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aiAPTER 1 : GENHtAL ППИОШСПСИ 

1.1 Introduction 

Man has been fascinated by the development of a multicellular organism 

from a single cell, the fertilized egg, formed by the union of an egg and 

a sperm. Up to the middle of the nineteenth century a generally 

accepted view on the development of an organism vras that each sperm or 

egg contained a miniature of it, sitting inside. 

Scientific discussions focussed mainly on the question whether the 

miniature organism was in the egg or in the sperm. Based on this 

preformationists concept, development involved only growth rather than 

the sequential acquisition of new structures. largely as a result of the 

observations eind arguments of C.F.Wolff and K.E.von Baer's "Bitwicklungs­

geschichte der Tiere" in 1828 a turning point vas reached. From that time 

on it is well accepted that the development of an animal is the result of 

an initial plan operating in conjunction with external factors. The 

fertilized egg contains the genetic information and appropriate structure 

to program the development of an organism; yet the complexity of form is 

built up gradually. 

The development of an animal as a whole includes the development of the 

central nervous system (CNS) which organizes the animal's behaviour. The 

development of the former, however, cannot be isolated from the 

generation of other organ systems. 

The central nervous system (CNS) is formed by a sequence or complex of 

processes which is sunmarily designated neurogenesis. Among the many 

histogenetic events that occur during early CNS developnent is the 

generation of classes of cell types: among them nerve cells or neurons 

and glial cells. All nerve cells further differentiate to match their 

specific function within the CNS. A unique feature of developing neurons 

is the extension of processes or axons which are involved in the finding 

and subsequent formation of functional contacts between neurons. 

Outgrowth and subsequent target finding of the axon are among the main 

events during the development of the CNS. Outgrowing axons must not only 

elongate but also have to find their targets by appropriate pathfinding. 

Our knowledge concerning the mechanisns underlying these events is still 

fragmentary. Elongation and subsequent target cell finding by an 

outgrowing axon is an astonishing phenomenon, a neuronal ability which 

may be 'guided' or influenced by chemical, mechanical, bio-electrical or 

other cues (Purves and Iiichtman,1985; Edelman, 1985; Dodd and Jessell, 

1988). However, not all outgrowing axons will reach their appropriate 

target. CNS development is characterized by an overproduction of neurons, 

dendrites, outgrowing axons and synapses (see Purves and Iiichtman,1985; 

Innocenti, 1988). Henœ, during CNS development cell death as vœll as the 
elimination of axon collaterals are very conmonly occurring phenomena 
(Purves and Lichtman,1985; Stanfield et al.,1982; Innocenti,1988; 
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Provis and Itenfold,1988). 

This thesis is concerned with the development of the rat pyramidal 

tract (PT). The PT is a long descending central pathway, restricted to 

marmals, which is involved in both motor and sensory control. Ihe rat PT 

is a very useful model in experimental research on the development of 

fibre systems in manmals because of its postnatal outgrowth throughout 

the spinal cord as v«ll as its experimental accessibility. Hence, 

mechanisms underlying axon outgrowth and subsequent target cell finding 

as well as processes involved in developmental exuberance can be studied 

relatively easily in this fibre systan. 

1.2 Develcçment of the rat pyranidal tract 

The mammalian PT is defined as a set of fibres passing through the 

medullary pyramids. Its major conponents is the corticospinal tract 

(CST). "ttie fibres of the CST originate from pyramidal cell bodies, which 

are situated in layer V of the cerebral cortex (Armand,1982; Hicks and 

D'Amato,1975; Wise et al.19793; Kuypers,1981 ; Jones et al.,1982; 

Ieong,1983; Hicks and D'Amato,1980; Miller,1987) and after decussating in 

the lower medulla oblongata continue in the ventralmost part of the 

dorsal funiculus and project to the contralateral spinal grey (Schreyer 

and Jones, 1982). In rats the cells of origin of the CST are located 

primarily in sensorimotor cortex (Fig.1.1) (Woolsey,1958; Hicks and 

D'Amato,1975; D'Amato and Hicks,1978,1980; Wise et al.,19793; іеопд,1983; 

Miller,1987). Based on retrograde tract tracing experiments various 

authors demonstrated the somatotopic arrangement of the parent CST 

neurons in the rat cortex (Wise et al.,1979
a
; ІЁОпд,1983; Miller,1987). 

Those corticospinal (CS) neurons projecting to the cervical spinal cord 

segments are predoninantly located in area 4 and rostral area 6/8 

(motor-cortices), and medial area 3 and caudal area 2 (somatosensory 

cortices), whereas the CS neurons with their targets in the lumbar spinal 

grey are included in the caudal parts of areas 4 and 3 and area 18^ 

(Krieg,1946; Miller,1987). Thus, rat CS neurons projecting to lumbar 

spinal cord segments are located more caudomedially as compared with 

those projecting to cervical spinal levels (Fig.1.1). These data are 

consistent with electrophysiological mapping studies (e.g. Hall and 

Lindholjn,1974; Donoghue and Wise, 1982; Neafsey et al., 1986). Besides, 

there are broad similarities between the distribution of CS neurons in 

the rat, cat and monkey (Miller, 1987; Wise and Donoghue, 1986).In early 

development, rodent layer V neurons, vdiich give rise to CST axons, are 

also found in occipital parts of the cortex. This implies a reorganiza­

tion of CS neurons in layer V of the cortex during development vdiich is 

due to the elimination of axonal collaterals rather than the death of 

neurons (see Introductory note Chapter 2) (Stanfield et al.,1982; 



-5-

O'Leary,19853; o'Leary and Stanfield,1985,1986). 

Although in man, after the decussation in the Іодаг medulla,the 

extension of CST fibres into the spinal cord occurs during the fetal 

period (Humphrey,1960; Wozniak and O'Rahilly,1982) in rodents CST fibres 

enter the spinal cord at birth whereas their outgrowth comes about 

postnatally (DeMyer,1967; Kalil and Reh,1979; Reh and Kalil,1982; Jones 

et al.,1982; Schreyer and Jones,1982; Tarashima et al.,1983; Gribnau et 

al.,1986; among others). With the use of varying anterograde tracing 

techniques, a timetable of the caudal extension of CST fibres at 

different postnatal ages was determined previously (Donatelle,1977; 

Schreyer and Jones,1982; Gribnau et al.,1986). 

Fig. 1.1 : «ifie rat corticospinal tract originates in the cortex (A) and projects to 

the spinal gray via the medullary pyramids. After decussation it 

continues within the ventral part of the dorsal funiculus. Ihe more 

anteriorly situated neurones project to the œrvical spinal gray ( ) 

(B) ,whereas the ІшЪаг spinal gray appears to be the termination area 

of the more posterior situated corticospinal cell bodies ( ) (CÏ . 

cc=oentral canal; cst=corticospinal tract; fc=fasciculus cuneatus; 

fg=fasciculus gracilis; gm=gray matter; *ni=white matter. 
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Fig.1.2 : With the use of the anterograde tracer horseradish-peroxidase 

(HRP) CST axons can be localized after labelling the CS 

neurons in the sensorimotor cortex- A : Photomicrograph of a 

representative example of HRP labelled injection area in the 

sensorimotor cortex of a ten day old rat. B-D :Dark-field 

illuminated photomicrographs of labelled CST axons of the same 

rat at various positions in the tract :medullary level (Β) , 

decussation (C) and lumbar spinal cord (D) Bar=100 μτη, 

Such an experiment using horseradish-peroxidase (HRP) as a tracer is 

illustrated in Fig. 1.2. The results show that CST outgrowth nnainly occurs 

during the first postnatal week as is suimiarized in Fig. 1.3. 

A quantitative analysis on the amount of the anterograde labelling in 
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the developing rat CST at various ages revealed a characteristic pattern 

(Gribnau et al., 1986). From these results it was deduced that the 

developing rat CST is characterized by a staggered mode of outgrowth, as 

»as also found in the hamster (O'leary and Stanfield,1986). It became an 

intriguing question which guidance cues might underlie the outgrowth of 

the CST fibres (see Introductory note Chapter 5). 

Between the arrival of the CST axons in the dorsal funiculus of a given 

spinal cord segment and the extension into the respective spinal gray 

matter in rodents a delay was noted of about 2-4 days (see Fig. 1.3) 

(Wise et al.,1979
a
; Reh and Kalil,1981; Schreyer and Jones,1982; Gribnau 

et al.,1986).This waiting period might be attributed to the lagging 

behind of the developmental state of the target neurons in the spinal 

grey. 

In the spinal gray most CST axons end on inte meur ons in the base of 

the dorsal horn and intermediate regiems (Goodman et al., 1966; 

Brom,1971; Armand,1982; Kuypers,1981), although electrophysiological 

experiments demonstrated sane monosynaptic contacts from CST axons cm 

motoneurons (Janszen et al.,1977; Elger et al.,1977,1978). After ingrowth 

the formation of functional synapses in the spinal gray has been related 

to the appearance of fore- and hindlimb placing responses (Castro,1972; 

Kalil and Schneider,1975; Donatelle,1977). The placing responses are less 

В 
PI P3 P5 P7 

Ид. 1.3 ι A :Schematic representation of the rat spinal cord. В :CST 
extension diagram. С :camera lucida drawings of transverse 

sections of the dorsal funiculus with the labelled CST. 
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well coordinated in young postnatal animals as compared with adult rats 
(Donatelle, 1977). Ihis phenomenon may be correlated to the fact that 
myelination of FT fibres starts at about postnatal day 14 (Matthews and 
Duncan,1971). 

Although in the adult rat many PT axons are myelinated, numerous 
uimyelinated PT fibres were encountered (Leenen et al.,1982,1985; Chung 
and Coggeshall,1987; Gorgels et al., 1989a) .ílifortunately, the origin, 
destination as vœll as the function of the unmyelinated axons in the 
adult ΡΓ are unknown. 

1.3 Scope cf the present investigation 

In the present study the postnatal development of the pyramidal tract 

and especially its corticospinal conponent has been investigated in the 

developing rat spinal cord using a variety of light- and electron-

microscopic neuroanatanical techniques. 

In essence this thesis can be subdivided into two main parts which, 

however, are closely related. First a detailed description of the 

development of the CST in the rat is given (Chapters 2-4). In the second 

part (Chapter 5) the role of several guidance cues on outgrowing CST 

axons in the rat is described. During the study on the development of the 

rat CST the following questions were of main interest: 

- Bow does the corticospinal oaqpcnent of the rat pyramidal tract 

develop? 

- Is collateral elimination confined to the occipital corteE or is it a 

general phenanenon in the developnent of the corticospinal tract? 

- ttiich factors do play a role in the outgrowth and guidance of 

corticospinal axons in the rat? 

In Chapter 2 first an Introductory Note is presented on the loss of 

axonal projections in the developing mairmalian brain, with special 

attention to the rat CST. In Chapter 2B the development of the rat CST is 

described with respect to the relation between the site of WGA-HRP 

injection within the cortex and the pattern of labelling in the spinal 

cord from postnatal day 1 (PI) through postnatal day 10 (PIO). With the 

use of iontophoretic WGA-HRP injections the development of transient CS 

projections fron the medial prefrontal cortex is described in Chapiter 

2C. In Chapter 3 a description is given of the morphology of the distal 

ends of the CST pioneer axons in the lower spinal cord segments during 

white and grey natter development as analysed with the use of a new 

combination of HRP-staining techniques. After introduction of a method 

for the electron-microscopic (EM) visualization of anterogradely 

transported HRP in developing neural tissue the postnatally developing 
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CST as well as the mature CST were analysed (Chapter 4). Factors which 
might play an important role in the development of CNS fibre systans are 
discussed in the Introductory Note of Chapter 5. The possible role of 
precursor-astrocytes in the guidance of outgrowing CST axons is pointed 
out in Chapters 5B. The localization of the cell adhesion molecule LI 
during the outgrowth of CST axons is based an IM (Chapter 5C1 ) and 
EM-observations (Chapter 5C2). Finally, in Chapter 6 the results of this 
study are discussed and sumnarized. 





Chapter 2 

Collateral elimination during postnatal 

corticospinal tract development in rat 
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CHAPTER 2A ПГОЮХСТОКУ NOTE: DEVELQPMQÍEAL EXUBERANCE IN О Б 

CNS development is characterized by an overproduction and subsequent 

elimination of neurons, dendrites, spines, axons and synapses (Purves and 

Lichtinan,1985; Innocenti, 1988). These phenomena are often collectively 

referred to as developmental exuberance or regressive developmental 

events. It has been suggested that the developmental overproduction 

serves to ensure that each target structure eventually receives an 

adequate input. Furthermore, the subsequent elimination serves the 

matching in size of an innervating population of cells to the capacity of 

its target: "system matching" (Hamburger and Oppenheim,1982; Cowan et 

al.,1984). For instance, in rodents retinal axons initially project to 

all parts of the ipsilateral superior colliculus vAiereas in adults its 

projection is restricted to a region along the rostral and medial margins 

of the colliculus (Frost and Schneider,1979). Ihe phenomenon of "system 

matciiing" is closely correlated with the plasticity of the young CNS. An 

important implication of this process is that developmental errors can 

effectively be eliminated (Cowan et al., 1984; O'Lsary,^?). However, 

although it seems unlikely, some of the transient connections might play 

a tanporary role in developnent (O'Leary and 1hanos,1985; Innocenti, 

1988). 

Up till now most research on CNS developmental exuberance has been 

focussed on "neuronal death". During the development of virtually all 

cell groups in the vertebrate central nervous syston, there is a period 

during which about half of the initial population of neurons dies. This 

fiiase of "naturally occurring cell death" was observed in various parts 

of the CNS (e.g.Hamburger and Oppenheim, 1982; van Шеп,1985; Provis and 

Penfold,1988) and coincides with the actual formation of connections 

between the neuronal population and its target. In normally occurring 

death some neurons are progranmed to die by virtue of intrinsic 

instruction. This type of strategy is well suited to regulate cell 

numbers in relatively simple, in most cases invertebrate, systans 

(Goodman and Bate,1981; Shankland, 1984). 

In vertebrate systans naturally occurring cell death is probably not 

preordained but depends on interactions with other cells at the level of 

the target. Even when axons follow their normal pathways and reacii their 

correct target areas they might terminate in an inappropriate section of 

this target. Ihis topographic targeting error may subsequently result in 

death of the cells of origin as has been danonstrated in e.g. the retinal 

projection to the contralateral superior colliculus in the rat (O'Leary 

et al.,1986). 

It has been suggested that vertebrate neurons conmonly die because of 

failure in competition for a factor or factors produced by the target. In 

the peripheral nervous system such a factor, namely nerve growth factor 

(NGF) has been isolated (Levi-Montalcini and Booker,1960). In vitro 

studies using dissociated sympathetic ganglion cells provided substantial 

evidence that a major effect of NGF is promotion of cell survival 
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(Levi-Montalcini and Angletti,1963; Berg,1982). 

Although the process of "system matching" often can be explained by the 

death of neurons, research during the past decade demonstrated the 

overproduction and elimination of (long) axonal connections without death 

of the parent cells. This process of 'collateral elimination' presents 

itself in mamnals during the development of corticocortical (Innocenti et 

al.,1977; Ivy et al.,1979), corticofugal (Reh and Kalil,1982; Stanfield 

et al.,1982), retinofugal (Williams and Chalupa,1982; Frost,1984) and 

other pathways (Stein et al.,1985). 

•Піе first evidence for the occurrence of a transient corticospinal 

projection from neurons localized in the occipital part of the cortex in 

the rat was provided in retrograde tracer studies with the fluorescent 

marker True blue (Stanfield et al.,1982). During the first week, 

injections of True blue into the pyramidal decussation resulted in the 

labelling of pyramidal tract neurons which are found virtually throughout 

the tangential extent of layer V of the neocortex. In contrast, after 

comparable injections during the fourth postnatal week the distribution 

of such cells appeared to be much more restricted; a restriction which is 

most obvious in the occipital part of the cortex. Double labelling 

retrograde experiments excluded the possibility of neuronal death in 

layer V of the occipital cortex. Based on these data it was concluded 

that occipital layer V neurons extend corticospinal axons well down into 

the spinal cord during the first postnatal week, but that all of the 

occipital corticospinal fibres are subsequently eliminated by collateral 

pruning even though many of their parent neurons remain intact projecting 

to the tectal region (Stanfield and O'Ifiaryjgasb). 

The question remains why so many transitory structures are generated 

and vtfiat their functional role might be. Exuberance and subsequent 

regressive phenomena are correlated with "system matching", which is one 

exanple of the enormous flexibility for matching the phenotypic 

expressions of the various sets of genes provided during ontogenesis. 

These developmental strategies may be further clarified by a phylogenetic 

perspective (Innocenti,1988): The success of developnental exuberance in 

phylogenesis may be the plasticity provided in later stages of neural 

development. From this point of view axon elimination is more economical 

and gives more flexibility than neuronal death does. 
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CHAPTER 2B: AN ANTBKXSADE IKACHt STODÏ № THE DEVELOPING CORTICDSPINAL 

•TOACT IN THE RAT: TBREE ODMPGNaiES 

oUfWuuL 

Light microscopic analysis of anterogradely transported v̂ ieat germ 

agglutinin-conjugated horseradish peroxidase (WGA-HRP) has been used to 

study the developing corticospinal tract (CST) in the rat. This study was 

carried out to examine the relation between the site of injection within 

the cortex and the pattern of labeling of the developing CST in the 

spinal cord from postnatal day 1 (PI) through postnatal day 10 (PIO). For 

this purpose the cortex was subdivided into three equal areas along the 

rostro-caudal axis: anterior, intermediate and posterior. After the 

operation the animals were allowed to survive for 24 hours. 

The caudal extension of labeled CST axons originating in the anterior 

cortical area was restricted (LI at P7 or PIO) as compared with that of 

the CST fibres originating in the intermediate cortical area (S3 at 

PIO). The axons of the posterior corticospinal (CS) neurons reach their 

most caudal extension in the spinal cord (IhS) at P7 but then gradually 

disappear up till Pi 4. 

Quantitative analysis of the amount of label along the length of the 

outgrowing CST fibres revealed the formation of a large stable peak at 

the level of the cervical enlarganent after labeling of either the 

anterior or the intermediate cortical area. Ihe formation of a second 

"running" peak which moves caudally fron mid-thoracic levels at P5 to 

mid-lunbar levels at PIO was only accomplished by labeling the inter­

mediate cortical area and is probably caused by the accimulation of label 

in the growth cones at the distal ends of the outgrowing CST fibres. 

After labeling the posterior cortical area no peaks could be detected 

neither at the cervical nor at the lumbar intumescence. 

The major spinal gray termination field of the anterior CS neurons 
appeared to be the cervical intumescence, vfriereas the major spinal gray 

termination field of the intermediate CS neurons is the lumbar 

enlarganent. By contrast, axons of posterior CS neurons never showed any 

outgrowth into the spinal gray matter at any level. 

Concludingly the developing CST in the rat consists of three canponents 

the first, having its originating neurons in the anterior part of the 

cortex and its termination field in the cervical intumescence; the second 

with its originating neurons in the intermediate part of the cortex and 

its termination field predominantly in the lumbar enlargement and a third 

transient one originating in the posterior cortex and gradually disappea­

ring from spinal cord levels. 

Research using anterograde tracing techniques in combination with 

electron microscopjy is necessary to further analyse these three different 

canponents. 
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шгосоисиси 

The pyramidal tract (PT) can be defined as a set of fibres passing 

through the medullary pyramids and its major conponent is the 

corticospinal tract (CST). The CST of the rat is a pathway which 

originates in layer V of the sensorimotor cortex and projects to the 

spinal gray matter via the medullary pyramids; after their decussation 

its fibres are located within the ventral part of the dorsal funiculus. 

In the rat the developing CST fibres reach the cervical spinal cord at 

birth and their outgrowth throughout the cord comes about postnatally 

(Donatelle,1977; Jones et al.,1982; Іеопд,1983; Leong et al.,1984b; 

Gribnau et al., 1986). The CST in rodents is a very extensively studied 

pathway not only because of its postnatal outgrowth in the spinal cord 

but also because the CST provides a model in vrfiich the development of a 

long motor pathway can be studied. A close temporal relationship has been 

found between the growth of corticospinal axons into the spinal cord and 

the development of placing reactions in the rat (Hicks and D4mato,'\975; 
Donatelle ,1977; Hicks and D'Amato,1980). 

Quantitative light microscopic analysis of anterogradely transported 

wheat-germ-agglutinin conjugated horseradish peroxidase (WGA-HRP) in the 

developing CST in the rat revealed a characteristic pattern of labeling 

within the outgrowing bundle varying with age (Gribnau et al.,1986). The 

analysis of the relation between the site of the originating neurons 

within the cortex and the pattern of labeling of the developing CST might 

provide interesting new information about the vey in which this fibre 

tract arises. 

Retrograde labeling studies in rodents revealed that during early 

postnatal developmental stages layer V neurons, which give rise to CST 

axons, are distributed over large parts of the cerebral cortex. 

Contrastingly, in adults these layer V neurons are concentrated in the 

sensorimotor cortex located in the rostral tvro-thirds of the cerebral 

hemispheres (Ivy and Кі11аску,1982; Adams et al.,1983a,1983b; Leong,1983; 

Bates and Killacky, 1984; leong et al., 1984a, 1984b) showing a distinct 

somatotopical arrangement (Wise et al.,1979
a
,1979

b
; Donoghue and Wise, 

1982; Neafsey et al.,1986), neurons projecting to ІшЪаг spinal cord 

segments are located more caudomedially than those vrtiich project to 

cervical spinal cord segments. Bus topographic reorganization of the 

layer V neurons during postnatal development is probably brought about by 

selective elimination of certain early-formed axon collaterals and not by 

degeneration of axons after neuronal death (O'Leary et al.,1981; 

Stanfield et al.,1982; Stanfield,1984; O'Leary and Stanfield,1985; 



Stanfield and O'Leary,1985
a
,1985

b
; O'Leary and Stanfield,1986; Schreyer 

and Jones, ІЭввЬ). At the same time electron microscopic analysis of the 

developing FT revealed a notable loss of thin unmyelinated axons during 

the same period (Reh and Kalil,1982; De Kort and Van Aanholt,1983). 

The present light microscopic study was undertaken to analyse the 

possible relationship between the developmental pattern of CST axons and 

the site of their parent neurons in the cortex on the one hand and the 

outgrowth of the terminal branches of these CST axons into the spinal 

gray matter on the other hand. 

HKEHUALS AND METBODS 

In the present study postnatal Wistar rats (n=49), ranging in age from 

postnatal day 1 (PI) to postnatal day 10 (PIO) were used; in which the 

day of birth was accounted for PO. At least three animals per injection 

area per age category were used. The ages of the anunals given in the 

present paper are the ages at their respective days of injection. 

After anaesthetizing the animals with sodium pentobarbital (18 mg. per 

kg. body weight, i.p.) and additional cooling in icewater, if necessary, 

the injections were placed after opening of the skin and making of a 

small hole in the skull using a fine needle. 

The hemisphere of each animal was subdivided in three imaginary equal 

areas along the rostro-caudal axis: anterior, intermediate and posterior 

(Fig. 1). In the centre of each individual cortical area the injection of 

5% vrtieat-genn-agglutinin horseradish peroxidase (WGA-HRP, sigma type VI) 

solution in distilled water was placed, using a 5 μΐ Hamilton syringe 

fitted with a glass micropipette. Each injection contained 0.05 ul 

WGA-HRP solution in order to label as many layer V neurons of the 

respective cortical area as possible. The postinjection survival times 

were kept constant at 24 hours. Ihe animals were reanaesthetized and 

transcardially perfused with saline, followed by 1.25% glutaraldehyde and 

1.0% formaldehyde in 0.1 M. phosphate buffer (PB) (pH 7.4). 

After the perfusion the brains and spinal cords were irrmediately 

removed and postfixed by inmersión overnight. Hereafter they were placed 
in phosphate buffer containing 30% sucrose (PBS) at 4°C during approx­
imately 6 hours. Before cutting the brains and spinal cords into 30 yum 
transverse sections on a freezing microtome they were embedded in a 
gelatin-sucrose mixture (15% gelatin in PBS), stored overnight in 4% 
formaldehyde and washed in PBS for 1-2 hours. The material was then 
frozen in dry ice and cut into sections in the transverse plane on a 
freezing microtome. Every fifth (P1-P7) or sixth (PIO) section was 
irrmediately incubated with tetramethylbenzidine (TMB) as a chromogen, 
according to Mesulam (1978). The sections were counterstained with 
neutral red and mounted in Depex. Control sections were processed 
identically but the incubation was carried out without ΊΜΒ. 
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P1 PT P5 P7 P10 

[ i 'J A i l e r or C o n cal Inpecl on Area 

I I Inlermed ale Co l i r a i l-jec on Afea 

^ Ш Poslei <.i Co ι cal Inie.l o r Area 

Fig.2 : Caudal extension of ИА-HRP 

labelled CSI axons after in­

jecting the cortical areas, 

as illustrated in Fig.1, at 

different postnatal ages. 

In each experiment a graphical reconstruction »as made of the cortical 

injection area, including both the heavily labeled injection site and its 

diffusely labeled surroundings, from the serial sections of the cortex as 

traced with a camera lucida. For that purpose the orthogonal projection 

of the cortex, with its labeled part as traced in the camera lucida 

drawings onto the midsaggital plane was used. 

Drawings of the labeling in the spinal cord sections were made at 

higher magnification under dark field illumination using a Zeiss micro­

scope eguipped with a drawing device (Figs. 4 and 5). For each spinal 

cord a labeling distribution chart of the CST was made according to the 

method as described by Gribnau et al.(1986). In this way a rostro-caudal 

labelingscurve of the CST could be deduced for each individual spinal 

cord (Fig. 3). 

All photcmicrographs were made with an automatic Zeiss-photcmicro-

scope-II using dark field illvmination using an Agfapan 25 film. 

RESULTS 

In the present paper attention was focused on the developmental pattern 

of the CST axons as related to the site of their parent neurons within 

the cortex on the one hand and to the outgrowth of the terminal branches 

of these CST axons into the spinal gray on the other hand. Ihe results on 

both aspects of the developing CST axons during the postnatal 

period fron PI through PIO will be described for eadi of the three 

VKÄ-HRP injection areas (see Materials and methods) separately. Control 

sections were always negative. 

Ш ANTI aio« 
СЭ NTrPMt1IATE 
Ж POSTEnon 

Fig.1 : Reconstructions showing the 

cortical injection areas in 

various stages studied. 
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Anterior cortical area 

As is schematically shown in Figure 2 after labeling of the anterior 

cortical area (see Materials and methods) the labeled СЭГ axons extend 

caudally into the second thoracic (1112) segment at Pi, into the ninth 

thoracic (Th9) segment at P3, into the eleventh thoracic (Th 11) segment 

at P5 and into the first lumbar (LI) segment at P7 and PIO. Up to PIO the 

labeled CST fibres viere not found at more caudal levels than the first 
lumbar segment. 

The quantitative analysis of the WCÄ-HRP labeled СЯГ axons provides 

seme more interesting results. As can be seen in figure 4, which 

represents cannera lucida drawings of the most salient spinal cord 

segments the amount of WGA-HRP label present in the CST at the spinal 

cord segment Ih 5 is much less than that present at C5. 

From the labeling distribution chart (Fig. 3) it can be concluîed that 

after labeling of the anterior cortical area a large peak of WGA-HRP 

label arises at the cervical intumescence. The fact that anterior CST 

2p 4p 6p 8p 10,0% 2,0 4,0 φ 8,0 10p% 2Ç) 4p 6P 8p 100% 

Рід.Э : composition of labelling distribution charts at different postnatal ages 

resulting from the quantitative analysis of the anount of MÄ-HRP within 

the fibre bundle. A :anterior cortical injection area. В : intermediate 

cortical injection area. С :posterior cortical injection area. 



Anterior Cortical Injection Area 

Intemediate Cortical Injection Area 

Οι 

Fig.4 : Camera lucida drawings of transverse sections of the most salient spinal 

cord segments illustrating the labelled CST axons and their outgrowth 

into the adjacent spinal gray after injection of the anterior and inter­

mediate cortical areas at different postnatal ages. 

axons do not reach beyond Li impLies that a second peak of labeling which 

arises at the lumbar intumescence between the fifth and tenth postnatal 

day after labeling the entire left hemisphere (Gribnau et al.,1986), does 
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not originate from fibres originating in the anterior cortex. 

In all cases the most caudal tip of the labeled outgrowing CST only 

contains a very small amount of WCÄ-HRP labeling randomly distributed in 

the ventral part of the dorsal funiculus (Fig. 4). 

Up to the tenth postnatal day the outgrowth of the CST fibres into the 

spinal gray matter is restricted to cervical and thoracic levels (Figs. 4 

and 6). The extension of the labeled fibres into the spinal gray matter 

can be found at an average delay of two days after the arrival of the CST 

axons at their respective spinal cord segments (Fig. 4). labeling of the 

entire left hemisphere (Gribnau et al.,1986) resulted in a similar 

pattern of outgrowth of labeled CST fibres into cervical and thoracic 

spinal gray matter. 

Intermediate cortical area 

Figure 2 shows the caudal extension in the spinal cord of the CST axons 

after labeling of the intermediate cortical area (see Materials and 

methods) from PI through PIO. The labeled CST axons extend caudally into 

the first thoracic (Ώιΐ ) segment at PI, into the eleventh thoracic СШІІ) 

segment at P3, into the first lumbar (LI) segment at P5, into the first 

sacral (Si) segment at P7 and into the third sacral (S3) segment at PIO. 

Comparison of these data with those obtained after labeling of the 

anterior cortical area clearly shows the much more caudal extension of 

the CST axons after labeling of the intermediate cortical area during the 

period analysed (P3-P10) (Fig. 2). The caudal extension of the CST axons 

after labeling of the intermediate cortical area closely resembles that 

observed by Gribnau et al. (1986), after labeling of the main part of the 

cortex of the left hemisphere. 

Quantitative analysis of the labeled CST axons after intermediate 

cortex injections yields following results (Fig. 3), firstly: two peaks 

of WGA-HRP labeling arise during the development of the CST: one stable 

peak at the cervical intumescence and one "running" peak (which moves 

caudally f rem mid-thoracic levels at P5 to mid-lumbar levels at PIO); 

secondly: the most caudal tip of the outgrowing CST bundle only contains 

a small amount of WGA-HRP labeling. 

At least within the age PI-PIO a "running" peak can only be achieved by 

labeling the intermediate cortical area and, contrastingly, not by 

labeling of the anterior cortical area (Fig. 3). 

Special attention was focussed on the outgrowth of the CST fibres into 

the spinal gray matter after labeling the intermediate cortical area. Up 

to the seventh postnatal day the outgrowth of the CST fibres into the 

spinal gray matter appeared to be restricted to thoracic and lumbar 

levels (Figs. 4 and 6). 

An optimal separation of the outgrowth fields of the labeled CST fibres 

into the spinal gray matter after labeling the intermediate and the 

anterior cortical area exists at P7 (Figs. 4 and 6). At this stage the 

major spinal gray outgrowth field of the CS neurons of the anterior 



cortical area appears to be the cervical intumescence whereas the major 

spinal gray outgrowth field of the CS neurons of the intermediate 

cortical area is the lumbar intumescence. However, it is conceivable 

that, due to a further expansion of the cortex beyond P7, the chosen 

experimental plan using three cortical injection areas (see Materials and 

methods) is not suitable to an optimal analysis of the spinal gray 

outgrowth or projection fields. This aspect will be discussed later. 

Ид.5 : WQ\-HRP labelled corticospinal tracts in transversely sectioned spinal 

cord segments (dark-field illumination), of P7 animals. After labelling 

the anterior cortical area (A,B) »extensive outgrowth at the fifth 

cervical segment (A) and no outgrowth at the second lumbar segment (B) 

vas found. Oi the contrary, after labelling the intermediate cortical 

area (C,D) ,no labelling could be detected in cervical (C5) spinal cord 

gray matter (C)
 f
whereas the lumbar (L3) spinal cord grey matter was 

extensively labelled (D) .Bar= 75 лп. 

Posterior injection area 

The caudal extension of the labeled CST axons after injection into 

the posterior part of the cortex is much more limited as compared with 
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the outgrowth after labelling of the anterior or the intermediate 

cortical area (Fig. 2). After labelling of the posterior cortical area 

the labeled CST axons extend caudally into the first cervical segment 

(CI) at PI; into the eighth cervical (С ) segment at P3; into the fifth 

thoracic (ThS) segment at P7 and into the first cervical (CI) segment at 

PIO. No labeled CST axons were found at any spinal cord level analysed at 

Pi4 (not shown). Hie transient nature of the corticospinal projection 

from the occipital cortex during the postnatal development of the rat, as 

described by Stanfield and O'Leary (1982,1985a,1985b) might be a possible 

explanation of this phenomenon (see discussion). 

