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GENERAL INTRODUCTION 





GENERAL INTRODUCTION 

Plant cells are enclosed in a cell wall. The cell wall 
defines shape and size of the plant cell and presents a 
physical barrier to microorganisms and other agents, which 
may be harmful to the plant (Bateman 1976). Cell walls may 
contain molecules that control the growth and development of 
plants (McNeil et al. 1984). 

The architectural framework of higher plant cell walls, 
the cell wall texture, consists of cellulose microfibrils, 
linear polymers of (1—^4)-/3-D-glucan, juxtaposed into bun­
dles. In shadowed preparations the crystalline microfibrils 
vary in width from 10 nm in higher plants to 30 nm in some 
algae (Preston 1974). Microfibrils are embedded in an a-
morphous matrix of non-cellulosic substances consisting 
mainly of pectic polysaccharides, hemicelluloses and pro­
teins (Preston 1974), like steel rods in re-inforced con­
crete, imparting cohesion, strength and rigidity to the cell 
wall. 

When plant cells increase in volume, as most do shortly 
after division, their wall components cannot be regarded as 
inert. Plant cell expansion growth is irreversible and in­
volves a net deposition of wall materials including cellu­
lose. 

The statement that cellulose is the most abundant biomole­
cule on earth has often been made (Preston 1974) and indi­
cates the preponderance of walled organisms. An enormous a-
mount of energy flows through the living world for the sole 
purpose of making cell walls. Because of the economic value 
of plant cell walls, as major sources of food, fiber and en­
ergy for man, the understanding of plant cell wall formation 
is of importance for mankind. 

The mechanism of cell wall biosynthesis is still not un­
derstood. 

The cell wall of higher plants is fundamentally involved 
in the morphology, growth and development of plant cells. 
Brown (1985) made three assumptions as a background to the 
spatial control of cellulose assembly: (1) cellulose micro­
fibrils are the reinforcing and constraining structures of 
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the plant cell wall, (2) the specific orientation of cellu­
lose microfibrils can determine the directionality of differ­
ential constraints, and, therefore, cell expansion, (3) the 
driving force for cell expansion and cell growth is turgor. 

Cell walls are classified as primary or secondary. Prima­
ry cell walls are deposited by undifferentiated cells, that 
are still growing, and are dynamic structures. Secondary 
walls are deposited by full-grown cells and are mechanically 
more static structures, that determine shape and size of the 
mature cell. In this respect the root hairs of higher plants 
are a special case, having tip-growth and depositing a prima­
ry wall at the expanding tip, but at the same time deposit­
ing a secondary wall in the non-expanding hair tube. The pri­
mary wall eventually constitutes a thin sheath on the outer 
surface of the full-grown root hair. The secondary wall is 
deposited on the inner surface of the existing primary wall 
between primary wall and plasma membrane, thus reducing the 
cell lumen. Primary cell wall and secondary cell wall differ 
in textures, mechanical properties, and chemical composition 
(Preston 1974). Cell wall textures are classified as axial, 
helical, helicoidal and crossed polylamellate, according to 
the orientation of microfibrils in their constituting lamel­
lae. All these textures have been found in root hairs 
(Sassen et al. 1985, Lloyd and Wells 1985). 

Cytological, autoradiographic and biochemical approaches 
have provided information on the subcellular events of cell 
wall synthesis. Endoplasmic reticulum, Golgi apparatus and 
plasma membrane form a functionally integrated system for 
the synthesis and transport of cell wall components 
(Robinson 1977). The polysaccharide deposited into the wall 
depends on vesicle fusion for the direct transfer of poly­
mers and for the incorporation of enzymes into either the 
plasma membrane or the cell wall. Cell wall proteins are syn­
thesized on the rough endoplasmic reticulum. Hemicellulosic 
and pectic polysaccharides are formed in the Golgi apparatus 
and reach the plasma membrane via vesicles (Sievers and 
Schnepf 1981) . The vesicles fuse with the plasma membrane 
releasing their contents to the cell wall (cf. for pollen 
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tubes: Sassen 1964). Cellulose microfibrils are assembled on 
the plasma membrane. 

