
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/113882

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/113882


88 

FUNCTIONAL PROGRAMS 

AS 

EXECUTABLE SPECIFICATIONS 

Pieter Koopman 





FUNCTIONAL PROGRAMS 

AS 

EXECUTABLE SPECIFICATIONS 

een wetenschappelijke proeve op het gebied van de wiskunde en informatica. 

Proefschrift 

ter verkrijging van de graad van doctor aan 
de Katholieke Universiteit te Nijmegen, 

volgens besluit van het college van decanen in het 
openbaar te verdedigen op 
maandag 10 december 1990 
des namiddags te 3.30 uur 

door 

Petrus Wilhelmus María Koopman 

geboren op 3 juli 1957 te Nijmegen 

Druk: Krips Repro Meppel 



Promotor: Prof. dr. H.P. Barendregt 
Co-promotor: Dr. ir. M.J. Plasmeijer 

© 1990, Pieter Koopman, The Netherlands. 

ISBN 90-9003689-X 



Manuscriptcommissie: 

Prof. dr. C.C.A.M. Gielen Katholieke Universiteit Nijmegen 
Dr. ir. S.M.M. Joosten Techinische Universiteit Twente 
Dr. W.G. Vree Universiteit van Amsterdam 

Graag wil ik hierbij iedereen bedanken die op een of andere manier heeft 
bijgedragen aan de totstandkoming van dit proefschrift. Zonder jullie hulp zou 
dit proefschrift nooit geschreven zijn. 



Table of contents 

Introduction 7 
1.1 Place of specifications in the implementation process 8 
1.2 Specification formalisms 13 
1 3 Specifications treated in this thesis 15 
Operational Machine Description 1 9 
2 1 The description method 20 

The machine state 20 
The micro-instructions 21 
The instructions 22 
Program execution 24 

2 2 Description of a simple machine 25 
The state of Mac-1 27 
The micro-instruction level of Mac-1 27 
The Mac-1 instructions 29 
Execution of Mac-1 programs 30 
An example Mac-1 program 31 

2 3 Discussion 32 
The ABC-Machine 3 5 
3 1 The architecture of the ABC-machine 37 
3 2 The micro-instruction set 38 

The graph store 39 
The descriptor store 40 
The A-stack 41 
The B-stack 41 
The program 42 
The program counter 43 
The C-stack 43 
The input-output channel 43 

3 3 The instruction set 44 
Graph manipulation 44 
Manipulating the A-stack 46 
Manipulating the B-stack 47 
Changing the flow of control 47 
Generating output 48 

4 Functional programs as executable specifications 



3.4 Program execution 49 
The instruction cycle 49 
Booting the machine 49 

3.5 ABC-assembler 50 
3.6 Comparison with the G-machine 51 

The G-machine state 52 
The G-machine instructions 53 
Initial and final state of the G-machine 54 
Differences between the abstract machines 54 
Differences between the descriptions 55 

3.7 Discussion 55 
Abstract Program Translation 5 7 
4.1 The description method 58 
4.2 Bracket abstraction 60 
4.3 The traditional description of bracket abstraction 61 

The basic abstraction algorithm 61 
Improving the generated combinator code 63 
Data structures 65 
Local definitions 65 
Recursion 66 
Summary of the abstraction algorithm 67 
Suitability of the description method 68 

4.4 Bracket abstraction described by syntactical matching 68 
Combinators used in the abstraction algorithm 69 
The expressions handled 69 
The abstraction algorithm 70 
Improving the generated combinator code 71 
Reduction 71 
Suitability of the description method 72 

4.5 Bracket abstraction as abstract program transformation 73 
The expressions handled 73 
Combinators used in the abstraction algorithm 73 
The abstraction algorithm 74 
Improving the generated combinator code 75 
Executing the generated combinator code 75 
Suitability of the description method 76 

4.6 Discussion 77 
Translating Clean to ABC-Code 7 9 
5.1 Graph rewriting in Clean 80 
5.2 Graph rewriting on the ABC-machine 82 

Construction of the stack frame 83 
Rule alternative entries 84 
Example of the rewriting process 87 

5.3 The AST for Clean 89 
5.4 Compilation 90 

Table of contents 5 



Descriptors 91 
Preparing the arguments 92 
Rewrite alternative entries 93 
The additional rewrite alternative entry 99 

5.5 The run-time system 100 
5.6 Curried functions 101 
5.7 Optimizations 103 

The extended compilation scheme using the B-stack 103 
Other optimizations 106 
Efficiency gain of the optimizations 107 

5.8 Discussion 109 
6 Artificial Neural Networks 1 1 1 

6.1 Description tools for artificial neural networks 113 
The values processed 113 
Neuron characteristics 114 
Neuron interconnection patterns and evaluation orders 117 
Learning rules 120 
Description of specific artificial neural networks 124 

6.2 The Adaptive Linear Combiner 125 
6.3 The Adaline 125 
6.4 The Perceptron 127 

The single layer perceptron 127 
The multi-layer perceptron for continuous values 129 
The multi-layer perceptron for binary values 131 

6.5 Learning Vector Quantization 134 
6.6 Feedback Networks 138 

Convergence 139 
Avoiding local minima 142 

6.7 Discussion 145 
7 Summary and Conclusion 1 4 7 
A Definition of the ABC-Machine 1 5 1 

A.1 The micro-instruction set 151 
A.2 The instruction set 159 
A.3 ABC-assembler 168 

8 Translating Clean to ABC-code 1 7 5 
B.1 Reduction entries 177 
B.2 Code for the left handslde of a rule alternative 178 
B.3 Code for the right handside of a rule alternative 179 
B.4 Auxiliary functions 182 

С Artificial Neural Networks 1 8 5 
C.1 Network description tools 185 
C.2 A feedback network to solve the N-queens problem 191 

References 1 9 3 
Index 2 0 1 
Samenvatting 2 0 5 

6 Functional programs as executable specifications 



Chapter 1 
Introduction 

1.1 Place of specifications in the implementation process 
1.2 Specification formalisms 
1.3 Specifications treated in this thesis 

In 1978 Backus advocated the use of functional programming languages as the 
new programming discipline needed to solve the problems in software produc
tion [Backus 78]. This initiated a large amount of research to achieve at least a 
reasonable execution speed for these languages. The scope of this research 
ranges from theoretical studies on the computational models used in the func
tional languages to the survey and construction of special purpose hardware to 
execute functional languages in a sequential or parallel way. In the mean time a 
number of nice languages has been developed. The actual use of functional pro
gramming languages received much less attention than the implementation and 
the study of theoretical properties, partly caused by the bad performance of 
implementations available. 

In this dissertation the suitability of functional programming languages as a 
vehicle for specifications is investigated. Functional languages seem to be suited 
as executable specifications due to the high abstraction level and powerful lan
guage constructs available. Such a programming language has as advantages 
over a tailor made specification formalism the well defined semantics and the 
possibility to check the specifications on consistency by a compiler. Furthermore 
the specifications are executable. So, the specifications are their own prototype 
implementation. The suitability of functional languages as specification formal
ism is illustrated by using them in daily practice on the department of computa
tional models and parallel systems of the Nijmegen university. Sequential and 
parallel implementations of functional languages are developed here. The under
lying computational models of these languages as well as other computational 
models, like neural networks, are investigated. 
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In this introductory chapter a motivation of the work presented in this the
sis is given. First the function of specifications and prototypes in the construc
tion of software is clarified in section 1.1. Then we argue why functional pro
gramming languages are very well suited to be used as a formalism for specifi
cations. Finally, an overview of the specifications presented in this dissertation is 
given. 

1.1 Place of specifications in the implementation process 
To clarify the role and importance of specifications in an implementation pro
cess, a division in logical phases is made. The implementation process is only 
one step in a software engineering process. Usually, it is preceded by a study on 
the kind of product needed and it is accompanied by training and documentation 
upon its introduction. Afterwards the product still needs maintenance for some 
time. 

The production of an implementation, in hard or software, can be split in a 
number of phases: 
1. Determination of the requirements; specification of the problem to be 

solved. 
2. Design of an algorithm, that meets these requirements. 
3. Construction of the product. An implementation of the specified algorithm 

is made. 
4. Verification of the product. This phase consists of testing (or proving) 

whether the product meets the requirements or not. Errors made during 
the construction are spotted now. 

In an ideal situation these phases are strict sequential and the interfaces are 
unambiguous. But, in many situations these phases are not clearly separable and 
sequential. The definition of the requirements depends on what is feasible during 
the implementation and is adjusted as soon as the first tests behave otherwise as 
expected. Also the interface between the phases is usual not free of misappre
hensions. Nevertheless, these phases reflect the four main points in an 
implementation project; what must be solved, how must it be solved, 
construction of the product, and its verification. In large projects this division in 
phases can be used for sub-tasks as well, this makes the phase to which an 
activity belongs depending on one point of view. 

Firm specifications are needed to construct an unambiguous interface 
between the phases. The interface between the construction and verification 
phase is usually the best defined one. By definition an implementation in a 
computer language is a formal specification, the program can be checked syn
tactically and and its behaviour can be studied. In order to prevent misunder
standings the use of formal specifications for the other interfaces is recom
mended. The specifications occurring in this process are: specification of the 
requirements, specification of the algorithm and specification of its implementa
tion. 
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Analysis shows that the verification phase often requires very much time. 
Not only errors made during the construction of the final product are encoun
tered, but also wrong design decisions or erroneous requirements can be discov
ered now. In the literature alarming figures are reported; more than half of the 
errors originates from wrong requirements and over a quarter of the errors in 
the product are due to the design [Beizer 83, DeMarco 78J. It is usually very 
expensive to cope with the latter ones. A prototype can be built to prevent this 
late detection of wrong requirements or an erroneous design. 

ad 1: Determination of the requirements 

Ideally the functionality of the product is defined in an unambiguous formalism. 
An ordinary mathematical specification is often used, but such a specification is 
not always applicable. A number of special purpose formalisms is developed to 
be used in those situations. In other situations it is not possible to give a precise 
definition at all. In those situations the requirements must be informally defined, 
e.g. an abstract machine to express the implementation of graph reduction con
veniently. 

Sorting items in ascending order is an example where the language of 
mathematics is very well suited to describe the intended property of the 
sequence of items, but less suited to describe how such a sorted sequence can be 
obtained. Provided that proper comparison relations, <, are defined on the items 
of a sequence and their indices one can define: 

A sequence 5 of items IiJ2,·· -Jn is sorted iff V /j e {1,2,.. .,n} :/,·</,<=> ¿ < j . 

This specifies fully what is meant by a sorted sequence, but not how it can be 
constructed from an arbitrary sequence. As far as this definition is concerned a 
perfect way to obtain the sorted sequence is to generate all possible sequences 
and pick the first one that obeys the requested property. A constructive specifi
cation, an algorithm, is needed to show how a sorted sequence is obtained in a 
more efficient way. The static specification of the desired properties can be used 
to prove that the algorithm is correct. 

In many situations a formal specification of the required properties cannot 
be provided, e.g. in general there is not a formal specification of the required 
properties of a (abstract) machine available. In other situations the proof of the 
correctness of the algorithm is so elaborated that it is omitted in every-day 
practice. Given an accurate description of the programming languages A and В 
and a compilation scheme from A to B, it is in principle possible to prove its 
correctness, but in practice this proof is usually omitted due to its length and 
complexity. 
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ad 2: Design of the algorithm 

The design of the algorithm is described by a specification. Experience1 shows 
that ambiguities can only be avoided by a formal specification. The design can 
be the result of an evolution of a sequence algorithms with an increasing algo
rithmic efficiency. 

A specification of the design is a concise description of a constructive 
algorithm with the following properties: 
• Consistent and correct, otherwise it is hard to expect a satisfying product. 
• Sufficiently complete, the specification must contain sufficient information 

to construct the actual implementation, but matters like execution speed or 
space requirements are usually not fully determined. 

• Unambiguous, any doubts about the exact meaning of the specification 
severely reduce its value, therefore formal languages are required as 
carrier of the specification. 

Using a suited formalism the construction of the formal specification of the 
algorithm can be helpful in the construction of its design. 

When a formal definition of the requirements is available the specification 
of the algorithm can be proven to be correct, or the correctness of the specifi
cation can be assured by deriving the program from the requirements. The 
length of the proofs and derivations limit the use of these verification techniques 
to small programs. 

A well known constructive algorithm to sort a sequence of items is quick
sort [Hoare 62]. This algorithm splits a sequence of items into two parts which 
are then sorted separately. To split a sequence an element, called median, of the 
sequence is chosen. The sequence is split into a fraction of elements less or equal 
to the median and a fraction of elements greater than the median. These frac
tions are sorted separately. The sorted sequence is obtained by the combination 
of both sorted fractions. The algorithm terminates by the observation that an 
empty sequence is always sorted. 

quicksort» = 0 
quicksort S = quicksort { e | e e З ' л е < т } и { т } и quicksort { e l e e S ' л е > т } , 

where S' = S \ m (the sequence S without element m), for some m e S 

Here the set notation is used to denote sequences, although the order of elements 
is relevant here and S might be a multi-set. This specification2 defines the ac
tions to be performed, but not their order nor the way the elements must be 
stored. 

^or instance, it can be shown that the informally specified assignment rule for ALGOL 60 can 
fail to hold in six ways [Ligler 75]. 
2The clumsy handling of the median is necessary in order to obtain termination for a sequence 
with some equal elements. 
10 Introduction 



When there is any doubt about the determination of the requirements or the 
specified algorithm, it makes sense to make one or more prototypes. Prototype 
implementations can be used to study the dynamic behaviour of the specified 
system. In this way it can be investigated whether the system will act as required 
or not. 

Prototypes 

A prototype is a (partial) implementation to test some key aspects of the 
intended, probably complex, algorithm. It obeys some aspects of the general 
specification. The differences between the final product and the prototype 
implementation are the low efficiency of the prototype, limitations in the 
amount of data that can be processed and a limited set of the required features. 
Sometimes a prototype contains additional capabilities to test the specification or 
to perform some measurements. In order to be useful as prototype it must at 
least be able to execute small scale tests at a reasonable speed. 

The number of prototypes needed depends on the problem. When the 
requirements and the way to fulfil them are absolutely clear no prototypes are 
needed. In other cases one or more prototypes are constructed, each one show
ing some aspects of the product. 

Prototypes must be constructed in a high level language for two reasons. 
First of all the implementation language must be close to the specification lan
guage in order to avoid errors in this implementation. When the prototype does 
not behave as intended it is not clear whether to blame the specification or its 
implementation. Secondly, the effort needed to construct a prototype must be 
significantly lower than the amount of work involved in the actual implementa
tion, otherwise it is better to omit the construction of a prototype. 

A Miranda3 prototype of the quicksort algorithm defined above is shown 
(the sequences are represented by lists and the first element of such a sequence is 
used as median): 

quicksort :: [*] -> [*) 
quicksort [ ] = [ ] 
quicksort (m : s) = quicksort [ e | e <- s ; e <= m ] ++ [ m ] ++ quicksort [ e | e <- s ; e > m ] 

When this algorithm is compared with the specification above only a suited data 
type to represent sequences and a choice for the median are additionally speci
fied. This data structure happens to be better suited to denote sequences than the 
set notation. Memory use and order of actions is not specified, only the compu
tations needed are indicated. 

3Miranda is a trademark of research software Ltd. 
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ad 3: Construction of the product 

After the design of the algorithm and its validation by the prototype, the imple
mentation phase starts. Although a prototype can be a complete implementation 
it is only in rare cases useful as product. The product must obey several con
straints on run time, space consumption and the amount of data to be processed. 
Also appropriate interfaces to the user and the system must be constructed. 
Among the topics to be solved are: efficient implementation of the used data 
structures, choice of the flow of control, efficient implementation of the speci
fied algorithm, modular structure and documentation. 

For a product in software also the programming language must be deter
mined. Some of the criteria to chose an implementation language are: the avail
ability of an appropriate implementation; portability; familiarity; suitability for 
the designed algorithm and speed of execution. When speed is an important 
aspect of the final product the actual implementation is usually made in an im
perative language. Using currently available compiler technology it is hard or 
impossible to beat imperative languages on most stock hardware. When the 
speed constraints are less severe and/or more efficient compilers are available 
other kind of languages can be used for the implementation. 

In our sorting example the space requirements and the number of sweeps 
through the sequence can be improved, also a better choice for the median is 
feasible. It is possible to specify these matters formally, but usually this is not 
needed nor wanted. These implementation issues are not essential for the quick
sort algorithm, only for a fast special implementation of it. 

The product corresponding to quicksort specification depends on the num
ber and the kind of items to be sorted. For a small amount of data the Miranda 
prototype defined above can directly be used as the final product. But, often 
speed and space use do matter. Then a real product obeying the specification has 
to be encoded. An efficient imperative algorithm written in Pascal [Wirth 71] is 
given below. It sorts the global array a in situ, elements in the array are reshuf
fled to obtain sets of elements greater and less than the median in an efficient but 
rather hard to understand way. These sets are recursively sorted. 
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procedure quicksort (l,r: integer); 
var m, i ,j, tmp: integer; 
begin 

If г > I then {sequence not empty } 
begin 

m :=aj r]; {median 
i := 1-1 ; {start for left part; elements less or equal to median 
j := r; {start for right part; elements greater or equal to median 
repeat 

repeat i := i+1 until a[ i ] >= m; {expand left part with well placed elements 
repeat j := j-1 until a[ j ] <= m; {expand right part with well placed elements 
tmp := a[ i ]; a[ i ] := a[ j ]; a[ j 1 := tmp; {swap elements to right part 

until j <= i; {totally split 
a[ j ] := a[ i ]; a[ i ] := a[ r ]; a[ r ] := tmp; {median to centre 
quicksort(l,i-1); 
quicksort(i+1,r); 

end 
end; 

In this product the memory use and the order of actions are exactly specified. It 
is optimized for space use and speed; sometimes some superfluous actions are 
performed in order to avoid a test in all situations. 

ad 4: Verification 

The correctness of a specification is a serious problem. When some other formal 
specification is available a correctness proof can be given. For instance a sorting 
algorithm can be proven to be correct by showing that none of the elements is 
lost and that the final order of the elements obeys the sorting criterion. When no 
other specification nor formal requirements of the product are available a cor
rectness proof cannot be given. Usually, correctness proofs appear to be much 
longer than the specifications, this limits the practical use of proofs to small 
programs. For large programs proving the correctness is too much work, 
moreover the value of a proof decreases when its length increases. For very 
large programs neither testing nor proving can give absolute certainty about the 
correctness. A proof needs to be correct and complete to prove anything, so the 
proof itself must be verified. The correctness of a proof is a serious problem, 
especially with very elaborated proofs. Proofs and testing can only increase the 
confidence in a product, but both can be very valuable [Joosten 89]. 

1.2 Specification formalisims 
In order to be useful, a specification must be correct and understandable. In 
general, descriptions are better understandable when they are shorter. 
Descriptions can be made more compact by omitting irrelevant issues and by the 
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introduction of new description primitives. In order to keep the descriptions 
clear and easy accessible for many people the introduction of description tools 
must be done very reluctantly. The brevity of the descriptions is bounded by the 
expressive power of the description language. In order to be used for an unam
biguous definition the specification language itself must be defined properly. 

Many special purpose formal description systems are proposed and used 
nowadays. The advantages of these systems are obvious: 
• by the introduction of special purpose notations very compact specifications 

are possible; 
• since these systems are formal they are unambiguous. 

However, there are also some disadvantages of the use of special purpose formal 
systems: 

in order to understand the specifications additional knowledge about the 
specification language is needed; 

• mechanical checks on the syntax and consistency of the specified system are 
only possible after some implementation of the developed formalism; 

• these systems are usually not meant nor suited for execution, so additional 
work must be done to construct a prototype. 

The use of programming languages instead of a special purpose formalism for 
the specification has a number of attractive advantages. 
• The syntactical correctness, absence of unbound identifiers and type consis

tency can be checked most efficiently and concisely by a compiler. This 
does not imply that a compiler is able to verify that the complete specifica
tion is correct, only partially correctness can be tested. 

• Using an existing programming language there is no need nor place for 
new language constructs in the description. This implicates that the seman
tics of the description are clear and well defined. 

• The specification is its own prototype implementation. This eliminates the 
effort to construct a prototype and to keep the specified product and proto
type similar. 

• The specification is checked by the corresponding prototype in a direct 
way, construction of a separate prototype is only an indirect test of the 
specification. Although each test shows just that the specified system be
haves as shown on the test data, it yields valuable information on the 
dynamic properties of the system. 

The obvious drawback of the use of most programming languages as specifica
tion language is the great implementation effort required. Much more time is 
spent on solving all kind of implementation details than on writing a specifica
tion of the product. The difference between the design of the algorithm and the 
construction of the product vanishes. Due to the implementation details specified 
in the same description as the algorithm it becomes too elaborate to handle. 

Due to the high abstraction level and powerful language constructs func
tional languages seem to be suited better as specification formalism than 
imperative programming languages. The comparison of the quicksort algorithm 
and its prototype implementation in Miranda yields a first indication of the suit-
14 Introduction 



ability of functional languages as formal specifications. The advantages of using 
a functional instead of an imperative programming language for the specifica
tion are: 
• Due to the powerful language constructs and high abstraction level the 

designer can spend (more of) his time writing the specification instead of 
solving implementation problems; 

• Functional programs are much compacter than equivalent imperative pro
grams, this significantly increases their value as specification. 

• Using the abstraction mechanisms of functional languages a hierarchical 
description can be given. Layered descriptions enable detailed explanations 
together with a clear overall view. 

• When a functional programming language with lazy semantics is used, only 
the data flow must be specified, the flow of control is deduced automati
cally from the data needed. 

The difference between a functional description and an ordinary functional 
program is the emphasis on a clear explanation of the system in the description. 
Efficiency and algorithmic complexity of the description itself are irrelevant. A 
specification describes an efficient algorithm while an ordinary functional pro
gram itself must be efficient. These are just the usual differences between a 
prototype and the product. 

In this thesis the suitability of functional programs as executable specifica
tions is investigated. We are mainly interested in relatively large examples 
where correctness proofs have a limited applicability due to the size of the 
problems or to the absence of formal requirements to be met. 

A general available functional programming language, Miranda [Turner 
85J, is used as specification language. Mainly the basic expression rewrite prop
erties of this language are used. This subset is more or less common in all func
tional languages, so other languages could be used for descriptions as well. 
Although Miranda is not designed as a specification language, it is reasonably 
suited. In our opinion it is not worthwhile to design a new tailor made language 
for each application area, when an existing language is sufficiently fitted. 
Though Miranda is used with success as a description language, some general 
remarks concerning its design will be made. This critic concerns the lack of 
term rewriting semantics for partially parametrized functions. Unfortunately the 
formal semantics of Miranda has been announced for a long time, but it is still 
not published. Fortunately, the semantics of a large part of the language is 
simple. So, a formal specification of the semantics will be close to the language 
[Fehr 89]. Moreover, only one implementation of Miranda is allowed so it can 
be used as a, slow, reference implementation. 

1.3 Specifications treated in this thesis 
A large part of the specifications described in this thesis has actually been used 
to describe real products in a large implementation project of functional lan-
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guages on several (parallel) architectures currently under execution at the 
University of Nijmegen. 

As a first step in the implementation process, a functional program is trans
formed to a graph rewriting system. Graph rewriting systems are a well-defined 
computational model for functional programming languages [Klop 87, Eekelen 
88]. The traditional computational model used for functional programming 
languages is the λ-calculus [Church 32, Barendregt 84], see for instance [Field 
88] for a thorough overview. The advantages of the use of graph rewriting sys
tems as computational model instead of the λ-calculus are: the notions of named 
(recursive) functions, pattern matching is included in the computational model 
and graphs enable the detailed description of the sharing of computations. 

The second step in the compilation process is the transformation of the 
graph rewriting system to code for an imperative abstract graph rewriting 
machine: the ABC-machine. This enables reasoning about implementation issues 
not expressible in the functional graph rewriting model. The precise flow of 
control can only be described in an imperative model. 

( Miranda Ì Functional Programming Languages 

Γ Clean J Graph Rewriting Systems 

Abstract machine 
(ABC-code) 

ABC-machine 

(machine 1J (machine2Ì Concrete machines 

Fig 1.1 The compilation path for functional languages. 

The translation of Miranda to Clean and the translation from Clean to ABC-code 
are specified Miranda. Also the abstract ABC-machine is described in this 
functional language. In this thesis the specification methods used are described 
and compared with other descriptions. To show that these description methods 
can be applied in practice and how comprehensible they are, the specification of 
the ABC-machine and the translation of Clean to ABC-code are treated. 

In chapter 2 it is shown how functional programming languages can be 
used to describe an (abstract) machine. Such an executable specification is com
pared with a more common imperative description. The proposed description 
method is used in the next chapter for a thorough description of the ABC-
machine. 

A description method for translations is introduced and compared with 
other descriptions in chapter 4. This description method is employed in chapter 
5 to specify the translation of the graph rewriting systems to imperative ABC-
code. The translation of Miranda to Clean is described in a similar way 
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[Koopman 87, Plasmeijer 91], but boils down mainly to the removing of syntac
tical sugar and is hence less interesting than the translation described here. 

Also other aspects of these translations, like type checking [Bakel 90], are 
described analogously. Currently the implementation of a parallel variant is 
implemented and described similarly [Smetsers 89, Plasmeijer 91]. 

Functional specifications can also be used outside the world of functional 
languages and their implementations. Chapter 6 contains a detailed description 
of a number of important artificial neural networks. These layered models are 
constructed of very simple processing elements. Usually these networks are 
described by a mathematical definition of the input-output relations of the vari
ous neurons. The dynamic adaptation of these networks can also adequately be 
described in a functional language. 

Functional languages can be used as programming language or description 
language in many other fields [Hughes 89], e.g. in [Koopman 88] the use of 
interactive programs in a functional language is treated. Functional languages 
can also be used to describe many kinds of systems, for instance digital and 
analog circuits [Boute 88]. The use of functional programs as specification and 
prototype derived from a mathematical specification is treated in [Joosten 89]. 

The last chapter of this thesis contains our conclusions of the suitability of 
functional programming languages as description languages. 

This thesis does not contain an introduction to functional programming. 
Nowadays there are a number of books containing such an introduction avail
able, we recommend [Bird 88, Plasmeijer 91, or Field 88] for a thorough intro
duction. The first book is one of the few books treating functional languages 
without treating their implementation. The second book uses Miranda as func
tional language and shows that graph rewriting systems are a very suited compu
tational model for the (parallel) implementation of functional languages. The 
last book uses Hope [Burstall 80] as functional language and uses the λ-calculus 
as computational model for the implementation. The language Clean is described 
only informally in chapter 5 of this thesis. A number of descriptions is available 
in the literature [Brus 87, Barendregt 87b, Hekelen 89, Plasmeijer 91 ]. 
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Chapter 2 
Operational Machine Description 

2.1 The description method 
2.2 Description of a simple machine 
2.3 Discussion 

In this chapter functional programming languages are used to describe (abstract) 
machine architectures. For each machine there are many possible descriptions, 
each one showing different aspects of the machine, e.g. the instruction reper
toire, the micro-programming level or the hardware. The intention of the de
scription presented in this chapter is to show the components and to explain 
their interactions as relevant from a programmers point of view. 

The machine description consists of an implementation of the machine in a 
functional language. This implementation is not meant to be efficiently exe
cutable, but to supply a clear view of the relevant machine aspects. The descrip
tion of machines in a functional programming language has a number of advan
tages over conventional descriptions. The description is an ordinary functional 
program. This implies that the description is executable and serves as a proto
type machine implementation. The provided implementation appears to be valu
able to study the dynamic behaviour of the machine. Using this prototype im
plementation the machine can be run in an early state. 

Using the abstraction mechanisms of the functional programming language 
a hierarchical machine description can be given. Such a layered machine 
description enables a detailed explanation, without getting an overall view 
glutted by too much details at the top level of the description. The description 
can be chosen such that the machine aspects of prime interest are clearly shown, 
while other aspects are hidden. In this way one can abstract from the 
implementation of some machine components on one level, but accurately 
specify that object on another level. This hierarchical description method 
introduced in this chapter is generally applicable. It can also be used to describe 
large concrete machines, although they tend to have more parts than the 
machines shown in this thesis, hence they have a more elaborate state. 
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Due to the use of a functional programming language as description for
malism, the descriptions are clearer and less error prone than conventional 
descriptions. The descriptions give valuable guide-lines to achieve an efficient 
implementation and serve as reference implementation of the described ma
chine. 

Commonly used description methods for (abstract) machines are: 
• textual description, these specifications are hard to get unambiguous and 

correct; 
• by the state changes in an imperative fashion, see this chapter for a 

comparison; 
• by a definition of the semantics of the instruction set, see chapter 4 and 5 

for a discussion of semantical descriptions. 
After the introduction of the description method in section 2.1, a small but 
complete example is given to illustrate the description method proposed here. 
The example is taken from a textbook of computer architecture where it is used 
to illustrate the concept of micro-programming. Here only the instructions of 
the conventional machine level are specified to illustrate the proposed descrip
tion method. The micro-programming level can be described similarly. In the 
next chapter this description method is used to specify an abstract graph rewrite 
machine as a large and more complex example. 

2.1 The description method 
The machine descriptions introduced in this chapter primarily define the 
semantics of the machine instructions. In general such a specification is not in 
close correspondence with possible hardware implementations of the machine 
described. This implies that the description usually does not reflect the common 
von Neumann computer architecture (a Central Processing Unit (CPU) and a 
memory interconnected by a bus), but shows the the machine components rele
vant from the programmers point of view. All machine components together 
determine the state of the machine. Instructions change the machine state. The 
machine descriptions introduced here, will be based on a specification of the 
state of the machine. 

The instructions are described in a two level model. On the top level, the 
instruction level, the exact state transition of each instruction is specified in 
terms of micro-instructions. The micro-instructions form the bottom level of 
the description and define primitive operations on the logical components of the 
machine. 

The machine state 

The machine description method presented in this chapter is applicable to 
sequential, imperative machines. Such a machine consists of a number of con
structing parts (like various pieces of memory and input/output channels). The 
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state of the machine is completely described by the contents of the constructing 
parts. The state and hence the contents of these parts can be manipulated by the 
instructions defined on the machine. 

For the description, the complete state of the machine is recorded in a data 
structure, called state. For every component of the machine a suited (abstract) 
data type is used, to describe its status or contents. 

For instance, the state of a machine with one register (reg), a program 
counter (pc), a stack (stack) and a memory (mem) is described by: 

(pc, reg, stack, mem) 

The definition of the state affects the architecture as it is presented to the user. 
For example, when it is important to show that the stack is maintained with a 
stack pointer (sp) in the global memory (mem), the used machine architecture 
must be slightly different. This is reflected in the state of this machine, it is 
described by: 

(pc, reg, sp, mem) 

These two machine models can be depicted as: 

stack registers 

t 

pc| i | 
reg| 41 I 

memory registers memory 

pc \_ "f J 
reg| 41 | 

sp Γ " Γ Ί „ , ', '<¿"< 

Fig 2.1 The machine with a stack, a program counter, one register and a memory is de
picted on the left. On the right hand side a similar machine is drawn, but here the stack is 
maintained with a special register containing a stack pointer in the memory. 

It is not possible to use the state corresponding to the left machine to describe 
the right architecture. Adjustable data structures, like memories and stacks, 
must always be constructed in a tree-like structure. This shows clearly the 
dependencies between the machine components, which is generally desirable. 

The micro-instructions 

To access the data structures describing the components of the machine tailor 
made functions are used. These functions are called micro-instructions, since 
they will form the building blocks of machine instructions. These micro-
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instructions define an abstract data type describing the machine component at 
hand, e.g. a stack can be described by the functions to push and pop elements 
and to access an element on the stack. Only in extremely simple cases the use of 
the abstract data types can be omitted, e.g. registers with ordinary integer 
arithmetic can sometimes be modelled by the language implementation of 
integers. 

A set of micro-instructions defining the stack for the first example machine 
architecture above is: 

abstype stack 
with s_top r. stack-> value 

s_pop : stack -> stack 
s_push : value -> stack -> stack 

Micro-instruction names are usually prefixed with some characters indicating 
the data structure manipulated. 

Λ set of micro-instructions defining the memory is: 

abstype mem 
with get_num r. address -> mem -> num 

getjns r address -> mem -> instruction 
m_update : address -> num -> mem -> mem 

To create an executable specification all machine components have to be imple
mented. The implementation of the data type can be kept simple when the 
structure of the associated machine part is not a topic of interest in the given 
description, e.g. a stack can be represented as a list. The data type can also show 
a more accurate model of the machine component, e.g. the stack can also be 
represented by an array of values and an index in that array to represent the 
stack pointer. 

Other micro instructions used in this introduction have similar definitions. 
A complete set of micro-instructions is defined in section 2.2 and in the next 
chapter. 

The instructions 

Instructions and their execution can be modelled in different ways. The first 
possibility resembles denotational semantics; a function which interprets the 
current instruction is constructed. The actions of this function are in close cor
respondence with the instruction cycle of the CPU. The current instruction is 
fetched from the memory and the machine state is adjusted accordingly. In 
order to use pattern matching on the kind of the current instruction at the top 
level, it must be at a fixed place, therefore the program is usually modelled as a 
list of instructions. The head of this list is the current instruction. The possibil-

22 Operational Machine Description 



ity we propose here uses a more realistic memory model and the instructions 
change the state of the machine themselves. 

In this description the instructions are functions that take the current 
machine state as argument and deliver the new state, as changed by the instruc
tion. So an instruction is in the description a function of type state -> state. 
Hence, the general format of an instruction is mnemonic instruction-arguments state 
= new-state. The state transformation is described in terms of the micro
instructions introduced above. Although it is possible to write complex expres
sions in the instruction specifications, this is not recommended. To obtain a 
clear specification the new machine state yielded by the instruction is specified 
using only micro instructions, arguments and constants. To enhance the read
ability locally defined identifiers are used in the construction of the machine 
state. 

A jump to subroutine instruction with the corresponding return instruction 
for the machine with a stack as introduced above can be described as: 

jsr :: address -> instruction 
jsr address (pc, reg, st, mem) 

= (pc', reg, st', mem) 
where pc' = address 

st' = s_push pc st 

tin :: instruction 
rtn (pc, reg, st, mem) 

= (pc', reg, st', mem) 
where pc' = sjopst 

st' = s_pop 1 st 

We prefer to specify the instructions as above instead of the shorter equivalent 
given below, since it is better readable. 

jsr :: address -> instruction 
jsr address (pc,reg,st,mem) = (address,reg,s_push pc st.mem) 

A jump to subroutine and corresponding return instruction for the machine with 
a stack maintained with a stack pointer in the memory are: 

jsr :: address -> instruction 
jsr address (pc, reg, sp, mem) 

= (pc', reg, sp', mem') 
where pc' = address 

sp' = sp_dec sp 
mem'= m_update sp' pc mem 
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rtn :: instruction 
rtn (pc, reg, st, mem) 

= (pc', reg, sp', mem) 
where pc' = get_num sp mem 

sp' = spjnc sp 

Program execution 

The instruction sequence to be executed, the program, is also part of the ma
chine. The program is stored in the memory and the instruction to be executed, 
the current instruction, is addressed by a program counter. It can be executed 
by extracting the instruction from the memory and applying it to the current 
state. This clearly reflects the von Neumann machine instruction cycle. 

There are two possible places to increment the program counter in order to 
make the next instruction the current instruction after one instruction cycle. It is 
possible to increment the program counter in each instruction explicitly, or it 
can be done in the instruction cycle. Since most machine models use the latter 
approach we have adopted it here. An instruction cycle executing a single 
instruction of the machine described above is modelled by: 

instruction_cycle :: state -> state 
instructioncycle (pc, reg, st, mem) 

= currentjnstructran (pc', reg, st, mem) 
where pc' = pc_next pc 

currentjnstruction = getjns pc mem 

Note that the function instruction_cycle is not a machine instruction, although it 
has the same type as an instruction. It is just a function that executes the current 
instruction that happens to have the same type as instructions. 

The instruction cycle above executes just one instruction, in most situations 
it is more convenient that a machine continuously executes instructions. This can 
be achieved by applying the instruction cycle recursively to the state delivered 
by the current instruction. 

instruction_cycle :: state -> state 
instruction_cycle (pc, reg, st, mem) 

= instruction_cycle (currentjnstruction (pc', reg, st, mem)) 
where pc' = pc_next pc 

currentjnstruction = getjns pc mem 

A complete machine description consists of the definition of its state, and the 
definition of all instructions able to alter this state. The use and purpose of 
defining the machine are not given by the machine description. Many abstract 
machines are defined with a very specific purpose, this aim cannot be deduced 
from a bare machine description, so usually there must be also a description of 
the objective of the abstract machine to give it any sense. 
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2.2 Description of a simple machine 

To compare the functional description with a conventional description we pre
sent two descriptions of a simple machine. First, the conventional description 
will be shown. Then the functional specification is given. In chapter 3 an elabo
rated abstract machine description is treated. 

The machine presented here is a simple conventional machine, called 
Mac-1. Mac stands for macroarchitecture. It is used by Tanenbaum [Tanenbaum 
84] to illustrate the concept of micro-programming. 

The Mac-1 is a small machine with a memory of 4096 16-bit words. This 
memory contains the program to be executed and a stack. The stack grows from 
high memory addresses to lower ones. The top of the stack is indicated by the 
stack pointer (sp). The current instruction is indicated by the program counter 
(pc). The machine has one register, the accumulator (ac), to store the result of 
computations etc. The architecture of Mac-1 can be depicted as: 

registers memory 

ас Г 41 

spQ 

at 

il 

retn 

36 

4095 

Fig 2.2 The architecture of Mac-1 

Four addressing modes are provided in this machine: 
immediate: the operand is specified in the low order bits (8 or 12) of the 

instruction; 
direct: the low-order 12-bits of the instruction are the address of the 

operand; 
indirect: the accumulator contains the address of the operand; 
local: the operand is on the stack, the offset is given in the low-order 

12-bits of the instruction. 
The addressing mode is indicated by the instruction used. There is a very lim
ited set of instructions available: 
Load: load the accumulator with the specified operand; 
Store: store the contents of the accumulator at the specified address in 

the memory; 
Add: add the operand to the contents of the accumulator, the sum is 

stored in the accumulator; 
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Sub: subtract the operand from the contents of the accumulator; the 
result is left in the accumulator; 

Jump: set the program counter to the specified address conditional to 
the contents of the accumulator; 

Push: push the specified operand on the stack; 
Pop: pop an item from the stack; 
Swap: exchange the contents of the accumulator and stack pointer; 
Sp handling: increment or decrement the stack pointer by the 8-bit constant 

given in the instruction. 
We presume that the reader is sufficiently familiar with conventional machine 
architectures to understand the description and use of the instructions. The 
instruction set is specified in the figure below. The meaning of the instructions 
is given by a Pascal fragment. In these fragments, m[x] refers to memory word x. 

Binary Mnemonic Instruction 

OOOOxxxxxxxxxxxx 

0 0 0Ixxxxxxxxxxxx 

OOlOxxxxxxxxxxxx 

001Ixxxxxxxxxxxx 

OlOOxxxxxxxxxxxx 

010Ixxxxxxxxxxxx 

OllOxxxxxxxxxxxx 

Oil Ixxxxxxxxxxxx 

lOOOxxxxxxxxxxxx 

1001xxxxxxxxxxxx 

lOlOxxxxxxxxxxxx 

101Ixxxxxxxxxxxx 

HOOxxxxxxxxxxxx 

HOlxxxxxxxxxxxx 

l l lOxxxxxxxxxxxx 

1111000000000000 

1111001000000000 

1111010000000000 

1111011000000000 

1111100000000000 

1111101000000000 

l l l l l l O O y y y y y y y y 

l l l l l l l O y y y y y y y y 

LODD 

STOD 

ADDD 

SUBD 

J POS 

JZER 

JUMP 

LOCO 

LODL 

STOL 

ADDL 

SUBL 

JNEG 

JNZE 

CALL 

PSHI 

POPI 

PUSH 

POP 

RETN 

SWAP 

INSP 

DESP 

Load direct 

Store direct 

Add direct 

Subtract direct 

Jump positive 

Jump zero 

Jump 

Load constant 

Load local 

Store local 

Add local 

Subtract local 

Jump negative 

Jump non zero 

Call procedure 

Push indirect 

Pop indirect 

Push onto stack 

Pop from stack 

Return 

Swap ac,sp 

Increment sp 

Decrement sp 

Meaning 

ac= m [ χ ] 

m [χ] =ac 

ас = ас + m [ χ ] 

ас = ас - m [ χ ] 

If ас >0 then pc =x 
If ас = 0 then pc = χ 

pc =x 

ас = χ (0 < χ s 4095) 

ас = m [ sp + χ ] 

m[x + sp] =ac 

ас =ac + m[sp + x] 
ас =ac-m[sp + x] 
If ас < 0 then pc = χ 

If ас * 0 then pc = χ 

sp = sp -1 , m [ sp ] = pc , pc = χ 

sp = s p - l ,m[sp] =m[ac] 

m [ ас ] = m [ sp ] , sp = sp + 1 
sp = sp - 1 , m [ sp ] = ac 
ac = m [sp],sp =sp+ 1 
pc = m [ sp ], sp = sp + 1 
tmp = ac , ac = sp , sp = tmp 
sp =sp + y(0<y<255) 
sp = sp - y (0 < y < 255) 

xxxxxxxxxxxx is a 12-bit machine address; in column 4 it is called χ. 
yyyyyyyy is an 8-bit constant; m column 4 it is called y. 

The Mac-1 instruction set as desenbed by Tanenbaum. 

26 Operational Machine Description 



The functional specification presented below is merely a substitute for the sec
ond and last column. The mapping of binary numbers to instructions is not dif
ficult, but omitted for reasons of brevity. 

The state of Mac-1 

As shown above the architecture of Mac-1 contains three registers (pc, ac and 
sp) and a memory. The state of Mac-1 is fully determined by the contents of the 
three registers and the memory. In our description the state is given by the tuple 
(pc,ac,sp,mem). 

state = = (pc,ac,sp,mem) 
instruction = = state -> state 

The micro-instruction level of Mac-1 

The registers of Mac-1 contain 16-bit integers. Just like the original description 
we will not use 16-bit arithmetic for the description. This is perfect to obtain a 
small and simple description, but the numbers are a super set of the 16-bit 
integers. These registers are modelled by Miranda numbers. When it is required 
that the content of the registers is limited to 16-bit integers a tailor made arith
metic must be used. In our description all arithmetical operators must be re
placed by a proper micro-instruction. Here, no tailor made micro-instructions 
are needed for the registers, they can be manipulated just like all other numbers 
in Miranda. 

pc == num 
ac == num 
sp == num 

The memory is defined by a small set of micro-instructions. The four access 
functions defined are: 
get a: returns the number stored at address a in the memory; 
getjns a: returns the instructions stored at the indicated address in the 

memory; 
update a n: replaces the contents of memory location with address a with the 

number n; 
store prog: stores the complete program prog in the memory. 
The memory is formally defined by the abstract type mem. 

abstype mem 
with get : address -> mem -> num 

getjns : address -> mem -> instruction 
update : address -> num -> mem -> mem 
store : program -> mem 
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These micro-instructions are of the same complexity as the Pascal notations, 
such as m[x], used in the previous description. The informal description and type 
definitions are sufficient to understand them. Though the definition will be 
seldomly referenced it is included for the sake of completeness and to show that 
such an implementation is indeed very simple. 

