nigra pars reticulata. These observations underline 

the function of the nigral pars reticulata as an output station of the caudate nucleus. 

The fact that neither the behavioural effects following intranigral injections of the 

GABA agonist muscimol nor the behavioural phenomena following application of the 

non-competitive GABA antagonist picrotoxin were altered after experimental 

manipulation of the caudate nucleus shows that the pars reticulata not only transmits, 

but actually transforms, its incoming signals into new output signals. 

Section 4.2 presented data on the effects of picrotoxin injected into the deeper 
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layers of the feline colliculus superior. Unilateral injections of picrotoxin produced a 

cascade of motor patterns, starting with small contralateral ear movements followed by 

head movements, torso movements and, finally, whole body movements. Most of these 

phenomena were (1) dose-dependent, (2) locus-specific, and (3) GABA-specific. 

Bilateral injections of picrotoxin resulted in similar movements, but these movements 

were directed towards both sides and/or directed 'ventrocaudally'. The behavioural 

phenomena found after experimentally-induced changes in GABAergic activity at the 

level of the deeper layers of the colliculus superior were dissimilar to the effects 

observed after similar experimentally-induced changes at the level of the substantia 

nigra pars reticulata. These data indicate that the deeper layers of the colliculus 

superior, which serves as an output station of the substantia nigra pars reticulata also 

transforms incoming signals into new output signals. 

Chapter 5 presented two studies analyzing the consequences of a progressive 

dysfunctioning caudate nucleus or deeper layers of the colliculus superior on switching 

motor patterns. It is known that systemic application of apomorphine may result in a 

Ъгеак-down' of motor behaviour in rats. It can be hypothesized that this break-down 

is due to the involvement of caudate output stations indirectly affected by activation of 

caudate dopamine receptors. In order to obtain evidence of this hypothesis, it was first 

investigated whether activation of caudate dopamine receptors by relatively high doses 

of apomorphine produce a break-down of the motor pattern sequence in the treadmill 

paradigm (Section 5.1). Further, it was also investigated whether a comparable break

down could be induced by experimentally induced changes at the level of the deeper 

layers of the colliculus superior (Section 5.2). Since only one of the motor patterns in 

the 'treadmill' sequence is caudate-specific (see Section 3.1), disturbances at the level 

of the rostromedial caudate nucleus as well as disturbances at the level of other brain 

structures could be distinguished. Data were presented in Section 5.1 showing that 

relatively high doses of apomorphine resulted in the successive break-down of motor 

pattern sequences whereby not only caudate-specific motor patterns were reduced, but 

also non-caudate specific motor patterns. This regression in motor behaviour following 

apomorphine appeared to be induced via caudate dopamine receptors since this 
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phenomenon could be prevented by pretreatment with haloperidol. Because the 

relatively high doses of apomorphine also affected non-caudate specific motor patterns, 

it was concluded that other brain structures (indirectly) receiving caudate output signals 

were involved in the observed regression of the motor pattern sequence. 

The possible involvement of caudate output stations in the regression of motor 

behaviour as described above was further investigated in experiments presented in 

Section 5.2. In this study, it was investigated whether changes in the GABAergic activity 

at the level of the deeper layers of the colliculus superior also result in a regression in 

motor behaviour. Therefore, cats were also tested in the treadmill paradigm before and 

after collicular injections of the GABA antagonist picrotoxin. Picrotoxin produced dose-

dependent and GABA-specific regression of motor behaviour comparable to that 

elicited by intracaudate-injected apomorphine. This observation implies that a functional 

disturbance at the level of the deeper layers of the colliculus superior also produces a 

behavioural regression comparable to that found after a functional disturbance at the 

level of the rostromedial caudate nucleus. It was suggested that this regression process 

in motor behaviour is inherent in the hierarchical organization of the brain. 

In Chapter 6, experiments were described in which it was investigated whether acute 

neuropathological changes at the level of the caudate nucleus are able to (1) produce 

behavioural changes characteristic for behavioural changes at the level of the caudate 

nucleus; and (2) produce changes in behaviour inherent in dysfunctioning output 

stations such as the substantia nigra pars reticulata and the deeper layers of the 

colliculus superior. Therefore, open field behaviour was analyzed immediately after the 

intracaudate application of the neuro-excitant kainic acid (Section 6.1) or after the 

unilateral occlusion of the middle cerebral artery (Section 6.2). Section 6.1 described 

the results from an experiment showing that intracaudate injections of kainic acid 

produced a sequence of behavioural changes characteristic for: (1) an activation of 

caudate (rostromedial part) dopamine receptors, (2) activation of nigral (pars reticulata) 

GABA receptors and, finally, (3) inhibition of collicular (deeper layers) GABA 

receptors. In addition, the above-mentioned functional changes at the level of these 
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regions appeared to be accompanied by an increase in metabolism as measured by the 

uptake of [14C]-2-D-deoxyglucose uptake. 

