
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/113816

Please be advised that this information was generated on 2018-07-08 and may be subject to

change.

http://hdl.handle.net/2066/113816

FORMALISATION OF INFORMATION

SYSTEMS MODELUNG

Formalisation of Information
Systems Modelling

Formalisation of Information
Systems Modelling

een wetenschappelijke proeve op het gebied van de

Wiskunde en Informatica.

Proefschrift

ter verkrijging van de graad van doctor aan de

Katholieke Universiteit te Nijmegen,

volgens besluit van het college van decanen in het openbaar te verdedigen

op maandag 18 juni 1990, des namiddags te 3.30 uur

door

Jacobus Nicolaas Brinkkemper

geboren op 18 januari 1958 te Monnickendam.

Thesis Publishers

Promotores: Prof.dr. E.D. Falkenberg

Prof.dr. A.A. Verrijn Stuart, Rijksuniversiteit Leiden

с O N T E N T S

1 . I N T R O D U C T I O N

1.1 Information systems modelling 11

1.1.1 Information systems development 11

1.1.2 Modelling 13

1.1.3 Research objective 14

1.2 The Ьшпап roles in information systems development 15

1.3 Methods, techniques and tools 17

1.4 Models 20

1.4.1 Types of models 20

1.4.2 Models of information systems 22

1.4.3 Formal visuals 24

1.5 Research perspective and overview 25

1.5.1 Research framework 25

1.5.2 Overview 26

2 . M O D E L L I N G T E C H N I Q U E S

2.1 Formalisation of modelling 27

22 Meta-modelling 29

2.2.1 Meta-activity models and meta-data models 29

2.2.2 Applications of meta-modelling 33

2J3 Formalisation techniques M

2.3.1 Categories of techniques 34

2.3.2 Meta-data modelling 36

2.3.3 Meta-activity modelling 38

2.4 Modelling procedures 40

2.4.1 Background and definition 40

2.4.2 Requirements for modelling procedures 42

2.4.3 The construction of modelling procedures 45

2.5 Consequences of the formalisation 46

3 . A C T I V I T Y M O D E L L I N G

3.1 Evente 49

3.1.1 Motivation and definition 49

3.1.2 Diagramming events 55

3.1.3 Meta-model of event modelling 57

&2 Event modefling procedures 58

3.2.1 External events 58

3.2.2 Internal temporal events 61

аЗ Activities 62

3.3.1 Definition and diagramming of activities 63

3.3.2 Meta-model of activity modelling 65

3.4 Activity modelling procedure 66

3.5 Formalisation of activity modelling 75

3.5.1 Rules for events 75

3.5.2 Rules for the data flow diagram 78

3.5.3 Rules for the context diagram 80

3.5.4 Rules for the decomposition of activities 83

4 . DATA M O D E L L I N G

4.1 Data modelling procedures 87

<L2 Entity-Relationship modelling 88

4.2.1 Entity-Relationship modelling concepts 88

4.2.2 Formalisation of Entity-Relationship modelling 91

4.2.3 Synthesis of the ER and the NIAM modelling techniques 98

4Л Entity-Relationship modelling procedure 95

5 . TASK MODELLING

5.1 Task modelling concepts 109

5.1.1 Process, activity, task, operation 109

5.1.2 The context of task modelling 111

5.1.3 Requirements of task modelling techniques 114

5.1.4 Existing task modelling techniques 115

5.2 The Conceptual Task Modelling technique 117

5.2.1 Definition of the conceptual task model 118

5.2.2 Example: The Video store case 121

5.2.3 Properties of the CTM 126

53 Formalisation 128

5.3.1 Formal definition of the Conceptual Task Model 128

5.3.2 The relation between the models of activities and tasks 134

5.3.3 Computational power of the CTM 141

5.3.4 Correctness of conceptual schémas at task places 141

5.4 Task modelling procedure 141

5.5 Conclusions and further research 150

5.5.1 Requirements assessment 150

5.5.2 Use of the CTM 151

5.5.3 Further research on the CTM 155

6 . M O D E L L I N G S U P P O R T

6.1 Terminology and functionality 157

6.1.1 Workbench, CASE-tool or IPSE 157

6.1.2 Workbench functionalities 159

62 The incorporation of modelling procedures in system development
methods 162

6 3 Modelling transparency 172

6.3.1 Model dependencies 172

6.3.2 Degrees of modelling transparency 173

6.3.3 Modelling transparency in the IEW 175

6.4 Derivation of support 176

6.4.1 Meta-modelling 176

6.4.2 The derivation of method companionship 181

6L5 Layered modelling 183

6.5.1 Dialogue modelling 183

6.5.2 Formalisation over layers 187

A P P E N D I X 191

R E F E R E N C E S 196

Summary 205

Samenvatting 207

Curriculum Vitae 209

-tREFACE

Modelling of information systems is a hardly touched research area. Of
course, there exist hundreds or thousands of modelling techniques, or
perhaps we should say notations, variants and extensions, that have been
discussed in scientific articles and of which some are used in the daily
software engineering practice. A practice that can be characterised as
intuitive manipulation of modelling symbols.

But how should models be created properly? What steps are needed to come
up with a complete process model? What input is required for data
modelling: e.g. natural language descriptions or sample forms? How can
abstraction levels be distinguished in processes? At which stage are the
models of the various types related to each other? When can parts of the
model be validated by the informants? Which rules have to be satisfied at
which modelling steps?

The practical application of a modelling technique to some concrete
problem often leads to all sorts of questions dealing with the modelling
process. These are the questions that we want to address in this work. A
fundamental motivation for us was the belief that a system of modelling
symbols should always be accompanied by a description of the procedure
that has to be followed during modelling. This gives rise to a lot more
questions and issues, some which we will consider in this study. We will
pay attention to the background of modelling and the reasoning about
modelling by means of meta-modelling. This is elaborated in some
modelling procedures and in a discussion on the support of modelling by
tools.

Allthough there is just one name on the book's cover, many people
contributed to its contents. First of all, I am very thankful to Marijke, Paul,
Judith and Mirjam for their patiently bearing of the restrictions that this
research laid on our family life. Your support and encouragement during
the years made it possible to write this thesis. I thank Eckhard Falkenberg
for introducing me to this research area, one that I have experienced as
challenging and creative. His guidance enabled me to develop my own style
of research. I also thank Alex Verrijn Stuart for the discussions of several
issues of this research. I owe them and my colleagues, in particular Theo
van der Weide, Peter Bruza, Mark McLoughlin, Arthur ter Hofstede, Denis
Verhoef and Gerard Wijers, thanks for their constructive remarks and
proof reading of the manuscript. I was very lucky that a lot of students of
the department of Information Systems were willing to invest their time
and energy in parts of my research. Among others, thanks go to Pauline
van Boven, Mieke van der Linden, Nico Brand, Hein Bouman, Marco
Knots, Arthur ter Hofstede, Mark de Lange, Ronald Looman, Carolien
Koesen, Marianne Geurts, Use van der Kamp, Miep Berbers, Jacques

Beeker and Luc Schouten. Also I would like to thank the researchers and
staff of the Department of Informatics of the University of Nijmegen, of the
Software Engineering Research Centre and the consultants and staff of
Moret Ernst and Young, management consultants, for the discussions,
facilities and assistance. Finally, I thank my father and my brother, Dick
and Nico Brinkkemper for the design and realisation of the cover of this
book, and Eric Janssens for his assistance.

Getting ideas is rather simple during research, but having the opportunity,
the assistance and the support to work them out is not possible without the
cooperation of many, many people. The availability of all these talents is a
gift for which I am thankful.

Nijmegen, April 1990 Sjaak Brinkkemper

X INTRODUCTION

1.1 INFORMATION SYSTEMS MODELLING

Software is becoming more and more complex to be developed. New
technological advancements and increasing user requirements demand
large numbers of designers and programmers, good cooperation, and
experienced project management for effective and efficient software
development. Despite the resources employed in the software development
process, the malfunctioning of automated systems and projects running
out of budget are regular news items nowadays. The software crisis is a
frequent subject of the news media.

Will this also be the case in the future? Certainly not! Either the software
crisis will turn out to be an eternal phenomenon and will therefore lose its
attraction as a news item, or the improved methods and techniques for
software development will solve the crisis by increasing the quality of the
development process and of the developed software systems.

This thesis is aimed to be a contribution to the last option. Methods and
techniques for software development are a young research area and the
feedback from experience in practice is limited. Research on all kinds of
aspects of software development has to be performed and its results have to
be incorporated in improved guidelines and procedures.

1.1.1 Information systems development

We start with an informal introduction to our research objective. We will
restrict ourselves to the development of a particular kind of software
systems, namely information systems. More than 80% of computerised
applications belong to this category. Information systems are possibly
automated systems in organisations, that aim at improving the knowledge
of the members of these organisat ions and a t improving the
communication between their members. The information in such a system
supports the members of the organisations in performing their tasks.

In order to provide an organisation with an automated information system
a development project is usually set up and carried out according to a
method. In such a project the relevant phenomena are recognised,
modelled and incorporated in computer programs. Methodical information
systems development is mostly performed in stages such as scope
definition, analysis, design, construction and use.

11

FORMALISATION OF INFORMATION SYSTEMS MODELLING

During development there are two general problem solving techniques
applied:
1. conceptualisation, that is the creation of a complete and formal system

specification starting from informal rough specifications, and
2. m a p p i n g , tha t is the transformation of the specifications on a

conceptual level (i.e. without presentation and implementation details)
to the machine executable specifications.

informal
complete,

formal

starting point:
informal, rough
specifications

1 Conceptualisation
•

I
conceptual level

Mapping

machine level

end point:
completed information
system

Figure 1.1 Conceptualisation and mapping

Development can then be depicted as a pathway in the two-dimensional
area as in fig. 1.1 (after [Hesse 83]). The starting point of a development
process is the informal rough specifications and the end point is the
completed system, including all hardware and software. There are many
possible pathways between these two points. In traditional software
development, large parts of the conceptualisation process are mostly not
performed on a conceptual level, but on the level of a programming
language. As a consequence aspects of the conceptualisation process are
mixed up with aspects of programming, which should be avoided
[Tsichritzis 78] (conceptualisation and mapping will be defined more
precise in section 1.4).

The recommended or ideal way is to separate conceptualisation and
mapping activities completely, which in terms of fig. 1.1 means that first

12

INTRODUCTION

the upper line is followed to the complete, conceptual and formal
specifications and thereafter the right line which means the mapping of
these specifications to the machine level via some transformation steps.

1.1.2 Modelling

Models are a commonly used development tool during conceptualisation as
well as during mapping. Since organisations and their information
systems are very complex, developers of information systems make use of
manually or automatically created models that represent a certain part or
aspect of the system. For example, there are process models, data models,
data base models, interaction models. Variants of most model types are
defined in relation to the various development stages, for which
innumerable modelling notations have been proposed in the literature.

In the sciences models are used for many purposes. Models create a clear
and structured view and help restrict to the relevant information.
Theoretical explorations as well as practical development can be
formulated by means of models. The use of the term model in science is
therefore many-sided. Model, as we will consider it here, is best defined as
done by [Apostel 60].

Definition 1.1
A system A is used as a model in order to obtain knowledge about a
system B, where the system A is neither directly nor indirectly
interacting with the system B.

During information systems development models denoted in schémas,
diagrams, tables, algorithms, programs, etc., are used to describe parts of
the information system. The activities and discussions of the developers are
for a large part based on models. Moreover, since an information system is
complex, all models of it are simplifying views, tha t are strongly
interrelated and dependent on each other. A change in one model may
cause a whole series of changes in other models.

The use of models in information systems development is not without
problems. One of the motivations for this research was suggested by
observations from practice that the quality of modelling processes as well
as of modelling products are poor. The absence of instructions leads to
subjective modelling, with re la ted drawbacks as ambiguity and
indistinctness in the models [Falkenberg 89c]. Research confirms these
observations [De Brabander 84].
The observed basic problems were among others:
- Different models are made of the same system at hand.
- The modelling process takes too long.
• The models are not consistent with the systems they are supposed to

model.
- The gathering of informants' specifications is hard.
- The modelling techniques are vague and unformalised.
- Experienced modellers are scarce and expensive.

13

FORMALISATION OF INFORMATION SYSTEMS MODELLING

In the active research area of information systems modelling much
attention is given to addressing these problems. Most works deal with
improved formal or informal techniques to model a certain aspect of an
information system. The gathering of specifications regarding the system
to be developed is also addressed quite frequently. The process of modelling
and its background are however seldom focus of research. Most modelling
techniques are introduced in literature by means of examples and some
rules on the notation. The modelling process, that is the way in which
models can be constructed, is lacking in general. See [Lyytinen 87] for an
overview of recent information systems research, from which the above can
be deduced.

1.1.3 Research otgective

The problems concerning the use of models in information systems
development, as far as they are related to the modelling process, gave rise
to a variety of research activities, of which this thesis is the amalgamation.
These research activities were motivated by one overall research objective,
that is formulated as:

Make the modelling process of the techniques applied during
information systems development more explicit.

This objective covers many research issues. The three issues we found
most important were:
a. What is the best way to construct a model, when a specific technique is

applied?
b. What is the formal basis of a modelling technique?
с How is one particular model related to the other models of an

information system?

This thesis mainly addresses the construction of models (a). For some
modelling techniques we will present ways to construct models. These
descriptions of modelling processes are integrated with results concerning
the formalisation of modelling techniques (b). The relationship between
models (c) is discussed, where this turned out to be relevant.

The starting point for making the modelling techniques more explicit is the
claim that the modelling process can be formalised far more than it is now.
A mapping of a technique to a proper mathematical formalism is applied
and the resulting theory is investigated. The concepts of the technique, its
syntactic rules and its semantics are precisely described. On this basis the
steps of a modelling process can be prescribed in a refined procedural way,
which also directs, for instance, the determinat ion of modelling
alternatives. We call these refined modelling steps modelling procedures.
The experience of modellers can be incorporated in these procedures,
which makes their expertise available to more people. This and other
consequences will be discussed in section 2.5.

The remainder of this chapter will be devoted to establish a proper
framework for the discussions. In section 1.2 and 1.3 some terminology is

14

INTRODUCTION

introduced concerning the various roles of persons involved in the
development process, and also concerning the development means, such as
methods, techniques, tools and notations. Models and modelling have a
central role in this thesis and therefore their background in relation to
information systems development is extensively discussed in section 1.4.
Finally, in section 1.5 we present, in addition to an overview of this thesis, a
positioning of the thesis in a widely known information systems research
framework.

1.2 THE HUMAN ROLES IN INFORMATION SYSTEMS
DEVELOPMENT

In order to establish some terminology regarding the various roles of
people involved in software development projects we depict in fig. 1.2 a
simple general process structure of such a development project. The
notation in this figure is of the Channel-Agency modelling technique
[Scheschonk 84] extended with the concept of agent, denoted in the lower
half of the rectangles. This technique is discussed in chapter 4.1

The development process can be split into the activities of the developers,
shown in the lower half of fig. 1.2, and those of the environment, depicted
in the upper half. The corresponding roles in the environment are:
a. Commissioning agent has the responsibility of giving the task to develop

a system. This task may be given to developers in the same organisation
as the commissioning agent or to a specialised software development
firm. The persons in this role are often also responsible for the
assignment of the other roles in the environment.

b. I n f o r m a n t is any person specifying information about the
organisational context, the hardware requirements and about the data
to be stored in the information system. The misleading term user can
then be avoided for this role, since not only future users specify this
information, but also their managers, domain experts, etc.. The
informants also validate the results of the work of the analysts and
designers. We will come back to this role in section 2.4.

с A c c e p t o r has the responsibility of the approval of the complete
intermediate requirement specifications and of the final operational
system including all related documentation, user training, data
conversion, etc..

d. U s e r is any person who uses the system after it has been put into
operation.

The roles of the developers are:
a. Project manager plans and manages all development activities and the

related resources. So the project manager is therefore responsible for
the assignment of the other development roles.

b. Ana lys t performs the analysis stage of the project in which, among
other things, the system scope is defined and the current system or
situation is described. The result of the analysis is passed on to the
designers.

15

commissioning
of

development

commissioning
agent

Σ

providing
information

informant

development
start

information
regarding IS

*¿ і̂

Oí

requests for4*
information or

validation,

system
specification

approval or
non-approval

analysis

analyst

Ϊ

requirements
analysis

design

designer

i

operational IS^
and

documentation;

construction

constructor

Í
project management

project manager

о

>
Й

о
Si

о
4

о

>
Η

δ
2!

и
«!
м
H
M
w

о

α

r

О

Figure 1.2 Process structure and cast of a development project

INTRODUCTION

c. D e s i g n e r developes the specifications of the new system. These
specifications are formally approved by the acceptor and thereafter
either adjusted or passed on to the constructors.

d. Constructor constructs and documents the information system on the
basis of the requirements specification. The system is tested and
installed in the user environment. The lat ter activities may be
performed by different persons, but we do not consider this possibility in
this thesis.

Similar roles are distinguished in [Olle 88b] and in [Verrijn Stuart 87].
Note, that the above assignment of roles is applicable to the development of
systems of any kind. For example, the development of a new system is often
commissioned by an organisation to a software firm and thus the roles are
separated between those two parties. In contrast to this, the commissioning
and development of standard software packages is performed by persons
from the same organisation, except for the users who are the purchasers of
the package. Note furthermore, that some roles may be played by the same
person, such as the acceptor and the commisioning agent, or the analyst
and the designer.

The current information processing system as well as the system to be
constructed are to a great extent described by means of models during the
analysis and design stage. Since we are dealing with modelling in this
thesis and need not to distinguish between analysis and design, we use the
general term of model ler for analysts and designers. The communication
between the modellers and the informants is very important and intensive
during development. The quality of this communication is reflected in the
quality of the resulting system and influences the length of the development
process. We will come back to this in section 2.4.

From fig. 1.2 it can also be seen that the design of the information system
has resulted in a complete system specification and therefore no
communication is needed between the constructors and the informants.
Programming should be done on the basis of completed specifications and
not have details left open that require any extra information. We discuss
this in depth in chapter 5, where a specification technique is presented that
has been developed in order to fulfil this requirement.

1.3 MEHTHODS, TECHNIQUES AND TOOLS

The term technique has already been mentioned a number of times and
will often be used together with the terms method and tool. In view of the
differences between them, it is essential to define them and employ them
accordingly. One should note that all terms are to be understood in the
context of information systems development. We start with the terms
method and methodology, that originate from the Greek word 'μέθοδος!
(methodos), which means a way to investigate something.

17

FORMALISATION OF INFORMATION SYSTEMS MODELLING

Definition 1.2
The methodology of information systems development is the systematic
description, explanation and evaluation of all aspects of methodical
information systems development.

Note from this definition, that there is just one methodology of information
systems development and that all research activities in this field contribute
to this methodology. However, some methodological schools can be
distinguished: software engineering, database management, management
informations systems and the infological approach among others. See
[livari 89] for a thorough paradigmatic analysis of these schools. In the
field of information systems there exist, in addition to the methodology of
information systems development, the methodology of information
planning, the methodology of assessment of information systems and the
methodology of information systems maintenance [Bemelmans 87].

Definition 1.3
A method is an approach, based on a certain way of thinking, to carry
out an information systems development process, consisting of
directions and rules structured according to a systematic ordering of
development activities and corresponding development products.
In case the method only prescribes activities restricted to what has to be
done and how the systems development process should be controlled and
managed, we call the method a project management method, whereas a
development method prescribes also the way how activities have to be
performed.

The methods prescribe the development of the information system in an
ordered hierarchy of steps, which have to be performed by the analysts,
designers, constructors and project managers, in order to deliver the parts
of the system in a proper manner. The system can be constructed from
these parts and brought into use by the organisation, which commissioned
the development. The steps prescribe in general only the type of
development products that have to be generated and not their creation
procedure. For example, it is stated that a business activity hierarchy or a
data model should be developed. In some methods the developers are free to
choose the specification convention and format of these products, and in
other methods it is precisely defined, which are to be used.

The number of methods for information systems development can not be
determined any more, because of the countless variants and the tailoring to
specific circumstances. Different methods can cover different parts of the
system development. For example, ISAC [Lundeberg 80] and Information
Engineering (IEM; [Brand 89ab], [Martin 88a]) pay explicit attention to
data, processes, technology and organisation, whereas the System
Development Methodology (SDM; [Turner 87]) focuses mainly at the
management of system development. The first are therefore development
methods, whereas the latter is a project management method.

A more elaborate definition of a method can be obtained from [Seligmann
89], where a framework for the description of information systems

18

INTRODUCTION

development methods is introduced. This framework comprises the way of
thinking (or philosophy), the way of modelling (the models to be constructed
and their interrelationships), the way of organising (subdivided in the way
of working, i.e. how to do the development, and the way of control, i.e. how
to manage the development) and the way of supporting (the description
techniques and the corresponding tools). The emphasis within a particular
method on either the way of working or the way of control defines the
distinction between a development method and a project management
method.

Definition 1.4
A technique provides the description of the manner in which, and the
notation with which a part of the development must take place. This
incorporates the practical steps to follow when carrying out a
development activity.
A notation is a system of symbols with a corresponding set of rules,
which determine the correct application of the symbols. A notation is
used to denote the results of a technique.
A tool is a, possibly automated, means to carry out a par t of the
development process. A tool may support a notation, a technique or even
a method.

Examples of techniques are process decomposition, affinity analysis,
change analysis, group interviewing, etc. Examples of notations are
decomposition diagrams, association matrices, the symbolic system of the
data modelling technique according to NIAM [Nijssen 89], and the way to
set up an interview protocol description.

According to our definition, techniques can be applied in the steps of a
method, where products of the type the technique delivers are required. For
instance, a particular data modelling technique can be used to design a
data model, or affinity analysis can be used to cluster entity types that are
related to processes in an association matrix. In the case of a project
management method it is the task of the project manager to select a
number of well matching techniques with which the development can be
carried out. In development methods techniques, or parts thereof, have
been incorporated.

Although many notations for the various development products of an
information systems development project have been proposed in the
literature, the techniques to create such products are in general not given.
Part of the formalisation of information systems modelling is therefore the
detailing of the techniques in so-called modelling procedures. This aspect
will be elaborated in section 2.3, where the concept of technique will be
refined.

For most of the techniques, corresponding automated tools exist in various
types and sizes. In section 6.1 we will distinguish some types of tools and
their functionality. A formal way to relate the techniques of a method to the
capabilities of a tool is presented in section 6.4.

19

FORMALISATION OF INFORMATION SYSTEMS MODELLING

1.4 MODELS

Models serve as means to obtain knowledge about a certain system. This it
not only the case for information systems development, but nearly every
branch of science makes use of models. In this section the origin of models
and their scientific methodological background will be related to
information systems modelling. The work of Bertele and Nauta [Berteis 69]
and the thesis of Dietz [Dietz 87] serve as a starting point.

1.4.1 Types of models

The word model originates from the Latin 'modulus', what was used for a
measure in architecture. Via the Italian 'modello', tha t stands for scale
imitations of buildings, it came into the English language as the word
model and as the word mould. Nowadays the word model is used in a large
variety of contexts and has therefore various synonyms: schema, diagram,
sketch, example, blueprint, paradigm, picture, pattern, prototype, etc.

The use of the term model, as we consider it here, is already given in
definition 1.1. A model is a system, but systems exist in a variety of concrete
or abstract forms. Assume, for simplicity, a system to be a collection of
interrelated entities, then the classification of entities into concepts,
concrete objects and symbols according to Ogden and Richards [Ogden 49]
implies three types of systems:
- Conceptual systems: systems of which the entities are concepts, or, say,

things in the minds of people. Examples are set theory and the
periodical system of elements. Theoretical system can also be termed
conceptual systems.

- Concrete systems: systems in which the entities are concrete objects.
Examples of concrete systems are a car, a factory and a societal
organisation. Real system and empirical system are synonyms for
concrete system.

- Symbolic systems: systems of which the entities are uninterpreted
syntactical symbols. Examples are all languages restricted to their
syntax. In the sequel we will often refer to a symbolic system as notation
(see def. 1.4).

Note that the motivation to consider an entity as either conceptual, concrete
or symbolic is related to a certain point of view. In different points of view
the same entity may play different roles. The demarcation, as far as we
know, cannot be made strict. Another remark here is that the term
conceptual, in the context of the three level architecture: conceptual,
internal and external [Tsichritzis 78], is derived from the term as defined
above. In this work both meanings are used and the context will make
clear which is meant.

Definition 1.1 defines as well that a model is a system, that stands in a
particular relation with another system. Given the three types of systems,
this yields nine types of models. These are depicted in the model triangle of
fig. 1.3.

20

INTRODUCTION

We will not discuss here all nine types of models, but only the four that are
relevant for this work, which are in bold font next to the non-dotted arrows.
Customarily, we term a system of type A a model of type A, if it is used as a
model for an other system. An extensive discussion of all types of models
and associated examples can be found in [Bertels 69] and [Dietz 87].

mapping

/
representation /

Conceptual
System

/ \
\

\
1

/ /
/ /' realisation \

/ /

/ /

Symbolic
System

KJ
translation

application

applied realisation
^A.™*™,™.^,^,™™.-.. ™^ « ™ W Л « ™ -.·.

formalised
theoretical model

conceptualisation

4

\

\

4 \ \

Concrete
System

KJ
empirical model

Figure 1.3 The model triangle

Firstly, a conceptual model of a concrete system is called a
c o n c e p t u a l i s a t i o n . Such a model may result after the observation of a
concrete system, followed by the coupling of certain concrete entities to
concepts and t h e i r mutua l re la t ionships . The construct ion of
conceptualisation models is one of the main activities during the analysis
phase. An example of a conceptualisation is a data model of the
information stored in an information system.

A conceptual model of a conceptual system is called a m a p p i n g . An
example is the transfer from the system of concepts of the Data Flow
activity modelling technique [Gane 79] to the system of concepts of the ISAC
activity modelling technique [Lundeberg 80]. Such a transfer is not just a

21

FORMALISATION OF INFORMATION SYSTEMS MODELLING

change of symbols, but requires an adaptation of the way of thinking about
activities due to the differences in the perception of the concepts in the
respective techniques.

A symbolic model of a conceptual system is called a representat ion . An
example is the representation of an activity model into a symbolic system
that is able to express activities, such as the Data Flow diagrams or the
ISAC A-graphs. The representation is often assumed to be implicitly
present. For instance the conceptualisation in section 1.1 assumes the
representation of all models in suitable symbolic systems. In [Bertels 69]
representation was called notation, but we prefer to use the latter term for a
symbolic system.

Finally, a symbolic model of a symbolic system is called a translat ion. A
translation often corresponds with a transfer between conceptual systems.
This translation need not necessarily be isomorphic, i.e. one to one, but can
be any morfism. An example is the translation of a model denoted in the
symbolic system of the Data Flow activity modelling technique to a model in
the symbolic system of the ISAC activity modelling technique. In the latter
the symbol of for the notion of a data store is missing, because it is not a
concept in ISAC, and therefore a translation should include a decision for
each data store whether it should be seen as a message set or as an activity.
See [Falkenberg 88] for a more elaborate discussion of the mapping between
those systems of concepts and the corresponding systems of symbols.

In addition to these four types of models, we define a formalisat ion as a
mapping onto a mathematical system of concepts with a corresponding
representation. An example of a formalisation is the result of the
mathematical description of a conceptual modelling system. We will show
this for most of the modelling systems in the next chapters. For instance,
the Conceptual Task Modelling technique is mapped onto a 12 tuple in the
formal description of section 5.3.

Now that we have a clear notion of model, we use the word modelling for
the process of setting up a model of any type as shown in fig. 1.3. A
modeller is a person, who models. Modeller was already introduced for the
generalisation of analyst and designer in section 1.2. The context will
determine which is meant.

1.4.2 Models of information systems

The triangle of model types of the preceding section clarifies the use of
models during the development of information systems and their study
with the help of meta-modelling. The first aspect is shown in fig. 1.4 and
discussed in this section. Meta-modelling is elaborated in chapter 2.

On either side of the development traject are the Universe of Discourse
(UoD) as starting point and the information system as end point. The UoD
is a concrete system observed or known by the informants, that has to be
conceptualised and subsequently represented into a collection of models,
such as a data model, a process model or a dialogue model. These models

22

INTRODUCTION

are then mapped with a corresponding translation onto a collection of
models of the internal (i.e. machine) level and the external (i.e. user
interaction) level of the information system. This confirms tha t an
information system is a symbolic system, which follows already from the
fact that an information system is a data processing system.

Conceptual
^ · UoD models

Formal
UoD models

I
Information

system

Figure 1.4 Information systems modelling

We now can propose improved definitions of both systems compared to
those given in [ISO 82]. The definitions relate the scope of the system to a
certain given objective of a person or an organisation in developing an
information system for a particular UoD. The origin and format of this
objective are postulated.

Definition 1.5
A Universe of Discourse is a system of concrete entities, which were, are
or will be relevant with respect to a given objective.
An information system is a manual, partially automated, or fully
automated system of symbolic entities, representing facts about concrete
entities, that are recorded because of their relevance with respect to a
given objective, and that can be updated, retrieved, and from which other
facts can be derived.

Note that from another viewpoint an information system can be seen as a
concrete system with hardware, software, input forms, output reports and
human operators for instance. This is not considered in this work. Some
authors, see for instance [Griethuysen 81], subdivide the UoD into a
concrete system, called object system, and a conceptual system, called
abstraction system. The abstraction system is then defined to consist of
rules about the entities. We, however, consider these rules to be implicit in

Universe of
Discourse

23

FORMALISATION OF INFORMATION SYSTEMS MODELLING

the system of the UoD. In other words, we assume that conceptualisation
makes them explicit.

1.4.3 Formal visuals

Many diagrammatic notations are used for representation purposes in the
information modelling process. An overview of the most popular ones can
be found in [Olle 82] and [Martin 88b]. Harel introduced in [Harel 88] the
notion of visual formalism in the research area of modelling techniques. A
modelling technique is a visual formalism, if it is based on a mathematical
theory with a corresponding graphical notation. Harel advocated the
replacement of the popular informal modelling techniques by new
visualised formal techniques.

We claim, on the other hand, that the existing techniques can be extended
with a rigourous definition of their semantics, which formalises the visual
techniques. Our experience shows that the syntax and use of the
techniques are already very structured and do not cause severe difficulties
to be formalised. The formalism reveals mostly extra knowledge about the
technique. The obtained formal visuals combine the advantage of simple
generation, comprehension and communication by humans with the
automatable manipulation, maintenance and analysis of models based on
the formalism. The issue of chosing a suitable formalism will be discussed
in sec. 2.3.

external environment

organisational environment

user
environment

development
environment

operations
environment

f use Λ
1 process

f development^
I process

f operations >

I process

information
system

Figure 1.5 Information systems research framework

24

INTRODUCTION

1.5 RESEARCH PEBSPECTIVE AND OVERVIEW

1.5.1 Research framework

Research in the field of information systems is broad and comprises many
different research approaches. An adequate information systems research
framework was developed by Ives, Hamilton and Davis [Ives 80] by
categorising a set of more than three hundred doctoral dissertations in this
area. This framework can diagrammatically be depicted as in fig. 1.5.

The model distinguishes a user environment, a development environment
and an operations environment (represented by squares), that determine
the resources and constraints of the scope and form of information systems
and their processes. The dynamic interaction of all components is modelled
as the use process, the development process and the operations process
(represented by ovals). The information system, its environments and its
processes are surrounded by the organisational environment, which in its
turn is embedded in the external environment.

This thesis falls within the components development process, which is
defined as the selection and application of organisational resources that
yield the information system, and the information systems development
environment, which comprises development methods and techniques,
design personnel and their characteristics, and the organisation and
management of information systems development and maintenance. We
aim at improving the parts of the development process that deal with
modelling by using existing or new techniques with a formal basis.

In a survey paper of Lyytinen [Lyytinen 87] the framework of [Ives 80] is
refined. The problem classes of the development process and the use
process are related to the impact of new technology, a l ternat ive
development process models, innovative project management, modelling
improvements and theory development. The impact is assessed on the basis
of an extensive survey of research results. Lyytinen states that many of the
problems in information systems development are due to the poor,
undisciplined and incomplete development practices.

This thesis aims to contribute to the knowledge about modelling of
information systems in the formalistic as well as the functional way.
Formalistic information system models are geared towards more abstract
specification and support a more disciplined modelling process. Functional
modelling is improved by the introduction of a new specification technique
for task modelling (see ch. 5). Empirical evidence for these claims is
however not yet available, which is a common shortcoming in information
systems research ([Lyytinen 87], p. 36).

Another shortcoming in information systems research according to
Lyytinen, from which this thesis definitely does not suffer, is the theoretical
diversification and the rari ty of cumulative research. The studied
modelling techniques, which we will improve in the following chapters,

25

FORMALISATION OF INFORMATION SYSTEMS MODELLING

are well known and commonly applied in practice. The mathematics
applied is mostly simple predicate calculus. Moreover, the new technique
for task modelling builds on research of others, because it is composed
from three existing techniques.

1.5.2 Ova-view

This thesis is organised as follows. The following chapter deals in detail
with models and modelling in the information systems development
process. The research technique of meta-modelling is explained and
justified with respect to the general framework of modelling of section 1.4.
Based on a discussion of various ways to formalise modelling, the
reasoning about modelling is motivated. We introduce modelling
procedures as stepwise guide-lines to perform the modelling process.

Modelling procedures are presented in the chapters 3, 4 and 5 for the
modelling of events, activities, data and tasks. These parts have a more or
less a similar structure. The models to be constructed, e.g. event model or
task model, are discussed and related to their meta-models. A modelling
procedure is given and illustrated with some examples. Theoretical
consequences of the modelling constructs are finally related to the
modelling procedures.

The last chapter deals with four subjects that are related to modelling and
its support by automated tools. The terminology and functionality of these
tools, popularly called CASE-tools, are discussed. The support of the
interrelat ionships between models in tools is called m o d e l l i n g
transparency . Various degrees of modelling transparency are defined.
Many modelling tools are developed to support the development of
information systems according to a specific method, wheras others aim to
support several methods. We introduce the term m e t h o d companionship
for the relationship between tool and method. A formal procedure to derive
method companionship using meta-models is presented and illustrated for
the case of one specific method and tool. Finally, we discuss the
construction of models in layers to overcome problems of complexity. This
layered modelling turns out to facilitate a splitting of the formalisation into
several parts.

A large par t of this thesis has already been published and some
publications served as a starting point for the research reported here. Some
sections are extended abstracts of these publications. The precise
references and their status with respect to this work are indicated at the
beginning of each chapter.

26

Á MODELLING TECHNIQUES

2.1 FORMALISATION OF MODELLING

From the problems encountered in information modelling, as discussed in
section 1.1, and from the necessity to obtain more insight and to put more
rigour in the information modelling techniques applied in practice, we
conclude that the modelling techniques themselves should be formalised.
Maximal knowledge about the techniques should be made explicit in order
to minimise the informal and heuristic application of the techniques and to
justify an effective and efficient application resulting in models of high
quality. Among other things, the inevitable subjectivity of modelling
[Falkenberg 89c] should be restricted as much as possible.

Recall from section 1.4.1 that we consider formalisation to be the mapping
of the system in a mathematical conceptual system and the corresponding
representation. With regard to modelling techniques this means that we
add formality to the informally defined technique. This therefore does not
lead to a replacement of the technique by some nice mathematical
formalism, which cannot be applied in practice by the average modeller.
The application of techniques in practice gets a sound basis.

Our position towards formality is rather pragmatic. Mathematics offers a
rich variety of theories for the formalisation of the structured problem
areas of information systems. For our purposes we choose a formalism
that fulfils the following requirements:
- The mathematical formalism should express the technique in an

adequate manner, i.e. the intended meaning of the technique should be
reflected in the mathematical constructs. Possible operations in the
technique should have equivalents in the formalism.

- The mathematical formalism should be generally known. This is not as
trivial as i t looks, since this excludes the mapping onto an ad hoc
formalism for which no elaborated theory is present . The task
modelling technique CTM (see chapter 5) was therefore mapped onto the
formalism of Predicate-transit ion nets , which has an extensive
theoretical basis [Genrich 87], although some disadvantages of PrT-nets
indicated the need for the development of a new theory.

- The formalism should be simple to apply. A good theory increases the
knowledge about the technique in a simple way.

Examples of the choice of formalism made in this work are first order
predicate calculus for the data modelling and the activity modelling
technique (ch. 3 and 4), PrT-nets for CTM (ch. 5), and automaton theory for

27

FORMALISATION OF INFORMATION SYSTEMS MODELLING

dialogue modelling (sec. 6.5).
are discussed in section 2.3.

More formalisms for modelling techniques

The above requirements were inspired by the requirements on formal
specification languages as formulated by Bergstra and Renardel de
Lavalette [Bergstra 89]. There does not exist a generally accepted
formulation of the requirements on formalisation techniques in our field.
Such a formulation is not a trivial issue, because the research approaches
vary considerably and deviate substantially from the approaches in
research fields as formal specifications or programming languages. An
overview of approaches for information systems can be found in
[Falkenberg 89b].

How can formalisation of techniques be seen in the model triangle of fig.
1.3? Crucial to this is to treat the modelling technique as a concrete system
that has to be modelled. This means that the system of concepts of a
modelling technique is considered as a concrete system on an abstraction
level higher than the application of modelling in the development of an
information system. It can be seen as an instance to type abstraction, that
frequently occurs in the science of specification techniques. Since
modelling is our object of study, we call this meta-modelling. Meta-
modelling as the superpositioning of model triangles is depicted in fig. 2.1.

/

Meta-modelling
technique

f

Meta-modelling
notation

\

/

1

Modelling
technique

f

Modelling
notation

\ ч
System to be

modelled

Figure 2.1 Meta-modelling

The modelling during ordinary information systems development
corresponds in this figure with the lower model triangle and the meta-
modelling with the upper model triangle. This leads to the following
definition of meta-model and meta-modelling.

28

MODELLING TECHNIQUES

Definition 2.1
A meta-model is a conceptual model of a modelling technique.
Meta-modelling is the process of the conceptualisation of a modelling
technique.

As an information system is not captured in one single model, meta-
modelling has also to be applied in various perspectives using different
techniques. The result ing models are classified according to the
perspective. For example, there are meta-data models and meta-activity
models.

Some research approaches in information systems can be explained in
terms of combinations of the model triangle of fig. 1.3 by considering a
system of a particular type to be of another type. Recall that meta-modelling
was obtained by considering a conceptual system as a concrete system. An
application that treated symbolic systems as concrete systems was reported
in lexicographies, the science of dictionaries, see [Linden 88ab]. The
superpositioning of several model triangles is only significant to, say, two
or three times, which was already pointed out by Falkenberg [Falkenberg
83]. In [Brinkkemper 89b;90a] it is described how an extra meta-level was
needed in the derivation of the support of a tool to a method (see also section
6.4). The models were therefore called meta-meta-models. To some extent
the reasoning about meta-modelling in this chapter can be seen as meta-
meta-modelling as well.

We will describe meta-modelling and its use in more detail in the
remainder of this chapter. The various types of meta-modelling and their
applications are discussed in the next section. In section 2.3 the
conceptualisation and representation techniques that can be applied for
meta-modelling are discussed. Modelling techniques can thereafter be
improved by means of the so-called modelling procedures, which are based
on the obtained formalisation. These modelling procedures and their
quality requirements are considered in section 2.4. We conclude with a
short discussion of the consequences of formalisation by means of meta-
modelling and modelling procedures in the final section of this chapter.

22 META-MODELLING

2.2.1 Meta-activity models and meta-data models

As discussed in the previous chapter meta-modelling is the process of
conceptualisation of a modelling technique. Restricting the scope of interest
to a particular aspect or perspective requires meta-modelling to elicit and
formalise a certain aspect of the knowledge about the given technique. The
resulting meta-models provide deeper insight in the examined modelling
technique since statements about the technique can be justified. The
process of meta-modelling can be related to modelling as shown in fig. 2.2
(adapted from [Ter Hofstede 89b]).

29

FORMALISATION OF INFORMATION SYSTEMS MODELLING

'

f

1

Technique
development

Informants'
, specifi cations

J

w

Meta-
modelling

i \

Modelling
technique

ν J

< '

к Л . ^ _ І І : _ .
m υ и уміііу

^

^
f 'Ν

Meta-model

te. Model

к. J

Figure 2.2 Meta-modellmg versus modelling

This figure is an extension of figure 1.3 and shows input and output of both
processes. We also show the evolutionary development of a modelling
technique by means of the feedback of the meta-model to the technique
development. This is one of the possible applications of meta-models.

A model of the steps of a technique is obtained after an analysis of the way
the technique works, which provides us insight in the procedure of the
technique. The result is therefore called a meta-activity model or a meta-
process model. Well-known representation techniques for activities can be
applied to denote the resultant model. The data of the techniques are
exemplified in the products of the techniques. Data modelling of these
products yields the meta-data model or the meta-information model. The
precise relation between the meta-activity model and the meta-data model
is captured in the parts of the meta-data model that correspond with the
intermediate and final products of the technique. Obviously a lot of the
knowledge about modelling is analogously valid for meta-modelling.
Examples of meta-models are shown in figure 2.3 and 2.4, which are taken
from [Brinkkemper 89d]. The notations of both models will be discussed in
section 2.3.

We see in this meta-model the activity 'model functional architecture' (with
nr. 6.2), t h a t consists of three subactivities with the products 'functional
decomposition', 'organisational unit da ta model' and 'enterprise
information needs' as input, and the product 'functional design' as output.
The example shows furthermore t h a t the products may consist of

30

MODELLING TECHNIQUES

subproducts and the subactivities may result in intermediate products, that
are not outputs of the activity.

enterprise information needs

I functional I
I decomposition I

organisational
unit data model

management
information

needs

6 2 mod il functional architecture

6 2 2 HH

X external "\ ζ operationalN
information I information

needs I I needs J

6 2 1

consolidate
current

activities

identify new
and obsolete

activities

current
activities J

Γ new and N
I obsolete I
I activities 1

6 2 3 , r

develop genene
functional model

functional d ¡sign

functional
architecture

functional
decomposition

diagram
onl

Figure 2.3 Example of a meta-activity model

In this meta-model the entity types 'organisational unit ' , 'function',
'process', and 'activity' can be distinguished. An example of a rule is that
the relationship 'organisational unit' is-responsible-for 'function' is a one
to many relationship, which means that one particular function falls
under the responsibility of just one organisational unit , but one
organisational unit may be responsible for more than one function.

31

FORMALISATION OF INFORMATION SYSTEMS MODELLING

has-re lation-
with

exchanges-
data-with

is-responsible-)or

falls-under-the-
responsibihty-of

t
is-dependent-ol

consists-of

belongs-to

[problem 4 —

* = P

consists-of

has

is-needed-by

Figure 2.4 Example of a meta-data model.

32

MODELLING TECHNIQUES

2.2.2 Applications of meta-modelling

Meta-models can serve many purposes in the area of information systems
research. We review here some of those applications reported in the
literature.
a. The explicit and concise description of techniques, methods and tools is

the most obvious benefit of meta-modelling. These kinds of meta-
models are used in the following investigations.

