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CHAPTER 1 

GENERAL INTRODUCTION 

Binary data are quite common in psychology and social sciences. They can come in 

various forms. In a mathematics test, a subject is presented with a mathematical 

problem and it is recorded whether she solves or fails it. In a signal detection task, a 

person has to indicate on each trial the presence or absence of some target stimulus. 

In a questionnaire on some subject matter, people are asked whether they agree or 

disagree with some proposition. Despite their diverse outward appearances, these 

examples seem to have something in common on a more abstract level. In each 

case, we may conceive the response to be "positive" ("correct", "present", 

"agree") if and only if, on some underlying dimension, the person has "more" than 

is required by the item: a mathematical ability exceeding the (mathematical) 

difficulty of the problem; more "detecting" power than the "hiding" power of the 

stimulus; a more pronounced view on the subject matter than that expressed in the 

proposition. 

There is a straightforward formalization of this idea. Given binary data of the 

above type, we want to assign numerical values to the subjects and the items, 

representing their respective positions on the underlying dimension. And we want to 

do this in such a way that if ƒ (a ) is the value of subject a and g (и ) is the value of 

item u, then a "dominates" (gives a positive response to) и if and only i f / ( a ) is 

greater than g (и). This is the classical scalogram analysis (Guttman, 1944). If a 

pair ƒ ,g of such scales exists, the data are said to be Guttman scalable. It must be 

clear that in such a situation this pair is not unique. In the above description we 

make only use of the relative ordering of the scale values, so any transformation of 

the scales that leaves this relative ordering intact yields an equally valid pair of 

scales. In other words, with these binary data we measure subjects and items only 

on an ordinal level: a Guttman scale is basically a joint ordering of subjects and 

items. 

In this thesis, models will be considered that feature this Guttman scale as a 

fundamental building block. The fact is that only in very exceptional cases a set of 

binary data can be fully described by a single Guttman scale. Usually some 

extension or relaxation of the basic model is needed. A popular approach consists in 

dropping the deterministic character of the Guttman scale: the scale values ƒ (a ) and 
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2 CHAPTER 1 

g (и) of the subject and the item, respectively, only specify a probability for a 

positive response. In this way we obtain the typical psychometric models, where the 

functional dependence of the probability of a correct answer on the subject and item 

scale values generally takes a very specific form. The scale values are usually 

treated as if they are measured on a higher than ordinal level; only in the more 

interesting case of the one-parameter logistic model (Rasch, 1960) are there a formal 

justification for the assumption of measurement on interval level and ways of testing 

this assumption statistically on empirical data. 

Actually, we will not be concerned with this approach here. Instead, we will 

study the relaxation of the model that is obtained by assuming that the situation is not 

governed by a single Guttman scale, but that multiple Guttman scales are involved. 

We will consider two elaborations of this idea and in both cases we will respect the 

ordinal character of binary data. That is, we will avoid making specific (parametric) 

assumptions, but rather investigate how far we can get with an analysis that is solely 

based on ordinal concepts. It must be realized that, until fairly recently, strong, 

numerical models were a kind of necessity, since these were the only models that 

could be analyzed in any detail. Such analyses are typically based on the methods of 

linear algebra and calculus; the corresponding algorithms consist of iterative 

numerical estimation procedures (or, if possible, closed formulae). 

In a purely ordinal analysis, to the contrary, we have to resort to a more abstract 

algebra and to set-theoretic concepts. Accordingly, the algorithms are here of a 

combinatorial nature. Often, such algorithms are computationally very demanding. 

Only the most trivial cases can be solved by hand and modem, powerful computers 

may be needed even for moderate size problems. In both cases of multidimensional 

Guttman scales that we are going to consider in this thesis, we will indeed be dealing 

with problems whose algorithmic solution necessarily involves some sort of 

exhaustive search. The running time of such algorithms depends very strongly 

(typically, at least exponentially) on the size of the input problem, so it is critical to 

try and make the search as least exhaustive as possible by drawing inferences all the 

way. These may result in reducing markedly the number of alternatives that have to 

be considered at each step of the search procedure. This concern for deriving 

inference rules from the formal characteristics of the situation under study will be a 

recurring theme in this thesis. 

As indicated, our mathematical tools derive mainly from the algebra of sets. 

Specific concepts will be defined where they are going to be used, but below we 

recall some fundamental notions that are at the heart of all that follows. 
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Some basic concepts and terminology 

Given two sets X and Y, we can construct the Cartesian product of X and У, 

denoted by ХхУ, which is the set of all ordered pairs (x,y) with xtX and y e У. 

When possible without creating confusion, an ordered pair (x,y) will more simply 

be written as xy. Since ХхУ is just another set, we can look at subsets of this 

Cartesian product. Any R С Xx У is called a relation between X and Y (or: from X 

to Y). In case У = X, that is, if ÄCXxX, R is called a relation on X. We write, 

equivalently, xRy for xy eR . (Strictly speaking, the above defines a binary relation, 

but since we will consider only binary relations, this adjective will be dropped.) The 

relevance of this relation concept for the analysis of binary data must be clear if we 

realize that any binary (say, 0-1) matrix defines a relation between the set indexing 

the rows and the set indexing the columns of the matrix: e.g., the relation consisting 

of the row-column pairs for which the corresponding entry in the matrix is a " 1 " . 

Since relations are sets, the usual set relations (inclusion, equality, disjointness) 

and operations (union, intersection, set difference) are available. For instance, for 

any sets X and У, the empty set 0 and the full product ХхУ are two special 

relations between X and У and any such relation includes the former and is included 

in the latter. If we have R jC R2 for two relations between X and У, we also say that 

Я 2 extends (or: is an extension of) R^. The intersection of a number of relations 

between X and У is the relation consisting of the pairs xy that are present in all of 

these relations, and so on. 

The complement (with respect to Χ χ Y ) of R £ X x У is the relation between X 

and У consisting of the pairs xy that are not in R. If the implied full Cartesian 

product is clear from the context, the notation R is often used; thus, 

R = (XxY)-R, 

where " - " denotes set difference. (In the case of a 0-1 matrix, the relation induced 

by the " 0 " entries is the complement of the relation induced by the " 1 " entries.) 

The converse of AC ХхУ, denoted by R~l, is the relation between У and X 

containing the pairs yx such thatxyeÄ. Thus, Я " ' E УХХ and 

yR^x iff xRy 

(iff is the usual abbreviation for "if and only i f ) . This notion is reminiscent of the 

notion of the inverse of a function, as is the adopted notation. In fact, the converse 

of a relation is a straightforward generalization of the inverse of a function. We 

have a similar generalization to relations of the concept of the composition of two 

functions. Again, the notation will be indicative of this connection. If R is a relation 

between X and У and S is a relation between У and Z, then the (relative) product of 
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R with S, denoted R <>S or simply RS, is the relation between X and Ζ defined by 

xRSz iff there is yeY suchthat xRy & ySz. 

As can be checked easily from this definition, the operation of taking the product of 

two relations is associative ((RS)T = R(ST) whenever either side is defined) and 

thus we write unambiguously RST for the product of three relations, etcetera. 

For a relation Λ on a set X there are a number of properties that will come up 

again and again in the following chapters. These properties have a very compact 

expression in terms of set relations between relations and the above notions of the 

converse of a relation and the product of a number of relations. We use the notation 

I for the identity relation; that is, / = { xx : χ eX }. 

A relation R on X is called reflexive if / С R, that is, if for all χ e Χ 

xRx; 

it is irreflexive whenever its complementR is reflexive. R is symmetric ifR=R_I, 

or, for allx,yeX, 

xRy iff yRx; 

it is antisymmetric \fR<^R~l = I:foTa.\ix,yeX 

xRy & yRx implies x=y, 

and asymmetric ifR^R'1 = 0 : for allx,yeX 

xRy implies not yRx. 

R is called transitive ifRR^R; that is, if for all χ, у, ζ e Χ 

xRy & yRz implies xRz. 

Finally,^ is complete (or connected) iiR^JR~l = XxX, which means that 

xRy or yRx 

for a l lx .yeX. 

Combinations of these properties lead to interesting classes of relations. Any 

relation that is reflexive, symmetric and transitive is called an equivalence relation. 

Such a relation partitions the underlying set X in a number of equivalence classes. 

A quasi order is any relation that is both reflexive and transitive. If a quasi order is 

also antisymmetric, it is a partial order, if it is complete, it is a weak order; if a quasi 

order is both antisymmetric and complete, it is a linear order or total order. We get 

strict versions of the partial and linear orders by considering only the irreflexive part 

of these relations, or, equivalently, by replacing the antisymmetry and reflexivity in 

the definitions by asymmetry. A strict linear order is also called a simple order. 
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Conceptually, a linear order corresponds to a simple ranking of all elements of 

X, without any ties. In a weak order, ties are allowed, but for any two untied 

elements one must still strictly precede the other. In a partial order, there are no ties, 

but there may be pairs of elements that are unordered. The generalization from 

partial orders to quasi orders is again obtained by allowing for ties. Clearly, any 

partial order is a quasi order and any linear order is a weak order; on the other hand, 

if we interpret a quasi order as a relation not on X, but on the equivalence classes of 

tied elements (i.e., we consider each collection of tied elements as one single 

element), then this relation becomes by definition antisymmetric, thus a partial order, 

and by this operation weak orders turn into linear orders. Because of this close 

connection, almost any result on partial or linear orders has a direct generalization to 

quasi and weak orders. 

For any set X we can consider the collection of its subsets, called the power set 

of X and denoted by 2*. Since this is again a set, we can of course consider its 

power set, the collection of all possible families of subsets of X, and so on, ad 

infinitum. We usually speak of a "collection" or "family" of sets instead of 

simply "set of sets", but these are all synonyms. For any family F of subsets of X, 

that is, F C 2 X , the notations ^ F and u F denote the subsets of X that are the 

intersection and union, respectively, of all sets in F. For instance, if F is finite, 

F = {F1, Fn} say, thennp = F , n •· -n/r,. A family F of sets is said tobe 

dosed under intersection if for any subfamily S e F, ^ S e F. ("Any intersection 

of members is again a member.") The same remark applies, mutatis mutandis, to the 

term closed under union. 

When we were discussing the various order relations on X above, we were of 

course, in effect, dealing with families of relations on X. As an illustration, let us 

apply the terminology and notation of the preceding paragraph to this case. Let 

Q . P . W . L E ^ * * be the collections of quasi, partial, weak and linear orders on X, 

respectively. Then we have seen above that L c P c Q , L e W c Q and, in fact, 

L = Ρ π W. Also, it follows easily from definitions that Q and Ρ are closed under 

intersection, while W and L are not (completeness is not preserved). The notation 

gives just a compact, but straightforward reformulation. The only difficulty that may 

arise when we work with collections of families of sets, etc., is that we have the 

same set relations and set operations on each level and we have to keep track at what 

level we are at each moment. For instance, note that with the binary "<">" and " u " 

operators we remain on the same level, while their unary counterparts bring us one 

level down: P n W = LG2 х **, but, e.g., n Q = n p = / e 2 X x X (/ is again the 
identity relation on X ). 

The compact notation is also convenient when we deal with the representation of 
a partial order as the intersection of a number of linear orders. Since Ρ is closed 
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under intersection and L С Ρ , it is in particular the case that the intersection of any 

number of linear orders is a partial order. It appears that we can also go the other 

way. Szpilrajn (1930) showed that (i) any partial order Ρ on X can be extended to a 

linear order on X, and (ii) the intersection of all these linear extensions of Ρ is Ρ 

itself. In other words, if we define for Ρ e Ρ, 

L ( / > ) = { L e L : / > C L } , 

then Szpilrajn's results are that L(P)*2) and 

Ρ = nL(P). 

Thus, any partial order is obtained as the intersection of a number of linear orders. 

However, the above representation may be redundant in the sense that not all linear 

extensions of Ρ aie needed to obtain Ρ as their intersection; a subcollection of L (P ) 

might suffice for this purpose. This led Dushnik and Miller (1941) to their classical 

definition of the dimension of a partial order as the minimum cardinality of a 

subfamily F of L (P ) such that Ρ = π F. Clearly, the dimension of Ρ equals 1 if 

and only if PeL. In this discussion, we may replace "partial order" by "quasi 

order" and "linear order" by "weak order" everywhere and then we can add the 

remark that we need only consider weak order extensions that have the same 

equivalence classes as the quasi order; other weak order extensions are bound to be 

redundant. 

Not surprisingly, the various order relations we have considered here will play an 

important role in the ordinal analysis of binary data based on Guttman scales. After 

all, a Guttman scale corresponds to a joint ordering of subjects and items and since 

there are no reasons not to allow equivalence classes of items and subjects, it may be 

identified with a weak ordering on the union of these two sets. Especially the 

correspondence between a partial order and a collection of linear orders (a quasi 

order and a collection of weak orders) will arise in both Part I and Part II. It is to a 

summary description of these two parts that we now tum. 

Part I : The Guttman scale and biorder representation 

In Part I, we study two multidimensional extensions of the Guttman scale that were 

introduced in the psychological literature by Coombs and Kao in 1955 (see also 

Coombs, 1964). The binary response of a person to an item, say "pass" or "fail", 

is no longer determined by the relative position of the person and item scale values 

on one single dimension. Instead, a number of dimensions are invoked and the 

person and item have scale values on each of these dimensions. In the conjunctive 



GENERAL INTRODUCTION 7 

model the adopted response rule is such that the person passes the item if and only if 
on each dimension he is higher than the item; in the disjunctive model this is the case 
if and only if there is at least one dimension on which he is higher than the item. 

Thus, in these models the latent structure consists of a number of Guttman scales, 
that is, a number of joint orderings of subjects and items, which are combined 
according to the above response rules. Analyzing a binary data matrix with such a 
model means finding a minimal number of joint subject and item orderings that, 
under the chosen response rule, will reproduce the data. In Coombs and Kao (1955) 
and in Coombs (1964) a procedure for doing this is suggested by way of a two-
dimensional example. We argue that this "procedure" capitalizes on specific 
characteristics of the simple example, that it would in "almost every" data matrix 
meet with unresolved difficulties and that we need a more thorough mathematical 
theory in order to deal with the general problem. This mathematical underpinning 
was - finally - provided by Doignon, Ducamp and Falmagne in 1984. They define 
the biorder as the relation deriving from a Guttman scalable data matrix and recast 
the problem as that of finding, for an arbitrary relation (the observed data matrix), a 
representation as the intersection or union of a minimal number of biorders. 

Just the subproblem of deciding what this minimal number, the biorder 
dimension or bidimension of the relation, is, appears to be a very difficult problem in 
general. We present a solution for this problem in the form of a recursive procedure 
in which we minimize the amount of computation by applying, at each level of the 
recursion, a reduction mechanism to the subproblem at that level, before invoking 
the next recursive call. The reduction mechanism is based on the characterization by 
Doignon et al. of the bidimension as the chromatic number of some hypergraph 
associated with the relation. Next, we derive algorithms for producing actual biorder 
representations and we complete the algorithmic specification of the bidimension 
procedure. Again, the hypergraph approach plays an important role here. Finally, 
we discuss the close connection between the biorder representation problem and the 
problem of representing a partial order as the intersection of a number of linear 
orders. Doignon et al.'s hypergraph is a generalization of an idea of Trotter (1983) 
in the context of this latter problem. We also indicate some possible approaches for 
the case where we do not want a perfect, deterministic biorder representation per se, 
but are rather interested in a - low-dimensional - approximate or probabilistic 
solution. Problems arise mostly from the lack of uniqueness of solutions in this type 
of models. 
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Part II : The Guttman scale and knowledge spaces 

Here we are also dealing with a collection of Guttman scales, but the situation is 
rather different. We consider a fixed set of items and a population of persons that we 
think of as being partitioned into a number of classes. For each class we have a 
Guttman scale, i.e., a joint ordering of the persons in that class and the items. Thus, 
the items are the same over all Guttman scales, and we have as many Guttman scales 
as there are classes in the population. The interpretation that we have in mind for 
this situation is that the persons are students, e.g. high school pupils, and the items 
are problems in some field of knowledge, e.g. a collection of problems in high school 
mathematics. In general there is some, but no complete freedom in the order in 
which the various problems can be mastered and the different classes of students 
correspond to different paths in acquiring the problems: the different Guttman scales 
represent the possible orderings. 

We want to use this representation as the basis for knowledge assessment 
procedures. This kind of procedure is seen as an essential component of a 
computerized instruction system. Assuming that we know the different Guttman 
scales as far as the items are concerned, we want to use this knowledge about the 
possible orderings of the problems in order to determine most efficiently - i.e., by 
asking him a minimal number of the questions - the collection of problems an 
individual has mastered. This collection will be called his knowledge state. The 
family of Guttman scales places indeed restrictions on the sets of problems that are 
possible knowledge states, since a person has mastered all problems that are lower 
than her position on "her" Guttman scale and none of the problems that are higher. 
The collection of possible knowledge states, which is called the knowledge structure 
of the domain, is therefore given by the collection of lower sets of the various 
Guttman scales. 

In Part II we start with an introduction to the knowledge assessment project that 
is based on this concept of knowledge structures (a more detailed overview can be 
found in Falmagne, Koppen, Villano, Johannesen and Doignon, 1989). We will 
discuss briefly two assessment procedures that have been developed in this 
framework by Falmagne and Doignon (1988a,b) and we will investigate two 
interesting special cases of knowledge structures. If the family of knowledge states 
is closed under union and intersection, it can alternatively be represented by a quasi 
order; if it is just closed under union, there is an alternative representation by surmise 
mappings, a generalization of quasi orders (Doignon and Falmagne, 1985). Closure 
under union appears to be a reasonable hypothesis in practice; a knowledge structure 
with this property is called a knowledge space. The assessment procedures start 
from a given knowledge structure and in Part II we focus on the problem of finding 
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out what this knowledge structure is in the first place. That is, we want to determine 
what the collection of Guttman scales is in the domain under consideration. We can 
think of two complementary methods; in both cases we will assume that the 
knowledge structure is a space. In the first instance we consult experts in the field 
who provide us with a knowledge space; in the presence of a sufficient amount of 
empirical data, this space can then be checked and possibly pruned down. A model 
for this second approach has been developed by Falmagne (1989); we will 
concentrate on the first problem, that of tapping human expertise for the purpose of 
constructing a knowledge space. 

Since we cannot simply ask experts to give us the list of possible knowledge 
states - such a task would be impracticable - , we have to resort to an indirect 
method. We derive a second alternative representation for knowledge spaces that is 
well suited for this purpose. This time we will deal with quasi orders on the power 
set of the collection of problems. Next we present a procedure that is based on this 
new representation and that transforms the answers of an expert to a specific set of 
questions into the corresponding knowledge space. We also consider how special 
cases in the representation by surmise mappings relate to extra conditions on 
knowledge spaces. Of particular interest here is the case of a well graded knowledge 
space (Falmagne and Doignon, 1988b; Falmagne, 1989), where on all Guttman 
scales the items are totally ordered, instead of just weitkly. We conclude with an 
overview of the various representations available and some remarks on on-going 
research and prospects in this project. 
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CHAPTER 2 

FROM GUTTMAN SCALE TO BIORDER REPRESENTATION 

1. The Guttman scale 

For the case of binary data that consist of positive and negative responses of subjects 

to a number of "items" (which may be of various kinds) we can consider a model in 

which it is assumed that there is one underlying, latent dimension that mediates the 

responses. A positive response will be obtained if and only if the person has 

"more" of the quantity measured along this dimension than the item requires. 

This idea is at the basis of Guttman's (1944) scalogram analysis. Let us pick the 

mental test situation as our typical concrete example. Then we may write aRu 

whenever subject a solves item и. That is, the collection of correct answers defines 

a binary relation R between the set A of subjects and the set D of items. The idea 

that a solves и if and only if a "dominates" и on the relevant dimension is then 

formalized as follows. We want to find scales for subjects and items, that is, 

mappings ƒ : A —» IR and g : D -» IR, where R denotes the set of real numbers, 

such that for any aeA, ueD 

aRu iff f(a)>g(u). (1) 

In our example, ƒ would measure the subjects' ability and g the difficulty of the 

items. The model represented in (1) is a weak model in the sense that it is non-

metric. It is clear that ƒ and g in (1) are just ordinal scales: for any strictly 

increasing transformation φ of the reals, the pair of scales ( φ ο / ,<t>0g) satisfies (1) 

whenever the pair (ƒ, g ) does. This means that a Guttman scale (ƒ, g ) is essentially 

a joint ordering of subjects and items. A subject solves an item if and only if the 

subject precedes the item in this ordering. 

This shows in what sense the Guttman scale is a very strong model: the data must 

be accounted for by one single ordering. This puts severe restrictions on the data. 

Consider the data matrix where the rows are indexed by the subjects, the columns by 

the items, and where a " 1 " entry signifies that the subject solved the item, a " 0 " 

entry that he failed it. Now suppose that this matrix contains the 2x2 submatrix 

и ν 

α Ι Ο (2) 

b 0 1 

13 
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and suppose that functions ƒ and g exist, satisfying (1) for Я the relation defined by 

the " 1 " entries of this matrix. Then we could derive: 

f(a)>g(u)>f{b)>g{v)Zf(a), 

a clear absurdity. Obviously, (2) constitutes a forbidden submatrix for a Guttman 

scale. In fact, as Ducamp and Falmagne (1969) have shown, it is the forbidden 

submatrix: reordering the rows and columns of a binary matrix by their number of 

" 1 " entries leads to the triangular shape, typical for the Guttman scalogram, if and 

only if the pattern (2) does not appear. 

Not surprisingly, empirical binary data typically do not display this perfect 

triangular shape. In such cases, a number of options are available. If the violations 

are minor in number and well localized (occurring in just a few response patterns 

having a low frequency) one might well postulate that the model is essentially valid. 

Even if there is an overall pattern of violations, model (1) can still be saved "in 

principle". One may maintain that its only failure is that it is completely 

deterministic. Instead of deciding deterministically by (1) whether a subject solves 

an item, the scales ƒ and g should only provide a probability for this event to occur. 

This is a sensible relaxation and it has become the virtually unanimous approach in 

test theory, leading to the heavily investigated field of Item Response Theory. (By 

the way, "determinism" is doomed, whenever it is judged to be a good idea to add 

deliberately noise to the situation, just for the sake of easy scoring: it is clear that the 

representation (1) does not stand a chance if the items are of the multiple choice 

type.) 

We will, however, be concerned with a third option in the face of data that are 

not Guttman scalable. Incidentally, this option does not preclude - and may in fact 

just precede - the other two. We may well conclude that there is something more 

basically wrong with (1) as a model for our data; something that cannot be dealt with 

by just adding a random component. The central assumption of the model, that of 

unidimensionality, might be violated. If we accept that one ordering of subjects and 

items is not enough to explain the data, we can try to describe the data by two 

orderings, or by more. That is, we need a multidimensional extension of the 

Guttman scale. This is exactly what is provided by Coombs and Kao's (1955) 

conjunctive and disjunctive models, which we describe in the next section. Their 

presentation was rather informal and in the following section we will discuss the 

rigorous mathematical treatment of this situation that was given only fairly recently 

by Doignon, Ducamp and Falmagne (1984). Their fundamental paper is at the basis 

of the investigations in the following chapters. 
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2. The conjunctive-disjunctive model 

In a multidimensional extension of the Guttman scale, we no longer consider just 

one pair of subject-item scales, but rather scales ƒ, : A -» R and g¡:D -» R for the 

subjects and items, respectively, on each of л dimensions. The model is determined 

by the choice of a composition rule. This rule has to specify how the scale values 

ƒ ,(0) fn(a)> 8i(u)· • · · .£л(и) are combined to yield the observable score of 

subject a on item и. In the case of binary data, this score simply amounts to the 

decision "pass" or "fail". Commonly used composition rules involve taking a 

weighted sum of the values on the underlying dimensions; this underlies, e.g., the 

classical linear models of analysis of variance, regression analysis and common 

factor analysis. This presumes, however, that measurements are at least on an 

interval level (otherwise, linear combinations do not make much sense). That 

assumption would be hard to justify in the case of binary data and a linear model 

would not be in the spirit of the non-metric Guttman scale. 

We can conceive of an essentially different composition rule that leads to a 

straightforward extension of model (1). If we have л dimensions instead of just one, 

a reasonable assumption would be that a person solves an item if and only if she 

dominates it on every dimension. That is, the left hand side of (1) is true if and only 

if the right hand side is true for each dimension: 

aRu iff ( / ι ( β ) > ί , ( « ) for all i = 1 η). (3) 

This is the conjunctive model as defined by Coombs and Kao (1955). On each 

dimension i we have a pair of scales (f,,g,) that is purely ordinal and that 

corresponds essentially to a joint ordering of subjects and items on that dimension. 

A subject solves an item whenever he precedes it in all of these η orderings. 

This conjunctive rule readily suggests an alternative, in which an item is solved 

whenever the person dominates it on at least one dimension (precedes it in at least 

one of the η orderings). This is the disjunctive model 

aRu iff (ft(a)>gt(u) forsome i = l n). (4) 

Although the disjunctive model has psychologically quite a different interpretation, it 

is, as Coombs and Kao note, formally isomorphic to the conjunctive model. Taking 

the negation of both sides of (4) shows that applying the disjunctive model is 

equivalent to applying the conjunctive model after flipping the binary data 

(considering the complement of R instead of R ) and reversing the direction of the 

dimensions (orderings). Consequently, for the formal development only one model 

needs to be considered and this will be, rather arbitrarily, the conjunctive model. 
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Note that the conjunctive-disjunctive model is essentially distinct from a linear 

type of model in that it is non-compensatory. While in any linear model one can 

make up for a deficiency on one dimension by a surplus on another (and this in 

principle without limit), the conjunctive-disjunctive model involves, rather, 

thresholds on each dimension. And no matter how amply a threshold is surpassed 

on one dimension, this will, in the conjunctive model, not compensate for failing the 

threshold on another dimension. In many situations this seems, indeed, a more 

reasonable assumption than a (linear) compensating mechanism. Similarly, the 

disjunctive model formalizes the situation where failing the threshold badly on a 

number of dimensions does not hurt, as long as there is one dimension on which the 

threshold is passed, however narrowly. The use of logical (threshold) composition 

rules was already advocated by Johnson (1935) in the field of aptitude testing. He 

suggested a very general class of models, in which composition rules can consist of 

any logical combination of the dimensions. For instance, an item is solved whenever 

the person dominates it on the first dimension or on both the second and the third 

dimension. Coombs and Kao's conjunctive-disjunctive model is the only special 

case of this class that has actually been developed. 

In Coombs and Kao (1955) - as in Coombs (1964), where chapter 12 covers 

essentially the same material - we find only a sketch of a procedure for constructing 

a conjunctive model representation of a binary data matrix; a sketch consisting in 

going through a small example. Before indulging in the mathematical analysis of 

Doignon, Ducamp and Falmagne (1984) in the next section, we illustrate here 

Coombs and Kao's approach on a tiny example indeed. The example is big enough, 

however, to show the kind of reasoning and the kind of difficulties involved and it 

will lead to an observation that formed the starting point for the investigations in 

Chapter 3. 

Suppose we want to find a conjunctive model representation of the data in Table 

1, concerning seven response patterns of subjects α to g on three items u,v,w. Of 

course, we want a representation in the minimum number of dimensions. Coombs 

and Kao's (1955) and Coombs' (1964) approach to achieving this can be 

summarized as follows: order the rows (response patterns) in increasing order of 

number of " 0 " entries (this has already been done in Table 1) and next consider 

each row in tum, from the top down, drawing inferences for orderings of the items if 

possible and introducing new dimensions if necessary. The obtained item orderings 

can then be extended to appropriate joint subject-item orderings. 

Starting with row a, we see immediately that this does not tell us anything about 

an ordering of the items: the pattern simply does not discriminate between items. On 

any dimension we want to invoke, we will have to place subject a above all items. 

Since in pattern b only item w is failed, it is clear that we need a dimension 
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a 

b 

с 

d 

e 

f 
8 

и 

1 

1 

0 

1 

0 

0 

0 

ν 

1 

1 

1 

0 

1 

0 

0 

w 

1 

0 

1 

0 

0 

1 

0 

orderings of items 

* i = [ w ( u , v ) ] 

Xi = [ w ( a , v ) ] X2 = [u(v,w)] 

X^lwvu] X2 = [u(v,w)] 

X^lwvu] X2 = [u(v,w)] 

Xi = [w V и] X2 = [u V w] 

Xi = [w ν и] Х 2 = [ и н ' ] 

Table 1. A hypothetical data matrix of 7 subjects on 3 items. The last column contains the 
gradual construction à la Coombs and Kao of the dimensions in a conjunctive model 
representation (items in parentheses arc, as yet, unordered). See text. 

(ordering) Xl on which item w is above (precedes) the other two items. Subject b 

must come immediately below w on X] and can be put above all items on possible 

other dimensions. Similarly, row с implies the existence of a dimension on which 

item и is highest. This, clearly, cannot be X^ so we are forced to introduce a new 

dimension X2, with и highest on X2. Subject с can be put immediately below и on 

X2 and above all items on Xi and possible other dimensions. We can deal with row 

d without invoking another dimension. Since и is solved, d must be placed above u 

on X2. But then, и solved and ν failed implies that ν is above и on Хъ with d 

inbetween. Next, we see that row e contains no further information: failing и and 

w, while solving ν can already be accounted for by placing this subject immediately 

below w on Xj and immediately below и on X2. The inferences for ƒ are a mirror 

image of those for row d: with only w solved, ƒ must be above w on X2 and 

between ν and w on Χ1 ( where ν must be above w. Of course, row g is again 

uninformative. It can be given a place in any representation; everything is all right, 

for instance, as long as it is at the bottom of any one dimension. We thus arrive at 

the following two-dimensional solution: 

Χχ: (а,с,f) w φ,e) ν d и g 

Х2: (a,b,d) и (с.е) ν f w g, & 

where the ordering between parentheses is arbitrary, and where g, rather arbitrarily, 

is placed at the bottom of both dimensions. 

Manifestly, we cannot recover a complete strict ordering of the subjects on the 

separate dimensions. This is not surprising in view of the fact that such a strict 

ordering can only be obtained on the basis of distinct positions with respect to at 

least some item. Clearly, к items can only discriminate between Л+1 classes of 
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b 
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d 

e 

f 

g 0 

1 

1 

1 

0 

1 

1 

0 

1 

0 

1 

0 

0 

1 

0 

a 

b 

с 

d 

e 

f 
g 

и 

1 

1 

0 

1 

0 

0 

0 

ν 

0 

0 

w 

0 

χι χ2 

Table 2. The two factor matrices of the matrix in Table 1 corresponding to the orderings Xj 

andXjof Eq. (5). 

subjects on each dimension. Here, we get on both dimensions complete strict 

orderings for the smaller set, the items, but that is by no means true in general. In 

Table 1, for instance, it can be seen that, in the absence of row ƒ , we would not be 

able to decide on the ordering between items ν and w on dimension X2. Elements 

between parentheses are considered as being equivalent (on that particular 

dimension). In this way, a dimension is identified with a weak order on the subjects 

and items, the generalization of a total (linear) order in which non-trivial equivalence 

classes are allowed (cf. the General Introduction). 

Table 2 shows the two obtained orderings Xx and X2, represented as "factor 

matrices". Note that both matrices display the triangular structure characterizing a 

Guttman scale and that the "observed" matrix in Table 1 is indeed the conjunction, 

that is, the element-by-element product, of the matrices in Table 2. 

This looks all very neat. It seems like we have here a constructive scaling 

procedure for the conjunctive model that yields the minimum dimensionality as an 

automatically obtained by-product. As soon as one tries to tum the above sketch of a 

procedure into a general, explicit algorithm, however, one immediately runs into 

trouble. It appears that the example of Table 1 is a special, constructed example, like 

those in Coombs and Kao (1955) and Coombs (1964). In general, things are not so 

straightforward. Consider, for instance, the data in Table 3. This matrix is just a 

submatrix of Table 1 and it is not too difficult to find the two-dimensional solution 

that is the restriction of (5): 

Xi : ƒ w e ν du 

du e ν f w (6) 
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d 

e 

f 

и 

1 

0 

0 

ν 

0 

1 

0 

w 

0 

0 

1 

orderings of items 

Xi = [ ( v , w ) i i ] 

Xl = [w ν и] X2=["u above ν 

X ^ t w v i í ] Х 2 = [ м н ' ] 

w arbitrary" ] 

Table 3. Another hypothetical data matrix, submatrix of Table 1, with a possible 
"derivation" of a conjunctive model representation. 

A possible way of arriving at this solution is sketched in Table 3 under the column 

"orderings of items". However, this solution results from applying heuristic rules, 

rather than some algorithm. This is obvious, once we notice the symmetry in Table 

3. If (6) is a solution, then any permutation, simultaneously applied to the triples 

(d,e,f) and (ы. .н-), must give an equally valid solution. Thus we find two more 

representations in two dimensions, essentially different from (6) and from each 

other: 

X{: e ν d и f w 

X{: f w d и e ν ( 7 ) 

and 

Χ{: e ν f w du 

X{: du f w ev. ( 8 ) 

We would have found the representations (7) or (8) if we had applied the same 

"rules" as in Table 3, but processing the rows in a different order. We know that 

the dimensionality of 2 is minimal for Table 3 only because it is obvious that the 

matrix is not one-dimensional; it is not guaranteed by the method. In Table 3, for 

instance, we ' 'concluded' ' from an inspection of the first row, d, that there must be a 

dimension on which item и is lowest. Solution (7), however, shows that this is not 

necessarily true. Here, this assumption did no harm, but in a more complex situation 

such an unwarranted conclusion might well be the decisive step in missing the 

minimum dimensionality. 

The difficulties encountered in the analysis of Table 3 appear to be more typical 

than the apparent smoothness of the analysis of Table 1. In fact, in "almost every" 

binary data matrix (however one wants to define this notion) it will be the case that 

(i) the minimal dimensionality can only be found by an - in principle exhaustive -

method of trial-and-error, and (it) there will be various essentially different solutions 

in this minimum dimensionality. The minimum dimensionality problem is complex 

in a very precise, technical sense of the word. To establish this, we need the 

mathematical theory developed by Doignon, Ducamp and Falmagne (1984) that we 
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discuss in the next section. The above discussion and examples give an impression 

of the ideas behind the conjunctive-disjunctive model, but they also show how 

intuitive and informal the approach was until this paper appeared. One thing that 

emerged in the description above (although we did not stress it much until now), and 

that will not be directly visible in the next section, is the fact that there may be 

patterns (like row e in Table 1) that are non-trivial, but that, nevertheless, do not 

give us any additional information. This observation will be important in the sequel. 

3. Representing a relation by biorders 

A complete mathematical analysis of the conjuntive-disjunctive model was presented 

only in 1984, in a paper by Doignon, Ducamp and Falmagne. They considered the 

most general situation, where there are no restrictions on the cardinalities of the sets 

A and D. We will follow that approach here, since it shows clearly which 

characteristics and concepts are essential. In fact, the more general situation forces 

more direct arguments. Where needed we will give the specialization to the finite 

case that is ultimately of interest to us. 

Doignon, Ducamp and Falmagne (1984) define a biorder between A and D to be 

a relation В c A x D suchthat 

aBu & ЬВи & ЬВ implies аВ , (9) 

where we introduce the notation В for the complement of В : В =(AxD)-B. In 

terms of relative products of relations, this condition can be succinctly expressed as 

BB~XB £ В. A slight rearrangement of (9) leads to 

not (aBu & bBv & aBv & ЬВи), (10) 

which makes it clear that a biorder is characterized by the forbidden submatrix (2). 

In other words, a binary data matrix is Guttman scalable if and only if the 

corresponding relation, defined by the positive answers, is a biorder. This was 

already noted by Ducamp and Falmagne (1969) in their axiomatizadon of the 

Guttman scale. By the way, relations defined by (9) have been introduced in a 

different context under the name of "Ferrers relations" (Riguet, 1951; see also the 

survey paper by Monjardet, 1978). 

Since biorders correspond to Guttman scales, representing a binary data matrix 

according to the conjunctive model amounts to writing a relation R as the 

intersection of a number of biorders. Indeed, rewriting the right hand side of (3), 

using (1) withÄ replaced byB t , yields 

aRu iff (αΒ,α for all i = 1, η), 
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or, more compactly, 

R = O B , . 
( = 1 

Analogously, the disjunctive model corresponds to a representation of R as a union 

of biorders. Since the complement of a biorder is again a biorder (this is immediate 

from (10)), the set-theoretic equivalence 

R = пв, iff R = υ β, (11) 
i e / i e / 

is a restatement of the duality between the conjunctive and the disjunctive model. 

Here and in what follows, / is an index set of arbitrary cardinality, denoted by | / | . 

For the finite case, / may be identified with the set { 1 , . . . , |/ | }. We will deal with 

the intersection representation that corresponds to the conjunctive model. 

Since for any au e Ax D the relation ( A x D ) - {au} is a biorder (a violation of 

(10) requires at least two pairs in the complementary relation), we can write any 

relation R between A and D as the intersection of the biorders ( A x D ) - {au} with 

au^R. This justifies the definition of the biorder dimension or, shorter, the 

bidimension of R as the minimal number of biorders needed for such a 

representation. This number will be denoted by Bidim R : 

Bidim R = Min { |/ | : R = η В, , В, biorder}. (12) 
ιε/ 

Strictly speaking, we should call this the ^-bidimension and define a u-bidimension 

in the same way, replacing intersection by union. By (11), however, any statement 

on the ^-dimension translates into a dual statement on the u-dimension. Clearly, 

the «"»-bidimension (^-bidimension) of a relation R is precisely the minimum 

dimensionality in the conjunctive (disjunctive) model of the binary data represented 

by R. From the argument leading to definition (12) it follows that with finite A and 

D, Bidim R will also be a finite number. 

We will now discuss a main result of Doignon, Ducamp and Falmagne (1984). 

Generalizing an approach of Trotter (1983) in the context of the order dimension of 

a partial order, they established an equivalence between the bidimension and the 

chromatic number of some hypergraph defined in terms of the relation. Let us first 

recall what is meant by these terms (see, e.g.. Berge, 1973, for more). A hypergraph 

H(V) is a set V of elements called vertices, together with a system of subsets of V 

called edges. Any edge has at least two elements. A hypergraph thus generalizes an 

ordinary, undirected graph, where all edges contain exactly two vertices. A subset 

of V is called stable in //(V) if it does not contain an edge and a coloring of die 

hypergraph //(V) is a partition of V into a number of stable sets, the colors. The 

chromatic number of //(V), then, which is denoted by Chrom //(V), is the minimal 
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Figure 1. Example of hypcrgraph on eight vertices (the labeling is explained later in the text). 
There are eight 2-edges (the pairs of vertices connected by straight lines) and two 3-edges (the 
triples of vertices enclosed in ellipses). The chromatic number equals 2: the partitioning of the 
vertices in open and filled circles constitutes a minimal coloring. 

number of colors needed in a coloring of ШУ). Figure 1 illustrates these concepts. 

We will give here our own derivation of this equivalence, which differs 

somewhat - in wording, not in essence - from the presentation in Doignon, Ducamp 

and Falmagne (1984). We begin with a couple of rather trivial rewritings of (12). 

First, we use (11) and the fact that the complement of a biorder is a biorder to tum 

(12) into 

Bidim R = Min { 11 \ : R = u Bt, B, biorder}. 
tel 

(13) 

Now call С ^R a feasible set if and only if С is the subset of a biorder contained in 

R. Then (13) is equivalent to 

Bidim R = Min { |/ | : R = u C, , C, feasible }. 
iel 

(14) 

Indeed, any biorder in (13) is contained in R, thus a feasible set; on the other hand, if 

we have the representation in (14), we let B, be a biorder such that C, Cfl, QR and 

we obtain 

R = и С, £ и B¡ £ Л. 
I S / I € / 

The results do not seem very impressive so far, but feasible sets have one property 

biorders do not have: any subset of a feasible set is again feasible. This means that 

we might just as well assume that the feasible sets in (14) are disjoint: 

Bidim Я = Min { |/ | : Л = Σ C, , C, feasible }, 
ι ε / 

(15) 
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where the sigma sign indicates taking the union over mutually disjoint sets. Clearly, 

the representation in (IS) is a special case of (14). From (14) we can get to (15), 

however, by fixing some simple order < on / and defining, for i e / : 

С>'= С , - ( и С,). 
;<· 

Any С/ is a subset of С,, thus feasible; all С' are mutually disjoint and there are no 

more sets C,' than there were sets C,. 

Now the right hand side of the equality in (15) is the definition of the chromatic 

number of a hypergraph, if we replace "feasible" by "stable". That is, we have 

obtained 

BidimR = Chrom II (R), (16) 

where H(R ) is the hypergraph with vertex set R and where the stable sets are the 

subsets of R that can be extended to a biorder contained in R. The maximal stable 

sets are, thus, the maximal biorders in R and the edges of // (R ) are the (minimal) 

subsets of R that do not have such an extension. 

This equivalence is not very helpful, however, unless we can find a more 

intrinsic characterization of the collection of stable (feasible) sets, or, equivalently, 

the collection of edges. To this end, we define the following relation ГА on R . For 

au,bveR, 

au rR bv iff bRu. 

The situation au ГА bv corresponds to the following submatrix: 

и 

0 

1 

V 

0 

where the open entry is arbitrary. An η-cycle in TR 

a1ul,a2U2 anun inR, such that 
is a sequence 

α 1 Μ 1 Γ Α a2u2rR Г» опия Гк аіи,. 

A 4-cycle in Г я , for instance, corresponds to the following submatrix: 

a 

b 

с 

d 

и V 

0 

1 0 

1 

w 

0 

1 

X 

1 

0 

Again, open entries are arbitrary. The special case л =2 shows that cycles in ГА are 
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related to the biorder concept: 

и ν 

a 0 1 

b 1 0 

Comparing this with the forbidden submatrix (2), we immediately conclude: 

(Г1) R is a biorder iff Гд has no2-cycle. 

It is, however, not difficult to see that if Гд has an л-cycle, then it must have an 

(n-l)-cycle or a 2-cycle. (In the above 4x4 submatrix, the pair aw, for instance, is 

either in R or in Л.) Thus, by induction, 

(Г2) R is a biorder iff TR is acyclic. 

It can be established that if Λί is a maximal subset of R such that YR has no cycle in 

M, then M is a biorder. This is equivalent to the following crucial generalization of 

(Γ2): 

(ГЗ) С CA tí feasible iff TR is acyclic on С 

(We get (Г2) from (ГЗ) by taking С =R .) This is the characterization of the stable 

sets of // (R ): a subset of R is stable if and only if it does not contain a cycle in Г я . 

In other words, the hypergraph // (R ) in (16) has as vertex set R and as collection of 

edges the cycles in Г д . 

Note that, while (Г1) shows that for biorderhood it is sufficient to check for 2-

cycles in Гд, this is no longer the case for feasible sets. If we assume that in the 

above 4x4 submatrix all open entries are zero, then the subset of vertices 

{ au, bv, cw, dx } consists of a 4-cycle, but does not contain any 3- or 2-cycle. From 

this example it is clear how to construct, for arbitrary η, a relation R and a subset of 

η vertices of // (/? ) consisting of an « -cycle in Гд while not containing any k -cycle 

for к <n. 

With the above characterization of //(/?) in mind, it may be checked that the 

hypergraph of Fig. 1 is exactly the hypergraph associated with the relation defined in 

Table 1. The pairs gu, gv, gw are left out of the hypergraph of Fig. 1, since they are 

not contained in any edge and thus irrelevant to the chromatic number. Note that the 

coloring in Fig. 1 corresponds exactly to the decomposition of the matrix into the 

two factor matrices of Table 2. This reflecLs the special character of the Table 1 

matrix. Here, there is essentially - that is, disregarding the trivial zero pattern g -

just one minimal coloring and in that coloring the color classes are themselves 

already maximal biorders in R, so there is just one pair of biorders covering R. 

Consequently, the complementary biorders constitute the (essentially) unique two 
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dimensional solution for R that is given in (5). In general, there may be several 
distinct minimal colorings, and color classes may have various extensions to 
maximal stable sets. This means there are multiple ways of covering R by a 
minimal number of biorders in R and, thus, by complementation, multiple ways of 
writing R as the intersection of a minimal number of biorders. 

4. The following chapters 

The reinterpretation of the bidimension of a relation as the chromatic number of 
some explicitly defined hypergraph is an important constructive result. This does not 
mean, however, that the problem of finding the bidimension of a relation - thus the 
minimum dimensionality for the conjunctive model - is easy. To the contrary; we 
have a very precise and rather disappointing result in terms of computational 
complexity theory. As was already noted by Cogis (1982), finding the bidimension 
is polynomially equivalent to finding the usual order dimension of a partial order. 
By a rather recent result of Yannakakis (1982), the latter problem is NP -complete 
for a dimension exceeding 2. (See, e.g., Garey and Johnson, 1979, or Papadimitriou 
and Steiglitz, 1982, for a detailed exposition of the above concepts; we discuss some 
of the consequences below.) 

The NP -completeness of the bidimension problem is theoretically bad news: it 
means that, in all probability, there will be no algorithm computing the bidimension 
in an order of time that is a polynomial function of input size. The practical 
consequences of this fact are, however, not always as clear-cut. For data of 
moderate size, the differences may not be dramatic. Moreover, polynomial time 
algorithms may, in practice, be not very efficient whenever the degree of the 
polynôme exceeds, say, 2 or 3. A good example is the Ellipsoid algorithm 
developed by Shor, Judin and Nemirovskii for non-linear optimization, but which 
Khachiyan proved to provide a polynomial algorithm for the Linear Programming 
problem (see, e.g., Papadimitriou and Steiglitz, 1982, for more details and 
references). This was a major theoretical break-through in that it showed that the 
Linear Programming problem is solvable in polynomial time. It is, however, hardly 
applied, since the old Simplex algorithm, though not polynomial and with a terrible 
worst case performance, is, for all practical purposes, considerably faster. 

The NP -completeness does indicate that the practical efficiency of an algorithm 
for the bidimension will depend strongly on the size of the input and that the solution 
will involve some kind of exhaustive search. In devising such an algorithm it is thus 
essential to maximally reduce the input size and to maximally prune the search tree 
that is traversed in the algorithm. Chapter 3 describes a procedure for doing exactly 
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Figure 2. The subhypergraph (in this case, a simple graph), induced by removing vertices ew 
and eu from the hypergraph in Fig. 1. 

this. Starting point was an observation in the informal discussion of the conjunctive 

model. In the example of Table 1, we saw that there was a non-trivial pattern (row 

e ) that did not provide any new information, but was, in a sense, already implied by 

other patterns. In terms of the data matrix, the implication is that the dimensionality 

of the matrix is the same as that of the submatrix with row e removed. Or, for the 

relation: the bidimension of the relation is the same as the bidimension of the 

restriction of this relation to (A-{e })xl>. With the help of the equivalence (16) we 

get, finally, a version in terms of hypergraphs. The hypergraph corresponding to 

Table 1 - that is, the hypergraph in Fig. 1 - has the same chromatic number as the 

subhypergraph that is induced by removing all vertices that have the subject e as a 

member and all edges that contain such vertices. (Figure 2 shows the resulting 

subhypergraph in this case.) The idea of Chapter 3 is to describe the most general 

conditions under which hypergraphs can be reduced to subhypergraphs without 

changing the chromatic number. Removal of patterns like row e of Table 1 will 

appear to be just a very special case of the kind of reduction that is possible. These 

reductions can be used throughout in a recursive procedure for computing the 

chromatic number of the original hypergraph, thus, by (16), the bidimension of the 

original relation. 

Chapter 4 deals with obtaining actual representations in the minimum 

dimensionality. Algorithms are developed for generating minimal biorder 

extensions of a relation R. (Any biorder B, in the representation R = n, B, clearly 

contains R and the minimal extensions are those that are closest to R, i.e., for which 

the difference Β,-R is minimal.) This is directly related to the question of 

generating maximal stable sets of the hypergraph // {R ). This is then generalized to 

an algorithm for maximal stable sets that contain some specified stable set This is 

interesting, since it can be combined with the procedure for determining the 

bidimension, as described in Chapter 3, to produce not just the bidimension but, at 

the same time, some representations of R inBidimÄ biorders. The point is that this 

procedure is constructive; that is, once the bidimension is known, we are in fact 
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given some minimal coloring of the hypergraph. This allows us to use this last 
algorithm to produce maximal stable set extensions of the various color classes in 
this minimal coloring. As we have seen, maximal stable sets of//(/?) are biorders 
contained in R and if we have an extension for each color class, then these biorders 
clearly cover R. As a consequence, R can be written as the intersection of the 
complement biorders. Last, but of course not least, a version of the algorithms in 
Chapter 4 is used to compute the bidimension in the first place. In Chapter 3, a 
recursion formula is presented for the computation of the bidimension, but it is not 
specified how to actually construct the implied search tree. In Chapter 4 is described 
how this can be achieved, thus completing the description of the bidimension 
algorithm. 
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On Finding the Bidimension of a Relation 
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A method is presenled for evaluating the bidimension of a finite binary relation, ι е., the 
number of biordcrs (Guttman relations) needed to yield the relation as their mlerseclion. In 
саье (he relation is induced by a binary data matrix, the bidimension equals the minimal num­
ber of dimensions needed for a representation of the data matrix according to ihc conjunctive 
model of C.H Coombs and R С Kao {S'onmetru /cuior análisis, Engineering Research 
Bulletin No 38, Umv of Michigan Press, Ann Arbor, 1955) Central to the evaluation of 
the bidimension is its characterization, provided by J-P Doignon, A Ducamp, and 
J-C. Falmagne {Journal of Malhemalual Psychologv, 28, 73 109, 1984), as the chromatic 
number of some associated hypcrgraph A procedure is described lo reduce hypcrgraphs of 
this kind to subhypergraphs with the same chromatic number 'I his reduction can be used 
throughoul in applying a recurrence relation that expresses the chromatic number of a 
hypcrgraph in terms of the chromatic numbers of some of Ms subhypergraphs ι 1987 Atadcmic 

Pres-, lin. 

1. INTRODUCTION 

In many settings of psychological research and testing the situation is so complex 
that it is highly unrealistic to expect that the behaviour of the subjects can be 
explained satisfactorily by one single dimension along which they and the 
experimental stimuli ("items") vary. In such cases, a multidimensional model is 
called for. An all-important aspect of such a model is its composition rule, by which 
positions on the separale, unobserved dimensions combine lo give a "score" thai is 
directly related to the observed behaviour. The most widely used composition rule 
consists in mapping positions on the separate dimensions into the real number line 
and expressing the observed score as a linear combination (weighted sum) of these 
scores on the separate dimensions (e.g., factor analysis, analysis of variance, 
regression analysis). A model with this kind of composition rule can be considered 
as a compensatory one: a deficiency on one dimension can be compensated for (and 
without limit) by a surplus on another dimension. In many situations such a rule is, 
again, not very realistic, especially in the case of binary data that are instances of 
ihe general type: subject solves/fails item. In such cases an essentially different com­
position rule is conceivable in which "a person solves an item" (these are all used as 
generic terms) if and only if on each of the separate dimensions the position of the 
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person dominates the position of the item. In this multidimensional generalization 
of Guttman's (1944) idea there is no compensating mechanism involved; rather, an 
item corresponds to a threshold on each dimension that has to be surpassed by a 
person in order to solve the item. The observed score, then, is not seen as an 
arithmetical sum of the scores on the separate dimensions, but rather as the logical 
product of these scores. This explains the name conjunctive model (Coombs and 
Kao, 1955; Coombs, 1964) for models with this composition rule. 

The conjunctive composition rule immediately suggests another one, in which a 
person solves an item if and only if the position of the item on at least one dimen­
sion. With this rule the observed score corresponds to the logical sum of the scores 
on the separate dimensions, so this model is called disjunctive. Thanks to the 
logical equivalence 

(A, or · ·-or A,,) iff not ((not Λ,) and · - a n d (not A,,)), 

the disjunctive model needs no separate consideration. By flipping the binary data 
and reversing the direction of each dimension it is directly translated into the con­
junctive form. 

An informal discussion of how lo construct for some given data matrix a 
representation according to the conjunctive model can be found in Coombs and 
Kao (1955) and Coombs (1964). In order to develop an explicit general algorithm, 
however, one has to face two important problems. The first one is that of finding 
the minimum dimensionality needed for such a representation (note that for the 
present we are considering deterministic models only) and the second has to do 
with the uniqueness of an obtained representation in the minimum dimensionality. 
This paper will be concerned with the problem having logical priority, finding the 
minimum dimensionality. 

That this is not a trivial problem at all is shown by Doignon, Ducamp, and 
Falmagne (1984). In their fundamental paper they cast the problem in terms of 
representing the relation between the set of persons and the set of items defined by 
the binary data matrix as the intersection of a minimal number of biorders 
(Guttman relations), this number being its so-called bidimension. Some of their 
results were, for the finite case, independently obtained by Cogis (1980, 1982). 
Regarding computational complexity (see, e.g., Garey and Johnson, 1979), Cogis 
(1982) showed that the problem of finding the bidimension of a relation is 
polynomially equivalent to that of determining the dimension of a partial order 
(i.e., the minimal number of linear orders to yield the partial order as their intersec­
tion; see Dushnik and Miller, 1941), and Yannakakis (1982) showed the latter 
problem to be NP-complete for a dimension greater than 2 (the two-dimensional 
case is polynomially decidable). Doignon et al. give a characterization of this 
bidimension as the chromatic number of a certain hypergraph, generalizing a 
similar approach by Trotter (1983) for the usual order dimension. It is this 
equivalence that we will use for the computation of the bidimension. So first we 
summarize in the next section the relevant part of the theory developed in Doignon 
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et al. (1984). Next, in Section 3, we describe some pnnciples enabling us to reduce a 
hypergraph of the considered type to a subhypergraph having the same chromatic 
number. This reduction will appear to include as a special case the collapsing of the 
data matrix into a submatrix, its so-called core, as is obtained by Chubb (1986) in 
a somewhat more general context (i.e., in principle not restricted to biorder 
representations). Furthermore, it generalizes the restriction in the case of a partial 
order to the so-called "non-forced" pairs (Trotter, 1983). In Section 4 this reduction 
process is illustrated, using an empirical data set. In Section 5 we give a recursive 
formula for the chromatic number of a hypergraph in terms of the chromatic num­
ber of some of its subhypergraphs and in Section 6 wc show how the reduction and 
recursion we developed can be combined to compute the bidimension of another 
empirical data set. In the last section we discuss the prospects for integrating the 
findings of the preceding sections in a really explicit and reasonably efficient 
algorithm. In this context our second problem, that of uniqueness, also comes into 
view: Is it possible to combine our approach of determining the bidimension with a 
computation or a characterization in some sense of all possible representations in 
that dimensionality? 