In Section 6.2, an entirely different manipulation of the caudate nucleus was used 

to investigate whether the progressive pathology following kainic acid indeed reflects 

changes characteristic of alterations in the cerebral organization or whether they are 

aspecific features of the neuro-excitatory compound. Therefore, the middle cerebral 

artery was permanently occluded and the behavioural consequences were analyzed up 

until 21 days after the occlusion. Data are shown that occlusion of the middle cerebral 

artery also produced functional and metabolic changes at the level of the caudate 

nucleus, the substantia nigra pars reticulata and the deeper layers of the colliculus 

superior. However, the latter changes were diametrically opposite to those following 

kainic acid. On the basis of these data, it was suggested that the successive appearance 

of the behavioural effects following caudate injections of kainic acid as well as 

unilateral occlusion of the middle cerebral artery are inherent in the hierarchical order 

of the brain structures under study. 

Chapter 7 dealt with experiments investigating the role of the rostromedial caudate 

nucleus in programming muscle activity per se. In these studies, EMG activity of a 

forelimb extensor muscle was analyzed in cats during jumping and landing on a 

platform before and after intracaudate injections of haloperidol. Results indicate that 

perilanding EMG activity consisted of several bursts, i.e. two prelanding and several 

postlanding bursts. Haloperidol produced a significant reduction in part of the EMG 

activity during jumps from different heights. In addition, these haloperidol-induced 

EMG effects appeared to be dopamine-specific since intracaudate apomorphine was 

able to prevent the reduction in the majority of tested jump heights. Moreover, 

intracollicular injections of Picrotoxin were also able to counteract this haloperidol-

induced reduction indicating that this effect required a specific GABAergic activity at 

the level of the colliculus. Apart from the afore-mentioned reduction in part of the 

perilanding EMG-activity, haloperidol also produced other subtle changes. However, 

these effects were neither dopamine-specific nor funnelled via the colliculus superior. 
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Considering the fact that haloperidol reduced those aspects of the EMG signal which 

are not directed by exteroceptive or proprioceptive stimuli, it seems likely that the 

latter effect was due to a reduced ability to program arbitrarily muscle activity. 

CLINICAL IMPLICATIONS 

According to the data described in Section 3.1, patients suffering from a reduced 

dopaminergic activity in the basal ganglia should show a reduced ability to switch 

arbitrarily behaviours. Indeed, others have found that parkinsonian patients suffer from 

a deficient ability to shift set without external 'cues' compared to set-shifting with the 

help of exteroceptive information in eye-tracking tasks (Crawford, Henderson & 

Kennard, 1989; White et al., 1988), motor pattern tasks (Cools et al., 1984b; Rogers 

& Chan, 1988; Benecke et al., 1987; Flowers, 1976), memory tasks (Helkala et al., 

1988; Brown & Marsden, 1987) and cognitive tasks (Brown, 1989; Cools et al., 1984; 

Lees & Smith, 1983; Flowers & Robertson, 1985; Taylor, Saint-Cyr and Lang, 1986). 

Furthermore, the data presented in Chapter 7 suggest that a deficient ability to switch 

behaviours even extends to the programming of muscle activity per se. Therefore, the 

analysis of EMG activity which is not dictated by exteroceptive or proprioceptive stimuli 

may serve as a tool in studies of patients with basal ganglia diseases, including patients 

suffering from Parkinson's Disease or Huntington's Chorea. In addition, the data 

presented in Section 3.1 show that the haloperidol-induced reduction in switching to 

non-exteroceptively directed motor patterns could be compensated for by an increase 

in switching to exteroceptively directed motor patterns. Accordingly, learning to use 

exteroceptive and/or proprioceptive stimuli for directing behaviour may be 

therapeutically effective in terms of compensating the reduced ability to switch 

arbitrarily behavioural programmes (cf. Stern, Lander & Lees, 1980). 