• The selection of tools. The meta-models of some available tools for
systems development were constructed to justify the selection of one of
them [Vonk 88].

• The discussion of the software development process [Lehman 87],
[Kokol 89]. Lehman introduced the notion of Software Process Model,
in the debate about the various approaches for the software
engineering process, such as the waterfall model and the spiral
model. Meta-models were derived for the different approaches in order
to focus the discussion [Wileden 86]. The software process model is a
kind of meta-process model.

• The comparison of methods. The assessment of aspects of methods
according to some framework can hardly be justified without some
degree of uncertainty or individual interpretation. Based on the
manuals of three different methods for information systems planning,
the complete meta-models of the methods were constructed. The meta-
models make it possible to decompose the methods into their
elementary building blocks. These models simplified an extensive,
complete and nearly objective comparison of the methods in terms of
their steps and products [Brinkkemper 89d].

• The development of tools. Since tools can be considered as information
systems for techniques, the data model for these systems, i.e. a meta­
data model of the technique, serves for the development of the tool data
base or dictionary. This was applied to a dialogue modelling technique
in [Koesen 89] and to a workbench shell in [Ter Hofstede 89b].

• The determination of method companionship. This so-called mapping
of the techniques of a information systems development method to a
development support tool based on meta-models of both method and tool
preceded the drafting of guide-lines for the use of the tool in the method
[Brinkkemper 89b;90a].

• The formulation of methodological insights. Given the enormous
variety of information systems development methods one is interested
to know what is common to most methods from a perspective free of
any particular method. This knowledge enables one to judge whether a
particular method is complete for systems development and what is
special to or particularly emphasized in a method. In [Olle 88b] a
framework of information systems development methods is presented
by means of generalised meta-data models, of which the task
modelling part was reviewed in [Brinkkemper 89a].

• The assessment of techniques. The question whether a particular
technique is suitable for practical use is in general answered after its
application in some pilot projects. In [Godwin 89] an assessment
method, called DMAT1, is presented, which uses the meta-modelling
of the assessment method itself as input material for the assessment of

33

FORMALISATION OF INFORMATION SYSTEMS MODELLING

the analysis and communication facilities of several aspects of the
technique.

b. The formalised reasoning about techniques. Mathematical meta-
modelling techniques make the formal justification of statements
about the technique possible. In [Ahituv 87] an axiomatic meta-model
of information flow is presented in order to evaluate some properties of
information theory. As mentioned before, the task modelling technique
of CTM is based on Predicate-Transition nets [Brinkkemper 89ae], [Ter
Hofstede 89a]. In chapter 5 we will discuss some of the corollaries and
theorems, that are consequences of the properties of a well-formed
CTM-net structure. Properties and consequences of the formalised
dialogue modelling technique are given in [Koesen 89].

с The comparison of the prescribed methods with the actual
performance of the methods. The deviation within projects from the
descriptions in manuals of the applied method were collected based on
some reports of information systems planning projects [Brinkkemper
89d]. It turned out for this investigation that the reports followed the
methods rather well, although the experience of the planners played
an important role.

d. The description of the behaviour of experts. In order to improve the
functionality of information modelling tools, research projects were set
up in which some experts in information modelling were extensively
observed during their work [Wijers 89], [Ter Hofstede 89b]. The tools
may then be adapted to the strategy of the modellers, such that novices
can imitate the experts' way of working and subsequently gain their
own experience. Meta-modelling and protocol analysis were applied as
knowledge representation techniques in these projects.

2.3 FORMALISATION TECHNIQUES

2.3.1 Categories of techniques

In principle, every information systems modelling technique can be used
for meta-modelling. Some techniques have been developed purely for meta-
modelling. We will review the techniques in the following sections on their
suitability for meta-data modelling and meta-activity modelling. Parts of
this section are based on [Ter Hofstede 89b].

In a similar way as in the science of programming languages, we can
define the syntax and semantics of a modelling technique. The syntax (or
grammar) of the technique defines the valid constructs of the technique.
The semantics of the technique states the meaning of each syntactic
construct. The meanings belong to a certain domain of values, that is
chosen to be appropriate for the purpose of the technique. The semantics
are then expressed by means of a function, called valuation function, that
associates each construct of the technique with its value in the domain of
values.

34

MODELLING TECHNIQUES

This gives rise to the distinction of three categories of techniques for meta-
modelling:
1. Formal techniques: techniques of which the syntax and the semantics

are rigourously defined. It may be a mathematical theory or a
technique, that is mapped to a mathematical formalism. Examples are
predicate calculus and formal specification languages, like VDM
[Björner 78] and Ζ [Spivey 88]. Petri-nets [Reisig 85] and Predicate-
Transit ion-nets [Genrich 87] are examples of formal graphical
techniques with a precisely defined syntax and semantics.

2. Structured techniques: techniques of which the syntax is defined. This
category consists, for a large part, of diagrammatic techniques for
information systems modelling, that have precise rules that define
which constructs are allowed and which are not. Examples are data­
flow diagramming and most data-modelling notations.
The valuation function of structured techniques can in general not be
made explicit, because the domain of values is the real world, of which
we assume that it cannot be formalised. The meaning of the constructs
in these techniques is therefore in general based on a common
understanding communicated by means of examples.

3. Informal techniques: techniques for which there is no complete set of
rules to constrain the models created by the technique. Natura l
language and unstructured pictures are informal techniques.

The process of meta-modelling is more or less the same as the ordinary
modelling process. The modelling concepts are treated as concrete entities
(see section 2.1) and therefore those entities, their interrelationships, the
procedure in which they are applied during the modelling process, and all
related aspects are modelled in meta-models. In case a modelling
procedure is known for a meta-modelling technique, we simply apply this
procedure.

Lay-out aspects are not incorporated in meta-models, because this has to do
with the representation of the modelling technique and nothing with the
system of modelling concepts. This is especially important for graphical
modelling techniques: shape, size, position, fonts, etc. are ignored. One has
to be careful with links to other models. This is either due to the limitations
of the representation device, and is thus not conceptual and therefore not to
be incorporated in the meta-model, or this is due to the links between
modelling components of one or two particular types and therefore have to
be represented in the meta-model by an association between these types.
For instance, the hierarchy of data flow models is caused by the fact that
processes are decomposed in subprocesses. So the hierarchy is represented
by the association of processes having subprocesses.

Meta-data modelling of a technique may be simplified by a reversed data
transformation of the dictionary of an available tool for that technique.
Since such a tool is capable to store models produced by that technique, the
data base structure of the tool should reflect the concepts of this technique.
Most tools are provided with documentation on the structure of their
dictionary for import-export facilities, so the meta-modelling is
straightforward. One should, however, take into account t h a t this

35

FORMALISATION OF INFORMATION SYSTEMS MODELLING

dictionary does include lay-out details and that these should not be
considered due to the motivations cited in the previous paragraph.

2.3.2 Meta-data modelling

Meta-data models capture the more static aspects of a method. The data
that is recorded during the methodical development in the products of the
method is modelled in terms of concepts, associations between those
concepts and the rules that must hold for these concepts and associations.

Those concepts, associations and rules can be modelled in most data
modelling techniques. The extent to which a data modelling technique is
suitable for meta-data modelling is determined by the expressive power of
the technique and the clarity of its models. The elementary data modelling
technique according to NIAM [Nijssen 89], an extension of the binary data
model [Verheijen 82], and the Entity-Relationship modelling technique
[Chen 76] have been used for meta-data modelling in various projects:
[Brinkkemper 89abde;90a], [Koesen 89], [Wijers 89]. The elementary data
model is especially suitable for meta-data modelling because of the
existence of a modelling procedure for it, the equal treatment of objects, the
arbitrary degree of the relationships and the existence of a variety of
constraints. An example of a meta-data model in this notation is shown in
fig. 2.4. The Entity-Relationship technique proved to be useful in the case of
a large meta-data model in a project for the determination of method
companionship [Brinkkemper 89b;90a].

The notation of the meta-data models used in [Olle 88b] is too restrictive to
represent detailed models. This technique seems only suitable for a global
impression of a meta-model, because only binary relationships are possible
and nesting of relationships is restricted via artificial cross-reference
components. Also, only two out of the possible sixteen binary relationships
are provided. For frameworks, such as [Olle 88b], a proper meta-modelling
technique still has to be developed.

First order predicate calculus is a mathematical formalism suitable for
meta-data modelling. An algebraic structure is defined consisting of sets,
that represent the concepts of the modelled technique, and relations, that
represent the associations between the concepts. Axioms formulate the
rules of the technique. We will use this meta-data modelling technique in
chapters 3, 4 and 5. The notational variant we use is illustrated in the
following example of a part of a meta-data model for unmarked Petri-nets.

The concepts of this technique are place, transition and arrow:

S : set of places

Τ : set of transitions

A : set of arrows

There exist basically two associations: a place is input for a transition and
a place is output for a transition:

36

MODELLING TECHNIQUES

predicate input over S χ Α χ Τ

predicate output over S χ Α χ Τ

In this notation input(s,a,t) means that the place s is input to the transition
t via the arrow a, and similarly for output(s,a,t). The basic predicates can
not be defined in terms of other predicates, they are just assumed to be valid
for certain values of the parameters.
R u l e s can be formulated in terms of the predicates and the logical
operators. We call such rules axioms. An example is the axiom that each
arrow connects a place to a transition as either input or output:

Vae A 3se S 3te Τ [inputfs.a.t) ν outputCs.a.t)] (PI)

For simplicity of reasoning we may introduce auxil iary predicates. For
instance, we may call a place a source in the case it is not the output of any
transition:

predicate source over S as

source(s) = -ι 3ae A 3teT [output(s,a,t)]

All quantifications are assumed to be over the correct set as the variable is
used in the predicates and sometimes we leave the forali quantifier
implicit. From P I and the definition of source we may deduce the corollary
that a source is always input to at least one transition:

Vse S source(s) => 3ae A 3te Τ : input(s,a,t) (P2)

Sometimes it may be convenient to introduce functions as a special type of
predicate in case one parameter can have just one value for which the
predicate is valid, where the other parameters may be arbitrary. We
illustrate this with the predicate in_degreep that stands for the number of
incoming arrows of an transition. The set N stands for the set of natural
numbers .

predicate in_degreep over Τ χ N as

in_degreep(t,n) =

3ai,a2,...,an Ш * j => aj Φ aj] л [3si,S2 Sn [Vi: input(sj,aj,t)]] л

[VaeA\{ai,a2,...,an) : -i [3s : input(s,a,t)]]]

It can be shown that the predicate is a function from Τ to N, i.e.

in_degreep(t,ni) л in_degreep(t,n2) => n i = пг

We then may define the function in_degreef as follows:

37

FORMALISATION OF INFORMATION SYSTEMS MODELLING

function in_degreef over Τ to N as

in_degreef(t) = η <=> in_degreep(t,n)

which defines the value of the function in_degreef equal to the unique value
for which the predicate in_degreep is true. The distiction between the
predicate and the function by means of the subscript can then be dropped.

For the sake of simplicity we will directly define such predicates as
functions. The axiom of the uniqueness of the function image is implicitly
assumed to be valid. All necessary arithmetical or set theoretical
operations are also assumed to be present and properly defined. We ought
to remark that the notation ai,a2>-.->an is not according to the rules for first
order predicate calculus. This expression is, however, according to
Hubert's thesis [Barwise 77], expressible in first order logic, and we will
therefore use the shorthand expression.

Other mathematical formalisms, that have been used as meta-data
modelling, are set theory as used in [Ahituv 87] and automaton theory as
used in [Koesen 89]. These theories are based on first order predicate
calculus and are particularly useful for meta-modelling, since both have a
broad theoretical basis. This way one has at one's disposal a standard
terminology, proper definitions and a number of insights, that can be used
for acquiring additional knowledge about the modelling technique.

We have experienced that the combination of NIAM and predicate calculus
as meta-data modelling techniques is very effective. The concise and
detailed notation of a meta-model in NIAM provides a clear insight in the
modelling technique. Predicate calculus represents the rules of the
technique in a simple mathematical formalism with a similar structure.
The examples in the coming chapters will illustrate the combined use of
the meta-data modelling techniques.

2.3.3 Meta-activity modelling

Meta-activity models capture the more dynamic aspects of a modelling
technique by describing the way the technique produces its products. A
technique to be used for meta-activity modelling should be able to express
the concepts of system development activity, flow of information, and
decisions as well as their inter-dependencies.

Activity modelling techniques are used for meta-activity modelling. The
information process diagramming techniques, such as the ISAC A-graphs
[Lundeberg 80], Data Flow diagrams [Gane 79] and Channel-Agency nets
[Scheschonk 84], represent activities and information flows in a global way.
The precise operational intention can not be described in these techniques,
except by good naming. This may cause problems due to the ambiguity and
informality of natural language. The mentioned techniques describe the
activities and input and output data in a hierarchical bi-partite graph, so
that different levels of detail can be modelled. A decomposition diagram of

38

MODELLING TECHNIQUES

the activities facilitates the acquisition of an overview of the meta-activity
model. The meta-activity model of fig. 2.3 is denoted in the Channel-Agency
formalism.

A technique that possesses the concept of decision is the task analysis
diagramming technique as proposed by Bots in [Bots 89]. A task diagram
consists of a decision structure and a task structure. A task is defined as a
problem solving process and a decision as the choice phase of that problem
solving process. This kind of diagram is suitable to describe modelling
activities with a high degree of decision making, whereas the modelling of
information and its processing can not be described in this technique. In
[Wijers 89] this technique was therefore combined with NIAM for the meta-
modelling of the information modelling process.

Mathematical formalisms are not available for meta-activity modelling,
because action is not considered in mathematics. There are, however,
several mathematically based formalisms for the description of computer
processing. Petri-nets [Reisig 85], Predicate-Transition nets [Genrich 87]
and variants thereof, such as IML [Richter 82] and CTM [Brinkkemper
89ae], [Ter Hofstede 89a], model activities by means of places and
transitions. In the meta-model the places correspond with the states of the
technique and the transitions correspond with the events. Dependencies
between states and events are depicted by arrows. A disadvantage of these
modelling techniques is that the models become very complex for medium
to large systems. A strong point is the level of detail that can be modelled
with these techniques. They will therefore only be used for modelling small
parts of the modelling technique.

Two techniques were especially developed for representing modelling
techniques and thus also for meta-modelling purposes. The General
Design Representation (GDR) was proposed in [Lübars 89] as a set of
primitive modelling constructs out of which activity modelling techniques,
such as data flow diagrams and Petri-nets could be constructed. The GDR
formalism was not intended to be used by modellers, but by constructors of
modelling support tools.

In [Humphrey 89] Entity Process Models are proposed for software process
modelling, i.e. meta-activity modelling. This technique focusses on the
description of the states of the products during the system development
process. This is a more behaviourally oriented approach of development
modelling in contrast to the task oriented approaches of the aforementioned
techniques. The representation is that of state charts of [Harel 87;88], and
the technique is modelled in an unconstrained and in a constrained way.
The latter is done to model the limitations of system development, such as
the availability of personnel and hardware.

39

FORMALISATION OF INFORMATION SYSTEMS MODELLING

2.4 MODELLING PROCEDURES

2.4.1 Background and definition

Nowadays, the concrete application of a modelling technique turns out to
involve a large amount of intuition and many unformalised heuristics. The
modellers have, on the one hand the freedom to choose the way in which
they perform their task, but this leads, on the other hand, to indistinct and
different applications of a method, less s tructured activities and
cumbersome progress discussions. There is a lack of precise description as
to how these modelling processes should be carried out. The related
drawbacks include: absence of instructions with complicated modelling,
ambiguity in modelling, quality of modelling related to quality of modellers,
protracted training.

We therefore claim that an information system design method should
include a description of the precise steps involved in the performance of
modelling. We do this by means of so-called modelling procedures. In these
procedures the modelling steps are prescribed in a refined procedural or
even algorithmic manner. The modeller should know at any time what
information is required from the informants and how the model is derived
from this information. Furthermore, these procedures should contain
criteria which, at any time when modelling alternatives occur, define the
appropriate alternative in the given situation. A well-known illustration
from Entity-Relationship modelling is a criterion which determines
whether a particular object should be modelled as an entity type, a
relationship type or an attribute type.

This leads to a strongly directed and a more procedural or algorithmic type
of modelling technique. Modelling procedures can make the expertise
needed for the modelling process explicit. In this section we will define
modelling procedures and the related concept of the informant's
specification. Requirements on modelling procedures will be discussed in
the next section and the set up of a procedure, i.e. a modelling procedure
for modelling procedures, is treated in section 2.4.3.

The concept of modelling procedure is introduced in terms of the model
triangle (fig. 1.3) of section 1.4 and we use its general terminology. As
follows from our problem setting, we restrict modelling procedures to the
conceptualisation and representation process. We must first discuss where
the information about the Universe of Discourse, i.e. the concrete system,
comes from.

Definition 2.2 An informant is any person that provides the modeller with
information about the concrete system.
The information that is provided by the informant to the modellers is
called informant's specification.

As cilready discussed in section 1.2 the informant can be any person that
has knowledge about the concrete system: domain experts, future users,

40

MODELLING TECHNIQUES

managers. Even developers of the earlier stages, such as information
system planners and analysts, may be informants to developers in later
stages, because of their knowledge of the concrete system. The informant's
specification may be of an arbitrary format and contents: spoken words
during interviewing, notes, reports, books, etc. Important, however, is that
the format and content is determined by the informants on the basis of their
familiarity with it.

Definit ion 2.3 A modelling procedure is a stepwise prescription of the
processes of conceptualisation in terms of a given system of modelling
concepts, and the corresponding representation of a concrete system
making use of informant's specifications and resulting in a model.

Most modelling techniques were introduced only with a specification of the
representations of the concepts distinguished in the technique, or in other
words an explanation of the notation that is to be used. A precise
description of what kind of information is needed from the informants and
how then a model is conceptualised from this information is in general
lacking. We realise that for some modelling techniques, like decomposition
diagrams, the modelling procedure is rather simple, but for the more
complex techniques, like n-ary data modelling techniques, the procedure is
far from trivial.

We therefore state precisely a definition of a modelling technique, which is
a special type of technique as defined in section 1.3.

Definit ion 2.4 A modelling technique is a modelling procedure and a
corresponding notation to carry out a certain type of modelling activity.

In the same way as Wirth formulated that programs are a combination of
data and algorithms in [Wirth 76], we state that modelling techniques are a
combination of notation and modelling procedure: technique = notation +
procedure. In other words, a representation technique becomes a
modelling technique when the modelling procedure is formulated.

The concept of modelling procedures was introduced in [Brinkkemper
88ab]. Before this, the necessity to combine a modelling representation
technique with the conceptualisation guide-lines was already advocated by
Nijssen in NIAM. This data modelling technique was the first to be
combined with a modelling procedure [Vermeir 82]. In subsequent
publications this modelling procedure was refined: [Wintraecken 85],
[Falkenberg 87] and [Nijssen 89]. A procedure for the Entity-Relationship
modelling technique was among others given in [Brinkkemper 88ab] and
this will be extended in chapter 4 with a proper formalisation.

Normalisation, in the context of the relational model, is extensively covered
in the literature, but most procedures for the construction of these tables,
which mainly consist of the subsequent removal of normalisation
anomalies, suffer from three drawbacks. First, the starting point is always
a set of more or less arbitrary constructed tables with key definitions. No
procedure is given how to come up with these tables. Secondly, the

41

FORMALISATION OF INFORMATION SYSTEMS MODELLING

normalisation is hardly preceded by a proper step to discover the unwanted
dependencies. Only definitions and examples of normal forms and tables in
non-x-normal form are given. Finally, the set of normal forms is a subset of
the total set of constraints tha t may exist in a data model, such as
optionality, cardinality and equality, so that normalisation is just a part of
the complete story. In [Gillenson 87] and [Teorey 86] modelling procedures
are given for relational tables, of which the lat ter s tar ts with data
modelling steps using the Entity-Relationship model and a subsequent
transformation to tables.

For other notations for models of information systems no procedures are
known, which are more than a set of unstructured heuristics.

2.4.2 Requirements for modelling procedures

Modelling procedures are par t of methodical information systems
development and therefore the requirements for development methods and
techniques apply to some extent also to modelling procedures. Beside this,
additional requirements can be formulated related to the specific nature of
modelling. We propose a set of requirements, which will be discussed
below. Some of the requirements are derived from [ISO 82], [Bemelmans 87]
or [Falkenberg 89c].

Requirements for modelling procedures follow from the desire to strive
after an optimal quality of information systems development. Quality of
systems development is determined by two main requirements on
techniques:
1. Effectivity

A technique should contribute to the development process in such a
way, that a good functioning information system results. Measurement
of effectivity is difficult, since it is determined by the difference between
the delivered system and the system as desired by the commissioning
agent. However, general quality aspects for effective development can be
derived from the techniques used.

2. Efficiency
A technique should contribute to the development process with optimal
use of resources as personnel and hardware. Measurement of efficiency
is simple, because it measures the relative costs of the development
process in terms of resource quantities.

Although we claim that modelling procedures contribute to the efficiency of
systems development (see 2.5), we do not treat this aspect in detail, because
it is beyond the scope of this work. The following requirements we impose
on modelling procedures are all directed at effectiveness.

• completeness
This and the next two requirements are aspects of the correctness of a
modelling procedure. In [ISO 82] the 100% principle was formulated,
stating that all relevant aspects of the Universe of Discourse should be
described in the conceptual schema. For modelling procedures we
derive from this principle two requirements: all types of concepts of a

42

MODELLING TECHNIQUES

modelling technique are treated in the procedure, and it should be
assured that the informants specify complete information about the
Universe of Discourse.

• consistency
The guide-lines of a modelling procedure should not contradict each
other and the procedure should result in consistent models. Tools may
support the consistency rules by either preventing the addition of an
inconsistent aspect to a model (pre-analysis, see section 6.1), or by
executing a consistency verification operation after the model is finished
(post analysis). An example of the first is the refusal to insert a name
that is already used and an example of the latter is the balancing of a
hierarchy of activity models.

• accuracy
The modelling should result in a model in which the intended
meanings of the informant's specifications are reflected. All statements
about the Universe of Discourse that are incorporated in the model,
should be true, or satisfied.

• well defined products
The model resulting from a modelling procedure should be constructed
in a clear, well defined way. This implies a precisely described starting
point, proper steps to add aspects to the model and a final completion
step. Well defined products facilitate the transfer of models to other
development activities. The quality of the models produced by the
corresponding modelling procedures are thus dependent on each other.

• determinism
At each point where modelling alternatives appear, a rule should be
given which determines the correct alternative in the given situation. In
other words, for any aspect in an informant's specification it must be
uniquely determinable to which concept of the modelling technique it
corresponds and with which symbol it is represented in the model. For
instance in Entity-Relationship modelling, it must be decidable whether
a concrete object has to be modelled as an entity, an attribute or as a
relationship.
However, determinism is an objective which is very hard to achieve,
because full formalisation is for most modelling techniques impossible.
In the procedures we have developed, determination rules occur in
some steps and the remaining steps were designed to generate no
alternatives. This cannot be guaranteed, however, since it is impossible
to test them in all possible cases. Further research on determinism in
the design and application of the procedures is needed.

• informant's specifications
It should be avoided that informants specify their information in terms
of the modelling techniques, because this would lay the responsibility of
the accurateness of the model with the informants, whereas this should
be with the modeller. By preference the informant's specifications

43

FORMALISATION OF INFORMATION SYSTEMS MODELLING

should be taken from the Universe of Discourse, such as examples of the
information processing.

• relevance
The relevance of the components of the model is required by the
definition of the Universe of Discourse (see sec. 1.4) and the
aforementioned 100% principle. It is the task of the modeller to ask for
relevant informant specifications and to differentiate relevant and
irrelevant information. The informant is responsible for the acquisition
and specification of relevant information. The difference between what
is supplied by the informant and what is needed by the modeller is a
matter of their personal capabilities and their mutual cooperation.
This requirement is a generalisation of the Conceptualisation Principle
in [ISO 82], tha t stated tha t a conceptual model must only and
exclusively include conceptually relevant aspects of the Universe of
Discourse. In the same way one can state that an internal schema
should only include internal aspects and an interaction model only
interaction details. The objective of the development activity, for which
the technique is employed, determines the class of relevant aspects of
the UoD.

• formalisability
The modelling steps should consist of as much as possible formalisable
operations. Informal operations, also called heuristics, are in some
modelling techniques unavoidable, since qualification of phenomena,
i.e. relating concrete entities to conceptual entities, is inherent to
modelling.
The degree of formalisation contributes to an objective modelling
process, in which different modellers modelling the same concrete
system come to the same model. Furthermore, all formalisable
operations can be implemented in a modelling support tool, which
reduces the amount of work for the modellers. Subjectivity in modelling
should be reduced to a minimum [Falkenberg 89c].

• communicatable
The quality of the result of a modelling procedure is also related to the
interaction between modellers and informants. The procedure should
contain guide-lines for this communication. Furthermore, it should be
taken into account that proper documentation is drafted during the
modelling process. The development process and the subsequent
maintenance stage benefit considerably from an effective transfer of
knowledge by means of documentation.

• reducing complexity
Most modelling techniques are equipped with constructions for
reducing complexity, such as top-down decomposition and bottom-up
integration. The modelling procedures should incorporate steps to set
up models according to these constructions. An overall completion step
must finish the modelling of all par ts of such a construction. For
example, a check on all rules on the hierarchy should be included in the
case of a top-down decomposition technique.

44

MODELLING TECHNIQUES

• stepwise
The modelling should be split into coherent steps, which are not too
large and not too small. The communication with the informant or the
completion of a particular aspect of the model may determine the
splitting of the steps.

• integrated
The development of an information system is divided into a set of highly
interrelated activities, which is for a great part hidden in the models.
These relationships among models should be made explicit and
incorporated in the steps of the corresponding modelling procedures.
The task modelling technique (see ch. 5) is related to activity modelling
and data modelling, which is reflected in the task modelling procedure
given in section 5.4.

2.4.3 The construction of modelling procedures

Since we are familiar with reasoning on a meta-level, we also make the
construction process of a modelling procedure explicit. Obviously,
structured and formalised meta-modelling are part of it. The experience of
the construction of some modelling procedures is incorporated, but for a
crystallised procedure it should be applied to itself. The requirements of the
previous section are not all incorporated in order to avoid the repetition of
text. The procedure consists of the following five steps.

1. Position technique in the development process

It should be made clear in which development activities and with what
purpose the technique in question is applied. Moreover, the modelling
technique requires input from some activities and the resulting model is
in its turn required by other activities. These relationships are made
explicit. The requirements on models completed by the procedure are
formulated.

2. Design preliminary procedure

A rough preliminary procedure is set up using possibly available
experience with the technique. The format and contents of the
informant's specification are added. The steps should be coherent.

3. Construct meta-data models of the technique

First, a meta-data model is constructed using a structured technique,
such as NIAM. Samples of completed models and of all intermediate
information needed in the preliminary procedure are input for the meta­
data modelling process, which can be performed according to its own
guide-lines.

45

FORMALISATION OF INFORMATION SYSTEMS MODELLING

Next, this meta-data model is translated into a predicate calculus meta­
data model. Entity types correspond with sets, relationships with
predicates and all constraints with axioms. Try to construct a set of
axioms that represents the intended meaning of the technique. Use
auxiliary predicates whenever convenient. Theorems can be formulated
and proved based on the axioms.

4. Construct meta-actìvity model of the preliminary procedure

A meta-activity model of the procedure is made, using for instance
Channel-Agency nets. Each step corresponds to a process, substeps to
subprocesses, and intermediate and final products to states. It should be
possible to describe each product in terms of the meta-data model. Make
adaptations in both meta-models where necessary.

5. Complete modelling procedure

Incompleteness of the procedure can be discovered in one of the
following ways. The information flow through the procedure has to be
controlled for missing and redundant information or processes. All
concepts and associations between concepts in the meta-data model
should be modelled in at least one step. All axioms and theorems of the
meta-data model should be satisfied or explicitly verified by a step. The
procedure can also be tested on small cases.

The steps of the procedure have to be adapted according to the outcome.
It may turn out that extra steps are needed or that some should be
combined. One should also check that the relationships with other
techniques and development activities are proved in the procedure.

These adaptations must be reflected in the meta-models. Try to establish
a meta-model with a high as possible level of formalisation and
distinguish informal and formal processing explicitly. The formal part
can be described in the predicate calculus model.

We did not assume in this procedure that a tool for the technique is
available. If this is the case, the functionality of the tool influences the steps
of the procedure. The formal descriptions of the processing should reflect
the automated procedures of the tool.

2.5 CONSEQUENCES OF THE FORMALISATION

Modelling during informations systems development profits from a more
formal approach. In this section we will discuss briefly the benefits of the
formalisation of modelling techniques and procedures. We split the benefits
in two categories: those due to the explicit description of the modelling
process and those due to the formalisation. We finally address the issue of
quality assurance.

46

MODELLING TECHNIQUES

The advantages due to the explicit description of modelling techniques are:

• Improved modelling during development
Obviously, due to the availability of knowledge about the modelling
process, intuitive and informal modelling will gradually disappear.
Decisions, qualifications and the format and contents of informant's
specifications will become well grounded, thereby abandonning the need
for discussions about the application of the technique and reducing the
dependency of the quality of the result on the quality of the modeller.
Positioning of the modelling technique in the overall development
process and the clarification of the rules for the transfer of models to
and from activities will contribute to the management of software
projects.

• Better modeller · informant dialogue
The communication gap between the informants and the modellers can
be bridged by formulating explicit instruct ions regarding the
information that is needed from informants. The familiarity of the
informants with the format and contents of these specifications, such as
texts in natural language and samples taken from their environment,
contributes to the mutual comprehension in this dialogue. The
modellers should communicate with the users in terms of the
informant's specifications and not in terms of arrows, boxes and
bubbles. In addition, a better separation of concerns can be achieved by
holding the modellers responsible for the modelling result and the
informants for the informant's specification.

• Effective utilisation of personnel
The approach leads to uniform modelling activities, which is especially
important in larger projects and larger software companies. The steps
of the modelling procedure can be shared among the analysts.
Interviewing can, for instance, be separated from the modelling,
provided t h a t the interviewers generate complete and correct
informant's specifications for the modellers. Also the assignment of
personnel to specific tasks can be more effective. After a change of task
the results of the modeller's predecessor can be used much more easily.
Finally the straightforward guide-lines and manuals of the modelling
procedures lead to more effective training of automation personnel.
These aspects contribute to the efficiency of development projects.

Formalisation has the following consequences.

• Conceptual clarity
The formulation of the concepts of a modelling technique in a
mathematical formalism aims at realising the precise understanding
of the concepts. Discussion about the properties of the concepts needs not
to be based on their intuition, but can be based on the mathematical
properties. Axioms and theorems can be formulated to prove statements
about the concepts and procedures. Furthermore, if the modelling
technique is mapped to a mathematical formalism that has a well

47

FORMALISATION OF INFORMATION SYSTEMS MODELLING

established theory, the consequences of this theory can be translated into
extra knowledge of the modelling technique.

• Automated support of modelling
Some of the steps turn out to be partially or even fully automatable due to
the formal description of the modelling. This supports the modellers
and can reduce the amount of work. When informant's specifications
can be inserted into a tool and be analysed by linguistic programs that
deliver the model, the modeller only has to check and direct the
modelling process. A first approach to doing this is reported in
[Falkenberg 88]. In the SOCRATES project, formalised expertise of
modellers will be implemented in tools [Ter Hofstede 89b].

Quality is a topic that is difficult to discuss in a formal way. In the benefits
mentioned above and in the fulfilment of the requirements of effective
modelling procedures in section 2.4, we have indicated ways of achieving
improved quality. We finally want to note that modelling according to some
procedure is in a sense a form οι quality engineering, i.e. the quality of the
resulting model is assured by the performed steps, provided the steps are
considered good. The latter may be due to the formalisation, because the
modelling procedure becomes accepted among the modellers, or because
the procedure is certified by a recognized institute. The models made using
such a procedure get an implicit guarantee of quality.

All these aspects contribute to the effectivity and the efficiency expressed in
the quality of both the modelling activities and the resulting model. Despite
the improving functionality of tools, we claim that complete formalisation
of modelling is not possible, which implies that modelling can never be
performed without the intellectual activities of modellers.

48

О ACTIVITY MODELLING

Activities are modelled during the analysis and design stage of a
development project. In this chapter we deal with the analysis of the
system at hand resulting in the descriptive activity model. The events that
cause data flows from outside into the system or that occur at a regular
predictable point of time, form the starting point of this analysis. The
reactions to the events are modelled and incorporated in the global activity
model of the system. The activities are then captured in detailed models
which include both the data stores and decomposed data flows.
The design of the prescriptive activity model is performed by rearranging,
extending or reducing the descriptive model of the analysis stage. This
design will not be considered here.

Three diagramming techniques are used:
a context diagram to depict the interaction of the system with other
systems;

- a d e c o m p o s i t i o n diagram for the reactions of events and for the
hierarchical global activity model;

- a data flow diagram, in one of the well known conventions, to denote the
details of the activities.

We will discuss in this chapter the background of the concepts of event and
activity and their diagramming techniques. Modelling procedures are
presented and some formal aspects of the techniques are discussed.
Portions of this chapter has been published in [Brinkkemper 88ab].

Other authors may have other perceptions of the concepts of activity. In
[Olle 88b], for example, activities are called business activities. In our
system of concepts concerning activity modelling the concept of activity is
used for modelling information processes at a global level in a system, e.g.
organisation or information system. This will be discussed in relation to
the concept of task in chapter 5.

3.1 EVENTS

3.1.1 Motivation and definition

The starting point for the discussion of the concepts of event and activity is
that of the well known ISO report entitled 'Concepts and terminology for
the conceptual schema and the information base' [ISO 82] and the
extensions discussed in chapter 1. Recall from definition 1.5 t h a t an
information system (IS) is a system for recording and manipulating
information. Several activities have to be identified during the analysis

49

FORMALISATION OF INFORMATION SYSTEMS MODELLING

phase in order provide support for this task. These activities can be
twofold1:
1. R e a c t i o n s to events in the environment or in the UoD. Certain

occurrences in the environment or UoD are reported to the information
system. The information system has a response, which we call the
reaction. Examples: the processing of an incoming order; the
answering of a telephone call using on-line computer consultation. The
incoming of the order and the call are the events and the processing and
the answering are the reactions.

2. Control activit ies in the information system. The users of the IS may
wish to obtain certain data in order to control their activities as well as
those of the IS itself. There may be triggers for such wishes, such as a
managerial request or a possible error. These triggers are not, in most
cases, explicit and are hard to formalise beforehand, whereas in the
case of events such triggers need to be present.

Each control activity is of one of the following kinds:
- Retrieval or inspection of contents. Example: Display a list of

withdrawals between two dates.
- Update of contents. Examples: Insertion of new stock item types;

modification of information about a particular supplier.
- Correction of errors. We consider errors here to be an inconsistency of

the data between the IS and the actual state of affairs in the UoD.
Inconsistencies between the models of the IS (data model, process
model, etc.) and the contents of the IS are assumed not to be present.

Both reactions and control activities offer starting points for the activity
modelling in the analysis phase. First, for reactions we have events. Since
an existing system as well as a future system will have recognizable points
at which they communicate with the environment, knowledge about the
events triggering the incoming and outgoing information can be collected.
Secondly, we have for the control activities, some distinguished points in
the system where one wishes to have control over certain data and
processes. The persons responsible for the data and processes at these
points will have to specify their needs for control, so that the appropriate
control processes can be designed.

In contrast to data and activity modelling a common view on the concept of
an event has not yet evolved. There are few methods that possess "event" as
a modelling construct and those that do have diverse views on this concept.

First of all there is the Petri-net approach, of which [Antonellis 81],
[Richter 82] and [Kung 86] are examples. In this approach an event is
considered to be a change of conditions described by means of preconditions
and post-conditions. The reaction to an event is essentially incorporated in
the event itself. In REMORA [Rolland 82] an event is defined as anything
that can happen at a given time. They initiate two kinds of associations:
ascertain associations, which express the state changes of objects, and

The examples in this section are taken from the inventory control case described in
[Olle 88a].

50

ACTIVITY MODELLING

trigger associations, expressing tha t an event triggers one or more
operations. Finally, in JSD [McNeile 86] event is not defined, but the
concept of action is defined as an atomic event occurring at some point in
time and considered to be instantaneous. In the philosophy of the JSD
method entities perform and suffer actions. The behaviour of the entities in
the UoD is expressed in actions, which can be ordered and constrained.

We follow the ISO-report [ISO 82] in the definition of an event.
Defínition 3.1 An event is the fact that something has happened and is
perceived in either the universe of discourse, the environment, or in the
information system.

Note that we do not consider the reaction of the IS as being part of an event.
Furthermore note that this definition is in the present perfect tense to
express only that the happening of the event precedes its perception. It
implies that current and future events are considered.

An event and its reaction can be visualised as in figure 3.1 (from [IS082]).
The report of the event, in any kind of representation, is transferred to the
information system, which performs a pre-planned reaction.

Happening • Perception

Event

Reaction

Fig. 3.1 Dependency between event and reaction

From figure 3.1 we can deduce that events have certain characteristics,
which may be important to incorporate in the analysis process, namely

- event occurrence
- reporting of event
- type of event
- number of event occurrences
- frequency of event occurrences
- reaction to event
- control of event: internal or external with regard to the UoD

Report

I

51

FORMALISATION OF INFORMATION SYSTEMS MODELLING

- stimulus of event: time driven or non time driven; controlled by signals:
levels and semaphores

- reaction settlement of the event: manual control or automatic;
immediate or to be fixed later

The first three, occurrence, reporting and type can be seen as the core
characteristics, where the occurrence and type are analogous to entity and
entity type: the incoming of purchase orders is an event type of which the
incoming of a particular purchase order from the company 'Buy Ltd.' on
1st of September 1988 is an occurrence. The purchase order is its report.

The number and frequency of event occurrences, the control and the
stimulus are characteristics which are important to record during the
design stage, whereas the reaction and its settlement, being part of the
information system, should be modelled fully in the analysis stage.

Since there is much confusion due to the large number of characteristics
and the types of events already proposed in the literature, such as external
event, triggering event, temporal event, business event, etc., we have
developed a classification of events that provides a starting point for the
modelling procedure. This classification is derived from explicit
motivations as follow.

We consider three aspects of events: the impulse, the control and the
settlement of the reaction.

First, the impulse is a kind of generic term for triggers due to reaching a
certain point in time, reaching a particular limit value, or the evaluation of
a condition. Examples are: it is Monday at 15.00h.; the re-order level of the
stock item 'Paracetemol' has been passed. We consider impulses generated
by a clock as special, since temporal events are a major and frequently
occurring type of events. The regularity is, usually, known and we
incorporate this in the modelling process.

Secondly, an event can be inside or outside the control of the Universe of
Discourse. For instance the incoming of a purchase order is not under the
control of the inventory control department, but the passing of a re-order
level is. We represent this dichotomy by means of the notions of external
and internal control respectively. This dichotomy of control is also
motivated by the distinction of external observations from the environment
and internal observations from the primary system in the Control Model of
[Blumenthal 69].

Thirdly, in information systems we have two types of reaction settlement.
Some requests have to be obeyed immediately, the so called commands.
Typical of this kind are telephone calls for information and system start-up
and shut down commands. Other requests can be answered at a moment
which is found to be most convenient. The processing of the ordinary mail
can be handled at a moment the person himself wishes. The regular
preparation of all sorts of lists can also be done at a point in time when the
system load is low.

52

ACTIVITY MODELLING

^ s . Impulse
^ v and

- ^ ч . control Reaction ^ s .
settlement ^ Ч

Immediate
settlement

To be fixed
later

Time impulse

Internal

S c h e d u l e d
Command

(1)

S c h e d u l e d
Reques t

(5)

External

E x t e r n a l
Temporal
Command

(2)

E x t e r n a l
Temporal
R e q u e s t

(6)

No time impulse

Internal

I n t e r n a l
Command

(3)

I n t e r n a l
R e q u e s t

(7)

External

E x t e r n a l
Command

(4)

E x t e r n a l
R e q u e s t

(8)

Fig. 3.2 Classification of events

When we combine these three two-valued aspects we get 8 possible types of
events. They are shown in figure 3.2.

We have given each type a name and a number for convenience. We call
events which need immediate settlement "commands" (1,2,3,4), and events
which do not need this we call "requests" (5,6,7,8). Some of these requests
may in fact be offers, if they offer some new data to the system, but since
these are implicitly accompanied by a call to enter the data, we also call
them requests.

We now give an example of each of the above types of events taken from the
inventory control case, where the time events are listed with a possible
reaction of the information system:
1. On 31st of December at 12.00h. a list of the total inventory has to be

created.
2. Each Monday around 12.00h. the financial department phones to check

all open purchase orders.
3. A stock item passes the re-order level.
4. Someone from a branch-establishment phones for information on a

particular stock item.
5. On every first Friday of the month the total value of the stock items

with stock item type 'Capital expenses' has to be given.
6. Every second Wednesday of the month the kitchen supplies are

delivered.
7. Create the statistics of the purchasing of stock items.
8. A delivery arrives.

We reduce this classification for two reasons as follows. The settlement of
the reaction is modelled and realised in the design phase. The immediate
settlement of commands can be handled by giving the reaction processes a
high priority in the process schedule design. Information obtained about

53

FORMALISATION OF INFORMATION SYSTEMS MODELLING

the need for immediate reaction is put into the process description. Hence
commands and requests are treated identically in the analysis phase.

Despite the fact that we know that there are external time driven events
(2,6) we cannot fully anticipate these events, due to the fact that we do not
have control over external processes. If such a process fails to deliver its
input for the system, without letting the system know, the system cannot
keep on waiting for it. Hence we treat them just like non time driven
external events (4,8). The regularity of these events can however be used to
plan the load of the system.

Three classes of events are left:
1. external events (2,4,6,8)
2. internal temporal events (1,5)
3. internal non-temporal events (3,7).

We can now give formal definitions of these types of events.

Def in i t ion 3.2 External events are events which are perceived in the
environment. Internal temporal events are events which are perceived in
the UoD or in the IS and are time driven. Internal non-temporal events are
events which are perceived in the UoD or in the IS and do not have time as
their impulse.

External events will be modelled in the external event analysis (3.2.1).
Internal temporal events will be modelled in the internal temporal event
analysis (3.2.2). Their scheduling is modelled in the design stage. Internal
non-temporal events form the most difficult class of events to model, since
there are in general a large number of internal stimuli that trigger
processes: passing of levels, flags, etc.. We consider the perception and the
reporting of this kind of event as independent processes and they will be
modelled as such (see 3.4).

This concludes the motivation of the treatment of the concept of event.
Starting from activities of an information system we distinguished aspects
of an event and came to a classification. How does this classification relate
to other classifications in the information systems literature? First, the
presented classification resembles the classification of events of Lindgreen
given in [Lindgreen 86]. External events correspond to externally initiated
events, internal temporal events to period initiated events and internal non-
temporal events to act initiated events. Control activities correspond to
agent initiated events, since the latter lack a formalisable happening.
Secondly, the ADISSA method [Shoval 88] distinguishes user event, time
event, communication event, real-time event and internal event. The event
types of this classification are not mutually disjoint. The user and the
internal event of this method are called internal non-temporal events in
our classification. The time event is generic for all events with a time
impulse. A real-time event can be seen as a scheduled command or as a
external temporal command. Finally, communication events are the same
as the external non temporal events.