2. BASIC THEORY 

First we will fix some general notation and definitions. For two sets A and D, 
A c Α χ D is called a relation between A and D; if A c A χ A it is a relation on A. 
We will write ad for the ordered pair (a, d) and ade R or aRd, equivalently. Λ = 
(A χ D) — R denotes the complement of R. The cardinality of a set A is denoted \A\. 
Since we aim to applying their theory to real data, we will, in contrast to Doignon 
et ai, throughout assume A and D to be finite. So A — {ÍÍ,,..., a*,} and D = 
[i/,,..., dK} for some natural numbers N and K. As a consequence, a relation R 
between A and D, as well as its complement Ä, will always be finite. 

For interpretative purposes the elements of A can be thought of as persons, those 
of D as items, and R can be regarded as a dominance relation, a,Rdl meaning: per­
son a, solves correctly item </;. Because of finiteness wc can represent a relation R in 
an /V χ К (0, 1 )-matrix, called the data matrix, having a 1 in cell (/', j) if a,/W; and a 
0 if alRdr We will denote this matrix as [Ä] ; [/?],. is its rth row and is sometimes 
called the pattern of a,, [Л]. у is itsyth column or the pattern of dr and [/?],, is the 
value in cell (i, j). 

There are partial orders on the rows and columns of [ Л ] (corresponding directly 
to the quasi-orders RA and Rn of Doignon et ai.) defined by 

[ * ] . . < [ * ] , . 'ff ( f o r * = ! , . . . , * , [ * ] , * < [ * ] , * ) 

and 
№ . , < [ / ? ] . , ¡<T (for η = 1,...,ЛГ, [/?]„,< [A],,,). 

Now we will summarize the findings of Doignon et al. (1984) as far as they are 
relevant to our more practical goal. Where useful we will specialize their statements 
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to the finite case and give a translation in terms of the data matrix In the sequel we 
may assume that A and D are disjoint if they are not, we pass to disjoint copies A' 
and D' of A and D, respectively, and for any relation R Ç A χ D we consider its 
isomorphic image R'^A'xD', results there can be directly translated back to the 
original R Ç A χ D (see Doignon et al ) 

The central concept, already defined in Ducamp and Falmagnc (1969), is that of 
a biorder 

R S Α χ D is called a biorder between A and D iff for all a, b e A, d, e e D 
we have if (aRd and bRe) then (aRe or bRd) 

An equivalent, more symmetrical formulation of this condition reads 

not (aRd and hRe and aRe and bRd), 

from which it is immediately clear that R is a biorder iff R is one For the matrix 
[Ä] this definiton means that R is biorder iff [Ä] has no 2 χ 2 submalnx (per­
mutations of rows and columns allowed) of the form 

0 1 
(2 1) 

1 0 У 

v.hich implies there are permutations of the rows and the columns of [Λ] that 
bring the matrix in triangular form (the matrix is then said to have triangular struc­
ture) 

Of course not every relation is a biorder, but Doignon et al show that any 
relation R between A and D is, in a trivial way, the intersection of \R\ biorders, 
which in our case is a finite cardinal I his leads to the concept of bidimcnsion, 
which for the finite case reads 

The bidimension of a relation R Ç A χ D, denoted Bidim R, is the 
smallest number q for which there is a collection of q biorders 
B, £ A χ D, ι = 1, ,q, with R = Π? В, 

The relevance of the concept of bidimension for a representation of R according to 
the conjunctive model lies in the following proposition (where U denotes the set of 
real numbers) 

Bidim R is the smallest number q for which there are two mappings / = 
(/ι. .ƒ,) A-+W' and g = (g], ,g4) D^U4 such that for all a e A, 
deD aRdi{ff,(a)^g,(d) for / = 1 , , q 

So we have the practical problem of computing the bidimension of a relation To 
that end we will use the equivalence, derived by Doignon et al, between the 
bidimension and the chromatic number of a certain hypergraph (for hypergraphs, 
see Berge, 1973) 

A hypergraph H= < V, £> is a set V of elements called vertices together 
with a collection E of subsets of V, called edges A subset of V is called 
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stable in H iff it includes no edge of H and the chromatic number 
of tf, denoted Chrom Я, is the smallest number q for which there is a 
q-colouring of # , that is, a partition of V into 9 stable sets, the colour 
classes; in other words, in a colouring no edge is "monochromatic." 

We will not consider hypergraphs having singleton edges; in this case the trivial 
partition into one-element classes is a colouring, so the chromatic number is well-
defined and is finite whenever the number of vertices is. 

The definition of the hypcrgraph in question is based on the following 
generalization of the violating case for a biorder: 

An n-alternating cycle of R is a sequence (a,di)"_{\ of elements in R such 
that ai+ , At/, for all /' taken modulo n. 

This definition is ours; Doignon et al. define the corresponding notion as a 
sequence of elements of A and Л, alternately, that "induces" the sequences in R and 
R of the definition above. (The sequence (a, t ,</,) in R is in turn an «-alternating 
cycle of Ä, in reverse order.) Since it is the sequence in R that is important in the 
sequel, we think our definition is more direct. 

So by definition R is a biorder iff R has no 2-alternating cycle, but it follows 
more generally: 

Л is a biorder iiï R has no alternating cycle. 

In terms of the matrix [Л] we see that the existence of, say, a 4-alternating cycle of 
R implies the existence of a 4 x 4 submatrix of [/?J (permutations of rows and 
columns allowed) of the form 

() .ν .ν 1 

.ν .ν 1 0 

where the .v's are arbitrary. 
Now the hypergraph associated with R, which we will, in a slight departure from 

Doignon et al., denote H(R), is defined as follows: 

H(R) is the hypergraph whose vertices are the elements of R and whose 
edges are the alternating cycles of R, interpreted as sets. 

Then we have the promised equivalence 

Bidim Ä = Chrom//(Ä), 

on which our method of finding the bidimension of a relation will be based. 
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3 RFDUCTION Ot THE HYPERGRAPH 

The significance of the equivalence between the bidimension of a relation and the 
chromatic number of the associated hypergraph for the practical purpose of com­
puting the bidimension depends on the extent to which this approach gives way to 
more efficient algorithms By the computational equivalence, established by Cogis 
(1982), of the bidimension problem for an arbitrary relation and the order dimen­
sion problem for a partial order, combined with a result of Yannakakis (1982) for 
the complexity of the latter problem, we know that for к > 2 deciding whether к is 
an upper bound for the bidimension of a given relation is an NP-complete problem 
So we cannot expect to find a theoretically efficient, ι e, polynomial time-bounded 
algorithm The efficiency will, in practice, strongly depend on the size of the input 
Hence, when we translate the problem in terms of finding the chromatic number of 
a hypergraph, it will be of importance to take care that this hypergraph be as small 
as possible To that end we will search for conditions under which we can reduce 
the hypergraph associated with a relation to one having fewer vertices and edges 
but the same, yet unknown, chromatic number 

In order to formulate our principle of reducing the hypergraph, we first need 
some definitions 

3 1 DEFINITION Let < V, E) be a hypergraph For V* ^ V we define E(V*) = 
{UeE Uç V*} So (V*, E(V*)} is the subhypergraph obtained from <K, £> by 
restricting the set of vertices to V* and the set of edges to those included in V* 

Obviously, if Vl <= V2 ç V, then Chrom < К,, E(Vt)y ^ Chrom (V2, Е( 2)У 

3 2 DEFINITION For a hypergraph < V, E} and subsets K, e K2 ç V, let </>, (φ,) 
be a colouring of < V,, £(K,)> (< V2, £(K 2)>) Then <p2 is said to be an extension of 
φ i iff for all €εφι there is С'е^ь with C ç С' 

So extensions to K2 do not break up the classes already formed in K, Note that 
we may obtain non-trivial extensions while K, = Vl by merging different colour 
classes into one new 

3 3 DÉFINITION For a hypergraph H= {V, £> and some V* Ç V, let φ be a 
colouring of < V*, Е( *)У Then Chromv Η is defined to be the chromatic number 
of Η under the restriction to colourings that are extensions of φ 

As can be checked easily from Definition 3 2, the extension relation on colourings 
of subhypergraphs of Η is transitive (in fact, it is a partial order) an extension of 
an extension of some colouring φ is again an extension of φ In this way we see that 
for two colouring φ, and ç»2 0^ subhypergraphs of H, <p2 being an extension of <p, 
implies 

Chrom Ж С Ь г о т ^ , Ж С Ь г о т , ^ Η, 
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simply because, going from left to right in the above inequalities, the minimum is 
taken over a decreasing collection of colourings of H Clearly both inequalities 
may be replaced by equalities iff φ 2 (and thus φ,) can be extended to a minimal 
colouring of Η 

The reduction of the hypcrgraph we are going to consider here is based on the 
following property of a vertex 

3 4 DEFINITION Let Η = (V, E} b e a hypergraph and v, we V Then ν is said 
to be dominated in Η by w iff for any edge U of Η that contains ν the set 
(U — { t } ) u {и } is non-stable in Η 

More generally, for ι e V and Г с V, stable in #, we will say that ν is dominated 
m Η by 7 iff for any edge U of // that contains ν the set (U - {v} ) υ Τ is non-stable 
in Η 

This definition of being dominated is equivalent to saying that whenever adding a 
dominated vertex to a stable set in Η would turn it into a non-stable set, adding the 
dominating vertex (subset) instead would have the same effect 

Now we are ready to formulate, for hypergraphs in general, the following 

3 5 RIIJUCTION PRINCIPI F Let H=(V> £> be a h\pergraph and let ι be an 

element of V that is dominated in Η by another vertex и e У Then an\ tolounng of 
¡I* = < V— {г}, E(V— {v})} (an be extended to a colouring of Η b\ giving ν the 
colour of и 

In particular, Chrom Η = Chrom Η* = Chrom , „ι Η 

The proof of this reduction principle really is immediate from Definition 3 4, but 
we will deduce it from the following more general version 3 5' that makes some 
assumption on the colouring of the subhypergraph The proof of 3 5 will again 
appear to be an easy consequence of Definition 3 4 

3 5' RFDUCTION PRINCIPI F (generalized, conditional version) Let Н=( ,ЕУ 
be a hypergraph and let ν be an element of V that is dominated in H bv some stable 
Г с V— {ν} Then any colouring φ* of H* = < V- {u}, E( V— {u})) that is an 
extension of {7 }, ie , m which Τ is monochromatic, can be extended to a colouring φ 
of Η bv adding ν to the colour class of Τ 

In particular, Chrom v . Η = Chrom,,. Η* = Chrom,, Η 

Proof Any monochromatic edge U of Η induced by adding ν to the colour class 
of Τ in φ* must contain ν and so the set (U- { D } ) U T, which is a subset of 
V— {v}, is monochromatic in φ* However, since υ is dominated by T, this set is 
non-stable and this contradicts the assumption that φ* is a colouring of Η* | 

Proof of 3 5 Put T= {w} and apply 3 5', noting that any colouring of Я * is an 
extension of {{w}} | 

Note that the reduction principle (in both versions) is constructive in the sense 
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that it gives a way to construct a minimal colouring of the greater hypergraph from 
a minimal colouring of the smaller one 

By reduction principle 3 5', a vertex that is dominated by a (disjoint) stable sub­
set of vertices needs no separate consideration in the colouring process of a 
hypergraph, provided that a dominating subset is monochromatic In that case any 
colour that is good for the dominating subset will do for the dominated vertex as 
well As for the chromatic number of the hypergraph, we can split the collection of 
colourings into those in which the dominating subset is monochromatic and those 
in which it is not In finding the chromatic number over the former subcollcction we 
may discard the dominated vertex from the hypergraph The version 3 5 is just the 
special case where there is a singleton dominating subset, being monochromatic in 
any colouring. In this case the dominated vertex can be discarded unconditionally 
In the rest of this paper we will in fact use only this special version, in Section 5 a 
procedure is sketched that allows this restriction, but we may think of alternatives 
for that procedure that use the more general, conditional version 3 5' 

All this is very fine, but from a practical point of view two intrinsically related 
questions naturally arise Will there, in the type of hypergraph defined in the 
preceding section, be any dominated vertices and how are we going to find them'' 
In order to establish that vertex ν is dominated by vertex u, we have, by 
Definition 3 4, to enumerate all edges containing ι, replace ν by и m each such 
edge, and determine whether the resulting set contains an edge This seems like a lot 
of work, even when we use the observation that we need not really check all edges, 
but only those that are minimal ( ie, that do not strictly include another edge), 
which observation by the way introduces the problem of checking whether an edge 
is minimal In our type of hypergraph a vertex will generally be part of many 
(minimal) edges of varying sizes Moreover, this kind of hypergraph is only 
implicitly given in the data matrix its edges are not directly visible, but must be 
detected by completing alternating cycles 

To get an idea of the intricacy of the hypergraphs considered here, suppose we 
have tracked down in our data matrix a minimal 4-edge It must be contained in a 
submatrix as in (2 2) in which all v's are zeros (for otherwise the 4-edge is not 
minimal, as can be checked easily) This means, however, that this submatrix con­
tains not just one minimal 4-edge, but six of them In general, a minimal n-edge 
implies an nxn submatrix with just one 1-entry in each row and each column In 
such a matrix there are in fact (n— 1 )! minimal /i-cdges, more generally, it contains, 
for к = 2,.., η, n]/(n — k)\'k minimal hedges These counts can be justified by noting 
that each such k-edge is determined by the sequence of к 1-entries, used as "step­
ping-stones" in the alternating cycle Clearly there are nl/{n — /c)1 sequences of к out 
of η 1-entries. We have to divide by a factor к because a A-edge is invariant under 
cyclic permutations of the к 1-entries involved The reader may verify that the 
matrix of (2 2) (with r's equal to zero) contains six 4-cdges, eight 3-edges, and six 
2-edges. 

In view of this, prospects for applying the reduction principle 3 5 (or 3 5') seem 
rather poor. Therefore the following proposition is crucial, which states that for this 
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special type of hypergraph, dominated vertices can be found by inspecting 2-edges 
only We first need one more definition 

3 6 DEFINITION We call ad, a*d* e R enemies in R iff ad* ε R and a*de R The 
(simple, unonented) graph of the so defined symmetric enemy relation on R is 
denoted as G(R) 

We see that two elements of R are enemies iff they constitute a 2-edge of H(R), 
which means that they can never be in one colour class of H(R) In the matrix two 
zeros are enemies iff they are the zeros of a 2 χ 2 submatrix as in (2 1 ) The graph 
G{R) is the partial (hyper)graph of H(R), obtained by discarding all edges with 
more than two elements 

For V^R denoting by H(V) the subhypergraph < К, Е(У)У of H(R), we can 
now state 

3 7 PROPOSITION Let R^AxD, F c Ä , ad, a'd'e У Then ad ;т dominated in 
H(V) b\ a'd' if it is dominated m G{R) h\ ad 

We will again deduce Proposition 3 7 from a more general version 3 7 , which is 
in terms of being dominated by a subset of vertices 

3 7' PROPOSITION Let R^AxD, V<^R, adel·, und T^V, stuhle in H(l ) 
Then ad a dominated in H{ V) h\ Τ ι/ it /τ dominated m G(R) b\ Τ 

Proof let (/ be an edge of H(V) containing ad, I = {ad, axd,t ,a„d„}, say, 
where the ordering of the elements corresponds to the underlying alternating cycle 
In order to show that (Í/— ¡ж/}) и Г contains an edge of H( V) if 7 dominates ad 
in G(R), we consider the pair a^l,, If it is m R, the subset ¡«,ί/,, ,a„d„} = 
U— {ad) is an edge of H( V) and we are finished If a[dn is in R, then ad and a,dn 

are enemies in R Since Τ dominates ad in G(R), Γ и {«,</„} contains an edge of 
G(R), which means that a^d,, has some enemy a*d* in Τ This, however, implies 
that {a*d*, «,ί/,, , a„d„) s (U- {ad})и Τ is an edge of tf( V) | 

Proof of 11 Put T= {a'd'} and apply 3 7' | 

By Propositions 3 7 and 3 7' we may, when applying 3 5, resp 3 5', to 
(sub)hypergraphs of our special type, replace the phrase "dominated in H" by 
"dominated in С7(Л)" The fact that a vertex ad is dominated in G{R) by a'd' simply 
means that any enemy of ad in R is an enemy of a'd' as well, likewise, ad being 
dominated in G(R) by a subset Τ means that any enemy of ad in R has an enemy in 
Τ So questions concerning being dominated in G(R) can easily be settled from 
inspection of the tableau of the binary enemy relation on R In this way, finding 
dominated vertices is in some sense reduced to inspecting 2-edges only Notice, 
however, the appearance of G(R) in 3 7 and 3 7' instead of the perhaps more expec­
ted G(V) (with the obvious meaning for this notation) While it is clear that being 
dominated in G(V) is necessary for being dominated in H(V) (G(V) being a partial 
hypergraph of H(V)), it is not sufficient The reason for this can be seen in the 
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proof of 3.7': there we call on a pair a, dn that, in the non-trivial case, is in R, but in 
no way needs to be in V. On the other hand, being dominated in G(R), while suf­
ficient, is not necessary for being dominated in H( V): there is no "only if" in 3.7 or 
3.7'. This means that by applying 3.7 or 3.7' we may not detect all dominated ver­
tices in H( V). The danger of missing some dominated vertices certainly depends on 
the discrepancy between the sufficient G(R) and the necessary G'( V), that is, the dis­
crepancy between У and R. (In case V=R we trivially do have "only ifs" in 3.7 
and 3.7'.) In this respect it is important to realize that whenever Kç/1 'xZ) ' for 
some А' я A,_p' я D, then KçA ' , where R' is the restriction of R to /Tx-D', and 
we may use R' instead of R in 3.7 and 3.7'. 

There is an important special application of Proposition 3.7 in which dominated 
vertices can be detected from inspection of the data matrix itself, that is, without 
even explicitly considering the enemy relation on the vertices (the zeros in the 
matrix). For this special kind of dominated vertices there is, moreover, some 
intuitive justification that indeed they have no bearing on the dimensionality of a 
representation of a relation R according to the conjunctive model. The subset of 
vertices in question can best be characterized in terms of the data matrix [Л], in 
which we need to find a colouring for all zeros. 

Consider two ordered patterns, of persons a, and a, say; assume [/?],.< [Л],.. 
Because of this ordering, in any column in which [Л],. has a zero, [/?],. has one, 
too. Let к be such a column and let ίί,ί/; and a*d* be enemies. Then we know that 
a*dk e R and a^d* e Ä; by the ordering the latter implies a,d* e R and together with 
the assumption а^к e R it follows that а^к and a*d* are enemies. So, by 
Proposition 3.7, the vertex а^к is dominated in H(R) by а^к. 

There is a completely analogous version for the case of two ordered column pat­
terns. From this we see that in a pattern we have left to be coloured only those 
zeros for which there is no higher-ordered pattern with a zero in the same position. 
A direct consequence is that in determining the bidimension, a pattern in which all 
occuring zeros can be "explained" in this way, that is, a pattern that is the con­
junction of a number of higher-ordered patterns, can be discarded altogether. 
Intuitively one might feel that such a pattern does not offer any new information 
regarding the multidimensional representation. Suppose, for instance, we have a 
representation for two persons, one of which failed on item 1 only, the other on 
item 2 only. Then, precisely because we work in the conjunctive model, there must 
already be in that representation a place for a person failing on just the items 1 and 
2. According to the conjunctive model the (possible) occurrence of the last pattern 
is, actually, implied by the occurrence of the first two. Again there is an analogous 
intuitive argument with the roles of persons and items reversed. Patterns, rows or 
columns, that for this reason can be removed from the data matrix will be called 
implied patterns. Separate zeros that, in the sense defined above, can be explained 
by a zero a in a higher-ordered pattern will be called implied zeros. Note that 
repetitions in the data matrix of one and the same pattern constitute a special, 
trivial case of implied patterns. So, such repetitions can be discarded without 
changing the bidimension, a fact that is intuitively self-evident. 
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Although it is quite easy to present data matrices in which reduction of the 
hypergraph according to 3 5 and 3 7 has no effect at all, the special case of implied 
zeros shows that under rather mild conditions (occurrence of ordered rows or 
columns in the data matrix) the associated hypergraph is bound to contain 
dominated vertices On the other hand, because the conjunctive model predicts in 
some sense, their occurrence, as we have seen above, the amount of implied zeros in 
a data matrix may be considered as some sort of measure of confirming evidence 
for the conjunctive model as the operative one in producing the data 

There exist, as was pointed out by Doignon (personal communication), close 
connections between the notions of implied patterns and implied zeros and the 
work of Chubb (1986) and Trotter (1983), respectively 

In fact, the special application of Proposition 3 7 consisting of removing implied 
rows and columns gives exactly the restriction of R as described by Chubb Our 
non-implied rows (columns) constitute his minimal row (column) n-generatmg set 
and the corresponding restriction of R is its so-called n-core We see that by the 
present reduction we can, in addition, "remove" separate zeros and by fully using 
Proposition 3 7 this may well be more zeros than just the implied ones In par­
ticular this means that we may, possibly, remove more rows or columns, thereby 
obtaining a still smaller "core" of R 

In the special case where D = A and the relation R is a (reflexive) partial order 
on A, its bidimension equals its order dimension (Doignon el al, 1984) and then 
the non-implicd zeros correspond exactly to the "non-forced pairs," the subset of 
incomparable pairs of R on which Trotter (1983) defines his hypergraph It can be 
shown that in this case all dominated zeros are implied zeros and in this way 
Proposition 3 7 (together with 3 5) is equivalent to a result of Maurer, Rabinovitch, 
and Trotter (1980), implying that for the dimension of a partial order consideration 
can be confined to the set of non-forced pairs In the description of the implied 
zeros above we have seen a way to find this set 

4 AN ILLUSTRATION OP THI RFDUCTION PROCI SS 

Here we will demonstrate the potential significance of the reduction of a 
hypergraph according to Proposition 3 7 We will use a data set from Chubb (1986) 
that originates, in turn, from data of Stouffer et al (1950) on six polytome items 
administered to a set of American World War II GI's and intended to assess their 
"readiness to enter into battle " By appropriately dichotomizing the responses 
Chubb obtained the data matrix of Table 4 1(a), where capitals A to F denote the 
six items and the rows represent the observed response patterns Of course, the 
response patterns occurred with varying frequencies, but for a deterministic analysis 
of the data these frequencies are irrelevant and it suffices to consider the reduced 
data matrix without duplicate rows or columns (When searching for approximate 
representations of the data in a lower dimensionality it is natural to take the fre­
quencies into account ) 
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TABLE 4 1 

(a) Data Matrix Ггот Chubb (* Indicates a Row-Implied Zero Non-Implied Rows Are Numbered), 
(b) Submatrix of Non-Implied Patterns ( · for an Implied Zero) 

В 

1 
0 
1 
1 
1 
1 

* 

с 
0 
1 
1 
1 
1 

* 
* 

D 

1 
I 
1 
1 
0 
0 
1 

E 

0 
0 

F 

I 
1 
1 
0 
1 
1 

* 

A В 

(1) 
(2) 
(3) ( 
(4) -
(5) -

(6) 

(7) • 

1 
1 
0 

) 1 
. 1 
> 1 
¥ * 

* 
* 
• 
1 
1 

к * 

* * 
Ν 1 

t * 

к * 

к Φ 

С 

I 
0 

* 
1 

* 
* 
* 
1 

* 
* 
* 
* 
* 

D 

I 
1 
1 
1 
1 
0 
1 
1 

* 
1 

* 
0 

* 
* 
* 
* 
1 

• 

In Fable 4 1(d) wc have already indicated which zeros are row-implied a "*" 
denotes a zero for which there is a non-implied zero, denoted as "0," in the same 
column in some higher-ordered pattern (i e, higher in the partial order on the rows 
of the matrix) By the special application of Proposition 3 7 discussed in the 
preceding section we may confine our attention to the subset of non-implied rows 
These are numbered in Table 4 1(a) and the corresponding submatrix is given 
separately in Table 4 1(b) There arc no extra column-implied zeros only one row 
(6) has more than one "living" zero, but the corresponding columns (D and £) are 
unordered So here ends the special application of Proposition 3 7 consisting of 
removing implied zeros from the hypergraph, and the submatrix of Table 4 1(b) 
(without the distinction between implied and non-implied zeros) is the "core," the 
restriction that is obtained by Chubb 

In order to fully use Proposition 3 7 we now consider the enemy relation between 
the vertices of the reduced hypergraph (the non-implied zeros) and those of the full 
hypergraph (all zeros in Table 41(b)) This enemy relation is represented in the 
8x15 matrix of Table 4 2(a), where l-entnes indicate that the vertices in the 
corresponding row and column constitute a 2-edge Wc see that the vertex ЗА is 
dominated by 4F, 6£' is dominated by 1С, and IE by 4F (for instance) In 
Table 4 2(a) the rows of dominated vertices are starred and by Proposition 3 7 the 
problem reduces to the situation in Table 4 2(b) There we see that this reduction 
has turned the vertex 6D into a dominated one and its removal leads us to the 
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TABLE 4.2 

(a) Enemy Relation for Ihc Hypergraph of Tabic 4 1(b) (Starred Rows Indicate Dominated Vertices); 
(b) Resulting Submatnx and Enemy Relation after Removing Dominated Vertices, 

(c) Final Reduction 

(a) 1С 2Д 1A 4l· SD 6D 6£ 7£ 4A SA 6C 7A 7Я 7Г 7F 

If' 1 1 
2B 1 1 
3.4 1 1 
4F 1 1 
5D 1 1 
(,Ρ 1 1 
6£ 1 1 
IE 

(b) f' D 

1 
2 
4 
5 
6 

1 
0 
1 
1 
1 

0 
1 
1 
1 

* 

1 
1 
1 
0 
0 

1 
1 
0 
1 
1 

1С 
2B 
4F 
5/5 

•6D 

1С 2B 4F SD bD 6C 

(c) 

1 
2 

4 
5 

1 
0 
1 
1 

0 
1 
1 
1 

1 
1 
1 
0 

1 
1 
0 
1 

1С 
2B 
4 F 
SD 

1С 2B 4F SD 

hypergraph consisting of four vertices and the 4 x 4 submatrix of Table 4.2(c). In 
fact, here reduced and full hypergraphs are the same and after inspecting the enemy 
relation on its vertices wc see that now Proposition 3.7 has spent itself: there are no 
more dominated vertices. But in this case, there is no more problem, either! For we 
have shown that the chromatic number of the full hypergraph corresponding to 
Table 4.1(a) is equal to the chromatic number of the subhypcrgraph consisting of 
the four vertices that are present in Table 4.2(c). But from Table 4.2(c) it is clear 
that no two of these vertices can have the same colour: they arc all mutual enemies. 
So we will need exactly four colours and we may conclude that the bidimension of 
the original data matrix equals 4. 

This means that the relation underlying the data matrix can be represented as the 
intersection of four biorders. But these biorders are by no means unique: many 
collections of four biorders have the given relation as their intersection. In other 
words, there are many different collections of four dimensions (Guttman scales) 
that are, under the conjunctive composition rule, compatible with the observed 
data matrix. By inspecting the content of the four items present in Tabic 4.2(c), 
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Chubb manages to attach a verbal label to each dimension on which one of these 
items scores highest and to construct four dimensions that reflect reasonably well 
the interpretation suggested by these labels There is, however, definitely some 
arbitrariness involved here, which seems inevitable when embedding six items in 4-
dimensional space on the basis of binary data Generally, representations in the 
minimum dimensionality will be far from unique and we clearly see the need for 
"best approximate" representations in some lower dimensionality with a higher 
degree of uniqueness (Of course, of greatest help would be a strong psychological 
theory about the data that allows focusing on specific aspects in the collection of 
representations.) 

Returning to our more basic problem of finding the dimensionality of the obser­
ved data, we see that by applying Proposition 3 7 we were able to reduce from a 
hypergraph with 51 vertices based on a 18x6 matrix to one with four vertices 
based on a 4 χ 4 matrix This shows the potential power of the reduction principle 
described in the preceding section Here we were very lucky indeed, in general, 
however, there will be a non-trivial problem left when no more reduction is 
possible. In the next section we discuss a possible approach in that case. This 
approach will then be illustrated in Section 6, using another data set There, again, 
we will make use of Proposition 3 7 whenever we can Its effects will not be as 
dramatic as was the case here, but it still will turn out to be very useful 

5 A RFCURSION FORMUIA FOR FHF CHROMATIC NUMBÍR 

With all possible reductions carried out, there will come a moment when the real 
work has got to start The problem's being NP-complcte suggests that at such a 
point some sort of exhaustive search will be inevitable We will describe here some 
such search in which we use the notion of a maximal stähle set in a hypergraph, 
that is, a stable set that is not contained in any other stable set 

Por maximal stable sets in an arbitrary hypergraph we can establish the 
following properties· 

5 1 PROPOSITION (I) For anv vertex ν oí a hypergraph Η there is a minimal 
colouring of Η in which the colour class of ν is maximal 

(n) For any maximal stable set M m a hxpergraph < V, ¿'> iw have 
Chrom | м ; < V, £> = 1 + Chrom < V- M, E(V- Л/)> 

Proof, (ι) Let С be the colour class of ν in a minimal colouring of Η If there is 
a vertex и·, not in C, such that С и {и} still is stable in /ƒ, then the transfer of и to 
С clearly gives a colouring of Η without introducing new colours This process can 
be repeated until there are no more candidates, that is, until the class of r is 
maximal 

(и ) Because M is stable, any (q — 1 )-colouring of < V — M, E( V — M) > can be 
extended to a ^-colouring of < V, £> by adding M as a colour class. This proves 
C h r o m ^ j (V, £> ζ 1 +Chrom (V-M, E(V- Λ/)>. For the reverse inequality, 
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consider a ^-colouring of < V, £> in which M is monochromatic Then A/, being 
maximal, must itself be a colour class and we are in fact given a (q — 1 )-colouring of 
<K-M, Е( -М)У | 

From these properties we easily obtain 

5 2 COROLLARY For any vertex ν of a hypergraph < V, E} we have 

Chrom <K, ¿> = 1 + min {Chrom < V- M, E(V - Λ/)>}, 
Λ/e ΜΑΧ(ι ) 

vvAm' MAX(u) denotes the collection of maximal stable sets in < V, £> containing the 
vertex υ 

Proof By Proposition 5 l(i), Chrom < (/,£'> = m i n M £ M A X ( , ) {Chrom{M)(V,E)} 
and applying Proposition 5 l(ii) completes the proof | 

We see that Corollary 5 2 gives a recursive formula for the chromatic number of 
a hypergraph in terms of the chromatic numbers of a collection of strictly smaller 
hypergraphs So, when applied to the finite, special type of hypergraph that turns 
up in the bidimension problem, this recursion will give the chromatic number and 
thereby the bidimension in a finite number of steps The big question, of course, is 
whether computation of the bidimension according to this recursion will be feasible 
in practice In this context it is worth noting some additional properties of maximal 
stable sets in a hypergraph associated with a relation 

5 3 PROPOSITION For R^AxD the following tno ргорегчеч hold 

(i) An\ maximal stable set m H(R) is a biorder between A and D 

(n) If M is a maximal stable set m H(R), then for some aaeA, A n 
({«0} x Z ) ) s M and for some d0e D, Rn(A ж {d0})çM 

Proof (ι) (Also in Doignon et al, 1984, ρ 95 ) Let Μ be a maximal stable set 
in H(R) and suppose M has a violation of the biorder property ad, bee M and ae, 
bde M We are going to derive a contradiction by showing that M must contain an 
edge of H(R) If both ae and bd are in R, then M contains the 2-edge {ad, be} If 
one, say ae, is in R and the other, bd, is in R, then by maximality of M there is an 
edge included in Mu{bd}, which of course contains the vertex bd Let bd, 
α,ί/,, ,and„ be the corresponding alternating cycle, then the sequence be, ad, 
aid,, , a„d„ is an alternating cycle in M If, eventually, both ae and bd are in R, 
then, by the same argument, there are alternating cycles Ы, α,ί/,, ,and„ and ae, 
a\d\, ,a'md'm in M u {bd} and Λ/υ {ae}, respectively But then the sequence ad, 
a,dx, , a„d„, be, a\d\, , a'md'm is an alternating cycle in M 

(и) Consider two elements a,, a, in A If there are </,, d7eD such that 
α,ί/, e M and α , ^ e Λ?, while я ^ ε Λ/ and α , ^ e Λ/> then M certainly is no biorder 
So if M is a maximal stable set in H(R) it is, by part (i), a biorder between A and 
D, consequently for any pair a,, Oj we have either α,ί/e M implies α,ί/e M for all 
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ds D, от ûjde M implies α,¿e M for all de D. In this way M induces a weak order­
ing on A (transitivity is easily checked) and since A is finite we can find an element 
a0 in A that is maximal in this ordering, ι е., for which for any a' e A and any de D, 
a'deM implies a0deM. We will show A n ({a0} χ D)^M for this a0 by showing 
that the set M u (An ({α0} χ D)) is a biorder, which is an equivalent assertion 
since M is maximal If M и (R η ({au} x D)) is not a biorder, then, since M itself is, 
any violation of the biorder property must involve the element a0 In particular 
there must then be a' e A and d'e D such that ad' is in M u ( Л п ( { а 0 } χ D)) and 
α0ί/' is not The former, however, implies a'd'eM (a0 and a' clearly being distinct) 
and thus, by our choice of a0, a0d'e M £ M u ( A n ({a0} χ D)), a contradiction 
The proof of the other half of (и), with the roles of A and D reversed, is completely 
analogous | 

In terms of the data matrix, Proposition 5 3(i) states that a maximal stable set of 
zeros has triangular structure in the matrix In this perspective 5 3(ii) really is 
obvious, it asserts that in a row (column) that contains, compared to other rows 
(columns), a maximal number of elements of the set in question, all zeros belong to 
the set. If not, they could be added without disturbing the triangular structure (ι е., 
biorderhood) of the set, which consequently would not have been maximal 

Corollary 5 2 poses the problem of finding the relevant collection of maximal 
stable sets We want to use the corollary for subhypcrgraphs H{V), obtained after 
maximally reducing a hypergraph H{R) If R' is the smallest restriction of R that 
contains V, we may apply Corollary 5 2 to the hypergraph //(/?'), in which case 
Proposition 5 3(i) gives a translation in terms of maximal biorders contained m R' 
and containing some specified vertex When applying the corollary to the reduced 
hypergraph H{ V) itself, this equivalence may still be useful if we notice that any 
maximal stable set in H( V) is the restriction to У of some maximal stable set in 
H(R') 

Obviously, the amount of work implied by the recursion formula in 5 2 will 
depend on the reduction obtained before invoking it, but we must realize that at 
that moment the reduction .ocess of Section 3 is not simply set aside Rather, at 
each step of the recursion, by deleting a maximal stable set from the hypergraph 
under consideration, we get not only a strictly smaller hypergraph, but also one 
that is again susceptible of reduction The removal of a maximal stable set of H( V) 
leads to the removal of at least one row and one column from the underlying 
matrix, any maximal stable set of H(V) is the restriction to V of some maximal 
stable set of H(R'), and by Proposition 5 3(ii) the latter "includes" at least one 
column and one row of [Ä ' ] . So, in general, before applying the next step in the 
recursion, we can further shrink the hypergraph and possibly also the submatnx 
that il is based on. 

Further remarks on the question of turning the results of this section and Sec­
tion 3 into a reasonably practical algorithm will be made in the last section 
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6. EXAMPI.F OF FINDING THE BIDIMENSION ON EMPIRICAL DATA 

Here we will show how the findings of Sections 3 and 5 can be combined to com­
pute the bidimension of an empirical data matrix. The data set we use is borrowed 
from Marcovici (1981, p. 122). The context is a signal-detection experiment with 
several conditions of induced colour-blindness. The obtained data matrix is 
reproduced in Tabic 6.1(a). Columns refer to figures to be detected and rows of the 
matrix correspond to subject χ condition combinations (there were 3 subjects and 7 
conditions). Since our only objective here is to compute the dimensionality of this 
data matrix, we will in the sequel pay no attention to its construction and inter­
pretation; it will simply be considered a given 21 χ 10 (0, l)-matrix. 

We will compute the bidimension of the data matrix as the chromatic number of 
its associated hypcrgraph and we will start therefore by reducing this hypergraph as 
much as possible according to Proposition 3.7. In Table 6.1(a) we have already 

TABLE 6.1 

(a) Data Matrix from Marcovici (1981) (* Indicates a Row-Implied Zero, Non-Implied Row Patterns 

are Numbered), (b) Matrix of Non-Implied Row Patterns (Fxtra Column-Implied Zeros Found, Here 

Marked by an Underscore), (c) Further Rcduclion by Removal of Implied Column Patterns (All 

Implied Zeros Are Delected and Displayed as *) 

(a) А В С D t. F С, H 1 J (b) A B C D E F Ü H I J 
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(7) 
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indicated which zeros in the matrix are row-implied and we see that we can restrict 
our attention to the 11 χ 10 submatnx in Table 6.1(b) Finding here some new 
column-implied zeros we obtain the 11x9 matrix of Table 6.1(c). 

Next, to further exploit Proposition 3.7, we consider the enemy relation in this 
submatpx for the 15 vertices of the reduced hypergraph This relation is represented 
in Table 6.2(a), where, in order to save space, enemies that are no longer contained 
in the hypergraph are given in listed form Inspecting the partial order on the rows 
we find 5 dominated vertices and the data matrix reduces to that of Table 6 2(b). 
The tableau of the corresponding enemy relation reveals another 3 dominated ver­
tices and wc can further reduce to the situation of Table 6.2(c). Inspection shows 
that now there are no more dominated vertices and so the reduction process stops 
here 

Proposition 3 7 has enabled us to reduce the original hypergraph containing 82 
vertices and based on a 16 χ 10 matrix (not counting perfect one- or zero-patterns) 
to one having 7 vertices and based on a 7 χ 6 matrix But in this case we are still left 
with a problem From inspection of Table 6 2(c) it is not at all clear which value 
the chromatic number of the resulting hypergraph has So we have to invoke 
Corollary 5 2, that is, we have to choose a vertex of the reduced hypergraph, 
generate all maximal stable sets in the reduced hypergraph that contain the chosen 
vertex, and compute successively the chromatic number of the hypergraphs 
obtained by removing each such maximal stable set from the reduced hypergraph. 
The chromatic number we are searching for will be the minimum over this set of 
numbers, increased by one 

We choose, for instance, the vertex ЗА From Table 6 2(c) wc sec that there arc 
only two vertices, 2D and 7A, which are not enemies of ІА Since 2D and 7/4, on 
their turn, are mutual enemies, it is clear that there are just two maximal stable sets 
in the reduced hypergraph that contain the vertex ЗА, {ЗА, 2D} and {ЗА, ΙΑ ] So, 
first wc will remove the vertices ЗА and 2D from the reduced hypergraph The 
resultant submatnx and its enemy relation are displayed in Table 6 3(a). 

The important point to be noticed is that, by removing a maximal stable set from 
the reduced hypergraph, at least one row and one column can be removed from the 
data matrix and we get a hypergraph in which, again, some vertices may be 
dominated ones So we see in Table 6 3(a) that we may remove vertex 8//, next in 
Table 6.3(b) 7A may be discarded, and as a result we are left with the three vertices 
in the 3 x 3 matrix of Table 6 3(c). These vertices, all being mutual enemies, clearly 
need three dilTerent colours. An alternative way of putting this is that any vertex in 
Table 6 3(c) constitutes a maximal stable set by itself and so, by repeatedly 
applying Corollary 5.2, we can remove the vertices one after the other, each time 
increasing the chromatic number by one, until there are no more vertices left 
Anyway, the conclusion is the same: if the vertices ЗА and 2D are to have the same 
colour, we need four colours for the hypergraph represented in Table 6 2(c). 

Now we can do the same, taking {ЗА, 7A} as the maximal stable set to start 
with The results of this choice are given in Table 6 4. 

Apparently we must conclude· if the vertices ЗА and 7A are to have the same 
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TABLE 6 2 

(a) F.ncmy Relation for the Hypergraph of Tabic 6 1(c) (Removed Enemies Are Listed, Dominated 
Rows Are Starred), (b). (c) Further Reductions until No More Dominated Vertices Appear 

(a) 1/· 20 1/4 4У 5C' 6/ ΊΑ 7Γ 7(7 8C 8// 8/ 9H 10B 11W 

IF 1 
2D 1 
.1/1 1 

4У 1 
5C 
6/ 

ΊΑ 1 
7Γ 1 
7(; 1 
8C 1 
8W 1 
HI 1 

9H 
\0B 
IIH 

I I 1 

I I 

1 1 
I I I 

1 I I 1 I I 
I 1 I 

I I 1 

I I 

I I 

1 1 

.ID 
. 4F,TF^J,bF.iG ij 

1 4F, 5f, bF, 8F, 8C, 8Λ 
9F, 90, 91, 9J 

3D, 5D, 6D 
1 9G, 91, 9J 

1 1 7Λ l(M. IOC, IOC 
IM, ИВ, ПС, 

1 5D, 60, 9D, 9/ 
1 3D, 6D, 9D, 9/ 

3D, 5D, 6D 
ID, 6D, 9D 

1 3D, 5D, 6D, 10/4, 
1 3D, 5D, 6D, 10/Í, 

IM, IIA HD 
1 10/4, ЮС 

1 91 

, ЮЛ 
ПС, \\J 

lOD 
lOD, 

(b) А С I) Il I J 2D 3/4 4У 5C 6/ ΊΑ 7C 8C 8// 8/ 

2 

3 
4 

5 
6 
7 

8 

1 1 
0 1 

1 1 
1 0 

1 1 
0 0 
1 0 

1 1 1 
1 1 1 
1 1 0 

1 1 1 
1 0 1 
1 1 » 
0 0 . 

2D 1 

3/1 . 1 1 
AJ 1 1 . 1 

5C . 1 1 . 
6/ 1 1 1 
ΊΑ 1 

• 7C ! . . 
.8C 1 1 

8Я 1 1 
. 8 / 1 1 

1 1 1 1 

1 I 

I 1 

1 7Л 
1 8У 
. 3D. 

. ΊJ 

1 5D. 
• 3D, 
. 3D, 

HJ 

SD.bD 

6D 
6D 
6D 

. 3D.5D.6D 
3D, 5D 

(c) 

2 
3 
4 

5 
6 
7 

A 

1 
0 
1 

1 
1 

0 

с 
1 
1 
1 
0 
1 

* 

D H 1 J 

O l l i 
* 1 1 1 
1 1 1 0 
» 1 1 I 
• 1 0 1 
1 1 1 . 

8 1 1 0 

2D 
3/4 
4У 
5C 
6/ 
ΊΑ 

Н 

2D 3/1 4У 5C 6/ ΊΑ %H 

1 7C, ΊJ, 8C, 8/, 87 
1 8C, 8/, bJ 

3D, 5D, 6D 

. 7C, 7У 
1 5D, 6D, 8/ 
. 3D, 5D, 6D 



50 CHAPTERS 

TABLE 6 3 

(a) Data Matrix and Corresponding Enemy Relation after Removing Vertices ІА and 2D from 
Hypergraph of Table 6 2(c), (b), (c) Reductions by Removing Dominated Vertices 

(a) 

(b) 

H 

4 
5 
6 
7 
8 

1 
1 
1 
0 
1 

1 
0 
1 
* 
* 

1 
1 
1 
1 
0 

1 
1 
0 
1 

* 

0 
1 
1 
* 
* 

с / 
4 
5 
6 
7 

I 
1 
1 
0 

1 
0 
1 
φ 

I 
1 
0 
1 

0 
1 
1 

* 

4J SC 61 ΊΑ W 

4У 
5C 
6/ 
1A 

*SH 

47 
5C 
6/ 

.7/1 

1 
1 

47 

1 
1 

1 

1 

SC 

1 

1 

1 
1 

1 

6/ 

1 
1 

1 

1 

1 

7/1 

1 

— 

7C, 7У 
1 8/ 

— 

— 
— 
7 C 7У 

— 

(c) 

4 
5 
6 

1 
0 
1 

1 
1 
0 

0 
1 
1 

4J 5C 6/ 

47 
5C 1 
6/ I 

TABLE 6 4 

(a) Data Matrix and Corresponding I-nemy Relation after Removing Vertices ÌA and ΊΑ from 
Hypergraph of Table 6 2(c), (b), (c) Reductions by Removing Dominated Vertices 

(a) 

(b) 

(c) 

Ρ Η 

2 
4 
5 
6 
8 

1 
1 
0 
1 

* 

0 
1 

* 
* 
1 

1 
1 
1 
I 
0 

1 
1 
1 
0 

* 

1 
0 
1 
1 

* 

2 
4 
5 
6 

4 
5 
6 

1 
1 
0 

1 

с 
1 
0 
1 

0 
1 

* 
* 

/ 
I 
1 
0 

1 
1 
1 
0 

7 

0 
1 
1 

1 
0 
1 
1 

2D 47 5C 6/ 8// 

2D 1 I 8C, 8/. 87 
47 1 I I 50, 6D 
SC 1 1 — 

6/ I I 
*8// I 5D. 6fl 

2D 47 5C' 6/ 

*2D 1 
47 I I I 5D, 60 
5C 1 Ι ­
ό/ 1 1 

47 
5C 
6/ 

47 

1 
1 

5C' 

1 

1 

6/ 

1 — 
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colour, we need four colours for the hypergraph of Table 6.2(c). By Corollary 5.2, 
the chromatic number of this hypergraph is the minimum of the values obtained 
from these two computations and, by Proposition 3.7 and the reduction principle 
3 5, this number equals the chromatic number of the hypergraph in Table 6.1(a) we 
started with. By the fundamental theorem of Doignon el al., then, we may conclude 
that the bidimension of the original data matrix equals 4. 

7 DISCUSSION 

We have seen that determining the dimensionality needed for the representation 
of a data matrix according to the conjunctive model is, in general, a hard, indeed 
an NP-hard problem, whereas from a casual inspection of Coombs' (1964) example 
it first appeared to be an automatically obtained by-product of a constructive scal­
ing procedure On the basis of the equivalence, given by Doignon et al, between 
this bidimension and the chromatic number of a certain hypergraph, we have 
gathered in Sections 3 and 5 some results which seem to make compulation of the 
bidimension feasible in practice, at least for data sets of moderate size (As we have 
seen, the computations of Sections 4 and 6 were rather easily carried oui with paper 
and pencil.) So the first thing to do is to combine these findings in an explicit, 
reasonably efficient algorithm As for the reduction process, this does nol seem lo 
offer many problems· it is already rather explicitly described and illustrated in Sec­
tion 3 and in the examples of Sections 4 and 6. 

The recursion formula of Corollary 5 2 will need more consideration It poses the 
problem of computing the collection of all maximal stable sets containing a certain 
vertex In the example of the preceding section this problem was easily solved "by 
inspection," but the general case will be NP-hard (Without appealing to any reduc­
tion mechanism, (he recursion still solves the NP-hard problem of finding Ihe 
bidimension ) So it will be important to devise a practical algorithm for this sub-
problem and Proposition 5.3(i) may turn out to be useful in this context At least as 
important, however, will be trying to avoid needless exhaustive execution of Ihis 
algorithm. Returning, for instance, to our example in the preceding section, we can 
see that consideration of the second computation, based on the maximal stable set 
{3/1, 7/1 ¡, was in fact pointless For, as a result of the first computation, we had 
established 4 as an upper bound for Ihe chromatic number. In this computation, 
however, the vertices 3/1, 47, 5C and 61 were put in different maximal stable sets 
and in Table 6.2(c) we can easily check that these four vertices are all mutual 
enemies (they are said to form a 4-clique in G(R)). So in any colouring they must 
have different colours and this establishes 4 as a lower bound and thereby solves 
the problem. 

In general, then, we may use the sequence of maximal stable sets formed in a 
computation for detecting maximal such cliques from the last set backwards. In this 
way the search tree induced by the recursion formula of Corollary 5.2 may be 
pruned considerably. Suppose, for instance, we have a "solution" in five maximal 
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stable sets and suppose we have traced a 3-clique of enemies in the sets at the last 
three levels Then we know that, given our present choice of the maximal stable set 
at level 2, we can, at the next levels, do not better than we did Hence we need not 
consider any alternative choices at the levels 5, 4, or 3, instead we may backtrack to 
the next alternative at the second level We can, moreover, try to exploit the 
freedom we have in choosing a vertex in Corollary 5 2 in order to keep the 
branching of this tree to a minimum in the first place Hcunstically it seems 
reasonable to choose a vertex with a maximum number of enemies in the sub-
hypergraph in question, expecting such a vertex to have a minimum number of 
"surrounding" maximal stable sets We must remark, after all this, that application 
of Corollary 5 2 is just one possible way of tackling the problem Alternative and 
possibly more efficient procedures may exist, waiting to be developed 

Just computing the dimensionality of a representation will not be very useful, 
however What we really want are the very representations This presents the 
second problem alluded to in the introduction, that of uniqueness of solutions 

It may be noticed that the manner of determining the bidimension of a relation R 
as sketched in the previous sections is constructive in the sense that it is easy to 
derive from the computations at least one possible representation of R in the 
minimum dimensionality, i c , we can construct at least one minimal collection of 
biorders having R as their intersection For the bidimension is found by completing 
sequences of alternately reducing a hypergraph to a subhypergraph of non-
dominated vertices and removing from this subhypergraph a maximal stable set, 
starting with the original hypergraph H(R) and ending when there are no more ver­
tices left At the moment the bidimension is known, wc have executed at least one 
such compulation that annihilates H{R) in a minimal number of steps In such a 
computation any removed dominated vertex has left a dominating vertex in the 
subhypergraph as a representative, so ultimately any vertex has a representative in 
one of the maximal stable sets of this sequence Hence by adding each removed 
dominated vertex to a set containing a representative for it, we obtain a minimal 
colouring of the original hypergraph Now, from a ^-colouring of H(R) we can 
derive at least one representation of R as the intersection of q biorders consider for 
each colour class the collection of biorders contained in R and containing that class 
This collection is non-empty, since any colour class can be expanded to a maximal 
stable set and these are biorders by Proposition 5 3(i) Clearly any combination of 
such biorder extensions of the different colour classes covers R, hence the intersec­
tion of the complementary biorders is R In this way one can find some of the 
generally many distinct representations in the minimum dimensionality If one 
should really want to have them all, the only way seems to be an—in prin­
ciple—exhaustive trial of all combinations of Bidim R biorders containing R (or 
their complements contained in R) 

For interpretative purposes we may think of a reasonable reduction of the uni­
queness problem in that we do not want all representations of R, but only those in 
which the biorders are minimal Suppose R= η В, for biorders B, (/= 1, , q) Now 
for each ; we can choose a biorder B', s В, that still includes R and that is minimal 
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in this respect Then still R = η В', and we may prefer the latter representation 
because "each B, is more like R then B, is" (B', — R is a subset of B, — R) In terms 
of matrices, a biorder corresponds to a (0, 1 )-matrix having triangular structure 
that represents the hypothetical data matrix on one of the latent dimensions Thus, 
writing R as the intersection of a number of borders is equivalent to writing [/?] as 
the direct logical product of the same number of matrices having triangular struc­
ture Now the restriction to representations in minimal borders amounts to the fact 
that if we have a 0 in the observed data matrix, then we assume a 0 in the 
corresponding position in each hypothetical factor matrix, unless the triangular 
structure of that matrix forces a 1 To give an extreme example, if an observed 0 
can be "explained" by 0's m all dimensions we are not going to explain it by a 0 in 
one dimension and I's in all other dimensions If both representations are possible, 
one can argue that the former is more likely (Another possible restriction, one that 
would be less severe, is to representations that are "obedient" as defined by Chubb 
(personal correspondence) Among other things this means restriction to biorders 
that arc compatible with the partial orders on the rows and columns of the data 
matrix ) 

If we restrict the class of solutions for R to the set of all representations in 
minimal biorders, then, in the procedure sketched above for obtaining some 
representations from a minimal colouring of H(R), we need only consider expan­
sions of the colour classes to maximal stable sets By taking complements we obtain 
from such a collection a representation of R in minimal biorders 

bven with the above restrictions in mind we may expect that in some cases 
finding all solutions is not practically feasible More important, however, are the 
theoretical problems posed by the occurrence of multiple solutions Can we single 
out any one from these as "the right one" 9 If we can appeal to some psychological 
theory underlying the data this could be possible For cases in which this does not 
apply we can try to find a formal rationale to grade the various solutions, thus 
obtaining a "best one " Another approach could be trying to capture in some 
explicit characterization the essence common to large classes of solutions The last 
two questions will in particular be important when we do not really want a solution 
of the deterministic model, but instead our ultimate goal is to find a "best fitting" 
solution in some lower dimensionality of a probabilistic version of the conjunctive 
model 
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Finding minimal biorder extensions of a relation and 
maximal stable sets in the associated hypergraph 

Mathieu Koppen 

New York University 

In this paper a number of closely related algorithms are developed that are 
relevant to the biorder representation problem (Doignon, Ducamp & Falmagne, 
1984, JMP, 28, 73-109). One of the algorithms described here completes, on an 
algorithmic level, the procedure for computing the biorder dimension of a 
relation as presented in Koppen (1987, JMP, 31, 155-178). (In case the relation 
is a partial order, this biorder dimension coincides with the usual order 
dimension.) 