/ • ' - - -

Posterior Cortical Injection Area / ' ^ ^ ~^\ 

Fig.6 : camera lucida drawings of transverse sections of spinal cord segnents 

illustrating the caudal extension of the occipital CST axons into the 

spinal cord white matter. No outgrowth of these axons into the adjacent 

spinal grey was noted. 

Ihe amounts of WGA-HRP label present in the CST at different spinal 

cord levels at varying developmental ages (Figs. 6 and 7) after labeling 

the posterior cortical area differ draniatically from those observed after 

injections into the anterior and intermediate cortical areas, 

respectively. Firstly, the amount of W3A-HRP label is approximately ten 

times lower at all spinal cord segments analysed. Secondly, no peaks of 

labelling could be detected either at the cervical or at the lumbar 

intumescence, the decrease of the amount of WGA-HRP label f rem cervical 

to thoracic levels appears to be nearly linear (Fig. 3C). 

As can be seen very clearly in Figs. 6 and 7 no outgrowth of labeled 

CST fibres into the spinal gray matter could be detected at any spinal 

cord level at any age after injections into the posterior cortex. This 



phenomenon, in combination with the afore mentioned disappearance of all 

labeled CST axons of any spinal cord level between P7 and PI 4, possibly 

implies degeneration of these corticospinal projections (see Discussion). 

Pig.7 : Transverse sections of WGA-HRP labelled corticospinal axons at P7 (dark-

field illumination) after labelling the posterior cortical area. A : 

second cervical segment. В :eighth cervical segment. Comparision of the 

quantity of label present with that after labelling the anterior or 

intermediate cortical area (Fig.5A
f
5C) illustrates the small amount of 

WGA-HRP. No outgrowth of labelled CST axons into the adjacent spinal grey 

could be detected. Bar= 75 um. 

DISCUSSION 

The present anterograde tracer study of the developing CST in the rat, 

using WGA-HRP, danonstrates an obvious relationship between the site of 

injection in the cortex and the developmental pattern of the labelled CST 

axons in the spinal cord on the one hand and the outgrowth of their 

terminal branches into the spinal grey matter on the other hand. Before 

discussing our results it should be anphasized that we have made the 

assumption that the cerebral hemispheres expand in an isometrical way 

during the postnatal period studied (P1-P10), i.e. the rostral injection 

sites correspond to each other in all stages studied, and the same holds 

true for the intermediate and caudal injection sites, respectively. 

After injecting the anterior cortical area, no labelled CST axons were 

found at more caudal levels than in spinal cord segment L·) during the 

developmental period analysed (Fig.2). Qiantitative analysis of the 

amounts of WGA-HRP within the fibre bundle, after labelling the anterior 

cortical area revealed the presence of a large stable peak at the 

cervical intumescence ar all stages analysed (Fig.3). In accordance with 

this development in the spinal cord white matter, the major spinal grey 

termination field of these outgrowing CST fibres appears to be the 

cervical intumescence (Figs.4 and 5). Labelling of the intermediate 

cortical area during the first postnatal week revealed marked differences 

as compared with the labelling of the anterior cortical area. Ihe caudal 

extension of the CST axons after labelling the intermediate cortical area 

proceeds up to even sacral spinal cord segments SI at P7 and S3-4 at PIO 

(Fig.2). Quantitative analysis of the amount of label within the CST at 

several spinal cord levels after labelling the intermediate cortical area 
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revealed two peaks: one large stable peak at the cervical intumescence, 
comparable with that found after labelling the anterior cortical area, 
and a running peak, vtfiich moves caudally from P5 till PIO and then 
stabilizes at the lumbar intumescence (Fig. 3). The occurrence of a large 
stable peak at the cervical intumescence after labelling the anterior or 
the intermediate cortical injection area and a stable peak at the lumbar 
enlargement after labelling the intermediate cortical injection area may 
possibly be explained by the branching of CST axons at these levels. Ihe 
transient presence of a running peak which moves caudally with the front 
of the outgrowing bundle after labelling the intermediate cortical 
injection area probably arises by accumulation of tracer within the 
growth cones at the tip of the outgrowing CST. these statements, however, 
are based upon a nurtber of presuppositions about different factors (such 
as the transport rate of the tracer, the varying axon diameter, the 
branching collaterals, the presence of varicosities, the number of axons 
and the uptake of tracer at the injection site) which possibly may affect 
the amount of label present in both the entire bundle and the individual 
axons, as was discussed upon earlier (Gribnau et al.,1986). Only a 
corrbined anterograde HRP tracing and electron microscopic analysis of the 
developing CST in the rat can provide additional information on these 
underlying factors. 

Op till the seventh postnatal day the chosen experimental plan using 
three different cortical injection areas was highly suitable since a 
marked separation was obtained of the respective spinal gray outgrowth 
patterns (Figs. 4 and 6). However, as a result of differential expansion 
or rearrangement of the cortex beyond P7 the chosen experimental plan 
using three cortical injection areas may not be very usefull in getting 
further segregation of spinal gray termination fields. As can be seen in 
Figure 4 the spinal gray outgrowth of labeled CST fibres of a PIO animal 
after injecting the intermediate cortical area occurs, in addition to 
lumbar and thoracic parts, also in cervical regions. Extensive experi­
ments using a great number of smaller injections especially within the 
intermediate -»rtical area might yield additional information about this 
matter. 

Previous studies revealed that reorganizing or focusing of cortical 
neurons during the first postnatal weeks is a conmon feature (Stanfield 
et al.,1982; ASams et al.,1983a; Mihailoff et al.,1984; Stanfield and 
O'Leary,1985a). The normal development of the nervous system also 
encompasses a number of regressive phenomena. In some regions of the 
central nervous system naturally oocuring neuronal death has been well 
documented (Heumann et al.,1978; Oppenheim, 1986). Ol the other hand the 
focussing of specific populations of neurons can be explained by the 
elimination of early formed axon-collaterals. This has not only been 
demonstrated for neurons whose axons project via the corpus callosum 
(Innocenti,1981; Ivy and Killacky,1981; O'Leary et al.,1981; Ivy and 
Killacky,1982; Killacky and Chalupa,1986) but also for corticospinal 
neurons in the rat and the hamster (Stanfield et al., 1982; Stanfield, 



1984; O'Leary and Stanfield,1985; Stanfield and O'Leary,1985
a
,1985

ь
; 

O'Ifiary and Stanfield,1986). The elimination of early-formed cortico­

spinal axon-collaterals was demonstrated for layer V neurons in the 

occipital part of the cortex (Stanfield et al.,1982; Stanfield,1984; 

O'Leary and Stanfield,1985; Stanfield and O'Leary,1985a,1985b; o'Leary 

and Stanfield,1986; Schreyer and Jones,1988
b
). 

Our results after labeling the posterior injection area (occipital 

cortical area) clearly demonstrate a maximal caudal extension of the 

labeled CST fibres up to midthoracic levels at P7 (Fig. 2). After the 

first postnatal week these corticospinal projections gradually disappear 

fron spinal cord levels (Fig. 2). Besides, no outgrowth of these 

transient occipital corticospinal projections into the spinal gray matter 

could be detected at any developmental stage (Figs. 6 and 7). Both 

phenomena point to a possible degeneration of these corticospinal axons. 

The presence of a transient corticospinal projection from the occipital 

cortex during the postnatal development of the rat is in line with 

previous results of Mihailoff et al.(1984) after anterograde or Stanfield 

et al.(1982),Adans et al. (1983
a
,1983b), Stanfield (1984), Stanfield and 

O'Leary (1985a,1985b) ^ o'Leary and Stanfield (1985,1986) after 

retrograde or combined labeling studies. O'Leary and Stanfield (1985) 

previously danonstrated that many of the occipital neurons with early 

corticospinal projections stabilize and maintain permanent axonal 

connections to the superior colliculus or to the pons. The stabilized 

projections most likely result from a selective elimination of a 

transient component represented by the occipital corticospinal 

collaterals (O'Leary and Stanfield,1985; Stanfield and O'Leary,1985b). in 

addition, the time course of the disappearance of transient occipital 

corticospinal projections corresponds with an electron microscopically 

demonstrated reduction of the total number of axons present during the 

development of the PT in the rat at the third cervical segment (Th. 

Gorgels, pers. conmunication). In the hamster the number of PT axons in 

the medulla oblongata peaks at P7 and declines dramatically up till PI4 

to about 70% of the number at P7 (Reh and Kali1,1982). The elimination of 
transient occipital corticospinal projections certainly partially 

accounts for this decline but a great deal of the reduction might be 

explained by the axon pruning of neurons that maintain a pyramidal 

projection (Crandall et al.,1985). Vfe intend to study the possible 

degeneration of the transient occipital corticospinal projections during 

the postnatal development in the rat at the ultrastructural level using a 

modified anterograde HRP-ЕМ technique (Chapter 4). The occipital cortical 

projections did not show any outgrowth in the spinal cord gray matter. 

This implies that these projections do not make contact with target cells 

which may lead to the consecutive degeneration of the axons in question. 

In the present study we noted a delay of about tws days betv«en the 

arrival of the bulk of the CST axons at a given spinal cord segment and 

their outgrowth into the respective spinal gray after labeling the 
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anterior cortical area. After labeling the intermediate cortical area 
this waiting period of approximately two days was found only at thoracic 
and lumbar levels; at cervical spinal cord levels no outgrowth vas noted 
at all even after a waiting period of six days. 

The presence of CST fibres within the spinal cord white matter about two 
days before their entry into the adjacent spinal gray was previously 
noted in rodents (Wise et al.,1979a,1979b; Martin et al.,1980; Schreyer 
and Jones,1982,1983; Gribnau et al.,1986). Miether this waiting period 
can be attributed to the lagging behind of the developmental state of the 
neurons in the dorsal horn remains to be established. 
Besides, the maturation of the layer V cortical neurons projecting to 
spinal cord levels and especially their positioning in tangential and/or 
radial dimensions along the cortex (Stanfield,1984), may play a role in 
the waiting period between the arrival and the outgrowth of the axons at 
a given spinal cord segment. 

The principal findings in this chapter can be sumnarized as follows: 
1. The CST fibres originating in the intermediate cortical area extend 
much more caudally than the CST fibres originating in the anterior 
cortical area; 2. The major spinal gray termination field of the anterior 
CS neurons appears to be the cervical intumesence, vAiereas the major 
spinal gray termination field of the intermediate CS neurons is the 
lumbar intumescence; 3. Uve axons of the posterior CS neurons attain 
their most caudal extension in the spinal cord at P7 and then gradually 
disappear up till PI4; these axons do not show any outgrowth into the 
spinal gray matter at any level or any age. 
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CBAPrat 2C: Ml АМНвХЖАПЕ TSUCER STODY ON THE DBVEUXWQIT OP CORTICD-

SPIHAL m o j B c n œ e РИЖ THE MHHAL KEFRONISVL CORTEX Ш 
THE RAT. 

SUMAKY 

Ihe aim of the present study is to investigate, both qualitatively and 

quantitatively, the development of corticospinal (CS) projections from 

the medial prefrontal cortex of the rat. This study »as carried out with 

the use of anterogradely transported wheat germ agglutinin-conjugated 

horseradish peroxidase (WGA-HRP) after iontophoretic injections in the 

medial prefrontal cortex. Por canparison similar injections were made in 

the sensorimotor cortex. 

Ihe CS axons of neurons situated in the medial prefrontal cortex have 

reached the first thoracic segment (Ti) at postnatal day 3 (P3) and reach 

their most caudal extension in the spinal cord sixth thoracic segment 

(T6) at postnatal day 7 (P7) and then gradually disappear during the 

second postnatal week. Quantitative results revealed that after labelling 

of the medial prefrontal cortex no peaks in labelling density neither at 

the cervical nor at the lumbar intumescence were present. Furthermore, 

the CS axons of medial prefrontal neurons never showed any outgrowth into 

the spinal grey matter at any age studied. Concludingly, the extension 

and subsequent elimination of CS axons originating in the medial 

prefrontal cortex follow a similar time course as those from the 

occipital cortex (Chapter 2B). 

Key words :corticospinal tract - collateral elimination - medial 

prefrontal cortex - anterograde tracing - rat. 

INroODUCTION 

The mamnalian corticospinal tract (CST) represents a major descending 
motor pathway (Armand, 1982), with its cell bodies located mainly in the 

fifth layer of the sensorimotor cortex (Hicks and D'Amato, 1975; Wise et 

al.,19793; Murray and Coulter,1981 ; Ifiong,1983; Neafsey et al.,1986). 

using retrogradely transported horseradish peroxidase (HRP) Miller 

(1987) was able to describe the exact localization of corticospinal (CS) 

neurons in the adult rat: besides retrogradely labelled CS neurons in 

areas 4 and 6/8 (motor cortices), medial area 3 and caudal area 2 

(somatosensory cortices), less dense concentrations also were observed in 

occipital, cingulate and prefrontal cortices. 

The CS neurons in the visual cortex of the adult rat may represent a 

remnant of the transient occipitospinal projection that is evident in 

young postnatal rats (Stanfield et al.,1982;Stanfield and O'Leary,1985b) 

Occipital neurons with early CS projections stabilize and maintain 
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permanent axonal connections to the superior oolliculus or to the pons 

(O'Leary and Stanfield,1985). These transient occipitospinal projections 

demonstrate a maximal caudal extension up to mid-thoracic levels at 

postnatal day 7 (P7), whereas they gradually disappear from spinal cord 

levels during the second postnatal week (see Chapter 2B). 

In the adult rat besides the visual cortex also the medial prefrontal 

cortex makes a minor contribution to the CST. Within the prefrontal 

cortex two parts can be distinguished: the medial- and the orbital 

prefrontal cortex (Krettek and Price,1977; van ВЗеп and Uylings,1985).The 

medial prefrontal cortex forms the greatest part of the cortex on the 

medieil wall of the frontal pole and caudally extends up to 300 urn dorsal 

to the genu of the corpus callosum. The orbital prefrontal cortex is 

situated on the dorsal bank of the rostral part of the rhinal sulcus 

(Krettek and Price,1977; van Buen and Uylings,1985). The prefrontal 

cortex has its main projections to the caudatoputamen (McGeorge and 

Faull,1989) canplex and the mediodorsal nucleus of the thalamus 

(Beckstead,1979). 

With the use of the retrograde tracer Fast Blue it was demonstrated 

that also in the orbital parts of the prefrontal cortex neurons are 

located that sustain a transient CST projection during the first 

postnatal veek (Schreyer and Jones,198в
а
). Furthermore, in the medial 

part of the prefrontal cortex a substantially larger number of cells was 

labelled after neonatal CST injections than after similar injections in 

adulthood. Especially in the ventral regions of the medial cortex, the 

pre- and infralimbic areas, this decrease in the number of cells was 

clear. This indicates that most probably also in these areas С£7Г axons 

are eliminated from their parent cells in the course of development. The 

present study was undertaken to provide anterograde evidence for the 

occurrence of transient CS neurons in the medial prefrontal cortex of the 

rat. In addition the use of the anterograde tracer WGA-HRP enables the 

determination of the time course of the extension and subsequent 

retraction of these CST axons both qualitatively and quantitatively. 

МКГЕКІАІЗ AND METHOOS 

In total 29 Wistar rats ranging in age from postnatal day 3 (P3) to 

postnatal day 14 (P14) were used, in which the day of birth was accounted 

PO. The ages of the animals given in the present paper are the ages at 

their respective day of injection. After anaesthetization with sodium 

pentobarbital (18 mg per kg body weight, i.p.) a single iontophoretic 

injection of 5% WGA-HRP (Sigma L7017) solution in distilled water was 

made through a glass micropipet (tip diameter 20-30 ¿m.) by applying a 5 

uA positive current at 5 second intervals, for a period of 7-10 min., in 

the ventral parts of the medial prefrontal cortex (see Fig.1). "Die 

iontophoretic injections were made using a stereotactic procedure 

adapted for neonatal rats (van Eden and Uylings,1986). After a survival 

period of 24 hours the animals were reanesthetized and then 

transcardially perfused, under deep anesthesia, with saline followed by 



Fig-1 : Photanucroqraphs of représentâtIVP examples of WGA-HRP labelling areas in 

the medial prefrontal cortex at different ages: P3 (A) ,P7 (B) ,P14 (C) . 

Bar= ι rnn. 

1.25% glutaraldehyde and 1% paraformaldehyde in 0.1 M. phosphate buffer 

(pH 7.4) (PB). Ihe brains and spinal cords were ranoved and postfixed by 

immersion overnight. After separation of both parts of the brain by 

cutting ittmediately caudal to the pyramidal decussation, they were 

embedded in a gelatin-sucrose mixture (15% gelatin and 20% sucrose in 

PB), stored overnight in 4% formaldehyde in 20% sucrose PB and washed in 

PB containing sucrose (PBS). The material then was frozen on dry ice and 
cut into 30 ;am sections in the transverse plane on a freezing microtome. 

Every fifth (P3 and P7) or sixth (P14) section was immediately incubated 

with tetramethylbezidine (INB) as a chromogen, according to Mesulam 

(1978 ). Control sections were processed identically but the incubation 

was carried out without ΊΜΒ. 

For each animal a reconstruction was made of the cortical injection area, 

including both the heavily labelled injection site and its diffusely 

labelled surroundings. Apart from the CST fibres WGA-HRP could be taken 

up by passing fibres which for instance project to the thalamus. These 

projections did not influence the results at spinal cord levels and 

therefore were not taken into account in the present investigation. 

In each experiment a labelling distribution chart of the CST in the 

dorsal funiculus was made according to the method as described by Gribnau 

et al.(1986). In this way a rostrocaudal labelling curve could be deduced 

for each individual spinal cord. Drawings of the labelling in the spinal 

cord sections were made under darkfield illumination using a Zeiss 

microscope equipped with a drawing device. 

Photomicrographs from the WGA-HRP labelled injection areas were made with 

an automatic Zeiss Photcmicroscope II under brightfield illumination, 

using an Agfapan 25 film, whereas the spinal cord sections were 

photographed using the same equipment under darkfield illumination. 

RESULTS 

The extension of each injection area was controlled by reconstruction 

from serial sections of the cortex: within the prefrontal cortex the pre-

and infralimbic areas vrere labelled as well as a part of the dorsal 



anterior cingulate cortex. Representative sections of WGA-HRP injection 

areas in the medial prefrontal cortex at P3, P7 and PI4 are shown in 

Fig.1. Based on the cytoarchitectonic characteristics of developing 

prefrontal cortex areas in the rat (van Eden and Uylings,19B5) the medial 

prefrontal injection areas are conceived as correspondent for the ages 

studied. The same holds true for the sensorimotor injection areas. 
After labelling the medial prefrontal cortex CST axons extend into the 

dorsal funiculus of the first thoracic segment (Tl) at P3 and of the 

sixth thoracic segment (T6) at P7 (Fig.2,4A). NO labelled CS axons 

originating in the medial prefrontal cortex were found either in the 

dorsal funiculus or in the spinal gray at any spinal cord level analyzed 

at PI 4. CST fibres with their originating neurons in the sensorimotor 

cortex extend much more caudally into the dorsal funiculus: the tenth 

thoracic segment (T10) at P3; the first sacral segment (Si) at P7 and up 

to the lo*rest sacral segments (S3/S4) at P14 (Fig.2,4A). 

No outgrowth of labelled CST axons could be noted into the spinal cord 

gray matter at any spinal cord level at any age studied after medial 

prefrontal cortex injections (Figs.2,3A-3C). After labelling the 

sensorimotor cortex labelled spinal projections were present both at 

cervical (Fig.3D) and at luitbar levels at least two days after arrival of 

the first CST fibres at a given spinal cord segment. 

i^Oi 

И,, 2 - Салега lucida dra-ings of transverse sections of spinal cord segments 

' after lontophoretic WGA-HRP injection in the «nedial prefrontal cortex. No 

outgrowth of these axons into the adjacent spinal grey matter at any 

level either at P3 or at P7 can be noted. 
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A quantitative analysis of the amount of WCÄ-HRP label present in the 
roost ventral part of the dorsal funiculus at different spinal cord levels 
shows remarkable differences after injections in the medial prefrontal 
cortex as conpared with the sensorimotor cortex (Figs.4Bl,4B2), 
After labelling the medial prefrontal cortex a more or less gradual 
decrease in the amount of WGA-HRP can be noted fron cervical to thoracic 
levels at P3 as well as at P7 (Fig.4Bl). Contrastingly, after comparable 
injections in the sensorimotor cortex area two peaks in labelling density 
were found: a standing one at the cervical and a running one, which moves 
caudally to the lumbar intumescence between P3 ard PI4 (Fig.4B2), as was 
also noted earlier (Gribnau et al.,1986; Joosten et al.,1987b). 
Furthermore the amount of WGA-HRP label is much smaller after medial 
prefrontal cortex injections than after sensorimotor cortex labelling in 
all spinal cord sections observed (e.g. Figs.3B and 3D). 

Pig·3 : Dark-field illuminated photomicrographs of WGA-HRP labelled corticospinal 

fibres in transversally sectioned spinal cord segments of the cervical 

intumescence (C5-C6). After medial prefrontal cortex labelling at 

P3 (A) ,P7 (B) or P14 (C) no outgrowth in the spinal grey matter can be 

noted. After sensorimotor cortex labelling at P7 (D) outgrowing labelled 

CS fibres in the spinal grey can be visualized. Bar = 100 ли. 
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Pig.4 : Caudal extension of WGA-HRF labelled CST axons after lontophoretic 

injections in medial prefrontal or sensormotor cortex (A) .labelling 

distribution charts at different postnatal ages: after medial prefrontal 

cortex injection (Bl) ¡after sensorimotor cortex injection (B2) . 

DISCUSSION 

From our present results it can be concluded that : ( 1 ) the axons of 
medial prefrontal CS neurons reach their most caudal extension in the 
spinal cord (T6) at P7 and then can not be labelled at the end of the 
second postnatal v«ek; (2) quantitative analysis of the amount of WGA-HRP 
label along the length CST after injecting the medial prefrontal cortex 
reveals a gradual rostro-caudal decrease; (3) the transient projections 
from the medial prefrontal cortex do not show any outgrowth into the 
spinal grey at any level at any age studied. 

The transiency of CS projections from medial prefrontal cortex areas in 
young rats as presented in this anterograde tracer sttdy is in line with 
retrograde tracer experiments using the fluorescent tracer Past Blue in 
vÄüch a vast reduction in the number of labelled cells in the medial 
prefrontal cortex was demonstrated after injections in the cervical 
intumescence in the adult rats as conpared with neonatal rats 
(preliminary results). However, a minority of the retrogradely labelled 
cells in the medial prefrontal cortex maintains their projections to 
cervical and thoracic spinal cord levels in the adult (Miller,1987). the 
CS neurons in the adult medial prefrontal cortex obviously represent a 
reimant of the numerous transient ones in young postnatal rats. In the 
present study, however, no CST fibres could be labelled at PI4. The 
discrepancy between the results obtained after anterograde WGA-HRP and 
retrograde Fast-Blue tracing may be attributed to a lesser sensitivity of 
the former method and/or the uneven distribution of WGA-HRP-1MB crystals 
along the length of CS fibres (Joosten et al.,1987b). 
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Interestingly, the adult rat CST contains myelinated as veil as 
umyelinated axons, as was demonstrated by an ultrastructural anterograde 
HRP study (Joosten et al.,1987a; Joosten and Gribnau,1988). The CS axons 
originating in the medial prefrontal cortex may account for the 
unmyelinated profiles because physiological measurements on pyramidal 
tract neurons in the sensorimotor cortex always are in the range to be 
expected for myelinated axons (Takahashi,1965; Mediratta and Nicoli,1983) 
The focussing of specific populations of neurons during normal 

development of the central nervous system can be explained either by 
naturally occuring cell death (Oppenheim,1986; Williams et al.,1986; 
Schreyer and Jones, 19889), or by the elimination of early-formed axon 
collaterals (Innocenti,1981; Stanfield,1984). Ihe reorganization of 
cortical neurons during the first postnatal weeks is a general feature 
(Stanfield et al.,1982; Adams,1983*; l£ong,1983; Mihailoff et al.,1984; 
Joosten et al.,1987b); the focussing of layer V CS neurons vrfiich are 
originally spread over the sensorimotor and occipital part of the cortex 
into the sensorimotor cortex of the rat and hamster was convincingly 
attributed to the elimination of early formed CS axon collaterals in 
double labelling experiments (Stanfield,1984; O'Leary and Stanfield, 
1985,1986; Schreyer and Jones,1988a,1988b). Using anterograde labelling 
Joosten et al.(1987b) demonstrated a maximal caudal extension of 
occipital CST axons up to mid-thoracic levelŝ  at P7. Ihese CS fibres 
gradually disappear from spinal cord levels during the second postnatal 
week. Besides, no outgrowth of the transient occipital CS projections 
into the spinal grey ves detected (see Chapter 2B). Our present results 
demonstrate that the extension and subsequent elimination of CS axons 
from medial prefrontal neurons follow a similar time course as those from 
the occipital cortex. 

Hie quantitative analysis of the amount of label along the length of 
the CST after medial prefrontal cortex injections shows a remarkable 
identical rostro-caudal distribution pattern as compared to that obtained 
after occipital cortex injections (Joosten et al.,1987b). j^ both cases 
no peaks of labelling could be observed either at the cervical or at the 
luirbar intumescence, but an almost linear decrease in the amount of 
WGA-HRP from cervical to thoracic levels was found. Contrastingly, two 
WGA-HRP labelling peaks can be observed after sensorimotor cortex 
labelling (Fig.4B2). Ihese peaks presumably are related to the major 
spinal gray projection areas (Gribnau et al.,1986; Joosten et al.,1987b). 
It must be noted that the quantitative data are based on the assumption 
that the amount of label is related to the number of axons. The 
underlying aspects of this assumption were discussed in Capter 2B. 
The time course of the disappearance of the medial prefrontal as well as 
the occipital CS fibres is substantiated in a quantitative electron 
microscopic study on the number of axons present during the postnatal 
development of the rat pyramidal tract at the third cervical level 
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(Gorgels et al., 1989a), in »Aiich a graduai reduction of the total number 
of pyramidal tract axons during the second postnatal week was found. 
From the present investigation it can be concluded that CS collateral 

elimination is a conmon feature of prefrontal and occipiteu cortical 
neurons and therefore is a general phenomenon in the development of the 
rat cortex. 
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CHAPTER 3 tOCWnCOSPINAL (ЗЮИТН CONES Ш THE DEVELOPIIC RAT LUMBAR SPINAL 

CORD. 

SUMAKY 

In the present investigation we demonstrate the light microscopic 

characteristics of corticospinal growth cones in the Imbar spinal cord 

of the rat. Corticospinal growth cones were einterogradely labelled with 

horseradish-peroxidase (HRP) by application to the sensorimotor cortex of 

the left cerebral hemisphere. After 24 hours survival time the tracer was 

visualized by a new combination of HRP staining and intensification 

techniques, which in essence consists of three steps: 1. a tetramethyl-

benzidine (ΊΜΒ) - anmoniimheptamolybdate (AHM) reaction, 2. a diaminoben-

zidine (DAB) - Nickel (Ni) stabilization, and 3. a glucose-oxidase 

intensification. 

In the rat the first axons of the corticospinal tract, vrtiich is located 

in the ventralmost part of the dorsal funiculus, arrive at the lumbar 

intumescence at postnatal day 5 (P5). № e growth cones of these pioneer 

axons do not exhibit a preferred alignment either at the periphery or at 

the centre of the prospective corticospinal area. Although the pioneer 

growth cone morphology varies considerably, four main categories were 

discerned: growth cones with fusiform, with davate, with filopodial 

only, and with filopodial and/or lanellipodial endings. 

The first corticospinal axons penetrating the termination area, being 

the lumbar grey matter, can be observed after a 'waiting' period of two 

days elfter the arrival of the pioneer axons, i.e. at postnatal day 7 

(P7). These axons invading the target region of the corticospinal tract 

display considerably more elaborate growth cones as compared with those 

of the pioneer axons in the tract area. The growth cones invading the 

termination area are invariably characterized by the presence of numerous 

filopodial- and spiny extensions as well as a string of varicosities. 

At least sane of the corticospinal projections to the ІшЬаг spinal 

grey arise from directly deflecting axons upon arrival at the level 

concerned. The entrance of the latter axons into the lumbar spinal grey 

occurs at an angle varying between 130 and 170 degrees; no acute angles 

were observed. 

Ihis study demonstrates that the configuration of the growth cones of 

outgrowing corticospinal axons varies with their position along their 

course, i.e. within the pathway, the spinal cord white matter, or within 

the target area, the spinal cord gray matter, the variations in growth 

cone morphology are discussed in the light of corticospinal outgrowth and 

guidance mechanisms. 

fey words : Growth cones - morphology - corticospinal tract - guidance -

outgrowth - rat. 
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птюоиспсн 

Ramon у Ca jal (1890) first described the growth cone (GC) as an 

irregularly shaped enlargenent at the tip of an outgrowing axon. Itie GC 

is present only during a short period of the neuron's life between birth 

and synaptogenesis and is responsible for directing the elongating 

neurite towards the target area, the branching as well as the subsequent 

recognition of the target neuron during synaptogenesis (for reviews 

see Johnston and Wessels,1980; lÊtourneau,1982; Lockerbie,1987). Hie GC 

can be identified as the focus of axonal growth (landis, 1983; 

Lockerbie,1987; lasek and Katz,1987). The pathfinding of this thickening 

at the most distal end of a growing axon requires a substratum with which 

it necessarily interacts (e.g. Chapter 5). 

In vitro experiments revealed the amoeboid motility of the GC (Kapf-

hanmer and Raper,1987). In growth cones anission and retraction of fine 

projections (filopodia) as well as undulating membranes (veils, lamelli-

podia) was recorded using time-lapse video^enhanced microscopy in vitro 

(Burmeister and Goldberg,1988) as well as in vivo (Harris et al.,1987). 

In vitro experiments on both vertebrate and invertebrate embryos 

demonstrated the type-specific response of GC's to different features of 

the environment (Letourneau,1982; Haydon et al.,1984;1985; Bray et al., 

1987;Kapfhaiiiner and Paper, 1987). It was demonstrated that GC's exhibit 

different adhesive strengths between filopodia and the substratum 

(Letourneau,1982; Bray et al.,1987): strong adhesion pulls the GC forward 

towards a more adhesive substratum whereas if adhesion is weak the 

filopodial membrane will break its adhesive bonds and the filopodium is 

withdrawn. Hence, in vitro the direction and rate of axonal growth is 

correlated with varying substrates: GC's are supposed to be guided by 

local variations in the relative adhesiveness of its surrounding tissue 

to reach their targets (Letourneau,1975,1979,1982; Nardi,1983; Berlot and 

Goodman,1984). Cn the other hand, observations on developing chick 

embryonic nerve expiants suggest the involvanent of cues with an 

inhibitory action: the motility of particular GC's is shut down on 

contact with specific axons, which subsequently results in a total 

collapse of the GC (Kapfhamner and Raper,1987). 

During the last decade it has become obvious that also in vivo GC's 

respond to the varying environment along their course in invertebrates 

(Goodnan et al., 1984; Bastian! and Goodman, 1984) as well as in 

vertebrates (Mason,1982,1985; Bovolenta and Mason,1987; Nordlander,1987). 

However, besides GC guidance by the relative adhesiveness of the tissue, 

various other mechanisms of axonal guidance have been described. Por 

instance, GC's may be guided by the mechanism of stereotropism. "Riis 

mechanism includes the formation of oriented extracellular spaces or 

channels prior to axonal outgrowth:"the blueprint hypothesis"(Singer et 

al.,1979; Silver and Itobb,1979; Krayanek and Goldberg,1981).Furthermore 

axons might be guided by gradients of diffusable signals ananating 

from an axon's target. Up till now the trophic influence of the 
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protein nerve growth factor, NGF, (Levi-Montalcini and Booker,1960), 

although mainly restricted to the vertebrate peripheral nervous systan, 

is the most clear example of the diemotropic guidance of outgrowing axons 

(Mensini-Chen et al.,1978; Gundersen and Barrett,1979). 