The implementation of the abstract type mem can be very simple. We have 
chosen the description such that it is an error to use instructions as data and vice 
versa. This enables the storing of instructions directly in the memory, rather 
than to use numbers which must be decoded to instructions, the micro-instruc
tion definitions shown here have additional rule alternatives in order to give 
better error messages in erroneous situations. In this way the value of the proto
type implementation is increased, these error reporting alternatives are not re
garded as a part of the specification which must be obeyed by every implemen
tation. 

program =» - [word] 
address - - num 
mem = = [word] 

word ::= I instructton | 
N num | 
Undef 

get address mem = w_num (get_w address mem) 
getjns address mem = wjns (get_w address mem) 

get_w gaddress -> mem -> word 
get_w 0 (w:ws) = w 
get_w η (w:ws) = get_w (n-1 ) ws 
get_w η [ ] = error "illegal memory reference" 

wjns :: word -> instruction 
wjns (li) = i 
wjns (Ν η) = error "treating a number as instruction" 
wjns Undef = error "taking a instruction from an undefined word" 

w_num :: word -> num 
w_num (Ν η) = η 
w_num (I i) = error "treating an instruction as data" 
w_num Undef = error "taking a number from an undefined word" 

store instructions = Instructions ++ rep (4096 - # instructions) Undef 

update address new mem = update_w address (N new) mem 

update_w :: addres -> word -> mem -> mem 
update_w 0 new (w:ws) = newws 

2Θ Operational Machine Description 



update_w η new (w.ws) = w : update_w (n-1 ) new ws 
update_w η new [ ] = error "illegal memory update' 

The Mac-1 instructions 

A direct transformation of the meaning 
proposed description frame work is: 

lodd χ (pc,ac,sp,me) 
= (pc,ac',sp,me) 

where ac' = get χ me 
stod χ (pc,ac,sp,me) 
= (pcac.sp.me') 

where me' = update χ ас me 
addd χ (pc,ac,sp,me) 
= (pc.ac'.sp.me) 

where ac' = ac + get χ me 
subd χ (pc,ac,sp,me) 
= (pc,ac'(sp,me) 

where ac' = ac - get χ me 
jpos χ (pc,ac,sp,me) 
= (pc'.ac.sp.me) 

where pc' = cond (ac >= 0) χ pc 
jzer χ (pc.acsp.me) 
= (pc',ac,sp,me) 

where pc' = cond (ac = 0) χ pc 
jump χ (pc,ac,sp,me) 
= (pc',ac,sp,me) 

where pc' = χ 
loco χ (pc,ac,sp,me) 
= (pc,ac',sp,me) 

where ac' = χ 
lodi χ (pc,ас,sp,me) 
= (pcac'.sp.me) 

where ac' = get (sp + x) me 
stol χ (pc,ac,sp,me) 
= (pc,ac,sp,me') 

where me' - update (sp + x) ac me 
addi χ (pc,ac,sp,me) 
= (pc,ac',sp,me) 

where ac' = ac + get (sp + x) me 
subi χ (pc,ac,sp,me) 
= (pc,ac',sp,me) 

where ac' = ac - get (sp + x) me 
jneg χ (pc.ac.sp.me) 
= (pc',ac,sp,me) 

where pc' = cond (ac < 0) χ pc 

of the instructions given above into the 

jnze χ (pc,ac,sp,me) 
= (pc',ac,sp,me) 

where pc' = cond (ac -= 0) χ pc 
call χ (pc,ac,sp,me) 
= (pc',ac,sp',me') 

where pc' = χ 
sp' = sp -1 
me' = update sp' pc me 

pshi (pc,ac,sp,me) 
= (pc.ac.sp'.me') 

where sp' = sp -1 
me' = update sp' ac me 

popi (pc,ac,sp,me) 
= (pcac.sp'.me') 

where sp' = sp + 1 
me' = update ac top me 
top = get sp me 

push (pc,ac,sp,me) 
= (pc,ac,sp',me') 

where sp' = sp -1 
me' = update sp' ac me 

pop (pc,ac,sp,me) 
= (pc,ac',sp',me) 

where sp' = sp + 1 
ac' = getspme 

retn (pc,ac,sp,me) 
= (pc',ac,sp',me) 

where pc' = get sp me 
sp' = sp + 1 

swap (pc,ac,sp,me) 
= (pc.ac'.sp'.me) 

where ac' = sp 
sp' = ac 

insp y (pc,ac,sp,me) 
= (pc.ac.sp'.me) 

where sp' = sp + y 
desp y (pc.ac.sp.me) 
= (pc.ac.sp'.me) 

where sp' = sp-y 
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Execution of Mac-1 programs 

In order to execute a Mac-1 program it must be stored in the memory. The 
program execution is chosen to start at address 0. A real Mac-1 machine must 
run forever, but a simulation must terminate. The simulation is aborted when 
the program counter becomes negative. We have chosen to show the program 
counter, the stack pointer and the contents of the accumulator in the final 
machine state. 

run :: program -> (pc,ac,sp) 
run program 

= instruction_cycle (pc,ac,sp,mem) 
where pc = 0 

ac = 0 
sp = 0 
mem = store program 

¡nstruction_cycle :: state -> (pcac.sp) 
instructioncycle (pcac.sp.mem) 

= instruction_cycle (¡nstr (pc',ac,sp,mem)) , if pc>= 0 
= (pc.ac.sp) , otherwise 

where pc' = pc + 1 
instr = getjns pc mem 

It is easy to write an instruction cycle that delivers trace information about the 
executed program. The trace information shown after each instruction execution 
could consist of the current contents of the registers and the top of the stack. 

Unfortunately it is not possible to show the current instruction in the trace. 
The instructions stored in the memory of Mac-1 are partially parametrized 
functions. The Miranda system1 shows all partially parametrized functions as 
<function> and the comparison of such curried functions causes an erroneous 
program termination with the message program error: attempt to compare 
functions. This behaviour is suggested by the computational model used; the 
λ-calculus. In the λ-calculus the usual semantics of a comparison of two func
tions is a test for extensional equality: do these functions have the same reduct 
for all possible arguments. This is in general an undecidable property. 

For curried functions like the instructions of Mac-1 the reduction be
haviour of these partially parametrized functions is irrelevant. We are interested 
in the syntactical value of these expressions. In such a setting two functions are 
equal if their normal forms are syntactically equal. A test for syntactic equality 
is part of the semantics of rewrite systems. Such a syntactical comparison can be 
added to the λ-calculus, it is known as Church's δ rule; λ-calculus with this 

'The Miranda system version 2.009 (13 November 1989) of Research Software Ltd. is 
referenced in this thesis as 'the Miranda interpreter'. All timings are done on a SUN-3/280. 
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extension is sound, but Church's δ rule itself is not λ-definable [Barendregt 84J. 
Church's δ rule will not solve our problem. We want to show the function name 
and not in the corresponding λ-term which is the normal form of that function 
name. Moreover, the λ-term of an recursive function has not a normal form. 

The rewrite semantics is obviously the one needed here for the partially 
parametrized functions. It would be better if the semantics of functional pro
gramming languages with pattern matching was based on rewrite systems. 
(Concurrent) Clean is a functional programming language based on term graph 
rewriting that allows the suggested use of partially parametrized functions [Brus 
87, Eekelen 89]. 

An example Mac-1 program 

To illustrate the possibility of program execution on the given Mac-1 specifica
tion an implementation of the nfib function in Mac-1 code is shown below. The 
result of this function is equal to the number of function calls needed to compute 
it. The nfib-number is obtained by dividing the result by the number of seconds 
needed to compute it, i.e. the number of function calls per second. The Miranda 
definition of the nfib function reads: 

nfibO = 1 
nfibl = 1 
nfib η = 1 + nfib (n-1 ) + nfib (n-2) 

The implemented function nfib expects its argument in the accumulator and also 
leaves its result in that register. The function implementation is straightforward. 
The evaluation of the function call nfib 5 on Mac-1 can be simulated by reducing 
the expression run (nfib 5) in Miranda. 

nfib :: num -> prograrr 
nfib η 
= [ 1 (loco 

1 ( swap 
1 (loco 
1 (call 
1 (jump 

1 (jnze 
1 ( loco 
1 ( retn 

1 (subd 
1 (jnze 
1 ( toco 
1 ( retn 

100 

η 

5 
stop 

8 
1 

22 
12 
1 

I 

II о 
II 1 
II 2 
II 3 
II 4 

|| 5" nfib: 
|| 6: 

II 7 : 

| | 8-nfib2 

II 9 
| |10: 
| | 1 1 : 

minai stack pointer 
load stack pointer 
mam ; load argument for nfib 
call nfib 
stop machme 

jump to nfib2 if η Φ 0 
η = 0; load accumulator with result 
done; return to caller. 

compute n-1 
jump to nfib2 if η * 1 
argument = 1; load accumulator with result 
done, return to caller 
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( push 
(subd 
(call 
( push 
(lodi 
(call 
(addi 
(addd 
(insp 
(retn 

1 

22 ) 
5 ) 

1 ) 
5 ) 
0 ) 
22 ) 
2 ) 

II 12 
|| 13 
|| 14 
|| 15 
|| 16 
IM7 
|| 18 
|| 19 
II 20 
|| 21 

II 22 

nfib3 save n-1 on the stack 
compute n-2 
compute nfib (n-2) 
save nfib (n-2) on the stack 
load n-1 into accumulator 
compute nfib (n-1) 
add the computed nfib values 
addi 
clean up stack 
done; return to caller 

The constant 1. 

The shown program notation with addresses is rather cumbersome to use. It is 
more convenient to use an assembler level where labels can be used instead of 
numbers, also the constructors to distinguish numbers and instructions can be 
generated by the assembler. In the next chapter such an assembler level is intro
duced for the ABC-machine described there. 

The Miranda interpreter executes circa 20 Mac-1 instructions each second. 
The resulting nfib-number is 2. This is not extremely fast, but sufficient to 
execute small Mac-1 programs. This execution of Mac-1 programs is certainly 
much faster and more accurate than the pencil and paper simulations necessary 
with the first specification. 

2.3 Discussion 
The description of the instruction set of Mac-1 in Miranda is a bit longer than 
the original description given in the table. This is caused by the layout rules we 
have imposed ourselves to obtain the clearest description. Instructions can also 
be described in a single line as shown in Section 2.1. Also the binary representa
tion of instructions is not shown in the functional description. Nevertheless, 
very clear and compact specifications are obtained using this description 
method. Due to the two level description the operational semantics of each 
instruction are clearly specified in terms of simple micro-instructions. 

The micro-instructions are simple access functions defining the machine 
components. By adjusting the micro-instruction level any amount of detail can 
be incorporated in these machine components. The machine description shown 
here can be extended to perform 16-bit arithmetic and allow the use of instruc
tions in the memory as data and vice versa by changing only the micro
instruction level. 

The use of a functional programming language as description formalism 
has a number of advantages: 
• The description can be verified by the compiler for the functional language 

and has well defined semantics. 
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• The specification is more complete. For instance, in the functional descrip
tion it is clear when the program counter is incremented, and that the 
incremented program counter is stored on the stack in a call instruction. 

• The description is more direct. There are no temporary variables needed, 
as used in the imperative description of the swap instruction. This is an 
advantage of having an explicit state in the description of the instructions 
instead of an implicit global state. 

• The description serves as a prototype implementation of the machine and is 
able to execute programs. When programs execute correctly on the proto
type, this increases the confidence in the correctness of the description and 
the suitability of the specified machine. 

It is a pity that Miranda lacks rewrite semantics, this limits the use of the 
specification to trace the execution of programs. 

In order to use the specification for the execution of large programs an 
assembler level is needed. 

The functional descriptions require, just like many other description meth
ods, a single locus of control and a tree-like structure for the state. When a 
machine does not possess this structure the actual structure must be described. 
For instance, a parallel machine description contains a scheduler to model the 
concurrent execution. In this way a parallel architecture is modelled by a 
sequential machine and the description method can be applied, although there is 
a lot more description overhead. 
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Chapter 3 
The ABC-Machine 

3.1 The architecture of the ABC-machine 
3.2 The micro-instruction set 
3.3 The instructton set 
3.4 Program execution 
3.5 ABC-assembler 
3.6 Comparison with the G-machine 
3.7 Discussion 

This chapter presents a successful application of the operational machine de
scription method introduced in the previous chapter for a large and complex 
concrete problem. The development of this specifcation was a test of the suit-
abilty of the description method. In order to be useful this description method 
must yield specifications which are: a clear definition for the product to con
struct; a usefiil prototype implementation; fast and easy to develop. 

The ABC-machine is an imperative abstract machine architecture for graph 
rewriting. To enable a detailed description of the graph rewriting process a 
huge number of instructions is defined. Circa 50 instructions are used to de
scribe the rewriting process, even a larger number of instructions is provided to 
handle basic values. The letters А, В and С represent the three stacks used in this 
machine. This virtual machine is designed to describe graph reduction on a low 
level of abstraction, close to the level of a concrete machine architecture. This 
machine is an abstraction of the large class of concrete stack based machine 
architectures. ABC-machine code is used as intermediate level on the compila
tion path of functional languages to concrete machine code. 

The first step on this translation path consists of the translation of func
tional languages to the graph rewriting language Clean [Eekelen 89]. In this 
translation step the syntactical sugar of functional languages is removed and 
sharing of computations is specified accurately. In many cases the translations 
from a functional program to an equivalent Clean program are straightforward. 
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In some cases, like guards and ZF-expressions, the transformations become te-
dius and rather complex. These transformations have also been formally speci
fied in a functional language [Koopman 88]. In the next step Clean is translated 
to ABC-code. This translation links the world of graphs and strategies to a 
sequence of imperative instructions and is described in chapter 5. Finally, ABC-
instructions are translated to, or interpreted by, concrete machine code. During 
this last step all details of the concrete machine become important to achieve an 
efficient implementation. A simple implementation of the ABC-machine is rela
tively easy to make, for instance using macro expansion. 

Γ Miranda ] Functional Programming Languages 

Γ Clean J Graph Rewriting Systems 

(target machine code] 

•{ ABC-code) 

ABC-machine 

ABC-interpreter 

Abstract machine 

Concrete machines 

Fig 3.1 The place of the ABC-machine in the translation process of functional languages. 

There are several reasons to introduce the additional intermediate level defined 
by the abstract machine on the compilation path. First of all, the abstract ma
chine helps to get a more structured implementation. When the abstraction is 
well designed, irrelevant machine dependent issues are omitted. The trade-offs 
in the imperative graph rewriting process are shown clearly. Some of the 
restrictions imposed by a concrete machine, such as limited resources (like the 
limited stack size) are not necessarily present in an abstract machine. Of course, 
all problems have to be solved on one level or the other. However, the separa
tion of concerns helps to get a more structured view on the problems (and their 
solutions) one has to face when making an implementation of functional lan
guages. 

Another advantage of the additional intermediate level is that the portability 
of the implementation is increased. To implement functional languages on a new 
concrete machine only a new ABC-machine has to be implemented. Since the 
ABC-machine is an imperative machine on a relatively low level of abstraction, 
it is much easier to implement directly than Clean or a high level functional 
language. 

It is not feasible to use an existing imperative programming language (like 
С or Pascal) instead of ABC-code since it imposes too much restrictions on the 
language constructs possible, hence the execution speed will be too low. So, a 
tailor made abstract machine is developed. 

In the next section a global overview of the architecture of the 
ABC-machine is given by specifying its state. In section 3.2, the basic compo
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nents of the machine are introduced by the definition of the micro-instruction 
set. The actual ABC-machine instructions are specified in terms of these micro
instructions in section 3.3. How the abstract machine executes an ABC-program 
is explained in section 3.4. In section 3.5 an assembler form of the 
ABC-instructions is introduced to improve the readability and to simplify the 
generation of ABC-programs. In section 3.6 the ABC-machine is compared with 
the well-known G-machine [Johnson 84], the machines themselves and the de
scription methods are both contrasted. Finally, the ABC-machine and its 
description method are briefly discussed. 

3.1 The architecture of the ABC-machine 
The main part of the instruction set of the ABC-machine is designed to conve
niently express graph rewriting. When this instruction set is mapped on a tradi
tional concrete machine the resulting code will be executed relatively slow, since 
present-day architectures are not at all designed for graph rewriting. A graph 
structure is not directly available on these architectures, but it has to be repre
sented by some data structure. The modification of the graph will lead to com
plex memory management problems, involving garbage collection. For many 
simple calculations the use of graphs is not effective. This observation has trig
gered the introduction of the second part of the abstract machine. This part is an 
abstraction from a traditional stack-based architecture. To obtain an efficient 
program these fast instructions are used and graph rewriting is avoided when
ever possible! 

The ABC-machine consists of the following memories: 
• the A(rgument)-stack used to reference nodes in the graph store; 
• the Bfasic value)-stack used to hold and manipulate basic values efficiently; 
• the C(ontrol)-stack to store and retrieve return addresses; 
• the graph store containing the graph to be rewritten; 

the descriptor store containing information about the symbols used; 
• the program counter contains an identification of the instruction (instrid) to 

be executed; 
• the program store containing the instruction sequence to be executed; 
• an i(nput)-o(utput) channel to enable interaction with the world. 

This machine can be depicted1 as: 

•Note: not all pointers are drawn; The symbol names and labels in the nodes are actually pointers 
in the descriptor store and the program store. Using arrows for these pointers would make the 
picture unreadable. 
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Fig 3.2 The ABC-machine 

The corresponding state of the ABC-machine is defined by the following tuple: 

state = = (astack, bstack, cstack, graphstore, desestore, instrid, programstore, ¡о) 
II This state is denoted in instructions as: (as,bs,cs,gs,ds,pc,ps,io) 

The next section contains a thorough specification of these components. 

3.2 The micro-instruction set 
The components of the ABC-machine are abstract data-types. They are suffi
ciently specified by the operations defined on them. The Miranda implementa
tion of the micro-instructions is not presented here, but it can be found in 
appendix A. These Miranda definitions specify the semantics of the micro
instructions, on the other hand they suggest too much a specific implementation. 
The given implementation must be viewed as a definition of the semantics, not as 
a suggestion for an efficient implementation. It is merely needed for detailed 
information like the index of the top of a stack. 

The following type synonyms are used to increase the clarity of the type 
definitions. The type nat stands for natural numbers including zero, it is repre
sented by Miranda numbers (num). 

II the index of the destination on the A-stack 
II the index of the source on the A-stack 
II the index of the destination on the B-stack 
II the index of the source on the B-stack 
II the index of the source on the C-stack 
II the number of arguments involved 
II the number of the argument involved 

To enhance the value of the specification in appendix A as prototype implemen
tation, a number of additional rule alternatives are used to create sensible error 
messages. 

arity 
a dst 
a sre 
b dst 
b sre 
с sre 
nr_args 
arg_nr 

= = 
= = 
= = 
= = 
= = 
= -
= = 
= = 

nat 
nat 
nat 
nat 
nat 
nat 
nat 
nat 
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The graph store 

The graph in the graph store is basically a Clean-like graph. It is composed of 
nodes. Each node is labelled with an unique identification, a node-id. 

There are micro-instructions to generate a new (empty) graph store, to 
create a new (empty) node in the graph and to get a node out of the graph. 
Finally, a node can be updated by a function passed as parameter to the 
gs_update micro-instruction. 

gs_get : nodeid -> graphstore -> node 
gs_init : graphstore 
gs_newnode : graphstore -> (graphstore.nodeid) 
gs_update : nodeid -> (node -> node) -> graphstore -> graphstore 

Note that each of these micro-instruction names starts with gs_ (for graph 
store). 

The nodes 

Each ABC-node contains a desc-id (descriptor identification) to represent the 
symbol in the Clean-node. A desc-id is an entry in the descriptor store indicating 
the symbol, it is represented by the type descid. Furthermore, a node contains a 
sequence of node-id's representing the arguments. A node can also contain a 
basic value like an integer or boolean. To reduce the number of definitions only 
these two basic types are considered, so characters, reals and strings are not 
treated here. 

The graph in the graph store will be examined by the program which will 
try to reduce the graph to normal form. For this purpose it is convenient that 
additional information is stored in the nodes of the graph. A node contains a 
context; the instr-id (instruction identification) referring to the first instruction 
of an instruction sequence. By convention, this ABC-instruction sequence will 
reduce the corresponding node to root normal form when it is executed. The 
instr-id stored in a node can be changed during reduction. This is used for 
several markings of the node. For instance, to determine at run-time that a node 
is already under reduction, in this way cyclic computations can be detected. 

There are micro-instructions to extract the pieces of information stored in 
a node. The nodes can be extracted of the graph store by the micro-instruction 
gs_get defined above. 

n_arg : node -> arg_nr -> arity -> nodeid 
n_args : node -> arity -> nodeid_seq 
n_arity : node -> arity 
n_B : node -> boolean 
η descid : node -> descid 
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n_entry :: node -> instrid 
n_I . node -> int 
n_nargs ; node -> nr_args -> arity -> nodeid_seq 

There are also micro-instructions to test whether a piece of a node has a certain 
value. These micro-instructions are important for pattern matching. 

n_eq_arity : node -> arity -> boolean 
n _ e q _ B : node -> boolean -> boolean 
n_eq_descid : node -> descid -> boolean 
n_eq_I : node -> int -> boolean 
n_ec|_symbol :: node -> node > boolean 

Finally, the contents of a node can be changed by: 

n_copy : node -> node -> node 
n_fill : descid -> instrid -> args -> node -> node 
n_fillB : descid -> instrid -> boolean -> node -> node 
nj i l l l ζ descid -> instrid -> int -> node -> node 
n_setentry : instrid -> node -> node 

The micro-instructions to change a node are passed as argument to gs_update to 
overwrite nodes in the graph. 

The micro-instructions above show that the graph store deals with variable 
sized nodes. Overwriting a previously created node with new values is always 
possible. In general, one first has to create a new empty node which has to be 
filled later. This method is in particular convenient for the creation of cyclic 
graphs. The code generation schemes presented in the chapter 5 rely on the 
presence of a node that can be overwritten with the result of a reduction. 

The descriptor store 

The ABC-machine contains a piece of memory where symbol descriptors are 
stored. This descriptor store contains information about the symbols used in the 
rewrite system. Given the descriptor identification, descid, a descriptor can be 
taken from the descriptor store. This store can be initiated by passing a list of 
descriptors to the dsjnit micro-instruction. 

ds_get : descid -> desestore -> desc 
dsjnit : [desc] -> desestere 

The descriptors 

A descriptor contains information of the associated symbol; its arity, the start 
address of the reduction code and the name of the symbol. The symbol name is 
only used to print a representation of the graph in root normal form on the 
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output Channel. Information can be retrieved from the descriptor by the corre
sponding micro-instructions. 

d_ap_entry : desc -> ¡nstrid 
d_arity : desc -> arity 
d_name : desc -> string 

The A-stack 

The A-stack contains node-id's; references to nodes stored in the graph store. It 
is used to access the actual arguments and the result of the rewrite rule executed. 
Just as in other imperative languages, not a complex data structure is passed to 
or returned from a function, but a reference to these objects is passed. The top 
of the stack has index 0 (as is the case for the other stacks). 

A new, empty, A-stack can be created by: 

asjnit : astack 

An element at any depth, or a sequence of nr_args top elements, can be retrieved 
from the A-stack by: 

as_get π a_src -> astack -> nodeid 
as_topn : nr_args -> astack -> nodeid_seq 

The type nodeid_seq represents a sequence of node-id's which can be taken from 
or pushed on the A-stack, it serves also as the argument sequence for a node. 
The A-stack can be updated by: 

as_popn : nr_args -> astack -> astack 
as_push ζ nodeid -> astack -> astack 
as_pushn : nodeid_seq -> astack -> astack 
as_update : a_dst -> nodeid -> astack -> astack 

The B-stack 

If the calculation of a simple numerical value would be performed by building 
nodes, performing redirections and the like, it is obvious that in no way an effi
cient implementation can be achieved on traditional hardware which has no 
support for these kind of actions whatsoever. On a traditional machine simple 
calculations are performed on a stack using only a couple of simple instructions. 
In order to obtain the desired behaviour for these calculations, the 
ABC-machine is equipped with a stack to hold basic values. 

A further optimization is the use of registers to hold these basic values. 
However, registers are not included in the ABC-machine design. The number of 
registers and the operations possible on them varies too much between different 

3.2 The micro-instruction set 41 



concrete machines. Register allocation is left as a part of the implementation of 
the ABC-machine. 

The B-stack contains basic values like integers and booleans. Such values 
are stored untagged on the B-stack. This means that it is impossible to determine 
the type of the elements of the B-stack. 

The initial, empty, B-stack is created by: 

bsjnit 

Information can 

bs_get 
bs_getB 
bs_getl 

The B-stack can 

bs_popn 
bs_push 
bs_pushB 
bs_pushl 
bs_pushn 
bs_update 

: bstack 

be obtained from the B-stack with the micro-instructions: 

: b_src-> bstack-> basic 
: b src-> bstack-> boolean 
; b_src -> bstack -> ¡nt 

be changed with the micro-instructions: 

: b_src-> bstack-> bstack 
" basic -> bstack -> bstack 
: boolean -> bstack -> bstack 
:: int-> bstack-> bstack 
: basic_seq -> bstack -> bstack 
: b_dst -> basic -> bstack -> bstack 

Beside these updating micro-instructions there are micro-instructions defined to 
perform computations with the basic values stored on the B-stack. Usually the 
arguments are all on top of the B-stack and are replaced by the result of the 
operation. When arguments are not on the B-stack they are an argument of the 
micro-instruction. Some micro-instructions to handle integer values are: 

bs_addi : bstack -> bstack 
bs_eql : bstack -> bstack 
bs_eqli ζ int -> b_src -> bstack -> bstack 
bs_gtl : bstack-> bstack 

The program 

The ABC-machine contains a sequence of machine instructions representing the 
reduction algorithm: the program. This program will rewrite the initial graph 
to its normal form according to the annotated functional strategy. Conceptually 
there are two algorithms involved, the annotated functional reduction strategy 
which indicates the next redex and the rewriting of that redex according the 
Clean rules. These algorithms are merged in the ABC-program to increase the 
efficiency. Each Clean rule is translated into a sequence of ABC-instructions. 
This instruction sequence controls the order of reductions required for this rule 
and performs the reduction according to the first matching rule alternative. 
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Each instruction has an unique identification, the instr-id, in order to be 
indicated as the current instruction by the program counter. A program does not 
change during execution, it is loaded in the machine when the machine is booted. 
Programs to be stored are denoted by a list of instructions. 

ps_get : ¡nstrid -> programstore -> instruction 
psjnit : [instruction] -> programstore 

The program counter 

Since the ABC-machine has an imperative nature it is essential to have a locus of 
control; a program counter. The program counter contains the instr-id of the 
next instruction to be executed. 

There are micro-instructions provided to initiate the program counter 
(points to the first instruction of the program) and to change it. The program 
counter can be incremented (i.e. the next instruction becomes the current in
struction), or can be set outside the program to indicate that the program is 
finished. Finally, one can check whether the last instruction of the program is 
reached. 

pcjnit 
pc_next 
pc halt 
pc_end 

: instrid 
: instrid -> instrid 
: ¡nstrid -> instrid 
: instrid-> bool 

The C-stack 

The C-stack (Control stack) is used to implement nested reductions in the 
abstract machine. The program counter can be stored and recovered from this 
stack. 

csjnit r cstack 
cs_get : c_src -> cstack -> instrid 
cs_popn : nr_args -> cstack -> cstack 
cs_push : instrid -> cstack -> cstack 

The input-output channel 

The abstract machine furthermore contains an input output channel used to show 
the result of the reduction to the world outside. On the output channel strings 
can be printed. These strings are appended to the existing output channel. 

iojnit : io 
¡o_print : string -> io -> io 
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3.3 The Instruction set 

Each machine instruction of the ABC-machine is defined in terms of the micro
instructions. Each instruction consists of an instruction identifier and zero or 
more operandi. Not all instructions are shown in this section. The specification 
in terms of micro-instructions is only given for the most important instructions. 
For some other instructions only the type and an informal explanation is given. 
A precise definition of all machine instructions is given in appendix A. 

The instructions shown here are classified according to their main purpose: 
graph manipulation; 

• retrieving information from a node; 
• manipulating the A-stack; 
• manipulating the B-stack; 

changing the flow of control; 
• generating output. 

Graph manipulation 

There are several kinds of instructions to manipulate the graph store. There is 
only one instruction to create a new node in the graph store. Several instructions 
can be used to change the contents of existing nodes. Finally, there are also 
instructions that fetch information stored in the nodes of the graph. All 
instructions for graph manipulation (with exception of the instruction create) 
have as operand an offset in the Α-stack, to find the node-id of the node to 
manipulate. 

The instruction create creates a new empty node in the graph store, the 
node-id of the new node is pushed on the Α-stack. It is defined as: 

create (as,bs,cs,gs,ds,pc,ps,io) 
= (as',bs,cs,gs',ds,pc,ps,io) 

where as' » as_push nodeid as 
(gs\ nodeid) = gs_newnode gs 

create is the only instruction to create a new (empty) node. All other instructions 
can only change the contents of an already existing node. The most elaborated 
instruction to update the contents of a node is fill, which is defined as: 

fill desc nr_args instrid a_dst (as,bs,cs,gs,ds,pc,ps,io) 
- (as',bs,cs,gs',ds,pc,ps,io) 

where as' - as_popn nr_args as 
gs' = gs_update nodeid (njill desc instrid args) gs 
nodeid = as_get a_dst as 
args = as_topn nr_args as 
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As can be seen from this specification the arguments of the node are taken from 
the Α-stack. The first argument is on top of the A-stack. 

Other instructions to change the contents of an existing node are: 

filLa 
filIB 
fillBJj 
fill! 
fillljb 
set_entry 

a_src -> a_dst -> instruction II the copy node instruction; 
bool -> a_dst -> instruction 
b_src -> a_dst -> instruction 
int -> a_dst -> instruction 
b_src -> a_dst -> instruction 
instrid -> a dst -> instruction 

II fills the node with the given boolean; 
II fills with a boolean found at the B-stack; 
II fills the node with the given integer; 
II fills with the integer found at the B-stack 
II changes the reduction context of the node. 

Building a Clean-node in the graph store involves at least two instructions: a 
create, which leaves a node-id on the Α-stack and one of the fill instructions. 

Example: to create the graph Cons 1 Nil, the following instruction sequence can be used. 
Assume that "_гпГ indicates some ABC-instruction sequence, probably just containing a rtn 
instruction since the newly created nodes are already in root normal form. The descnptor-
id's of Nil and Cons are indicated by "NiP and "Cons". This code fragment is written in the 
ABC-assembly language introduced below. 

t Create 
Create 
Fill 
Create 
Fill! 
Fill 

"Nil" 0 " 

1 0 
"Cons" 2 

II node for Cons 
II node for Nil; 2n d arg of Cons 

rnf" 0 , II fill node just created 
II node for 1 ; 1SI arg of Cons 
II fill node just created 

"_тГ 2 ] II fill Cons node 

Retrieving information from a node 

The retrieved information is stored on one of the stacks or in the program 
counter. The node-id of the node is found at the indicated depth on the A-stack. 
There are also instructions to test whether the contents of a node has the given 
value. 

push_args a_src arity nr_args (as.bs.cs.gs.ds.pc.ps.to) 
=. (as',bs,cs,gs,ds,pc,ps,io) 

where as' = as_pushn args as 
args - n_nargs (gs_get nodeid gs) nr_args arity 
nodeid = as_get a_src as 

pushl_a a_src (as.bs.cs.gs.ds.pc.ps.io) 
= (as.bs'.cs.gs.ds.pcps.io) 

where bs' = bs_pushl int bs 
int = n_l (gs_get nodeid gs) 
nodeid = as_get a_src as 
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eql_a int a_src (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_pushB equal bs 
equal » n_eq_I (gs_get nodeid gs) int 
nodeid = as_get a_src as 

eq_desc_arity descid arity a_src (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,Jo) 

where bs' = bs_pushB equal bs 
equal = (n_eq_descid node descid) & (n_eq_arity node arity) 
node = gs_get nodeid gs 
nodeid = as_get a_src as 

In appendix A some other instructions to extract (a selection of) the arguments 
from a node, change the arguments or to test on other basic value types are 
given. 

Manipulating the A-stack 

The A-stack is used to access the nodes involved in a rewriting. Via push 
instructions new node-id's can be pushed on the stack. In addition the following 
instructions are provided to manipulate the A-stack: 

pop_a nr_args (as.bs.cs.gs.ds.pc.ps.io) 
= (as',bs,cs,gs,ds,pc,ps,io) 

where as' = asjaopn nr_args as 

push_a a_src (as,bs,cs,gs,ds,pc,ps,io) 
=• (as',bs,cs,gs,ds,pc,ps,io) 

where as' = as_push nodeid as 
nodeid = as_get a_src as 

update_a a_src a_dst (as.bs.cs.gs.ds.pcps.io) 
= (as',bs,cs,gs,ds,pc,ps,io) 

where as' = as_update a_dst nodeid as 
nodeid = as_get a_src as 

Example: the cyclic graph ones: Cons 1 ones, is constructed similar to the previous ex
ample. Here the advantages of a separate create and fill instruction are visible. 

[ Create , II node for Cons 
Push_a 0 , II 2 n d arg of Cons 
Create , II node for 1; l s l arg of Cons 
Filli 10 , II fill node just created 
Fill "Cons" 2 "_гпГ 2 ] II fill Cons node 
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Manipulating the B-stack 

For the B-stack the same stack handling instructions as for the Α-stack are 
defined: 

pop_b :: nr_args -> instruction 
push_b : b_src -> instruction 
update_b : b_src -> b_dst -> instruction 

pushl : int -> instructton 
pushB : bool -> instruction 

There are also instructions to manipulate the basic values on this stack. A typical 
example is 

addi (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_addl bs 

There are many more instructions to do arithmetic, they all follow the same 
scheme as the add instruction presented here. They are not listed here for rea
sons of brevity. 

Changing the flow of control 

The desired flow of control has to be realized by manipulating the program 
counter. Jumps are unconditional, or directed by the boolean value on top of the 
B-stack. 

jmp address (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs,gs,ds,pc',ps,io) 

where pc' = address 

jmpjalse address (as.bs.cs.gs.ds.pc.psjo) 
= (as,bs',cs,gs,ds,pc',ps,io) 

where pc' = cond (bs_getB 0 bs) pc address 
bs' = bs_popn 1 bs 

jmp_true address (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc',ps,io) 

where pc' = cond (bs_getB 0 bs) address pc 
bs' = bs_popn 1 bs 

When a jsr (jump to subroutine) instruction is executed, the current value of the 
program counter is stored on the C-stack, a rtn (return from subroutine) 
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instruction will restore the program counter and pop the return address from 
the C-stack. 

jsr address (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs',gs,ds,pc',ps,io) 

where pc' = address 
cs' = cs_push pc cs 

rtn (as,bs,cs,gs,ds,pc,ps^) 
= (as.bs.cs'.gs.ds.pc'.ps.io) 

where pc' = cs_get 0 cs 
cs' = cs_popn 1 cs 

A jsr_eval instruction will start the execution of the code addressed in the node 
referenced by the top of the Α-stack, the return address is saved on the C-stack. 
Hence, it performs a jsr to the address stored in the node. By convention, execut
ing the instruction sequence will reduce the node to its root normal form. 

jsr_eval (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs',gs,ds,pc',ps,io) 

where pc' = n_entry (gs_get nodeid gs) 
nodeid = as_get 0 as 
cs' = cs_push pc cs 

The program execution stops after the execution of a halt instruction. The 
instruction fetch_cycle (see below) will be left when the program counter contains 
an address outside the program. 

halt (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs,gs,ds,pc',ps,io) 

where pc' = pc_halt pc 

Generating output 

To show the result of the reduction there are print instructions. These instruc
tions append strings to the output channel. 

print string (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs,gs,ds,pc,ps,io') 

where io' = io_print string ю 

print_symbol a_src (as.bs.cs.gs.ds.pc.ps.io) 
= (as,bs,cs,gs,ds,pc,ps,io') 

where ¡o" = ¡o_pnnt string ю 
node = gs_get (as_get a_src as) gs 
string = symbol_to_string node desc 
desc = ds_get (n_descid node) d 
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3.4 Program execution 
To run the ABC-machine described here, the instructions must be applied to the 
state of the machine. Once started the machine must continue to execute instruc
tions until the halt instruction is executed. While the machine is running, the 
current instruction is fetched continuously out the program store and applied to 
the present state. 

The instruction cycle 

The fetch cycle recursively fetches the current instruction out the program and 
applies it on the current state. The fetching (and hence the machine) stops when 
the program counter indicates that a halt instruction is executed. 

fetch_cycle :: state -> state 
fetch_cycle (as.bs.cs.gs.ds.pc.ps.io) 
= (as,bs,cs,gs,ds,pc,ps,io), pc_end pc 
= fetch_cycle (currinstr (as.bs.cs.gs.ds.pc'.ps.io)), otherwise 

where pc' = pc_next pc 
currinstr = ps_get pc ps 

Booting the machine 

Before it is possible to run the machine, the machine is loaded (booted) with the 
initial state. The program and descriptors must be supplied as argument to the 
boot function. All parts of the machine are initiated by the corresponding init 
micro-instructions. The machine starts evaluating the program on the first 
instruction. 

boot :: ([instruction],[desc]) -> state 
boot (program .descriptors) 
= (as.bs.cs.gs.ds.pc.ps.io) 

where PC 
as 
bs 
cs 
gs 
ps 
io 
ds 

= pcjnit 
= as init 
= bs ¡nit 
= cs init 
= gsjnit 
= psjnit program 
= io init 
= dsjnit descriptors 
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3.5 ABC-assembler 

boolean 
context 
descid 
instrid 
int 
nat 

= = bool 
= = instrid 
= - instrid 
= = nat 
= = num 
= = int 

In order to write ABC-programs there must be a denotation for all objects 
involved. The denotation of the function arguments is specified here. 

Il A boolean is represented by the Miranda type bool. 
Il A context is represented by the address of the first instruction. 
II A descriptor-id is the address of the descriptor in the store. 
II An address is the number of the instruction in the sequence. 
II Integers are represented by Miranda num's 
II Natural numbers are also represented by Miranda num's. 

References to instructions are made by the address of the instruction within the 
program. This is fine for the ABC-machine and close to reality in a concrete 
machine, but cumbersome to read and write for human beings. Moreover the 
standard Miranda system does not support functions on top level very well. The 
system just prints <function>, which is not a clear identification of a specific 
ABC-instruction. To make ABC-programs better understandable an assembler 
level is introduced. Assembler statements can be mapped directly to instructions, 
but the assembler uses labels instead of addresses. A program in ABC-assembler 
is represented by a Miranda data structure. 

assembler 
label 
descjabel 
redjabel 

statement 

= = 
__ 
= = 
= = 

"= 

[statement] 
[char] 
label 
label 

Label 
Descriptor 
Create 
Fill 
Jmp 
etc... 

II the label of a descriptor 
II the label of an instruction 

label 
descjabel redjabel arity name 

label nr_args label a_dst 
label 

Every ABC-instruction is represented by a constructor with a similar name, the 
first character is changed in an uppercase character to make it a constructor. 
Generally also the arguments are identical, only addresses are replaced by 
labels. ABC-assembler also contains labels and descriptor definitions. See 
appendix A for a complete definition of ABC-assembler statements and an 
assembler. 
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Example: this assembler form to represent ABC-instructions allows us to write: 

example :: assembler 
example 
= [ Label 

"Lengthl" Jsr_eval 
Eq_desc_anty 
Jmpjalse 
Push_args 
Create 
Push a 
Fill 

"Cons" 0 0 
"Length2" 
02 

2 \ 
"Length" 1 "n_Length" 1 ] 

Instead of the corresponding ABC-instmction sequence: 

example :: program 
example 
= [ jsr_eval 

eq_desc_arity 
jmpjalse 
push_args 
create 
push_a 
fill 

23 0 0 
62 
02 

2 
12 1613 1 1 

The reason for introducing a separate assembler level is not only to enhance the 
readability of the program, but also to simplify the translation of Clean rules to 
ABC-code. This simplification is caused by the use of symbolic names and labels 
instead of the corresponding numbers of the ABC-machine. To have 
ABC-assembler as a Miranda data-structure has also some advantages for the 
prototype; it eliminates the generation and parsing of ABC-assembler repre
sented as a list of characters and enables the printing and manipulating of state
ments which is impossible for a sequence of instructions. 

3.6 Comparison with the G-machine 
Another well known abstract machine for graph reduction is the G-machine 
[Johnson 84]. The objectives of this machine are identical to that of the 
ABC-machine: defining an imperative abstract graph rewrite machine as an 
intermediate level in the compilation of functional languages. The G-machine is 
not described in a functional language, and is initially meant for graphs in the 
applicative form (each argument is bound to the function by an AP node). Due to 
these two reasons both the description and the described abstract machines differ 
in almost all details. An overall view of the ABC-machine and the G-machine 
shows many correspondences. 
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In order to compare the G-machine and its description with the 
ABC-machine, the G-machine state and some instructions in the G-machine 
formalism are shown. Afterwards the main differences between description 
methods and abstract machines are indicated. The description method used for 
the G-machine very much resembles the description method used by Landin to 
describe the SECD-machine [Landin 64]. 

The G-machine state 

A state in the abstract G-machine is a 7-tuple <0,C,S,V,G,E,D>, where 
О is the output produced so far. 
С is the G-code sequence currently being executed (sometimes called code-

stack). 
S is a stack of node names i.e. pointers into the graph. 
V i s a stack of basic values. 
G is the graph. A mapping from node-names to nodes. There are nodes of the 

following type: 
INT ¡ integer nodes, 
BOOL b boolean nodes, 
NIL empty-list nodes, 
CONS n, n2 list nodes, where ni is the pointer to the head graph and na is 

the pointer to the tail graph, 
АР n-\ П2 application nodes, where n^ is a pointer to the function graph 

and П2 is a pointer to the argument graph, 
FUN f a node with a reference to the compiled function f, 
HOLE a node which is to be filled with another value later; it is used 

during the construction of cyclic graphs. 
E is the global environment, which is a mapping from function names to pairs 

consisting of the number of curried arguments of the function and its code 
sequence. 

D is a dump used for recursive calls to EVAL: a stack of pairs consisting of; a 
stack of node names: S before EVAL, and a G-code sequence: С before 
EVAL. 

Comparison of machine states. 

The correspondence of the machine states is shown by indicating which compo
nents of the ABC-machine correspond to the elements of the 7-tuple of the 
G-machine described above. 
О The output has a direct correspondence with the output in the 

ABC-machine. 
С In the G-machine the current instruction is the head of the code sequence C. 

The flow of control involves the movement of code between the code 
sequence C, the environment E, and the dump D. In the ABC-machine there 
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is no movement of code; the instruction sequence executed is controlled by 
the program counter (pc) and the control stack (C-stack). 

S The stack, S, of the G-machine directly corresponds to the argument stack 
(Α-stack) of the ABC-machine. 

V The stack of basic values, V, corresponds to the basic value stack (B-stack), 
although it is used in a more restricted way in the G-machine. 

G The graphs of both machines obviously correspond. The G-machine con
tains only binairy nodes while the nodes in the ABC-machine are variable 
sized. Moreover, the nodes of the ABC-machine contain an extra field for 
the context and information about the constructor can be found via the 
descriptor-id identifying the symbol of the node. The type list is the only 
data structure in the G-machine, it is "wired" in the definition. In the 
ABC-machine there are no assumptions on the data types used, the corre
sponding constructors are sufficiently specified by their descriptors in the 
descriptor store. 

E The environment, E, of the G-machine contains the arity and the code cor
responding to the functions. The arity is stored in the descriptor store of 
the ABC-machine, and the code in the program. 