1. INTRODUCTION 

For any binary relation R between two sets A and D we can consider the biorder 

representation problem (Doignon, Ducamp and Falmagne, 1984): write R as the 

intersection of a minimal number of biorders between A and D. (There is a dual 

problem with intersection replaced by union.) A relation В is a biorder between A 

andZ) iff for alia, beA, d,eeD we have: 

not (aBd & bBe & aBe & bBd), 

where we introduce the notation В for the complement of B. In general, 

R = A χ D - R denotes the complement of a relation R relative to A χ D. Any four 

elements a,b,d,e such that aRd, bRe,aRe and bRd are said to be a violation of 

the biorder property for the relation R. 

Doignon et al. show that any relation has a biorder representation and they 

introduce the notion of the bidimension of a relation R as the minimal number of 

biorders needed for such a representation. If the sets A and D are finite, which we 

This work was supported by AFOSR grant F49620-87-C-0131 to New York University and, in 
an earlier stage, by grant 560-670-006 of the Netherlands Organisation for the Advancement 
of Pure Research. Address comments and requests for reprints to M. Koppen, Dept. of 
Psychology NYU, 6 Washington Place, New York, NY 10003. 
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will assume throughout, any RQ.AXD will have a finite bidimension. Clearly, any 

biorder В involved in a biorder representation of R contains the relation R ; it is 

called a biorder extension of R. If no strict subset of fi isa biorder extension of R, 

В is called a minimal biorder extension of R. These are the biorder extensions that 

are closest to R (there are no biorders "inbetween"). Any biorder fi, in a 

representation R = ri, B, may be replaced by a minimal biorder fi/ such that 

/ ? £ f i ; ' £ f i y , and clearly we will still have R =f~iiBi'. This shows that for any 

representation of R in a minimal number of biorders, we have such a representation 

where the biorders are minimal extensions of R . This, in itself, makes it interesting 

to have the collection of minimal biorder extensions of a relation R available, and 

the next section is devoted to the algorithmic problem of producing this collection 

for an arbitrary relation R. Another reason why this collection is interesting is given 

in the following paragraphs. 

Doignon et al. give a characterization of the bidimension as the chromatic 

number of some hypergraph H(R) that is associated with R and Koppen (1987) 

describes a procedure for determining the bidimension of R by computing this 

chromatic number Chrom Π (R ). The procedure is constructive in the sense that, 

once Chrom II (R) is known, we have completed at least one minimal coloring of 

H (R ). The color classes are, by definition, stable sets of the hypergraph // (/? ) (i.e., 

they do not contain an edge of //(Λ)); consequently they may be extended to 

maximal stable sets of // (R ). The essential point now is that such a maximal stable 

set corresponds directly to a minimal biorder extension of R. Thus, we can obtain 

some representations of R in minimal biorder extensions simply as a by-product of 

computing the bidimension of R. Any collection of maximal extensions of the 

different color classes of a minimal coloring of Il(R) leads directly to such a 

representation. 

This is the motivation for Sections 3 and 4. In Section 3 we first state the 

correspondence between minimal biorder extensions of R and maximal stable sets of 

H(R) and next we describe how the results of Section 2 can be transformed to yield 

an algorithm for generating the collection of all such maximal stable sets. However, 

for the above stated purpose we do not need all maximal stable sets, but rather the 

subcollection of these that are extensions of the constructed colors. Accordingly, we 

derive in Section 4 how the algorithm of Section 3 can be modified to produce, for a 

given stable subset of R, the collection of maximal stable sets containing this stable 

set. This algorithm can be used to compute the collections of maximal stable 

extensions for all colors in a minimal coloring of H(R), and thus, by the 

correspondence of Section 3, a number of minimal biorder representations of Λ. 

It appears that some variation of the algorithm of Section 4 is needed to compute 

Chrom Il(R) in the first place. In the procedure described in Koppen (1987), the 
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following recurrence relation is used: 

Chrom H(V) = 1 + min {Chrom H(V-M) '.M isa maximal stable 

set of II(V) containing the vertex ad], (1.1) 

where V is a subset of R, II(V) is the subhypergraph of H(R) obtained by 

restricting the set of vertices to V and the set of edges to those included in V, and ad 

is an element of V, arbitrarily chosen. Obviously, any singleton {ad } СЛ is stable 

in ЩД) and thus (1.1) poses the problem dealt with in Section 4: produce all 

maximal stable extensions of the stable set { ad }. There is however one difference: 

we want in (1.1) maximal stable sets of a subhypergraph H(V) instead of the full 

H(R ). In some practical sense this makes the task easier, since it appears that there 

can be no more maximal stable sets in the subhypergraph than there are in the full 

hypergraph. Theoretically, the change from II (R) toII(.V) in (1.1) introduces some 

difficulties, since for maximal stable sets in II(V) the direct correspondence with 

biorders is lost. These issues are addressed in Sections 5 and 6, where we discuss 

how the results of the previous sections can be adapted to the case of subhypergraphs 

of II(R) and where an alternative algorithm is derived, directly in terms of the 

subhypergraph II (V). This leads to algorithmic solutions for applying the 

recurrence relation (1.1), thereby completing the specification of the procedure for 

computing the bidimension of a relation given in Koppen (1987). As shown in 

Doignon et al. (1984), the bidimension generalizes the notion of the (order) 

dimension of a partial order, so for the particular case where D =A and the relation 

Л is a partial order on A, the procedure for computing the bidimension of R 

computes in fact the usual order dimension of R. 

Let us introduce here some more concepts and notation, used in subsequent 

sections. We consider two finite sets Д and D, fixed throughout, and relations 

between A and D, that is, subsets of the Cartesian product A xD. As we have seen 

above, we write ad for the ordered pair ( a , d ) e A x D and aRd or adeR, 

equivalently. A relation RQAxD induces subsets of D and A, respectively, in the 

following way: 

aR ={deD :aRd}y aeA 

and 

Rd = {aeA -.aRd], dzD. 

For arbitrary α С Α , δ С D and R с A xD we use R [a, δ] to denote the restriction 

of R to α χ δ, that is, tf [α,δ] = R π (α χ δ). From this definition we can easily 

deduce some useful identities, such as 
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¿ Ц а ^ о г . б ] = ^ [ α ι , δ Ι ' Λ ^ , δ ] , 

^ [ α , δ ^ δ ζ ] = Λ ί α , δ , Ι ^ Ι α , δ ζ ] , 

where * denotes any of the set operations intersection, union or difference, and 

« [ O i . e j n j i t a j . e j = « [ 0 , 0 0 2 , δ , η δ , ] . 

Any pair of subsets а с Л , 8c£> partitions a relation R^AxD into four 

restrictions: 

R = R[a,S] + R[a,D-S] + R[A-a,5] + R[A-a,D-S]. 

(We will use the plus sign to denote taking the union over mutually disjoint sets.) 

Clearly,'Ä, CA 2 is equivalent to Rl[X,Y]L·R2[X,Y] for Х е { а , Л - а } , 

Ye{5,D-5}. 

Considering restrictions of relations between A and D it is important to stress 

that the notion of complement is always meant with respect to the full Cartesian 

product AxD and never with respect to some restriction. So R [α,δ] denotes the 

complement of the restriction of Λ to α χ δ while R [a, δ] is the restriction to α χ δ of 

the complement oiR, and these are not the same; instead we have: 

Я [α,δ] = Α[α,δ] + (χχδ. 

Regarding biorderhood of relations there are some properties that will be used 

repeatedly in the sequel and that are collected in the following lemma. Here Η (Ä ) 

denotes the hypergraph that Doignon et al. (1984) associated with a relation R. Its 

vertices are the elements of Я and its edges the sets consisting of sequences (a, ¿, ) of 

elements of« such that a,+ìdt e R (cyclically). 

1.1. LEMMA. L € / Ä C i 4 x D , a C A , 6 c : D . 

(i) R is a biorder ifR is. 

(ii) R[a,Siisa biorder ifR is. 

(Hi) R [a, δ] + α χ δ is a biorder ifR is. 

(iv) Any biorder contained in R is stable in H (R ). 

(v,) Any maximal stable set of H (R ) is a biorder. 

That the complement of a biorder is a biorder (i) is immediate from the definition. A 

restriction of a biorder is a biorder (ü) since any violation of the biorder property for 

the restriction would constitute a violation for the unrestricted relation. Property (ш) 

follows from (0 and (й) since Α[α,δ] + α χ δ is the complement of Λ [α, δ]. 

Properties (¿v) and (v), finally, are not obvious; proofs can be found in Doignon et 

ai, p. 92 and p. 95, respectively. 
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2. MINIMAL BIORDER EXTENSIONS 

Let us first recall the precise definition of a minimal biorder extension of a relation: 

2.1. DEFINITION. L e t f l . ß C A x D . We call В a minimal biorder extension of R 

iff: 

(i) В is a biorder, 

(ii) Л Е В , 

(iii) iffi0is ab iorderandÄ£Bo £ ß> thenß0 = B . 

The collection of all minimal biorder extensions of a relation R will be denoted by 

ВСЯ). 

In this section we consider the problem of generating, for arbitrary R С A xD, 

the collection В (Ä ). To that end the following definition and lemmas are useful. 

2.2. DEFINITION. Let R £ A xD. We call du e D minimal in R iff for all deD, 

Rd E Rdç implies Rd = Rd0. 

2.3. LEMMA. If В is a biorder and d0eD is minimal in В .then Bd0ÇZBd for any 

deD. 

Proof. Let deD. If neither Bd0 с Bd, nor BdzBd0 we would have a violation of 

the biorder property. By the minimality of d0 the case BdQBd0 is equivalent to 

Bd = Bdo, which means that we always have Bd0 С Bd. I 

2.4. LEMMA. LetB,RcAxD, В eB(R) and let Rd0= 0for some d0eD. Then 

Bdo = 0. 

Proof. B[A,D-{d0}] is a biorder (Lemma l.l(ii)) and R = R[A,D-{d0}]z. 

B [ A , D - { d 0 } ] c B, so the minimality of В implies ß =fl[A,D-{¿ 0}] , which 

means that BdQ = 0 . 1 

2.5. LEMMA. LetB,R^AxD, BeB(R), and let d0eD be minimal in В. Then 

d0 is minimal in R and Bd0 - Rd0. 

Proof. Let Rdl Q.Rd0 for some dxeD. We need to show that Rdx =Rd0 = Bd0. 

D e f i n e ß ^ f i f A . D - i d J l + Ä t A . i i / ! } ] . Then, clearly, R e В' s В and, moreover, 

В' is a biorder. For, because B' equals the biorder В except for ¿ j , the element ¿ , 

must be involved in any violation. But we have B'd^ - Rdl £ Rd0 С BdQ С Bd for 

any deD (the last inclusion by Lemma 2.3) and since Bd =B'd for any d * du we 
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obtainB'd^ <zB'd for any d e D , which excludes this possibility. В being minimal, 

we conclude B' = B and thus Rd0 с ßd0 С ßd, = Β'άλ = Ädj £ Rdu , from which 

the desired equality Rdx = Rd0 = Bd0 immediately follows. I 

The next two propositions will be at the base of our algorithm for generating 

В (Я). 

2.6. PROPOSITION. Leí B.R^AxD. Then BeB(Ä) iff there is d0eD, 

minimal in R, such that В \_Rd0,D\ = Rd0xD and В [Rd0,D]=B'. with B'e В (Л'). 

whereR' = R[Rd0,D] = R[Rd0,D-D0]andD0={deD :Rd =Rd0}. 

Proof. (If.) Suppose we have d0 and B' with the above properties. B' is a biorder, 

so, by Lemma l.l(iii), B'[Rd0,D] + (AxD -Rd0xD)= B' + Rd0xD = В is a 

biorder. Furthermore, R = R[Rd0,D] + R[Rd0,D-D0] С Rd0xD +B'= B. To 

show the minimality of Β, suppose R^B0<ZB for some biorder B0. This implies 

/?'C B0[Rd0,D]£. B' and because Я'еВ(/?') we obtain Β0[Κά0,Ο'\ = 

В [Rd0,D ] = В'. On the other hand, using B'd0 = 0 , which follows by Lemma 2.4 

from the obvious fact R'd0 = 0 , and using Lemma 2.3, we get for d^ minimal in B0 

(because of finiteness such a d^ can always be found): Rdl с fig^i c BQd0 = 

B0[Rd0,D]d0 + B'd0 = B0[Rd0,D]d0ç:Rd0. Since d0 is minimal inR this implies 

Rd^ = B0dl = B0d0 = RdQ and because d^ is minimal in BQ we obtain, by Lemma 

2.3, Rd0= Bodi ZB0d for any deD. In other words, B0[Rd0,D] = Rd0xD = 

В [Rd0,D] and we conclude йш1В0 = В. 

(Only if.) Suppose В e В (R ). Choose d0eD, minimal in В. Then, by Lemmas 2.5 

and 2.3, RdQ= Bd0^Bd for any deD, which means that B[Rd0,D] =Rd0xD. 

So we are left to show thatß'eB(Ä') for B' = B[Rd0,D] and Я ' = R[Rd0,D-D0]. 

By Lemma l.l(ii), B' is a biorder and since R[Rd0,D-D0]= R[Rd0,D]G. 

В [Rd0,D], the only point of concern is the minimality of B'. Suppose there is a 

biorder B¿ such that Я ' e f i 0 ' c f l ' . Define B0 = Rd0xD +B¿; by Lemma 1.1 (iii), 

До is a biorder. Since Я =R[Rd0,D] +R'^Rd0xD + B¿ = B0ÇZRd0xD +B' = 

В, it follows from the minimality of В that B0 = В and thus, in particular, that В 0 ' = 

B0[Rd0,D] = B[Rd0,D]=B'.M 

2.7. PROPOSITION. Let B,RzAxD, BeB(R), such that for d0,d¿zD we 

have В [Rd0,D] = Rd0xD and В [Rd¿D] = Rd¿xD. Then both d0 and d¿ are 

minimal in R and Rd0 = Rd¿. 

Proof Choose dl minimal in В (possible since D is finite). According to Lemma 

2.5, dl is minimal in R and Bdi=Rdl. From B[Rd0,D]= Rd0xD and 
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B[Rd¿,D]= Rd¿xD, respectively, it follows that Rd^ç^Bd^ and Rd^cBd^ 
Using the minimality of dj in R we obtain RdQ = Bdi = Rd^ = Rd¿ and we see that 
both d0 and d¿ are minimal in R. I 

2.8. ALGORITHM. The Propositions 2.6 and 2.7 can be used to generate В (R ) 
for a given relation R^AxD. More precisely, Proposition 2.6 shows that the 
following recursive procedure MBE generates exactly B(Ä) and Proposition 2.7 
shows that each element is generated just once: 

procedure MBE (а С Α, δ £ D , В QAxD): 
if δ = 0 then output (S) 
else 

enumerate all pairs of sets (A,, Dt ) where 
A, -R[a,ò]d for some de δ , minimal in R [α, δ], 
and where D, = {de5: R [a,5]d =AI}; 

for each pair (A,, D, ) 
do 

MBE (α-Α,, δ-D,, Β +Λ1χδ) 
od 

ñ. 

Using this procedure, we have the following algorithm for generating В (Я ) for an 
arbitrary relation R £ A xD : 

INITIALIZE (A,D,Я); 
MBE (A,Ζ), 0) . 

2.9. We see that the only problem in MBE is to compute the collection of pairs 
(Aj, Dj ). In order to decide whether d e δ is minimal in R [a, δ] we need to compute 
R [a, b]d ; this means that we will have to compute the sets Ay corresponding to each 
de δ in order to select the ones corresponding to minimal elements of δ. So suppose 
that in MBE ( α, δ, В ) we have computed all pairs (A;, Dj ) where A/ = R [a, 6]d for 
some d e δ and where D, = {de δ : R [a, 5]d =AJ} and have marked the pairs that 
correspond to elements of δ that are not minimal in Я [α,δ]. If (Α,,ο,) is an 
unmarked pair, we will have the call MBE (a-A,, δ - D , , Β + Α,χδ) and we will 
have to compute all pairs (Ah',Dh') for the relation Я [α-A,,δ-D,]. These, 
however, can easily be obtained from the collection computed in the calling 
procedure: each Ah' equals Ay-A, for some A/ of the calling procedure and each 
Dh' equals the union over those D, of the calling procedure for which Α,-Α, equals 
A/. In this way we can get all collections of pairs needed in subsequent calls of 
MBE, once we have established the collection of pairs for the original relation R. 
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2.10. Any biorder betweeen A and D is a subset of AxD and as such has an 

0 ( | A | ID |) representation (enumeration of its elements). Since a biorder is a 

special kind of relation, however, it allows a more economical 0 ( | A | + |D | ) 

representation, namely as a sequence 

A\,Di Ak,Dk, 

where {A,} is a partition of A (possibly A j = 0 ) and {D,} is a partition of D 

(possibly Dk = 0 ) . An element ad of AxD belongs to the biorder iff the class of α 

precedes the class of d, that is, iff, in the above representation, α e A, and deD, 

imply i<j. So, (Α,,ΰ,) being the first pair in the representation means that the 

biorder consists of AjXD plus a biorder restricted to ( A - A ^ x i D - D j ) . In other 

words, this representation mirrors exactly the way in which the biorders are 

constructed by Algorithm 2.8. Such a biorder can thus be identified with the 

sequence of pairs (Α,,ΰ,) for which MBE ( α - A , , δ - D , ,Β +Α Ι χδ) was 

subsequently called to produce it and by the procedure described in 2.9 we can, 

starting from the collection of pairs (A,, D, ) corresponding to the original relation R, 

construct all possible such sequences. 

2.11. EXAMPLE. Suppose we have sets A = {a,b,c,d,e,f} and 

D ={u,v,vj,x,y,z} and the following relation R between these sets: 

и ν w χ у ζ 

a R - - R - -

b - R R R R R 

с R R - - R R 

d R - R - - R 

e - - R R R R 

f - R - R - R 

From this matrix we can establish the following pairs of sets for this relation R (for 

simplicity we denote sets without braces or separators, that is, we write abc for the 

set{a,ò,c}): 

acd и 

bef ν 

bde w 

abef χ 

bee у 

bedef ζ 

where only the last pair belongs to an element of D that is not minimal in R {Rz 
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acd υ 

bef ν 

bde w 

abef χ 

Ьс y 

bedef ζ 

bf ν 

be wy 

bef xz 

ad u 

de wz 

ae χ 

e y 

ас u 

c f vz 

af χ 

с у 

cd uz 

с vy 

d w 

ad υ 

f ν 

d w 

af χ 

df ζ 

e wxyz < Bl 

f vxz cB2 

e wxyz < B3 

ad u 

d wz 

a χ 

J с uvyz < B6 

a u 

f vz 

a f χ 

d uwz |<B9 

с uvyz <B10 

ad u 

d wz 

a χ 

< B 4 

d uwz < B 5 

f vxz <B7 

a их с B8 

a ux < Bl l 

d uwz ί B12 

a u 

f vz 

af χ 

f vxz <B13 

a их с B14 

Figure 2.1. Generating В (/?) for Example 2.11. For explanation, see text. 
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Figure 2.2. Matrix representation of the minimal biorder extensions constructed in Fig. 2.1. 

Elements of Λ are denoted by " 1 " ; element of R, added to obtain the biorder, by " ! " . 
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includes stricdy Rv, for instance). Generating В (Ä ) by Algorithm 2.8 according to 

the specifications given in 2.9 and 2.10 is displayed in the tableau of Figure 2.1. 

Here, collections of pairs computed in one call of MBE are grouped together in 

boxes, the leftmost box containing the pairs belonging to the original relation R. 

Pairs of sets that correspond to non-minimal elements are marked by a bullet; 

unmarked pairs lead to a recursive call of MBE which is represented by an arrow 

from that pair pointing to a box to the right The content of this box can directly be 

derived from that of the parent box: according to 2.9 we must copy all other pairs of 

the parent box (i.e., apart from the pair that originated the call), while discarding 

from their left members the elements of the left member of the originating pair and 

next joining pairs with identical left members. Finally, the different left members 

are compared in order to detect non-minimal elements to be marked. This process of 

choosing a pair in the current box and constructing from it a box to the right stops 

when there are no more other pairs to be copied (the next box would be empty), that 

is, when we have a box containing just one pair. At this point we have finished 

another biorder, represented by the concatenation of the pairs along the path from 

the first column to this endpoint, and we go backtracking to find the first occasion of 

completing a next biorder. We see in Fig. 2.1 that in this case В (R ) has 14 elements 

which we have labeled В I to θ 14 and the matrix representation of which is given 

separately in Figure 2.2. 

2.12. A STACK IMPLEMENTATION. Following the discussion in 2.9 and 2.10, 

we can think of a non-recursive version of Algorithm 2.8 that operates on some sort 

of stack. A typical element of this stack is the collection of pairs of sets (Α,,Ο,) 

belonging to some restriction R [α,δ] that turns up in the computation. That is, the 

elements of the stack are boxes as in Fig. 2.1. On this stack the following operations 

are defined: 

LOAD (Λ ) : 

computes the collection of pairs (At/,, d, ) where d, runs through D ; 

pushes this collection as the top box on the empty stack. 

POP : pops the top box off the stack. 

PUSH : pushes a copy of the top box on the stack. 

ACTIVATE (A0,D0): 

chooses an unmarked pair (A0,D0) in the top box as the "active" pair; 

marks the active pair (just as MARK marks some pairs). 
TRIM (A0, £>0): 

removes in top box the active pair (A0,D0y, 

removes from all left members of top box tripartitions the elements of A0 , the 
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left member of the active pair. 
MERGE: 

merges in the top box pairs with identical left members into one pair by taking 
the union over their right members. 

MARK: 
marks in the top box pairs with non-minimal left members (non-minimal 
compared to other left members in the box). 

In addition the following tests can be made: 

EMPTY : returns TRUE iff the stack is empty. 
EXHAUSTED : 

returns TRUE iff the stack is not empty and all pairs in the top box are marked. 
SINGLETON : returns TRUE iff the top box contains just one pair. 

Finally we assume a procedure 

OUTPUT-RESULT : 

yields the sequence of active pairs, starting at the bottom of the stack and ending 
with the (!) pair of the top box. 

2.13. A NON-RECURSIVE ALGORITHM. With the specifications of 2.12, the 

following algorithm is an iterative elaboration of Algorithm 2.8: 

INITIALIZE (A, D, R ); 
LOAD (Ä ); 
MERGE; 
MARK; 
while not EMPTY 
do 

while not SINGLETON 
do 

ACTIVATE (A 0 ,£><)); 
PUSH; 
TRIM (A0, Do); 
MERGE; 
MARK 

od; 
OUTPUT-RESULT; 
while TOP; EXHAUSTED do od 

od. 
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Figure 2 J. Algorithm 2.13 working on Example 2.11. For explanation, see text 
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2.14. Figure 2.3 shows the history of the stack when this algorithm is applied to the 

relation of Example 2.11. We start in the upper left comer with the state of the stack 

just before entrance of the outer loop and move to the right and down until we end 

up with the empty stack. The stack grows downwards; " · " is the marking symbol 

and " > " denotes an active pair. ACTIVATE chooses the lowest unmarked pair in 

the top box as the active pair. The connection with Fig. 2.1 is obvious. 

3. MAXIMAL STABLE SETS 

In this section we consider the problem of finding all maximal stable sets of the 

hypergraph II (R ), for R Ε A χ D. We recall the definition of a maximal stable set: 

3.1. DEFINITION. Let M . Ä C A x D . We call M a maximal stable set of the 

hypergraph / / (Ä ) iff 

(i) M £ R, 

(ii) M is stable in H (R) and 

(iii) if М0 is stable in H (R ) and M ç M0 с R, then M0 = M. 

The collection of all maximal stable sets of the hypergraph II (R ) will be denoted by 

S(R). 

The next lemma shows that there exists a close connection between minimal 

biorder extensions of R and maximal stable sets of //(/?). 

3.2. LEMMA. LetM.R^AxD. Then MeS(R) iff л7еВ(Л). 

Proof. By Lemma l.l(v), any element of S(Ä) is a biorder and by Lemma l.l(iv) 

we see that S (/? ) coincides with the collection of maximal biorders contained in R. 

Clearly, the complement of any biorder contained in R is a biorder extension of R 

and vice versa (Lemma l.l(i)); maximal biorders in R correspond in this way to 

minimal biorder extensions of R. I 

3.3. Lemma 3.2 entails that finding S(R) really is the same problem as finding 

В (Я). In fact, replacing the statement "output (B)" in the procedure MBE of 

Algorithm 2.8 by the statement "output(B)" turns this algorithm into one for 

generating S (/? ). However, since we will, in subsequent sections, be interested not 

so much in generating all of S (Л ) but rather in generating certain subsets thereof, it 

will be convenient to have versions of the results of the preceding section in terms of 

subsets of R instead of the complementary sets and versions of Algorithms 2.8 and 
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2.13 that use the О ( IA \ · \D \ ) representation of maximal stable sets as real subsets 

of A xD, rather than the possible О ( | A | +1D \ ) representation of them as biorders. 

Therefore we give here the complementary versions of Propositions 2.6 and 2.7 and 

Algorithm 2.8. 

3.4. PROPOSITION. Let Ä S A x D , McR. ThenM&S(R)iffforsomed0eD, 

minimal in R, and with D0= {deD •.Rd=Rd0], we have M = M[Rd0,D] = 

RdoxDo + M',withM'€S(R[Rdo,D-D0\). 

Proof. Directly from Proposition 2.6 by Lemma 3.2.1 

3.5. PROPOSITION. Let MeS(R)for R<^AxD such that for d0,d¿&D we have 

M = M\Rd0,D]= M[Rd¿,D]. Then both d0 and d¿ are minimal in R and 

Rda = Rd¿. 

Proof. Directly from Proposition 2.7 by Lemma 3.2.1 

3.6. ALGORITHM. S(Ä) is produced by the following recursive procedure MSS: 

procedure MSS ( a c A , 5 £ D , M c A x D ) : 
if δ= 0 then output (M) 
else 

enumerate all pairs of sets (A,, D, ) where 
A, =R[a,b]d for some d e δ, minimal in/? [α, δ), 
and whereD, = {deb: R[a,b]d =Ai}\ 

for each pair (A,, D, ) 
do 

M S S ^ . O - D , ,M +A¡xDt) 
od 

fi. 

Using this procedure the algorithm 

INITIALIZE (A,D,/?); 
M S S ( A , D , 0 ) 

generates S (/? ) for an arbitrary relation R e A x D . Correctness follows either from 

Propositions 3.4 and 3.5 or, by Lemma 3.2, from the correctness of Algorithm 2.8, if 

we note that the sets, generated by each procedure in turn, are complementary. 

3.7. As with MBE, the only problem in MSS consists in computing the collection of 

pairs (AjJDJ). As before, we will have to compute the sets A; corresponding to each 

de δ in order to select the ones corresponding to minimal elements of δ. (An 

element of D y e δ is minimal iff the corresponding A, is not (strictly) included in 
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any other set A,.) Suppose in MSS(a,5,Ai) we have computed all pairs (Ay,Dy) 
with Aj =R[a,5]d for some deb and D/ = {deb:R[a,6]d =AJ}, and have 
marked the pairs that correspond to elements of δ that are not minimal in R [a, δ]. If 
(A,,Dt) is an unmarked pair we will have the call MSS (A,, Ò-D, ,M + AyxDy) 
and we will have to compute all pairs {Ah',Dh') in Α[Α,,δ-ο,]. These, however, 
are again easily obtained from the collection computed in the calling procedure: this 
time each Ah' equals Л, (^A, for some A, of the calling procedure and again each 
DA ' equals the union over those D, of the calling procedure for which Α, π A, equals 
AA'. So, as before, we can get all collections of pairs needed in subsequent calls of 
MSS once we have established the collection of pairs for the original relation R. 

3.8. Clearly each maximal set constructed in Algorithm 3.6 is completely 
determined by the sequence of calls of MSS that produced it, that is, by the sequence 
of pairs (A,,D,) that were chosen in each subsequent call after the invocation 
MSS (A,D,0). Now what are the consequences of choosing a particular pair for 
the maximal sets based upon this choice? Suppose that, in constructing a maximal 
set MQ, we have had the call MSS (α,δ,M) and that there we have the candidate 
pair (A,,D, ), corresponding to some element of δ that is minimal in R [α, δ]. First 
we must note that being in MSS (α,δ,Λί) we can add only elements of R [α,δ] to 
M. This means that outside of R [α,δ] the issue of membership of Мй hase already 
been decided: elements from there included in M will be included in MQ and 
elements from there not included in M will not be present in M0. It is just for the set 
R [α,δ] that decisions about admission to M0 have to be made. With respect to the 
pair (A,,/),) to be considered in MSS (α,δ,Μ), we have following partition of 
Я [α,δ]: 

Α[α,δ] = ^[Α,,ο,Ι + ^Α,,δ-β,Ι+ΑΕα-Α,,ΑΙ+ΑΕα-Α,,δ-Γ»,], 

where R [a-A,,DJ is empty by definition. Since to (Α,,Ζ),) corresponds the call 
MSS (A,, δ - Д , M + A,xD,), we see that this choice implies the following for the 
set Μ о in construction: 

- inclusion in M0 of Λ [Α,,Ζ),] =А,хД, 
- exclusion from M0 of Λ [α-Α,, δ -D, ] = R [α- A,, δ], 
- further search for M0 in R [A, ,δ-D, ]. 

Thus, each pair (A,,D,) computed in MSS (α,δ,Μ) corresponds to a tripartition of 
the elements of R not yet decided upon into a set for which, when MSS is called 
with this pair as an argument, the decision is positive (we will call this the Ρ -class of 
the tripartition), one for which the decision is negative (the N -class) and one for 
which the decision is postponed (the U-class, U for undecided). Denoting the P-
class (etc.) of the tripartition corresponding to the pair (A,,D,) by /'(Α,,Ο.) (etc.), 
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we have 

P(At,D,) = ÄtA.D,] = A,xD„ 

ΝίΑ,,Ο,) = Ria-A^Ò-D,] = R[a-A„ò], 

С/(А,,о,) = R[At,5-D,]. 

3.9. As we saw in 3.7 that the collection of pairs needed in a call of MSS can be 
computed from the collection in the calling procedure, the same must hold for the 
corresponding tripartitions. In fact, suppose that (Ah',Dh') is a pair occurring in 
MSS(At,ò-Dt,M +Al-xDt) when this procedure is called by MSS (α,δ,M) and 
let / be an index such that Ah' = A, <^At, or, when appropiate, let / run through all 
such indices. From 3.7 we know that this index set will be non-empty. Now the 
following straightforward computations yield the tripartition belonging to (Ah',Dh') 

in terms of the tripartitions in the calling procedure: 

= υ,ΛΕΛ,ηΛ,,Α] = υ , (ΛίΑ,,Ο,ΐηΛΕΛ,Ο,]) 

= u ; (^[Λ,,ο,ΐηΛίΑ,,δ-Ο,]) (since Dl e ô - D , ) 

= (u,Ä[A„D ;])nÄ[A ( ,o-A] 

= ( ^ ( Α , , ο ^ η ί / ί Α , , Α ) ; 

N{Ah',Dh') = R[A-Ah',b-Dt] = R[A,-(At nAJ .Ô-DJ 

= Ä[A, ηία-Α,ί,δ-Ο,] = ^[α-Α,,δ-Ο,ίηΛΓΑ,,δ-Ο,] 

= «[α-Α,,δίηΛΙΑ,,δ-Ο,] (since Ъ-D, с δ) 

= N(A„D,)ní/(A,,0,); 

U{Ah',Dh') = ÄtA/.o-D.-D/] = ΑΙΑ,,',δ-Α-ίυ,Ο,)] 

= η , ÄfAA'.ö-D.-D,] = η ,^Α,πΑ,,δ-ο,-Ζ),] 

- η,ΛΙΑ,ηΑ,Λδ-β^ηίδ-ο,)] 

- η ; (ΛΕΑ,,δ-Ο,ΐηΑΙΑ,,δ-Ο,]) 

= (η,ΛΕΑ,,δ-Ο,Ιίη^Α,,δ-Ο,]) 

= (η, t/íAi.D^nc/tA,,/),). 
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3.10. LEMMA. Let R^AxD, a^A, 5 c D , d0eò, A0 = R[a,ò]d0 and 

D0={deb:R[a,S]d =A0}. Then d0 is minimal in R[a,S\ iff 7V(A0,D0) is 

minimal compared to other Ν(Α;,0^, for pairs (Ay,D ;) computed in 

MSS(a,b,M)-

Proof. It suffices to show Rdj^Rdo iff N(Ay,Z)y) Ç,N(A0,D0). We have 

following equivalences: М(АгО,)^М(А0,О0) iff ^ [ α - Α ^ δ ] С Α[α-Αο,δ] iff 

А [ ( х ( 6 ] - Я [ а - А у , 5 ] э R[a,8]-Ría-A0,8] iff Λ[Α 7 ,δ]2 RIA0,J¡¡ iff 

RiRdj,^] 2 Α[Αί/0,δ]. Now first assume Rdj zRd0; this means Rd, ^Rd0 and 

consequently A[/?¿, ,6]2 Λ[Αί/0,δ]. For the reverse implication note that by 

definition we have Rd0xD0£R[Rd0,S]. So R[Rd0,5]C η[Μ;,δ] implies 

RdaXDo^RiRdj^] and this is only possible if Rd0 С / Ц , that is, if Rdj £ Λ 0 . 1 

3.11. A STACK IMPLEMENTATION. By 3.8 and 3.10 we have a translation of 

Algorithm 3.6 in terms of tripartitions; it can be viewed as generating all sequences 

of tripartitions where each next tripartition has as its domain the U -class of its 

predecessor and has a minimal N -class compared to alternative tripartitions at this 

point Each such sequence starts with a tripartition corresponding to the original 

relation and ends with one having an empty U -class. In 3.9 we saw how to compute 

the collection of tripartitions at any level from the collection at the previous level 

and this suggests again a stack implementation of Algorithm 3.6, very similar to the 

one described in 2.12 and 2.13 for Algorithm 2.8. Here the stack elements will be 

boxes consisting of tripartitions (Ρ,,Ν,,Ι/,) instead of pairs of sets (A,,D,). From 

2.12 we take over the procedures POP, PUSH and EMPTY and also ACTIVATE 

and EXHAUSTED, on the understanding that the elements of the top box are now 

tripartitions instead of pairs of sets. We need following new versions of the 

procedures LOAD, TRIM, MERGE, MARK and OUTPUT-RESULT which have an 

apparent connection to the old versions: 

LOAD (R ) : 

computes the collection of tripartitions (P, ,Nl,Ul ), where, for some dteD, 

P, =Rdlx{di}, N, =R[Rdt,D]and U, =R[Rd„D-{dt}}; 

pushes this collection as the top box on the empty stack. 

TRIM(/>0,Wo,t/o): 

removes from all classes of the tripartitions in the top box elements that are 

not in Í/Q-

MERGE: 

removes tripartitions with empty Ρ -classes; 

merges tripartitions with identical N-classes into one by taking the union over 

their Ρ -classes and the intersection over their [/-classes. 
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MARK: 

marks tripartitions with non-minimal N-classes (non-minimal compared to 

other TV-classes in the box). 

OUTPUT-RESULT : 

yields the set of elements present in the Ρ -classes of the active tripartitions at 

the different levels. 

The procedures TRIM and MERGE do the computations of 3.9 (for the removal of 

tripartitions with empty Ρ -classes in MERGE, see below) and MARK is based on 

Lemma 3.10. Finally we need a new termination condition, testing whether another 

maximal stable set has been completed: 

DONE(Po.Wo.^o): 
returns TRUE iff t/0, the [/-class of the active tripartition, is empty. 

3.12. A NON-RECURSIVE ALGORITHM. Using the procedures described in 

3.11, we have following iterative version of Algorithm 3.6: 

INITIALIZE (A, D, R ); 
LOAD(Ä); 
MERGE; 
MARK; 
while not EMPTY 
do 

while 
ACTIVATE ( Р 0 , N 0 , t / 0 ) ; 

not DONE(Po. Wo. ^o) 
do 

PUSH; 
TRIM(/Vt f 0 , t / 0 ) ; 
MERGE; 
MARK 

od; 
OUTPUT-RESULT; 
while EXHAUSTED do POP od 

od. 

The only aspect of the algorithm still needing justification seems to be why we are 

allowed to discard tripartitions with empty Ρ-classes in the procedure MERGE. 

(Note that, after TRIM, this includes the active tripartition.) Though it is clear that 

such a tripartition cannot introduce any elements in the maximal sets in construction, 

it could in Algorithm 3.12 in principle be necessary to ACTIVATE such a 

tripartition in order to fulfill the termination condition DONE. This is, however, not 

the case, since (i) the collection of Ρ -classes of the LOADed tripartitions clearly is a 
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partition of R, and (ii) by the definitions of PUSH, TRIM and MERGE it follows 
from (i) that at any time the collection of Ρ -classes in the top box constitutes a 
partition of the {/-class of the ACTIVATEd tripartition that generated the top box. 
As a consequence we can always ACTIVATE a tripartition with a non-empty Ρ -
class, thereby strictly reducing the cardinality of the U -class tested in DONE. 

3.13. EXAMPLE. Let us demonstrate Algorithm 3.12 by computing S(Ä) for R 
the relation of Example 2.11. The elements of the maximal stable sets ofH(R) are 
ordered pairs pç, withpe{a,b,c,d,e,f } mdqe{u,v,w,x,y,z} for which pÄ^. 
For ease of notation we will number these pairs hexadecimally from 1 to F and in the 
sequel the pairs are denoted by their ordinal number. To show the chosen 
numbering scheme we recall the matrix of R, where now " - " entries indicate that R 
holds and a hexadecimal entry gives the ordinal number of a pair in R : 

и ν w χ у ζ 

a - 1 2 - 3 4 

b 5 
c' - - 6 7 - -
d - 8 - 9 A -
e В С 
ƒ D - E - F -

Figure 3.1 shows the search tree constructed by Algorithm 3.12 and Figure 3.2 
shows the history of the stack during the computation. In these figures, a tripartition 
is represented as a sequence, indexed by 1 to F, of symbols where a plus sign, a 
minus sign and a dot indicate that the corresponding element of R is respectively in 
the Ρ -, N - от U - class of the tripartition. A blank indicates that the corresponding 
element is not in the partition since it is in the Ρ - or N -class of a "parent" 
tripartition. Fig. 3.1 may be compared to Fig. 2.1 and consulting Fig. 2.2 one can 
easily check that maximal stable set M1 is the complement of minimal biorder 
extension В 1, etcetera. Fig. 3.1 makes it clear that stable sets and biorder extensions 
are constructed simultaneously: they correspond to the cumulative Ρ - and N -classes, 
respectively. In other words, by modifying OUTPUT-RESULT of 3.11 so that the 
cumulative N-class is put out instead of the Ρ -class, we get an algorithm for В (R ) in 
which biorders are represented as subsets of A xD instead of sequences over A u£), 
as was the case in Algorithm 2.13. In Figure 3.2 we start in the upper left comer 
with the state of the stack before entrance of the outer loop and we end with the 
empty stack. Again, the stack grows downwards, " · " is used as the marking symbol 
and ">" denotes an active tripartition. As in 2.13, ACTIVATE chooses the lowest 
unmarked tripartition in the top box as the active element. 
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Figure 3.1. Generating S (Λ) for Example 2.11. For explanation, see text 
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Figure 3.2. Algorithm 3.12 working on Example 2.11. For explanation, see text 
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4. MAXIMAL STABLE SETS CONTAINING SOME SPECIFIED SUBSET 

Here we show how the algorithm for S (R ) of the preceding section can be adapted 

to produce only those maximal stable sets that contain some specified subset of 

vertices. Such a version can be used to obtain representations of R in a (minimal) 

number of minimal biorder extensions from a (minimal) coloring of H (Ä ). Indeed, 

any combination of maximal stable extensions of the different color classes will 

cover R and thus, by Lemma 3.2, the collection of complements of these sets will 

constitute a representation of R by minimal biorder extensions. 

We begin with the special case where we want the subcollection of maximal 

stable sets containing a particular single vertex. The general case will follow easily 

from this special case, which is also of interest in itself. As indicated in the 

Introduction, it appears in the recurrence formula (1.1) that has to be applied in the 

computation of the bidimension; the next section will be concerned with this aspect. 

Here, we begin with a proposition telling us that imposing the restriction to produce 

only maximal stable sets containing some specified vertex does not really change the 

problem. We use the notation S (ad ; R ) for the subcollection of S (R ) consisting of 

the sets that contain the vertex ad. 

4.1. PROPOSITION. Lei / ? £ A x D and adeR. Define a second relation 

R'^AxD by R' = R +R[Rd,aR]. That is, R' is obtained from R by adding all 

elements ofR that together with ad constitute a 2-edge of11 (R). (Equivalently, R' 

is obtained from R by discarding just these elements.) Then we have: 

S(ad;R) = S(R7). 

Proof. Suppose M e S (ad ; R). Since M is stable in / / (R ) and ad e M we must have 

M r>R' = 0 , that is, MSZR'. Furthermore, M is a biorder (being maximal inII(R)), 

so it certainly is stable in H(R'). Finally, if M £ M0 С R7 ε R for some M0 e S (Λ7), 

then Μ0 is a biorder, thus stable in H(R) and because M is maximal in H(R) we 

have Λί0 = Λί; we conclude that M is maximal in H(R'). This proves 

S(ad;R) cS(/?')· For the reverse inclusion, suppose MsS(R'). We have 

A/CA' £ Ä and M is a biorder (being maximal in 1J(R')), thus stable in ¡¡(R). To 

prove that M contains ad it suffices to show that M^J{ad} is stable in 11 (R') 

(obviously, adeR'). Suppose to the contrary that an edge of H(R') is included in 

Mu{a¿}: there exists a sequence ad ,aldl,... ,andn with aldi,..,andneMQ:R' 

and adn,ald,a2du..,andn_lsR'. The definition of R' makes it clear that 

a^^^R'-R. So axd,adn&R and, again by definition of R', it follows that 

a^d^R'. But in this case the subsequence axdu . . . ,andn forms an edge of H(R') 

included in M, which is impossible for AfeS(Ä'). So M^>{ad} is stable in 11(R7) 
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and by the maximality of M it must be that ad e M, To show that M is maximal in 

Я(А ) we note that for any M0 that is stable in H(R ) and for which M^M0 £ Л it 

follows that adsM0. Being stable in H(R ), then, M0 cannot contain any element of 

R'-R, so we have in fact M c Ai 0C R7^ R and MeSiR7) implies M0 = M. We 

conclude that M is maximal in Я (Я ) and have thus established S(R')£.S(ad;R).M 

4.2. ALGORITHM. By the previous proposition we see that generating S (ad; R ) 

for some adeR is the same as generating the collection of maximal stable sets for 

some other relation. So the only adjustment we have to make, compared to 

Algorithm 3.6, is assigning this new value to the variable R before calling the 

procedure MSS. The algorithm for generating S (ad ; R ) thus becomes: 

INITIALIZE (A, D, R, ad); 

R:=R +R[Rd,aR]; 

M S S ( A , D , 0 ) 

where MSS is as defined in 3.6. 

4.3. Of course we can treat Algorithm 3.12 the same way in order to turn it into an 

algorithm that computes S (ad; R ) for some adeR. There we need only replace the 

fragment 

INITIALIZE (Λ,Ζ),/?); 

LOAD (R ) 

by 

INITIALIZE (A, D, R, ad); 

R:=R +R[Rd,aR]; 

LOAD (R ). 

Here, however, there exists an alternative solution that does not need a new relation 

R' to be computed explicitly. We can, instead, compute the collection of tripartitions 

belonging to this R' directly from the collection belonging to R. (That is, we can 

appropiately modify the top box of the stack after it has been LOADed according to 

the original relation R.) To see how this can be done, let {(Ρ,,Ν,,ϋ,)} be the 

collection of tripartitions belonging to a relation R^AxD, where for each i there 

are А, С A and D, С D such that 

P, - RIA^D,] = AtxD„ 

N, = R[A-A„D-D,] = R[A-At,D], 

U, = R[A„D-D,]. 
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Now, for some adeR, define R' = R +R[Rd,aR]. Suppose adeAfyXDo, where 

(A0,D0) is a pair of sets belonging to the relation R and let (Po,N0,U0) be the 

corresponding tripartition (that is, adeP0). Consider a pair of sets (Λ,,Ζ),) 

belonging to the relation R. Then there are two exclusive possibilities: (i) 

Dj no/? = 0 or ( i i ) D j ^ a R . 

In case (i), (AJxDJ)r>iR'= (AJxDJ)-(RdxaR)= AjXDj and we see that 

(AJ.DJ) is also a pair of sets belonging to R' and consequently the tripartition 

(Pj,NrUj)is!i tripartition belonging to the new relation. (Perhaps the pair (A,,D,) 

is, in R', part of a "bigger" pair (Ah,Dh) where Ah =A] and Dh 3 Z ) ; , but this is 

irrelevant for the argument; it only means that the tripartition {P],N),UJ) can, in the 

new relation R\ be merged with another tripartition.) 

In case (ii), we see that 

( A / x D y ) n Ä 7 = (AjXD^-iRdxaR) = (AJ-Rd)xDJ, 

which means that we have a new pair of sets (A/',£);')» belonging to R', defined by 

A/ = A / - / Í ¿ = A / n A 0 and D)' = DJ. 

Consequently there is a new tripartition (P/.N/, U/) corresponding to this pair and 

P/ = A/xD/ = (Α,ηΑύχΟ, = (A /-(A-i4 0))xD y 

= (A,xD,)-((A-A 0 xD) 

= Pj-No, 

N; = R \ A - A ; , D \ = А [ А - ( А , П А О ) , О ] = Ä [ ( A - A , ) U ( A - A O ) , D ] 

= R[A-AI,D]^)R[A-AU,D1[ 

= Ν, uN0; 

U/ = RiA/.D-Djl = Ä[AynA0 ,D-D ;] = Ä[A,-(A-A0),D-D,] 

= RIAJ.D-DJÌ-RIA-AQ.D-D,] = а[АгО-О;]-п[А-А0,О] 

Finally it appears that, for a particular pair of sets (A/,D/), we can decide 

between the cases (i) and (ii) on the basis of the tripartidon (Pj.Nj.Uj): (ii) is the 

case iff aRdj for d / eO / , which by definition is equivalent to aeA-Aj. We 

conclude that D, СаЯ iff а</еЯ[А-А,,£)], that is, iff adeNj. 
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4.4. ANON-RECURSIVE ALGORITHM. Based on the discussion in 4.3 we can 

make following adjustment to Algorithm 3.12 to tum it into an algorithm for 

producing S (ad ; R ) for some adeR. Define the procedure 

ADD (ad) : 

determines the tripartition (P0,No> Uo) for which adeP0; 

changes each tripartition (PrNrUj) for which ad&Nj into the tripartition 

(P1-Nu,Nj^Nu,UrNç>) 

and insert this procedure into Algorithm 3.12 after the LOAD instruction: 

INraALIZE(A,D,Ä,aa) ; 
LOAD (R ); 
ADD (ad); 
MERGE; 
MARK; 
while not EMPTY 
do 

od. 

Except for ADD, the procedures are as defined in 3.11; the code " · · • " is identical 

to the body of the outer loop in Algorithm 3.12. 

4.5. EXAMPLE. Let us illustrate the working of the algorithm in 4.4 by generating 

S C / V J Ä ) for the relation R of Example 2.11. Figure 4.1(a) shows the state of the 

stack after the LOAD instruction. This is the same as the starting position in Fig. 

3.2(a). Now the instruction ADD (fy) is executed. (We use the numbering of the 

vertices as given in 3.13, so fy corresponds to the hexadecimal number F.) This 

results in the modified top box of Fig. 4.1(b) and from here on the stack is operated 

upon in the same way as in 3.13. We see that successively the maximal stable sets 

M2, M 7, M 8, M11, M12, M13, and M14 are produced and in Fig. 3.1 or Fig. 2.2 it 

can be checked that these are indeed precisely the maximal stable sets that contain 

the vertex fy. 

4.6. Since Proposition 4.1 brings us, in some sense, back to the old situation, it can 

be applied iteratively, that is, to describe the subcollection of S (R ) consisting of the 

sets containing the element a ^ , as well as 02^2· e t c · W e will denote this 

subcollection by S(aid1, α2^2. " ' ¡R)· Alternatively, for С е Л , S (С; fi) will 

denote the subcollection of maximal stable sets of II(R) that contain the set С. 

Then we can formulate the following generalization of Proposition 4.1: 
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Figure 4.1. Generating S (jy;R) with Algorithm4.4. For explanation, see text. 
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4.7. PROPOSITION. Let R^AxD and let С = { α , ^ , . . . ,andn} СЯ be stable 

inH{R). Define relations R, ÇLAxD byR0 = R and for i = 1 , . . . ,n, 

Then we have S (С ; R ) = S (Rn ). 

Proof Suppose к is the least index for which akdk^Rk_1. By Proposition 4.1 we 

have for i = 1, . . . ,/fc-l: 

S (α,ά, ,..,andn; R,^) = S (a1+i¿,+i,..,a„¿„ ; R,). 

Then S (С ; Λ ) = S (α ,</„.., «„</„ ; Ä0) = S (akdk,..,_andn ; Ä*.,) С S ( α ^ ; Λ^.,) = 0 , 

because by definition all elements of S(akdk;Rk_0 are subsets of /?t_i, so they 

cannot contain akdkeRk_i. We see that if а Д е А , . ! for some i = 1 л, then 

there is no maximal stable set of H(R) that contains С С Я , which means that С is 

not stable in H{R). Since С is stable, we must have a,d,€/?,_] for all i = 1 , . . . ,n 

and thus, by Proposition 4.1, S(aldí,..,andn;Rt_l)= S(aI+1ííl+1,..,a„¿B;Al_1) for all 

i = l л . І 

4.8. REMARK. The proof of Proposition 4.7 describes a procedure for deciding 

whether a (finite) subset С = {a^, on ¿я) is stable. If, in constructing the 

relations Rl Rn successively, С <~ÌR, Φ 0 for some ί, then С is not stable and 

if С г\Кл = 0 , then С is stable in H{R ). 

4.9 REMARK. For the relation Rn in Proposition 4.7 we will in general not have 

Rb=R + u , Ä [Äd,,a,Ä]. This "straightforward" generalization of Proposition 4.1 

will not work. The left side does include the right side, but in general the inclusion 

will be strict That is, we do not get Ая by discarding from R just all vertices that 

constitute a 2-edge with any of the elements in С. 

4.10. ALGORITHM. From Proposition 4.7 we directly obtain a generalization of 

Algorithm 4.2 that produces the subset of S(Ä) in which each element includes 

some stable set С : 

INITIALIZE (A,D,R, С = { α ^ , andn}); 

for i := 1 to и do R := R + R [Rd,, α,Λ ] od; 

M S S ( A , D , 0 ) 

where MSS is as defined in 3.6. 
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4.11. A NON-RECURSIVE ALGORITHM. Again we may, comparing 

Algorithm 4.10 to Algorithm 3.6, deduce that Algorithm 3.12 may be turned into an 

algorithm for S (С ; R ) by replacing the fragment 

INITIALIZE (A, D, R ); 

LOAD (R ) 

in 3.12 by 

ΙΝΓΠALIZE (A,D,R,C ={aldl andn}); 

for i := 1 to η do R := R +R[Rdt, α,Λ ] od; 

LOAD (R ). 

Alternatively we may take the approach described in 4.3 and then it is clear that we 

tum Algorithm 4.4 into an algorithm for S (С ; R ) by repeating the ADD call for 

each element of C. To be explicit, the following is an algorithm for S(C;Ä), 

generalizing Algorithm 4.4: 

INITIALIZE (A,Z),Ä, С ={(2^ ! αηάη}); 
LOAD (R ); 
for i := 1 to η 
do 

ADD(ö (4); 
MERGE 

od; 
MARK; 
while not EMPTY 
do 

od. 

ADD is defined in 4.4, the other procedures in 3.11; the code " • · • " is identical to 

the body of the outer loop in Algorithm 3.12. 

Note that the repeated ADDing works correctly only if С is stable. If С is not 

stable, then for some k<n, ADD (акак) will fail to find the tripartition whose P-

class contains akdk, simply because there is no longer any such tripartition: by a 

previous ADD operation the element akdk has been moved from the Ρ-class to the 

N -class of " i t s " tripartition. In this way, the procedure for deciding whether CEA 

is stable that was described in Remark 4.8 may be translated in operations on 

tripartitions. 
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Figure 4.2. Generating S (Jy, aw, dv ; R ) with Algorithm 4.11. For explanation, sec text. 

4.12. EXAMPLE. In Figure 4.2, Algorithm 4.11 is illustrated, computing S(C;Ä) 

where R is the relation of Example 2.11 and С = {fy,aw,dv}. We use again the 

numbering of 3.13 for the vertices, so the elements of С correspond respectively to 

the hexadecimal numbers F, 2 and 8 in Fig. 4.2. In Fig. 4.2(a) the situation after 

LOAD is given and in (b) the vertex fy (number F) is ADDed (compare with the 

situation in Fig. 4.1(a) and (b)). Now in Fig. 4.2(c) and (d) the vertices aw (number 

2) and dv (number 8) are ADDed respectively. For reasons of clarity we have 

chosen in Fig. 4.2 not to MERGE after each ADD, as in Algorithm 4.11. Instead, 

after all the ADDing has been done the top box is MERGEd and MARKed; the 

result is given in 4.2(e). In this state the main loop is entered and in 4.2(f) and (g) 

we see that in this case S (С ; R ) consists of one maximal stable set only. In Fig. 3.1 

or Fig. 2.2 it can be checked that M11 is indeed the only maximal stable set of R 

that contains the vertex fy, as well as aw, as well as dv. 