With respect to the possible consequences of an overactivation of caudate dopamine 

receptors (see Section 5.1) it is relevant to note that several clinical studies have shown 

that L-Dopa-treated parkinsonian patients still perform poorly in cognitive as well as 

in motor tests which call for the patient's ability to switch arbitrarily behaviours (cf. 

Bowen et al., 1975; Bowen, 1976; Cools et al., 1984; Flowers & Robertson, 1985). Thus, 
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in spite of L-dopa treatment, the patient's caudate nucleus apparently is not functioning 

optimally. Furthermore, many L-Dopa-treated parkinsonian patients develop so-called 

'On-Off-phenomena (Lewitt & Chase, 1983), which probably are not due to chronic 

treatment or progression in state of illness (Lang et al., 1982). The occurrence of 

'Off-phenomena seem to coincide with peak plasma levels of L-Dopa (Fahn, 1974). 

During an 'Off period, some patients do not improve following i.v. administration of 

L-Dopa or lisuride (Hardie et al., 1982) excluding the possibility that this effect is due 

to insufficient dopamine receptor stimulation. Considering these clinical data, the data 

presented in Chapter 5 imply that these 'Off-phases might reflect 'regression' processes 

due to the subsequent exclusion of the caudate nucleus as well as of other brain 

structures from motor programming as a result of the overactivation of striatal 

dopamine receptors. 

Finally, the data described in Chapter 6 suggest that classical parkinsonian symptoms 

such as hypokinesia, rigidity, etc. become only manifest when the caudate pathology has 

resulted in a malfunctioning of one or more striatal output stations. From this point of 

view, it seems to be highly relevant to develop therapeutic drugs which can restore 

normal functions of caudate output stations in order to relieve parkinsonian patients 

from these symptoms. 
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SAMENVATTING EN CONCLUSIES 

Functionele veranderingen binnen de nucleus caudatus kunnen leiden tot een reeks 

van gedragsveranderingen variërend van 'sensory neglect' tot motorische stoornissen 

en/of cognitieve effecten. In Hoofdstuk 1 werden een aantal factoren besproken die ten 

grondslag zouden kunnen liggen aan die diversiteit van mogelijke gedragsveranderingen 

als gevolg van experimentele manipulatie van de nucleus caudatus: (1) De nucleus 

caudatus zou betrokken kunnen zijn bij een 'universeel' programmeer mechanisme dat 

betrokken is bij verschillende categorieën van observeerbaar gedrag. (2) Een deel van 

de waargenomen gedragseffecten na experimentele manipulatie van de nucleus caudatus 

zouden kunnen voortkomen uit functionele veranderingen buiten deze kern, als gevolg 

van het verwerken van verstoorde neuronale signalen afkomstig van de nucleus 

caudatus, of als gevolg van het reorganiseren van neuronale netwerken buiten de 

nucleus caudatus om. Het doel van deze dissertatie was beide mogelijkheden nader te 

onderzoeken. 

Hoofdstuk 2 behandelde literatuurgegevens betreffende het, in vele opzichten, 

heterogene karakter van de nucleus caudatus. Met behulp van biochemische markers 

kan caudatus weefsel worden verdeeld in een tweetal compartimenten, namelijk de 

'patches' of 'striosomes' enerzijds en de 'matrix' anderzijds. Het is gebleken dat patches 

en matrix differentieel worden geïnnerveerd vanuit de mesencephale dopamine cel-

groepen. Hetzelfde geldt ook voor de cortico-caudatale en thalamo-caudatale pro

jecties. Aan de andere kant blijken neuronen gelegen in de patches en de matrix ook 

onderscheiden projectiegebieden te hebben binnen de hersenkernen die vanuit de 

nucleus caudatus geïnnerveerd worden, zoals de substantia nigra pars reticulata en de 

globus pallidus. Met behulp van gedragsparameters kunnen ook meerdere subregionen 

in de nucleus caudatus worden onderscheiden, zoals het rostromediale deel en het 

anterodorsale gedeelte. Wanneer een -vergelijking getrokken wordt tussen de functio

neel, op basis van gedragsexperimenten, onderscheiden gebieden, en de op basis van 

histochemische technieken en anatomische kenmerken gemaakte indeling, valt het op 

dat in het rostromediale deel van de nucleus caudatus de patches lijken te domineren, 
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terwijl in het anterodorsale gedeelte met name het matrix compartiment lijkt te 

overheersen. In de experimenten beschreven in deze dissertatie is de aandacht met 

name gericht op het eerstgenoemde deel van de nucleus caudatus, het rostromediale 

deel. 