D The dump of the G-machine is not found in the ABC-machine. The stack is 
not stored separately on an other stack in the ABC-machine, the actions 
needed (number of pops upon returning from a function) are computed 
during the compilation of Clean to ABC-code. The code sequences stored in 
the dump of the G-machine, are recorded by the program counters stored 
on the C-stack of the ABC-machine. 

The G-machine instructions 

In a G-machine state, () denotes an empty stack or an empty code sequence. The 
initial graph is indicated by {}. The semi-colon appends values onto an output 
sequence. The period is used as infix cons for instruction sequences and push for 
stacks. Updating of the graph is written as G[n=INT ι]. If there is a node named η 
previously in G, then the node η is updated with a new value, otherwise a new 
node is created. This notation is also used in pattern matching situations. 

The flow of control is conducted by the following instructions. 
Descriptions are taken from [Johnson 84], with a few errors corrected (see also 
[Peyton Jones 87]). 

<o, EVAL.C, n.s, v, G[n=AP ni пг], E, D> 
=> <0, UNWIND.Q, n.(), v, G[n-AP ^ Пг], E, (c1s).D> 

<o, EVALc, n-s, v, G[n=INT ¡], E, D> 
=> <0, c, n.s, v, G[n=INT i], E, D>, 
similarly for nodes BOOL b, Nil, CONS п^ пг and FUN f. 
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<o, UNWIND.O, n.s, v, G[n=AP ̂  Пг], E, D> 
=> <o, UNWIND.O, П! .n.s, v, G[n-AP щ n^, E, D> 

<o, UNWIND.O, no.n1...nk.s,v, G[n0=FUN f.n^AP По πι',.-.,ηκ^νΡ П(к.і) nk'],E[f=(k,c)],D> 
=> <o, с, ni'...nk'.s, ν, G[no=FUN f.n^AP no π1

,,...,ηκ=ΑΡ П(к.і) Пк'], E[f=(k,c)], D> 
<о, UNWIND.O, ηο.η1...ηκ.(),ν, G[no=FUN 4,E[f-(a,c)],(c,,s,).D> and k<a 

=> <o, c', nk.s', v, G[no=FUN f], E[f=(a,c)], D> 

<o, RET m.c, n-i ...nm.n.(), v, G[n=INT i], E, (c',s').D> 
=> <o, c', n.s', v, G[n=INT i], E, D>, 
similarly for nodes BOOL b. Nil and CONS n, П2 

<o, RET m.c, ni...nm.n.s, v, G[n=APni пг], E, D> 
=> <o, UNWIND.O, n.s, v, G[n=AP n, П2], E, D>, 
similarly for η = FUN f 

<o, JFALSE l.c, s, true .v, G, E, D> => <o, c, s, G, E, D> 

<o, JFALSE l.c, s, false.v, G, E, D> => <o, JMP l.c, s, G, E, D> 

<o, JMP I...LABEL l.c, s, G, E, D> => <o, c, s, G, E, D> 

<o, LABEL l.c, s, G, E, D> => <o, c, s, G, E, D> 

Initial and final state of the G-machine 

The initial configuration of the machine for the evaluation of the expression eo 
in environment Eo is: 

<0.co.O.O.Ö.Eo.()> 
where cO = E[eo]roO;PRINT 

This is a machine with an empty output, the code for evaluating the start 
expression (E[eo]roO), an empty basic value stack, an empty graph, environment 
EQ containing the compiled code for the functions together with their arity, and 
an empty dump. 

The machine stops when the state <o, (), (), (), G, E, ()> has been reached. 

Differences between the abstract machines 

Apart from the way in which the machines are described, they also differ as 
abstract graph rewrite machines. The most important distinctions are: 
• The nodes in the graphs of both machines are different. The nodes in the 

ABC-machine contain an independent context and descriptor-id, whereas 
the nodes in the G-machine only hold a type identifier. 

• The kind of graphs handled by the G-machine is different from the graphs 
treated in the ABC-machine. In the ABC-machine nodes have variable 
arity, while the nodes in the G-machine are either leave nodes or AP nodes 
with two arguments. 
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The graph Ackerman 2 3 is represented in the G-machine as AP (AP (FUN 
Ackerman) (INT 2)) (INT 3). Later on, variants of the G-machine are developed 
which use a more efficient representation for these graphs. [Burn 88, 
Johnson 87] 

• The type list is the only data type available in the G-machine; special 
instructions are available to handle it. In the ABC-machine arbitrary 
constructors are handled. 

As shown in the next chapter, the generated code for the machines also differs, 
e.g. the calling conventions of functions are different, and the B-stack is used in 
a more general way than the stack V. 

Differences between the descriptions 

The G-machine is specified in another formalism than the ABC-machine, 
although the tuple describing the machine state shows some resemblance. The 
main differences between the descriptions are: 
• The G-machine is not specified in a programming language; this implies 

that it can not be checked by a compiler, nor serve as a prototype imple
mentation. The original specification of Johnson contains some errors (like 
unbound variables in the right hand side of a description rule), that would 
be spotted by a compiler. 

• The G-machine description is not hierarchical, this implies that all items 
must be addressed at the same level. In the ABC-machine implementation 
details can be hidden in the micro-instructions. 

• The instruction sequence executed is specified in the ABC-machine in a 
more direct way than in the G-machine. The flow of control is also more 
restricted in the G-machine, e.g. jumps are only forward and within the 
code resembling to one function. In later variants of the G-machine a more 
elaborated flow of control is defined [Johnson 87]. 

• The G-machine description is not complete, some cases (see EVAL and RET 
instructions) are specified by similarly for nodes.... This is not always 
perfectly clear (e.g. must the EVAL instruction for the node FUN f behave 
similar to the first rule, or to the second rule of the given specification). 
The described G-machine is essentially an interpreter, whereas the 
ABC-machine contains directly executable code. The instructions of the 
ABC-machine are functions that transform the machine state. The state 
transformations of the G-machine must be executed by some external 
function. 

3.7 Discussion 
This chapter presents a large and complex example of the description method 
introduced in the previous chapter. The abstract machine specification presented 
is actually the specification of the ABC-machine. It was not made after the 
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completion of the design, but the machine was actually designed by writing this 
specification. The description is used with success as prototype implementation 
and it appeared to be a useful definition for the actual implementation. It 
appeared to be easy to add some instructions and to experiment with slightly 
different instruction sets. The development of this specification was forcing a 
well structured design and the development time was spent on designing the 
machine instead of solving problems with its specification. 

The ABC-machine is an imperative graph rewrite machine, it is an abstrac
tion of concrete stack based machine architectures. Its instruction set provides an 
additional level of abstraction for the implementation of functional languages. 
The introduction of this level enhances portability, without a significant reduc
tion in efficiency. The assembly level provided permits the use of labels and 
symbolic names. The execution speed of the prototype is sufficient for small test 
programs. The Miranda interpreter on a SUN 3/280 executes circa 10 instruc
tions each second. The nfib-number for the ABC-code shown in section 5.6 is 1. 
However, the execution speed can increased almost an order of magnitude by 
omitting some of the code to give meaningful error messages in the micro
instructions. 

There are several implementations of the ABC-machine. The specification 
of the abstract ABC-machine appeared to be a very useful and a valuable defini
tion of the abstract machine. The implementation in С of a parallel ABC-inter
preter [Nöcker 89] follows the specification presented here very closely. The 
machine state is not passed from instruction to instruction, but as a global acces
sible data structure. By implementing the components of the ABC-machine in С 
a micro-instruction level is defined. The instructions are implemented using 
these micro-instructions. A state-of-the-art speed is achieved by the translation 
of ABC-code to MC68000 code for a SUN3/280 [Weijers 90, van Groningen 
90]. 
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Chapter 4 
Abstract Program Translation 

4.1 The description method 
4.2 Bracket abstraction 
4.3 The traditional description of bracket abstraction 
4.4 Bracket abstraction described by syntactical matching 
4.5 Bracket abstraction as abstract program transformation 
4.6 Discussion 

This chapter shows that functional programming languages can be used to 
describe program transformations and translations. The well-known bracket 
abstraction algorithm is used to compare this description method with some 
conventional descriptions. In the next chapter an elaborated example of the use 
of abstract program translations is shown. 

The descriptions are called abstract program translations since the 
language to be transformed is represented by an abstract syntax tree (AST). 
In a functional language a data type is used to hold the AST. The structure of an 
AST is close to the structure of the language to be transformed. A translation is 
easier to express using the AST than using the syntax since the syntactical repre
sentation is just a linear sequence of characters, while an AST is a tree with the 
desired structure. Handling the syntactical structure in the description has as 
advantage that the syntactical sugar can be used in the description, but this 
description method appears to be only suited for small problems. 

These data structures are not hidden in an abstract data type like the data 
structures used to represent the machine components in the previous chapters, 
but they are manipulated at the top level of the description. The translation 
functions use pattern matching on the data structure and deliver fragments of 
this data structure. Here the data structure is the representation of the objects 
manipulated, there is no reason at all to hide them in an abstract data structure. 
In the previous chapters the data structures themselves were irrelevant, just a 
carrier for the data was needed. 
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Efficiency and space consumption during the execution of the description is 
irrelevant. This implies that a simple data structure in close correspondence with 
the language to be transformed can be used. The data structures used in the 
description of program transformation do not resemble the data structure that 
would be used in a compiler. For a compiler efficiency and compactness of the 
data structures used are important constraints. This implies for instance the use 
of symbol tables. 

In conventional descriptions of translations the language components 
handled are often surrounded by IE and I to distinguish them from the transla
tion algorithm. In practice however, it appears to be impossible or unpractical 
to make a strict separation between translation algorithm and translated 
language. 

The abstract program translation methodology will be explained in section 
4.1. Then several descriptions of bracket abstraction will be given in order to 
make a comparison of the description methods possible. The specifications 
shown here are the original description (in section 4.3), the specification using 
the syntactical match (in 4.4) and the abstract program translation (4.5). In the 
next chapter an abstract program translation is used to describe the translation 
of Clean to ABC-code. In appendix A it is used to describe the mappping from 
ABC-assembler code to instructions. It is also used by the author to specify the 
translation from Miranda to Clean [Koopman 88]. 

4.1 The description method 
In order to specify a translation a suited representation of the languages 
involved must be available. Here the languages involved are represented by a 
data type in a functional language. The defined data type to represent the syntax 
tree is called an abstract syntax tree (AST). The translation is described by a 
function that takes the AST to transform as argument and delivers the resulting 
AST. 

A suited type must be defined for each language involved in the translation. 
The choice of a good definition of this type appears to be crucial to obtain an 
elegant specification. The type definition cannot be obtained in some mechanical 
way. Valuable guide-lines for this definition are: keep it small, simple and close 
to the syntax tree. A direct translation of the syntax to a data type is often a 
good starting point, redundant constructs (like infix notation) are removed 
unless it is essential to describe their conversion to function applications. It is 
generally more convenient to express additional information as annotations in 
the AST than to derive this information when it is needed. Fields to insert these 
annotations are added to the type as required. 

An AST can be made almost generally applicable by inserting a variable 
field for the name of a node and a list of arguments. In this way a very general 
applicable expression tree is defined. 
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tree :> Node name args 
args = = [tree] 
name - = [char] 

Although convenient in some circumstances the general use of this kind of tree 
is not advocated. Due to the lack of distinguishing structure the type system does 
not help to check the construction of consistent trees. We advocate to use tailor 
made trees as shown below. 

As first example, a suited AST for the λ-calculus [Church 32, Barendregt 
84] is shown. The λ-calculus handles λ-terms; objects with an extremely simple 
structure. The syntax of λ-terms is 

term := '(' term term ')' | an application 
'λ' var '.' term | an abstraction 
var a variable 

A data structure suited to represent λ-terms as AST in Miranda is 

term :>= AP term term | II an application 
ABS var term | II an abstraction 
VAR var II a variable 

var == [char] Il a possible representation of variables 

Example: The λ-tenn λ f .(λ g.(X x.((f χ) (g χ)))) is represented by the data smicture 

ABS Τ (ABS "g" (ABS "χ" (AP (AP (VAR Τ ) (VAR "χ")) (AP (VAR "g") (VAR "χ"))))) 

A variable occurs free in a term if it is not in the scope of an abstraction of that 
variable; it is bound otherwise. Using the tree representation of λ-expressions a 
variable is bound if it is a sub-expression, a leaf in the tree, of an abstraction of 
the same variable. The last occurrence of an abstraction of that variable seen 
from the root of the tree is said to bind the occurrence of that variable. 

free_vars :: term -> [var] 
free_vars (AP t112) - mkset (free_vars t1 ++ free_vars t2) 
tree_vars (ABS var term) = free_vars term -- [var] 
free_vars (VAR var) - [var] 

mkset is the library function to remove duplicated elements from a list. 

The replacement of a free variable by some term is called substitution. The 
process of (repeated) substitution is called reduction. An expression that can be 
reduced is called a redex (reducible expression). To keep the definition simple 
it is required that the expression substituted does not contain free variables that 
become erroneously bound through the substitution. The proper reduction of 
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such terms would require α-conversion (see below), since our purpose is just to 
show the use of an AST to describe a language it is not treated here. 

χ [x := Ν] Ξ N ; 
y[x:=N] Ξ y . i f x ^ y ; 

(λχΜ) (χ := Ν] = λχ.Μ ; 
(λχ.Μ) [χ := Ν] = λγ.(Μ [χ := Ν]), if χ * y ; y is not allowed to occur free in N 

(Mi M2) [x > N] = (Mi [χ :- Ν]) (M2 [x := N]); 

substitute :: term -> var -> term -> term 
substitute (VAR y) xn = n .ifx = y 
substitute (VAR y) χ π = VAR y , ifx~=y 
substitute (ABS y m) χ π » ABS y m , if x = y 
substitute (ABS y m) χ n = ABS y (substitute m χ η) , if -member (free_vars n) y 
substitute (AP m1 m2) χ n = AP (substitute ml x n) (substitute m2 x n) 

A change of a bound variable to a fresh variable in a term is called 
α-conversion. 

XxM = Xy.M[x:=y] 

alpha_conversion :: var -> term -> term 

alpha_conversion у (ABS x m) = ABS y (substitute m χ (VAR y)) 

ß-reduction is defined by. 

(λχ.Ν) M ->p Ν [χ := Μ] 

reduction :: term -> term 

reduction (AP (ABS χ n) m) = substitute η x m 

This example shows that a data structure can be chosen in close correspondence 
with the syntactical structure. Some transformations are shown to be easily 
expressible. 

4.2 Bracket abstraction 
In order to compare the description method proposed here with some other 
description methods, the well-known bracket abstraction algorithm will be 
described in several formalisms. Bracket abstraction was introduced by Turner 
[Turner 79] as implementation methodology for functional languages. The theo
retical background and soundness of abstraction can be found in combinatorial 
logic [Schönfinkel 24, Curry 58]. 

In order to use bracket abstraction as an implementation technique for 
functional programming languages, every function is treated as a higher order 
function. This implies that arguments are bound one by one in each function 
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application. Bracket abstraction is a program transformation that removes all 
variables (arguments) from a function body. Combinators from a small and 
fixed set are inserted in the function body to distribute the arguments during 
program execution. The absence of variables eliminates the need to maintain 
environments to associate actual arguments to variables during the execution of 
the program. 

The language to transform is SASL [Turner 76], a simple predecessor of 
the language Miranda. 

Combinator reduction 

An expression in SASL is reduced in two steps. First it is transformed to combi
nator code as shown below. Then the combinator expression is reduced by 
applying the reduction rules for these combinators. The reductions are carried 
out in the normal order; the leftmost redex in the expression is continuously 
rewritten. For some combinators it is necessary to evaluate one or more argu
ments before the rewrite rule can be applied. 

4.3 The traditional description of bracket abstraction 
The description given here is a recapitulation of the relevant parts of Turner's 
famous paper. Turner utilised an extended version of the description method 
used by Curry. In order to make this section self-contained no knowledge of 
Turner's article, nor of combinatorial logic is assumed. 

The basic abstraction algorithm 

To remove variables from the source text the definition 

deffx = E 

is considered. E is an expression in which function application is the only opera
tion. It contains constants, including curried versions of operators, and vari
ables. To transform an expression to its curried form functions are replaced by 
their curried equivalents and infix operators are replaced by the corresponding 
curried prefix operators. The example of the factorial function in the source 
language and in its curried version illustrates this transformation. 

deffacn = n = 0-> 1 ; n * f a c ( n - 1 ) 
def fac η = cond (eq 0 n) 1 (times η (fac (minus η 1 ))) 

The variable χ can be removed from the definition above by abstracting it from 
the expression. This is denoted by 

def f = [χ] E 
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In this definition, [χ] E denotes the result of the operation which removes all 
occurrences of χ from E. It is pronounced 'abstract χ from E'. The step taken 
above is correct when the law of abstraction holds. This law states that abstrac
tion is the inverse of application. 

(ME)x = E 

A combinator is a function without free variables. To distribute the arguments 
in the expression the combinators S, К and I are defined by their reduction 
rules. 

S f g x - fx(gx) 
K x y = χ 
lx » χ 

Function application is denoted by juxtaposition, it associates to the left. 
Redundant brackets are usually omitted. Indicating the associations in the first 
combinator definition explicitly, it is written as: 

((Sf)g)x = (fx)(gx) 

This implies that 

deffxy = E must be read as 

def (f x) у « E applying the abstraction rule yields 
def f χ = [у] E which is 
def f = [x]([y]E) 

The abstraction algorithm is best explained by viewing expressions as trees. The 
abstraction algorithm considers various cases of these trees: 
• Abstraction of a variable over an application, a fork in the tree, yields a 

S-combinator to distribute the argument over both sub-trees. The abstrac
tion algorithm is recursively applied to both sub-trees. 

• The abstraction of a variable from the same variable yields an 
l-combinator; the argument is needed here in the tree. 

• The abstraction of a variable from all other variables and constants yields a 
K-combinator; the argument is not needed in this leaf of the tree and it is 
thrown away. 

The abstraction algorithm is specified as (Ει and E2 are arbitrary expressions) 

[XKE1E2) ^saxIEr i fMEd 
[χ] χ => I 
[x] у =» К у , where у is a constant or a variable other than x. 
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Proof: 

Using the law of abstraction and the reduction rules for the combinatore (the expression 
rewritten is underlined). 

( [χ] χ ) χ = Ι χ = χ 

( M y )* = <̂~~У x = У 
( M (El E2) )x = S ([χ] Ει) ([x] E2) x ) 

= ((MEi)x)(([x]E2)x) 
= (Ei E2) by induction to the structure of terms. Π 

The abstraction of the argument from the defínition for the factorial function in 
curried form 

def fac η = cond (eq 0 n) 1 (times η (fac (minus η 1 ))) 

yields 

def fac = S (S (S (К cond) (S (S (К eq) (К 0)) Ι) (К 1) 

(S (S (К times) I) (S (К fac) (S (S (К minus) I) (К 1)))) 

Improving the generated combinator code 

The definitions given above form a complete algorithm to remove variables 
from an expression. However, the combinator expression obtained by this 
algorithm is rather long winded. This is due to the nature of the abstraction al
gorithm used; each argument is brought down to every leaf of the expression 
tree. When the argument is not needed in a leaf it is discarded there by a 
K-combinator. The size of the expression can be reduced by discarding argu
ments as soon as possible and directing them only to the branches of the expres
sion tree where they are needed. This is done by introducing some additional 
combinators and applying improvement rules from the leaves to the top of the 
tree1. 

The combinators needed to improve the code are defined by the rules: 

Bfgx = f(gx) 
C f g x = f x g 

The rules to improve the code are: 
1. The distribution (by the S-combinator) of an argument over two sub-trees 

is not needed when the argument is discarded right away in both sub-trees 
(by a K-combinator). The argument can be discarded immediately. 

lit is of course possible and more efficient to incorporate these improvement rules in the 
abstraction algorithm. For the sake of clarity, abstraction and optimization of the expression by 
the improvement rules are treated as separate algorithms here. Moreover, the combined algorithm 
is hard to specify elegantly in this formalism. 
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2. The distribution of an argument over two sub-trees is not needed if it is 
discarded in the left sub-tree and becomes the right sub-tree by an 
l-combinator. 

3. The distribution of an argument which is thrown away in the left branch is 
equivalent with sending the argument to the right tree by a B-combinator. 

4. The same holds when the argument is not needed in the right sub-tree. The 
argument can be passed to the left branch by a C-combinator. 

These optimization rules are expressed formally as 

S (К E1 ) (К Ег) => Κ (E! Ег) II improvement rule 1 
S (К E-i) I => Ει II improvement rule 2 
S (Κ Ει) Ег => В Ει Ег , if no earlier rule applies II improvement rule 3 
S Ει (К Ег) =» С Ει Ег , if no earlier rule applies II improvement rule 4 

The first rule states that S (К E-i) (К Ег)) and Κ (Ει Ег) are equivalent expressions. 
Such a relation can be proven easily. An arbitrary argument, x, is supplied and 
the reduction rules for the combinators are used to transform the expression. 

Proof: 

= {rewrite rule for S} 
= (rewrite rule for K) 
= {rewrite rule for K) 

{rewrite rule for К} 

hence S (Κ Ει) (К Ег) and К (Ει Ег) are extensionally equal. 

- rule 2 

S (К E Ì ) Ι χ = ( Κ Ej χ ) (Ιχ) = E ^ j ^ ) = Ε, χ 
hence S (Κ Ει) Ι and Ει are extensionally equal. 

- rule 3 
S ( K E i ) E 2 X = ( K E 1 x ) ( E 2 x ) = Ei(E2x) 

- rule 1 
S (К 
(Κ E, 

ET (К 
Ε ι Ε 2 

and 
К (E, 

E i ) ( K Ег) x 
x) (KE2X) 
E 2 x ) 

E2)X 

В ET Ег x = Ei{E 2 x) 

hence S (Κ Ει) Ег and Β Ει Ег are extensionally equal. 

- rule 4 
S E Ì (К Ег) х = Е 1 х ( К Е 2 х ) = Ει χ Ег 
С Ε ι Ег x = ET χ Ε 2 

hence S Ει (К E2) and С Ει E2 are extensionally equal. Π 

This proof shows also that the improved expressions require less reduction 
steps; the expressions are indeed enhanced. 

Using these rules the combinator code for the factorial function becomes: 
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def fac = S (С (В cond) (eq 0)) 1 (S times (В fac (С minus 1 ))) 

These simple optimizations give a considerable reduction of the size of the 
expressions. Reductions of 50 % and more are common. The code can be 
further improved by defining additional combinators and considering more 
special cases [Turner 79, Peyton Jones 87], since our aim is not to describe the 
best possible fixed combinator generation this is not done. 

Data structures 

There is only one data structure defined in SASL; the list. Lists are built by the 
pairing operator and the empty list nil. The pairing operator (called cons) is 
represented by an infix colon ':'. In prefix form it is the combinator Ρ (for 
'pair'). The combinator U (for 'uncurry'2) unpacks pairs. 

Uf(Pxy) = fxy 

The left hand side of a function definition in SASL may be, or contain, a list. 
Hence the abstraction algorithm has to be extended with respect to abstractions 
of pairs. The Pair is unpacked and both elements are abstracted. 

[Pxy]E => U ([χ] ([у] E)) 

The use of this abstraction rule is illustrated by the example shown below. 

def f (a:b) = a + b becomes in prefix form 
def f (P a b) = plus a b abstracting the function argument 
def f = [Ρ a b] (plus a b) which is after abstraction 
def f = S (В plus (U К)) (U (К I)) 

Local definitions 

In SASL, every expression can be accompanied by a sequence of locally defined 
functions. This is transformed to a single combinator expression in three steps. 
1. The arguments of the locally defined functions are removed. 

Ει where f χ = Ег 
g у = Ез is in the first step transformed to: 

Ei where f = [χ] Eg 
g = [УІЕз 

2This name is due to Turner, 'unpair' or 'unpack' seems to be a better name. 
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2. The sequence of locally defined functions is grouped to a single local 
definition. This is done by packing them in a list. 

Ει where f = E2 
g = E3 is in the second step transformed to: 

Ei where (f:g) = (ЕгіЕз) 

3. Finally, the resulting local definition is removed. This is done by abstract
ing the list containing the locally defined function names from the expres
sion Ei. The locally defined function body is supplied as the corresponding 
argument. 

E-j where f = £2 is transformed to: 

(И Ei) E2 

Recursion 

There is one further complication to handle; when the locally defined functions 
are (mutual) recursive, the algorithm outlined above would not abstract the 
names of the locally defined functions from their body. This is illustrated by an 
example of the code produced by the algorithm above. 

fac 3 where fac η = n=0 -> 1 ; η * fac (n -1 ) 

(C 13) (S (C (B cond) (eq 0)) 1 (S times (B fac (C minus 1)))) 

The code produced is obviously wrong! It still contains the identifier fac. 
Recursion can be handled correctly by using the fixed point combinator Y. A 
term e is a fixed point of a function/ when/ e = e. The fixed point 
combinator is defined such that, for any function f, Y f is a fixed point of f. 

Y f = f (Y f) 

A correct algorithm to handle local definitions removes the occurrence of the 
locally defined function name from its body. Then, this function is removed 
from the expression 

Ei where f = E2 is first transformed to 
Ei where f = Y([f]E2) this is transformed to 
(ΝΕ,ΗΥαϋ^)) 

Using this transformation rule, the factorial example above becomes 

(C13) (Y (B (S (C (B cond (eq 0))1)) (B (S times) (C (B S К) (С minus 1)))) 
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Global function identifiers are not removed from the expression at compile 
time, but they are replaced by the associated combinator expression when they 
are encountered at run-time. So, recursive functions are no problem. Since this 
implementation is outside the world of fixed combinators discussed here, it is 
not treated in the sequel. 

Summary of the abstraction algorithm 

In order to make a comparison of the description methods, the rules of the 
abstraction algorithm are summarised. The equivalent of these rules in the other 
formalisms will be given below. 

The combinators used in the abstraction process are defined by their 
reduction rules. 

S f g x - f x ( g x ) 
К xy = χ 
l x - χ 

В f g x = f (g χ) 

С f g x - f x g 
U f (Ρ χ у) = f χ у 
Υ f = f (Y f) 

Arguments are removed from the definition (E is an expression in which func
tion application is the only operation) 

deffx = E 

by abstracting them from the body. This is denoted as 

deff = [x]E 

The abstraction rules must by applied in the order they are listed here. 

[XHE1E2) =>S([x]Ei)([xJE2) 
[ P x y ] E =» U ([χ] ([у] E)) 
[χ] χ => Ι 

[χ] у => К у , where у is a constant or a variable other than x. 

Local definitions must be removed from the expression before the abstraction is 
done. The algorithm to remove local definitions is explained by showing how 
two local definitions with one argument each, are removed. 

Ει where fx = E2 

g у = Ез the arguments are removed first 
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-> Ει w h e r e f = [χ] Eg 

9 = [у] Ез then the definitions are paired 
-» Ei where (f:g) = ([x] Вг'Ы Ез) next, the recursion is handled 
-> Ει where (f:g) = Y ([(f:g)] ([x] Егііу] Ез)) lastly the definition is removed 
-» ([(f:g)]Ei)(Y([(f:g)]{ME2:[ylE3))) 

The improvement rules to reduce the size of an expression are 

S(KEi)(KE2) ^ K i E i E a ) 
S (К E,) I =» E! 
S (Κ Ει ) Ег => В Ει Ег , if no earlier rule applies 
S Ei (KE2) =*CEiE2 .if no earlier rule applies 

The reduction order used in the SASL system is not specified in this formalism. 

Suitability of the description method 

Although this description method is syntactically appealing and very close to the 
notation of abstraction used in mathematical textbooks, it has a number of disad
vantages. A serious drawback is that the various algorithms introduced have no 
intrinsic names. The absence of these names turns out to be problematic when it 
is not quite clear from the context which algorithm is meant and the absence of 
these names is especially annoying when several algorithms are merged. It is 
necessary to combine transformations to achieve a more efficient algorithm, or 
to handle more complex cases. Another limitation of the syntactical match is that 
it is only adequate to describe relatively simple transformations. For instance, in 
the original description the transformations necessary to remove locally defined 
functions are not defined by some general applicable transformation rule, but 
they are specified only by an example. The introduction of additional descrip
tion tools is necessary to define such a transformation rule. Also the entire 
transformation from SASL to SK-combinator code is not specified as one algo
rithm, but as a number of transformations and some textual indication how they 
must be applied. 

4.4 Bracket abstraction described by syntactical matching 
The obvious way to handle the problem with the names of the transformations is 
to define the transformations as functions. This spoils the nice syntactical match 
a little bit, since there are now two kinds of objects; the syntactical objects to 
transform and the functions performing the transformations. An attempt to keep 
these matters separated is the use of Scott brackets, I and 1, to indicate the 
match on syntactical objects. These symbols are widely used in denotational 
semantics to indicate that syntactical objects are handled [Gordon 79, Schmidt 
86, Fehr 89]. 
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T h e combinator definitions and the algori thm for bracket abstract ion 
shown below are similar to the definitions in textbooks on the implementation of 
functional programming languages [Peyton Jones 87]. The transformation shown 
here is extended to deal with S A S L expressions instead of λ-terms. T h e algo
rithm is expressed in a kind of functional programming language. This language 
is usually not properly defined, but so simple that no formal definition is felt to 
be necessary. However, good text books on denotational semantics give a firm 
definition. The use of this description method as if it were a functional pro
gramming language suggests a certain accuracy in the description which is usu
ally not there, e.g. a last alternative to handle the 'do nothing ' case is typically 
written in half of the situations where it is required. 

Combinators used in the abstraction algorithm 

The combinators are defined by their reduction rules. 

S fgx ->fx(gx) 
К xy -»x 
I χ ->x 
В fgx ->f(gx) 
С fgx -»fxg 
U f(Pxy) ->fxy 
Y f ->f(Yf) 

The expressions handled 

The expressions handled are S A S L expressions in applicative form. T h e key
words are printed in bold face. Combinators are printed in uppercase. All other 
expressions are variables: either S A S L variables or transformation variables, 
they are printed in lower case. 

The following conventions are used: 

β,β,,ρ,ς are arbitrary expressions; 
f,fi are function identifiers, or function identifiers with some formal arguments; 
х.уд are arguments (variables or pairs); 
ν is a variable; 
cv is a constant or a variable; 
def.def, are definitions; 
defs.locals are sequences of (local) definitions. 

By applying the transformations described here a SASL expression can be trans
formed to a pure combinator expression. CU e 1 Compiles the expression e, i.e. 
transforms it to a combinator term. The compilation algorithm is described by a 
number of transformation rules. The first transformation rule alternative appli
cable must be used. 

4.4 Bracket abstracbon descnbed by syntactical matching 69 



CI ет eg II = CI ei 1 CI Θ2 1 
C I e where locals I = Ris Θ I locals 1 
C I с J = с 

The abstraction algorithm 

To avoid unnecessary scanning of the expression tree the optimization rule is 
invoked whenever appropriate during the abstraction. In the previous descrip
tion this could not be indicated since the optimization rule has no name in that 
formalism. 

A χ Œ e I Abstracts the argument χ from the expression e. 

A x l e where locals 1 = Α χ I Ris e I locals 11 
Α χ I e1 ег l = Opti S (Α χ I e^ 1) (A χ Œ ег 1)1 
A ( P x y ) I v ] l = U(Ax(AyIv]|)) 
A x l x l = I 
A x l c v l = Kcv 

Aai f Я Abstracts all arguments from a function definition. 

Aal Ρ ai аг = e 1 = Ρ ai аг = e 
Aal f a = e 1 = Aal f - A a I e 11 
Aal d e n = def 

Ris e Œ locals I Removes the local definitions from the expression e. Arguments 
of the definitions are removed and they are grouped to a single definition. Then 
this definition is removed. 

Ris e I locals 1 = RI e I Coll Aall locals 111 

RI e I locals I Removes a single local definition from the expression e. Recursion 
in the definition is removed by a Y combinator and abstracting the name of the 
function from its body. 

RLe 1 I f = e2 l = (Af I ei I) (Y( Af I ег 3)) 

Aall defs 1 Abstract the arguments from each definition in a list of definitions. 

Aall defi ... defn 1 = Aal défi 1... Aal defn 1 

Col I defs 1 Collects a list of local definitions to a single definition. Definitions 
are paired from back to front. 
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Col С fi - ei 

fn-1 - ©n-l 
fn = e,, 1 = ColŒ fi = ei 

Pfn-lfn - Ρβη-ΐβη]1 
Col I def 1 = def 

Improving the generated combinator code 

Opti e I Optimizes the expression e. It is invoked by the abstraction rule. So, no 
scanning of the expression tree is needed. 

Optl[S(Kei)(Ke2)]l 
Optl[S(Kei)l]l 
Opti S (Кет) ег 1 
Opti S ei (К ег) I 
Opti e 1 

uetion 

= К (ei ed 
= ei 
= Be1e2 
= С ei eg 
= e 

Reduction is specified by the semantics of the combinator expressions. The 
order in which the rewrite rules are applied to the various parts of the expres
sion is determined by the normal order reduction strategy. This means that the 
leftmost redex is rewritten. Sometimes it is necessary to reduce some sub
expressions before the topmost redex term can be rewritten. For instance, 
before an addition can be performed both arguments must be reduced. Two 
functions are used to specify the reduction process. Reduce determines the order 
of reductions. First the left sub-tree of an application node is reduced. Then 
Rewrite is applied to the top node. This function tries to apply the reduction 
rules for the combinators, after a rewriting the reduction is continued when 
appropriate. These functions will transform an expression until the top cannot 
be rewritten any more. Then the expression is said to be in head normal form, 
hnf. 

Red! e-i ег J = RewŒ Red! e-i 1 ег 1 
Redd el » e 

Rewl S ei ег ез I = Real і ез (ег ез) 1 
Rewl К ei ег 1 = RAdC ei 1 
RewŒ l e l = Redi e I 
RewŒ В ei ег ез H = Redi ei (ег ез) I 
RewŒ С і ег ез 1 = RedŒ ei ез ег I 
RewŒ U ei ег 1 - U еі RedŒ ег 1 
RewŒ EQ е-, ег I = Redi θι I = Redi ег I 
RewŒ PLUS ei ег I = Redi θι 1 + Redi ег I 
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Rewl MINUS ei 62 H = Redi ei 1 - Redi ег 1 
Rewl TIMES ei eg 1 = Redi ei 1 χ Redi ег I 
Rewl COND ei г ез 3 = IF Redi ei 1 eg ез 
Rewl e 3 = e 

U ei Ι Ρ eg ез I = Redi ei ег ез I 

IF TRUE ei ег = Redi e, 1 
IF FALSE ei ег = Redi ег 3 

The strategy and the reduction rules are combined into a single algorithm to 
obtain a feasible implementation. This is similar to the combination of the func
tional reduction strategy and the rewrite rules for Clean described in the next 
chapter. It is possible to specify these algorithms separately, but that involves a 
lot of overhead to scan the tree for the next redex and some additional construc
tors to pass information from the rewrite algorithm to the strategy. This would 
resemble very much to the two level approach proposed by van Eekelen and 
Plasmeijer [van Eekelen 86, 88]. 

Suitability of the description method 

Unfortunately there is no strict separation between syntactical objects and the 
transformation functions in the description above. In the rules for abstraction, 
algorithmical components are used inside the syntactical region without being 
syntax. The expressions must be evaluated to become syntactical objects. 
Sometimes the symbol = is used instead of = to indicate that the right hand side of 
the rule can be used as a syntactical object. In the Abstract arguments rule, the 
arguments, a,, are taken from the syntactical region to the transformation region 
without notice. Also matching arbitrary variables and specific variables is 
somewhat tricky. The difference between ei, eg and χ and ν in the abstraction 
rule is not very clear. The fact that ν is a variable in the rule to abstract a pair is 
quite subtle. In the abstraction rule there is even a match on syntactical structure 
outside the brackets. Sometimes uppercase characters are used for constants and 
lower case characters for variables, but this cannot be used consistently. The 
syntactical match can be used for a single context free transformations of lan
guages with a relative simple structure, but for richer languages and more 
complex transformations it becomes very tricky. For instance, in the translation 
of Miranda to Clean it is necessary to distinguish between an arbitrary argu
ment, an argument that is a variable, an argument that is a variable equal to an 
other argument, an argument that is an arbitrary constructor with a variable 
number of sub-arguments, an argument that is a member of a specific class of 
predefined values and an argument that is a specifc symbol [Koopman 88]. 
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4.5 Bracket abstraction as abstract program transformation 
Since it appears to be impossible to keep the objects handled and the algorithm 
separated we propose to express both in a functional programming language. 
The essential differences between the description employing syntactical matching 
and the description in a functional language is, that the language constructs to be 
transformed are represented as syntactical objects between I and 3 in the de
scription above, while they are represented by a data structure in the functional 
description. 

The expressions handled 

The SASL expressions are represented by an AST. The Miranda data structure 
expr is used to hold it. 

expr 
AP expr expr 
WHERE expr [def] 
VAR var 
INT num 
BOOL bool 
S |K |l |B |C 
Y 
Ρ I U I NIL 
COND 
EQ | PLUS | MINUS | TIMES 

II An expression is: 
II an application of one expression to another one; 
II an expression with local function definitions; 
Il a variable; or one of the following constants: 
II the integere; 
II the booleans; 
II the combinatore to distribute arguments; 
II the combinator to handle recursion; 
II the constructore for lists; 
II the conditional; 
II some other curried operators. 

A definition has a left-hand side, Ihs, that is either a variable with a sequence of 
arguments or a pair. An argument is either a variable or a pair of arguments. In 
order to avoid the construction of an additional data-type it is represented by an 
expression. The right hand side, rhs, of a definition may be any expression. 

def DEF Ihs rhs 

Ihs = = 
rhs = = 
var = = 

expr 
expr 
[char] 

II A Ihs is a pair or a var with arguments. 
II All expressions are allowed on the ihs 

Combinators used in the abstraction algorithm 

The rewrite behaviour of the combinators defined is specified by the function 
rewrite. The combinators themselves can not be functions since trees which are 
not in head normal form must be handled (e.g. by the optimization rules). So, an 
interpreting function is used. 
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rewrite :: expr -> expr 
rewrite (AP (AP (AP S f) g) χ) = AP (AP f χ) (AP g χ) 
rewrite (AP (AP Κ χ) y) = χ 
rewrite (AP lx) = χ 
rewrite (AP Υ f) = AP f (AP Y f) 
rewrite (AP (AP (AP В f) g) x) = AP f (AP g x) 
rewrite (AP (AP (AP С f) g) x) = AP (AP f x) g 
rewrite (AP (AP U f) expr) = impair f (reduce expr) 
rewrite expr = expr 

unpairf(AP(APPx)y)) = AP (AP f x) y 

The rule for U is special since it requires the reduction of a sub-term before it 
can be applied. Basic operations like PLUS, MINUS, TIMES, EQ and COND, also 
require reduction before they can be applied. The function reduce evaluates an 
expression tree to head normal form. It is defined below. 

The abstraction algorithm 

By applying the transformation rules, an expression representing SASL pro
gram is transformed to a pure combinator expression. This process is initiated 
by the function compile. 

compile :: expr -> expr 
compile (AP e1 e2) - AP (compile e1) (compile e2) 
compile (WHERE e defs) = optimize (remove_where e defs) 
compile expr = expr 

The abstraction algorithm expressed in Miranda reads: 

abstract :: expr -> expr -> expr 
abstract χ (WHERE e defs) = abstract χ (remove_where e defs) 
abstract χ (AP e1 e2) - AP( AP S (abstract x et )) (abstract χ e2) 
abstract (AP (AP Ρ χ) y)(VAR ζ) - AP U (abstract x (abstract y (VAR ζ))) 
abstract var exp = I , if var = exp 

= AP К exp , otherwise 

Locally defined functions are removed from an expression as outlined above. 

remove_where :: expr -> [def] -> expr 
remove_where expr defs 
= AP (abstract f expr) (AP Y (abstract f body)) 

where DEF f body = collect (map abs_args defs) 
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Arguments are removed from a function definition by abstracting them from 
the function body. As a special case the left hand side of a definition can also be 
a pair. 

abs_args :: def -> def 
abs_args (DEF (AP (AP Ρ h) t) body) - DEF (AP (AP Ρ h) t) body 
abs_args (DEF (AP f χ) body) = abs_args (DEF f (abstract χ body)) 
abs_args (DEF f body) = DEF f body 

The sequence of local function definitions is combined to one definition by 
pairing them from back to front. 

collect :: [def] -> def 
collect (def:defs) 
= def , ifdefs = [] 
= DEF f body , otherwise 

where f = AP(APPf1)f2 
body = AP(APPbody1)body2 
DEF f1 bodyl = def 
DEFf2body2= collect defs 

The resulting AST fits nicely in the data structure expr, but variables and local 
definitions do not occur. 

Improving the generated combinator code 

The function optimize applies the improve rules to every application, starting in 
the leaves of the expression tree. The optimization rules are not included in the 
abstraction algorithm to enable the observation of the effect of these improve
ments. 

optimize :: expr -> expr 
optimize (AP e1 e2) = improve (AP (optimize el ) (optimize e2)) 
optimize expr = expr 

improve :: expr -> expr 
improve (AP (AP S (АР К e1)) (АР К e2)) = АР К (improve (AP e1 e2)) 
improve(AP(APS(APKe1))l) = e1 
improve(AP(APS(APKe1))e2) = A P ( A P B e 1 ) e 2 
improve (AP (AP S e1 ) (АР К e2)) - АР (АР С el ) e2 
improve expr - expr 

Executing the generated combinator code 

By applying the given rewrite rules the value of the resulting combinator ex
pression can be computed. Two functions are used to describe the reduction to 
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hnf. Reduce controls the global order of reductions and rewrite performs the 
reductions, after a rewrite the reduction is continued when appropriate. Rewrite 
invokes the required reductions for rewrite rules that require arguments in hnf, 
a function corresponding to such a top node handles the reduction according to 
that node. 

reduce :: expr -> expr 
reduce (AP e1 e2) 
reduce exp 

rewrite :: expr -> expr 
rewrite (AP (AP (AP S f) g) χ) 
rewrite (AP (AP Κ χ) у) 
rewrite (АР Ι χ) 
rewrite (AP Y f) 
rewrite (AP (AP (AP В f) g) x) 
rewrite (AP (AP (AP С f) g) x) 
rewrite (AP (AP U f) exp) 
rewrite (AP (AP PLUS x) y) 
rewrite (AP (AP MINUS x) y) 
rewrite (AP (AP TIMES x) y) 
rewrite (AP (AP EQ x) y) 
rewrite (AP (AP (AP COND c) t) e 
rewrite exp 

unpair f (AP (AP Ρ x) у) 
plus (INTÌ1) (INT ¡2) 
minus (INTÌ1) (INT ¡2) 
times (INTИ) (INT¡2) 
eq el e2 
cond (BOOLTrue) t e 
cond (BOOL False) t e 

- rewrite (AP (reduce e1 ) e2) 
= exp 

= reduce (AP (AP f x) (AP g χ)) 
= reduce χ 
= reduce χ 

- reduce (AP f (AP Υ f)) 
= reduce (AP f (AP g χ)) 
- reduce (AP (AP f x) g) 
- unpair f (reduce exp)) 
= plus (reduce χ) (reduce y) 
= minus (reduce x) (reduce y) 
- times (reduce x) (reduce y) 
= eq (reduce x) (reduce y) 

ι = cond (reduce c) t e 
= exp 

= reduce (AP (AP f x) y) 
= INT (¡1 + ¡2) 
= INT (¡1 - ¡2) 
= INT (¡1 * ¡2) 
= BOOL (el - e2) 
- reduce t 
- reduce e 

The reduction rules defined here perform a correct string reduction of the 
expression. A more efficient implementation of the reduction of these expres
sions will use graph reduction. Using graph reduction every sub-expression is 
reduced at most once. 