4.13. REMARK. If we had for the subset of S (R ) consisting of the elements not 

containing some specified vertex ad of //(/? ) a similar result as in Proposition 4.1 -

that is, if, denoting this subset by S(-iad;R), we would have S(-iad;R) = S(R"), 

for some relation R" -, then we would have a very simple recursive procedure for 

generating S {R ) (and thus S (С ; R )): 

S(R) = S(ad;R) + S(-nad;R) 

= S(R') + S(R") 

(adeR arbitrary) 
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for appropiate Я ' .Л 'сАхЛ. 
But here the situation is not so simple: for instance, it is generally not the case 

that S(-iad;R)= S(R-{ad}). We do have inclusion from left to right, but, 
conversely, an element V of S{R-[ad}) is not maximal in R unless the set 
V + {ad} contains a 2-edge of H(R) (involving ad) and this is not necessarily so. 
This makes iterative application rather awkward: S(—iald1,-iazd2, · · · ',R) is the 
subset of S(A-{aid1,a2¿2. " " ' }) consisting of the elements that contain a vertex 
that is in a 2-edge with αχάχ, one that is in a 2-edge with α2^2. e t c · (these vertices 
may or may not be different from each other and there may or there may not exist 
such sets in S (R )). Such a description does not seem very promising for algorithmic 
purposes. 

5. MAXIMAL STABLE SETS OF A SUBHYPERGRAPH 

In Koppen (1987) a procedure is described for computing Chrom H(R) (and thus 
finding the bidimension of a relation R). It consists of alternately reducing a 
subhypergraph of II (R ) to a smaller subhypergraph with the same chromatic number 
and next applying the recurrence relation (1.1) for the chromatic number of a 
hypergraph to the reduced subhypergraph. In Koppen (1987) the reduction 
procedure is proved correct and described in detail, but there is no explicit procedure 
given how to evaluate the right hand side of (1.1) and this is the problem we will 
consider here. Since we are now interested in maximal stable sets of a 
subhypergraph H(V) rather than II(R), we first generalize some previously 
introduced notions. 

5.1. DEFINITION. For RGAXD and УСА, let S(V) denote the collection of 
maximal stable sets of the subhypergraph II (V) and let S (R | V) be the collection of 
stable sets of H(V) that are restrictions to У of maximal stable sets of tI(.R). So 
S(R \V)= [M r>V : MeStf)}. 
For ade V, let S (ad; V) and S(ad;R | V) denote the subcollections of S(V) and 
S(R I V), respectively, consisting of the sets containing ad. 

Since any set in S(V) is stable in H(R) it can be extended to a maximal stable 
set of H(R) and by the maximality in II (V) this is obtained by adding elements of 
R- V only. So S (V) С S (Ä IV). On the other hand, each set in S (Ä | V) is stable in 
Н(У) and thus we see that S (V) is the collection of maximal elements of S (R | V). 
In the same way S (ad ; V ) is the collection of maximal elements of S (ad ; R | V ). 
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With the help of these definitions, we can write the recurrence relation (1.1) for 
H(V), given in the Introduction, as 

Chrom H(V) = \ + min{ChromH(V-M):MçS(ad;V)}, (5.1) 

where ad is an arbitrary element of V. 
Inspired by Proposition 4.1 we may think that the problems of generating 

S (ad ; V) and S (ad ; R \ V) can be reduced to the problems of generating S (V) and 
S (R | V ), respectively. This is indeed the case: 

5.2. PROPOSITION. Let R^AxD.VZR and adeV. Define a second relation 
Ä'E A XD by R' = R + R[Rd,aR ] and define V'=V riR7. Then we have: 
(¡)S(ad;R\V) = S (Я7! V') and (ii) S (ad ; V) = S (V). 

Proof, (i) Using definitions and Proposition 4.1 we can write S(ad;R\V) = 
{M ny :MeS(ad ;Ä)}= {Λί η ν :MeS(R7)}= {(M n^nv :M€S(RT)} = 
{Μ η V' : M e S (R7)} = S (R7] V). (ii) Follows directly from (i), since S (ad ; V ) and 
S(V") are the collections of maximal elements of S(ad;R\V) and 8(/?'Ю, 
respectively. I 

5.3. Let us first show that by the results of the previous sections we already have 
some solution for the problem of evaluating (5.1). If V =R there would be no 
problem, since in Section 4 we have seen how to produce S (ad ; R ). This gives one 
way of evaluating (5.1): replacing V by R in (5.1), we get 

Chrom H (R ) = 1 + min {Chrom H (R -M ) : M G S (ad ; R )} (5.2) 

and since in the procedure of Koppen (1987) H (V) is such that 

Chrom H(R) = Chrom H(V), 

we can evaluate (5.2) instead of (5.1). In fact, we can replace R by R* in (5.2), 
where R* is the smallest restriction of R such that КсЛ*. Since the subhypergraph 
H(R*) of H(R) is the full hypergraph associated with the relation R* we can find 
S (ad ; R* ) by the methods of Section 4. 

5.4. Although using R* instead of V does solve the problem, it is not quite 
satisfactory a solution, since we do not fully use the reduction to H(V). Without 
loss of generality we will in the sequel assume that R* = R ; this simplifies notation. 
Now it is clear that S(ad;R) contains more (not fewer) elements than S (ad; V): 
any maximal stable set of //(V) can be extended to a maximal stable set of II(R ) 
and in this way different elements of S (ad; V) give rise to different elements of 
S(ad;R) (only elements of R-V are added to obtain the extensions). So, solving 
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(5.2) instead of (S.l) obliges us to generate more maximal stable sets and since each 
maximal stable set M of H (R) induces a recursive "call" of (5.2) for the (reduced 
subhypergraph of the) hypergraph H(R-M), we introduce in doing so an extra 
number of branches at each level of the recursion. 

This problem can be remedied by computing S (ad ; V) from S (ad ; R ). As we 
have seen above, S (ad; V) is a subset of S(ad;R \V). On the other hand, the 
restriction to V of a maximal stable set of H(R) need not be maximal in H(V) and 
different maximal stable sets of H(R) may, when restricted to V, yield the same 
stable set of H (V). So an algorithm for S (ad ; R ) can be changed into an algorithm 
for S (ad ; V) in the following way: maintain a list of restrictions to V of generated 
elements of S (ad ; R ) and when a new element of S (ad;R) is produced, add its 
restriction to V to the list, provided that this is not a subset of an element already in 
the list (this includes the case of duplicates), and remove from the list any elements 
that are subsets of the newly inserted element. Given the resulting list of S (ad; V) 
we can apply (5.1) instead of (5.2), thereby reducing the number of recursive calls. 

5.5. In the above procedure we still need to compute all of S (ad;R) while we are 
only interested in subsets of V. It would be nice if the generating process, from the 
start, was restricted to subsets of V. Since S(ad;V) consists precisely of the 
maximal elements of S (ad ; R \ V ), it is clear that 

min {Chrom H(V-M):MeS(ad;V)} = 

mn{ChromH(V-M'):M'eS(ad;R\V)} (5.3) 

and, consequently, generating S (ad; R \V) is an alternative solution to our problem. 
The point is that Algorithm 4.4 produces in fact S(ad;R \V) rather than 

S(ad;R), provided it is supplied with the appropiate "input". The only provision 
we have to take is that in the LOADing of the stack (with LOAD as defined in 3.11) 
we do not push the tripartitions belonging to the relation R on the stack, but instead 
the tripartitions of V that we get by intersecting each class of each tripartition with 
V. That is, the coUection {(Pt,Ν,,υ,)} is changed to the collection {(P,', N,', U,')}, 
where 

P,' = P¡nv, Nt' = N,nv, U^U.nv. 

With this modification the algorithm can run as before; to establish that it correctly 
produces S(ad;R \V) we need to show that the MERGE and MARK operations, 
when controlled by the new tripartitions, do not suppress any element of 
S (ad ; R | V). This is guaranteed by the following lemma. 



90 CHAPTER 4 

5.6. LEMMA. LelR^AxD. VÇ.R, d0,dx<iD. Then V[Rd0,Di 2 VlRd^D] 

iff, for anyMGR.MeS (R[Rd0, D ]) implies Μ η V С R[RduD ]. 

Proof. (Only if.) Suppose V[Rd0,D]^V[Rdl,D] or, equivalently, 

V[Rd0,D]^V[Rdi,D]. If MzR[Rd0,D], then Л / п У с Ä [ £ d 0 , D ] n y = 

V[A¿o,0]C VtÄd!,/)] EAtAdj.DJ. (If.) Suppose ааб [Яао.^ЬУ[А<*і,Я]. 

This means adeV, aRdQ and аЛ^!. Put M any element of S(Ä[ÄJ0,£)]) that 

contains ad. ThenadeM <^v whilsaRdu soM nvCRÍRd^D]. I 

Interpreting this lemma in the context of Algorithm 3.12, that is, letting R stand 

for some restriction R [α,δ] implicitly computed there, we note that V[Rd0,D] = 

R[Rd0,D]r\V = N0r>V, where N0 is the N-class of the tripartition of R 

corresponding to d0; likewise, V[Rd:,D] is the restriction to V of theN-class of the 

tripartition corresponding to d,. On the other hand, AfeS(Ä [Rd0,D]) means that 

M is an element of S(R) that, according to Algorithm 3.12, is generated when the 

tripartition corresponding to d0 is ACTIVATEd. So in terms of Algorithm 3.12, the 

only-if-part of Lemma 5.6 conveys that if Л ^ э Л ^ , then for any element of S(R) 

generated by choosing the tripartition corresponding to d0, there is an element of 

S(R) generated by choosing the tripartition corresponding to d^ with the same 

restriction to V. As we have seen in the previous section, the step from Algorithm 

3.12 to Algorithm 4.4 is trivial. We see that, with all classes restricted to V, 

tripartitions with non-minimal N -classes do not generate "new" elements of 

S(ad;R\V) (i.e., MARK still works well) and in particular, tripartitions with 

identical N -classes generate the same subcollection of S(ad;R \V) and we do not 

lose any element of this subcollection by choosing these tripartitions one after the 

other (i.e., MERGE is still okay). The if-part of Lemma 5.6 implies that we risk 

missing some elements of S (ad ; R \V)if not all tripartitions with minimal N -classes 

are ACTIVATEd. 

Note that, while Lemma 5.6 assures that the modification of Algorithm 4.4 as 

described in 5.5 produces each element of S (ad; R | V), it does not guarantee that 

each element is generated just once. In fact, duplicates may occur: in the "restricted 

version' ' of Algorithm 4.4 it is possible that one and the same element is produced 

by two tripartitions with incomparable N -classes. In the original version for 

S (ad ; R ) this is impossible (cf. Proposition 3.5). 

5.7. As we have seen in 5.5 and 5.6, a minor modification of Algorithm 4.4 allows 

us to work with S (ad ; R \V) rather than S (ad ; R ). At this point, we have the same 

alternatives as sketched in 5.3 and 5.4. The first possibility is to work with 

S(ad;R \V) as generated by the "restricted version" of Algorithm 4.4 (that is, with 
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possible duplicates); this means, we compute the right hand side of (5.3). The 
second possiblity is to select the maximal elements of S(ad;R | V), giving us 
S {ad; V) by which the left hand side of (5.3) can be evaluated. Which of these 
alternatives will be more efficient may be very implementation and data dependent. 
The latter alternative saves us a number of recursive "calls" at the cost of 
comparing the elements of S (ad ; R | V) in order to select the maximal elements. If 
V is "almost like" R, we will do a lot of comparing with little or no reduction, 
while if V is "considerably smaller" than R, the reduction obtained may be 
substantial. 

5.8. The two alternatives sketched above evoke a third possibility, an approach that 
in fact seems to be the obvious one, when one is confronted with the problem of 
evaluating (5.1): find an adaptation of Algorithm 4.4 that directly produces S (ad; V) 
rather than S(ad;R). This is indeed possible, though not by a "minor 
modification". The problem is that in generating maximal stable sets of a 
subhypergraph H(V) the connection with generating minimal biorder extensions is 
lost: a maximal stable set of H(V) is, generally, not a biorder. It is exactly this 
connection (Lemma 3.2) on which the recursive Algorithm 3.6 is based that in tum is 
at the origin of Algorithms 3.12 and 4.4. In the next section we will develop an 
algorithm for directly producing S (V) for a subset V of R. By Proposition 5.2, this 
is equivalent to an algorithm for S (ad ; V), ode V. The algorithm for S (V) will not 
use biorder properties, but is solely based on the definition of the hypergraph II (R ) 
and its subhypergraphs. 

6. AN ALTERNATIVE APPROACH : GENERAL TRIPARTITIONS 

In this section we take an alternative approach to the problem of generating S(V), 
with VCÄ for some relation R. We start with something that is apparently 
unrelated to this issue, namely the notion of general tripartitions on a (finite) set. We 
single out one of the three classes, we consider the problem of finding in certain 
collections of such tripartitions the elements for which this class is maximal, and we 
formulate an algorithm that solves this problem. Then we come back to our 
hypergraph problem, in two steps. First, we consider a relation Q on a set E and 
show that the problem of finding the maximal subsets 5 of E such that the restriction 
of β to 5 is acyclic can be seen as an instance of the above tripartition problem. 
Next, our original problem of finding the maximal stable sets in a subhypergraph 
H(V) is interpreted as an instance of this maximal acyclic restriction problem. In 
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sum, the algorithm for the tripartition problem can be applied to find S (V) for V^R. 

We finally compare the ensuing algorithm with the ones obtained in the preceding 

sections. One distinction is that in the algorithm of this section the notion of biorder 

does not appear. 

6.1. GENERAL TRIPARTITIONS. Consider an arbitrary finite set E and let 

Гц Τ2 be two tripartitions of E. We denote the classes of a tripartition by capitals Ρ, 

N and U, respectively (why not?). So, 

Т,=(Р(Т,)^(Т,),и(Т,)), 

where P(Jl)+N(Tl) + U(Tl) = E\ often we will write more briefly 

Г, = (P,, W,, Í/, ). For two tripartitions T j , ^ of E we define Г^Гг, the 

composition of Τ ι with Τ2, as 

ГіоГ 2 = {Pl + (P2^U1),Nì + (N2r>Uì),U2^Ul). 

It is easily checked that Τ ι ° Γ 2 is again a tripartition of E and that the so defined 

composition operation <> is associative. Let X be a collection of tripartitions of E that 

is closed under this composition operation. Then we define for a tripartition Г 0 e X 

the offspring of Г 0 in X, denoted by Г 0 » X, as 

T0<>X = {T0°T:TeX}. 

A Ρ -class of a tripartition in X is called maximal in X iff it is not strictly included in 

the Ρ -class of another element of X. In the following lemma some properties are 

collected that anticipate the problem of finding maximal Ρ -classes in X. 

6.2. LEMMA. Let X be a collection of tripartitions of a set Ε, closed under the 

composition operation «. 

(i) ForanyTóeT0oXwehaveP¿^P0>NÓ^N0,U¿^U0. 

(ii) For any Г0еХ, Г 0 е Го°Х and ifU0 = 0 , then Г 0 °х = {Го}. 

(ш) ForanyT¿eT0°X, T¿°T0 = T¿. 

(iv) If N, e N 2 for Γι, Γ2 € X, then for any T¿e Г2 ° X there is T{e Г, « X such that 

Р{^Р{. 

(v) If N, = N2 for TLГ 2 eX, then Г, оГ2 = Г2»Tl and for any TeT^X (or 

Τ e Г2 о χ) there is Τ* e Τι о Γ2 о χ such that Ρ £ Ρ*. 

(vi) IfP2^Ui = 0forTuT2eX,thenN(T1oT2°To)^N(TloTo)foranyTQeX. 

(vii) //A^n/Jj φ 0 for Г„ Г2еХ, <Аел /Aere и по Г 2 е Г2 »Х ІМСА </ιαί F 2 ' 2 Ρ,. 

Г ш'; If 1/^0 and N1 £N2 for Γ,,Γ^Χ, гЛел f Aere Í'Í ЛО Г 2 еГ2 0 Х JucA ίΑαί 
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(ix) If X is such thai υ {Ρ (Τ) :TeX} = E, then for any T0eX and any seU0 there 

is TO'eГ0°Xsuch that seP¿. 
(χ) If X is such that u {Ρ (Γ) : Те X} = E. then P0 is maximal in X only ifUQ = 0 . 

Proof, (i) to (йі): Immediate from the definitions. 
(iv):IfN 1 C^ 2 ,thenN(ri°r 2 ) = N1 + (N2n{/1) = (W1uN2)n(N1uLf1) = ^ 2 - F i . 
Suppose T{ = T2<>T0 for some 7'0eX; then, for τγ = Τ1°Τ2°Τ0(=Τλ »Χ, we 

obtain: N(T{)= N{TioT2) + (N0nU(TloT2))= (Ν2-,Ρ1) + ( ^ ο η ^ ι η ^ 2 ) = 
N2 + (N 0 nt/ 2 )= N(77) and ί/(Γ1')= Ι / , η ί / 2 η £ / 0 ε t/ 2 n£/ 0 = [/(Гг). Since 
both Tj' and Г2 are tripartitions of £, it follows that F (77) 2 /· (Γ2 ). 
(ν): Γ1ο7 ,

2 = Γ2οΓι because ί/(Γ1«>Γ2)= ί/ 1 η[/ 2 = £/(72»Γ,) and, by the proof 
of (iv), N(Tl°T2)=N2-Pl = Nl-Pl = Nl = N2= N2-P2= Nl-Pl= NÇTi^TO· 
Let 7' = Γ 1οΓ 0 for some Т^еХ; then for Τ* =Γ 1ο7' 2οΓ 0 we have: N(T*) = 

N(Tl°T2) + (N0nU(TloT2))= N^WonUinUàt Nl + (N0nul)= N(T) 
and U (Τ* ) = U ι η С/2 η £/0 = ί/ (Γ), so Ρ (Τ* ) 2 Ρ (Γ). 
(ví):Clearly, í / ( r 1or 2o7' o)CÍ/(r 1or o)and/ ,(r ,or 2) = jp1 , ifP2nt/1 = 0 . But 

then P(TloT2°T0)= P(.Tí°T2) + P0nU(Tl°T2)= Px + {P0r>U1r\U2)Ç, 
Pl + (P0r>U1) = P(Tl°T0). 
(vii): For any Г 2е Γ2°Χ, Ν{πΡι·2Ν2ηρι* 0, so Ρ/ Í P j . 
( ш): t/, = 0 andNj ÍN 2 imply N2r\Pì * 0 , so apply (vii). 
(ix): Take TQ=T^TX, where Γ! is such that í e P , . 
(χ): Immediate from (ix). I 

6 J . FINDING MAXIMAL Ρ -CLASSES. Now we consider the problem of 
finding the maximal Ρ -classes in X, where X is a collection of tripartitions of E that 
is closed under composition. We denote by MAX^ the collection of Ρ -classes that 

are maximal in X; for С С X we define 

ΜΑΧτ (С) = ΜΑΧτη {Ρ (Τ') : Г е 1° Χ, Те С}, 

which means that MAXX(C) is the subcollection of MAXτ that is in the offspring of 

some tripartition in С. 

We will describe a procedure for finding ΜΑΧτ, starting from what may be 

called a base for X, that is, a subset XQ £ X such that X is the closure of XQ under 

composition. In other words, a tripartition Τ is in X iff there is a number k and there 

are tripartitions T^ ... ,TkeX0 such that 

Г = Г,о · · • °Tk. 

The minimum number к for which TeX can be "factorized" in this way into 
elements of XQ will be called the degree of Τ (over X0). Since u {T°X : Те X0} = X 
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(any element of Τ is in the offspring of some element of X0), it is clear that 

ΛΜΧτ(τ0) = ΛΜΧτ. 

We will, moreover, assume that <-> {Р{Т):ТвХ} = E, which is equivalent to 

u {P(T): ГеХ0} = E. This is no real restriction in the context of finding maximal 

f-classes in X: if и {/»(7): TeX] = E'CE, we consider the collection X' of 

tripartitions of E' that is obtained by taking the restriction to E' of each class of the 

tripartitions in X. Since the Ρ-classes remain the same, the collections of maximal 

Ρ -classes in X and X' clearly are identical. 

In the next proposition we state some operations that may be performed on a 

subset С of X without changing MAXX(C); these operations will be used in an 

algorithm for finding MAXV 

6.4. PROPOSITION. With X and X0 as in 6.3, let С, C' be subsets of X. Then, in 

all of the cases (i) to (Ш), we have ΜΑΧτ (С) = ΜΑΧτ {С): 

(i) С' is obtained by forming in С classes of tripartitions with identical N -classes 

and replacing each class by the composition of its elements. 

(ii) C' is the subset of С consisting of the tripartitions with minimal N -classes 

(N-classes not strictly including the N-class of another element in C). 

(Hi) C' = CQ + {T°t: TeC^ teX0, £/(Γ)η/>(/) ,4 0 } , where Co ,CiÇC 

with CQ = {Те С : U (Τ) = 0] and С ι = С- С 0. 

Proof, (i) Lemma 6.2.(v) tells us that the composition is independent of the order of 

its constituents (so С is well defined) and that by this operation we are not throwing 

away any maximal Ρ -classes in the offspring of elements of С. (ii) Lemma 6.2.(iv) 

shows that all elements in ΜΑΧτ(0 are also in MAX^(C'). (Hi) By Lemma 6.2.(ii), 

С о = { 7 , ° г : Г е С 0 , / е Х 0 } , so C' = C*-{T<>t : TeCx, feX0, U(T)r\P(t) = 0 } , 

where C* = {T°t : TeC, teX0]. For any TeX we clearly have T°X = 

u{7O/oX:ieXo}. Consequently, и { Г ° х : Г е С } = v{T°t°X: TsC, /eXo}, 

which implies ΜΑΧτ (С ) = ΜΑΧτ (С* ). By Lemma 6.2.(ix) there is for any T0 e С^ 

some f0eX0 for which U(To)rïP(to)*0. This Г 0 °г 0 is "saved" in С and 

Lemmas 6.2.(vi) and (iii) together imply that any maximal Ρ -class found in the 

offspring of T0°t where U(Ta)<^P(t) = <Z>, is also found in the offspring of 

Г 0 о / 0 €С ' . It follows that МАХг(С*) = MAXX(C'). I 



BIORDERS AND STABLE SETS 95 

6.5. ALGORITHM. In view of cases (i) and (ii) of Proposition 6.4 we define a 

procedure 

COMPRESS (C£ T): 

replaces in С classes of tripartitions with identical N -classes by the 

composition of their elements; 

discards tripartitions with non-minimal N -classes. 

Note that by applying the transformation of 6.4(i) we get a collection where all 

tripartitions have different N-classes; by combining this with the transformation of 

6.4(ii), as is done in COMPRESS, the end result is a collection where all N -classes 

are mutually incomparable. Using the above procedure COMPRESS, we have 

following algorithm for computing ΜΑΧτ: 

М:=0;С1:=Хо; 

while С, ^ 0 
do 

COMPRESS (C,); 
C l + 1 : = 0 ; 
for Τ e С, 
do 

ift/(r) = 0thenM+:=/ > (r) 
else 

fo r í e lo 
do 

i f í / ( 7 " ) n / ' ( f ) ^ 0 t h e n C 1 + i + : = r o / fi 
od 

fi 
od; 
i +:= 1 

od. 

This algorithm terminates because \E | is an upper bound for the cardinality of a 

U -class in C] and, by construction, any U -class in CI+1 is strictly smaller then some 

U-class in C,. Consequently, for some n<\E | + 1 all {/-classes in Cn will be 

empty, which implies that for i =/1+1 the termination condition of the main loop 

will be fulfilled. 

Before entering the main loop we have 

Μ+ΜΑΧτ(0 = 0 + Ш Х х ( С 1 ) = ΜΑΧτ(τ0) = MAXr 

Within the main loop Μ +ΜΑΧτ(€ι) is not changed by COMPRESSing C, (cases 

(i) and (ii) of Proposition 6.4). We have seen above that after COMPRESSing all 
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N -classes in С, are incomparable; by Lemma 6.2(viii), no Ρ -class of a tnpartition in 

C, with empty U -class will be included in any Ρ -class produced in the offspring of 

the tripartitions in C1+1. In other words: at the moment a Ρ -class is added to Μ, it is 

known to be an element of MAX v Using 6.4(iii), we see that Μ + ΜΑΧτ (С, ) before 

entrance of the second level loop equals M +ЛМХТ(С)+1) at termination of this 

loop. (In particular, the two constituent collections are indeed still disjoint) In sum, 

Μ +ΜΑΧτ(€ι) = ΜΑΧτ is a main loop invariant that will hold at termination; 

combining with the termination condition we obtain Μ = ΜΑΧτ. We conclude that 

on termination of the above algorithm M contains the collection of maximal Ρ -

classes in τ. 

6.6. REMARK. We can mention two obvious ways of modifying Algorithm 6.5 to 
improve its performance. Looking at the innermost loop (controlled by "for ieXo"). 
we can easily see that if Ν(ί1) = ?ν(ί2) for í1 (í2et0 , then for any ГеТ, 
N(T<>tl) = N(T°t2). This means that in the next passage through the main loop 
T°t1 and 7Ό<2 will be merged into (Гог1)о(7"о»2)= (r°í2)°(:roíj) = Γ°(ί1οί2) = 
To(í20ti)· So we might just as well do the merging here, that is, work with the 
composition (і°12 instead of ti and f 2 separately. Applying to the collection T0 the 
operation 6.4(i) of merging tripartitions with identical N -classes, we get a collection 
τ, that may be used instead of X0 in Algorithm 6.S (it is easy to see that also the 
initialization Cl :=T0 may be replaced by С ι :=Ti). Replacing TQ by Х: speeds up 
the algorithm because l"^ | < |X0| and, in addition, any U -class in ^ is a subset of 
corresponding {/-classes in X0. The second obvious refinement is to do the 
COMPRESSing of C(+i not at the beginning of the next passage through the main 
loop, but rather while creating Cl+i in the innermost loop. Instead of unconditionally 
adding to Ci+i each T°t for which U(T)r\p(t) * 0, we can compare N (T°t) with 
the N-classes of the tripartitions already collected in C1+1. If there is Τ in C l+1 such 
that N(T')£N(T°t), we leave C1+1 unchanged in case N(T')*N(T°t) and we 
replace T' by T'oT°t in C,+1 if N(T') = N(J°t); otherwise we add Tot to C,+1. 
Clearly, any thus constructed C(+1 is COMPRESSed, and initializing Cj = Χι we start 
with a COMPRESSed collection. Doing the COMPRESSing while creating the 
collection minimizes the number of comparisons that have to be made. 

6.7. ACYCLIC RESTRICTIONS OF A RELATION. Why would we want to 
find maximal Ρ-classes in a collection of tripartitions of El One possible 
application is in the following situation. We consider an arbitrary relation Q on E. 
A Q-cycle in £ is a sequence of elements x, e E, i = 1,.. ., η, such that 
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Q is called acyclic on E iff there is no β-cycle in E. An arbitrary ß c £ x £ need 

not be acyclic on E, of course, but we can pose the problem of finding subsets, and 

in particular maximal subsets S С E, for which β η (5 χ S ), the restriction of β to 5, 

is acyclic. We are going to characterize such subsets in terms of tripartitions of E. 

To each xeE we attribute a tripartition T(x)ofE, defined in the following way: 

T(x) = ({x},xQ,E-{x}-xQ), 

where, in line with our conventions, xQ denotes the set of yeE for which xQy. We 

define X0 to be the collection of all such tripartitions T(x ): 

X0={T(x):xeE} 

and we let X denote the closure of X0 under composition. Now we can establish 

following connection between these tripartitions and acyclic restrictions of a 

relation. 

6.8. PROPOSITION. Let E be a finite set and let Q be a relation on E. Then, for 

S £ Ε, β ("> (5 x S ) is acyclic iff S is the Ρ -class of some tripartition in X, where X is 

as defined in 6.7. In particular, the collection of maximal subsets of E on which β 

is acyclic is MAX , for X defined as in 6.7. 

Proof. (If.)ConúdetT0=(P0,N0,U0)eX. To show that P0 does not contain a β -

cycle, we use induction on the degree of T0. If this degree equals 1, the result is 

immediate, since then P0 is singleton. If T0 has degree k>l we can write 

T0=T{x)oT¿ for some jce£ and some TO'eX with degree ¿ - 1 . By definition 

U(x)<~ixQ=Çd, so the element χ cannot be involved in any β-cycle in 

^ 0 = {*} + ( ^ ο ' η ^ ( * ) ) ; o n Ае other hand, by the induction hypothesis there is no 

ß-cycle in P Q , let alone in P¿<^U(x). The conclusion must be that there is no ß -

cyclein/O. 

(Only if.) Let S be such that β η (S χ S ) is acyclic. To show that S is the Ρ -class of 

some tripartition in X, we proceed by induction on the cardinality of S. If 15 | = 1, 

S = {x} say, then 5 =P(x) for the/»-class of 7,(дс)еХ0СХ. If | S | > 1 , l e t x e S be 

such that S n x ß = 0 . (Since 5 is finite, there has to be such an element if 

Qr,(SxS) is acyclic.) Defining 5 0 = S-{x} we see that S0£:E-{x}-xQ and 

since | So I = \S I - I t we may, by the induction hypothesis, assume S0 = P0 for the 

Ρ -class of some Г 0еХ. But then S= {x} + S0= {x} + (S0r>(E-{x}-xQ)) = 

P(x) + (P0nU(x))istheP-ciassofT(x)'>T0eX.W 
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6.9. APPLICATION TO HYPERGRAPHS H(V). Proposidon 6.8 gives us a 

translation of the problem of finding maximal acyclic restrictions of a relation in 

terms of finding maximal Ρ -classes in some coUecüon of tripartitions and via this 

result we can return to our original context of a relation R between two finite sets A 

and D. To show the connecdon of our excursion in the preceding paragraphs to the 

subhypergraphs / / (V) of Η (R ), we define a relation Γ on R in the following way: 

ad Τ be iff bRd (ad, be e R). 

If we compare this definition with the definition of the hypergraph H (R ), given in 

the Introduction, we see that the edges of Η (/? ) coincide with the Г-cycles in R. 

The following equivalence is an immediate consequence: 

SEA is stable in H(R) iff Γ π (5x5) is acyclic. 

In fact, since, by the definition of the subhypergraph II (V) of II (.R ), a subset 5 of V 

is stable in Η (V ) iff S is stable in H {R ), we have more generally: 

5GKCÄ is stable in tI(V) iff Γ η ( 5 χ 5 ) is acyclic. 

In this way, stable sets in # ( V ) are seen as a special instance of acyclic restrictions 

of a relation and from Proposition 6.8 we may obtain a translation in terms of 

tripartitions. 

We define for adeR a tripartition Τ (ad ; R ) of R by 

T(ad;R) = ( {ad},adr,R -{ad}-adr) 

and collections of tripartitions 

X0(R) = {T(ad;R):adeR} 

and X(R), the closure of X0(R) under the composition operation o. For V^R and 

ade V, we consider the tripartition T(ad,V) of V that results from restricting to V 

each class ofΤ (ad; R): 

T(ad,V) = ({ad},Vnadr,V-{ad}-adr) 

and we use the expected notations 

XoOO = {T(ad;V):adeV} 

and X(V) for the closure of Xo(V) under composition. With these definitions the 

equivalence between stable sets in //(V) and acyclic restrictions of Γ allows the 

following application of Proposition 6.8: 
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6.10. COROLLARY. LetR^AxD, V^R. Then S E V is stable in H (V) iff S is 

the Ρ-class of some tripartition in Х(У), where X(V) is as defined in 6.9. In 

particular, S (V) = ΛΜΧτ(1/). I 

6.11. A REINTERPRETATION OF ALGORITHM 3.12. Corollary 6.10 shows 

that Algorithm 6.5 is an algorithm for producing S(K) when we define X0 = T0(V) 

(or T0 = T^VO, see Remark 6.6). In the special case V =R, both Algorithm 6.5 and 

Algorithm 3.12 can be used to generate S(/?) and we may compare their ways of 

doing this. Reinterpreting Algorithm 3.12, we see that it starts with a collection of 

tripartitions 

{ ( Ä d . x K } , R[Rdt,D], RiRd^D-V,}-])} 

that is "somewhere between" XQ{R) and T\{R). From the definition of Γ it is clear 

that а^,Т=ага,Т whenever ald,,a2dleR. In other words, N{T(axd,\R)) = 

N(T(a2d,;R)) and consequently tripartitions in То(Л) belonging to one and the 

same d, eD may be replaced by their composition. Thus we obtain the collection of 

tripartitions that is LOADed in Algorithm 3.12: for any dteD we have 

u { f ( r ( a d , ; Ä ) ) : a 4 e Ä } = ν {{ad,}: ad^R} = Λ / , χ ^ , } ; 

N(T(adt;R)) = ad, Γ = {beeRibRd,} = Ä[Äd,,D]; 

n{U(T(ad,;R)):adteR} = R - u{P(T{ad, -J))} -N{T(ad,;R)) 

= RlRd„D-{d,}l 

The MERGE operation that follows the LOADing in Algorithm 3.12 turns this 

collection of tripartitions into 1,(7? ) and it is this collection on which subsequent 

computations are based. New tripartitions are computed from old ones according to 

the rules given in 3.9. The connection between these rules and the composition 

operation defined in 6.1 is obvious. Considering from now on the "cumulative" 

tripartitions in Algorithm 3.12 rather than the tripartitions of the current U -class, we 

see that these new tripartitions are obtained by taking compositions of already 

computed tripartitions. That is to say, just as Algorithm 6.5, Algorithm 3.12 

computes members of X(Ä), starting with 10(R) (or T^/F)) and ending with 

tripartitions having a maximal Ρ-class. In fact, the collection of unmarked 

tripartitions computed at the i-th level by Algorithm 3.12 (in the i-th "column" of 

Fig. 3.1) will equal the collection of tripartitions in the COMPRESSed C, of 

Algorithm 6.5. The two algorithms differ in the way and the order in which these 

collections are generated. In Algorithm 3.12, a sort of depth-first search is used, 
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which is possible since comparing the N -classes can be done locally, that is, within 

the boxes. This may be seen as a consequence of Lemma 3.S, that is based on the 

biorderhood of maximal stable sets of H(R). The same fact can be represented in 

terms of Algorithm 6.5, as a corollary of the following proposition: 

6.12. PROPOSITION. If Algorithm 6.5 is applied with X0 = X0 (R ) (or X0 = X^R)), 

then, for any i and any distinct tripartitions Ti,T2ina COMPRESSed C, , we have 

Ν1ηρλΦ<Ζ. 

Proof. As we have seen in 6.6, we may assume that we work with X0 = X\{R). For 

ι = 1 we know that the COMPRESSed C, equals XX{R ). So then 

T, = (RdjXDj.RlRdj.D], RlRdj.D-Dj]) 

where Dy = {dtD -.Rd =RdJ} for j - 1,2 and some dud2eD. Consequently, 

Ν2ηρί= R[Rd2,D]n(RdíxDl)= (Rd^nRd^xD^ We see that N2r,Pl = 0 

implies Rd1nRd2 = 0, by which N^-N^ R[Rd2,D]-R[Rdl,D] = 

R [Rd^Rd^D] = 0 . This contradicts the fact that Tl and T2 are distinct elements 

of a COMPRESSed C,. Now consider Tl°tl and T2
ot2, two distinct tripartitions in 

C1+i, where T^ and T2 are from the COMPRESSed C, and t^t^X^R). If 7Ί and 

T2 are distinct, we may by induction hypothesis assume that N2'^Pl * 0 . But then 

clearly NiT^t^r^p^T^t^^ N2r>Pl4t0. So suppose Ti = T2 = T. Since 

Ге С, is the composition of a number of tripartitions in X^R ), we know that U(T) is 

the intersection of a number of U-classes in Xi(R). So U(T) = R[a,S] for some 

α С A and δ £ D. Let ^ be the tripartition in X^R ) corresponding todjeD, j=l, 2. 

If Γ°ί, is to be a candidate for C,+, we know that Ρ ( ί / ) η { / ( Γ ) ^ 0 . But then 

Dj^ô, since the only alternative, Ζ > , η δ = 0 , would lead to P(t,)r*U(T) = 

(Ä<i,xD /)nÄ[a,5] = 0 . Thus, N(T°t2)r>p(Tot1)= (N(T) + (N(t2)nU(T)))n 

(P{T)+(P(.tl)r\U(T)))= _ Ν ( ί 2 ) η / ' ( / ι ) η { / ( Γ ) = R[Rd2,D]n 

((anA<i 1 )x(5n£» 1 )) = ( a n A d i n A ¿ 2 ) x D 1 . SoW(7 ,°/2)n/>(7 ,°/1) = 0 implies 

ariRdinRd2 = 0 and in this case N(T°t2)-N(T°tl) = 

mT) + (N(t2^U(T)))-(N(T) + (N^)^U_(.T)))= (N(t¿-N(tí))riUiT) = 

(R[Rd2,D]-R[RdbD])r,Ria,ò]= R[anRdlnRd2,?)]= 0. This means that 

Tot γ and T<>t2 will not survive as two distinct members of the COMPRESSed 

C1+1. I 

6.13. By Lemma 6.2(vii) we may conclude from Proposition 6.12 that when S (R ) is 

generated by Algorithm 6.5, for any COMPRESSed C, all N-classes of tripartitions 

in the offspring of different elements of C, will be mutually incomparable and the 

collections of maximal Ρ -classes generated in the offspring of different elements 
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will be disjoint For V £ Ä , that is, with Το = τι(^)> Proposition 6.12 is no longer 

valid. So, for generating S(V) we have to resort to the breadth-first search of 

Algorithm 6.5, comparing globally MN-classes at each level. 

6.14. Returning to the problem at the base of this section, that of evaluating (5.2), 

we see that we have established a third alternative beside the two mentioned in 5.7. 

Proposition 5.2(ii) shows that Algorithm 6.5, applied with X0 = T0 (V') for the proper 

V', is an algorithm for directly generating S (ad ; V). This is not to say that it will be 

the best alternative in practice. We can summarize the two alternatives of 5.7 as: 

(i) generate S (ad ; R \ V) and work with this collection, or 

(ii) generate S (ad ; V) by generating S (ad ; R \ V) and applying one COMPRESS 

operation to the corresponding collection of tripartitions. 

In view of the discussion in 6.11 to 6.13, we can describe the third alternative, 

computing S (V) by Algorithm 6.5, as: 

(iii) generate S (ad ; V) by generating S (ad ; R | V) while applying a COMPRESS 

operation to the collections of tripartitions produced at each level in the 

generating procedure. 

In this perspective, alternative (iii) is one further step in the same direction after the 

step from (i) to (ii). It would seem that (iii) will not be preferable to (i) unless (ii) is 

preferable to (i) and the relative merits of (ii) and (iii) will again depend on the 

peculiarities of the situation, in particular the discrepancy between V and R. 
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CHAPTER 5 

DISCUSSION OF PART I 

Here we reconsider the results of the preceding chapters from a more general 
perspective. The chapter is divided in two sections. First we have another look at 
the translation of the biorder representation problem in terms of a hypergraph and we 
relate its significance to the close link between biorders and linear orders. This first 
section is more theoretical and involves primarily a reinterpretation of the results of 
Chapter 3. In the second section we shift our attention to more practical issues and 
we investigate the possibilities for applying the obtained results. Two major 
problems are addressed, the uniqueness of solutions and the deterministic character 
of the developed methods. In this section the emphasis is more on the results of 
Chapter 4. 

1. The connection between bidimension and order dimension 

Central to the developments in the preceding chapters was Doignon, Ducamp and 
Falmagne's (1984) characterization of the biorder dimension of a relation as the 
chromatic number of a particular hypergraph. Actually, this way of putting it is a bit 
misleading, since it is not just the rewriting of the bidimension as a chromatic 
number that does the job. It appears that, for the results of the preceding chapters, 
the specific structure of the hypergraph that is involved is essential. As we saw in 
Chapter 2, Eqs. (12) to (16), the hypergraph concept is so general that it entered the 
discussion almost sneakily, on a very general level. Let us first show that, indeed, a 
chromatic number characterization is available for other notions of the "dimension" 
of a relation. Next, we will give an example of such an alternative definition, in 
which the reformulation in terms of a hypergraph does not appear to be of much help 
for the purpose of computing this dimension. The rest of this section is devoted to a 
discussion of properties that are specific to the biorder dimension and the associated 
hypergraph; they will be intimately related to the theory of partial orders. 
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1.1. The general representation problem for relations. 
In the preceding chapters we were concerned with the collection В of biorders. 
More generally, we consider here an arbitrary specified collection Τ of relations 

between A and D. (No finiteness conditions are used.) For such a collection Τ, we 

can investigate the problem of representing any relation R с A χ D as the union of a 

number of members of Τ : 

R = U T , т с Т . (1) 

There is, of course, a dual representation problem with "union" replaced by 
"intersection": 

R = η χ , x c T . (2) 

In this context, it is of special interest to find minimal families τ for which (1) or (2) 

holds. If the representation (1) is possible, the minimum cardinality of such a family 

τ is callled the union Τ -dimension of R. Similarly, (2) leads to the definition of the 

intersection Τ -dimension. 

We confine here our attention to the union representation problem (1) and the 

union Τ -dimension. This is no real restriction, since any intersection representation 

problem can be formulated as a union representation problem. Denoting the 

collection of complements (with respect to Λ χ D ) of the relations in a collection τ by 

t, i.e., 

Tex iff (AxD)-:rex, 

we immediately obtain: 

(R = η χ , x c T ) iff (R = υ τ , x c f ) . 

Consequently, any intersection representation problem for R with respect to the 

collection Τ is a union representation problem for R with respect to Τ and the 

intersection Τ -dimension of R equals the union Τ -dimension of R. (In the case of 

biorders, Β = В - the complement of a biorder is again a biorder - and the above 
equivalence reduces to the duality between the conjunctive and disjunctive models.) 

Accordingly, let Л be a relation for which the representation (1) exists. (This is 
the case for any R if and only if all singleton relations {au }, a e A , и e D, are in Τ ; 

e.g., the union biorder dimension is defined for any relation because any singleton 

relation is a biorder.) Then the (union) Τ-dimension of R is defined as: 

Ί-dimR = Min{ |x| : R = u x , x c T } . (3) 

Now we can mimiek the operations that brought us in Chapter 2 from Eq. (13) to 

(16). Calling a subset С of R feasible (for Τ with respect to R ) if and only if there 

is ГеТ such that С с Г с Я , we obtain from (3): 
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Ί-dim R = Min { |γ | : R =vy, yconsistsof feasible sets}. (4) 

Since subsets of feasible sets are again feasible, we can, as in Chapter 2, replace any 
collection of feasible sets by a collection of mutually disjoint feasible sets without 
changing the union. Consequently: 

Τ-dim R = Min { |γ | : R = Σ Υ . yconsists of feasible sets}. (5) 

The sigma sign means union over disjoint sets (γ is a partition of R) and the right 
hand side of (5) is the definition of the chromatic number of a hypergraph. We 
conclude that whenever the union Τ -dimension of a relation R is defined, it equals 
the chromatic number of the hypergraph with vertex set R and where maximal stable 
sets consist of the maximal members of Τ contained in R. The edges of this 
hypergraph are, thus, the (minimal) subsets of R that cannot be extended to a 
member of Τ contained in R. The characterization of these edges clearly depends 
on the chosen collection Τ and this characterization determines the prospects of 
success for the reduction method described in Chapter 3. 

1.2. Another example: the matching dimension. 
That these prospects may differ from case to case can be seen from another example 
that has been described in the literature. Doignon and Falmagne (1984) call a 
relation M between A and D a matching relation if, for all a, b ε A, и, ν e D, 

aMu & ЬМи & ЬМ implies aMv, 

which means that a matching relation is any relation M for which there exist 
functions ƒ : A -» IR and g : D —» R such that 

aMu iff f(a)=g{u). 

Doignon and Falmagne consider the problem of representing a relation R as the 
union of a minimal number of matching relations. Since any singleton relation [au } 
is a matching relation, this minimal number, the matching dimension, is defined for 
any relation R and the approach of the previous subsection is available. 

Doignon and Falmagne give indeed a reformulation of this matching dimension 
as the chromatic number of a hypergraph and they characterize the edges of this 
hypergraph. That is, everything is set for applying the reduction methods of Chapter 
3 to this hypergraph. Then, however, we are in for a disappointment. Not only are 
the minimal edges in practice hard to find (this shows the importance of a result like 
Proposition 3.7 of Chapter 3), but, typically, no reduction of the hypergraph is 
obtained at all. This shows how critically the structure of the associated hypergraphs 
can vary: while the biorder hypergraph generally contains a number of irrelevant 
vertices (irrelevant for the chromatic number that is: the dominated vertices), this is 



106 CHAPTERS 

not the case for the matching hypergraph. The occurrence of dominated vertices in 

the biorder hypergraph can, at least in part, be related to the distinction between 

forced and non-forced pairs in the theory of partial orders (see, e.g., Trotter, 1983; 

Maurer, Rabinovitch and Trotter, 1980). Before investigating this relationship in the 

subsections 1.5 and 1.6, we first describe the close connection between the biorder 

dimension of a relation and the (linear) order dimension of a partial order. 

1.3. The bidimension as an order dimension. 

If we consider the special case where D=A, it is easy to check that any linear order 

on A is a biorder on A. An immediate consequence is that for any quasi order Q on 

A the bidimension of Q cannot exceed the order dimension of β as defined by 

Dushnik and Miller (1941) (see the General Introduction). On the other hand, as 

Doignon, Ducamp and Falmagne (1984) show, any minimal biorder extension of a 

quasi order is in fact a weak order. From this observation they derive easily that the 

two numbers must coincide: for any quasi order β on A we have 

Bidimß = Dim β , (6) 

where Dim Q denotes the classic order dimension of Q. Thus, the biorder 

dimension, defined for any relation, may be considered as a generalization of the 

order dimension as defined for quasi orders. 

It appears, however, that we can also go the other way: for any relation R 

between (possibly different) sets A and D, Bidim R can be interpreted as the order 

dimension of a distinguished quasi order associated with R. Using again the 

notations 

aR ={ueD :aRu} and Ru - {aeA : aRu], 

we define, for any R я A xD, relations RA on A, RD on D and Äx from D to A as 

follows: for any a,beA, u,veD, 

aRAb iff aR^bR, (7 a) 

uRDv iff RuZRv, (7b) 

uRxa iff RuxaR CA. (7c) 

Definitions (7a) and (7b) show that RA and RD are quasi orders on A and D, 

respectively. In terms of the corresponding (0,l)-matrix, aRAb reflects the fact that 

the row indexed by a dominates the row indexed by b; uRDv means that the 

column indexed by и is dominated by that indexed by v; finally, uRxa holds 

whenever the submatrix consisting of the rows dominating и and the columns that 

are dominated by a contains only " 1 " entries. 
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These four relations R, RA, RD and Rx can be regarded as a partitioning of a 

relation QR on A u D : 

QR = RA+R +RX+RD. (8) 

This relation QR, the original construction of which is due to Bouchet (1971), 

defines a quasi order on A и D ; it is in fact the maximal quasi order on Л и О whose 

restriction to AxD coincides with R Poignon et al., 1984). With respect to this 

quasi order we have the following fundamental result: 

BidimÄ = Dim од . (9) 

This was already established by Cogis (1980, 1982) in the finite case; Doignon et al. 

(1984) give a proof for the unrestricted case. Together, the results (6) and (9) show 

why computing the bidimension of a relation and computing the order dimension of 

a quasi order are two equivalent problems. 

1.4. An alternative proof. 

It may be interesting to note that the reduction theory for the hypergraph H (R ) that 

was developed in Chapter 3 can be used to obtain a simple proof for the equality in 

(9). From the definition of QR it follows that for a e A : 

QRa = η QRu (10) 
ueaR 

and for ueD: 

uQ* = n

B aQR. (11) 

To establish (10), for instance, we note that if ρ e A, then, by (7 a), 

PQR0 iff pR^aR iff (aRu implies pQRu)\ 

if instead ρ e D , then, by (7c) and (7b), 

pQRa Ш Rpy-aR^R iff (aRu implies RpZLRu) 

iff (aRu implies PQRU). 

There is a similar proof for (11). In Chapter 3, we defined an "implied" column as 

one that could be obtained as the conjunction of a number of other columns of the 

matrix representation of a relation, and we observed there that implied columns 

could be removed without changing the bidimension. Now (10) means that, in the 

matrix for QR, any column indexed by an element of A is an implied column; 

similarly, according to (11), any row indexed by an element of D is an implied row. 

Removing these columns and these rows reduces the matrix of QR to that of R, 
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which implies that 

BidimQn = Bidimfl, 

and combining this with (6) we obtain (9). (Although in Chapter 3 we restricted 

ourselves to the unite case, it can easily be checked that the above proof works in the 

general case, i.e. that the removal of any (infinite) collection of implied patterns 

does not change the bidimension.) 

1.5. Trotter's original hypergraph. 

The hypergraph defined by Doignon et al. (1984) was a generalization of the 

hypergraph that Trotter (1983) associates with a partial order. This would imply that 

for this special case, when D=A and the relation R is a partial order, the two 

definitions should coincide. This is indeed the case, except for one detail: while 

Doignon et al.'s hypergraph for a partial order Ρ would have the full set Ρ as vertex 

set. Trotter defined his hypergraph on the subset of "non-forced" pairs in P. A pair 

xy e Ρ is called non-forced if and only if the relation Ρ u {xy } is a partial order. A 

non-forced pair must certainly be an incomparable pair for P, that is, xyeP^P'1, 

since if yxtP, then Pv{xy} is not antisymmetric (xyeP implies χ *y). But not 

all incomparable pairs are non-forced: it might well be that Ρ и {xy} is no longer 

transitive and that to restore this property more pairs would have to be added. 

Clearly, if there are no incomparable pairs there can be no non-forced pairs and 

Trotter's hypergraph has no vertices. To avoid trivialities, we assume in the sequel 

that Ρ is not a linear order, so there are incomparable pairs. Then there must be 

non-forced pairs among these incomparable pairs and Trotter's hypergraph is well-

defined. 

Apparently, Trotter's hypergraph is a subhypergraph of that of Doignon et al., 

the subhypergraph induced by restricting the vertex set to the collection of non-

forced pairs in Ρ. However, by the result (6), both must have the same chromatic 

number. This can be seen to follow directly from the reduction theorems of Chapter 

3: it appears that in applying these to Doignon et al.'s hypergraph we would 

immediately reduce it to Trotter's subhypergraph on the non-forced pairs (and the 

reduction might go beyond this point). Let us state the relevant result more 

precisely: 

1.6. Proposition. 

Let Ρ be a partial order on A and xy € Ρ. Then Ρ u {xy } is a partial order if and 

only ifxy is not a dominated vertex of Η {Ρ ). 

Recall that, according to Proposition 3.7 and Definition 3.6 of Chapter 3, the vertex 

xy of Η (Ρ) is dominated by x'y' if and only if for any 2-edge of Η (Ρ) containing xy 
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we get another 2-edge by replacing xy by x'y'. (The pairs xy and uv constitute a 2-
edge whenever χ Ρ у, и Ρ ν, χ Ρ ν and и Ρ у.) 

Proof of the Proposition. We first show that Ρ <J {xy } is not a partial order if xy is a 
dominated vertex. This is immediate if ухе Ρ (antisymmetry would be violated), so 
we may suppose that both xy,yxeP. A partial order is a reflexive relation, so 
xx,yyeP. In other words, {xy,yx} is a 2-edge of the hypergraph H(P). If xy is 
dominated in H(P) by x'y', then {x'y',yx} is also a 2-edge of H(P ), which yields 
x'Px and yPy'. For any partial order P' containing both Ρ and xy we can then 
write x'P'xP'yP'y', so P' contains also x'y' éP и {xy }. 

Conversely, if P^->{xy} is not a partial order, either the antisymmetry or the 
transitivity must be violated. The former is the case if and only if yPx. But then 
uPy and xPv would imply uPv, which shows that we cannot have any 2-edge 
{ху.и }. Thus xy is dominated (for instance by a vertex of the incomparable pair 
that we suppose to be there). Ρ и {xy } violates transitivity if and only if there is 
x'y'4Pyj{xy}, such that x'Px and yPy'. But then uPy implies uPy' and xPv 
implies x'P ν, which shows that for any 2-edge {xy, uv} we have a 2-edge 
{x'y', uv }: xy is dominated by x'y'.i 

(It can readily be checked that, at the end of the proof, the vertex xy is not only 
dominated, but even "implied" by x'y' in the sense of the definition of an implied 
zero in Chapter 3, Section 3. Indeed, if x'*x, then x'Py and xPç^x'P; if y'*y, 
then x^y' and Py^Py'. This illustrates the remark in the last paragraph of Section 
3 of Chapter 3 to the effect that here any dominated zero is an implied zero. 
However, it must be noted that this refers only to the non-trivial situation where xy 
is contained in any 2-edge at all; this proviso should have been added in Chapter 3.) 

The above proposition shows that, in the case of a partial order, the methods of 
Chapter 3 reduce Doignon et al.'s hypergraph to Trotter's hypergraph. For the 
special kind of quasi order QR on A U D as defined by (8) and (7), all non-dominated 
vertices of H{QR) are within AxD, as we saw in 1.4. Thus, according to 
Proposition 1.6, Trotter's hypergraph for QR is a hypergraph on R right from the 
start, and as such it must be a subhypergraph of Doignon et al.'s II(R). This is 
another illustration of the basic equality (9), which establishes the bidimension as an 
instance of the classical order dimension in the sense of Dushnik and Miller (1941). 
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2. Prospects for applications 

2.1. The uniqueness problem. 
The results of the preceding chapters are constructive in nature. In Chapter 4 we 
developed algorithms for the construction, for any relation R £.4 xD, of all minimal 
biorders containing R. The combination of results in the Chapters 3 and 4 leads to 
an effective procedure for computing the bidimension of R, together with a number 
of biorder representations of R in this dimensionality. So, in principle, we have 
found a satisfactory solution for the problem we started with in Chapter 2, finding a 
conjunctive or disjunctive model representation of a binary data matrix in the 
minimum dimensionality. However, one major drawback in applying these models 
is the lack of uniqueness of an obtained solution. 