In hoofdstuk 3 werden experimenten beschreven waarin de rol van de (rostro

mediale) nucleus caudatus in het wisselen van motorische patronen nader wordt 

onderzocht. In Sectie 3.1 werd een onderzoek beschreven waarvoor katten getraind 

werden te lopen op een speciaal voor dit doel ontwikkelde tredmolen. De dieren 

werden in staat gesteld voer pellets te verzamelen door het uitvoeren van sequenties 

van verschillende motorische patronen; enkele patronen werden gekenmerkt door het 

feit dat de dieren tijdens het uitvoeren bepaalde visuele en/of tactiele prikkels continu 

fixeerden; deze patronen werden continu gestuurd met behulp van exteroceptieve 

informatie. Andere patronen gingen juist niet gepaard met het fixeren van externe 

prikkels. De rol van dopamine receptoren in het wisselen van de verschillende typen 

patronen werd bestudeerd door het lokaal, in de nucleus caudatus, toedienen van de 

dopamine receptor antagonist haloperidol. Haloperidol verlaagde selectief het aantal 

'niet-exteroceptief gestuurde motorische patronen'. Dit effect was dopamine-specifiek 

hetgeen bleek uit het feit dat de dopamine agonist apomorfine in staat was de door 

haloperidol geïnduceerde reductie dosis-afhankelijk te remmen. Haloperidol had geen 

effect op het aantal pogingen voer pellets te pakken waaruit volgde dat de dopamine 

antagonist geen effect had op de lichamelijke toestand inherent aan voedsel deprivatie. 

Bovendien bleek haloperidol het aantal 'exteroceptief gestuurde patronen' niet te 

verlagen, waaruit volgde dat de dopamine antagonist niet het vermogen om te wisselen 

naar exteroceptief gestuurde patronen had gereduceerd. Abnormale correcties van 

lichaamshoudingen en posities op de lopende band werden niet waargenomen hetgeen 

er op wees dat haloperidol geen effect had op het vermogen om motorische patronen 

te wisselen met behulp van proprioceptieve prikkels. Tenslotte bleek haloperidol geen 

veranderingen te veroorzaken in electromyografische (EMG) activiteit van een 

achterpootspier tijdens het lopen op de tredmolen; het farmacon veroorzaakte geen 

verstoringen in achterpoot bewegingen per se. Op basis van deze waarnemingen kon 
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worden geconcludeerd dat haloperidol selectief het vermogen verminderde om 

zogenaamd 'niet-stimulus gestuurd motorisch gedrag' te programmeren; met andere 

woorden haloperidol verminderde specifiek het vermogen 'eigenmachtig gestuurde' 

motorische patronen uit te voeren. De gegevens afkomstig van humaan en dierexperi

menteel onderzoek geven aan dat deze functie van de nucleus caudatus zich niet 

beperkt tot bepaalde gedragscategorieën. Een verstoring op het niveau van de nucleus 

caudatus kan tot uiting komen in het eigenmachtig wisselen van cognitieve oplosstrate-

gieën (Parkinson patiënten), van sociale interacties (apen), van motorische strategieën 

(ratten) en van motorische patronen (Parkinson patiënten, katten). De manier waarop 

een verstoorde functie van de nucleus caudatus tot uiting komt in gedragveranderingen 

lijkt in belangrijke mate af te hangen van de aard van de gebruikte test. 

In Sectie 3.2 werden experimenten beschreven waarin de rol van de cortico-

caudatale glutamaterge projektie in het wisselen van motorische patronen werd 

onderzocht. Er worden verschillende typen receptoren voor exciterende aminozuren 

beschreven, zoals n-methyl-d-aspartaat (NMDA) receptoren, quisqualaat receptoren en 

kainezuur receptoren. In de nucleus caudatus worden met name quisqualate receptoren 

gestimuleerd door corticale eindigingen. Het onderzoek naar de functie van dit type 

receptor wordt bemoeilijkt door het feit dat hiervoor (nog) geen selectieve antagonisten 

beschikbaar waren. In de in dit hoofdstuk beschreven gedragsstudies werd gebruik 

gemaakt van de selectieve quisqualaat receptor agonist dl-a-amino-3-hydroxy-5-methyl-