Since GC-morphology is influenced by the environment the examination of 

QC morphology during pathway selection might reveal some features about 

their surroundings and/or the GC guidance mechanism (Roberts and 

Taylor,1983; Holley and Silver,1987; Bovolenta and Mason,1987; among 

others). Furthermore, the observation of GC morphology might disclose 

the way GC's branch in vivo (Bovolenta and Masai, 1987; Harris et 

al., 1987; O'Leary and Terashinia,1988). In vitro branching occurs by 

exertion of tensions along the lateral margins of the GC body resulting 

in QC bifurcation (Letourneau,1985). In vivo experiments with the 

fluorescent dye Dil demonstrated that terminal branches are formed by 

back branching rather than by bifurcation of leading growth cones as was 

found in the optic tectum of Xenopus (Harris et al., 1987) and the 

corticopontine projection in rats (O'Leary and Iterashima,1988). 

The corticospinal tract (CST) in the rat represents a good model to 

study the development of a long fibre system in manmals because of its 

postnatal outgrowth throughout the spinal cord as well as its convenient 

experimental accessibility (Schreyer and Jones,1982; Reh and Kalil,1982; 

Gribnau et al.,1986). 

•Піе rat CST is characterized by a staggered mode of outgrowth (Gribnau et 

al.,1986) in which pioneer axons reach cervical spinal cord levels at 

birth (PO), mid-thoracic spinal cord levels at postnatal day 2 (P2) and 

the lumbar enlargement at postnatal day 5 (P5) (Chapter 4B). Between the 

arrival of CST pioneer axons at a given spinal cord segment and their 

extension in the respective spinal gray matter a delay was noted of about 

two days (Donatelle,1977; Wise et al.,1979a; Schreyer and Jones,1982; 

Gribnau et al .,1986). 

Одг working hypothesis is that the shape of the CST GC's in the white 

and the grey matter of the spinal cord at least mirrors the interactions 

with the surrounding microenvironment. CST GC's vrere anterogradely 

labelled using horseradish-peroxidase (HRP) and subsequently visualized 

with a new combination of HRP-staining techniques. Ihe variations in GC 

morphology as well as the way of outgrowth from white into lumbar grey 

matter are discussed in the light of CST outgrowth and guidance 

mechanisns. 

MATERIAIS AH) METBODS 

Twenty newborn Wistar rats aged postnatal days 5 (P5) or 7 (P7) were 

used. The day of birth was accounted as PO, whereas the age of the 

animals given in the present paper are always the ages at their 

respective days of HRP injection. 
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Rat pups were anaesthetized with sodiumpentobarbital (18 mg per kg 

b.w.). They were then held in a stereotactic apparatus, the skin over the 

skull was incised and with the use of a fine needle small holes were 

drilled into the skull and the underlying cerebral cortex. Піе entire 

sensorimotor and frontal cortex of the left hemisphere was labelled by 

implantation of three HRP-gels (Griffin et al.,1979). The pups were 

allowed to survive for twenty-four hours. 

After a second injection of anaesthetic the animals were perfused 

transcardially with 30 ml 5% sucrose in 0.1 M phosphate buffer (PB), pH 

7.2, followed by 40 ml 1% paraformaldehyde and 2% glutaraldehyde in the 

same buffer. After perfusion the brains and spinal cords were removed 

Thereafter, approximately 1 im. thick transverse blocks were cut through 

the second and third lumbar spinal cord segment (L2-L3). Using a 

vibratane (Oxford Instruments) 50 ¿um horizontal and transverse sections 
were cut and collected in cold PB. 

A very intense HRP staining was obtained after execution of the 

following procedure: the vibratane sections were first incubated with 

tetramethylbenzidine (TMB) as a chromogen and anmoniumheptainolybdate 

(AIM) as a stabilizing agent (Olucha et al.,1985). After rinsing twice 

in 0.1 M PB, pH 7.4, the HRP-TMB-(AHM) crystals were prevented from being 

vrashed out by an additional diaminobenzidine (DAB) incubation with the 

use of the intensifying agent Nickel (Ni) (Mans, 1981; Dederen and 

Joosten,1989) in 0.05 M Tris-buffer, pH 7.6. the latter reaction was 

terminated by rinsing the sections in two 5 min. baths of 0.1 M PB. In 

order to obtain an adequate light microscopic visualization of 

anterogradely HRP labelled CST growth cones the sections were 

subsequently incubated using a modified DAB-Cobalt Glucosidase (DAB-Co-

GOD) reaction (Itoh et al.,1979; Oldfield et al.,1983). The DAB-Co-GOD 

reaction vras carried out according to the following procedure: After two 

rinses in 0.1 M Tris-buffer, pH 7.6, the vibratome sections were 

incubated in 0.5% C0CI2 in the same buffer for 10 min. After another 3-5 

min rinses in the sane Tris-buffer, and 0.1 M PB, pH 7.4, the vibratane 

sections were incubated in a mixture of 50 mg LftB, 200 mg fl-D-(+)-glucose 

40 mg NH4CI and 0.3 mg glucose-oxodase in 100 ml PB, pH 7.4, for 1 hour 

at 37"C. Then, after two rinses in the same phosphate buffer sections 

were mounted on albumin-coated slides, dehydrated in alcohol, cleared in 

xylene and coverslipped with Depex. 

Drawings of over more than 200 growth cone profiles were made using a 

Zeiss microscope equipped with a drawing device and 100x-oil inmersión 

objective. To enhance the contrast a blue filter (Wratten 80 A) was 

used. All photomicrographs v«re made with an automatic Zeiss-photo-

microscope II using bright-field illumination and an Agfapan 25 film. 

1 : 1A: Camera lucida drawing of the dorsal funiculus in the ІшЬаг 

inturescence at P5. HRP-labelled CST pioneer axons are situated in the 

ventraljTOSt part. AS=Ascerriing Systans; CC=Central Canal; DMS- Dorsal 

Median Septum; Ot= Grey Matter. Bar= 50 лп. 

IB: Camera lucida drawing of a horizontal section of the ventralmost part 

ofthe dorsal funiculus at P5. Note the variety of HRP-filled CST growth 

cone irorphologies. Particularly near blood vessels (bv) the pioneer OC's 

show an ureäulatory aspect. Bar= 50 лп. 

1С: fhotcmicrograph of part of Fig.lB. Bar= 25 дет. 
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RESUKIS 

Hie position of CST growth cones in the Imbar tract and target area 

At lumbar spinal cord levels labelled growth cones can be observed 

within the ventralmost part of the dorsal funiculus at postnatal day 5 

(P5). No preferred alignment of the labelled growth cones in the 

prestmptive CST area was found either at the periphery or at the centre 

(Fig.lA). Although, in the tract area pioneer growth cones extend rather 

straightforvard to more caudal spinal cord levels, they frequently show 

an undulatory aspect, particularly near blood vessels (Fig.IB,1С). 

The staggered node of outgrowth of the developing CST in the rat in 

which a small number of pioneer fibres takes the lead and additional 

fibres are successively added is illustrated in Figs.1A-1C and 3. 

TVro days after the entrance of the labelled outgrowing CST tip at the 

lumbar intumescence (at P5) the presence of the mass of axons is noted 

(at P7) (Fig.3). 

As can be deduced frem Fig.3 it is not possible to identify or to study 

the morphology of the growing tips of the later arriving CST fibres in 

the dorsal funiculus, at least within our experimental approach. 

The first CST axons penetrating the lumbar grey matter can be observed 

at P7 (as visualized in Fig.3). Between the arrival of the first CST 

fibres at a particular spinal cord level and their extension into the 

adjacent spinal grey a 'waiting' period of about two days is noted. 

With respect to the CST fibres situated in the dorsal funiculus the 

entrance of the labelled axons into the lumbar spinal grey occurs at 

an angle varying between 130 and 170 degrees (Fig.3). At this stage no 

growth cones orientated at a right angle to the CST in the lumbar dorsal 

funiculus were found in the lumbar spinal grey. 

CST growth cone morphology 

Pioneer axons within the СЯГ lumbar pathway 

The morphologies of labelled growth cones in the lumbar spinal cord 

situated within the confines of the pathway at postnatal day 5 were 

analysed. The length of CST pioneer growth cones generally approximated 
30 - 50 лт, vdiereas they even might extend up to 70 длп. Between all 

growing tips of the pioneer fibres a very wide variation in morphology 

could be observed (Fig.2). In the variations observed four main 

categories could be discerned although intermediate forms did exist. 

Because of their slowly broadening tips without distinguishable swellings 

at their ends the first category of CST pioneer growth cones is called 

fusiform (Fig.2A). Sometimes, very small, stubby extensions can be 

observed at their leading tips (Fig.2A'). Fusiform growth cones in 

particular were large: their miniman length was 50 jun, whereas they 
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Figure 2 ; Four main categories of CST pioneer growth cone morphology were discerned 

in the lunbar spinal cord white matter. Cañera lucida drawings of two 

representatives out of each category are shown, whereas one of each is 

further illustrated by a photomicrograph at a magnification of 

tOOOx. Pig.2A; fusiform type; Pig.S: clávate type; Flg.2C: filopodial 

type; Pig.2D: lanellipodial type. Bar- 20 ;n. 
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maximally reach up to 70 im (Fig, 1B,1C,2A). 
The second group of the clávate growth cones were characterized by 

their bulbous irregularities at the tip (Fig.2B). 
Other growth cones were more complex and showed fingerlike extensions 

(filopodia) at their distal ends (Fig.2C). These filopodia were usually 
aligned parallel to the direction of axonal growth and vary in length 
considerably: they sotnetimes extend for 15 ¿urn (Fig.2C). The number of 
filopodial extensions per growth cone varied between one and four 
(Pig.20. 

Tbe fourth type showed thin veil-like extensions (ruffled membranes) or 
lamellipodia (Fig.2D). Besides lamellipodia this type of growth cones 
displayed filopodia which only extend to a maximum of 10 juin. 

Pioneer axons entering the CST lumbar target area 

Within the lumbar spinal cord the CST axons invading the spinal grey 
displayed considerably more elëiborate growth cones as compared to the 
pioneer axons in the tract area (e.g. Figs. 4 and 5). Besides, the length 
of the body plus the extensions of the former are smaller: namely ranging 
from 10 to 40 um. Growth cones with a length of 50 um or more, as were 

R 

С 

Figure 3 : 

Hiotomicrograph of a horizontal 

vibratane section at lumbar spinal 

cord at P7. Tbe CST tract area is 

heavily labelled because of the 

presence of the bulk of later 

arriving CST axons, whereas the 

first CST axons can be noted pene­

trating the lumbar grey at an 

an angle varying between 130 and 

170' (arrows). R= rostral;C=caudal 

r̂ r 
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Figure 4 : CST axon Invading t h e liirbar sp ina l grey a t P7. Pig.4A: Camera l u c i d a 
drawing of t h e growth cone. Note i t s f i nger ì ike ex tens ions and spiny 
p r o t r u s i o n s . Fig.4B: corresponding photomicrograph. F i g . 4 0 , 4 0 ' : 
photcmicrographs a t higher magnif icat ion a t two d i f f e r e n t phocal p l anes . 
Bar= 20 jun. 
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5A 

С 

5B 

Figure 5 : Camera lucida drawings of two CST axons penetrating the lunbar grey 

matter at P7. Note the aocunulation of varicosities proximal to the 

growth cone. Spines were found occasionally on large varicosities 

(arrow). Bar= 20 длп. 

Figure 6 г Directly outgrowing CST axons from the CST area into the grey matter at 

P7. Figs,6A-6D: Camera lucida drawings. Note the acctmulation of 

varicosities (6C,6D) and the many numerous extensions at the tip of the 

axon. Рід.бА': Riotomicrograph of Fig.6A. Bar= 20 ¿m. 
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observed in the ventralmost part of the dorsal funiculus, particularly 

the fusiform growth cones (Fig.2A), have not been found. 

The labelled CST growth cones invading the linrbar grey matter 

invariably were characterized by the presence of both numerous finger­

like and veil-like extensions as vgell as a great number of small spiny 

protrusions (Figs.4,5). In addition to the great number of extensions, 

target area CST growth cones were also characterized by an accumulation 

of varicosities proximal to the growth cone (Figs.4,5), in contradis­

tinction to tract area growth cones. 

Whereas the filopodial type of pioneer growth cones in the tract area 

(Fig.2C) contains filopodia up to a maximun of four, spinal grey target 

area CST growth cones displayed numerous spiny extensions, sometimes even 

more than twenty (Fig.4). 

Interestingly, some varicosities exhibited spines and/or filopodial 

extensions (Fig.SB). These particular varicosities may be potential 

axonal branching sites in which axon collaterals might develop (see 

Discussion). 

Direct outgrowth of CST axons can be observed from the white into the 

adjacent grey matter (Fig.6). Clearly, these spinal grey CST projections 

were not developing from interstitial budding of collaterals. However, 

the formation of collaterals of CST axons by the process of budding, 

which occurs days after the parent axons grow caudally past the lumbar 

intumescence, cannot be excluded. The accumulation of tracer HRP prevents 

a clear determination of possible branching sites situated within the 

dorsal funiculus (see Fig.3). 

The outgrowth of labelled CST axons into the lumbar spinal grey always 

occurs at an angle varying between 130 and 170 degrees (Figs.3,4,5,6). 

DISCUSSION 

Technical considerations 

In order to visualize growing axons in the rat corticospinal tract 

system, the cells of origin in layer V of the sensorimotor cortex 

(Leong,1983; Wise et al.,1979a) were labelled with HRP. 

Because of its superior sensitivity we used the TMB to visualize HRP 

(Mesulam and Rosene,1979; Rye et al.,1984). An additional diaminoben-

zidine-Nickel (DAB-Ni) incubation prevented the HRP-TMB-(AHM) crystals 

from washing out and preserved the high TMB-sensitivity (Dederen and 

Joosten,1989). Absence of the ΊΜΒ-ΑΗΜ reaction considerably reduced the 

amount of labelled fibres. Furthermore, to obtain an adequate ΙΛ 

visualization of the anterogradely HRP labelled CST growing tips at 

lumbar levels it was necessary to further incubate the sections in a 

modified DAB-Co-GOD reaction mixture (Itoh et al.,1979). The 
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visualization of the HRP labelled growth cones by using a single 
DAB-Co/GOD reaction did not allow a clear intense staining. 

The question remains whether the staining method used reveals an 
accurate growth cone morphology. Although this question cannot be 
answered with full certainty, there are strong indications for a positive 
and complete labelling and subsequent visualization. First of all 
comparison with findings as described previously in literature 
(Mason,1982,1985; Bovolenta and Mason,1987; Nordlander,1987) makes the 
CST growth cone morphology, as observed in this study, rather likely. 
Nevertheless, the strongest argument in favor of a complète staining of 
the CST growth cones is obtained on the results of serial sectioning of 
unlabelled pyramidal tract pioneer fibres at the cervical intumescence. 
Reconstructions of these growth cones revealed a very similar morphology 
(personal conmunication T.Gorgels) as compared with the lumbar CST 
pioneer growth cones as presented in this paper. 

CSF growth oone morphology and its implications 

Itiis study reveals striking variations among corticospinal growth cones 
related to their position in the lumbar spinal cord of the rat. CST 
pioneer growth cones are characterized by their long and rather simple 
configuration in the white matter (tract area), whereas the tips of the 
CST axons invading the spinal grey matter (target area) are more 
complex. 

Ihis change in morphology may reflect the changing architecture of the 
surroundings, on the one hand, and the altering challenges the CST growth 
cones encounter, on the other. Alterations in growth cone morphology as 
axons pass from one region of the vertebrate CNS to another have 
previously been observed in the Xenopus spinal cord (Nordlander and 
Singer,1982, 1987) and in the mouse retinotectal system (Reh and Constan-
tine-Patton, 1985; Harris et al.,1985,1987; Bovolenta and Mason,1987). 

A rather conmnon feature of growth cones situated within straight path­
ways is their highly elongated form as well as their simple morphology, 
not only in invertebrates (grasshopper leg segment, Caudy and Bentley, 
1986) but also in vertebrate fibre systans (the chicken peripheral 
nervous system, Ttosney and Landmesser,1985 ; the mouse visual pathway, 
Bovolenta and Mason,1987 ; the rat corpus callosum, Kalil,1988). Further­
more, both in invertebrates as well as in vertebrates growth cones becane 
more elaborate (filopodial) when they diverge or come to decision points 
(Tosney and Iandmesser,1985; Caudy and Bentley,1986; Bovolenta and Mason, 
1987; Nordlander,1987; Van Mier and Ifen Donkelaar,1989). 

The factors responsible for changes in growth cone shape and behavior 
are still somewhat tentative. Cne of the most important hypotheses on 
this subject is based on differential affinity: growth cones are guided 
and subsequently change their form as they register and react on to 
variations in the relative adhesiveness of the local environment 
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(Letourneau,1975; Nardi,1983). In vitro experiments conclusively 

demonstrated growth cones exhibiting differential adhesive strenghts 

between their filopodia and the substratum (Letourneau,1979;1985). In 

vivo observations (Bastian! and Goodman,1984; Bovolenta and Mason,1987) 

support these in vitro experiments. The increase of filopodial extensions 
at the moment CST growth cones enter the spinal grey indicates a deci­

sion point in the development of this tract at which an extensive ex­

ploration and/or attraction of or repulsion by the local environment is 

necessary. 

The elongated and rather simple morphology of the growth cones of CST 

pioneer fibres in the tract area suggests a less extensive exploration 

and/or attraction and repulsion, respectively,to their microenvironment. 

Whereas these pioneer fibres probably do not intensely examine the local 

environment but nevertheless are clearly permanently guided in one 

(caudal) direction one would suggest the involvement of one daninant 

guidance cue (adhesive or inhibitory) and/or the occurrence of a 

channel-like guidance system.A channel-like guidance system, consisting 

of glial or presunptive glial cells vas substantiated in the developing 

mouse optic nerve (Silver and Sidnian,1980; Silver,1984) and corpus 

callosum (Silver et al.,1982). However the directed growth of the pioneer 

CST axons in the tract by the process of stereotropian is very unlikely: 

up till now a channel-like system could not be detected in developing rat 

CST (Schreyer and Jones,1982; Joosten et al.,1989). 

Nevertheless,vimentin-iitmunoreactive (VIM-ir) precursor-astrocytes are 

oriented in longitudinal tiers with their processes perpendicular to the 

outgrowing pioneer СЯГ axons (Joosten and Gribnau,1989b). ihe VIM-ir 

precursor astrocytes, as stepping stones, might direct the outgrowing 

pioneer CST axons by means of chemical attraction and/or inhibition. 

These processes of neuron-glia interaction might be initiated or mediated 

by either attractive molecules (for reviews see Edelman,1984; Purves and 

Iiichtman,1985; Dodd and Jessell,1988) on the one hand and/or repulsive 

proteins on the other (Caroni and Schwab,1988
a
, 1988b). 

The first CST axons entering the lumbar spinal grey are characterized 
by the appearanoe of many filopodia, lamellipodia and spines. Other 

studies on growth cones in situ support our observations that in 

decision regions growth cones are characterized by elaborate forms 

(Mason,1985; Harris et al.,1985,1987; Bovolenta and Mason,1987). 

Whereas differential adhesion may account for the guidance of pioneer 

axons in the tract area, more soluble factors (diemotrophic factors) may 

play an essential role in attracting the growth cones within the target 

area (Purves and Lichtman,1985; Dodd and Jessell,1988). Little is known 

about the molecules that exert chemotrophic guidance in the nervous 

system. Nerve growth factor (NGF) is the only defined molecule for which 

a chemotrophic role has been postulated (Mensini-Chen et al.,1978; 

Gundersen and Barrett,1979). 

Concludingly, the change in СЯГ growth cone morphology from lumbar 

tract to target area not only reflects the varying interactions with the 
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microenvironment but possibly eliso indicates a change of the predominant 

guidance mechanism. 

Development of the CSF projection to tte ІшЬаг grey natter 

Recent findings on the development of the corticopontine projection in 

the rat (O'Leary and Terashima,1988) demonstrate the occurrence of 

interstitial budding of collaterals from the parent axons. Furthermore, 

growth cone bifurcation appears to be the exclusive mechanian of axon 

branching as shovm in vitro (Shaw and Bray,1977; Bray et al.,1987) or in 

vivo during early neurogenesis (Raper et al., 1983; F\jjisawa,1987). 

Neither of the latter two mechanisms can be excluded from our results 

because of the masking effect of the very intense labelling in the tract 

itself (Fig.3). However, the development of collaterals by the mechanism 

of budding mainly occurs at sharp turning angles of 90* perpendicular to 

the parent axons (Reh and Constantine-Patton,1985; O'Leary and Iterashima 

1988). Ihe CST axons enter the lumbar spinal grey at an angle varying 

between 130 and 170 degrees (Figs.3,5,6): a result which clearly is not 

in favor of the budding-hypothesis. Ch the other hand the fact that at 

lumbar spinal cord levels only a small number of axons eventually will 

grow further caudally implicates a clear difference as compared with more 

rostral levels of this particular tract (as for instance at the pons). 

Concludingly, it can be deduced from our results that at least some CST 

axons change their direction and directly grow out into the spinal grey. 

It is an intriguing question vrfiether the development of CST projections 

to the lumbar spinal cord is representative for the entire pre- and 

postnatal CST fomation. 
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СНАРГЕК 4А: OUBASTHDCTURAL· VISUALIZATION OF ЖИЮОЕВМШХ 

•TOANSPCHTH) HOBSKttDISH РИЮХІСАЗЕ IN DEVELOPING 

CORTICOSPINAL ISACT OF RAT. 

SUMAKY 

until now a satisfactory method for electron microscopic (EM) detection 

of anterogradely transported horseradish peroxidase (HRP) in developing 

neural tissue, using sensitive chromogen tetramethyl-benzidine (TMB), has 

not been described. Use of the stabilizing agent anmoniumheptainolybdate, 

in combination with a modified prolonged osmication (4 hr at pH 5,0 in 

0.1 M phosphate buffer (PB)) made possible visualization of HRP-TMBHAHM) 

reaction product at the ultrastructural level in outgrowing corticospinal 

(CST) fibers of young postnatal rat. This reaction product appeared to be 

very distinctive and clearly detectable, making ultrastructural 

identification of HRP-labeled outgrowing CST fibers in rat spinal cord 

rather easy. In addition, the procedure described in this report 

preserves the ultrastructural details of developing neural tissue. 

Key words :horseradish peroxidase - tetramethylbenzidine - amnonium-

heptamolybdate - electron microscopy - anterograde trans­

port - corticospinal tract - developnent - rat. 

юткхостнж 

Horseradish peroxidase (HRP) can be very successfully employed for 

tracing fiber connections within the central nervous system by use of 

anterograde transport techniques (Mesulam and Mufson,1980). 

Tetramethylbenzidine (1MB) proved to be the most sensitive chromogen 

available for demonstration of HRP-labeling at the light microscopic 

level (Hardy and Heimer,1977; Mesulam,1978; Mesulam and Rosene,1979). The 

HRP-TMB reaction product is most stable in strongly acidic buffers (pH 

3.3), but appeared to be progressively less stable at increasing pH 

(Mesulam,1978; Sakumoto et al.,1980). 

Όρ till now, a satisfactory method for EM detection of anterogradely 
transported HRP in developing neural tissue using the sensitive chromogen 

ΊΜΒ has not yet been described. Such studies have been carried out using 

diaminobenzoic acid (DAB) which, however, displays some obvious 

limitations as canpared with 1MB. DAB is much less sensitive than 1MB 

(Mesulam and Rosene, 1979) and it often produces a rather diffuse 

reaction product (Itoh et al.,1979; Adans,1981; Murray and Q3wards,1982; 

Edwards and Murray,1985). Por detection of HRP-TMB at the ultrastruc-
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tural level, the presence of osmium black is necessary. Ihe rate of 

formation of osmium black from the blue HRP-OMB product during 

osmication, however, depends on the pH of the osmication solution: 

increasing pH of this solution provides an increasing rate of osmium 

black formation (Sakumoto et al., 1980). Apparently, the HRP-TMB product 

must destabilize before it can react with osnium and the conversion to 

osmium black can comience (Sakumoto et al., 1980; Henry et al., 1985a, 

1985
b
). 

By using an overnight osmication (12 hours) in 0.1 M phosphate buffer 

(PB) pH 5.0, Henry et al.(1985
a
, 1985

ь
) achieved a highly detectable and 

stable electron-dense HRP-TMB reaction product in adult nervous tissue. 

This overnight osmication procedure (Henry et al.,1985b) and other 

modified protocols (Carson and Mesulam, 1982; Naus et al., 1985; Westman 

et al., 1986),however, were not suitable in developing postnatal tissue 

because of loss of reaction product and/or ultrastructural detail. The 

effect of strongly acidic buffer (pH 3.3) in which the HRP-TMB reaction 

must be carried out appears to be very destructive on loosely packed 

postnatal nervous tissue, in contradistinction to its effect on the more 

compact tissues of the adult central nervous system. 

Recently, Olucha et al. (1985) showed that using arnnoniunhepta-

molybdate (AHM) as a stabilizing agent the HRP-ΊΜΒ reaction can be 

acconplished at an optimal pH of 6-8, at least at the IM level. Use of 

this stabilizing agent might be essential to preservation of 

ultrastructural details in developing postnatal neuronal tissues. The 

object of the present investigation, therefore, was to develop a suitable 

procedure for the ultrastructural visualization of the HRP-TMB reaction 

product in outgrowing corticospinal fibers of young postnatal rats that 

would be comparable to the intense IM labeling achieved by Gribnau et 

al.(1986). 

MATHUALS AID METBODS 

In the present study, five 7-day-old Wistar rats, bred at the Central 

Animal laboratory of Nijmegen wsre used. After IP anesthetization with 

sodium pentobarbital (18 mg./kg. body weight) the entire sensorimotor and 

frontal cortex of the left cerebral hanisphere was labeled by the 

implantation of three HRP-gels (Griffin et al., 1979), which were placed 

after opening the skin and making small holes in the skull using a fine 

needle. The postinjection survival times were kept constant at 24 hours. 

The animals then were reanesthetized and perfused transcardially with 30 

ml 5% sucrose in PB (pH 7.2) followed by 40 ml 1% paraformaldehyde and 2% 

glutaraldehyde in the sane buffer. 

After perfusion, the brains and spinal cords were imnediately removed 

and the spinal cords only were further imnersed for about 1 hr before 

being transferred into cold (4°) PB with 5% sucrose. Using a vibratene 

(Oxford Vibratane) 100-дт sections were cut and collected in cold PB 



without sucrose. 

Sections were inmediately incubated with ΊΜΒ as a chrcmogen and AHM as 

stabilizing agent according to the following procedure: After rinsing 

twice for 1 min in distilled water, each section was pre-soaked for 20 

min in a mixture containing 0.25% AHM in 0.1 M PB (pH 6.0) and 0.005% ΊΜΒ 

(dissolved in absolute alcohol). The incubation was started by adding 50 

ul of 33% H2O2 per 100 ml pre-incubation bath. This addition was repeated 

every 5 min for 20 min. The HRP reaction was terminated by rinsing the 

sections in two 1-min baths of 0.1 M PB (pH 5.0). Control sections were 

incubated with TMB as chromogen, at pH 3.3 or pH 6.0, but without AHM. 

Further processing for EM was carried out using a 1% OSO4 solution in 

0.1 M PB (pH 5.0) for 1,2,4 or 16 hr at room tanperature. Osmication was 

followsd by dehydration: 80% ethanol for 3 min, 95% ethanol for 3 min, 

100% ethanol twice for 3 min, and 100% acetone twice for 3 min. The 

sections were very quickly infiltrated by Epon 812: 1 hr 1:1 

Epon:acetone; 3 hr 3:1 Epon:acetone, followed by embedding in Epon. 

Semi-thin sections were counterstained in 0.5% toluidine blue solution 

and examined by Ui to select blocks for ultra-thin microtomy. Ultra-thin 

sections »ere mounted on 75-mesh formvar (0.8%)-coated copper grids, 

contrasted with uranyl acetate (20 min) and lead citrate (5 min), 

respectively, and were studied in a Philips EM 300 at an accelerating 

voltage of 60 kV. 

Por comparative IM studies, freeze-microtome sections of the same 

tissue were reacted with TMB-AHM according to the method of Olucha et 

al. (1985). These sections were then mounted on chrome-aluin coated 

slides, counterstained with 0.5% neutral red, rapidly dehydrated in 

alcohol, cleared in xylene, and enclosed in Depex. All Ш photographs 

were made with an automatic Zeiss photomicroscope-II using darkfield 

illumination. 

BESUUTS 

Por IM visualization of outgrowing CST projections during postnatal 

development of the rat, the anterograde transport of HRP, in conjunction 

with ΊΜΒ histochemistry (Mesulam, 1978; Mesulam and Rosene, 1979),proved 

to be a very sensitive method (Gribnau and Dederen, 1984; Gribnau et al., 

1986). Figure 1 shows a darkfield micrograph of a transverse freeze-

microtome section through the spinal cord at the cervical enlargement 

(C5) of a 7-day-old rat, containing anterogradely labeled corticospinal 

fibers in which AHM was used as a stabilizing agent. 

Ultrastructural visualization of outgrowing fibers using TMB-histochem-

istry proved to be rather difficult, especially in early postnatal 

tissues. In our first approach, it became evident that even the modified 

TMB protocols, as developed earlier for ultrastructural visualization of 

anterogradely transported HRP »ere not suitable for young postnatal 

animals in contrast to adults (Carson and Mesulam, 1982; Maus et al., 
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Figs.l-5 : Fig.l : Photomicrograph of a 30 ρτι transverse freeze-microtane section of 

the cervical enlargement (C5} of the spinal cord of 7 days postnatal rat 

showing unilaterally labeled CST fibers. Note the amount of HRP-IMB-ÍAHM) 

reaction product onder darkfield illumination.Bar=100 ,υτη. Pig.2 : 

Photomicrograph of a 1 ̂ um transverse semithin section of the cervical 

enlargement (C5Ì at P7 under dark-field illimination.The unilaterally 

ΗΗΡ-ΊΤϊΒ-ίΑΗΜ) labelled CST fibers are clearly visible.Bar=50 длп. 

Fig.3 : Electron microscopic picture of the labeled CST at C5. The 

electron-dense HRP-TMB-(AHM) reaction product (arrows) generates a 

clearly visible intracellular marker in the developing normyelmated 

CST fibers. Myelination processes (arrowheads) are clearly discernable 

as compared with the crystalline reaction product. Transverse section. 

Original magnification χ 38,700. Bar=0.5 jjm. Fig.4 : Electron micrograph 

of CST axons labeled with the electron-dense HRP-TMB-(AHM)reaction 

product (arrows) after 4 hours oanication. Longitudinal section.Original 

magnification χ 15,500.Bar=l я̂п. Fig.5 :Electron micrograph of a 

transversely cut control section:HRP-THB reaction product at pH 3.3 in 

combination with prolonged osmication (4hr). Note the poor ultrastuctu-

ral tissue préservâtlonas compared with Figure 3. The electron-dense 

HRP-TWî reaction product (arrows) is clearly visible. Original magnifi­

cation χ 49,500.Bar=0.5 jjn. 
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1985, Henry et al.,1985
a
,1985

b
; Westman et al.,1986). In sections 

incubated with ΊΜΒ as chromogen at pH 3.3, in combination with prolonged 

osmication, the ultrastructure of the tissue was poor (Figure 5). Higher 

pH (6.0) resulted in improved ultrastructural preservation but also in a 

total decrease of HRP-TMB reaction product (not shown). Vfe therefore 

employed and improved an very sensitive TWB method using AHM as a 

stabilizing agent (see Materials and Methods),especially suitable for the 

outgrowing CST fibers in young postnatal rats. In this way, an extensive 

pattern of labeling was established at the semi-thin level (Figure 2) 

which is highly comparable with the ІЛ picture (Figure 1). 

At the ultrastructural level, the HRP-TMB-(AHM) product, can easily be 

identified in the nonmyelinated CST fibers in spinal cord (Figures 3 and 

4). Ihis reaction product generates a highly discernable and clearly 

visible intracellular marker, confirming descriptions by other authors 

(Carson and Mesulam,1982; Henry et al., 1985
a
,1985

b
; Marfurt et al., 

1986), with only minor loss of ultrastructural details (see Figures 3 and 

4). 