54

ACTIVITY MODELLING

Customer
requests

film

External
events

Customer
returns

tape

Events:
Video rental

store

Supplier
delivers
tapes

Internal
temporal

events

Production
of overdue

notices

Production
of

statistics

Fig. 3.3 Event decomposition diagram

3.1.2 Diagramming events

Since few methods possess the concept of event, there exists no commonly
agreed way to model an event diagrammatically. We discuss two
diagramming techniques inspired by the techniques of the Information
Engineering method [Martin 88a], in which some aspects of events are
separately modelled.

First, a decomposition diagram is used to gather the external and internal
temporal events. An example is given in fig. 3.3

We have put in this diagram the events of the video rental store of appendix
A. The use of a decomposition diagram is not so properly, because the first
decomposition layer in the figure is used as a generalisation or subtyping
layer, whereas the second layer is used as an instantiation layer. In
general, decomposition diagrams should be used to decompose components
of the same type. We nevertheless allow this misuse because event
decomposition is only performed as an intermediate specification aid.

From the information about these events a context diagram for the system
or organisation is constructed. A context diagram is a special type of data
flow diagram. Examples are shown in the figures 6.3 and A.l. In a context
diagram the interaction of the system at hand with other systems is
depicted. The other systems are called external agents and are denoted by a
shadowed box. The data flows of the system to and from the external agents
are represented by arrows.

Some conventions may hold for this diagram:

55

FORMALISATION OF INFORMATION SYSTEMS MODELLING

- There is just one central system, on which the analysis activities are
focussed. Refinement of the specification is modelled by decomposition
during activity modelling in various levels.

- The interaction between the systems is modelled only with respect to
their data exchange. This means that only data flows and no material
flows may occur in the context diagram. Some flows may seem to be
material flows but this is because of the data tha t is physically
inseparable from the material. For instance the data flow 'Returned
tape' in the context diagram of fig. A.l refers to the name, tape number
and other data that are printed on the box of the tape. This rule also
ensures that the decomposition of the system contains only data flows.

- Data stores are not allowed in context diagrams, because the context
diagram models the interaction of systems via data flows. A system
never updates or retrieves a data store directly, but supplies update or
retrieval requests to another system in which tha t data store is
embedded.

If these conventions hold for the context diagram, then this diagram shows
the interaction of the system with other systems via data exchange in its
simplest form. The context diagram serves then for the precise
determination of the scope of the system and hence also to establish the
scope of the analysis stage. It is also a reference point for the modelling of
the activities (see 3.4).

Customer
requests

film

Treatment
of film
request

External
events

Customer
returns
tape

Treatment
of tape
return

Supplier
delivers
tapes

Handling of
payment

Submission
of new
tapes

Fig. 3.4 Reactions to events

56

ACTIVITY MODELLING

Finally, the reactions of the events are modelled as an extension to the
available event decomposition diagram. The activities of a reaction are
placed under the associated event in the diagram. Their sequence in the
diagram is determined by the triggering sequence of the activities. An
example is shown in fig. 3.4.

Alternatively, these reactions may be specified in a data flow diagram. The
activities, being part of the reaction, and the intermediate data flows can
then be modelled including the processing sequence of the activities. This is
recommended for systems with a complex event structure, but for most
administrative information systems the global decomposition diagram will
be sufficiënt.

3.1.3 Meta-model of event modelling

The main aspects captured in the three aforementioned diagrams are
modelled in the meta-model in fig. 3.5.

Is-mvolved-in

~~1 Activity 1

Figure 3.5 Meta-model of event modelling.

We see in this figure that an event has a unique reaction and a reaction
belongs uniquely to an event. Parts of reactions may be similar to each

57

FORMALISATION OF INFORMATION SYSTEMS MODELLING

other or have the same name, but for the sake of a strict modelling
procedure it is desirable to obey this one to one relationship. The reaction
consists of a group of activities, of which the sequence is specified. In case
an event occurs in the context diagram, which is true for all external
events and not for all internal temporal events, the corresponding data
flows and external agents are specified. Therefore no totality constraint is
specified at these fact types. A time indication is recorded for internal
temporal events.

Internal agents are responsible for the activities, that are part of a reaction.
The internal agents are persons or organisational units of the system and
could also be called subsystems. Internal agent is a central modelling
component in activity modelling (see 3.3 and 3.4).

Some of the constraints are interesting. All data flows are either coming in
or going out of the system and an event has either an incoming data flow or
an outgoing data flow. The external agents have unique incoming and
outgoing data flows. Furthermore an equality constraint exists that cannot
be shown in the meta-model. The set of external events is the same as the
set of events that have an incoming data flow.

In the meta-model the external event could as well be incorporated as a
subtype of event and agent could be the supertype of internal agent and
external agent, if special facts about these types were to be recorded. We
decide not to do so for the sake of simplicity. Note furthermore, that some of
the entity types of this meta-model occur in the meta-model of activity
modelling (fig. 3.7).

3.2 EVENT MODELLING PROCEDURES

3.2.1 External events

The analysis of events is based on the analysis of information given by the
informant. The informant must be instructed in the format and style of the
data to be supplied. The modeller can then perform some steps in order to
determine the required models. The modelling procedure consists of the
following 5 steps.

Step 1: Gather required information.

In the system there exist subsystems, like an organisation is divided into
organisational units, that are responsible for the reactions to the external
events and that treat the incoming and outgoing reports of the events.
These subsystems must be investigated for their interaction with the
environment. An association matrix of entities versus processes available
from a preceding information strategy planning phase may contain useful
information. The processes that create entities should have some triggers,
possibly external to the system. One or more external events should belong
to those processes. If knowledge or documentation about these processes

58

ACTIVITY MODELLING

already exists we use this, and if not, the appropriate persons in the system
are interviewed to obtain the following information:
- Name of the event.
- Description of the event: the precise happening and the type of report.
- Concise description of the reaction.
- The subsystem responsible for the reaction. These are mostly

organisational units and we call these units internal agents .
- The report of the event; preferably some samples of reports which can be

used in the data modelling (see chapter 4).
- The external agent involved.

The description of the event should be in active voice, or else it should be
transformed to it, with the system as the acting agent. Typical verbs in this
kind of events are: receive, inform, obtain and answer. The event is then
placed in a decomposition diagram as is shown in fig. 3.3.

Step 2; Analyse description

A linguistic analysis is performed on the description of the event. The
subject is usually the person responsible for the reaction, the object
describes the data flow involved, the verb clause describes the event
happening or perception and the objects after the prepositions are the
external agents.

Example:
S t o r e a s s i s t a n t r e c e i v e s r e t u r n e d t a p e from customer

gives
Event : Recept ion of r e t u r n e d t a p e s
I n t e r n a l a g e n t : S t o r e a s s i s t a n t
R e p o r t : Returned t a p e
E x t e r n a l a g e n t : Customer

Note that this event is not described as: 'Customer gives returned tape to
store assistant', because this is not from the viewpoint of the system and it
is obvious that we do not have any control on the bringing of these tapes in
this case. The information gathered in step 1 should already conform to the
required format.

Step 3: Construct context diagram

The context diagram, as discussed in section 3.1.2, is created in accordance
with the analysis of the preceding step. The external agent is placed in the
diagram and a data flow labeled with the report name is drawn from the
external agent to the system. In figure A.l this is shown for the example
together with data flows from other events of the decomposition diagram in
fig. 3.3.

External events have just one external agent. When two types of reports
from distinct external agents are involved, we split the event. When there is
one type of report and distinct external agents, we either have two flows
(and so two external agents) if the external agents occur individually in

5Θ

FORMALISATION OF INFORMATION SYSTEMS MODELLING

other events, or else we have just one flow and one external agent, being the
combination of the initial two.
Examples:

1. The S t o r e a d m i n i s t r a t i o n r e c e i v e s empty o r d e r forms
from s u p p l i e r s and video c a t a l o g u e s from p o s s i b l e
s u p p l i e r s .
2. The S t o r e a d m i n i s t r a t i o n r e c e i v e s v ideo c a t a l o g u e s
from s u p p l i e r s and p o s s i b l e s u p p l i e r s .

In example 1 this event is split into the event of the receipt of empty order
forms from suppliers and the event of the receipt of the video catalogues
from possible suppliers. If in the UoD of example 2 the external agents
suppliers and possible suppliers occur separately in different events, we
have two external agents in the context diagram, both connected with the
data flow 'video catalogues' to the system. Otherwise there is just one
external agent, namely 'Suppliers and possible suppliers'.

Furthermore the exclusion and uniqueness constraints of the meta-model
of event modelling (fig. 3.5) have to be ensured by choosing a unique
combination of the names of the reports and the external agents.

Step 4: Model reactions

The reactions to the event are modelled in global terms using the
description available from step 1. The starting point of the reaction is the
receiving of the report by the internal agent. After this some activities are
performed until processing stops in the system or until some kind of data
object is send out of the system to some external agent. The activities are
taken on some global abstraction layer and included in the decomposition
diagram as shown in fig. 3.4. The simplicity of the video rental store
organisation causes the simple reactions in this model.

Frequently the reaction splits into several sequences of activities, for
instance the arrangement of the payments and the sending of the ordered
goods. The sequence of the activities in the decomposition diagram should
reflect their sequence of processing, where a linearisation of possibly
simultaneous activities is employed. The internal agents responsible for
the activities of the reaction may already be recorded.

Step 5: Add outgoing data flows to context diagram

Some reactions in the preceding step may give rise to data flows that go out
of the system to external agents. These data flows reflect the interaction of
the system with the environment as well and should therefore be modelled
in the context diagram.

This is done by treating the reaction's final activity in the system, which
has the outgoing data flow, as an event. The outgoing report of this event is
denoted as a data flow and the receiving system as the external agent.
Special care has to be taken that this step does not introduce external
agents that are synonyms for others.

Θ0

ACTIVITY MODELLING

End of external event modelling procedure

Note tha t not all information gathered in this modelling procedure is
represented in graphical models. Some information is recorded elsewhere
to be used in subsequent analysis steps. For instance the information
concerning internal agents will be modelled in the activity model (see 3.4).
Fig. A.l is the result of the modelling procedure on the video store case, in
which the internal temporal events are taken into account as well. These
will be discussed in the next subsection.

3.2.2 Internal temporal events

Internal temporal events are modelled analogously to the external events.
The difference is that there is now a time indication instead of an external
agent. So this can never result in an incoming data flow in the context
diagram, but the event may lead to an outgoing data flow with a
corresponding external agent. For the description of the procedure we give
only the adaptations below and note that step 3 has no counterpart.

Step 1: Gather required information

The informants must specify which events are regular, e.g. each week,
every first Wednesday of the month, and which events are related to
processes by time intervals, e.g. 30 days after a purchase order has been
sent and no delivery has arrived, a reminder notice is sent. Matrices from
the information systems planning phase could be a starting point for this
step as well. Similar information about the internal temporal events is
gathered as is done for external events.

Step 2: Analyse description

The event happening, the internal agent, the report and the time indication
are lifted out from the event description.
In the video store case of appendix A two examples of internal temporal
events occur:

The s t o r e a d m i n i s t r a t i o n produces overdue n o t i c e s every
day a t 17.00h.
The s t o r e a d m i n i s t r a t i o n produces s t a t i s t i c s of t h e v ideo
r e n t a l s every l a s t day of t he month.

The analysis of the first example gives:
Event: Product ion of overdue n o t i c e s
I n t e r n a l a g e n t : S tore a d m i n i s t r a t i o n
Repor t : Overdue n o t i c e s
Time i n d i c a t i o n : Every day a t 17.00h.

Step 3: Model reactions

This step is the same as for external events. In general the reaction to an
internal temporal event consists of few activities inside the system, because

61

FORMALISATION OF INFORMATION SYSTEMS MODELLING

the time trigger is mostly used to reactivate an interaction with an external
agent. Typical examples are reminders for payments and renewals of
memberships.

Step 4: Add outgoing data flows to context diagram

This step is also the same as for external events. Of the two examples only
the event concerning the overdue notices has an outgoing data flow as is
shown in fig. A.l. The production of statistics is done for internal purposes
of the video rental store and so no outgoing data flow is in the context
diagram.

End of internal temporal event modelling procedure

Note that the time indication of internal temporal events is not modelled in
ei ther the context diagram or the decomposition diagram. This
information is recorded to be incorporated in the realisation of that part of
the information system that supports the event in question.

At the point, when both external events and internal temporal events are
modelled, it is required to check the completeness of the context diagram.
By then, i t should depict all interactions of the system with the
environment, i.e. all incoming and outgoing data flows to and from
external agents. All subsystems that interact with the environment should
be verified in order to ensure that all communication with externals is
incorporated in the context diagram. In this way one will also encounter
internal non-temporal events that result in outgoing data flows. This type
of events can be handled in the same way as internal temporal events.

One could think of various ways of automated support for these modelling
procedures. For the steps that gather information, special dialogues and
screens can be designed such that the input is directly given in the required
format. Then the steps that transform this information can deduce a
possible outcome, which is to be approved or modified by the analyst. The
links with other models, such as the association matrix of processes and
entities, could be employed to implement the completeness of the dependent
information, as discussed above.

3J3 ACTIVrriES

We will not spend as much time on the clarification of the concept of
activity as was done for event, because this concept has a generally
accepted meaning and is employed in all kinds of diagramming
conventions. We refer to section 5.1 for a discussion of three types of
processes: activity, task, and operation.

62

ACTIVITY MODELLING

3.3.1 Definition and diagramming of activities

Several diagramming techniques for activities have been proposed in the
l iterature and some of them are widely accepted in practice. We mention
SADT-diagrams [Ross 77], Data Flow diagrams according to the notation of
Yourdon [Yourdon 79] or to the notation of Gane and Sarson [Gane 79], A-
graphs of the ISAC method [Lundeberg 80] and Activity diagrams in the
German variant of ISAC [Sehe schonk 84].

From these techniques we observe that an activity in an activity model has
the generic form shown in fig. 3.6.

Production

Producer

necessity 1

Consumption

. Consumer .

result 1

necessity η

Data Store
for

Necessity

Data Store
for

Result

Figure 3.6 Generic form of activity

We define therefore the following components of an activity model.

Definition І З
a. Activities - Data Flows

An activity models a process t h a t processes instances of da ta
compounds (see def. 5.4). A data compound models a composition of
entities or associations among entities (see def. 5.3). Data compounds
are denoted as input or output of activities. Data flow, message set or
state are other names for data compound in the mentioned techniques.
In this chapter we will use the term data flow instead of data

63

FORMALISATION OF INFORMATION SYSTEMS MODELLING

compound. The well known decomposition rules hold for activities and
data flows.

b. Agents
An agent is any kind of system which either performs activities or is
responsible for them. Persons, organisational units or subsystems are
possible types of agents. Internal agents are agents inside the Universe
of Discourse and external agents are agents in the environment.
Activities have just one agent.

с Necessities - Results
All data flows that are input to an activity are called necessities. The
data flows that are output of an activity are called results. There may
be any number of necessities and results for an activity.

d. Production · Consumption
A production activity of a given activity is an activity that has as output
a necessity for the given activity. A consumption activity of a given
activity is an activity that has as input a result of the given activity.
An activity can have more than one production activity, as well as
more than one consumption activity.

e. Producer - Consumer
A producer is the agent of a production activity. A consumer is the
agent of a consumption activity.

f. Data Stores
A data store is an intermediate depository for information, necessary
for or resulting from of an activity, and which is required to be
accessible by various agents. A data store is introduced whenever this
is explicitly stated or when necessities and results need to be kept for
use by others.

From these ingredients, activity models are constructed. In general,
activities are composed of subactivities, and therefore data flows may have
subflows. Data stores may not have substores because the decomposition
process is only performed on the activities. Proper decomposition rules,
also referred to as balancing rules, apply for the subdivisions. Agents may
be decomposed as well and it must be assured that the agent responsible for
a subactivity is part of the agent of the corresponding super-activity. The
modelling of activities in several decomposition layers results in hierarchy
of activity models. We refer to this hierarchy of models as the global activity
model and to any activity model, that is part of the global activity model, as
a local activity model. The context diagram is the activity model at the top of
the global activity model and in this way links the event modelling to the
activity modelling.

In [Dijk 86] more components related to activities are distinguished next to
the ones mentioned in definition 3.3: means, time, reason, condition,
location, and aim. Although the information gathered by analysts
incorporates data on all these components, we deliberately omit them
because they are not modelled in the well known techniques. However, it
may be important to record the data on these aspects as comments to the
activity models for other development purposes.

ei

ACTIVITY MODELLING

The expressiveness of data flow diagrams is therefore restricted. Choice,
triggering and iteration cannot be expressed. In chapter 5 we will
introduce a new modelling technique, called the Conceptual Task Model, in
which these aspects as well as the processing of data can be modelled. In
this technique the activities of the bottom layer of the activity decomposition,
the so-called tasks, are taken and extended with more detail, such as the
input, output and intermediate data models.

In [Berdal 86] another extension to the data flow formalism was proposed
in order to express the relations among input and output flows. This
technique, called Process Port Modelling, extends the specification of the
input and output side of an activity with a port that buffers the data. The
occurrence of multiple data flows can then be combined, using an AND-
port, or excluded, using an OR-port. Data flows are divided into three
categories: signals, parameters and information objects. Process Port
Modelling provides a formal description of the relations among flows and
can therefore be seen as an extra layer on a data flow diagram, (for layered
modelling see section 6.5)

3.3.2 Meta-model of activity modelling

In flg. 3.7 the meta-data model of activity modelling is shown. The
introduction of the supertype 'Activator' for external agents, stores and
activities makes bi-partite graphs of data flow diagrams. This simplifies
the meta-model and the formalisation. We will see in section 3.5 that some
extra rules hold for the diagrams. The rules depicted here include, among
others, tha t a data flow may not loop (shown by means of the exclusion
constraint on the combined roles) and that an activator is the source or the
destination of a data flow (by means of the combined totality constraint).

destmation-of

-* •
is-activity

supervises is super-activlty-of

Figure 3.7 Meta-model of activity modelling.

65

FORMALISATION OF INFORMATION SYSTEMS MODELLING

In a plain data flow diagram a data flow has just one destination and one
source. However, decomposition of activities may introduce the same data
flow on several levels, hence these relationships are many to many.

The decomposition of activities is denoted by the homogeneous fact type
'Activity is-super-activity-of Activity'. Each activity has one internal agent,
who is responsible for it. A hierarchy of internal agents, denoted by the fact
type 'Internal agent supervises Internal agent', is derivable from the
decomposition hierarchy of the activities. Since this hierarchy might be
conflicting with the actual hierarchy in the organisation, its derivation
serves as a check on the model and possibly as a indicator for a badly
structured organisation.

3.4 ACTIVITY MODELLING PROCEDURE

The modelling procedure for activity models consists of eight steps. The
procedure has to be applied several times recursively in order to construct
with the complete global activity model.

Step 1: Gather required information

The form of informant's specifications for activity modelling are texts in
natural language which specify the activities and the flow of information.
From section 3.1 we summarise that there are three kinds of activities in
an information system:
1. Reactions to events;
2. Control activities;
3. Perception and reporting of internal non-temporal events.

Activity modelling must make use of the results of the preceding planning
and analysis steps of the development process, such as for example the
event modelling procedure which gives the reactions. For all three kinds of
activities, proper starting points for information gathering have to be
distinguished.

Ad 1. The internal agents responsible for the reaction processes are asked
to specify the whole reaction process in accordance with the list of
events and the decomposition of the reaction, both of which have
been modelled during event modelling (see 3.2).

Ad 2. The control activities are treated as follows. In the case that the
analysis stage is preceded by a planning stage, we have a rough
insight into the entity types and the business functions from the
models of this stage. The responsible agents are asked to specify the
entities, relationships and processes for which control is needed. In
general, there must be control processes to check the whole content
of the information system, except, perhaps, for very stable and well-
known data.

Θ6

ACTIVITY MODELLING

The activities related to a control action can be simple, e.g. the
updating of an entity or the printing of a list of entities on a screen,
or more complex, e.g. a complete overview of the involvement of all
entities in the processes of the system. A narrative description of the
control action and the related activities is then set up by the
informants. The analysts must take account of the fact, that control
of the same information may be needed at several places in the
organisation.

Ad 3. Internal non-temporal events are, in general, harder to discover.
The analysts must be aware of this and as soon as they get the
impression that certain processes are initiated due to internally
created triggers, these triggers must be recorded on a special list.
Also attribute names can suggest an association with the triggers
involved. For instance the re-order level of stock items does so.
Furthermore may the construction of the context diagram already
have resulted into some internal non-temporal events, as discussed
in section 3.2.2.

Step 2: Determine preliminary activities and flows

The texts available from step 1 have to be analysed for activities, agents,
necessities, results and data stores. The most convenient way to do this is
for each kind separately. First we will discuss the marking of each kind in
the text and subsequently give an example.

2.a Activities
The information processing activities are marked first. The most simple
way of doing this, is to mark all information processing predicates in the
sentences. Transitive verbs are typical verbs indicating these activities,
since the processing of the information by the system implies subprocesses
with corresponding agents and objects. Examples of transitive verbs are
create, design, produce, control, inform, warn, send, receive, transform,
etc. Verbs not indicating processes are the auxiliary verbs and the
intransitive verbs: be, have, can, must, exist, live, etc. The latter verbs are
merely related to information, that is needed for data modelling.
The names given to the activities should be distinct from the names for the
data flows. For instance the activity called 'production planning', tha t has
as result the 'production planning', causes confusion. Use the imperative
for activities for a clear distinction, in this case 'plan production'.
One has to take care in case the activities in the description do not process
information but material goods. The material flow may only be modelled if
there is data inseparable on the material and this data is processed by the
activity. This has to be treated similarly as described for the context
diagram (see 3.1.2).

2.6 Agents
The agents are mostly the subjects or the by-phrases in the sentences.
When modelling a current situation there has to be at least one agent for
every activity scanned in the previous step. For a missing agent in a future
situation it is very important to note this explicitly and plan to establish

67

FORMALISATION OF INFORMATION SYSTEMS MODELLING

one. Representatives of the agents can be interviewed to refine the
descriptions of the activities.

2.C Necessities - Results
The sentences are scanned for the objects that are needed for an activity or
produced by an activity to be modelled as necessities and results
respectively. The analysts deliver for each activity zero, one or more
necessities and zero, one or more different types of results.
Creative information processing activities with results and without
necessities are seldom. They may appear when knowledge of agents is used
to create the information. If this knowledge is not formalisable and will not
be incorporated in the automated system, it is not explicitly modelled as an
necessity. The same argument holds for activities with necessities but
without results.

2.d Producer - Production - Consumer • Consumption
Most informants are better acquainted with the agents that perform the
previous or the next step in a process than the precise activity of these
agents. Either the agent, or the activity or both are marked in the text. This
information will be needed for the composition of activities (see step 5).

2.e Data Stores
The necessities and results in an information processing system are
sometimes kept in some depositories, either computerised or not, to enable
the synchronisation of activities or the retrieval of data by several agents.
Informants have to be instructed to specify this explicitly. Either the data
goes directly from one activity to another or it is kept somewhere. In the
latter case the depository is modelled as a data store.

The following is an example of a textual specification of some activities
from the inventory control case described in [Olle 88a]. The activities are
underlined, the agents boldly underlined, the necessities and results in
italics, the producers or consumers are in bold type, and the data stores are
in underlined italics.

Each del ivery form received i s f i r s t checked by tha
Sfcoclc department with the matching purchase orders,
tha t are kept in a purchase order file. I t i s possible
tha t a supplier may combine several purchase orders in
one del ivery. When only a part of the purchase order has
been delivered, the purchase order i s marked as such and
the delivered quant i t ies of each stock item are recorded.
When the complete purchase order has been delivered, t h i s
i s also recorded.
After t h i s a message is given to the stock control
personal to unpack and store the delivered goods. The
del ivery forni i s forwarded to the financial
department.

68

ACTIVITY MODELLING

Step 3: Fstahliah nnming conventions

In most organisations and therefore in most information systems
development projects it is rare that there exists a common terminology, in
which each term is uniquely defined. Synonyms, homonyms and multiple
homonyms may occur quite often, especially the terminology of different
subsystems may vary considerably.

After the previous step, in which objects have been named, the terminology
of the system must be established rigorously by specifying precise
definitions. In these definitions the distinction with closely related objects
should be made explicit. This may lead to an adaptation of the terminology
conventions of some parts of the system. Data modelling, that is usually
performed after activity modelling, can profit from this established
terminology or even define it more precisely.

delivery form

purchase
order
data

Recording
and

Marking

Stock Department

delivery form

marked
purchase
order

Purchase order
File

Purchase order
File

Figure 3.8 The activity Recording and Marking

Step 4: Preliminary construction of activity models

From the linguistic analysis of step 2 the template of fig. 3.6 can be filled in
for each activity, although, of course, not all components exist. The partial
data flow diagram for the activity "recording and marking" from the

FORMALISATION OF INFORMATION SYSTEMS MODELLING

example is shown in fig. 3.8, where only the information in the sentences
'When only a part ... is also recorded.' is represented.

The completeness per activity can be achieved by asking the informant to
improve the textual specification with the lacking components in the model
of the activity.

Step 5: Composition into data flow diagrams

We can now compose the preliminary models of each activity into one
diagram by coupling the data flows. This implies tha t we have to
investigate the activities for sequentiality and parallellism.

Two activities are sequential if any of the results of one activity is a
necessity for the other activity. Hence the results determined in the
previous step must be mapped onto necessities. Mostly this is implicit or
trivial in process descriptions. For sequential activities of different agents
we must map the triplet (result, agent, consumer) onto (necessity,
producer, agent) in order to be sure that the activities match. In the
example above this can be done with the triplet (stock department, delivery
form, financial department), when the description of the processing of the
delivery forms of the financial department becomes available. The two
activities are then connected with the data flow that stands for the result of
the one activity and for the necessity for the other.

Two activities are parallel when none of the results and necessities is a
direct or indirect necessity or result for the other activity. Or in other
words, when there is no flow of information from the one to the other.
There is not a special notation for parallel activities other than the lack of
data flows between the activities in the model.

For a good model of the processes it is very important to have both types of
relationship of activities analysed explicitly and validated by the
informants. In the example the checking is sequentially before the
recording and marking. The forwarding of the delivery form can be
parallel to the giving of messages.

Having the model composed, this may possess gaps or data flows, that do
not fit. The specification of the missing components by the informants will
lead to the completeness per diagram. The proper balancing of the data
flows and activities over the various levels of the hierarchy of activity
models may as well give rise to adaptations. The resulting data flow
diagram of the example is shown in figure 3.9.

Step & Combination into super-activities

The informants specify the activities starting at an arbitrary abstraction
level. Some may start with a very detailed low level description, whereas
others specify the activities at a more global, high level. It is hard to
influence this, so we take this as given. We proceed then by constructing

70

ACTIVITY MODELLING

the levels above the available activity models until the connection with the
context diagram is made. This usually is a modeller's task, for which some
information from informants is needed to draw the right boundaries
between the various activities.

delivery form

Checking

Stock Department

delivery form

purchase order data

purchase
order
data

Recording and
Marking

Stock Department

Purchase order
File

marked
purchase

order

pplier
data

delivery form

Forward
delivery form

Stock Department

delivery form

Financial Department

Give
message

Stock Department

1

message
r

Unpack
Delivery

Stock Control Pers.
V J

Figure 3.9 Data flow diagram of example

6.a. Grouping of activities

When a group of activities forms a natural unit, usually because the
activities are performed by the same agent and/or are always performed
together, we may introduce a super-activity that combines these activities.
The results of this super-activity are the results of the activities of the group
that are necessities of other activities outside the group. These results may
be combined into one or more results of the super-activity. The same

71

FORMALISATION OF INFORMATION SYSTEMS MODELLING

applies for the necessities. Data flows that are intermediate, i.e. only result
and necessity of activities that are combined in the super-activity, are not
shown in the higher level. In figure 3.10 the super-activity is shown that
results from the combination of four activities performed by the Stock
Department in the activity model of fig. 3.9.

delivery form

Handling of
delivery form

Stock Department

delivery form message

Figure 3.10 Super-activity of example

We see that the super-activity has one necessity and two results. The data
store Purchase order file is hidden in the activities on the lower level. This
is explained in the next substep.

(Lb. Handling of data stores

A data store should be modelled in the decomposition of the highest activity
in the activity hierarchy, for which it is functional. Only the subactivities of
the activity in question can exchange data with the data store. In other
words, the data store has only data flows to and from the subactivities. This
leads to the hierarchy of activity models in which all retrieval and update
processes of a particular data store occur in the sub-hierarchy of the
activity in which the data store is modelled. A decomposition
representation of the global activity model, in which the models with a data
flow to a data store are marked, can be used to illustrate the fragmentation
of the interaction with the stored data over the activities (see fig. 3.11).

It is also shown in figure 3.11, that not necessarily all sub-activities of an
activity with a data store need to have data flows to that data store in their
decomposition, but at least one of the subactivities should. This implies that
there exists a path of activities from the highest activity in the hierarchy to
a certain bottom activity, that form a chain of subactivities and all have
flows to the data store.

72

ACTIVITY MODELLING

^ Local activity model with data store

Π Local activity model without data store

Figure 3.11 Marked global activity decomposition

During the design phase the global activity model of the analysis phase is
eventually reconfigured or new data stores may be introduced. For the
global activity model of the newly designed system the same rules apply as
for the model of the analysis phase as described above. If the data will
become stored centrally then the data store will in general be in the
decomposition of the context diagram, unless all but one subactivities of the
context activity at the top of the global activity model do not exchange data
with a store, which is rarely the case.

We remark, in concluding this step, that one should not take the context
diagram as a starting point for informant's specification. This is because of
the fact that the informants are then forced to think in terms of the
decomposition. A better familiarity with the activities is achieved if the
abstraction level of the informants is taken as starting point.

Step 7: Refinement in sub-activities

Hierarchical decomposition of activities can be done by asking the
informant to refine a specific activity in a textual explanation to which the
same modelling procedure can be applied. This is a kind of recursive
application of the modelling procedure, that therefore requires a stop
criterion. This is the so-called s a m p l e criterion. This means that an
activity is decomposed as long as the input and output flows are data
compounds, e.g. forms, letters, etc., of which samples have to be provided
for the subsequent data modelling. Refined modelling of the activities at the
bottom level of the global activity model, the so-called tasks, is done during
task modelling. The sample criterion will be discussed extensively in
section 5.1.

73

FORMALISATION OF INFORMATION SYSTEMS MODELLING

The refinement takes the activity with all its necessities and results as a
starting point. The incomplete description of the recording and marking
activity of the example obviously needs further clarification, unless it turns
out that this would violate the sample criterion.

Step 8: Overal completion

The rules of the top-down decomposition of the activity hierarchy are
incorporated in the previous steps. The result of these steps, the global
activity model, should therefore obey all the decomposition rules and we
already checked the completeness per activity and diagram in the steps 4
and 5. The complete decomposition may, however, be adapted to the
obtained insights regarding the complete information processing. A global
activity model, that is constructed by several people or that was based on
specifications of different informants, will in general need some
adaptations. Indications for adaptations are:
- the splitting of too complex activities in more subactivities and the

combination of too simple activities in one activity;
- the reconfiguration of activities in order to have more or less the same

abstraction level of processing on the levels of the hierarchy;
- the check that all data stores are properly filled and maintained.

End of activity modelling procedure

From this modelling procedure guide-lines for the informant 's
specification can be derived. If an informant knows the format of the
specification and the concepts that must be included, this modelling can
reduce expensive in terviewing. Moreover, frequently occurring
incompleteness or inconsistencies can be solved by returning the analysed
text provided with comments about missing information.

Automated analysis tools for textual informant's specifications have been
proposed in [Kersten 86] and [Cordes 89]. These approaches suffer from the
combination of event, activity and data modelling in one complex analysis.
Extensive case handling and error feedback to the user need to be
incorporated in the automated procedures. A better support of modelling
could be obtained from strictly separated analysis tools, that are fed with
informant's specifications dedicated to just one aspect.

As discussed in section 3.3.1 informants often mix their specifications with
aspects of activities that can not be modelled in an activity model. So we did
not incorporate modelling steps for these aspects. However, in the case of
conditional processing, experience shows that most informants only state
the alternative corresponding to a correct outcome of the conditions.
Complete specification requires that all choice alternatives are described
fully. An indication of conditional processing is when activities are
formulated by the informant with verbs like check, control and compare.

Beside this, we may not wish the specifications of the informant to be
strictly devoted only to activity modelling. They normally may contain all

74

ACTIVITY MODELLING

sorts of other kinds of information such as problems, data modelling
information, etc.. This is not relevant to the modelling of activities, but
must be kept for other development activities.

a 5 FORMALISATION OF ACTIVITY MODELLING

The formalisation of activity modelling is split up according to the four
diagram techniques employed: entity decomposition diagram, global
activity model, context diagram and local activity model. The latter two will
be discussed as special types of activity models, which will be treated in the
data flow variant.

The concepts of the techniques, that will be used in all par ts of the
formalisation, are the sets listed below. These sets are all mutually disjoint
unless otherwise stated.

E : the set of events,
R : the set of reactions,
A : the set of activities,
F : the set of flows,
S : the set of stores,
X : the set of external agents,
I : the set of internal agents and
Ρ : the set of activators.

Recall that the set of activators was introduced as the union of activities,
stores and external agents. The disjointness of the three sets implies that
an activator is either an activity, a store or an external agent.

P = A u S u X

Observe that we did not introduce a set for all of the concepts. This is
because we will not formalise all aspects of activity modelling. A complete
formalisation would involve a lot of trivialities and we prefer to restrict
ourselves to the more interesting parts.

3.5.1 Rules for events

In section 3.1 and 3.2 we saw that various concepts are related to the
concept of event. We formalise only some of these associations in basic
predicates and the corresponding axioms.

predicate involved over Χ χ E

This predicate stands for the involvement of an external agent in an event.
A given event may just have one external agent involved.

Vee E Vxi,X2eX [mvolved(xi,e) л involved(x2,e) => χχ = хг] (Al)

75

FORMALISATION OF INFORMATION SYSTEMS MODELLING

External agents need not all be involved in an event, since an external
agent may have to be introduced as a result of outgoing data flow, that is
the result of a reaction on an event.

The incoming and outgoing data flows (or reports) related to the events are
formalised in the predicates incoming and outgoing.

predicate incoming over F χ E

predicate outgoing over F χ E

An event may have one incoming data flow and one outgoing data flow, but
not both.

Vee E Vfi,f2eF [incoming(fi,e) л incoming(f2,e) => f ι = Ы (Α2)

Vee E Vfi.fze F [outgoing(fi,e) л outgoing(f2,e) => fi = f2] (A3)

Vee E [3fie F incoimng(fi,e) => -i[3f2e F outgoing(f2,e)]] (A4)

Every data flow must either be incoming or outgoing, but may not be both.

VfeF [P e i e E mcoming(f,ei) л -¡[ЗегеЕ outgoing(f,e2)]] ν

[-i[3eieE incoming(f,ei)] л ЗегеЕ outgoing(f,e2)]] (A5)

The constraints that expresses the uniqueness of the combination of an
incoming data flow and an external agent is formulated by the next axiom.

VxeX VfeF еі.егеЕ [[involved(x,ei) л involved(x,e2) л

incoming(f,ei) л incoming(f,e2)] => ei = ег] (А6)

Analogous for the outgoing data flow.

VxeX VfeF еі.егеЕ [[involved(x,ei) л involved(x,e2) л

outgoing(f,ei) л outgoing(f,e2)] => ei = ег] (А7)

It is not specified that an external agent may be involved in two different
events where the same data flow is incoming in the one and outgoing in the
other. If desired this may be added as an axiom. It may, however be
possible that some information leaves an organisation just as it has entered
with the same external agent involved. Because the organisation performs
some activity with the information, otherwise it would not occur in the
activity model, the outgoing data flow can be prefixed with an adjective that
expresses the activity. An example is when some data is copied or derived
from forms that are not altered during processing in an organisation and
returned to the same external agent as who gave them. The forms come in
and go out with the same information. If the incoming data flow is just

76

ACTIVITY MODELLING

called 'forms', then the outgoing data flow could be called 'processed
forms'.

We will return to the relation between external agents and data flows,
when we discuss the context diagram in section 3.5.3.

For the relationship between the events, reactions, activities and internal
agents we introduce again some basic predicates.

predicate belongs over R χ E

predícate consists over R χ A

predicate responsible over I χ R χ A

The one-to one relation between events and reaction is expressed as follows.

VeeE Vri,r2eR [belongs(ri,e) л belongs(r2,e) => r i = rg] (A8)

Vre R еі.еге E [belongs(r,ei) л belongs(r,e2) => ei = ег] (A9)

Furthermore, this predicate is not total in E. This means that there exists
events, namely the internal non-temporal events, for which the reaction is
not modelled in the event decomposition diagram. But the predicate is total
in R, i.e. all reactions belong to an event.

Vre R 3ee E [belongs(r,e)] (AIO)

The reactions consist of one or more activities and an activity may be part of
one or more reactions.

Vre R Bae A [consists(r,a)] (All)

Vae A 3re R [consists(r,a)] (A12)

All internal agents are at least responsible for an activity that is part of a
reaction.

Vie I Зге R 3ae A [consists(r,a) л responsible(i,r,a)] (A13)

During event modelling it was not necessary to find all internal agents that
are responsible for the activities of a reaction. But for each activity in a
reaction there may be at most one.

VreR Vae A ііДгеІ [consists(r,a) л responsible(ii,r,a) л

responsible(Ì2,r,a) => i i = 12] (A14)

77

FORMALISATION OF INFORMATION SYSTEMS MODELLING

3.5.2 Rules for the data flow diagram

The rules for the data flow diagram were already discussed in a similar
way in [Falkenberg 89a]. Some of the rules will be repeated here, whereas
others are adapted to the special rules imposed on a context diagram and
the decomposition of the global activity model.

The main predicates are source, that describes which activator is the
starting point of a data flow, and destination, that describes its destination.

predicate source over F χ Ρ

predicate destination over F χ Ρ

Data flows may not be unconnected, so each data flow must have a source
and a destination. Activators may not appear in the models without a data
flow connected to them.

Vfe F Βρε Ρ [source(f,p)] (A15)

Vfe F Зре Ρ [destination(f,p)] (Α16)

Vpe Ρ 3fe F [source(f,p) ν destination(f,p)] (A17)

The data flow diagram may not contain activators which have data flows
t h a t are directly input to themselves. Such iteration loops need to be
modelled in the decomposition of an activity.

Vfe F Vpi,p2e Ρ [destination(f,pi) л source(f,p2) => p i * P2] (A18)

In order to distinguish the three mutually disjoint kinds of activators:
external agents, stores and activities, we need to define two of them and the
third can be defined in terms of the other two, using an auxiliary predicate.

predicate ext_agent over Ρ

predicate store over Ρ

Stores are not external agents and vice versa.

Vpe Ρ -i[ext_agent(p) л store(p)] (A19)

Activities are defined by the auxiliary predicate activity.

predicate activity over Ρ as

activity(p) Ξ -iext_agent(p) л -istore(p)

78

ACTIVITY MODELLING

The three subsets A, X and S of the set of activators P, that were defined in
the beginning of this chapter, can be deined using these predicates. Their
total and disjoint subdivision of the set Ρ follows then from the definition of
activity and A19.

A = {p€ Ρ I activity(p)}

X = {pe Ρ I ext_agent(p))

S = {peP|store(p)}

The following axiom formulates that a data flow has always an activity as
either source or destination.

VfeF р і .ргеР [source(f,pi) л destmation(f,p2) => p ieA ν ргеА]
(A20)

This axiom prevents three undesirable connections in data flow diagrams.
External agents may not have a flow of data to another external agent nor
to a store and stores may as well not have a data flow to another store. The
first is not allowed because direct data flows between external agents are
outside the scope of the activity model. The second is motivated in section
3.1 with the remark that external agents never access data stores directly,
but that there is a system in which the data stores are embedded. Since
data stores are considered to be passive activators it makes no sense to have
data flows between them, which motivates the third prohibited connection.

The above axioms lead to the corollary that an external agent is always
connected to an activity.

Corollary 3.1

VpeP [ext_agent(p) => Bp'eP 3feF

[[destination(f,p) л source(f,p')] ν [destination(f,p') л source(f(p)]] л

p 'eA]

V
Proofi

Let ρ be from Ρ and ext_agent(p) valid, then A17 implies
3feF [source(f,p) ν destination(f,p)].
Suppose source(f,p) is valid, then according to A16
Эре P [destination(f,p')].

Then p'e A follows, because the flow f connects the external agent ρ
necessarily with an activity p' according to A20.
Suppose destination(f,p) is valid, then again according to A16

З р ' е Р [sourceCf.p')].

Then p'e A follows also, because the flow f connects the external agent
ρ necessarily with an activity p' according to A20.

Δ

79

FORMALISATION OF INFORMATION SYSTEMS MODELLING

Analogously, data stores are always connected to activities.

Corollary a 2

Vpe Ρ [store(p) => Зр'е Ρ Bfe F

[[destination(f,p) л source(f,p')] ν [destination(f,p') л source(f,p)]] л

p 'eA]

V

3.5^ Rules for the context diagram

The context diagram is, as we discussed in section 3.1.2, a special kind of
data flow diagram, for which special rules exist. The context diagram is
the activity model at the top of the global activity model and its constituents
are therefore part of the sets X, A, F and S. We need the basic predicate t-
subact for the definition of the context diagram. The properties of this
predicate are discussed in sec. 3.5.4.

predicate t_subact over A χ A

Then t_su.bact(a 1,0.2) has to be read as the activity a i has the activity аг in
its decomposition at some arbitrary level.

The context diagram is then defined by the sets Xc, Ac, S Q and Fc, where

Xc = X
Ac = (a), with â such that Vpe A\{â} [t_subact(â,p)]

Sc = 0
Fe = (feFiapi,p2eXc u Ac [source(fFpi) л destination(f,p2)])

In the next section we will define that there is just one such â in A that has
that property, i.e.. the activity at the top of the hierarchy.

We see from the examples that a context diagram is star shaped. We
actually are now in the position to proof that formally, where we have to
assume that the context diagram is a proper data flow diagram and obeys
therefore all the stated axioms. To simplify the reasoning we introduce the
following set and auxiliary predicates.

Pc = XcuAc

predicate connected over Pc χ Pc as

connected(pi,p2) s 3feFc [[source(f,pi) л destination(f,p2)] ν

[destination(f,pi) л source(f,p2)]]

predicate connect_aU over Pc as

80

ACTIVITY MODELLING

connect_all(p) = Vp'ePcMp} [connectedCp.pO]

Pc is then the set of activators in the context diagram. The predicate
connected denotes that two activators in the context diagram are connected
via a data flow. Observe that this predicate is symmetric. The predicate
connectjall determines for a given activator whether it is connected to all
other activators.

The star shapedness of a context diagram can now be proven in the
following steps.