Suitability of the description method 

The overhead involved in implementing the abstraction algorithm in a functional 
language appears to be very limited. This implementation effort is rewarded by 
a very clear and executable specification that can be partially checked by a 
Miranda implementation. The tree-like data structure needed to represent the 
SASL expressions appears to be essential in the abstraction process. 
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4.6 Discussion 
In this chapter three descriptions of the language transformation known as 
bracket abstraction are compared. The two conventional descriptions use special 
purpose notations for the descriptions and are hence syntactically appealing. A 
drawback of the first description is that it lacks intrinsic names for the individ
ual transformations. Only a set of transformation rules is given, but the combi
nation of these rules to a complete algorithm cannot be described in this formal
ism. The second description possesses names for the individual transformations, 
the language to transformed is distinguished from the description language by 
surrounding it with special symbols. Unfortunately, it is generally not possible 
to make such a separation between both languages using this notation. 

Using a programming language for the specification has the advantages, as 
said before, that the description can be partially checked by the implementation 
of the description language and that it is executable. This is a valuable test for 
the combinator code generated; the code generated is quite unreadable for 
human beings. Also the effect of the improvement rules can be determined 
easily using an executable description; apply the function optimize to some 
(generated) expressions. A possible drawback of such a description could be the 
implementation overhead involved, since no special purpose syntax can be 
introduced the description might become very long. But, we have shown that 
this overhead is very small when the functional programming language Miranda 
is used as description formalism. The obtained description is at least as clear as 
the mathematical descriptions. 

In conclusion it can be stated that functional descriptions are very conve
nient to express these kind of program transformations. Descriptions given in 
this way tend to be correct, complete, compact, clear and executable. In the next 
chapter an abstract program transformation will be given for a more complex 
translation. 
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Chapter 5 
Translating Clean to ABC-Code 

5.1 Graph rewriting in Clean 
5.2 Graph rewriting on the ABC-machine 
5.3 The AST for Clean 
5.4 Compilation 
5.5 The run-time system 
5.6 Curried functions 
5.7 Optimizations 
5.8 Discussion 

In this chapter a translation of Clean to ABC-code is treated as a real life exam
ple of the abstract program transformation method introduced in the previous 
chapter. This transformation is rather complex since the relatively high-level 
declarative language Clean is transformed into a low-level imperative assembly 
language. 

Γ Miranda J 

(target machine code) 

( Clean ) 

•[ ABC-code) 

ABC-machine 

ABC-interpreter 

Functional Programming Languages 

Graph Rewriting Systems 

Abstract machine 

Concrete machines 

Fig 5.1 Transformation of Clean to ABC-code as a phase in the compilation process. 

The goal of the translation is, of course, to transform Clean programs to equiva
lent and efficient ABC-programs. Since ABC-code is translated to (or inter
preted by) various concrete machines it is not possible to assign execution times 
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to the instructions, hence it is impossible to develop an optimal compilation 
scheme. 

To increase the performance of the generated code some deviations of the 
operational semantics of Clean [Eekelen 89] are made. Although Clean graphs 
are mapped directly to graphs in the graph store of the ABC-machine this store 
is not updated after every rewrite step. During the rewriting the information is 
stored on the stacks and (implicit) in the instruction sequence executed. The per
formance of ABC-programs heavily manipulating the graph store for simple 
computations will be low compared to ABC-code that employs the B-stack when
ever appropriate. One of the ways to use the B-stack is outlined. 

Section 5.1 contains an informal description of graph rewriting in Clean. In 
section 5.2 graph rewriting on the ABC-machine and the calling conventions are 
described informally. In section 5.3 the AST to hold the rewrite rules is defined. 
The code produced by the translation scheme is ABC-assembler which was intro
duced in chapter 3. The basic translation scheme is described in 5.4. In section 
5.5 the runtime system is discussed. The way curried functions are implemented 
is outlined in section 5.6. Finally, a number of optimizations is discussed. The 
most important optimization is the use the B-stack to pass strict arguments of a 
basic type to functions. 

5.1 Graph rewriting in Clean 
To understand the code generation schemes discussed in this chapter it is impor
tant to have a proper view of the operational behaviour of a Clean program. A 
complete description of Clean is outside the scope of this work, we refer to 
[Barendregt 87b, Brus 87, Eekelen 89J. The semantics of Clean will be explained 
informally below. 

Clean is a lazy higher order functional programming language based on 
Functional Graph Rewriting Systems, it is designed as intermediate language 
between arbitrary functional languages and (sequential) machines. A Functional 
Graph Rewriting System (FGRS) is a Graph Rewriting System using the 
functional reduction strategy [Eekelen 88J. A reduction strategy is a function 
indicating the redex to be rewritten. The functional strategy delays the re
duction of an expression until its value is needed. However, an expression is al
ways reduced before its value is used. The functional strategy in Clean prescribes 
the same evaluation order as used in Miranda: lazy evaluation. A Graph 
Rewriting System (GRS) is an extension of Term rewriting Systems where the 
terms are replaced by directed graphs in order to avoid the duplication of work 
via sharing of expressions [Barendregt 87a, 87b, 88]. A Term Rewriting 
System (TRS) is a computational paradigm consisting of a collection of rewrite 
rules to transform terms (expressions) into equivalent terms [Klop 87]. 

A Clean program consists of a set of (typed) graph rewrite rules. The type 
system is based on the Milner/Mycroft type inference scheme [Milner 78, 
My croft 84]. 
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A subgraph is a redex (reducable expression) if there is a left hand side 
(Ihs or pattern) of rewrite rule that matches this graph. A match is a mapping 
from the pattern to the graph that is the identity on constants and preserves the 
node structure. A graph is in root normal form (rnf) if the whole graph is not 
a redex and will never become a redex. A graph is in normal form (nf) if it 
does not contain any redex. 

The rewrite rules are used to reduce the initial graph containing the symbol 
Start to normal form. The functional reduction strategy is used: rewrite alterna
tives are tried in textual order; patterns are matched from left to right; evalua
tion to root normal form is forced before an actual argument is compared with 
non-variable part of the pattern. An arguments is strict when its value always is 
needed in the reduction of the function. It is possible to deviate from the 
functional strategy by adding strictness annotations, denoted by I, to the rewrite 
rules. Such a graph is reduced eagerly to root normal form. 

A redex is rewritten by constructing the graph specified in the right hand 
side (rhs) of the rule: the contractum. Then all references to the root redex 
are redirected to the root of the contractum. There are also rewrite rule alterna
tives consisting of a redirection only; no contractum is specified in these rules. 
Nodes that cannot be reached from the root of the graph are garbage, they must 
be removed from the graph. 

A small example is used to illustrate graph reduction in Clean. The example 
is even so small that no sharing of computations occurs. The Start rule initiates 
the computation of the length of a list. The rule Length takes two arguments; a 
number to record the number of list elements scanned and the list to be scanned. 

:: Start-> INT ; II The type of the start rule 
Start-> Length 0 (Cons 3 (Cons 4 Nil)) ; II The rewrite rule for Start 

: Length ! INT I (List x) -> INT ; II Both argumeiVts are strict 
Length η (Cons a b) -> Length (+1 η 1 ) b | II +1 is a delta rule to add 
Length π Nil -> η ; II 2nd alternative; a redireaion 

The reduction process is illustrated by the following rewriting sequence (the 
redex rewritten is underlined): 

Start 
—» 
—> 

-» 
-> 
-» 
-» 

Length 0 (Cons 3 (Cons 4 N 
Length ( + 1 0 1 ) (Cons 4 Nil) 
Length 1 (Cons 4 Nil) 
Length ( + 1 1 1 ) Nil 
Length 2 Nil 
2 

I)) 

II a: This is the only redex, apply Start rule 
II b: This graph as a whole is the new redex 
II c: The strict arguments are reduced first 
II d: Rewrite according to first alternative 
Il e: Again one strict argument to be reduced 
II f: l s l alternative does not match; use 2n d 

Il g: This graph is in normal form 

This rewriting process is depicted below. The graphs correspond to each of the 
steps shown above. The garbage that results from one rewrite step is drawn 
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gray, it is removed in the next snapshot. The dataroot is usually not shown, but it 
is included here to show the redirections clearly. 

rdatarootli 

I Start I 

I dataroot h 

I Length [tl· 

ИГсД 

I dataroot I' 

I Length |τ|· 

IConsH-K-L^l^ n S[Tlt l loonsiTit i*—j—- monsm-l· 

Fig 5.2 а 
I dataroot I' dataroot 

^ 
| Length 

^ 

{my 
f 

НИ 

g 

It is important to mention that Clean is a higher order language: symbols can 
be used Curried; without (some of) their arguments. The delta rule AP supplies 
one argument to a curried symbol, when all arguments of such a function are 
gathered its reduction is initiated. This is illustrated by the next example: 

Twice f χ -> AP f (AP f χ) ; II Twice applies the function f two times to the argument χ 
Start -> Twice ++10 ; Il ++I is the delta rule to increment an integer 

The reduction process is illustrated by the next rewrite sequence: 

Start 
-> 
-» 
—» 

—> 

Twice ++I 0 
AP ++I (AP ++I 0) 
++!( AP ++I 0 ) 
++I ( ++I 0 ) 
++I 1 

II The initial graph 
II The graph after rewriting according to the start rule 
II This graph will be rewritten by the delta rule AP 
II AP has supplied the delta rule ++I its argument 
II AP has supplied again the argument needed 
II The delta rale ++I must be applied again 
II The graph is reduce to its normal form 

5.2 Graph rewriting on the ABC-machine 
In this section an informal description of graph rewriting on the ABC-machine is 
given. The functional strategy and the rewrite algorithm are combined into a 
single piece of ABC-code for every rewrite rule. Associated with each rewrite 
rule there is a sequence of ABC-instructions which reduce a node in the graph to 
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its root normal form. Using the functional strategy a node must be reduced to 
mf, as soon as rewriting is initiated. 
A graph reduction program in the ABC-machine consists of: 
• rule dependent code to reduce a redex to its mf according to the functional 

strategy and the rule in the system; 
• code for the predefined rules; 
• a run-time system: a fixed piece of code that initiates the reduction of the 

Start rule to normal form and prints the reduct. 
For each Clean rule there is ABC-code to: 
• prepare the arguments, i.e. construct a stack frame as expected by the code 

for the rule alternatives; 
• match each rule alternative to the actual redex and rewrite accordingly; 
• handle the situation that none of the rule alternatives is applicable. Code 

according to an additional rule alternative is generated for this purpose. 
These pieces of code and their calling conventions (the interface between 
caller and callee) will be described below. Arguments and results can be passed 
among functions in the graph, on the Α-stack and on the B-stack. It is more effi
cient to handle references to objects on the Α-stack instead of in nodes of the 
graph: the references are directly available on the stack. When appropriate it is 
even more efficient to pass objects on the B-stack: the objects themselves are 
handled instead of references to the objects. The B-stack is not used in the basic 
compilation scheme, the description of its use is delayed until section 5.7. 

To show the effect of the described actions a running example will be used. 
The reduction of a node containing the symbol F and two matching arguments 
will be shown. The rewrite rules used are: 

: F I (List x) I (List x) -> INT ; 
F (Cons a (Cons b c)) (Cons de) -> G f f, f: Cons b e ; 

: G (List x) (List χ) -> INT ; 
Gab -> 1 

The overall assumption is that once initiated the reduction of a graph continues 
until it is in mf. Each rule alternative expects an Α-stack frame containing a ref
erence to the redex currently reduced and the node-id's of all arguments. The 
reference to the first argument is on top of the stack. 

Construction of the stack-frame 

The reduction according to the rewrite rule can be initiated in two different 
ways. The preparation of the arguments needed depends on the calling circum
stances. 

The first situation is the initiation of the reduction by a jsr eval instruction. 
In this situation the stack-frame consists only of a reference to the redex (see the 
definition of this instruction in chapter 3). To construct the desired stack frame 
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the node is marked as being under reduction, the arguments are pushed on the 
stack and the strict ones are reduced to rnf. The start of this code segment is 
indicated by the node entry. 

In the second situation the reduction is initiated by a curried application of 
the function. Here, the node-id of the redex and the arguments will be on the 
stack, they are gathered by the code for the AP-rule. Strict arguments must still 
be reduced, so the code for the apply entry hooks up there in the code to pre
pare arguments. 

In the figures below the relevant parts of the graph store and the Α-stack frame are shown 
for a rewrite according to the rewrite rule above. New parts in the pictures are printed bold. 
Graphs with unknown contents are drawn as grey boxes. 

Et 
Λ-, 

Fig 5.3.a b с 
a: The Α-stack frame and graph upon entrance of the node entry. 
b: The stack frame is extended with the node-id's of the arguments at the the apply 

entry. 
c: The state expected by the rule alternatives; both arguments are strict and hence re

duced to mf. 

Rule alternative entries 

For each alternative there is a separate rule alternative entry. The code for 
each entry consists of a matching phase which determines whether this alterna
tive is applicable and a rewriting phase which performs the rewrite. When an 
alternative appears to be inapplicable, execution proceeds with the next one. Due 
to the generation of an additional alternative there is always a next one. 

Matching 

Arguments are matched from left to right. If the formal argument is a variable 
the argument trivially matches. Otherwise, the argument is brought in root nor
mal form and the symbol in the graph is compared with the specified symbol. 
When the symbol appears to match, its sub-arguments are pushed on the A-stack 
and matched themselves. If one of the arguments does not match the pattern, all 
sub-arguments are popped off the stack and execution proceeds with matching 
the next rule alternative. When the matching of all arguments succeeds the 
rewrite must be performed. 
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Fig 5.3.d e f 
The situation after matching the top level of the first argument and pushing its sub-
arguments. 
The second sub-argument of the first argument is reduced and matched. After the 
successful match the node-id's of the sub-arguments are pushed on the stack. 
The second argument also matches. So, this rule alternative is applicable. 

Rewriting 

To increase the performance of the generated code some deviations of the 
operational semantics of Clean [Barendregt 87] are made. According to the 
semantics of Clean the contractum must be constructed (if present in the rule) 
and all references to the redex must be redirected to the contractum. 
Redirections are conceptually elegant and explain the semantics of graph rewrit
ing very well. A straightforward, but also inefficient, implementation of redi
rection would have to examine the whole graph; every reference to the root of a 
redex is substituted by a reference to the contractum. A more efficient imple
mentation is achieved by overwriting the redex with the root of the contractum. 
Although Clean graphs are mapped directly to graphs in the graph store of the 
ABC-machine this store is not updated after every rewrite step, but only when a 
root normal form is reached. During the rewriting the information is stored on 
the stacks and (implicit) in the instruction sequence executed. The redirection is 
implemented efficiently by overwriting the root node of the redex with the root 
of the contractum. In this way all references to the redex are automatically redi
rected to the contractum. Three situations are distinguished; the contractum is 
the next redex, the specified contractum is a root normal form and no contrac
tum is specified in this rewrite alternative. 

Redirection to a reducible contractum 

When the contractum is not known to be in mf, the rewrite rule associated with 
the symbol in the root must be applied. It makes no sense to fill the redex with 
the root of the contractum. The new rewrite rule will unpack this node immedi
ately since the functional strategy will indicate this redex as the one to rewrite. 
So, it is possible to delay the update of the graph store until a mf is reached. The 
code for this kind of rewrites constructs the stack frame for the first alternative 
of the new rewrite rule and proceeds immediately with that alternative. 
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g: The shared node, f, is constructed in the graph store. 
h: The stack frame is ready for matching the fust rule alternative of G. 
i: The reduction according to rale G has been performed; a root normal form is reached. 

Redirection to a contractum in root normal form 

When the contractum is a rnf, the root node of the redex is overwritten with the 
root of the contractum. The node containing the redex is indicated by the bottom 
of the Α-stack frame. Rewriting to root normal form is completed. See figure 
5.3.І for an example. 

By overwriting the redex with its mf all references to the redex are auto
matically redirected to the contractum; a very cheap and commonly used imple
mentation of redirection. On the ABC-machine it is always possible to overwrite 
a node with arbitrary new contents. For an other machine without variable sized 
nodes the redex is usually overwritten by an indirection node; a node indi
cating where this node actually can be found. A serious drawback of indirection 
nodes is the testing on these indirections required, even if a node is known to be 
in mf. 

Redirection to an existing graph 

An existing graph cannot be rerouted at some other node without searching the 
whole graph or using indirection nodes. Since we want to avoid both, a copy of 
the root node is made. The redex and the top node of the graph are potentially 
both shared, so copying the top node to the redex immediately might result in the 
duplication work. To avoid the duplication of work the graph is reduced to rnf 
before the root node is copied. The graphs remain equal modulo unravelling 
which is sufficient for term graph rewriting and so sufficient for Clean. The 
obtained graph is different from the one obtained according to ordinary graph 
rewrite semantics. 
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To illustrate these graph manipulations an example is shown. 

TI! (List x) ->(Listx) 
TI (Cons ht) ->t 

F -> List INT ; 
F -> Cons 1 F ; 

Il a redirection 

КБ 

-цтг 
—МСопзЫтН—^_ 

— H C o n s l r l ^ l 

H Cons lOonsitlTl 

4 3 EK 
Fig 5.4.a b с 

a: Starting the reduction of the graph Tl F. State at the node entry. The arrows from out
side indicate sharing. 

b : After the reduction of the argument; state at the rewrite entry. 
c: After copying the top node. Both nodes contain the proper mf. 

Example of the rewriting process 

As example a rewrite rule is considered that computes the length of a list. The 
equivalent ABC-program generated by the specification presented in section 5.4 
is listed (comments are supplied by hand). This is an important example since it 
illustrates the code generated by the basic compilation scheme. 

: Length 1 INT 1 (List x) 
Length η (Cons a b) 
Length η Nil 

->INT 1 

-> Length (+1 η 1)b | 
->n 

The corresponding ABC-code: 

[ Descriptor 
"Length" "a Length" 2 

Label 
"n_Length",Set_entry 

Push args 
Label 

"a_Length"> Jsr_eval 
Push_a 
Jsr_eval 
Pop a 
Label 

"Length" 

"_cycle" 0 
0 2 2 

1 

1 

"Lengthl", Eq_desc_arity "Cons" 21 
Jmp_false 
Push_args 
Push_a 
J s r e val 
Create 

"Length2" 
1 2 2 
1 

; 

II The generated descriptor 
II The node entry: preparing the arguments 
II Mark node to detect cyclic computations 
II Push the arguments 
II The apply entry: reduce strict arguments 
II Reduce first argument to mf 
II Copy second argument to top of stack 
II Reduce it to mf 
II Pop duplicated second argument 
II Entry for first rule alternative 
II Match second argument 
II Continue with next alternative if match fails 
II Push sub-arguments; 
II Rewrite according to alternative 1; Push b 
II Reduce it 
II Node for result of+1 η 1 
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"Length2" 

Create 
Filli 
Push a 
Jsr 

Update_a 
Update_a 
Pop_a 
Jmp 
Label 
Eq_desc_arity 
Jmp_false 
FilLa 

Pop_a 
Rtn 
Label 
Jmp 

1 0 
5 
"+11" 
1 5 

0 4 
4 
"Lengthl" 

"Nil" 0 1 
"Lengths" 
0 2 
2 

"type_error" 

Il Node for 1 
Il Fill this node 
II Push η. It is known to be a mf 
II Reduction of +1 η 1 
II Adapt stack frame for call of Length 

II 
II Remove old (sul>)arguments 
II Continue with alternative 1 of Length 
II Entry for second rule alternative 
II Match argument 
II Continue with next alternative if match fails 
II Rewrite according to alternative 2,copy node 
II Remove arguments from stack 
II Rnf reached 
II Generated entry for additional alternative 
II This must be a type error! "Length3" 

In the figures below several snapshots of the ABC-machine state are shown dur

ing the reduction of a graph according to the code for the rewrite rule Length. 

1 Length 

E3I 
fx- I Length | Щ\. 

Cons w-
ù 

I Length IrljK^ Length МтИл 

Ol ] Cons Ji|||<-

Fig 
a: 
b: 
c: 
d: 

5.5.a b e d 
Initial state at node entry. 
Initial state at first rewrite alternative entry. 
After successful match of fust rule alternative. 
Reduction according to the first rule alternative. First, the last strict argument is 
reduced. The state before calling +11 to reduce first strict argument is shown. 

Length |т|т|«>^ 

0l|ConsjT||K-
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Ì [οΠδ 

I Length ШИК 

Cons 32 
"•ñ Cons 

ED 

I Length [ТІТК^ 

Ш I Cons Iti 

or 

[IK л 

e f g 
State returned by +11. Garbage nodes are grey. 
State before calling Lengthl recursively. 
State before last call of Lengthl. 
State of ABC-machine after reaching the mf. 
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5.3 The AST for Clean 

The Clean program to be transformed is represented by an AST as proposed in 
the previous chapter. The construction (lexical analysis and parsing) of the syn
tax tree is not treated here, this is done by standard compiler construction tech
niques [Aho 86]. The AST is assumed to be annotated with type and strictness 
annotations for the code generation. In Clean these annotations may be present in 
the program, but they can also be derived automatically by a strictness analyser 
[Mocker 90] and by type inferencing [Milner 87, Mycroft 84]. When a symbol is 
used in a strict context (it is annotated as strict), all its strict arguments are anno
tated as Strict. The generation of these annotations is not treated here. 

To facilitate the description the rewrite rules are assumed to be converted to 
a standard format. All shared nodes in a right hand side (rhs) are defined by 
explicit definitions on the textual outermost level of that rhs. They are ordered 
such that a node is defined in textual order before it is used as an argument in 
another node definition. This is always possible unless there is a cycle in these 
node definitions. Such nodes on a cycle are annotated as OnACycle. 

To reduce the size of the description only a limited number of basic types is 
treated. In this chapter only the type INT is covered, in appendix В also booleans 
are handled. All other basic types can be treated in an analogue way. 

clean = = [rewrite_rule] 

rewrite_rule ::= TypedRule typerule rule | 
ConsRule typerule rule | 
UntypedRule rule | 
TypeRule typerule 

I An ordinary typed rewrite rale. 
I Rewrite rule for a constructor. 
I An untyped rewrite rule. 
I The definition of a type. 

typerule 
rule 

rulealt 

graph 

node 

annots 
args 

annot 

= = 

"= 

= = 

"= 

- -

"= 

rule 
[rulealt] 

Rewrite graph graph | 
Redirect graph annots nodejd 

[node] 

Node annots nodejd symbol args 

[annot] 
[arg] 

Strict | 
OnACycle | 
IsINT | 
IsBOOL 

Il A graph substitution, 
Il or a redirection. 

Il A graph is a list of nodes 

II Stria argument or node 
II This node definition is on a cycle 
II Argument or node of type INT 
II Argument or node of type BOOL 
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arg 

symbol 

Nodeld annots nodejd 
Term annots node 

Symbol symbolld 
Function symbolid 
Constructor symbolid 
INTval num 
BOOLval bool 

| II An argument is either a node-id, 
Il or a node. 

| II Type symbols 
| II Symbols with associated rule 
| II Symbols without associated rule 
| II Values of the basic type INT 

II Values of the basic type BOOL 

nodejd 
symbolid 

[char] 
[char] 

A number of access functions with the obvious semantics is defined on this syn
tax tree. Their definitions can be found in appendix B. 

Unfortunately, the Miranda type system does not allow to write just node as 
second alternative for arg. In the Miranda type scheme the constructor must 
identify the type of the expression uniquely. So, an additional constructor must 
be inserted in the AST when an other syntactical clause is included. 

5.4 Compilation 
In this section a compilation scheme is presented which transforms Clean rewrite 
rules into ABC-assembler. We assume that the AST represents correct Clean 
programs. The generated ABC-instruction sequence reflects the sequence of 
actions required for a rewrite specified above. Since the relevant information is 
stored in annotations, each rewrite rule can be transformed to ABC-code sepa
rately. Section 5.2 contains an example of the code produced by this scheme. 

compiler :: clean -> abc_assembler 
compiler = concat.map compile 

For each rewrite rule a descriptor and code corresponding to the entries dis
cussed above are generated. 

compile :: rewrite_rule -> abc_assembler 
compile (TypedRule typealts alts) 
= fun_descriptor Ihs -н-

prepare_args Ihs ++ 
alt_entries alts 1 -н-
gen_type_error symboljd (# args) (# alts) 
where Ihs = getjhs (hd typealts) 

NODE annots nodeid (Function symboljd) args = hd Ihs 
compile (ConsRule typealts alts) 
= fun_descriptor Ihs ++ 

prepare_args Ihs ++ 
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alt_entries alts 1 -н-
fill_with_rnf symboljd (# args) (# alts) 
where Ihs = getjhs (hd typealts) 

NODE annots nodeid (Function symboljd) args = hd Ihs 
compile (UntypedRule alts) 
= fun_descriptor Ihs ++ 

prepare_args Ihs ++ 
alt_entries alts 1 ++ 
fill_with_rnf symboljd (# args) <# alts) 
where Ihs = getjhs (hd alts) 

NODE annots nodeid (Function symboljd) args = hd Ihs 
compile (TypeRule typealts) 
= descriptors typealts 

Descriptors 

Descriptor generation for functions: 

fun_descriptor :: graph -> abc_assembler 
fun_descriptor (NODE annots nodeid (Function symboljd) args:r) 
= [ Descriptor 

symboljd 
(applyJabel symboljd) 
(# args) 
symboljd ] 

For each constructor symbol defined in a type definition, a descriptor is gener
ated. Function symbols defined in a type definition are partial functions, the cor
responding descriptor is generated along with the code for that partial function. 
Constructors can also be used curried, so an apply entry containing fill code is 
defined for them. 

descriptors :: rule -> abc_assembler 
descriptors (alt:rest) 
= cons_descriptor rhs ++ 

till_code rhs ++ 
descriptors rest 
where rhs - get_rhs alt 

descriptors [ ] 
- [ ] 

cons_descriptor :: graph -> abc_assembler 
cons_descriptor (NODE annots nodeid (Constructor symboljd) args:r) 
- [ Descriptor 

symboljd 
apply Jab 
arity 
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symboljd ] 
where applyjab 

= rnfjab , ¡f arity = О 
= applyjabel symboljd , otherwise 

arity = # args 
cons_descriptor (NODE annots nodeid (Function symboljd) args:r) 
= [] 

fill_code :: graph -> abc_assembler 
(ill_code (NODE annots nodeid (Constructor symboljd) args:r) 
- [ Label (applyjabel symboljd) 

Fill symboljd arity rnfjab arity 
Rtn ] ,\f arity > 0 

= [] , otherwise 
where arity = # args 

fill_code (NODE annots nodeid (Function symboljd) args:r) 
= [] 

Preparing the arguments 

Two entries are generated to prepare arguments. The node entry is the regular 
entry; the target of the jsr_eval instruction. The apply entry is used by curried 
function applications. 

prepare_args :: graph -> abc_assembler 
prepare_args (NODE annots nodeid (Function symboljd) args: alts) 
= [ Label (nodejabel symboljd) 

Set_entry cyclejab 0 ] ++ 
pushargs 0 arity ++ 
[ Label (applyjabel symboljd) ] ++ 
reduce_strict_args args 0 
where arity = # args 

pushargs is a function which generates the appropriate instruction when there are 
arguments to push (arity > 0). 

Strict arguments are reduced by generating a Jsr_eval for each argument 
which is annotated Strict in the type definition. The node entry is the target of the 
jsr_eval instruction, it assumes that the root node-id is on top of the Α-stack, so it 
must be copied if it is not at the top. 

reduce_strict_args :: arg's -> a_src -> abc_assembler 
reduce_strict_args (arg:args) η 
= reduce_arg η++ reduce_strict_args args (n+1) , if is_strict arg 

reduce_strict_args args (n+1) .otherwise 

reduce_strict_args [ ] η 

= [] 
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reduce_arg :: a_src -> abc_ass8mbler 
reduce_arg a_src 
= [ Jsreval ] , ¡f a_src = O 
= [ Push_a a_src 

Jsreval 
Pop_a 1 ] , otherwise 

The code for the first rule alternative is generated next to the code for the apply 
entry, no instructions are required to achieve the continuation. 

Rewrite alternative entries 

The sequence of alternatives is decomposed to single alternatives. The alternative 
number is supplied to generate unique labels. 

alt_entries :: rule -> num -> abc_assembler 
alt entries (alt:rest) alt number 
= alLentry alt alt_number ++ alt_entries rest (alt_number+1) 
alt_entnes [ ] alt_number 
= [] 

For each rule alternative, matching code and rewrite code will be generated. The 
code generated for the rhs assumes that the matching succeeded. If the graph 
does not match this Ihs, execution proceeds with the next alternative and the 
rewrite code is not executed. 

alt_entry :: rulealt -> num -> abc_assembler 
alt_entry (Rewrite Ihs rhs) alt_number 
= match_code ++ contractum rhs bindings states asp 

where (match^ode.bindings.states.asp) = match Ihs alt_number 
alt_entry (Redirect Ihs annots nodeid) altjiumber 
= match_code ++ redirection annots nodeid bindings states asp 

where (match_code,bindings,states,asp) = match Ihs alt_number 

Matching 

Many of the subsequent transformation rules not only produce code, but also 
information of the contents of the stack frame. A compile-time number, called 
asp (for Л-siack pointer), is used to record the size of the stack frame. The map
ping from node-id's to offsets in the stack frame is recorded in the function 
bindings. The state of the referenced node is recorded in order to generate more 
efficient code. 

bindings == nodejd-> offset II Associates an index in the Α-stack frame to a node-id 
offset ==» num II An index in the Α-stack frame 
asp == num 
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state = = nodejd -> status II Associates the status of the node to a node-id 
status II The states possible 

::= Undefined | Il This node-id is not defined in the current scope 
Created | II The node is created but is still empty 
Unknown | II The node is filled; it is unknown if the graph is a mf 
InRnf II This node is in root normal form 

match :: graph -> num -> (abc_assembler,bindings,states,asp) 
match [NODE annots nodeid (Function symboljd) args] alt_number 
= (code, bindings', states', asp') 

where code = [ Label label ] ++ match_code 
bindings = bind_args args asp empty_bindings 
states = record_args args initial_status 
asp = arity 
arity = # args 
label = altjabel symboljd alt_number 
next_alt = altjabel symboljd (alt_number+1) 
(match_code,bindings',states',asp') 

= match_args args bindings states asp next_alt asp arity 

The function match_args decomposes the matching into matching arguments one 
by one. A separate offset of the elements in the stack frame is passed since not 
every argument has a node-id, hence bindings cannot be used. For each specified 
pattern the evaluation of the actual argument is forced if necessary, match arg 
takes care of the actual matching of the sub-graph. 

match_args :: arg's -> bindings -> states -> asp -> label -> offset -> arity -> 
(abc_assembler,bindings,states,asp) 

match_args (Nodeid an nodeid:rest) bindings states asp next offset arity 
= match_args rest bindings states asp next (offset-1 ) arity 
match_args (Term ans (NODE n_ans id sym args):rest) binds states asp next offset arity 
= (code, bindings", states", asp") 

where code = bring_in_rnf annots a_src ++ match_code ++ match_rest 
a_src = asp - offset 
(match_rest,bindings",states",asp") 

= match_args rest bindings' states' asp' next (offset-1 ) arity 
(match_code,bindings',states',asp') 

= match_arg (NODE (ans ++ n_ans) id sym args) 
binds (record id InRnf states) asp next a_src arity 

matchargs [ ] bindings states asp next_alt offset arity 
= ([ ],bindings,states,asp) 

The transformation rule match_arg generates code to check whether an actual 
argument matches the specified pattern. The actual argument is known to be in 
root normal form at this point. It is tested whether the symbol matches the sym
bol of the pattern. If this test fails, the rule does not match, all sub-nodes are 
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popped off the stack and the execution proceeds with the next rule alternative. If 
the pattern is not a basic value the sub-arguments are pushed and matched. 

match_arg :: tree -> bindings -> states -> asp -> label -> a_src -> arity -> 
(abc_assembler,bindings,states,asp) 

match_arg (NODE anns id (INTval i) [ ]) binds states asp next a_src arity 
= (code .binds, states, asp) 

where code 
= typecheck ++ 

[ Eql_a ί a_src ] ++ 
escapejalse (asp-arity) next 

typecheck 
= [] , if member anns IsINT 
= [ Eq_desc int_symbolid a_src ] ++ 

escape_false (asp-arity) next , otherwise 
match arg (NODE annots id symbol args) binds states asp next a_src arity 
= (code, bindings", states", asp") 

where code 
= [ Eq_desc_arity (symboljd symbol) n_arity a_src] ++ 

escapejalse (asp-arity) next ++ 
pushargs a_src n_arity ++ 
mateh_sub_args 

bindings' = bind_args args asp' binds 
states' = record_args args states 
asp' = asp + n_arity 
n_arity = # args 
(match_sub_args,bindings",states",asp") 

= matchargs args bindings' states' asp' next asp' arity 

escapejalse π next generates code to pop the sub-arguments from the stack and a 
jump to the next alternative if the match failed. 

escapejalse :: nr_args -> label -> abc_assembler 
escapejalse nr_args label 
= [ Jmpjalse label ] , if nr_args = 0 
- [ Brjrue 2 

Pop_a nr_args 
Jmp label ] , otherwise 

Rewriting according to a rule alternative with contractum 

The contractum is built in a number of phases. First the shared nodes defined by 
the node-definitions are constructed. Then the root node is handled. 
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contractum graph -> bindings -> states > asp > abc_assembler 
contractum (top node_defs) bindings states asp 
= build_shared_nodes ++ root top bindings' states' asp' 

where (build_shared_nodes,bindings .states',asp') 
= shared_nodes node_defs (bind topjd 0 bindings) states asp 

NODE annots topjd symbol args = top 

The shared nodes laying on a cycle are created first. This enables the use of their 
node-id's when the cycle nodes must be constructed Then the nodes are filled 
from top to bottom. 

shared_nodes [tree] -> bindings -> states ->asp->(abc_assembler,bindings,states,asp) 
shared_nodes node_defs bindings states asp 
= (code, bindings", states", asp") 

where code = create_cycle_nodes ++ fill_nodes_code 
(create^ycle^odes.bmdmgs'.states'.asp') 

= cycle_nodes node_defs bindings states asp 
(fill_nodes_code,bindings', states", asp") 

= fill_nodes node_defs bindings' states' asp' 

cycle_nodes [tree] -> bindings -> states -> asp -> (abc_assembler,bindings,states,asp) 
cycle_nodes [ ] bindings states asp 
= ([ ],bindings,states,asp) 
cycle_nodes (NODE annots nodeid sym args rest) bindings states asp 
= (code, bindings", states', asp ') , if member annots OnACycle 
= cycle_nodes rest bindings states asp , otherwise 

where code = [ Create ++ code_rest 
bindings' = bind nodeid asp' bindings 
states' = record nodeid Created states 
asp = asp + 1 
(code_rest,bindings",states",asp") = cycle_nodes rest bindings' states' asp 

The function fill_nodes takes care of the filling of the shared nodes in the order 
they are specified If necessary, a node is created 

fill_nodes [tree] -> bindings -> states -> asp -> (abc_assembler,bindings,states,asp) 
fill_nodes [ ] bindings states asp 
= ([ ],bindings,states,asp) 
filLnodes (node rest) bindings states asp 
= (code, bindings", states", asp") 

where code = creation ++ 
creation 

= [] 
= [Create 

bindings' 
= bindings 
= bind nodeid asp' 

fill_c< 

bmdi 

3de 

mgs 

++ fill_rest_code 

, if previously_defined 
] , otherwise 

, if previously_defined 
, otherwise 
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asp' 
= asp , if previously_defined 
= asp + 1 , otherwise 

a_src = asp' - bindings' nodeid 
(fillcode,states') = fill_node node bindings' states asp' a_src 
(fill_rest_code,bindings",states",asp") = fill_nodes rest bindings' states' asp' 
NODE annots nodeid sym args = node 
previously_defined = states nodeid = Created 

The function fill_node fills an existing node with the specified value. It is used to 
fill shared nodes as well as arguments. Filling a node with a basic value is sim
ple. Otherwise, code to construct the arguments is generated before the fill 
instruction. When a strictness annotation is present in the node, the function 
fill strict is called to fill the node with a root normal form. 

fill_node :: tree -> bindings -> states -> asp -> a_src -> (abc_assembler,states) 
fill_node (NODE annots id (INTval i) [ ]) bindings states asp a_src 
= (code, states') 

where code = [ Filli i a_src ] 
states' = record id InRnf states 

fill_node (NODE ans nid (Function sid) args) binds state asp asrc 
= fillstrict (NODE ans nid (Function sid) args) binds state asp asrc, member ans Strict 
= (code, states") , otherwise 

where code = build_args_code ++ [ Fill sid arity (nodejabel sid) (asrc+arity) ] 
(build_args_code,states") = build_args args binds states' asp 
states' = record nid Unknown state 
arity = # args 

filljiode (NODE annots nid (Constructor sid) args) binds states asp asrc 
= (code, states") 

where code = build_args_code ++ [ Fill sid arity rnfjab (asrc + arity) ] 
(build_args_code,states") = build_args args binds states' asp 
states' = record nid InRnf states 
arity = # args 

A node is filled with a root normal form by constructing the appropriated stack 
frame and calling the first alternative of the specified function. Using this entry, 
instead of the apply entry, results in a bit more code; the code for the evaluation 
of strict arguments is duplicated. However, the code produced is more efficient; 
when a strict argument is known to be in root normal form no attempt to reduce 
it, is necessary. 

fill_strict :: tree -> bindings -> states -> asp -> a_src -> (abc_assembler,states) 
fillstrict (NODE anns nodeid (Function sid) args) bindings states asp 0 
= (code, new_states) 

where code = build_args_code ++ [ Jsr (reductionjabel sid) ] 
newstates = record nodeid InRnf states' 
(build_args_code,states') = build_args args bindings states asp 
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f¡ll_str¡ct (NODE annot id (Function sid) args) bindings states asp asrc 
= (code, states) 

where code 
= [ Push_a asrc ] ++ 

fill_code ++ 
[ Pop_a 1 ] 

(fill_code,states) 
= fill_strict (NODE annot id (Function sid) args) bindings states (asp+1 ) 0 

fill_strict node bindings states asp a_src 
= fill_node node bindings states asp a_src 

Building arguments 

Arguments are constructed by Build_args, the first argument specified is built 
last. So, it will be on the top of the Α-stack as required. 

build_args :: arg's -> bindings -> states -> asp ->(abc_assembler,states) 
build_args [ ] bindings states asp 
= ([ ],states) 
build_args (arg:args) bindings states asp 
= (code, states") 

where code = args_code ++ argcode 
(args_code,states') = build_args args bindings states asp 
(arg_code,states") = build_arg arg bindings states' (asp+#args) 

build_arg :: arg -> bindings -> states -> asp -> (abc_assembler,states) 
build_arg (Nodeld annots nodeid) bindings states asp 
= (push ++ evaluation , new_states ) , if reduction_needed 
= (push , states ) , otherwise 

where new_states = record nodeid InRnf states 
push = [ Push_a (asp - bindings nodeid) ] 
evaluation = [ Jsr_eval ] 
reduction_needed = member annots Strict & -(states nodeid=lnRnf) 

build_arg (Term annots node) binds states asp 
= (creation ++ eval_code , strict_states ) , if member annots Strict 
= (creation ++ fill_code , fill_states ) , otherwise 

where creation = [ Create ] 
(eval_code,strict_states) = fill_strict node binds states (asp+1 ) 0 
(fill_code,fill_states) = fill_node node binds states (asp+1) 0 

Build contractum and overwrite root 

Finally, the root of the contractum is constructed. If it is a constructor a root 
normal form is reached. After building the result a rtn instruction is generated to 
return to the initiator of the reduction. If the node contains a function symbol, 
the stack frame is adapted to the one required by the new function. A new stack 
frame for a function is created by building it on top of the current stack frame 
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and than copying it to the bottom. The new function is invoked by a jump 
instruction. In this way tail recursion is removed for free! 

root :: tree -> bindings -> states -> asp -> abc_assembler 
root (NODE annots id (INTval i) [ ]) bindings states asp 
= pop_args asp ++ 

[ Filli iO 
Rtn ] 

root (NODE annots nid (Constructor sid) args) bindings states asp 
= build_args_code ++ 

[ Fill sid arity rnfjab (asp+arity) ] ++ 
pop_args asp ++ 
[ Rm ] 
where (build_args_code,states') - build_args args bindings states asp 

arity = # args 
root (NODE annots nid (Function sid) args) bindings states asp 
= build_args_code ++ 

clean_up (# args) asp ++ 
[ Jmp (reductionjabel sid) ] 
where (bu^args^ode.states') = build_args args bindings states asp 

Rewriting according to a redirection 

A redirection is implemented by coping the root of the graph indicated to the 
redex. If it is known at compile time that this graph is in rnf it is just copied, 
otherwise it is reduced first in order to prevent the duplication of work. 

redirection :: annots -> nodejd -> bindings -> states -> asp -> abc_assembler 
redirection annots nodeid bindings states asp 
= ( Fill_a newroot asp 

Pop_a asp 
Rtn ] , if states nodeid = InRnf 

= update_astack newroot (asp-1) ++ 
pop_args (asp-1) ++ 
[ Jsr_eval 

Fill_a 01 
Pop_a 1 
Rtn ] , otherwise 

where newroot = asp - (bindings nodeid) 

The additional rewrite alternative entry 

A last entry is generated when the function has arguments; a rule alternative 
without arguments will always match, hence an additional entry is not needed. 
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filLwith_rnf :: symbolid -> arity -> nun -> abc_assembler 
fill_with_rnf symboljd arity nr_alts 
= [ ] , if arity = 0 
= [ Label (altjabel symboljd (nr alts+1)) 

Fill symboljd arity rnfjab arity 
Rtn ] , otherwise 

gen_type_error :: symbolid -> arity -> num -> abc_assembler 
gen_type_error symboljd arity nr_alts 
= [] , if arity = 0 
= [ Label (altjabel symboljd (nr_alts+1)) 

Jmp type_error ] , otherwise 

5.5 The run-time system 
The compilation scheme presented here produces code for each rewrite rule to 
reduce a graph to rnf. The run-time system contains the routine ¡nit_graph to 
build the start node and initiates its reduction to normal form. The reduction to 
normal form and the printing of sub-graphs in normal form is done by the 
routine _driver. Furthermore the descriptors for basic types and some general 
entries are defined. The _rnf entry is used for graphs in root normal form. The 
_cycle entry is stored in a node currently reduced. In this way it is detected that 
such a node is revisited, the functional strategy cannot find a rnf, hence an error 
message is generated. The type_error entry is used when none of the rule alterna
tives is applicable. 

[ 
"INF 

"BOOL" 

••¡nit_graph", 

"_driver", 

"_print", 

Descriptor 
"_гпГ 0 "integer" 
Descriptor 

• 

"_тГ 0 "boolean" 
Jmp 
Label 
Create 
Fill 
Jsr 
Print 
Halt 

Label 
PushI 

Label 
Jsr_eval 
Get node arity 
Eql_b 0 0 
Jmpjalse 

"init_graph" 

, 
"Start" 0 "n_Start" 0 , 
"_driver" 
"\n" 

• 

0 

» 
0 

, 
"_args" 

II Must be first descriptor!! 

II Must be second descriptor!! 
II Must be first instruction!! 
II The initiator of graph reduction 
II Create and fill the start node 

II Print the nf of start node 
II Print a newline 
II Finished! 