With this procedure, the length of the oanication procedure was of 

utmost importance. Increasing osmication time resulted, under the 

conditions described above, in enhancement of the ultrastructurally 

visible HRP-raB-(AHM) reaction product. After 1 hour osmication, no 

reaction product could be detected. On the other hand, when osnication 

was extended to 16 hr, accumulation of the approximately 1 urn great 

ΗΗΡ-ΤΜΒ-(ΑΗΜ) crystals in the nonmyelinated CST-fibers resulted in their 

masking of fine ultrastructural features. Optimal osmication time 

appeared to be 4 hr (see Figures 3 and 4). 

DISCOSSKM 

The present investigation deals with the ultrastructural detection of 

the HRP-ΊΜΒ reaction product in anterogradely labeled outgrowing CST 

fibers in young postnatal rats at a level comparable to the ΙΛ pattern 

(Mesulam,1978; Mesulam and Rosene,1979; Gribnau an3 Dederen,1984). 

Conversion of the HRP-ΊΜΒ reaction product, at least in adult neuronal 

tissues, into an electron-dense conplex during osinication is closely 

related to the pH of the phosphate buffer (Sakumoto et al.,1980; Carson 

and Mesulcni,1982; Henry et al., 1985
a
,1985b; ^цд ^ al.,1985). Our 

observations showed that the ultrastructural visualization of antero­

gradely transported HRP by use of TMB as chromogen in adult tissues 

(Carson and Mesulam,1982; Henry et al.,1985
a
,1985b; tfaus et al.,1985; 

Westman et al.,1986) was not suitable for use in early postnatal tissues 

because it led to loss of reaction product and/or ultrastructural 

details (Figure 5). 

Improvement of the ultrastructural detail could be achieved by the use 

of the stabilizing agent AHM, which allows the HRP-TMB reaction to be 

carried out at pH 6.0 (Olucha et al.,1985) instead of the before 

mentioned (see Introduction) optimal pH 3.3 (Mesulam,1978; Sakumoto et 
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al., 1980). Ihe combination of a 4 hr osmication in combination with the 

use of the stabilizing agent AHM appeared to be essential, in developing 

postnatal tissue, to obtain acceptable ultrastructural preservation on 

the one hand and a sensitive HRP-TMB-(AHM)
 >
 labeling pattern on the 

other. Ihe TMB reaction product also proved able to resist the solvents 

used in rapid EM tissue processing (see Materials and Methods). Moreover 

the reaction product appeared to be very distinctive and clearly detect­

able making identification of the HRP-labeled outgrowing CST fibers in 

rat spinal cord rather easy. Particularly in outgrowing fibers where 

myelination as well as degradation processes occur, as described in CST 

(Schreyer and Jones,1982) or optical nerve (Williams et al.,1986), 

correct interpretation of labeling is very important. Also, the lanel-

lated and multivesicular bodies which normally are present in outgrowing 

optic fibers (Hildebrand and Waxman,1984) are easily distinguishable from 

the HRP-TMB-(AHM) crystals in contrast to the diffuse HEP-DAB reaction 

product as described by Murray and Edwards (1982) among others. Moreover, 

the HRP-DAB reaction is disadvantageous because of its lesser sensitivity 

than ΊΜΒ (Mesulam,1978; Mesulam and Rosene,1979; Carson and Mesulam, 

1982). 

In suimary, use of the stabilizing agent AHM, in conjunction with a 

modified prolonged osmication procedure, results in a very clearly 

discernable ΗΗΡ-ΊΜΕΜΑΗΜ) reaction product at the ultrastructural level 

in outgrowing corticospinal fibers of the young postnatal rat. 
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СВАРГИ* 4В: POffnWEAL ÜEVELCPHBfF № THE ОСКПОСвРПАЬ TWCT IN HIB RAT. 

AN UUTRASTRUCTIJRAL АКГГВШЭШЖ HRP STUDY. 

ЗДМАКУ 

Horseradish-peroxidase was used to anterogradely label and trace the 

growth of corticospinal axons in rats ranging in age from one day to six 

months. Ihree to eight HRP-gels were implanted in the left cerebral 

hanisphere of the cortex. In each spinal cord three levels vrere studied: 

the cervical intumescence (C5), the mid-thoracic region (T5) and the 

lumbar enlargonent (L3). Ihe technique used for the electron-microscopic 

visualization of HRP was described earlier (see Chapter 4A). 

The outgrowth of unmyelinated labelled corticospinal tract axons in rat 

spinal cord primarily occurs during the first ten postnatal days. Ihe 

outgrowth of the main vrave of these fibres is preceded by a number of 

pathfinding axons, which are characterized by dilatations at their distal 

ends: the growth cones. By contrast, later appearing unmyelinated axons, 

which presumably grow along pathfinding axons, do not exhibit such growth 

cones. The first labelled pioneer axons can be observed in the cervical 

intumescence at the first postnatal day (PI), in the mid-thoracic region 

at day three (P3) and in the lumbar enlarganent at day five (P5). 

Prior to the entrance of axons, the prospective corticospinal area or 

pre-arrival zone is composed of fascicles consisting of unlabelled 

unmyelinated fibres surrounded by lucent amorphous structures. During the 

outgrowth phase of corticospinal fibres sane myelinated axons could be 

observed within the outgrowth area even before day 14. Ihese axons, 

however, vere never labelled. These findings strongly suggest that the 

outgrowth area, which generally is denoted as pyramidal tract, contains 

other axons besides corticospinal fibres (and glial cells). The process 

of myelination of labelled corticospinal tract axons in the rat spinal 

cord starts rostrali у (C5) at about day 14 and progresses caudally during 

the third and fourth postnatal weeks. Although myelination seems to be 

largely complete at day 28 at all three spinal cord levels, labelled 

unmyelinated axons are still present in the adult stage. 

Key words corticospinal tract - development - myelination - pyramidal 

tract - anterograde tracing - electronmicroscopy - rat. 
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шиюоистіоы 

Hie pyramidal tract (PT) is defined as a set of fibres passing through 

the medullary pyramids. One of its major canponents is the corticospinal 

tract (CST). Besides a major CST-component the rat PT-area at spinal cord 

levels probably contains corticobulbar, aberrant cuneatus and gracilis 

fibres (Dunkerley and Duncan,1969; Matthews and Duncan,1971). Additional­

ly, glial cells are present in the PT-area (Halston et al.,1987, among 

others). 

The CST originates in the cerebral cortex and projects to the spinal 

gray via the medullary pyramids; after decussation it continues within 

the ventral part of the dorsal funiculus. In rodents, the arrival of 

corticospinal fibres in the spinal cord occurs at birth »Aiereas their 

outgrowth throughout the cord comes about postnatally (Brown,1971; Jones 

et al.,1982; Schreyer and Jones,1982; Іеопд,1983; Gribnau et al.,1986). 

On the basis of quantitative electron microscopic studies of the PT-area 

in normal hamster spinal cord it was concluded that the bundle grows with 

a compact front of fibres (Reh and Kalil,1982), vAiereas in the rat a more 

staggered growth was proposed, such that significant nmbers of axons are 

added to the tract within the first two weeks after its initial outgrowth 

(Schreyer and Jones,1982). Light microscopic anterograde tracer studies 

(Schreyer and Jones,1982; Gribnau et al.,1986), however, indicated that 

during outgrowth of the rat CST through the spinal cord new fibres are 

probably continually added to the first leading fibres, even beyond day 

9. An understanding of the mode of CST outgrowth is essential for the 

interpretation of the effect of lesions and eventual regeneration of 

these fibres. 

Ihe present experimental ultrastructural study was undertaken in order 

to provide more insight into the the postnatal development of the rat РГ 

and particularly its CST component. We employed the anterograde transport 

of horseradish peroxidase (HRP) as a marker for outgrowing corticospinal 

axons and tetramethylbenzidine (TMB) in conjunction with anrnoniimhepta-

molybdate (AHM) to visualize labelled CST fibres at the electron 

microscopic level (Joosten et al.,1987
a
). Seme of the results were 

presented earlier in preliminary form (Joosten et al.,1987
e
). 

MKTBOMS №D HETHOOS 

The anterograde transport of the enzyme HRP (Sigma type IV) was used to 

label corticospinal axons in neonatal and adult Wistar rats, bred at the 

Central Animal laboratory of Nijmegen. A total of 29 rats ranging in age 

fron postnatal day 1 (PI) to six months (adult(A)) were used (Table 1). 

The day of birth is termed postnatal day 0 (PO); the ages of the animals 
given in the present paper are the ages at their respective day of 

HRP-gel implantation. 

After intra-peritoneal anaesthetization with sodium pentobarbital (18 

mg.Ag· body weight) and additional cooling, if necessary, the greater 
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Töble 1 :Material used in the present investigation 

Age Number of Number ol HRP gels Sumval time 
animals implanted in the (hours) 

lelt hemisphere 

PI 
P3 
P5 
P7 
PIO 
P14 
P21 
P28 

2 
5 
2 
5 
4 
3 
3 
1 

34 
3 4 

24 
24 
24 
24 
24 
24 
24 
24 

YA 2 6 24 
2 6 48 

A 2 8 48 

part of the cortex of the left cerebral hemisphere was labelled by 

implantation of at least three HRP-gels (Griffin et al.,1979) (Table 1). 

The gels were implanted after opening the skin and making small holes in 

the skull using a fine needle. The survival time was 24 hours. 

Some young adult (YA) animals (aged three months; weighing ca 200 g.) and 

adult rats (aged six months; weighing ca 260 g.) were allowed to survive 

48 tours after the gels had been implanted. After reanaesthetization the 

animals were transcardially perfused with 5% sucrose in 0.1 M. phosphate 

buffer (PB), pH 7.2, followed by 1% paraformaldehyde and 2% glutar-

aldehyde in the sane buffer. 

The brain an3 spinal cord were dissected from the skull and vertebral 

column and postfixed by inmersión with the sane fixative for 1 hr at 

20oC. The spinal cord was then placed into cold {4°C.) PB with 5% sucrose 

arri samples of the cervical intimescence (C5), the mid-thoracic region 

(T5) and the lumbar enlargement (L3) were cut transversely on an Oxford 

Vibratane at 30 or 100 ,um . Further processing was carried out according 

to the method recently developed for electron microscopic detection of 

anterogradely transported HRP in outgrowing CST of the rat (Joosten et 

al.,1987a). Briefly the procedure consists of the following steps: 100 tm 

vibratone sections are incubated with 0.005% tetramethyl-benzidine (TMB) 

as diromogen and 0.25% anmoniumheptamolybdate (AHM) as stabilizing agent 

in 0.1 M PB, pH 6.0. The HRP-TMB-(AHM) reaction was started by adding 50 

μΐ of 33% H2O2 per 100 ml incubation mixture; this addition is repeated 

every 5 min. for 20 min. ТЪв incubation in combination with a modified 
prolonged osmication (1% OSO4, during 4 hours at pH 5.0 in 0.1 M PB) and 

an accelerated dehydration before embedding in epon, enabled the ultra-

structural visualization of the crystalline HRP-TMB-(AHM) reaction 

product. Control sections were processed in the sane way without addition 

of the chromogen TMB to the incubation mixture. 

Sanithin (0.5-1.0 ̂ m) and ultrathin transverse or longitudinal sections 
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*ere cut using a Reichert OM-4 ultramicrotome. The latter were viewed on 

0.8% formvar coated 75-mesh copper grids with a Philips EM-300 electron 

microscope at an accelerating voltage of 60 kV. 

For comparative light microscopic (Ш) studies, 30 >im vibratome 

sections of the same tissue were reacted with ΊΜΒ-ΑΗΜ as described for 

electron microscopic detection. The sections were then mounted on glass 

slides, counterstained with 0.5% neutral red and embedded in Cepex. 

Hiotcmicrographs of the vibratane section were taken with an autonatic 

Zeiss photomicroscope II under brightfield illumination. 

KESUIŒS 

General aspects 

the postnatal developnental process of the CST in the spinal cord 

was subdivided into three phases:(1) an outgrowth phase; (2) a 

myelination phase and (3) the adult stage. The description of these three 

jiiases will be preceded by a section in vrtiich attention is paid to the 

respective regions prior to the entry of the first CST axons: the 

pre-arrival zone. 

Camera lucida drawings of the injection areas revealed that they 

invariably encompassed both the somatosensory and motor areas of the 

cerebral cortex as well as the adjacent cortical regions, at all ages 

studied. 

The pre-arrival zone 

Electronmicroscopic observations of the pre-arrival zone in the present 

study are limited to levels T5 at PI and L3 at PI or P3 animals. In a 30 

um thick IM-section of the mid-thoracic region at P1 (Fig.1) the dorsal 

funiculus could be very clearly delimited from the adjacent gray matter. 

By contrast, within the dorsal funiculus an indistinct boundary existed 

between the region in which the CST eventually will develop in the 

ventralmost part of the dorsal funiculus (the pre-arrival zone) on the 

one hand and the fasciculus gracilis and fasciculus cuneatus on the other 

(Fig.2). Examination of the pre-arrival zone (this region is marked X 

(Figs.1-2)) and funiculus gracilis at the electron microscopic level 

yielded quite different aspects of these two parts of the dorsal funicu­

lus. The fasciculus gracilis was mainly conposed of anali unmyelinated 

fibres (with diameters ranging between 0.1 and 0.3 длп. ) with a few 

intervening electron-light areas, whereas region X exhibited several 

fascicles of unmyelinated fibres (each fascicle contained about 20-50 

axons of approximately 0.2 лпп. diameters) surrounded by lucent amorphous 

structures (Fig.2). 

"Hie outgrowth phase 

The exact timetable of the outgrowing CST axons in the rat spinal cord 
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Piq8.1-2 l'^ìe pre-arrivai zone. Fig.l :№otomicrograph of a 30 дп tremsverse 

section of the dorsal funiculus and its adjacent grey matter of the 

mid-thoracic region (T5) at PI. Wie region in nhich the CST eventually 

will develop is marked X. Bar=60 .um. Pig.2 :Electron micrograph of the 

pre-arrival zone (region X) (T5 at PI ). Itote the fascicles of urmyelinated 

axons (arrowheads) which are surrounded by watery profiles containing 

large vacuole-like structures, mitochondria and clusters of round vesicles 

(arrows). Transverse section.Bar=1 ixa. 

(Gribnau et al.,1986) is used as a basis for our electron microscopic 

investigations. At the EM level the tip of the outgrowing labelled CST 

(C5 at PI; T5 at P3; L3 at P5) mainly consisted of large profiles (1-2 jum 

wide) (Figs.3,4,7),which, according to their morphological features, were 

classified as growth cones. Numerous small axonal profiles easily 

recognizable with their almost circular outline, measuring about 0.1-0.3 

jam in diameter and provided with distinct microtubules, were present but 

they rarely were labelled (Fig.4). 

"Hie morphological qualities of labelled growth cones at C5 (PI ) 

(Fig.4), T5 (P3) or L3 (P5) (Fig.7) were very similar. Labelled growth 

cones in the CST ingrowth area (region X) did not show a preferred 

alignment either at the periphery or at the central part (at the Ш as 

well as at the EM-level). Within the labelled growth cone profiles 

electron-dense figures were coramonly found, occasionally presenting 

themselves as a series of loosely packed concentric lamellae (Fig.4). 

However, no specific morphological attachments or membrane specializa-

zations of the labelled profiles in the tip of the outgrowing CST could 

be detected. 

Two days after the arrival of the labelled outgrowing tip of the CST at 

a given spinal cord segment (C5 at P3; T5 at P5) the labelled CST 

consisted of unmyelinated small axons (with diameters ranging between 

0.1-0.3 лип) (Fig.6). 

Large profiles either labelled or unlabelled could no longer be 

detected. 

From P5 up to PIO the labelled CST consisted exclusively of unmyeli-
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Figs.ï-9: title outgrowth phase. Fig.3 :P1-C5· initial growth of 'pathfinding' axons 

with their growth cones (GC) into the pre-arnval zone. Growth cones are 

labelled by the HRP-raB-(AHM) crystals (arrowheads). The growth cones 

penetrate the area between the lucent arorphous structures (arrows) and 

the fascicles of umyelinated axons. Transverse secticn. Bar=1 

ЛП. Fig.4 :Pt-C5: CST growth cone (GC) containing sirooth endoplasmatic 

reticulum, microtubuli, mitochondria, a few vesicles and several distinct 

HRP-TMB-IAHM) crystals. Note the labelled umyelinated axon (arrow). The 

distinctive electron-dense myelin-like structure figure (arroviieads), 

probably represents a degenerating axon.Transverse sectidi. Bar=1 

лш. Fig.5 :P5-C5, and Fig.6: P5-T5: the labelled CST exlusively consists 

of unmyelinated axons with varying diameters. Transverse section. 

Bar=0.5jjm. Pig.7 :P5-L3: labelled growth cone (GC) at the tip of the 

outgrowing CST containing many HRP-THB-(AHM) crystals. At this age no 

labelled umyelinated axons were present at this level. Transverse 

section. Bar=1 >in. Fig.8 :P7-C5: longitudinal section of labelled CST 

exclusively consisting of unmyelinated axons. №>te the uneven presence of 

HRP-TMB-(ftHM) crystals within the umyelinated axons. Axon dianeters are 

ireSicated by arrows. Bar=1 JIB. Fig.9 :P!0-L3: umyelinated CST axons 

containing the intracellular reaction product are clearly discernable as 

canpared with myelinating processes (arro\*ieads). Transverse secticn. 

Bar
a
0.5 ^n. 

nated axons (0.1-0.4 um) at C5 (Figs.5,8), T5 (Fig.9) and L3. At PIO a 

few myelinated profiles within the ventral part of the dorsal funiculus 

were present (Fig.9) but they never exhibited ШР-тав-(АНМ) crystals. 

Transversely sectioned unmyelinated axons generally showed one single 

HRP-TMB-(AHM) crystal (Figs.5,6) whereas in growth cones occasionally 

several distinct HRP-crystals were present (Figs.3,4,7). Longitudinal 

sections of the developing tract demonstrated a number of HRP-crystals 

both in growth cones (not shown) and in urmyelinated axons (Fig.8). 

•Die myelination phase 

During the first ten postnatal days no labelled myelinated CST-axons 

could be detected in any of the spinal cord segments studied. Although 

sane myelinated axons were present in the ventral part of the dorsal 

funiculus at P7 or PIO (Fig.9), the first labelled myelinated CST-fibres 

appeared in C5 at PIO (Fig.10). 

In addition to the myelinated profiles, the CST contained a great 

nuniier of labelled unmyelinated axons (with diameters ranging between 0.1 

and 0.4 )jn.) in C5 at P14 (Fig.10). In a transverse section of P14-C5 a 

variety of myelinated axon diameters (approximately 0.5-3.0 ли) 

containing the HRP-TMB-(AHM) crystals could be seen (Fig.10). In contrast 

to the P14-C5 segment, both the T5 as well as the L3 (Fig.11) spinal cord 

levels contained labelled urmyelinated axons at PI 4 exclusively. The 

http://Fig.11
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Piqs,10-13 ilhe myelination and adult phase. Pig,10 :P14-C5: besides labelled 

unnyelinated axons also labelled myelinated profiles can be noted 

(arrows). Transverse section. Ваг=0.5дт. Pig.11 :P14-L3: the labelled CST 

exclusively consists of unnyelinated profiles. Transverse section, Bar=l 

Am. Pig.12 :P21-L3: the labelled myelinated axons is enwrapped by a myelin 

sheath consisting of only a few myelin layers (arrowhead). Other labelled 

profiles are urmyelinated. Transverse section. Bar
5
*! ̂ , Pig.13 :A-L3; 48 

hours survival time, Ihe labelled CST contains myelinated as well as 

urmyelinated axons (arrowheads). The labelled myelinated fibres are 

varying in diameter whereas occasionally a relatively large urmyelinated 

axon, probably starting its myelinaticn, appears (arrows). Transverse 

section, Bar=l /m. 
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levels did contain myelinated profiles but they were all devoid of HRP 

labelling (Fig.11). 

At P21 HRP labelled myelinated axons vere present at more caudal levels 

than at PI4. In addition to C5, now also T5 and L3 segments contained 

labelled myelinated profiles (Fig.12). 

At the end of the fourth postnatal week (P28) all three spinal cord 

levels studied consisted mainly of labelled mature myelinated axons 

(diameters ranging between 1.0 and 3.0 jum). 

The adult stage (3-6 months) 

Because of the lengthened spinal cord of young adult and adult 

animals, as ccmpared with that of rats açjed P21 or P28, double the 

standard 24 hour survival time vas used. The results acquired after a 48 

hours survival time were similar to those obtained after 24 hours as far 

as the proper CST was concerned. 

In both the three and the six month old animals, the CST contained 

labelled myelinated as well as labelled unmyelinated axons at C5,at T5 

and at L3 (Fig. 13). In spite of the occurrence of some labelled unmye­

linated axons at those spinal cord segments of YA and A animals, most of 

the labelled profiles were myelinated. Considering their morphological 

characteristics (Peters et al.,1976; Angevine,1986) the labelled 

myelinated axons apparently were in a mature state. The diameters of the 

labelled myelinated axons varied considerably (0.5-3.0 jum) (Fig 13). 

DISCUSSION 

For descriptive reasons the postnatal period of the development of the 

CST in the rat has been subdivided into three pilases: (A) outgrowth, (B) 

myelination, and (C) adult. It must be emphasized that at a given point 

in time such a separation is arbitrary since it is obvious that several 

developmental processes are taking place simultaneously. The postnatal 

developnent and maturation of CSI fibres in rat spinal cord should in 
fact be regarded as a continuum. Figure 14 presents a diagranmatic survey 

of the postnatal development of the rat CST,in vAiich the three phases 

mentioned are indicated. This Figure also illustrates the fact that the 

timing of the three subsequent phases varies with the rostrocaudal 

progress of CST development. Ihe discussion will be focused on the main 

events which occur during CST development: i.e. outgrowth, myelination, 

and the adult CST. 

CST outgrowth 

Ihe outgrowth of CST axons through the spinal cord in rodents has been 
extensively studied, at least at the Ш level (Donatelle,1977; Hicks and 

D'Amato,1975,1980; Schreyer and Jones,1982; Kalil,1984; Kalil and Harris 
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1985; Gribnau et al.,1986). We used the anterograde HRP-TMB technique, 

as Schreyer and Jones,1982; Gribnau et al.,1986) since TMB proved to be 

the most sensitive chromogen available for the denonstation of HRP 

labelling at the IM level (Hardy and Heimer,1977; Mesulam and 

Rosene, 1979). At the EM level combination of the HRP-TMB technique with 

the use of the stabilizing agent AHM and a prolonged osnication proved to 

be essential to obtain acceptable ultrastructural preservation of 

developing CST on the one hand and a sensitive HRP-labelling pattern on 

the other (Joosten et al.,1987a). in the outgrowing CST where myelination 

(Figs.10-13) as well as degradation processes (Fig.4) occur (Joosten et 

al., 1987a), as is the case in developing optic nerve (Williams et 

al.,1986), the very distinctive HRP-ŒMB-(AHM) labelled fibres are easily 

detectable. 

On the other hand the HRP-TMB-(AHM) crystals are irregularly 

distributed within the labelled profiles. In transverse sections 

unmyelinated axonal profiles predominantly contain a single HRP-TMB-(AHM) 

crystal (Figs.,5,6,9), viiereas myelinated axonal profiles as well as the 

larger unmyelinated ones, such as growth cones (Figs.3,4,7) often 

contain several distinct crystals. Longitudinal sections clearly 

demonstrate the uneven distribution of the reaction product along the 

unmyelinated (Fig.8) and myelinated axons. Because of the uneven presence 

of HRP-TMB-(AHM) crystals in labelled profiles, quantification of the 

results should be carried out very carefully not only at the EM but also 

at the IM level. 

the outgrowth of CST axons in rat spinal cord occurs mainly during the 

first ten postnatal days. At birth the first CST axons reach upper 

cervical levels (Donatelle,1977; Gribnau et al.,1986). According to our 

electron microscopic observations the outgrowth of the main *ave of 

corticospinal axons is preceded by a number of 'pioneer' axons. Biese 

pathfinding axons are characterized by growth cones at their most distal 

ends. On the contrary, the later arriving fasciculating axons, vhich 

presumably are growing along the pathfinding axons, do not exhibit such 

growth cone-like thickenings. 

Comparison of the development of the FT between hamster and rat shows 

some remarkable species differences. Based on light microscopic studies, 

using both Зн-proline and HRP as anterograde tracers, and electron 

microscopic examination of normally fixed unlabelled tissue, Reh and 

Kalil (1982) suggested that the ΡΓ (and probably its CST canponent) in 

the hamster grows out as a compact front of fibres. This suggestion, 

however, was not substantiated by a combined HRP tracing and electron 

microscopic analysis of the developing CST in the hamster. Besides, 

O'Leary and Stanfield (1986) found that the outgrowth of these axons in 

the hamster is protracted. In the rat, we noted an increase of the number 

of labelled fibres after the arrival of the first pioneer axons. From our 

results combined with the quantitative electron microscopic data on the 

development of the rat cervical spinal cord (Gorgels et al,1989 ) as well 

as those reported by Schreyer and Jones (1982) and Stanfield and O'Leary 
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(1985b) it can be concluded that in the rat CST a staggered mode of 

growth occurs: axons are added to the CST several days after the initial 

arrival at a given spinal cord level of the leading fibres. 

Prior to the arrival of the leading CST axons the region in which the 

CST eventually will develop (the pre-arrival zone) is composed of 

fascicles of urmyelinated profiles surrounded by lucent amorphous 

structures (Pig.2). Whether these small urmyelinated profiles ( 0.5jun in 

dianeter) represent axons or astroglial processes (Ralston et al.,1987) 

can not unambiguously be determined. However, the presence in these 

profiles of neurofilaments, neurotubules, small dense mitochondria, a 

smooth endoplasmatic reticulun and particularly their regular contour 

strongly suggest that they represent urmyelinated axons (Peters et 

al.,1976; Thomas et al.,1984; Angevine,1986), belonging to either the 

fasciculus gracilis or the fasciculus cuneatus. 

According to Schreyer and Jones (1982) the lucent amorphous structures 

in the PT-area enwrapping the fascicles of unmyelinated profiles are 

large, irregularly mainly rostro-caudal oriented glial processes with 

'watery' cytoplasm. However, most glial precursors are not 'watery' and 

they usually contain glycogen granules and free ribosomes (Peters et 

al.,1976; De Kort et al.,1985; Angevine,1986). Moreover, these lucent 

:5--
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Pl P3 P5 P7 PIO P14 P21 P28 4- YA 
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Pig. 14 : Postnatal development of the rat corticospinal tract. A: outgrowth phase 

(P1-P10);B: myelination fiiase <P10-P28);C: maturation phase (P28-A). 

During myelination the ratio between myelinated and urmyelinated axons 

gradually increases, but a mxnber of urmyelinated axons remains present up 

to the adult stage. 
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amorphous stuctures are longitudinally oriented parallel to the fibre 

bundles (Fig.2) (De Kort et al.,1985), whereas pale processes belonging 

to astrocytes in the perinatal rat spinal cord show a randomness of 

orientation (Phelps,1972). Similar clear processes of radial glia in the 

embryonic mouse spinal cord (Henrikson and Vaughn,1974) are characterized 

by their radial orientation. These characteristics are not in favour of 

Schreyer and Jones' (1982) interpretation. On account of the additional 

electronmicroscopic features, such as the amorphous structures containing 

clusters of round vesicles, mitochondria and large vacuole-like stuctures 

(Fig.2), these profiles might also represent preterminal varicosities of 

growing ascending axons (De Kort et al.,1985). 

During the outgrowth phase,labelled growth cones and urmyelinated axons 

sometimes contain electron-dense stuctures, occasionally appearing as a 

series of loosely packed lamellae (Fig.4). These dense lamellar inclu­

sions are disintegrating mitochondria, which might be signs of axon-

elimination (Williams et al.,1986; lasek and Katz,1987). The elimination 

of early formed corticospinal axon collaterals , either by withdrawal or 

by degeneration, was demonstrated for layer V neurons in the occipital 

part of the cortex in the rat (Stanfield et al., 1982; Stanfield and 

O'Leary,1985b). Ihese axons attain their most caudal extension in the rat 

spinal cord at P7 and then gradually disappear up to PI4 (see Chapter 

2B). 

Myelination 

Myelination of the CST axons in the rat spinal cord starts rostrally 

(C5) at about P14 and moves caudally during the third postnatal week 

(Fig.14). Although at C5 the first labelled myelinated axons could be 

observed at PI 4, a number of unlabelled myelinated axons were present in 

the ventralmost part of the dorsal funiculus at P7 or PIO (Fig.9). 

Myelination of the fibres in the fasciculus gracilis as well as the 

fasciculus cuneatus starts at P5 and is completed between PI 5 and P20 

(Matthews and Duncan,1971 ). During the period P5-P10, some relatively 

large myelinated fibres (2-3 χάη) were seen in the РГ-area, but they wsre 
found close to the border of the fasciculus cuneatus and probably 

represent aberrant cunéate fibres. At the end of the fourth postnatal 
week most of the labelled CST fibres at all three levels studied are 
myelinated. 

Myelination is of obvious behavioural significance. However, the CST in 
rat can fulfil a behavioural function before myelination. There exists a 
close temporal relationship between the appearance of fore- and hindlimb 
placing responses and the arrival of corticospinal axons and their 
presumed formation of functional synapses within the spinal gray at the 
appropriate levels of the rat spinal cord (Donatelle,1977 ). Placing 
responses are less well coordinated in young postnatal anunals than in 
adult rats (Huttenlocher,1970; Stelzner,1971 ; Donatelle,1977). 



-75-

Ttte adult stage 

Although previous studies (Langford and Coggeshall,1981; Leenen et 
al.,1982,1985; Chung and Coggeshall,1987) demonstrated the presence of 
numerous umyelinated fibers in the rat FT, the origin, destination and 
function of these fibers was unknown. Our results indicate that at least 
a number of these unmyelinated axons in the adult rat PT have their 
origin in the cortex and are apparently CST fibers. Due to the uneven 
distribution of HRP-TMB-(AHM) crystals along the length of unmyelinated 
axons (Fig.8), the question whether the population of unnyelinated 
profiles in the adult PT exclusively consists of CST axons remains 
unansvrered. 
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CHAPrai 4C: OifïELIIBÏIBD OCRUCOSPINAL· ЮЮБ Ш ADOW RAT FÏRANIOAL· ІВАСГ 

AN EI£CIBON MIOtOSOGPIC TRACHt STUDY. 

SUMARY 

The aim of the present study was to provide experimental ultrastruc­
tural evidence for a corticospinal component in the adult rat pyramidal 
tract (PT). Fbr this purpose the entire sensorimotor and frontal cortex 
of the left hemisphere veas labelled using the anterograde tracer 
horseradish-peroxidase (HRP). Six months old rats were sacrificed 24 or 
48 hours after implantation of six to eight HRP-gels. The detection of 
anterogradely transported HRP at the cervical as well as the ІшЪаг 
intumescence was carried out as described earlier (J.Histochern.Cytochem. 

35 (1987):623-626). 

Our results demonstrate the occurrence of labelled myelinated as well as 

labelled unmyelinated axons within the adult rat PT at both spinal cord 

levels analyzed. This implicates that at least part of the urmyelinated 

profiles in the adult rat FT belong to fibres originating in the cortex 

and therefore must be interpreted as corticospinal axons. The findings 

are discussed in the light of their physiological significance. 

Key words :iyramidal tract - corticospinal tract - unmyelinated axons -

anterograde tracing - rat 

INDUDUCTIGN 

The pyramidal tract (PT) is a major descending fibre tract of the 

central nervous system and is known to be an important motor pathway, 

which is only present in nrarmals. It is defined as a set of fibres 

passing through the medullary pyramids. One of its major ccmponents is 

the corticospinal tract (CST). Ihe CST in the rat is a substantial 

pathway vAiich after passing through the medullary pyramids decussates and 

subsequently proceeds via the contralateral dorsal column through the 

whole length of the spinal cord (Dunkerley and l>jncan,1969; Browi,1971; 

Schreyer and Jones,1982; Gribnau et al.,1986). The РГ has been shown to 

contribute to the control of fine manipulatory movements of the hand in 

primates (Lawrence and Kuypers,1968; Beck and Chambers,1970; Hepp-Reymond 

et al., 1970). Impairment of motor function of the forepaw has been 

demonstrated in rats and hamsters following PT lesions (Castro,1972; 

Kalil and Schneider,1975). 