Lemma 3.3

The activator â is connected to all other activators in the context
diagram, i.e.
connect_all(â)

V
Proofi

WehavePc \ (â}=Xc
We then have to prove: VpeXc [connectedià.p)]
Let ρ be arbitrary from Xc
then according to A17
3feFc [source(f,p) ν destination(f,p)]
Suppose source(f,p) is valid then from A16 we have
Эре Pc [destination(f,p')]

Suppose then that p'e Xc then connected(p,p') is valid,
which is contradictory with Cor. 3.1, that says that two external
agents
may not be connected.
Hence p'ePcVXc = (a), so p' = â
and therefore connected(â,p)

The case in which destination(f,p) is valid is proven analogously.
Δ

Lemma 3.4

A context diagram with more than one external agent is not a
double star, i.e.
I Xc I > 1 => [Vpe P e [connect_all(á) л connect_all(p)] => ρ = â]

V
Proofi

Suppose I Xc I > 1 and pe Pc such that ρ * â
Let ρ be an element from PcMâ) = Xc and connect_all(p)

Then since I Xc I > 1 we have that there exists an xe Xc

81

http://connect_a.ll

FORMALISATION OF INFORMATION SYSTEMS MODELLING

with χ # ρ and connected(p,x).
This is again in conflict with Cor. 3.1.

So —iconnected(p,x), hence —iconnect_all(p)

and ρ = â.

Δ

Lemma 3.5

All elements from Pc, except â, are exclusively connected with â in a
context diagram, i.e.
VpePcMâ} P p ' e P c connected(p,p') => ρ' = â]

V
Proofi

Let ρ arbitrary from Pc\(â)= Xc and connected(p,p')

If p'eXc then we are in conflict with Cor. 3.1

Sop , €Pc \Xc = {â}, sop' = á.

The theorem about the star shapeness of the context diagram is then
formulated as follows.

Theorem 3.6

A context diagram is star shaped and if the context diagram has more
than one external agent then the centre of the star is unique.

V
Proofi

The centre of the star is â, which is connected to all other activators in
the diagram according to lemma 3.3. If there is just one external
agent
then the star shapedness is trivial, but has two centres.
Otherwise the uniqueness of the centre follows from lemma 3.4.
The exclusive connections of the activators with â is finally justified
by lemma 3.5.

Δ

During modelling of context diagrams one has therefore only to assure that
the formulated axioms are valid and then the star shapedness of the
context diagram follows. Assume for instance t h a t the axioms are
implemented in a support tool for data flow diagramming and prohibit the
entering of erroneous data, it is then impossible to enter a non-star shaped
context diagram.

82

ACTIVITY MODELLING

3.5.4 Rules for the decomposition of activities

The decomposition of activities in the global activity model needs also a
proper formalisation to ensure all kind of well-formedness properties of the
hierarchical decomposition. Parts of this formalisation were already
discussed in [Falkenberg 89a].

The predicate t_subact was defined in the previous section, but its axioms
were not. This predicate is irreflexive, not symmetric and transitive. The
decomposition leads therefore to a strict partial order of the activities.
Obviously the order is not total in general, since not for any pair of activities
is valid that either the one appears in the decomposition of the other, or the
other way round. We can not define this as an axiom, since trivial
decompositions as for instance a chain of activities that each have one
activity in their decomposition are totally ordered.

VaeA[-it_subact(a,a)] (A21)

аі.аге A [t_subact(ai,a2) => -it_subact(a2,ai)] (A22)

аі.аг.азеА [t_subact(ai,a2) л t_subact(a2,a3) => t_subact(ai,a3)]
(A23)

Based on this predicate the auxiliary predicate subnet is defined.

predicate subact over A χ A as

subact (аі.аг) s [t_subact(ai,a2) л —іЗазе A [t_subact(ai,a3) л

t_subact(a3,a2)]

The hierarchical nature of the decomposition is then enforced by the axiom
that tells that an activity appears in just one decomposition.

а.аі.аге A [t_subact(ai,a) л t_subact(a2,a) => ai = аг] (A24)

The hierarchy of activity models has exactly one top. We have already used
this in the definition of the conetxt diagram in the previous section. We
define this via an auxiliary predicate top.

predicate top over A as

top(a) = -i3be A [t_subact(b,a)]

The axioms that enforce the existence and uniqueness of a top are then as
follows.

BaeA[top(a)] (A25)

83

FORMALISATION OF INFORMATION SYSTEMS MODELLING

аі.азе A [top(ai) л topCaa) => ai=a2] (A26)

For convenience the auxiliary predicate decomposed is defined.

predicate decomposed over A as

decomposed(a) s 3be A [subact(a,b)]

Analogous to the decomposition of the activities the decomposition of the
flows is formulated.

predicate t_subflow over F χ F

predicate subflow over F χ F as

subflow (fi.fa) - [t_8ubflow(fi,f2) л -iBfaeF [t_subflow(fi,f3) л

t_subflow(f3,f2)]

These predicates are to be read similarly as those for subactivities, i.e.
subflow (fhf2) means that the flow f2 is a direct subflow of f χ. A lot of axioms
can be formulated for these predicates but we restrict us to the one that says
that subflows of flows inherit either the source or the destination. The
exclusive or is notated with y.

Vf.ge F Va.be A [source(f,a) л destination(f,b) л subflow(f,g) =>

source(g,a) у destination(g,b)J (A27)

Also a lot of axioms can be formulated for the relation between activities
and flows and their decompositions. We only give two of them, namely that
activities, that have a decomposition, have flows that appear either in the
decomposition or have a subflow that is connected to one activity in the
decomposition.

Vfe F Vae A [source(f,a) л decomposed(a) =>

3be A [subact(a,b) л [source(f,b) ν Ege F [subflow(f,g) л source(g,b)]]]]

(A28)

Vfe F Vae A [destination(f,a) л decomposed(a) =>

3be A [subact(a,b) л [destination(f,b) ν 3ge F [subflow(f,g) л
destina tion(g,b)]]]]

(A29)

The theorem we are now able to formulate is already discussed in step 6.b
of the activity modelling procedure of sec. 3.4. It deals with the interaction
of activities with data stores and says that in the decomposition of an
activity with a data store there exists a path of activities to the bottom layer

84

http://Va.be

ACTIVITY MODELLING

of the decomposition such that in each of these activities interact with the
data store.

Theorems.?

All decomposable activities in the decomposition of an activity a, that
have a flow to a data store, have a subactivity that has a flow to the
same store, i.e.

V â , a e A V f e F V s e S

[t_subact(â.a) л decomposed(a) л source(f,a) л destination(f,s) =*

BbeA [subact(a,b) л 3geT [source(gpb) л destination(g,s)]]]

V
Proofi

According to A28 we have from source(f,a) л decomposed(a) that

3be A [subact(a,b) л [source(f,b) ν 3geF [subflow(f,g) л source(g,b)]]]]

Suppose first that source(f,b) is valid.
then the theorem is satisfied taking g = f.

Suppose otherwise that we have a flow g, such that
subflow(f,g) л source(g,b)

Combine this with destination(f,s) л source(f,a) and we have according
to A27 that destination(g,s) needs to be valid,
which proves the second alternative.

Δ

This theorem formulates a property on the input to data stores, and an
analogous theorem can be formulated for the output of data stores. Similar
theorems can also be formulated for the flows to and from external agents,
because external agents are, like stores, not decomposable. It does not
matter that the external agents appear only at the top level of the activity
decomposition.

85

4 DATA MODELLING

4.1 DATA MODELLING PROCEDURES

Data modelling is one of the most frequently addressed topics in
information systems research. The static nature of data in an information
system turns out to be attractive to propose new notations, to introduce
extra concepts and to investigate theoretical backgrounds. Over the years
the data modelling scene has been enlivened with debates among the
advocates and opponents of the major data modelling schools: hierarchical,
network, relational, semantic and, recently, object-oriented. Beside the
abundance of modelling techniques and variants thereof, this has resulted
in impor tant modelling fundamentals, such as the separat ion of
conceptual, internal and external aspects, the availability of constructs for
special kinds of concept interrelationships, and abstraction mechanisms
such as modularity and derived schémas [Hull 87].

In this chapter we will deal with modelling procedures for semantic data
modelling techniques 1 . The main data modelling techniques are the
following. The first semantic data model was the binary modelling notation
introduced in [Abrial 74]. The Entity-Relationship modelling technique (ER
model) [Chen 76] is the most generally used data modelling technique and
is implemented in various modelling tools. Functional relationships are
the key concept of the Functional Data Model [Shipman 81] and are
therefore suitable for a mathematical formalisation. The binary modelling
technique of NIAM [Verheijen 82] and the elementary variant, that allows
n-ary relationships [Nijssen 89], are based on a linguistic analysis of fact
types. The IFO modelling technique [Abiteboul 87] was introduced to
provide a theoretical framework for studying the semantic data modelling
techniques.

As already described in section 2.4 the NIAM technique is accompanied by
a modelling procedure. In [Wintraecken 85] a modelling procedure is given
for the binary variant of NIAM, that consists of eleven steps. Further
research lead to the development of modelling procedures for the
elementary variant as presented in [Falkenberg 87] and [Nijssen 89]. The
first procedure consists of the following steps.
1. Gathering of sample documents and removal of redundancy.

In the names of most data modelling techniques the term model is not used in the
sense of the discussions in chapter 1, e.g. ER model. This misuse has, however,
found its way into the standard data modelling terminology. We prefer to use the
terms modelling technique and modelling notation in line with the definition of
section 1.3.

87

FORMALISATION OF INFORMATION SYSTEMS MODELLING

2. Formulation of elementary sentences.
3. Provisional fact types.
4. Uniqueness constraints on fact types.
5. Check of splittability of fact types.
6. Determination of the structure of elementary fact types.
7. Redundancy check.
8. Integration of subschemas.
9. Determination of subtypes.
10. Identification of entities.
11. Determination of constraints.
12. Final quality checks.

Globally speaking, the relationships of the data model are established first,
thereafter the entity types and finally the constraints. The procedure in
[Nijssen 89] is to a large extent similar to that of [Falkenberg 87]. Some of
the steps are more elaborated and can be qualified as modelling
subprocedures, i.e. the steps contain a sequence of substeps to determine a
particular aspect of the data model. Subtyping, for instance, is performed
in nine substeps.

Modelling guide-lines for the ER modelling technique were given in [Hsu
85], [Teorey 86] and [Brinkkemper 88ab]. The first and second procedure
use an extension of the original ER modelling concepts and are oriented
towards the relational modelling theory with functional dependencies and
all kinds of keys. In the third is a similar approach as in the NIAM
procedures chosen. Here, as well, the s tar t ing point are sample
documents. The three ER modelling concepts: entities, relationships and
attributes are recognised on these samples and modelled together with
cardinalities and identification structures.

In [Aerts 88] a modelling procedure for the Functional Data modelling
technique was presented. Despite the complete formalisation of the
representation technique the procedure is formulated in general terms and
does not address the recognition of the modelling concepts in depth.

In this chapter we will elaborate the procedure that was first presented in
[Brinkkemper 88ab]. The next section deals with the formalisation of the
ER modelling concepts and proposes to use NIAM and ER together in
software development projects. In section 4.3 the data modelling procedure
is discussed and illustrated with output of a modelling support tool.

42 ΕΝΤΠΎ-RELATIONSHIP MODELLING

4.2.1 Entity-Relationship modelling concepts

The intuitive nature of the ER modelling technique is appealing to both
practitioners and researchers. However, the three key concepts of the
technique entity type, relationship and attribute, were not defined formally,
which gave rise to all kinds of different interpretations. Moreover, the ER

88

DATA MODELLING

concepts were not capable of modelling subtyping and constraints, which
led to various extensions.

We take a binary version of the original proposal in [Chen 76] as a starting
point for the discussion and formalisation. An example of a simple data
model using the ER notation is shown in fig. 4.1. If we compare this with
the data model of the video store test case in the NIAM notation in fig. A.4,
we see that the number of components is reduced: four entity types, three
relationships and twelve attributes, but the degree of detail is decreased.
The NIAM data model shows a lot more constraints that cannot be depicted
by the ER notation. For instance, the restriction that the attribute rental
charge of a rental is only filled in if the return date is filled in as well, and
vice versa. This is modelled by an equality constraint in fig. A.4, but is
lacking in fig. 4.1.

tape_code

contains

is recorded on

film_name

is_new

late_charge

rental_price

has ppr^nn_frnm

is_person_in

person_name

street

house_nr

community

rental_date charge return_date

Figure 4.1 Example of ER data model

In this model we have left out the cardinalities for the attributes. The
cardinalities on the relationships are in the so called crowfoot notation. A 0
or a I at the inner side denotes that the one entity type is optional or
mandatory related to the other. A I or a > at the outside of a relationship
denotes the maximal occurrence of one or many. Observe finally, that the
entity type 'Rental' occurred in fig A.4 as an objectified entity type, but is an
associative entity type in the ER data model.

FORMALISATION OF INFORMATION SYSTEMS MODELLING

Figure 4.2 Meta-model of ER data modelling.

We discuss the concepts of the ER modelling technique with the help of its
meta-model in fig. 4.2. Entity types model the "things" [Chen 76] or entities
of the Universe of Discourse (see also def. 1.5). These entity types occur in
all kinds of associations, that can be modelled by the relationships. Entity
types are therefore related to each other in several binary relationships.
This is modelled by a ternary relation to allow homogeneous relationships,
i.e. relationships from an entity type to itself. Attributes model the values of
properties of entities. Attributes belong to exactly one entity type and there
may be several of them belonging to one entity type.

Relationships and the associations between attributes and entity types have
minimal and maximal occurrence cardinalit ies. There are sixteen
different combinations for cardinalities in the binary ER technique and we
have depicted them in the meta-model as the type 'cardinalities' for sake of
simplicity. More sophisticated relationship modelling techniques would
require more complex representations for cardinalities. The associative
entity type is not modelled as a special concept, because this is treated as an
ordinary entity type. Their conceptualisation steps differ as will turn out
from the modelling procedure (sec. 4.3).

Attributes are needed to identify entity types uniquely. As we will discuss in
the modelling procedure, this identification structure can be a single
attribute or a combination of attributes. It may even be possible in the latter
case that attributes of other entity types, to which the underlying entity type
is related, are needed for a proper identification. An example is the
identification of the entity type 'Rental' in fig. 4.1. 'Rental' is identified by
the attribute 'rental date' of itself and 'tape_code' of 'Tape'. This gives rise
to a complex constraint on the meta-model: the set of attributes of the

90

DATA MODELLING

identification structure of a particular entity types is a subset of the set of
all attributes of this entity type possibly united with the set of attributes of
the entity types to which the entity type is related. From a theoretical point
of view the latter union may need to be repeated several times recursively,
but this will rarely be the case during modelling in practice.

4.2.2 Formalisation of Entity-Relationship modelling

Different formalisations have been given for the Entity-Relationship
modelling technique. The various approaches differ so considerably, that it
is hard to compare their results. We mention [Parent 87] based on an ER
algebra, [Gilmore 87] based on set theory, and [Simovic 89], that uses axiom
systems. Next to these we put our predicate calculus approach. This differs
to that respect that we consider only the ER model, its components and its
well-formedness in the formalisation. The other approaches also relate the
instances of the Universe of Discourse or of the data base to the models.

The basic concepts of the ER modelling technique, as discussed in the
preceding subsection, are the followings sets.

E : the set of entity types,
R : the set of relationships,
A : the set of attributes
I : the set of identification structures and
C: the set of cardinalities.

All sets are mutually disjoint and the first three sets could be considered as
subsets of a set of objects. Objects can be distinguished in a similar way as
activators in the case of activity modelling (sec. 3.5). Properties of the
objects, such as names, definitions and volumes, that are to be recorded for
all three subsets can be related to the set of objects.

The participation of entity types in relationships is represented by the basic
predicate relate.

predicate relate over Ε χ R χ E

This predicate realises the binary relationships by having the set E as
argument twice. A relationship therefore always relates two entity types to
each other. The two entity types of a relationship are uniquely determined
by the relationship. Furthermore, it does not make sense that entity types
do not participate in a relationship. These rules are formally described by
the axioms Dl , D2 and D3.

Vre R 3ei,e2e E [relate(ei,r,e2)] (Dl)

Vre R еі,е2,ез,е4€ E [relate(ei,r,e2) л relate(e3,r,e4) =>

еі=ез л β2=β4] (D2)

Veie Ε Зеге E Зге R [relate(ei,r,e2) ν relate(e2,r,ei)] (D3)

91

FORMALISATION OF INFORMATION SYSTEMS MODELLING

The entity types of a relationship may be the same in the case of an
homogeneous relationship. We define this by means of an auxiliary
predicate homogeneous.

predicate homogeneous over R as
homogeneous(r) s Эее E [relate(e,r,e)]

All attributes belong to just one entity type and all entity types have at least
one attribute. These rules are formulated in terms of the basic predicate
belong.

predicate belong over Α χ E

Vae А Зее E [belong(a,e)] (D4)

Vee E Зае A [belong(a,e)] (D5)

Vae A еі.егеЕ [belong(a,ei) л belong(a,e2) ^ ei=e2] (D6)

We will not work out the predicates for the cardinalities of the relationships
and of the associations of the attributes with the entity types, because this is
similar to the other predicates. The identification of entity types is more
interesting to elaborate, which is based on the basic predicates identify and
is_part.

predicate identify over Ι χ E

predicate is_part over A χ I

The identification relation is one to one and total in both arguments.

Vie I Зее E [identify(i,e)] (D7)

Vee E Зіе I [identify(i,e)] (D8)

Vie I еі.еге E [identify(i,ei) л identify(i,e2) ^> ei=e2] (D9)

Vee E ііДге I [identify(ii,e) л identify(Ì2,e) =* 11=12] (DIO)

The only rule for the is_part of predicate is that it is total for identification
structures.

Vie I Зае A [is_part(a,i)] (Dil)

The combination of D8 and D i l implies that all entity types are identified by
attributes. Observe, that entity types need not necessarily be identified by
their own attributes. It is theoretically possible to construct a data model in

92

DATA MODELLING

which the identification of one entity type requires all attributes of all entity
types in the model.

The attributes that identify an entity type may then be described by the
auxiliary predicate is_part_idef, that is a kind of join of the identify and
is_part predicate.

predicate is_part_idef over Α χ E as

is_part_idefl;a,e) = 5ie I [is_part(a,i) л identify(i,e)]

If the cardinalities were made explicit, we could as well relate these to the
identification structures. In tools that support the mapping of an ER data
model to a relational data model, these rules are implemented so that the
keys of the relational tables are automatically determined.

4.2.3 Synthesis of the ER and the NIAM modelling techniques

The ER data modelling technique and the NIAM data modelling technique
have both a lot of similarities and differences. Instead of chosing the one in
favour of the other, we could investigate their strong and weak points and
formulate how both techniques can be used in conjunction with each other
within software development projects. Subtyping and arbitrary degree of
relationships are not discussed here, since these can be introduced in the
ER technique in a simple way.

A strong point of NIAM is t h a t the larger set of constraints enables
modelling in more detail. Furthermore, all entity types are global, which
simplifies query formulation in terms of the data model. Minor aspects of
NIAM are the tendency to deliver large data models and consequently the
loss of a global overview. In [Bouman 88ab] two shorthand notations of
large similar parts of the data model had to be introduced to keep the
overview of the model.

The disadvantages of the one are the advantages of the other and vice versa.
The models in the ER notation are more concise and provide therefore an
overview. The grouping of some attributes at an entity type gives a link to
the grouping of the attributes in relational tables. This simplifies the
transfer of data modelling to data base design. A weak point of the ER
technique is the hiding of attributes in the entity type definition. This
implies that constraints between attributes of different entity types cannot
be specified and comparison queries between those attributes are more
difficult to formulate.

Suppose now that we have two mappings at our disposal: a restriction
mapping that maps a NIAM data model to an ER data model, and an
extension mapping that maps data models the other way round. We can
then combine the benefits of both techniques and overcome the
disadvantages. We show this in figure 4.3.

93

FORMALISATION OF INFORMATION SYSTEMS MODELLING

meta-mappiriçs

rough model Λ / \ ί detailed model Λ
in ER) / \ Ι in ER J

extension / / ƒ
mapping ƒ / \ ƒ

1 / \ 1 restriction
ƒ ƒ mapping

0 : <<
^/ detailed data \ ^

rough model ^ ^ (detailed model
in NIAM) Ζ Γ Ζ 7 7 Ζ W \ in NIAM

modelling

Figure 4.3 Mapping of data models.

We may then start with a rough, global ER data model with the main entity
types and relationships. Such models come available for instance if
development has been preceded by an information systems planning phase.
This model is then mapped to the NIAM set of concepts, which will not
cause too many problems due to the absence of attributes. Next, the data
modelling is performed according to a NIAM modelling procedure. The
resulting NIAM data model will in general contain more entity types and
relationships than the model at the start, and contains a lot of constraints.
This data model is then mapped to an ER data model, which hides a lot of
the details. In the development activities thereafter one could then
distinguish the activities that need the detailed NIAM model and the global
ER model and use the models correspondingly.

The extension mapping and the restriction mapping should be formulated
in terms of the meta-models of both modelling techniques. To a great extent
these mappings can be performed automatically, except for the concepts of
either technique that have no counterpart in the other technique and
therefore need to be qualified and mapped by a modeller. For example
should some of the entity types in the NIAM model be mapped to attributes

94

DATA MODELLING

in the ER model, whereas others, the more important ones, should be
mapped to entity types. Such qualifications are related to the objective of the
system to be built and are difficult to support automatically.

4 3 ENTITY-RELATIONSHIP MODELLING PROCEDURE

Most information system development methods that prescribe the use of
Entity-Relationship modelling techniques do not specify an ER data
modelling procedure. We will present a modelling procedure here tha t
consists of nine steps. This procedure is meant to be performed during the
analysis stage of a development project. The procedure is applied to sample
documents representing the data flows of the Universe of Discourse and
results in partial data models. The complete data model diagram is created
by integration of partial models, which is straightforward in the case of the
ER technique.

We will illustrate the modelling procedure with the automated support of
the Information Engineering Workbench (IEW, [IEW 88]), a tool developed
for the support of the techniques prescribed by the Information
Engineering method. The IEW supports among others Entity-Relationship
modelling and data flow modelling. See section 6.4, [Martin 88a] or [Brand
89ab] for more information about IE or the IEW.

In the modelling procedure we use the term fact where we cannot make a
distinction between associations between entities and associations of
entities and attributes. The examples are again borrowed from [Olle 88a].

Step 1: Collection of samples

Information for data modelling is gathered by collecting representative
samples of all flows at the bottom level of the hierarchy of activity models,
or the global activity model, as explained in chapter 3. Since these flows are
part of the flows on all higher levels, we are sure not to overlook any flow of
information in the Universe of Discourse and so we can create a complete
data model of the UoD. The flows of the external events bring most of the
information into the organisation and are therefore contained in the
collection.

The samples are mostly forms, tables, letters, reports or parts thereof, and
excerpts from existing files and stores. The internal agents who can
provide the samples are specified in the global activity model.

Step 2: Treatment of redundancy

Redundancy in an information system is tolerable, but must be controlled
by the analysis and design phases. We start from the philosophy that
during analysis all redundant information is left out and captured in
rules. These rules can be recorded as comments via the detail screens.
Efficiency and distribution reasons may then motivate the controlled

95

FORMALISATION OF INFORMATION SYSTEMS MODELLING

introduction of redundancy in the design phase. In this latter stage special
redundancy managing application programs have to be designed.

There are four types of redundancy:
1. Redundancy by repetition.

A fact is represented more than once in the samples. One occurrence is
chosen to be the defining one and all others are considered to be
repetitions. That it is a repetition is recorded in the description of the
entities. The analyst will have to decide whether or not to incorporate
the fact in the further analysis. Reasons to include it could be: better
overview or bet ter for the communication with the informant.
Redundancy by repetition will mostly be excluded.

Example :
The price of a stock item on a purchase order is the same
as the price of that stock item in the stock item file.
The latter one is the basic one from which the others are
copied .

2. Redundancy by simple derivation.
Often totals, averages, minima and maxima of numeric fact types occur
in samples. When the data to derive these quantities is present in the
information system, these facts are left out.

Example :
On a purchase o rder t he p r i c e , the q u a n t i t y and the t o t a l
p r i c e of an i n d i v i d u a l s tock i tem a r e l i s t e d . The t o t a l
p r i c e can be de r ived from the p r i c e and q u a n t i t y and i s
not model led.

3. Redundancy by more intricate derivation.
This is the case when some facts have to be combined to derive another
one in some prescribed way. This prescription must then be formulated
and recorded as comment in a detail screen. It is up to the analyst to
incorporate this fact for further analysis, or to leave it out. It should be
marked as being redundant if it is incorporated.
This type of redundancy is likely to occur in a cycle in a data model or
when more than one entity type contains the same attribute (implicit
cycle).

Example :
The r e l a t i o n s h i p 'Stock item i s o rdered from S u p p l i e r ' i s
d e r i v a b l e from the r e l a t i o n s h i p s : 'S tock i tem i s on
Purchase o rde r l i n e ' , 'Purchase o rde r l i n e i s on Purchase
o r d e r ' and 'Purchase o rder i s addressed t o S u p p l i e r ' .
We decided t o leave t h i s ou t . (See f i g . 4.9)

4. Redundancy by partial derivation.
It quite often occurs that for a fact a derivation rule can be given, but
that a small class of exceptions to this rule exists. These exceptions have
to be recorded in the database anyway and we leave it up to the designers
whether this relationship will be realised by means of the rule and its
exceptions or that the rule will be ignored and the corresponding fact
recorded for all entities. A remark and the rule should be placed in the
description of the relationship.

Example :
An s tock i tem can be purchased for a reduced p r i c e with a
f ixed r e d u c t i o n r a t e when the t o t a l of t he o rder i s

96

DATA MODELLING

The XYX company

Stock on hand card

Supplier
Name: Rymans.
Add ress : 23 ..S.o.u.th...S.tA .Walto η

Phone: £.3.4.5.6.7
Nr.: 4.3

Stock items

Code

3214

1234

Description

Xerox copying paper

Parker f i b r e t i p r e f i l l

Type

s

s

Price

1 0 . 0 5

0 . 4 5

Code:
Quant.

3214
Date Time

25 8 6 1 0 0 3 17
10 8 8 0 1 1 2 8

30
45

Code: 1234
Quant. Date Time

237 870304 9 .40

Code:
Quant. Date Time

p.t.o

Figure 4.4 Sample of Stock on hand card

97

FORMALISATION OF INFORMATION SYSTEMS MODELLING

l a r g e r than a cer ta in amount of money. But for some
customers a d i f f e r e n t r a t e a p p l i e s due t o t h e i r s p e c i a l
r e l a t i o n s h i p with the firm.

All samples are scanned for redundancy. Special care has to be taken for
redundancy that is spread over different samples. Modellers should in
general discover the redundancy, while the informants can validate this
and specify the derivation rules.

Step 3: Typing of otgects

After the sample documents have been prepared for further modelling, we
now have to type the different objects. Suppose we have the sample as
shown in figure 4.4. This sample contains no redundant information.
Samples are analysed by the following three substeps.

Зл Identify attributes
Attributes are the most elementary units of data and easy to recognise.
They occur in a concrete form in the samples and often need to be
chosen or filled in on a sample. In a whole set of samples of the same
data flow an attribute never has just one value. Informants can be asked
to mark the attributes by identifying all data that would have a possibly
different value if another arbitrary sample had been taken.
For each attribute identified, an attribute type name is chosen which
has to be unique within the sample. In forms and tables such as that of
figure 4.4 these attribute type names are normally present (like name,
address, code, quantity, etc.). On other samples such, as letters, they
have to be introduced.

3.b Relate attributes to entity types.
All attributes identified in the preceding step belong to one entity type.
For each attribute type this has to be named explicitly. Often this is very
clear and already present on a sample. In the example in fig. 4.4 the
entity types 'supplier' and stock item' are easy to recognize.
In cases where this is not so obvious, we do this using the sentence
template:

"TheEThasATN."

At the position of ET the name of an entity type should be filled in and at
that of ATN the name of an attribute type.

Examples :
The Supplier has Address
The Stock item has Description
The Stock item of supplier has СиалЕ^у

In this way the entity type 'Stock item of supplier' can be identified in
the example. Note that now an associative entity type is introduced.
Associative entity types occur when attributes say something about an
association of two or more entity types. A more or less artificial entity

96

DATA MODELLING

type is created by giving this association the status of an associative
entity type.

3.C Relate the entity types.
In this substep we neglect all attributes, but consider only the entity
types on the sample. For all entity types present in a sample relate the
entity types in a sentence pair with the templates:

"ETI predicate ET2"
'ΈΤ2 reverse predicate ETI"

At the position of ETI and ET2 the names of two entity types have to be
filled in and at the position of predicate and reverse predicate the names
for the association of the two entity types in either direction. The
predicates of these sentences will be used in the description of the
relationships.

Example :
Supplier s u p p l i e s Stock item
Stock item i s s u p p l i e d by Supplier

Associative entity types need to be treated specially. Because an
associative entity type stands for an association of entity types to which
attributes belong, such an entity type should match a sentence pair
produced by relating two ordinary entity types. The above sentence pair
obviously matches the associative entity type 'Stock item from supplier'.
A standard treatment of associative entity types is obtained by filling the
following sentence template pairs in for each entity type in an
associative entity type (AET).

"ETisETinAET'
"AET has ET from ET'

Examples :
Supplier i s Supplier in Stock item of supplier
Stock item of supplier has Supplier from Supplier

A lot of the relationships created by this procedure might be redundant
due to the fact that we try to establish all relationships. This redundancy
can be treated using the arguments of step 2. Moreover, it may happen
that some of the entity types can not be related in a binary way. The
simplest solution is then to create associative entity types that render the
relation and have binary relationships of the entity types to this newly
created associative entity type.

The three substeps have given us the core ingredients of data modelling
according to the ER technique in the sequence attributes, entity types and
relationships. In the remainder of the procedure the cardinalities and
other aspects of these components are modelled.

9Θ

FORMALISATION OF INFORMATION SYSTEMS MODELLING

Step 4: Description of entity types and their attributes

The description and characteristics have to be formulated for all entity
types and attributes of step 3. In the workbench there are special dialogues
to handle this.

One starts with the entering of the name, purpose and definition of the
entity type. Details such as volume and change of volume can be specified
in comments. Figure 4.5 shows an example of adding comments in the
IEW for the associative entity type 'Supplier of stock item'.

Thereafter the attribute types are entered with the cardinalities of the
association with the entity type. The system derives the unique
identification property from these cardinalities and places UI in the
margin. To ensure global uniqueness of attribute type names all attribute
type names are prefixed with the entity type name. Figure 4.6 shows the
entering in progress of the attribute type 'delivery date' and its cardinalities
to the entity type 'Purchase order' by the IEW. Figure 4.7 shows the final
result for the entity type 'Supplier'. Note that the first figure shows the
name of the context, i.e. the data flow in which this entity type occurs.

The cardinalities can be determined by the modeller from the samples
available. If this is not straightforward the modeller can construct a
sample population of the association at hand by making all combinations of
a small set of values of the attributes and surrogates for the entity types.
The informants should then cross out illegal combinations of elements in
this population. One starts with a population according to a many-to-many
relation. The informant may leave the population as it is or reduce it to a
one-to-many, a many-to-one, or a one-to-one relationship.

Step 5: Description of relationships

The relationships' data has to be recorded. Cardinalities, the predicates
from step 3 and comments can be specified. In figure 4.8 the one-to-many
relationship 'Purchase order contains Purchase order line' is entered into
the workbench. Again sample populations can be used to determine the
cardinalities of the relationships.

Step 6: Establish naming Conventions

For the same reasons as in the case of activity modelling (see sec. 3.4) one
has to decide upon a s tandard terminology for the data elements.
Synonyms and homonyms for data i tems may exist in the various
subsystems of the UoD and have to be resolved. After the preceding two
steps, in which attributes, entity types and relationships have been named,
the terminology of the system must be established for the rest of the
development project. The terminology definition may also profit the
organisation for purposes other than information processing.

100

Object Detail Display Edit Select fMLVSIS

Supplier ol Object Detail Overview nlt-H

Nome

[Suppl 1er of Stock item

Purpose

ASSOCIATIVE

Object Detail Operations

Menu Choices...

Window Operations

Definitions...

(FUNDAMENTAL, ASSOCIATIVE, ATTRIBUTIVE, OTHER)

Oef ι η 111 on
This associative entity type indicates which Stock items a Supplier is
able to suply and at the sometime it indicates for each Stock item the
Suppliers from mhich it can be obtained.

Comments
Estimated volume about 1000 and each Stock item can be obtained from Ζ
or 3 Suppllers.
An anual increase of 100 per year. (That is the number of Stock items
increases with 50 per year and each can be obtained from about 2
Suppllers.)

Last Update
1988/01/26 12 09 NICO

Created

о

ss
>
о
о
M
г
г

о

Entity Type Description Display l i f l « Edit Select Help fìNfìLYSIS

Context: Stock iten delivery

UI

UI

Purchase order

Attribute Types

<1-l
<1-l
<1-1

Relation

addr

cont

Create/Find an Attribute Type.

Name:

purchase order delivery date

Min 1 Max 1

Help

Create J
1 \

Find

1
Max per value n | Cancel | |

DATA MODELLING

Supplier

Attribute Types

< 1 - 1 > Suppier#

< 1 - 1 > StppSername

< 1 - 1 > Зцэріег address

<1 - 1 > Sipplierphone #

< 1 -1 > Supplier status

Relationship Types

Ul

receives < 0 - M > Purchase order

[addressed to < 1 - 1 > Supplier)

is Supplier in <1 - M > Supplier of Stock item

[has as Supplier < 1 - 1 > Supplier]

Figure 4.7 Entity type description

103

Entity Diagran Display Add Edit Select Help ÍMLVSIS

Stock itero delivery

Sto
It

η
0

VI

й

«1

<

Pure
or
и

ck | | ^ f P r * ^ |

Create or find a relationship type

Fron: Purchase order line

To: Purchase order

From-To Relationship

Nane is contained in

Hin 1 Max 1

To-Fron Relationship

| Supplitr |

|Reverse

Help

Mane contains

Min 1 Max η

CreateJ
\

Find

Cancel

DATA MODELLING

Step 7: Identify entity types

Since all entity types, attributes, relationships and their cardinalities are
determined and defined, identification of the entity types can be performed.
Identification deals with the unique selection of an instance of an entity
type by means of values of its attributes. In the data base literature the
identification structure is also called key.

Entity types can be identified in three different ways:
1. Via a single attribute. This is already entered in the description of the

entity type and is represented by a 'UI' (unique identifier) mark in the
margin. If there are more than one possibility, one has to be chosen to be
the primary key and the others are then alternate keys.

2. Via a combination of attributes. The combination of attributes has to be
incorporated in the entity type description.

3. Via attributes of other entity types. Sometimes it is not possible to
identify an entity type with its own attributes and therefore relationships
to other entity types are also involved in the identification. The other
entity types are already identified and their identification structure is
included in that of the underlying entity type. This is also called foreign
keys.

In the IEW the identification s t ructures , called predicates, are
incorporated in the entity type descriptions.

Step 8: Subtyping

A subtype is a class of entities for which some relationships or attributes
are to be recorded. Some associations need not be recorded for all entities,
which is expressed by a minimal cardinality of zero, but for a specific class
of entities the association may be obligatory. This obligation can be
modelled by introducing subtypes. For example the suppliers from which a
special type of stock item, say capital expenses, is purchased have a special
attribute: credit limit. We could then introduce the subtype 'Supplier of
capital expenses' of the supertype 'Supplier' with the accessory attribute
'credit limit'. The subtype inherits all attributes from the supertype.

Subtypes were not included in the Entity-Relationship modelling technique,
as it was proposed [Chen 76], but were in various extensions. The subtype
relation can also be modelled by an ordinary relationship by way of the 'is a'
predicate and one-to-one cardinalities, but this is restricted. As the current
version of the IEW restricts itself to the original model, it does not support
subtyping.

Step 9: Modelling of constraints

In the UoD there may be all kinds of constraints on relationships or
entities. Relationships may be exclusive, equal, or subsets of each other.
The values of attributes may have all kinds of restrictions and may as well

105

FORMALISATION OF INFORMATION SYSTEMS MODELLING

be related in certain ways to attributes of other entity types. Special symbols
could express this in the data model.

Again this is not present in the original modelling technique. The current
version of the workbench does not support these kinds of constraints. They
must be specified in comments like all other special constraints.

End of data modelling procedure

We see that the procedure is relatively simple, which is due to the small
number of concepts and associations of the ER modelling technique. In
[Brinkkemper 88ab] was reported how this modelling procedure was
performed on the Stock Control test case of [Olle 88a]. The completed data
model is shown in fig. 4.9 and is small compared to real life cases. It
contains seven entity types, of which one is associative, and seven
relationships. The attributes, about thirty, are not shown.

106

DATA MODELLING

is Supplier in
has as Supplier

IS of
consists of

consists of
Is on

Figure 4.9 Completed data model

107

Ö TASK MODELLING

In this chapter we will introduce a new specification technique for the
modelling of tasks, called the Conceptual Task Model (CTM). The need for
this technique, its formalisation, a modelling procedure and its use will be
discussed in the following sections. Parts of this chapter have already been
published in [Brinkkemper 89a], [Brinkkemper 89e] and [Ter Hofstede 89a].

5.1 TASK MODELLING CONCEPTS

In this section we will introduce the concept of a task, a component of an
information system specification, for which proper specification techniques
are still lacking. Requirements for task modelling are formulated and
existing specification techniques are reviewed.

5.1.1 Process, activity, task, operation

In this section we address the proper definition of the terms task, activity,
process, operation and related components, tha t occur during the
requirements engineering of the process perspective of an information
system. The formal definition of these terms is not yet possible due to the
lack of a basic process unit, to which various types of process granularity
can be linked.

In the context of business administration information systems the best we
can do, is to propose definitions of the terms related to data processing
based on recognizable units of data. In the definitions the term process is a
basic notion and remains undefined. The latter is also one of the starting
points of Process-Algebra [Bergstra 86]. The two concepts entity and
Universe of Discourse, already defined in the ISO-report [ISO 82], serve as
starting points as well, with some adaptations inspired by [Wieringa 89].
Furthermore, we assume that we can discuss and distinguish phenomena
in the Universe of Discourse and its models.

Definit ion 5.1 An entity is any concrete or abstract thing, including
associations among things. The Universe of Discourse (UoD) is the
collection of possible entities, which currently are of interest.

Since we are interested in modelling, we need means to record the results
of this activity, i.e. modelling concepts. We follow [Olle 88b] in the following
definitions.

Definition 5.2 A component is a concept used for modelling phenomena in
the UoD. A data component serves for modelling the data perspective and a

109

FORMALISATION OF INFORMATION SYSTEMS MODELLING

process component serves for modelling the process perspective. An
instance of a component is a particular entity that is modelled by that
component.

Various kinds of components can be defined due to the divergent purposes
of the different types of modelling. We first introduce the conceptual data
components, thus neither the user view of the datais considered, nor its
implementation.

Definition 5.3 A data element is a data component for modelling entities. A
data compound is a data component for modelling a composition of entities
and associations among entities. A data constituent is a data component
for modelling a simple part of the representation of an entity.

Examples of a data element are entity type, label type, relationship or
attribute. Flows, messages sets and states are well known examples of data
compounds. We only consider them in a meaningful context format, such
as a form, table, list, standard letter, etc. Examples of data constituents are
character, digit or pixel of a graphic.

These conceptual data components relate more or less to well known
internal data components. A data compound relates to one or more records
in a file (or tuples in a relational table), a data element relates to the
contents of records or tuples, and data constituents to the bytes in an
attribute of a record.

Three types of conceptual process components will be defined. The
examples mentioned are from the test-case which can be found in
Appendix A.

Definition 5.4 An activity models a process that processes instances of data
compounds. An activity may be decomposed into other activities, in case the
input and output remain data compounds. An activity has to be
decomposed in tasks, in case the data compound has to be split into data
elements for the precise specification.
Examples of activities are: 'Production of rental report', 'Treatment of film
request' .

Definit ion 5.5 A task models a process that processes instances of data
elements. A task belongs to the decomposition of an activity and may itself
be decomposed in other tasks, in case the input and output of the task are
still data elements. A task must be specified in operations, in case the
processing refers to the representation of instances of data elements.
The same task may occur in more than one activity, provided the
functionality of the task is exactly the same. Examples are: 'Film still
available' in the activity 'Treatment of film request', 'Count number of film
rentals' in the activity 'Production of rental report'.

Definition 5.6 An operation is a process that processes instances of data
constituents. An operation belongs to the decomposition of a task.

110

TASK MODELLING

An operation is not decomposed in the system design stage, but can be
decomposed for its realisation in the construction stage, since in this stage
machine dependencies are taken into consideration. The same operation
may occur in more than one task, provided the process of the operation is
exactly the same. Examples are: the comparison of two words being equal,
calculating the sum of two numbers.

In the following we will, for ease of discussion, often drop the distinction
between the UoD and its models.

5.1.2 The context of task modelling

Let us focus within the whole of IS development activities on the direct
context of task modelling, as illustrated in fig. 5.1.

We see that task modelling can be performed after an activity model and a
data model have been obtained. The resulting task model is then input to
interaction modelling. In an ideal situation code is generated from these
models.

We assume that the activities are modelled in a hierarchy of data-flow
diagrams. The bottom level of the resulting activity model, defined by the
sample criterion (see also 3.4), indicates the data-flows and data stores of
which samples have to be provided by the informants. The data modelling
starting from these samples yield a global conceptual data model by means
of bottom up integration. The activities at the bottom level of the activity
model can be further elaborated. This results in tasks that process data,
which are specified in terms of the data model. The relationships of the
various modelling activitiesis therefore to be expressed explicitly in cross-
references among the models.

The same applies for the modelling of the user interaction. Dependent on
the modelling conventions, it has to be determined from the activity model
for which activities interaction is needed. The corresponding data-flows,
data models and task models are the starting points for the modelling of the
dialogue. The resulting interaction model should express the integration of
the modelling activities. This will not be elaborated here, we refer to
[Koesen 89].

In practice as well as in the literature on information systems specification
techniques, we see, however, that models of different types are considered
as separate and not as being an integrated view on the UoD.

Task modelling is performed during requirements engineering, but is it an
analysis or a design activity?

I l l

FORMALISATION OF INFORMATION SYSTEMS MODELLING

U U

Interaction
modelling

Interaction
model

Activity
modelling

J
Activity model

Data
modelling

Informants'
specifications

Data
model

Task
modelling

Task
model

' r

Interaction
generation

\ t

LINK

' t

DML
generation

1 t

LINK

1 1

DDL
generation

1
User

interface
Application
programs

Data base
structure

Figure 5.1 The context of task modelling

We claim it can be applied in both ways. The refined specification of
activities may require input from the informants about the intricate data
processing in the organisation. These existing processes have to be
analysed thoroughly, before new process structures can be designed for

112

TASK MODELLING

automation. It is a good approach to have the existing tasks and the future
tasks both explicitly modelled. Differences can be reported, from which the
detailed impact of an automated IS on the organisation can be derived.
Since the refined specification of tasks is in general too detailed for the
analysis stage and is not applicable to all activities, we propose to have this
modelling done in the design stage.