isoxazol-4-propion zuur (AMPA). Het effect van deze agonist op het wisselen van 

patronen werd onderzocht bij katten die op een smalle balk dienden te klimmen, 

vervolgens over deze balk moesten lopen en tenslotte van de balk op een plank 

moesten springen. Gedurende de test waren er geen veranderingen in externe prikkels, 

behalve die de dieren zelf introduceerden als gevolg van hun eigen bewegingen, die het 

gedrag van de katten konden sturen. AMPA reduceerde de tijd die de dieren nodig 

hadden om op de balk te klimmen (in dieren die geen abnormale pootbewegingen 

vertoonden, zie verder); AMPA verhoogde zowel het aantal kopbewegingen als het 

aantal keren dat het dier startte met lopen. Behalve voornoemde effecten op het 

wisselen van motorische patronen veroorzaakte AMPA bij een deel van de geteste 
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dieren afwijkingen in pootbewegingen. De door de agonist veroorzaakte veranderingen 

in het wisselen konden worden tegengegaan door de breed-spectrum glutamaat receptor 

antagonist kynurine zuur, maar niet door de selectieve NMDA receptor antagonist d-

2-amino-7-phosphonoheptanoaat (AP7). Aan de andere kant, de abnormale pootbewe

gingen konden worden voorkomen zowel door kynurine zuur als AP7. 

In Sectie 3.3 werd een experiment beschreven waarin de interactie tussen dopamine 

en glutamaat in de nucleus caudatus werd onderzocht. Het effect van apomorfine op 

de door AMPA geïnduceerde gedragsveranderingen werd geanalyseerd. De door AMPA 

veroorzaakte veranderingen in het wisselen konden dosis-afhankelijk door apomorfine 

worden tegengegaan; de AMP A-geïnduceerde abnormale pootbewegingen werden niet 

beïnvloed door de dopamine agonist. De in Sectie 3.2 en 3.3 beschreven resultaten 

leiden tot de conclusie dat quisqualaat receptoren in de rostromediale nucleus caudatus 

betrokken zijn bij het wisselen van motorische patronen terwijl zowel quisqualaat als 

NMDA receptoren betrokken lijken te zijn bij de door AMPA geïnduceerde poot-

stoornissen. Het feit dat apomorfine wel in staat bleek de door AMPA geïnduceerde 

veranderingen in het wisselen van motorische patronen te wijzigen, maar niet de 

stoornissen in pootbewegingen, onderstreept dat beide fenomenen waarschijnlijk door 

verschillende uitgangsbanen gemedieerd worden, namelijk het wisselen via de caudato-

nigro-colliculaire baan, en de pootstoornissen via de caudato-nigro-thalamo-corticale 

baan. 

Hoofdstuk 4 beschrijft een tweetal studies waarin hersenarealen centraal staan die 

hetzij direct, hetzij indirect, neuronale informatie ontvangen vanuit de nucleus caudatus, 

namelijk de substantia nigra pars reticulata en de diepere lagen van de colliculus 

superior. Caudato-nigrale en nigro-colliculaire vezels bevatten veelal de inhiberende 

neurotransmitter gamma-aminoboter zuur (GABA). In Sectie 4.1 werd nagegaan of de 

substantia nigra pars reticulata inderdaad beschouwd kan worden als een uitgangsstation 

voor de nucleus caudatus en niet, zoals klassiek werd verondersteld, als deel van een 

(negatief) terugkoppelend systeem naar de oorsprong van de dopaminerge nigro-cauda-

tale vezels, namelijk de dopamine cellen in de substantia nigra pars compacta. 
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Unilaterale intranigrale toediening van de GABA agonist muscimol induceerde een 

kontralaterale lichaamshouding, snel kontralateraal cirkelen, en stereotiep likken; 

unilaterale toediening van de niet-kompetetieve GABA antagonist Picrotoxine induceer

de een kontralaterale lichaamshouding, traag kontralateraal cirkelen, 'freezing' gedrag, 

en een onvermogen de achterpoten op te trekken in de Ъаік-test'. Het bleek dat 

haloperidol noch apomorfine, toegediend in de nucleus caudatus, in staat was gedrags-

effekten te beïnvloeden die veroorzaakt werden door experimenteel-geïnduceerde 

veranderingen in de GABAerge neurotransmissie van de substantia nigra pars reticu

lata. Deze waarnemingen onderstrepen de rol van de nigrale pars reticulata als 

uitgangsstation voor de nucleus caudatus. Het feit dat noch de gedragseffekten na 

intranigrale (pars reticulata) toediening van de GABA agonist muscimol, noch de 

gedragsveranderingen geïnduceerd door intranigrale toediening van Picrotoxine overeen 

kwamen met effecten zoals die beschreven zijn na experimentele manipulatie van de 

nucleus caudatus, geeft aan dat de nigrale pars reticulata neuronale prikkel niet 

uitsluitend doorgeeft, maar ook transformeert. 