Electron microscopical observations provided evidence that the PT 
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contains a substantial anount of unmyelinated profiles, not only in 

rodents (langford and Coggeshall,1981; Leenen et al.,1982; Reh and 

Kalil,1982), but also in cat (Thomas et al.,1984) and monkey (Thomas, 

1985), although the presence of urmyelinated axons in the monkey is 

questioned by Ralston et al.(1987). leenen et al. (1985) counted a total 

number of 43,000 ± 2,000 myelinated and 35,000 ± 8,000 unmyelinated 

fibres at the level of the second cervical segment in the rat; at the 

second sacral segment still 2,800 urmyelinated fibres could be detected 

(Chung and Coggeshall,1987). The site of their originating neurons still 

is a a matter of speculation and therefore the object of the present 

study. 

HMHUAIS AID METHODS 

Ttiree Wistar rats aged six months (weighing appr. 250 g.) теге 

anesthetized by IP-injections with Nembutal. The entire sensorimotor and 

frontal cortex of the left hemisphere was labelled by implantation of six 

to eight HRP-gels (Griffin et al.,1979). Using this technique a depot of 

tracer is established for protracted HRP transport and therefore its 

enhanced detection along the length of the axons. On the other hand for 

quantitative studies probably the use of the more sensitive tracer wheat 

germ agglutinin-conjugated horseradish peroxidase (WCA-HRP) is more 

appropriate in order to label greater numbers of axons. The post-

implantation survival times were either 24 or 48 hours. After reanesthe-

tization the animals were transcardially perfused with 50 ml. 5% sucrose 

in phosphate buffer (PB) (pH 7.2) followed by 1% paraformaldehyde and 2% 

glutaraldehyde in the same buffer. After perfusion, the brains and spinal 

cords were imnediately removed and the spinal cords were further inmersed 

for about 1 hour before being transferred into cold (4°C) PB with 5% 

sucrose. Then 100 лп vibratone sections of the cervical (C5/C6) and 

lumbar (L2/L3) intumescence were cut transversely on an Oxford Vibratone. 

Anterogradely transported HRP was visualized with the use of the 

chromogen tetramethylbenzidine (TMB) in combination with the stabilizing 

agent atrmoniunheptamolybdate (AHM) in 0.1 M PB at pH 6.0 as introduced by 

Olucha et al.(1985) for light microscopy and adapted for electron-

microscopy (Joosten et al.,1987
a
). In essention the víbrateme sections 

were presoaked for 20 min. in a mixture containing 0.005% TMB (dissolved 

in absolute ethanol) and 0.25% AHM in 0. ІМ PB (pH 6.0). The incubation 

was started by the addition of 50 jul. of 33% H2O2 per 100 ml. 

pre-incubation bath, which was repeated every 5 min. for 20 min. Control 

sections were processed identically but the incubation was carried out 

without TNB. After the HRP-TMB-(AHM) reaction, oanication was carried out 

using 1% 0s04 solution in 0.1M PB (pH 5.0) for 4 hours at room 

tanperature. Osmication was followed by an accelerated dehydration and 

subsequent embedding in Epon. 

Transverse or longitudinal ultrathin sections wsre mounted on 75-mesh 

formvar (0.8%)-coated grids contrasted with uranylacetate (20 min.) and 



Figs.1-4: Fig Ь : Cervical Intumescence; 48 hours survival time. The labelled CST 

comprises myelinated as veil as unmyelinated axons (arrowhead). Note the 

typical crystalline appearance of the HRP-TMB-(AHM) reaction product 

(arrows). Transverse section. Bar = 1 ¿m. Pig.2.: Cervical Intumescence; 

48 hours survival time. Detail of Fig.1. Transverse section. Bar = 0.5 

>jm. 

Pig.3.: Lumbar Intumescence; 24 hours survival time. Detail of a labelled 

urmyelinated axon (arrowhead) surrounded by labelled myelinated axons 

(arrows). Transverse section. Bar = 0.5 /жп. 

Fig.4.: Lumbar Intumescence; 48 hours survival time. Longitudinal section 

of labelled unmyelinated axons. Note the uneven distribution of 

ΗΡΡ-ΊΤΙΒ-(ΑΗΜ) crystals within the unmyelinated axons. Bar = 0.5 ¿m. 
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lead citrate (5 min.) respectively, and даге studied in a Riilips EM-300 

at an accelerating voltage of 60 kV. 

RESOUS 

Our results demonstrate that the adult rat PT contains many 

HRP-TMB-(AHM) labelled myelinated and a number of urmyelinated axons 

originating in the cortex, at both the cervical as well as the lumbar 

intunescence (Figs.1-4). The occurrence of labelled profiles is 

restricted to the PT-area of the dorsal funiculus, the results obtained 

after 24 hours survival time were identical to those obtained after 48 

hours, at least as far as the white matter is concerned. Control sections 

always were negative. 

At the ultrastructural level the HRP-TMB-(AHM) reaction product 

generates a clearly visible and highly discernable intracellular 

crystalline marker, which makes the identification of HRP-labelled fibres 

rather easy (Figs. 1-4). Besides, IMB proved to be the most sensitive 

chromogen available for the demonstration of HRP labelling (Mesulam, 

1979). Longitudinal sections clearly demonstrate the uneven distribution 

of the reaction product along myelinated as well as unmyelinated axons 

(Fig.4). Because of the uneven distribution of HRP-TMfr-fAHM) crystals in 

labelled profiles, quantification of the results should be carried out 

very carefully. Transversely sectioned unlabelled profiles might contain 

the HRP-TMB-(AHM) reaction product at more distal or proximal levels 

(Fig.4). Because of this uneven distribution pattern it is very easy to 

underestimate the quantity of labelled unmyelinated CST axons. 

Ulereas the dianeters of the labelled urmyelinated corticospinal axons 

remain fairly constant at about 0.2 jum, labelled myelinated CST axons 

considerably vary with respect to their diameters, namely between 0.5 and 

3 jm. (Figs.1 and 3). 

DISCUSSION 

Although previous studies (Langford and Coggeshall,1982; Leenen et 

al.,1982,1985; Chung and Coggeshall,1987) denonstrated the presence of 

numerous unmyelinated profiles in the adult rat PT at several spinal cord 

levels, the origin, destination and function of these profiles still are 

unknown. Based on longitudinal sections Ralston et al.(1987) concluded 

that most of the profiles which might be interpreted as urmyelinated 

axons in the primate PT (11101033,1985) at medullary levels are actually 

astroglial processes. They stated that less than 1% of the PT in the old 

world adult primate are unmyelinated axons. Our results demonstrate that 

at least part of the urmyelinated axons in the adult rat PT have their 

origin in the cortex. 

From physiological studies on the conduction velocities of PT axons it 

was concluded that all measurements are within the range of myelinated 

axons (Mediratta and Nicoli,1983). Based on their different biophysical 
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properties, their different connections as well as their varying 

conduction velocities PT cells are subdivided into two distinct 

populations (Takahashi,1965; Desdienes et al.,1979): first, slow 

conducting PT cells with conduction velocities below 21 m/s. (the slowest 

velocities reported are 4-6 n/s. ), and secondly, fast ΡΓ cells whose 

axons conduct at velocities of 21-90 m/s. Fast conducting FT neurons 

discharge phasically and are involved in the initiation and control of 

brief, quick movements. CU the other hand slowly conducting PT neurons 

discharge in tonic phase whereas they are implicated in the determination 

of muscle tone and control of small, fractioned movements (Hunphrey and 

Corrie,1978; Wiesendanger,1981; Biedenbach et al.,1986). Although laenen 

et al. (1985) suggested that the unmyelinated axons in the adult rat PT 

might have a similar function as the slowly conducting PT neurons the 

conduction velocities measured (Takahashi,1965; Mediratta and 

Nicoli, 1983) are not in the range to be expected for unmyelinated axons. 

Ranarkably, even the slowest conduction velocities reported (4-6 щ/s.) 

(Takahashi,1965; Gesehenes et al.,1979; Mediratta and Nicoli,1983; Landry 

et al.,1984) do not correspond with the category of myelinated axons with 

fibre diameters of 0.5-1.0 ,υιη. in the rat PT (Dunkerley and 

Duncan,1969). Possibly, the unknown mode of collateralization of CST 

axons may hamper an accurate determination of conduction velocities. 

Ihe unmyelinated CST axons in the adult rat PT at least in part may 

represent collaterals of myelinated axons, which either reach out into 

the spinal gray or, being recurrent collaterals, even might return to 

more proximal destinations. On the other hand, the unmyelinated CST axons 
also might represent axons which not yet have acquired myelin sheaths. 

This would implicate that myelination of CST axons still occurs at a 

low level during adulthood, because myelination appears to be conpleted 

at postnatal day 28 at the cervical as well as at the lumbar intumescence 

(see Chapter 4B). Unilateral pyramidal lesions in monkeys revealed that 

recovery occurs by local sprouting of CST fibres of the intact bundle 

into contralateral areas of spinal neurons with severed homolateral CST 

connections (Kucera and Wiesendanger,1985). Probably unmyelinated CST 

axons in the adult PT account for this recovery function. 

A recent study on the corticospinal projection neurons in adult rats 

(Miller,1987) using retrograde HRP-techniques revealed, besides great 

concentrations of HRP-positive neurons in the sensorimotor cortex, less 

dense concentrations in anterior cingulate and prefrontal cortical 

areas. Neurons from the latter regions also might account for the 

uimyelinated CST projections. Hence, we currently are dealing with the 

ultrastructural visualization of CST axons in the adult rat PT, with 

their originating neurons in (pre-) frontal cortex areas. 

Acknowledgement 

We гиге grateful for the technical and photographic assistance from Jos 

Dederen and Theo Hafmans, respectively. 





Chapter 5 

Outgrowth and guidance of pyramidal tract 

axons in rat 





-85-

CBAPTSt 5A INTHOOÜCTORY NOTE: OUTGROWTH M C GUIDANCE 

the highly integrative functional capacity of the CMS is based upon the 
very complex network of its neuronal connections. The efficiency of the 
CNS depends on the accurate formation of neuronal connections generated 
during development. One of the main events during CNS development is the 
outgrowth and subsequent target finding of the axons through diverse and 
changing environments. Ihe accuracy in which outgrowing axons select 
their pathways and create neuronal connections is an intriguing 
phenomenon. 

Anatomical and physiological experiments on the development of neural 
circuits in the insect liuto revealed that all axons recognize the 
appropriate signals along their route: not only the initial or pioneer 
axons are capable of navigational feats but also later differentiating 
axons have similar characteristics (Edwards et al.,1981; Ho and Goodman, 
1982;Bentley and Caudy,1983;Bentley and Keshishian,1982). The elimination 
of the appropriate signals along the route alters the formation of a 
pathway (Bentley and Caudy,1983). the fact that all developing axons in 
insect appendages obey the same rules of outgrowth leads to the 
hypothesis that invertebrate neural circuits are internal 1 y progranmed. 
Recent experiments (Chiba et al.,1988), however, demonstrated the 
extrinsic refinement of initial synaptic contacts during insect sensory 
system development, indicating that invertebrate neuronal circuits are 
not as definitely intrinsically progranmed as one once thought. 

Although outgrowing vertebrate axons might as well be internally 
progranmed, the guidance to their targets clearly appeared to depend on 
precise and coordinated interactions with their environnent. Outgrowing 
axons respond to their environment by means of a notile sensory apparatus 
at their tip, termed the growth cone (Landis,1983; lockerbie,1987; lasek 
and Katz,1987 among others). In vitro as well as in vivo experiments 
revealed the striking changes of growth cone morphology in different 
cellular environments (see Chapter 3). This indicates that growth cones 
are able both to explore and to respond to their local environment. The 
fact that growing axons separated from their cell bodies continue to grow 
proves that growth cones must contain the machinery needed to sense their 
specific paths and eventually to direct tovrards their targets (Harris et 
al.,1987). 

At present, a number of cues or mechanians are considered to play a 
prominent role in the guidance of outgrowing axons to their final 
destinations (Purves and Lichtman,1985; Edelman,1985; Dodd and 
Jessell,1988). Por instance mechanical factors such as paths of less 
resistance, interfaces or aligned tracts of cells might direct outgrowing 
axons to the right place (Horder,1978). A representative of the concept 
of mechanical routing of axons or stereotropism is the so-callled 
blue-print hypothesis as developed in lovrer vertebrates (Singer et 
al.,1979): extracellular spaces in the embryonic neural epitheliim may 
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form channels through which growth cones migrate. The occurrence of a 

channel-like guidance system, consisting of glial or presunptive glial 

cells vas substantiated in the developing optic nerve (Silver and 

Rutishauser,1984; Silver,1984) and corpus callosum (Silver etal.,1982) of 

the mouse. 

In vitro experiments demonstrated the clear response of outgrowing 

axons on electrical influences (Jaffe and Poo,1979; Bray,1979). In 

developing Xenopus embryo's voltage gradients are conmonplaoe and can 

influence axonal growth (Jaffe,1981). Nevertheless, electrical influence 

or galvanotropism is, up till now, considered to be not a very important 

guidance cue for outgrowing axons. 

Axonal guidance also can be explained by more or less direct chemical 

interactions between the environmental structures and the growth cones: 

differential adhesiveness. Already in 1963, Sperry (1963) put forward the 

chemoaffinity hypothesis on a direct interaction between growth cones and 

their micro-environment. This concept was based on the proposition that 

axon guidance and target recognition are achieved by the operation of 

highly specific chemical affinity cues between individual neurons. 

Athough different molecules were identified that provide permissive 

substrates for axon extension, the canplexity inherent to Sperry's model 

hampered its validity. The molecules involved in the adhesive type of 

axon extension now can be subdivided in two categories the general CAM's 

and the local CAM's (see Table 1). 

In the developing vertebrate nervous system three general adhesive 

molecules vere identified, vriiich are expressed on early neuro-epithelial 

and mesenchymal cells as well as on the extracellular matrix (ECM) and 

vrtiich might be important in initial axon extension. In addition to these 

general adhesive molecules acting in the guidance of growth cones, the 

Table 1 : Molecules involved in adhesive axon extension in developing CNS 

Category 

General 

various 
species 

Local rat/ 
mouse 

chicken 

ttame 

N-CAM 

N-Cadherin 
laminin 

LI (NILE/69A1) 

TAG-1 
Ng-CAM (G4/8D9) 

Neurofascin 

F11 

Itef. 

Rutishauser et al.,1976 

Takeichi,1987 

Hynes,1987 

Rathjen and Schachner,1984 ; 
Stallcup and Beasley,1985; 
Pigott and Kelly,1986 

Dodd et al.,1988 

Grumet et al.,1984a; 

lagenauer and Ieninon,1987; 

Rathjen et al.,1987a 

Rath jen et al., 19 87a 

Rathjen et al.,1987b 
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latter phenomenon also depends on the recognition of more local adhesive 

cues (see Table 1). For exemple, cell surface molecules located on oligo­

dendrocytes inhibit axon extension and therefore contribute to the local 

selection of axonal pathways (Somier and Schachner, 1981 ; Caroni and 

Schwab,1988a,ig88b; for a review see Patterson,1988). Other glyco­

proteins,which are restricted to axonal surfaces of later differentiating 

neurons, as for instance Li (Rathjen and Schachner, 1984), probably are 

involved in axon outgrowth and guidance by means of selective fascicu-

lation (Rathjen,1988; Dodd and Jessell,1988; Rutishauser and Jessell, 

1988). 

Besides the mutual adhesive interactions anong axons or between axons 

and micro-environment, growth cones may be guided by the mechanism of 

chanotropism. Although diffusable gradients of specific molecules 

probably play a prominent role in the attraction or repulsion of 

outgrowing axons to their targets (Kapfhanmer and Paper, 1987) the only 

well-defined molecule for vdiich a chemotrophic role has been demonstrated 

in the nervous system is nerve growth factor (NGF) (Mensini-Chen et 

al.,1978). 

Although several mechanisms as presented above are involved in the 

guidcince of outgrowing axons, none of them solely provides a satisfactory 

explanation. It is most likely that during axon-outgrowth and guidcince a 

number of cues act together to create adequate neuronal connections. 

Given this perspective, the involvement of two different putative 

guidance cues was studied in the developing CST: the role of astrocytes 

(Qiapter 5B) on the one hand and that of the cell adhesion molecule LI 

(Chapter 5C1,5C2) on the other. 
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CHAPTER SB: АЗПЮСУИЗ AID GUIDANCE OP СИТЖСИІЫЗ CORTICOSPINAL TftfCI 

AXONS IN THE RAT. AN IMMtNOCÏTOŒBtICAL STUDY USING Α Ν Π -

VEMHITIN AMD AOTI-GLIAL FTBRTLIARY ACIDIC IftOTEIN. 

SUMAHY 

In the present study the role of astrocytes and their precursors in 

guidance of outgrowing corticospinal tract axons in the rat is studied. 

Antibodies against glial fibrillary acidic protein and vimentin are used 

to analyse iitmunogen expression of glial cells, whereas the postnatal 

outgrowth of corticospinal axons through the spinal cord was studied 

using anterogradely transported horseradish-peroxidase. The first, 

leading corticospinal axons, being the objective of the present study, 

are characterized by dilatations at their distal ends, the growth cones. 

Growth cones of pioneer corticospinal axons are randomly distributed in 

the presunptive corticospinal tract area of the ventralmost part of the 

dorsal funiculus. A dramatic change in glial cell labelling is found 

from the majority being vimentin inmunoreactive and glial fibrillary 

acidic protein negative at birth to almost all being the reverse at the 

end of the fourth postnatal week. From double labelling experiments it 

can be concluded that the vimentin-glial fibrillary acidic protein 

transition occurs within astrocyte precursor cells. The absence of glial 

fibrillary-iitmunoreactive glial cells during the outgrowth period of 

pioneer corticospinal axons indicates that they cannot play a role in the 

guidance of outgrowing corticospinal pioneer axons. 

Vimentin-iimiunoreactive glial cells are present throughout the 

presumptive corticospinal tract area at the time of arrival of the 

leading corticospinal fibres. The vimentin-inmunoreactive glial cells 

which themselves are orientated perpendicular to the outgrowing cortico­

spinal tract axons, are mainly arranged in longitudinal tiers parallel to 

the rostrocaudal axis. Electronmicroscopically, growth cones of pioneer 

corticospinal tract axons frequently exhibit protrusions into vimentin-

imnunoreactive glial cell processes, suggesting an adhesive type of 

contact. Therefore, in addition to a positional role, vimentin-

immunoreactive glial cells probably play a chemical role in guidance of 

pioneer corticospinal tract axons. 

A prominent vimentin-immunoreactive glial septum was noted during 

corticospinal tract outgrowth in the midline raphe of the medulla 

oblongata and spinal cord whereas it is absent in the decussation area of 

corticospinal tract fibres. After the first postnatal week the major 

vimentin-iinnunoreacti ve glial barrier either completely disappears 

(medullary levels) or gradually reduces to a minor glial fibrillary 

acidic protein-inmunoreactive one (spinal cord levels). 

This glial septum is suggested to play a physical role in guidance of 

outgrowing CST axons in preventing than from decussation. 

Key words: Guidance - Glia - Corticospinal tract - Development -

Dmiunoelectron microscopy - Anterograde tracing. 
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nmtCDUCTIGN 

Different roles have been proposed for glia during development of the 

central nervous systan (CNS). Initially, radial glial cells of the 

embryonic CNS were advocated to play an important role in guiding 

migrating neuronal cells (Rakic,1971; Rakic et al.,1974). later on, 

radial glial cells and their astrocytic derivatives (Choi,1981), were 

associated with guidance of axon outgrowth. Tbe discovery of glial 

channels (Silver and Robb,1979; Singer et al.,1979), the glial sling 

(Silver et al.,1982) and the glial barricade (Silver and Rutishauser, 

1984; Hankin and Silver,1986) represent the first evidence that glial 

structures along the pathway of developing CNS fibre tracts are organized 

in such a way that the glial substrate may play an important role in 

guiding outgrowing axons. In a number of studies, however, the presence 

and the guidance role of such glial channels was questioned (Schreyer and 

Jones,1982; Valentino and Jones,1982; Valentino et al.,1983). Although 

Schreyer and Jones (1982) could not rule out the possibility that pioneer 

axons in the rat pyramidal tract (ΡΓ) grew along sane preferred glial 

channels, they were not able to detect an orderly configuration of glia 

at times prior to the arrival of the axons. 

Using iimunocytochemical staining a palisading pattern of subpial 

astroglial processes in the adult rat brain (Bitner et al.,1987) as well 

as of the radial glia in the CNS of the emnbryonic mouse (Dupouey et 

al., 1985) could be observed. Ttiis palisading organization may have a role 

in the construction of the developing CNS. 

From previous studies (Gribnau et al.,1986; see Chapter 4B) it was 

concluded that the process of CST outgrowth can be subdivided into two 

subsequent phases: the first,leading fibres are succeeded by the main 

wave of developing CST axons. The latter are growing in a fasciculative 

way. The guidance of the first pioneer axons is the objective of the 

present study. 

Pathfinding axons, having growth cones at their distal ends (Schreyer 

and Jones,1982; Mason,1985; Holley and Silver,1987), may well be 

conducted by chenical cues released by mediating glia e.g. neuron-glia 

cell adhesion molecules (NgCAM) as suggested by Grumet et al.(1984'
3
). 

The use of specific glial markers may provide more conclusive evidence 

on the localization and orientation of glial cells and their processes in 

relation to outgrowing pioneer CST axons. Glial fibrillary acidic protein 

(GFAP) is a 51 kte intermediate filament protein (Dahl,1981; Bovolenta et 

al.,1984, 1987) and a chemical marker of protoplasnic (Ludwin et al., 

1976) eind fibrous astrocytes (Bignami and Cahl, 1973,1974; Bignami et 

al.,1972; 1982). Using the imnunofluorescence method GEAP-ir astrocytes 

have been demonstrated in developing rat pyramidal tract (Bignami and 

Dahl, 1973). Vimentin (VIM) is a 57-58 kDa intermediate filanent protein 

and the major cytoskeletal component in immature astroglia (Dahl et al., 

1981 ;Bovolenta et al.,1984). Imnunofluorescence methods using polyclonal 



-91-

antibodies to VIM showed subpopulations of astrocytes in the adult and 

imnature rat (Dahl et al.,1981; Shaw et al.,1981; Bignami et al.,1982). 

Whereas the presence of GFAP has been demonstrated in primate radial 

glia (Choi,1981; Levitt et al.,1983), rodent radial glia do not contain 

GFAP (Bignami and Dahl,1973,1974; Schnitzer et al.,1981) but the 

intermediate filament protein VIM (Dahl et al.,1981; Schnitzer et 

al,1981; Bovolenta et al.,1984; Pixley and DeVellis,1984). Contrastingly, 

mature astrocytes in the rat predominantly exhibit GFAP. the VIM-GFAP 

transition in rat brain occurs at the second to third postnatal week as 

was biochemically determined by Dahl (1981 ). Etrmunocytochemical results of 

Pixley and De Vellis (1984) substantiated the VIM-GFAP transition in rat 

glial cytoskeleton to occur at the time of myelination, as was affirmed 

by Bovolenta et al.(1984,1987) in mouse cerebellum and visual pathway. 

Double labelling experiments have shown that during this transition 

astrocytes both in culture and in vivo express two different types of 

intermediate-sized filaments, e.g. VIM-filaments and filaments containing 

GFAP (Schnitzer et al.,1981; Bovolenta et al.,1984). Bovolenta et 

al.(1987) demonstrated the presence of intermediate filaments canposed of 

VIM subunits in radially oriented glial precursor cells in mouse optic 

nerve. At the time outgrowth of primitive glial processes occurs VIM 

disappears and GFAP is expressed with abundant filament assemblage. 

In the present study the possible role of astrocytes in the guidance of 

outgrowing pioneer CST fibres is analysed using glial VIM and GFAP 

expression in conjunction with HRP labelling of outgrowing СЯГ axons. 

MftTötEAIS AM3 ЖТВСХБ 

Tissue preparation 

Ihirty-five Wistar rats ranging in age from embryonic day 18 (E18) to 

postnatal day 29 (PND29) were used in this study. In our colony litters 

were usually bom on the 22nd day of gestation (E22=PND0). Ebr HRP 

labelling all postnatal rats were anesthetized with sodium pentobarbital 

(18 mg per kg body wsight, i.p.). Then the entire sensorimotor and 

frontal cortex of the left cerebral hanisphere was labelled by implanta­

tion of HRP-gels (Griffin et al.,1979), which were placed after opening 

the skin and making small holes in the skull using a fine needle. Ihe 

postimplantation survival times were kept constant at 24 hours. Ttie ages 

of the animals given in the present paper are the ages at their respecti­

ve days of perfusion. 

After anesthetization rats were either perfused with paraformaldehyde-

lysine-periodate-glutaraldehyde (PLPG) (Mclean and Nakane,1974) in 0.1 M 

phosphate buffer (PB, pH 7.2) or freshly prepared. For electrormicroscopy 

the rats were perfused with 1% paraformaldehyde and 2% glutaraldehyde 

(Joosten et al.,1989). The brains and spinal cords were resected from 

the skulls and vertebral coluims respectively, and then postfixed by 
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imnersion during 2 hours. PLPG-fixed tissue was cryoprotected with 

sucrose (8.5% sucrose in 0.1 M PB, pH 7.2 during 15 hours at 40C and then 

frozen by inmersión in liquid nitrogen-cooled isopentane (2-methyl 

butane), whereas freshly prepared tissue was not cryoprotected before 

freezing. Samples of the medulla oblongata (MO), the CST decussation 

area, the cervical intumescence (fifth and sixth cervical segment C5/C6) 

and the lumbar enlargement (second and third lumbar segment L2/L3) were 

cut transversely on a Reichert cryostat. The 10 um. sections were 

collected on albumin/glycerin (1:1) slides. 

BRIMrisualization 

Anterogradely transported HRP was visualized using tetramethylbenzidine 

(тав) in combination with the stabilizing agent aimonitmheptamolybdate 

(AHM) in 0.1 M PB at pH 6.0 (Olucha et al.,1985; see Chapter 4A). 

Briefly: after rinsing twice for 1 min. in distilled water, eadi 10 длі. 

frozen section was presoaked for 20 min. in a mixture containing 0.25% 

AHM in 0.1 M PB (pH 6.0) and 0.005% tetramethylbenzidine (ΊΜΒ, dissolved 

in absolute ethanol). The incubation was started by adding 50 ul of 33% 

H2O2 per 100 ml pre-incubation bath, this addition was repeated every 5 

min for 20 min. The HRP-reaction was terminated by rinsing the sections 

in two 1 min. baths of 0.1 M PB (pH 6.0). The sections were counter-

stained with 0.5% neutral red, rapidly dehydrated in alcohol, cleared in 

xylene and enclosed in Depex. Control sections were processed identically 

but the incubation was carried out without TMB. 

For EM visualization of anterogradely transported HRP 100 ¿m. vibratome 

sections (Oxford vibratome) were used, vrtiich were treated similarly as 

for IM visualization. Osmication then was carried out using a 1% OSO4 

solution in 0.1 M PB (pH 5.0) for 4 hours at room temperature. Further 

processing was accomplished by an accelerated dehydration procedure and 

embedding in Epon 812. Ultrathin sections were mounted on 75-mesh formvar 

(0.8%)-coated copper grids, contrasted with uranyl acetate (20 min) and 

lead citrate (5 min) (Joosten et al.,1987a). 

Antisera 

Anti-GFAP serum (ΟΑΚΟ,ηο Z334 cis specified by Tascos et al.(1982) and 

Baumal et al. (1980) was used in a dilution of 1/100. The detection of 

VIM inmunoreactive glial cells was carried out with a monoclonal anti-VIM 

serum (ΠΑΚΟ,ηο M725 as det;cribed by Osbom et al. (1984), diluted 1/10. 

Por double labelling both the mouse monoclonal anti-VIM and the poly­

clonal anti-GFAP were applied simultaneously. 

The following secondary antisera were used: sheep-anti-mouse conjugated 

with fluorescein-isothiocyanate (FITC) (Sigma no F6257), diluted 1/100 

and a goat-anti-rabbit conjugated with tetramethylrhodamine-isothio-

cyanate (TRITC) (Statens Bakteriologiska lab), diluted 1/20. For irnnuno-

electronmicroscopy a rabbit-anti-mouse serum conjugated with HRP (ΟΑΚΟ,ηο 

P260) was used. 

Aîditionally, reference incubations were carried out with either a 
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polyclonal antiserum against GFAP (diluted 1/65) or a polyclonal 

antiserum against VIM (diluted 1/20) (both generous gifts from 

Dr.F.Ramaekers), as described by Ramaekers et al.(1981,1983). 

Indirect iinnmof luorescenoe. 

Sections were incubated with the primary antiserum for 1 hour at room 

temperature. After rinsing twice in 0. IM PB (pH 7.2, 10 min each) 

incubation was started with the second antibody, and vras continued for 1 

hour at room tanpe rature in the dark. Sections were then rinsed in 0. IM 

re (pH 7.2) and mounted in glycerol/aqua dest.(3:1). For double labelling 

both antisera were applied simultaneously, e.g. after application of the 

first antibodies, sections were washed with 0. IM PB (pH 7.2) and then 

treated with fluorochrcme-coupled second antibodies. Under these 

conditions, each second antibody reacts specifically with its corres­

ponding primary antiserun. Control sections were processed identically 

but without addition of the primary antiserum. Fbr each antiserum used 

control sections were incubated with the respective normal antiserum or 

0.1 M PB (pH 7.2). 

ІшгажюеІесЬгогтісговаэру. 

Transverse, longitudinal or sagittal 100 ¿rnn víbrateme sections 

were incubated with the monoclonal anti-VIM serum (DAKO) (dilution 

1/2400) for 16 hours at 40C. After rinsing twice in 0.1.M PB (pH 7.2) the 

sections were treated with a rabbit-anti-mouse serum conjugated with HRP 

(dilution 1/50) for 1 hour at room temperature. After rinsing twice, once 

again in 0.1 M. PB (pH 7.2) the HRP was visualized using the chromogen 

diaminobenzidine (DAB) and Nickel (Ni) as a stabilizing agent 

(Adaiis,1981 ). Ihe specificity of the imnunoreaction was tested by the 

addition of normal rabbit serum instead of the primary antibody. 

After the HRP-DABNi reaction the sections vere osmicated (1% QSO4 in 

0.1 M PB, pH 7.2 for 45 min), rapidly dehydrated in ethanol and embedded 

in Epon 812 on repelcoated slides. Sani-thin sections were counterstained 

in a 5% toluidine blue solution. Ultrathin sections were mounted on 

75-mesh formvar (0.8%)-coated copper grids and contrasted with uranyl 

acetate (20 min) and lead citrate (5 min). 

НюЪсшпісгозоору. 

Photomicrographs of HRP-TMB-AHM sections were made with an automatic 

Zeiss-photcmicroscope-II using dark field illumination and an Agfapan-25 

film. Inmunofluorescent sections were examined using a Zeiss microscope 

with epifluorescent equipment using the filter systan appropriate for 

FITC or TRITC. Photographs were taken on a Ftodak-Tri-X film (400 ASA). 

Ultrathin IM-sections were viewed with a Philips-300 electron 

microscope at an accelerating voltage of 60 kV. 
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KESUUIS 

The present light and electron microscopic study of the development of 

the rat CST in medulla oblongata and spinal cord coherent with the 

expression of vimentine- and/or GFAP-ir glial cells canprises the period 

between embryonic day 18 (E18) and the 30th postnatal day (PND 30). 

CST outgrowth 

Pyranidal cells with their somata in layer V of cerebral cortical areas 

give rise to CST axons (Wise et al., 1979
a
; Neafsey et al., 1986). The 

outgrowth of the CST during the period studied is schematically shown in 

Fig.1.. This figure resulted f rem our present and earlier (Gribnau et 

al.,1986; Joosten et al.,1987b) light microscopie studies. 

The timing of prenatal CST development is based upon results obtained on 

normal Rager-material. The latter analysis showed that the CST could be 

positively identified at the level of the pontine nuclei at ЕІ8 and at 

the pyramidal decussation at E21. 

pedunculus cerebri 

pontine nuclei 

medulla oblongata 

decussation 

cervical 
intumescence 

C1 

C5 

T1 

T5-

T10 

E18 520 

LH 
lumbar intumescence L3 

S1 
S44 

PND2 PND4 PND6 PND8 PND11 PND15>.PND22 PND29 

Figure 1 : Schanatic representation of pre- ana postnatal CST outgrowth. 
Prenatal observations are based on Rager-stained material. The 
postnatal CST outgrowth is experimentally studied with the use of 
anterograäely transported HRP. 
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Ihe postnatal developnent of rat CST was studied using anterograde HRP 

labelling, in which HRP-gel implantations always encanpassed both the 

somatosensory and the motor areas of the cerebral cortex of the left 

cerebral hemisphere. Ihe outgrowth of labelled CST-fibres in rat spinal 

cord mainly occurs during the first ten postnatal days. As schematically 

shown in Fig.1 labelled CST axons caudally extend into the third thoracic 

segment at ИГО 2; into the tenth thoracic segment at PND 4; into the were 

third lumbar segment at PND 6 and finally into sacral segments at PND 8. 