The crucial problem is therefore in the specification of the tasks, the
processes a t the bottom level of the activity model. As observed, the
specification activity for tasks is not properly integrated in IS development
methods and there is a lack of suitable specification techniques. This
chapter is intended to be a contribution to help overcome this lack.

Another non-trivial aspect is the demarkation between activity modelling
and task modelling. We see from the definitions in 5.1.1, that the
specification of the complete process perspective results in a process
hierarchy, consisting of some levels of activities at the top, thereunder
some levels with tasks and finally one bottom level consisting of operations.
This decomposition is more or less analogous to the decomposition of the
data perspective, going from the union of all data compounds at the top,
decomposed until simple data compounds transfer in data elements, which
in their t u r n are decomposed into data constituents. We call this
phenomenon the decomposit ion analogy. This analogy may serve as a
feedback mechanism, when one has to verify both models.

Furthermore, these somewhat pragmatic definitions serve as guide-lines
to determine when the decomposition of activities or tasks should stop.

For the decomposition of activities we call the stop criterion the s a m p l e
criterion. Since in the analysis stage only global modelling is of interest,
the decomposition of activities may continue when the input and output
flows are still data compounds, and should stop otherwise. The informants
are asked to provide the analysts with samples of the input and output,
such as forms, lists and tables, preferably filled in with some significant
population. These samples are in t u m to be utilised for the data modelling
phase. This is discussed in chapters 3 and 4. This criterion is also
motivated by the lack of modelling capabilities for triggering, decisions,
iterations, etc., in the specification conventions for activities, like data-flow
diagrams and Α-graphs (see also 5.1.4).

The modelling of tasks during requirements engineering starts at the level
where the modelling of activities has stopped. An objective of this stage is to
construct a complete design of the IS, which implies the absence of
communication with the informants in the stages thereafter. In the
construction stage, the programmers must be able to do their job with the
design products of requirements engineering as the only input. This leads
to the complete design criterion, which specifies that the decomposition
during the modelling of tasks should stop when the tasks at the lowest level
of the decomposition are all completely specified as operations, which can
be straightforwardly programmed.

113

FORMALISATION OF INFORMATION SYSTEMS MODELLING

5.1.3 Requirements of task modelling techniques

There exist numerous specification techniques for processes, whcih could
be employed for the modelling of tasks. According to the discussion in the
previous section, we impose on such a specification technique the following
requirements:
1. The technique should enable fluent transfer between the phases and

steps. Cross-references between models should be explicit.
Since the task model, like all models of system development, is highly
related to other models, these relations should be formulated and their
recording should be incorporated in the development activities. This
gives rise to the need for automated support of the relationships among
models. This support is called modelling transparency, which is
further discussed in section 6.3.

2. The technique should be complete with respect to the specification of
control flow, i.e. triggers, decisions, dynamic constraints and iteration.
In fact, it should be possible to specify all kinds of control flow, which
can be expressed in a target programming language. However, we
restrict ourselves to business information systems, for which, for
instance, the power of recursion is not required.

3. The technique should produce unambiguous models that can be input to
code generation or programming in a straightforward manner.
As discussed in the preceding section, it is important that the data
manipulation part of the system can be generated effectively.

4. The technique should have a sound formal theoretical basis to enable
the verification of theoretical statements and the formulation of rules
about models that underlie all sorts of validation analysis.
This also includes the communication regarding the models. Formality
is the only means to ensure reliable communication. Analogous to
Petri-nets [Reisig 85], it should be possible to derive or check certain
invariants of the models.

5. The technique should be diagrammatic and enactable in order to ensure
fast comprehension of the models during all kinds of written and verbal
communication.
Although it is often claimed that pictorial specification is informal , we
state that it is possible to define such a diagrammatic technique in
conjunction with a formal mathematical framework. Diagrams
allowthe possibility of simulation and can also be populated to provide
insight in the modelled task. In [Green 82] various diagrammatic
specification techniques were assessed with respect to their suitability
for fast and correct comprehensibility.

6. The technique should be complete with respect to data manipulation:
retrieval of (derived) data as well as updates of the data.
Tasks process data, hence various operations required for this should be
included.

Similar and additional requirements are formulated in [Dubois 85] and in
[Schiel 89]. It should be noted, that we deliberately did not include the
requirements of other types of models, since we do not intend to define a
new technique which comprises all kinds of specification. We restrict

114

TASK MODELLING

ourselves to the specification of tasks. The fulfilment of the above
requirements by existing techniques is addressed in the next section.

5.1.4 Existing task modelling techniques

Generally speaking, process modelling techniques model state transitions.
Dependent on the point of view two types of task modelling techniques can
be defined, that are dual to each other (see fig. 5.2).

Process in
state A

data ^ Process in
state В

Data processing techniques

Entity in
state A

process Entity in
state В

Entity life cycle techniques

Figure 5.2 Duality of types of task modelling techniques

a. Data processing techniques. Processes operate on input data to produce
output data. This processing changes the state of the process. These
techniques can best be applied by using conventional types of
programming languages and d a t a base m a n a g e m e n t systems.
Examples are data-flow diagrams and the CTM.

b. Entity life cycle techniques. For each entity type, all the different states
are related diagrammatically. Processes indicate the change of states.
These techniques are best suited for object-oriented data base
management systems. Process algebra is a typical example.

Many techniques have been proposed for process specification, albeit that
not all of them were especially intended to be used for task modelling. We
have reviewed these techniques on their applicability for task modelling by

115

FORMALISATION OF INFORMATION SYSTEMS MODELLING

assessing them in relation to the requirements formulated in section 5.1.3.
These techniques do not satisfy many of the requirements.

We first review the techniques, t h a t we classify as data processing
techniques. To start with, it is clear that specification techniques for global
activity modelling, such as Data-Flow diagrams [Gane 79], are not capable
to model tasks, because they are not formal and do not express data-
manipulation (req. 4 and 6).

Action diagrams, discussed in [Martin 85], is a kind of pseudo-coding
technique and hence lacks a formal framework. That is due to the fact that
the language to be used is not formally described (req. 4).

ACM I PCM [Brodie 82] supports the modelling of tasks by using so-called
transactions in conjunction with pre-conditions and post-conditions. Only
database updates can be modelled. Not only for this reason is ACM/PCM
too restrictive, but also because of the strong formulation of processes in
terms of the data model (req. 6).

RIDL, as it was introduced as a conceptual database language [Meersman
82], lacks the relationships with other modelling techniques and is not
diagrammatic. Moreover, RIDL cannot express triggers (req. 1,2 & 5).

REMORA [Rolland 82] meets the requirements quite well. It possesses only
diagrammatic features for data and behaviour. Processes are specified in
the language ISDEL, a relational language. Furthermore the data
elements (c-objects) are required to be relational tables in third normal
form, which restricts the output language of the application program
generation (req. 3).

IML [Richter 82] is comparable to the approach of CTM and will be
discussed in section 5.2. The diagrammatic data modelling technique is
hard to grasp (req. 5).

The technique of Structure Charts [Yourdon 79] is also used to model
processes, but is geared towards the modularisation of the resulting
software. All kinds of task constructs can not be modelled. In addition, the
technique is not complete with respect to data manipulation (req. 2 & 6).

In [Buhr 85] the Ada Structure Graph (ASG) technique is introduced. This
is geared towards the Ada language. The approach takes therefore the
constructs of the language as a starting point and models only the control
and data flow of the processes, not the data-manipulation (req. 6).

EXSPECT introduced in [van Нее 88], aims at executable specification of a
complete information system and makes code generation superfluous. The
tri-partition of processors, stores and triggers enable the specification of the
process, the data and the behaviour perspectives of an information system.
EXSPECT meets the requirements relatively well, although it is intended to
be a stand-alone complete technique and has therefore no links with other

116

TASK MODELLING

specification techniques (req. 1). Experimentation should prove the
suitability of the associated mathematical specification technique.

We now turn our attention to the other class of techniques, the entity life
cycle techniques. These are not so numerous as the data processing
techniques.

Process algebra [Bergstra 86] and related specification techniques, such as
CSP [Hoare 85] and CCS [Millner 80], deal mainly with the formalisation of
the communication and synchronisation aspects of processes, and are not
integrated with the modelling of processed data. They also lack a proper
connection with the other modelling techniques (req. 1&3). In [Wieringa 88]
Process Algebra is used to describe the dynamics of objects and has some
data modelling capabilities incorporated in order to fulfil requirement 3.
Despite its rigorous axiomatisation it lacks convenient data manipulation
mechanisms to be appropriate for task modelling (req. 6).

The Function Logic Models [MacDonald 82] are another analysis technique
for the life cycle of entities. It has no formal basis and the manipulation
facilities are restricted due to the distinction made between the entities and
attributes of the underlying Entity-Relationship model (req. 4&6).

One of the first techniques aiming at code generation is JSD [Jackson 83],
but the integration with data modelling is rather restrictive (req. 1).
Extensions to the technique in this direction have been proposed [Mees 86].

Finally, Petri-nets [Reisig 85] can be used both as a data processing
technique as well as an entity life cycle technique. It also lacks the
possibility of fluent transfer to other techniques, and in addition it is not
intended to model data manipulation (req. 1&6).

The aforementioned techniques were chosen to be representative of the
numerous techniques proposed in the literature of information systems
development methods. We are of the conviction that more techniques will be
proposed in future, which aim at the complete generation of the code for
data manipulation properly linked with the user interaction and data
definition.

52 THE CONCEPTUAL TASK MODELLING TECHNIQUE

Task specification, as we propose it here using the Conceptual Task Model
(CTM), continues with the results of the global activity model and the
completed data models (see fig. 5.1). The manipulation of the data is
expressed in terms of the data model, for which we use NIAM [Nijssen 89]
and RIDL [Meersman 82]. The work here is an elaboration of ideas
inspired by the work of Genrich [Genrich 87], Kung and Sölvberg [Kung
86], Richter and Durchholz [Richter 82] and Reisig [Reisig 87].

This section consists of four parts. The first part defines the Conceptual
Task Model (CTM) and states some of the motivations for this definition. In

117

FORMALISATION OF INFORMATION SYSTEMS MODELLING

the second part an example of a CTM-net is given. In the third part some of
the properties of the CTM are discussed in terms of the meta-model of
CTM.

5.2.1 Definition of the conceptual task model

Predicate/transition nets form the basis for the Conceptual Task Model.
They were introduced by Genrich and others in a series of articles, starting
with [Genrich 79], and at the moment concluded by [Genrich 87].

Predicate/transition nets

To simplify the presentation of CTM, we will first give an introduction to
Predicate/transition nets (PrT-nets). In short, РгТ-nets are interpreted,
inscribed high-level Petri nets, where the inscriptions consist of variables
for individuals (as opposed to the non-individual token of Petri nets) and
truth-valued expressions, preferably in first-order predicate logic.

Predicates correspond with states of a system the PrT-net is supposed to
model. The extension of the predicate is the set of things for which the
predicate holds. Due to events occurring in the modelled system, these
extensions may change; the predicates are in fact variable. Transitions
model the consequences of events. They are linked to predicates, of which
the extension may change due to the execution of the transition.

Graphically, predicates are depicted by circles and transit ions by
rectangles. A causal dependency between a predicate and a transition, in
either direction, is denoted by means of an arrow connecting the predicate
and the transition.

Arrows may be inscribed with linear combinations of tuples. Transitions
may be annotated with so-called 'transition selectors', being truth-valued
formulas which can be interpreted in a static structure, called the support
of the net. The inscriptions of arrows indicate variables local to the
transition to which they are attached. The variables normally appear in the
transition selector.

An arrow leading to a predicate means that the predicate is augmented by
a number of tuples of individuals as indicated by the inscription of the
arrow. An arrow coming from a predicate means that the predicate is
diminished by a number of tuples of individuals as indicated by the
inscription of the arrow. A transition is 'enabled', that is changes can take
place, if there exists a substitution for the inscriptions of the arrows
attached to the transition, such that the transition selector evaluates to true
and such that all the predicates involved can change in the manner
indicated. A predicate can be diminished by a tuple if this tuple is in its
extension. A predicate can be augmented by a tuple if this tuple is not in its
extension.

118

TASK MODELLING

Examples of the application of РгТ-nets can be found in [Genrich 87]. PrT-
nets are especially suited for the specification of distributed systems such
as banking transaction systems and complex telecommunication systems.
For a complete and formal treatment of PrT-nets refer to [Genrich 87].

CTM-nets

A CTM-net is a PrT-net where
- Instead of the formalism of first-order logical formulas and their

structures, the conceptual data modelling language NIAM [Nijssen 89]
in combination with the corresponding data manipulation language
RIDL [Meersman 82] is used as a supporting structure. Functions and
expressions, which can be seen as special kinds of RIDL functions, are
interpreted in this structure. Note, however, that any combination of
data modelling technique and data manipulation language would suit
this purpose. For example, relational tables and SQL queries, or the
Entity-Relationship model [Chen 76] and the language GORDAS
[Elmasri 85] could be used.

- A distinction is made between task places and information places (from
now on the terms 'place' and 'predicate' will be treated as synonyms).
A conceptual schema in NIAM is related to both kinds of places. Each
place of the PrT-net is either a task place or an information place. The
conceptual schema of an information place determines the information
structure of the tuples that can enter that place. The conceptual schema
of a task place describes that par t of the Universe of Discourse
consisting of all the individuals of the tuples that can enter that place.

- An additional typing is related to each task place. When the arity of a
task place Ρ is n, a typing <Ti,T2,...,Tn> is associated with Ρ such that
for every tuple <Pi,P2,...,Pn> that can enter Ρ we have that P, is of type
T, (for all l<i<n). The typing of a task place is a linear representation of
the two-dimensional conceptual schema associated with that task place.
This typing is necessary for the specification of parameters in the RIDL
expressions.

- Arrows may not be labeled with linear combinations of tuples, but only
with single tuples. Applications in business administration systems do
in general not require complex data structures. Multiple copies of tuples
are not necessary and combination of tuples can be modelled using
extra predicates.

The first adaptation was already suggested by Genrich in [Genrich 87] and
put into practice in a comparable way as done here by Richter and
Durchholz in IML [Richter 82]. There are however some essential
differences between IML and CTM. In IML the data modelling technique
used, IMC, is less powerful than the data modelling technique used in
CTM, i.e. NIAM. The data manipulation language used in IML, the
Information Management Language (IML), is hard to understand and in
our opinion not on a conceptual level, contrary to the data manipulation
language RIDL used in the CTM. Furthermore, in IML aspects such as
consistency and completeness analysis are hardly addressed.

119

FORMALISATION OF INFORMATION SYSTEMS MODELLING

The adaptations to the formalism of PrT-nets were made for the following
reasons:
- During the information systems development process one should be able

to transfer fluently from the substage of modelling of activities and data
to the substage of task modelling. The activities are to be refined into the
tasks and the data that is processed in the tasks should, as far as it will
be recorded, have been specified during the data-analysis stage.

- The data being input for, output of, or intermediate in, the tasks should
be specified as rigorously as is done in the data analysis phase.
Preferably the same specification technique should be used. The data
models in NIAM provide insight into the semantics of the data, which is
processed in a task, and into its relationship to the global data model.

- The interaction with databases should be specified on a conceptual level
and easy to express. RIDL fulfils these requirements.

Some more should be said about the distinction between task places and
information places. Task places can be associated with certain stages of a
task and contain the intermediate information and control available there,
while information places contain the more stable information and always
correspond to a data store of a data-flow diagram. In general, data at task
places correspond with local data in application programs, whereas data at
information places correspond with global data from the data base.

Finally, we have adopted three notational conventions. The first convention
is that if we have η (n > 1) disjoint conditions (Ci,C2,...,Cn), possibly
combined with m (m > 0) other conditions (Qi,Q2.--.Qni)» then instead of
having η separate transit ions for each condition, we introduce one
combined transition containing all conditions, as shown in fig. 5.3.

1 r <

Q1A...AQm

CI (

1 r '

;2

r

Cn

1 r

Figure 5.3 Combined transition for C1 (C2,...,Cn

120

TASK MODELLING

Output arrows coming from a transition containing condition Cj are now
attached to the little box containing Cj inside the combined transition.The
second and third notational conventions employed to reduce the number of
arrows in a CTM-net are shown in fig. 5.4.

<d5
1<e> <d>.

is a notational shorthand for

<d>

is a notational shorthand for

, <d; -<e>
<d>

Figure 5.4 Double arrow convention for the CTM

5.2.2 Example: The Video store case

In order to present an example of a CTM-net, we will make use of the small
case involving a Video store, which is given in appendix A.

Based upon the description of the task 'Treatment of film request' a CTM-
net for this task can be constructed. This is shown in fig. 5.5. The
corresponding data models of the information places "List of Rentals" and
"Information concerning films and tapes" are depicted in fig. 5.6. These
schémas are par ts of the conceptual schema in fig. A.4. The RIDL
functions used in the transitions of fig. 5.5. are shown in fig. 5.7. In the
function headings the databases on which these functions operate are
specified, whereas in the function definitions these relations are left
implicit.

The identification of the entity types and role names in the conceptual
schémas of the places are not always shown. In addition, a notational
convention for derivable relations is adopted. The star which denotes a
redundant relation is not put outside the whole relation, but inside the
redundant roles belonging to that relation.

Whenever a film is requested, the task 'Treatment of film request' is
activated. A film request can be considered as a pair <f,p>, consisting of a
person 'p' and the film 'f that this person wants to borrow. As a person
can request more than one film and a film can be requested by more than
one person (in the course of time), there is a many-to-many relation
between the entity types 'Rentable film' and 'Person' in the data model of
the task place 'Film request'.

121

FORMALISATION OF INFORMATION SYSTEMS MODELLING

Film request

« j :

Rentable Film, Person>

/RentableV 1 I I / p e r s o n Λ

Treatment of film request

<d>
Film still available ">

Available
(d,e,l)

<e>

<Rentable Film>

P6

· Person 1

Searching price

Rental pnce
eU.pr)

<Rentable Film, Person>

<d>

<Rentable Film.
Person,
Amount of
money>

<d>

<Rentable Film,
Person,
Amount of
money>

T4 <f,p,pr>

CS.

Information
concerning
films and
tapes

<e>

Record rental

Rentable(d,e,t) Λ
d' = Record
rental (d,f,p,a,t)

jL ι is not late p i —
ж is available with tapes I

?^рмТ~1—dr*
\ C J / V money

Figure 5.5 CTM for the task Treatment of film request'

122

TASK MODELLING

CS.

Figure 5.6 Conceptual schémas belonging to figure 5.5

123

FORMALISATION OF INFORMATION SYSTEMS MODELLING

FUNCTION Available (DATABASE a,b; RENTABLE FILM f)BOOL;
BEGIN

NUMBER OF (Tape (contains Rentable-film f AND
OF Rental NOT has-return-date Day))
IS LESS-THAN
NUMBER OF (Tape contains Rentable-film f)

END;

FUNCTION Rental price (DATABASE a; RENTABLE FILM f,
AMOUNT OF MONEY pr)BOOL;

BEGIN
pr = Amount-of-money is-rental-price-of Rentable film f)

END;

FUNCTION Late (DATABASE a; PERSON p)BOOL;
BEGIN

NUMBER OF (Tape (OF Rental NOT has-return-date
Day AND has-been-borrowed-by Person ρ
on Day d WHERE now-d > 3))
IS GREATER-THAN 0

END;

FUNCTION Rentable (DATABASE a,b; TAPE t)BOOL;
BEGIN

t IN Tape contains Rentable-film f MINUS
Tape OF Rental NOT has-return-date Day

END;

FUNCTION Record rental (DATABASE b; RENTABLE FILM f, PERSON p,
ADDRESS a, TAPE t)DATABASE;

BEGIN
ADD Tape t has-been-borrowed-by Person ρ on Day now
ADD Person ρ lives-at Address a

END.

Figure 5.7 RIDL-queries belonging to CTM-net of task
'Treatment of film request'

The first transition 'Film still available' of the CTM-net for 'Treatment of
film request', tests whether the film the customer requests is available. A
film is available if the number of currently rented tapes of that film is less
than the total number of tapes of the film. The RIDL function 'Available'
performs this comparison, using the information from the information
places 'List of Rentals' and 'Information concerning films and tapes' and
operating on the corresponding conceptual schémas.

Note also that in the conceptual schema of 'PI' the entity type 'Rentable
Film' is now augmented with the unary fact type 'is available'. This fact
type is derived from the contents of the database by the RIDL function. This

124

TASK MODELLING

knowledge about the films is used in subsequent transitions. For example
in the transition 'Record rental', the availability is not checked again.

If the requested film is not available, a tuple consisting of this film is placed
in the task place 'P6'. In this case the task is finished and the user
interface should handle the rest, for example, give a message to the user
that the film is not available at the moment.

In the event that the film is available, the next transition 'Searching price'
is enabled. In this transition, the rental price of the film is searched by the
RIDL function 'Rental price'. This function operates on the conceptual
schema of the information place 'Information concerning films and tapes',
since this place contains the relation between a film and its rental price,
and has as input parameter the requested film 'f and as output parameter
the rental price 'pr'. Since the output place 'P2' of this transition contains a
three-tuple consisting of a film, its rental price and the person who wants
to borrow that film, the conceptual schema of 'P2' is an augmented version
of the conceptual schema of 'PI ' . The relation between the entity types
'Rentable film' and 'Amount of money' denoting the rental price of a film,
is added.

The transition 'Late with tapes' works analogous to transition 'Film still
available'. A person is late with the return of a tape, if this tape has been
borrowed more than three days ago.

The last transition of this task, 'Record rental', records the rental in the
data store 'List of Rentals'. For this it not only needs the person and the
requested film (note that the rental price is not used in this transition), but
also the address of this person 'a'. Since this address may not be recorded
in the list of rentals yet, we assume that this address is always asked for,
as is specified in the description in appendix A. User interaction is
necessary for this. The result of the interaction, the address of the person,
is placed in task place 'P5'. Now the transition 'Record rental' is enabled.
The RIDL function 'Rentable' selects an available tape containing the
requested film, so in fact't ' is an output parameter of this function, and the
function 'Record rental' actually records the rental by updating the list of
rentals. Note that the function 'Record rental' yields a whole data base, i.e.
the updated list of rentals, and that in the transition this result is assigned
(when one looks at it operationally) to the new data base tuple that will be
placed in 'List of Rentals'.

Note also that the input and output relations between tasks on the one hand
and data-flows and data stores on the other hand as they exist in the data­
flow diagram, remain the same in the CTM decomposition of these tasks,
where we should keep in mind that data-flows become task places in the
CTM-net and the before mentioned remark that data stores become
information places. This property will be more formally addressed in
section 5.3.

125

FORMALISATION OF INFORMATION SYSTEMS MODELLING

5.2.3 Properties of the СГМ

In fig. 5.8 the meta-model for the CTM is shown in the form of a NIAM
conceptual schema. This meta-model shows the links between the concepts
of the CTM by means of the relationships and some of the properties of the
CTM by means of the constraints. For example, every place has a
conceptual schema, all task places have a typing and every place is of
precisely one type. Other simple properties, such as the fact that a
transit ion can have one or more output places and one or more input
places, or the fact that there aren't any 'dangling' places, places that are
neither input for a transition nor output of a transition, can also be deduced
from the meta-model.

is-RIDL-funclion

(Task place',
'Information place'}

Figure 5 8 Meta-model for the CTM

126

TASK MODELLING

The CTM, however, has a lot of additional properties, which can not be
represented graphically. These properties can be formulated as constraints
on meta-model in a formal way using RIDL, however we will not do so for
reasons of clarity. Instead we shall give an informal formulation of each of
these properties.

1. The typing of a task place is a flattened representation of the conceptual
schema belonging to this task place. This was mentioned already in
section 5.2.1. As an example consider the conceptual schema and the
typing of the task place 'P2', <Rentable Film, Person, Amount of
moneys in fig. 5.5.

2. Information places are never only input for, or only output of a
t ransi t ion. Information places always contain exactly one tuple.
Database tuples are not dynamically created nor removed. An
information place is therefore always connected to a transition by a
double arrow. The contents of the database (tuple) on the other hand
may, of course, vary. Again this can also be seen in fig. 5.5, where the
information places 'List of Rentals' and 'Information concerning films
and tapes' are never connected to a transition by a single arrow.

3. A task place is never input for more than one transition. Combined
transitions, as e.g. in fig. 5.3, are considered as one transition. This has
to do with the fact that we do not consider synchronisation aspects in
our task model, but rather have a separate event model for dealing with
these synchronisation aspects. The reason for this is that we want to
distinguish between the control of tasks, the conditions under which
tasks are initiated, and the functionality of tasks, i.e. the way they
process data. This distinction between control behaviour on the one
hand and functional behaviour on the other hand is also made in e.g.
[Guyot 86] and [Hatley 87]. The event model should also prevent tasks
from being initiated when they are already 'busy'.

4. The RIDL functions, used in a certain transition, operate on the
conceptual schémas (and their population) of the information places
input for this transition. As noticed before, this is done in a (somewhat)
implicit way. RIDL functions never operate on the conceptual schémas
of tasks places. Task places only provide for entity type parameters.

5. The entity types being a parameter type of a RIDL function always occur
as entity types in the conceptual schémas on which this function
operates. This derivable subset constraint is not shown in the meta-
model, since parameters of a RIDL function always appear as instances
of entity types, which by definition form part of the conceptual schema
this function operates on. This can be seen in fig. 5.7.

The meta-model does not represent all the properties the CTM has, there
are many more. The elaboration of some other properties will be discussed
in chapter 5.3.

Constraints involving instances

In the CTM we can express dynamic aspects in a convenient way. The data
models of both input and output specify the types of the data and their

127

FORMALISATION OF INFORMATION SYSTEMS MODELLING

constraints. RIDL is an easy to use language in conjunction with these
models for the specification of the data processing.

There might however be constraints tha t deal with instances and can
therefore not be expressed in the data models. These constraints are to be
specified in RIDL using the IF statement and an appropriate predicate.
The underlying transition should always be executed only if the predicate is
satisfied.

There exist three types of constraints involving instances and we give an
example of such a constraint in terms of the case of appendix A.
1. A constraint on the current state of the data. For example the rule that a

Tape can be rented by a Person if that Person is not late with Tapes.
2. A constraint on the new state of the data. For example the rule that a

new rental price may only be specified in entire dollars.
3. A constraint on both the current and new state of the data. For example

the rule that the rental price may only increase if it is changed.

To check the constraints the current, and/or the new value of the data must
be obtained and substituted in the constraint.

In [Prabhakaran 88] an extension to the NIAM technique was proposed to
depict this kind of constraint graphically. The fact types of the global data
model act as specification of the states of the data. The states are connected
to events, that take place when the constraints are satisfied. This extension
was not adopted in the CTM, because it appeared to be too complex.
Furthermore, there might be more than one process in which a particular
par t of the data model is involved with different constraints. The
specification of the constraints should therefore be coupled to the process
models, and thus also to the task model. However, should the constraint get
too complex, then a graphical Petri-net like notation may support
understanding. The states of the data can be specified using RIDL
statements in terms of the data model.

5.3 FORMALISATION

In this section first we will address four theoretical issues concerning the
Conceptual Task Model. First, a formal definition of the CTM is given
including the rules, tha t a correct CTM must satisfy. Thereafter, the
relation between the task model, denoted in CTM, and the activity model,
denoted in da ta flow diagrams, is formally defined. Finally, the
computational power of the CTM and the correctness of conceptual
schémas at task places are discussed.

5.3.1 Formal definition of the Conceptual Task Model

The formal definition of the Conceptual Task Model is a syntactic one.
Semantical aspects will not be addressed since the precise operational
meaning of a CTM-net is very hard to define. (It is already quite difficult to

128

TASK MODELLING

define part of the semantics of RIDL, see [Bruza 89].) As mentioned before,
part of the semantics of the CTM can be derived from the definition given in
section 5.2 and the semantics of РгТ-nets, NIAM and RIDL.

Definitions.?

A CTM-net is a 12-tuple (Π, Τ, Ρ, Σ, Ψ, Ζ, Ι, Φ, Λ, θ , Χ, Ω), where

1. Π is a non-empty finite set of places,

2. Τ is a non-empty finite set of transitions (with transitions we do not
mean combined transitions here),

3. Ρ is a finite set of parameterised RIDL expressions,

4. Σ is a non-empty finite set of conceptual schémas,

5. Ψ is a finite set of linear typings (a linear typing is a tuple of arbitrary
length consisting of entity types),

6. Ζ is a non-empty finite set of variables,

7. I С Π is a set of information places; Γ = Π/Ι (by definition) is the set of
task places,

8. Ф С П х Т и Т х П і з а non-empty set of arrows, denoting that a place is
input for or output of a transition (the arrows to and from an
information place are considered separately),

9. Λ e ρ pCZ)* is a function from the set of arrows Φ to the set ρ p{T) of
tuples of arbitrary length of variables chosen from Z, denoting the
labeling of the arrows with a tuple of variables,

10. θ e pT is a function from the set of transitions Τ to the set of
parameterised RIDL expressions Ρ, denoting which RIDL query
belongs to which transition,

11. X e Σ ^ is a function from the set of places Π to the set of conceptual
schémas Σ, denoting which conceptual schema belongs to which
place,

12. Ω e ψΓ is a function from the set of task places Γ to the set of linear

typings Ψ, denoting which typing belongs to which task place.

Note that the elements of the 12-tuple correspond more or less with the
meta-model of the CTM given in section 5.2.3. The sets of the 12-tuple
correspond with entity types of the meta-model and the functions with the
relationships. For the sake of simplicity a reduction was employed.

Examples of elements (shown in italics) of each constituent of the 12-tuple,
that are borrowed from the CTM-net of fig. 5.5, are the following.

1. Π = {Film request, PI, P2, P3, P4, P5, P6, Information concerning films
and tapes, List of Rentals).

2. T = (77a, Tib, T2, T3a, T3b, T4). The combined transitions have been
unfolded. With Tla we mean the transition containing the RIDL
expression Available(d,e,f), that results after unfolding Tl .

129

FORMALISATION OF INFORMATION SYSTEMS MODELLING

3. The expressions in fig 5.7 are the elements of P.

4. The elements of Σ are the conceptual schema depicted next to each task
place and the ones shown in fig. 5.6 for the information places. The
conceptual schema next to the place Film request, is an example of an

element of Σ. We will refer to this conceptual schema as CI.

5. Ψ = {<Rentable Film, Person>, <Rentable Film>, <Rentable Film,
Person, Amount of Money>, <Person>, <Address>}.

6. Z= {/•, p, pr, a, d, d', e].

7. The set of information places I = [Information concerning films and
tapes. List of Rentals) and the set of task places Γ = [Film request, PI,
P2, P3, P4, P5, P6}

8. The arrow (Tla, PI), going from transition Tla to place PI, indicating
that PI is output of Tla, is an element of Τ χ Π and an element of Φ.
The arrow (PI, T2), going from place PI to transition T2 indicating that
PI is input for T2, is an element of Π χ Τ and also an element of Φ.

9. The ordered pair ((PI, T2), <f,p>) is an element of Λ, which means that
the arrow going from place PI to transition T2 is annotated with tuple
<f,p>.

10. The ordered pair (T2, Rental price(d,p,pr)) is an element of Θ, which
means that the RIDL expression Rental price(d,p,pr) belongs to
transition T2.

11. The ordered pair (Film request, CI) is an element of X, which means
that conceptual schema Cl belongs to the place Film request.

12. The ordered pair (Film request, < Rentable Film, Person>) is an
element of Ω, which means that the typing <Rentable Film, Person>
belongs to the task place Film Request.

We now formulate all kinds of properties that a correct CTM-net in terms of
the 12-tuple must satisfy. To formulate these properties some auxiliary
functions and predicates must be introduced in an informal way.

The function entity operates on a conceptual schema and yields the set
of entity types occurring in that conceptual schema.
The function merge operates on a set of conceptual schémas and yields
the integrated union of these schémas.
The predicate partjof defines a binary relation between conceptual
schémas and is true if and only if the first conceptual schema is part of
the second conceptual schema.
The function domain operates on a RIDL expression and yields the
domain (this is a conceptual schema) of that expression.
The function uars operates on a parameterised RIDL expression and
yields the set of parameters (i.e. a subset of Z) of that expression.
Type_injexpression (r, v, e) is true if and only if the formal parameter
υ (from Z) has as type the entity type e in the RIDL expression r.
The function length determines the number of constituents of a tuple of
types or of variables.
The selection of an element at a certain position in a tuple is denoted
with a subscript.

130

TASK MODELLING

The reason that these functions and predicates are not introduced in a
formal way is the fact that they depend on a formalisation of RIDL and
NIAM, which is not realised yet.

The following properties must hold for the 12-tuple:

Property 5.1 Information places are always input and output of the same
transition:

Vpe I Vte Τ [(p,t) e Φ <=> (t,p) e Φ]

Otherwise, an information place is never only input for, nor only output of
a transition. This property is due to the РгТ-net formalism. Information
places always contain exactly one tuple, database tuples are not
dynamically created nor removed. The omission of an arrow would imply
the creation or deletion of the contents of a database as a whole. Therefore
an information place is always connected to a transition by a double arrow.
This is the reason for the notational convention in fig. 5.4. From this, the
contents of the database can vary as is required.

Property 5.2 Every place is input for or output of a transition:

Vpe Π 5t€ Τ [(p,t) e Φ ν (t,p) e Φ]

There are no dangling places. In the meta-model of CTM (fig. 5.8) this
property is reflected by the combined totality constraint.

Corollary 5.1 Every information place is input for at least one transition
and also every information place is output of at least one transition:

Vpel IfteT I (p,t) e Φ) I > 1

Vpel KteT I (t,p) e Φ} I > 1

This implies that any data store in the activity model is involved in at least
one transition and so is the data in this data store. The set of information
places of a particular CTM-net may be empty, which means that this task
only performs operations that do not retrieve nor update stored data.

Property 5.3 All transitions have input and output:

Vte Τ Зрі.рге Π [(pi.t) e Φ л (t,p2) e Φ]

Every transition has at least one output place and one input place. This is
shown in the meta-model with total roles on the two fact types Transition
has-as-output/input Place.

On the basis of the specification so far, it is possible that a CTM-net may
consist of two separate parts between which no exchange of information

131

FORMALISATION OF INFORMATION SYSTEMS MODELLING

takes place. Since this might occur due to erroneous specification, we
forbid this via the following well-formedness rule.

Property 5.4 A CTM-net should not be splittable, that is the bi-partite non-
directed graph (Π u Τ, Φ u Φ - 1) of a CTM-net should be connected:

Vs, s' e Π u Τ 3si, S2,...,Sn e Π u Τ [(s.si), (SLS2) . · · · , (Sn,s') e Φ υ Φ - 1]

This means that all places and transitions of one task are connected to each
other via a path of arrows along other places and transitions.

Property 5.5 Entity types of conceptual schémas and typings correspond:

Vpe Γ [υ Ω(ρ) = entity (X(p))]

In other words, the set (not multiset!) of entity types occurring in the typing
of a task place is the same as the set of entity types occurring in the
conceptual schema of that task place. This is an equality constraint on a
cycle in the meta-model.

Property 5.6 Types of variables in expressions and in tuples correspond:

Vte Τ Vve Ζ Ve [type_in_expression (θ (t), ν, e) =>

Vpe Γ Vi [(((p,t) e Φ л (Л (р,Щ = ν) =э (Ω(ρ))ΐ = e) л

(((t,p) e Φ л (Л (t,p))i = ν) =* (Ω(ρ))ί = e)]]

The type e of a formal parameter v, as can be derived from the typing of the
task place t to which it belongs, should agree with the way this formal
parameter is used (i.e. of which type it is supposed to be) in the RIDL
expression of the transition Θ (t) in which it is a local variable.

Property 5.7 Parameters in a RIDL expression are either from the input or
for the output:

VteT [агз((t)) Ç { w e Z I B p e n [(t,p) e Φ л w e u A((t,p)]) и

{ w e ZI 5 ρ е П [(p,t) e Φ л w e u A((p,t))])]

The parameters in the RIDL expression ©(t) of an arbitrary transition t are
a subset of the union of the parameters of the input and output places. Note
that this property is not derivable from property 5.6.

Property 5.8 The lengths of tuples correspond:

Vpe Г Vte Τ [((p,t) e Φ => length (A(p,t)) = length (Ω (p))) л

132

TASK MODELLING

((t,p) e Φ => length (A(t,p)) = length (Ω (p)))]

The length of the tuples annotating arrows connected to a certain task
place should be equal to the length of the typing of that task place.

Property 5.9 A tuple of an information place has length 1:

Vpel VteT [(p(t) € Φ => (length (ACp.t)) = 1 л length (A(t,p)) = 1)]

The tuples annotating arrows connected to an information place always
have length one, since these tuples stand for the contents of the data store
as a whole.

Corollary 5.2 All tuples around a place have the same length:

VpeΠ Bm VteT [((p,t) e Φ => length (A(p,t)) = m) л

((t,p) e Φ => length (A(t,p)) = m)]

This corollary serves as a simple check on a CTM-net.

Property 5.10 The domain of a query is part of the domain of the input:

VteT [part.ofldomainCOU)), merge({ с e Σ Ι Ξ ρ e l [(p.tte Φ л Х(р) = с
])))]

A RIDL expression in a transition should operate on the conceptual
schémas of the information places connected to that transition, i.e. the
domain of the RIDL expression 0(t) of the transition t is part of the union of
the conceptual schémas с of the information places ρ connected to t. This is
a simple formulation of the type checking of queries and is derived from the
more important rule that queries are formulated in terms of the data
model. Of course more than property 5.10 can be said about the relationship
between the query and the data model, but that is beyond the scope of this
work. We only formulate the following simple corollary.

Corollary 5.3 The entity types in a RIDL expression are a subset of the entity
types of the information places:

VteT [entity(domain(©(t))) С entity(merge((c e ΣΙ 3 ρ e l [(р,1)еФ л

Х(р) = с])))]

Take the RIDL expression Available in fig. 5.7 as an example. This query
has the types Tape, Rentable Film, Rental and Day as entity types, which
occur all in the conceptual schémas in fig. 5.6.

Property 5.11 All information places are needed:

Vp e 13t e Τ [((p,t) e Φ ν (t,p) e Φ) л domain(0(t)) η Χ(ρ) * 0]

133

FORMALISATION OF INFORMATION SYSTEMS MODELLING

No information place is defined without having a query defined on its
domain. For all information places there exists a transition, to which it is
input or output, and the domain of the query of that transition and the
conceptual schema of the information place overlap.

Property 6.12 Output was input or has been derived:

VteTVoeFUtt .oie Φ =>

uA((t,o)) С аг8((t)) u { w e Z i a p e n [(p,t) e Φ л w e и A((p,t))]}]

Every variable occurring in a tuple annotating an output arrow of a certain
transition must enter that transition (i.e. occur in a tuple annotating an
arrow input for that transition), or occur in the transition selector of that
transition.

There are more properties a correct CTM-net must have. We will mention
two of these additional properties. We will not try to formalise them due to
their complexity and the absence of a formalisation of RIDL and NIAM.

The first property is that the conceptual schémas at task places which are
output of a certain transition must be derivable from the conceptual
schémas at the places input for that transition and the transition selector of
that transition. This is discussed more deeply in [Ter Hofstede 89a].

The second property is that there must exist an evaluation sequence for the
parts of every transition selector, such that every variable occurring in a
tuple annotating an output arrow of the corresponding transition can
receive a value. In order to be able to check this, it must be indicated for
every formal parameter of a procedure whether it is output of, or input for
that procedure. A procedure is only allowed to be called if all its input
parameters have a value.

In [Genrich 87] more properties of PrT-nets, such as safety, liveness and S-
invariants are defined. Analogous reasoning would be possible for the
CTM-net after introducing the marking of a net and the enabling of
transitions. This analysis of the dynamics of a net is left for future
research.

As a final remark we state that a CTM-net should contain the complete
specification of a task. However, this requirement is not verifiable, since
the completeness of a specification depends on the completeness of the
informant's specification.

5.3.2 The relation between the models of activities and tasks

In this section the relationship between the activity model and the task
model will be described formally. We will discuss this relationship between
an extended version of activity models, in which a data model (conceptual
schema) is related to every data flow, and CTM-nets.

134

TASK MODELLING

The global activity model is assumed to consist of a hierarchy of local
activity models with a correct refinement structure. Recall from definition
5.4 and 5.5, tha t activities may be decomposed into other activities and
finally into tasks. Tasks appear at the bottom level of this activity model
hierarchy (sometimes called the elementary net). Suppose now that the
local activity models are denoted in data flow diagrams and let these be
formally defined as follows, neglecting the subactivities and substates, but
augmented with conceptual schémas related to every state.

Definition 5.8 A data-flow diagram is a 6-tuple (S, A, D, F, G, H), where
1. S i s a non-empty finite set of states,
2. A is a non-empty finite set of activities,
3. D Ç S is a set of data stores; E = S\D (by definition) is a set of flows,

4. F Ç S x A u A x S i s a non-empty set of arrows,
5. G is a non-empty finite set of conceptual schémas,
6. H e G ° is a function from the set of states to the set of conceptual

schémas.

In chapter 3, some of the rules are given that data flow diagrams must
fulfil. An example of such a rule is that every state has a source, which
could formally be expressed as:

V s e S a a e A [(a , s) e F]

Fig. A.2 shows an example of a data-flow diagram, which depicts the
hierarchical decomposition of the activity Activities of the Captain Video
rental store of fig. A.l. In fig. A.2 Film request is an example of a flow,
Treatment of film request is an example of an activity and List of rentals is
an example of a data store.

Let now dbe a data flow diagram at the bottom level of the hierarchy, where
d = (S¿, A/, D^; F¿, G^, H¿), then A¿ is the set of tasks of this diagram.

Furthermore, let α be a task of this diagram d, a e A/. We defineW¿ta) as
the set of states, which are input for or output of the task a:

Wrf-ia) = {s e Ŝ -l ((a,s) e F^v (s,a) e F ^ }

Let

Ca = (Па, Та, Pai Ea, ^ а . Za, la. Фа> Aa, ©a, Xa. ^ а)

represent the CTM-net for task α. For the definition of a CTM-net see
section 5.3.1.

The relationship between the data-flow diagram d and the CTM-net Ca is
expressed as an injective function fa from the set of input and output states
of task α in the data-flow diagram \ ^(а) to the set of places of task a in the

CTM-net Па:

135

FORMALISATION OF INFORMATION SYSTEMS MODELLING

fa: Wrfía) -> Па

Normally activities, flows, places and transitions are named. We adopt the
convention that s and fa(s) should also have the same name.

For this function fa the following properties must hold:

Property 5.13 Bijective data store mapping

fa I D/-> la is bijective

This property states that the restriction of fa to D^ is a bijective mapping on
la, i.e. every information place of the CTM-net Ca is the unique image of a
data store in the data-flow diagram a" which is input or output of the task a.
Furthermore, all information places in la are images of data stores in D/
via the function fa.