The cytoplasmic side of the plasma membrane contains coat­
ed pits. In root hairs they have been shown in Raphanus sa-
tivus as early as 1966 (Bonnett and Newcomb). In animal 
cells coated pits function in receptor mediated endocytosis 
and membrane turnover (Pearse and Bretscher 1981, Bretscher 
and Pearse 1984). Their function in plant cells is controver­
sial. Coated pits are also seen near dictyosomes and it has 
been suggested that they arise at the Golgi complex and de­
liver cell wall substances at the plasma membrane (Franke 
and Herth 1974, van der Valk and Fowke 1981, Robertson and 
Lyttleton 1982). However, Joachim and Robinson (1984) and 
Tanchak et al. (1984) have shown that cationic ferritin is 
taken up by plant protoplasts by the coated pit-coated vesi­
cle pathway. 

Roelofsen (1958) has suggested that an enzyme at the tip 
of the growing microfibril might be responsible for the poly­
merization of glucose and its crystallization into the micro­
fibril. He predicted that it might be possible by means of 
electron microscopy to visualize the cellulose synthesizing 
complex. Helicoidal walls, however, have been argued to be 
formed by self-assembly (Neville 1985, 1986) in the periplas-
mic space (Roland and Vian 1979). Therefore the question 
arises whether a terminal synthesizing complex is present in 
the plasma membrane of cells which deposit a helicoidal 
wall. Putative synthesizing complexes in higher plants exist 
of a terminal globule on the extraplasmic-face of the plasma 
membrane and a particle rosette on the protoplasmic-face of 
the plasma membrane (Brown 1985) . The synthesizing com­
plexes are free to move in the plane of the fluid membrane 
while microfibrils are being generated. The occurrence of 
these complexes in the plasma membrane is seen as proof that 
microfibrils lengthen by tip-growth (Willison 1982), which 
they might not do if cell walls were self-assembling like 
liquid crystals. But what determines the direction of the 
mobile synthesizing complexes that leave microfibrils in 
their wake? 
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The alignment of the fibrils within the wall has an impor­
tant bearing on the physical properties of cells. The orien­
tation of microfibrils is a matter of discussion (Robinson 
1977). In many cells microtubules have been found in paral­
lel to the nascent microfibrils and they have therefore been 
hypothesized to orientate the microfibrils during their de­
position (Heath 1974). Heath has suggested that cellulose 
synthesizing complexes are located in the plasma membrane 
and that they are associated with a component which crosses 
the inner side of the plasma membrane and interacts with ad­
jacent mictotubules, whereby the microfibril synthesizing 
complex is moved through the membrane. This is possible be­
cause the membrane has a fluid mosaic structure (Singer and 
Nicholson 1972). Recent reviews on this subject include: 
Robinson and Quader 1982, Gunning and Hardham 1982, Lloyd 
1984. In cases where microfibril-microtubule paralellism has 
not been found (Chafe and Wardrob 1970) this has been regar­
ded as a stage in reorientation prior to the deposition of a 
new lamella, rather than evidence that microtubules are not 
involved. Also Sawhney and Srivastava (1975) found lack of 
paralellism between microtubules and microfibrils, but re­
garded this as evidence for a shift in the orientation of 
new microfibrils in normal thickening of polylammellate 
walls. 

A role for the microtubules in microfibril orientation is 
supported by experiments with anti-microtubular agents. The 
destruction of microtubules by these agents disturbs micro­
fibril deposition in many plant species (Robinson and Quader 
1982). 