Based on electron microscopic observations (Joosten et al.,1989) the 

outgrowth of the corticospinal canponent of rat pyramidal tract can be 

subdivided into two subsequent phases: the outgrowth of the main wave of 

labelled CST axonsis preceded by a number of pathfinding axons. Pioneer 

axons show labelled growth cones at their distal ends (Figs.2B and 2C). 

These growth cones are characterized by their relatively large diameters 

(1-3 /m), as compared with surrounding axons (approx. 0.2/лп.) as well as 

the fact that they were larded with organelles such as microtubuli, 

smooth endoplasmatic reticulum, mitochondria , and a large number of 

vesicles (Fig. 2B ). This part of the growth cone was called vesicular-

reticular zone (De Kort et al., 1985). The distal zone of the CST-growth 

cone, called fine granular zone (De Kort et al., 1985), contained a 

filamentous matrix. Ihe crystalline HRP-TMB-(AHM) reaction product 

appeared to be present both at the distal as wsll as at the more proximal 

region (Fig.2B) of the CST growth cone. Qie or two days after the arrival 

of the labelled outgrowing tip of the CST at a given spinal cord segment, 

TÄble 1: Vunentin and glial fibrillary acidic protein expression during 

corticospinal tract developnent in the rat. 

Medulla Oblongata 

Vixnentin-IR 

GFAP-IR 

lumbar Intumescence 

Vimentin-IR 

GFAP-IR 

Age 

B18 PMJ2 РЖ>6 РМЛІ РЖ29 

++ -

+ ++ -н- -н-

-н- -н- + - -

_ _ -н- -н-

The umiunoreactivity within the CST outgrowth area at medullary levels is 

conpared with that in the ІшЬаг spinal cord. -: no reaction; +: positive 

reaction; ++: strong positive reaction. Itie transition period in medulla 

oblongata was between Eie and FND2, tiulst that in the ІшЬаг 

intiinescence was between PIÜ6 and РНЭ11. 
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i.e. at the arrival of the mass of the axons (Chapter 4B), the labelled 

CST mainly consisted of unmyelinated profiles (their diameters ranging 

from 0.1 to 0.5 jum (Fig.2D)). As far as their morphology is concerned, 

these distal ends of the later arriving axons considerably differ from 

the large growth cones of pioneer axons as was also noted earlier in the 

rat pyramided tract (Gorgels et al.,1989
a
) as well as in leading axons in 

developing amphibian spinal cord (Nordlander, 1987). Preliminary 

observations obtained on serial sectioning of pioneer growth cones and 

those of later arriving pyramidal tract axons corroborate these results 

(personal coimuinication T.Gorgels). 

The pioneer axons with their growth cones have entered an area which 

consisted of fascicles of unlabelled unmyelinated fibres surrounded by a 

composition of lucent amorphous structures (Fig.2A).The latter structures 

were characterized by their light cytoplasmic density, an irregular 

outline and often contained clusters of small lucent vesicles with 

diameters of about 100 nm. Occasionally, a few mitochondria and cisterns 

of smooth endoplasmatic reticulum were present within these structures 

(Figs.2A,2C). Structures with typical glial characteristics such as 

dense cytoplasm and rosettes of free ribosomes could be easily recognized 

(Fig.2C). Besides, profiles with a concentration of intermediate 

filaments incidentally were noted (Fig.2C), vrtiich probably may also be 

interpreted as glial processes. 

VIM and/or GPAP-IR in relation to CST outgrowth 

The iimunoreactivity found in PLPG fixed tissue was identical with that 

obtained after methanol fixation. As far as Ш observations are concerned 

only the results of the PLPG fixed tissue will be described in the 

present paper because of its superior tissue preservation. Control 

incubations, using either normal antisera or PB always were negative. 

Incubations with the polyclonal antisera against GFAP and VIM 

demonstrated an identical pattern of labelling as that obtained after the 

use of the DAKO-antisera (polyclonal anti-GFAP and monoclonal anti-VIM). 

Although during pre- and postnatal development VIM antisera clearly 

labelled blood vessels as well as meningeal tissues these structures 

could be easily discriminated against inmunopositive glial cells because 

of their distinct morphology. 

Table 1 presents a rough survey of the VIM and GFAP expression in the 

CST area between E18 and PND30. This table clearly demonstrates a 

level-dependent VIM-GFAP transition period. At medullary levels this 

transition occurred between E18 and PND2, whereas at lumbar spinal cord 

levels it occurred later, i.e. between PND6 and ШЭІІ. 

At E18 and E20 the monoclonal VIM antibody revealed an intense 

labelling of numerous glial cells in the midline raphe of the medulla 

oblongata (Figs.3A,3C). Besides, this antiserum also positively reacted 

on radial glial processes during prenatal stages (not shown). At the same 

age, i.e. prior to and at the arrival of the first pioneer CST axons, the 
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medullary pyramids showed numerous dispersely situated VIM-ir glial cell 

processes (Figs.ЗА,3C). During embryonic stages only a few GEAP-ir 

processes could be observed at medullary levels, almost exclusively 

situated near the meningeal surface (Fig.3D). 

Within the decussation area no accumulation of VIM-ir glial cell 

labelling could be observed in the midline raphe whereas scattered VIM-IR 

was present between the decussating axon bundles (Figs.3E,3F). 

The first CST-axons reach upper cervical spinal cord levels at the day 

of birth (Fig.1). The lucent amorphous structures, as described in the 

CST outgrowth section did not show any VIM-IR. Prior to the arrival of 

CST axons in the ventralmost part of the dorsal funiculus of the cervical 

intumescence at E20, the presunptive CST area was characterized by the 

occurrence of VIM-ir glial cells (Fig.3B). By contrast the surrounding 

grey matter contained many VIM-ir glial cells, whereas an accvmulation of 

VIM-ir glial cells could be noted in the midline between the central 

canal and the dorsal funiculus (Fig.3B). 

During the first postnatal week pioneer CST axons have extended 

caudally up to sacral spinal cord levels. Prior to the arrival of the 

first labelled CST axons, i.e. PND4 for the lumbar enlargement (Fig.4C), 

the dorsal funiculus is characterized by the absence of GFAP-IR (Fig.4A; 

Table 1) and the presence of strong VIM-IR (Fig.4B; Table 1). At the time 

the first scattered HRP-labelled CST axons entered the lumbar intumes­

cence (Figs.1 and 5C), no preferred localization of these axons either at 

the periphery or at the center of the ventralmost part of the dorsal 

funiculus can be noted (Fig.SC). At PND5 the dorsal funiculus still 

exhibited high VIM-IR, consisting of a major VIM-ir glial structure in 

the midline raphe v*iereas the entrance zone of the first CST-axons 

contained dispersely situated VIM-ir glial processes (Fig.SB). At this 

age and level no GFAP-IR could be noted (Fig.SA). 

One day after the arrival of pioneer CST axons the main wave of labelled 

CST axons has entered the lumbar intumescence ( Fig. 6C ). Between PtJDS and 
PND6 the VIM-IR in the CST growth zone has decreased considerably (Figs. 

5B,6B). Although during this period the GFAP-IR obviously has increased 

in the midline, the entrance zone of CST axons remained almost negative 

(Fig.6A).Double labelling experiments revealed the occurrence of both 

GEW-IR and VIM-IR in the sanie cells in the dorsal median septum at PND6 

(Figs.6A,6B). 

Based on transverse cryo- and vibratome sections the VIM-ir glial cells 

seemed to be dispersely situated in the entrance zone at the lumbar 

enlargement at Pl©5 (Figs.5B,7A). Horizontal vibratome sections of the 

CffT-area at this spinal cord level revealed a longitudinal alignment of 

the VIM-ir glial cells (Figs.7B,7C). the VIM-ir glial cells were mainly 

arranged in longitudinal tiers orientated parallel to the rostrocaudal 

axis (Figs.7B,7C). Ihe distance between the VIM-ir palisades varied 

between 5 and 10 jum. (Fig.7C). This typical palisade-organization may 

have a role in the construction of the developing CST (see discussion). 

VIM-ir glial processes were situated adjacent to growth cones (Figs. 
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Plgure 2 : Electron microscopic visualization of postnatal CSI outgrowth with 

the use of anterogradely transported HRP. Fig.2A: nD4-L3: The 

prospective CST region called pre-amval zone. Within this zone 

fascicles of unnyelinated axons are surrounded by electron-light 

profiles (asterisks) .Transverse section.Bar=0.5 ¿m. Fig.2B: RJD5-L3: 

Entrance of the first CST axons with their growth cones (GC). Note 

the crystalline HRP-ΊΜΒ-(AHM) labelling (arrows).Transverse 

section.Bar-O.5 /m. Fig.2C: Labelled CST growth cones (GC) 

surrounded by unnyelinated fibres as well as profiles which contain 

aocunulations of intermediate filanents (thin arrow). Besides 

electron-light profiles (asterisks), structures with typical glial 

characteristics sudi as dense cytoplaan and rosettes of free 

nbosanes (gross arrows) can be seen. Transverse section. ter»0.5 

¿m. Fig.2D: PM36-L3: later arriving labelled CST axons (arrows). 

Note the presence of an astrocytic process (arrowheads).Transverse 

sectim. Bar=0.2 jjn. 

Figure 3 : Identification of astrocytes and/or their precursors using imiuno-

fluorescence techniques with anti-VIM and anti-GFAP at prenatal 

stages. ,
Вар:ІЪгвв1; Bcvttxn: Vent ral .The CST area is marked with an 

asterisk (Figs.3A,3C,3D,3F) Fig.ЗА: anti-VIM, medulla oblongata 

(E18). ftote the accunulation of VIM-ir glial cells in the midline 

raphe and the scattered VIM-ir glial cells in the pyranids. Bar=25 

^n. Fig.3B: anti-VIM, cervical intumescence (ЕІ8). The presimptive 

CST area is designated by X. Bar=25 jm. Рід.ЗС: anti-VIM, medulla 

oblongata (E20). The medullary pyranids show numerous dispersely 

situated VIM-ir glial cells. Fig.33: anti-GFAP, medulla oblongata 

(E20). Absence of Q?AP-ir glial cells within the medullary pyramids; 

only a few GFAP-ir processes can be noted near the meningeal 

surface. Bar=25 jm. Рід.ЗЕ: anti-VIM, decussation area (P№)0), the 

midline raphe is indicated by an arrow. Ваг=50 ¿лп. Рід.ЗР: detail 

from 3E, various axon bundles are marked with asterisks. 

Figure 4,5 oil 6 : Dorsal funiculus at the limfcar intunescence between ИЮ4 and ШЭ6. 

Double uimunofluorescence staining with polyclonal anti-GFAP (A) and 

monoclonal anti-VIM (B) Aijacent sections are stained for HRP (С) . 

ItoprDorsal; Bottom-Ventral. Fig.4: Pt©4, i.e. prior to the arrival 

of the first labelled CST axons; the presmptive CST is marked with 

X.. Fig.5: ИЮ5, i.e. the time the first labelled CST axons are 

present. Fig.6: F№>6, i.e. the tune of entrance of the main wave of 

labelled CST axons. Bar=50 ¿π. 

Figure 7 : Tig.ТА: Cantera lucida drawing of a transverse vibratrone section at 

the limbar intumescence at РЮ5 stained with anti-VIM. CST* 

Corticospinal tract; FC=Fasciculus cuneatus; FG=Fasciculus gracilis; 

Q4=Grey matter; VM^hite matter. Fig.TB: Camera lucida drawing of a 

horizontal section of the CST area at PfC>5 stained with anti-VIM. 

Palisade pattern of the VIM-ir glial processes. Fig.TC: Bioto-

micrograph of part of Fig.TB. 

Figure θ : Рге-enibedding irnnunoelectroimicroscopy with monoclonal anti-VIM 

serum at the liirhar intumescence at PND5. Dark stained VIM-ir glial 

processes are situated adjacent to growth cones (QC) of pioneer CST 

axons (Fige.βλ aid te) .Besides growth cones and VIM-ir 

glial cell processes this area contains unnyelinated profiles. 

Growth cones of CST axons frequently exhibit characteristic 

protrusions (arrows) into the VIM-ir glial processes. Bar represents 

0.1 jin. 

Figure 9 : Double uimmofluorescence labelling with the use of anti-VIM and 

anti-GFÄP on cryosections of PMDII (upper lane) and РЮ29 (lower 

lanes). TtoptDorsal; Botten:Vfentral. Fig.9A: anti-VIM,L3 (РЯ)П). 

Note the absence of VIM-ir glial cell processes in the CST area. 

Bar=100 лп. Fig.SB: anti-GFAP, L3 (PM)11). Bar=100 ^n. Fig.9C: 

detail of 9B. Bar=25 tm. Fig.9D: anti-VIM, L3 (PND29). Pig.9B: 

anti-GFAP, U (P№>29). Bar=50 jm. Fig.9P: detail of 9E. Bar-25 am. 

Fig.9G: anti-Q^AP, medulla oblongata (P№)29), Bar=50 jm. 
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8A,8B). Based on anterograde HRP visualization (Figs.2B,2C), these growth 

cones represent the distal ends of the ingrowing pathfinding CST axons. 

Menbrane specializations could not be detected between the growth cones 

and the VIM-ir glial processes in the CST outgrowth area. On the other 

hand, the growth cones frequently exhibited characteristic protrusions 

into the glial processes (Figs.8A,SB), suggesting a direct implication of 

VIM-ir glial processes in the guidance of outgrowing pioneer CST axons to 

more caudal spinal cord regions. 

Betvreen the 6th and the 11th postnatal day VIM-IR was considerably 

decreased, not only at medullary but also at spinal cord levels (Figs. 

6A,9A) vdiereas the major VIM-ir glial structure in the midline raphe of 

the medulla oblongata and the median septum of the cervical and lumbar 

spinal cord of earlier stages is reduced to a minor one at ИГО11. Between 

РІЮ6 and PND11 the VIM-ir glial processes within the CST area conpletely 

disappeared (e.g.Figs.6B,9A). The glial cells situated in the midline 

between the central canal and the dorsal funiculus as wsll as the 

radially oriented fibres in the fasciculus gracilis and the fasciculus 

cuneatus retained their VIM-IR during this period (Fig.9A). Tbe number of 
midline VIM-ir cells between the central canal and the dorsal funiculus 

considerably decreased during the third and fourth postnatal weeks 

(Fig.9D). 

GFAP-labelling further increases during the second postnatal wsek. At 

PND11 many GFAP-ir astrocytes даге present in the dorsal funiculus 

(Fig.9B,9C), as well as in the medullary pyranids (not shown). Especially 

during the second postnatal week many glial cells viere both GFAP- as well 
as VIM-ir, as demonstrated by double labelling experiments (Fig.9A,9B). 

At Ш)11 the dorsal median septum contained numerous GFAP- and only sane 

VIM-ir glial cells. Thus the glial GFAP reactivity in late postnatal 

median rapile considercibly differed from that in prenatal and early 

postnatal stages, in which it consisted of many layers of VIM-ir glial 

cells (Figs. 3B,4B). 

No VIM-ir glial cells could be noted in the dorsal median septum in the 

third postnatal week (Fig.9D), vdiereas GFAP-ir glial cells were present 

up to the fifth week (Figs.9E,9F). Contrastingly, neither GFAP-IR nor 

VIM-IR could be noted within the midline raphe of the medulla oblongata 

after the second postnatal week (e.g.Fig.9G). 

The VIM-ir cells in the midline between central canal and dorsal 

funiculus becane GFAP-ir as well during the second postnatal week (as 

demonstrated with double labelling (Figs.9A and 9B). Between PND11 eind 

PND22 these midline glial cells vrere VIM-negative and retained their 

GFAP-negativity up to later stages. Notably, between ИГО22 and ИГО29 

GEW-ir glial cells have vanished from the region between central canal 

and dorsal funiculus {Figs.9E,9F). 

At four weeks of age the CST area contained many stellate shaped, 

GFAP-ir astrocytes, not only at medullary (Fig.9G) but also at cervical 

and lumbar spinal cord levels (Figs.9E,9F). 
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DISCUSSICN 

Antisera against intermediate filament proteins GFAP and VIM, specific 

markers for astrocytes and their precursors, respectively, vere used to 

study the role of these glial cells in the guidance of pioneer CST 

axons. Outgrowing CST axons were anterogradely labelled with HRP. 

General considérations 

Our results demonstrate a dramatic change in labelling of glial cells 

during the first three postnatal weeks fron the majority being VIM-

positive and GFAP-negative in prenatal stages and at birth to almost all 

being the reverse at PND 29 at all spinal cord levels studied. With 

restriction to the CST outgrowth area this transition occurs mainly 

between E21 and PND2 at medullary levels, whereas it can be noted sane 

days later at lumbar spinal cord levels: between ИГО6 and ИГО11 (Table 

1). Double labelling experiments demonstrate a coincidence of VIM-IR and 

GFAP-IR within precursor-astrocytes predominantly during the second 

postnatal week. The expression of intermediate-sized filaments containing 

GFAP appears not to be correlated with the disappearance of VIM filaments 

indicating that the synthesis of the first type of intermediate filament 

protein is independent of the presence of the latter one as was suggested 

earlier by Schnitzer et al.(1981). 

Astrocytes eind CSI outgrowth 

Outgrowing HRP-labelled pioneer CST axons showed no preferential 

localization either at the periphery or at the center of the ventralmost 

part of the dorsal funiculus. On the contrary, they seen to be more or 

less randcmly distributed over the presunptive CST area (Fig.SC). A 

quantitative analysis of the developing CST in the cervical spinal cord 

of the rat revealed that growth cone densities varied little and not at 

all statistically significant when their positional distribution over the 

presunptive CST area was tested (Gorgels et al., 1989
a
). CST growth cones 

are entering this area vrtiich consists of fascicles of unmyelinated fibres 

surrounded by lucent amorphous structures devoid of intermediate 

filaments (Figs.2A-2C). Arcording to Schreyer and Jones (1982) these 

lucent structures would be large, irregularly, mainly rostrocaudally 

oriented glial processes with watery cytoplasm. Нэ ге ег, Schreyer and 

Jones' interpretation is disputable. Both the 'watery' appearance as well 

as the absence of glycogen granules and free ribosomes are not in favour 

of interpreting them as glial processes (Peters et al.,1976; De Kort et 

al.,1985; Joosten et al.,1989). However, the mere absence of intermediate 

filaments does not necessarily implicate the absence of their particular 

proteins. For instance,GFAP can be present in a non-polymerized, soluble 

form in the cytoplasm and therefore GFAP staining may be noted even 

before the appearance of significant amounts of filaments (Choi,1981; 

Levitt et al.,1983). On account of our findings, however, that the lucent 
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amorphous 'watery' structures in the prospective CST area do not contain 
VIM-IR, trfiereas at these early developmental stages no GFAP staining can 
be detected at all, it is very unlikely that the electron-light 
structures in the CST outgrowth area are of glial origin. On behalf of 
other EM features, such as the amorphous structures containing round 
vesicles, mitochondria and large vacuole like structures, these profiles 
may represent (pre-) terminal varicosities of outgrowing axons (De Kort 
et al.,1985). In that case they must be interpreted as aberrant ascending 
fibres since they never contained any HRP labelling. Besides, no 
morphological relationship could ever be detected between the lucent 
amorphous structures and growth cones of CST pathfinding axons. 
Based on transverse sections VIM-ir glial cells seem to be rather 
randomly distributed over the presumptive CST area (Fig.7A). However, 
VIM-ir glial cells are arranged in longitudinal tiers orientated parallel 
to the rostrocaudal axis of the developing CST (Figs.7B,7C). A comparable 
palisading pattern was observed not only in the adult rat spinal cord, 
medulla and pons (Bitner et al.,1987), but also in the fetal mouse brain 
(Dupouey et al.,1985). The finding of an analogous glial organization in 
embryonic, young postnatal and adult mouse or rat supports the idea that 
VIM-ir glia may be involved in various neuronal, axonal and glial aspects 
of the spatial organization of the mature mouse or rat spinal cord. "Hie 
presence of a VIM-ir palisading architecture probably constitutes an 
important external constraint for the developing CST axons. 
Our electron microscopic observations contain additional data for this 
assumption: VIM-ir glial processes adjacent to growth cones of pioneer 
CST axons frequently show intrusions of the latter structures 
(Figs.8A,8B), suggesting a direct influence of the VIM-ir glial cell 
processes on the outgrowth of the pathfinding CST axons. Since no 
manbrane specializations could be detected, the contacts between the 
VIM-ir glial cell processes and the growth cones of the pioneer CST axons 
presumably are of the adhesive type, the chicken neuron-glia adhesion 
molecule NgCAM (Grumet et al., 1984a) as well as the iitmunologically 
identical cell adhesion molecules in mouse (LI) (Rathjen eind Schachner, 
1984) or rat (NILE) (Stallcup et al., 1985) are implicated in in vitro 
guidance of outgrowing axons (Rathjen,1988). It becomes an intriguing 
question whether these glycoproteins are involved in in vivo outgrowth of 
CST fibres. 

The occurrence of a channel-like guidance system, consisting of glial 
or presumptive glial cells was substantiated in the developing optic 
nerve (Silver and Sidman,1980; Silver,1984; Silver and Rutishauser,1984) 
and corpus callosum (Silver et al.,1982) of the mouse. Although no 
indications are present in our material, such a channel-like glial systan 
in the developing CST of the rat cannot be excluded completely.Serial 
sectioning in combination with postembedding imnunocytochanical detection 
of VIM-ir glial cell arrangements in conjunction with visualization of 
HRP-labelled CST axons may provide conclusive evidence, lb that end, 
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however, a new combination of techniques has to be developed. 

Apart from the occurrence of VIM-ir processes in the prestmptive CST 

area, a major VIM-ir glial cell accumulation is present within the 

midline rapte of the medulla oblongata and cervical and lumbar spinal 

cords in prenatal and early postnatal stages. After the first postnatal 

week this major VIM-ir glial sepitum is gradually reduced to a minor 

GFAP-ir one at spinal cord levels at PND 29. In the medulla oblongata 

neither VIM-IR nor GFAP-IR could be noted within the midline rapte beyond 

the end of the fourth postnatal week. Ihe pyramidal decussation 

demonstrated a permanent absence of a canpact VIM-ir glial cell alignment 

in the midline of the CST outgrowth area. Ihe presence of such a major 

canpact VIM-ir glial septum in the midline of both the medulla oblongata 

and the spinal cord as veil as its absence in the decussation area during 

CST outgrowth suggests a decisive role of this glial barrier in the 

guidance of outgrowing CST axons in preventing the latter fibres from 

decussatici. Studies on the outgrowing mouse corpus callosum and on the 

developing mouse optic nerve suggested a physical role for glial cells in 

guiding outgrowing axons (Silver,1984; Hankin and Silver,1986). Further 

studies on this matter may add to the present results. 

Ihe stellate GFAP expressing astrocytes that are comnon in adult rat 

fibre tracts are only present in the developing CST beyond ШЭ8. The 

absence of GFAP-ir glial cells during prenatal stages and the first 

postnatal week demonstrates that they can not play a role in the guidance 

of outgrowing CST pioneer axons. A dramatic increase of GFAP-IR was 

noted between PND8 and PND15 (Figs.9B,9C), the same period in which 

myelination of CST fibres starts as was described earlier (see Chapter 

4B). Therefore the formation of stellate shaped GFAP-ir astrocytes in the 

rat CST area may well be correlated with CST myelination, as suggested 

already by Dahl (1981), among others. In addition, nature stellate 

astrocytes are supposed to play an important role in support functions of 

myelinated axons (Bovolenta et al.,1984; D'Amelio et al.,1986; Berkley 

and Contos,1987; Bitner et al.,1987). 

Besides, the onset of GFAP expression was also correlated earlier with 

the degeneration of an excess of axons (Bovolenta et al.,1987). Actually, 

transient occipital corticospinal collaterals indeed are eliminated from 

spinal cord levels between PND8 and PND11, as substantiated previously 

(Stanfield et al.,1982; Stanfield and O'Leary,1985b;Joosten et 

al.,ІЭ ?
13
) .Therefore, sane role of GFAP-ir glial cells in the entire 

process of axon degeneration also seems very likely. 

Concludingly, the developing CST in rats is a good model to further 

study the positional, chemical and/or physical influences of astrocytes 

on axon outgrowth and -degeneration. 
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СНАРГН1 SCI: DWLKOCYTOCHEMICAL I/XÄLIZATION OF r-RTJ. ADHESION HOLBCUU Li 

IN DEVELOPING RAT PYRAMIDAL HttCT. 

SIMORY 

Li is a representative of a family of carbohydrate neural cell adhesion 

molecules. The expression of LI was studied during postnatal development 

of the rat pyramidal tract by inmunohistology using polyclonal antibodies 

to LI in spinal cord cervical intumescences. 

On postnatal day 1 (PI), LI inmunoreactivity was present in the 

entire dorsal funiculus, consisting of the ascending fasciculus gracilis 

and fasciculus cuneatus and the descending pyramidal tract. At that time 

the cervical pyramidal tract contains the first outgrowing corticospinal 

axons. At P4 both the fasciculus gracilis and the pyramidal tract are 

iranunoreactive whereas the fasciculus cuneatus is negative. At PIO the 

pyramidal tract is intensely labelled whereas both ascending bundles are 

negatively stained. In the period between P4 and PIO the pyramidal tract 

is characterized by a massive outgrowth of corticospinal axons. 

During pyramidal tract myelination, between postnatal day 10 (P10) and 

the end of the third postnatal week (P21), Li inmunoreactivity is 

progressively reduced. These observations suggest that LI may play a 

prominent role in outgrowth, fasciculation and the onset of myelination 

of rat pyramidal tract axons. 

The differential LI-inmunoreactivity of the pyramidal tract and the 

earlier developing ascending systems in rat dorsal funiculus, indicates 

that this polyclonal antiserum is a useful differentiating marker for 

outgrowing fibre tracts. 

Rey words :L1 œil adhesion molecule - axon outgrowth - pyramidal tract -

development - rat. 

питахасиш 

During development of the manmalian nervous system a variety of 

processes occurs. It is very likely that cell-cell interactions, 

including adhesion of cells to each other and to extracellular matrices 

play an important role during neuron migration, axon outgrowth and 

fasciculation, as well as neuron-aggregation and synapse formation. 

Several glycoproteins present on cell surfaces and in extracellular 

matrices, operationally called "cell adhesion molecules" have been 

identified. They appear to be involved in adhesive interactions between 

neurones, glial cells and components of the extracellular matrix. 

The best characterized of these glycoproteins are the neural cell 

adhesion molecule N-CAM (Rutishauser,19 4) and LI (Rathjen and 
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Schachner, 1984 ). Ihe latter is iimunologically identical to neuron-glia 

CAM (Ng-CAM) and to the nerve growth factor inducible large external 

protein NILE (Bock et al.,1985; Friedlander et al.,1986). Hie glyco­

protein recognized by LI antibodies is involved in neurite fasciculation 

(Rathjen,1988), neuron-neuron adhesion (Keilhauer et al.,1985) and 

outgrowth of neurites (Rathjen,1988). Furthermore LI is involved in the 

initial axon-Schwann cell interaction in developing and regenerating 

mouse sciatic nerve (Martini and Schachner,1986). 

Because of its relatively late development, as compared with other 

fibre tracts, the pyramidal tract (FT) in the rat, and particularly its 

corticospinal component, is a very useful model to study developmental 

processes. The rat FT is characterized by a staggered mode of outgrowth 

(Schreyer and Jones,1982). Tracing studies revealed that the arrival of 

the first corticospinal tract (CST) fibres in the ventralmost part of the 

dorsal funiculus at the cervical intumescence occurs at the first 

postnatal day, whereas significant nunbers of axons are added to the 

tract within the first ten days after its initial outgrowth (Gribnau et 

al.,1986; Joosten et al.,1989). At the cervical intumescence myelination 

of CST axons starts between postnatal day 10 (PIO) and postnatal day 14 

(P14), whereas at the end of the third postnatal week (P21) most CST 

axons are myelinated at this spinal cord level (see Chapter 4B). 

In the study described here, the PT is examined for the presence of LI, 

during the period in which CST outgrowth,fasciculation and myelination at 

the fifth cervical segment (C5) occurs. 

MATHUAIS А Ю METHODS 

Postnatal Wistar rats ranging in age from postnatal day 1 (Pi ) up to 

and including postnatal day 21 (P21 ) were used, and the day of birth was 

accounted as PO. The rats were anaesthetized by intraperitoneal injec­

tions with Nenfcutal (18 mg .per kg.body weight) and perfused transcardial-

ly with saline followed by 2% paraformaldehyde and 0.12% glutaraldehyde 

in 0.1 M. phosphate buffered saline (PBS) (pH 7.4). After perfusion the 

spinal cords were imnediately removed and further immersed for about 1 

hour in the sane fixative before being transferred into cold (4°C) PBS 

with 5% sucrose. Then 50 μια. vibratome sections of the cervical 

intumescence (C5) were cut transversely on an Oxford vibratone and 

incubated overnight at 4''C in PBS containing 0.1% bovine serum albunin 

(BSA) (PBS/BSA). Thereafter the sections were treated for 10 min. with 5% 

DMSO in PBS and rinsed with PBS/BSA. The imnunocytochemical staining was 

carried out according to the following protocol: Ihe sections were 

incubated in 10% normal swine serum in PBS/BSA for 1 hour. Then the 

vibratome sections were incubated for about 2 hours with anti LI IgG's at 

room temperature. Fab fragments of a rabbit antibody to mouse LI were a 

generous gift of Dr.Fritz Rathjen (Max-Planck Institut Tübingen,FRG) and 

after specificity tests were produced as described by Rathjen and 

Schachner (1984). Control sections were inmersed in 10% normal swine 



-in-

serum in PBS/BSA. Subsequently, the sections were washed for 30 min. at 

room temperature in PBS/BSA and incubated with Fab fragments of swine-

anti-rabbit imnunoglobulins coupled with horseradish peroxidase (HRP) 

(DAKO), diluted 1:50 in PBS/BSA, for 1 hour at room tanperature. After 

two ten-min. rinses with PBS/BSA HRP was visualized using the chromogen 

diaminobenzidine (DAB) and Nickel (Ni) as an intensifying agent 

(Adams, 1981). Then the sections wsre washed in PBS and embedded in 

Depex. Photonicrographs were made with an automatic Zeiss-photoroicros-

cope-II and an Agfapan-25 film. 

Control sections, which were treated similarly but without the primary 

antiserum, invariably displayed no inmunoreaction. At least three animals 

per age-category were examined, giving similar results. 

RESUUrS 

The location of the descending PT as well as the ascending fasciculus 

gracilis (FG) and fasciculus cuneatus {FC) in the dorsal funiculus of the 
rat spinal cord is shown in Fig.lA. 

At Pi Ll-immunoreactivity (Ll-ir) was found in the entire white matter 

of the fifth cervical spinal cord segment (Fig.IB). Both ascending FG and 

D 
rlg-1 : 1A :Camera lucida drawing of the dorsal funiculus of a transverse 

vibratone section at the cervical intumescence at postnatal day 10 

(PIO). cc=central canal; ckns=dorsal median septum; fc=fasciculus 

cineatus; fg=fasciculus gracilis; gm=grey matter; pt=pyramidal tract. 

IB-IE :Distribution of Ll-iiraiinoreactivity (Ll-ir) in transverse 

vibratome sections of the spinal cord at the fifth cervical segment <C5) 

between postnatal day 1 (Pi) and postnatal day 21 (P21). Fig.В :Pl. 

Plg.C :P4: note the reduction of Ll-ir in the FC. Fig.D :P10: the very 

intensely stained FT stands out against the virtually unstained ascending 

systems FC and FG. Pig.В :P21. Bar represents 100/m. 
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PC as well as the descending PT were equally veil stained for Ll-ir. At 

P4, PT and PG still showed an intense umiunoreaction with LI antibodies, 

whereas the PC was less intensely stained (Fig.1С). 