Corollary 5.4 No extra information places:

Vp e la 3s e W^a) η D¿-[fa(s) = ρ]

We repeat here the surjectivity part of the above property to indicate that no
extra information places, other than those mapped from the original data
flow diagram, may be introduced in the CTM-net of the task a.

Property 5.14 Consistent input property

V s e W/(a) [(s,a) e F¿-<=> 5 u e Ta [(fa(s),u) e Фа]

If a state s is input for task a in the data-flow diagram d, then there exists a
transition и in the CTM-net Ca, which has the corresponding place fa(s) as
input. Conversely, if a place that is the image of a state s, is input for a
transition и of the CTM-net Ca, then s must be input for task α in the data­
flow diagram d.

Property 5.15 Consistent input from data stores property

V s e W¿-(a) [(s e В^л (s,a) e F/) =>

3u e Ta[(fa(s),u) e Фа A fa(s) e la л (u,fa(s)) e Фа л Aa((fa(s),u)) =

Aa((u,fa(s)))]]

If a data store s is input for task a in the data-flow diagram d, then there
exists a transit ion и in the CTM-net Ca which is connected to the
corresponding information place fa(s) by two arrows, one input arrow and
one output arrow, with the same labeling. Note that the converse of the
above implication follows from property 5.13 and 5.14.

136

TASK MODELLING

Corollary 5.5 Information places are input for tasks:

V s e Wjfía) 3u e Ta[((fa(s),u) e Фа л fa(s) e Ι&) => (s e D¿-A (e,a) e F /)]

Note that if a place in a CTM-net is input as well as output of a certain
transition and the arrow leaving that place to the transition has the same
labeling as the arrow leaving the transition to that place, then this means
that the contents of that place are only retrieved.and not changed by the
transition.

In fig. 5.9 property 5.14 and 5.15 are depicted.

CTM-net of task a

. .< | | i .

Property 5.14 Consistent input

CTM-net of task a

•ч|і...

•.ιΐμ ..#.

Property 5.15 Consistent input from data stores

Figure 5.9 Consistent input properties

137

FORMALISATION OF INFORMATION SYSTEMS MODELLING

Output properties can be defined analogously to the above input properties.

Property 5.16 Consistent output property

V s e W/(a) [(a,8) e F / « 3 u e Τ & [(u,fa(e)) e Фа]

Property 6.17 Consistent output from data stores property

V s e W/(a) [s e В^л (a.s) e Р^=>

3u e TaKfaísXu) e Φ 3 л fa(s) e la л (u.faíe)) e Фа A Aa((fa(s),u)) *

Aa((u,fa(e)))]]

CTM-net of task a

Task a .#...

Property 5.16 Consistent output

CTM-net of task a

.•II!..

Property 5.17 Consistent output from data stores

Figure 5.10 Consistent output properties

138

TASK MODELLING

In fig. 5.10 the properties 5.16 and 5.17 are shown. The analogy of Corollary
5.5, that information places are output for tasks, is also valid.

Note also, that if a place in a CTM-net is input as well as output of a certain
transition and the arrow leaving that place to the transition has a different
labeling as the arrow leaving the transition to that place, then this means
that the contents of that place can be updated by the transition.

We end with a property concerning the links of the states to the conceptual
schémas.

Property 5.18 Identical conceptual schémas property

V s e W (í(a)[H l á(s) = X(fa(s))]

A state s in the data-flow diagram of task a must be associated to the same
conceptual schema as its corresponding place fa(s) in the CTM-net.

The image set of the function fa forms a subset of the set of places Па- When
drawing a CTM-net, a dashed box is drawn around the set of places (with
associated transitions that are not element of this subset. This box then
represents the border between the actual description of the task and its
input and output.

As an example, consider fig. 5.5. The places lying outside the dashed box
correspond with flows and data stores input to, or output of, the task
Treatment of film request in the data-flow diagram of fig. A.2. This
correspondence is simple here since the flows and the data stores involved
have the same names as their corresponding places in the CTM-net of fig.
5.5.
The flow Film request is input to the task Treatment of film request in the
data-flow diagram. Its corresponding place in the CTM-net is an input
place to transit ion Tl (property 5.14). The data store Information
concerning films and tapes is input to Treatment of film request and not
output, therefore its corresponding information place (property 5.15) in the
CTM-net is only connected to transitions in such a way that the input
arrow has the same label as the output arrow (one must keep the notati onal
abbreviation of fig. 5.4 in mind), implying that the contents of this
information place cannot change by the execution of the task.
The data store Lisi of Rentals is not only input for task Treatment of film
request but also output. Its corresponding information place in the CTM-
net is connected to transition Tl by an input arrow and an output arrow
with identical labels (property 5.15), and to transition T4 by an input arrow
and an output arrow with different labels (property 5.17).
Note that there are no information places added in the CTM-net of the task
Treatment of film request and t h a t the conceptual schémas of the
information places of the task are specified in fig. 5.6, according to property
5.18.

We will finally present some theorems that are valid for the relation
between the data flow diagrams and the CTM-nets. They are proved using

139

FORMALISATION OF INFORMATION SYSTEMS MODELLING

the properties of the CTM in the preceding section and the properties of the
relation between the activity model and the task model.

Theorem 5.1 The images of any two states related to the task a in the data
flow diagram are connected via a path in the CTM-net.

Proof: Suppose si, S2 e W^a), then faisi), fa(s2) e П а) by definition.
According to property 5.4, there exists a path from fa(si) and fa(s2). QED

Theorem 5.2 The domain of all queries of a task is specified in the
conceptual schémas associated with the data stores of the task.

Proof: Let a be an arbitrary task and let Ta be the set of all transitions of a.

Define Q = {qePa I EteTa [q = ©(t)]). Q is then the set of all queries of the task
a.
According to property 5.10 the domain of an arbitrary query qe Q is
specified in conceptual schémas corresponding to information places ρ

which are input for the transition t: (р,І)еФа.
From property 5.13 we deduce that this ρ is the image of a data store s: ρ =
fa(s), and according to property 5.18 the conceptual schema H/s) of s is the
same as the conceptual schema Xa(p) of p. QED

Theorem 5.3 If all tasks of the global activity model are correctly specified
in a CTM-net, then all data stores of the global activity model are used by
queries in the tasks.

Proof: Recall that the global activity model is a tree structure of local
activity models with a proper refinement structure. It is then sufficient to
restrict ourselves to the local activity models at the bottom layer, i.e. the
tasks. Therefore all data stores of the global activity model are connected to
tasks according to definition 5.8.
All tasks are correctly specified in a CTM-net. From property 5.13 all data
stores of an arbitrary task are one to one mapped to the information places
of the CTM-net ofthat task. The information places are due to corollary 5.1
input and output for at least one transition, and, moreover, not specified
without a query retrieving or updating it, because of property 5.11. So all
data stores are used by the queries of the transition in the task. QED

Theorem 5.4 If the conceptual schémas of all data stores of the global
activity model are specified and all tasks are correctly specified in a CTM-
net, then the domains of all queries of the global activity model are
specified.

Proof: As in the proof of the previous theorem, it is sufficient to restrict
ourselves to the tasks at the bottom layer of the global activity model. All
tasks are correctly specified in a CTM-net, then according to Theorem 5.2
the domain of all queries of this task is specified. Hence the domains of all
queries of the global activity model are specified. QED

140

TASK MODELLING

These theorems indicate some of the power of the CTM technique in
conjunction with proper activity modelling and data modeling as discussed
in the preceding chapters.

5.3.3 Computational power of the CTM

There are various approaches to capture the idea of computation. The class
of the Turing computable functions is an example of such an approach.
The principle that Turing machines are formal versions of algorithms and
that no computational procedure will be considered an algorithm unless it
can be presented as a Turing machine is known as Church's Thesis or the
Church-Turing Thesis [Lewis 81]. If we can prove that in the CTM one can
simulate any arbitrary Turing machine, we prove in fact that the CTM can
compute any computable function. In [Ter Hofstede 89a] a CTM-net is
presented that simulates an arbitrary Turing machine.

5.3.4 Correctness of conceptual schémas at task places

A conceptual schema of a task place describes that part of the Universe of
Discourse of those individuals that can enter that particular task place.
The conceptual schémas output of a certain transition must be derivable
from the conceptual schémas at the input places for that transition and the
RIDL expression belonging to that transition, as is more or less formulated
in the properties 5.10 and 5.12.

It is possible to formulate more rules on the conceptual schémas of places
being input or output to a transition. Based on the actual conceptual
schema and the constraints therein, we can deduce tha t a particular
combination of input and output schémas is invalid.

However, the reasoning on this subject is far from trivial, since in general
the situation is much more complex. Places can be output of more than one
transition, transitions can have several input place and schémas can
change due to the RIDL expressions in the transitions and the schémas in
the information places. For some examples and a more detailed discussion
on correctness aspects of conceptual schémas at task places we refer to [Ter
Hofstede 89a].

5.4 TASK MODELLING PROCEDURE

In the same style as in chapter 3 and 4, we will present a modelling
procedure for CTM-nets. The procedure consists of 8 steps and has as input
(according to the discussions in the preceding sections) a global activity
model with the corresponding data model. The properties of section 5.3 are
integrated in the steps to guarantee the correctness of the CTM-net.

The steps to construct a single CTM-net are:
1. Determine starting point
2. Determine preliminary transitions

141

FORMALISATION OF INFORMATION SYSTEMS MODELLING

3. Gather examples of data
4. Determine CTM-net structure
5. Model data at task places
6. Formulate RIDL-queries
7. Complete transitions
8. Check correctness properties

The description of the steps will be illustrated using a small example of a
task in the video rental store of appendix A. A CTM-net will be constructed
for the task that calculates the rental proceeds of a film.

Step 1. Determine starting point

The task, for which we have to construct a CTM-net, occurs in a local
activity model at the bottom layer of the global activity model. Assuming
tha t the local activity models are specified in some kind of data flow
diagram, the task at hand has some states (i.e. data stores and data flows)
as input and output.

l a . Specify input and output relations of data stores and flows to the task at
hand .

The properties 5. 13 to 5.17 determine many aspects of this starting point.
The data stores are to be mapped upon information places and the
remaining input and output states become task places. All places can
already be equipped with appropriate arrows for input and output.

lb . Collect the conceptual schémas that have been specified for all states
appearing in step la .

The conceptual schémas relating to the states of the task have to be
copied to the CTM-net specification according to property 5.18.

The part of the local activity model, in which the task 'Calculate rental
proceeds' occurs together with all related states, is shown in fig. 5.11. The
conceptual schémas of all states are given. Those of both data stores were
already specified in fig. 5.6.

This model implies tha t we already have two task places and two
information places. Both information places are only input to the task, so
we may only formulate retrieval queries. We can already specify the
boundary of the task as was indicated in section 5.3.2.

Step 2. Determine preliminary transitions

Based on the specified input and output, we must set up a preliminary
structure of the data processing of the task. Dependent on the complexity
and the domain knowledge required, informants have to be consulted to
specify the data processing.

142

TASK MODELLING

Film

List of
Rentals

Calculate
Rental

Proceeds

Information
concerning

films and tapes

Rental Proceeds
•

Fig. 5.11 Activity model containing task 'Calculate Rental Proceeds'

2a. Formulate the processing of the task in natural language

Be sure that this formulation is in terms of the activity model and the
data model. Restrict the informants to the terminology set up in the
preceding modelling activities. All descriptions of processing should be
clear and unambiguous. It may be even worthwhile to set up a
vocabulary of processing terms, that may be used, such as multiply,
sum, set of, maximum, change, etc.

2x. Construct a preliminary CTM-net

The description obtained in step 2a is partitioned into elementary process
steps. No strict guide-lines can be given for this partitioning, since the
elementariness of a process is directly related to the possibilities of the
data manipulation language, in this case RIDL. A single query should
be the realisation of a elementary process. Also the calculation of
intermediate results provides a partitioning structure.

Assume that in our example the following text was specified (in which, for
simplicity the late charge is neglected):

143

FORMALISATION OF INFORMATION SYSTEMS MODELLING

The r e n t a l proceeds of a f i lm i s c a l c u l a t e d by
m u l t i p l y i n g t h e number of t imes the f i lm was r e n t e d t o a
person with t h e r e n t a l p r i c e of t h a t f i lm .

From this description we construct a preliminary CTM-net, that is shown
in fig. 5.12. The intermediate task places are already drawn.

List of
Rentals

Information
concerning

films and
tapes

Figure 5.12 Preliminary CTM-net

144

TASK MODELLING

Place P1

Film

Marathon Man
Goldfinger
The Godfather
Modern Times
Ghandi
The Great Dictator
Empire of the Sun

Place P2 Film

Marathon Man
Goldfinger
The Godfather
Modern Times
Ghandi
The Great Dictator
Empire of the Sun

Number of Rentals

6
3
4
1
1
1

Place P3
Film

Marathon Man
Goldfinger
The Godfather
Modern Times
Ghandi
The Great Dictator
Empire of the Sun

Rental proceeds

$ 18,--
$ 9 , -

$16, -
$ 2 , -
$ 5 , -
$ 2 , -
$0,--

Figure 5.13 Examples of data

Step 3. Gather examples of data

We gather examples of data in order to construct models of it in the same
way as in the modelling procedures for data in chapter 4.

3a. Extract examples

For every place in the preliminary CTM-net such examples have to be
given. These may partially be available in samples that were input for

145

FORMALISATION OF INFORMATION SYSTEMS MODELLING

the preceding global data modelling and were determined by the sample
criterion.

3bi Mark facts for possibilities of redundancy

Similar preparation steps are employed as for the global data modelling,
except that redundancy is not deleted but marked. Redundancy at the
level of tasks is important for the processing of the data. This processing
must be completely specified.

The resulting examples of the preliminary CTM-net of fig. 5.12 are shown
in fig. 5.13. Recall that the data of the information places is already
modelled and the corresponding examples are shown in fig. A.3.

Step 4. Determine CTM-net structure

The processing will be provisionally formulated in order to establish the
final structure of the CTM-net.

4a- Formulate data processing

For all transitions the way in which the data processing is performed is
determined using the examples of the previous step. The transformation
of the input to the output is formulated.

Ox Adapt preliminary CTM-net

Extra transitions and task places may be needed to cover processing that
was not foreseen in step 2. In particular, the handling of erroneous or
incomplete input of the user deserves attention. Most informant's
specifications only consider processing under the assumption that
everything goes well.

4c. Repeat steps 2 to 4 for extra transitions and places

For new transit ions which resulted in the previous substep, the
processing must be specified. This will probably be performed in terms of
extra examples of data. This step results in the final CTM-net structure.

In our small example the informant forgot to specify that the rental
proceed for new films was zero. This was seen from the fact that the input
PI of the preliminary CTM-net has as input a film, meaning possibly a film
that is not rentable yet. The information place 'List of Rentals' only
contains data of rentable films. This leads to an adaptation of the
preliminar CTM-net, of which the extra transitions and places are shown
in fig. 5.15.

146

TASK MODELLING

Step 5. Model data at task places

The data of the individual entities that can enter a task place is modelled in
a conceptual schema. This conceptual schema will be coupled to the task
place.

5a. Construct conceptual schema

The construction of these conceptual schémas is performed in a similar
way as the global data modelling. The intermediate data in a task is
mostly not too complex, so this modelling is often simpler. Subtype
hierarchies and complex constraints do not occur.

6b Mark redundant roles

Due to the processing in the transitions certain facts are derived from
others. The corresponding roles are marked.

The resulting conceptual schémas for the task places of our example are
shown in fig. 5.15 next to the places P2, P3 and P4.

Step 6. Formulate RIDL-queries

This step consists of two substeps.

6a. Construct typings and parameter tuples.

According to the rules given in section 5.2 and 5.3 the tuples of the typing
and of the parameters are determined. From the conceptual schémas of
each task place a linearised typing is constructed. Corresponding
parameter tuples with the same length as the typings are made
(property 5.5 en 5.8). Information places receive, according to their
function as input or output, a 1-tuple with a parameter name for the
data store.

вЬ. Describe RIDL-queries

The RIDL-queries can be formulated in terms of the conceptual schémas
of the information places using the parameters of the tuples of the input
task places. The derived information is either assigned to the new state
of a data store in case of an update query, or assigned to an output
parameter in a tuple of an output task place in the case of a retrieval
query.
Note that property 5.10 is directly guaranteed in this step. According to
property 5.6 the types of the RIDL-queries and tuples should correspond.
Furthermore, there should be no parameters in the RIDL-query, that
are not mentioned in the input or output tuples (prop. 5.7).

The three RIDL-queries of the example are shown in fig. 5.14.

147

FORMALISATION OF INFORMATION SYSTEMS MODELLING

PREDICATE ls_new (DATABASE d; FILM f);
BEGIN

f IS NOT IN Rentable-film
END;

PREDICATE Number (DATABASE d; RENTABLE FILM f, QUANTITY n);
BEGIN

η = NUMBER-OF Rentals OF Tape contains Rentable-film f
END;

PREDICATE Price (DATABASE d; RENTABLE FILM f, QUANTITY n,
AMOUNT OF MONEY m);

BEGIN
m = η * Amount-of-money is-rental-price-of Rentable-film f

END.

Figure 5.14 RIDL-queries of the rental proceeds task

Step 7. Complete transitions

So far, transitions have only be considered in relation with a single place.
In this step all aspects of a transition have to be brought into a correct
correspondence. Some transit ions may be combined according to the
convention in fig. 5.3 due to a disjoint condition. All types and names of
parameters should be correct and unique. Information places are
connected to a transition with pairs of arrows in reverse directions (prop.
5.1). Because of property 5.3 transition should also have input as well as
output places.

Special attention should be paid to the further processing of data, which
didn't fulfil the conditions for ordinary processing of the task, but
implement the way of dealing with erroneous or incomplete user input.
Finally, property 5.12 has to be checked, so that all output parameters are
either the result of RIDL-queries or were already input parameters.

Step 8. Check correctness properties

Most of the checking of the properties of section 5.3 is integrated in the
preceding steps, except for the properties that deal with the complete CTM-
net.
First, property 5.2 does not allow superfluously specified places. All places
should either be input or output or both, to tasks. Furthermore, the net may
not be splittabie. The case that this is inevitable, the data flow diagram of
which the task is a part, should be revised. The task should be split into as
many tasks as there are parts in the CTM-net, such that each task
corresponds to one CTM-net. Finally, no information place should be
specified without having a query defined on it according to property 5.11.

The final CTM-net of our example is shown in fig. 5.15.

148

TASK MODELLING

Film Is new'

ls_new(d,l) ls_new (d,l)

<al>

Is not

Information
concerning

films and
tapes

<Cb
Default proceeds Number ol rentals

Number(d,f,n)

Is nok

<f,m>

List Of
Rentals

Quantity]

has Is
number number

of rentals of rentals of

Total price

Prlce(d,f,n,m)

has Is total
total proceeds ot

proceeds

«d>

Figure 5.15 CTM-net for rental proceeds calculation

149

FORMALISATION OF INFORMATION SYSTEMS MODELLING

This concludes the modelling procedure for CTM-nets. Since the properties
are integrated, it follows that for a net modelled in this way the theorems of
the previous section hold. In this way statements about the quality of the
modelling process and its products can be formulated with an explicit
motiviation. We consider this the most valuable aspect of formalisation and
modelling procedures.

It might occur, tha t the modelling of the CTM-net necessitates the
alteration of the data flow diagram, to which the task at hand belongs.
Extra data from data stores may be needed to specify the complete data
processing, so extra input from information places must be specified. Even
the conceptual schémas of the global data modelling might need changes,
because it turned out during task specification that extra data has to be
recorded. However, one should be very reluctant with regard to changes,
since they are in conflict with earlier informant 's specification.
Reconsideration of this earlier specification process with the involved
analiste is required.

In [Reisig 87] properties of theoretical schedules to develop a PrT-net
structure are discussed. This theory appears not to be applicable for the
case of CTM-net as a special kind of PrT-net. The sample criterion implies
that the decomposition of the processes is so detailed, that few transitions
(about 10) are needed to describe the task. Reisig, on the other hand,
considers РгТ-nets with 100 to 1000 transitions, so t h a t abstraction
structures are necessary.

5.5 CONCLUSIONS AND FURTHER RESEARCH

5.5.1 Requirements assessment

This section assesses the requirements for task modelling techniques as
formulated in 5.1.3, with respect to CTM. The six requirements on task
modelling are fulfilled rather well by CTM. We assess them in the same
sequence as in 5.1.3.

1. The transfer from activity and data modelling to task modelling is to be
performed as discussed in 5.1.2. In the CTM explicit cross-references
between the involved models are present via the components Entity type,
Transit ion and Place. The CTM offers good opportunities to be
transferred to interaction modelling and to event modelling.

2. The constructs of control flow, with the exception of process
synchronisation aspects, can be expressed in the CTM. Simple process
triggers can not be modelled in a CTM-net, but data triggers can.

3. The generation of code out of CTM-nets is not yet investigated
thoroughly. The well known programming language constructs, like
sequence, choice and iteration, can be generated straightforwardly, as
is shown in [Brinkkemper 89e].

150

TASK MODELLING

4. The PrT-net formalism underlying the CTM allows for the verification
of theoretical statements. In section 5.3 this has been discussed
extensively for the CTM.

5. The animation or population of a CTM-net is achieved by means of the
ingredient modelling techniques. One the one hand the conceptual
schémas in NIAM can be populated by instance facts and on the other
hand the processing of tuples can be animated according to the so-called
token game of the Petri-net formalism.

6. The completeness of data manipulation in RIDL ensures the complete
data manipulation capabilities of CTM.

5.5.2 Use of the CTM

The CTM, as we propose it here, is an intermediate specification technique
intended to be used for the modelling of the data-manipulation part of
application programs. This role of go-between serves more purposes. For
the main types of information systems development projects, new
development, maintenance, enhancement and migration, there exist four
options for development support with contemporary tools.
- Automatic system generation of the complete IS from the specifications

of the analysis design stage.
- Incorporation of existing operational software or of standard packages.
- Reverse engineering of the current operational IS to regenerate their

specifications.
- A bi-directional bridge, that combines of automatic system generation

and reverse engineering.

Various IS specification techniques are applied in these approaches. In
this section we will discuss the ways in which the Conceptual Task Model
can be employed and what kind of tool support is needed.

System generation

We briefly discuss the possibilities for code generation for the CTM. As a
target language for code generation we consider imperative languages like
PASCAL, C, SQL, COBOL or ALGOL 68, which presupposes the existence
of a RIDL compiler to that particular language. Some constructs of control
flow in the CTM can be mapped straightforwardly onto constructs of the
target language.

Sequential processing in the CTM is modelled by means of a directed chain
of transit ions and task places. This corresponds with the ordinary
sequential statements in imperative programming languages. Task places
between transit ions do not have an equivalent construct in such a
language.
Combined transitions (e.g. transition T l in fig. 5.5) in the CTM represent
conditional choices. The parts of a combined transition will contain disjoint
and total conditions. In a programming language this corresponds with an
IF-THEN-ELSE clause, in which all conditions and the corresponding
actions from the CTM-net can be filled in.

151

FORMALISATION OF INFORMATION SYSTEMS MODELLING

Iteration appears as a cycle in the CTM-net, though not all cycles in a
CTM-net correspond with iteration. The conditions which control the
iteration, should not be handled as described above, but integrated in a pre-
checked or post-checked loop.

Re verse Engineering

Reverse engineering in some (semi-)automatic way aims a t the
regeneration of the conceptual specifications from existing source code of a
system. This is far from trivial. Semantic knowledge of the application is
hidden in data structures, names of program variables, process structures
and in all sorts of added commentary. Implementation choices and tricks
complicate this even more.

The CTM allows the modelling of the data manipulation par t of
applications, in connection with a reverse engineering of the data
definition part . Manual experiments indicate that reverse engineering
with CTM is possible, but results in many diagrams. This is due to the fact
that much world knowledge and domain knowledge is not represented in
the code, but is made explicit in the CTM-net. If this knowledge was added
to the code in some kind of language, the code would be of comparable
complexity.

Simulation

As the CTM is based on Petri-nets, it is well suited for validation by means
of simulation. A data tuple variant of the token game could be realised in a
CTM-net tool. To accomplish this a compilation facility must be available
for the simulation of the data modelling language NIAM and the data
manipulation language RIDL. Though a RIDL compiler has not been
implemented yet, there are no fundamental reasons why this cannot be
done. The tool should ask for examples of the data at the information places
and of the task places these provide the initial imput. With these examples
an animation of the processing of the taks can be shown.

Workbench implementation

The CTM technique is not suited to the manual modelling of tasks in a
realistic sized IS, due to the complexity of the resulting diagrams.
Automated support of the technique in a tool, possibly combined with
modelling techniques for activities, data and user interaction, is required.
As discussed in section 5.3, the CTM is embedded in a sound framework.
Properties and rules are formulated, on which all sorts of analysis of
application models can be based.

In fig. 5.16 we show a proposal for a screen layout of a tool supporting the
modelling of tasks using the CTM. The data models of the places and the
RIDL-queries of the transition are shown in separate pop-up windows.
When these windows are left out, a plain PrT-net remains.

152

TASK MODELLING

Conceptual schema of P1 input to T2

Typing: <Rentable Film, Person:

Ό
T2

<f.P>

Conceptual schema of View VI input to T2

-*—•

has rental is rental
price price of

Typing: <Rentable Film, Amount of Money>
Datastore: Information concerning films and

Searching price

Rental price
(a.l.pr)

Information
concerning
films and
tapes

Conceptual schema of P2 output from T2

is available ·*•·
Amounh
of
money

Person

Typing: <Rentable Film, Person,
Amount of money>

RIDL-query of t rans i t ion T2

FUNCTION Rental price (DATABASE a; RENTABLE FILM f,
AMOUNT OF MONEY pr) BOOL;

BEGIN
pr = Amount-of-money is-rental-price-of Rentable film f

END;

Figure 5.16 Screen layout of a CTM tool

153

FORMALISATION OF INFORMATION SYSTEMS MODELLING

The modelling of such a CTM may be performed as described in the
modelling procedure in section 5.4 and therefore the tool may provide
support for the preliminary task modelling, identification of individual
transitions, modelling of data at the places, formulation of the RIDL-
queries and the checks on the components. When the transitions in a task
are known, they can be put in a preliminary schema, with some
intermediate task places connecting them. These transit ions can be
modelled and analysed separately. Thereafter they can be integrated for
global analysis of consistency, connectivity or for other purposes.

We propose in this section, however, a practical diagramming convention
that deviates in two ways from the theoretical technique. This is necessary
to improve the practical applicability. The discrepancies between the
practical and the theoretical technique can be overcome by standard
transformations, which can be derived from the descriptions below. The
adaptations are the following.

First, we use data base views instead of database tuples. Since tasks need
only a certain part of the data present in the data base, we define a view
that models this part. This view is positioned on the arrow from the
information place to the transi t ion. An information place will be
surrounded by such views. The conceptual schema of a view is a derivable
part of the conceptual schema of the information place. Recall that the
information places correspond with the data for which retrieval queries or
update queries are formulated, whereas the data model at the task places
stand for the parameters of the transition. Syntactical and semantical
cross-checks of queries and parameters versus data models can be
performed automatically.
All inputs and outputs of a transition are now specified by small conceptual
schémas. An example of a view is shown in fig. 5.16 for the information
place 'Information concerning films and tapes'. In the PrT formalism
such views are not prohibited, but the strong relation of the data in the data
store with that in the data view must be described completely. This is not
practical, since database management systems offer very effective means to
specify views.

Secondly, we propose tha t the tool implementation supports the
decomposition of tasks. This decomposition obeys analogous rules to those
for the decomposition of activities in data-flow diagrams. The conceptual
schémas at the places may also be decomposed, but the decomposition must
always satisfy the requirement that tasks process data elements (see the
definitions in section 5.1).
In РгТ-nets this is again not possible due to the unclear firing semantics of
the decomposition, when data elements corresponding to more than one
input or output place are optional.

In addition to this and to the discussions in the previous sections, we
suggest three additional functionalities in a CTM-tool.
1. Support of modelling transparency. Because of the dependencies

between the task models and the models of other types, such as activity
models and global conceptual schémas, developers working with the

154

TASK MODELLING

tool wish to be able to transfer directly from one type of model to the other
via a dependency between the models. For example the transfer from a
task model to the activity it belongs to. Some of the dependencies, along
which transfer is desirable, are modelled in the CTM meta-model (fig.
5.8). See chapter 6 for a discussion of the modelling transparency
functionality of workbenches and the various degrees of it.

2. Syntactic and semantic analysis of data models and queries. As already
suggested above, the presence and the type of the data that are processed
or created in a transition can be analysed and compared with the
queries specified. Furthermore, the violation of the constraints can be
pointed out.

3. Support of re-use. A support tool can compare the patterns of the data
models or of the transitions with existing models and suggest to make
use of them.

5.5.3 Further research on the CTM

In this chapter the CTM technique for task modelling in information
systems development methods is introduced. This technique is intended to
fill the gap between informal requirements engineering and program
development. The CTM has some strong points. Fluent transfer between
intermediate design results is supported due to the well-defined relation
between activities and tasks and the integration with a data modelling
technique. Tasks can be modelled on a conceptual level, thus enabling the
analyst to abstract from particular machines and programming languages
and their associated limitations. The CTM allows for code generation and
the verification of all kinds of theoretical statements. Common constructs
used in the processing of data elements as well as data manipulation and
data retrieval can be expressed easily. Finally, in principle every
computable function can be specified in the CTM.

We consider this technique as an innovative contribution which offers
opportunities for new insights. Some aspects should be investigated more
deeply, such as code generation, reverse engineering and a workbench
implementation of the CTM. Feedback on the proposed technique from
users of it in practice would be helpful to give direction to improvement or
enhancement.
The theoretical framework can be extended by defining either the formal
basis of NIAM and RIDL or additional auxiliary functions and properties.
Extra theorems on the CTM-net structures may be formulated. The
expressive power of CTM can be compared with other techniques, such as
mentioned in section 5.1.4.
As discussed in section 5.3 it may be of interest to research further the
dynamic properties of CTM-nets. As in similar approaches in Petri-net
literature, it will be difficult to formulate general statements on the
dynamics of a net, but it may turn out that about specific parts of a CTM-net
more can be said. The recognition of frequent occuring parts is required for
this. Statements on a complete net will then be based on the statements of
its parts.

155

FORMALISATION OF INFORMATION SYSTEMS MODELLING

Finally, it has to be investigated whether the incorporation of views of
information places and hierarchical decomposition in the theoretical
model can be achieved. This requires an adaptation of the underlying PrT-
net formalism or even a dedicated new high level net structure with a
complete definition of its semantics.

156

О MODELLING SUPPORT

The support of modelling with all kinds of tools is in the centre of interest
today. Popular terms like CASE-tools, workbenches and IPSE are
commonly used and misused in an area that completely lacks a scientific
basis. The selection of tools and their proper introduction in system
development are currently the most discussed topics. We refer to [Brand
89ab], [Dignum 86] and [McClure 86] for some aspects of these discussions.
Overviews of the various tools and their capabilities are important for the
proper selection of a tool. A detailed inventory of the tools available in the
Netherlands was published in [NGGO 88]. An overview of contemporary
research in the area of modelling support tools can be found in
[Brinkkemper 90b].

The future development of modelling support tools will need a scientific
approach. The age of the computerisation of diagramming techniques will
end, users will require more complex support, and even that system
development activities are taken over by tools. Based on the discussions in
the preceding chapters, some aspects of modelling support will be
introduced in this chapter. It is obvious that the prescription of modelling
in the modelling procedures is to be build into tools. However, system
development requires additional functionalities, for instance those that
deal with the management of the models. We will discuss some of them in
the following sections, based on earlier publications. We start with the
definition of some terminology and functionalities of modelling support
tools [Brand 89ab], [Brinkkemper 89b]. The incorporation of modelling
procedures in system development methods will also be addressed
[Brinkkemper 88ab]. Related to this is the degree of support that a tool may
provide for a given method. The mapping of the techniques of a tool to the
techniques in a method is called method companionship and will be
discussed as well [Brinkkemper 89b]. In the analysis and design stage of a
system development project, the models and their mutual relationships
will become more and more complex. We present two ways of dealing with
this problem: modelling transparency [Brinkkemper 89c] and layered
modelling [Koesen 89].

6.1 TERMINOLOGY AND FUNCTIONALITY

6.1.1 Workbench, CASE-tool or IPSE

The terms method, technique and tool were already introduced in section
1.3. In methods the application of techniques is commonly prescribed.
Automated tools supporting systems development exist in various types

157

FORMALISATION OF INFORMATION SYSTEMS MODELLING

and sizes. In the following definition we will distinguish some types of
tools.

Definition 6.1
An Integrated Project Support Environment (IPSE, [Alvey 82], [NIIG
88]) is defined as a complete, integrated set of tools supporting all
techniques that should be performed during system development.
Any tool which can be used for system development may be called a
CASE-tool (Computer Aided Software Engineering).
If the use of a tool is not restricted to a single phase or activity, but offers
possibilities for integrated modelling during different phases through a
consistent interchange of development data, it is called an I-CASE-tool
(Integrated CASE).
A workbench is a tool supporting one or more techniques in the stages of
the development tha t precede programming, or a tool for project
management. Depending on the particular stage a workbench supports,
i t may, for example, be called an analysis workbench or a design
workbench.

[Case 86] dis t inguishes automated tools which support project
management (life cycles, project control, PERT/CPM), programming (on­
line editors, code generators, code optimisers) and the development process
(data dictionary, encyclopedias, graphic and textual systems). The first and
last mentioned tools are called workbenches. We refer to [McClure 86] and
[Vonk 88] for a discussion of the components of a workbench. A list of tools
with a description of their properties is given in [NGGO 88].

The support of all development activities by an IPSE is a goal that is still not
realised in commercially available tools. The best development support
tools can therefore be qualified as I-CASE-tools. Most CASE-tools, available
today, have been constructed to be used within a particular method.
Examples of these CASE-tools are the Information Engineering Workbench
(IEW; [IEW 88]) and the System Development Workbench (SDW; [SDW 88]).
The fact that a tool is designed for use within a particular method, does not
preclude its use within other methods as well. Since the availability of tools,
that fulfil certain quality requirements, is still rather limited, tools are
frequently used within methods for which they were not designed.
However, it is then not always clear when and how the tool should be used.
To resolve this, guide-lines are developed to describe this relation. The
following definitions are given to base the discussions on this problem in
section 6.4. Since we restrict ourselves mainly to the analysis and design
stages in which modelling is the main activity, we will henceforth use the
term workbench instead of tool.

Definition &2
Method companionship of an information system development method
and a workbench is the mapping of the required techniques and
corresponding development products of the method to the offered
techniques and corresponding reporting facilities of the workbench.
The workbench is then called the method companion of the method.

158

MODELLING SUPPORT

If a workbench is designed to be used within one particular method, we
call this initial method companionship.
If a workbench is used within a method for which it was not designed
and guide-lines have to be produced in order to make this relation more
explicit, we call this derived method companionship.

The term method companionship originates from McClure [McClure 87],
who introduced the following categories for CASE-tools: toolkits,
workbenches and methodology companion. She defines a methodology
companion as a tool that provides computerised assistance for a particular
software development methodology. Examples of ini t ial method
companionship are the Information Engineering Workstation for use
within Information Engineering, and the System Development Workbench
for the use within the System Development Methodology. In section 6.4 we
will discuss the determination of the derived method companionship of the
Information Engineering Workstation for use within the System
Development Methodology

Definition &3
The database of a tool or workbench, i.e. that part of a tool where all the
data is stored, that is gathered by carrying out the technique in a
project, is called an information resource dictionary or dictionary for
short.

In some commercially available workbenches the dictionary is called the
encyclopedia, because it contains more information about the objects than
is recorded in data dictionaries of database management systems. The
term project database is also used.

6.1.2 Workbench functionalities

Workbenches are becoming more advanced. In a workbench, various
functional aspects can be distinguished, tha t are subject to rapid
development. In [Vonk 88] the most important components of a workbench
are described. We discuss only the following aspects, because of their
importance in relation to the support of modelling.

Object significance and expansibility of the dictionary

The objects, that are part of a model and stored in the dictionary, can have
either syntactic significance or semantic significance. Syntactic
significance means that only the syntactic aspects of an object, such as its
shape and position, are considered in the tool. For instance, a rectangle in
a model only has significance as a rectangle. Semantic significance means
that the object is treated in the context of the modelling technique with all
the rules that apply to it. For instance, an entity type may occur in
relationships and have attributes added to it.

A workbench may also allow users to extend the dictionary structure,
which means that it is possible to add extra object types in the dictionary.

159

FORMALISATION OF INFORMATION SYSTEMS MODELLING

In this case the workbench is said to have a dynamic meta-data model.
Workbenches that do not have this functionality are said to have a static
meta-data model. The extension of the dictionary goes hand in hand with
the addition of functions to the techniques supported by the workbench. A
workbench that allows this so-called customisation is Excelerator [ITC 87]

Check facilities

A check facility or an analysis, for short, is an assessment of the status of
(selected) objects, characteristics and associations by means of verification
against rules. These rules are formulated in a technique and control its
correct application. The following six types of analyses can be
distinguished:

1. Pre-analysis or post analysis
Pre-analyses are analyses carried out before data is entered into the
dictionary. The data is then accepted or rejected and the dictionary is
therefore always consistent with respect to the analysis criterion. For
example an object may only be stored if its name is unique in the
dictionary.
Post-analyses are analyses carried out on the data in the dictionary or
a part thereof. Temporary inconsistencies with respect to the assessed
rule can occur. An example is data conservation analysis, which
checks that all data that is output of a process is also input of that
process.

2. Syntactic analysis or semantic analysis
Syntactic analyses check only whether the objects are correctly entered
in a diagram in syntactic terms, e.g. the end of an arrow must always
be linked to another object, irrespective of the objects.
Semantic analyses check whether the objects are semantically
correctly entered in a diagram, e.g. two data files cannot have a direct
link in a data flow diagram, or a data flow must begin and end in a
valid source or destination, namely an external agent, a process or a
data file

3. Olrject analysis
The analysis is carried out on one selected object, e.g. the check
whether an entity type is uniquely identified.
The analysis is carried out on several selected objects or on all objects
of a specific type. For example the check on a set of modules that the
call sequence is non-recursive.

4. Object type analysis
An analysis of an object type is carried out on a set of objects of a
specific type. An example is the exception analysis, that checks for
instance that all attributes of all processes are stored in the dictionary.
The analysis of several object types covers objects of several object types.
For instance an analysis that precedes the integration of data models
and signalling whether homonyms or synonyms occur.

160

MODELLING SUPPORT

5. Diagram analysis
The analysis takes place within one diagram. The check that no entity
type occurs in a data model without participating in a relationship, is
an example of this type of analysis.
The analysis takes place in several diagrams of the same type. For
example the analysis that the data flow diagrams obey the refinement
rules .

6. Diagram type analysis
The analysis assesses a rule formulated on one diagram type, e.g. the
affinity analysis of an association diagram.
The analysis assesses a rule formulated on several diagram types. For
instance the association matrix of processes and entity types may be
checked against the occurrence of the entity types in the data model of
the processes.

These analysis dichotomies may occur in all kinds of combinations in the
analyses built into a tool. For instance the check of the refinement
structure of the data flow diagram hierarchy is a semantic post-analysis on
several objects of several object types in several diagrams of one type. Note
however, tha t of the four latter types of analysis only seven plausible
combinations can be made.

Some analyses require that other analyses have already been carried out.
Analyses are formulated in terms of rules on the models and those rules
have all kinds of dependencies among each other. For instance, it makes
no sense to perform a refinement analysis on the data flow diagram
hierarchy without having performed all the correctness and completeness
checks on the individual diagrams. The sequence of analyses and their
mutual dependencies have to be determined carefully using the
dependencies of the underlying rules. It may, however, be the case that
some analyses are part of other analyses. The tool manual should specify
whether the user should carry out the required analyses or whether these
are part of a larger analysis.

Tasks

Finally, certain of the developer's tasks can be taken over by the workbench.
We use the term task here for the introduction of changes to the dictionary
on the basis of report and analysis interpretation. We distinguish three
types:

1. Determinist ic tasks : these are tasks where the outcome is
unambiguously determined given the input for the task, so that no
interaction is needed with the developer. The result of the task is
obtained by transforming the products developed in other tasks. An
example is the integration of two or more entity-relationship
diagrams.

2. Interactive tasks: these are tasks where the workbench proposes a
possible outcome and the developer can accept or modify it. The

161

FORMALISATION OF INFORMATION SYSTEMS MODELLING

developer constructs the desired product in an interaction with the
workbench. The conversion of an entity-relationship diagram into a
relational data base structure is an example.

3. Preparation tasks: this is a special kind of deterministic task that
prepares a specific task using some information of another task. For
instance in the activity modelling of a process that occurs in the
decomposition of another process in a data flow diagram hierarchy,
the data flows to and from the process in the parent diagram should
also occur in the activity model of the process itself. A tool can assist in
this by putting the flows in the diagram. The tool can automatically
control the consistency of the hierarchy. Another example of a
preparation task occurs in the task modelling procedure of the CTM in
section 5.4. The first step of this procedure creates the starting point by
extracting data flows and data models from the available activity model
and data model.

Model status

In programming environments a lot of data is recorded about the status of
a program: the author, the creation and last modification dates etc.
Similarly, we propose to incorporate such functionalities in modelling
support tools. The read, write and delete access of the developers for the
individual models may be specified, as well as the status of the model with
respect to the various analyses that can be applied to it: finished, checked,
validated, etc.

Beside this, the models are strongly related to each other. Developers want
to find out what models are already present and what still has to be done.
Tools should therefore support some kind of overview of the models and
their interrelationships combined with their status. For example, the
hierarchy of data flow models can be shown in a decomposition diagram of
the processes together with an indication of whether the corresponding
data flow diagram and its data models are finished or not.

The functional aspects mentioned in this section are not found in all tools.
The first tools on the market considered only syntax and not semantics,
and they could only produce reports and not perform analyses. Most tools
are now equipped with a variety of analyses and support all kind of tasks.
In the future all kinds of enhancement of the functionality of tools will be
introduced. The field of CASE-tools is young and its scientific research is
still in its infancy. The price/performance trade-off will in the course of
time determine the core set of functionalities for the support of modelling by
tools.

&2 THE INCORPORATION OF MODELLING PROCEDURES IN
SYSTEM DEVELOPMENT METHODS

Information system development methods do not provide very detailed
descriptions of the way in which the prescribed activities have to be

162

MODELLING SUPPORT

performed. This is quite obvious for methods that emphasize project
management, but even system development methods mostly only prescribe
the diagrammatic modelling tools that have to be used. The incorporation
of the modelling procedures, as presented in the preceding chapters, turns
out to be relatively straightforward for methods prescribing the
development activities in a rather elaborated way. In case the tools and the
development products that are input and output of the activities are known,
the modelling procedures can even be integrated and adapted to fit the
method precisely.