This problem is already apparent in the method where we compute the 
bidimension via the equivalence with the hypergraph. Suppose we have a coloring 
of H (R ) in a minimal number of color classes C, £Ä, i = 1 q. Denote by Β, 

the collection of biorders Bt such that C, e ß , CR. Since each C, is stable, these 
collections will be non-empty and B, will in fact contain more than one element 
unless the color class C, is itself a maximal biorder in R. It is clear that any 
arbitrary combination of elements Bl from the different Β, leads to a distinct biorder 
representation for R : 

— ч ч -
Ä = U C l C U ß | C Ä , 

1=1 i = l 

and thus 

R = r,Bt. 
1=1 

Consequently, this coloring alone produces 

Π Ι Β , Ι 
1=1 

distinct solutions in the minimum dimensionality. In general there will be a number 
of minimal colorings and each of these may add new combinations of biorder 
extensions of the colors. The examples in Coombs and Kao (1955), Coombs (1964) 
and Table 1 of Chapter 2 have an (essentially) unique solution because there is 
(essentially) just one minimal coloring of the corresponding hypergraph, in which 
the color classes themselves are maximal biorders in R. These examples were 
carefully constructed; they do not represent the typical situation. 

The above discussion shows that when we compute the bidimension by the 
methods of Chapters 3 and 4, we obtain a number of minimal representations almost 
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as a by-product. If we are interested in the practical problem of finding all minimum 

dimension solutions for R, only a straightforward approach seems available: 

compute the bidimension k of R, compute the collection of minimal biorder 

extensions of R and test for every к -combination of this collection whether their 

intersection equals R . For fixed k, the number of such combinations is given by a 

к th degree polynomial in the number of minimal biorder extensions (provided that к 

is less than half this latter number). Consequently, to the extent that this approach is 

feasible at all (that is, to the extent that the collection of minimal biorder extensions 

is managable), it will only be so for small values of к. 

There are, however, deeper reasons why we should not try to find all solutions 

when the bidimension turns out to be relatively high. We are referring here to 

another obvious drawback of the procedures as developed so far: they are 

completely deterministic. One "error" in the data, one " 0 " that "really" should 

have been a " 1 " , or vice versa, can easily change the bidimension of a data matrix. 

Since the binary data in question typically are noisy, such a deterministic analysis 

will generally reveal a larger number of dimensions than we want to retain. This 

introduces the problem of finding low dimensional representations that "best" fit the 

observed high dimensional data matrix. In the following two subsections we explore 

some possible first steps in this direction. Unfortunately, the above mentioned 

uniqueness problem will appear to be our constant companion on these excursions. 

2.2. Approximate biorder representations. 

When computing the bidimension of a data matrix results in a number that we deem 

unacceptably high, it is natural to inquire how bad the situation really is. Is the high 

dimensionality a stable characteristic of the data, overall, or is it perhaps caused by a 

few deviating response patterns with low frequencies of occurrence? More 

precisely, how many of the responses would have to be adjusted (a " 0 " converted to 

a " 1 " or vice versa) in order to obtain an acceptable bidimension? It is important to 

realize that now the frequency of observed patterns plays a role, while in the 

deterministic computations and constructions of the preceding chapters only the 

occurrence or non-occurrence of a pattern was significant. Another way of making 

the same point: we now have to work - at least conceptually - with the full data 

matrix or relation, with all replications of identical row or column patterns present. 

The above considerations lead to the formulation of the following approximate 

biorder representation problem, which was already suggested by Charles Chubb 

(personal communication): 

Given a relation R and a positive integer к (the intended low dimensionality), 

find the minimal number mk for which there exist biorders Βλ,.. . ,Bk such 
к 

that, with L = η Β,, 
ι = 1 
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\L-R\ + \R-L\ = mk. (12) 

Here L is the low dimensional approximation to R and the distance ("stress") mk 

between L and R is, according to (12), measured by the size of their symmetric 
difference (the number of entries on which they disagree). 

In this form, the problem is obviously extremely difficult. It is true that for the 
above L we need to consider only biorders that are closest to R, i.e., which have a 
minimal symmetric difference with R. Indeed, replacing one of the biorders 
constituting L by one whose symmetric difference with R is a subset of the first can 
never increase the size of the symmetric difference of the intersection with R. But 
there will generally be many biorders that are closest to R in terms of the symmetric 
difference. At the two extremes this collection includes the minimal biorder 
extensions of R (for which the second term in (12) will vanish) as well as the 
complements of those of R (with first term in (12) equal to zero), but there will be 
many more "inbetween". 

It might be interesting, then, to try and simplify the problem. The first step in 
this direction will actually consist in complicating the issue. Let us think, very 
informally, of a "model" through which the "latent", "true" relation L gives rise 
to the observed relation R. One way to account for the discrepancies between L and 
R is to imagine that the positions of persons on the postulated dimensions are not 
fixed, but can have some disturbances round their average point. Such disturbances 
can cause a person to be momentarily higher on a dimension than an item, even if his 
average position is below the item on that dimension. In other words, a latent " 0 " 
score on a dimension can be turned into a " 1 " score. A similar process can take 
place in the opposite direction. It is convenient to abuse some terminology from the 
unrelated field of signal detection theory and call a miss a " 1 " entry in the latent 
relation L that appears as a " 0 " in the observed R; conversely, a " 1 " in R 
corresponding to a " 0 " in L is designated as л false positive. Now, according to the 
conjunctive model, a " l " in Я is produced by a conjunction of "1 "s on theseparate 
dimensions and a " 0 " by a disjunction of "0"s. Therefore, a miss may be produced 
by a significant negative disturbance on any one dimension, while a false positive 
does not obtain unless there is a significant disturbance in the positive direction on 
all dimensions on which the person is, on average, below the item, and on all 
dimensions on which the average person position is above the item there is no 
significant disturbance in the negative direction. 

All of this suggests that the status of " 0 " and " 1 " entries in R is not 
symmetrical. Consequently, in computing a distance between L and R, false 
positives and misses should be weighted equally only in the one-dimensional case; 
with more dimensions, false positives should have a greater weight, the ratio of the 
weights being an increasing function of the number of dimensions. If we normalize 
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by giving unit weight to a miss, we obtain the following generalization of the above 
approximation problem: 

Given a relation R, an integer k>l and a weight щ>\, find the minimal 
number mk for which there exist biorder s Β χ Bk such that, with 

к 
L = r\Bt, 

\L-R\ +<ùk\R -L\ = mk. (13) 

Obviously we have made the problem more difficult; we have in fact created an 
infinity of approximation problems, one for each choice of тк. However, at this 
point a simplification is possible. In the above discussion we derived a miss from a 
disjunction of disturbances in a negative direction on к dimensions, while a false 
positive requires a conjunction of disturbances in specific directions on the к 
dimensions. Assuming independence of the disturbances on the various dimensions 
(at least to some approximation) it is then tempting to conclude that, for any к > 1, a 
false positive is much less likely to occur than a miss. In terms of the weights this 
implies that ω* is really large: 1 « <ùk. This means effectively that in the above 
generalized version of the approximation problem the minimum mk will only be 
obtained for approximations L for which \R -L\ =0. To the extent that this is 
true, the general approximation problem is equivalent to the following simpler 
version: 

Given a relation R and an integer k>\, find the minimal number mk for which 
к 

there exist biorders В,,... ,Bk 2 R such that, with L = η β 

\L-R | = mk. (14) 

It is clear that in this version we need to consider only minimal biorder extensions; 
the problem is reduced to approximating R by к minimal biorder extensions. AH 
such extensions are computed by an algorithm presented in Chapter 4 and we face 
again the problem of trying all к -combinations to find a best approximation. An 
upper bound on the minimum number mk in (14) can be obtained from any minimal 
coloring of H(R), by considering all combinations of minimal biorder extensions of 
к out of the Bidim (R ) different colors. 

It must be clear that looking for best approximations does only aggravate the 
uniqueness problem. Not only can there be multiple solutions L for the minimal mk 

in (14), but for each such L we face again the problem discussed in the preceding 
subsection: there will in general be a number of decompositions of L as the 
intersection of к biorders. 
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2.3. Towards a probabilistic model 

Note that the above formulated approximation problems are still essentially non-

probabilistic (although we used some quasi-probabilistic argument to obtain the last, 

simple version). In order to evaluate how well the data can be described by a low-

dimensional approximation we need a truly probabilistic model. So let us finally 

sketch a possible - but, as we will see, not quite satisfactory - approach in this 

direction. 

In a probabilistic model, the observed relation R'ZAxD is considered the 

realization of some random variable. This random variable is a matrix of | A \ χ | D \ 

jointly distributed scalar random variables, any relation between A and D being 

determined by this number of entries. Random variables corresponding to different 

persons (elements of A) may naturally assumed to be mutually independent; for 

random variables representing the results for one person on different items, the 

principle of local stochastic independence is invoked. Thus, all the variables are 

independent and the joint distribution follows from a specification of the 

distributions of the separate variables. 

The random variable corresponding to the pair au can take two values: we may 

observe aRu (person a solves item и) от aRu (a fails u). The probabilities for 

these two events depend on the "true", situation. In the model that follows, which 

was suggested by Jean-Claude Falmagne (personal communication), we assume that 

there is a latent T^AxD representing the true relation between a and u: aTu if 

person a masters item u, aTu if a does not master u. The random component in R 

is now introduced by allowing for a correct answer when the item is not really 

mastered and an incorrect response when the item is mastered. More specifically, 

we postulate for every item и a careless error parameter au and a lucky guess 

parameter Ри, which results in the following distribution: 

ІР(аЯи) = l - a u 

P(aÄM) = au 

JP(aRu) = β„ 
_ У it al и 

W(aRu) = l - ß u 

Notice that this error model is different from the "model" that was suggested, very 

informally, in the subsection on approximate solutions. In particular, here the error 

parameters do not depend on the relative positions of items and persons on the 

separate dimensions. Indeed, the errors are not related at all to the underlying 

dimensions. Clearly, some refinement would be in order here, but we will continue 

with the above approach, accepting it as a first, maybe crude version of a 

probabilistic model. 

if aTu 
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In sum, then, we have three sets of parameters: {au }u e u and { Ри }ueD, all with 
values in the interval [0,1], and T G A X D , with values in the collection R t of 
relations between A and D having bidimension not exceeding k. Here к is the 
maximum dimensionality we are willing to accept for the true, latent structure. 
Given the specification (15), we can readily write down the likelihood of the 
observed relation Л as a function of these parameters. Using local stochastic 
independence it follows: 

L(R)= Π L(aRu) Π _L(aRu) Ц L{aRu) Π _L(aRu) 
аиеТ ЧЯ aueTng аиеГпД auefng 

= Π(1-α1,)*-·αΓ'·βί··(1-β.Λ 

where (with Г и as usual denoting [a s A :aTu} and similarly for R и ) 

hu=\Tu rlRu\, mu=\Tu nRu\, 

fu=\fu^Ru\t cu=\funRu\ (16) 

are the numbers of "hits", "misses", "false positives" and "correct negatives", 
respectively (in R with respect to T). (To avoid heavy notation, we do not explicitly 
show the dependence of these numbers on Г and R, which is obvious from the 
definition.) It is trivial to solve the likelihood equations for the parameters au and $u 

in terms of the parameter T: 

logL(fl) = Σ /i u log(l-a u ) + m u loga u+/ u logß„+cH log( l -ß u ) , (17) 

and thus, 

¿MAW=_I^ + ^ = 0 ρ au = 
1-

fu 

К 
"«и 

• + 

-

mu 

o.u 

cu 

Эа. I-a,. аи

 u h,.+mu 

dlogL(R) _ fu_ -Си _ fu 
— a ß " R - Ί—ІГ" _ 0 lff ß« = ~ê~>— 

(18) 

We see that the maximum likelihood estimates of au and ßu are exactly as we would 
expect The careless error parameter au is estimated by the proportion of misses on 
и by persons that have mastered item и (hu+mu = \Tu\), the lucky guess 
parameter ßu by the number of false positives on u by persons that have not 
mastered item и (fu+cu = \fu\). On substituting (18) in (17) we obtain an 
expression for the log likelihood to be maximized solely in terms of Г: 

logL(R) = Σ К log—^— +mu l o g — u — +fu log-^— + cu l o g - ^ -
UTD hu+mu К+ГПи fu+Cu fu+Cu 
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= Σ ( Λ,, log hu + mu log mu - (hu +mu)log (Ли +mu) + 
ueD 

fu log fu + cu log Cu - (fu + Cu ) log (ƒ„ + Cu ) ). (19) 

This may all look very fine, but now we must finally face the fact that the 

likelihood is a function of the discrete parameter Τ with values in R t . Even for 

small к this collection of relations with bidimension bounded by к may be huge, so 

the practical problem of efficiently searching this collection for an element that 

maximizes (19) is a formidable combinatorial task. The situation is not quite as bad 

as this description suggests, since it can be shown that we need to consider only 

biorders whose symmetric difference with R is minimal: the maximum for (19) can 

always be found within the subcollection of R k consisting of the intersections of к 

such biorders. 

Restricting the search to this subcollection of R t makes sense for another 

reason: it will prevent us from obtaining some ridiculous solutions. Note the 

symmetry in (19) between hu and mu, as well as that between fu and cu. Nothing in 

the likelihood expression indicates that hits and correct negatives are "good", and 

that misses and false positives are "bad". To put it in other words, the likelihood 

expression is totally blind for whether it describes a fit for R or for R, since 

changing from an observed relation to its complement amounts to switching the roles 

of hu and mu, as well as those of fu and cu, simultaneously. This undesirable 

symmetry in the likelihood expression is due to the simple way in which (15) 

incorporates the random components in our model. 

We encountered the subcollection of biorders having minimal symmetrical 

difference with R already in the case of the approximate representation problem. 

There we noted that this collection will still be huge and we went on to alleviate the 

problem by imposing some simplication that brought the results of Chapter 4 to bear 

on the situation. Here we can do something similar. Under some rather general 

circumstances (open ended items) it is reasonable to assume that the probability of a 

correct guess is negligibly small. Then we may set ßu = 0 for all и eD. This implies 

that in (19) fu =0 and hu=\Ru\, independent of T, and consequently (19) reduces 

to 

logL(Ä)= Σ |Äu| lQg|Äii | + m B l o g m u - ( | Ä u | + mH)log(|ÄK| + mu), (20) 

where the domain of Τ is restricted to the elements of R t that contain R 

(fu=\Tu'^Ru\=0). Thus, Τ now ranges over the intersections of к or less 

biorder extensions of R. As with (19), it is the case that the maximum in (20) can be 

found by considering only the biorder extensions that have a minimal symmetric 
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difference with R, and these are of course the minimal biorder extensions of R, 

which can be generated by the methods of Chapter 4. 

Thus, with this restriction in the model, the practical problem consists again of 

inspecting к -combinations of minimal biorder extensions. This might be feasible in 

some practical cases, and we might obtain maximum likelihood estimates for 

approximations in к dimensions. Barring for the moment a number of important 

statistical issues, like how "stable" (in some sense yet to be defined) such an 

estimate from a discrete set will be, we must recognize that it is only an estimate for 

T, not for a particular set of biorders whose intersection is T. Thus, we are still 

confronted with the uniqueness problem: there may be (and in general there will be) 

multiple collections of biorders whose intersection is Τ and the probabilistic model 

considered here cannot give any clue as to which of these collections to choose. 

This is another consequence of the fact that the error component of this model, as 

given in (15), is defined solely in terms of the intersection Γ: this implies that 

different collections of biorders with identical intersection are indistinguishable in 

the model. To obtain a really interesting probabilistic model that estimates the best 

collection of biorders representing some data matrix, we would have to find a way of 

defining a sensible and testable error model that relates (the likelihood of) observed 

events to the relative positions of items and persons on the separate dimensions. 
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Knowledge Spaces 





CHAPTER 6 

THE BASIC THEORY OF KNOWLEDGE SPACES 

1. From Guttman scales to knowledge structure 

At the basis of the investigations in the following chapters is the problem of 

developing well-defined, efficient procedures for assessing the knowledge of an 

individual with respect to a specified domain of information. The need for such 

procedures is apparent in view of the development of more advanced computerized 

instruction systems. We assume that the domain of knowledge in question can be 

represented as a fixed, finite set X of problems (or: items) for which a binary 

response is possible: correct or incorrect. The idea is to make the assessment 

efficient by using the amount of structure that is present in this collection of items. 

Usually, at least, the items will not all be independent. In very special circumstances 

it may even be the case that the order in which they can be acquired is completely 

fixed: we can label the elements of X as дсі,дс2 xn in such a way that any 

student learning the material in X has to master xl before she can attack л^, хг 

before хг, and so on. In such a case, the population of students we consider and the 

collection X of items are clearly Guttman scalable: they can all be given a position 

on one dimension such that a student is either below xu or above xn, or between *,·_! 

and x, for some i = 2 , . . . , η . 

However, the situation where there is just one possible order of mastering the 

items in X is very exceptional. Even in a field like elementary arithmetic, which 

may be regarded as highly structured, we can easily come up with examples where 

this order is not fully determined. Consider, for instance, a problem in X dealing 

with subtraction (of 3-digit numbers, with borrowing, say) and one involving 

multiplication of two single digit numbers. Then we can imagine that there are 

students solving one and failing the other, either way. This would imply that we 

need at least two Guttman scales, one in which the subtraction problem precedes 

("is lower than") the multiplication problem and one in which it is the other way 

around. These two orderings of the items divide the population of students into two 

classes, depending on which of the two items is mastered first. In one group we may 

observe that subtraction is solved, while multiplication is failed, in the other group 

the reverse pattern may appear. If a student solves both items or if he fails both, we 
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cannot tell from which group he was drawn. 
This simple example prompts two remarks. First, although we keep talking 

about Guttman "scales" it may be clear that we are here not interested at all in 
obtaining actual "scale values" for the items (which values would be determined 
only up to a monotonie transformation anyway). As before, we are only concerned 
with the possible orderings of the items in a population of students; as discussed in 
the General Introduction, this ordinal aspect is the essence of the notion of a 
Guttman scale. 

As a second remark, we want to emphasize the wording "we can imagine" in 
the above example. The possibility of two different orders is there because a priori, 
as outsiders, we can find no compelling logical reasons why one of the two orders 
would be dictated. However, whether or not both orders appear is an empirical 
matter. It may well be, for instance, that in practice the multiplication problem is 
only mastered after the subtraction problem. In such a case, an experienced teacher 
would infer from a student's failure on the subtraction that this student would also 
fail the multiplication and he would not ask her that problem. It must be stressed 
that our concern is with the practical situation. Our goal is not some kind of 
"cognitive analysis" of the domain X, but rather a factual description of the 
possible orderings of the items in the field, conditional on some chosen target 
population of students. This description will constitute a key parameter of our 
assessment procedures. We can think of two sources for arriving at such a 
description: information from experts in the field, here experienced teachers and 
tutors, and, when available, extensive empirical data from a sample of student from 
our population. The dependence of the possible orderings on the chosen population 
is something to keep in mind: switching from one population to another may 
certainly change the relative frequency of the classes induced by the different 
orderings and if this involves a change from a positive to a zero proportion or vice 
versa, the collection of possible orderings itself has changed. 

Returning to our example of two orderings, we see that it readily generalizes to 
the case of an arbitrary number of Guttman scales: we assume that a specified 
domain of knowledge is characterized by the collection of possible orderings of its 
items. More formally, we endow X with a family G of weak orders on X. We 
consider the general case of weak orders, because we want to allow for equivalent 
items in the different orderings. The situation where all weak orders are linear 
orders (no equivalent items) will appear to be an interesting special case; we will 
come back to this issue in the next section. This family G places restrictions on 
which subsets of items a person in the population under consideration can have 
mastered. After all, such a person is supposed to have a position on one of the 
Guttman scales created by the weak orders on the items, which means he knows all 
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the items that are lower on this scale and he fails all the problems that are higher. 

(We restrict ourselves here to the deterministic case, where knowing implies giving a 

correct answer and not knowing giving an incorrect answer; the possibility of 

making careless errors and lucky guesses will come in later on.) If We G is the 

order that is valid for this person, then we know that a correct answer to item χ 

would imply a correct answer to any item y for which yWx ("y precedes χ in the 

order W") holds. With a finite number of items there must be a last item the student 

has acquired and thus, with the usual notation 

Wx = {yeX:yWx}, 

it must be the case that the student knows nothing or there is some xeX such that 

the student knows exactly the subset Wx of items. 

In the framework of knowledge assessment procedures, this subset of items that 

an individual is capable of solving is obviously of central importance. It is called the 

knowledge state of the individual. The collection of all possible knowledge states is 

called a knowledge structure on X (this collection depends in principle on the 

intended population of students). Thus, a knowledge structure on X is a family of 

subsets of X and in the preceding paragraph we saw how such a family is derived 

from a collection of weak orders on X representing the possible orderings of the 

items. If G is this collection of weak orders, then the corresponding knowledge 

structure К is given by 

К = {Wx: WeG,x€X}v{0}. (1) 

Note that thus derived knowledge structures have one particular property: they 

always contain the null state 0 and the perfect state X. This is, however, the only 

thing special to К in (1): for any family F of subsets of X, the knowledge structure 

F и { 0 , Χ } can be obtained by (1) from a collection of weak orders. Including the 

null and perfect states in any knowledge structure seems reasonable: we always want 

to cover the case of students knowing nothing and students knowing everything in 

the domain of choice. 

Obviously, not every combination of WeG and xeX yields a distinct 

knowledge state in (1). That is to say, for К e К we may have К =W1x = ] 2У 

with Wl*W2 and/or x*y. Consequently, from knowing a student's knowledge 

state we cannot infer on which Guttman scale she is. (Indeed, a student knowing 

nothing or one knowing all of the items may be on any Guttman scale.) The only 

thing we know (and that is of real interest to us) is which of the items she has already 

mastered and which not yet. More generally, given a knowledge structure, the 

collection of weak orders in (1) is not uniquely determined. The structure К is 

certainly produced by the family of all weak orders W such that { Wx : χ e Χ } с К, 
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but various subfamilies of this collection may suffice to generate К . Of special 

interest in this respect is the subfamily of minimal elements in this collection, since 

they correspond to the "learning paths" in K. For weak orders, Wi^W1 means 

that W^ is a refinement of /г·. it must resolve equivalence classes of ІУ2 into a 

number of ordered smaller classes; thus, minimal elements in a collection of weak 

orders are the ones with the smallest equivalence classes. 

To see how these are detectable from the knowledge structure, we consider 

"chains" in the power set of X. A family С of subsets of X is called a chain if it is 

completely ordered for the inclusion: for any elements А,В of С, /ici? or ßCA 

holds. The chain С contained in a family of subsets К is maximal in К if no other 

element of К can be added to С without destroying the chain property. Such a 

chain may be identified with a learning path in К, a sequence of steps in which the 

various items are acquired, bringing a person over time from the null state 0 into the 

perfect state X. Any chain С in 2X induces a weak order Wc on X by the definition 

xWcy Ш (yzA implies χ e A for all А е. С) (2) 

and it is readily seen that in this correspondence inclusions are reversed: adding a 

subset to a chain С amounts to an extra restriction on the pairs (x,y) in W c, so the 

corresponding weak order will be smaller. Thus, maximal chains generate by (2) 

minimal (most refined) weak orders. The collection G of weak orders on X that 

correspond to the learning paths in Κ, 

G = { Wc : С is a maximal chain in К }, (3) 

where Wc is defined in (2), does indeed generate К by (1). 

To sum up, starting from the conceptualization of a domain of knowledge by a 

finite set consisting of all the items or problems in this domain, we have two ways of 

describing the structure of such a field: by collecting the possible orders in which the 

various items may be acquired or by collecting the possible knowledge states in the 

so-called knowledge structure of the field. These two representations are closely 

related: any collection of weak orders induces a unique knowledge structure by (1) 

and any knowledge structure (including 0 and X) can be represented by the 

collection of weak orders, given by (3), which correspond to its maximal chains. 

1.1 Example. 

Let us illustrate the introduced notions on a miniature example, where the domain of 

knowledge X consists of just 5 items: X = {a,b,c,cl,e}. The simple example of 

this subsection will be used throughout this chapter for illustrative purposes. 

Suppose that there are 10 possible orders in which these items can be acquired. 

More specifically, let the collection G consist of the following linear orders: 
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Lj : a<b<d<c<e·, 

Ьг: a < b < с < d < e ; 

L 3 : a<b<c<e<d\ 

¿ 4 : a<c<b<d<e\ 

Ь$: a<c<b<e<d; 

L6: c<a<b<d<e 

L1:c<a<b<e<d 

Lg: c<b<a<d<e 

L9: c<b<a<e<d 

LIQ'. С < b < d < a < e 

(4) 

(Note that we have here the special case where all orders are linear orders: no 

equivalent items in any ranking.) As we have described, such a collection induces 

knowledge states Lx with L in G and χ in X. For instance, Lx generates the 

knowledge states; 

L 1 a = {a}, L 1 b = { a , ¿ ) } , L^d = {a,b,d}, Lxc = {a,b,c,d}, L^e =X. 

Also, {a,b,c}=L%a =Lsb =L2c is a state. It can easily be checked that the 

complete knowledge structure К deriving from G according to (1) has 12 states and 

is given by 

К = {0,{a},{c},{a,b},{a,c},{b,c}, (5) 

{a,b,c},{a,b,d},{b,c,d},{a,b,c,d},{a,b,c,e}tX}. 

Figure 1. Graph of the knowledge structure of Eq. (5). 

Representing this knowledge structure graphically, as is done in Figure 1, clearly 

shows the maximal chains in К . In this graph, two states are joined by lines if and 

only if the state to the left is a subset of the state to the right. (In technical terms, 

Fig. 1 presents the Hasse diagram of the knowledge structure Κ, partially ordered 

by the inclusion relation.) Any maximal chain in К corresponds to a path from the 

null to the perfect state. For instance, we can detect in Fig. 1 the maximal chain 

0 £ {с} С {с,b} С {c,b,a} С {c,b,a,d} С {c,b,a,d,e}. 

Along this path, the items are mastered in the order c<b<a<d<e, which 
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coincides with Lg in (5). Indeed, there are 10 different paths from 0 to X in Fig. 1 
and the correspondence with the elements of G as defined by (3) is easily 
established. It appears that the collection G in (4) was constructed with the 
knowledge structure К of (5) in mind: (4) collects exactly all learning paths in this 
structure. Various other collections of weak orders would have produced the same 
knowledge structure. For example, the collection G' where L γ is replaced by 

W,: {a,b,d}<{d,e} 

(elements between braces denote equivalent items in the weak order), but this means 
replacing a finer ordering by a coarser one (clearly, LjClV^). Or, the collection 
G*'= {L^Ls, ¿io}, but this entails the assumption that only three of the 10 possible 
learning paths in Fig. 1 are actually in use. In practical situations, only the 
knowledge structure can be observed directly (at least in principle, disregarding for 
the moment the question of noisy observations), so this kind of assumptions are in 
general to be avoided. In this sense, the collection in (4) (generally: the collection of 
weak orders defined by (3)) gives the most refined and complete representation of 
the knowledge structure К in (5). 

2. Discriminating and well graded knowledge structures 

Since we are dealing with collections of weak orders, there may be orders in which 
two distinct items are equivalent, that is, along that ordering one is mastered at the 
same time as the other. For instance, if we have the two orders 

Wi : a < {b, с } and Wг : b < с < a 

on the three item set {a,b,c }, then b and с are equivalent in W^ but not in W2. 
The corresponding knowledge structure in this case is 

{в,{<і}ЛЬ}ЛЬ,с},{а,Ь,с}}. (6) 

Now consider the special case where there are two items χ and у in X that are 
equivalent in all orders in a collection G. It is easy to check that then, and only then, 
a state of the knowledge structure К defined from G by (1) contains χ if and only if 
it contains y. In other words, the items χ and y are indistinguishable in K. Any 
student who can solve one can solve the other. For instance, if we replace И^ in the 
above example by the extension 

W{\ {b,c}<a, 

then b and с are equivalent in both orders and indeed they are indistinguishable in 
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the corresponding knowledge structure, which is now given by 

{0,{a},{b,c},{a,b,c}}. (7) 

If we take the knowledge structure seriously as a complete description of the 

possible knowledge states, a natural interpretation is that indistinguishable items in a 

structure test in fact one and the same abstract notion. For example, we can think of 

many problems that are all equivalent versions of the notion "adding of two 2-digit 

numbers with repeated carrying" in elementary arithmetic. Accordingly, we define 

technically a notion in К as a maximal collection of indistinguishable items in К . 

Thus, in (7) the knowledge structure has the two notions {a } and [b, с }. 

We call a knowledge structure discriminating when there are no 

indistinguishable elements: any notion consists of one single item. The structure in 

(6) is discriminating, while that in (7) is not. Notice, however, that it is possible to 

consider any equivalence class of items, i.e., any notion, as a single element and 

interpret a knowledge structure as defined on these notions, instead of the separate 

items. In this way, a knowledge structure becomes discriminating by definition. The 

structure in (7) defined on the elements [a] and {b,c} is discriminating: it 

corresponds to the full power set on these elements. Since being discriminating is 

just a technical requirement that can always be met by applying this standard 

reduction operation, we may, whenever convenient, simply assume that this 

operation has been carried out. 

An interesting special class of knowledge structures is obtained by restricting 

attention to collections of linear orders, instead of weak orders in general. A 

knowledge structure К that can be derived, according to (1), from a collection G of 

linear orders, is called well graded. This notion of well-gradedness can be given a 

number of equivalent reformulations. A linear order on X corresponds, by definition 

(2), to a chain that is maximal in 2 х , that is, an increasing sequence of subsets of X, 

starting with 0 , terminating with X, and such that any set except the first contains 

exactly one more item than its predecessor. If such an | X | +1 element chain is 

contained in К it is called a gradation in К and К is well graded if it is the union of 

its gradations, that is, if any state in К is contained in at least one gradation. Still 

equivalently, К is well graded if for any К e К - { 0 , Χ } there are χ e Κ such that 

K-{x}eK andyiK such that К + {у } e К . 

The intuitive idea is that in a well graded knowledge structure we have only to 

deal with learning paths in which the items are acquired one by one. The transition 

from one state to the next is always obtained by adding one item; we never have to 

make a jump of two or more. This seems to make sense pedagogically, at least when 

we replace "i tem" with "notion". Obviously, a knowledge structure that is not 

discriminating cannot be well graded, but in such a case the reduced structure, 
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defined on the notions, may or may not be well graded, and it is here where well-

gradedness seems to be an interesting and reasonable additional condition on 

knowledge structures. 

For example, neither the knowledge structure in (6), nor the one in (7) is well 

graded. In (6), the state {a } is not contained in a gradation (from [a } we have to 

make a 2-item jump to the next state, {a, b, с}). In the knowledge structure of (7) 

there is no gradation at all, since this structure is not discriminating. However, the 

reduced structure on the two notions {a} and {b,c} is well graded. Also, the 

knowledge structure К in (5) is well graded, since it is derived from the linear orders 

in (4). Each of these produces one of the ten gradations in К . 

3. Surmise relations 

Its knowledge structure characterizes a field of information X in a very concrete way 

and this representation will actually be used in the assessment procedures. However, 

since for only a moderate number of items (say, 30) such a structure can easily 

contain hundreds, if not thousands of states, the description of the cognitive 

organization of X by the enumeration of all subsets that are possible knowledge 

states is in general not very enlightening. In search for a more succinct 

representation we may turn to the collection of different orderings of the items that is 

implied by the knowledge structure. 

Let К be a knowledge structure on X and let G be the collection of weak orders 

corresponding to К according to (3). Now suppose that for some x.yeX it is the 

case that χ precedes у in all elements of G. Then it clearly must hold that any state 

in К containing у must also contain x. On the other hand, if the assumption is not 

true, that is, if there is some order in G in which χ does not precede y, then y 

precedes χ (a weak order is complete) and thus this weak order induces a state of К 

containing у while not containing χ. Since the fact that χ precedes у in all orders of 

G is formally represented as xy e π G, we have established the following 

equivalence: 

xyenG iff (yeK implies xeК forali КeK), (8) 

when К and G are related by Eqs. (1) and (3). 

As we have seen in the General Introduction, whenever G is a collection of 

weak orders, ^ G is a quasi order. Thus, any knowledge structure К defines a 

collection of weak orders G and through this a quasi order Q = π G, which satisfies 

(8). This quasi order associated with К is called the surmise relation of Κ, since, by 

(8), xQy may be interpreted as "if a student can solve y, it may be surmised that 
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this same student can also solve χ ". In the sequel we will abbreviate this as "JC may 

be surmised from y". Note that ^ G is antisymmetric whenever no two distinct 

items are equivalent in all orders in G, that is, whenever К is discriminating. 

Consequendy, in the same way that we may assume a knowledge structure to be 

discriminating (by considering the notions, see the previous section), we may also 

asssume that the surmise relation is in fact a partial order. 

The surmise relation gives such an easily interpretable and concise description of 

properties of К that it is tempting to investigate if it determines the knowledge 

structure uniquely, that is, if we can recover К from the knowledge of its surmise 

relation Q. There is a classical mathematical result telling us that this is possible 

only in special cases: 

3.1. Theorem. (Birkhoff, 1937.) 

For any set X , the formula 

xQy iff (yeK implies xeК forali ΚeK) (9) 

defines a 1-1 correspondence between the set of all quasi orders Q on X and the set 

of all families К of subsets ofX that are closed under union and intersection. 

Recall from the General Introduction that a family К of subsets of X is closed under 

union if (u К ) e К, that is, any union of states is again a state. Similarly for closure 

under intersection. If we restrict ourselves to a finite set of items X (note that 

Birkhoff's Theorem is also valid in the infinite case), it is sufficient to check for pairs 

of states: К is closed under union (intersection) if and only if for any Kb K1

IE К we 

have also K^K2e К (К, п л : 2 е К ) . 

Note that (9) defines a surmise relation Q for any knowledge structure К . If we 

then use (9) to obtain a knowledge structure К * from Q (by allowing any subset К 

as a state for which y&K and χ Q у imply xeK), we know by Theorem 3.1 that 

К * is closed under union and intersection. If the structure К we started with does 

not have this property, it follows that К * * К . It turns out that in this situation 

always К * 2 К ; more specifically: К * is the closure of К under union and 

intersection, that is, it contains all the states in К, plus all unions and intersections of 

states in K. See Monjardet (1970) (also Doignon and Falmagne, 1985) for a 

reformulation of Birkhoff s result in terms of such closure operators. 

Note finally that for a partial order Ρ the knowledge structure derived by (9) 

from Ρ and the one derived by (1) from the collection of linear order extensions of 

Ρ coincide: these are two methods for obtaining the largest structure having Ρ as 

surmise relation. In particular, deriving from linear orders, such a structure is well 

graded by the definition of the previous section. Thus, by Theorem 3.1, any 
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knowledge structure closed under union and intersection is well graded, after 

forming the equivalence classes of indistinguishable items. 

3.2. Example. 

In the situation of Example 1.1, with G and К given by (4) and (5), respectively, it 

can be seen that, for instance, b precedes d in all orders Li to L 1 0. Consequently, 

bd e π G and indeed any state of К in (5) containing d also contains b. Since all 

members of G are linear orders, the relation Ρ = π G is a partial order and it can 

easily be checked that P, except for the loops aa to ее that are trivially there, 

consists of the pairs ae, bd, be and ce. That is, Ρ is the partial order whose Hasse 

diagram is given in Figure 2. In such a diagram, a pair xy is in the partial order 

whenever there is a path from χ to y by ascending lines. 

Figure 2. Hasse diagram of the partial order Ρ = π G, where G is given in (4). 

Now we may ask, does this partial order Ρ describe the knowledge structure К 

completely? In other words, if we use Ρ to generate a knowledge structure by the 

formula (9), would we get our original К back? The answer to these questions must 

be negative, since any knowledge structure constructed by (9) is necessarily closed 

under union and intersection, while our К of Eq. (5) is not. Indeed, 

{а,Ь}гл{Ь,с} = {Ь}4К and also {a,b,d}r^{b,c,d} = {b,d}é К. According 

to (9), a subset A of X is a state of the knowledge structure induced by Ρ whenever 

ye A and xPy together imply xe A. In terms of Fig. 2, a state is any set containing 

with an item all items that can be reached from this item by descending lines. (Such 

sets are called the "lower sets" of the partial order Ρ on X.) Clearly, both A = {b } 

and A = {b, d } satisfy this criterion and it can easily be checked that Ρ generates the 

structure К u { {b}, {b,d } }, which is indeed closed under union and intersection. 

4. Surmise mappings 

Representing knowledge structures by quasi orders seems an attractive option 

because of its simplicity and economy, but it has one important drawback: any 
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ргоЫетлеХ has one unique set of prerequisites. Here, " a set of prerequisites" for 

χ means a minimal set of problems that must have been mastered before problem χ 

can be tackled. In terms of the surmise relation β , this unique set of prerequisites 

for χ is given by Qx - {*}, the set of items у *x that can be surmised from x. 

Although this condition may describe an interesting special case, it is too strict in 

general: it is not uncommon that there are different ways of solving a problem, 

which rely on different sets of notions. A knowledge structure in which an item has 

multiple sets of prerequisites is not fully described by a quasi order and, according to 

Theorem 3.1, it will not be closed under union and intersection. 

4.1. Example. 

In 3.2 we saw that the example knowledge structure К of Eq. 5 (Fig. 1) is not 

represented by its surmise relation Ρ of Fig. 2. The partial order Ρ corresponds to 

the following restrictions: 

(i) from d we can surmise b ; 

(ii) from e we can surmise a AND b AND с. 

According to the partial order we cannot surmise anything from a, b and с. In the 

knowledge structure K, however, there is some restriction on b, simply because the 

singleton {b} is not a state. Inspecting the states in К containing b, we see that 

while there is not a single other item contained in all these states, it is true that in 

each of them at least one of the items a and с is present In other words: 

(iii) from b we can surmise a OR с. 

Such an inference in disjunctive form cannot be captured by a surmise relation; it 

can only deal with conjunctions (cf. (ii) above). Similarly, (i) above does not 

represent all restrictions on d in К since it allows the state {b, d } that is absent from 

К . An inspection of the states containing d shows indeed an additional restriction, 

again involving a disjunction. In sum we have: 

from d we can surmise b AND ( a OR с ), 

which we can write in the equivalent form 

(iv) from d we can surmise ( b AND a ) OR ( b AND с ). 

It is clear that once disjunctions enter in the description, we are dealing with multiple 

sets of prerequisites. Thus, (iii) means that b has the two sets of prerequisites {a } 

and {c}, and according to (iv) for d we have the two sets {a, b} and {b, с }. 

The preceding Example shows that to fully describe the knowledge structure of 

Example 1.1 we need something like an "AND/OR graph" (a tool in use in some 

parts of artincial intelligence, see e.g. Nilsson, 1971), while, in these terms, a 

surmise relation only represents an "AND graph". More precisely, we want to 

define a generalization of the notion of a surmise relation where for each item there 
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is not just one collection of items that can be surmised from it, but a number of 
alternative collections. That is, with any хвХ we want to associate a non-empty 
collection σ(χ) of subsets of X representing the idea that from the mastery of χ we 

can surmise the mastery of all items in at least one of the elements of σ (χ ). (The 

"a l l " refers to the AND-component, the "at least one" to the OR-component in this 

representation.) Such a mapping σ is called a surmise mapping on X {space-like 

surmise mapping in Doignon and Falmagne, 1985) and the elements of o(x), which 

are subsets of X, are called the clauses for χ. From its interpretation we can deduce 

several properties we would like such a surmise mapping to have. For one thing, 

since from χ we can always trivially surmise χ itself, it must be the case that any 

clause for χ contains χ. In formula: 

Сеа(дс) implies xeC. (10) 

Thus, any clause for χ consists of χ plus a possible set of prerequisites for χ ; or, any 

clause for χ collects the items in some minimal learning path leading to the mastery 

of χ. Such a path for χ defines a (minimal) subpath for any of the items on this path, 

and this implies that a clause for χ must include at least one clause for each of its 

elements: 

yzC ά Сеа(дс) implies C'S С for some C'eaiy). (11) 

Finally, since a set of prerequisites is a minimal set of problems that must have been 
mastered before χ can be tackled, it is clear that it does not make sense to have two 
clauses for χ where one is included in the other. Or, in terms of surmising: if 
A [ С A 2 C X , then to surmise A l OR A 2 is equivalent to surmising A^. So we have 

C,C'ea(x) ά С С С' implies С = С'. (12) 

То summarize, a surmise mapping on X is any mapping from X into the power set 
(minus 0 ) of the power set of X that satisfies (10), (11) and (12). 

At this moment we might want to check that with this definition a surmise 
mapping is indeed a generalization of a surmise relation. Such a surmise relation Q 
corresponds to a single clause Q χ for any x, so we must show that σ ( χ ) = {Qx} 

defines a surmise mapping. This follows easily: (12) is trivial and (10) and (11) 

amount to the reflexive and transitive properties, respectively, of a surmise relation 

(i.e., quasi order). 

As with a surmise relation (Formula (8) or (9)), any knowledge structure К on X 
induces a surmise mapping. This is obtained by letting the clauses for χ consist of 

the minimal states in К containing the item x. (Note that with finite X there must 
always be such states.) Conditions (10) and (12) are trivial, and, for (11), a minimal 
state for χ containing у includes, by definition, a minimal state containing у. 
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On the other hand, any surmise mapping σ on X induces in a natural way a 

knowledge structure on X. A subset К of X is a state in this structure whenever it 

contains some clause of σ(χ) for any xeK. (A state contains with each element at 

least one set of prerequisites for that element.) This amounts to saying that the 

knowledge structure induced by σ consists precisely of the unions of clauses of σ. 

The interesting question is again: for which class of knowledge structures are the 

above correspondences one-to-one? Or, equivalently, which knowledge structures 

are characterized by their surmise mapping? On the one hand this class must contain 

the structures closed under union and intersection, by Theorem 3.1 and the fact that 

the surmise mapping generalizes the surmise relation; on the other hand, we have 

seen in the preceding paragraph that any knowledge structure induced by a surmise 

mapping is still closed under union. In this light, the following theorem, proved by 

Doignon and Falmagne (1985), should not come as a complete surprise. 

4.2. Theorem. (Doignon and Falmagne, 1985.) 

For any finite set X, the formula 

<J(x) = K I ( (13) 

where К I denotes the subcollection of minimal states in К containing χ, defines a 

1-1 correspondence between the set of all surmise mappings σ on X and the set of 

all families К of subsets ofX that are closed under union. 

For the finite case, this theorem provides a generalization of Birkhoff's classical 

result (Theorem 3.1). Apparently, the relaxation from surmise relation to surmise 

mapping, that is, allowing items to have multiple sets of prerequisites, is obtained by 

dropping the requirement of closure under intersection for a knowledge structure. 

Such a knowledge structure, which is still closed under union, is christened a 

knowledge space by Doignon and Falmagne (1985). 

4.3. Example. 

From the "AND/OR graph" description in 3.1 we can easily deduce what the 

surmise mapping σ for the knowledge structure К of Example 1.1 should be (cf. (ii), 

(iii) and (iv) in 3.1): 

σ(β) = {{«}} a(d) = {{a,b,d},{b,c,d)} 

a(b) = {{a,b},{b,c}} a(e) = {{a,b,c,e}} 

a(c) = {{c}} 

In Fig. 1 it is easily checked that, for χ =a,...,e, σ(χ) does indeed consist of the 

minimal states of К containing x. If, conversely, we start with the above surmise 

mapping σ and construct the induced knowledge structure, that is, the collection of 
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all unions of clauses in σ, we get exactly our original К back. (Note that the null 

state is obtained as the union of zero clauses in σ.) This is as predicted by Theorem 

4.2, since the knowledge structure К in Fig. 1 is closed under union - it is a 

knowledge space - and thus completely determined by its surmise mapping. 

For knowledge spaces it is no longer true that they are well graded whenever 

they are discriminating, as was the case with structures closed under union and 

intersection. For instance, the knowledge structure 

{ 0 , { a , ¿ ) } , { a , c } , { f e , c } > { a , ¿ , c } } 

on {a, b, с } is closed under union and discriminating, but not well graded. It is true 

that the criterion for well-gradedness simplifies in the case of a space: a knowledge 

space is well graded if and only if any non-null state К has an element χ such that 

К - {χ} is a state. 

To summarize this section, we noted that modeling knowledge structures by 

surmise relations (quasi orders) had the undesirable consequence that each item was 

forced to have a unique set of prerequisites. This restriction was overcome by 

generalizing the notion of a surmise relation to that of a surmise mapping; the 

corresponding class of knowledge structures consists of the families closed under 

union, and a knowledge structure in this class is called a knowledge space. 

5. A sketch of two assessment procedures 

In the following chapters we will be dealing with the question of how we can 

construct a knowledge space for a particular domain in practice. Let us illustrate 

here why we are interested in this question in the first place. We want to show how 

the representation of a field of information by a knowledge structure (or, more 

specifically, space) leads to the design of efficient knowledge assessment procedures. 

The results of this section do not play any role in the sequel; they are presented here 

only to provide the motivation for what follows. 

Given the collection of possible knowledge states and a student picked from the 

target population, the general problem for a knowledge assessment procedure is to 

determine the knowledge state of this particular student by asking him a minimal 

number of the problems of the domain. A general scheme for doing this is presented 

in Figure 3, which has been adapted from Falmagne, Koppen, Villano, Johannesen 

and Doignon (1989). At the start of each trial of the procedure, the information 

obtained from the student's responses to previously posed problems is summarized 
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by a plausibility function, assigning plausibility values to the various states. These 

values are used by a questioning rule to determine a subset of most informative 

problems to ask on this trial ("most informative" according to some criterion) and 

one of these problems is chosen at random. The student's response to this problem 

is based on his knowledge state through a response rule. This response is then 

processed by an updating rule to recompute the plausibility function which will be 

the start of the next trial. In the absence of any information the procedure starts with 

all states equally plausible and it terminates when, according to some criterion, the 

plausibility function provides enough evidence for singling out the student's state. 

We will first describe a straightforward application of this scheme in a deterministic 

framework; next follow two variations on this theme that have been worked out by 

Falmagne and Doignon (1988a,b) for the practical case where the information may 

be noisy. 

5.1. The deterministic case. 

In the simplest case we assume that the response to a problem is completely 

determined by the student's knowledge state: a correct answer is obtained if and only 

if the problem is in this state. Then there is a straightforward procedure of 

uncovering this state. Note that any problem χ divides any collection F of states in 

two: the subcollection F z of states in F containing χ and the subcollection F r of 

states not containing x. In some cases, this partitioning may be trivial (one of the 

two classes being empty), but as long as F consists of more than one state there is 

always an item χ that precludes this situation, i.e., such that both F x and F ; are 

strictly smaller than F . 

These observations lead to the following procedure. At the start of trial η, we 

have a collection M ̂  of states that are still plausible at this moment (the "marked" 

states). This corresponds to a binary plausibility function with, for instance, a " 1 " 

value for a plausible and a " 0 " value for a non-plausible state. At the start, all states 

are plausible, that is, M ( 1 ) = K, the knowledge structure for the domain under 

investigation. While M ( я ) contains more than one state, we choose an item χ that 

strictly partitions M ̂  and record the student's answer to this problem. Under the 

assumption of error-free conditions, a correct response of the student entails that his 

state must contain x, and, accordingly, we set Μ ( , , + 1 ) = Μ^',); if the response is 

incorrect, we can draw the opposite conclusion and we set M ( ' , + 1 ) = M Ln\ This is 

the updating rule, which in terms of the binary plausibility function amounts to 

converting a " 1 " into a " 0 " for any state incompatible with the observed response. 

The procedure terminates when there is only one marked state left (only one " 1 " 

entry in the plausibility function). 
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Figure 3. A general scheme for knowledge assessment procedures (adapted from Falmagne, 

Koppen, Villano, Johanncscn and Doignon, 1989). 
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The maximum number of trials is л (when we have asked all items, we have 
complete information). This maximum will, of course, always be needed in the 
trivial case where every subset of items is a state ( | К \ = 2" ), but even with certain 
small knowledge structures it may, for some states, be the best we can do. (Consider 
locating a student knowing all η problems in a structure consisting, except for the 
null and the perfect states, of all (n-l)-subsets.) However, if the domain is 
structured (the number of states is only a small fraction of the number of subsets), 
we will, averaged over all states, be able to do considerably better than asking all 
items. Imagine the special case where at trial к there happens to be an item χ that 
divides the collection M ( i ) evenly. Then, no matter what the response of the student 
to χ will be, we will reduce the number of marked states by one half by choosing χ. 
If we could find such an item at each trial, we would be able to determine the 
student's state in k ^ K <n steps. This is the optimal over-all bound, and we can 
try to approximate it as closely as possible by adopting a "split-half rule. This 
questioning rule designates as a most informative item at trial η any item χ that 
partitions M W most evenly, that is, one that minimizes (over all items) the function 

| I M ^ I - I M Í ^ I |. 

5.2. A discrete Markovian procedure. 
It is clear that the above procedure cannot deal with random fluctuations in the 
student's performance. For instance, if the student would make a careless error on a 
problem that is in fact in his knowledge state, then, in the above procedure the true 
state, being inconsistent with the observed response, would be discarded from the list 
of plausible states, forever. The same would happen when the student, by making a 
lucky guess, would give a correct answer to a problem that he does not really master. 
Falmagne and Doignon (1988a,b) developed two elaborations of the deterministic 
procedure that can handle this kind of noise that will inevitably be present in 
practical assessment situations. We give only a sketch of the basic ideas; for details 
the reader is referred to the original papers. 

The first of these procedures we are going to describe here, Falmagne and 
Doignon (1988b), is in fact only a minor variation on the deterministic procedure. 
(We consider here the special case that is of practical importance, which in the 
original paper appears in a broader context.) This procedure assumes that the 
knowledge structure we are dealing with is well graded. First the deterministic 
procedure is completed, at some point leaving us with just one marked state, say 
M W) = [χ }. Now, because of the presence of noise, we cannot be sure that К is the 
true state of the student (he may have made a careless error under way, or a lucky 
guess), but we may assume that the remaining state has much in common with this 
true state. 
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So, once there is only one state left, the procedure continues, but under modified 

questioning and updating rules. We want to compare a single remaining state 

locally, with states that are closest to it; in a well graded structure the neighboring 

states of К are of the form К ±{x} (where we assume that the " + " alternative is 

used for xéK, the " - " for xtK). The modified questioning rule no longer applies 

to the collection of marked states, but rather to the single marked state plus its 

neighboring states: an item is a most informative one if it splits this collection most 

evenly. Notice, however, that "most evenly" has a very restricted meaning here: 

the smaller class of the partition will contain one state at most. Indeed, if χ e К, all 

neighboring states will contain χ, with the possible exception of one, К - {дс}, while, 

for χ i К, К + {* } is the only possibility for a neighboring state containing χ. Thus, 

the questioning rule changes, in effect, to: choose randomly between the items χ 

such that either Κ *Κ-{χ}ξ;Κ or К ФК + {Х}&К. With one marked state, trials 

amount to a test of the current marked state К against an alternative К ± {x } and the 

updating rule is modified to follow the result of this test directly. We keep К as 

marked state if the response to the chosen problem χ is consistent with K, otherwise 

we replace К by the new marked state К ± {x}; in both cases we are ready to start a 

new trial with a single marked state. 

5.3. A continuous Markovian procedure. 

While in the preceding subsection we dealt with the noise in the situation by 

supplementing the deterministic procedure with a part in which we can recover from 

wrongly discarding the true state, Falmagne and Doignon (1988a) describe an 

alternative solution in which this kind of recovery is not needed since no state is ever 

really discarded. In this version of an assessment procedure the plausibility function 

is no longer binary, indicating marked and unmarked states, but now it takes the 

form of a likelihood function. At the start of trial η, the plausibility of each state К 

is given by a likelihood L^n) > 0, such that Σ χ ε κ L¡ta) = 1. Thus, at every trial we 

are given a probability distribution over the states that is nowhere zero. 

As questioning rule, there is again a kind of half-split rule available. This time it 

is not a collection of marked sets that is split in two by an item, but rather the total 

mass of the likelihood function. The likelihood that the student under investigation 

will solve problem χ is represented by Σ * e к ^і'0» ^ 6 t o t a l 0 ^ ^ 1 6 m a s s o n states 

containing χ and the likelihood he will fail χ by Σχ*κ ¿•¿"\ the mass on states not 

containing x. A problem may be judged to be most informative when the 

likelihoods for a correct and an incorrect response are closest (and thus both closest 

to one half). Thus, the questioning rule selects χ as a most informative item if it 

minimizes (over all items) ΐ Σ , ε χ ¿ ¿ " ' - Σ , « * ¿ j ^ l . or, equivalently, 

Ι Σ χ ε κ L·^ - 0.51. (Falmagne and Doignon, 1988a, considered also an alternative 
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questioning rule, in which an item is most informative at trial η if it minimizes the 
(expected) entropy of the updated likelihood function at trial n+l.) 

For the updating rule to make sense, it must increase the likelihood of states 
compatible and decrease the likelihood of states incompatible with the latest 
observed response. Different ways of doing this are conceivable, but an obvious 
possibility is a Bayesian rule (in Falmagne and Doignon, 1988a, this is called the 
multiplicative updating rule). Here the posterior (updated) likelihood of a state is 
proportional to the probability of the observed response given this state times the 
prior likelihood of the state. In formula, if χ is the problem at trial η, 

Ljf+V « ]P(response on χ \К)-Ця). 

The conditional probabilities of the réponses are parameters of the assessment 
procedure. More precisely, with each item χ are associated a "careless error" 
parameter β, -Ψ( incorrect on χ \хвК) and a "lucky guess" parameter 
γ, = P( correct on χ | χ 4 К ). Accordingly, there are probabilities 1-βχ for a 
correct response if xeK, and l-γ , for an incorrect response if x^K. The 
P( response on χ | К ) in the above formula is one of these values ßj, 1 - β,, yx or 
l-γ,, depending on whether the observed response was correct or incorrect and 
whether xeK or x$K. Of course, this updating rule makes only sense if all 
βΙ < 0.5 and all γ, < 0.5. 

6. The following chapters 

The assessment procedures described in the preceding section are all based on a 
fixed, predetermined knowledge structure of the domain under investigation. This 
structure is supposed to give an adequate specification of the possible knowledge 
states in the domain, so that any student from the target population can be assessed, 
if not perfectly, then at least to a good approximation. It is natural, then, to wonder 
how, in practice, we can arrive at such a knowledge structure representation of 
particular domains. Two sources of information may be available: experts in the 
field (in our case, experienced teachers and tutors) and, sometimes, extensive 
empirical data. 