De gedragseffekten van intracolliculaire toediening van Picrotoxine werden be

schreven in Sectie 4.2. Unilaterale toediening van picrotoxine induceerde een kaskade 

van motorische patronen: beginnend met kleine, kontralaterale oorbewegingen, gevolgd 

door sequenties van korte kontralaterale kopbewegingen, kontralaterale torso

bewegingen en, tenslotte, ook kontralaterale lichaamsbewegingen. Het merendeel van 

deze bewegingen was dosis-afhankelijk, GABA-specifiek en plaats-specifiek. Bilaterale 

toediening van picrotoxine veroorzaakte vergelijkbare bewegingen, maar nu gericht naar 

beneden (ventrocaudaal) of naar beide zijden. De gedragseffekten na experimenteel 

geïnduceerde veranderingen in de GABAerge activiteit van de diepere lagen van de 

colliculus superior bleken niet overeen te komen met die effecten die volgden op 

experimentele manipulatie van de substantia nigra pars reticulata. Hieruit volgt dat ook 

de diepere lagen van de superior colliculus, als uitgangsstation van de substantia nigra 

pars reticulata, neuronale prikkels niet alleen doorgeven, maar ook transformeren. 

In Hoofdstuk 5 werden een tweetal experimenten beschreven waarin de effecten 
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werden onderzocht van een progressief dysfunctionerende nucleus caudatus of (diepere 

lagen van de) colliculus superior op het wisselen van motorische patronen. In Sectie 

5.1 werd onderzocht in hoeverre een toename in de mate van stimulatie van dopamine 

receptoren in de rostromediale nucleus caudatus ook andere delen van de hersenen, 

buiten de caudatus, kan beïnvloeden. Hiervoor werd het effect bestudeerd van relatief 

hoge doseringen apomorfine, toegediend in de rostromediale caudatus, op het wisselen 

van motorische patronen bij het verzamelen van voer pellets in de tredmolen-test. 

Gezien het feit dat slechts één van de motorische patronen in deze test caudatus-

specifiek is (zie Sectie 3.1), kunnen verstoringen binnen de rostromediale nucleus 

caudatus onderscheiden worden van verstoringen buiten dit gebied. De verzamelde data 

lieten zien dat apomorfine een successieve afbraak van de patroon sequenties tot 

gevolg had waarbij niet alleen caudatus-specifieke patronen geremd werden, maar ook 

niet caudatus-specifieke patronen. Deze 'regressie' in motorisch gedrag werd 

geïnduceerd via dopamine receptoren gezien het feit dat haloperidol in staat bleek dit 

apomorfine-effect te blokkeren. Daar apomorfine ook niet caudatus-specifieke patronen 

kon remmen kon geconcludeerd worden dat ook andere hersenkernen, die (in)direct 

neuronale prikkels ontvangen van de nucleus caudatus, betrokken zijn bij deze 

regressie. 

De mogelijke betrokkenheid van uitgangsstations van de nucleus caudatus werd 

verder onderzocht in experimenten beschreven in Sectie 5.2. In deze studie werd 

nagegaan in hoeverre Picrotoxine, toegediend in de diepere lagen van de colliculus 

superior, in staat was een vergelijkbare regressie in de tredmolen test te veroorzaken. 

Opnieuw werden getrainde dieren voor en na behandeling, in dit geval intracolliculair 

toegediend picrotoxine, geobserveerd in de tredmolen test. Picrotoxine bleek dosis-

afhankelijk en GABA-specifiek een regressie in motorisch gedrag te kunnen induceren. 

Deze regressie was vergelijkbaar met de regressie in motorisch gedrag zoals dat 

gevonden was na intracaudataal apomorfine. Bovengenoemde regressie in motorische 

gedrag lijkt inherent te zijn aan de hierarchische organisatie van de hersenen. 