Many different hypotheses have been proposed on the role 
of the cytoskeleton in microfibril orientation (Heath and 
Seagull 1982) but none of these hypotheses received suffi­
cient proof. Microfibril deposition during treatment, which 
depolymerizes microtubules, may be random (Schnepf et al. 
1975) , in swirls (Hepler and Fosket 1971), smeared (Brower 
and Hepler 1976), unidirectional (Quader et al. 1978), heli­
coidal (Takeda and Shibaoka 1981, Quader et al. 1978), or 
undisturbed (Itoh 1976, Schnepf and Deichgräber 1979). In 
some cells microfibrils are deposited in an orderly pattern 
while microtubules are absent (Hahne and Hoffmann 1985). 
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Schnepf (1978) found more or less parallel microtubules 
associated with dispersed microfibrils in the endostomium of 
the moss; microtubules run in the direction of the 
longitudinal axis of the cell. Microtubules have several 
other functions in plant and animal cells: maintenance of 
cell shape, internal organization of the cytoplasm, movement 
of cytoplasmic components, cytokinesis, endo- and exocytosis 
(Dustin 1984). 

This thesis reports a study on cell wall texture and mi­
crofibril deposition in root hairs and the role cytoplasmic 
elements play in this process. The main object used is the 
root hair of Equisetum hyemale, which has a helicoidal wall 
(Sassen et al. 1981). In a helicoidal wall, fibril lamellae 
are subsequently deposited in successively rotated orienta­
tions. Therefore, the helicoidal wall texture is an excel­
lent system to test the hypothesis that microtubules orien­
tate microfibrils. Because root hair growth can be easily 
followed and the cells are accessable for chemical- and phys­
ical fixation root hairs are suitable for studies of wall 
texture and mode of synthesis of microfibrils of higher 
plants. 

Root hairs develop as outgrowths of epidermal cells of 
the roots of many plant species. Because they increase the 
root surface area and hence the volume of soil contacted 
they are likely to be involved in the uptake of nutrients 
(Itoh and Barber 1983, Robinson and Rorison 1983), and water 
(Jones et al. 1983). In addition, root hairs may also have a 
role in the anchorage of plants (Stolzy and Barley 1968), 
the maintenance of contact between roots and soil (Russell 
1977) and in root exudation (Baht and Baldwin 1976) . 
Furthermore, they are important for the formation of 
symbiosis between legumes and .Rhizobium (Turgeon and Bauer 
1985). 

In chapter 1 the hypothesis that root hairs of aquatic 
plants have helicoidal wall texture, while root hairs of ter­
restrial plants have axial or helical wall texture (Sassen 
et al. 1981, Sassen et al. 1985) is tested. 

Chapter 2 reports a study on wall textures of root hairs 
of all european species of Equisetum. 
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Chapters 3 and 4 present a detailed description of heli­
coidal wall texture and of microtubule alignment in the cor­
tical cytoplasm of young and full-grown root hairs of Equise­
tum hyemale. 

In chapter 5 data on microtubule alignment obtained with 
thin-sectioning of chemically fixed material are compared 
with data obtained by means of the freeze-substitution 
method. Data obtained by the dry-cleaving method for cell 
walls (Sassen et al. 1985) are used to give a detailed des­
cription of the inner side of the cell wall. 

The alignment of microfibrils, microtubules and microfila­
ments of the trichoblastic part of the root hair cell is des­
cribed in chapter 6. Microfibrils are visualized by thin-
sectioning of cells from which matrix material has been re­
moved, by means of the freeze-substitution and dry-cleaving 
methods. Microtubules are visualized by immunofluorescence 
and freeze-substitution. Microfilaments are stained with rho-
damine-labelled phalloidin. 

The influence of colchicine -which depolymerizes micro­
tubules- on helicoidal wall deposition is studied in 
chapter 7. 

In chapter 8, by means of freeze-fracturing, the extra-
plasmic (EF) and protoplasmic (PF) fracture faces of the 
plasma membrane of root hairs of Equisetum hyemale are shown 
to contain the putative microfibril synthesizing complexes. 

The relation of the particle rosettes of the PF-face of 
the plasma membrane to arrays of hexagonally ordered pat­
terns found in the plasma membrane of these root hairs and 
in other plant cells is worked out in chapter 9. 

Chapter 10 deals with the occurrence, distribution, dimen­
sions and ultrastructure of coated pits and coated vesicles 
on the cytoplasmatic side of the plasma membrane. Coated 
pits and coated vesicles are visualized by means of the dry-
cleaving method. Based on these data the function of these 
structures in plant cells is hypothesized. 