We can envision a two stage process for constructing the knowledge structure. A 
first sketch is obtained from systematically consulting a number of experts. We 
would like this first sketch to be conservative in the sense that it certainly contains all 
relevant states, even if this means that a number of superfluous states are still there. 
In the presence of experimental data, such a version can then be used as a model 
making predictions regarding observed response patterns in the relevant population. 
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However, such data are typically noisy and therefore the obtained knowledge 

structure has to be embedded in a probabilistic model. Then a statistical test of the 

model structure becomes feasible and possible superfluous states can be removed by 

formulating appropriate restricted versions of the model and testing these through 

standard likelihood ratio methods. Falmagne (1989) has developed a probabilistic 

learning model that deals precisely with these issues of the second stage; in this 

model it is assumed that the knowledge structure we work with is well graded. This 

leaves us with the problem of the first stage, of how to construct a knowledge 

structure from expert opinions, and this will largely be the subject of the following 

chapters. 

In a straightforward approach we would supply an expert teacher with some 

domain (a collection of problems) and we would ask her to list all possible 

knowledge states. This approach is not feasible in practice. First, even for a very 

moderate number of items, say 30, this list may contain many states (a few thousand, 

say). Second, the concept of a knowledge state, in all its concreteness, is certainly 

not familiar to experts in the field. Most probably they do not have access to an 

internal representation of the required list of states; the knowledge structure is only 

implicitly there. So, we want to apply indirect methods to make this implicit 

structure explicit and for this purpose we have to rely on alternative representations 

for knowledge structures. 

In Section 3 we presented such an alternative: a class of knowledge structures 

appeared to allow a characterization by quasi orders (surmise relations) and this 

representation would be very suitable for questioning experts. Unfortunately, we 

had to conclude that surmise relations constitute too strict a model and in Section 4 

we described the generalization to surmise mappings as a representation for a 

broader, acceptable class of knowledge structures, the knowledge spaces. Surmise 

mappings, however, are not easy to use as a base for questioning experts about 

knowledge spaces. In Chapter 7 we develop a second alternative representation for 

knowledge spaces, one that is fit for this purpose. We will again be dealing with 

quasi orders, but this time it will be quasi orders, not on the set of items, but on the 

collection of subsets of items. Mathematically, the outcome is another 

generalization of Birkhoff s result (Theorem 3.1). It may in fact be considered as a 

more direct generalization than Theorem 4.2; it is, for instance, like BirkhofPs 

Theorem, also valid in the infinite case. 

While the representation of Chapter 7 is indeed well suited for questioning 

experts, a straightforward application would again be impracticable. As indicated, 

we are dealing here with quasi orders on the subsets of items, so the corresponding 

tables are of the order 2" if η is the number of items. This is prohibitive, even for 

moderately large л . Fortunately, the quasi orders in question enjoy a number of 
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additional properties and this implies that the above mentioned table contains a lot of 
redundant information. We can exploit the redundancy of this representation by 
making inferences on the basis of these extra properties. This saves us many 
information requests to the expert and generally it will appear that all the information 
necessary for the construction of the knowledge space that the expert is implicitly 
consulting is contained in a subtable that is only a tiny fraction of the full table. This 
search for a most efficient implementation of the new representation of Chapter 7 is 
the subject of Chapter 8. It culminates in the specification of an explicit algorithm 
for questioning an expert in a very systematic way and deriving the implied 
knowledge space from the obtained answers. 

The notion of well-gradedness was introduced in Section 2 and it appeared to be 
a very reasonable extra assumption for a knowledge structure in practice (at least for 
a structure defined on the notions, i.e. after forming the equivalence classes of 
indistinguishable items). In the previous section we saw that one of the developed 
assessment routines even assumed that the underlying knowledge structure was well 
graded and this assumption is also crucial in the probabilistic model of Falmagne 
(1989), mentioned above. This prompts the question of how the special case of a 
well graded knowledge space appears in the two alternative characterizations of 
knowledge spaces. For the representation of Chapter 7 this is, as yet, unknown (at 
least, no easily checkable criterion is available). For the representation by surmise 
mappings, however, we know which extra condition we have to impose to make it 
equivalent to the concept of a well graded knowledge space. This is discussed in 
Chapter 9 , where it is put in the context of a number of more and more restrictive 
extra conditions for a surmise mapping, corresponding to smaller and smaller classes 
of knowledge spaces. 
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How to build a knowledge space by querying an expert 

Mathieu Koppen and Jean-Paul Doignon 

New York University Université'Libre de Bruxelles 

A particular field of knowledge is conceptualized as a set of problems (or 
questions). A person's knowledge state in this domain is formalized as the 
subset of problems this person is capable of solving. When the family of all 
knowledge states is closed under union, it is called a knowledge space. Doignon 
and Falmagne (1985) established a 1-1 correspondence between knowledge 
spaces and a class of surmise systems, a slight variant of AND/OR graphs. Here 
we rather obtain a 1-1 correspondence with a well defined class of quasi orders 
on the collection of all subsets of problems. The resulting approach to 
knowledge spaces helps to build such spaces for particular domains. We 
describe a procedure which relies on the answers of an expert to a carefully 
chosen sequence of information requests. 

1. Introduction 

A particular field of knowledge can be conceptualized as being comprised of a 

possibly large, but specified set of notions. The knowledge state of an individual in 

this domain can then be formalized as the subset of notions she/he has mastered. 

Here, a notion can be identified with a question or problem, or, rather, an 

equivalence class of questions or problems, testing just that notion. Doignon and 

Falmagne (1985) described the motivation and investigated the algebraic foundation 

of this approach in some detail. A number of knowledge assessment procedures 

based on this formalization have been developed (Falmagne and Doignon, 1988a; 

Falmagne and Doignon, 1988b; Falmagne, 1989; Degreef, Doignon, Ducamp and 

Falmagne, 1986). These procedures all start from a fixed knowledge structure of the 

domain, where a knowledge structure is defined as the collection of all possible 
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New York University, and also by a Fulbright travel grant and a NATO scientific grant to 
Jean-Paul Doignon. The authors thank Jean-Claude Falmagne for numerous advices on 
previous drafts of the manuscript. Address comments and requests for reprints to M. Koppen, 
Dept. of Psychology NYU, 6 Washington Place, New York, NY 10003. 
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knowledge states. (While any knowledge state is a subset of notions, in general not 

any such subset is a possible state. For instance, in the field of arithmetic, mastering 

long division implies mastering of subtraction, so a subset of notions (problems) 

containing long division but not containing subtraction is not a possible knowledge 

state. It is indeed this kind of restrictions that lends "structure" to a field.) 

In this paper we are concerned with the problem of how to build such knowledge 

structures for particular domains. For this, we would not want to rely on our own, 

restricted knowledge, but we would rather consult an expert in the field. A 

straightforward approach results in presenting to the expert each of all subsets of 

problems and ask whether it constitutes a possible state. This seems a rather 

demanding task for the expert Presented with a subset of problems he has to decide 

how plausible it is that a subject has mastered this subset and no other problem. 

This means that the expert always has to consider a complete response pattern on the 

total set of problems, even if the presented subset has only a few elements. Besides, 

this approach is quite unmanageable in practice because of the sheer number of 

subsets. 

Without any a priori assumption on the family of possible knowledge states, the 

above approach is the only one conceivable. If we assume a knowledge structure is 

such that any intersection and any union of knowledge states are again knowledge 

states - we call such a structure closed under union and intersection -, then, by a 

theorem of Birkhoff (1937, see Theorem 3.1 here), it can be equivalently well 

specified by a quasi order on the set of problems. Such a representation of 

knowledge structures by quasi orders would be well suited for eliciting the relevant 

information from experts (as we will argue in the next section). However, Doignon 

and Falmagne (1985), who recalled Birkhoff's result in this context, argue 

convincingly that the assumption of closure under intersection is not a realistic one 

for knowledge structures in practice. Assuming only closure under union, they 

showed that a representation by surmise systems (a variant of AND/OR graphs), 

instead of quasi orders, is possible. This result of Doignon and Falmagne, together 

with some other motivation they present, explains the central role played in the 

theory by knowledge structures closed under union; these are called knowledge 

spaces. 

Accepting the assumption of closure under union, we can now reformulate our 

problem as that of designing a procedure for building a knowledge space for a 

particular domain by querying experts. Unfortunately, the representation by surmise 

systems is not very promising in this respect. The point of this paper, then, is to 

derive an alternative reprementation for knowledge spaces that is fitting our purpose. 

Again, quasi orders will ent τ the picture, but this time they will be relations on the 

power set of the set of problems. This representation is at the basis of a procedure 
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that translates the responses of an expert to a set of queries of a specified form into a 
corresponding knowledge space. The principles of such a procedure are illustrated 
on a small example. A real-life, large scale application is to be reported elsewhere 
(Kambouri, Koppen, Villano and Falmagne, 1989); it is based on the algorithm 
presented in Koppen (1989) as a result of a deeper elaboration of these principles. 
We also notice here that similar theoretical work was done independently by Mueller 
(1989). 

The paper is organized as follows. In the next section we illustrate the quasi 
order representation (BirkhofFs theorem), and its limitation, and we describe more 
precisely the kind of procedure we are going to develop. In Section 3, we formally 
state the classical result of Birkhoff (1937) and we introduce the key concept of a 
Galois connection. Following Monjardet (1970), BirkhofFs result is derived from a 
Galois connection between the collection of knowledge structures and the collection 
of binary relations on the set of problems. Section 4 contains our main theoretical 
results. We establish a more general Galois connection between knowledge 
structures and relations on the power set of the set of problems. Theorem 4.5 can be 
seen as another extension of Birkhoff's result. This leads to the characterization of 
knowledge spaces as a well defined kind of quasi orders on this power set (Corollary 
4.6). In Section 5 the surmise systems of Doignon and Falmagne (1985) are put in 
this context. The final section describes how the theoretical results of Section 4 give 
rise to an algorithm for obtaining a knowledge space from the expert's answers and 
the principles of such an algorithm are shown by running the procedure on the small 
example presented in Section 2. 

2. Background 

Let us recall here a small academic example with five problems a,b,c,d,e, 
presented in Doignon and Falmagne (1985). The content of the five problems 
(drawn from the field of elementary probability) was examined and in a first analysis 
the following family K' of possible knowledge states was obtained ( 0 denotes the 
empty set): 

K' = {0,{c},{e},{b,e},{c,e},{a,b,e},{b,c,e}, 

{c,d,e},{a,b,c,e},{b,c,d,e},{a,b,c,d,e}}. 

Notice that this family K' is closed under both union and intersection. By an old 
theorem of Birkhoff (1937, Theorem 3.1 here), this means that the family K' can be 
represented by a quasi order (a reflexive, transitive relation) P ' on the set of 
problems. The correspondence between P ' and K' is such that a pair of problems 
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(χ,y) is in Ρ' if and only if any state of K' containing y also contains x. Thus P' 

can be thought of as a surmise relation: if a student solves y correctly and the pair 

(x, y ) is in P', we can surmise that this student has also mastered χ. In our case P' is 

the partial order sketched in Figure 1. Note that the above construction is reversible; 

that is, the family K' can be fully recovered from P'. 

Figure 1. Hasse diagram of the surmise relation P' corresponding to the knowledge structure 
K'. 

This representation by quasi orders suggests an alternative approach to the 

problem of obtaining a knowledge structure by querying an expert Instead of asking 

the expert directly for the knowledge structure, we ask him to specify the quasi 

order. That is, the expert is presented with a pair of problems and is asked whether 

solving the first one would imply solving the second one. This task of the expert 

seems much simpler than deciding directly about the "state-hood" of a subset: now 

he has at each instance only two problems to consider and he can ignore the rest. 

The maximum number of questions he will have to answer (i.e., the number of pairs) 

is only quadratic in the number of problems. Besides, using the transitivity of the 

quasi order we can make inferences and thus save information requests. Finally, 

quasi orders and the corresponding knowledge structures are related in such a way 

that inclusions are reversed. Thus, when we stop the process halfway and end up 

with a quasi order that is a part of the true quasi order, the corresponding knowledge 

structure will include the true knowledge structure. There may be some "nuisance" 

states left (states that will never be assigned to any students and that only act to slow 

down the assessment procedure), but at least no vital states are missing. So, this 

procedure of obtaining a knowledge structure by asking an expert about a quasi 

order is clearly an attractive option. It is not available, however, for building a 

general knowledge space, since representability by a quasi order requires the extra 

assumption of closure under intersection. 

To continue our example, in a second analysis of the five problems Doignon and 

Falmagne (1985) argued that a case could be made for including one more subset of 

problems, the set {a,c,d,e}, as a possible state. Thus we obtain the knowledge 

structure 
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К = K'v{{a,c,d,e}}. 

It can easily be checked that К is still closed under union, but it is no longer closed 

under intersection (since {a, b, с, e } <"» {a, с, d, e } is not a state). This means that 

К is a knowledge space which cannot be represented by a quasi order on the 

problems. For instance, we have to remove from P' the arrow from b loa. (It is no 

longer true that knowing a implies knowing b.) This leads to the partial order Ρ of 

Figure 2. Now the state {a,c,d,e} has indeed been added, but some additional 

states have been introduced ([a,e} and [a,c,e}) that do not appear in the 

knowledge structure К . 

Figure 2. Hasse diagram of the surmise relation Ρ that "contains" the knowledge structure 
K. 

Generalizing BirkhofFs theorem, Doignon and Falmagne (1985) showed that 

knowledge structures closed under union are in 1-1 correspondence with so-called 

surmise systems. The precise statement of this correspondence will be recalled in 

Section 5, but the esssential point here is that this characterization does not seem to 

lend itself to an efficient procedure for obtaining a knowledge space from an expert 

In this paper an alternative representation for knowledge spaces is obtained by 

means of well-defined relations on the power set of the set of notions; in particular, 

subsets of notions are quasi ordered/ The derived representation leads to a 

procedure for uncovering a knowledge space that is very much like the quasi order 

procedure for a knowledge structure closed under union and intersection. In fact, it 

is an extension of this procedure. We start with presenting to the expert pairs of 

problems, querying whether a student that fails the first one would - in principle -

also fail the second problem. This is in effect the same as we did in the procedure 

sketched above, and if we were willing to assume closure under intersection we 

could stop the process after this block of questions. Assuming only closure under 

union, however, we need more information and we continue with a second block of 

questions. Here the expert is presented a pair of problems together with a single 

problem and he is to indicate whether a student failing both problems of the pair 

t We owe this basic idea to Jean-Claude Falmagne. 
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would also fail the single problem. Next, in a third block, the query is whether 

failing a triple of problems would imply failing another, single problem. And so on. 

In general, the information asked from the expert is whether failing a particular 

subset of problems implies failing another specified problem. 

This procedure saves - to a great extent - the advantages of the previously 

described procedure for the case where we assume closure under intersection. Of 

course we have lost the quadratic bound on the maximal number of questions, but 

because the encoding of the knowledge space is again in terms of quasi orders, we 

can use transitivity to draw inferences, both from positive and negative answers of 

the expert, thus reducing the information to be requested explicitly. (It will appear 

that we have in fact more inferences than just from transitivity.) Also, the queries to 

the expert are still as "local" as possible. In the first block he has, at each instance, 

to consider two problems only, in the second block three problems (a pair and a 

single problem), in the third block four, etc. Clearly things get bad toward the end, 

but because the inferences work all the way down, the number of questions to be 

asked in the later blocks can be greatly reduced. Still, if it happens that for practical 

reasons we have to stop the procedure after, say, the second or third block of 

questions, and the encoding quasi order is only partly known, then, again, we have 

the advantage that, going from the quasi order to the encoded knowledge space, the 

inclusions are reversed. The obtained quasi order that is a part of the true quasi 

order translates into a knowledge space that includes the true knowledge space. So 

again we cannot lose vital states by interrupting the procedure. 

3. Preliminary definitions and results 

Let X be some fixed set; in our interpretation it is the collection of problems in some 

field of knowledge. In the present and next sections we do not assume X to be finite, 

although in practical applications this will be the case. Any knowledge structure К 

on X, that is, any family К of subsets of X, induces a relation Q on X by the 

definition 

xQ.y Ш (forali ΚεΚ: ysK implies xeK). 

Our interpretation of xQy is that from the mastery of problem у it can be surmised 

that the same student also masters problem x. Denoting by K I the subfamily of К 

consisting of the sets that contain the element x, we can write this equivalence more 

compactly as 

xQy iff K^K,. (3.1) 
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It is immediate that the resulting relation Q is a quasi order (that is, it is reflexive 

and transitive). Conversely, any relation Q on X yields a knowledge structure К on 

X by setting 

KeK iff (forali (x,y)e(i: уeK implies xeK). (3.2) 

It is easy to check that the resulting knowledge structure К is closed both under 

union and intersection. The above discussion is summarized in the following 

classical result 

3.1. Theorem. (Birkhoff, 1937.) The formulae (3.1) and (3.2) define a 1-1 

correspondence between knowledge structures К on X that are closed under both 

union and intersection, and quasi orders Q on X. 

As shown in Monjardet (1970), this result can be considered as a corollary to the 

fact that the mappings (3.1) and (3.2) define a Galois connection between knowledge 

structures on X and relations on X (both collections ordered by inclusion). 

3.2. Definition. (Birkhoff, 1967.) Let (У,<) and (Z,<) be two partially ordered 

sets. A pair of mappings f : Y ->Z and g : Ζ —» Y define a Galois connection 

between (У,<) and(Z,<) iff, fory,y'e Y andz.z 'eZ, 

(i) y < y' implies ƒ СУ') < ƒ 0> ) and ζ йг' implies g (ζ') <£(ζ) ; 

(ii) y<(g°f)(y) and z<(fog)(z). 

To state results in this context, the notion of a closure on a partially ordered set is 

useful. 

3.3. Definition. (Birkhoff, 1967.) Let (Y,<) be a partially ordered set. A mapping 

A : Y -» Y is a closure on (Y,<) when, for у . / е У , 

(0 y<.h(y)·, 

(ii) y S y' implies h(y)<h (y'); 

(iii) (h°h)(y) = h(y). 

Any y € У such that y = h (y ) is called a closed element (under A ). 

3.4. Theorem. (Birkhoff, 1967.) /ƒ the mappings f : Y ->Z and g : Ζ -> У 

define a Galois connection between (У,<) and (Z,<), then they induce a 1-1 

correspondence between g(Z) and f (У). More specifically, fog and g°f are 

closures on (У,<) and (Z,<) with the closed elements collected in g (Ζ) and f (Y), 

respectively; the restrictions off and g to g (Ζ) and f (Y), respectively, are inverse 

order-revernng isomorphisms. 
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As an example, (3.1) and (3.2) define a Galois connection leading to the 1-1 

correspondence in Theorem 3.1. Here, the closure of a knowledge structure К on X 

is the smallest family of subsets of X containing К that is closed under union and 

intersection. For the relations on X, "closure" here means the reflexive transitive 

closure, mapping any relation R to the smallest quasi order containing R. 

Knowledge spaces, being closed only under union, cannot be captured by quasi 

orders on X. In the next section we will show, by establishing another Galois 

connection, that they are still in a 1-1 correspondence with a class of quasi orders, 

but we have to move one level up and consider quasi orders on the power set of X. 

4. A Galois connection for knowledge spaces 

Let us first introduce some more notation. We denote by Ω the collection of all 

knowledge structures on X, so 

Ω = 2<24 

the power set of the power set of X. Clearly, Ω is ordered by inclusion: 

KCK' iff (forali К£2* : КeK implies КеК'). 

We denote by Ψ the collection of all binary relations on the power set of X : 

This collection is again ordered by inclusion: 

R С R' iff (forali А, В G 2 х : ARB implies A R'fl ). 

We proceed to construct a Galois connnection (r,k) between the two partially 

ordered sets (Ω,£) and (Ψ,ε;). With any knowledge structure К on X we can 

associate a relation r (K ) on the power set of X by the definition 

Ar(K)B iff (forali КеК: ВПК*0 implies Ar\КФ0). 

Introducing the notation K A for the subcollection of seu in К that "meet" the 

subset A ofX: 

Кд = { A : € K : AnK±0}, 

this can be written as 

Ar(K)B iff ΚΑΏΚΒ. 

The empirical interpretation of Ar (К) В is that if a student masters some question in 

В, he also masters some question in A ; or, equivalently, if he does not master any 
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question in A, he also does not master any question in В. Notice the similarity with 

the corresponding definition (3.1) in the Birkhoff case. The next proposition follows 

easily from the definition of К A . 

4.1. Proposition. For the mapping r : Ω -» Ψ defined, for A ,B e 2 х , by 

Ar(K)B iff К д Э К д 

we have, for К, K'e Ω: 

(i) г (К ) extends 2 on О1 {that is, A 2 ß implies A г (К ) В ); 

(ii) r (K ) is transitive (and thus, by (i), a quasi order); 

(Hi) ifAr (К ) В, for all i in some index seti, then Л г ( К ) ( и і б / Д ( ) , · 

(iv) J / K E K ' thenr(K)^r(.K'); 

(v) if К c ii the closure under union of К, then r (K ) = г ( К c ). 

Relations on 2 х that have the properties (i) to (Hi) of Proposition 4.1 will play an 

important role in the sequel, so we investigate these more closely: 

4.2. Lemma. For a transitive extension Ρ of Э on 2 х , the following conditions are 

equivalent: 

(i) APB, for all i in some index set I implies Α Ρ ( и , e / В, ); 

(ii) Any AP={Z€2 X :APZ} has a maximum (for the inclusion) element A * ; 

(Hi) APB iff (forali xe В : АР {χ}). 

These conditions imply 

(iv) APB impliesAP(BUA) 

and in case X is finite, (iv) is equivalent to (i) - (Hi). 

A transitive extension of 2 on 2 х for which these conditions hold is called an entail 

relation for X. (Note that an entail relation for X is a relation on 2X.) One has A PB 

iff A* 2 B, with A* asin(ii). 

Proof. That (iii) implies (i) is immediate, as is the implication from (i) to (ii) and 

(iv) if we notice that APA. The "only if' part of (iii) is given (P extends 2) and 

the " i f part follows from (ii): If Α Ρ {χ} for all χ sB, then, using the definition in 

(ii), A*2{jt} for all xeB, which implies Α*ΏΒ. So we have A P A * 2 ß , thus 

APB. To see that (iv) implies (i) in the finite case it suffices to prove that A PB and 

APC imply A P ( B u C ) . From ( A u ß ) 2 A we have (Auf i )PA. By (iv) and 

Α Ρ С, we also have A Ρ (А и С). There follows (A UB ) Ρ (А и С ). Applying (iv), 

we get ( A u £ ) P ( A u £ u C ) . Since ( A u B u C ) 2 ( ß u C ) and, by (iv) , 

Α Ρ (А и В ), we finally derive Α Ρ (ß и С ). I 

Notice that (iv) is not equivalent to (iii) in general. For a counterexample, take X 
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infinite and define Ρ ЬуА В iff B-Α is finite. 

Having defined the mapping r : Ω -» Ψ, we now introduce a mapping that goes 

the other way. Again, the definition will be reminiscent of the corresponding 

mapping (3.2) in the Birkhoff case: 

4.3. Proposition. For the mapping к : Ψ —> Ω defined by 

KzkÇBL) iff (forali (А,В)eR: Br\K*<2 implies Аг\КФ0) 

wehave,forR,R'eW: 

(i) k(R) is closed under union; 

(ii) if R С R' then k (R ) 2 k (R')· 

The following lemma, giving an alternative characterization of the mapping k for 

the case of an entail relation, will be very useful. 

4.4 Lemma. IfΡ € Ψ is an entail relation for X, then, with k as in Proposition 4.3, 

Кькф) iff (forall ZeT? : (X-K)PZ implies (Χ-Κ)ΏΖ). 

Proof. If К e к (Ρ), then for any А, В e 2 х such that A PB and K^A = 0 we have 

Kr\B=0. Putting A = Х- К it follows that (X- K) PB implies (X-K)^B for all 

В e 2 х . Conversely, let К be such that (X - К ) Ρ Ζ implies (Χ - К ) 2 Ζ for all Ζ € 2х 

and suppose for some A , B e 2 x we have APB and £<">A=0. This means 

(X-K)-2APB, thus (X-K)PB and by our assumption (Χ-Κ)ΏΒ. So, 

A : n ß = 0 a n d A r e * ( P ) . I 

Now we are ready to formulate our main result: 

4.5. Theorem. The pair (r,k), where r is as in Proposition 4.1 and к as in 

Proposition 4.3, is a Galois connection between the partially ordered sets (Ω, e ) 

and (Ψ, С ). The closed elements in Ω are the knowledge spaces and the closed 

elements in Ψ are the entail relations for X. 

Proof. The inclusion R С (r °)t)(R ) can be checked easily from the definitions of the 

mappings r and k. So in view of Propositions 4.1(iv) and 4.3(ii) the Galois 

connection is established if we can show that K^(kor)(K) for Κ ε Ω . Since by 

Proposition 4.1(i) to (iii) any r (K ) is an entail relation, we can use Lemma 4.4 to see 

that 

Kz(kor)(K ) iff (for all Ze2 X : YLX_K э К z implies X-K 2 Ζ ). 
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For any Κ,ΖεΤ?, the inclusion Κ Χ _ Χ 2 Κ Ζ implies KiKz, so clearly ЛГеК 
together with this inclusion implies X - К a Ζ. Consequently К С (к °г )(K ). 

Now let us determine the closed elements. If К is a space and /(e2* we can, 
above, take Ζ =X-KQ, where K0 is the unique maximal element of К included in 
K. Then clearly Κ Χ _^2Κ Χ _^ 0 and thus JC€(A:or)(K) implies K^KQ, that is, 
tfe К. So if К is a space we have К = ( W )(K ). This shows that any space is in 
the image of к and since Proposition 4.3(i) says that any element of к (Ψ) is a space, 
we see that the knowledge spaces constitute the closed elements in Ω. 

The closed elements in Ψ are the images by г and by Proposition 4.1(i) to (iii) 
any element of r (Ω) is an entail relation for X. We will show the converse by 
establishing R =(r%)(R) for such a relation R. One inclusion being checked 
above it remains to show that R 2 (r % )(R ). So, suppose A (r % )(R ) В and let A* 
be the maximum element of AR (Lemma 4.2(ii)). Clearly, for all Zel?, A*RZ 
implies ARA*RZ and thus A*aZ. By Lemma 4.4, this means X-A*ek(R). 
From A*2A it follows X-A*4k(R)A, which, in view of A(r°fc)(R).S, implies 
(X-A*)nß = 0 . ThisgivesARA*2ß,thusAR5.l 

4.6. Corollary. The mappings r and к induce a 1-1 correspondence between the 
collections of knowledge spaces on X and entail relations for X. 

4.7. Remark. We point out here that, independently, a very similar 1-1 
correspondence was recently obtained by Burigana (1988). He did not derive it from 
a Galois connection, but formulated it directly in terms of closures (see below for 
this approach). Curiously enough, Burigana's motivation differs completely from 
ours: his paper is devoted to the study of regularity in sequences of stimuli. 

4.8. An alternative formulation. The 1-1 correspondence induced by the Galois 
connection (r, к ) can be described alternatively in terms of closures (cf. Definition 
3.3). Observe first that any knowledge space К defines a closure hK on (2X, e ) by 
letting ЛК(А) denote the maximum element Ze2 x such that Κ Λ 2 Κ Ζ . (For a 
space, this is well-defined and it follows that X- h K (A ) must be a state of К, in fact 
the largest state included in X-A.) With our interpretation, hK(A) collects the 
problems that we can infer a person will fail if we know this person fails all 
problems in A. On the other hand, for any entail relation Ρ for X the mapping 
A -»A* = u A P (see Lemma 4.2(ii)) yields a closure hp on (2X,C). Now a space 
К and an entail relation Ρ are paired in the 1-1 correspondence of Corollary 4.6 
(r(K) = P and k(P)=K) if and only if the induced closures are the same (iff 
hK=hP). 
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The mappings К -» hK and Ρ -* hP aie bijections. More specifically, for an 

arbitrary closure A on (2х, С ) we find the knowledge space К such that A = h K as 

К ={X-h(A):Ae2lc}t 

and the entail relation Ρ such that A = Α ρ is, for A, В € 2 х , defined by 

APB iff Α(Λ)2θ. 

It may be checked that the defining properties of a closure ensure that the thus 
defined family К is indeed a space and the relation Ρ indeed an entail relation for X. 

4.9. Birkhoff revisited. By Lemma 4.2(iii) we know that for an entail relation Ρ 
for X we do not lose any information by restricting its range to the singleton 
elements of 2 х . If, in addition, Ρ is such that for A e 2 х and у e Χ 

AP{y} iff (forsomexeA: {χ}Ρ{у}), 

we can also restrict the domain of Ρ to the singleton sets and we have for A, В e 2х : 

APB iff {foranyyeB there is xe A suchthat {x}V{y}). (*) 

It is easy to check (with Lemma 4.4, for instance) that for such a Ρ the knowledge 
space ¿(P) is closed under intersection. Conversely, if a knowledge space К is 
closed under intersection, then the relation Ρ =r(K) satisfies (*). For, if Ar(K)B 
and yeB, we have Ar(K){y}, meaning that any state containing у contains an 
element of A. In particular, the state n К ̂ } contains some xeA; consequently this 
χ appears in any element of К <,} and we obtain K ^ J S K ^ J . Thus the "only if' 
part of (*) is established; the " i f part poses no problems. 

Since r and к are inverse mappings when restricted to knowledge spaces and 
entail relations for X, respectively, we obtain in this way a 1-1 correspondence 
between knowledge structures closed under union as well as intersection and quasi 
orders on 2 х satisfying (*). By identifying singleton sets with their element, the 
latter collection is in a natural 1-1 correspondence with the collection of quasi orders 
on X, which gives us Birkhoff s result 

5. The relation with surmise systems 

In this section we will assume that the set X is finite. Under that restriction Doignon 
and Falmagne (1985) obtained a different generalization of Birkhoff s result They 
noted that a knowledge structure's being closed under intersection forces a notion to 
have one unique set of prerequisites, which is too restrictive. So, dropping the 
requirement of closure under intersection, Doignon and Falmagne (1985) were led to 



BUILDING A KNOWLEDGE SPACE 157 

the definition of a surmise system, in which to each notion is assigned a collection of 

subsets of notions, representing the possible sets of prerequisites for that notion. 

Again by establishing a Galois connection, they derived a 1-1 correspondence 

between the collection of knowledge spaces and the collection of space-like surmise 

systems on X : 

5.1. Definition. A surmise system on X is a mapping σ: X —» Ω. The elements of 

а(дс) are called the clauses for x. The states of σ are the sets Z e 2 * that contain a 

clause for each element: 

forali xeZ there is С sc (x) such that C e Z . 

The surmise system σ is called space-like if each clause for* is a state containing χ 

and the clauses for χ are pairwise incomparable (with respect to inclusion). 

5.2. Theorem. (Doignon and Falmagne, 1985.) The collection of knowledge spaces 

on X is in 1-1 correspondence with the collection of space-like surmise systems on 

X. In this correspondence, the clauses for xeX in the space-like surmise system 

constitute the minimal states in the knowledge space that contain χ. 

Since knowledge spaces are in 1-1 correspondence with both entail relations for 

X and space-like surmise systems, obviously the last two collections must be in 1-1 

correspondence. We will investigate here how each entail relation for X induces a 

space-like surmise system. 

If Ρ is a relation on 2*, we denote by Ρ the complement of Ρ : 

Ρ = ( 2 x x 2 * ) - P . 

From Lemma 4.2(iii) we know that in case Ρ is an entail relation, it is uniquely 

determined by the sets Ρ [х},хвХ. To simplify notation, we will in the sequel 

write A Px for Α Ρ {χ } and also Α Ρ χ for Α Ρ {χ }. So 

P x = { Z e 2 x : not ZP{;c}}. 

We have for A PB the interpretation: if a subject has mastered a notion in Β, he 

must also have mastered a notion in A. Thus APx means: it is still possible to know 

χ without knowing anything in A ; or, in terms of surmise systems, there is still a 

clause for χ contained in X-A. With this interpretation, the following theorem is 

not really surprising. 
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5.3. Theorem. For an entail relation PforX. define a mapping s (Ρ ) : X -^ПЬу 
assigning to each xeX the collection of complements of maximal elements ofPx. 
That is, Ces(V)(x)iff(X-C)P χ and no strict superset ofX-C has this property. 

Then s (Ρ ) is a space-like surmise system and the states of s (Ρ ) coincide with the 

states of the knowledge space к (Ρ ). 

Proof The clauses for any дсеХ are pairwise incomparable by definition and each 
clause С for* contains χ since (X-C)Px implies (Х-С)£{*}. We have proved 
that s (Ρ ) is space-like if we can show that any clause for χ is a state. So, suppose 
Cei(P)(jc) and Jc'eC. Since X-C is maximal in Рдс, it must be the case that 
((X-C)u{jc'})Px. In view of this, the assumption (X-C)Px' would lead to 
(X-C) Ρ ( ( X - C ) U { X ' } ) P J : , contradicting (Х-С)Рх. Thus, ( X - C ) P J C ' and, 
using finiteness of X, there is some maximal A 2 (X-C) such that Α Ρ χ'. In other 
words, (Х-Д ) e s(P)(x') and (X-A )CC. 

For the states of A(P) we use the characterization of Lemma 4.4. To show that 
any state of i(P) is a state of к (Ρ ) we take K, Ze2* such that(X-i:)PZ and for 
all χ e К there is Cx Ç.K with (X-C,) Рдс. The proof that then {X-K)^Z follows 
by contradiction: if x&KrsZ we have (X-t f )uZ2{x} and, since (X-K)VZ 
implies (X - К ) Ρ ((Χ - К ) и Ζ ), we derive 

(X-Cx) 2 (X-K)V ({X-K)UZ) 2 {x}, 

contradicting (X-ÇJPx . On the other hand, if К is a state of ¿(P), Lemma 4.4 
yields (X-tf )Px for each xeK. Using finiteness of X we may conclude that then 
for any xeAT there must be a minimal Cx <Ξ.Κ such that (X-C x)Px. This means 
that AT is a state of s (Ρ ). I 

6. The construction of the knowledge space 

The theoretical results of Section 4 find a useful practical application in the 
problem of obtaining the knowledge structure of a particular domain from querying 
an expert in that field. We will sketch here a straightforward way of doing this that 
derives directly from the results of Section 4, and we illustrate the procedure on the 5 
problem example of Section 2. For applications of practical importance (i.e., for a 
larger problem set) we need a more sophisticated version. Such a practicable 
procedure, based on an elaboration of the same principles, is described elsewhere 
(Koppen, 1989). 

The basic idea is to not ask the expert directly for the states in the knowledge 
structure, but rather for the corresponding entail relation for the set of notions. So, in 
principle, we present the expert with two subsets A and В of notions, and we ask 
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whether or not it is safe to conclude that if a subject fails all problems in A (has not 

mastered any notion in A ), then the same subject will fail all problems in В (has not 

mastered any notion in B). When this conclusion is valid, the pair (A,B) is in the 

relation, otherwise it is not. 

Knowing that the relation we are looking for is an entail relation for X, we 

certainly need not offer the expert all pairs of subsets of notions. (We put ourselves 

in the comfortable position that our expert is perfectly reliable.) For one thing, from 

Lemma 4.2(iii) we know that we need only consider singleton sets in the range of 

such an entail relation. That is, we have to ask the expert only questions of the kind: 

if a subject fails all problems in A, implies this that he will fail problem χ ? This 

would be a silly question to ask when χ is an element of A, which reflects the fact 

that an entail relation extends the superset relation. In order to deal only with 

singletons in the range of our relation, we need the following easy Lemma, which 

characterizes such restrictions of entail relations. (The statement of this Lemma is in 

terms of X as the restricted range, identifying the singleton {JC } with the element χ.) 

6.1. Lemma. A relation Ρ included in^xX is the restriction of an entail relation 

for X iff it satisfies the following two conditions: 

(i) Ρ includes the reverse membership relation rmo ; 

(ii) [(BPz forali z e Z ) & ZPy ] implies BPy. 

The Lemma follows, since Ρ defined by 

APB iff APb forali beB 

defines an entail relation for X if and only if Ρ satisfies the conditions in Lemma 6.1. 

As a consequence of Lemma 6.1, the expert will be queried only about pairs of 

the form A ,x. Moreover, not all such pairs need to be presented because inferences 

can be drawn, both from positive responses (validating the implication) and from 

negative responses (denying it). Let us, for notational convenience, introduce the 

shorthand Ax for the set A u {* } with A € 2X and χ eX. According to condition (ii) 

of Lemma 6.1, then, any positive inference that directly involves a new observation 

A Px must be of one of the two forms (a) or (b): 

(a) We had already established В Pa for all a e A, and then from Α Ρ χ we infer 

В Px ( у =x and Ζ = A in 6.1(ii)). 

(b) We had already established A, Py, and then A Px leads to A Ρ у {В = A and 

Z=AX іпб.І(іі)). 

The two cases (a) and (b) can be combined in one equivalent inference rule: 

APx implies BPy whenever BPA ά A ¡Ρ у. (6.1) 

Indeed, (a) and (b) correspond to the special cases у =x and В =A, respectively, 
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while conversely any inference Β Ρ у obtained by (6.1) also follows by first inferring 

Λ Ρ у (case (b)) and next B P y (case (a)). Note that in this discussion we only 

considered direct inferences from АРдс, that is, inferences in which A and/or χ 

appear in the conditions of the rule. We find all positive inferences by applying rule 

(6.1) iteratively to these direct inferences, and so on. In general, repeated application 

can yield new inferences. 

A positive response can also lead to negative inferences according to similar 

rules, for instance, 

ΑΫχ implies BVy whenever A^PB & APy (6.2) 

and 

A P * implies BPy whenever BPx & ByPA. (6.3) 

Both rules follow because the opposite assumption, BPy would lead to a 

contradiction. Note that, by Lemma 4.2(iv), the observation APx is equivalent to 

APAX. Thus, in the case of (6.2), BPy would give us APA x PflPy, contradicting 

A P y . Similarly, with (6.3) we would have Β Ρ Β , Ρ Α Ρ χ , contradicting ВРдс. 

When we get a negative response A P * from the expert, we can only obtain negative 

inferences. We can formulate the rule 

A P * implies BPy whenever A PB & ByPx, (6.4) 

since B P y under the conditions of (6.4) would imply Α Ρ χ. 

It must be noted that rules (6.2) to (6.4) do not necessarily find all possible 

negative inferences, even when rule (6.4) is applied iteratively to the obtained 

negative inferences. Rule (6.4), for instance, is a special case of the more general 

rule 

APx implies В P C whenever APB ά (fluC)Pjc. 

But the inference Β Ρ С cannot be processed in the restricted range version of Ρ . It 

means that for some у e С we must have Β Ρ у, but unless for every but one element 

ζ of С we had already established В Pz, we do not know which у to pick. (Of 

course, if we had already В Py for some у e С, the inference tells us nothing new.) 

So in general we would have to save all such inferences Β Ρ С and after each new 

inference we would have to check whether any saved inference can now be 

consummated. This appears to be rather heavy. In practice we will use only the 

rules (6.2) to (6.4) that apply directly to the singleton set range of Ρ . Below will be 

indicated how we deal with their being incomplete. 

Using the implications (6.1) really means that we get to our ultimate relation Ρ 

via a number of intermediate relations, all of which are entail relations. In the 

absence of any information we start with a relation Ρ о which is set to the superset 
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relation on the power set of notions. If, at time i, the response of the expert is 

negative, we do not change the relation; that is, in this case Ρ t = P,_i. If, however, 

the response is positive, we add the newly established pair to the relation Ρ f_i. This 

will result in a relation that, in general, is no longer an entail relation. But using the 

inferences of rule (6.1) we add in fact all pairs that are necessary to tum the new 

relation into such an entail relation. Thus we obtain Ρ, as the smallest entail relation 

for X that contains both ?,_! and the pair that induced the positive response at time 

t. 

In order for this procedure to terminate (and in order to avoid asking unnecessary 

questions) we have to keep track of the pairs known not to belong to Ρ. At any time 

t these are collected in the relation N,. Since initially any pair can be in Ρ, we start 

with N 0 = 0 . The inference rules (6.2), (6.3) and (6.4) show that both a positive and 

a negative response at time t may imply the exclusion from Ρ of a number of new 

pairs, and N, is obtained from N ,_x by adding these pairs. At time t the question to 

be presented to the expert is picked out of the pairs that are neither in Ρ ,_λ nor in 

N,_i. The complication arising from the fact that these rules do not necessarily find 

all excluded pairs is resolved by first computing the positive inferences of a positive 

answer, before actually posing the question to the expert. In the (relatively rare) 

case that we would observe that a positive answer would lead to a contradiction (a 

positive inference that is included in N,^), we conclude that the chosen pair is 

actually excluded from Ρ. So we add it (together with the negative inferences drawn 

from it by (6.4)) to N,_i and we choose another question. (The extra work of 

exploring the possible inferences of a candidate question is a sensible thing to do 

anyway. It can direct us in choosing a "most informative' ' question at time t.) 

Thus we obtain an increasing chain {N ,} and at any time Ν , π ρ , = 0 . Since 

obviously with each observation either N, or P, (or both) increases, there must 

come a time s such that N ^ u P , = 2 x x 2 x . (This, too, can be checked considering 

the restricted range only.) Then the process stops and we may conclude Ρ = Ρ , . So 

we have constructed the relation Ρ as the maximum element of an increasing chain 

{P,} of entail relations for X. By the results of Section 4, then, the definition 

induces a decreasing chain {K,} of knowledge spaces and the whole procedure can 

be summarized in the following scheme: 

0 = NO С Ni С N 2 С ••· ε Ν, С · · · с Ν, = Р , 

2 = Po С Ρ ! С Ρ 2 с e Ρ, С С Р , = Р 

*: i i i i i 
2 х = К о 2 К 1 Э К 2 2 ··• 2 К, 2 · · · 2 K , = K 
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So at each moment t of the construction process we have a knowledge space Κ, 

that is a conservative approximation of the final knowledge space К ; conservative in 

the sense that any К, contains all states of К . As mentioned in Section 2, this fact 

is of some practical significance. It means that when we want the knowledge space 

for future use in knowledge assessment procedures, we may interrupt the 

construction process at any time practical considerations lead us to do so, and we 

will end up with a knowledge space that possibly contains some "nuisance" states, 

but in which at least no vital states are missing. 

In particular, we can start the construction process with the singleton subsets ("if 

a subject fails x, is it safe to conclude that he will also fail у ?") and stop when all 

such questions have been asked. If Ρ, is the obtained relation at this point, then, by 

construction, P, satisfies condition (*) of 4.9 and clearly any addition to P , will 

invalidate the "only if' part of this equivalence. So the corresponding knowledge 

space Κ, is closed under intersection (as it should be, since until now we have, in 

effect, asked questions regarding the quasi order on X, so we are still in the Birkhoff 

case) and it is the smallest such space. Thus, stopping the process at this point 

leaves us with the closure under intersection of the final knowledge space К. 

6.2. Example. Let us illustrate this procedure with the example from Section 2, 

where X = {a,b,c,d,e}. To simplify notation we will in the sequel denote 

subsets of X as strings without surrounding braces and separators between the 

elements. So abc denotes the subset {a,b,c}. In this way we lose the distinction 

between a singleton set and its element, but the correct interpretation will be clear 

from context. Furthermore, pairs of subsets are given in a dot notation: abc.de 

represents the pair of subsets ( [a, b, с }, {d, e } ). 

Now suppose we want to recover the knowledge space 

К = { 0 , с, e, be, ce, abe, bee, ede, abee, aede, bede,Χ}, 

given in Section 2, by gradually constructing the corresponding entail relation for X 

from the expert's responses. We have to ask the expert questions of the kind: does 

failing all in Ζ imply failing x, where Ζ runs through the subsets of X and χ through 

X. The order of these questions is in principle arbitrary, but it makes sense to start 

with the simpler ones. We will adopt here a very straightforward rule for choosing 

the next question to ask. We order the subsets by increasing cardinality and within 

classes of equal cardinality we choose, arbitrarily, the lexicographic ordering; this 

ordering is also used for the elements of X. Thus we obtain an ordering of the pairs 

(Z,*) by letting (Ζ,χ) precede (Z',*') iff Ζ precedes Z' or Ζ = Z ' and χ precedes x'. 

We choose for the next question the first undecided pair in this ordering. 

http://abc.de
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AíStart: N0= {0JC : xeX} Po = 2 Ko = 2x 

/ 

1 

to 

10 

и 

12 

13 

14 

15 
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18 

19 

20 

21 

22 

Observed 

β Ν χ , χ*α 

ί>Νχ, х*Ь 

cNa, cN¿> 

cPd 

cN¿ 

á N c 

ePa 

ePb 

eNc 

ePd 

abSd 

acNb 

bcPa 

be Ne 

bdPa 

Adding lo N 

a.b a.c a.d a.e 

b.a b.c b.d b.e 

ca c.b 

d.a d.b ed.a 

cd.b 

ce d.e cd.e 

d.c 

e.c ab.c ae.c 
be.c abe.c 

ad.c bd.c de.c 

abd.c ade.c 

bde.c abde.c 

ab.d ab.e 

acb ace ad.b 

ad.e acd.b acd.e 

bce bd.e abee 

abd.e bcd.eabcd.e 

Adding lo Ρ 

cd ac.d bed 

ce.d abed ace.d 

bce.d abce.d 

e.a be.a ce.a 

de.a bce.a bde.a 

cde.a bcde.a 

e.b ae.b ce.b 

deb ace.b ade.b 

cde.b acde.b 

e.d ae.d be.d 

abe.d 

bea bcd.a 

bd.a 

Deleting from К 

abde bde ade 

abd de bd 

ad d 

abed acd abe 

oc ab a 

bed bc b 

cd 

ae 

асе 

Table 1. Observed responses of the expert, based on the space К of Example 6.1, and 
inferences, yielding successive approximations of the entail relation Ρ and the corresponding 

knowledge space К . 

Using this design in questioning a perfectly reliable expert we would get the 
results gathered in Table 1. Here and in the sequel we show results for the relations 
P, and N, only restricted to the singleton set range. We start with a relation Ρ 0 set 
equal to the superset relation on the power set of X and the corresponding 
knowledge space К 0 equal to the power set In principle N 0 = 0 (any pair of subsets 
can be in the relation Ρ ) and we would start inquiring about the pairs 0 л , for χ e Χ. 
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Table 2. Situations after each positive response of the expert (see Table 1). Indicated are 

positive and negative inferences from the latest response (p and n), earlier inferences (p and n) 

and earlier observed responses (p and n). The " з " means that the row subset contains the 

column element, a dot that ihe corresponding pair is still undecided. The complement of a 

subset indexing a checked row is in the current knowledge space; if the check is in boldface, it 

is known to be in the final space. 
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But a moment's thought will reveal that 0 Ρ χ means precisely that χ does not 
appear at all in the knowledge space. We will safe us five questions here by 
assuming we know the specification of the set of problems X is right in the sense that 
X=u К. On this assumption we can then "infer" 0 Nx for all χ sX, giving us our 
initial N 0. So our real first question to the expert is: does failing a imply failing b 7 
As we can check from the above specification, К has states containing b and not 
containing a (be, for instance), so we will get a negative response from our expert. 
The same is true for the next 9 questions, up to and including the question: does 
failing с imply failing b ? Since we can not infer anything from negative responses 
in the absence of any positive response, we can only add these pairs of subsets to the 
relation N Q to obtain N i0, while still Ρ 1 0 = Ρ о and К 1 0 = К 0. 

At t = 11 we get our first success: since any state of К containing d also contains 
с, we get a positive response from our expert for the pair cd. As we can see in 
Table 1, this gives us some extra inferences. The negative inference dNa, for 
instance, follows, by transitivity of P, from cNa and cPd, and since cTd and the 
known с Pc imply с Ρ cd, we similarly obtain cdN¿> from cN¿>, and so on. These 
are all simple instances of rule (6.2). The positive inferences all follow from a 
special case of rule (6.1). With cVd we have СЭсР</ for any set С containing с 
and this adds to Ρ n all pairs Cd where С contains с but not d. Adding pairs to Ρ и 

means deleting elements from Кц and the correspondence is via Lemma 4.4. 
Adding cd to Ρ, for instance, means that it is no longer true that cPZ implies c2Z 
for all Ζ6 2 х , so according to Lemma 4.4 we have to drop X-c =abde from К n. 
In the same way, ace Ρ d forces us to discard bd from К n and so on. 

The situation after the first positive response at t = 11 is depicted in Table 2 in 
the column with that heading. Here the problem of finding the relation Ρ is 
represented as filling out a matrix, the rows of which are indexed by the subsets of X 
and the columns by the elements of X. In this and in the next columns of Table 2 
boldface ρ and η entries represent positive, respectively negative inferences made 
from the expert's positive response to the latest question asked; italic ρ (л) denotes 
earlier positive (negative) inferences and roman ρ (η) denotes previously observed 
positive (negative) responses from the expert. А " э " entry corresponds to row-
column pairs that are in Ρ because the subset of the row contains the column 
element, while a dot indicates that the corresponding pair is still undecided. In a 
subcolumn is checked which rows contribute states to the current knowledge space; 
according to Lemma 4.4 the complement of a row indexing subset is a state as long 
as there is no positive (ρ, ρ or p) entry in that row. The checkmark is in boldface 
when the corresponding row has been completed, meaning that the complementary 
set is bound to be a state of the final knowledge space. 
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Returning to Table 1 we see that at times / = 12 and t = 13 we get negative 

responses, giving some negative inferences, and the next positive response is 

obtained at t = 14. From this we get a number of positive inferences and 

consequently a number of states can be discarded, all of this in the same way as we 

have seen above. In this way the process continues, until at / = 22 the relation Ρ is 

completely known. With К 22 we have indeed reconstructed the knowledge space К 

we used for deducing the expert's responses. In Table 2 we show the situations after 

each newly obtained positive response and consequent change in K,. The 

inquisitive reader may want to check that at each moment t the knowledge structure 

K ( is closed under union, that for f = 0 , . . . . 17 K, is also closed under intersection 

while this no longer holds from t =20, and finally that indeed K 1 7 is the closure 

under intersection of К 22· The corresponding relation Ρ 1 7 , considered as a partial 

order on X, equals exactly the partial order Ρ we found in Section 2 (see Fig. 2) as 

our best try for a quasi order representation of К . 

This example illustrates the correspondence between knowledge spaces and 

entail relations, and it shows in principle how we can obtain the space by questioning 

an expert about the entail relation. However, it will also be clear from this example 

that, as such, the procedure would not be practicable, even for a very moderate 

number of problems in X. For instance, for a 20 problem set the equivalent of Table 

2 would consist of over one million rows. The size of this table simply doubles with 

each additional problem. On closer inspection, however, it appears that, generally, 

many rows are redundant: the complete information on entail relation and 

knowledge space is contained in a subtable of considerably smaller size. An 

essential part of the algorithm presented in Koppen (1989) deals precisely with the 

issue of constructing just this minimal subtable, dynamically, in the course of 

questioning the expert. (The minimal subtable depends on the obtained responses.) 

The algorithm of Koppen (1989) cannot avoid the theoretical - but in practice 

uninteresting - worst case where all subsets are states (the expert will give only 

negative responses and the minimal subtable is the complete table), but it has proved 

to be applicable to the real-life situation of a set of 50 problems in U.S. high school 

mathematics. The results of this application will be reported elsewhere (Kambouri 

et al., 1989). Let us here just mention that actually constructed minimal subtables in 

this case were in the order of 2000 rows, while the naive "Table 2 version" would 

contain well over 1015 rows. This gives an idea of the reduction that can be obtained 

once we go beyond the straightforward procedure described in this section for 

illustrative purposes. 
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Extracting human expertise for constructing 
knowledge spaces : An algorithm 

Mathieu Koppen 

New York University 

In a theory for the efficient assessment of knowledge - introduced by Doignon 
and Falmagne (1985, International Journal of Man-Machine Studies, 23, 175-
196) and elaborated by them and co-workers in a number of subsequent 
publications - the cognitive organization of a field of information is represented 
by a knowledge space, the collection of all possible knowledge states. The 
construction of such spaces for particular domains is a problem of some practical 
importance. We present a method for achieving this by confronting experts in 
the field with a carefully chosen sequence of questions about specific 
relationships between the various items of the domain. 

1. Introduction 

Any more advanced computerized instruction system must include a component for 
assessing the initial knowledge of a student and updating this assessment as the 
student progresses through the administered course material. In designing such 
procedures we have to specify very concretely how we represent and measure "the 
knowledge" of a student A framework for doing this has been developed by 
Doignon and Falmagne (1985). They conceptualize a particular domain of 
knowledge as the collection of problems (or items) in that field and the knowledge 
state of an individual in this domain is the subcollection of these problems that this 
individual is capable of solving. In any particular population of students, only some 
of the subsets of problems will constitute possible knowledge states; this family of 
feasible states is called the knowledge structure of the domain for this population. 

This formalization is at the basis of a knowledge assessment project, a 
comprehensive description of which is given by Falmagne, Koppen, Villano, 

This work was supported by DOD grant MDA903-87-K-0002 to Jean-Claude Falmagne at 
New York University. The author wants to thank Jean-Claude Falmagne for his comments on 
a previous draft. Address comments and requests for reprints lo M. Koppen, Dept. of 
Psychology NYU, 6 Washington Place, New York, NY 10003. 
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Johannesen and Doignon (1989). In this context, Falmagne (1989) has developed a 
procedure for testing a given knowledge structure against empirical data and 
possibly refining it by a sequence of likelihood ratio tests. Also, a number of 
procedures have been designed that search such structures in order to locate or at 
least approximate the state of particular students (Falmagne and Doignon, 1988a; 
Falmagne and Doignon, 1988b; Degreef, Doignon, Ducamp and Falmagne, 1986). 
As this description suggests, all these procedures start from a fixed, predetermined 
knowledge structure. How to arrive at such a structure in the first place is another 
problem; it is the one we will be concerned with in this paper. We will present here 
a method for eliciting the necessary information from experts in the field (in our 
case, for instance, experienced teachers or tutors). 