In Hoofdstuk 6 werden experimenten beschreven waarin werd nagegaan in hoeverre 
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experimenteel geïnduceerde neuropathologische veranderingen van de (rostromediale) 

nucleus caudatus leiden tot (1) gedragsveranderingen karakteristiek voor funktie

stoornissen van de rostromediale caudatus, en (2) gedragsveranderingen karakteristiek 

voor funktiestoornissen van uitgangsstations van de caudatus, zoals de substantia nigra 

pars reticulata en de diepere lagen van de colliculus superior. Daartoe werd het 'open 

veld' gedrag geanalyseerd van katten onmiddellijk na unilaterale lokale applicatie van 

kainezuur, een neuro-exciterende verbinding (Sectie 6.1), en na unilaterale permanente 

afsluiting van de middelste cerebrale arterie (Sectie 6.2). In Sectie 6.1 wordt beschreven 

dat intracaudatale toediening van kainezuur een sequentie van gedragingen tot gevolg 

heeft die karakteristiek zijn voor: (1) een aktivatie van dopamine receptoren in de 

nucleus caudatus; (2) een aktivatie van GABA receptoren in de substantia nigra pars 

reticulata; en (3) een remming van GABA activiteit in de diepere lagen van de 

colliculus superior. Bovendien bleken voornoemde effecten gepaard te gaan met een 

toename in metabole activiteit op het niveau van deze strukturen zoals gekonstateerd 

werd met behulp van opname van [14C]-2-D-deoxyglucose. 

In Sectie 6.2 werd een geheel andere techniek toegepast teneinde te kunnen nagaan 

in hoeverre de in Sectie 6.1 waargenomen effecten karakteristiek zijn voor de cerebrale 

organisatie van de betrokken strukturen, of, alleen eigenschappen van het kainezuur 

vertegenwoordigen. De gedragseffekten van unilaterale afsluiting van de middelste 

cerebrale arterie werden bestudeerd tot 21 dagen na afsluiting. De gepresenteerde 

gegevens laten zien dat deze ingreep ook functionele en metabole veranderingen 

veroorzaakte in de nucleus caudatus, de substantie nigra pars reticulata en de diepere 

lagen van de colliculus superior. Bovendien bleken de gedragsveranderingen precies het 

spiegelbeeld te zijn van de effecten beschreven in Sectie 6.1. Konkluderend kan gesteld 

worden dat de waargenomen effecten na lokale toediening van kaine zuur of unilaterale 

afsluiting van de middelste cerebrale arterie inherent zijn aan de hierarchische wijze 

waarop de onderzochte strukturen geordend zijn in het brein. 

Hoofdstuk 7 behandelde een experiment waarin de rol van de rostromediale nucleus 

caudatus bij het programmeren van spieraktiviteit werd onderzocht. Daartoe werden 
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katten getraind vanaf een verhoging op een platform te springen. De electro-

myografische activiteit van een voorpoot extensor spier werd geregistreerd gedurende 

de landingsfase voor en na intracaudatale toediening van haloperidol. Haloperidol 

veroorzaakte een reductie in een deel van de EMG activiteit; deze reductie werd 

gevonden tijdens het landen vanaf verschillende hoogtes. Dit effect was dopamine-

specifiek aangezien apomorfine bij 2 van de 3 spronghoogtes in staat bleek deze 

reductie te blokkeren. Bovendien bleek ook intracolliculair toegediend Picrotoxine in 

staat dit haloperidol effect te kunnen remmen (bij 2 van de 3 spronghoogtes) waaruit 

blijkt dat de haloperidol-geïnduceerde reductie kennelijk een bepaalde GABAerge 

activiteit op het niveau van de colliculus vereiste. Gezien het feit dat de haloperidol-

geïnduceerde reductie betrekking had op een deel van de spieraktiviteit die 

'voorgeprogrammeerd' was, d.w.z. niet gestuurd werd door externe of proprioceptieve 

prikkels, kan gesuggereerd worden dat de door haloperidol geïnduceerde reductie het 

gevolg was van een verminderd vermogen eigenmachtig spieraktiviteit te programmeren. 