II The global print driving routine 
II Closing bracket count 
II Label for tail recursion 
II Reduce top node to mf 
II Get number of arguments in node 
II No arguments ? 
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"jarintjast" 

brackets" 

exit", 

"_args", 

"_argJoop", 

"_next_arg\ 

Label 
Print_symbol 
Pop_a 
Pop_b 
Label 
Eql_b 
Jmp_true 
Print 
Dec! 
Jmp 
Label 
Pop_b 
Rtn 
Label 
Print 
Print_symbol 
Get_desc_arity 
Repl_args_b 
Pop_b 
Label 
Print 
Eql_b 
Jmp_false 
Pop_b 
Incl 
Jmp 
Label 
Jsr 
Deci 
Jmp 

0 
1 
1 

00 
"_ хіГ 

Τ 

" brackets" 

0 
0 

1 0 
"_next_arg" 
1 

"_prinr 

"_drlver" 

"argjoop" 

II Print last argument 
II Do it 
II Remove node 
II Remove arity 
II Print the closing brackets 
II Bracket count equal 0 ? 
II Yes; finished 
II No; print bracket 
II Decrement bracket count 
II Next bracket 
II Finished with this node. 
II Remove bracket count 

II Start the printing of arguments 
II An opening bracket 
II The Symbol of the node 
II Arity corresponding to symbol 
II Replace node by its arguments 
II Pop descriptor arity 
II Loop to print arguments 
II Space between elements 
II Last argument ? 

II Remove arg counter 
II Increment bracket counter 
II Optimized tail recursion 
II Print an argument; not the last one 
II Recursion to print argument 
II Decrarg count; driver removes arg 
II Next argument 

Label II This graph is already in mf; 
"_тГ, Rtn , II Return immediately 

Label II Functional strategy finds no mf! 
"_cycle". Print "Cyclic computation! Reduction interrupted", 

Halt , II Stop the reduction 
Label II No rule alternatives is applicable! 

"type_error", Print "Type errori Reductton interrupted", 
Halt ] II Stop the reduction 

5.6 Curried functions 
The generic AP rule converts a curried symbol into its ordinary form as soon as 
all its arguments are available. Each curried symbol is a constructor since no 
rewrite rule can be applied, hence its context is _rnf. Each AP node provides one 
additional argument. When the number of arguments required by the symbol is 
collected, a stack frame according to the apply entry is constructed and execution 
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continues on that entry. Otherwise, the symbol and the arguments collected are 
stored in the node containing the AP. 

[ Descriptor 
"AP" "a_AP" 2 "AP" 

Label 
"n_AP", Set_entry 

Push_args 
Label 

^ A P " , Jsr_eval 
Label 

"API ", Get_node_arity 
Get_desc_arity 
Subì 
Eqlj j 
Jmp_false 
Push_ap_entry 
Get_desc_arity 
Subì 
Push_b 
Repl_args_b 
Pop_b 
Rtn 
Label 

"args_needed" 
Push_a 
Add_args 
Pop_a 
Pop_b 
Rtn 

"_cycle" 0 
022 

0 
0 

1 0 
"args_needed" 
0 
0 

1 
1 13 
2 
1 

I Mark node as being reduced 
I Push arguments of AP 

I Evalúate first argument; the function 

I Number of args in node 
I Number of args for mie 
I Number of arguments needed 
I More than 1 argument needed ? 

I Push apply entry of function on C-stack 
I Push arity 
I Compute number of arguments in node 

I Construct top of stack frame 
I Clean up B-stack 
I to apply entry pushed above 

Reference to curried function 
Add argument and overwrite AP node 
Clean up stacks 

] II Rnf reached 

This is illustrated by the following example: 

Start -> AP Ine 2 
Ine -> AP Plus 1 
Plus ->+I 

Several states of the reduction are depicted below. 
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I Start h I Start 

2 k -

I empty 

I Start 

dh-

1 Start 

- [IK 
I empty I· 

S empty I 

]*-y-^_ | empty |*/.—• [ + Ш < — ' 

йй*^1 

I Start 

[ 2 ^ -

£ 

[ з > - ^ 

Fig 5.6.a b с d e f 
Initial state. The reduction starts at the node entry of Start. 
Creation of the arguments of AP. Second argument is built. First argument is strict. 
Reduction according to Inc. Second argument is created, first argument is strict. 
Reduction according to Plus. The redex node is filled with a mf. 
+1 has not enough arguments to become a function. So, the node is filled with the mf. 
After reduction according to +1 the top node is replaced by its mf. 

5.7 Optimizations 

The code generated by the compilation scheme presented in section 5.4, can be 
improved at many points. The most important improvement is to use the B-stack 
instead of nodes to pass basic values between functions. The use of the B-stack is 
described informally and illustrated with an example. Afterwards some other 
optimizations are mentioned. 

The extended compilation scheme using the B-stack 

Basic values are manipulated always on the B-stack in the ABC-machine. Every 
computation involving basic values requires the transportation of the values to 
the B-stack and the shipment of the result back to a node in the graph store. 
When the result is used again as argument in another computation there is much 
data transportation. To reduce the unnecessary movement of data, the compila
tion scheme must be changed such that basic values stay on the B-stack as much 
as possible. 

To achieve this, the calling conventions for the rewrite alternatives are 
changed: strict arguments of a basic type are passed on the B-stack and the result 
of a reduction is left on the B-stack when it is of a basic type. The calling con
ventions for the node entry and the apply entry remain unchanged. The code 
corresponding to the apply entry takes care of the transport of basic values 
between the graph and the B-stack for this function. After the reduction of a 
strict argument of a basic type it is transported to the B-stack. When the result of 
the function is of a basic type the first rule alternative entry is called as a 
subroutine. The mf produced on the В stack is transported to the node contain
ing the redex. The complexity of the code generation is increased significantly 
by this new calling convention. Arguments and results must be moved to the 
desired place at every occurrence. This is not difficult, but involves an elabo
rated case analysis. 
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An example of the use of the B-stack 

To show the changes resulting from the new calling conventions the ABC-code 
for the Length example of section 5.2 is shown. 

Length ! INT ! (List x) 
Length η (Cons a b) 
Length η Nil 

->INT 
-> Length (+1 η 1 ) b 
-> π 

Both arguments are strict. The first argument is also a basic value. So, it will be 
passed on the B-stack to the rule alternatives. The result will also be passed on 
the B-stack by the rule alternatives. The rewrite entry for +i also expects its 
arguments and leaves its result on the B-stack. 

[ Descriptor 
"Length" "a_Length" 2 

Label 
"n_Length",Set_entry 

Push_args 
Label 

"a__Length",Jsr_eval 

Pushla 
Pop_a 
Jsr_eval 
Pop_a 
Jsr 
Fillljb 
Pop_b 
Rtn 
Label 

"Lengthl", Ec|_desc_arity 
Jmpjalse 
Push_args 
Push_a 
Jsr_eval 
Pushl 
Pushb 
Jsr 
Update_a 
Update_b 
Pop_a 
Pop_b 
Jmp 
Label 

"Length?', Eq_desc_arity 
Jmp_false 

Length" , II The generated descriptor 
II The node entry: preparing the elements 

"cycle" 0 , II Mark node to detect cyclic computations 
0 2 2 ,11 Push the arguments 

II The apply entry: reduce strict arguments 
, II Reduce first argument to mf. 

0 , II Copy first argument to the B-stack. 
1 , II Pop fust argument from A-stack. 

, II Reduce second argument to mf. 
1 , II Pop duplicated second argument. 
"Lengthl" , II Initiate rewriting by alternatives. 
0 0 , II Fill node with result of the reduction. 
1 , II Pop result of the reduction. 

, II Done; node is in mf. 
II Entry for first rule alternative. 

"Cons" 2 0 , II Match arg 2. 
"Length2" , II Goto next alternative if match fails. 
0 2 2 , II Push sub-arguments. 
1 , II Rev/rite according to alternative 1; Push b 

, II Reduce it. 
1 , II Second argument for +1. 
1 , II Fiist argument for +1. 
"+I1 " , II Reduction of +1 η 1. 
0 3 , II Adapt Α-stack frame for call of Length. 
0 1 , II Adapt B-stack frame for call of Length. 
3 , II Remove old arguments from A-stack. 
1 , II Remove old arguments from B-stack. 
"Lengthl " , II Continue with alternative 1 of Length. 

II Entry for second rule alternative, 
"Nil" 0 0 ,11 Match argument. 
"Lengths" , II Continue with alternative 3 if match fails. 
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Pop_a 1 , II Remove arg. 
Rtn , Il Rnfreached! 
Label II Generated entry for additional alternative. 

"Lengths", Jmp "type_error" ] II This must be a type error! 

In figure 5.7, snapshots of the reduction process corresponding to the pictures in 
Fig 5.5. are shown. 

Fig 5.7.a b e d 
a: Initial state at node entry. 
b: State at first rewrite alternative entry. 
c: After successful match of first rule alternative. 
d: Reduaion according to the first rule alternative. State before calling +11. 

e f g h 
e: State returned by +11. 
f: State before calling Lengthl recureively. 
g: State before last call of Lengthl. 
h: State of ABC-machine after the mf is reached. 

This example shows the successful use of the B-stack, very few movement of 
data between the graph and B-stack is necessary. The next example shows that 
one is not always that lucky. 

: 11 χ -> χ ; 

I χ -> χ ; 

ζ F UNTI INT ->INT ; 

F a b -> +1 (I a) b ; 

Both arguments and the result of function F will be passed on the B-stack by the 
rule alternative entry. The identity function expects its argument and leaves its 
result on the Α-stack. So, a has to be put in a node to pass it to l and the result 
must be extracted of a node to pass it to +l. 
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a: Machine state at node entry of rale F. 
b: State at rewrite alternative entry for F. 
c: Second argument of +1 copied to the B-stack. Initiating the reduction of first strict 

argument. 
d : The mf returned by I. 
e: The stack frame to call+11. 
f : Finally, the mf is copied to the redex by the apply entry of F. 

Other optimizations 

The code generated by the schemes above is more efficient than the scheme in 
5.4, but can be improved further. Here we mention some other optimizations 
possible. 

Improve the performance of predefined functions (delta rules) by hand-
coding them in ABC-assembler. 

The use of in-line code substitution for very short functions. For instance, 
the Addi instruction instead of a Jsr +11. 

Use information of predefined functions to improve the code generated by 
the compilation schemes. For instance, the predefined conditional function: 

: IF I BOOL type type ->type ; 
IF True then else ->then | 
IF False then else -> else ; 

Obviously, IF is strict in its first argument. Its second and third argument are 
never both needed. In a strict context building the then and else part can be 
delayed until the condition is evaluated. Then it is clear which one is needed, 
only that one has to be built. 

In the present compilation schemes the matching of each rule alternative 
starts from scratch. However, the use of information from the previous alterna
tive and type information can speed up the matching process considerably. So, it 
is better to use a finite state machine for the matching of the rule alternatives 
instead of starting all over for each alternative. 

Constant graphs which occur in the rhs of rewrite rules need not to be built 
each time the rule is used. These graphs can be created once. The node-id's of 
the root of these graphs can be used instead of building a new one at each occur
rence. 

Use a scratch node for nodes which will be used once for a very short time. 
This occurs when a function delivers its result in the graph which is required on 
the B-stack; the result is stored in the node, moved to the B-stack and the node 
becomes garbage immediately. 
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Efficiency gain of the optimizations 

To analyse the effect of the mentioned optimizations a measurement of the per
formance of the well known nfib function is presented. The integer delivered by 
the nfib function is the number of function calls done. The nfib-number is 
obtained by dividing this number by the execution time. So, the nfib-number is 
the number of function calls per second. 

: NfiblINT ->INT ; 
Nfib 0 -> 1 | 
Nfib 1 -> 1 | 
Nfib η -> ++I (+1 (NFib (--I n)) (Nfib (-1 η 2))) ; 

The table below gives an idea about the gain in efficiency obtained by the opti
mizations. However this example is not representative for all programs. The nfib 
number is extremely sensitive for the optimizations discussed. 

These measurements where done on a SUN 3/280 under SunOS 4.0.3, using 
the ABC-machine implementation made by Gé Weijers [Weijers 90]. 
Measurements are accurate within 10%. 

Nfib-number Conditions 
27,000 Code generation according to the scheme presented here. No 

strictness information nor type information is provided. At run
time a type check on the argument of Nfib is performed. 

35,000 Using type and strictness information for the delta rules only. In
line code substitution is used for these delta rules. In the rest of the 
bench-marks these delta rules are used. 

43,000 Using type information at compile time; the type check on the 
argument of the nfib function is dropped. 

70,000 Using only the strictness information of the nfib function. No type 
information is supplied. So, the type of the argument will be 
checked at run-time. 

90,000 Type and strictness information are supplied to the basic transla
tion scheme. 

280,000 Using type and strictness information in the extended translation 
scheme. The integers are passed on the B-stack but no in-line code 
is used for the delta rules. 

415,000 Using type and strictness information in the extended translation 
scheme. The integers are passed on the B-stack and in-line code is 
used for the delta rules. 
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495,000 

2,000 

300,000 

1,200 

1 

10 

Result of the same ABC-code, but using a better register allocation 

in the ABC-compiler [Groningen 90]. The ABC-code resulting 

from an nfib-function definition with a conditional is more effi

cient. The corresponding Nfib-number on the Sun is 571,000 on a 

Mac Ilfx this nfib-number is 1,009,000! 

Same code interpreted by the PABC simulator [Mocker 89]. 

A similar nfib function written in С [Kemighan 78]. 

The nfib function written in Miranda; executed by the interpreter. 

ABC-specification executed by the Miranda interpreter 

ABC-specification without superfluous checks in the micro

instructions, executed by the Miranda interpreter. 

The code for Nfib in ABC-assembly using the extended compilation scheme 

becomes: 

[ 
"Nfib" 

"n Nfib" 

"a_Nfib", 

"NfiM", 

"Nfib2", 

Descriptor 
"a_Nfib" 1 "Nfib" 
Label 
Set-entry 
Push_args 
Label 
Jsr_eval 
Pushl_a 
Pop_a 
Jsr 
Filll_b 
Pop_b 
Rtn 
Label 
Eql_b 
Jmp_false 
Pop_b 
PushI 
Rtn 
Label 
Eql_b 
Jmp_false 
Pop_b 
PushI 
Rtn 

"_cycle" 0 
0 1 1 

0 
1 
"NfiM" 
0 0 
1 

0 0 
"Nfib2" 
1 
1 

1 0 
"Nfib3" 
1 
1 

II The generated descriptor 
II The node entry, prepare arguments 
II Mark node to detert cyclic computations 
II Push argument on A-stack 
II The apply entry. 
II Reduce strict argument 
II Copy argument to B-stack 
II Remove argument from A-stack 
II Initiate calculation on B-stack 
II Copy result from B-stack to node 
II Remove result from B-stack 
II Rnf reached 

II match rule 1; is argument 0? 
II No; continue with second nile alternative 
II Yes; remove arg 
II Store result 
II Done 

II Match rale 2; is argument equal to 1? 
II No; continue with rule alternative 3 
II Yes; remove argument 
II Push result 
II Done 
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"Nfib3", 
Label 
Pushi 
Push_b 
Subì 
Jsr 
Push_b 
Deel 
Jsr 
Addi 
UpdateJ) 
Pop_b 
Incl 
Rtn 

2 
1 

"Nfib1" 
1 

"Nfibl" 

01 
1 

II Rule alternative 3; no matching required 
II Compute -I η 2 
II Push η 
II In-line code substitution for -I 
II Compute Nfib (-1 η 2) 
II Compute —I n; push argument 
II In-line code substitution for -I 
II Compute Nfib (-1 n) 
II In-line code substitution for +1 
II Replace argument by result 
II Remove copied result 
II In-line code substitution for ++I 
II Done 

5.8 Discussion 
This chapter presents an abstract compilation scheme to translate Clean to ABC-
assembler. This is an example of a non-trivial translation containing context 
sensitive decisions. Due to the nature of the translation to be performed the 
specification is rather elaborate, but it remains very readable. 

It appears to be valuable that the specification is executable; the generated 
code can be observed and executed. Execution serves as a test for the specifica
tion, due to its nature it is very hard to verify its correctness. Using this proto
type it is easy to glance at the code generated according to slightly different 
schemes; it appears to be easy to make small changes in the compilation schemes. 
Combining this prototype with the prototype of the ABC-machine presented in 
chapter 3 it is possible to execute the Clean programs. Important observations of 
the dynamically behaviour can and have be obtained in this way. Furthermore 
there are of course the usual advantages: the consistency can be partially checked 
by the Miranda compiler and the semantics of the description language are clear. 

The specification is used as guide-line for the construction of the corre
sponding product [Smetsers 89]. This compiler uses the B-stack in the way de
scribed here and incorporates the first three other optimizations mentioned 
above as well as many other optimizations. Although it is in principle possible to 
describe each and every optimization in a specification this is not done. The 
specification obtained would be very large and, hence, almost as difficult to read 
as the actual implementation. The specification presented here shows clearly the 
kind of code generated and enables the informal description of many optimiza
tions. 
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Chapter 6 
Artificial Neural Networks 

6.1 Description tools for artificial neural networks 
6.2 The Adaptive Linear Combiner 
6.3 The Adaline 
6.4 The Perceptron 
6.5 Learning Vector Quantization 
6.6 Feedback Networks 
6.7 Discussion 

The popularity of artificial neural networks is rapidly increasing. These net
works appear to be able to solve relatively easy some problems that are hard to 
solve with conventional algorithms. Especially pattern recognition tasks are per
formed very well by some networks. In order to detect which aspects of neural 
networks are responsible for this success, it is necessary to have a good under
standing of the paradigm used in neural network computations. We will show 
that functional languages can be used to obtain a uniform description of various 
artificial neural networks. Such a uniform high-level description will make it 
easier to spot the essential differences and similarities among the neural network 
models used. 

There are many possible descriptions of a biological neural network. Each 
description shows some aspects of the network. Some of the possible descrip
tions are: morphological, chemical (the description of the chemical reactions and 
matters involved, e.g. neurotransmitters), biological (description of the neurons 
as biological cells), physical (spike generation and travelling over the axons, or 
system description of large ensembles of neurons) and psychological (descrip
tion of complicated behaviour). The missing item in this list is a description of 
the type of computations performed and algorithms used by a neural network. 
The nature of these computations is largely unknown. 

One of the ways to explore the computational models used in the brain is to 
make a study of artificial neural networks. These artificial networks are models 
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inspired by the brain. One usually starts with very simple models that can per
form only a very limited set of tasks. Other features, increasing the complexity, 
are introduced step by step when the current model cannot execute the next task. 
More than 50 networks are proposed in the literature [Hecht-Nielsen 87b, 88]. 

In this chapter a specification of some important artificial neural networks 
in a functional programming language is given. First, a set of description tools 
is defined. Then, each specific network is described with these primitives. For 
the description of artificial networks it is very convenient that the descriptions 
are executable. Due to the used nonlinear functions and stochastic terms a com
plete analytical study of the properties of these systems is very hard or impossi
ble. 

These descriptions show that the processing elements used in these networks 
are very similar. The use of these elements distinguishes the various networks. 
To indicate the huge simplifications made in artificial networks with respect to 
real networks a rough sketch of biological neural networks is given. 

Biological neural networks 

The human brain consists of a very huge number (estimations range from 1010 

to 1013) of neurons (brain cells), each one receives input from other neurons 
(typical about 104) [Schade 84]. Based on this input a short pulse on the output, 
called a spike, may be generated. This spike travels over the output axon and 
serves as input for other neurons. A spike is a pulse-shaped change of the 
potential over the axon membrane. 

Nerve conduction is studied since the late I940's. The shape and conduction 
speed along the axon of a spike are related to the observed changes in membrane 
permeability by the Hodgkin Huxley equations [Hodgkin 52]. The model does 
not explain why the membrane permeability for various ions changes; it de
scribes just the consequences. These equations can be found in many textbooks, 
e.g. [Hobbie 78]. 

When a spike reaches the connection of the output axon with some input 
axon it changes the state of the corresponding neuron. In most situations chemi
cal substances, called neurotransmitters, are released in the synaptic junction in 
quantized packets. These neurotransmitters change the interior potential of the 
post synaptic neuron, it becomes either more positive or more negative depend
ing on the neuro transmitter released. If the potential becomes high enough, 
above the threshold value, a spike is generated on its output axon. Properties of 
neurotransmitters are studied since long, e.g. [Koopman 60]. 

There is morphological evidence that the number of synapses in the brain 
increases rapidly with the age. It is believed that this is one of the mechanisms to 
let the brain learn. 
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6.1 Description tools for artificial neural networks 

Artificial neural networks are a crude simplification of biological networks. 
These models are most suited for relatively simple tasks, like sensory and motor 
functions. Each artificial neuron is a simple processing element which receives 
input from a fixed set of neurons. The output value is not continuously com
puted in the massive parallel way of the brain, but in discrete time steps. 
Artificial neurons do not communicate by spikes, but by a sequence of values 
representing neuron activity. A single scalar number represents the strength and 
state of a synapse. The input value is multiplied by this weight to obtain the 
contribution of this input to the potential. A learning procedure adjusts these 
weights to let the network perform the desired task. The number of processing 
elements used ranges from one to several thousands. 

This chapter presents a set of description tools for artificial neural net
works and uses them to specify some well-known networks. This approach does 
not always yield the most direct and compact description of a given network, but 
makes the similarities and distinctions between the various networks belter visi
ble. Here it is assumed that the network has a layered structure of uniform pro
cessing elements. Since the networks described here can be cascaded also net
works with layers of different nature can be captured by this description 
method. The tools developed here are also used to describe non-layered net
works [Koopman 90, Rutten 90]. 

Artificial neural networks are characterised by 
• the values processed; 
• the processing elements used; 
• the topology of the network (interconnection of processing elements); 
• the synchronous or asynchronous character of the computations; and 
• the way the processing elements are tuned to let the network perform some 

task. Elements are either completely predetermined or some parameters are 
tuned in a learning phase. 

First, a set of description tools is developed in a brief discussion of these charac
teristics. Then, some neural networks are described using these tools. 

The values processed 

The values on the axons are numbers representing neuron activity. There are 
two types of domains used; either binary or continuous. 

A binary activity quantity has one of two possible values; these values rep
resent firing at maximum rate and quiet. The numerical values are usually о and 
1, or -1 and 1. The latter variant has some advantages since most synapses com
pute a weighted sum of the input values, but every weighted sum of zeros yields 
0. Moreover, in many applications it is convenient that on and off of a neuron 
are in some sense symmetrical. 

6 1 Description tools for artificial neural networks 113 



A continuous activity quantity can have any value within some limits as 0 
and 1, or -1 and l. These bounds have the same meaning as for binary values, 
but also intermediate states of neuron activity can be modelled. 

Our description uses the type value for neuron activity, ordinary numbers 
are used to represent it. When appropriate, values are indicated as input, output 
or target value. 

value == num 
¡nput_value - - value 
output_value = - value 
target_value == value 

A collection of simultaneously occurring values is modelled by a list of values 
called state. 

state = = [value] 
input_state = = state 
output_state = = state 
target_state - = state 

Neuron characteristics 

In the simplest model a neuron takes an input state and yields an output value 
determined by this state. In more complicated models there may be additional 
parameters such as a noise input or a history term representing some dynamic 
properties. Most of the neural network models found in the literature do not 
need these extensions. Therefore, we will model our neurons by: 

neuron == ¡nput_state-> output_value 

Each neuron consists of a synapse which yields an internal potential, and a gen
erator which produces the output value based on this potential. This element is 
introduced by McCulloch and Pitts [McCulloch 43] and has become well-known 
through the work of Hopfield [Hopfield 82]. Artificial neural networks usually 
employ this type of elements. This model forms an abstraction of biological 
neurons. 

Fig 6.1 The McCulloch-Pitts model of a neuron. 

The internal potential of an element is fully determined by the current input. 
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The synapse 

A synapse is a device (function) that computes the internal potential based on the 
input state. Usually, a weighted sum of the input values is used. The only differ
ence between various neurons is the set of weights used to compute the potential. 
Learning is modelled by changing these weights. For these reasons the weights 
are passed as arguments to the synaptic function and to the elements. 

weights = = [num] 
potential == num 
synapse = = weights -> input_state -> potential 

Some well-known synaptic functions are: 

wsum weights inputs = sum [weightsli * inputsli | i <- [0..#weights -1]]1 

neocognitron_synapse weights input 
= (1+excitation) / (1+inhibition) -1 

where excitation = sum( weights I i* input I i | ¡<-[0..#weights-1]; weights ! i >0 ] 
inhibition = - sum [ weights I i * input I i | i <- [0..#weights-1]; weights ! i < 0 ) 

When one views the sequence of weights and the input state as vectors, wsum just 
computes the inner product (scalar product) of these vectors. 

The generator 

The generator function yields the output value determined by the potential. 

generator = = potential -> output_value 

^In this chapter ZF-expressions are used to specify matrix and vector like operations, instead of 
the equivalent map's, zip's and transposes. The given definition resembles the mathematical 
expression 

N-1 
£ weigthsj χ inputs¡ 
¡=.0 

more than the equivalent 

sum (map2 (*) weights inputs) 

When an index is used at several places in an expression we generate the sequence of indices 
rather than the sequence of elements chosen. Using the generation of list elements instead of the 
generation of indices, the definition above would become: 

sum [weight * input | (weight,input) <- zip2 weights inputs] 
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sgnv 
= 1, if ν > 0 
= - 1 , otherwise 

clip ν 
= low 
= ν 
= high 

, if ν <» low 
, if low < ν <= 
, if high < V 

high 

This generator is generally a nonlinear function of the potential. Some models 
involve a stochastic term in the generation of the output value. This is ade
quately modelled by adding a noise term to the potential. The most often used 
generator functions are a hard limiter for a binary output and a sigmoid or 
pseudo linear function for continuous output values. Some well-known genera
tor functions are: 

hardjimit ν II binary output 
= high, if ν > threshold 
= low, otherwise 

threshold = (high + low) / 2 

The optimum threshold value depends on the network model used and the specific problem 
at hand. 

II binary output 

II continuous output, pseudo linear 

sigmoid ν = (high-low) / (1 +exp (-s*v)) + low II continuous output 

s is a small positive constant determining the 'sharpness' of the function. For very large 
values of the sharpness, the sigmoid function resembles the step function. 

The bounds high and low are separately defined for each specific network. 

In many models the input of the generator is the difference of the potential and a 
threshold value, instead of the potential itself. Whenever the potential is deter
mined by a weighted sum, which is by far the most used synaptic function, a 
connection to a fixed valued input can replace the threshold. For a generator 
function, f, the output is determined by 

output = f (potential - threshold) 
potential - wsum weights input_state 

This is equivalent to 

output = f potential' 
potential' = wsum (-threshold: weights) (1 : input_state) 

The latter formulation is more convenient since no individual threshold values 
for the elements have to be maintained. Another benefit of this formulation is 
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that the threshold can be optimized by the learning algorithm used for the 
weights. 

Processing elements 

The proper combination of synaptic function and generator function specifies 
the processing elements. Some well-known processing elements are: 

element == weights-> neuron 

adaline 
perceptronjj 
perceptron с 
hopfieldjj 
hopfield_c 

weights 
weights 
weights 
weights 
weights 

- sgn 
- hardjimit 
= sigmoid 
= hardjimit 
- clip 

.wsum weights 

.wsum weights 

.wsum weights 

.wsum weights 

.wsum weights 

II binary output values 
II binary output values 
II continuous output values 
II binary output values 
II continuous output values 

The usual choice for the bounds high and low is 1 and -1 respectively. With these 
values the functions sgn and hardjimit become equivalent. This makes the pro
cessing elements used in the various networks even more similar. 

Neuron interconnection patterns and evaluation orders 

Artificial neurons are usually arranged within layers. The layers consist of 
identical elements, the only difference between the various neurons is the vector 
weights used in the synapse. We prefer to specify a layer of neurons by the 
element function for all neurons and the weight vector for each element, instead 
of a sequence of neuron functions. It is much easier to adapt these weight vectors 
by a learning algorithm and to monitor their evolution than to change and moni
tor the evolution of a function. 

weightsjayer == [weights] II the synapse weights in a layer 
weights_net -= [weightsjayer] II the weights in a network 
net_state - - [state] II the output states of all neurons in the network 

In this description the size of the network is deduced from the sizes of the 
weights set determining the synapses in the network. Usually, the size of a net
work is not changed during its use, albeit it is possible that the learning algo
rithms change the size of the network dynamically. The initial network is gen
erated by the function ¡nitial_net which is defined for each network separately. 
The size of the generated net is determined by the list of numbers. 

initial j i e t :: [num] -> weights_net 

To avoid computational problems resulting from cyclic dependencies, it is usu
ally assumed that there are only unidirectional connections between two adjacent 
layers. The units in the first layer, called the input layer, receive the input state 
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and yield a state to be processed by the next layer etcetera. Finally, the last 
layer, the output layer, produces the response of the network. 

The output state of a layer of neurons is specified by a function 
parametrized by the element used, and the list of weight vectors for each indi
vidual element. This function takes the input state as argument and yields the 
corresponding output state. 

evaljayer :: element -> weightsjayer -> ¡nput_state -> output_state 
evaljayer element layer input = [ element weights input | weights <- layer] 

With a single layer of neurons only very simple networks can be built. Using a 
cascade of these layers, a network with better properties can be built: a multi
layer feed forward network. A list of representations of layers represents a lay
ered network. Here it is assumed that all layers contain identical elements. A 
network consisting of layers with different elements in the layers can be 
described by a cascade of the networks described here. The constant neurons, 
used to represent the threshold, are added to each layer. The number of constant 
neurons is determined in the specification of a specific network. 

feed_forward :: element -> weights_net -> input_state -> net_state 
feedjorward element weights input 
- state 

where state 
= (input++constant_neurons): Il statelo is the input state 

[evaljayer element (weights!!) (stateli) ++ constanMieurons 
|l<-[0..#weights-1]] 

constant_neurons :: state 
constant_neurons = rep nr_constant_neurons high 

select_output :: net_state -> output_state 
select_output state 
- output_state , if nr_constant_neurons = 0 
= take (#output_state - nr_constant_neurons) output_state, othenvise 

where output_state = last state 

The input state is recorded in the state of the network since it is needed in sev
eral learning algorithms. Unfortunately, this additional vector in the state of the 
network has as consequence that the element determined by the vector at 
weightsllli corresponds to statel(l+1)!i. 

Some artificial neural networks do have connections within one layer, the 
introduction of a delay solves the computational problems due to the cyclic 
dependencies. The neuron uses the output produced some time steps ago as in
put, instead of the current output. In these feedback networks an input state is 
presented to the network and the output is used as new input state. This requires 
that the input state and output state have the same size. These networks consist 
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usually of a single layer of elements. For feedback networks it matters whether 
the elements are updated synchronously or asynchronously. When the elements 
are evaluated asynchronously, i.e. one by one, the element that is updated as last 
one, 'sees' almost the new state. When the elements are synchronously evaluated 
all elements have the same input state. The function feed_back_syn searches a 
stable state in a sequence of states generated by an iteration of feed_forward passes 
over the initial state. 

feed_back_syn :: element -> weights_net -> ¡nput_state -> [output_state] 
feed_back_syn element weights input 
= tojimit (iterate (select_output.feedJorward element weights) input) 

The función tojimit takes the leading part of a list. The list is broken when two consecutive 
elements are equal. It is defined as: 

tojimit :: ['] -> [*] 
tojimit (a:b:x) 
- [a] , if a = b 
= a : tojimt (b:x) , otherwise 

The function feed_back_asyn implements an asynchronously updated single layer 
network, the elements are updated one by one in a pseudo random order. 

feed_back_asyn:: element -> weights_net -> ¡nput_state -> [output_state] 
feed_back_asyn element [weights] input 
- tojimit (iterate (eval_one_by_one element weights) (input ++ constant_neurons)) 

eval_one_by_one :: element -> weightsjayer -> input_state -> output_state 
eval_one_by_one element wjayer input 
» eval_neurons element wjayer input [0..# wjayer -1] 

eval_neurons :: element -> weightsjayer -> state -> [num] -> state 
eval_neurons state element wjayer [ ] = state ++ constant_neurons 
evaljieurons state element wjayer indices 
- eval_neurons new_state element wjayer rest 

where η = random (1993+entier (sum state)) mod # indices II pseudo random 
rest = remove η indices II remove this index from the list of neurons 
index = indices I η II index of neuron to update in this iteration 
newstate = update index new_value state 
new_value = element (wjayerlindex) state 

There are several successful networks using a topology not covered by the class 
of layered networks described above, e.g. the Boltzmann machine is a randomly 
connected network. A sparsely connected network can sometimes be modelled 
adequately by a fully connected network where some of the weights are kept 
zero. 
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Learning rules 

The 'knowledge' of a neural network is stored in its architecture and the weights 
used in the synapses. Generally, the desired weights are unknown. The function 
to be performed is only specified by a set of input-output pairs. The weights 
cannot be determined immediately, but must be deduced in some way from the 
samples. There are several algorithms known to obtain a reasonable set of 
weights by training the network. These learning rules can be classified into 
• Unsupervised learning. These learning rules must set the weights based 

upon a set of sample inputs. No supervisor system is available to indicate 
whether the network behaves correct. This is used mainly in pattern 
recognition, the samples presented are the samples to be recognised later. 
So, sample and target are identical. The best-known unsupervised learning 
rule are the Hebbian-type learning ruls: the strength of a connection be
tween two units is proportional to the correlation in activity. Activity in 
one unit is associated with the activity in the other unit. In this way the 
network learns to associate patterns of neural activity. 

• Supervised learning. In these situations there is a teacher which presents 
sample patterns and the desired output state. The general principle is to 
feed a network a sample input and target. The weights in the network are 
adapted based on the difference between target and output state, such that 
the response of the network is improved when the same sample is pre
sented to the network again. Using the target it can be detected which out
put units are wrong. For other units a heuristic must be used to decide 
whether they must be changed. 

Generally, the weights are determined by adjusting a set of initial weights by 
adapting them to a sequence of input_states and the associated target_states. The 
function learn is used for this purpose. 

learn :: weights_net -> [¡nput_state] -> [target_state] -> weights_net 
learn weights (sample:samples) (target:targets) 
= learn (adapt_weights weights sample target) samples targets 
learn weights [ ] [ ] 
= weights 

The generalized delta rule 

The generalized delta rule is a supervised learning rule used, in one variant or 
another, in many networks. It will be proven that this rule 'works'; the weight 
changes prescribed by this rule reduce the error made by the network 
[Rumelhart 86]. The delta rule is used for networks containing McCulloch-Pitts 
neurons with a synapse that take a weighted sum. The proof is only valid for 
neurons with a nondecreasing differentiable generator function, but the delta 
rule is used with success for networks processing binary values. Unfortunately, 
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the only way to check whether the network has learned to execute its task is to 
test it with all possible input patterns. Another problem is that it is possible to 
get stuck in a sub-optimal solution. 

In informal terms the ordinary delta rule formulated for a single layer of 
binary elements, devised in 1959, can be expressed as [Widrow-Hoff]: 
• Present a sample to the network and compute the corresponding output; 
• If the output is equal to the target do nothing; 
• If the output value is high and the target value is low, the potential (the value 

of the inner product) is decreased by enlarging the weights corresponding 
to negative inputs and decreasing the weights associated with positive in
puts; 

• If the output is improperly low, the potential is increased by augmenting 
the contribution of positive inputs and lessening the influence of negative 
inputs. 

The formula for changing the weights associated to input ι in element j , W;„ is 

AWjt = a(targetj - outputß inputl 

The factor a, in this formula, is a small positive value determining the learning 
rate. This simple formula is only applicable for single layered networks, since 
the target values for hidden elements are generally unknown. Moreover, it is not 
proven that this rule yields a correctly behaving network. 

To derive the generalised delta rule, a measure for the (in)correct be
haviour of the network is needed. The error for a specific pair of input and 
associated target state is half the square of the length of the difference vector of 
target and output. 

E = y Σ (target, - output^ (1) 

The overall measure of error is the summation of this error over all patterns; 
Etotal = ΣΕ. The generalized delta rule implements a gradient descent in E. The 
weights are changed to reduce the error, E, by 

In the remainder of this derivation it is assumed that the synapses take a 
weighted sum (wsum), and that the generator is a nondecreasing differentiable 
function, ƒ, of the current potential. This assumption makes this derivation 
inapplicable to all nets with binary values. The potential of element j , γ,, is given 
by 

ν, = Σ И0, input, (3) 
ι 

The (output) value of this element is determined by 
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outputj = f(vj) (4) 

It is useful to write the derivative in 2 as the product of the change of the error 
as function of the potential and the change of potential as function of the weight. 

д E _ д E д ν, 
i- (5) 

From equation 5 it is obvious that the last term can be written as 

J$- = JUT, Σ wjk lnPutk = 'при', (6) 

Now the function δ is defined. This function gives the learning algorithm its 
name. 

Using this definition, equation 5 can be rewritten as 

д E 
jW-= -δ, input, (8) 

An equivalent form for the weight changes according to equation 2 is 

AWj, = a Sj input, (9) 

This leaves the task to determine δ for each node in the network. Using the rule 
of partial derivatives again, the definition is split into a product of error change 
resulting from variations in the output and output changes due to variations in 
the potential: 

„ дЕ дЕ д output, ,ln. 
Ь' -JTj^-doutputj Tij (10) 

From 4 it is clear that the last factor can be rewritten as 

^ « = ƒ bj) (Щ 

For an output unit, the first term obtained in 10 is easily deduced from 1 

тшЬь= ^ Ь о ( ι ?(targeti - 0Utput'F >= - (targetJ - output') (12) 

By substituting these results, equation 10 becomes 

δ, = (targetj-outputj) f(Vj) 03) 

For a single layer of linear elements (the generator function is the identity func
tion ƒ ν = ν) the ordinary delta rule is obtained. 
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AWj, = a (targetj - outputß input, (14) 

The chain rule is used to derive an expression for δ of hidden units. First, the 
leading term in equation 10 is rewritten 

д Ε γ 1 д E 9 vk _ γ 1 д E д . 
д output] ¿^ д кд output] ¿^ <* vt д output] γ *' '"А""« 

-Σ дЕ 

* 

The summation is over all units receiving output from element y'. Using this 
result and equation 11 to rewrite 10, δ becomes 

S, = f'<vj)TSkWkj (16) 
к 

Using equations 13 and 16, 5 can be computed for every unit in the network. The 
error measure, 5, is propagated from the output units backwards. This gives rise 
to the name backpropagation for this algorithm. With these values, the weights 
can be adapted, according to 9, to reduce the error. 

When the network behaves well for all possible inputs, it will do forever; 
the weights are only changed when an erroneous output is generated. From 9 it 
can be deduced that δ must be non zero to change the weights, but from 13 and 
75 it is clear that all ¿'s are zero when the network produces the correct output. 

It is easy to show how a threshold value involved in the generation of the 
output can be adapted to reduce the error. Assume that the output is determined 
by 

output] = ƒ (Vj + tj) (17) 

The error is reduced, in a gradient descent manner, by changing the threshold, 
tj, by an amount 

„ dE 
At] = -β — (18) 

dtj 

Analogue to the derivation above, it can be shown that 

Δί]= β δ] (19) 

Obviously, the threshold can be replaced by an additional input connected to a 
constant element with value βα. Usually the value 1 is used for βα. 

Changing the weights after each presentation of an input pattern and asso
ciated target pattern departs slightly from the true gradient descent for Е,0Іаі. 
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Provided that the learning rate, a, is sufficiently small, the delta rule will 
implement a very close approximation to the gradient descent in sum-squared 
error. The rule will search for the least mean square error, hence this algorithm 
is sometimes named the LMS-rule. 

The algorithm shown here is a gradient descent method and cannot distin
guish between the global minimum of the error function in the weights space 
and local minima. This problem resembles the problem of avoiding local 
maxima in any hill climbing algorithm. Fortunately, simulation results show that 
local minima are usually avoided. 

Even when local minima are avoided, there is a problem of convergence 
speed. Clearly the factor α in equation 9 above, cannot be made very large to 
maintain the gradient descent character. A true gradient descent procedure 
requires even that infinitesimal steps are taken. In the discussion of networks 
below we will mention the learning rate and number of needed samples to teach 
the network some simple functions. There are also extensions proposed, to the 
learning algorithm as presented above, which should increase the learning speed; 
e.g., Rumelhart [Rumelhart 86] proposes the introduction of a momentum term 
in the change of weights. Recent theoretical work suggests that better results will 
be obtained by adapting the weights after each presentation of a pattern by a 
relatively large amount [Ellacott 90]. 

The learning algorithm presented here has another problem. When all ini
tial weights are chosen identical in a symmetrical network and the problem 
desires unequal weights, the procedure will never find these weights. The error 
propagated back through the network is proportional to the weights: if all 
weights are equal all Ss will be equal. Due to the symmetry, also the outputs of 
the elements are equal, these outputs are used as inputs by the next layer. 
Equation 9 yields identical changes of the weights for all units and the symmetry 
is preserved forever. This problem can easily be avoided by choosing some 
small pseudo random values for the initial weights, or adding a little noise 
somewhere in the system or the learning algorithm. 

The final problem is that the derivation is only valid for differentiable and 
nondecreasing generator functions; it not applicable in binary networks. This 
learning algorithm is specified in Miranda when it is used in the multi-layer 
perceptron described below. 

In binary networks a similar learning algorithm is used. The derivation 
terms are simply dropped. It cannot be proven to work, but it is used with good 
results in many applications. This algorithm is described in detail in the discus
sion of multi-layer perceptron for binary values below. 

Description of specific artificial neural networks 

With the description tools defined above and some additional, model specific, 
functions it is possible to give an elegant, complete and executable description of 
artificial neural networks. For each network at least the following functions 
must be defined: 
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high :: value II The upper limit of the values 
low :: value II The lower limit of the values 
nr_constant_neurons :: num II The number of constant neurons the net 
compute_state :: weights_net -> ¡nput_state -> [state] 
compute_output :: weights_net -> input_state -> output_state 
adapt_weights :: weights_net -> input_state -> target_state -> weights_net 
gain :: num II Determines the learning rate 
a :: num II The scattering of the initial weights 
initial_net :: [num]-> weights_net II Generates the weights of the initial net 

6.2 The Adaptive Linear Combiner 
The ALC (Adaptive Linear Combiner) is the basic building stone for many 
adaptive systems. In terms of neural networks, the ALC is only a synapse that 
takes a weighted sum. It is developed independently in adaptive signal processing 
[Widrow 85]. 

ale :: element 
ale = wsum 

With its input connected to a tapped delay line, the ALC is the most popular key 
component of an adaptive filter. When the ALC is used as an adaptive filter, an 
estimation of the wanted output must be available to compute an error signal. 
This error is the difference between the system output and the desired output. 
The adaptive filter is tuned to reduce the error signal. There are several algo
rithms to decrease the error signal, the most popular method is the delta rule. 

The use of these adaptive filters is widespread nowadays; all high speed 
modems use adaptive equalization filters, many long distance communication 
links are equipped with adaptive echo cancelers, furthermore these filters are 
used in noise cancelers and system modeling. 

Since our prime interest is the description of neural networks, the ALC is 
not discussed in detail. It is mentioned to show that even very simple elements 
can perform useful tasks. 

6.3 The Adaline 
The name adaline is derived from adaptive learning element [Widrow 62]. 
Adalines are adaptive linear combiners cascaded with the sgn function to get a 
binary output [Widrow 88]. 

adaline :: element 
adaline weights - sgn.wsum weights 
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An adaline computes the inner product between its weight vector and the input 
vector and passes this value, the potential, to the sgn function to obtain a binary 
output. Usually, a constant value is added to the input state to obtain an ad
justable threshold. 