It must be realized that it is quite unrealistic to ask an expert directly for the list 
of possible knowledge states. For one thing, this list may a priori be very large. In 
addition, it is more than likely that an expert does not have recourse to an explicit 
representation of this list; rather, it is something she uses implicitly. Accordingly, 
we resort to an indirect approach. The theoretical, mathematical basis for this 
method is provided in Koppen and Doignon (1989). The central concept is the 
special kind of knowledge structure where the union of any number of knowledge 
states is again a state. Doignon and Falmagne (1985) argue that this assumption of 
closure under union is a reasonable one for knowledge structures in practice and they 
reserve a special name for it: such a structure is called a knowledge space. 

In Koppen and Doignon (1989) an alternative characterization of knowledge 
spaces is derived. It is shown that they are in 1-1 correspondence with a class of 
relations between the different items in our domain of information, and by asking an 
expert about these relations between items we can in fact recover the knowledge 
space that, from the viewpoint of this expert, represents the domain. In the next 
section, we discuss the kind of questions we have to ask the expert and we show how 
the intended knowledge space can be derived from the expert's answers to these 
questions. It turns out that we can substantially reduce the number of questions to be 
asked by making appropriate inferences. In the following sections, we will describe 
these inferences in some detail and investigate how they can be exploited to turn an 
impractical straightforward approach into a querying procedure that has proved to be 
workable in practice. In the last two sections, these discussions of the various 
aspects converge in a description of the resulting algorithm and we add some 
remarks about the applicability of this method. 
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2. Deriving the knowledge space from the expert's answers 

We consider a field of knowledge, represented by a (finite) set X of problems. We 

assume that, implicitly, experts in a field have some knowledge space of that field. 

We want to make this knowledge space explicit, but we cannot do that by simply 

asking an expert to list all the possible knowledge states. Instead, we use an indirect 

method and ask her questions of the following kind: 

[Q] "Suppose that a student under examination has just failed all the problems 

ai,a2,... ,an. Is it then practically certain that this student will also fail 

problem b ?" 

The expert is told to assume optimal examination conditions, meaning that there is 

no "noise" in the data in the form of lucky guesses or careless errors by the student 

We suppose that, in this situation, the response of the expert reflects a particular 

knowledge space consulted implicitly. Defining A ={a1,a2,..., a„} as the subset 

of X that is known to be failed by the hypothetical student, our interpretation of the 

above question is: 

[I] Does it hold for the knowledge space in question that there is no state that is 

disjoint from A and contains the element b ? 

Indeed, if there were some such state, a student in that state would fail all problems 

ax to an, yet give a correct answer to b. It is clear now that the answers to the 

questions [Q] tell us something about the knowledge space. In Koppen and Doignon 

(1989) it is formally shown that a knowledge space is in fact completely 

characterized by the answers to all possible questions of the form [I] (i.e., [Q]). That 

is, from these answers we can fully recover the knowledge space that was operative 

in producing them and we want to describe here how this can be done. 

2.1. A straightforward approach. 

In a sense, our interpretation [I] tells us exactly what to do. A priori, before 

obtaining any response from the expert, there are no restrictions on the knowledge 

space; that is, we consider every subset of X as a possible knowledge state. So, we 

draw up the list of all these subsets and start querying the expert. Whenever the 

expert indicates that, indeed, failing some set of problems A would imply failing 

some problem b, we apply [I]: we go through this list and remove as a possible 

knowledge state every set that contains b but is disjoint from A. 

Notice that after applying this operation the resulting, trimmed collection of 

states is still a space, i.e., it is still closed under union. (Obviously, the power set 

that we start with is a space.) Indeed, if К=КхУ->Кг is removed because of the 

above observation, that is, if ft e AT and К<~^А=®, then both А Г 1 п л = 0 and 

K2r*A = 0 while also beK^ or fceK^· Thus, Kx отК2 has also been removed: the 
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operation cannot create a counterexample for the closure under union. We will 

come back to this issue in the final section. 

In several respects, however, the above straightforward procedure is too 

simplistic. For one thing, it does not take into account that we can save us a lot of 

queries from the expert by drawing appropriate inferences from her answers. 

Secondly, "drawing up the list of all these subsets" is not much of a problem when 

we are dealing with, say, 5 items (2s = 32), but it becomes rather prohibiting when 

the number of items equals 50 (250> 1015). (The algorithm that we are going to 

describe has been applied with this number of items.) Fortunately, by fully using all 

inferences from the expert's answers, we can, in general, greatly reduce the 

collection of subsets that require consideration. Rather than starting with the full 

tableau of subsets of X, the algorithm will generate subsets that are of interest 

dynamically, in the process. These two related issues, the question of drawing 

inferences and the question of using these inferences to generate a minimal subtable 

of subsets of X will be dealt with in some detail in the next two sections. 

2.2. The relation P. 

Below we give examples of some basic inferences and show how these are actually 

implied by the above mentioned straightforward procedure. Next we describe how 

the knowledge space can be recovered from the collection of all inferences. This 

means that the knowledge space can remain implicit; we need only maintain the 

table of inferences and how this can be done most economically is the subject of the 

next sections. We denote the situation where failing A entails failing b by A Ρ b. 

This defines Ρ as a binary relation between subsets of items and items. The expert's 

task is it to tell us, in principle for each pair (A, b ), whether or not A Pb holds. 

2.3. Example. 

With this interpretation, then, it is clear that AVb implies A'Pb for any set A'aA. 

This inference is actually already put into practice when we implement APb 

according to the interpretation [I]: after all sets that contain b and are disjoint from 

A have been removed from the list of possible states, there certainly are no sets left 

containing b and disjoint from A'. Thus, a "new" observation A'Pb, with A CA', 

would be totally uninformative and we would not want to ask the expert the 

corresponding question. 

2.4. Example. 

Suppose we have observed a Ρ b and b Ρ с. (If the left argument to the relation Ρ is 

a singleton set {a}, we simply write aPb for {a}Pb, etc.) According to the 

interpretation of Ρ, it is then tempting to conclude that we must also have a Ρ с. 
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(That is, restricted to single items, the relation Ρ is transitive.) Again, this is really a 

foregone conclusion. Consider a subset of X that contains с but not a. This set 

either contains b, in which case it has been removed by the observation a Ρ b, or it 

does not contain b, in which case it has been removed by b Ρ с. 

2.5. Introduction of the complementary relation N . 

This transitivity property of Ρ makes it clear that there may also be inferences from 

negative answers. We denote by N the complement of Ρ, that is, we write A N b 

when it is not the case that failing all items in A implies failing the item b. In terms 

of the knowledge space, A N b indicates that there is indeed a state that is disjoint 

from A and that contains b. 

2.6. Example. 

Suppose now that we have observed a Ρ b and a N с. Then we must conclude b N c, 

since the alternative b Ρ с, together with the observation a Ρ b, would produce the 

inference a Ρ с, contradicting the observation a N с. 

Inferences can get more complicated. The transitivity of Ρ in the domain of 

singleton sets, for instance, generalizes in the following way. 

2.7. Example. 

Suppose we have AVb, for some subset A and items b,, i = 1 к, and suppose 

that, for the subset В ={b1 bk } and item с, we have also observed Β Ρ с. As in 

the single item case above, the interpretation of Ρ given in 2.2 would lead us to 

conclude APc and we note that this conclusion has already been implemented: a 

subset containing с and disjoint from A has been removed by BPc if it is disjoint 

from В and by A Ρ 6, if it contains b,. So we do not want to bother the expert with a 

question involving a set A and an item с, whenever there is some set В for which 

we have observed (or inferred!) B P c and for each element b of which we know 

A Pb to hold. There are corresponding generalizations for negative inferences. 

2.8. Extended versions of the relations. 

This example suggests a natural way of extending the use of Ρ to the case where 

both arguments are subsets. If А, В are subsets of X, this extension is defined by 

APB iff (APb forali beB). (1) 

This defines effectively Ρ as a relation on the power set of X and the above example 

shows that, as such, Ρ is transitive. We can make the corresponding extension of N 

to the relation on the power set that is the negation of Ρ. Accordingly, 
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A NB iff (Λ Nb for some ЬеВ ). (2) 

2.9. Recovering the knowledge space from the relation. 

All of this shows that it is not a good idea to simply translate a response of the expert 

into its consequences for the knowledge space under construction, and, after that, 

forget about it. We will, in fact, take quite the opposite approach: we collect all 

observations and inferences in a subsets-by-items table and leave the implied 

knowledge space implicit until the end. It turns out that the final knowledge space 

can be easily read off from the completed table. To see this, suppose that for any 

subset i4£X and any JCGX we have established whether APx or ANJC holds. 

Consider now, for some A c X , the collection A* of items that any student will fail 

who fails all items in A : 

A* ={XBX:AVX}. (3) 

This mapping, associating with each subset A the above defined A*, has the 

following properties: 

A * 2 A , (4) 

A 2 В implies A* 2 Β*, (5) 

(A*)*=A*. (6) 

These properties are immediate from the interpretation of Ρ and definition (3). 

Specifically, (6) represents the fact that, observing a student who fails all of A, we 

may conclude that he will fail all of A*, but nothing more than that: it is possible to 

master exactly those problems that are not in A*. In other words, the set of these 

problems, X-A*, is a knowledge state. We denote this complement of A* by A1; it 

is the collection of items that can still be solved by a student who is known to fail all 

of A: 

AL={x£X:ANx}. (7) 

We have seen that any set A 1 is a knowledge state and the argument can easily be 

reversed. If K^X is a knowledge state, then there may exist a student who solves 

correctly all of AT, but fails all of X-K. Consequendy, from failing X-K we can 

surmise no more than just that: (X-K)* =X-K, and, thus, К =(Х-КУ: This shows 

how the knowledge space, let us call it Κ, can be extracted from the table in which 

the expert's answers and resulting inferences are stored: 

К = { А 1 : А £ Х } . (8) 

Accordingly, the problem of determining, in an efficient way, the knowledge space 
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of an expert amounts to the problem of determining, for any subset A and any item 

b, whether the expert thinks APfe or ANb is the case. In the following sections we 

will investigate how the latter task can be handled most efficiently, using inferences 

like the ones shown above. 

3. Collecting the inferences 

Inferences can be made by exploiting certain properties of the relation Ρ . In order to 

develop the possible inferences in full generality, we will consider the definitions (1) 

and (2) of Ρ and N, respectively, as relations between subsets of X. We have to 

keep in mind, however, that, for practical reasons, we can maintain only the original 

version of these relations in a subsets-by-items table. Accordingly, we will at the 

end of this section give the appropriate version of the inferences. As we have 

indicated, maintaining a full subsets-by-items table is impractical even with a 

moderate number of items and in the next section we will investigate how to 

generate a minimal part of this table that still contains all the information. 

3.1. The basic properties. 

Our interpretation of Ρ shows that А Рдс must hold for any χ e A. Combining this 

with the extension definition (1), the following properties follow easily: for any 

Α,Βς,Χ, 

ΑΏΒ implies APB (9) 

and 

APB iff A P ( ß u A ) . (10) 

We have already observed the transitivity of Ρ : for any A, В, С С Χ, 

APB & BPC implies APC. (11) 

In Koppen and Doignon (1989) it was proved that (9), (10) and (11) fully 

characterize the relations that are generated by the positive answers to the questions 

[Q] ([I])· So these are the properties we can use in making inferences. 

The situation in which we want to generate inferences is as follows. For each 

pair (A, B) of subsets of X we want to establish whether APB orANB holds. By 

collecting information (responses of the expert) and making inferences from it, we 

have arrived at a decision for some of these pairs. Now for some pair, (A, A') say, 

information is obtained, resulting in either APA' or ANA', and the question is: for 

which of the pairs of sets (B, С ) that are still undecided does this new information 
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provide the missing link that makes an inference, either Β Ρ С от BN С, possible ? 

3.2. Inferences from transitivity. 
Let us start with the more familiar case of inferences just due to the transitivity 
condition (11). Consider first the case where the new information is positive: we add 
AVA' to our list. This allows a positive inference for pairs (B,C) for which this 
new entry completes a path in Ρ from В to C, that is, for which there were already 
such paths from В to A and from A ' to С : 

AVA' implies BPC whenever BPA & A'VC. (12a) 

The new observation AVA' can also lead to negative inferences for pairs (B,C). 
One possibility is that, in Ρ, there is a path from A' to Β, while it is known that there 
is no such path from A to С : 

APA' implies BN С whenever Α'Ρ В & ANC. (12b) 

A negative inference is also obtained when, in Ρ, A can be reached from С, while it 
is known that A' cannot be reached from В : 

APA' implies BN С whenever СРА & BN A'. (12c) 

Finally we look at the case where the new information is negative: ANA' is 
obtained. This allows only negative inferences ßNC and these are obtained 
whenever the alternative BPC would complete a path in Ρ from A to A': 

ANA' implies BNC whenever APB & CPA'. (12d) 

These four inference rules are represented in Figure 1 in the form of diagrams. Note 
that, in this whole discussion, paths may have zero length; in the last case, for 
instance, we might have A =B от С -A', and similarly in (12a,b,c). 

Д > С В'штшш>С Вшшшшш>С Вшттшт>С 

(12а) (12b) (12с) (12d) 

Figure 1. Diagrams of the inferences from transitivity given in rules (12). Solid arrows 

connect pairs of sets known to be in Ρ, dashed arrows represent pairs known to be in N . In 

each diagram, the new observation is in the lop row and the thick arrow in the bottom row is 

the inference implied by the other arrows. 
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33. The general case. 
The inferences in (12) are solely based on the transitivity (11). They may be 
strengthened by incorporating the properties (9) and (10). The latter tells us that the 
observation APA' is equivalent to AP(A'uA) (thus, ANA' equivalent to 
AN (А'и A)). Similarly, В PC and В NC are equivalent to Я Р ( С и Я ) and 
5N(C vB), respectively. This allows us to replace, in any condition in (12a) to 
(12d), A' by the equivalent A'uA and С by the equivalent С u ß . In each rule we 
may choose the alternative that makes the condition the weakest (and thus the 
corresponding inference rule the most powerful). In order to apply (12a), for 
instance, we have to find a subset В such that SPA and a subset С such that either 
A'PC, or (A'uAJPC, or A 'P(Cuß) , or (A'uA)P(C u ß ) . The weakest of 
these conditions is (A'uA )PC, in view of the facts that the relation Ρ contains the 
relation 2 (property (9)) and that Ρ is transitive (11). The alternative condition 
A'P(Cuß) , for instance, leads to (А'иА)ЭА'Р(С u ß ) 2 C , which, by (9) and 
(11), implies (A'uA)PC. Similarly for the other two alternatives. In general, 
whenever there appears in a condition a pair of sets that is in the relation Ρ, we get 
the weakest form of this condition by making the left member of this pair as big and 
the right member as small as possible. Accordingly, we choose A'uA in (12a,b), A' 
in (12d); С in (12a), С ufi in (12c,d). 

It looks as though the same kind of reasoning with respect to the pairs in N 
appearing in the conditions of rules (12b,c) indicates that we should make the right 
member of such a pair as big as possible. In (12b), for instance, it is clear that, by 
(9), ANC implies AN(Cuß) , so the latter condition is weaker. On closer 
inspection, however, the two versions appear to be completely equivalent. Any В 
we are considering here satisfies the other condition of (12b): Α'Ρ В. Together with 
the new observation APA' this implies APß. So whenever AN* for some 
дсеС u ß , we cannot have xeB: AN(C u ß ) implies A NC. We do not gain, then, 
by replacing С by С u ß in (12b) and in practice we only lose. We deal with the 
relations Ρ and N here in terms of their extended definition, as relations between 
subsets, to describe the inference rules in full generality, but in practice these 
relations are only available in their restricted form, as relations between a subset and 
an item. That is, the condition A N С is established by verifying that indeed Α Ν χ 
for some xeC and, obviously, it does not make any sense to extend the domain of 
search to С u ß , if we know that we will not find such an χ in В. Therefore, we do 
not replace С by С u ß in (12b) and, for the same reason, we choose A' over А' и A 
in (12c). 

All in all, by taking the properties (9) and (10) into account we have arrived at 
the following transformation of the inference rules (12): 
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A »- AVA 
i l 

Β ι С 

(13а) 

Figure 2. Diagrams 

АРА' implies BPC whenever BFA & ( A ' u A ) P C , (13a) 

APA' implies BNC whenever ( A ' u A ) P B & ANC, (13b) 

APA' implies BNC whenever ( C u B ) P A & SNA', (13c) 

ANA' implies ß N C whenever AVB & ( C u ß ) P A ' . (13d) 

See Figure 2 for the corresponding diagrams. These are the general inference rules 

for a relation Ρ between subsets of X that satisfies (9), (10) and (11), and where N 

denotes the complement (negation) of Ρ . 

3.4. The practical implementation. 

Now we want to apply these rules in the actual situation where we deal with Ρ and 

N only in their restricted version, as relations between subsets and items. Note that 

the conditions in (13) can all be checked in this restricted version. According to 

definition (1), the condition A P ß is fulfilled if and only if for all xeB it has been 

established that Α Ρ χ. Similarly, by (2), ANß follows if and only if there is some 

xeB for which AN* has been established. The restricted version forces only 

changes in the input and output of the rules (13), the new observation and the 

derived inference. 

For one thing, our expert provides us with answers to questions of the form [Q]; 

that is, the new information we get does not concern a pair of subsets A and A', but a 

subset A and an item x. Accordingly, in the above rules (13) we may substitute χ 

for A' everywhere. As for the new inferences, we can, in the restricted version of the 

relations Ρ and N, only handle conclusions of the form Β Ρ у or В Ny. This is no 

real restriction in (13a), where the conclusion is positive. Indeed, the conclusion 

β Ρ С is equivalent to the collection of conclusions Β Ρ у for all у e С, and these can 

all be implemented. 

The situation is more complicated, however, for the negative conclusions ß N C 

in (13b,c,d). This means that for some у e С it must be true thatßNy, but unless we 

have already established ß P z for every but one z e C , we would not know which 

-».AVA 

>CvB 

(13b) (13c) (13d) 

of the general inference rules (13). Same conventions as in Figure 1. 
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y e С to pick. (If there is already some established Β Ν ζ, ζ e С, then the conclusion 
Β N С does not tell us anything new, of course.) We must conclude that the negative 
inference Β N С cannot be implemented in full generality in the restricted version of 
Ρ and N. Since it is utterly impractical to work with the extended version of these 
relations, we are content with just collecting all inferences of the form BNy. This 
restriction amounts to substituting у for С everywhere in the rules (13). 

A > χ 

A 

В шшшшш>Ву 

(14d) 

as in Figures 1 and 2. 

In sum, then, the following specialization of (13) is the collection of inference 
rules that are actually applied in our algorithm. We use the shorthands AI for 
A u {*} andßj, for ß u {y }; the corresponding diagrams are given in Figure 3: 

APx implies BPy whenever BPA & AxPy, (14a) 

APx implies BNy whenever AXPB & Afiy, (14b) 

APx implies BNy whenever ByPA & BNx, (14c) 

AN* implies BNy whenever APB & ByPx. (14d) 

So, we must be aware that, in our tables, we do collect all positive, but not 
necessarily all negative inferences. It appears, in practice, that rules (14b,c,d) still 
find most negative inferences. However, they are in principle incomplete and how 
we deal with this situation will be discussed in Section 5. 

4. Generating a minimal subtable of inferences 

As we already indicated in Section 2, even for a moderately large number of items it 
becomes soon impractical to generate a full subsets-by-items table. Fortunately, it is, 
in general, not necessary to construct this full table. The inferences we described in 
the previous section may render complete rows of such a table uninformative. That 
is, there may be a number of subsets A of X, such that for any b e X, it can be 
inferred whether A Ρ b or A N b holds by inspection of some other rows of the table. 

Figure 3. Diagrams of the implemented rules (14). Same conventions 
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It would be nice, of course, if we could avoid including all these redundant subsets in 

the table. Below we will describe a method for generating a minimal subcollection 

of the power set of X, such that the corresponding subtables of Ρ and N still contain 

all necessary information. 

Since we are dealing here with rows of the table, it appears that the properties of 

the relation Ρ can most conveniently be used in the form of Eqs. (4) to (6). In the 

previous section, the inferences were based on the properties (9) to (11), but it is not 

difficult to establish that the two sets are equivalent: in Koppen and Doignon (1989) 

it is shown that, under definition (3), the properties (4) to (6) and the properties (9) to 

(11) characterize the same collection of relations between subsets of a finite set X. 

Using (4), (5) and (6), we can find some important examples of redundant subsets. 

4.1. Example. Suppose we have A c ß c A * for subsets А,В of X. By (5), this 

implies A*Cfi*£;(A*)* and by (6) it follows A* =B* . Thus, whenever we have 

determined A* for some subset A, we have in fact determined B* for all subsets В 

that are between A and A*. It is of no use to have such subsets in the table: since 

B* =A*, it is also the case that Bi=A1, so В does not add an additional state to the 

knowledge space defined by (8). Also, any inference involving the row 

corresponding to В can be made on the basis of the row corresponding to A, so the 

table of inferences is still complete. 

4.2. The case of equivalent subsets. 

We call two subsets A and В of X equivalent whenever A* =B*. (This means they 

have identical rows in the subsets-by-items table.) From (7) and (8) it is clear that 

equivalent subsets contribute one and the same state to the knowledge space, so for 

recovering the complete space only one representative of a collection of equivalent 

subsets is needed in the subtable. However, the primary purpose of the subtable is to 

collect all inferences and this implies that two equivalent subsets must both be in the 

subtable whenever their equivalence is only established empirically, on the basis of 

the expert's answers to questions regarding these subsets. In this case, the two rows 

contain independent information on which inferences can be based. Only if we can 

infer, ahead of time, that some subset is equivalent to another subset, then that subset 

can be discarded from the subtable without throwing away inferences. The above 

example is an important case of this situation; below is another one. 

4.3. Example. Let А,В be two subsets of X such that A* =B* and consider an 

arbitrary subset С Since ( A u C ) a A , we can use (5) and (4) to obtain 

(A u C ) * 2 A * = ß * 2 ß ; a l s o ( A u C ) * 2 C . Thus (A u С ) * 2 ( ß u C ) , and, by (5) 

and (6), (Α <->0*Ώ(Β u C ) * . We have the same derivation with the roles of A 
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and В interchanged, so we conclude that (A u C ) * = (£ u C ) * . Consequently, 

whenever we have found two subsets A and В for which A*=B*, we need to 

consider in our table only supersets of one of the two. Any B'^B is known to be 

equivalent to the set A <J(B'-B ), which is a superset of A. 

4.4. Partitioning the table into blocks. 

Once it is clear that all information may be contained in a subtable that is often of 

considerably smaller size, the problem presents itself of generating just this subtable 

instead of the full table. The approach we have chosen here is to proceed by blocks, 

where a block is defined by the cardinality of the set A in [I], or, the number η in 

[Q]. First we ask the expert for any single item a and for any b whether failing a 

would imply failing b. This collection of questions constitutes block 2. Next comes 

block 2, in which the generic question is whether failing a pair αγ, аг would imply 

failing b. Then, in block 3, we consider a triple a1, Cj, a^, etc.. There are good 

reasons for choosing this ordering of the questions. It would seem that, for the 

expert, questions are easier when there are less items involved, so in this way she 

starts with the easiest questions. By using the inferences, we can then try to 

minimize the number of more difficult questions that have to be asked later on. And, 

in fact, we get more inferences from a positive answer A Ρ b the smaller the set A is. 

This is clear from Example 2.1: a smaller set simply has more supersets. It can also 

be seen in the Examples 4.1 and 4.2 above. If A is small, there may be more 

"room" between A and A* in 4.1 and if A and В are small in 4.2, there are more 

supersets of В that can be represented by corresponding supersets of A. 

4.5. The construction of a new block. 

The idea is not only to proceed by block, but to actually construct block к of the 

table only after blocks 1 to k-l have been completed. These previous blocks are 

then consulted to decide which subcollection of the ¿-subsets of X needs to be 

considered in block k. That is, the table is constructed dynamically, depending on 

the answers and inferences obtained so far. At the start, we do not know anything 

about equivalent subsets, so block 1 is constructed to consist of all singleton subsets. 

Block к is constructed in such a way that 

(i) it includes only those к -subsets of X that are not known to be equivalent to 

some subset in the previous blocks 1 to k-l, and 

(ii) it includes only one representative of any number of ¿-sets that are known to 

be mutually equivalent. 

Condition (i) provides us with a termination condition: we know that blocks 1 to к 

contain all information regarding Ρ - and, thus, all information regarding the 

knowledge space - if and only if the next block to be constructed, block jk+l, 
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appears to be empty: any subset not in blocks 1 to £ has a representative there to 
which it is equivalent. 

How is it actually decided which subsets are to be in block к ? First, because of 
the above conditions, we need to consider for "admission" to block к only k-
subsets that are of the form A u {дс} where A is a subset appearing in block k-1 and 
where x4A*. Indeed, if Л is a (jfc-l)-subset that is not present in block k-i, then, 
by construction, there must be a subset θ , somewhere in blocks 1 to k—l, to which 
A is equivalent. But then the к -subset А и {дс} is equivalent to В u {дс} (cf. 
Example 4.2) and thus this subset needs no separate consideration. And if χ e A*, 
then, by (4), (Λ υ {χ }) cA*, and, by (5) and (6), А* с (Α υ {χ })* с (A* )* =A*, so 
in this case A u {дс} is equivalent to (and can be represented by) the subset A in the 
previous block. 

Secondly, if a number of subsets A l,..., Am in block k-1 have turned out to be 
equivalent, then we pick one is [\ m], say i = 1, and we do not include in 
block к any extension of the sets A 2,... ,Am. The only extensions we consider are 
the sets A l u {дс} with x^Af = · • · =Am*. This is a direct application of Example 
4.2. 

Finally, any remaining candidate must be subjected to the test of Example 4.1. 
That is, if ß is such a set, then we have to go through the blocks 1 to k-1 in order to 
check whether there is some subset A such that A Cß e A*. Only if this is not the 
case, is the subset В finally accepted as a member of block к. 

4.6. The transport of previous inferences to a new block. 
Until now we have bypassed one crucial problem. In Section 3 we discussed what 
inferences could be drawn from observed réponses of the expert and in that 
discussion it was tacitly understood that we were in a position to actually implement 
any of these inferences. We acted as if the full subsets-by-items table were 
available, while we have seen above that in fact only a subtable is created, 
dynamically - block by block. Clearly, if we are dealing with block k, we can, on 
the one hand, not implement any inferences pertaining to following blocks - they are 
not there, yet - and on the other hand we do not need to implement any inferences in 
the previous blocks - they have already been completed. The conclusion must be 
that in our algorithm the inference rules (14) are only applied within the current 
block. This conclusion is correct, but it poses the problem of how to recover, after 
the construction of a new block, the inferences for that block that we "forgot" to 
implement when we were dealing with a previous block. In fact, a full recovery is 
possible, again by switching from the properties (9), (10) and (11) to the equivalent 
set (4), (5) and (6). 
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Let Λ be a subset in a newly constructed block к. Then collecting all positive 
inferences APx amounts to finding the maximal subset A+ of X such that from the 
data in blocks 1 to/fc-l it can be inferred that A + с A*. Without looking at any data, 
but just at (4), we know AcA+. We also know, by (5) and (6), that whenever 
В CA*, then in fact В* С A*. This means that the same holds with respect to A+: for 
any subset В we may from i?cA+ infer В* с A+. These observations lead to the 
following procedure for determining A+: 
(i) Set initially A + to A. 
(ii) While there is a subsetB in blocks 1 to k-1 such thatß CA"1" and В* £A+, add 

B* toA+. 
Note that the loop (ii) will not be entered when k = l, and indeed in this case the 
initialization step (i) gives the correct result Note also that the while-loop cannot be 
implemented by one pass through blocks 1 to к-I: each time that A+ is adjusted, it 
grows and therefore previously considered subsets В that were rejected because 
B$A* must be reconsidered. 

Similarly, collecting the negative inferences ANx amounts to finding the 
maximal subset A" of X such that A_c;A1. Since С С A1 is equivalent to 
A* C(X-C), we have to use the properties (4), (5) and (6) to derive bounds on A*. 
Well, from (5) and (6) it follows that whenever A c B * , then also A* c ß * , for any 
subset B. Taking complements we see that Вх с A1 for any В such that А с В* and 
we obtain the following procedure for finding A': 
(i) Set initially A" to the empty set. 
(ii) For every subset В in blocks 1 to к -1 such that B* 2 A, add В i to A ". 
Again, in block 1 only the initialization step (i) is executed, with the correct result. 
This time, the loop (ii) is just one pass through the completed blocks. 

4.7. Summary. 
This completes the description of how the relevant subtable is constructed. To 
recapitulate, the construction proceeds by blocks of subsets of equal cardinality, 
starting with the singleton subsets. After a block has been completed, the next block 
is constructed according to the specifications in 4.5. Next, the procedures of 4.6 are 
applied in order to collect the positive and negative inferences for this new block that 
can be drawn from the data in the previous, completed blocks. Only then do we start 
asking the expert questions from the collection in this block for which no inference 
was obtained. In this process, we derive new inferences within this block by 
applying the inference rules (14) of the previous section. The whole procedure 
terminates when the newly constructed block is in fact empty (and this is surely the 
case after block | X \ ). 
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5. Choosing the next question 

In the preceding two sections we have dealt with the main design issues. Before we 
move to a presentation of the resulting algorithm in the next section, we discuss here 
one remaining question that is of a more practical nature. Nevertheless, the general 
solution to the problem of deciding which of the open questions to ask the expert 
next will also give us a way to deal with the theoretical problem of the negative 
inferences being incomplete (see Section 3.4). 

On a general level, the order of the questions follows from the above design 
decisions: the questions are presented in blocks. In block 1, the expert has to 
consider whether (negative) information regarding a single item is sufficient to arrive 
at a (negative) conclusion for another item; in following blocks, information 
regarding pairs, triples, etc. of items is offered. Within one block, however, we are 
completely free to pick one or the other out of the pool of open questions in that 
block as the next one to be asked. It will be practical considerations that guide us in 
this choice. Our objective is to minimize the work load of the expert; we would like 
to optimally use possible inferences so as to minimize the total number of questions 
that have to be asked. But this criterion is not practicable in its generality: it would 
require us to compute, for each of the questions under consideration, all possible 
continuations. 

To become practical, we drastically limit our scope: we try to find a best question 
to ask next by considering the number of inferences each candidate question would 
yield when asked at this moment. Since the table of inferences is created 
dynamically (see previous section) and thus the later blocks are not there, "number 
of inferences" has to be interpreted with the qualification "in the current block". 
This attempt at optimization by looking at the immediate consequences of a question 
may be compared with trying to win a chess game by looking just one move ahead: 
it does not guarantee success, but it certainly beats doing moves at random. 

5.1. Criteria for a "best" question. 

It is not obvious what constitutes a "best" question, since which inferences are 
made, and thus also the "number of inferences" alluded to above, will depend on 
the expert's answer. Several approaches are conceivable, all based on different ways 
of combining two values: the numbers of inferences in case of a positive and a 
negative answer, respectively. If we think the expert is - overall - equally likely to 
say "yes" or "no" , the mean - or, equivalently, the sum - of these two numbers is 
a good measure: we pick a question for which this sum is maximal. If we think there 
is some other fixed probability for a "yes" answer, we maximize instead a weighted 
sum, the weights being determined by the probability of the corresponding event. 
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We can try to be more sophisticated and estimate dynamically the probability of a 
"yes" answer (based on observed relative frequencies so far). It seems doubtful, 
however, that we will obtain consistent estimates in this way; the probability in 
question may change drastically over the time course of the query procedure (for 
instance, going from one block to the next), so the estimates based on prior 
information may be misleading. 

Effects may also vary widely for different experts and different sets of items and 
to get some hold on what criterion is best in what situation would require extensive 
empirical investigations. It must be noted that the choice of a criterion is indeed 
fully a matter of practical considerations: one criterion may be substituted for 
another without any consequence for the rest of the algorithm. 

5.2. The adopted selection rule. 
The selection rule that we implemented satisfies a kind of "maximin" criterion, 
which may be regarded as more conservative in that it not so much tries to maximize 
the immediate gain, as it tries to minimize the immediate cost resulting from a very 
poor question. For each candidate question we consider the number of inferences 
for a positive answer and that for a negative answer, and we select the questions for 
which the minimum of these two numbers is maximal over all questions. From 
these, a best question is picked as one for which the total number of inferences - or, 
equivalently, the "other" number- is maximal. 

In practice it is not always feasible to consider all the open questions in this 
process. Whenever the number of candidate questions is too large, we just select a 
sample and pick the best from this sample. The idea is again that - especially when 
there are many open questions - there may be many questions that are "best" or 
approximately so and that the important thing is to avoid picking a particularly bad 
question. 

5.3. Dealing with the incomplete negative inferences. 
Regardless of what criterion is used for choosing the next question, the point that the 
possible inferences of a question are computed before the question is actually posed 
to the expert is of some significance in another respect. It allows us to discover 
negative inferences that were missed by the incomplete inference rules (14b,c,d). 
For any question that we consider in the selection procedure, we compute the list of 
inferences for a negative answer and the corresponding list for a positive answer. 
Whenever this last list contains a contradiction with the inferences established thus 
far, we must conclude that a positive answer to this question is excluded by the data 
collected earlier. In other words, we have a negative inference for this question; 
since the list of inferences for a negative answer is still available, we can add all 
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these inferences to the table. After processing this pseudo-observation, we have to 

restart the selection procedure, since the collection of open questions and, more 

generally, the available data have changed. By picking up missed negative 

inferences in this way, we make sure that any question posed to the expert is indeed 

an open question: both answers are compatible with the existing body of data and, 

thus, the obtained answer will really be an additional piece of information. 

6. The algorithm. 

Now we are ready to put the pieces together and present the integrated algorithm for 

obtaining a knowledge space from an expert's answers to questions of the form [Q]. 

The algorithm consists of two parts; first it is established - directly or indirectly - for 

any subset Λ of X and any xeX whether APx or AN χ holds. This is the main 

part; the second part consists just in translating the constructed table into the 

corresponding knowledge space. In the description of the construction of the table, 

we will fall back on notation used in Section 4.6: for any subset A, A * is the variable 

denoting the maximal subset for which at the moment A+CA* has been established. 

Similarly, A~ is the variable corresponding to the maximal subset for which currently 

i4 -CAx has been verified. We have complete information regarding a subset A 

wheneverA+^>A~ = X·, then necessarily A+=A* andA"=A1. 

In the following, the algorithm is presented in a top-down fashion. Expressions 

in italics are names of procedures whose definition follows; plain text is supposed to 

be self-explanatory and words in bold face denote key words of our "programming 

language". 

Main program: 

Initialize first block; 
while new block is non-empty 
do 

Fill block; 
Construct next block 

od; 
Output space. 

Initialize first block: 

Generate singleton sets {x}, for all χ e Χ ; 
Initialize {* }+ := {χ }, {χ }~ := 0, for all χ e Χ. 

(Initialize first block is just a special case of Construct next block.) 
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Fill block: 

while open question left 
do 

Choose next question; 
Obtain answer; 
Add appropriate list of inferences to table 

od. 

Choose next question: 

decide on sample size; 
for sample size number of questions 
do 

Collect inferences for negative answer; 
Collect inferences for positive answer; 
if this is currently best question 
then save the two lists of inferences 
fi 

od. 

Collect inferences for negative answer: 
apply rule (14d) of Section 3.4. 

Collect inferences for positive answer. 
apply rules (14a,b,c) of Section 3.4; 
if contradiction with existing data 
then 

add list of inferences for negative answer to table; 
goto "open question left" test in Fill block 

fi. 

Construct next block: 

find all subsets in new block by applying Section 4.5; 
initialize A'1" and A" for each subset A by applying Section 4.6. 

Output space: 

output all sets A~=A1 collected in the table. 
(According to (8) in Section 2.9 these sets constitute the knowledge space.) 

This completes the description of the algorithm and in the final section we will turn 
to some questions regarding its practical applicability. 
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7. Applying the algorithm 

Any evaluation of the performance of the algorithm presented in the previous section 
must start with the observation that there is a terrible worst case. If, actually, any 
subset of X is a knowledge state, then we will not observe any positive answer from 
the expert, the inference rules will not give us any additional inferences and the 
minimum subtable containing all the information is the full subsets-by-items table. 
To fix ideas, for a 50 item set this would mean that we would have to complete a 2S0 

by 50 table by asking an expert 2 s 0 ·50/2 *>2.Z· 1016 questions. This could take 
some time. 

There are several reasons why this worst case, in itself, need not bother us too 
much. First, cases where a domain of knowledge has hardly any structure at all (the 
constituting notions can be acquired in almost any order) are rare and generally not 
very interesting. Second, such fields, if they appear, are usually recognizable as such 
from the outset. Consequently, we need not question many experts - and certainly 
not in the format of the above procedure - to find out that "almost anything goes". 
Third, even if we would start the procedure in such a case, we would find out about 
the lack of structure after completing the first block. It is hard to come up with fields 
of information where there are no - or very few - implications from a single item to 
another item, but where there suddenly are many from pairs or triples (etc.) of items. 
That is, if we get hardly any positive responses of the expert in block 1, it seems a 
safe bet that the situation will not get much better later on and we may decide to stop 
the procedure. Completing the first block will, in the worst case, take a number of 
questions that is quadratic in the number of items. 

What remains as a lesson from consideration of the worst case is the fact that 
there are no convenient theoretical bounds on time and space requirements. 
Performance will depend strongly on the amount of "structure" present in the 
chosen domain of application and to find out how well the algorithm is suited to its 
task, we simply have to apply it to domains of knowledge that are interesting in 
practice. Such a practical test has actually been performed: a number of experts 
went through the presented procedure where the set X consisted of 50 problems in 
high school mathematics. Indeed, the algorithm fared pretty well here. More 
extensive analysis of the results of this application will be the subject of a 
forthcoming paper; we will drop here just some numbers that give an indication of 
what may be expected in practical cases. 

With one exception (that we will go into below) the experts finished the 
procedure by completing no more than five blocks. (Note that theoretically 50 
blocks might be necessary.) Thus, after no more than 5 blocks, Construct next block 
produced an empty new block, indicating that all information had been collected. 
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For these experts, the number of questions they had to answer varied between 1000 
and 2500, a far cry from the theoretical maximum of ±2.8 · 1016. 

Indeed, there was one expert who did not finish the procedure; after the 
completion of block 3, the constructed fourth block appeared still to be very large 
and it was decided that it was not feasible to let her continue. This shows the 
dependence of efficiency on the amount of perceived structure (this expert was more 
conservative than the others), but it also permits us to highlight an additional 
advantage of our algorithm. The fact is that this procedure produces a knowledge 
space, even when it is interrupted at an arbitrary moment, and this "half-way" 
knowledge space is guaranteed to include the final space that would have been 
obtained, had the procedure terminated regularly. 

This is discussed more fully in Koppen and Doignon (1989), but a direct 
justification for this assertion is available, if we accept that our algorithm is just a 
more efficient implementation of the straightforward algorithm described in Section 
2.1. There we started with the full power set of X; every positive answer of the 
expert led us to remove a number of states and we noted that every intermediate 
knowledge structure had to be a space. In particular, when we interrupt the 
procedure after block 1, we obtain a knowledge space that is known to be the closure 
under intersection of the final space. That is, this space contains all the states of the 
final space, plus possibly a number of intersections of these states that do not appear 
in the final space. Such a space that is closed under intersection corresponds to the 
interesting special case where the relationships between the items can be fully 
described by a partial order. Again, for more details see Koppen and Doignon 
(1989). 

To return to our stopped expert, we were indeed able to compute her knowledge 
space at the end of the third block. (In terms of the algorithm of the previous 
section, this requires an addition to the procedure Output space which consists in 
establishing explicitly inferences for later, not considered subsets from the data in 
the completed blocks - jus t as this happens in the procedure Construct next block.) 
As expected, the resulting knowledge space was bigger than those of the other 
experts, but it was in the same order of magnitude and nowhere near the theoretical 
maximum. In general, by far the most reduction in the size of the knowledge space 
takes place in block 1 (i.e., is caused by positive answers in block 1) and the rate of 
reduction drops continually in later blocks. This was one of the reasons to treat the 
blocks in this order. (Again referring to the straightforward procedure of Section 
2.1, it is for instance clear that the first positive response in block 1 results in a 
reduction of 25 per cent, removing all subsets containing one, but not the other of a 
pair of items.) So, it appears that even when the query procedure cannot be 
completed, but has to be stopped after, say, three or four blocks, it still produces a 
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knowledge space and generally one that is close to the one that would have been 
obtained without interruption. 
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We discuss the 1-1 correspondence (introduced by Doignon and Falmagne, 
1985, in the context of knowledge assessment) between surmise mappings, a 
generalization of quasi orders, and knowledge spaces, families of sets satisfying 
the axiom of closure under union. Possible additional conditions for surmise 
mappings are presented, with their consequences for the corresponding spaces. 
In particular, the condition corresponding to well graded knowledge spaces 
(Falmagne and Doignon, 1988; Falmagne, 1989) is detected. Results are related 
to the mathematical theory of convex geometries. 

1. Representing domains of knowledge by quasi orders 

In a model for the assessment of knowledge, introduced and motivated in Doignon 

and Falmagne (1985), a body of knowledge is formalized as a finite set X, consisting 

of all the questions {от problems) in that domain. Assessing a person's knowledge 

means finding out what she knows and does not know. Accordingly, in this model, 

an individual's knowledge state in a particular domain is denned as the subset of 

questions this individual is capable of solving. The critical point here, to avoid 

trivialities, is that not every subset of problems is in fact a possible knowledge state. 

The mastery of some (more difficult) problem may imply the mastery of some 

(easier) problems. In the field of elementary arithmetic, for instance, it seems safe to 

assume that a pupil will not be capable of multiplying 3-digit numbers unless he is 

capable of adding such numbers. Thus, any subset of problems containing 

multiplication of 3-digit numbers, but not containing addition of 3-digit numbers, is 

excluded as a possible knowledge state. A domain X, then, is characterized by the 

collection of all possible knowledge states, a particular subset of the power set of X 

This work was supported by DOD grant MDA903-87-K-0002 to Jean-Claude Falmagne at 
New York University. The author wants to thank Jean-Claude Falmagne and Jean-Paul 
Doignon for their useful comments on a previous draft Address comments and requests for 
reprints to M. Koppen, Dept of Psychology NYU, 6 Washington Place, New York, NY 
10003. 
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which is called the knowledge structure of that domain. 

To get a handle on the kind of restrictions a knowledge structure might impose, 

we can generalize the above example and consider a relation S on X, where χ S y is 

interpreted as: from a correct answer to problem y it may be surmised that problem 

χ will be answered correctly. A knowledge structure is said to be compatible with a 

relation S if it allows for the above interpretation of S, that is, if xSy implies that 

any knowledge state containing y contains also x. There are two viewpoints 

possible now. 

On the one hand, we may, for a fixed knowledge structure K, consider the 

collection of relations that К is compatible with. Regarding this collection we may 

observe the following facts: (i) it is non-empty, since any knowledge structure is 

compatible with the empty relation; (ii) it has a unique maximal element, since if К 

is compatible with a number of relations, it is also compatible with their union; (iii) 

this maximal element is a reflexive and transitive relation (i.e., a quasi order), since 

if К is compatible with a relation, it is also compatible with the reflexive transitive 

closure of that relation. This maximal quasi order compatible with К will be called 

the surmise relation corresponding to К . 

We may, on the other hand, start with a fixed relation S on X and consider the 

collection of knowledge structures on X that are compatible with S. Again, some 

properties of this collection follow: (i) it is non-empty, since the empty knowledge 

structure is compatible with any relation; (ii) it has a unique maximal element, since 

if a number of knowledge structures are compatible with 5, then so is their union; 

(iii) this maximal element is closed under union and intersection (i.e., any union or 

intersection of states is again a state), since if К is compatible with S, then so is the 

structure consisting of all unions and intersections of states in К . In this context the 

empty set 0 and the full set X are considered to be the union and intersection, 

respectively, of zero states. Thus, with any relation we can associate the maximal 

knowledge structure compatible with it, and this structure will be closed under union 

and intersection. 

A classical result by Birkhoff (1937) tells us that the above correspondences 

between relations and knowledge structures are in fact 1-1 when restricted to quasi 

orders and knowledge structures closed under union and intersection. More 

precisely, we have: 

1.1. Theorem. (Birkhoff, 1937.) The formula 

xSy W {forali КeK:уеК implies хеК ) (1.1) 

defines an order reversing isomorphism between quasi orders S and knowledge 

structures К that are closed under union and intersection. I 
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(Both collections are ordered by inclusion. See Monjardet (1970) for a 

formulation of this result in terms of a Galois connection between knowledge 

structures and binary relations.) Note that (1.1) defines for any knowledge structure 

К the surmise relation S and for any relation S the maximal compatible knowledge 

structure K. The impact of the theorem is that the compositions of these two 

mappings are identities on the collection of quasi orders, respectively the collection 

of knowledge structures closed under union and intersection. A knowledge structure 

is fully characterized by its surmise relation if and only if it is closed under union 

and intersection. 

In the next section we discuss Doignon and Falmagne's (1985) generalization of 

this result to surmise mappings, describing a less restricted class of knowledge 

structures. (An alternative way of generalizing Theorem 1.1 is obtained by Koppen 

and Doignon, 1989.) Section 3 introduces a number of possible additional conditions 

for surmise mappings. The consequences of these conditions for the corresponding 

knowledge structures are explored in the next section with special attention to the 

important case of a well graded knowledge space (Falmagne and Doignon, 1988; 

Falmagne, 1989). The final section relates the obtained results to the mathematical 

theory of convex geometries. 

2. The generalization to surmise mappings 

Attractive as it may seem, representing a knowledge structure by its surmise relation 

is in general too strict a model. The reason for this is that this representation cannot 

deal with the by no means exceptional case where there are various ways of solving 

a problem. Suppose we observe a correct response of a pupil to problem χ, and 

suppose we know that there are two ways of solving χ : either by the mastery of 

problem a, or by the mastery of both problems b and с. From the correct answer to 

x, then, we cannot surmise a correct answer to a: the student might have solved χ 

via b and с. Nor can we surmise a correct answer to either b or с, since the student 

may have taken the route via a. In short, if S is the surmise relation of the 

knowledge structure, none of aSx, bSx or cSx will be valid. If the knowledge 

structure were given by (1.1), the implication would be that there is a state 

containing χ, but not containing a, one containing χ and not b, and one containing χ 

and not с Since each knowledge structure defined by (1.1) is closed under 

intersection, this would imply a knowledge state containing χ and none of a, b от c. 

This, however, is contradictory with our starting assumption that any state containing 

χ contains either a or both b and с Thus we see that a knowledge structure 

completely defined by its surmise relation cannot deal with alternative solutions to a 
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problem, and in the process we have got a hint of which of the implied properties of 

the knowledge structure causes this trouble: the closure under intersection seems to 

be the culprit. 

Doignon and Falmagne (1985) remedied this situation by defining a 

generalization of the notion of a surmise relation. This generalization can best be 

understood by taking a slightly different viewpoint on the surmise relation. The 

usual way of looking at a (binary) relation on X is as a subset of the Cartesian 

product Χ χ X. Another, equally valid way, however, is as a mapping from X into 

the power set of X. This can be done in two different ways. Here, we will identify a 

relation S on X with the mapping that associates with any χ e X the subset 

Sx = {yeX:ySx}. 

A relation's being a quasi order translates then into the following properties of this 

mapping: ifx,y eX then 

xeSx, (2.1) 

y e Sx implies S y QSJC. (2.2) 

The former property represents the reflexivity, the latter the transitivity of a quasi 

order. In terms of a surmise relation, the set Sx is the collection of problems that 

can be surmised from problem x. We could call it the set of prerequisites, or, 

another suggestive term, antecedents for χ, since it consists of the problems that 

must have been acquired before mastery of problem χ can take place. A surmise 

relation 5 associates with any problem χ a unique set of prerequisites, Sx. From 

this perspective, the solution for the case of multiple paths for a problem is quite 

natural: generalize the mapping S to a mapping, call it σ, that associates with any 

problem not just one subset of X, but rather a family of subsets. So, σ maps X into 

the power set of the power set of X ; the elements of σ (χ ) are called the clauses for χ 

and they constitute the possible sets of antecedents for χ. The idea is that knowing 

that a person has mastered problem x, we can infer that he must in fact have 

mastered at least one clause for χ in its totality. Doignon and Falmagne (1985) show 

that such mappings do indeed describe an interesting class of knowledge structures, 

provided that some axioms are imposed. The first of these is that any дсеХ has at 

least one clause: 

σ ( χ ) * 0 . (2.3) 

The next two axioms generalize the reflexive and transitive properties (2.1) and (2.2) 

of a quasi order. First, it is required that any problem be contained in any of its 

clauses: 

С e σ (χ ) implies χ e С. (2.4) 
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Next, we demand that any clause contain a clause for any of its elements: 

yeCea(.x) implies С'С С for some Cea (у). (2.5) 

This requirement is reasonable in view of our interpretation of a clause for χ as a 

possible set of antecedents for x: if у appears in such a set, then ;y itself must be 

"reachable", that is, it must have a set of antecedents within this set. With the 

interpretation in terms of antecedents it is also clear that it does not make sense to 

have two clauses for χ where one is a subset of the other. Thus, as our final axiom, 

we want the clauses of any problem to be incomparable with respect to inclusion: 

C,C'ea(x) & C C C ' implies C=C'. (2.6) 

Any mapping σ from X into the power set of the power set of X satisfying (2.3) to 

(2.6) is called a surmise mapping on x / It can be checked easily that a surmise 

relation (interpreted as a mapping) is a surmise mapping; it is the special case where 

any problem has just one clause. Note that with surmise mappings we have no 

trouble describing the situation that was at the start of this section, where a correct 

answer to χ implied that either a, or both b and с were also mastered. This is 

represented by having (at least) two clauses for x: one of them being {a,x}, the 

other one {b,c,x}. 

With these surmise mappings, we have the following generalization of Birkhoffs 

Theorem 1.1. 

2.1, Theorem. (Doignon andFalmagne, 1985.) The collection of surmise mappings 

on X is in 1-1 correspondence with the collection of knowledge structures on X that 

are closed under union. I 

We remark here, as an aside, that Theorem 2.1 is not the only way of 

generalizing surmise relations to obtain a correspondence with knowledge structures 

closed under union. Koppen and Doignon (1989) describe how this can be achieved 

in a different way, replacing surmise relations on X not with surmise mappings on 

X, but rather with a class of quasi orders on the power set of X. The ensuing 

characterization appears particularly suitable for extracting the knowledge structure 

governing some field from experts in that field; it has already been put into practice 

for this purpose. 

Comparing Theorems 1.1 and 2.1, we see that the generalization from surmise 

relations to surmise mappings corresponds, in the domain of the knowledge 

structures, to dropping the axiom of closure under intersection. (Something like this 

t We call here simply surmise mapping what in Doignon and Falmagne (1985) was termed 
a space-like surmise mapping. 
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was expected in the discussion of the example in the first paragraph of this section.) 
Doignon and Falmagne (1985) reserve a special name for the resulting concept a 
knowledge space on X is a family of states (subsets of X) such that any union of 
states is again a state. 

The correspondence between knowledge spaces and surmise mappings can be 
made fully explicit For a surmise mapping we consider the collection of all of its 
clauses and close this collection under the union. This yields the corresponding 
knowledge space. For a knowledge space, we call a state К minimal for χ if it 

contains χ and no state properly included in AT does. The surmise mapping 

corresponding to a knowledge space maps any xeX to the collection of minimal 

states for χ in the space. 

There is an alternative description, using the notion of the basis of a knowledge 

space. A subcollection В of a knowledge space К is called a basis for К if (i) В is 
independent in the sense that no element of В can be written as the union of a 
number of other elements of В, and (ii) В is complete in the sense that any state in 
К can be obtained as the union of some elements in В. Any knowledge space К on 
a finite set X has a unique basis, consisting of the states of К that are not unions of 
other states of К (the sup-irreducible elements of К, in lattice-theoretic terms). The 
empty set is considered as the union of zero states and, thus, is never a basis element. 
In terms of bases of knowledge spaces, the correspondence with surmise mappings 
can be stated very simply. The clauses of a surmise mapping constitute the basis of 
the corresponding knowledge space and a basis element is a clause for those of its 
members that are not contained in any properly included basis element. (By 
definition, any basis element must contain at least one such member.) 

We see that a knowledge space is fully characterized by its surmise mapping. In 
the previous section, the surmise relation was described as a partial characterization 
of any knowledge structure, so we might well wonder what the connection is 
between these two notions. 

2.2. Proposition. Let К be a knowledge space on Χ, σ its surmise mapping and S 
its surmise relation. Then, for any xeX, 

Sx = πσ(χ). 

Proof. By definition (1.1), ySx implies that any state of К containing χ contains 

also у. In particular, any state in К that is minimal for χ, that is, any clause for χ in 

σ, contains у. For the reverse inclusion, let у be contained in any clause for χ in σ. 

This means that у is contained in any state of К that is minimal for χ. But since any 

state of К containing χ must include a state that is minimal for x, it follows that у 
must be present in any such state and (1.1) yields y Sx. I 
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Intuitively, this proposition is clear. The problems that one can surmise from a 

correct answer to problem χ are exactly the problems that are common to all sets of 

prerequisites of x. 

The next proposition deals with the question of equivalent problems in a 

knowledge space, that is, problems that are indistinguishable in the space in the 

sense that any state containing one of the problems also contains the other. It 

appears that regarding equivalence all information is already contained in the 

surmise relation. 

23. Proposition. Let К be a knowledge space on X with surmise mapping a and 

surmise relation S. Two problems are equivalent with respect to the space К and 

the surmise mapping о iff they are equivalent with respect to the surmise relation S. 

More formally: for any χ, y e Χ, 

(forall КеК, χεΚ iff yeK) iff ( σ ( χ ) = σ0»)) iff (xSy & ySx). 