We will illustrate this for the case of the modelling procedures for the
events (section 3.2), activities (3.4), data (4.3) and tasks (5.4) that will be
incorporated in the Information Engineering Method (IEM) [Arthur
Young 87]. Since these modelling procedures are for the analysis stage, we
will consider only the Business Area Analysis (BAA) phase of the IEM.
Some of the models that have been created using the Analysis Workstation
of the Information Engineering Workbench [IEW 88] will be shown. The
activities of the Information Engineering Methodology are applied to the
Inventory Control and Purchasing System case given in [Olle 88a].Part of
the analysis of the given test case had to be repeated in order to produce the
following i l lustrat ions. It was therefore necessary to make some
assumptions about the Universe of Discourse. This section is an
adaptation of section 6 of [Brinkkemper 88ab].

The Business Area Analysis consists of 7 main activities:
1. Organise & Control Business Area Analysis Project
2. Define Business Area and Business Area Partitions
3. Model Existing Business Area Partition
4. Model Future Business Area Partition
5. Document Technical Requirements
6. Determine Business Area Implementation Approach
7. Perform Project Approval & Assessment Tasks

Here, we will present only a detailed activity plan of activity 3. The other
activities are all beyond the scope of this section. The first and last
activities are devoted to project management. The second is a short
Information Strategy Planning study to be performed if the analysis has
not been preceded by an extensive organisation wide information systems
planning. The fourth is devoted to modelling the desired changes within
the current Business Area Model and takes the models resulting from the
third activity as a starting point. Finally, the fifth and sixth activities are
concerned with hardware and software requirements and constraints such
as volume, performance and security, and with the preparation of the
subsequent System Design phase.

Activity 3: Model existing business area partition.

Activity 3 consists of 8 subactivities described in general terms in the IEM.
We discuss an elaborated version developed mainly in practice and with the
modelling procedures incorporated. From a collection of events a so-called
Event Model is constructed, which is in t u m the starting point for the

163

FORMALISATION OF INFORMATION SYSTEMS MODELLING

Business Area Partit ion Model. The lat ter model is elaborated and
subsequently used for all kinds of related analysis of the business area, for
example, of the existing software and of the available technical
infrastructure.

3.1 Identify business events

The purpose of this subactivity is to analyse events within the Business
Area. Business areas, coherent parts of the Universe of Discourse, have
already been identified in the preceding activity. The behaviour of the
information system in this area with respect to the environment is
determined.

Subtasks:
- Identify events and external agents, using external event analysis (3.2)

and internal temporal event analysis (3.2).
- Analyse the reaction of the events in a decomposition diagram, using

activity analysis (3.4).
- Develop an Event Model by generating data flow diagrams (3.4) and

entity relationship diagrams (4.5) of the decomposition.

The events from the inventory control case are:
External events:
- Receive Supplier catalogue
- Instructions for Purchase order generation
- Stock replenished
- Stock withdrawal
- Return of Stock items
- Deviation of Stock item withdrawals
Temporal events:
- Time to investigate suppliers
- Time to review Stock item types
- Suppliers delivery overdue

The reactions of the external events are shown in the decomposition
diagram in figure 6.1. These activities express data processing in terms of
concrete data compounds (see section 5.1) available in the organisation.
Samples of these compounds are obtained tha t are input for data
modelling. All result ing data models of the reactions can then be
integrated to deliver the so-called Entity Model, shown in figure 6.2. The
IEW provides the functionality to construct an integrated entity
relationship model from the available entity relationship models in the
dictionary.

164

MODELLING SUPPORT

Figure 6.1 Process decomposition of external events

165

FORMALISATION OF INFORMATION SYSTEMS MODELLING

t-t-
is Supplier m

has as Supplier

_ £ _

M

. - _ -

VI ι -

-С Ό

κ>
consists of

Figure 6.2 Integrated data model

166

MODELLING SUPPORT

Г"

гequest for cátalo

Purchase order

- Q. ч

Ο β)
L ТЭ

^ t o c k item delive
л

0 * 8 (2

Stock item to adjust

instructions for Purchase

desired Stock items

new Supplier info

л

&
L

returned Stock it J

t
о

о

S"

J

Figure 6.3 Context diagram

167

-e
new Suppl
1er mio

Stock ite
m to adjj

— О
request t
o withdra

- « α
returned
Stock ite

/Ädministr \
j ate Suppl

lers

request for catalogue

new Suppliers

existing Supplier address

Supplier info

Stock items

A
•

Ш

w

г
(^Maintain

Stock
items

V

raque

ΆαπιιηιβΐΓ
ate Stoc»

items

Stock item types

Stock item history

existing Stock items

! Г

instructi
ons for Ρ

pending Purchase orders
Stock item into

Supplier into
Stock items De low reorder

—^Generate
~" ftrchase
—\ orders

*V_

IC&PS new categonzed Stock items

new Stock item types

Stock items withdrawn

v^id returned Stock items

Stock item history

Stock rtems

Stock item types

existing Supplier address
V ^ pending Purchase orders

bad supplier
" delivered Purchase order

—о
Stock ite
m deliver

^'•Settle St
rock item

V

"Yftxchase ^
-J orders
—¡follow up
-% ,

i

ftrchase
order

4
О

te
>
Г

§
о
s:
о
•ч

•ч
о

>

о
2!
СП
MÍ
И
H

к
S

M

О
о
и
f г
Q

MODELLING SUPPORT

3J2 Determine the scope of ¿he business area partition

This subactivity is performed to determine the externals and all flows of
data within the scope of the business area partition. The constituent models
of the Event Model of the previous task are input.

Subtasks:
Construct a context diagram to represent the domain of the business
area partition by including all data flows to and from external agents
including the external agents of the Event Model.
Add the Entity Model from the Event Model to the context diagram.
Define the input and output flows from the business area partition in
terms of attributes and flow expressions.

The developed context diagram is shown in figure 6.3. Observe that the
modelling procedure for event analysis is split over subactivities 3.1 and
3.2.

3.3 Develop the current logical business area partition model

The goal of this subactivity is to describe the data and the data
transformations as they are performed in the current business area
partition. All data flow diagrams are created using the activity modelling
procedure (3.4).

Subtasks:
Take the lowest level activities from the Event Model and group similar
activities together (so far as possible).
Develop a decomposition diagram of the activity model of the partition by
grouping the lowest level activities. Compose the activity model
principally bottom up with a maximum of seven objects for each level.
Add data flow diagrams for the activity model of the partition.
Validate the business area partition model so far developed with
informants.

The result of regrouping within the decomposition of activities can give rise
to reorganisation in the business area. Event analysis will in any case
highlight some of the flaws in the organisation. It is a good convention for
the activity model that only the data flow diagram one level below the
context level has a data store, provided that there is no distribution of the
data base over various locations. This data store represents the central
database (see figure 6.4).

3.4 Complete the current logical business area partition model

The purpose of this subactivity is to achieve a complete activity model and
data model of the current data processing activities in the partition. All
activity models were created using activity modelling (3.4) and all data
models were created using entity-relationship modelling (4.3).

1Θ9

FORMALISATION OF INFORMATION SYSTEMS MODELLING

Subtasks:
Detail the activity model to the level of tasks and develop a data flow
diagram for the activity above these tasks.
Develop a data model for each data flow.
Develop a data model for each task using the data models of the input
and output data flows.
Specify the activity for each task by constructing action diagrams.
Develop a data model for each activity in the activity model. This is a
bottom up process using the entity relationship diagrams of the tasks
and the data flows created in the previous subtasks (as mentioned
before, a dedicated functionality of the Information Engineering
Workbench supports this process). When you reach the context level
compare the developed data model with the Entity Model, that is part of
the Event Model (subactivity 3.2). Make adjustments if necessary.
Perform a conservation analysis on the completed data model. This
analysis checks whether the output data is consistent with the input
data and is completely supported by the Information Engineering
Workbench.

As discussed in section 5.1.4, the Action Diagram technique of [Martin 85]
can be used in the same way as the Conceptual Task Model. In the
Information Engineering Method the concept of task is called a functional
primitive. It is defined as an activity known to the informant. This is a very
vague definition and so we used the sample criterion to determine the
abstraction level of the tasks. The modelling procedure of tasks for the case
of action diagrams is similar to that of the CTM.

This subactivity completes the modelling of the Business Area Partition.
For each object in the data model such details were recorded as its
definition, the a t t r ibu tes with corresponding cardinal i t ies , the
relationships in which it participates, and development data. More data
flow diagrams, entity relationship diagrams, decomposition diagrams,
action diagrams, definitions, comments and other reports created for the
inventory control case can be found in [Brinkkemper 88ab].

The remaining subactivities

The remaining subactivities are mostly concerned with correctness checks
and preparations for System Design. We shall describe them briefly:

3.5 Analyse data files and systems
Associate the Business Area Model with the current automation
environment to gain a better understanding of the strong and weak
points of the current implementation.

3.6 Reevaluate alternative prepackage solution approaches
The reasons for the use of prepackage solutions may now become more
evident because of knowledge gathered from the business area
partition model.

3.7 Reconcile the current business area partition model with enterprise
strategy

170

MODELLING SUPPORT

Determine the extent of changes needed for the current business area
partition to satisfy the enterprise goals.

3.8 Reconcile the business area partition model with the business area
information model
Ensure that the business area partition model follows the guide-lines
of the baseline business area model. Compare the business area
partition models with each other and update the baseline business
area model.

Note that some models occur in the description of the activity 3 of the BAA
that are specific for ІБМ, for example, the Event Model and the Business
Area Partition Model. These models could better be called model structures
since they are to be considered as a structure of models. For instance the
Business Area Partition Model consists of a hierarchy of activity models
with all related data models and task models. In IEM these model
structures form the core of the modelling cycle, to which almost all
development activities are related. In the above description the subactivities
are formulated in terms of the model structures and their constituent
models.

In the future, tools like the IEW may have functionalities to support the
model structures implemented. For instance the addition of a model to a
model structure, showing the status of the model structure (see 6.1.2), or
the transfer of data from one model structure to the other. Brainstorming
about the future of tools one could think of the following scenario:
1. Model structures are implemented in the tool according to the directions

in the method. Deliverables of the method are defined in terms of model
structures

2. Functions will be implemented to check the completeness of a model
structure and to print a completed one.

3. The tool notices that a model structure is completed, or that a certain
percentage of the models is still missing.

4. The tool lists which models are needed to complete a model structure, or
even a listing of the activities of the method the developer has to perform
in order to finish a model structure.

5. The tool asks for the missing data and completes the model structure.
The developer combines and transforms them into a r u n n i n g
information system.

6. The tool asks for all data and develops the information system.

Gradually more methodical knowledge is built into the tool. The method
companionship increases until in the end the method is completely
implemented in the tool, so one can say that the tool is the method. A lot of
research and development on methods and tools is required to reach this
ultimate goal.

171

FORMALISATION OF INFORMATION SYSTEMS MODELLING

а з MODELLING TRANSPARENCY

The many models resulting from a methodical system development process
are intensely interrelated. The process model relates to views of the data
model, the user interaction to certain processes of the process model,
structure charts to particular data base tables, and so forth. CASE-tools
supporting development activities should enable the management of the
relationships among the models and the change-over from one modelling
technique to another in a given context. Because of the resulting
transparency of the models and the modelling techniques in relation to
each other, we call this functionality of a workbench m o d e l l i n g
transparency.

We use the term transparency to mean the absence of intermediate systems
to operationalise the connections between two systems. The extent to which
intermediate systems are present in tools is called the degree of the
transparency. Apparent absence of intermediate systems makes the one
model transparent to the other and is defined as a high degree of modelling
transparency. The presence of many intermediate operations complicating
the connections between models and is called a low degree of transparency.

6.3.1 Model dependencies

The dependencies among the models are due to relationships between the
modelling objects, such as entity types, processes, modules, etc. These
dependencies can be modelled using ordinary data-modelling techniques,
resulting in a meta-data model (see sec. 2.2).

Furthermore, since the modelling activities are either in parallel or
sequential, we make a distinction between sequential dependencies and
parallel dependencies. These dependencies are defined in terms of models
and objects. By a model, we mean an abstraction of a certain system
described in a particular form of data representation, for instance, as
prescribed by the diagrammatic techniques (entity-relationship diagram,
data flow diagram, structure charts, etc.). Models can also be represented
in tables, structured (pseudo) programming languages, etc.

Sequential dependency.
A model is said to be sequentially dependent on another already defined
model, if objects within it need to be brought into agreement with data
concerning these objects in the other model. This form of dependency is
introduced because various aspects relating to the same objects from the
Universe of Discourse are described in various models in successive
activities of the method. Sequential dependency mostly relates to models
of a different type.
Assume, for instance, that the association matrix Entity types versus
Processes has been definitely established, and that it indicates that the
entity types "Supplier", "Order" and "Article" are needed for the
"Ordering" process, then the entity-relationship model of this process
must inevitably contain these entity types.

172

MODELLING SUPPORT

It is clear that , in principle, departure from these sequential
dependencies is not allowed. Should a departure be necessary, however,
the already established model should first be amended.
A special form of sequential dependency is related to so-called
generative activities. These are activities with which another model is
derived, and possibly enlarged, from an already available model. An
example is the generation of a relational database structure from an
entity-relationship model. It is needless to add that essential features in
the database, such as for instance entity type, keys, optionality, etc., are
never modified without first altering the relevant aspects in the
corresponding entity-relationship model.

Parallel dependency.
Two models are dependent in parallel if they model aspects of a
particular common collection of objects, are developed in parallel with
each other and are more or less simultaneously established. This form
of dependency can occur with models of the same type as well as with
models of a different type. For example, a number of entity types can
occur in the entity-relationship models of two different processes. The
definitions of these entity types, including attributes and cardinalities,
should be in agreement with each other or be brought into agreement.
Since neither of the two models can prescribe anything for the other,
any modifications should be well co-ordinated.

Because various models are created and maintained by means of
workbenches, which in t u r n generate the progress documents ,
workbenches must be able to monitor these dependencies. Workbenches
currently available support the placing and maintaining of dependencies to
a very divergent degree. It would be desirable if the workbench were to
provide direct support for the change-over from one modelling technique to
another in a given context during the development process. Changes in a
model should be processed in the dictionary, and could in that way be made
immediately visible in all related models.
The meta-activity model, a process model of the modelling activities, should
determine the type of dependency.

6.3.2 Degrees of modelling transparency

CASE-tools currently available support the placing and maintenance of
dependencies to a very divergent degree. We distinguish four degrees of
modelling transparency, defined on the basis of the functionality of a tool
(see [Brand 89ab]).

0. Stand-alone workbenches with a non-accessible dictionary do not
support modelling transparency. Developers are forced to recognise and
monitor the dependencies between models themselves. We call this
modelling transparency degree 0 (see figure 6.5-0).

173

FORMALISATION OF INFORMATION SYSTEMS MODELLING

0.

2. -++
ERD

ENCYCLOPEDIA

ERO

- f i -
DFD

DFD

(Hyper-Case)

Relationship Details
Cardinality: @@@
Frequencies/Day
Updates: xxx
Insertions- * "
Deletrans: ###

Contextual mformaticr:
xxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxx DFD

:^л"--»»»-„

Entity type definition:
xxxxxxxxxxxxxxx
Comment:
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxx

Fig. 6.5. The different degrees of modelling transparency

174

MODELLING SUPPORT

1. Workbenches with an accessible dictionary enable dependencies to be
established. However, these links can only be shown by abandoning the
one model, starting up the other workbench and displaying the other
model with it. Because of this time-consuming process, developers will
still manage many of the dependencies themselves. This is
transparency degree 1 (see figure 6.5-1). There are groups of tools which
have been matched to each other by the producer(s) and which therefore
have this degree of transparency. In practice, this will only work
properly if all parallel dependencies can be modelled in one tool and the
change-over from the one to the other tool only concerns exclusively
sequential dependencies.

2. A better form of modelling transparency is offered by workbenches
providing direct support in switching from one model to the other and
back (see figure 6.5-2). The best result is achieved if both models can be
shown side by side on the screen and changes to the one model are
immediately visible in the other. This is degree 2 of modelling
transparency.

3. Transparency degree 3 is for workbenches offering the so-called
hypertext functionality (see [Smith 88]) and we accordingly refer to this
degree as "Hyper-CASE". Hyper-CASE means that the workbench user
can place dependencies from each object or group of objects in a
particular model to other models of all kinds, which are immediately
accessible from these objects. This makes it possible to traverse the
dependencies of the models in an arbitrary way (see figure 6.5-3). This is
in contrast to workbenches with transparency degree 2, which permit
only those traverses established in the workbench. Hyper-CASE offers
flexibility to the user of the workbench, but can only be used by highly
t ra ined developers because of the difficulties in managing of
unstructured dependencies.
It is usually immediately apparent from their nature, between which
model types dependencies can exist, as in the examples referred to
above. By making the dependencies in an adjusted model subject to
inquiry, the workbench simplifies the management of dependencies by
the developer.

Considering this, we conclude that CASE-tools aiming at an integrated
system development support should provide modelling transparency
facilities. Structured system development projects with several analysts
perform best with a meta-data model that is the same for everyone. One
must therefore be very careful with dynamic dependencies and hyper-
CASE. This may only be effective for highly qualified system developers or
in one-person projects.

6.3.3 Modelling transparency in the IEW

The support of different modelling techniques within the constraints of the
hardware is not a trivial issue and must be well motivated. We illustrate

175

FORMALISATION OF INFORMATION SYSTEMS MODELLLNG

the discussion of modelling transparency with its implementation in a
currently available tool.
Modelling transparency degree 2 is implemented on a workstation of the
IEW [IEW 88]. The users ' interface permits the placing of several
diagrams on the screen. Additions to and changes in, for instance, an
association matrix can be shown direct in an entity-relationship diagram.
Dependencies between models are predefined in accordance with the
Information Engineering Method [Arthur Young 86]. Not all modelling
techniques are available on all workstations. To manage dependencies
between models created on various workstations, it is necessary to switch
from one workstation to the other, therefore transparency degree 1.
However, modelling techniques are grouped by workstation in such a way
that dependencies between the various workstations are, in accordance
with Information Engineering, exclusively sequential.

Sequential and parallel dependency occur in various forms in the IEW. For
example, sequential dependency occurs in the IEW if action diagrams for
the lowest level of processes are developed in the process model. The
incoming and outgoing data flows of the process are set out in the action
diagram. When further completing the action diagram, the data used by
the process can be inserted, while a check is carried out to ensure that
these data are actually input. An example of parallel dependency is the
development of a process decomposition. A process decomposition can be
shown in its entirety with the help of a decomposition diagram. A
horizontal level of this decomposition can be shown in the form of a data
flow diagram. The addition of a process within the decomposition diagram
results immediately in the addition of the same process in the data flow
diagram and vice versa. It is also possible with this dependency to link up a
process to another process, after which one's attention is drawn to data
flows which may possibly become lost.

6.4 DERIVATION OF SUPPORT

The problem of the derivation of guide-lines for the use of a tool within a
method was already raised in section 6.1.1 at the introduction of the concept
derived method companionship. For an efficient and effective system
development, such a relation between a method and a tool should be
established carefully. Derived method companionship can be determined
using the meta-data models and meta-activity models of methods and tools.
In order to formulate guide-lines for the use of the Information
Engineer ing Workbench (IEW) within the System Development
Methodology (SDM), we discuss the determination of the meta-data models
and a formal derivation of the support.

6.4.1 Meta-modelling

The derivation of support guide-lines can be done in an informal way by
experienced system designers, who have knowledge of both the method and
the tool. This leads to the danger that the guide-lines are only applicable in

176

MODELLING SUPPORT

certain type of projects, and that insurmountable version problems arise
when method or tool change. Therefore it is preferred t h a t a formal
derivation is performed, which has the advantage of objectivity.

The approach for this derivation is meta-modelling, which is extensively
discussed in chapter 2. The meta-model of the method is obtained by
analysing the development activities and the products, that result from
these activities. This meta-model consists of a meta-activity model, which
results from an analysis of the activities, and of a meta-data model, which
results from an analysis of the products (see fig. 6.6).

METHOD

PRODUCTS

*
ACTIVITIES |-

NAVIGATOR

i
DATABASE

WORKBENCH

META-MODEL METHOD

Ь^

META
ACTIVITY

MODEL
1

'

Ь

\

1

META
DATA

MODEL

-

»
'

META
ACTIVITY

MODEL * - •

i

r

META
DATA

MODEL

META-MODEL WORKBENCH

Figure 6.6 The derivation of method companionship

The same kind of analysis is performed for the tool, resulting in a meta-
model of the tool. The structure of the central database used by this tool is
modelled in the meta-data model. By analysing the navigator facility [Vonk
88], that prescribes the order in which modelling in the tool has to take
place, the meta-activity model results. This navigator facility is at present
seldom present in a tool.

When both meta-models have been created, a comparison has to take place
to determine where the method is supported and where the tool is

177

FORMALISATION OF INFORMATION SYSTEMS MODELLING

supportive. This is depicted by the vertical arrows at the left side of figure
6.6. Here we only focus on the relation between the two meta-data models,
because of the rudimentary structure of the meta-activity model of the tool.

The comparison of the meta-data models is to a great extent based on their
structure, which in turn can be obtained by meta-modelling performed on
the meta-data models, resulting in the meta-meta-data models. For every
part of the meta-data model of the method we will look for a representative
part of the meta-data model of the tool taking into account the structure of
both parts.

The Method

We consider a derived method companionship for the System Development
Methodology [Turner 87], or SDM for short. This is a method for the
planning and control of an information system development project
covering the whole system life cycle. SDM describes in detail which steps
have to be taken in each stage of the development process, but no attention
is paid to the way it has to be done. The SDM describes seven phases for top-
down system design, implementation and maintenance.

Each phase consists of a number of activities which describe to a certain
level of detail which steps have to be performed. The purpose of every SDM-
activity is to create one or several SDM-documents, often by using one or
more previously produced SDM-documents. For every SDM-document it is
described which information should be included using several elementary
data types, which we named SDM-elements. We considered only the phases
from Information Systems Planning to Detailed System Design.

The meta-data model for the SDM is determined by analysing the products
which should result from the activities, i.e. the SDM-documents. Doing
this we get a small meta-data model for every SDM-document, which can
be united to get the overall meta-data model for SDM. For a more detailed
discussion of the derivation and the resulting meta-data model of SDM we
refer to [Brinkkemper 89b]. The meta-meta-data model is created from the
meta-data model. This model is given in figure 6.7.

The entities in the meta-meta-data model are the elementary data types or
SDM-elements, which the method requires to occur in the SDM-
documents. There are 3 kinds of SDM-elements:

1. SDM-object type: This represents an entity type of the meta-level, e.g.
'Process' and 'Relationship'. SDM contains about 350 object types.

2. SDM-association type: This represents a relationship type of the meta-
level, e.g. 'Process -involves- Relationship'. An SDM-association type
always involves two SDM-elements and is not recursive. SDM contains
about 1000 association types.

3. SDM-element: This is either an SDM-object type or an SDM-association
type. SDM-elements may appear as terms in a term hierarchy.

178

MODELLING SUPPORT

subtype supertype
ol Ol

.« . ».

figure 6.7. The meta-meta-data-model of the SDM

Ibetool

The Information Engineering Workbench [IEW 88], or the IEW for short, is
an initial method companion of the method Information Engineering
(IEM) ([Martin 88a]). The IEM describes four phases for system
development: Information Systems Planning (ISP), Business Area
Analysis (BAA), System Design (DES) and Construction (CON). The IEW
consists of four modules supporting these phases: the Planning
Workstation for ISP, the Analysis Workstation for BAA, the Design
Workstation for DES and finally the Construction Workstation for CON. For
a more detailed discussion of this workbench, see [Brand 89ab].

Within every IEW-module several diagramming techniques are available
reflecting the different techniques, that are prescribed by IEM. From every
IEW-diagram the user has access to a part of the dictionary of the IEW,
called encyclopedia. This encyclopedia has a fixed structure. We call the
data types available in the encyclopedia IEW-elements. Furthermore there
are IEW-reports, for reporting the contents of the encyclopedia, and IEW-
analyses to check the contents of the encyclopedia or to perform certain
development activities, such as the automatic generation of a relational
database from an entity-relationship diagram.

The meta-data model of the IEW is that part of the meta-data model of IEM,
that is implemented in the IEW. It therefore represents the structure of the
encyclopedia. In the complete model there are exactly 32 object types and
about 350 association types represented. The structure of the meta-data
model of the IEW is revealed by the meta-meta-data model, shown in figure

179

FORMALISATION OF INFORMATION SYSTEMS MODELLING

6.8. This s t ructure is needed to determine the derived method
companionship of the IEW with the SDM.

The entities in this model are the elementary data types that can be
distinguished in the encyclopedia of the IEW:

1. IEW-object type: This represents an entity type of the meta-level, e.g.
'Attribute type' and 'Data store'.

2. lEW-associatíon type: This represents a relationship type of the meta-
level and involves one or two IEW-object types, e.g. 'Entity type -is
described by- Attribute' type.

3. IEW-property type: This represents an attribute type of the meta-level,
e.g. 'Definition' and 'Comments'. A property type can be either an
IEW-object type or an IEW-association type. There are about 100
property types in the IEW.

4. IEW-property value type: This represents a data type of the meta-level,
such as 'Text' or 'Check mark'.

has
value

vajue
ol

ligure 6 β The meta-mela-data-model ol the lew

180

MODELLING SUPPORT

6.4.2 The derivation of method companionship

When both meta-data models are available, we are interested in the
supported part of the method and the supportive part of the workbench. For
finding the representation of a part of the method model we use the meta-
meta-data models. The meta-meta-data model of the method shows us the
type of the elements for which we are looking for a representation, while
the meta-meta-data model of the workbench shows us all the possible types
of representations. The constraints in these meta-meta-data models can be
heuristics in the search process. Note also that it is possible that there are
alternative representations in the workbench for certain parts of the
method model.

For the SDM and the IEW this has been worked out using the models
discussed in the preceding sections. The objective is to find the
corresponding part of the IEW-model for the given SDM-model, which can
be used for supporting SDM. This process is called the model projection M
from the set SDM-MODEL, that consists of parts of the SDM meta-data
model satisfying the constraints, to the set IEW-MODEL, that consists of
parts of the IEW meta-data model also satisfying the constraints. M is
described as a sequence of steps: the extension of the SDM-model, the
projection of the extended SDM-model and the composition of the resulting
IEW-models. This is illustrated in figure 6.9.

SDM-
MODEL

SDM-
EXTENSION

MODEL-
PROJECTION IEW-

MODEL

EX co

EX-
SDM-

MODEL

UE

UNITED
ELEMENT-

PROJECTION

IEW-
COMPOSITION

OPEN-
IEW-

MODELS

Figure 6.9. Model projection

181

FORMALISATION OF INFORMATION SYSTEMS MODELLING

M : SDM-MODEL -> IEW-MODEL

M (x) = СО о UE о EX (χ)

The EX-function describes the extension of the SDM-model and is added to
the projection because the method is not as detailed as the workbench with
respect to the definition of data elements. For every part of the extended
SDM-model, the united element projection UE checks whether there is a
representation in the IEW. We make use of decomposition by considering
the representation of a larger part as the combination of representations of
the elements which are involved in it. Finally, the composition mapping
CO combines the results into that part of the IEW-model, that supports
SDM.

Of these three functions the UE-mapping is by far the most important. It is
in its turn composed of a whole set of functions that project the various
SDM-elements on the IEW-elements. For each of the eight combinations of
the 2 entity types of the SDM meta-meta-data model and the four entity
types of the IEW meta-meta-data model, projection functions are defined in
terms of informally defined basic functions. A description of the basic
functions needed for the derivation of method companionship for the case of
SDM and IEW, can be found in [Brinkkemper 89b].

After performing the projection, guide-lines were drafted for using the
workbench within the method. Based on the established derived method
companionship, we also determined the diagramming tools in the IEW,
that can be used for modelling within activities of SDM, the reporting and
analysis functions in the IEW, that can be used within activities of SDM for
retr ieval of development information or for performing activities
automatically, and the reports of the IEW, that are a part of reporting
documents as prescribed in the SDM. The resulting guide-lines were
published in [Lange 89].

From these investigations it turned out, that almost the full meta-data
model of IEW supports SDM. This is not suprising, because system
development processes will not vary that much in modelled data. The same
result could be achieved for many other tools, although one should observe
that tools differ greatly in the size and contents of the meta-data model. For
the supported part of the meta-data model of the SDM, it appeared that the
elements, whose data is scarcely updated during development and hence
need little support, are mostly not supported in the workbench.

We conclude t h a t the formal determinat ion of derived method
companionship using meta-modelling is a very useful approach to the
structured formulation of guide-lines for the employment of a CASE-tool in
a system development method. The process can be formulated explicitly
and justified on the basis of the various meta-models.

Obviously further research in the field of meta-modelling and method
companionship is needed. For i n s t a n c e , the derived method
companionships of other methods and tools have to be determined, which

182

MODELLING SUPPORT

will probably lead to different meta-meta-models and hence to a different
projection structure. Also feedback regarding the practical experiences
with the guide-lines in projects is required. All in order to reach the
ultimate goal of the improvement of the efficiency and effectiveness of
system development.

6.5 LAYERED MODELLERÒ

A lot of modelling techniques result in complex and busy diagrams. This
hampers the development of correct models and the ease of comprehension
by developers and informants. Petri-nets, NIAM data models, CTM-nets,
among others, suffer from this deficiency, one way of handling complex
models, without giving up the benefits of the modelling technique, is to split
the model in several model layers. A model layer is a subset of a complete
model restricted according to a particular aspect. For the specification of
real-time systems, as suggested in [Hatley 87], such model layers were
already introduced in the separate specification of the control flow and the
data flow for common processes. In figure 6.10 the idea of layered
modelling is shown for the case of dialogue modelling.

Layered modelling can be of great importance in relation to modelling
procedures and their support tools. First, the support tools should provide
the functionality to split a model into layers and have proper analysis
checks defined on them. Secondly, the steps of a modelling procedure imply
a splitting of the model over several layers. In most modelling procedures a
specific aspect is treated in a single step. One could define a view on the
model that only shows those aspects modelled in this particular step. The
realisation of the modelling procedure with the layered modelling in a
CASE-tool provides optimal development support.

Considering a layer as a model view seems relevant for various modelling
techniques. Techniques in which standard or default components occur, or
in which some distinguishable aspects exist in one model, are especially
suited for layered modelling. In this section we will illustrate this with the
layered modelling of dialogues. We will first discuss the modelling
technique for dialogues and its relation to other modelling techniques.
Thereafter the layered modelling is formalised.

6.5.1 Dialogue modelling

In the everyday practice of information system development, modelling of
dialogues is an important design concern. The acceptance of information
systems depends largely on the user interface. One of the most difficult
problems of dialogue modelling is the complexity of dialogue models. To
overcome this complexity we introduce layers of the model, in which
aspects of a dialogue are modelled separately. The method applies
augmented state transition diagrams as a specification technique. These
state transition diagrams can be formally described to investigate their
properties.

183

FORMALISATION OF INFORMATION SYSTEMS MODELLING

Basic Model

Feedback Model

Alarm Model

Help Model

Complete Model

Figure 6.10 Layered Modelling of dialogues

After activity modelling and data modelling, processes at the bottom level of
the global activity model (the so-called tasks, see section 5.1) can be
classified as either interactive or non-interactive. An interactive task is a
process for which dialogue between the system and the user is needed in
order to exchange information processed by the task. For each interactive
task a dialogue is modelled for which all input from the user, output to the
user and all kinds of corresponding information must be described.

The overall stage of interaction specification results in models in which the
various interactions between the system and the user, and the order of
interaction are specified. The layout of the screens and messages is
described as well. In dialogue modelling, certain system actions and
conditions are identified but not elaborated. Based on the dialogue models,
the user interface can be generated or programmed and fitted to the rest of
the information system.

184

MODELLING SUPPORT

The specification technique for modelling dialogues we use here is the
dialogue state transition diagram, which is an extension of the ordinary
state transition diagram. A state is denoted by a rectangle and represents
an initial state, a final state or an interaction point with the user. An
interaction point with the user is a state of the system in which it will wait
for input from the user. An example is shown in fig. 6.11.

films AND NOT
films on tape available

I person AND
person late with return

U person late with return

I films AND
films on tape available
show available tapes
AND add rental info

Figure 6 11 Example treatment of film request

Transitions are denoted by a directed arc and are labeled by input,
conditions, actions and system output. A transition between two states
occurs if the user has given a particular input and if the specified
conditions are valid. As a result of a transition, the system performs the

185

FORMALISATION OF INFORMATION SYSTEMS MODELLING

prescribed actions and produces system output. Input and conditions are
separated from actions and system output by a separator line. In addition,
input is preceded by the I-symbol and system output is preceded by the U-
symbol. Instead of an event, a transition can also be composed of a time
limit. The transition with a time limit is made if no input is received from
the user before the time limit runs out. Such transitions are called alarm
transitions.

The example is part of the video rental case, as specified in appendix A. It
is a simplified interactive task regarding the treatment of a film request in
the video store. This task is interactive and its dialogue is depicted in the
dialogue state transition diagram of figure 6.11.

For the modelling of dialogues, a modelling procedure can be given to
support the designer in his task. Three kinds of messages are
distinguished in dialogue modelling: basic messages, feedback messages
and cancellations. A feedback message is a message in which the receiver
of a message says how well he has understood the sender's message,
where the sender can be either user or system. Cancellations are used to
revoke a previously sent message. Basic messages are all messages
between the user and the system, except feedback messages and
cancellations.

A dialogue, then, is modelled in a number of steps. Each step treats a
particular aspect of the interaction, for instance feedback or help. All
aspects could be depicted in one model containing the specification of the
complete dialogue. The complete dialogue would thus be described in one
dialogue state transition diagram. This would, however, result in a very
intricate and busy diagram.

We therefore elaborate the various aspects of a dialogue in different models.
Feedback, for example, is modelled in the Feedback model, and help is
modelled in the Help model. The various models can be seen as layers of
the Complete model, which can be obtained through a union of the different
models. The models we distinguish are:
- the Basic model,
- the Feedback model,
- the Help model,
- the Alarm model.
The Basic model shows the elementary dialogue, sufficient for ordinary
interaction. The mutual unders tanding of exchanged messages is
modelled in the Feedback model. The Help model specifies the assistance of
the user with all kinds of help information. Finally, time limits are
depicted in the Alarm model. The complete dialogue is then described in
four dialogue state transition diagrams. Figure 6.10 illustrates the layered
modelling of dialogues.

A complete and correct dialogue state transition diagram must meet
certain requirements. For instance, only one state is the initial state. The
initial state is the state from which the dialogue is started. If more than
one initial state exists then ambiguity would be introduced. A transition

186

MODELLING SUPPORT

must begin at a state and end at a state because transitions always occur
between states. These rules can be realised as checks in a dialogue
modelling tool. The formalisation of these rules on the complete model or of
a specific model layer is discussed in the next section.

6.5.2 Formalisation over layers

The modelling of dialogues is a technique of which both the
representational concepts and the processing can be formalised. All kinds
of rules, that a correct dialogue model must satisfy are formulated. In the
tool, these rules can be implemented as pre-analysis checks and post-
analysis checks (see 6.1.2). The meta-model of the dialogue state transition
diagram enables us to depict the components of the technique, their
interrelationships and the constraints. We will not discuss it here, as a
discussion can be found in [Koesen 89].

The layered modelling of dialogues gives rise to rules for the complete
model as well as for the separate layers. These more intricate rules cannot
be expressed in a meta-model in a simple way. Moreover, the modelling of
dialogues in a state transition diagram offers the possibility to specify the
processing of a dialogue as an automaton, and hence the extension to
prototyping tools more or less follows.

We will give just a brief outline of a formal mathematical model here.

A d ia logue s t a t e t r a n s i t i o n d i a g r a m is an a u t o m a t o n
D = (S, I, C, A, U, T, SÌ, sf), where
S is the set of States,
I is the set of Inputs,
С is the set of Conditions,
A is the set of Actions,
U is the set of Outputs,
Τ is the set of Transitions, a subset of ((S χ I χ С) χ (A χ U χ S),

SÌ € S, the initial state, and

sf E S, the final state.

All sets are assumed to be finite. The sets A and С are sets containing both
simple elements and combinations of elements. The meaning of a pair of
triplets ((p, i, c), (a, u, q)) is that the diagram D enters the State q, from the
State ρ upon an Input i when a Condition с is fulfilled, performing the
Action a and producing the Output u.

We define the set of States, for which a transition exists to a State s, as

T[-> •] : S -» 2S

T[->s] = {ρ e S la ((ρ, i, с), (a, u, s)) e Τ },

and the set of States, that can directly be reached from a State s, as

187

FORMALISATION OF INFORMATION SYSTEMS MODELLING

T[· ->] : S -» 2S

Tte-»] = { q e S ІЗ ((s, i, c), (a, u, q)) e Τ }.

In a similar way we define the transitive closures of these setsas : T+[-*s]
the set of States from which s can be reached via one or more Transitions
and T+[s—>] the set of States that can be reached from s via one or more
Transitions.

Now we are able to define some rules for the complete model in terms of the
above definitions.

1. There is one Initial State and the Initial State is that State which is the
source of exactly one Transition and not a destination of any Transition:

{ s ε S I | T [- > S] I = 0 Λ |T[B-»] I = 1) = {s¡)

2. There is one Final State and the Final State is that State which is the
destination of one or more Transitions and the source of no Transition:

(s e S I | T [- > S] I > 1 Λ | T [S - >] I = 0} = (sf)

3. The Termination rule: the Final state has to be reachable from every
State except the Final state itself.

T+[->sf] = S \ (sri

In the same way the Reachability rule can be formulated: every State,
except the Initial State itself, has to be reachable from the Initial State.
Other rules formulate, among other things, the non-ambiguity of
conditional choice and the completeness of input specification.

Similarly, an automaton can be defined and rules can be formulated for
every model layer. We consider for example the Help model. Assume that
S B is the set of states of the Basic Model and S H is the set of help states. In
the Help model only those states of the Basic model appear that are
connected to a single unique help state. For the Help Model, an automaton

D H = (S H и S B , I H , C H , A H , U H , Τ Η)

can be defined, where I H consists only of the help request and the help
return, C H contains only the trivial condition 'TRUE', A H consists of help
actions, U H of help texts and Тн of the transitions from the states of the
Basic model to those of the Help model and back. More specifically

Тн С ((S B χ I H χ C H) χ (AH χ U H χ S H)) U ((S H χ I H χ Сн) χ (AH χ U H χ S B))

188

MODELLING SUPPORT

All sets in D H are considered to be subsets of the corresponding set in D.
For D H in addition to the other rules the following two rules hold.

4. In each state of the basic model, help can be obtained.

Vse S B Зіе І н , се Сн, ae A H , uè U H , s'è S H [((s,i,c),(a,u,s')) e Тн]

5. From each help state we return to the state, where the help was
requested for.

V s ' e S H A ((s.i.cXU.u.s')) e Т н З Г е І н , С е С н , а ' е А н , и е і і н
[((s'.i'.c'Xía'.u'.s)) e Тн]

Other rules formulate the singularity and the uniqueness of the help state.
From these rules various properties can be deduced, for example that the
set of transitions from the basic model to the help model is a bijective
relation.

In the same way rules for the other layers can be formulated. All rules
provide insight in the complete model as well as in the separate layers.
Most of the rules give rise to post-analysis checks to be built into a dialogue
modelling support tool integrated with tools that support the remaining
modelling activities of a system development method.

189

-APPENDIX

THE VIDEO STORE BENCHMABK

In order to present examples of the discussed modelling techniques, we
will make use of a small case involving a Video store. This case is on
purpose kept small and simple as to avoid a high level of complexity and
introduction of many irrelevant details. On the other hand, the case is
large enough to show some interesting aspects of the presented technique.
This case is an elaboration of the case presented in [Moriarty 87].

A . l Activities of the Video store

The Video store receives tape requests and returned tapes from customers
and new tapes from tape suppliers. Whenever necessary the Video store
sends tape overdue notices to its customers.

Tape requests are taken care of by the store assistant. While treating these
tape requests he uses information concerning films and tapes. He also uses
and updates the list of rentals.

The store assistant also takes care of tape returns. For this task the store
assistant again needs the information concerning films and tapes as well
as the list of rentals. Here too the list of rentals is updated.

The other activities are the submission of rate changes and the submission
of new tapes by the store management and the production of rental reports
and the sending of tape overdue notices by the store administration.

The elaboration of this description of the activities of the Video store results
in a context diagram (fig. A.l) and a data-flow diagram (fig. A.2). The
context diagram depicts the relevant interactions of the Video store with
the external agents, denoted by double rectangles, in its environment.

The data-flow diagram depicts the activities of the Video store in more
detail. We used a variation for the notation of these diagrams, in which the
internal agents are listed within the activities.

A.2 Information in the Video store case

As a starting point for the data modelling, samples, such as forms, letters
and tables containing information used in the Video store are taken. A
sample can be related to a data-flow or data store in the data-flow diagram

191

FORMALISATION OF INFORMATION SYSTEMS MODELLING

which resulted from the activity analysis. The sample tables are shown
here in fig A.3. Explanation on the tables still to be extended.

In fig. A.4 the global conceptual schema resulting from the data modelling
phase is shown in the notation of the elementary data modelling technique
of NIAM. This global conceptual schema is constructed by means of a
bottom-up integration, according to the activity decomposition, of all the
schémas of the data-flows and data stores.

A.3 Elaboration of the task Treatment of film reves t '

In the following paragraph one of the activities of the data-flow diagram,
namely the activity 'Treatment of film request', is described in more detail.

Film request are taken care of by the store assistant. Whenever a customer
requests a film, the store assistant first checks whether there are still
tapes, containing the requested film, available and then he searches, if
necessary, for the rental price. Next he checks whether this customer is
late with the return of other tapes. If so he may not borrow the tape
requested. If this is not the case, he records this rental by updating the
rental list. For this, the customer is asked for his address.

New tapes

Activities of the Captain
Video rental store

Figure A 1 Context diagram of the Video store case

192

APPENDIX

Film request Returned tape New tapes

1
Activities
of the
Captain Video
rental store

•
Treatment of
film request

store assistent

' r

•

\

Settlement of
tape return

store assistent

t

Submission of
rate change

store management

4

\

Submission of
new tapes

store management

/

\ /
,-.-.
concernma
films and tapes

t

List of
rentals

' t

Production of
rental report

store administration

'

Rental report

' V

\
^

Redaction of
Tape Overdue
Notices

store administration

1 \

Tape Overdue
Notice

Figure A.2 Data-flow diagram of the Video store case

193

FORMALISATION OF INFORMATION SYSTEMS MODELLING

List of rentals:

Rented dim

Marathon Man
Goldfinger
The Godfather
Marathon Man
Modem Times
Ghandi
Marathon Man

Tape

T301
T207
T642
T305
T489
T500
T301

Person

F Smith
F Smith
A Jones
A Jones
A. Jones
W Brown
F. Smith

Street and
house-number

40 Church Road
40 Church Road
5 Polstead Road
5 Polstead Road
5 Polstead Road
9 Oak Road
40 Church Road

Community

Albany
Albany
Prescott
Prescott
Prescott
Albany
Albany

Check-out
date

18-2-19ββ
1β-2-198β
19-2-1988
18-2-1988
20-2-1988
20-2-1988
20-2-1988

Return date

19-2-1988
19-2-1988

22-2-1988

25-2-1988

Rental
charge

$ 3 , -
$ 3 , -

$ 4 , -

$11,--

Information concerning films and tapes:

Film

Marathon Man

Goldfinger

The Godfather

Modern Times
Ghandi

The Great Dictator

Empire of the Sun

Rental price

$ 3 , -

$ 3 , -

$4,--

$ 2 , -
$ 5 , -

$ 2 , -

Late charge a day

$ 1 , -

$ 1 , -

$ 2 , -

$ 1 , -
$ 3 , -

$ 1 , -

Tapes

T301
T305
T309
T207
T208

T642
T666
T489
T500

T I 80
T181
T182

Rental report:

February 1988

Film

Marathon Man
Goldfinger
The Godfather
Modern Times
Ghandi

Nr. of Rentals

3

1
1
1
1

Figure A.3 Sample tables for data modelling

194

APPENDIX

has-return-date is-retum-date of

is-recorded-on contains

ias-as-late- is-late-charge-
charge-a-day a-day-ol

• ^ ж . . · _ .Amount

^ ^ (·) lo) money

" ^ • -* (Dollare)

has-rental-pnce is rontal-pnce-of
lives-at

is-rasidence-ol

Day

(Date)

A rentable film is a film which does not play the role 'is new'.

r i = The Tape., has been borrowed by Person., on Day..
r2 = Person., borrows on Day., the Tape..
r3 = On Day.. Person., borrows the Tape.