KLINISCHE ΙΜΡυαΑΉΕ8 

Op basis van de gegevens beschreven in Sectie 3.1 kan verwacht worden dat 

patiënten die lijden aan een gereduceerde dopaminerge activiteit in de basale ganglia 

gekenmerkt worden door een verminderd vermogen eigenmachtig wijzigingen aan te 

brengen in hun bewegingspatronen. Patienten die lijden aan de Ziekte van Parkinson 

blijken inderdaad gekenmerkt te worden door een selectieve verstoring in hun 

vermogen te wisselen, 'to shift set', zonder exteroceptieve prikkels, zgn. 'cues', die 

informatie bevatten ten aanzien van het uit te voeren gedrag. Tegelijkertijd is het 

wisselen van gedragselementen niet gestoord voor zover exteroceptieve prikkels 

aanwezig zijn die informatie bevatten ten aanzien van de uit te voeren gedragingen. Dit 

specifieke deficit is vastgesteld in oog-volgtaken (Crawford, Henderson & Kennard, 

1989; White et al., 1988), het wisselen van motorische patronen (Cools et al, 1984b; 

Rogers & Chan, 1988; Benecke et al., 1987; Flowers, 1976), geheugen taken (Helkala 

et al., 1988; Brown & Marsden, 1987) en cognitive taken (Brown, 1989; Cools et al., 
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1984; Lees & Smith, 1983; Flowers & Robertson, 1985; Taylor, Saint-Cyr and Lang, 

1986). De resultaten beschreven in Hoofdstuk 7 geven bovendien aan dat een 

verminderd vermogen tot het eigenmachtig wisselen van gedragingen tot uiting kan 

komen in spieraktiviteit per se. Een verminderd vermogen tot het eigenmachtig 

programmeren van gedrag kan in bepaalde gevallen gecompenseerd worden door het 

programmeren van gedrag met behulp van externe prikkels (zie Sectie 3.1). Het 

gebruik maken van exteroceptieve en/of proprioceptieve 'cues' bij het sturen van 

bewegingen zou mogelijk als therapie kunnen worden toegepast bij patiënten die lijden 

aan de Ziekte van Parkinson (zie Stern, Lander & Lees, 1980). 

In Sectie 5.1 bleek het 'overstimuleren' van caudatale dopaminerge receptoren een 

regressie in het gedrag tot gevolg te hebben. Vergelijkbare fenomenen kunnen mogelijk 

ook optreden bij parkinson patiënten die worden behandeld met de dopamine 

precursor L-dopa. Aanwijzigingen hiervoor volgen uit verschillende klinische studies die 

hebben aangetoond dat, ondanks een L-dopa therapie, parkinson patiënten een 

verminderde prestatie leveren zowel in cognitieve als in motorische tests waarin 

eigenmachtig wisselen vereist wordt (zie Bowen et al., 1975; Bowen, 1976; Cools et al., 

1984; Flowers & Robertson, 1985). Ondanks de L-dopa therapie functioneert de 

nucleus caudatus van deze patiënten blijkbaar onvoldoende. Bovendien ontwikkelen vele 

L-dopa-behandelde parkinson patiënten het zogenaamde 'On-Off-fenomeen (Lewitt & 

Chase, 1983), hetgeen waarschijnlijk niet het gevolg is van de chronische behandeling 

of de progressie van de ziekte (Lang et al., 1982). Het optreden van 'Off-fases lijkt 

samen te vallen met het bereiken van piek plasmaconcentraties van L-Dopa (Fahn, 

1974), en sommige patiënten geven geen verbetering te zien tijdens een 'Off-fase door 

intraveneuse toediening van lisuride of L-Dopa (Hardie et al., 1982). Blijkbaar is het 

optreden van deze fases geen gevolg van een onvoldoende receptor stimulatie. De 

gegevens beschreven in Hoofdstuk 5 geven aan dat de 'Off-fases bij parkinson 

patiënten de consequentie kunnen zijn van een regressie proces als gevolg van een 

overstimulatie van striatale dopamine receptoren met als resultaat het uitschakelen van 

de nucleus caudatus en/of uitgangsstations van de nucleus caudatus. 
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Tenslotte geven de resultaten beschreven in Hoofdstuk 6 aan dat klassieke parkinson 

symptomen zoals hypokinesie, rigiditeit en tremor mogelijk pas tot uiting komen indien 

de striatale pathologie geleid heeft tot een verstoord functioneren van striatale 

uitgangsstations. Deze mogelijkheid geeft aan dat farmaca die het verstoorde 

functioneren van caudatale uitgangsstations selectief kunnen herstellen mogelijk van 

groot therapeutisch belang zouden kunnen zijn. 
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