Ten days after birth the PT showed its most intense Ll-ir (Fig.ID): the 

densely stained ΡΓ stands out against the adjacent ascending fibre tracts 

vrtuch are both devoid of Ll-ir. Between PIO and P21 Ll-ir was progress­

ively reduced in the rat PT, although a weak L1-immunoreaction was 

retained up to the end of the third postnatal week (Fig.IE). During the 

period studied the dorsal median septum was marked by the absence of 

Ll-ir (Fig.IB-IE). 

DISCISSION 

With the use of polyclonal anti-Li IgG's (Rathjen and Schachner,1984) a 

relation between Ll-ir and the developmental state of the PT in the rat 

was demonstrated. 

A clear Ll-ir was noted during the entrance of pioneer CST axons into 

the fifth cervical segment at PI. These pioneer axons, with growth cones 

at their distal ends, penetrate an area consisting of astroglia, 

fascicles of unmyelinated axons and lucent amorphous structures (Joosten 

et al.,1989). Neuron-glia interaction has been postulated to underlie the 

outgrowth of pioneer axons in developing fibre tracts. The chicken 

neuron-neuron and neuron-glia adhesion molecule Ng-CAM, closely related 

to mouse LI (Friedlander et al.,1986), is involved in neuron-glia 

adhesion (Grumet et al.,1984
a
,1984b). However, polyclonal LI antibodies 

interfere with neuron-neuron but not with neuron-astrocyte or 

astrocyte-astrocyte adhesion (Keilhauer et al.,1985). It is therefore 

likely that the polyclonal LI and Ng-CAM antibodies recognize different 

sets of functional sites on the LI antigen. The molecular donains of the 

Li antigen involved in neuron-glia interaction are still undetected. 

At the same tune outgrowing CST pioneer axons might be guided by means of 

axon-axon interactions mediated by Li antigens located on the fascicles 

of unmyelinated ascending axons in the preemptive CST area (Joosten et 

al.,1989). The very intense Ll-ir at P4 and PIO, i.e. after the initial 

outgrowth when significant numbers of axons are added to the tract 

(Gnbnau et al., 1986), suggests that Li may be instrumental in the 

fasciculation of PT axons. Together with other studies (Beasley and 

Stallcup,1987; Godfraind et al.,1988) our results indicate that LI may be 

important in the guidance of axons to their targets by means of axon 

fasciculation. 

The differential Ll-ir of the PT vs. the ascending fibre systems in the 

dorsal funiculus after the first postnatal day can be explained by the 

fact that FG and FC develop several days before birth (Altman and 

Bayer, 1984). ííiereas PT myelination starts betvreen PIO and PI4 (Joosten 

et al., 1989), PG myelinates at P4 and PC even at the tune of birth 

(Matthews and Duncan,1971). The subsequent reduction of Ll-ir in the 
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fibre tracts located in the dorsal funiculus may be related to their 
respective myelination periods. Although myelination of rat CST axons is 
mainly completed at P21, yet a slight Li inmunoreaction could be noted in 
the PT area (Fig.IE). Hie presence of detectable LI antigen in FT of P21 
rats may well be explained by the presence of numerous unmyelinated CST 
axons within this tract (see Chapter 4C). Ihe clear Ll-ir during the 
onset-period of CST myelination (P10-P14) indicates that LI might also be 
involved in the initial axon-oligodendrocyte interaction. Using 
imnunoelectronmicroscopy the involvement of LI in the initial 
axon-Schwann cell interaction was demonstrated previously in the 
developing mouse sciatic nerve (Martini and Schachner,1986). 

Sumnarizing, our observations suggest that Li may play a prcminent role 
in the outgrowth, the fasciculation and the onset of myelination of rat 
pyramidal tract. Further research has to be carried out on the ultra-
structural localization of Ll-ir as related to the developmental state of 
the rat pyramidal tract. 
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CHAPTSt 5C2 : II*№MOEI£CTROIMICROSOOPICAL· UOCALIZATION OP CEU. ADBESION 
MCŒJBCUUE Li IN ЕЖ ЕОМЧМЗ RAI PYRAMIDAL ІВДСГ 

SlMtARY 

The glycoprotein LI is a cell adhesion molecule that has been proposed 

to function in the PNS in axon fasciculation and onset of myelination. In 

this report ws localized LI during the development of a major central 

pathvay: the pyramidal tract (PT). The (sub)-cellular localization of LI 

was determined both by pre-embedding staining on vibratome sections and 

by imnunogoldlabelling on ultracryosections in developing rat PT at C5. 

Oi arrival at C5, i.e. at postnatal day 1 (PI), growth cones of pioneer 

fibres did not exhibit Ll-imnunoreactivity (LI-IR). In the contactzone 

between PT growth cones and glial processes no L1-IR was observed. A 

distinct LI-IR was noted on small unmyelinated ascending axons situated 

in the entrance area of the PT growth cones. Also on later arriving, 

i.e. between P2 and PIO, small unmyelinated fasciculating РГ axons LI vras 

present. It is our impression that LI is localized in an irregular patchy 

way on the outer side of the axonal membrane. During the onset of PT 

myelination, i.e. between PIO and P14, LI could not be detected on axons 

ensheathed by oligodendrocytic processes. When myelination is largely 

completed, i.e. at P21, the LI antigen could be localized within the 

ахоріаяпа of both unmyelinated and myelinated PT axons. Furthermore, LI 

could be observed occasionally on small unmyelinated РГ axons. Whereas 

conpact myelin was always Li-negative, L1 was noted periaxonally between 

the axolamia and compact myelin and at (para)-nodal regions at the 

contact zone between axolemna and oligodendrocytic processes. From these 

results it rray be deduced that: 1. LI is involved in fasciculation of 

outgrowing later arriving PT fibres, 2. in contrast to developing PNS LI 

is not involved in the onset of myelination in this central tract, 3. LI 

might play an additional adhesive role in myelinated rat PT. Tbe data are 
discussed in the view of the considerable developmental plasticity of 

this central tract. 

Rey words: adhesion molecule LI - guidance - pyramidal tract - iranuno-

electronmicroscopy - myelination - plasticity - rat 

ЮТКЮОСТІСК: 

The formation of adequate functional nerve connections is based upon 

the correct sequence of cell-cell interactions during the development of 

the central nervous system. Among these distinct, yet coordinated, events 

such as neuron migration, axon outgrowth and guidance, synapse formation 
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as well as myelination play an important role. Several glycoproteins 

present on cell surfaces and/or extracellular matrices appear to be 

involved in the chemical, adhesive interaction among neurons as well as 

between neurons and glial cells or components of the extracellular 

matrix. 

In addition to the more general adhesive molecules (neural cell 

adhesion molecule (NCAM), laminin and N-Cadherin (Rogers et al.,1983; 

Rutishauser,1984; Edelman,1988)) local adhesive glycoproteins are 

described (for reviews see Dodd and Jessell,1988; Rutishauser and 

Jessell, 1988). Among the local adhesive molecules the glycoprotein LI is 

the best characterized (Rathjen and Schachner, 1984 ). Ihe cell surface 

molecule LI,which is involved in Ca
++
-independent adhesion and 

aggregation of cell bodies (Schachner et al., 1985), is iimunologically 

identical to the rat nerve growth factor-inducible large external protein 

(NILE) (Bock et al.,1985) or 69A1 (Piggott and Kelly,1986) and to chicken 

neuron-glia CAM (Ng-CAM) (Friedlander et al.,1986). 

LI is synthethized as an integral membrane glycoprotein with a relative 

molecular weight (M
r
) of 200.000 (Faissner et al.,1985; Linneman et 

al.,1988).Besides the membrane bound LI, a soluble form of this protein, 

with a slightly lower M
r
, exists (Bock et al.,1985). Biochanical studies 

reveal that although the total amount of LI varies with age showing a 

peak value in early postnatal life of rat, still a considerable amount 

remains present after postnatal day 15 (Linneman et al.,1988). Based on 

in vitro experiments LI has been found to mediate neuron-to-neuron but 

not neuron-to-astrocyte interaction (Keilhauer,1985), to be involved in 

neurite fasciculation in the P№ (Fischer et al.,1986; Rathjen,1988), in 

the outgrowth of neurites (Chang et al.,1987) as well as the migration of 

cerebellar granule cells from the external to the internal granular layer 

(Lindner et al.,1983). 

In the early postnatal mouse cerebellum LI has been recognized on 

neurons but not on glia and fibroblasts or fibroblast-like cells (Rathjen 

and Schachner,1984). In vivo the (sub)-cellular localization of the CAM 

LI was determined in developing and regenerating mouse sciatic nerve 

(Nieke and Schachner,1985; Martini and Schachner,1986,1988): with the use 

of various iimunoelectronmicroscopical staining techniques LI was 

localized on small urmyelinated fasciculating axons and axons ensheathed 

by non-myelinating Schwann cells (Martini and Schachner,1986 ). 

Furthermore Schwann cells were positive to LI when the Schwann cell 

process had turned 1.5 loops; thereafter neither axon nor Schwann cell 

could be detected to express the LI antigen. From the in vitro and in 

vivo experiments it may be deduced that LI is involved in axon 

fasciculation, initial axon-Schwann cell interaction and the onset of 

myelination in the mouse peripheral nervous systan (PMS) (Martini and 

Schachner,1986, 1988). 

The aim of the present study was to localize LI during the development 

of a major central motor pathway in the rat; the pyramidal tract (PT). 
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•Иіе РГ was chosen because of its relatively late development as ccmpared 

with other fibre tracts (Schreyer and Jones,1982; Gribnau et al.,1986; 

Joosten et al., 1989). Furthermore, the developing FT is a CNS tract 

capable of a considerable developmental plasticity (Kalil and Reh,1982; 

Bregman and Goldberger,1982,1983; Bernstein and Stelzner,1983; Bregnan et 

al.,1989). PT axons are able to take an aberrant route through adjacent 

undamaged CNS tissue to reach normal targets (Bregman et al.,1989). 

Besides, the occurrence of numerous transient corticospinal projections 

(see Chapter 2B,2C;Stanfield et al.,1982) may be indicative for the 

plasticity of this particular CNS tract. With respect to this plasticity 

it is interesting to compare the (sub)-cellular localization of LI in 

this CNS tract and the (regenerating) sciatic nerve as a representative 

of the PNS (Martini and Schachner, 1986,1988). 

Light microscopical observations on the presence of LI during rat PT 

development at the fifth cervical segment suggest that LI may play a 

prominent role in the outgrowth, fasciculation and onset of myelination 

of FT axons (see Chapter 5C1). Ihus, an EM analysis of the (sub)-cellular 

localization of LI in developing rat PT may add to our understanding of 

not only developmental processes in the CNS but also the different 

regenerative capacities of CNS versus PNS. 

MKEBUAIS дю HEraoos 

Animals and tissue processing 

Wistar rats varying in age between postnatal day 1 (PI ) and postnatal 

day 21 (P21) were used. The day of birth was accounted as PO. 

The rats were anaesthetized by intraperitoneal injection of an aqueous 

solution of nembutal (18 mg per kg body weight) and perfused through the 

heart with 10-40 ml 2% paraformaldehyde and 0.12% glutaraldehyde in 0.1 

M phosphate buffered-saline (PBS), pH 7.4. Besides with this fixative 

rats were also perfused with 2% paraformaldehyde and 2% glutaraldehyde in 

PBS (pH 7.4). 

After perfusion the brains and spinal cords were resected inmediately 

from the skulls and vertebral columns, respectively, and then postfixed 

in the same fixative for about 1 hr before being transferred into cold 

(4°C) PBS with 5% sucrose. Inmersión for at least 16 hr. does neither 
affect the tissue intregity nor the antigenicity. 
Sanples of the cervical intumescence (fifth or sixth cervical segment, 

C5/C6) were cut tranversely on a vibratome (Oxford Instruments) and 
incubated overnight at 4°C in PBS containing 0.1% bovine serum albumine 
(BSA). 

Antibodies 

To localize the LI antigen F ^ f riigiIEnts o f a r a b b i t antibody to nouse 

LI were used. This polyclonal antiserum was a generous gift of Dr.Fritz 
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Rathjen (Dept.Mol.Neurobiologie,Hamburg,FRG). The LI antiserum was 

produced and described by Rathjen and Schachner(1984). For pre-embedding 

staining polyclonal antibodies were visualized by Fgt, fragments of 

swine-anti-rabbit iranunoglobulins coupled with horseradish-peroxidase 

(HRP) (DAKO) at a dilution of 1:50 in 0.1 M PB,pH 7.4. Por irimunogold 

labelling on ultracryosections goat-anti-rabbit IgG's adsorbed to 

colloidal gold (15 nm diameter, Janssen Riarmaceutica) were used at 

dilutions of 1:25. 

Pre-ŒDbedding staining 

Vibratome sections were treated for 10 min with 5% DMSO in PBS (Fushiki 
and Schachner,1986) and rinsed with PBS/BSA. Thereafter the sections were 

incubated in 10% normal swine serum in PBS/BSA for 1 hr at room 

tenperature. Ihen the vibratome sections were incubated for 2 hr with 

anti LI IgG's at room temperature. Control sections were immersed with 

0.1 M PBS or 10% normal swine serum in PBS/BSA. After rinsing 30 min in 

0.1 M PBS/BSA, pH 7.4, the sections were incubated with ¥& fragments of 
swine-anti-rabbit IgG's coupled with HRP for 1 hr at room tenp. After 

vashing for 20 min (twice 10 min) with PBS/BSA HRP »as visualized using 

the chromogen diaminobenzidine hydro-chloride (DAB; Sigma Chenical QnbH) 

and Nickel (Ni) as an intensifying agent (Mams, 1981). Ihen the sections 

were »»shed in PBS and embedded in Depex for light microscopical 

inmunocytochemical localization. For electronmicroscopy sections were 

washed in PBS (pH 7.4) and then postfixed in 1% OSO4 in 0.1 M PB (pH 

7.4). Subsequent dehydration in an ascending series of ethanol was 

follovred by embedding in Epon 812 on repelcoated slides. Ultrathin 

sections were cut on a Reichert OM-4 ultramicrotome and mounted on 75 

mesh formvar (0.8%)-coated copper grids. All sections were counterstained 

with uranylacetate (20 min) and lead citrate (10 min). The sections were 
examined in a Philips EM-300 electron micoscope at an accelerating 

voltage of 60 kV. 

Inmmogold-labelling on ultracryosections 

Very thick vibratome sections (300 urn) or hand cut segments of the 

cervical intumescence were iimtersed in a 5% gelatin solution in 0.1 M 

PBS, pH 7.4 at 37°C for 1 hour. After the gelatin was allowed to solidify 

as a thin slab at 4<,C, the embedded tissue blocks were fixed in 2% 

paraformaldehyde and 2% glutaraldehyde in 0.1 M PBS for 30 min (Geuze and 

Slot,1980; Gorgels et al.,1989b; van lookeren-Campagne et al.,1989). Піеп 

the dorsal funiculus was cut out of the tissue blocks and further 

processed. Ihe small tissue blocks (tnax.1 imß) were infused in an 

ascending series (three steps) of a mixture of polyvinylpyrrolidone (PVP) 

sucrose in 0.1 M PBS, pH 7.4 up to a final concentration of 20% PVP and 

2.0 M sucrose, for at least 3 hours (Tokuyasu,1986). the tissue blocks 

were then mounted on specimen stubs and frozen in liquid nitrogen. 

Ultrathin frozen sections ( < 100 nm) were cut at approximately -100°C 

on a Reichert OM-4 ultramicrotome equipped with an ultracryodevice. The 
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sections v«re picked up by a wireloop filled with 2.3 M sucrose solution 

in PBS; and transferred to formvar- and carbon coated 300 mesh nickel 

grids. Ihe grids were maintained, sections facing down on 2% gelatin in 

PBS at 4°C for 2 hr, followed by floating on PBS (Slot and Geuze, 1983; 

Itokuyasu,1978,1986). 

Ihe sections vrere imnunostained essentially according to published 

procedures (Tokuyasu,1980; Griffiths et al.,1983; Slot and Geuze,1983). 

Briefly: to quench free aldehyde groups the grids were floated on drops 

of a 0.02 M glycine solution in PBS,pH 7.4 (3 χ 10 min). Ihe iimiuno-

staining was carried out by sequentially floating the grids on drops of 

the following solutions: primary antibodies in 0.1 M PBG (overnight at 

4°C); PBS-glycine (3 χ 10 min); colloidal-gold labelled GAR IgG's in PBG 

for 60 min; PBS-glycine (3 χ 10 min); aqua bidest (3 χ 10 min). Staining 

and stabilization of the membrane structures vras carried out with neutral 

uranyl acetate-oxalate (pH 7.0) (Tokuyasu,1980). Finally, the grids were 

embedded in uranyl-acetate containing methylcellulose (Methocell, Fluka 

AG) during 10 min on ice. After air-drying the sections were viewed in a 

Philips EM-300 at 80 kV. 

RESUiaS 

The (sub)-cellular localization of LI was determined both by 

pre-embedding staining on vibratome-sections and by inmunogold labelling 

on ultracryosections in developing rat PT at C5. Por this purpose 

pyramidal tracts were taken of 1-, 4-, 10-, 14- and 21-d. old Wistar 

rats. 

Although the use of 2% paraformaldehyde and 2% glutaraldehyde in PBS as 

a fixative resulted in a better ultrastructural preservation both after 

pre-embedding procedure as well as ultracryonicrotomy the use of 2% 

paraformaldehyde and 0.12% glutaraldehyde was preferred because of the 

higher amount of iitmunolabelling (both procedures). 

Because of identical results obtained after pre-embedding on vibratome 

sectioned tissue as compared with inmunogold labelling on ultracryo-

sectioned material misinterpretations due to the diffusion of the 

Fig.l: Localization of the LI antigen in developing rat pyramidal tract at C5 

during the entrance of the growth cones of pioneer axons (PI). 

1A: Distribution of Ll-IR in a transverse víbrateme section. Pyramidal 

tract (PT) and Fasciculus Gracilis (FG) are Ll-ir, whereas Fasciculus 

Cuneatus (PC) airi Grey Matter (GM) are Ll-neg. Bar= 100 um. IB: 

Lmiunogoldlabelling on ultracryosections of transverse sectioned PT of 

1-d. old rat. The labelling is localized at the urmyelinated axons, which 

probably belong to ascending fibre tracts situated in the dorsal 

funiculus. No uniform labelling at the urmyelinated axons is obtained. At 

the contact zone between growth cone (GC) and unmyelinated axons Ll-IR 

can be observed (arrowheads). Bar=0.2 ¿jn. 1С: Pre-anbedding 

umiunostaining on transverse vibratome section of 1-d. old rat PT. Snail 

urmyelinated axons show Ll-IR (arrowheads). Note the variation in 

labelling intensities between axons. At the contact zone between growth 

cones {GC) (arrows) and between growth cones and glial processes 

(O=oligodendrocytlc) (arrows) no Ll-IR can be noted.Bar= 0.2 /m. 
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Pig.2i Inmunocytochenical staining of the CAM Lì in the developing rat PT during 
the fasciculation phase of outgrowth (Р2-РІ0), 
ZA: In the transverse spinal cord section of a 10-d old rat the Ll-IR PT 
stands out against the v i r t u a l l y unstained adjacent fibre t r a c t a and grey 
matter (GM). Bar* 100 /m, 2B: Ll-iimunolabelling perfomed by 
pre-enbedding staining procedures on horizontal ly sectioned ΡΓ. The LI 
antigen is localized at the axonal meirbrane of the anali unnyelinated 
fasciculat ing FT axons (arrohtieads). Itote the patchy d i s t r ibut ion of 
DAB-reaction product (arrowheads) Ban= 0 . 2 , ^ . 2C: Irrnunogold label l ing 
on ultracryosectioned PT of 10-d. old r a t . Note the typical accunulation 
of goldlabell ing on the unnyelinated PT axons. Bar* 0.2 ^jn. 2D; At the 
contact zone between unnyelinated PT axons and oligodendrocytlc processes 
Ll-IR can be observed (arrows), probably due t o the presence of the LI 
antigen on the small axon. Ll-IR is absent between larger unnyelinated 
axons and the sane g l i a l process (arrowheads). Bar» 0.2 ^m. 
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peroxidase reaction product can be excluded. 

Control sections of both procedures were devoid of LI-IR (for the 

ultracryomicrotomy-procedure see Fig.4B). 

During the entrance of PT growth cones of pioneer fibres at C5, i.e. at 

PI (Joosten et al., 1989) a clear LI-IR was noted in the ventralmost part 

of the dorsal funiculus (Fig.lA). Detectable levels of LI antigens were 

seen on small, unmyelinated axons (Figs.IB,1С). These unmyelinated axons 

in the presumptive PT area are not of corticospinal origin but probably 

belong to ascending systems situated in the dorsal funiculus (see 

Discussion). Growth cones of ΡΓ pioneer axons did not exhibit LI-IR 

(Fig. 1С), but L1-IR vas noted vtfien they were situated adjacent to other 

small unmyelinated axons (Figs. IB, 1С). At the interface between two PT 

growth cones no LI-IR could be observed (Fig.1С). Also in the contact 

zone between glial processes (astroglial or Oligodendroglia!) and PT 

growth cones L1-IR could not be detected (Fig.1С). 

During the period in whidi the bulk of later arriving unmyelinated PT 

axons enter the ventralmost part of the dorsal funiculus, i.e. between P2 

and PIO, a very strong L1-IR could be observed (Fig.2A). Both in trans­

versely and horizontally sectioned material L1-IR was noted on small, 

unmyelinated fasciculating PT axons (Figs.2B-2D). Because of local 

accumulations of DAB-reaction product on vibratome sectioned material 

(Fig.2B) as well as the local distribution of imnunogold label on 

ultracryosections (Fig.2C) it is our impression that Li is localized in 

an irregular patchy way on the outer side of the axonal membrane. When 

unmyelinated PT axons were situated adjacent to glial processes (Fig.2D) 

a distinct Li-IR could be noted. This imnunoreactivity is, however, 

probably not due to any kind of adhesive interactions between the 

oligodendrocyte and the PT axon (see Discussion). 

A clear reduction of LI-IR could be observed in the ΡΓ area between PIO 

and P14, i.e. during the onset of myelination (Fig.ЗА), as compared with 

the fasciculation phase of outgrowth (Fig.2A). Nevertheless, at the HI 

level Li-IR was noted in between the unmyelinated PT axons occasionally 

(Figs.3B,3D). Furthermore, L1-IR was noted within the axoplasm of some 

small unmyelinated profiles (Figs.3B,3D). PT axons enveloped by 

early oligodendrocytic processes (or mesaxon) did not express the LI 

antigen (Figs.3B-3D). All glial processes observed were LI-negative 

(Figs.3B-3D). 

Although myelination of rat CST axons is mainly completed at P21 yet a 

slight LI-IR could be noted in the FT area (Fig.4A). Both pre-embedding 

• 

Fig.3: Localization of the LI antigen in developing rat FT during onset of 

myelination (P10-P14). 

ЗА: Distribution of Ll-IR in a transverse vibratoire section at P14. Still 

a considerable anount of Ll-IR can be noted in the FT area. Ваг=100^лі. 

3B, 3D: pre-mbedding technique on transverse vibratane sections of rat 

IT at P14. still at sane places Ll-IR can be observed in between 

umyelinated PT axons (arrowheads). No DAB reaction product can be 

located during the onset of iryelination between oligodendrocytic 

processes or mesaxons (0) and IT axoi. Strong Ll-ir is observed in the 

axoplasma of some small urmyelinated РГ axons (arrows). Bar= 0.2 ̂ jn. 

ЭС: IimiLnogoldlabelling on transverse ultracryosectioned PT at P14: fto 

label is observed betvreen oligodendrocytic mesaxon (0) and FT axon during 

initiation of myellnatioi. Bar= 0.2 ¿m. 
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Flg.4: Lt-üimuroreactivity in the PT of a 3 week old rat at C5 when myelination 

of this tract is mainly completed. 4Λ: A weak Ll-ir in the PT area vas 

retained up to the end of the third postnatal week (star). 4B, K: 

Inmunolabelling was performed by pre-enfcedding staining procedures. Mote 

the presence of В Ш reaction product in the axoplasma of myelinated 

(small arrows) as well as umyelinated axons (large arrows). Occasionally 

Ll-ir can be noted between small urroyelinated PT axons (arrowheads). Bar= 

0.2 ^m. AD: Iirniunoelectrormicroscopy of a ultracryocontrol section 

treated with aлtibodies to normal swine serum. Bar= 0.2 ;jm. 

4B-*;: iFimunogoldlabelling on ultracryosections. 

4B: Ll-ir is noted in the axoplasma of the myelinated ΡΓ axon (thick 

arrow). Bar= 0.2 ;m 4Pt ftt the paranodal region LI is located at the 

contact zone between PT axon and oligodendrocytic process (snail arrow) 

Bar= 0.2 ¿m. 4G: Note the immunogold labelling periaxonally betveen the 

axolenma and compact myelin (snail arrow). Compact myelin does not 

contain LI. 

Furthennore Ll-ir can be observed in between umyelinated PT axons 

(arrowheads) but also in the axoplasna (large arrow) .Bar= 0.2 μα. 
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procedures as vrell as iimunogold labelling on ultracryosections revealed 

the presence of the L1-antigen within the axoplasm of some myelinated 

(Figs.4B-4D) as well as unmyelinated PT axons (Figs. 

4B,4C,4G).Occasionally, L1-IR could be observed in between the 

unmyelinated PT axons (Fig.4C,4G). Using ultracryosectioned tissue 

itrmunogoldlabelling could be noted within the ахоріаяга of myelinated PT 

axons (Fig.4E) but also periaxonally between the axolemna and compact 

myelin (Figs.4E and 4G). Compact myelin did not contain the LI antigen. 

At the paranodal region inmunogold label could be located at the contact 

zone between axolemna and the oligodendrocytic process (Fig.4F). 

DISCUSSION 

In the present investigation the in situ expression of the cell 

adhesion molecule LI in the developing rat PT is described. Ihe 

subcellular localization of LI was determined both by pre-embedding 

staining on vibratome sections and by inmunogold labelling on 

ultracryosections. Our findings confirm and extend previous 

imnunocytochemical studies on the localization of LI in mouse sciatic 

nerve and cerebellum (Rathjen and Schachner,1984; Fushiki and 

Schachner,1986; Mirsky et al.,1986; Martini and Schachner,1986,1988; 

Pehrsohn and Schachner,1987; Godfraind et al.,1988). 

In the spinal cord the outgrowth of the major component of the rat PT, 

the corticospinal tract (CST), primarily occurs during the first ten 

postnatal days (Schreyer and Jones,1982; Gribnau et al.,1986). Our 

results demonstrate that LI is present on unmyelinated fibres in the 

ventralmost part of the dorsal funiculus during ingrowth of the first CST 

axons. Tracer studies have indicated that at that time these unmyelinated 

fibres are not of cortical origin (Joosten et al.,1989), but probably 

belong to the ascending systems located in the dorsal funiculus, i.e. the 

fasciculus cuneatus and the fasciculus gracilis (Dunkerley and Duncan, 

1969; Matthews and Duncan,1971). 

Furthermore growth cones of pioneer CST axons are devoid of LI as can 

be deduced from the negative L1-IR on their apposition (Fig.1С). L1-IR, 

however, is noted between growth cones and adjacent ascending 

unmyelinated axons (Figs.IB,1С). Although the presence of LI at the 

particular region of the pioneer growth cone contacting the unmyelinated 

axons can not be excluded by our morphological data, the latter L1-IR 

probably can be attributed to the exclusive presence of LI on the 

ascending unmyelinated axons. Whereas the involvement of LI in the 

guidance of pioneer CST axons appears to be unlikely, contact-inhibition 

experiments by injection of the Li antiserum prior to the arrival of the 

first CST axons may add to this conclusion. 

Li-IR was absent between CST growth cones and glial cells (Fig.1С), as 

was also noted in embryonic mouse cortex (Godfraind et al.,1988). In 

vitro studies revealed that polyclonal Li antibodies do not interfere 
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with neuron-astrocyte or astrocyte-astrocyte adhesion (Keilhauer et 

al.,1985). Nevertheless, neuron-astrocyte interaction has been postulated 

to mediate the guidance of outgrowing pioneer axons in developing CST, 

since growth cones of pioneer CST axons frequently exhibit protrusions 

into vimentin-iirmunoreactive precursor astrocyte processes, suggesting an 

adhesive type of contact (Joosten and Gibnau,1989
b
). Since the chicken 

neuron-glia adhesion molecule NgCAM, which is irtmunologically closely 

related to mouse Li (Friedlander et al.,1986) is involved in neuron-glia 

adhesion (Grumet et al.,1984a,i984
b
) it is conceivable that LI and NgCAM 

might have different sets of functional sites. Thus, the possibility that 

a functional site of the Li antigen, which is not recognized by 

polyclonal Li antibodies, is implicated in neuron-astrocyte interaction 

and subsequent guidance of CST pioneer fibres can not be excluded. 

Besides, the adhesive type of contact between outgrowing pioneer axons 

and (precursor)- astrocytes may be mediated by another adhesion molecule, 

as for instance J1 (Godfraind et al.,1988). 

Our findings provide conclusive evidence for Li to be implicated in the 

fasciculation of the later arriving bulk of CST fibres. In vitro studies 

(Chang et al.,1987; Keilhauer et al.,1985; lagenauer and Іепіюп,1987) and 

in vivo observations (Rathjen and Schachner,1984; Beasley and Stallcup; 

Martini and Schachner,1986,1988; Godfraind et al.,1988; Joosten et 

al.,1989) already indicated that LI is instrumental in the fasciculation 

of outgrowing axons within the cortex as well as in other path\rays. 

It is intriguing that the intensity of the Ll-imnunostaining varies 

along the unmyelinated FT axons (Fig.2B). In developing mouse sciatic 

nerve a similar non-uniform labelling of Ll-inmunoperoxidase reaction 

product was noted, although that phenomenon was not affirmed by the 

relatively low sensitive post-embedding technique on lowicryl-embedded 

tissue (Bendayan et al.,1987; Martini and Schachner,1986, 1988). Since 

accumulations of iimiunogold labelling were also found after 

ultracryomicrotomy (Fig.2c), artefacts due to, for instance, the 

diffusion of DAB-reaction product can be excluded. It is therefore our 

impression that LI is localized in a patchy way on the axonal membrane. 

Axons ensheathed by oligodendrocytic processes do not express the Li 

antigen (Figs.3B-3D). This observation strongly suggests that Li is not 

implicated in the mediation of the initial contact between FT axons and 

oligodendrocytes. Ihe presence of Li at the axon-Schwann cell interface 

after the latter cell had turned approximately 1.5 loops indicates that 

LI may be implicated in the initial axon-Schwann cell interaction and 

onset of myelination in developing mouse sciatic nerve (Martini and 

Schachner, 1986 ). Furthermore, Li antibodies have been shown to interfere 

with adhesion of neurons to Schwann cells in vitro (Kleitman et 

al., 1988). It is , however, still not known whether or not such a 

molecular signal (Li) leads an axon-Schwann cell interaction to myelinate 

in one case and not to myelinate in the other. 

The discrepancy between the absence of Li during the initial PT axon 

myelination on the one hand and the presence during initial sciatic nerve 
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axon-Schwann cell interaction on the other, might be significant in the 

understanding of different regenerative capacities of CNS versus PNS. 

Ll-IR »as also noted in the РГ-area after completion of the myelination 

phase. Ihis might be an interesting finding in view of the fact that the 

developing FT is a central tract with a considerable prolonged capacity 

of plasticity upon lesions (Kalil and Reh,1982; Bregman and Goldberger, 

1982,1983; Bernstein and Stelzner,1983; Bregman et al.,1989). Although 

the transient expression of the membrane bound Li during developnent 

coincides with a decreased capacity for axonal sprouting in the latter, 

the presence of the LI antigen on seme unmyelinated axons during the 

later stages of FT development suggests that LI might play a decisive 

role in the capacity of regrowth as well as re-routing of PT axons 

(Schreyer and Jones,1987; Bregman et al.,1989). Ihe latter capacity, 

however, may not only be related to an intrinsic change in the neuron's 

growth potential but also to an alteration in the environmental factors 

in which the axons grow (Bregman et al.,1989). 