Figure A.4 Conceptual schémas

196

R EFERENCES

[Abiteboul 87]

[Abnal 74]

[Aerts 88]

[Ahituv 87]

[Alvey 82]
[Antonelhs 81]

[Apostel 60]

[Arthur Young 87]

[Barwise 77]

[Bemelmans 87]

[Berdal 86]

[Bergstra 86]

[Bergstra 89]

[Bertels 69]

[Bjorner 78]

Abiteboul, S and R Hull, IFO A Formal Semantic Database Model
ACM Transactions on Database Systems, vol 12, nr 4, pp 525-565,
1987
Abnal, J R , Data semantics In Data Base Management, J W
Khmbie and K.L Koffeman (Eds), North-Holland, Amsterdam, pp
1 60,1974
Aerts, A T M and К M van Нее, A Tutorial for Data Modelling,
Computing Science Notes 88/09, Technical University of Eindhoven,
1988
Ahituv, N , A Metamodel of Information Flow A Tool to Support
Information Systems Theory Communications of the ACM, vol 30,
nr 9,pp 781-791,1987
Alvey, A programme for advanced information technology, 1982
Antonelhs, V D and В Zonta, Modelling events in database
applications design, In Proc of 7th Int Conf on VLDB, Cannes,
France, pp 23-31, 1981
Apostel, L Towards the formal study of models in the non-formal
sciences Synthese, vol 12, pp 125-161, 1960
Arthur Young Information Technology Group The Arthur Young
practical guide to Information Engineering John Wiley & Sons,
Ine , 1987
Barwise, J , An Introduction to First Order Logic In Handbook of
Mathematical Logic, J Barwise (Ed), Studies in Logic and
Foundations of Mathematics, vol 90, North-Holland, Amsterdam,
1977
Bemelmans, Τ M A , Business Information Systems and
Automation (In Dutch Bestuurlijke informatiesystemen en
automatisenng) Stenfert Kroese, Leiden, 3rd revised edition, 1987
Berdal, S , S Carlsen, A. Solvberg and R Andersen, Information
System Behaviour Expressed through Process Port Analysis
Unpublished manuscript, Division of Computer Science, The
Norwegian Institute of Technology, University of Trondheim,
Norway, 1986
Bergstra, J A and J W Klop, Process Algebra specification and
verification in bisimulation semantics In Mathematics and
Computer Science II, CWI Monograph 4, M Hazewinkel, J К
Lenstra and L G L Τ Meerten s (Eds), North-Holland, Amsterdam,
pp 61-94,1986
Bergstra, J A and G R Renardel de Lavalette The position of
formal specifications in software technology (in Dutch De plaats van
formele specificaties m de software technologie) Informatie, vol 31,
nr 6, pp 480-494, June 1989
Bertels, K. and D Nauta, Introduction to the notion of model (In
Dutch Inleiding tot het modelbegnp) De Haan, Bussum, 1969
Bjorner, D and С В Jones (Eds), The Vienna development method
the meta-language Lecture Notes in Computer Sciences, nr 61,
Springer Verlag, 1978

196

REFERENCES

[Blumenthal 691

[Bots 89]

[Bouman 88a]

[Bouman 88b]

[Brand 89a]

[Brand 89b]

[Brinkkemper 88a]

[Brinkkemper 88b]

[Brinkkemper 89a]

[Brinkkemper 89b]

[Brinkkemper 89c]

S. Blumenthal, Management Information Systems: A framework for
planning and development, Prentice-Hall, Englewood Cliffs, NJ,
1969.
Bots, P.W.G., An Environment to Support Problem Solving, Doctoral
dissertation, Delft University of Technology, 1989.
Bouman, H.D., M.J.J. Knots, L.J.Th.О. van Erning and S.
Brinkkemper, PACS in practice: The status of the PACS project at the
St. Radboud University Hospital. Part B: A Digital Image Archive:
Information Analysis and Development. Medical Informatics, vol.
13, nr. 13, pp. 265-278,1988.
Bouman, H.D., M.J.J. Knots, S. Brinkkemper and L.J.Th.0. van
Erning, The development of a digital picture archive (in Dutch: De
ontwikkeling van een digitaal beeldarchief). Informatie, vol. 30, nr.
10, pp. 796-801,1988.
Brand, N.A., S. Brinkkemper and F.H.G.C. van der Steen,
Information Engineering: Integration of method and workbench (in
Dutch: Information Engineering: Integratie van methode en
workbench). Informatie, vol. 31, nr. 2, pp. 95-103, February 1989.
Brand, N.A., S. Brinkkemper and F.H.G.C. van der Steen,
Integration of an Information Systems Development Method and its
Companion Workbench. Technical report 89-2, Department of
Information Systems, University of Nijmegen, February 1989.
Brinkkemper, S., N.A. Brand and J. Moormann, Deterministic
Modelling Procedures for Automated Analysis and Design Tools.
In: T.W. Olle, A.A. Verrijn Stuart and L. Bhabuta (Eds.),
Computerized Assistance during the Information Systems Life Cycle,
Proceedings of the CRIS 88 conference, North-Holland, Amsterdam,
pp. 117-160, 1988. Extended Version in Technical report nr. 88-10,
Department of Information Systems, University of Nijmegen, May
1988.

Brinkkemper, S. and N.A. Brand, Deterministic modelling
procedures for the automated analysis and design. Associated tools
(in French: Procedure de modélisation deterministe pour l'analyse
et la conception automatiques. Outils associés). In: proceedings of the
2ièmes journées Pratique des methodes et outils logiciels d'aide a la
conception de systèmes d'information, H. Habrías (Ed.), Nantes,
France, September 1988.
Brinkkemper, S. and A.H.M, ter Hofstede, The Modelling of Tasks
at a Conceptual Level in Information Systems Development Methods.
In: Workshop Proceedings for the CRIS Review workshop, G.M.
Nijssen and S. Twine (Eds.), IFIP WG 8.1 meeting, Sesimbra,
Portugal, June 1989. Extended version in Technical report nr. 88-18,
Department of Information Systems, University of Nijmegen,
December 1988.
Brinkkemper, S., M. de Lange, R. Looman and F.H.G.C. van der
Steen, On the Derivation of Method Companionship by Meta-
Modelling. In: Advance Working Papers, Third International
Conference on Computer Aided Software Engineering, J. Jenkins
(Ed.), Imperial College, London, UK, pp. 266-286, July 1989. Also in:
Software Engineering Notes, journal of the Special Interest Group on
Software Engineering of the ACM, vol. 15, nr. 1, January 1990.
Brinkkemper, S., The Essence and Support of Modelling
Transparency, Position paper. In: Advance Working Papers, Third
International Conference on Computer Aided Software Engineering,
J. Jenkins (Ed.), Imperial College, London, UK, July 1989.

197

THE FORMALISATION OF INFORMATION SYSTEMS MODELLING

[Brinkkemper 89d]

[Brinkkemper 89eJ

[Brinkkemper 90a]

[Bnnkkemper 90b]

[Brodie 82]

[Bruza 89]

[Buhr85]

[Case 86]

[Chen 76]

[Cordes 89]

[De Brabander 84]

[Dietz 87]

[Dignum 86]

[Dijk 86]

Bnnkkemper, S , M Geurts, I van de Kamp and J Acohen, On a
Formal Approach to the Methodology of Information Planning In
Proceedings of the First Dutch Conference on Information Systems,
R Maes (Ed), 1 - 2 November 1989, Amersfoort Submitted for
publication
Bnnkkemper, S and A H M ter Hofstede, The Conceptual Task
Model a Specification Technique between Requirements
Engineering and Program Development Technical Report nr 89 15,
Department of Information Systems, University of Nijmegen,
September 1989 In Proceedings of the CAiSE conference, Kista,
Sweden, A Solvberg (Ed), Lecture Notes in Computer Science,
Springer Verlag, May 1990

Bnnkkemper, S , M de Lange, R Looman and F H G С van der
Steen, The formal derivation of support of a system development
method (in Dutch De formele afleiding van ondersteuning bij een
systeemontwikkelingsmethode) Submitted to Informatie, 1990
Bnnkkemper, S and G M Wijers (Eds), The next generation of
CASE-tools, Proceedings of an international SERC workshop in
Noordwijkerhout, Software Engineering Research Centre, Utrecht,
April 1990

Brodie, M L and E Silva, Active and Passive Component
Modelling ACM/PCM In Τ W Olle, H G Sol and A A Vernjn
Stuart (Eds), Information Systems Design Methodologies A
Comparative Review Proceedings of the CRIS 82 conference, North-
Holland, Amsterdam, pp 41-92, 1982

Bruza, Ρ D and Th Ρ van der Weide, The Semantics of TRIDL,
Technical Report, Department of Information Systems,, University
of Nijmegen, 1989
Buhr, R J A , System Design with Ada, Prentice Hall, Englewood
Cliffs, 1985
A F Case jr , Information Systems Development principles of
computer aided software engineering, Prentice-Hall, 1986
Chen, Ρ Ρ , The Entity-Relationship model - Toward a unified view
of data ACM Transactions on Database Systems, vol 1, nr 1, pp 9-
36,1976
Cordes, D W and D L Carver, Evaluation method for user
requirements documents Information and Software Technology,
vol 31, nr 4, pp 181-188, 1989

De Brabander, G and G Thiers, Successful! information system
development in relation to situational factors which affect effective
communication between MIS-users and EDP-spec iahsts
Management Science, vol 30, nr 2, pp 137-155, 1984
Dietz, J L G , Modelling and specification of information systems
(in Dutch Modelleren en specificeren van informatiesystemen)
Doctoral dissertation, Technical University of Eindhoven, Oktober
1987

Dignum, F , M Jacques and M L Kersten, Workbenches a design
environment for information systems (In Dutch Workbenches een
ontwerpomgeving voor informatiesystemen) Informatie, vol 28, pp
813-825,1986
Dijk, A , Correspondences between information analysis and
language a n a l y s i s (in Dutch Overeenkomsten t u s s e n
informatieanalyse en taalanalyse) Informatie, vol 28, nr 1, pp 51-
58,1986

198

REFERENCES

[Dubois 85] Dubois, E., J. Hagelstein, E. Lahou, A. Rifaut and F. Williams, A
Process Model for Requirements Engineering. In: ESPRIT '85:
Status Report of Continuing Work, pp. 593-607, North-Holland, 1986.

[Elmasri 85] Elmasri, R., J. Weeldreyer and A. Hevner, The category concept: an
extension to the entity-relationship model. Data and Knowledge
Engineering, vol. 1, pp.75-116, 1985.

[Falkenberg 83] Falkenberg, E.D., Foundations of the Conceptual Schema Approach to
Information Systems. In: Data Base Management: Theory and
Applications, C.W.Holsapple and A.B.Whinston (Eds.), D. Reidel
Publishing Company, pp. 3-17, 1983.

[Falkenberg 87] Falkenberg, E.D., Data Bases and Information Systems 1, Lecture
Notes, University of Nijmegen, 1987.

[Falkenberg 88] Falkenberg, E.D., Η. van Kempen and N. Mimpen, Knowledge-
based Information Analysis Support. In: The Role of Artificial
Intelligence in Databases and Informations Systems, Joint TC2-TC8
Working Conference, R. Meersman and C.H. Kung (Eds.), pp. 63-78,
Guangzhou, China, July 1988.

[Falkenberg 89a] Falkenberg, E.D., R. van der Pols and Th.P. van der Weide,
Understanding Process Structure Diagrams. In: Workshop
Proceedings for the CRIS review workshop, G.M. Nijssen and S.
Twine (Eds.), IFIP WG 8.1 meeting, Sesimbra, Portugal, June 1989.

[Falkenberg 89b] Falkenberg, E.D. and P. Lindgreen (Eds.), Proceedings of the
Conference on Information Systems Concepts, North-Holland,
Amsterdam, 1989.

[Falkenberg 89c] Falkenberg, E.D., Information Modelling - Subjective Forever,
Proceedings Database dag, KM. van Нее and T.M.A. Bemelmans
(Eds.), Eindhoven, December 1989.

[Gane 79] Gane, С. and T. Sarson, Structured Systems Analysis: Tools and
Techniques. Prentice Hall, Englewood Cliffs, 1979.

[Genrich 79] Genrich, H. and K.Lautenbach, The analysis of distributed systems
by means of predicate/transition nets. Semantics of Concurrent
Computation, G.Kahn (Ed.), Lecture Notes in Computer Sciences,
nr.70, Springer Verlag, pp. 123-146, 1979.

[Genrich 87] Genrich, H., Predicate/Transition Nets. In: Petri Nets: Central
models and their properties, W.Brauer, W.Reisig and G.Rozenberg
(Eds.), Lecture Notes in Computer Sciences, nr. 1254, Springer
Verlag, pp. 207-247, 1987.

[Gillenson 87] Gillenson, M.L., The Duality of Database Structures and Design
Techniques. Communications of the ACM, vol. 30, nr. 12, pp. 1056-
1065,1987.

[Gilmore 87] Gilmore, P.C., A Foundation for the Entity-Relationship Approach:
How and Why. In: Proceedings of the Sixth International Conference
on the Entity-Relationship Approach, S. March (Ed.), North-Holland,
1987.

[Godwin 89] Godwin, A.N., J.W. Gleeson and D. Gwillian, An Assessment of the
IDEF Notations as Descriptive Tools. Information Systems, vol. 14,
nr. 1, pp. 13-28,1989.

[Green 82] Green, T.R.G., Pictures of programs and other processes, or how to do
things with lines. Behaviour and Information Technology, vol. 1, nr.
1, pp. 3-36,1982.

[Griethuysen 81] Griethuysen, J.J. van. Fundamentals and terminology of the
conceptual schema (in Dutch: Grondslagen en terminologie van het
conceptuele schema). Informatie, vol. 23, nr. 7/8, pp. 422-512, 1981.

199

THE FORMALISATION OF INFORMATION SYSTEMS MODELLING

[Guyot86] Guyot, J., Un modèle de traitement pour les bases de données: un
formalisme pour la conception, la validation et l'exécution de la
spécification d'une application. Thèse de la Faculté des Sciences,
Concept Moderne/Editions, Genève, 1986.

[Harel 88] Harel, D., On Visual Formalisms. Communications of the ACM,
vol. 31, nr. 5, pp. 514-530, 1988.

[Hatley87] Hatley, D.J. and I.A. Pirbhai, Strategies for Real-Time System
Specification. Dorset House Publishing Co., New York, 1987.

[Hesse 83] Hesse, W., Methods and Tools for Software Development - a Walk
through the Technology Landscape. In: Colloquium
Programmeeromgevingen, J. Heering and P. Klint (Eds.),
MC Syllabus 30, Mathematical Centre, 1983.

[Hoare 85] Hoare, C.A.R., Communicating Sequential Processes, Prentice
Hall, 1985.

[Hsu 85] Hsu, C, Structured Database System Analysis and Design through
Entity Relationship Approach. In : Fourth International Conference
on Entity-Relationship Approach: The Use of ER Concept in
Knowledge Representation, P.P. Chen (Ed.), pp. 56-63, North-
Holland - IEEE, 1985.

[Hull 87] Hull, R. and R. King, Semantic Database Modelling: Survey,
Applications and Research Issues. ACM Computing Surveys, vol. 19,
nr. 3, pp. 201-260, 1987.

[Humphrey 89] Humphrey, W.S. and M.I. Kellner, Software Process Modelling:
Principles of Entity Process Models. In: Proceedings of the 11th
International Conference on Software Engineering, IEEE,
Pittsburgh, May 1989.

[IEW88] KnowledgeWare, Information Engineering Workbench ESP,
comprising: Planning, Analysis and Design Workstation Guide,
1988.

[livari 89] livari, J., Contemporary Schools of Information System
Development: a paradigmatic analysis. Unpublished manuscript,
Institute of Information Processing, University of Oulu, Finland,
1989.

[ISO 82] van Griethuysen, J.J. (Ed.), Concepts and terminology for the
conceptual schema and the information base. Report ISO
TC97/SC5/WG3 - N695, 1982.

[ITC 87] Index Technology Corporation, Excelerator Customizer Manual,
1987.

[Ives 80] Ives, В., S. Hamilton and G.B. Davis, A Framework for Research in
Computer-Based Management Information Systems. Management
Science, vol. 26, nr. 9, pp. 910-934, 1980.

[Jackson 83] Jackson, M., System Development. Prentice Hall, Englewood Cliffs,
1983.

[Kersten 86] Kersten, M.L., H. Weigand, F. Dignum and J. Boom, A Conceptual
Modelling Expert System. In: Proceedings of the Fifth International
Conference on Entity-Relationship Approach, S. Spaccapietra (Ed.),
Dijon, France, pp. 275-288, November 1986.

[Koesen 89] Koesen, C.A.M., S. Brinkkemper and H.E. Keus, The Layered
Modelling of Dialogues and its Support Workbench. In: Advance
Working Papers, Third International Conference on Computer
Aided Software Engineering, J. Jenkins (Ed.), Imperial College,
London, UK, pp. 87-107, July 1989. Submitted to: Information and
Software Technology.

200

REFERENCES

[Kokol 89] Kokol, P., Formalization of the information system development
process using meta-models. ACM SIGSOFT Software Engineering
Notes, vol. 14, nr. 5, pp. 118-123, 1989.

[Kung86] Kung, C.H. and A. Sölvberg, Activity Modeling and Behavior
Modeling. In: T.W. Olle, H.G. Sol and A.A. Verrijn Stuart (Eds.),
Information System Design Methodologies: Improving the Practice,
Proceedings of the CRIS 86 conference, North-Holland, Amsterdam,
pp. 145-171,1986.

[Lange 89] Lange, M de, The Use of the Workbench IEW within SDM:
Information Systems Planning, Definition Study, System Design,
Detailed System Design (In Dutch). Moret Advies, 1989.

[Lehman 87] Lehman, M.M., Process models, Process Programs, Programming
Support. In: Proceedings of the 9th International Conference on
Software Engineering, IEEE, pp. 14-16, 1987.

[Lewis 81] Lewis, H.R. and C.H. Papadimitriou, Elements of the theory of
Computation,. Prentice Hall, 1981.

[Linden 88a] Linden, E.-J. v.d., K. de Smedt, M. v.d. Linden, P. van Boven and S.
Brinkkemper, The representation of lexical objects. In: Proceedings
of the BUDALEX '88 conference, T. Magay (Ed.), Budapest,
September 1988.

[Linden 88b] Linden, E.-J. v.d., К de Smedt, M. v.d. Linden, P. van Boven and S.
Brinkkemper, The representation of lexical objects (in Dutch: De
representatie van lexicale objecten). Rapport TNO Instituut voor
Toegepaste Informatica, Kenmerk 88 ITI В 21, May 1988.

[Lindgreen 86] Lindgreen, P., Entities from a systems point of view. In: Proceedings
of the 5th International Conference on Entity Relationship Approach,
S. Spaccapietra (Ed.), pp. 3-15, November 1986.

[Lübars 89] Lübars, M., General Design Representation. MCC report, STP-066-
89, MCC, Austin, Texas, 1989.

[Lundeberg 80] Lundeberg, M., G. Goldkuhl and A. Nilsson, Information Systems
Development - A Systematic Approach. Prentice Hall, Englewood
Cliffs, 1980.

[Lyytinen 87] Lyytinen, K., Different Perspectives on Information Systems:
Problems and Solutions. ACM Computing Surveys, vol. 19, nr.l, pp.
5^6,1987.

[MacDonald 82] MacDonald, I.G. and I.R. Palmer, System Development in a Shared
Data Environment. In: T.W. Olle, H.G. Sol and A.A. Verrijn Stuart
(Eds.), Information Systems Design Methodologies: A Comparative
Review, Proceedings of the CRIS 82 conference, North-Holland,
Amsterdam, pp. 235-283, 1982.

[Martin 85] Martin, J. and C.L. McClure, Action Diagrams. Prentice Hall,
Englewood Cliffs, 1985.

[Martin 88a] Martin, J., Information Engineering, volume 1, 2 and 3, Savant
Research studies, Lancashire, 1988.

[Martin 88b] Martin, J. and C.L. McClure, Structured Techniques: the Basis for
CASE. Revised Edition, Prentice Hall, Englewood Cliffs, 1988.

[McClure 86] McClure, C.L., Taking a closer look at software workstations - the
newest productivity tools. Arthur Young International, 1986.

[McClure 87] McClure, C.L., Computer-Aided Software Engineering, System
Development, vol. 7, nr. 11, November 1987.

[McClure 89] McClure, C.L., CASE is Software Automation, Prentice Hall,
Englewood Cliffs, 1989.

201

THE FORMALISATION OF INFORMATION SYSTEMS MODELLING

[McNeile 86]

[Meersman 82]

[Mees 86]

[Miliner 80]

[Moriarty 88]

[NGG0 88]

[NIIG88]

[Nijssen 89]

[Ogden 49]

[Olle 82]

[Olle 88a]

[Olle 88b]

[Parent 87]

[Prabhakaran 88]

[Reisig 85]

[Reisig 87]

McNeile, A.T., Jackson System Development (JSD). In: T.W. Olle,
H.G. Sol and A.A. Verrijn Stuart (Eds.), Information System Design
Methodologies: Improving the Practice, Proceedings of the CRIS 86
conference, North-Holland, Amsterdam, pp.225-246, 1986.
Meersman, R., The RIDL Conceptual Language,. Research Report
ICIAS, Brussels, 1982.
Mees, M. and F. Put, Extending a dynamic modelling method using
data modelling capabilities: the case of JSD. In: Proceedings of the
Fifth International Conference on Entity-Relationship Approach, S.
Spaccapietra (Ed.), Dijon, France, pp. 37-56, November 1986.
Millner, R., A Calculus of Communicating Systems, Lecture Notes
in Computer Sciences, nr. 29, Springer Verlag, 1980.
Moriarty, T., Which is the "right" data model for a given problem.
In: Proceedings of the Sixth International Conference on the Entity-
Relationship Approach, S. March (Ed.), pp. 17-18, North-Holland,
Amsterdam, 1988.
N e d e r l a n d s e Gebruikersgroep van G e s t r u c t u r e e r d e
Ontwikkelingsmethoden, Werkgroep TOOLS, Computerised support
of structured development methods: an inventory of tools (in Dutch:
C o m p u t e r o n d e r s t e u n i n g van g e s t r u c t u r e e r d e
ontwikkelingsmethoden: een inventarisatie van tools). 1988.
Nederlands Ipse Interest Group, IPSE, a Survey of problems and
definition IPSE (In Dutch: IPSE, Inventarisatie van problemen en
definitie IPSE). 1988.
Nijssen, G.M. and T.A. Halpin, Conceptual Schema and Relational
Database Design: a Fact-Based Approach, Prentice Hall, 1989.
Ogden, C.K. and I.A. Richards, The meaning of meaning. 10th
edition, Routledge and Kegan Paul, 1949.
Olle, T.W., H.G. Sol and A.A. Verrijn Stuart (Eds.), Information
System Design Methodologies: A Comparative Review. Proceedings
of the CRIS 82 conference, North-Holland, Amsterdam, 1982.
T.W. Olle, Business Analysis and System Design specifications for
an inventory control and purchasing system. Appendix A in: T.W.
Olle, A.A. Verrijn Stuart and L. Bhabuta (Eds.), Computerized
Assistance during the Information Systems Life Cycle, Proceedings
of the CRIS 88 conference, North-Holland, Amsterdam, 1988.
Olle, T.W., J. Hagelstein, I.G. MacDonald, С. Rolland, H.G. Sol,
F.J.M, van Assche and A.A. Verrijn Stuart, Information System
Methodologies - A Framework for Understanding. Addison-Wesley,
1988.

Parent, С , The ERC approach: A data model and an entity-
relationship algebra (in French: L' approche ERC: un modèle de
données et une algèbre de type entité-relation). These de Doctorat
Etat, l'Université de Paris 6, July 1987.
Prabhakaran, N. and E.D. Falkenberg, Representation of Dynamic
Features in a Conceptual Schema. The Australian Computer Journal,
vol. 20, nr. 3, pp. 98-104,1988.
W.Reisig, Petri Nets. EATCS Monographs on Theoretical Computer
Science, Springer Verlag, 1985.
Reisig, W., Petri Nets in Software Engineering. In: Petri Nets:
Applications and relationships to other models of concurrency,
W.Brauer, W.Reisig and G.Rozenberg (Eds.), Lecture Notes in
Computer Sciences, nr. 255, Springer Verlag, pp. 63-96, 1987.

202

REFERENCES

[Richter 82]

[Rolland 82]

[Ross 77]

[Scheschonk 84]

[Schiel 89]

[SDW 88]
[Seligmann 89]

[Shipman 81]

[Shoval 88]

[Simovic 89]

[Smith 88]

[Spivey 88]

[Teorey 86]

[Ter Hofstede 89a]

[Ter Hofstede 89b]

[Tsichritzis 78]

Richter.G. and R. Durchholz, IML-Inscribed High-Level Petri Nets.
In: T.W. Olie, H.G. Sol and A.A. Verrijn Stuart (Eds.), Information
Systems Design Methodologies: A Comparative Review. Proceedings
of the CRIS 82 conference, North-Holland, Amsterdam, pp.335-368,
1982.
Rolland, С. and С. Richard, the REMORA Methodology for
Information System Design and Management. In: T.W. Olle, H.G.
Sol and A.A. Verrijn Stuart (Eds.), Information Systems Design
Methodologies: A Comparative Review. Proceedings of the CRIS 82
conference, North-Holland, Amsterdam, pp. 369-426, 1982.
Ross, D.T. and K.E. Schoman, jr., Structured Analysis for
Requirements Definition. IEEE Transactions on Software
Engineering, SE-3, pp. 6-15, January 1977.
Scheschonk, G., Petri-nets as formal basis for information systems
(in German: Petr i-Netze als formale Basis für
Informationsysteme). Lecture notes, Berlin University of
Technology, 1984.
Schiel, U. and I. Mistrik, OKAY - Object-Oriented Knowledge
Analysis and Design. Paper presented at IFIP WG 8.1 Workshop on
Object-oriented approaches in information systems design,
Sesimbra, Portugal, June 1989.
The System Development Workbench, Pandata, March 1988.
Seligmann, P.S., G.M. Wijers and H.G. Sol, Analyzing the
Structure of I.S. Methodologies: an Alternative Approach. In:
Proceedings of the First Dutch Conference on Information Systems,
R. Maes (Ed.), Amersfoort, November 1989.
Shipman, D., The Functional Data Model and the data language
DAPLEX. ACM Transactions on Database Systems, vol. 6, nr. 1, pp.
140-173,1981.
Shoval, P. and N. Pliskin, Structured prototyping: Integrating
Prototyping into Structured System Development. Information and
Management, vol. 14, nr. 1, pp. 19-30,1988.
Simovic, D.A. and D.C. Stefanescu, Formal semantics for database
schémas. Information Systems, vol. 14, nr. 1, pp. 65-77, 1989.
Smith, J.B. and S.F. Weiss, Hypertext, Communications of the ACM,
Special Issue on Hypertext, vol. 31, nr. 7, pp. 816-819, July 1988.
Spivey, J.M., Understanding Z, a specification language and its
formal semantics. Cambridge Tracts in Theoretical Computer
Science, nr. 3, 1988.
Teorey, T.J., D. Yang and J.P. Fry, A logical design methodology
for relational databases using the extended entity-relationship
model. ACM Computing Surveys, vol. 18, nr. 2, pp. 197-222, 1986.
Ter Hofstede, A.H.M, and S. Brinkkemper, Conceptual Task
Modelling. Technical Report nr. 89-14, Department of Information
Systems, University of Nijmegen, September 1989.
Ter Hofstede, A.H.M., T.F. Verhoef, G.M. Wijers and S.
Brinkkemper, Expert-based support of Information Modelling: a
Survey. Technical Report RP/soc-89/7, Software Engineering
Research Centrum, October 1989. To appear in: Proceedings of the
Workshop on The Next Generation of CASE-tools, S. Brinkkemper
and G.M. Wijers (Eds.), Noordwijkerhout, NL, 8 - 11 April 1990.
Tsichritzis, D.C. and A. Klug (Eds.), The ANSI/X3/SPARC DBMS
Framework: Report of the Study Group on Data Base Management
Systems. Information Systems, vol. 3, 1978.

203

THE FORMALISATION OF INFORMATION SYSTEMS MODELLING

[Turner 87]

[van Нее 88]

[Verheijen 82]

[Vermeir 82]

[Verrijn Stuart 87]

[Vonk 88]

[Wieringa 88]

[Wieringa 89]

[Wijers 89]

[Wileden 86]

[Wintraecken 85]

[Wirth 76]

[Yourdon 79]

Turner, W.S., R.P. Langerhorst, G.E. Hice, H.B. Eilers and A.A.
Uijtenbroek, System Development Methodology (SDM II). North-
Holland and Pandata, 1987.
van Нее, K.M., G.J. Houben, L.J. Somers and M. Voorhoeve,
Executable Specifications for Information Systems, Computing
Science Notes, nr. 88/05, Department of Computing Science,
Eindhoven University of Technology, March 1988.
Verheijen, G.M.A. and J. van Bekkum, NIAM: an Information
Analysis Method. In: T.W. Olle, H.G. Sol and A.A. Verrijn Stuart
(Eds.), Information Systems Design Methodologies: A Comparative
Review. Proceedings of the CRIS 82 conference, North-Holland,
Amsterdam, pp. 537-590, 1982.
Vermeir, D. and G.M. Nijssen, A procedure to define the object type
structure of a conceptual schema. Information Systems, vol. 7, nr.4,
pp. 329-336,1982.
Verrijn Stuart, A.A., Equivalence conditions for information
systems representations. Report 87-09A, Department of Computer
Science, University of Leiden, 1987.
Vonk, R., Analyst workbenches: a reference framework (in Dutch:
Analyse Workbenches: een referentiekader). Informatie, vol. 30,
nr. 1, pp. 17-32, January 1988.
Wieringa, R. and R. van de Riet, Algebraic Specification of Object
Dynamics in Knowledge Base Domains. In: The Role of Artificial
Intelligence in Databases and Informations Systems, Joint TC2-TC8
Working Conference, Guangzhou, China, pp. 346-371, 1988.
Wieringa, R., Three roles of Conceptual Models in Information
System Design and Use. In: Proceedings of the Conference on
Information Systems Concepts, E.D. Falkenberg and P. Lindgreen
(Eds.), Namur, October 1989.
Wijers, G.M. and H. Heijes, Automated Support of the Modelling
Process: a view based on experiments with expert information
engineers. Technical Report, Delft University of Technology,
December 1989.
Wileden, J.C. and M. Dowson (Eds.), Software Processes and
Software Environments, Proceedings of an International Workshop,
Coto de Caza, SIGSOFT Software Engineering Notes, vol. 11, nr. 4,
1986.
Wintraecken, J.J.V.R., Information Analysis according to NIAM -
Theory and Practice (In Dutch: Informatie-analyse volgens NIAM -
in theorie en praktijk)., Academic Service, Den Haag, 1985.
Wirth, N., Algorithms + Data Structures = Programs. Prentice Hall,
Englewood Cliffs, 1976
Yourdon, E. and L. Constantine, Structured Design: Fundamentals
of a Discipline of Computer Program and Systems Design. Prentice
Hall, Englewood Cliffs, 1979.

204

Ö UMMARY

This research addresses the various types of modelling as they are applied
during the development of information systems. The many notational
conventions in which modelling can be expressed, are hardly ever
accompanied by stepwise guide-lines for constructing a model. The
combination of a notation and a procedure in a modelling technique is one
of the starting points of this dissertation.

First, we position modelling of information systems in the framework of
the systems development cycle. Then the roles of the several persons
involved in modelling are discussed. Incorporation in methods and
techniques, and the support of modelling by tools are defined. The model
triangle offers a philosophical perspective for some types of modelling that
occur in the development of information systems.

By superpositioning of the model triangle, we obtain a basis for meta-
modelling in a simple way. Meta-modelling is defined as the modelling of a
modelling technique. Although mostly not mentioned explicitly, is meta-
modelling often applied in various research at the moment. Some
examples thereof as well as the techniques for meta-modelling are
discussed. The stepwise guide-lines for modelling are called modelling
procedures. The requirements of such procedures and their formulation is
elaborated in general terms. Underlying is the need for formalisation, i.e.
the description in a mathematical systems. We use predicate logic for this
purpose because this is a simple and adequate formalism.

In the chapters 3, 4 and 5 the modelling procedures for events, activities,
data and tasks are given. We start in chapter 3 with a classification of
events in and around an information systems, which gives rise to concrete
starting points for modelling in complex organisations. External events are
used to model the context diagram, which denotes the interaction of the
system with its environment. The processes within this system are
modelled as activities, provided their level of abstraction is sufficient. We
give a procedure that s tarts with descriptions of activities in natural
language and results in a hierarchy of activity models. Some consequences
of the formalisation of activity modelling are presented.

205

Chapter 4 gives a short formalisation of the Entity-Relationship technique
and its modelling procedure. The synthesis of the use of this technique and
the NIAM technique in one systems development project is discussed.

The concept of task, a type of process, plays a central role in the
presentation of a new technique for task modelling in chapter 5, which we
have called Conceptual Task Modelling (CTM). This technique is based on
three existing techniques: NIAM, RIDL en Predicate-Transition nets. An
extensive formalisation of the technique and of the relationship of task
models with activity models and data models is given. The use of the CTM
is i l lustrated with a modelling procedure and a CASE-tool for the
technique. This chapter ends with a discussion of further research of this
topic.

The support of modelling by means of tools is addressed in chapter 6. In
addition to the determination of some terminology, we discuss the
incorporation of supported techniques in systems development methods.
The support of the transfer of the one technique to the other in a CASE-tool
is called modelling transparency. We introduce also a notion for the
relation between a method and a tool: method-companionship. Finally, we
formulate and formalise the idea of layered modelling in the case of
complex techniques.

206

&AMENVATTING

Dit onderzoek richt zich op de verschillende vormen van modelleren zoals
dit wordt toegepast tijdens het ontwikkelen van informatiesystemen. De
vele conventies om modellen in uit te drukken worden vrijwel nooit
vergezeld van stapsgewijze aanwijzingen om een model te construeren.
Het s a m e n g a a n van een no ta t i e en een procedure in een
modelleringstechniek is een van de uitgangspunten van dit proefschrift.

Eerst plaatsen we modellering van informatiesystemen in het kader van de
systeemontwikkel ingscyclus. Daa rna worden de rollen van de
verschillende personen betrokken bij modellering besproken. Inpassing in
methoden en technieken, en ondersteuning door tools wordt vervolgens
gedefinieerd. De modellendriehoek biedt een filosofisch perspectief voor
enkele typen van modellering die van toepassing zijn bij het ontwikkelen
van informatiesystemen.

Door superpositionering van de modellendriehoek verkrijgen we op
simpele wijze een basis voor meta-modellering, dat wil zeggen het
modelleren van een modelleringstechniek. Hoewel meestal niet expliciet
vernoemd, wordt meta-modellering tegenwoordig in allerlei onderzoek
toegepast. Enige resultaten van zulk onderzoek alsmede de technieken voor
meta-modellering worden besproken. De stapsgewijze aanwijzingen voor
modellering hebben we modelleringsprocedures genoemd. De eisen aan en
de constructie van zulke procedures wordt in algemene termen uitgewerkt.
Achterliggend is de noodzaak tot formalisatie, ofwel de beschrijving in
wiskundige systemen. We gebruiken hier de predicaten logica, omdat dat
een simpel en adequaat formalisme is.

In de hoofdstukken 3, 4 en 5 worden vervolgens de modelleringsprocedures
voor gebeurtenissen, activiteiten, gegevens en taken uitgewerkt. We
bespreken eerst in hoofdstuk 3 een classificatie van gebeurtenissen in en
om een informat iesys teem, die aan le id ing geeft tot concrete
aangrijpingspunten voor modellering in complexe organisaties. Externe
gebeurtenissen worden gebruikt om het context diagram te modelleren, dat
de interactie van het systeem onder beschouwing met zijn omgeving
weergeeft. De processen binnen dit systeem worden, voorzover zij van een
voldoende abstractieniveau zijn, gemodelleerd als activiteiten. We geven de

207

procedure die uitgaat van beschrijvingen van activiteiten in natuurlijke
taal en resul teer t een hiërarchie van activiteitenmodellen. Enige
consequenties van de formalisatie van activiteitenmodellering worden
gepresenteerd.

In hoofdstuk 4 wordt uitgegaan van de concepten van de Entiteit-Relatie-
modelleringstechniek. Een beknopte formalisatie van deze techniek en een
gegevensmodelleringsprocedure worden gegeven. Er wordt tevens kort
ingegaan op het gezamenlijk gebruik van deze techniek met de NIAM-
techniek in een systeemontwikkelingsproject.

Het concept van taak, een soort proces, staat centraal in de presentatie van
een nieuwe techniek voor taakmodellering in hoofdstuk 5, die we
Conceptuele Taakmodellering (CTM) hebben genoemd. Deze techniek is
gebaseerd op drie bestaande technieken: NIAM, RIDL en Predicaat-
Transitienetwerken. Een uitgebreide formalisatie van deze techniek zelf en
die van de relatie van taakmodellen met activiteitenmodellen en
datamodellen wordt gegeven. Het gebruik van CTM wordt toegelicht aan de
hand van een modelleringsprocedure en een CASE-tool voor de techniek.
Dit hoofdstuk eindigt met een bespreking van mogelijk onderzoek op dit
gebied.

In hoofdstuk 6 wordt ingegaan op de ondersteuning van modellering door
middel van hulpmiddelen. Naast de vaststelling van enige terminologie op
dit gebied, bespreken we de inpassing in systeemontwikkelingsmethoden
van technieken die ondersteund worden door automatische hulpmiddelen.
De ondersteuning van de overgang van de ene techniek naar de andere in
een CASE-tool noemen we modeleringstransparantie. We introduceren
tevens een begrip voor de relatie tussen een methode en een tool: method-
companionship. Tenslotte formuleren en formaliseren we het idee van
gelaagd modelleren in het geval van complexe technieken.

208

VyURRICULUM VITAE

The author of this thesis was born on J a n u a r y 18th, 1958 in
Monnickendam. In 1976 he obtained the V.W.O. diploma at the Waterlant
College in Amsterdam-Noord and started to study Mathematics at the
University of Amsterdam. After having obtained the Bachelor's degree, he
moved to Nijmegen in 1980. At the University of Nijmegen the Master's
degree in Mathematics and Informatics was received in 1984. From then
on he was employeded as an assistant professor in the department of
Informatics of the University of Nijmegen. He was a member of the
Programming Languages and Compilers group (head: prof. C.H.A.
Koster) and in 1986 he became member of the newly established
Information Systems group (head: prof.dr. E.D. Falkenberg). It was in this
group that the research which lead to this thesis was performed.
In 1989 he was appointed as a member of the Working Group WG8.1
'Design and Evaluation of Information Systems' of the IFIP Technical
Committee TC8 'Information Systems'. The author is also a member of the
research staff of the SOCRATES project of the Software Engineering
Research Centre in Utrecht.

During the academic year of 90/91 the address of the author is:

Sjaak Brinkkemper
Department of Management Sciences and Information Systems
College and Graduate School of Business
CBA 5.202
University of Texas at Austin
Austin, TX 78794, USA
Email: sjbr@emx.utexas.edu

209

mailto:sjbr@emx.utexas.edu

Stellingen
horende bij het het proefschrift

Formalisation of Information Systems Modelling
van

Sjaak Brinkkemper

1. De praktijk van informatiesysteemontwikkeling heeft meer baat

bij formalisatie van visuele technieken dan bij visualisatie van

formele technieken.

Harel, D., On Visual Formalisms. Communications of the ACM,

vol. 31, nr. 5, pp. 514-530,1988.

2. Modellering is slechts gedeeltelijk te formaliseren.

3. Het is te verwachten dat aan de veelheid van tot dusverre

geformuleerde stromingen van technieken voor datamodellering

een even zo groot aantal nieuwe stromingen zal worden toegevoegd.

Er zal nog vele jaren genoten kunnen worden van de hiermee

gepaard gaande fundamentalistische twisten.

4. Voor een persoon die informatie verstrekt aan

systeemontwikkelaars is informant een meer geschikte benaming

dan de ingeburgerde term gebruiker.

5. Net zoals in het Engels het gebruik van de term 'methodology' in de

betekenis van methode vermeden moet worden, dient de term

'methodiek' in het Nederlands vermeden te worden.

6. Assistenten en onderzoekers in opleiding dienen tijdens die

opleiding te leren hoe zij een wetenschappelijk artikel in hun

vakgebied kunnen schrijven.

7. Het onderscheid tussen Amerikaans-Engels en Brits-Engels is

verwarrend bij het publiceren in het Engels.

McNab, S. M., Hoe een wetenschappelijk artikel te publiceren in

het Engels. NRC Handelsblad, 16 januari 1990.

8. Er is in Nederland behoefte aan een onafhankelijk expertise­

centrum op het gebied van methoden, technieken en

hulpmiddelen voor de systeemontwikkeling. Het is dan ten

zeerste gewenst, dat vanuit zo'n centrum een grootschalig

onderzoek naar het praktisch effect van het gebruik van deze

methoden, technieken en hulpmiddelen uitgevoerd wordt.

9. Meteorologische uitspraken op basis van geografische iso-lijnen,

zoals: "Boven de lijn Amsterdam - Nijmegen moet rekening

gehouden worden met ijzel en natte sneeuw", dienen

geïnterpreteerd te worden met kennis van foutschattingen

horende bij het genereren van contourplottekeningen.

Brinkkemper, S. en H. Hendriks, A New Algorithm for Contour-

plotting. Proceedings of the Eurographics '87 Conference, Ed.

G. Maréchal, p. 513-527, Amsterdam, August 1987.

10. Wetenschappelijk onderzoekers worden gemotiveerd door

hobbyisme en ijdelheid.