Chapter 11 describes the ultrastructural organization of 
the cytoplasm of root hairs of Equisetum hyemale and Limnobi-
um stoloniferum after freeze-substitution. Especially wall 
vesicles and microfilament bundles are described. Cytoplas­
mic streaming in developmental stages of root hairs of Equi-
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setum hyemale is shown. A relation is shown between elements 
of the cytoskeleton and cytoplasmic streaming. 

F i n a l l y , o n the b a s i s of the d a t a d e s c r i b e d in thi s t h e ­

s i s , in c h a p t e r 12 a m a t h e m a t i c a l m o d e l for h e l i c o i d a l w a l l 

d e p o s i t i o n is p r o p o s e d . 
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CHAPTER 1 

Helicoidal Cell Wall Texture in Root Hairs 





H E L I C O I D A L CELL WALL TEXTURE I N ROOT HAIRS 

ANNE MIE С. EMONS and NIEK van MAAREN 

Department of Botany, University of Nijmegen, Toernooiveld, 6525 ED Nij'megen, The 
Netherlands 

PLanta, in press. 

ABSTRACT 

I t is shown that root hairs of most aquatic plants have a hel ico idal c e l l wall 
texture. Cell walls of root hairs of the aquatic/marshland plant Ranunculus l ingua, 
however, have axial m i c r o f i b r i l alignment. The occurrence of hel icoidal wall texture 
is not l imi ted to root hairs of aquatic p lants: the t e r r e s t r i a l plant Zebrina pur-
pusi i has a h e l i c o i d a l root hair wall texture. With the exception of the grasses, 
the occurrence of root hairs with hel ico idal c e l l wall pertains to species with pre­
determined root hair forming c e l l s , t r i c h o b l a s t s . The r o t a t i o n mode of the h e l i c o i d 
is species s p e c i f i c . The average angle between f i b r i l s of adj'acent lamellae varies 
from 23° to 40°. 

In Hydrocharis morsus ranae c o r t i c a l microtubules have a net-axial o r i e n t a t i o n 
and thus do not p a r a l l e l nascent m i c r o f i b r i l s . 

Helicoidal c e l l wall deposition is discussed. 

KEY WORDS: cel lu lose m i c r o f i b r i l , hel icoidal c e l l w a l l , m i c r o f i b r i l o r i e n t a t i o n , 
plant c e l l , root hair 

INTRODUCTION 

I n h e l i o i d a l c e l l w a l l s e a c h l a m e l l a i s b u i l t up of 

p a r a l l e l l y o r i e n t e d m i c r o f i b r i l s . I n s u b s e q u e n t l a m e l l a e 

t h e r e i s a p r o g r e s s i v e change i n m i c r o f i b r i l o r i e n t a t i o n 

( N e v i l l e 1985, 1 9 8 6 ) . S a s s e n and c o w o r k e r s (1985) have sug­

g e s t e d t h a t t h e h e l i c o i d a l t e x t u r e i s c h a r a c t e r i s t i c of r o o t 

h a i r s of a q u a t i c p l a n t s . So f a r o n l y two a q u a t i c p l a n t s h a v e 

b e e n s t u d i e d w i t h r e s p e c t t o r o o t h a i r w a l l t e x t u r e : Limnobi-

um stoloniferum ( P l u y m a e k e r s 1982) and Ceratopteris thalic-

troides (Sassen e t a l . 1981, Meekes 1985). The h e l i c o i d a l 

c e l l wal l t e x t u r e has been found in young r o o t h a i r s of the 
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t e r r e s t r i a l p l an t Equisetum hyemale (Sassen e t a l . 1981, 
Emons 1982). However, roo t h a i r s of Equisetum hyemale ac­
qu i re an a d d i t i o n a l h e l i c a l m i c r o f i b r i l l aye r (Emons and 
Wolters-Arts 1983) s i m i l a r to the t e x t u r e in root h a i r s of 
some t e r r e s t r i a l p l a n t s (Sassen e t a l . 1981). In water wi th­
out connect ion to s o i l , stem fragments of Equisetum hyemale 
grow in to new p l a n t s complete with s t r o b i l i (Wagner and 
Hammitt 1970). Equisetum hyemale appears to be very wel l 
equiped for l i f e in water . 