The output of an adaline changes when the inner product crosses zero. The 
inner product of the input and the weight vector is zero in a plane through the 
origin perpendicular to the weight vector. So, the adaline checks whether the 
input is above or below a hyperplane in the input space. The regions in the input 
domain correspond to output values. Binary functions with an input domain that 
can be separated in two regions, separated by a hyperplane, can be performed 
by the adaline. This implies that an adaline can leam to execute on logical AND 
or OR-function, but the XOR-function cannot be performed. The typical adaline 
'network' contains exactly one element. 

compute_state :: weights_net -> ¡nput_state -> net_state 
compute_state = feedjorward adaline 

compute_output ·: weighls_net -> input_state -> output_state 
compute_output weights inputs = select_output (compute_state weights inputs) 

initial_net :: [num] -> weights_net 
initial_net [dimension.elements] 
= [[[a*(1 -((2*i+3*j) mod 7)/3) II Pseudo random weights 

11 <- [1 ..dimension+nr_constant_neurons]] II Length of input vector 
| j <- [1 elements]]] II The number of elements 

high = 1 II The standard convention Moreover, 
low = -1 II it is assumed that the mean input is 0. 
nr_constant_neurons = 1 

The weight vectors for some familiar boolean functions are (the last element 
represents the threshold value) 

and_vector =[1,1,-15] II 2-input AND 
nand_vector = [-1,-1, 15] ll2-mputNAND 
or_vector = [ 1,1, 1.5] II 2-mput OR 
maj_vector =[1,1,1,0] II 3-mput majonty 

Our specification shows that an adaline is just a special case of the perceptron. 
So, learning in adalines is equivalent to learning in perceptrons and it is de
scribed there. 

In the early 1960s an extension to implement non linear separable functions 
is proposed [Ridgway 62], called madahne (many adalines). These networks 
consist of a layer of adalines connected to a single, fixed, logic device in the sec
ond layer. It can be modelled by feeding the output from the network described 
above to the proper function. Some useful functions are 
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and_fun :: ¡nput_state -> output_state 
and_fun inputs 
- [high], if # (filter (=bw) inputs) = O 
= [tow], otherwise 

majorityjun :: ¡nput_state -> output_state 
majority_fun inputs 
= [high], if # (filter (=high) inputs) > # inputs/2 
= [low], otherwise 

A possible madaline performing the 2-input XOR-function is 

xor_madaline = and_fun.compute_output [[or_vector, nand_vector]] 

6.4 The Perceptron 
Perceptrons [Rosenblatt 62, Minsky 69] are feed forward networks composed of 
simple processing elements. These processing elements are similar to the adaline 
described above. In the original setting, perceptrons are processing binary val
ues. Later on a variant to process continuous variables is defined in order to 
apply the generalized delta rule as learning algorithm. First, the single layer 
binary perceptron will be described, afterwards multi-layer perceptrons for 
continuous and binary values will be discussed. It makes sense to distinguish 
single-layer and multi-layer perceptrons; the type of mappings which can be 
executed by these networks and the applicable learning rules are different. 

The internal potential in each element of a binary perceptron is determined 
by the function wsum; the inner product between the input and weight vector. 
The generator is the hardjimit function. Usually, the threshold in this function is 
taken to be zero. An adaptable threshold is modelled by an additional constant 
input. When the bounds high and low are set to 1 and -1, which is the common 
choice, the single layer perceptron consists of adalines. 

The single layer perceptron 

In the literature, the single layer perceptron is sometimes drawn as a three layer 
network; a layer of input neurons yielding the input state, a layer of unalterable 
elements performing the fixed mapping from the input to the adaptable elements 
and the layer of adaptable elements. The description given here covers only the 
last layer, the only layer that is adapted. 

The single layer perceptron contains one neuron for each element in the 
output state. The functional description of the single layer perceptron is identical 
to the adaline as described above, only the element used in compute_state is 
changed from adaline to perceptron_b. Binary functions with an input domain that 
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can be separated in two regions corresponding to the output values (like the AND 
and OR-function) can be implemented by a single-layer perceptron. 

There are effective ways to teach a perceptron to execute a function based 
on a set of sample inputs and the desired response. Since the generator function 
is not differentiable the derivation of the learning rule found as generalised delta 
rule is not valid. However, the normal delta rule is used to adapt the weights in 
this network after every presentation of a sample. This makes sense, since the 
generator function can be thought to magnify the error, the delta rule will 
improve the potentials in the network and in the long run also the output values. 
The correctness of this learning rule is not proven, but it appears to behave well 
in simulations. A set of small randomly chosen weights is chosen for the initial 
network. After each presentation of a sample the weights are adapted such that 
the error in the response of the network is decreased. The Miranda specification 
of the learning algorithm for the single layer binary perceptron reads: 

adapt_weights:: weights_net -> ¡nput_state -> target_state -> weights_net 
adapt_weights weights input target 
= [[[new_weight j i 

| i <- [0..# weightslMj -1 ] ] II inputs for element i in the layer 
| j <- [0..# weights!! -1] ] ] II elements in the layer 

where new_weightji = weights!0!j!i + gain* statelOH *error!j 
state = compute_state weights input 
output = selectoutput state 
error = [ targetü - outputü | i <- [0..# target -1]] 

Functions with an input domain that cannot be separated by a single hyperplane 
(like the XOR-function), cannot be implemented by a single layer perceptron. 
More complicated functions must be implemented by identifying smaller regions 
in input space. There are at least two possibilities to implement these functions 
with neural networks. First, the domains in the input space corresponding to 
each output value can be limited by several hyperplanes, each plane can be 
implemented by an adaline. The information yielded by these elements can be 
further processed in other layers of these elements. It can be proven that these 
multi-layer perceptrons can learn every projection function. The second way to 
implement these functions is to use neurons sensitive to smaller regions in the 
input space. The Learning Vector Quantization network uses a set of vectors, 
every input vector is associated with the vector which resembles this input most. 

Applications of the single layer perceptron 

This single layer perceptron network learns simple two input functions like AND 
and OR within some tens of samples, the exact number of samples needed de
pends on the initial weights, the gain and the sequence of examples. 

These functions are also learned when some don't-care elements are added 
to the input state. The weights associated with these don't-care elements become 
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zero (or very small) as expected. Using gam = 0.1 and a scattering of initial 
weights a = 0.1, this net learns the two input AND-function from 20 randomly 
chosen input patterns. The resulting weight vector of a sample run is [0 27, 0.1 o,-
0 23]. The last element in this vector is the connection to the constant input, rep
resenting the threshold. A three input AND-function takes 80 samples, the result
ing vector is [0 27, о 30, о 37,-0.77]. When a don't-care term is added (the target 
for the function trace in appandix С is given by the function and_fun take 2) the 
resulting vector is [0.47, 0 30, -0.03, -0.37]. This requires 30 learning samples. The 
weight vectors obtained are dependent of the initial weights and the sequence of 
samples. 

The multi-layer perceptron for continuous values 

For the multi-layer perceptron, with a differentiable generator function, the 
generalized delta rule is used as learning algorithm. The generator function is 
the sigmoid defined above. This network can be specified in Miranda as: 

compute_output :: weights_net -> input_state -> output_state 
compute_output weights input = select_output (compute_state weights input) 

compute_state :: weights_net -> input_state -> net_state 
compute_state = feed_forward perceptron_c 

adapt_weights:: weights_net -> input_state -> target_state ->weights_net 
adapt_weights weights input target 
= [[[new_weight I j ι 

11 <- [0..# weights1!1] -1] ] II inputs for neuron ι in layer I 
| j <- [0..# weights!! -1 ] ] II neurons in layer I 
11 <- [0 # weights -1 ] ] II layers 

where new_weight I j ι = weightsHijh + gain * stateΨι * deltaNij 
state = compute_state weights input 
state' 

= [[ sigmoid' (wsum (weightsWj) (stateN)) | j <- [0. #weightsll -1]] 

| l < - [ 0 #weights-1]] 
output = select__output state 
output' = asístate' 
error = [output' |j*(target ||-output |j)|]<-[0 # target-1]] 
delta 

[[ state'illj * sum [weightsi(l+1)ikij * delta'(l+1)ik 
| к <- [0..# weightsi(l+1) -1 ] ] II outputs of neuron 
| j <- [0 # weightsH -1] ] II neurons in layer I 
11 <- [0. # weights -2] ] ++ II hidden layers 

[error] II output layer 
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¡nitial_net :: [num] -> weights_net 
¡nitial_net (n:m:sizes) 
= [layer] , if sizes = [ ] 
= layer : initial_net (m:sizes) , otherwise 

where layer 
= [[a*(1 -((613* # sizes + 337*i + 733*j) mod 101 )/50) II pseudo random 

|j <- [1..n+nr_constant_neurons]] | i <- [1..m] ] 

high = 1 
low - -1 
nr_constant_neurons = 1 

Application of the multi-layer perceptron for continuous values 

The behaviour of this network is studied, it was trained to execute some boolean 
functions. Using boolean functions there is a problem in deciding when the net
work has learned the function. Due to the used generator function the extremes 
high and low are never reached as output values. A large sharpness improves the 
separation between the output values, but tends to slow down the recovery from 
wrong situations since the derivative tends to zero very soon. We have used as 
parameters a=0.2, gain=0.5 and sharpness=2. This results in a quick convergence 
for the three input majority function, within 100 samples the output values are 
within 10% of the difference between high and low of the correct values. The 
initial vector with value [-0.04,-0.14.0.16,0.05] is changed to [1.47,1.46,1.45,0.14]. A 
two layer network with two hidden units and one output unit learns the XOR-
function within 190 samples. The initial weights generated by initial_net [2,2,1] are 
[[[0.08,-0.02,-0.02], [-0.05,-0.16,0.14]], [[-0.04,-0.14,0.16]]]. The obtained weights are 
[[[1.21,-1.25,-0.90], [1.85,-1.56,1.85]], [[1.71,-1,67,1.47]]]. To show how these vectors 
implement the XOR-function the truth tables for the processing elements are 
shown; the output values are rounded to boolean values. Elements 1 and 2 are 
hidden, element 3 is the output neuron. 

inputs 
low low 
low high 
high low 
high high 

element 1 
low 
low 
high 
low 

element 2 
high 
low 
high 
high 

element 3 
high 
low 
high 
high 

system 
low 
high 
high 
low 

target 
low 
high 
high 
low 

Multi-layer perceptrons with the backpropagation learning rule are used with 
success in many practical applications [see for instance INNC 90]. The main 
problem is to develop a suitable mapping from the problem variables to the neu
ral network inputs and to use the network output in the appropriate way. The 
number of hidden units needed, the gain and the initial network are determined 
empirically. 
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The multi-layer perceptron for binary values 

One way to ensure that the output reaches the bounds high and low is to use a 
binary generator function. Again, there is no learning rule which can be proven 
to reduce the error, but a generalisation of the single layer learning rule for 
binary values, the delta rule, can be used here. Compared with the generalized 
delta rule, this comes down to dropping the derivation terms. The single layer 
perceptron is just a special case of this network. This network differs from the 
network for continuous values in the element used to compute the state and the 
learning rule: 

compute_state :: wekjhtsjiet -> ¡nput_state -> net_state 
compute_state = feedjorward perceptron_b 

adapt_weights :: weights_net -> ¡nput_state -> targeLstate ->weights_net 
adapt_weights weights input target 
= [[[new_weight I j i 

| i <- [0..# weightslllj -1 ] ] II inputs for neuron j in layer I 
| j <- [0..# weightsll -1 ] ] II neurons in layer 1 
11 <- [0..# weights -1 ] ] II layers 

where newweight I j i = weightsllljli + gain * statellli * deltalllj 
state = compute_state weights input 
output = select_output state 
error = [targetlj - outputlj | j <- [0..# target -1 ]] 
delta 

= [|sum[weights!(l+1)lk!j*delta!(l+1)lk 
| к <- [0.. # weightsl(l+1) -1 ] ] II outputs of neuron 
| j <- [0..# weightsll -1 ] ] II neurons in layer 1 
11 <- [0..# weights -2] ] ++ II hidden layers 

[error] II output layer: error 

A three layer perceptron can perform every projection of the input state to the 
output state provided there are enough elements in the layers [Minsky & Papert 
69]. The first two layers select the proper regions in the input space while the 
third layer combines the output of these combinations. Unfortunately, the 
amount of processing elements required cannot be determined. 

There is a very crude implementation of every boolean function on a two-
layer perceptron [Coolen 89]. Its use is not recommended, but it shows the 
power of multi-layer perceptrons. The implementation of the function for each 
output bit is done with brute force: 

For every possible input pattern that corresponds to a high output value 
there is a hidden neuron that selectively responds to that pattern. This is 
done by making the weight vector identical to the input pattern and choos
ing the proper threshold (square of the length). 

6.4 The Perceptron 131 



The output bit can now be determined by a perceptron taking the logical OR 
of these hidden units. 

Application of the multi-layer perceptron for binary values 

Using this network description, the number of training samples needed to learn 
the XOR-function as function of the amplitude of initial weights, a, the learning 
rate, gain, and the number of neurons in the hidden layer is explored. The XOR-
function is used because it is a very simple and small function, but still interest
ing through a non linear separable input-output releation. Experiments were 
done with the same pseudo random sequence of samples and the same set of 
pseudo random initial weights (except for the amplitude). To study the influence 
of the particular choice of initial weights some additional experiments were 
done; a negative amplitude inverts all initial weights and a different set of initial 
weights is used as additional measurement, these results are printed in italics. 
After several learning samples the performance of the system was evaluated 
until the XOR-function was learned. The number of samples between the subse
quent evaluations of the network performance is always less then 10 % of the 
total number of samples needed. The Miranda system on a SUN-3 performs 
around 200 updates of individual connection strength per second, including 
evaluation of the performance and printing statistics. Our patience and the 
amount of heap space used limit the number of learning cycles somewhere 
around 10000. The number of samples corresponding to the optimal gain for a 
given amplitude is printed bold. 

la|gain-> 
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0.001 

-0.001 

0.01 

0.01 

-0.01 

0.1 

1 

0.0005 
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1450 
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9Θ50 

>10000 
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0.001 

40 

480 
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3200 

317' 

3300 
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1550 

0.002 

350 

100 

125 

850 

80C 

875 

9525 

790 

0.005 

3100 

270 

325 

100 

225 

120 

975 

280 

0.01 

2050 

5270 

>10000 

50 

40 

60 

300 

150 

0.02 

1350 

4575 

675 

350 

2875 

170 

60 

80 

0.05 

>10000 

>10000 

750 

3175 

7875 

5750 

6000 

55 

0.1 

>10000 

>10000 

100 

950 

810C 

7350 

800 

30 

0.2 

>10000 

>10000 

>10000 

3400 

>10000 

1375 

425 

>10000 

0.5 

>10000 

>10000 

>10000 

3300 

>10000 

Number of teaching samples needed by a 2-layer binary perceptron to leam the 2-mput 
XOR-function with 2 elements in the hidden layer. 
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The data from the table above shown graphically. Vertical the number of samples needed, 
horizontal the gain. 

la|gain-> 
0.0001 

0.001 
0.01 

0.1 

0.0005 
95 

1475 
>10000 
>10000 

0.001 
925 
310 

3675 
>10000 

0.002 
BOO 
70 

1900 
>10000 

0.005 
5625 

150 
80 

1825 

0.01 
175 
550 
45 

450 

0.02 
3800 

350 
1800 
210 

0.05 
2500 
6650 
6625 

40 

0.1 
>10000 
>10000 

650 
3200 

0.2 

6950 
1900 

0.5 

>10000 
1500 

Number of teaching samples needed by a 2-layer binary perceptron to leam the 2-mput 
XOR-fimction with 3 elements in the hidden layer. 

¿a|gain-> 
0.0001 

0.001 

0.01 

0.1 

0.0005 

150 

875 

9800 

>10000 

0.001 

900 

510 

287 

>10000 

0.002 

80 

125 

525 

5025 

0.005 

2675 

1240 

100 

1125 

0.01 

1250 

5600 

45 

375 

0.02 

400 

1250 

3775 

1 6 0 

0.05 

650 

850 

5350 

225 

0.1 

750 

750 

1725 

300 

0.2 

>10000 

>10000 

4850 

3400 

0.5 

8725 

3800 

Number of teaching samples needed by a 2-layer binary perceptron to leam the 2-input 
XOR-function with 4 elements in the hidden layer. 

la|gain-> 
0.001 

0.01 

0.0005 

>9400 

>9400 

0.001 

>9400 

>9400 

0.002 

>9400 

>9400 

0.005 

>9400 

>9400 

0.01 

>9400 

6375 

0.02 

4150 

>9425 

0.05 

3700 

2100 

0.1 

4750 

1800 

0.2 

1700 

3100 

0.5 

>10000 

1700 

Number of teaching samples needed by a 2-layer binary perceptron to leam the 3 input 
XOR-function with 2 elements in the hidden layer. 

la|gain-> 
0.001 

0.01 

0.0005 

1225 

>9175 

0.001 

300 

3100 

0.002 

1 5 0 

800 

0.005 

800 

>9125 

0.01 

3250 

85 

0.02 

6100 

>9050 

0.05 

7450 

3600 

0.1 

>10000 

700 

0.2 

700 

600 

0.5 

>10000 

1600 

Number of teaching samples needed by a 2-layer binary perceptron to leam the 3 input 
XOR-function with 3 elements in the hidden layer. 
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From these figures some tendencies can be observed: 
• The 2-input XOR-function is quickly learned for each number of hidden 

units tried, provided that the initial parameters are well chosen. 
• Amplitude and gain can be chosen in a wide range of values to achieve a 

correctly behaving network. There is however, a clear optimum gain for 
each amplitude. This optimum is largely independent from the actual initial 
weights; the amplitude of these weights is much more important. The opti
mum gain increases when the amplitude of the initial weights increases. 

• The 3-input XOR-function appears to be much more difficult than the 2-
input XOR-function. The 3-input network behaves nearly correct (only one 
pattern gives the wrong answer) within some hundreds of samples, but it 
requires much time to become totally correct. The behaviour of the net
work keeps changing in time, so it is not stuck in a local minimum of the 
error function. 

The internal representations of the XOR-function can be deduced from the 
obtained weights. There is not a unique internal representation for a given net
work, but the representation changes among the learn runs. 

6.5 Learning Vector Quantization 
The Learning Vector Quantization (LVQ) network [Kohonen 88] consists of a 
single layer of elements. All elements determine the correspondence between the 
input vector and their weight vector by computing the inner product. The output 
of the network is the class associated with the element with the largest potential. 
When several elements produce an equal potential a choice is made; here the 
element with the lowest index number is used. The element with the largest 
potential can be determined in the neural network manner by a competition of 
elements in an N-flop feedback network (see below), or in a more direct way. 
Here the direct way is used; the maximum potential is determined and the win
ner is the first element with that potential. 

During the learning phase the winning weight vector is adapted; when the 
output class is equal to the target the weight vector is changed in the direction of 
the input to increase the inner product further. In case of an erroneous output, 
the winning weight vector is changed in the opposite direction to decrease the 
potential of the winning element. 

There is no need to use random vectors as initial values for the weights in 
this network. It appears that the best results are obtained when all initial vectors 
are chosen in the middle of the input space. 

Unlike learning according to the delta rule, this network is adapted when it 
behaves correctly for the current input-target pair. As a consequence, it is 
possible that the network performance decreases even if it had learned to 
execute its task perfectly. This can be understood by considering a vector 
responsible for the correct mapping of inputs in some region in the input space, 
a sequence of inputs on one side of this region drifts the weight vector to this 
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side. The other side of the region becomes closer to another weight vector and 
hence, possible to another output class. This happens only when a single weight 
vector maps several different inputs to their targets. This effect can be reduced 
by slowly decreasing the learning rate. 

vector = = [num] 
vectorjd = = num 
class = = state 
target_class - - class 
nr_off_classes = - num 

assodate_class :: vector_id -> class 
associate_class id = [id mod nroff classes] || equal distribution over classes 

compute_state :: [vectors] -> input_state -> net_state 
compute_state = feed_forward ¡nner_product 

compute_output :: [vectors] -> input_state -> output_state 
compute_output vectors input = associate_class (find_winner vectors input) 

find_winner :: [vectors] -> input_state -> vectorjd 
find_winner vectors input = id_max (select_output (compute_state vectors input)) 

|| more direct: id_max [inner_product vector input | vector <- vectors] 

¡d_max :: output_state -> vectorjd 
id_max state = scanjist 0 (max state) state 

adapt_weights :: [vectors] -> input_state -> target_class -> [vectors] 
adapt_weights [vectors] input target 
= [[new_vector i | i <- [O.J vectors -1]]] 

where 
new_vector i 

= vectorsli , if i - - winner 
= [vectorslilj + gain * input!] | j <- elements] , if associate_class winner = target 
- [vectorslilj - gain * inputlj | j <- elements ] , otherwise 

elements = [0..# vectorsli-1] 
winner = find_winner [vectors] input 

initial_net :: [num] -> [vectors] 
initial_net [input_dimension,size] 
- [[vector i | i <- [1 ..size]]] 

where vector i 
= [(high+low)/2 + a*{(2*j+3*i) mod 7)/6 

| j <- [1 ..input_dimension + nr_constant_neurons] ] 

high = 1 II the usual assumption 
low = -1 
nr_off_classes = 2 II binary output 
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nr_constant_neurons = о 

For vectors not distributed at a fixed distance around the origin, the inner prod
uct is not applicable as a measure of correspondence. The length of the differ
ence vector can be used as a measure of correspondence in this situation 
[Kohonen 88]. The element with the least potential must be the winner in this 
situation. In the learning algorithm described above the weight vectors can grow 
unbounded to resolve some severe errors of the network. The learning algo
rithm has been adapted to decrease the length of the difference vector when the 
network produces the correct answer. 

compute_state :: [vectors] -> input_state -> net_state 
compute_state = feed_forward difference 

difference :: vector -> vector -> num 
difference vi v2 = length [v1 !i - v2ii | ¡ <- [0 #v1-1]] 

compute_output :: [vectors] -> input_state -> output_state 
compute_output vectors input = associate_class (find_winner vectors input) 

find_winner :. [vectors] -> input_state -> vectorjd 
find_winner vectors input = id_min (select_output (compute_state vectors input)) 

id_min - outpuLstate -> vectorjd 
id_min state = scan list 0 (mm state) state 

adapt_weights :: [vectors] -> input_state -> target_class -> [vectors] 
adapt_weights [vectors] input target 
= [[new_vector 11 к - [0. # vectors -1]]] 

where 
new_vector ι 
= vectors1! , if ι ~= winner 
= [(1-gain)*vectorshi]+gain*inputij | j <- elements ], if associate_class winner = target 
= [vectorsMj - gain'mput') | j <- elements ] , otherwise 

elements = [0 #vectorsii-1] 
winner = find_winner [vectors] input 

There are many similar networks proposed in the literature. The Hamming net
work [Lippmann 87] uses the Hamming distance between the input bit vector and 
stored vector to select the best matching vector. The Hamming distance between 
two bit vectors is the number of corresponding elements that are unequal. The 
counter propagation network [Hecht-Nielsen 87a] does not use a fixed associa
tion of classes to vectors, but this relation is learned in a perceptron like manner 
from the samples. 
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Applications of Learning Vector Quantization 

The LVQ network learns very quickly. Using the network description given 
above the number of teaching samples needed for various values of the initial 
values and gain is determined. The 2-input XOR-function was taught to a network 
consisting of 4 vectors. Several variants of the learning algorithm are compared. 
In the first table the original learning algorithm is used. The second table con
tains the results obtained using the second algorithm. In the last learning algo
rithm the vectors corresponding to the right classes are normalised. The per
formance of the last algorithm decreases very significantly if the wrong vectors 
are normalised after adaptation. The network becomes extremely sensitive for 
the choice of the initial values and the sequence of training inputs. The Miranda 
system on a SUN-3 performs around 30 vector updates per second. 

la|gain-> 
0 

0.0001 

-0.0001 

0.001 

-0.001 

0.01 

-0.01 

0.1 

-0.1 

1 

-1 

0.0001 

21 

18 

6 

18 

4 

18 

6 

68 

86 

800 

830 

0.001 

21 

18 

19 

11 

4 

3 

4 

18 

6 

68 

82 

0.01 

21 

18 

19 

18 

4 

11 

4 
3 

4 

18 

6 

0.1 

21 

11 

18 

11 

18 

11 
4 

11 

4 

7 

6 

1 

21 

11 

5 

18 

4 

18 

4 

0.0001 

19 

11 

4 

11 

4 

12 

5 

180 68 
19 

18 

6 

81 

550 

570 

0.001 

19 

11 

5 

11 

4 

3 

4 

12 

5 

58 

51 

0.01 

19 

11 

5 

12 

4 

11 
4 

3 

4 

11 

5 

0.1 

19 

11 

4 

11 

2 

11 

2 

11 

4 

4 

4 

1 

136 

3 

5 

12 

2 

12 

2 

12 

5 

11 

4 

Left: Number of teaching inputs required by a 4-vector learning vector quantization network 
to leam the 2-input XOR-function. The original learning rule is used. 

Right: Initial values and trainings set as above. The second learning rule is used for this LVQ 
network, this rule yields vectors of bounded size. 

i initial vectors I gain -> 
all vectors [1,1] 
all vectors [0,1] 

pseudo random vectors 
inverse of vectors above 

0.0001 

5 
>6500 

0.001 

5 
2 

>10000 

0.01 
>8575 

5 
2 

>10000 

0.1 
>10000 

5 
2 
6 

0.5 
22 

5 
11 
4 

0.9999 
31 

5 
11 
11 

The same samples are used again to teach this LVQ network. Now the vectors are nor
malised after a successful recognition in order to keep their length finite. 

From these figures it is clear that the learning vector network learns the XOR-
function much faster than a multi-layer perceptron using the backpropagation 
learning rule. Only when the scattering of initial vectors is much larger than the 
gain a large number of learning cycles is needed. The second learning rule keeps 
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the length of the vectors finite and performs slightly better than the others so it 
is recommended to use that one. It behaves much better when the distribution of 
samples over the vectors is not uniform. The normalising variant appears to be 
sensitive for the initial values and is not applicable when one of the vectors 
becomes the O-vector. This variant does behave well, when the bounds low and 
high are set to 0.1 and 1.0. 

6.6 Feedback Networks 
Networks with an internal loop structure, a connection of (part of) the outputs 
of some elements back to their inputs, are called feedback networks. All net
works can be applied in a feedback configuration by making an external con
nection between the output and the input. 

Feedback networks became famous from the work of Hopfield [Hopfield 
82], although they were first used by Kohonen and Little [Kohonen 77, Little 
74]. These networks consist of a feedback configuration of McCulloch-Pitts neu
rons. These elements take a weighted sum of their input values and yield usually 
a binary output value. When the weight vectors of all neurons are viewed as a 
matrix, the potentials are computed by multiplying this matrix with the input 
vector. The output vector is obtained by mapping the generator function over 
the potential vector. The state is cycled through the network until a stable state is 
reached. 

The Hebb [Hebb 49] learning rule is used to tune this network. The strength 
of a connection is increased when the connected input and target value corre
spond, otherwise the weight is decreased. The connections from a neuron to its 
own input are kept zero in the historical setting, although the network behaves 
well with a non zero diagonal term in the weight matrix. Using this learning 
rule the network becomes an associative memory. The network can be used for 
pattern recognition. The proper weights are usually obtained by using the Hebb 
rule with each pattern used simultaneously as input and target. A pattern is also 
learned from multiple presentations, each one polluted with random noise. The 
patterns become the eigen vectors of the matrix multiplication cascaded with the 
generator function. The network seeks the pattern corresponding to an input 
state by re-applying the function until a fixed point is reached. The maximum 
number of patterns that can be stored in a large weight matrix is 14% of the 
number of neurons, provided that the patterns are not too similar [Hopfield 82, 
Amit 85]. 

Simulations show that the network finds the patterns faster when the neu
rons are updated one by one. Each neuron uses the most recent state to deter
mine its output and unstable equilibrium points are avoided by the pseudo ran
dom evaluation order. 

The bounds low and high are chosen nowadays usually -1 and 1, but Hopfield 
used 0 as lower bound. This symmetry has as result that the inverse of a learned 
pattern is also a fixed point of the system. 
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compute_state :: we¡ghts_net -> ¡nput_state -> net_state 
compute_state = feed_back_asyn hopfield_b 

compute_output :: weights_net -> inpuLstate -> output_state 
compute_output weights input = select_output (compute_state weights input) 

adapt_weights:: weights_net -> input_state -> target_state ->weights_net 
adapt_weights weights_net input_state target_state 
= [[[new_weight i j | j <- [Ο..η-I] J | i <- [0..П-1] ] ] 

where new_weight i j 
= O ,ifi=j 
= weights_netlO!ilj + gain * target_stateli * input_statelj , otherwise 

η - # (weights_netlO) 

¡nitial_net :: [num] -> weights_n8t 
initial_net [n] 
= [[[a*(1 -((2*1+3*]) mod 7) / 3) | i <- [1 -m] ] | j <- [1 ..m] ] ] 

where m = η + nr_constant_neurons 

high = 1 
low = -1 
nr_constant_neurons = 0 

The system appears to be sensitive for transformations of the input state. A 
translated pattern is not recognized. This can be partly solved by learning the 
network the inverse of the transformation expected. A large number of random 
patterns is used as sample while the target is the transformed pattern. It is of 
course, possible and more efficient to start with a matrix that performs the 
desired transformation. For transformations it is clearly better to use a syn
chronous update of the neurons, here an ordinary matrix multiplication is 
desired. When transformation and pattern recognition are taught in the right 
ratio, the network transforms an input pattern until it is recognized. 

Convergence 

In order to show the convergence of the state in asynchronously updated binary 
feedback networks, an energy is associated with each state s of the system. It will 
be shown that stable states are energy minima and that the system will evolve to 
a minimum. The energy E is defined by 

E= - г £ 5/ WÍJ sj (!) 
¡J 

The output for element t' is given by 

î'i= sgn(vi) (2) 

II pseudo random 
II square matrix 
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V|= I W y S y (3) 

J 

It will be shown that the energy decreases when the state is changed according to 
the given rules, until a minimum is reached. It is required that the weight matrix 
is symmetric, which is achieved automatically by the Hebb learning rule for 
pattern recognition provided that the bounds -1 and 1 are used and the initial 
matrix is symmetric. The change in energy due to the evaluation of element k is 
(all other elements remain unchanged) 

ΔΕ = E' - E {using equation 1} 

= - - X i ' , Wy s 'j + - X s ι Wy Sj {drop identical terms} 
ч υ 

= - 2 (Σ s'i Wi* s'k + Σ s'k Wkj a'j + Σ ί ι « Ι * f* + Σ "к Wkj Sj) 
• J ι J 

{wu = 0} 

= - 2 Œ Si Wik s'k + Σ s'k » η , Sj + Σ s, wtk sk + Σ ¿к "к; Sj) 
ι ] ι ] 

{collect terms) 

= - j Œ ¡¡ι Wik (s'k - Sk) + Σ С*'* Sk) Wkj Sj ) {rearranging} 
' J 

= - 2 (s'k • Sk) Σ (»к; + Wjk) Sj {wy = WjJ 

- (s'k Sk)Σn>kJSJ {using equation 3} 

J 

= - (s'k Sk) 4 (4) 

It is easy to see that ΔΕ = 0 when s\ = s*. If the output of element it is changed, 
than s 'к = -Sk and using equation 2 one finds ΔΕ = -2 s'k v* < 0. Since E is bounded, 
the system will evolve to a (local) minimum of E. 

The observation that a Hopfield network searches a minimum energy in the 
system space leads to several new applications. The network is now used to find 
the best solution for some assignment problem instead of pattern recognition 
[Hopfield 85]. Well-known examples are the travelling salesman problem and 
job assignment for people with different rates for the tasks. An energy surface is 
defined that corresponds to the problem. An Ν χ N-network is used for a prob
lem of size N. First, N N-flops are built. An N-flop is the N dimensional ana
logue of a flip-flop, it is a collection of N neurons which are only in a stable 
state when one of them is active. This is achieved by inhibitory connections 
between the neurons. These N-flops are used to achieve that each site is visited 
only once in the TS-problem or each task is assigned to exactly one person in the 
job assignment problem. The N-flops are interconnected with a strength depend
ing on the problem; the distance between the cities or the ranking of people for 
the tasks. When the network is in a stable state the active neurons show the solu
tion found by the network; the best path for the salesman or the optimum task 
assignment. Unfortunately, this optimum found can correspond to a local energy 
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minimum, then the assignment is a sub-optimal one. In some practical situations 
such a solution may be acceptable. Networks using continuous valued generator 
functions appear to avoid local minima better than the corresponding networks 
with binary generator functions. The derivation of the convergence shown 
above is not applicable for networks with continuous values. 

Application of a feedback network 

We will illustrate the use of Hopfield networks by constructing a feedback net 
that searches a solution of the N-queens problem; place N queens on an Ν χ N-
chess board, such that they cannot hit each other. Of course, an Ν χ N network 
is used for this purpose. The connections are arranged such that the queens are 
repulsive; the potential of a field is decreased when it is covered by a queen on 
another field. Furthermore, there is a tendency in the generator function to 
place queens on the board when a field is not covered by any other queen. In 
order to try to avoid local minima, we use pseudo linear outputs and a diagonal 
term to decrease the changes between the various steps. In this way a hill 
climbing system is built. The asynchronous evolution function is used to com
pute each new state. 

queen_generator :: generator 
queen_generator ν = clip (v + 1/3) 

queen_element :: element 
queen_element weights = queen_generator.wsum weights 

compute_state :: weights_net -> input_state -> net_state 
compute_state = feed_back_asyn queen_element 

compute_output :: weights_net -> input_state -> output_state 
compute_output weights input = select_output (compute_state weights input) 

initiaLnet :: [num] -> weights_net 
initial_net [n] = [[[matrix_value i j η | i <- [0..(ηΛ2-1)]] | j <- [0..(ηΛ2-1)]]] 

matrix_value positionl position2 dimension 
= 1 , positionl = position2 II diagonal term 
= -1/2 .¡=Κν]=ΐν II rook-like attack 

abs (i-k) = abs (j-l) II bishop-like attack 
« 0 , otherwise II no attack 

where (i,j) = coordinates positionl dimension 
(k,l) - coordinates position2 dimension 
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coordinates field_number board_size 
= (row.col) 

where row = f¡eld_number d¡v board_size 
col = field number mod board size 

high - 1.0 
low = 0.0 
nr_constant_neurons - 0 

The network described can be used to change an initial configuration to a solu
tion with the functions defined in appendix C. To show the behaviour of this 
network, the results of two evaluations are reproduced here. Note that the initial 
configurations are isomorphic upon a rotation over 90°. The increasing proba
bility to place a queen on a field is indicated by the characters ' ','.', '+', '*', 'q' 
and 'Q'. 

. . + . * Q " " Q 
Q Q Q Q „ Q v

n Q 

+ . * . * . q . Q Q 
+ * Q Q Q Q 

• · + q 0 U 0 Q 

Unfortunately, the system gets frequently stuck in a local minimum: a stable 
state with too few queens on the board. The standard solution to this familiar 
problem is to add a noise term which enables the system to leave the local 
minima. This term is decreased each iteration and one hopes that the system 
cools down in the absolute energy minimum. The terminology is borrowed 
from physics due to the similarity with thermal noise in spin models. 

Avoiding local minima 

The Hopfield network with binary values is isomorphic [Amit 85] to the Ising 
spin model for many coupled spin particles [Reif 65, Reichl 80]. There is a 
famous technique in physics to find the minimum energy state for such a system 
called simulated annealing. The system starts at a high temperature which 
implies that much noise is added when a new system state is computed; there is a 
large chance to change spin. While new states are computed, the temperature is 
slowly decreased. It can be shown that the expectation value of the system state 
is the minimum energy state. This technique is also used in feedback networks to 
leave local energy minima [Kirkpatrick 83]. Unfortunately, this does not imply 
that a feedback network will always find the minimum energy state when a 
slowly decreasing amount of noise is added during the iterations. 

We will show that the addition of a decreasing noise term to the states helps 
the system to find solutions for the queens problem. A real simulated annealing 
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procedure requires binary neurons and a state change proportional to ехр(-ДЕЯ) 
for uphill state changes, state changes that reduce the energy are always ac
cepted. The original Hopfield networks are the Τ = 0 limit of this rule. 

compute_state :: weights_net -> input_state -> net_state 
compute_state = annealing 0.5 queen_element 

annealing :: num -> element -> weights_net ->input_state->[output_state] 
annealing t element [weights] input 
= tojimit (disturb t (eval_one_by_one element weights) input) 

disturb :: num -> (state->state) -> state -> [state] 
disturb t eval state 
= state : disturb (annealing_rate * t) eval new_state 

where new_state = eval [stateli + noise t (i+v) | i <- [0..#state-1]] 
ν = sum state 

For binary units it is better to flip to values in the state with a decreasing probability instead 
of adding the noise term. 

noise :: num -> num -> num 
noise t s = t*(1 -(random (23459'entier s) mod 101 )/50) II pseudo random [-t,t] 

Avoiding local minima in the N-queens example 

The result of the evaluation of second initial state, using this new network def
inition with an annealing rate of 0.8, is shown below. 

Q Q Q Q Q 
w + w q W Q Q 

* Q Q Q 
•+ . _ • * _ . -Q Q 

The network behaves better using this evaluation function. Although, it is most 
likely to find an absolute energy minimum, it cannot be assured that the system 
ends up in a state with N queens. We have not bothered ourselves with the 
optimization of the initial 'temperature' and annealing rate of this network. The 
current choice of parameters works for a number of cases, but certainly not 
always. The relatively poor performance of this network is not surprising; as 
indicated above local minima cannot be avoided by this network. It should only 
be used in situations where a sub-optimal solution is acceptable. 

An effect similar to the addition of noise can be achieved by making large 
steps in the gradient decent algorithm. The generator function and the weights 
are changed compared to the first attempt. 

queen_generator ν = clip (v+3) 
queen_generator ν = sigmoid (v+3) 

Il a pseudo linear or, 
Il a differentiable generator function 
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matr¡x_value positioni position2 dimension 
= -2 , positionl = position2 II diagonal term 
= -2 , i=k V j=l V abs (i-k) = abs 0-1) II attack 
= 0 , otherwise II no attack 

where (¡J) = coordinates positionl dimension 
(k,l) = coordinates position2 dimension 

Using the first queen_generator function listed above the evolution of the network 
becomes: 

Q 

•V. ¿\ Q Q 

Using this network a correct solution is found for all start configurations iso
morphic to the shown form. Andres reports very good results for these weights, 
but he uses the second generator function [Andres 90]. He shows a derivation for 
the form of the weights in the matrix from an appropriate energy function. The 
magnitude of these weights is set in a trial and error process. A network with a 
sigmoid generator function needs more iterations to come near to a good solu
tion, but seems to avoid local minima a bit better. Wrong solutions caused by 
getting stuck in a local minimum appear to occur only in small networks 
[Andres, private communications]. The number of iterations needed appears to 
increase very slowly with the size of a network. The 10-queens problem re
quires on average 69 iterations, the mean number of iterations needed to solve 
the 300-queens is 205. 

When this solution is compared with an ordinary backtrack solution of the 
8-queens problem in a functional language, the performance of the neural net
work is quite disappointing. The backtrack solution finds the 92 solutions to the 
8-queens problem within approximately the same time as it takes to compute the 
weight matrix for the neural network algorithm! The backtrack algorithm used 
is given below. 

The search space for the backtrack algorithm is reduced by an efficient 
coding of occupied positions. A simple analysis shows that each row must con
tain exactly one queen. So, the solution can be described by a list of positions of 
the queens in each row. A further analysis shows that also each column must 
contain one queen. Hence, the solutions are permutations of the numbers [0..n-i], 
where bishop-like attacks are prevented. The empty list of queens is extended in 
all possible ways until all queens are placed. 

size 
solution 
partial_solution 
position 

= = 
= = 
= = 
= = 

num 
[position] 
[position] 
num 

II the size of the board 
II the position of the queen on each row 

II queen position on a row; column number 
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queens :: size -> [solution] 
queens π = extend [ ] [0..П-1] 

extend :: partiaLsolution -> [position] -> [solution] 
extend part unused 
= [part] , if unused = [ ] 
= concat [ extend (q:part) (filter (-= q) unused) 

| q <- unused ; and [abs (q - partii) -= i+1 |i <- [0..#part-1]]] , otherwise 
II try each remaining position in next row; test for bishop-like attacks 

6.7 Discussion 
Functional languages appear to be very well suited to describe neural networks, 
although the descriptions presented here are longer than the customary descrip
tions using constructive mathematics. Mathematics is also more convenient for 
the proofs shown in this chapter. 

The implementation effort required for these network descriptions is small 
and it yields a number of advantages. The obtained specifications are executable, 
partial correct and complete. This in contradiction to the usai mathematical 
descriptions where, for instance, the bounds for the summations and the evalua
tion order of elements is not specified. Apart from these usual advantages there 
are some additional benefits; due to the used framework of description tools the 
similarities and differences between the described networks are made explicit. 
These tools appear to be suitable to describe a large number of networks as 
shown in this chapter. Furthermore, these tools are expected to be suited for the 
description of many other kinds of networks. The described neural networks 
have indeed many similarities; all networks discussed use McCulloch-Pitts neu
rons arranged in a layered structure. Each network uses a fixed type of ele
ments. The only difference among the elements in a network is the weight vec
tor used to specify the individual elements. 

The executability of the neural networks specifications presented here, is 
particularly convenient to determine properties which cannot be deduced analyt
ically, but must be determined empirically. The stochastic behaviour, found in 
many networks, can be simulated by a pseudo random generator. To obtain 
really stochastic behaviour, a random generator must be added to the functional 
language, although this spoils the referential transparency. 

In spite of the very simple processing elements used and the limited possi
bilities to prove that the artificial neural networks will work, these networks 
appear to be able to perform a number of stiff tasks. But, the large number of 
teaching samples needed by perceptrons and the unpredictable changes in this 
number are a severe problem in the application of these neural network models 
in computer science. A single pass through the network requires much compu
tation; usually quadratically increasing (or worse) with the size of the input 
pattern. It is in principle possible to construct special purpose hardware to speed 
up the evaluation of a neural network. 
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A LVQ network has more appealing properties; the learning speed is usu
ally much higher and more constant. Moreover, the amount of computations 
required is smaller. Unfortunately it requires some initial knowledge about the 
number of classes required and the number of patterns in these classes; the num
ber of vectors needed in a given class cannot be predicted. Moreover, the 
learning algorithm used in these networks does not always work. It is even pos
sible that a network which behaves totally correct 'forgets' what it has learned. 

Since the artificial neural networks treated in this chapter can be modelled 
adequately in a functional programming language the set of functions that can be 
computed by these networks is smaller or equal to the functions expressible in a 
functional programming language. However, the character of programming is 
quite different. A neural network is trained to map similar inputs to similar 
outputs, a correct behaviour is only obtained by a very rich set of trainings 
samples. An ordinary program is a generally applicable algorithm. 
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Chapter 7 
Summary and Conclusion 

The suitability of functional programming languages as a formalism for exe
cutable specifications is investigated in this thesis. 

A specification is a detailed product description in a suited formalism. 
Specifications are used in computer science to describe the functional and op
erational behaviour of algorithms and machines. A good specification is consis
tent, correct and sufficiently complete. A suited specification formalism is 
unambiguous and yields clear and compact descriptions. 