In addition to the localization of Ll-IR on the axonal membrane of 

unmyelinated axons, we w=re able to demonstrate the presence of LI within 

the axoplasma of some unmyelinated as well as myelinated axons 

(Figs.3D,4B,4C,4G). Of course, this phenomenon can hardly be related with 

the process of axon guidance. Biochemical studies pointed out that 

various modifications of L1 occur during development (Linnanan et 

al.,1988). The significance of these modifications for the functioning of 

LI ranains to be investigated. Ihe presence of a soluble form of the LI 

protein (Bock et al., 1985), as well as the fact that a considerable 

amount of LI ranains present in rat cortex expiant cultures beyond PI5 

(Linneman et al., 1988) suggest that this protein not only plays a role 

in adhesion of axons during outgrowth, but certainly will also have other 

still unknowi functions. Probably, the use of a polyclonal antiserum 

against LI resulted in the recognition of the varying biochemical forms 

of this CAM and therefore the localization of LI within the axoplasma of 

unmyelinated as well as myelinated PT axons. 

The question of the function of the L1-containing subclass of PT axons 

still ranains to be answered. Quantitative research on the development of 

rat PT at the third cervical segment revealed a considerable decrease of 

the total number of axons after the first postnatal week (Gorgels et 

al.,1989
a
). The period of axon loss comprises a phase of rapid axon loss 

which coincides with the retraction of transient corticospinal 

projections (see Chapter 2B,2C; Stanfield et al.,1982). Possibly, the 

transient corticospinal projections may account for the subclass of 

Li-containing ΡΓ axons during the second postnatal vœek. Since transient 

corticospinal projections neither from medial prefrontal nor from 

occipital parts of the cortex (Joosten et al.,1987b; Joosten and Van 

Eden,1989) do reach lumbar spinal cord levels, the determination of LI-ir 

in developing rat PT at the lumbar intumescence would be an interesting 

objective of future research. 

The discriminative imnunogold labelling technique on ultracryosections 
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allowed us to visualize the LI antigen periaxonally between the axolenma 

and canpact myelin as well as at the nodal and paranodal region in the 

contact zone between axolenma and glial processes (Figs.4E-4G). 

The presence of LI between axolenma and compact myelin is somewhat 

surprising. LI ceases to be expressed on both the axon and the 

myelinating Schwann cell in mouse sciatic nerve, when the Schwann cell 

processes have turned for 1.5 loops around the axons, as was 

demonstrated with the use of postenbedding inmunoelectron-microscopy. 

Although our results implicate distinct localizations of LI in CMS versus 

PNS, the use of different EM techniques (with varying sensitivities) 

might account for this phenomenon. The Ш study of Mirsky et al.(1986) 

who, using polyclonal LI antibodies, demonstrated a faint LI 

inmunofluorescence near myelinated fibres in a teased nerve preparation 

from rat sciatic nerve, favours our observations. Although LI might play 

a role in additional adhesive mechanisms between axolenma and compact 

myelin, the function of LI in myelinated peripheral as well as central 

nervous tissue remains unknown. As suggested by Mirsky et al.(1986) LI 

might operate in the adult rat PNS in the linkage between neurons and 

glia. The presence of LI on nodal and paranodal regions supports this 

hypothesis, because of the close apposition and interaction of the 

myelinating oligodendrocyte and the axon at the nodal and paranodal 

region (Peters et al.,1976; Wiggins et al.,1988). It is reasonable to 

assume that molecular mechanisms of cell adhesion play a central role at 

these sites. Light microscopically a distinct LI-staining was noted at 

the nodes of Ranvier in rat sciatic nerve (Mirsky et al.,1986). 

Furthermore, ultrastructural imnunogold techniques indicated that Ng-CAM, 

which is closely related to LI (Friedlander et al.,1986), is enriched in 

the nodal axolenma of myelinated as well as within the nodal regions of 

the myelinating Schwann cell (Rieger et al.,1986). 

Hie present study describes the ultrastructural localization of the CAM 

LI in developing rat PT at the fifth cervical segment. (Xir findings 

demonstrate that LI mediates axon fasciculation during PT outgrowth. Иіеу 

also suggest that LI is not implicated in initial PT myelination in 

contradistinction to myelination of sciatic nerve axons. Further research 

may contribute to our understanding of the development of central versus 

peripheral fibre tracts. Especially an analysis of the relation between 

the regrowth of PT axons and the localization, c.q. the participation of 

LI in that process could help to suggest ways by which injured central 

fibre tracts can be restored. 
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СБАРГВІ 6: GQKtAL DISCUSSION AM) SUMMARY 

"Ulis thesis focuses on the postnatal development of the corticospinal 

tract (CST) of the rat. The development of this long descending pathvay 

ves analysed using a number of light- and electron-microscopical 

techniques. As pointed out in the introduction (Chapter 1.3) the 

following three questions were of main interest in this investigation: 

- Bow does the corticospinal ccmponent of the rat: pyramidal tract 

develop? 

- Is collateral elimination confined to the occipital cortex or is it a 

general phencmencn in the developnent of the corticospinal tract? 

- Mudi factors do play a role in the outgrowth and guidance of 

corticospinal axons in the rat? 

With the results of the experiments as described in Chapters 2-5 these 

questions will be addressed hereafter. Furthermore attention will be 

payed to some new questions which evolved from our findings. 

The rat CST development is characterized by a staggered mode of 

outgrowth (Schreyer and Jones,1982; Gribnau et al.,1986). Our 

electronmicroscopic observations on anterogradely labelled outgrowing CST 

axons demonstrate that the main wave of unmyelinated labelled axons is 

preceded by a nuniber of pathfinding axons, which are characterized by 

dilatations at their distal ends: the growth cones (Chapter 4B). By 

contrast, the later arriving unmyelinated labelled axons do not exhibit 

such large thickenings at their distal ends (Chapter 4B). Rat CST 

outgrowth is further characterized by a waiting period of about 2 days 

between the arrival of the CST pioneer axons at the dorsal funiculus of a 

given spinal cord segment, and the first extension into the respective 

spinal grey matter (Wise et al.,1979
a
; Schreyer and Jones,1982; Gribnau 

et al.,1986). Massive CST termination is noted in the spinal grey dorsal 

horn and intermediate regions after another period of two days. 

During the first postnatal week the developing rat CST contains three 

components (as suntnarized in Fig.1). Two naintaining sets of fibres: the 

first originating from a group of corticospinal (CS) neurons situated 

пюге anteriorly in the sensorimotor cortex and projecting to the cervical 

spinal grey, and the second with their parent neurons situated more 

posteriorly in the sensorimotor cortex and terminating in the lunbar 

grey. In addition, a third transient ccmponent is present, emanating 

from neurons in the occipital as well as the medial prefrontal part of 

the cortex. Although the somatotopical arrangement of the two maintaining 

components of the developing CST shows similarities with those in the 
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adult rat (Wise et al.,1979a; Leong,1983; Miller,1987) the extent of this 
resemblance remains to be established. It is very unlikely that the exact 
adult somatotopical arrangement of CS neurons in the cortex is already 
achieved during early postnatal development. Retrograde neuroanatcmical 
tracer studies have revealed that reorganization or focussing of cortical 
neurons is a cottmon feature in developing fibre systans ( Stanfield et 
al.,1982; Adams et al.,19833; Mihailoff et al.,1984; Stanfield and 
O'Ieary,1985a,1985b; Chalupa and Killacky,1989; Reinoso and Castro, 
1989). In addition, these studies prove that this kind of focussation is 
accanplished by collateral elimination. Collateral elimination, however, 
implicates that the parent neurons must have established a permanent 
projection to another structure. Indeed, at least some of the occipital 
neurons which send transitory projections to the spinal cord (Chapter 2B) 
later project to the superior colliculus (O'Leary and Stanfield,1985). 
Similarly, cortical neurons in the medial prefrontal cortex, which give 
rise to transient spinal projections (Chapter 2C) can later be found to 
project to the medial dorsal thalamus (van Eiden and Kros,1989) (see 
Fig.1). 

Our anterograde tracing experiments (Chapters 2B,2C), in conjunction with 
the latter retrograde tracing studies demonstrate the extent of the 
phenomenon of collateral elimination during the refinement of CS 
projecting neurons in the cortex. In conclusion, collateral elimination 
is probably a general phenomenon in the development of the entire rat 
cortex and its emanating fibre systems (Fig.1). 

The disappearance of transient CS projections during the second 
postnatal week coincides with a reduction of the total number of axons 
present during the development of the rat FT at the third cervical 
segment as was electronmicroscopically demonstrated by Gorgels et al. 
(1989a). Although a number of axonal ultrastructural features often 
related to axon degeneration (such as electron-dense bodies, large 
vacuoles, lamellated bodies) can be observed at the time, the question 
whether or not transient axons undergo degenerative morphological changes 
during their elimination, remains to be answered. In the developing 
corpus callosum of the cat the number of accumulations of vesicles and 
swollen mitochondria increases during the phase of rapid axonal 
elimination (Berbel and Innocenti,1988), suggesting axonal degeneration. 
Besides EM-analysis and quantification of developing tracts in normal 
tissue the use of anterograde tracing experiments combined with electron 

Fig.1.: The rat aorticospinal tract originates in the sensorunotor cortex (A) and 

projects to the spinal grey via the medullary pyramids. During the first 

postnatal week the developing CST contains three conponents. First, 

neurons situated more anteriorly in the sensorimotor cortex projecting to 

the cervical spinal grey ( -) (B) ;secondlyr neurons situated more 

posteriorly in the sensontnotor cortex terminating in the lurbar spinal 

grey ( ) (C) ;and a third, transient conponent ananating from 

neurons in the occipital ( ) as veil as the medial prefrontal ( ) 

cortex. Neurons in the occipital cortex eventually project to the 

superior colliculus (-* — .-Msc) vAereas neurons in the medial prefrontal 

cortex ( ) terminate in the mediodorsal nucleus of the thalanus 

(Ait). cc"central canal; cst=corticOspinal tract; fc^fasciculus cuneatus; 

fg=fasciculus gracilis; gmpgrey matter; vfn=white natter. Bar= Inm. 
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microscopic detection (see Chapter 4A) may be a useful tool to attack the 
problem of retraction or degeneratie« of transient axons. Preliminary 
observations on HRP-labelled occipitospinal axons reveal the presence of 
the typical crystalline HRP-TMB-(AHM) reaction product in close proximity 
to large electron-dense bodies. Phagocytosis of transient axons by glial 
cells, however, may reduce the number of degenerative phenomena. In the 
mouse visual pathway the rise of stellate shaped GFAP-ir astrocytes 
coincides with the diminution of exœss of axons (Bovolenta and 
Mason,19B7). Similarly, in the developing rat CST a dramatic increase of 
GFAP-IR is noted during the second postnatal week (Chapter 5B), i.e. the 
same period during retraction of transient CS axons with their parent 
neurons in the occipital (Chapter 2B) or the medial prefrontal cortex 
(Chapter 2C). 

Ihe key events involved in the elimination of transient axonal 
projections most likely occur at the terminal site. Transplantation 
experiments in the developing rat and hanster cortex are in favour of 
this hypothesis (Schneider and Jhavieri,1974; Innocenti,1986; Porter et 
al.,1987). Parts of fetal occipital cortex transplanted in the 
prospective sensorimotor cortex subsequently develop into a cortical 
locale with maintaining CST axons up to adulthood (Schneider and 
Jhavieri,1974 ). Ihis phenomenon suggests that all layer V neurons have 
similar projectional capacities and that positional differences are not 
pre-disposed by genomic qualities (Tolbert,1987). In other words, 
transitory projections do not seem to be eliminated because they are 
intrinsically wrong. Up till now, the cellular processes and mechanisms 
underlying collateral elimination are still a matter of dispute. In view 
of the role that transient projections may have as a substrate for 
developmental brain plasticity (see Chapter 2A) it is essential to 
understand the key events involved in processes concerning the 
elimination as well as the maintaining of axonal projections. With 
respect to a better undrstanding of these processes a clear picture of 
the mode of CST outgrowth may be instrumental (Chapters 2,3,4). Further­
more, factors involved in the outgrowth and guidance of the maintaining 
CST axonal projections probably also play a role in processes concerning 
the disappearance of transient CST axons. 

The most plausible explanation of the pathfinding of axons during their 
outgrowth is that a number of guidane» cues act together. Our results 
provide evidence that at least two different factors are involved in CST 
guidance in spinal exsrd white matter (tract area) (Fig.2). 
Ihe characteristic arrangement of vimentin-imriunoreactive (VIM-ir) 
precursor astrocytes strongly suggests a mechanical way of routing the 
outgrowing CST pioneer fibres (Fig.2). A prominent VIM-ir glial septum 
was noted during rortiœspinal outgrowth in the midline raphe of the 
medulla oblongata and spinal cord vdiereas it is absent in the decussation 
area of the corticospinal tract fibres. Besides having a positional role, 
(Singer et al.,1979; Vanselow et al.,1989) VIM-ir glial cells probably 
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Fig.2.: Outgrowth and guidance of Cffr pioneer fibres in spinal oord vAute 

matter (A) .VIM-ir astrocytes (a) are situated in longitudinal tiers with 

their processes orientated perpendicular to the outgrowing СЭТ pioneer 

fibres with their growth cones (GC), suggesting a mechanical way of 

routing (stereotropism). CST growth cones (GC) show protrusions into the 

VIM-ir astrocytes indicating an adhesive way of interaction (B) .During 

the entrance of pioneer С£7Г fibres, the cell adhesion molecule LI is 

absent on their growth cones but present on urmyelinated axons, which 

probably belong to ascending systems situated in the dorsal funiculus. 

C=Caudal; Э1=Сгеу Matter; L=Lateral; M=Medial; R=Rostral. 

are also involved in both a chemotropic and an adhesive vray of 

interacting with outgrowing pioneer CST axons (Fig.2). In addition, the 

differential adhesiveness among axons induced by the cell adhesion 

molecule LI plays an important role in the fasciculation of the later 

arriving CST axons (Fig.2; Chapter SCI; 5C2). Although Li is not located 

on the growth cones of the pioneer axons it is present on the axonal 

manbranes of these CST fibres, and therefore might play a role in their 

maintenance (Fig.2). 

The rather consistent guidance conditions in which outgrowing pioneer 

CST axons proceed in the spinal cord v*ute matter may account for the 
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rather smooth and lengthy shape of CST pioneer growth cones (Fig.3; 

Chapter 3 ). On the other hand, pioneer growth cones of CST axons 

intruding into the grey matter (target area) exhibit a very complex and 

spiny morphology (Fig.3; Chapter 3). Ihis change in CST growth cone 

morphology from tract area to target area not only seems to reflect 

distinct interactions along altered micro-environments but possibly also 

indicates changing predominant guidance cues. Assumingly, the mechanisms 

and factors leading outgrowing CST axons towards their target area 

(VIM-ir glial cells; LI oell adhesion molecule,among others) differ from 

those involved in the correct guidance of CST axons within the target 

area. Our observations, however, do not exclude the involvement of 

the precursor-astrocytes or the LI cell adhesion molecule in CST axon 

guidance within the target area (spinal grey matter). The mechanisms and 

guidance factors having an essential impact on the guidance of CST axons 

within the target area remain to be established. 

First, the signal that causes the CST axons to enter the spinal grey 

might occur at the level of their parent cell bodies, i.e. the layer V 

pyramidal cells in the sensorimotor cortex. Because thalamocortical 

fibres appear to form synapses as soon as they enter the cortex during 

the first postnatal week (Wise and Jones,1978), their synapse formation 

on layer V pyramidal cells might be the trigger. Therefore, it would be 

interesting to know whether there is a correlation between CST spinal 

cord outgrowth and the maturation of the originating neurons in the 

cortex. Besides a possible role of the developmental state of the parent 

neurons on the entering of their CST pioneer axons into the spinal grey, 

the totally different growth cone morphology of the latter axons as 

compared with CST growth cones in the tract area suggests that guidance 

cues operating at the terminal site may as well be important. It is 

conceivable that chemotropic factors (local signals of diffusable agents 

arising from the target cells) serve as local attractants to axons that 

enter the target area (Purves and Lichtman,1985; Dodd and Jessell,1988). 

A molecule for which a chemotropic role has been postulated is nerve 

growth factor (NGF) (Levi-Montalcini and Booker,1960; Mensini-Chen et 

al.,1978). However, this chemotropic factor could not be demonstrated 

within the target region of the developing CST. Nevertheless, other 

chemotropic factors may as well guide CST axons in the target area. For 

example, in the embryonic rat spinal cord, floor plate cells secrete a 

diffusable factor that evokes the outgrowth of conmissural axons fron 

spinal cord expiants and in addition orients these axons (Dodd and 

Jessell,1988). Other central fibre systans also exhibit a directed growth 

in such a way that they probably are guided by chemotropism (Bonhoeffer 

and Huf,1982; Dodd and Jessell,1988). In addition to the more adhesive 

molecules acting in the guidance of growth cones cell surface molecules 

located on oligodendrocytes inhibit axon extension and therefore 

contribute to the local selection of axonal pathways (Caroni and 

Schveb,198ea, 1988b'· Schwab and Schnell, 1989). 
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WM GM WM 

2 days 

Рід.Э.: Growth cone morphology of CST pioneer fibres at the ІшЬаг intunescence 

of rat spinal cord. Ihe outgrowing pioneer CST axons in the tract area 

(white matter VH) at P5 are characterized by their rather smooth and 

lengthy shape (λ) , whereas CST axons entering the target area (grey 

matter GM) exhibit a complex and spiny morphology (B) . C^audal; 

R=Rostral. 

With respect to research on the developing rat CST a major future 

research goal might be the isolation and subsequent identification of 

diemotropic factors situated in the spinal cord grey matter. In my 

opinion the isolation of chemotropic factors located in the cervical 

spinal grey on the one hand and in the lumbar grey matter on the other is 

strongly advocated. Ulis suggestion anerges from the fact that 

differences can be observed betten arrival and outgrowth of CST axons at 

the cervical intumescence after labelling the anterior or the inter­

mediate cortical area (Chapter 2B): CST axons with their cells of origin 

in the anterior part of the sensorimotor cortex enter the spinal grey 

about 2 days after their arrival in the dorsal funiculus, whereas 

axons of intermediate CS neurons do not show any outgrowth at cervical 

spinal cord levels. Hierefore, a chemotropic factor located in the 

cervical CST target area might guide and attract CST axons frcm 

anteriorly situated CS neurons, but not the outgrowth of those CST axons 

with their cells of origin in the intermediate cortical part. Besides,the 

cervical spinal grey might contain other diemical factors repulsing 

'lumbar' CSF axons and vice versa. Such inhibitors were located in the 
tectum upon the formation of the retinotectal тар (Stuermer,1988). Ihe 

latter CST axons may be guided into the lumbar target area by another 

cheraotropic factor arising from the target cells at the respective site. 

As expressed earlier, our major goal to understand CST outgrowth and 
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guidance must not be restricted to the knowledge of the maintaining 

canponents but also has to be addressed at the transient CST 

projections. Our observation that transient CST projections extend up to 

the fifth thoracic segment (Chapters 2B,2C) but never exhibit any 

outgrowth into the adjacent spinal grey indicates that these axons are 

responsive to guidance factors in the tract (precursor-astrocytes, cell 

adhesion molecule LI among others) but probably are not susceptive of 

those cues (chemotropic) which lead to colonization of the target. 

Research on guidance cues in the outgrowing CST may as well contribute 

to the understanding of the scarce regenerative capacities of the adult 

manmalian CNS. In the rat the CST not only provides an excellent model to 

study in vivo outgrowth and development of a central tract but also to 

analyse their potential regeneration, especially because of the great 

experimental accessibility of the CST. Lesions of the prospective CST 

pathway combined with anterograde tract tracing demonstrated the aberrant 

rerouting of developing CST axons around the lesion site through adjacent 

undamaged tissue (Kalil and Reh,1982; Bernstein and Stelzner,1983; 

Schreyer and Jones,1983,1987; Bregman and Goldberger,1983). Since this 

developmental plasticity becomes restricted at 5-6 days of age (Bregman 

et al., 1989) it is a major research goal to understand the factors 

involved in outgrowth and guidance of regenerating rat CST axons. 

As pointed out earlier, VIM-ir precursor-astrocytes as vrell as the CAM 

LI are two guidance cues involved in normal CST guidance and therefore 

may be important in regeneration processes. With respect to the CAM LI it 

should be noted that this molecule is involved both in CNS and in Ш 5 

fasciculation processes during axon-outgrowth (Rathjen,1988; Chapter 5C) 

as well as in the onset of myelination in mouse sciatic nerve (Martini 

and Schachner,1986,1988). Especially the latter observation is intriguing 

in view of the different regenerative capacities of rat CNS versus WS, 
since our results demonstrate that LI is not involved in the onset of CST 

myelination (Chapter 5C2). 

Although outgrowth, fasciculation and myelination processes certainly 

are important aspects in rat CST regeneration it should be noted that the 

presence of unmyelinated CST axons in adult rat РГ (Chapter 4C) and the 

presence of LI in between (Chapter 5C2) may also account for some 

regenerative capacities lateron. 

In sunmary, the present investigation may initiate further research in 

the broad field of the complex mechanisns involved in the outgrowth, 

guidance and regrowth of fibre tracts in the central nervous system of 

mairaials. 
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Samenvatting 

In dit proefschrift wordt de ontwikkeling van de corticospinale baan in 
de rat bestudeerd met behulp van licht- en electronenmicroscopische 
technieken. De experimenten worden beschreven in de hoofdstukken 2,3,4 en 
5. Drie van deze hoofdstukken (2,3 en 4) hebben betrekking op de 
bestudering van de ontwikkeling van de corticospinale baan in de rat, 
terwijl in hoofdstuk 5 de rol van enkele mogeljke geleidingsfactoren op 
de uitgroeiende corticospinale vezels wordt bekeken. In Hoofdstuk 6 
worden de resultaten van de vier voorafgaande hoofdstukken besproken en 
met elkaar in verband gebracht. 

De ontwikkeling van de corticospinale baan bij de rat is reeds aan bod 
gekomen in een aantal studies (o.a. Donatelle,1977; Schreyer and 
Jones,1982 en Gribnau et al.,1986). Het gebruik van een aantal recente 
experimentele en/of electronenmicroscopische technieken levert echter een 
aanzienlijke uitbreiding van onze kennis ten aanzien van het dynamische 
proces van de ontwikkeling en uitgroei van de corticospinale baan in het 
bizonder,en van het centrale zenuwstelsel van de rat in het algemeen, op. 

Hoofdstuk 2 beschrijft de relatie tussen de injectieplaats in de 
cortex, daar waar de corticospinale oorsprongscellen liggen, en het 
labellingspatroon van de zich ontwikkelende corticospinale baan in het 
ruggemerg van de rat gedurende de eerste twee weken na de geboorte. Met 
behulp van lichtmicroscopische kleuringen kan de anterograde tracer 
WGA-HRP gevisualiseerd en gekwantificeerd worden. De belangrijkste 
conclusie van de experimenten is dat de zich ontwikkelende corticospinale 
baan al gedurende de eerste twee postnatale weken in drie componenten 
onderverdeeld kan worden. Van één component liggen de oorsprongscelllen 
in het anterior of voorste gedeelte van de sensotnotorische cortex en het 
bijbehorende projectieveld in de grijze stof van de cervicale 
intumescentie. Daarnaast is er een conponent met z'n oorsprongscelllen in 
het intermediaire (middelste) gedeelte van de sensomotorische schors en 
het bijbehorende projectieveld in de grijze stof van de lumbale 
intumescentie. De derde component is een tijdelijke: cellichamen 
gesitueerd in de occipitale (Hoofdstuk 2B) dan vrel de mediale prefrontale 
(Hoofdstuk 2C) cortex projecteren naar het ruggemerg gedurende de eerste 
postnatale week. Door eliminatie van hun corticospinale collateraal in de 
tweede postnatale week, en niet door het afsterven van de cellichamen, 
verdwijnt de tijdelijke projectie. Doordat collateraleneliminatie 
kenmerkend is voor zowel mediale prefrontale- als occipitale cortex-
neuronen, is daarmee aannemelijk ganaakt dat dit proces een algemeen 
verschijnsel is in de cortexontwikkeling van de rat. 

In Hoofdstuk 3 kont de morfologie van anterograad HRP gelabelde distale 
verdikte uiteinden, of groeiconussen, van de eerste corticospinale axonen 
in het lumbale ruggemerg aan bod. Met behulp van een nieuwe combinatie 
van HRP-kleuring en intensiverings is het mogelijk de groeiconusmorfolo-
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gie lichtmicroscopisch te bestuderen. Het blijkt dat de groeiconussen van 
de corticospinale pionieraxonen in de witte stof (tract area) gekenmerkt 
zijn door hun langgerekte en relatief eenvoudige morfologie. De eerste 
corticospinale groeiconussen in de lumbale grijze stof (target area) zijn 
kleiner en complexer (naast vinger- en lamelachtige ook vele doornachtige 
uitstulpingen). Deze verandering in groeiconusmorfologie van de 
corticospinale pionieraxonen gedurende hun uitgroei wijst op veranderende 
interacties van deze structuren met hun omgeving. 

In Hoofdstuk 4 wordt de postnatale ontwikkeling van de corticospinale 
baan in de rat op electronenmicroscopisch nivo bestudeerd, un het 
anterograad getransporteerde HRP in zich ontwikkelend neuronaal weefsel 
zichtbaar te maken werd gebruik genaakt van een nieuw ontwikkelde 
combinatie van het uiterst gevoelige tetramethylbenzidine (TMB) en de 
stabilizator anmoniimheptamolybdate (AHM) (Hoofdstuk 4A). Hiermee is het 
mogelijk het kristallijne HRP-TMB-(AHM) reactieproduct in uitgroeiende 
corticospinale vezels van de rat electronenmicroscopisch zichtbaar te 
maken. Met behulp van deze techniek wordt duidelijk dat de uitgroei van 
gelabelde onganyeliniseerde corticospinale axonen in het ruggemerg van de 
rat hoofdzakelijk plaatsvindt gedurende de eerste tien postnatale dagen 
(Hoofdstuk 4B). Een van de belangrijkste bevindingen in deze studie is 
vel dat gedurende de trapsgewijze uitgroei en bundelvorming van de 
corticospinale baan de grote golf van uitgroeiende axonen wordt vooraf 
gegaan door een aantal pioniervezels dat gekarakteriseerd wordt door 
verdikkingen aan hun uiteinden: de groeiconussen. De later arriverende 
onganyeliniseerde corticospinale axonen vertonen niet zulke grote 
verdikkingen aan hun uiteinden. Een andere bevinding betreft de timing en 
voortgang van de myelinisatie van de corticospinale baan: het 
myelinisatie proces start rostraal (cervicaal) rond dag 14 en ontwikkelt 
zich naar caudaal gedurende de derde en vierde postnatale week. De 
aanwezigheid in de volwassen pyramidebaan van gelabelde ongemyeliniseerde 
naast gemyeliniseerde axonen geeft aan dat in ieder geval een aantal van 
de ongemyeliniseerde profielen hun oorsprong hebben in de cortex en dus 
corticospinaal zijn (Hoofdstuk 4C). Dit kan belangrijke functionele 
implicaties tot gevolg hebben. 

In Hoofdstuk 5 wordt de rol van astrocyten (Hoofdstuk 5B) en het 
celadhesie molecuul LI (Hoofdstuk 5C1,5C2) in de geleiding van 
uitgroeiende corticospinale baan axonen onderzocht. 

De locatie van precursor-astrocyten tijdens de aankomst van de eerste 
corticospinale axonen (pioniervezels) wordt bepaald met behulp van 
verscheidene licht- en electronenmicroscopische imnunocytochenische 
technieken. 

Gedurende de ingroei van corticospinale axonen is er sprake van een 
zeer duidelijk aanwezig vimentine-inmunoreactief precursor-astrocyten 
septum in de mediane raphe van medulla oblongata en ruggemerg, terwijl 
deze glia-barriere afwezig is in de decussatie, daar waar de cortico­
spinale vezels kruisen. Verder blijkt dat de uitlopers van precursor-
astrocyten in longitudinale rijen parallel aan de rostrocaudale as, maar 
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loodrecht op de uitgroeiende corticospinale axonen, zijn gerangschikt. 
Interessant is verder het feit dat de groeiconussen van de corticospinale 
pioniervezels vaak instulpingen vertonen in die vimentine iimunoreactieve 
precursor-astrocyt uitlopers. Precursor-astrocyten lijken dan ook 
naast een positionele rol gebaseerd op chemische interacties, waar­
schijnlijk tevens een fysische rol, gebaseerd op de vorming vein een 
barrière, te spelen in de geleiding van uitgroeiende corticospinale 
axonen. 

De expressie van het oeladhesie molecuul LI is bestudeerd gedurende de 
ontwikkeling van de piramidebaan van de rat door middel van üimunohisto-
logie (Hoofdstuk 5C1) en op ultrastructureel nivo met behulp van de 
pre-embedding techniek op vibratoon coupes als wel de imnunogoudlabelling 
op uitraeryocoupes (Hoofdstuk 5C2). 

De belangrijkste conclusies uit de waarnemingen zijn dat: 1. het LI 
voorkomt op dunne ongemyeliniseerde uitgroeiende piramidebaan axonen en 
dus zeer waarschijnlijk een belangrijke rol speelt in de bundelvorming 
van de axonen, 2. het LI niet voorkomt op corticospinale groeiconussen en 
dus geen rol van betekenis zal spelen in de geleiding van deze 
pioniervezels, 3. cendat het LI niet gevisualiseerd kan worden in de 
axon-oligodendrocyt interactie zal het niet betrokken zijn bij de aanvang 
van het myelinisatieproces van de corticospinale baan bij de rat. 

In Hoofdstuk 6 wordt gepoogd de resultaten en conclusies van de vier 
voorafgaande hoofdstukken zoveel mogelijk met elkaar in verband te 
brengen en te integreren opdat een beter inzicht verkregen wordt in het 
begrijpen van processen die plaatsvinden in de uitgroeiende en zich 
ontwikkelende corticospinale baan in de rat. Één ding is duidelijk: naast 
het feit dat het onderzoek, zoals beschreven in dit proefschrift, enkele 
vragen probeert te beantwoorden heeft het wellicht nog meer vragen 
opgeworpen. Ttoch is de corticospinale baan bij de rat een goed model­
systeem om processen als uitgroei, geleiding, collateraleneliminatie en 
in de toekomst mogelijk regeneratie in het centrale zenuwstelsel te 
bestuderen. Naast de morfologische bevindingen zoals gerapporteerd in dit 
proefschrift is het voor het verkrijgen van een volledig inzicht in de 
biologische functie van bovengenoemde processen noodzakelijk gegevens 
vanuit vele andere biologische disciplines te verzamelen en te 
integreren. 
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Stellingen behorende bij het proefschrift: 

"Axonal growth and guidance during formation af the 

pyranidal tract in the rat". 

1 

De eliminatie van corticospinale collateralen is een algemeen optredend 

fenomeen tijdens de ontwikkeling van de cortex bij de rat. 

'dit proefschrift' 

2 

De volwassen pyramidebaan bij de rat bevat ongemyeliniseerde euconen 

waarvan de oorsprongscellen zich in de cortex bevinden. 

'dit proefschrift' 

3 

De zich ontwikkelende pyramidebaan bij de rat wordt gekarakteriseerd door 

een geleidelijke uitgroei van zijn vezels. 

Gorgels T. et al. (1989) Anat.Ehibryol.179: 377-385 

'dit proefschrift' 

4 

De afwezigheid van het cel adhesie molecuul Li tijdens het begin van de 

myelinisatie vormt één van de mogelijke verklaringen voor het geringe 

regeneratievenrogen van het centrale zenuwstelsel bij zoogdieren. 

Martini R., Schachner M. (1986) J.Cell Biol.103: 2439-2448 

Kleitman N. et al. (1988) Exp.Neurol.102: 298-306 

'dit proefschrift* 

5 

De groeiconus symboliseert de dynamiek tijdens de ontogenèse van het 
zenuwstelsel. 

6 

De vormkenmerken van de gewrichtsvlakken en de gewrichtsbanden van het 

eerste carponetacarpale gewricht zijn illustratief voor de essentiële rol 

van spieren bij de stabilisatie van dit gewricht. 

7 

Van het üimuun systeem bij de mens is nog zo weinig bekend dat de huidige 

klinische behandelingsstrategie bij een chronische tranbocytopenische 

aandoening veelal berust op 'trial and error' methoden. 

8 
Marathonlopers dienen gediskwalificeerd te worden indien tussen start en 
finish een moment voorkomt waarop zij twee voeten gelijktijdig aan de 
grond hebben. 

http://Anat.Embryol.179


9 
"tegen de tijd dat de mens, machines intelligentie heeft bijgebracht is 
hij meer kwijt dan rijk. 

10 
Onderzoek aan een zenuwbaan i s soms een zenuwenbaan. 

Nijmegen, 11 oktober 1989 EJ^J.Joosten 