Proof. That equivalence in σ means the same as equivalence in К is an immediate 

consequence of Theorem 2.1 and either equivalence implies equivalence in S since 

S is defined in terms of К (by (1.1)) or σ (by the above Proposition 2.2). The only 

thing to prove is that a(x) = a(y) whenever both xSy and y Sx. By symmetry it 

suffices to show that in this case any clause for χ is also a clause for y. Take 

Сеа(дс). Since y Sx we have, by Proposition 2.2, yeC and thus, by Condition 

(2.5), C ' c C for some C'ea iy) . Now xSy and (2.5) imply the existence of 

C'ea(x) such that C ' c C ' c C . By Condition (2.6), then, C " = C , and thus 

C = C'ea(y). I 

Thus, two problems that are equivalent in the surmise relation are 

indistinguishable in the corresponding knowledge space: a subject has mastered one 

problem whenever he has mastered the other one. A tempting interpretation of this 

situation is that two such problems test in fact one and the same notion. In basic 

arithmetic, for instance, there may be a number of problems that are all equivalent 

instances of the notion "addition of two 2-digit numbers without carry". The above 

proposition shows that it is not a real restriction to assume that a surmise relation is 

in fact a partial order (i.e., it is antisymmetric). This only assumes that all elements 

of X are distinguishable and this is by definition true if we look atX as the collection 

of notions, where each notion may consist in an equivalence class of problems. 

Whenever convenient, we will in the sequel assume that such a reduction has been 

carried out and that all elements of X are distinguishable. 
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3. Extra conditions for a surmise mapping 

Here we want to discuss a number of additional conditions that may be imposed on a 

surmise mapping. A need for this may arise in view of the interpretation of surmise 

mappings. A clause for a problem χ is interpreted as a possible collection of 

antecedents or prerequisites for χ. This suggests that there should not too much 

"cyclicity" be present in the system of clauses. After all, subjects are supposed to 

be able to move in some reasonable way through the corresponding knowledge 

space, from the null state to the full set X. In this spirit, Falmagne and Doignon 

(1988) and Falmagne (1989) introduced the important case of a well graded 

knowledge space. A space is called well graded when any non null state К has a 
member χ such that K-{x} is a state. This means that the space consists of a 

number of learning paths or gradations along which subjects can move, learning one 

problem at a time, from the empty state to the state X. Well-gradedness appears to 

be a very reasonable assumption for knowledge spaces in practice. 

Below, we consider a number of ways in which the idea of cycles in a surmise 

mapping can be defined. In the next section we investigate what the impact is of 

these various conditions on the knowledge spaces they describe via the 

correspondence of Theorem 2.1. We will there especially be interested in which 

condition characterizes surmise mappings corresponding to well graded knowledge 

spaces. 

In describing the conditions, the following two relations Ρ σ and Ra on X, 

indexed by a surmise mapping σ on X, will be useful: for χ, у e Χ, 

хРеУ iff χ energy) 

and 

хЪау iff xtvciy). 

In words, χ V ay iff A: is a member of all clauses for y, and χ R„;y iff χ appears in 

some clause for у. It is clear that Ρ σ С R a (any pair (JC , у ) in Ρ σ is also in R σ) and 

by (2.4) Ρ σ and Η σ are reflexive. By (2.5), the relation Ρ σ is also transitive; thus, 

P,, is a quasi order. Indeed, Proposition 2.2 shows that Ρ σ is precisely the surmise 

relation of the knowledge space corresponding to σ. As indicated in the discussion 

after Proposition 2.3, it is not a real restriction to assume, as we will do, that Ρ „ is in 

fact a partial order (i.e., it is antisymmetric). 

Proposition 2.3 tells us that the worst case of cyclic behavior cannot materialize 

in surmise mappings: if the mastery of problem χ always implies the mastery of у, 
then we cannot have the same situation the other way around, without χ and у being 
equivalent throughouL The following example shows, however, that a next worse 



SURMISE MAPPINGS AND WELL-GRADEDNESS 203 

case is in fact possible. (In examples, we denote elements of X by a, b, с, etc. To 

simplify notation we write subsets of X without separators and braces; that is, we 

write simply abc for the subset { a, b, с }, etc.) 

3.1. Example. LetX = [a, b, c,d} anda be defined by: 

σ (a ) = { abc , abd } σ (с ) = { с } 

c:(b)={abc ,bd} a(d) = {d} 

It сап be checked easily that the conditions for a surmise mapping are satisfied. We 

see that b appears in every clause for a. And while it is not true that a appears in 

every clause for b, this is the case for some clause for b (namely, abc ). In this 

situation, any clause for b containing a may be considered as not a very realistic 

one. We could require that it be not possible for one problem to appear in a clause 

for another problem when the latter appears in every clause of the former. This 

condition can be more formally expresssed as 

χ Pay & yRax implies x=y. (3.1) 

In the next example this condition is satisfied. 

3.2. Example. Let X = { a, b, с } and σ be defined by: 

σ(α) = {ab ,ac} σφ)- {ab , bc} a(c)-{c} 

Although (3.1) is satisfied, there is still a problem with the interpretation of this 

surmise mapping. The set ab is a clause for a, and as such gives rise to the 

interpretation: it is possible to arrive at a via b. In order to get at b, then, a clause 

for b must be fulfilled that is contained in this clause for a. The only such clause, 

however, is ab itself, which now must be interpreted as a way of getting at b via a. 

We observe again a cyclic pattern: it is not clear which comes first, the chicken or 

the egg. To avoid this situation we must require that the surmise mapping be 

exclusive in the sense that a clause cannot be shared by two distinct problems: 

χ Фу implies a(x)r\a(y) = 0. (3.2) 

The following surmise mapping is exclusive. 

3.3. Example. LetX = {a,b,c,d} andσ be defined by: 

σ (α ) = { abc ,ad} σ (с ) = { с } 

a(b) = {abd,bc} a(d)={d} 

In the above example we can, however, still observe some form of cycles. On the 

one hand there is a clause for a containing b ("we can reach a via b ") while on the 
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other hand a appears in a clause for b ("b can be reached via a"). If we want to 

avoid this situation where with two distinct problems each appears in some clause 

for the other, we demand in effect that the relation R a be antisymmetric: 

xRay & yRgX implies x=y. (3.3) 

By extension, a surmise mapping satisfying (3.3) will be called antisymmetric. 

3.4. Example. LetX = {a,b,c,d,e,f} and σbe defined by: 

a(a) = {abd ,ae} a ( c ) = {ace , cf } c(e)=[e} 

a(b) = {bcf,bd} a{d) = {d} o{f)={f} 

Now all "direct" cycles have indeed disappeared, but there are in the above 

example still cycles of the same kind left, only with length exceeding 2. Here, there 

is a clause for a containing b, a clause for b containing с and, finally, a clause for с 

containing a. It looks like any objections against a surmise mapping not being 

antisymmetric are also valid in this situation. That is, we might then just as well 

require that R „, at least its irreflexive part, be acyclic instead of just antisymmetric: 

(x, R C ^ . + L i = 1 · · η, χη +ι=Λι ) implies (.xl=xl. i = 1 · • • η ). (3.4) 

Such a surmise mapping is also called acyclic/ An example is given below. 

3.5. Example. LetX = {a,b,c,d,e,f} andσbe defined by: 

a(a)= {abd ,ae} c(c) = {cf} a(e)-{e} 

a(b)={bcf,bd} a(d) = {d} σ ( / ) = {/} 

Finally we might consider the very special situation where the extension P „ c R o is 

trivial and the two relations are in fact identical: 

R„ = Po· (3.5) 

From the definitions it is clear that (his is the case if and only if each xeX has just 

one clause: σ essentially coincides with the surmise relation Ρ „, as in the following 

example. 

3.6. Example. LetX = {a, b, c, d, e, f } andσbe defined by: 

a(a) = {abcef} a(c)={cf} a(e)={e} 

a(b) = {be} a(d) = {def} σ < / ) = { / } 

t This notion of an acyclic surmise mapping was already introduced in Doignon and 
Falmagne(1985). 
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The foregoing discussion strongly suggests the following lemma: 

3.7. Lemma. Regarding the Conditions (3.1) to (3.5) we have following chain of 

implications: 

(3.5) =*> (3.4) => (3.3) => (3.2) => (3.1) 

and none of the reverse implications hold in general. 

Proof. The only implication that is not completely obvious is (3.2) => (3.1), but this 

follows by the same argument we used in Proposition 2.3. Suppose (3.2) and χ Ρ ау 

and у R „χ for χ, у e Χ. The last condition means we have у e С for some С e σ (χ ). 

By (2.5) this implies С'С С for some Cea (у). Using χ Pay and again (2.5), we 

obtain C ' C C ' C C , where C,C'€a(x) and C'ea(y). Consequently C"=C' = C 

and (3.2) yields χ =y. The examples show that none of the implications can be 

reversed (and that (3.1) is not implied by the axioms for a surmise mapping). I 

4. The connection with the knowledge spaces 

In this section we explore the impact of Conditions (3.1) to (3.5) on corresponding 

knowledge spaces. Actually, the situation is clear for the most restrictive Condition 

(3.5). Here, surmise mapping and surmise relation coincide, which means that 

Theorem 1.1 applies: the corresponding spaces are the ones that are closed under 

intersection. 

In order to describe the effect of the other conditions, we consider for any 

knowledge space К a collection of relations {<κ}κεκ· F o r апУ ^ е К , <^ is the 

following relation on К : 

х^кУ iff yeK'eK ά K'CK implies χ e К'. 

It is easy to check that any such <^ is a quasi order. In fact, this definition coincides 

with (1.1) if we restrict our universe of problems toK, so<K is the usual quasi order 

(surmise relation) of the knowledge space on К that is induced by К by considering 

only states that are subsets of K. Such a subcollection is indeed still closed under 

union and, on the other hand, any subspace of К is obtained in this way. 

The following lemma gives an alternative definition in terms of surmise 

mappings: 
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4.1. Lemma. Let Κ σ be the knowledge space on X corresponding to the surmise 

mapping σ and let Κ Ε Κ σ . Then 

x<Ky iff CeoCy) & C^K implies xeC. 

Proof. Follows easily from the fact that a state of К a contains an element χ if and 

only if it includes some С e σ (χ ). I 

The next lemma collects some immediate consequences. 

4.2. Lemma. Let Κ σ be the knowledge space on X corresponding to the surmise 

mapping σ. 

(i) If Kl,K2^K.a and Х>У€Х such Mat x,y&Klç,K1, then χ <Kjy implies 

m Pc = % 
(Ui) R σ = и ^ κ_ <к. (That is, xKay iff χ <K y for some К € Κ σ.) I 

Notice that, as a consequence of (i) and (ii), χ ¥ „у implies χ <Ky for any ΚεΚσ 

containing both χ and у. 

Lemma 4.2(ii) and (iii) give a direct translation of Conditions (3.1), (3.3) and 

(3.4) in terms of the knowledge space Κ σ : 

4.3. Lemma. Let Κ σ be the knowledge space corresponding to the surmise 

mapping a. 

(i) Condition (3.1) on σ is equivalent to the implication χ =y whenever we have 

on the one hand χ <χ у, while on the other hand there is К e Κ σ such that 

У^кх-
(ii) σ is antisymmetric (Condition (3.3)) iff χ =y whenever there are K\,K2€Ka 

such thatx <K¡y and у ^кгх. 

(iii) σ tí acyclic (Condition (3.4)) iff x I = x 2 = · · · =xn whenever there are 

K1,.... Kn€Kasuch that x, %JC ( + I fori=l,...,η andxn+1=xl. I 

The translation of Condition (3.2) in terms of the relations <K is more interesting. 

4.4. Theorem. Let Κ σ be the knowledge space on X generated by the surmise 

mapping a. Then the following conditions are equivalent: 

(i) σ is exclusive; 

(ii) for any KeKa, <K is a partial order; 

(iii) Κ σ is well graded. 
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Proof, ((ι )=*·(»)) The only thing to prove is the antisymmetry of <K. So, let 

K e K g and suppose χ <Ky and у <K x. Then, obviously, у e К and thus there is 

some clause С for у contained in K. As before, we can, from the assumptions, 

construct the situation C* £ С' С С, with С, C e σ СУ ) and C E σ (χ ). Consequently, 

С = C e σ (χ ) ^ σ (ƒ ) and since σ is exclusive we obtain χ =y. 

((к ) => (ш )) Let К be a non null state of Κ σ . By assumption, <κ is a partial order 

on К and since AT is finite and non null, we can find xeK that is maximal in this 

partial order, i.e., such that χ <к у implies χ =y. Thus, whenever у Фх we cannot 

have χ <Ky. By definition of % , this means that for any уеЛТ, у *x, there is a 

state Ky included in К that contains у, but does not contain χ. But then, since Κ σ is 

a space, и Ä А^ = A- - {л } is a state of Κ σ . We have proved that Κ σ is well graded. 

((///) =>(i)) This implication follows by contradiction. Suppose Ce.a{x)<^a{y) 

for some χ, у e Χ. Then, since С is a clause in σ, С e Κ σ and С Φ 0 . And С being 

a clause for both χ and у, there can be no state strictly included in С containing χ or 

y. In other words, any such state (and 0 is one) differs from С by at least two 

elements. Consequently, Κ σ is not well graded. I 

We see that the exclusive surmise mappings characterize the collection of well 

graded knowledge spaces. Alternatively, a well graded knowledge space is 

characterized by the fact that the surmise relations of all its subspaces are partial 

orders. 

In Section 2 we described the relation between a surmise mapping and the basis 

of the corresponding space. The collection of families σ(χ), xeX, appeared to 

cover the basis corresponding to σ: any set in the basis is a clause for some element 

x. A surmise mapping is exclusive if and only if this covering is in fact a 

partitioning of the basis. For an exclusive surmise mapping we have a kind of 

inverse mapping from the basis onto X, assigning any basis element to the unique 

element of X for which it is a clause. The partitioning of the basis corresponds to 

the equivalence with respect to this mapping. The above theorem, then, provides a 

characterization of the basis of a well graded knowledge space: it is partitioned by 

the subcollections consisting of the sets that are minimal for the various xsX. 

Notice, by the way, that the restriction to exclusive surmise mappings can very 

easily be built into the definition of surmise mappings: it corresponds to the 

replacement of 

y e C e a i x ) implies С'С С for some Cea (у) (2.5) 

by 

y e C e a ( x ) implies С'о,С-{х] for some CeaCv). 
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5. The theory of convex geometries 

The results of the preceding section appear to be related to the mathematical theory 

of convex geometries. This connection, and, indeed, the very existence of this 

subfield of mathematics were pointed out to me by Jean-Paul Doignon. Convex 

geometries appear in an abstract, combinatorial approach to the notion of convexity; 

they were introduced independently by Paul Edelman and Robert Jamison. 

Equivalent structures have been described by other authors under the names of 

"shelling structures" and "selectors". The following brief sketch of some basic 

concepts of this theory is based on a joint paper by Edelman and Jamison (198S), 

where further references can be found. 

Edelman and Jamison (1985) consider a finite setX and alignments of X, that is, 

families of subsets of X that are closed under intersection. The subsets of X in such 

an alignment are called convex sets. A convex geometry on X, then, is an alignment 

on X that is such that for every convex set С *X there is an element χ not contained 

in С for which С u {* } is convex. (The synonym antimatroid is also used in the 

literature.) A copoint attached at χ is a maximal convex set not containing χ. For 

every convex set С а С -factor relation is defined between elements that are not in 

C: a pair (xty) of such elements is in this relation if and only if χ is contained in any 

convex set containing С <J {y }. 

The connection between this theory and that of the knowledge spaces is made, 

once we realize that whenever a family of subsets is closed under intersection, the 

family of complementary sets is closed under union, and vice versa. Via this 

complementation mapping С —>X-C, we get indeed a direct translation of the 

above notions into our terminology. An alignment corresponds to a knowledge 

space, a convex set to a knowledge state and a convex geometry to a well graded 

knowledge space. A copoint at χ refers in the same way to a minimal state 

containing χ, or, in the language of surmise mappings, to a clause for χ. The С -

factor relation on X-C, finally, is exactly the relation <^ defined in the previous 

section, where К = Х- С. 

Having made this translation, it becomes clear that our Theorem 4.4 is a 

rediscovery and combination of Edelman and Jamison's (1985) Theorems 2.3 and 

2.4 which consider conditions under which an alignment is a convex geometry. 

Their Theorem 2.3 states that this is the case if and only if all С-factor relations are 

partial orders and their Theorem 2.4 states that an equivalent condition is that every 

copoint is attached at a unique point (in our language: the surmise mapping is 

exclusive). 
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CHAPTER 10 

DISCUSSION OF PART II 

1. A survey of the various representations 

Let us first review the results of the preceding chapters in terms of the 

correspondences that have been established between (mathematical) objects of 

different kind. At the basis of the knowledge assessment project is the 

conceptualization of a domain of knowledge as a finite set X of all problems or items 

in that domain. The knowledge state of a student can then be formalized as the 

subset of problems this student is capable of solving and this leads to the central 

concept of a knowledge structure as the collection of all possible such knowledge 

states. Thus, a knowledge structure is a subset of the power set of X. 

In order to find alternative characterizations some restriction has to be imposed 

and the knowledge space was defined as a structure closed under union: any К £ 2х 

is a knowledge space if 

Α',εΚ & K2eK => /TjUA^eK. [SI] 

(Throughout this discussion we will only consider the finite case.) In Chapter 6, 

Section 4, we described a class of mappings from X into the power set of the power 

set of X, the surmise mappings introduced by Doignon and Falmagne (1985). Any 

σ : X —* 2 is a surmise mapping, provided 

σ(χ) Φ 0 

Cea(x) => xeC 

yeCea(x) => C ' d C for some C'ea(y) [ M 1 ] 

Сеа(л:) & C'eaC*) => С EC'. 

These surmise mappings tum out to be in 1-1 correspondence with the knowledge 

spaces on X and the nature of this correspondence is discussed in Chapter 6 and 

again in Chapter 9. 

The original contribution of Chapter 7 in this respect is to add a third alternative. 

This time we consider binary relations on the power set of X, in particular the class 

of what were called entail relations. Any Ρ e 2 ( 2 " ^ is an entail relation when 
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APfi & fiPC = 

APBj & Α Ρ Β 2 = 

APC 

A P ^ u i ^ ) . 
[RI] 

In Chapter 7, these entail relations were shown to be in 1-1 correspondence with 

knowledge spaces, and thus also with surmise mappings. In Figure 1, these three 

concepts, knowledge spaces, surmise mappings and entail relations are represented 

by the large boxes and the equivalences by the two-sided arrows connecting these 

boxes. 

knowledge spaces 

well graded 

n-closed 

partial orders 

exclusive 

surmise mappings 

partial orders 

[R2] 

entail relations 

Figure 1. The three equivalent concepts with equivalent special cases. 
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In the domain of knowledge spaces we can consider interesting special cases. To 

avoid trivial formal complications, we will assume throughout that X is the set of 

notions of the field under investigation, that is, there are no indistinguishable 

elements in X. In Chapter 6, two interesting classes of knowledge spaces were 

introduced (and they reappeared in the following chapters). First, a knowledge 

space may be well graded, which according to Chapter 6, Section 4, is obtained by 

adding the following axiom to [SI]: 

<Z>*KeK => λ-{χ}€Κ forsome xeK. [S2] 

Or, a knowledge space may be closed under intersection, which means adding to 

[SI] 

ATjeK <4 K2eK => A ^ n j ^ e K . [S3] 

It turns out that, under [SI], [S2] is implied by [S3]: any (discriminating) knowledge 

space that is closed under intersection is well graded (see, e.g., Chapter 6, Section 3). 

Accordingly, the middle size box in the top box of Fig. 1 denotes the subcollection 

of well graded knowledge spaces and the smallest box the family of knowledge 

spaces closed under intersection. 

Now we consider in the domain of the surmise mappings the extra conditions 

that correspond to the subclasses of knowledge spaces defined by [S2] and [S3]. In 

Chapter 9 it was established, among other things, that the well graded knowledge 

spaces are in 1-1 correspondence with the exclusive surmise mappings, which are 

obtained by supplementing the axioms [Ml] with 

хФу => σ(χ)πσ(γ) = 0. [M2] 

The surmise mappings corresponding to knowledge spaces closed under intersection 

were known from the beginning: these are the mappings that essentially coincide 

with a partial order (quasi order if we want to allow for indistinguishable elements). 

They are distinguished by having only one clause for each element: 

Cea(x) ά C'ea(x) => С =C'. [M3] 

The lower left box in Fig. 1 contains boxes representing the collection of surmise 

mappings defined by [M2] and [M3], with the appropriate arrows to the top boxes. 

For the entail relations we have not found at this moment an easy, direct axiom 

defining the subclass that corresponds to well graded knowledge spaces (exclusive 

surmise mappings). The only conditions we can formulate are the ones that go via 

the correspondence with knowledge spaces or surmise mappings; these conditions 

are indirect and as such not very satisfying. For instance, the correspondence 

between entail relations and knowledge spaces is such that the complement (with 

respect to X) of a subset Л is a state in the space К if and only if in the 
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corresponding entail relation Ρ we only have APZ for Z c A (see Lemma 4.4 of 

Chapter 7). Via this substitution, [S2] translates into 

(Д *X & (APB oA^B) forailB<ZX) => [R2] 

((A+{x})PB <a- (A + {χ})ΏΒ for all В CX, for some x^A ). 

This is indeed rather cumbersome and too close to [S2] to be enlightening. The 

subclass of entail relations corresponding to the knowledge spaces closed under 

intersection, on the other hand, poses no problems. As with surmise mappings, these 

are the entail relations that are essentially partial orders on X (quasi orders for 

indistinguishable elements). They are obtained by adding to [Rl] the axiom 

AP{y} < » {x}P{y} for some xeA [R3] 

(see Chapter 7, Section 4.9). In Fig. 1 we have again drawn the appropriate boxes 

(in the lower right box) and the connecting arrows. This completes the description 

of Fig. 1; it presents a concise picture of the various theoretical concepts that played 

a role in the preceding chapters, and their interrelationships. 

2. Another view on surmise mappings and entail relations 

Both surmise mappings and entail relations were developed as alternative 

characterizations of knowledge spaces. It was clear that this implies a 1-1 

correspondence between surmise mappings and entail relations, but the specification 

of this correspondence always involved the knowledge space as intermediary 

concept. It is possible to make the equivalence of these two concepts almost 

immediate and that is what we set out to do in this section. It will prove helpful for 

this purpose to give a translation of both surmise mapping and entail relation into yet 

another domain, that of propositional logic. These translations will again be guided 

by the interpretations of surmise mappings and entail relations in terms of the 

corresponding knowledge space, but once the translation has been made, the 

equivalence of surmise mapping and entail relation will be obvious "syntactically", 

without recourse to the knowledge space interpretation. 

Let the set of items be X = {х^хг, • • • ,xn }. For any χ,εΧ we define a logical 

variable x,, that is, a variable that can take one of the two values TRUE or FALSE. 

Any subset A of X may now be interpreted as a mapping of these variables into 

{ FALSE , TRUE }. That is, A defines a valuation or truth assignment vA by the rule 

vA(xt) = TRUE <^> Χ,ΕΑ. (1) 

According to this direct 1-1 correspondence between subsets of X and valuations of 
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χ ! , . . . . , /„ , a knowledge structure К on X amounts to the particular collection of 

valuations {vK:KeK}. It is clear that a valuation of the variables xlt....,xn 

determines the truth value of any (syntactically well formed) logical formula in 

x1,....,xn. Such a formula may involve various logical operations, like the 

conjunction ( " A " ) , disjunction ("v"), implication ("-»"), equivalence ("<-»") and 

negation ("-i") . Its truth value is computed from the truth tables for these 

operations; for instance, for any valuation v, V(XÌKX1)-TRUE if and only if 

v(JC-J ) = TRUE and V(JC2) = TRUE. 

Surmise mappings and entail relations were devised as descriptions of what 

inferences can be made in the corresponding knowledge structure. In other words, 

they describe formulae in xx ,....,/„ that are TRUE under all of the valuations vK 

with AT e К . In both cases, the formulae can be presented in the form of implications 

χ —» φ, where the subformula φ represents the inferences that can be drawn from the 

presence of χ in a state of К. This is pretty obvious in the case of the surmise 

mapping. The very idea of a surmise mapping σ corresponding to К was to collect 

in a(jt) all possible prerequisites of x. Concretely, a(x) = { C 1 , C 2 , Cm} 

represents the fact that, for any К e К, 

χεΚ =*> С, CA" or C2 С К or ·•• or CmZK. (2) 

Let the clause С ι consist of it elements denoted by j t l f xk and define the formula 

Yiby 

Ύι = *i л * 2 * ··· · л **• (3) 

For the other clauses we construct similar formulae 72,.... ,ym. Then it is clear that 

the statement " C , CAT" can be expressed in terms of the valuation v^ as 
νκ(Ί; ) = TRUE. Defining now the formula ax by 

¿z = Yi v Ъ v ···· v Ym. (4) 

we see that (2) is tantamount to requiring that 

vK(x^àx) = TRUE (5) 

for any АГе К . In this way a surmise mapping σ can be identified with the collection 

of formulae <тх defined by (4) and (3). In case К is a space, σ determines К 

completely; intuitively this means that the formula σχ represents all that can be 

inferred from the presence of χ in a state of К . Formally this is expressed by the 

statement that any (other) formula ψ such that vK(x -» ψ ) = TRUE for any К e К 

must be logically implied by òx : ν ( σζ -» ψ ) = TRUE for any valuation ν. 

It appears that we can proceed similarly with the entail relation Ρ corresponding 

to a knowledge structure К . The interpretation of Α Ρ χ for А с X and χ eX is that 
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there is no state of К disjoint with A and containing x\ or, equivalently, if ЛГеК 

and xe.K, then A<~^K # 0 . This holds for any A such that APJC; thus if 

{Ах,Аг, A,} is the collection of all such subsets, we have 

xeK => ΑλπΚΦΖ and Агг>К*0 and · · · and A,r\K*ß. (6) 

We remark here that we may assume that in (6) we have collected only the minimal 

subsets A such that ДРдс. These determine Ρ completely, since an entail relation 

contains the superset relation (if A' 2 A and ЛРдс, then also A'PJC), and it is clear 

that the truth value of the right hand side only depends on the minimal A, appearing 

there. I f A ^ {χχ, * А }, we define the formula Ъ^ by 

Si = JC'I ν χ2 ν .... ν xh, (7) 

and similar formulae &2,....,S¡ for the other sets Ay. In this way "A, <^K * 0 " is 

equivalent to v^(S, ) = TRUE. If we now define the formula px by 

p, = β, A S2 A .... Α δ,, (8) 

we can reformulate (6) as 

vK{x^px) = TRUE (9) 

for any К e К . Again, if К is a space, Ρ determines К completely and р х describes 

all inferences from the presence of χ in a state of К . Formally: any formula φ for 

which vK(x —>φ) = 77?ί/Ε for any ЛГеК is logically implied by p I : 

ν ( PJ, -» φ ) = TRUE for any valuation ν. 

In sum, then, we have in a knowledge space К on X two formulae, σ Ι and ρτ, 

describing the inferences from дс and one must be implied by the other: in the above 

statement we can take φ = σ, and in the corresponding statement after Eq. (5) in the 

preceding paragraph we can take ψ = p». Thus, σ, and p x are logically equivalent 

formulae: ν ( òx <-> ρ, ) = TRUE for any valuation ν. Looking more closely at σχ 

we see that this formula is of a special form: it is a disjunction (cf. (4)) of 

conjunctions of variables (cf. (3)); such a formula is said to be in disjunctive normal 

form. Similarly, p x has the special form of a conjunction (cf. (8)) of disjunctions of 

variables (cf. (7)); it is in conjunctive normal form. By a well known result of 

propositional logic, any formula has logically equivalent versions in conjunctive and 

disjunctive normal form. (In the general definition of these forms, the variables that 

appear may or may not be negated. The reason why, in a space, all inferences from 

the presence of χ in a state can be collected in conjunctive or disjunctive forms 

without negated variables - as testified by (3) and (7) - is that any space on X 

contains X as a state. In other words, negated variables can be avoided since the 

presence of an element χ can never lead to negative conclusions regarding any 
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element y.) 
We may conclude that surmise mappings and entail relations are in a sense very 

similar both collect for any χ eX the inferences that can be made from the presence 
of χ in a state of the corresponding space. The distinction is only in the form in 
which these inferences are presented: the choice of the disjunctive normal form leads 
to a representation of the space by a surmise mapping; the choice of the conjunctive 
normal form amounts to the characterization of the space by an entail relation. It is 
easy to switch from one form to the other by using the distributive laws of logic; for 
instance, 

( j f j A ^ W ^ V · ^ ) о ( Х І Х З ) А ( Х І ДС4)А(ДС2 Х 3 ) А ( Х 2 ДС-4), 

with a disjunctive normal form on the left and an equivalent conjunctive normal 
form on the right ("<s>" means "is logically equivalent to"). In this way, we can 
make the transition from the surmise mapping representation to the entail relation 
representation and vice versa on a "low", syntactical level; i.e., without referring in 
any way to the represented knowledge space. 

The above discussion might seem to be somewhat abstract, but the translation of 
surmise mapping and entail relation in logical formulae is in fact rather simple and 
the ensuing correspondence is very direct. Let us finally illustrate these assertions by 
way of a small example. Consider the following knowledge space К on 
X = {a,b,c,dy. 

K={0,{a}.{b},{a,b},{a,c},{b,c},{a,b,c},{a,b,d},{b,c,d},X}. 

The corresponding surmise mapping σ can easily be found by checking, for the 
various xeX, the minimal states containing x. As for the entail relation P, the 
collections p(x) of minimal subsets A such that А Рдс - which, as we have seen, are 
sufficient in (6) - can also be found from inspection of К. For instance, any state 
containing d contains also b and an element of [a, с } and it is easily checked that 
these are all the minimal such sets. The relevant data are collected in the following 
table, where also the corresponding formulae ax and px have been computed. 

X 

a 
b 
с 
d 

σ(χ) 

{a} 
{b} 

{a,c},{b,c} 
{a,b,d},{b,c,d} 

¿r 
â 
b 

( i Í A ( f ) y ( ¿ A í f ) 

(¿АІ>'АІ) (ІГА(5АІ) 

Px 

d 

6 

(â<iC)ibi.d 

Pix) 

{b} 
{a.b},{c} 

{a,c},{b},{d} 

Indeed, all the рж can directly be computed from σ, and vice versa. It is clear that 

ae and ad can be obtained from pe and pd, respectively, by a single application of a 
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distributive law. But even if we do not recognize the special form of σ,. (the 

common "factor" c), there is still a simple computation from ae to p c , by 

mechanically applying a distributive law and next simplifying: 

äc = ( α * с ) ν ( b А с ) (distributive law) 

<¡> ( d ν b ) A ( α ν с ) A ( с ν 6') A ( с * с ) (simplifying) 

о ( α » fe ) А ( α ν с" ) А ( с * ¿') А с (simplifying) 

-*> ( α ν è ) л с = Ρ;,. 

We can go from ad to pd by a similar, somewhat longer computation, or simply by 

noting the common "factor" b kd. Anyway, it will be clear that we can move 

between surmise mapping and entail relation without even being aware of an implied 

knowledge space. 

3. Conclusion 

The theoretical concepts of the previous chapters, whose relationships we reviewed 

in the preceding sections, are of a very different character from those used in 

traditional approaches to psychometric testing. In the typical psychometric model, 

mental test results are analyzed in terms of the concept of ability. For this concept 

often a unidimensional representation is sought and if multidimensionality is 

allowed, the emphasis is on identifying unidimensional and preferably 

"independent" components. The abilities are usually represented by way of 

numerical scales. This is a well established approach to the assessment of 

knowledge, which is certainly sensible when one is interested in broad, long-term 

predictions concerning an individual's performance. 

Here, the situation is quite different: our objective is rather to build procedures 

capable of assessing very accurately the current knowledge of an individual in a 

specific domain. For such purposes, the search for a kind of abstract, unidimensional 

"abilities" does not seem appropriate. We are willing to accept the 

multidimensional character of the situation, with all its interdependencies, and we 

are not trying to describe a person's performance by some summary statistic like the 

total number of items solved. We want to capture very concretely what is known 

and what is not known at a particular moment in time; that is, we want our model to 

deal with the full response pattern. This leads naturally to a combinatorial rather 

than numerical approach and to the basic definitions of knowledge state and 

knowledge structure. 
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These notions are in some sense very concrete, as indicated above. In another 
sense they are sufficiently abstract to make them applicable in superficially very 
different contexts, like that of expert systems and pattern recognition. The case of 
computerized medical diagnosis, which has received some attention in the area of 
expert systems (see, e.g., Shortliffe, 1976), is an example. Such a computerized 
system deals with a finite number of symptoms; the presence of some combinations 
of symptoms indicates specific diseases. The analogy is clear: the symptoms 
correspond to the items of the domain and the diseases, defined as particular subsets 
of symptoms, are the states. The structure of the domain consists of the collection of 
diseases that can be diagnosed by this system. The stages involved in building such 
a system are also very similar to those encountered in the knowledge assessment 
project. First, the structure has to be determined; that is, it has to be established 
which collections of symptoms correspond to diseases. This usually involves an 
extensive consultation of experts in the field. Next, efficient assessment procedures 
have to be developed. These are to determine the disease (if any) of a patient by 
way of a carefully designed sequence of verifications of which symptoms are 
present. (Note that the analogy does not break down when some symptoms are not 
binary ("present" vs. "absent"), but have a multicategory response (e.g., present to 
some specified degrees). Through appropriate dichotomizations of the multiple 
responses such a symptom can always be turned into a collection of binary 
symptoms.) 

Above it was mentioned that the knowledge space approach is primarily 
combinatorial instead of numerical; in view of the stated objectives of efficiency and 
practicability this signals imminent danger. Combinatorial algorithms tend to 
"explode" at some point, both in terms of space and time. Indeed, knowledge 
structures are objects whose size grows exponentially with the number of items in 
the domain and the danger alluded to is very real. Chapter 8 was in fact concerned 
with this issue. It showed how to improve dramatically on a straightforward 
approach that would be completely impracticable, even for a very moderate number 
of items, by fully using all obtained information and by representing only the 
essential part of the collected data. Since there was still a horrendous worst case 
conceivable for the resulting algorithm, it had to prove its value in practice, on some 
domain of interest. As was already indicated in Chapter 8, such a test has in fact 
taken place and the algorithm appeared to do quite well: the practical performance 
was very, very far from the theoretical worst case. A number of experts went 
through the procedure; the results of this experiment will be the subject of a 
forthcoming paper (Kambouri, Koppen, Villano and Falmagne, 1989, in progress). 

This brings us to the prospects for further research in this project. Obtaining 
knowledge spaces from experts by the procedure of Chapter 8 is only the fust step in 
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building the knowledge structure that is ultimately going to be used in the 

assessment routines. Of course, different experts give us different spaces and we are 

confronted with the task of devising reasonable procedures for integrating all these 

spaces in one combination space. Such a space should feature aspects common to 

different experts and discard the idiosyncrasies of the individual spaces. When 

concrete rules have been specified to satisfy this general requirement, and a 

combined space is obtained, then this is still not the end of the process. At this point, 

the space is tested against empirical data, using the learning model developed by 

Falmagne (1989). Via successive likelihood ratio tests the space may possibly be 

pruned down, until a space results that presents a most economical, yet satisfactorily 

fitting model for the domain under investigation. This space, then, will finally be the 

representation of the domain in terms of which the computerized routines will 

perform the knowledge assessment 
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SUMMARY 

This thesis reports on theoretical investigations in two areas where the data are 
binary (e.g.,"correct - incorrect") and reflect a dominance relation between two sets 
of entities (generically called "subjects" and "items"). The Guttman scale is the 
classical notion by which to represent data of this kind and both cases we consider 
here involve multidimensional versions of this basic idea. In the first half, we 
investigate the problem of representing the binary data as an intersection or union of 
(a minimal number of) biorders. A biorder is the equivalent in terms of binary 
relations for the concept of a Guttman scale, and representations by an intersection 
or union of such biorders give a similar translation of the conjunctive and disjunctive 
models, extensions of the Guttman scale that were proposed by Coombs and Kao, 
back in 1955. In the second half of the thesis we also consider data that can be 
modeled by multiple Guttman scales, but now we have a more specific application in 
mind. The "subjects" are students, the "items" notions in some field of knowledge 
and a collection of Guttman scales represents the different orders in which the 
notions can be mastered by these students. We consider this representation in the 
context of computerized instruction systems, more precisely, as the basis for the 
knowledge assessment component of such systems. 

In the first chapter we discuss the common aspects of the two parts and introduce 
the basic concepts and terminology. Because of the ordinal character of the binary 
data (a Guttman scale amounts to a joint ordering of subjects and items), the 
mathematics involved is mainly the algebra of sets and binary relations, in particular 
order relations. 

The chapters 2 to 5 constitute the first part of the thesis, dealing with biorder 
representation. Chapter 2 provides the background: the notion of a biorder is 
introduced and the translation is made from the conjunctive / disjunctive model of 
Coombs and Kao to the problem of representing a binary relation as the intersection / 
union of such biorders. We present part of the mathematical theory of biorder 
representation that was developed by Doignon, Ducamp and Falmagne in 1984, and 
concentrate here on the problem of finding, for any relation, the minimal number of 
biorders needed for such a representation. This number is called the biorder 
dimension, or bidimension, of the relation. Of central importance in this respect is 
Doignon et al.'s characterization of this bidimension as the chromatic number of 
some hypergraph that may be associated with any binary relation. 
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This equivalence is used in chapter 3 as the basis for a procedure for determining 
the bidimension of an arbitrary relation. We prove a theorem on how hypergraphs 
may be reduced to subhypergraphs without changing the chromatic number and it is 
shown how this result for hypergraphs in general can be effectively applied to the 
special kind of hypergraph defined by Doignon et al. Finally, we present a 
recurrence relation for the chromatic number of a hypergraph; the proposed 
reduction mechanism can be applied to the subhypergraphs generated at each level 
of the recursion. 

Chapter 4 deals with the problem of constructing actual biorder representations 
for a relation. The treatment leans again heavily on the connection with the 
hypergraph. Algorithms for the stated purpose are derived, one version of which 
generates some representations in the minimum dimensionality as a by-product of 
the chapter 3 procedure for computing the bidimension. Another version produces 
exactly the collection of subhypergraphs that is needed in the recurrence relation 
used in chapter 3. As a result, we have a completely specified procedure for 
computing the bidimension. 

In chapter 5 we review the results of the preceding chapters. We discuss the 
close connection between biorders and partial orders (the former are a generalization 
of the latter) and relate the success of the hypergraph approach to this connection. 
We also consider the prospects for application of the biorder representation to 
empirical data and signal two problems in this respect: the lack of uniqueness of 
solutions and the completely deterministic character of the model. First attempts at 
escaping the latter problem are sketched. 

In the second part of the thesis, chapters 6 to 10, multiple Guttman scales appear 
in the context of knowledge assessment. Again their ordinal character is fully 
respected: a Guttman scale corresponds here to a possible order of mastering the 
various items in some speciiied domain of knowledge. In chapter 6 we show how a 
restricted collection of such orderings gives rise to a restricted collection of 
knowledge states, that is, possible subsets of items that a student in this field may 
have mastered. Such a family of knowledge states is called the knowledge structure 
of the domain. If we impose some extra conditions, alternative representations for 
such knowledge structures are possible and we discuss in chapter 6 the important 
case of knowledge spaces, i.e., structures in which the union of any two states is 
again a state. These can be represented by surmise mappings, a variant of AND/OR 
graphs defined by Doignon and Falmagne in 1985. 

In order to efficiently assess the knowledge state of a student, the (computerized) 
assessment procedures must be provided with an accurate description of the set of 
possible states, that is, the structure of the domain under consideration. Chapters 7 
and 8 address the question how we can arrive at such a description by systematically 
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interviewing experts in the field. It is not feasible to ask the experts simply for the 
list of states. Therefore, in chapter 7 an alternative representation for knowledge 
spaces is derived that is better suited for querying experts. This is the entail relation, 
which encodes dependencies of a certain kind between the various items of the 
domain; we suppose that an expert, drawing on his knowledge and experience in the 
field, can give us reliable answers when questioned about these dependencies. It 
follows from the theory in chapter 7 how the responses to these questions about the 
entail relation can be translated into a knowledge space, consulted implicitly by the 
expert. 

A straightforward way of querying the expert about the entail relation would 
again be impracticable: even for a moderate number of items, far too many questions 
would need to be asked. However, since an entail relation is a relation with certain 
well defined properties, not all entries in such a relation are independent. In other 
words, in obtaining responses from the expert, we can make inferences regarding 
other questions, thereby reducing the number of questions that have to be asked. 
How to find and exploit the possible inferences is the subject of chapter 8. Here, an 
algorithm is specified for deriving the corresponding knowledge space from the 
responses of an expert to queries about the entail relation, and in this procedure at 
each instant possible inferences are derived in order to minimize the number of 
queries needed to obtain the space. This algorithm has been applied to a 50 item set, 
for which a straightforward approach would be unthinkable. 

In chapter 9, we come back to the equivalence between knowledge spaces and 
surmise mappings. We present possible additional conditions on surmise mappings 
and investigate the consequences of these extra conditions for the corresponding 
classes of knowledge spaces. In particular, the condition on surmise mappings is 
detected that corresponds to the restriction to well graded knowledge spaces, an 
important subclass defined by Falmagne and Doignon, 1988, and Falmagne, 1989. 

In chapter 10, we review the relationships between the various alternative 
representations derived and used in the preceding chapters. A direct equivalence 
between surmise mappings and entail relations (both equivalent to knowledge 
spaces) is established. We conclude with a few remarks on the character of and the 
prospects for the knowledge assessment project that is based on these theoretical 
concepts. 





SAMENVATTING 

In dit proefschrift wordt verslag gedaan van theoretisch ondeizoek op twee gebieden 
met binaire data (b.v. "juist - onjuist") die een dominantierelatie weergeven tussen 
elementen van twee verschillende verzamelingen (in het algemeen aangeduid als 
"proefpersonen" en "items"). Voor de representatie van dit soort data bestaat de 
klassieke notie van de Guttmanschaal en in de beide gevallen die we hier bekijken 
hebben we te doen met multidimensionale versies van dit fundamentele idee. In de 
eerste helft stellen we ons het probleem om de relatie gegeven door een binaire 
data-matrix te schrijven als de doorsnede of vereniging van (een minimaal aantal) 
biordes. Een biorde is het equivalent in termen van binaire relaties voor de notie van 
een Guttmanschaal, en de biorde-representatie correspondeert met het conjunctieve / 
disjunctieve model dat al in 1955 werd gemtroduceerd door Coombs en Kao. Het 
tweede gedeelte van het proefschrift is ook gewijd aan data die gemodelleerd kunnen 
worden door meerdere Guttmanschalen, maar we hebben nu een meer specifieke 
toepassing op het oog. De "proefpersonen" zijn leerlingen, de "items" noties in 
een of ander kennisdomein en een verzameling Guttmanschalen geeft de 
verschillende volgordes weer waarin leerlingen zich de noties kunnen eigen maken. 
Deze representatie is ontwikkeld als de basis voor procedures om de kennis van 
leerlingen te peilen in de context van geautomatiseerde onderwijssystemen. 

In het eerste hoofdstuk worden de gemeenschappelijke aspecten van de twee 
gedeeltes besproken en worden de basisbegrippen en -terminologie gegeven. 
Vanwege het ordinale karakter van de binaire data (een Guttmanschaal komt neer op 
een gezamenlijke ordening van proefpersonen en items) gebruiken we vooral 
verzamelingstheoretische wiskunde en de wiskunde van binaire relaties, met name 
orde relaties. 

Het eerste gedeelte van het proefschrift, bestaande uit de hoofdstukken 2 tot en 
met 5, gaat over biorde-representatie. In hoofdstuk 2 wordt de achtergrond gegeven: 
het begrip biorde wordt gemtroduceerd en het conjunctieve / disjunctieve model van 
Coombs en Kao wordt vertaald als het probleem om een binaire relatie te schrijven 
als de doorsnede / vereniging van zulke biordes. Een gedeelte van de wiskundige 
theorie van biorde-representatie, ontwikkeld door Doignon, Ducamp en Falmagne in 
1984, komt aan de orde, waarbij we ons concentreren op het probleem om het 
minimaal aantal biordes te vinden dat is vereist voor zo'n representatie. Dit aantal 
heet de biorde-dimensie of bidimensie van de relatie. We gaan met name in op de 
karakterisering door Doignon et al. van deze bidimensie als het kleurgetal van een 
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voor elke binaire relatie gedefinieerde hypergraph. 
Op deze equivalentie wordt in hoofdstuk 3 een procedure gebaseerd voor de 

bepaling van de bidimensie van een willekeurige relatie. We geven aan hoe een 
hypergraph kan worden gereduceerd tot een subhypergraph zonder zijn kleurgetal te 
veranderen en laten zien hoe dit resultaat voor algemene hypergraphen op 
doeltreffende wijze kan worden toegepast op de hypergraph gedefinieerd door 
Doignon et al. Tenslotte wordt een recurrente betrekking gegeven voor het 
kleurgetal van een hypergraph; het voorgestelde reductie-mechanisme kan worden 
toegepast op de subhypergraphen die op elk niveau van de recursie worden 
gegenereerd. 

In hoofdstuk 4 komt het probleem aan de orde om daadwerkelijk biorde-
representaties van een relatie te construeren. De behandeling steunt weer 
nadrukkelijk op het verband met de hypergraph. We leiden algoritmes af voor het 
gestelde doel; een van de versies produceert een aantal representaties in de minimum 
dimensionaliteit als een bijproduct van de procedure voor het berekenen van de 
bidimensie volgens hoofdstuk 3. Een andere versie genereert precies de verzameling 
subhypergraphen vereist in de recurrente betrekking van hoofdstuk 3; hiermee 
hebben we een volledig expliciete procedure voor de berekening van de bidimensie. 

Hoofdstuk 5 vormt een terugblik op de resultaten in de voorafgaande 
hoofdstukken. We gaan in op de nauwe samenhang tussen biordes en partiële ordes 
(de eerste vormen een generalisatie van de laatste) en brengen het succes van de 
hypergraph-benadering in verband met deze samenhang. We beschouwen ook de 
vooruitzichten voor toepassing van biorde-representatie op empirische data en 
wijzen in dit verband op twee problemen: oplossingen zijn verre van eenduidig en 
het model is volledig deterministisch. We schetsen enkele eerste pogingen tot een 
oplossing van het laatstgenoemde probleem. 

In de tweede helft van het proefschrift beschouwen we collecties 
Guttmanschalen die corresponderen met de mogelijke volgordes waarin de 
verschillende noties in een bepaald kennisgebied kunnen worden verworven. In 
hoofdstuk 6 laten we zien hoe een welbepaalde verzameling van zulke volgordes 
aanleiding geeft tot een welbepaalde collectie kennistoestanden, d.w.z. mogelijke 
deelverzamelingen van geleerde noties in een vakgebied. De verzameling van alle 
mogelijke kennistoestanden heet de kennisstructuur van het gebied. Als we extra 
condities opleggen kunnen we alternatieve representaties voor zulke 
kennisstructuren vinden en we gaan in hoofdstuk 6 met name in op het belangrijke 
speciale geval van kennisruimten, gedefinieerd als structuren waarin de vereniging 
van elk tweetal kennistoestanden weer een kennistoestand is. Voor deze 
kennisruimten is er een representatie in de vorm van "surmise" functies, Doignon 
en Falmagne's (1985) variant op het idee van AND/OR graphs. 
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Voor een efficiënte meting van de kennistoestand van een leerling moet de 
(geautomatiseerde) procedure beschikken over een precieze beschrijving van de 
verzameling mogelijke toestanden, d.w.z. de kennisstructuur van het gebied in 
kwestie. In de hoofdstukken 7 en 8 onderzoeken we hoe zo'n beschrijving kan 
worden verkregen via systematische vragen aan experts in het gebied. We kunnen 
hen niet eenvoudigweg vragen naar de volledige lijst van mogelijke 
kennistoestanden. Daarom leiden we in hoofdstuk 7 een alternatieve representatie 
voor kennisruimten af, de zgn. "entail" relatie. Deze geeft bepaalde 
afhankelijkheidsrelaties tussen de verschillende noties weer en we nemen aan dat 
een expert, op basis van zijn kennis en ervaring in het gebied, ons betrouwbare 
antwoorden kan verschaffen op specifieke vragen betreffende deze 
afhankelijkheden. De theorie in hoofdstuk 7 vertelt ons hoe we op basis van deze 
antwoorden de kennisruimte kunnen construeren die de expert impliciet raadpleegt. 

Als we de expert zonder meer alle vragen zouden stellen betreffende de "entail' 
relatie zouden we, zelfs met een zeer beperkt aantal noties, al spoedig voor een 
ondoenlijke taak staan: het aantal vereiste vragen zou veel te groot worden. Een 
"entail" relatie bezit echter, formeel, bepaalde eigenschappen die we kunnen 
gebruiken om gevolgtrekkingen te maken op basis van verkregen antwoorden. Op 
deze manier wordt een groot aantal vragen aan de expert overbodig. Hoofdstuk 8 
beschrijft hoe we de mogelijke gevolgtrekkingen kunnen vinden en gebruiken. Dit 
resulteert in een uitgewerkt algoritme voor het afleiden van de kennisruimte van een 
gebied via een zorgvuldig gekozen serie vragen aan een expert. Dit algoritme is 
toegepast op een verzameling van 50 items, en dit aantal zou met de nai'eve aanpak 
ondenkbaar zijn geweest. 

In hoofdstuk 9 komen we terug op de equivalentie tussen kennisruimten en de 
zgn. "surmise" functies. We beschrijven een aantal extra condities die aan zulke 
functies kunnen worden opgelegd en gaan na welke consequenties deze hebben voor 
de overeenkomstige kennisruimten. Met name wordt vastgesteld welke klasse van 
"surmise" functies correspondeert met de zgn. "well graded" kennisruimten 
gedefinieerd door Falmagne en Doignon, 1988, en Falmagne, 1989. 

In het laatste hoofdstuk wordt een kort overzicht gegeven van de diverse 
alternatieve wiskundige representaties die we in de vorige hoofdstukken zijn 
tegengekomen. We presenteren ook nog een directe equivalentie tussen "surmise" 
functies en "entail" relaties, die immers beide equivalent zijn met kennisruimten. 
We eindigen met enkele opmerkingen van algemene aard over het project dat is 
gebaseerd op deze theoretische begrippen. 
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1. In onze verwachtingen betreffende multidimensionale 'analyses' van een binaire data-matrix moe­

ten we niet uit het oog verliezen dat ieder data-punt in zo'n matrix inderdaad slechts 1 bit informatie 

bevat. 

2. Een formulering in termen van het kleurgetal van een hypergraph is mogelijk voor diverse defini­

ties van de 'dimensie' van een binaire relatie. Deze herformulering hoeft op zich echter niet van nut 

te zijn bij het probleem van de berekening van zo'n dimensie. (Dit proefschrift). 

3. Dat gevonden oplossingen niet uniek zijn is niet een speciaal probleem van de biorde-representatie, 

maar een kenmerk van vele multidimensionale modellen, zoals b.v. de factor-analyse. Echter, terwijl 

in de factor-analyse het gebrek aan uniciteit welomschreven is en, gegeven één oplossing, de volle­

dige klasse van oplossingen is bepaald, wordt in biorde-representatie de klasse van oplossingen 

slechts gegeven door een volledige opsomming van haar elementen. (Dit proefschrift). 

4. Bij toepassing in minder gestructureerde gebieden bestaat het gevaar dat geen hanteerbare know­

ledge spaces geconstrueerd kunnen worden zonder dat er leerlingen in de ruimte verloren gaan (d.w.z. 

zonder essentiële knowledge states weg te laten). 

5. Hoewel om theoretische redenen te restrictief bevonden, zal een representatie van een know­

ledge structure door middel van een partiële orde in de praktijk vaak een goede benadering geven 

tegen aanzienlijk minder kosten. 

6. Het is een groot misverstand, met name voorkomend onder zgn. 'holistisch' ingestelde psycholo­

gen, dat een eventuele volledig materialistische, fysiologische verklaring van psychische verschijn­

selen een aanval zou betekenen op de 'waardigheid' van de menselijke geest, zelfs het bestaan ervan 

zou ontkennen. Het tegendeel is veeleer het geval, net zoals we tot de tegengestelde conclusie zouden 

komen wanneer in het bovenstaande 'fysiologisch' wordt vervangen door 'quantum-mechanisch', 

'psychisch' door 'atomair' en 'menselijke geest' door 'molecuul'. 

7. Hel feit dat we zelf zo slecht zijn in strict logisch redeneren en deze vaardigheid op zijn best zeer 

gedeeltelijk, laat in de ontwikkeling en onder kunstmatige omstandigheden leren, pleit niet voor een 

analyse van ons cognitief functioneren in termen van logische schakel-elementen. 



8. Dat in de uitoefening van bepaalde functies, b.v. op wetenschappelijk gebied, kwaliteit niet altijd 

perfect en volledig objectief kan worden gemeten, is geen reden om geheel van dergelijke beoordelin­

gen af te zien. 

9. Hoewel het woord 'psycholoog' bij het algemene publiek nog altijd bepaalde vaste associaties 

oproept, heeft van alle wetenschapsgebieden de psychologie de vogels van de meest diverse pluimage 

onder haar hoede. 

10. Zolang we niet het equivalent hebben van de Amerikaanse honkbalverslaggever die ons feilloos, 

in drie decimalen, het honkslagpercentage weet te melden van déze slagman, in déze situatie: eerste 

en tweede honk bezet en twee man uit, tegen linkshandige werpers, over de laatste vijf seizoenen, zal 

het nooit echt wat worden met de Nederlandse sportverslaggeving. 

11. De meeste promovendi hebben de neiging om één stelling teveel op te nemen. 

Stellingen behorende bij het proefschrift van Mathieu Koppen, 

Ordinal data analysis: Morder representation and knowledge spaces, 

Nijmegen, 21 augustus 1989. 