A prototype is an implementation that obeys (some aspects of) the specifi
cation. It is constructed in order to achieve confidence in of the suitability of the 
specified system and in the correctness of the specification. 

Using a programming language as description formalism has a number of 
advantages. Programming languages have usually a well defined and clear 
semantics, yielding unambiguous and understandable descriptions. The imple
mentation of the programming language can be used to check some correcmess 
aspects of the specification. A compiler cannot examine whether a specification 
is correct, but it can at least spot syntax errors, undefined identifiers and type 
conflicts. Last but not least, the description is executable, so a specification is its 
own prototype. 

Despite of these benefits programming languages are seldom used as de
scription formalism. The expressive power of most programming languages 
appears to be too low to obtain a concise description. Due to the lack of suited 
description primitives much programming effort is needed. The size of the ob
tained description is too large to be clearly readable. Moreover, the distinction 
between the specification and the product vanishes. 

Functional programming languages are advertised as high level languages 
with a great expressive power. Hence they seem to be suited as description for
malism. We have tried the use of functional languages as description formalism 
in practice. On one hand we have compared descriptions in functional languages 
with some other description formalisms, on the other hand we have applied 
them in some complex real-life applications. 
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In chapter 2 a hierarchical machine description in the functional pro
gramming language Miranda is compared with a traditional description. It ap
pears that the functional specification is a bit longer. This is caused by the layout 
rules we have imposed ourselves to obtain the clearest description. The func
tional description is more direct than the imperative description. Moreover, it is 
very understandable and appears to be a useful prototype. 

This description method is applied with success in chapter 3 to a more 
complex concrete problem: the specification of an abstract imperative graph 
rewrite machine. This machine and its description are used in practice as an 
intermediate level in the implementation of functional languages. The obtained 
specification is actually the one and only definition of this machine. It is found 
that it is easy to experiment with slightly different instruction sets in this proto
type. 

In chapter 4 the suitability of functional languages for the description of 
program translations is investigated. A program translation in Miranda is com
pared with some conventional description methods. The specification in a func
tional language is at least as clear as the other descriptions. 

The translation of the graph rewrite language Clean to code for the ma
chine defined in chapter 3 is specified with such a specification in chapter 5. 
This specification was a useful guide-line for the construction of the compiler. 
Although not all optimizations implemented are described, it explains the kind 
of code generated very well. This description was used together with the proto
type machine to execute Clean programs before the corresponding products 
were made. 

The artificial neural network descriptions presented in chapter 6 are im
plementations of the neural models. The specification is a useful addition to the 
customary specification in a mathematical style. This mathematical specification 
gives some dependencies of values, but no constructive way to combine these 
dependencies to a reasonable efficient algorithm. Moreover, there are often 
inaccuracies, like omitted bounds for a summation, in these mathematical speci
fications. These mathematical specifications can be easily recognized as a part of 
the functional description. A set of description tools is presented and applied to 
describe a number of networks. The similarities and differences between the 
various networks are easily spotted in this uniform description. 

In conclusion it can be stated that functional specifications are applied suc
cessfully in a number of real applications. Comparison with conventional de
scriptions shows that the overhead imposed by using a general purpose func
tional language instead of tailor made formalism is limited. The obtained speci
fications are clear descriptions and usable prototypes. 

Little attention is given to formal proofs of the correctness of the specifi
cations. Due to the size of the applications it is a tedious job to derive and verify 
such proofs. However, functional specifications are suited for the rewrite type 
of proofs shown in chapter 2. The equivalency of terms can in fact be checked 
by the prototype implementation. The proofs in chapter 6 are given in ordinary 
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mathematics; there is still too little experience with symbolic manipulation of 
functional programs to perform these proofs with the functional specification. 

The general purpose functional language Miranda is used for the specifica
tions presented in this thesis. It appears to be reasonably suited as specification 
formalism. There are, however, two problems with this language. Due to the 
lack of rewrite semantics partially parametrized functions are not treated as 
proper root normal forms. This hampers the presentation of the instructions in 
our machine descriptions. Secondly, the Milner/Mycroft type system forces us to 
inject some superfluous constructors in the data structures used to represent 
programs for the transformations in the chapters 4 and 5. 

Functional programs as executable specifications 149 



150 Summary and Conclusion 



Appendix A 
Definition of the ABC-Machine 

A.1 The micro-instruction set 
A.2 The instruction set 
A.3 ABC-assembler 

This appendix contains the complete specification of the ABC-machine and 
ABC-assembler. Moreover some additional functions to obtain a better usable 
prototype implementation are included. These topics are discussed in chapter 3. 

A.1 The micro-instruction set 
abstype 

with 
astack, bstack, cstack, graphstore, desestore, pc, programstore, io 

Definition of the A-stack 

as_<jet 
asjni t 
as_popn 
as_push 
as_pushn 
as_topn 
as_update 

a_src -> astack -> nodeid 
astack 
nr_args -> astack -> astack 
nodeid -> astack -> astack 
nodeid_seq -> astack -> astack 
nr_args -> astack -> nodeid_seq 
a dst -> nodeid -> astack -> astack 

Definition of the B-stack 

bs_copy 
bs_get 
bs_getB 
bs_setl 
bsjnit 
bs_popn 
bsjDush 

b_src -> bstack -> bstack 
b_src -> bstack -> basic 
b_src -> bstack -> boolean 
b_src -> bstack -> int 
bstack 
nr_args-> bstack -> bstack 
basic -> bstack -> bstack 
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bs_pushB 
bs_pushl 
bs_update 

bs_addl 
bs_decl 
bs_eqB 
bs_eql 
bs_eqB¡ 
bs_eqli 
bs_gtl 
bsjncl 
bs_IU 
bs_mull 
bs subì 

boolean -> bstack -> bstack 
int -> bstack -> bstack 
b_dst -> basic -> bstack -> bstack 

bstack -> bstack 
bstack -> bstack 
bstack -> bstack 
bstack -> bstack 
boolean -> b_src -> bstack -> bstack 
int -> b_src -> bstack -> bstack 
bstack -> bstack 
bstack -> bstack 
bstack -> bstack 
bstack -> bstack 
bstack -> bstack 

Definition of the C-stack 

csjnit 
cs_get 
cs_popn 
cs_push 

: cstack 
: c_src -> cstack -> instrid 
: c_src -> cstack -> cstack 
: instrid -> cstack -> cstack 

Definition of the Nodes 

n_arg 
n_args 
n_arity 
n_B 
n_copy 
n_descid 
n_entry 
n_eq_arity 
n_eq_B 
n_eq_descid 
n_eq_I 
n_eq_symbol 
n j i l l 
nJilIB 
nj i l l l 
n j 
n_nargs 
n_setentry 

node -> arg_nr -> arity -> nodeid 
node -> arity -> nodeid_seq 
node -> arity 
node -> boolean 
node -> node -> node 
node -> descid 
node -> instrid 
node -> arity -> boolean 
node -> boolean -> boolean 
node -> descid -> boolean 
node -> int -> boolean 
node -> node -> bool 
descid -> instrid -> args -> node -> node 
descid -> instrid -> boolean -> node -> node 
descid -> instrid -> int -> node -> node 
node -> int 
node -> nr_args -> arity -> nodeid_seq 
instrid -> node -> node 

Definition of the Graph Store 

gs_get 
gsjnit 
gs_newnode 
gs_update 

nodeid -> graphstore -> node 
graphstore 
graphstore -> (graphstore.nodeid) 
nodeid -> (node -> node) -> graphstore -> graphstore 
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Definition of the Descriptors 

d_ap_entry 
cl_arity 
d name 

desc -> jnstrid 
desc -> num 
desc -> string 

Definition of the Descriptor Store 

ds_get : : descid -> descstore -> desc 
dsjni t : : [desc] -> descstore 

Definition of the Program Counter 

pcjnit 
pc_next 
pc_halt 
pc_end 

instrid 
¡nstrid -> instrid 
instrid -> instrid 
instrid -> bool 

Definition of the Program Store 

ps_get : : instrid -> programstore -> instruction 
psjnit : : [instruction] -> programstore 

Definition of the l/O-channels 

io jni t :: io 
io_print : : string -> io -> io 

Micro-instructions to enable a trace 

show_as 
show_bs 
showcs 
showjo 
show_pc 
show_gs 
shownds 
show nd 

: astack -> [char] 
: bstack -> [char] 
: cstack -> [char] 
: io -> [char] 
: instrid -> [char] 
: graphstore -> descstore -> [char] 
: num -> [node] -> descstore -> [char] 
: node -> descstore -> [char] 

The state of the ABC-machine 

state = = (astack,bstack,cstack.graphstore,descstore,instrid,programstore,¡o) 

instruction = = state -> state 

ap_entry = = instrid 
args = = nodeid_seq 
arity = = nat 
boolean = = bool 
entry = = instrid 
int == num 
name = = [char] 
nat == num 

Definition ot the ABC-Machine 1 



nodeid 
nodeid_seq 
label 
string 

a_dst 
a_src 
a_src1 
a_src2 
b_dst 
b_src 
c_src 
nr_args 
arg_nr 

= = 
= = 
= = 
= = 

= = 
= = 
= = 
= = 
= = 

= = 
= = 
= = 
= = 

nat 
[nodeid] 
[char] 
[char] 

nat 
nat 
nat 
nat 
nat 
nat 
nat 
nat 
nat 

Implementation of the A-stack 

astack = = [nodeid] 

as_get target as 
= asget 0 as 

where asget η (a:x) 
= a , if π = target 
= asget (n+1 ) χ , otherwise 

asget η [ ] 
= error ("Taking element "++show target++" of Α-stack of length "-n-show n) 

asjnit = [ ] 

as_popn η as 
= aspopn η as 
where aspopn 0 as = as 

aspopn m (a:x) = aspopn (m-1 ) χ 
aspopn m [ ] 
= error ("Popping "+-i-show n++" elements of Α-stack of length "++show(#as)) 

as_push nodeid as = nodeid:as 
as_pushn nodeids as = nodeids ++ as 

asjopn 0 as = [] 
asjopn π (x:r) = x:(as_topn (n-1 ) r) 
asjopn π [ ] = error "asjopn: taking too much elements" 

asjipdate 0 nodeid (a:x) = nodeid:x 
as_update η nodeid (a:x) = a : as_update (n-1) nodeid χ 
as_update η nodeid as = error "Α-stack update error" 

Implementation of the B-stack 

bstack = = [basic] 
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bs_get target bs 
= bsget O bs 

where bsget η (b:x) 
= b , if η = target 
= bsget(n+1)x .otherwise 

bsget η [ ] 
= error (Taking element "++show target++" of B-stack of length B++show n) 

bs_getB η bs = b where Bool b = bs_get η bs 
bs_getl η bs = i where Int i = bs_get η bs 

bs_copy η bs = (bs_get η bs):bs 

bsjnit = [ ] 

bs_popn η bs 
= bspopn η bs 

where bspopn 0 bs = bs 
bspopn m (b:x) = bspopn (m-1) χ 
bspopn m [ ] 
= error ("Popping "++show n++" elements of B-stack of length "++show(# bs)) 

bs_push basic bs = basic : bs 
bs_pushB b bs = (Bool b):bs 
bs_pushl i bs = (Int i):bs 

bsjjpdate 0 basic (b:x) = basic:x 
bs_update η basic (b:x) = b : bs_update (n-1) basic χ 
bs_update η basic bs = error "B-stack update error" 

bs_addl 
bs_decl 
bs_eqB 
bs_eqBi 
bs_eql 
bs_eqli 
bs_gU 
bsjncl 
bs j t l 
bs_mull 
bs_subl 

((Inti1):(lnti2):r) 
((Inti1):r) 
((Boolb1):(Boolb2):r) 
b n b s 
((Intl1):(lntl2):r) 
inbs 
((Intl1):(lnti2):r) 
((Inti1):r) 
((Inti1):(lnti2):r) 
((Inti1):(lnti2):r) 
((Inti1):(lnti2):r) 

= (Int(¡1+i2)):r 
= (Int(i1-1)):r 
= (Bool(M=b2)):r 
= bsjDush (Bool (b=(bs_getB η bs))) bs 
= (Bool(i1=i2)):r 
= bs_push (Bool (i=(bs_getl η bs))) bs 
= (Bool (i1>i2)):r 
= (Int(i1+1)):r 
= (Bool (i1<i2)):r 
= (Int (¡П2)):г 
= (Int(i1-¡2)):r 

Implementation of the C-stack 

cstack = = [Instrid] 

csjnit = [ ] 

cs_get target cs 
= csget 0 cs 

where csget η (c:x) 
= с , if η = target 
= csget (n+1 ) χ , otherwise 
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csget η [ ] 
= error (Taking element "++show target++" of C-stack of length "++show n) 

csjaopn π es 
= cspopn η es 

where cspopn 0 es = es 
cspopn m (c:x) = cspopn (m-1) χ 
cspopn m [ ] 

= errorfPopping "++show n++" elements of C-stack of length B++show(#cs)) 

cs_push с es 

Implementati 

node : := 

basic : := 

= c:cs 

on of the Nodes 

Node descid instrid args | 
Basic descid instrid basic | 
Empty 

Int int 
Bool boolean 

n_arg node π arity 
= args !(n-1) , if arity >= η 
= error ("taking arg " ++ show η ++ " from " ++ show node) , otherwise 

where args = n_args node arity 

n_args (Node descid entry args) arity 
= args , if arity = # args 
= error ("wrong arity in n_args: " ++ show arity ++ " (Node " ++ 

show descid++" "++show entry++" "++show args++")") , otherwise 
n_args node arity 
= error (''n_args: No args in node: " ++ show node) 

n_arity (Basic descid entry basic) = 0 
n_arity (Node descid entry args) = # args 
n_arity Empty = error "Arity of an empty node is not defined" 

n_B (Basic descid entry (Bool b)) = b 
n_B node = error ("N_B: No boolean in node:" ++ show node) 

n_copy new old = new 

n_descid (Node descid entry args) = descid 
n_descid (Basic descid entry basic) = descid 
n_descid Empty = error "No descid in an Empty node!" 

n_entry (Node descid entry args) = entry 
n_entry (Basic descid entry basic) = entry 
n_entry Empty = error "No entry in an Empty node!" 

n_eq_arity node π = n_arity node = π 
n_eq_B node b = n_B node = b 
n_eq_descid node descid = n_descid node = descid 
n_eq_I node i = n_I node = i 
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n_eq_symbol (Node descidl entryl argsl) (Node descid2 entry2 args2) 
= descidl = descid2 

n_eq_symbol (Basic descidl entryl basici) (Basic descid2 entry2 basic2) 
= descidl = descid2 & basici = basic2 

n_eq_symbol nodel node2 = False 

n j i l l desc entry args node = Node desc entry args 
nJilIB desc entry b node = Basic desc entry (Bool b) 
n j i l l l desc entry i node = Basic desc entry (Int i) 

n_l (Basic descid entry (Int ¡)) = i 
n_I node = error ("n_I: No integer in node: " ++ show node) 

n_nargs node arg_count arity = take arg_count (n_args node arity) 

n_setentry newentry (Node descid entry args) = Node descid newentry args 
n_setentry newentry (Basic descid entry basic) = Basic descid newentry basic 
n_setentry newentry Empty = error "Cannot set entry of Empty node!" 

Implementation of the Descriptors 

desc : := Desc ap_entry arity name 

d_ap_entry (Desc ap_entry arity name) = ap_entry 
d_arity (Desc ap_entry arity name) = arity 
d_name (Desc ap_entry arity name) = name 

Implementation of the Descriptor Store 

descid == num 
descstore == [desc] 

ds_get target ds 
= dsget 0 ds 

where dsget η (d:x) 
= d , if η = target 
= dsget (n+1) χ , otherwise 

dsget η [ ] 
= error (Taking descriptor "++show target++" of store of size "++show n) 

dsjnit descriptors = descriptors 

Implementation of the Graph Store 

graphstore = = ([node], nat) 

gs_get nodeid (nds.free) 
= gsget (nodeid-free-1) nds 

where gsget 0 (n:ns) = η 
gsgetm(n:ns) = gsget (m-1)ns 
gsget m [ ] = error ("unexisting nodeid : " ++ show nodeid) 

gsjnit = ([ ], store_size) 
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store_size nat 
store_size = 1 0 0 II some natural number indicating the size 

gs_newnode (nds.O) = error "graph-store is full" 
gs_newnode (nds.free) = ((Empty nds,free-1),free) 

gs_update nodeid f (nodes.free) 
= (update place nodes f.free) ,if place<=store_size free 
= error ("gs update error node "++show nodeid++" not existent"),otherwise 

where place = nodeid - free -1 

update : : nat -> [node] -> (node->node) -> [node] 
update 0 (node nodes) f = f node nodes 
update η (node nodes) f = node (update (n-1 ) nodes f) 

Implementation of the Program Store 

programstore == [location] 

location = I instruction 

ps_init (instruction rest) = I instruction psjmt rest 
p s j n i t [ ] = [] 

ps_get target ps 
= psget 0 ps 

where psget locus (I mstr rest) 
= mstr , if locus = target 
= psget (locus+1) rest , otherwise 

psget locus [ ] = error ("Program counter outside program " ++ show target) 

Implementation of the Program Counter 

mstrid == num 
pc = = mstrid 

pc_end mstrid = mstrid < 0 
pc_init = 0 
pc_halt mstrid = -1 
pc_next mstrid = mstrid + 1 

Implementation of the I/O channels 

ю = = [char] 

lo jmt = [] 

io_print string output = output ++ string 

symbol_to_stnng node -> desc -> string 
symbol_to_string (Basic descid ap_entry (Int ι)) desc = show ι 
symbol_to_string (Basic descid ap_entry (Bool b)) desc = show b 
symbol_to_string (Node descid entry args)(Desc ap_entry arity name) = name 
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show_state : : state -> [char] 
show_state (as,bs,cs,gs,ds,pc,ps,io) 
= "output : " ++ showjo io ++ 'Vi" ++ 

"pc : " ++ showjDc pc ++ "\n" ++ 
"A-stack : " ++ show_as as ++ Λη" ++ 
"B-stack : " ++ show_bs bs ++ "\n" ++ 
"C-stack : " ++ show_cs es ++ Λη" ++ 
"Graph : (nodeid : node): Λη"++ show_gs gs ds 

show_as as 
show_bs bs 
show_cs es 
show io io 

= show as 
= show bs 
= show cs 
= io 

show_ç|S (nds.free) ds = show_nds (free+1) nds ds 
show_pc pc = show pc , if pc >= 0 

= "program is terminated; pc undefined" , otherwise 
show_nds i (n:nds) ds = show i++" : "++show__nd η ds++"\n"++show_nds (¡+1) nds ds 
show_nds i [ ] ds = [] 
show_nd (Node descid entry args) ds 

= d_name (ds_get descid ds)++ " "-н-show entry-i-+" "-i-+show args 
show_nd (Basic descid entry basic) ds = show entry ++""++ show basic 
show_nd Empty ds = "Empty" 

cond : : bool - > * - > * - > * 
cond b then else 
= then, if b 
= else, otherwise 

A.2 The instruction set 

Type definitions of the instructions 

add_args 
create 
del_args 
dump 
eq_desc 
eq_desc_arity 
eq_symbol 
eqB 
eqB_a 
eqB_b 
eql 
eql_a 
eql_b 
fill 
fill_a 
filIB 

a_src -> nr_args -> a_dst -> instruction 
Instruction 
a_src -> nr_args -> a_dst -> instruction 
string -> instruction 
descid -> a_src -> instruction 
descid -> arity -> a_src -> instruction 
a_src1 -> a_src2 -> instruction 
instruction 
bool -> a_src -> instruction 
bool -> b_src -> instruction 
instruction 
int -> a_src -> instruction 
int -> b_src -> instruction 
descid -> nr_args -> instrid -> a_dst -> instruction 
a_src -> a_dst -> instruction 
bool -> a dst -> instruction 
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tillB_b 
filli : 
fillljb 
get_desc_arity : 
get_node_arity : 
halt 
jmp 
jmp_eval 
jmpjalse 
jmp_true 
jsr 
jsr_eval 
no_op : 
pop_a 
pop_b 
print 
print_symbol 
push_a 
push_ap_entry : 
push_arg 
push_arg_b 
push_args 
push_args_b 
push_b 
pushB 
pushBa 
pushl 
pushl_a 
repl_args 
repl_args_b : 
rtn 
set_entry 
update_a 
update_b 

addi 
deci 
gti 
incl : 
Iti 
mull 
subì 

: b_src -> a_dst -> instruction 
: int -> a_dst -> instruction 
: b_src -> a_dst -> instruction 
: a_src -> instruction 
: a_src -> instruction 
: instruction 
: instrid -> instruction 
: instruction 
: instrid -> instruction 
: instrid -> instruction 
: instrid -> instruction 
: instruction 
: instruction 
: nr_args -> instruction 
: nr_args -> instruction 
: string -> instruction 
: a_src -> instruction 
: a_src -> instruction 
: a_src -> instruction 
: a_src -> arity -> arg_nr -> instruction 
: a_src -> instruction 
: a_src -> arity -> nr_args -> instruction 
: a_src -> instruction 
: b_src -> instruction 
: bool -> instruction 
: a_src -> instruction 
: int -> instruction 
: a_src -> instruction 
: arity -> nrargs -> instruction 
: instruction 
: instruction 
: instrid -> a_dst -> instruction 
: a_src -> a_dst -> instruction 
: b_src -> b_dst -> instruction 

: instruction 
: instruction 
: instruction 
: instruction 
: instruction 
: instruction 
: instruction 



Implementation of the instructions 

add_args a_src nr_args a_dst (as,bs,cs,gs,ds,pc,ps,io) 
= (as'.bs.cs.gs'.ds.pcpsjo) 

where as' = as_popn nr_args as 
gs' = gs_update dstid (nj i l l descid entry newargs) gs 
dstid = as_get a_dst as 
srcid = as_get a_src as 
node = gs_get srcid gs 
descid = n_descid node 
entry = n_entry node 
arity = n_arity node 
newargs = n_args node arity ++ asjopn nr_args as 

create (as,bs,cs,gs,ds,pc,ps,io) 
= (as',bs,cs,gs',ds,pc,ps,io) 

where as' = as_push nodeid as 
(gs'.nodeid) = gs_newnode gs 

del_args a_src nr_args a_dst (as.bs.cs.gs.ds.pc.ps.io) 
= (as',bs,cs,gs',ds,pc,ps,io) 

where as' 
gs' 
dstid 
srcid 
node 
descid 
entry 
newargs 
arity 

= as_pushn newargs as 
= gs_update dstid (nj i l l descid entry newargs) gs 
= as_get a_dst as 
= as_get a_src as 
= gs_get srcid gs 
= n_descid node 
= n_entry node 
= n_nargs node (arity-nr_args) arity 
= n_arity node 

dump string (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs,gs,ds,pc,ps,io') 

where io' = o_print (An"++string++"\n"++state) io 
state = show_state (as,bs,cs,gs,ds,pc,ps,io) 

eq_desc descid a_src (as.bs.cs.gs.ds.pc.ps.io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bsjaushB equal bs 
equal = n_eq_descid node descid 
node = gs_get nodeid gs 
nodeid = as_get a_src as 

eq_desc_arity descid arity a_src (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs.ds,pc,ps,io) 

where bs' = bs_pushB equal bs 
equal = (n_eq_descid node descid) & (n_eq_arity node arity) 
node = gs_get nodeid gs 
nodeid = as_get a_src as 
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eq_symbol a_src1 a_src2 (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_pushB equal bs 
equal = n_eq_symbol nodel node2 
nodel = gs_get nodeidl gs 
node2 = gs_get nodeid2 gs 
nodeidl = as_set a_src1 as 
nodeid2 = as_get a_src2 as 

eqB (as,bs,cs,gs,ds,pc,ps,io) 
= (as.bs'.cs.gs.ds.pc.psjo) 

where bs' = bs_eqB bs 

eqB_a bool a_src (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_pushB equal bs 
equal = n_eq_B (gs_get nodeid gs) bool 
nodeid = as_get a_src as 

eqB_b bool b_src (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_eqBi bool b_src bs 

eql (as,bs,cs,gs,ds,pc,ps,io) 
= (as.bs'.cs.gs.ds.pc.ps.io) 

where bs' = bs_eql bs 

eql_a int a_src (as.bs.cs.gs.ds.pc.ps.io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_pushB equal bs 
equal = n_eq_I (gs_get nodeid gs) int 
nodeid = as_get a_src as 

eql_b int b_src (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_eqli int b_src bs 

fill desc nr_args entry a_dst (as.bs.cs.gs.ds.pcps.io) 
= (as',bs,cs,gs',ds,pc,ps,io) 

where as' = as_popn nrargs as 
gs' = gs_update nodeid (n_fill desc entry args) gs 
nodeid = as_get a_dst as 
args = as_topn nr_args as 

fill_a a_src a_dst (as.bs.cs.gs.ds.pc.ps.io) 
= (as.bs.cs.gs'.ds.pcps.io) 

where gs' = gs_update nodeid_dst (n_copy node_src) gs 
node_src = gs_get nodeid_src gs 
nodeid_dst = as_get a_dst as 
nodeid_src = asqet a_src as 



fillB bool a_dst (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs,gs',ds,pc,ps,io) 

where gs' = gs_update nodeid (n_fillB bool_desc rnf_entry bool) gs 
nodeid = as_get a_dst as 

fillB_b b_src a_dst (as,bs,cs,gs,ds,pc,ps,io) 
= (as.bs.cs.gs'.ds.pcps.io) 

where gs' = gs_update nodeid (nJillB bool_desc rnf_entry bool) gs 
bool = bs_getB b_src bs 
nodeid = as_çjet a_dst as 

filli int a_dst (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs,gs',ds,pc,ps,io) 

where gs' = gs_update nodeid (nj i l l l int_desc rnf_entry int) gs 
nodeid = as_get a_dst as 

f i l l l j j b_src a_dst (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs,gs',ds,pc,ps,io) 

where gs' = gs_update nodeid (nj i l l l int_desc rnf_entry int) gs 
int = bs_getl b_src bs 
nodeid = as_get a_dst as 

get_desc_arity a_src (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_pushl arity bs 
arity = d_anty (ds_get descid ds) 
descid = n_descid (gs_get nodeid gs) 
nodeid = as_get a_src as 

get_node_arity a_src (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bsjsushl arity bs 
arity = n_arity (gs_get nodeid gs) 
nodeid = as_get a_src as 

halt (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs,gs,ds,pc',ps,io) 

where pc' = pcjialt pc 

jmp address (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs,gs,ds,pc',ps,io) 

where pc' = address 

jmp_eval (as.bs.cs.gs.ds.pcps.io) 
= (as,bs,cs,gs,ds,pc',ps,io) 

where pc' = n_entry (gs_get nodeid gs) 
nodeid = as_get 0 as 
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jmpjalse address (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc',ps,io) 

where pc' = cond (~bool) address pc 
bool = bs_getB 0 bs 
bs' = bsjjopn 1 bs 

jmptrue address (as,bs,cs,gs,ds,pc,ps,io) 
= (as.bs'.cs.gs.ds.pc'.ps.io) 

where pc' = cond bool address pc 
bool = bs_getB 0 bs 
bs' = bs_popn 1 bs 

jsr address (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs',gs,ds,pc',ps,io) 

where pc' = address 
es' = cs_push pc es 

jsreval (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs',gs,ds,pc',ps,io) 

where pc' = n_entry (gs_get nodeid gs) 
nodeid = as_get 0 as 
es' = cs_push pc es 

no_op (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs,gs,ds,pc,ps,io) 

pop_a η (as,bs,cs,gs,ds,pc,ps,io) 
= (as',bs,cs,gs,ds,pc,ps,io) 

where as' = asjjopn η as 

pop_b η (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_popn η bs 

print string (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs,gs,ds,pc,ps,io') 

where io' = io_print string io 

print_symbol a_src (as,bs,cs,gs,ds,pc,ps,io) 
= (as.bs.cs.gs.ds.pcps.io") 

where io' = io_print string io 
nodeid = as_get a_src as 
node = gs_get nodeid gs 
string = symbol_to_string node desc 
desc = ds_get (n_descid node) ds 

push_a a_src (as,bs,cs,gs,ds,pc,ps,io) 
= (as',bs,cs,gs,ds,pc,ps,io) 

where as' = as_push nodeid as 
nodeid = as_get a_src as 
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push_ap_entry a_src (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs',gs,ds,pc,ps,io) 

where es' = cs_push (d_ap_entry (ds_get descid ds)) es 
descid = n_descid (gs_get nodeid gs) 
node id = as_get a_src as 

push_arg a_src arity arg_nr (as,bs,cs,gs,ds,pc,ps,io) 
= (as'.bs.cs.gs.ds.pcps.io) 

where as' = as_push arg as 
arg = n_arg (gs_get nodeid gs) arg_nr arity 
nodeid = as_get a_src as 

push_arg_b a_src (as,bs,cs,gs,ds,pc,ps,io) 
= (as'.bs.cs.gs.ds.pc.ps.io) 

where as' = as_push arg as 
arg = n_arg (gs_get nodeid gs) arg_nr arity 
nodeid = as_get a_src as 
arg_nr = bs_getIObs 
arity = bs_geU 1 bs 

push_args a_src arity nr_args (as,bs,cs,gs,ds,pc,ps,io) 
= (as'.bs.cs.gs.ds.pcps.io) 

where as' = as_pushn args as 
args = n_nargs (gs_get nodeid gs) nr_args arity 
nodeid = as_aet a_src as 

push_args_b a_src (as.bs.cs.gs.ds.pc.ps.io) 
= (as',bs,cs,gs,ds,pc,ps,io) 

where as' = as_pushn args as 
args = n_nargs (gs_get nodeid gs) nargs arity 
nargs = bs_getIObs 
nodeid = as_get a_src as 
arity = bs_getl 1 bs 

push_b b_src (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_push basic bs 
basic = bs_get b_src bs 

push В bool (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bsjsushB bool bs 

pushB_a a_src (as,bs,cs,gs.ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_pushB bool bs 
bool = n_B (gs_get nodeid gs) 
nodeid = as_get a_src as 

pushl int (as,bs,cs,gs,ds,pc,ps,io) 
= (as.bs'.cs.gs.ds.pcps.io) 

where bs' = bs_pushl int bs 
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pushl_a a_src (as.bs.cs.gs.ds.pcps.io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_pushl int bs 
int = n_l (gs_get nodeid gs) 
nodeid = as_get a_src as 

repl_args arity nr__args (as,bs,cs,gs,ds,pc,ps,io) 
= (as',bs,cs,gs,ds,pc,ps,io) 

where as' = as_pushn args (asjjopn 1 as) 
args = n_nargs (gs_get nodeid gs) nr_args arity 
nodeid = as_get 0 as 

repl_args_b (as,bs,cs,gs,ds,pc,ps,io) 
= (as'.bs.cs.gs.ds.pcps.io) 

where as' = as_pushn args (as_popn 1 as) 
args = n_nargs (gs_get nodeid gs) nr_args arity 
nodeid = a s j e t 0 as 
arity = bs_getlObs 
nr_args = bs j e t l 1 bs 

rtn (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs',gs,ds,pc',ps,io) 

where pc' = cs_get 0 es 
es' = csjDopn 1 es 

set_entry entry a_dst (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs,gs',ds,pc,ps,io) 

where gs' = gs_update nodeid (n_setentry entry) gs 
nodeid = as_get a_dst as 

update_a a_src a_dst (as,bs,cs,gs,ds,pc,ps,io) 
= (as'.bs.cs.gs.ds.pcps.io) 

where as' = as_update a_dst nodeid as 
nodeid = as_get a_src as 

update_b b_src b_dst (as.bs.cs.gs.ds.pc.ps.io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_update b_dst basic bs 
basic = bs_get b_src bs 

addi (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_addl bs 

deel (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_decibs 

gtl (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bsat lbs 



¡nel (as,bs,cs,gs,ds,pc,ps,¡o) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bsjnclbs 

Iti (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_ttlbs 

muli (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_mull bs 

subì (as,bs,cs,gs,ds,pc,ps,lo) 
= (as,bs',cs,gs,ds,pc,ps,io) 

where bs' = bs_sublbs 

The driver 

boot : : ([instruction],[desc]) -> state 
boot (program.descriptors) 
= (as,bs,cs,gs,ds,pc,ps,io) 

where pc 
as 
bs 
CS 

gs 
PS 
io 
ds 

= 
= 
= 
= 
= 
= 
= 
= 

pcjnit 
as init 
bs init 
es init 
gsjnit 
psjnit program 
lo init 
dsjnit descriptors 

fetch_cycle : : state -> state 
fetcheycle (as,bs,cs,gs,ds,pc,ps,io) 
= (as,bs,cs,gs,ds,pc,ps,io), pc_end pc 
= fetch_cycle (currinstr (as.bs.cs.gs.ds.pc'.ps.io)), otherwise 

where pc' = pc_nextpc 
currinstr = ps_getpcps 

step_cycle (as,bs,cs,gs,ds,pc,ps,io) 
= show_state (as.bs.cs.gs.ds.pc.ps.io), pc_end pc 
= show_state (as,bs,cs,gs,ds,pc,ps,io) ++ 

step_cycle (currinstr (as,bs,cs,gs,ds,pc',ps,io')), otherwise 
where pc' = pc_next pc 

currinstr = ps_get pc ps 
io' = lojni t 

int_desc = 0 
bool_desc = 1 
mf_entry = 1 
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А.З ABC-assembler 
ABC-assembler is represented by an AST. The mapping from ABC-assembler to 
ABC-instructions is a simple abstract program transformation. 

assembler == [statement] 
redjabel = = label 
descjabel = = label 
nrjnstr = = int 

statement 
: := Label label | 

Descriptor 
Br 
Brjalse 
Brjrue 
Dump 
Add_args 
Create 
Del_args 
Eq_desc 
Eq_desc_arity 
EqB 
EqB_a 
EqB b 
Eql 
Eql_a 
Eql_b 
Fill 
FilLa 
FilIB 
FillB_b 
Filli 
Filll_b 
Get_desc_ 
Get_node_ 
Halt 
Jmp 
Jmp_eval 
Jmpjalse 
Jmp true 
Jsr 
Jsr_eval 
No_op 
Pop_a 
Pop_b 

arity 
arity 

descjabel redjabel arity name 
nrjnstr 
nrjnstr 
nrjnstr 
string 
a_src nr_args a_dst 

a_src nr_args a_dst 
descjabel a_src 
descjabel arity a_src 

bool a_src 
bool b_src 

int a_src 
int b_src 
descjabel nr_args label a_dst 
a_src a_dst 
bool a_dst 
b_src a_dst 
int a_dst 
b_src a_dst 
a_src 
a_src 

label 

label 
label 
label 

nat 
nat 
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Print 
Print_symbol 
Push_a 
Push_ap_entry 
Push_arg 
Push_arg b 
Push_args 
Push_args_b 
Push b 
PushB 
PushB_a 
Pushl 
Pushl_a 
RepLargs 
Repl_args_b 
Rtn 
Set_entry 
Update_a 
Update_b 

Addi 
Deci 
GII 
Incl 
Ltl 
Mull 
Subì 

string 
a_src 
a_src 
a_src 
a_src arity argnr 
a_src 
a_src arity arg_nr 
a_src 
nat 
bool 
a_src 
int 
a_src 
arity nr_args 

label a_dst 
a_src a_dst 
b_src b_dst 

assemble : : assembler -> ([instruction],[desc]) 
assemble statements 
= (translate statements loc_counter sym_table,desc_table statements symtable) 

where loc_counter = 0 
desc_counter = 0 
sym_table = collect statements loc_counter desc_counter 

collect : : assembler -> nat -> nat -> symjable 
collect (Label l:r) Ic dc = (l,lc,Lab_sym):collect r Ic dc 
collect (Descriptor descjabel redjabel arity name:r) Ic dc 

= (descJabel,dc,Desc_sym):collect r Ic (dc+1) 
collect (instrr) Ic dc = collect r (lc+1 ) dc 
collect [ ] Ic dc = [] 

lookjjp : : label -> symjype -> symjable -> nat 
lookjjp lab t ((name.n.symJype):r) 
= π , if lab = name & t = symjype 
= lookjjp lab t r , otherwise 
look_up lab t [ ] = error (Лп\пІаЬ І " ++ lab ++ " not defined as " ++ show t ++ Лп") 

symjable == [(namepnat,symjype)] 
symjype ::= Lab_sym | Desc_sym 
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descjable: ¡assembler -> symjable -> [desc] 
descjable (Descriptor descjabel ap_entry arity name:r) symjable 
= (Desc ap_addr arity name):descjable r symjable 

where ap_addr = look_up ap_entry Lab_sym symjable 
descjable (instr:r) symjable = descjable r symjable 
descjable [ ] symjable = [] 

translate : ¡assembler -> nat -> symjable -> [instruction] 
translate (Label name 
= 
translate (Descriptor lab ap_entry arity name 
= 

translate (Br η 
= jmp (lc+n+1) 

translate (Brjalse η 
= jmpjalse (lc+n+1) 

translate (Brjrue η 
= jmpjrue (lc+n+1) 

translate (Dump string 
= dump string 

translate (Add_args a_src η a_dst 
= add_args a_src η a_dst 

translate (Create 
= create 

translate (Del_args a_src η a_dst 
= del_args a_src η a_dst 

translate (Eq_desc descjabel a_src 
= eq_desc desc_addr a_src 

where desc_addr = look_up desc_ 
translate (Eq_desc_arity descjabel arity a 
= eq_desc_arity desc_addr arity a_src 

where desc_addr = look_up desc_ 
translate (EqB 
= eqB 

translate (EqB_a bool a_src 
= eqB_a bool a_src 

translate (EqB_b bool b_src 
= eqBJj bool b_src 

translate (Eql 
= eql 

translate (Eql_a int a_src 
= eql_a int a_src 

translate (Eql_b int b_src 
= eql_b int b_src 

label 
_src 

label 

translate (Fill descjab nr_args entryJab a_dst 
= fill desc_addr nr_args entry_addr a_dst 

where desc_addr = look_up descjab D 
entry_addr = look_up entry_ JabL 

translate 

translate 

translate 

translate 

translate 

translate 

translate 

translate 

translate 

translate 

O 

r 

Ie 
Ie 
Ie 
Ie 
Ie 
(lc+1) 
Ie 
(lc+1) 
Ie 
(lc+1) 
Ie 
(lc+1) 
Ie 
(lc+1) 
Ie 
(lc+1) 
Ie 
(lc+1) 
Ie 
(lc+1) 

symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 

Desc_sym symjable 

translate 
r) 
r 

Ie 
(lc+1) 

symjable 
symjable 

Desc_sym symjable 

translate 

translate 

translate 

translate 

translate 

translate 

translate 

r) 

0 

0 

r) 

r) 

r) 

r) 

Ie 
(lc+1) 
Ie 
(lc+1) 
Ie 
(lc+1) 
Ie 
(lc+1) 
Ie 
(lc+1) 
Ie 
(lc+1) 
Ie 
(lc+1) 

esc_sym symjable 
ab_sym sym. Jable 

symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
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translate (Fill_a a_src a_dst 
= filLa a_src a_dst 
translate (FillB bool a_dst 
= fillB bool a_dst 
translate (FillB_b b_src a_dst 
= filIBJj b_src a_dst 
translate (Filli ¡nt a_dst 
= filli ¡nt a_dst 
translate (Filll_b b_src a_dst 
= filll_b b_src a_dst 
translate (Get_desc_arity a_src 
= get_desc_arity a_src 
translate (Get_node_arity a_src 
= get_node_arity a_src 
translate (Hait 
= halt 
translate (Jmp label 
= jmp address 

where address = lookjjp label Lab, 
translate (Jmp_eval 
= jmp_eval 
translate (Jmpjalse label 
= jmpjalse address 

where address = lookjjp label Lab. 
translate (Jmpjrue label 
= jmpjrue address 

where address = lookjjp label Lab. 
translate (Jsr label 
= jsr address 

where address = lookjjp label Lab. 
translate (Jsr_eval 
= jsr_eval 
translate (No_op 
= no_op 
translate (Pop_a nat 
= pop_a nat 
translate (Pop_b nat 
= popjb nat 
translate (Print string 
= print string 
translate (Print_symbol a_src 
= print_symbol a_src 
translate (Push_a a_src 
= push_a a__src 
translate (Push_ap_entry a_src 
= push_ap_entry a_src 
translate (Push_arg a_src arity argj ir 
= push_arg a_src arity argj i r 

translate 

translate 

translate 

translate 

translate 

translate 

translate 

translate 

translate 

0 
r 
r) 
r 
r) 
r 
r) 
r 
r) 
r 
r) 
r 
r) 
r 
0 
r 
r) 
r 

_sym symjable 

translate 

translate 

r) 
r 
r) 
r 

_sym symjable 

: translate 
r) 
r 

_sym symjable: 
: 
: translate 

r) 
r 

_sym symjable 

translate 

translate 

translate 

translate 

translate 

translate 

translate 

translate 

translate 

0 

lc 
(lc+1 
lc 
(lc+1 
lc 
(lc+1 
lc 
(lc+1 
lc 
(lc+1 
lc 
(lc+1 
lc 
(lc+1 
lc 
(lc+1 
lc 
(lc+1 

lc 
(lc+1 
lc 
(lc+1 

lc 
(lc+1 

lc 
(lc+1 

lc 
(lc+1 
lc 
(lc+1 
lc 
(lc+1 
lc 
(lc+1 
lc 
(lc+1 
lc 
(lc+1 
lc 
(lc+1 
lc 
(lc+1 
lc 
(lc+1 

symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 

symjable 
symjable 
symjable 
symjable 

symjable 
symjable 

symjable 
symjable 

symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
symjable 
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translate (Push_arg_b a_src 
= push_arg_b a_src 

translate (Push_args a_src arity nr_args 
= push_args a_src arity nr_args 

translate (Push_args_b a_src 
= push_args_b a_src 

translate (Push_b nat 
= push_b nat 

translate (PushB bool 
= pushB bool 

translate (PushB_a a_src 
= pushB_a a_src 

translate (PushI int 
= pushl int 

translate (Pushl_a a_src 
= pushl_a a_src 

translate (Repl_args arity nr_args 
= repl_args arity nr_args 

translate (Repl_args_b 
= repl_args_b 

translate (Rtn 
= rtn 

translate (Set_entry label a_dst 
= set_entry address a_dst 

where address = lookup label Lab_ 
translate (Update_a a_src a_dst 
= update_a a_src a_dst 

translate (Update_b a_src a_dst 
= update_b a_src a_dst 

translate (Addi 
= addi 

translate (Deci 
= deci 

translate (Gtl 
= gtl 

translate (IncI 
= incl 

translate (LU 
= IU 

translate (Mull 
= mull 
translate (Subi 
= subi 

translate (x 
= error ("\n\nUnknown assembler statemant: 

translate [ 1 le symjable = [ 1 

sym 

: " + 

translate 

translate 

translate 

translate 

translate 

translate 
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listing : : assembler -> [char] 
listing statements 
= list statements loc_counter sym_table 

where loc_counter = 0 
desc_counter = 0 
sym_table = collect statements loc_counter desc_counter 

list : : assembler -> nat -> sym_table -> [char] 
list (Label name r) Ic 
= "\n\tH++name ++ ":" ++ list r Ic sym_table 
list (Descriptor lab ap_entry arity name r) Ic 
= "\n\tH++lab++"("++desc_num++"):\tDescriptor "++ap_entry++ 

" ("++ ap_addr++") "++show arity++" "++name ++ list r Ic 
where ap_addr = show (look_up ap_entry Lab_sym sym_table) 

desc_num = show (look_up lab Desc_sym symtable) 
list (Br η r) Ic 
= In lc++"||Br "++show n++An\t\tJmp"++show(lc+n+1) ++ list r (lc+1) 
list (Brjalse η r) Ic 
= In Ic ++ "| I Brjalse " ++ show η ++ Лп\Штр_ТаІ5е " 

++show (lc+n+1) ++ list r (lc+1) 
list (Brjrue η r) Ic 
= In Ic ++ "||Br_true " ++ show π ++ "\n\t\tJmp_true " 

++show (lc+n+1) ++ list r (lc+1) 
list (Eq_desc descjabel a_src r) Ic 
= In lc++"Eq_desc "++desc_label++" ("++ 

show desc_addr++") "++show a_src ++ list r (lc+1) 
where desc_addr = ook_up descjabel Desc_sym symjable 

list (Eci_desc_arity descjabel anty a_src r) Ic 
= In lc++"Eq_desc_arity "++descjabel++" ("++desc_addr 

++") "++show arity++" "++show a_src ++ list r (lc+1) 
where desc_addr = show (look_up descjabel Desc_sym symjable) 

list (Fill descjab nr_args entryjab a_dst : r) Ic 
= In lc++"Fill "++descjab++" ("++desc_addr++") "++ show nr_args++ 

" "++entryjab++u ("++ entry_addr++") "++show a_dst ++ list r (lc+1) 
where desc_addr = show (look_up descjab Desc_sym symjable) 

entry_addr = show (lookup entryjab Lab_sym sym table) 
list (Jmp label r) Ic 
= In Ic ++ "Jmp " ++ label ++ " (" ++ show address ++")" ++ list r (lc+1 ) 

where address = look_up label Lab_sym symjable 
list (Jmpjalse label r) Ic 
= In lc++"JmpJalse "++label++" ("++show address++")"++ list r (lc+1) 

where address = look_up label Lab_sym symjable 
list (Jmpjrue label r) Ic 
= In lc++"JmpJrue "++label++" ("++ show address ++ ")"++ list r (lc+1) 

where address = look_up label Lab_sym symjable 
list (Jsr label r) Ic 
= In Ic ++ "Jsr " ++ label ++ " ("++ show address ++ ")" ++ list r (lc+1 ) 

where address = lookjjp label Lab_sym symjable 

symjable 

symjable 

sym_ table 

symjable 
symjable 
symjable 

symjable 
symjable 

symjable 
symjable 

symjable 

symjable 

symjable 

sym table 

symjable 

sym table 
symjable 

symjable 
symjable 

sym tabi e 
symjable 

symjable 
symjable 
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list (Set_entry label a_dst 
= In lc++"Set_entry "++label++ 

" ("++show address++")"++show a_dst ++ 
where address = look_up label Lab_sym symjable 

list (instr : 
= In Ic ++ show instr ++ 
list [ ] lc sym table 
= [] 

list 

list 

r) Ic 

r (lc+1) 

r) Ic 
r (lc+1) 

symjable 

symjable 

symjable 
symjable 

In : : num -> [char] 
In Ic = "\n" ++ show Ic ++ "XW" 
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Appendix В 
Translating Clean to ABC-code 

B.1 Reduction entries 
B.2 Code for the left handside of a rule alternative 
B.3 Code for the right handside of a rule alternative 
B.4 Auxiliary functions 

A complete and executable specification of the translations of Clean to ABC-
code is given in this appendix. The translation is explained and illustrated with a 
number of examples in chapter 5. The Clean program is represented by the AST 
defined in section 5.3. The generated ABC-assembler is stored in the AST 
defined in appendix A. The machine specification in given in that chapter can be 
used to execute the translated Clean programs. 

I Associates an index in the Α-stack frame to a node-id 
I An index in the Α-stack frame 

I Associates the status of the node to a node-id 
I The states possible 
I This node-id is not defined in the current scope 
I The node is created but is still empty 
I The node is filled; it is unknown if the graph is a rnf 
I This node is in root normal form 

compile :: rewrite_mle -> abc_assembler 
compile (TypedRule typealts alts) 
= fun_descriptor Ihs ++ 

prepare__args Ihs ++ 
alt_entries alts 1 -н-
gen_type_error symboljd (# args) (# alts) 
where Ihs = getjhs (hd typealts) 

bindings 
offset 
asp 
state 
status 

compiler : 
compiler 

= = 
= = 
= = 
= = 

nodejd -> offset I 
num I 
num 
node id -> status I 

Undefined | I 
Created | I 
Unknown | I 
InRnf I 

: clean -> abc assembler 
= concat.map compile 
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NODE annots nodeid (Function symboijd) args = hd Ihs 
compile (ConsRule typealts alts) 
= fun_descriptor Ihs ++ 

prepare_args Ihs ++ 
alt_entries alts 1 ++ 
fill_with_mf symboijd (# args) (# alts) 
where Ihs = getjhs (hd typealts) 

NODE annots nodeid (Function symboijd) args = hd Ihs 
compile (UntypedRule alts) 
= fun_descriptor Ihs ++ 

prepare_args Ihs -н-
alt_entries alts 1 ++ 
fill_with_rnf symboijd (# args) (# alts) 
where Ihs = getjhs (hd alts) 

NODE annots nodeid (Function symboijd) args = hd Ihs 
compile (TypeRule typealts) 
= descriptors typealts 

fun_descriptor :: graph -> abc_assembler 
fun_descriptor (NODE annots nodeid (Function symboijd) argsrr) 
= [ Descriptor 

symboijd 
(applyjabel symboijd) 
(# args) 
symboijd ] 

descriptors :: rule -> abc_assembler 
descriptors (alt:rest) 
= cons_descriptor rhs ++ 

fill_code rhs ++ 
descriptors rest 
where rhs = get_rhs alt 

descriptors [ ] 
= [] 

cons_descriptor :: graph -> abc_assembler 
cons_descriptor (NODE annots nodeid (Constructor symboijd) args:r) 
= [ Descriptor 

symboijd 
applyjab 
arity 
symboijd ] 

where applyjab 
= rnf Jab , if arity = 0 
= applyjabel symboijd , otherwise 

arity = # args 
cons_descriptor (NODE annots nodeid (Function symboijd) args:r) 
= [] 



till_code graph -> abc_assembler 
fill_code (NODE annots nodeid (Constructor symboljd) args r) 
= [ Label (applyjabel symboljd) 

Fill symboljd arity rnfjab arity 
Fttn ] , if arity > 0 

= [] , otherwise 

where arity = # args 

till_code (NODE annots nodeid (Function symboljd) args r) 

= [] 

prepare_args graph -> abc_assembler 
prepare_args (NODE annots nodeid (Function symboljd) args alts) 
= [ Label (nodejabel symboljd) 

Set_entry cyclejab 0 ] ++ 
pushargs 0 arity ++ 
[ Label (applyjabel symboljd) ] ++ 
reduce_strict_args args 0 
where arity = # args 

reduce_strict_args arg's -> a_src -> abc_assembler 
reduce_strict_args (arg args) η 
= reduce_arg η ++ reduce_strict_args args (n+1 ) , if is_strict arg 
= reduce_strict_args args (n+1) , otherwise 
reduce_strict_args [ ] η = [] 

reduce_arg a_src -> abc_assembler 
reduce_arg a_src 
= [ Jsr_eval ] , if a_src = 0 
= [ Pusha a_src 

Jsr_eval 
Pop_a 1 ] , otherwise 

fill_with_rnf symbolid -> arity -> num -> abc_assembler 
fill_with_rnf symboljd arity nr_alts 
= [] , if arity = 0 
= [ Label (altjabel symboljd (nr_alts+1)) 

Fill symboljd arity rnfjab arity 
Rtn ] , otherwise 

gen_type_error symbolid -> arity -> num -> abc_assembler 
gen_type_error symboljd arity nr_alts 
= [] , if arity = 0 
= [ Label (altjabel symboljd (nr_alts+1)) 

Jmp type_error ] , otherwise 

B.I Reduction entries 
alt_entries rule -> num -> abc_assembler 
alt_entries (alt r) altjiumber = alt_entry alt alt_number++alt_entries r (alt_number+1) 
alt_entries [ ] altjiumber = [ ] 
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alt_entry :: rulealt -> num -> abc_assembler 
alt_entry (Rewrite Ihs rhs) alt_number 
= match_code ++ contractum rhs bindings states asp 

where (match^ode.bindings.states.asp) = match Ihs alt_number 
alt_entry (Redirect Ihs annots nodeid) alt_number 
= match_code ++ redirection annots nodeid bindings states asp 

where (match_code,bindings,states,asp) = match Ihs alt_number 

B.2 Code for the left handside of a rule alternative 
match :: graph -> num -> (abc_assembler,bindings,states,asp) 
match [NODE annots nodeid (Function symboljd) args] alt_number 
= (code, bindings', states', asp') 

where code = [ Label label ] ++ match_code 
bindings = bind_args args asp empty_bindings 
states = record_args args ¡nitial_status 
asp = arity 
arity = # args 
label = altjabel symboljd alt_number 
next_alt = altjabel symboljd (alt_number+1) 
(match^ode.bindings'.states'.asp') 

= matchargs args bindings states asp next_alt asp arity 

match_args :: arg's -> bindings -> states -> asp -> label -> offset -> arity -> 
(abc_assembler,bindings,states,asp) 

match_args (Nodeid an nodeid:rest) bindings states asp next offset arity 
= match_args rest bindings states asp next (offset-1) arity 
match_args (Term ans (NODE n_ans id sym args):rest) binds states asp next offset arity 
= (code, bindings", states", asp") 

where code = bringjn_rnf annots a_src ++ match_code ++ matchrest 
a_src = asp - offset 
(match_rest,bindings",states",asp") 

= match_args rest bindings' states' asp' next (offset-1) arity 
(match_code,bindings',states',asp') 

= match_arg (NODE (ans ++ n_ans) id sym args) 
binds (record id InRnf states) asp next a_src arity 

match_args [ ] bindings states asp next_alt offset arity 
= ([ ],bindings,states,asp) 

match_arg :: tree -> bindings -> states -> asp -> label -> a_src -> arity -> 
(abc_assembler,bindings,states,asp) 

match_arg (NODE anns id (INTval i) [ ]) binds states asp next a_src arity 
= (code .binds, states, asp) 

where code 
= typecheck ++ 

[ Eql_a i a_src ] ++ 
escape false (asp-arity) next 
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typecheck 
= [] , if member anns IsINT 
= [ Eq_desc int_symbolid a_src ] ++ 

escapejalse (asp-arity) next , otherwise 
match_arg (NODE ans id (BOOLval b) [ ]) binds states asp next a_src arity 
= (code .binds, states, asp) 

where code 
= typecheck ++ 

[ EqB_a ba_src ] ++ 
escapejalse (asp-arity) next 

typecheck 
= [] , if member anns IsBOOL 
= [ Eq_desc bool_symbolid a_src ] ++ 

escapejalse (asp-arity) next , otherwise 
match_arg (NODE annots id symbol args) binds states asp next a_src arity 
= (code, bindings", states", asp") 

where code 
= [ Eq_desc_arity (symboljd symbol) n_arity a_src] ++ 

escapejalse (asp-arity) next ++ 
pushargs a_src n_arity ++ 
match_sub_args 

bindings' = bind_args args asp' binds 
states' = record_args args states 
asp' = asp + n_arity 
n_arity = # args 
(match_sub_args,bindings",states",asp") 

= match_args args bindings' states' asp' next asp' arity 

B.3 Code for the right handside of a rule alternative 
contractum :: graph -> bindings -> states -> asp -> abc_assembler 
contractum (top: node_defs) bindings states asp 
= build_shared_nodes ++ root top bindings' states' asp' 

where (build_shared_nodes,bindings',states',asp') 
= shared_nodes node_defs (bind topjd 0 bindings) states asp 

NODE annots topjd symbol args = top 

shared_nodes :: [tree] -> bindings -> states ->asp->(abc_assembler,bindings,states,asp) 
shared_nodes node_defs bindings states asp 
= (code, bindings", states", asp") 

where code = create_cycle_nodes ++ fill_nodes_code 
(create_cycle_nodes,bindings',states',asp') 

= cycle_nodes node_defs bindings states asp 
(fill_nodes_code,bindings",states",asp") 

= fill_nodes node_defs bindings' states' asp' 
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cycle_nodes :: [tree] -> bindings -> states -> asp -> (abc_assembler,bindings,states,asp) 
cycle_nodes [ ] bindings states asp 
= ([ ],bindings,states,asp) 

cycle_nodes (NODE annots nodeid sym args:rest) bindings states asp 
= (code, bindings", states", asp") , if member annots OnACycle 
= cycle_nodes rest bindings states asp , otherwise 

where code = [ Create ++ code_rest 
bindings' = bind nodeid asp' bindings 
states' = record nodeid Created states 
asp' = asp + 1 
(code_rest,bindings",states"1asp") = cycle_nodes rest bindings' states' asp' 

fillnodes :: [tree] -> bindings -> states -> asp -> (abc_assembler,bindings,states,asp) 
fill_nodes [ ] bindings states asp 
= ([ ],bindings,states,asp) 

fill_nodes (node: rest) bindings states asp 
= (code, bindings", states", asp") 

where code = creation ++ till_code ++ 
creation 

= [] 
= [Create 

bindings' 
= bindings 
= bind nodeid asp' bindings 

asp' 
= asp 
= asp +1 

a_src = asp' - bindings' nodeid 

fill _rest_code 

, if previously_defined 
] , otherwise 

, if previously_defined 
, otherwise 

. if previously_defined 
, otherwise 

(fill_code,states') = fill_node node bindings' states asp' a_src 
(fill_rest_code,bindings",states">asp") = filLnodes rest bindings' states' asp' 
NODE annots nodeid sym args = node 
previously__defined = states nodeid = Created 

fill_node :: tree -> bindings -> states -> asp -> a_src -> (abc_assembler,states) 
fill_node (NODE annots id (INTval i) [ ]) bindings states asp a_src 
= (code, states') 

where code = [ Filli i a_src ] 
states' = record id InRnf states 

fill_node (NODE annots id (BOOLval b) [ ]) bindings states asp a_src 
= (code, states') 

where code = [ FilIB ba_src ] 
states' = record id InRnf states 

fillnode (NODE ans nid (Function sid) args) binds state asp asrc 
= filLstrict (NODE ans nid (Function sid) args) binds state asp asrc, member ans Strict 
= (code, states") , otherwise 

where code = build_args_code ++ [ Fill sid arity (nodejabel sid) (asrc+arity) ] 
(build_args_code,states") = build_args args binds states' asp 
states' = record nid Unknown state 
arity = # args 

180 Appendix В 



fill_node (NODE annots nid (Constructor sid) args) binds states asp asrc 
= (code, states") 

where code = build_args_code ++ [ Fill sid arity rnfjab (asrc + arity) ] 
(build_args_code,states") = build_args args binds states' asp 
states' = record nid InRnf states 
arity = #args 

fill_strict :: tree -> bindings -> states -> asp -> a_src -> (abc_assembler,states) 
fill strict (NODE anns nodeid (Function sid) args) bindings states asp 0 
= (code, new_states) 

where code = build_args_code ++ [ Jsr (reductionjabel sid) ] 
newstates = record nodeid InRnf states' 
(build_args_code,states') = build_args args bindings states asp 

fill_strict (NODE annot id (Function sid) args) bindings states asp asrc 
= (code, states) 

where code 
= [ Push_a asrc ] ++ 

fill_code ++ 
[ Pop_a 1 ] 

(fill_code,states) 
= fill_strict (NODE annot id (Function sid) args) bindings states (asp+1) 0 

fill_strict node bindings states asp a_src 
= fill_node node bindings states asp a_src 

build_args :: arg's -> bindings -> states -> asp ->(abc_assembler,states) 
build_args [ ] bindings states asp 
= ([],states) 
build_args (arg:args) bindings states asp 
= (code, states") 

where code = args_code ++ arg_code 
(args_code,states') = build_args args bindings states asp 
(arg^ode.states") = build_arg arg bindings states' (asp+#args) 

build_arg :: arg -> bindings -> states -> asp -> (abc_assembler,states) 
build_arg (Nodeid annots nodeid) bindings states asp 
= (push ++ evaluation , new_states ) , if reduction_needed 
= (push , states ) , otherwise 

where new_states = record nodeid InRnf states 
push = [ Pusha (asp - bindings nodeid) ] 
evaluation = [ Jsreval ] 
reduction_needed = member annots Strict & -(states nodeid=lnRnf) 

build_arg (Term annots node) binds states asp 
= (creation ++ eval_code , strict_states ) , if member annots Strict 
= (creation ++ fill_code , fill_states ) , otherwise 

where creation = [ Create ] 
(eval_code,strict_states) = fill_strict node binds states (asp+1) 0 
(fill_code,fill_states) = fill_node node binds states (asp+1) 0 
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root :: tree -> bindings -> states -> asp -> abc_assembler 
root (NODE annots id (INTval i) [ ]) bindings states asp 
= pop_args asp ++ 

[ Filli 10 
Fttn ] 

root (NODE annots id (BOOLval b) [ ]) bindings states asp 
= pop_args asp ++ 

[ FIIIB bO 
Fttn ] 

root (NODE annots nid (Constructor sid) args) bindings states asp 
= build_args_code ++ 

[ Fill sid arity mf jab (asp+arity) ] ++ 
pop_args asp -н-

[ Rtn ] 
where (build_args_code,states') = build_args args bindings states asp 

arity = #args 
root (NODE annots nid (Function sid) args) bindings states asp 
= bulld_args_code ++ 

clean_up (# args) asp ++ 
[ Jmp (reductionjabel sid) ] 
where (bui'ld_args_code,states') = build_args args bindings states asp 

redirection :: annots -> nodejd -> bindings -> states -> asp -> abc_assembler 
redirection annots nodeid bindings states asp 
= [ Fill_a newroot asp 

Pop_a asp 
Fttn 

= update_astack newroot (asp-1) ++ 
pop_args (asp-1) ++ 

] , If states nodeid = InRnf 

[ Jsr_eval 
FilLa 
Pop_a 
Fttn 

where newroot 

01 
1 

asp - (bindings nodeid) 
] , otherwise 

B.4 Auxiliary functions 

is_strict : : arg -> bool 
is_strict (Nodeid annots nodeid) = member annots Strict 
is_strict (Term annots node ) = member annots Strict 

getjhs : : rulealt -> graph 
getjhs (Rewrite Ihs rhs) = Ihs 
getjhs (Redirect Ihs annots nodeid) = Ihs 

get_rhs : : rulealt -> graph 
get_rhs (Rewrite Ihs rhs) = rhs 
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get_args : : tree -> arg's 
get_args (NODE annots nodeid symbol args) = args 

bring_in_mt : : annots -> a_src -> abc_assembler 
bringjn_rnf annots a_src 
= [] , if member annots Strict 
= reduce_arg a_src , otherwise 

escapejalse :: nr_args -> label -> abc_assembler 
escape_false nr_args label 
= [ Jmpjalse label 
= [ Brjrue 2 

Pop_a nr_args 
Jmp label 

pop_args : : nr_args -> abc_assembler 
pop_args nr_args 

= [] 
= [ Pop_a nr_args 

update_astack : : a_src -> a_dst -> abc_assembler 
update_astack a_src a_dst 

= [] 
= [ Update_a a_src a_dst 

pushargs : : a_src -> arity -> nr_args -> abc_assembler 
pushargs a_src arity nr_args 

= [] 
= [ Push_args a_src arity nr_args ] 

] , if nr_args = 0 

] , otherwise 

, if nr_args = 0 
] , otherwise 

, if a_src = a_dst 
] , otherwise 

, if nr_args = 
, otherwise 

bind_args : : arg's -> offset -> bindings -> bindings 
bind_args (Nodeid annots nodeid:rest) π old 
= bind_args rest (n-1) (bind nodeid η old) 

bind_args (Term annots (NODE annots' nodeid sym args):rest) η old 
= bind_args rest (n-1) old , if nodeid = ' 
= bind_args rest (n-1) (bind nodeid π old) , otherwise 

bind_args [ ] η bindings 
= bindings 

bind : : nodejd -> offset -> bindings -> bindings 
bind nodeid offset bindings name 
= offset 
= bindings name 

, if name = nodeid 
, otherwise 

empty_bindings : : bindings 
empty_bindings nodeid = error ("Nodeid not bound in this stack frame: "-t-t-nodeid) 

record_args : : arg's -> states -> states 
record_args (Nodeid annots id:rest) states 
= record_args rest (record id InRnf states) , if member annots Strict 
= record_args rest (record id Unknown states) , otherwise 
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record_args (Term annots (NODE n_annots id sym args):rest) states 
= record_args rest (record id InRnf states) , if member (annots++n_annots) Strict 
= record_args rest (record id Unknown states) , otherwise 
record_args [ ] states 
= states 

record : : nodejd -> status -> states -> states 
record nodeid status states name 
= states name , if nodeid = "" II no node-id 
= status , if name = nodeid 
= states name , otherwise 

initial_status : : states 
initial_status name = Undefined 

clean_up : : num -> num -> abc_assembler 
clean_up keep 0 = [ ] 
clean_up 0 drop = [ Pop_a drop ] 
clean_up keep drop = [ Update_a (keep-1) (keep+drop-1)] ++ clean_up (keep-1) drop 

nodejabel : : symbolid -> label 
nodejabel symbolid = "n_" ++ symbolid 

applyjabel : : symbolid -> label 
applyjabel symbolid = "a_" ++ symbolid 

altjabel : : symbolid -> num -> label 
altjabel symbolid η = symbolid ++ show η 

reductionjabel : : symbolid -> label 
reductionjabel symbolid = altjabel symbolid 1 

cyclejab : : label 
cyclejab = "_cycle" 

rnfjab : : label 
rnfjab = "_rnf" 

type_error : : label 
type_error = "type_error" 

symboljd : : symbol -> symbolid 
symboljd (Symbol id) = id 
symboljd (Function id) = id 
symboljd (Constructor id) = id 
symboljd symbol = error ("No id in the symbol: " ++ show symbol) 

int_symbolid : : symbolid 
int_symbolid = "INT" 

bool_symbolid : : symbolid 
bool_symbolid = "BOOL" 
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Appendix С 
Artificial Neural Networks 

C.1 Network description tools 

C.2 A feedback network to solve the N-queens problem 

This appendix contains a complete definition of a set of tools to describe and in
vestigate the behaviour artificial neural networks. These tools are used to de
scribe a number of network models in chapter 6. Only the specification of the 
network for the N-queens problem is not covered completely in the text, so the 
complete definition is shown here. 

C.I Network description tools 

weights_net 
weightsjayer 
weights 
weight 
input_state 
¡nput_value 
output_state 
output_value 
net_state 
state 
target_state 
target_value 
potential 
value 
vector 
vectors 
vectorjd 
class 
target_class 

= = 
= = 
= = 
= = 
= = 
= = 
= = 
= = 
= = 
= = 
= = 
= = 
= = 
= = 
= = 
= = 
= = 
= = 
= = 

[weightsjayer] 
[weights] 
[weight] 
num 
[input_value] 
value 
[output_value] 
value 
[state] 
[value] 
[target_value] 
value 
num 
num 
[num] 
[vector] 
num 
[num] 
class 

II the synaps weights in a network 
II the synaps weights in a layer 
II the weights defining one synapse 

II list of simultaneous input_values 

II list of simultaneous output_values 

II the states of all layers in a net 
II the states of neurons in a layer 
II the target output_state 

II the internal potential of a neuron 
II used binary or continuously by application 

II list to be compatible with output_state 
II used in learning vector quantisation 
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synapse = = weights -> input_state -> potential 
generator = = potential -> output_value 
element = = weights -> neuron 
neuron == input_state-> output_value 

Functions determining the evaluation order 

evaluate the state of of a layered network; statelo is the input state 
feedjorward :: element -> weights_net -> input_state -> net_state 
feed_forward element weights input 
= state 

where state 
= (input ++ constant_neurons): 

[evaljayer element (weights!!) (stateli) ++constant_neurons 
|l<-[0..#weights-1]] 

constant_neurons :: state 
constant_neurons = rep nr_constant_neurons high 

feed_back_syn :: element -> weights_net -> input_state -> [output_state] 
feed_back_syn element weights input 
= to_limit(iterate(select_output.feed_forward element weights) input) 

feed_back_asyn :: element -> weights_net -> input_state ->[output_state] 
feed_back_asyn element [weights] input 
= tojimit (iterate (eval_one_by_one element weights) input) 

annealing :: num -> element -> weights_net ->input_state->[output_state] 
annealing t element [weights] input 
= tojimit (disturb t (eval_one_by_one element weights) input) 

disturb :: num -> (state->state) -> state -> [state] 
disturb t eval state 
= state : disturb (annealing_rate*t) eval new_state 

where ν = sum state 
η = # state 
new_state = eval [stateli + noise t (n*i+v) | i <- [0..n-1]] 
annealing_rate = 0.8 

noise :: num -> num -> num 
noise t s = t*(1 - (random (23459*entier s) mod 101)/50) II pseudo random within [-t,t] 

evaljayer :: element -> weightsjayer -> input_state -> output_state 
evaljayer element layer Input = [element weights input | weights <- layer] 

select_output :: net_state -> output_state 
select_output state 
= output_state , ¡f nr_constant_neurons = 0 
= take (#output_state-nr_constant_neurons) output_state , otherwise 

where output_state = last state 
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eval_one_by_one :: element -> weightsjayer -> ¡nput_state -> output_state 
eval_one_by_one element layer input = eval_neurons element Input layer [0..# layer -1] 

II evaluate the neurons in a feed back network one after another in pseudo random order 

eval_neurons :: element -> state -> weightsjayer -> [num] -> state 
eval_neurons element state wjayer [ ] = state ++ constant_neurons 
evaLneurons element state wjayer indices 
= eval_neurons element new_state wjayer rest 

where η = random (1993+entier (sum state)) mod # indices 
index = indices I η 
rest = remove π indices 
new_state = update index new_value state 
new_value = element (wjayerlindex) state 
II Update one neuron at each iteration; taken pseudo random of the list of indices 

random :: num -> num 
random seed = (16807*seed) mod 2147483647 II 2147483647=2Λ31-1 

learn :: weights_net -> [input_state] -> [target_state] -> weights_net 
learn weights (sample:samples) (target:targets) 
= learn (adapt_weights weights sample target) samples targets 
learn weights [ ] [ ] 
= weights 

Functions determining the specific network 

high "value II The upper limit of the values 
low :: value II The lower limit of the values 
nr_constant_neurons :: num II The number of constant neurons 
compute_state :: weights_net -> input_state -> [state] 
compute_output :: weights_net -> input_state -> output_state 
adapt_weights :: weights_net -> ¡nput_state -> target_state -> weights_net 
gain :: num II Determines the learing rate 
a :: num II Determines the size of the initial weights 
initial_net :: [num] -> weights_net 
show_elem :: value -> char 
show_net :: weights_net -> [char] 

The synaptic functions 

wsum :: synapse 
wsum = inner_product 

inner_product :: synapse 
inner_product v1 v2 = sum (map2 (*) v1 v2) II or sum [vi li * v2!i | i <- [0..# v1 -1] ] 

neocognitron_synapse :: synapse 
neocognitron_synapse weights input 
= (1+excitation)/(1+inhibition) - 1 

where excitation = sum[weights!i*input!i|i<-[0..#weights-1];weightsli>0] 
inhibition = -sum[weights!i*input!i|i<-[0..#weights-1];weights!i<0] 
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The generator functions 

hardjlmlt :: generator 
hardjlmlt ν 
= high , if v> threshold 
= low , otherwise 

sgn :: generator 
sgn ν 
= 1 , ¡ fv>0 
= -1 , otherwise 

sigmoid :: generator 
sigmoid ν = (high-low) /(1+exp (-sharpness*v)) + low 

sigmoid' :: generator II the derivate of sigmoid 
sigmoid' ν = ((high-low)*sharpness*exp (-sharpness*v))/((1+exp (-sharpness*v))A2) 

sharpness :: num II determines the shape of the sigmoid 
sharpness = 2 

clip :: generator 
clipv 
= low , if ν <= low 
= ν , If low < ν <= high 
= high .if high <v 

Some well-know elements 

perceptron_b :: element 
perceptron_b weights = sgn . wsum weights II For binary values 

perceptron_c :: element 
perceptronc weights = sigmoid . wsum weights II For continuous values 

hopfieldja :: element 
hopfieldjb weights = hardjimit . wsum weights II For binary values 

hopfield_c :: element 
hopfield_c weights = clip . wsum weights II For continuous values 

Functions to trace the evolution of the state and the learning of a net 

evolution :: weights_net -> [input_state] -> [target_state] -> [input_state] -> [char] 
evolution initial_weights samples targets inputs 
= lay [ lay [ show_state state | state <- compute_state weights input] | input <- inputs ] ++ 

show_w_net weights 
where weights = leam lnitial_weights samples targets 
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Il trace take 4 arguments: 
I - f : the function to be learned 
H - size : the size of the network to be generate 
H - m : the number of learning cycles between status reports 
i - η : the total number of learning cycles to preform 

trace :: (state -> state) -> [num] -> num -> num -> [char] 
trace f size m η 
= "gain: " ++ show gain ++ " a: " ++ show a ++ Λπ" ++ 

concat [eval_per1 (weightsü) (i*m) all_samples alljargets |i<-[0..reps]] ++ 
show_net (weightsireps) 
where weights = initial_net size: pearn (weightsü) (inputsü) (targets!!) |i<-[0..]] 

inputs = chop m input_seq 
targets = chop m [f input | input <- input_seq] 
input_seq = alLsamples ++ random_patterns dimension 
all_samples = patterns dimension 
alljargets = [f input | input <- all_samples] 
reps = π div m 
dimension = sizelO 

eval_perf :: weights_net -> num -> [state] -> [state] -> [char] 
eval_pert weights η samples targets 
= "score after " ++ show η ++ " learning cycles: " ++ 

showfloat 0 (100 * score) ++ " %\n" ++ 
show_sot samples outputs targets 
where score = sum [1|i<-[0..#samples-1];outputs!i=targets!i]/(# samples) 

outputs = [compute_output weights input | input <- samples] 

show_sot :: [input_state] -> [output_state] -> [target_state] -> [char] 
show_sot samples outputs targets 
= lay ["input:\t" ++ show_state (samplesü) ++ 

"\toutput:\t" ++ show_state (outputs li) ++ 
ЛйагдеІЛГ ++ show_state (targets!!) | i <- [0..#samples-1]] 

show_state :: state -> [char] 
show_state state = "|" ++ [show_elem elem | elem <- state] ++ "|" 

show_w_net :: weights_net -> [char] 
show_w_net net = layn [show_wJayer layer | layer <- net] 

show_wJayer :: weightsjayer -> [char] 
show_wJayer layer = lay [show_w_vector vector | vector <- layer] 

show_w_vector :: weights -> [char] 
show_w_vector vector = concat [ЛГ ++ showfloat 2 elem| elem <- vector] 

Some list manipulation functions 

update :: num -> * -> [*] -> [*] 
update 0 new (a:x) = new:x 
update η new (a:x) = a: update (n-1) new χ 
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remove :: num -> [*] -> [*] 
remove 0 (a:x) 
remove η (a:x) 

toJimit::n->[*] 
to limit (a:b:x) 
= [a] 
= a: tojimit (b:x) 

scanjist :: num -> * 
scanjist i χ (y:rest) 
= i 

= X 

= a : remove (n-1) χ 

, if a=b 
, otherwise 

-> [*] -> num 

, i fx= y 
= scanjist (i+1 ) χ rest , otherwise 

chop :: num -> [*] -> [[*]] 
chop η seq = take η seq : chop η (drop η seq) 

normalise :: vector -> vector 
normalise vector 
= [element /11 element <- vector] , if I > 0 
= error "cannot normalise 0-vector" , otherwise 

where I = length vector 

length :: vector -> num 
length vector = sqrt (sum [elements | element <- vector]) 

patterns :: num -> [state] II Generates all binary patterm of length η 
patterns η 
= p a t s n O 

where pats 0 states = states 
pats η states 
= pats (n-1) ([low : state | state <- states] ++ [high: state | state <- states] ) 

random_pattems :: num -> [state] II Generates a list of random states 
random_patterns dimension 
= f3 

where f η = pats!(n mod limit)rf (random η) II Pseudorandom 
pats = patterns dimension 
limit = 2Adimension 

randomjnput :: num -> [state] 
randomjnput dimension = chop dimension (random_values dimension) 

random_values :: num -> [value] 
random_values η 
= value : random_values (random n) 

where value 
= high , if η mod 2 = 1 
= low , otherwise 
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Some functions to be learned 

xorjun :: input_state -> output_state 
xorjun inputs 
= [high] , if # (filter (=high) inputs) = 1 
= [low] , otherwise 

and_fun :: input_state -> output_state 
andjun inputs 
= [high] , if # (filter (=low) inputs) = 0 
= [low] , otherwise 

or jun :: input_state -> output_state 
o r j u n inputs 
= [high] , if # (filter (=high) inputs) >= 1 
= [low] , otherwise 

majority_fun :: input_state -> output_state 
majorityjun inputs 
= [high] , if # (filter (=high) inputs) > # inputs/2 
= [low] , otherwise 

C.2 A feedback network to solve the N-queens problem 

high = 1.0 
low = 0.0 
queen = high 
empty = low 
nr_constant_neurons = 0 

queen_generator ν = clip (v + 1/3) 
queen_element weights = queen_generator.wsum weights 
compute_state = feed_back_asyn queen_element 
compute_output weights input = select_output (compute_state weights input) 

show_net = show_w_net 
show_elem value 
= 'Q' , if ν > 0.9 

, if ν > 0.7 
, i fv>0.5 
, i fv>0.3 
, i fv>0.1 
, otherwise 

where ν = (value - low) / (high - low) 

¡nitial_net [n] = [[[matrix_value i j η |і<-[0..(пл2-1)]] | j<-[0..(nA2-1)]]] 
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matrix_value p1 p2 η 
= 1 , i fp1= p2 
= -1/2 1ifi=kVj=IVabs(i-k) = absG-l) 
= O , otherwise 

where (ij) = coordinates p1 π 
(k,l) = coordinates p2 η 

coordinates :: num -> num -> (num.num) 
coordinates field_number board_size 
= (row.col) 

where row = field_number div board_size 
col = tield_number mod board_size 

empty_board :: num -> input_state 
empty_board η = rep (nA2) empty 

test :: num -> [num] -> [char] 
test η positions 
= monitor (compute_state (initial_net [n]) (place_queens positions (empty_board n))) 

place_queens [ ] board = board 
place_queens (p:rest) board = place_queens rest (update ρ queen board) 

monitor :: [output_state] -> [char] 
monitor outputs = concat [show_board board | board <- outputs] 

show_board :: state -> [char] 
show_board state 
= border++lay [show_state row | row <- take η (chop n state)]++border 

where border = "+" ++ rep η '-' ++ H+\n" 
η = entier (sqrt (# state)) 
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Samenvatting 
Functionele programma's als 
uitvoerbare specificaties 

Dit proefschrift behandelt het gebruik van functionele programmeertalen voor 
het opstellen van specificaties die door een computer kunnen worden uitgevoerd. 

Een specificatie is een zeer nauwkeurige beschrijving in een geschikte be
schrijvingstaal. Een bruikbare specificatie is duidelijk, foutloos en voldoende 
compleet. De gebruikte beschrijvingstaal mag geen dubbelzinnigheden bevatten 
en moet krachtig genoeg zijn om compacte specificaties mogelijk te maken. In 
de informatica worden specificaties gebruikt om eigenschappen en gedragingen 
van machines en programma's vast te leggen. Een specificatie in een functionele 
programmeertaal is niet alleen een beschrijving van de eigenschappen, maar 
geeft ook een algoritme: een voorschrift om die eigenschappen te verwezen
lijken. 

In traditionele programmeertalen bestaan programma's uit een lange reeks 
bevelen. Deze talen heten daarom imperatieve talen. Het gevolg van een bevel is 
afhankelijk van de eerder uitgevoerde bevelen. Dergelijke programma's zijn 
daardoor vaak moeilijk te begrijpen en het is niet eenvoudig hun correctheid aan 
te tonen. 

In een functionele taal bestaat een programma uit een reeks functie
definities en een beschrijving van de gewenste oplossing in termen van deze 
functies. De functies geven eigenschappen van het beschreven object. Zij worden 
gebruikt om de beschrijving van het resultaat in de meest eenvoudige vorm te 
krijgen. De beschrijving moet zo gekozen worden dat niet alleen de goede 
oplossing beschreven wordt, maar ook cen manier om die oplossing te bereiken. 
Doordat tijdens het vereenvoudigen de betekenis van de beschrijving behouden 
blijft zijn programma's in een functionele taal duidelijk en is de correctheid 
relatief eenvoudig te bewijzen. Dergelijke programma's zijn bovendien vaak erg 
kort en bondig. 

Om vertrouwen te krijgen in de correctheid van de beschrijving en de 
geschiktheid van het beschreven produkt wordt vaak een prototype gemaakt. 
Een prototype is een gedeeltelijke, relatief snel te maken implementatie van het 
beschreven produkt. Het prototype geeft inzicht in het gedrag van het beschre-
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ven produkt, maar heeft een aantal beperkingen ten opzichte van het definitieve 
produkt. Bij een prototype van een programma gaat het primair om een bepaald 
gedrag en bijvoorbeeld niet om de snelheid of de manier waarop het programma 
wordt aangeroepen. 

Het is aantrekkelijk programmeertalen als beschrijvingstaal te gebruiken. 
Programmeertalen zijn doorgaans zo goed gedefinieerd dat het duidelijk is wat 
de beschrijving precies betekent. De implementatie van de programmeertaal kan 
gebruikt worden om een aantal aspecten van de beschrijving automatisch te 
controleren. Een compiler controleert bijvoorbeeld of er geen taalfouten ge
maakt zijn en of alle gebruikte termen gedefinieerd zijn. Bovendien is de speci
ficatie een programma dat door een computer kan worden uitgevoerd, de be
schrijving is dus zijn eigen prototype. 

Ondanks deze voordelen worden programmeertalen zelden als beschrij
vingstaal gebruikt: zij zijn meestal niet krachtig genoeg om korte en duidelijke 
beschrijvingen mogelijk te maken. Wanneer we toch zo'n programmeertaal 
zouden gebruiken dan wordt de beschrijving zó lang dat de duidelijkheid ver
loren gaat. Bovendien verdwijnt op die manier het verschil tussen beschrijving 
en produkt. 

Functionele programmeertalen zijn hoog-niveau-programmeertalen met 
een grote uitdrukkingskracht, ze lijken daarom geschikter als beschrijvingstaal 
dan de traditionele imperatieve talen. In dit proefschrift worden enkele beschrij
vingsmethoden geïntroduceerd om de geschiktheid van functionele program
meertalen als beschrijvingstaal te onderzoeken. Aan de hand van enige voor
beelden worden deze beschrijvingen vergeleken met traditionele beschrijvingen. 
De bruikbaarheid van deze beschrijvingsmethoden voor uitgebreide specificaties 
wordt onderzocht door ze toe te passen op enkele voorbeelden uit het dagelijks 
leven van een informaticus. 

In hoofdstuk 2 wordt een machine-beschrijvingsmethode geïntroduceerd 
die bestaat uit meerdere lagen. In de onderste laag worden de onderdelen van de 
machine, bijvoorbeeld de geheugens, beschreven. De volgende laag beschrijft de 
instructies van de machine door het effect van iedere instructie op de onderdelen 
van de machine aan te geven. De verkregen beschrijving wordt vergeleken met 
een traditionele beschrijving. De machine-beschrijving volgens de nieuwe 
methode blijkt iets langer te zijn dan de oude specificatie. Dit wordt veroorzaakt 
door de overzichtelijke manier van noteren die we onszelf hebben opgelegd. De 
functionele beschrijving blijkt erg duidelijk te zijn en is bovendien iets directer 
dan de traditionele beschrijving. Het is tevens een bruikbaar prototype. 

Graafherschrijfsystemen zijn een zeer geschikt berekeningsmodel voor de 
implementatie van functionele programmeertalen. Een programma in een 
functionele programmeertaal worden eerst vertaald naar een equivalent pro
gramma in de graafherschrijftaal Clean. Een Clean-programma wordt vervol
gens vertaald naar een programma voor een abstracte, imperatieve graafher-
schrijfmachine: de ABC-machine. Deze abstracte machine is ontworpen om aan 
te kunnen geven hoe een Clean-programma wordt uitgevoerd op imperatieve 
machines zonder last te hebben van de beperkingen van een concrete machine. 
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Als laatste stap wordt een ABC-programma vertaald naar code voor een con
crete machine. Het blijkt dat via deze tussenstappen uitstekende implementaties 
van functionele programmeertalen verkregen worden. De beschrijvingsmethode 
uit hoofdstuk 2 wordt in hoofdstuk 3 gebruikt voor de beschrijving van de 
ABC-machine. De gegeven specificatie is de enige machine-beschrijving die 
beschikbaar is en voldoet goed in het gebruik. 

In hoofdstuk 4 wordt de geschiktheid van functionele talen voor het be
schrijven van vertalingen van programmeertalen onderzocht. De te transfor
meren taal wordt gerepresenteerd door een datastructuur in de functionele 
beschrijvingstaal. De vertaling is een functie, die de gewenste transformatie op 
de datastructuren uitvoert. Opnieuw voldoet de specificatie in een functionele 
programmeertaal goed in vergelijking met andere beschrijvingen. 

De vertaling van de graafherschrijftaal Clean naar instructies voor de in 
hoofdstuk 3 beschreven ABC-machine wordt in hoofdstuk 5 behandeld. Deze be
schrijving dient als ontwerp voor de echte vertaler. Het uiteindelijke produkt 
bevat veel extra optimalisaties. Het is mogelijk om al die optimalisaties in de 
specificatie op te nemen, maar dan zou het basisschema van de vertaling onvol
doende duidelijk naar voren komen. De beschrijvingen uit hoofdstuk 3 en 5 zijn 
samen gebruikt om Clean programma's uit te voeren en om hun gedrag te bestu
deren voordat de beschreven producten gemaakt werden. 

In hoofdstuk 6 worden een aantal kunstmatige neurale netwerken beschre
ven in een functionele taal. Deze beschrijvingen zijn een zinvolle aanvulling op 
de traditionele wiskundige beschrijvingen. Wiskundige specificaties zijn, vaak 
niet complete, beschrijvingen van eigenschappen van deze neurale netwerken, 
maar geven niet aan hoe dit gedrag op een efficiënte manier bereikt kan worden. 
De ontwikkelde beschrijvingen laten de overeenkomsten en verschillen tussen de 
netwerken duidelijk zien en zijn gebruikt als prototype om een aantal niet 
wiskundig te bepalen eigenschappen te onderzoeken. 

Als conclusie kunnen we stellen dat een functionele programmeertaal met 
succes is gebruikt voor een aantal uitgebreide beschrijvingen die de vergelijking 
met andere specificaties glansrijk kunnen doorstaan. 

Voor alle in dit proefschrift gegeven beschrijvingen is de functionele pro
grammeertaal Miranda gebruikt. Deze taal is niet speciaal als beschrijvingstaal 
ontworpen, maar is desalniettemin goed bruikbaar als beschrijvingstaal. Op twee 
punten deden zich problemen voor. Ten eerste was het, door het ontbreken van 
herschnjf-semantiek, niet mogelijk om de instructies in het geheugen van de in 
hoofdstuk 2 en 3 beschreven machines te laten zien. Ten tweede maakten het 
gebruikte typeringssysteem het noodzakelijk om enkele, overigens overbodige, 
constructoren te introduceren in de datastructuren die voor de beschrijving van 
vertalingen in hoofdstuk 4 en 5 werden gebruikt. 
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