Root h a i r s of Equisetum fluviatile, a spec ies the n a t u r a l 
h a b i t a t of which i s water , have a h e l i c o i d a l w a l l . They do 
not acqui re a h e l i c a l wall l ayer when ful l-grown (Emons 
1986). 

To t e s t the hypothes is t h a t root h a i r s of aqua t ic p l a n t s 
have a h e l i c o i d a l root h a i r c e l l wa l l , we s tud ied 13 spec ies 
of aqua t i c p l a n t s : 6 with the e l e c t r o n microscope and 7 ad­
d i t i o n a l spec ies with the p o l a r i z i n g microscope, a method 
which gives s t rong i n d i c a t i o n s whether or not a c e l l wal l i s 
h e l i c o i d a l . These aqua t i c p l a n t s n a t u r a l l y grow rooted in 
mud in shallow water , bu t a l so produce roo t s in water when 
not in con tac t with the ground. 

In a d d i t i o n , root h a i r s of 4 t e r r e s t r i a l p l a n t s were s tud­
ied : Zebrina purpusii, the c e l l wal l of which appears i s o ­
t r o p i c in p o l a r i z e d l i g h t (Sassen e t a l . 1981), Lepidium sa­
tivum with a p o s i t i v e b i r é f r i n g e n t wall (Sassen e t a l . 
1981), Pteris eretica and Asplenium vivíparum which, l i k e 
the aqua t i c Ceratopteris thalictroides, a re f e r n s . 

MATERIAL AND METHODS 

The species with water as the i r natural habitat were grown in aquarium tanks. The 
tanks contained a layer of pond mud and were kept at a temperature of 18°C-250C, in 
a regime of 16 h l i gh t and 8 h dark. With the electron microscope root hairs of the 
fo l lowing species were examined: Hydrocharis morsus-ranae (Hydrocharitaceae), S t r a t i -
otes aloides (Hydrocharitaceae), Phragmites aust ra l is (Gramineae), Ranunculus lingua 
(Ranunculaceae), Ruppi a maritima (Potamogetonaceae), Butomus umbel latus (Butoma-
ceae). With the polar iz ing microscope root hairs of the 6 species mentioned as well 
as Aponogeton distachyos (Aponogetonaceae), Azolla carol iniana (Azollaceae), Potamo­
getón crispus (Potamogetonaceae), Potamogetón pectinatus (Potamogetonaceae), Zanni-
che l l i a pel tata (Zannichell iaceae), Cyperus asper (Cyperaceae) and Sagi t tar ia sagi t -
t i f o l i a (Alismataceae) were studied. 
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Of the terrestrial species root hairs of Pteris eretica (Polypodiaceae) and 
Asplenium viviparum (Polypodiaceae) were taken from plants grown in soil, and 
studied with the polarizing microscope. Root hairs of Zebrina purpusn (Commelina-
ceae) from cuttings grown in tap water and root hairs of Lepidium sativum I. (Cruci-
ferae) from seedlings grown on petri dishes in moist air were studied with both the 
polarizing microscope and the electron microscope. 

Polarizing microscopy 

Having no preferential crystal alignment, helicoidal cell walls are isotropic be­

tween crossed polarizers (cf. Preston 1974). Birefringence of untreated hairs as 

well as of hairs treated with hydrogen peroxide/glacial acetic acid (1:1
f
v/v) 

(Н2О2/НАС) was determined with the polarizing microscope (Leitz HM Pol). 

Single wall preparations were prepared as described for electron microscopy. 

Electron microscopy 

Thin sectioning and shadow-casting were carried out as described by Emons and 
Uolters-Arts (1983). The dry-cleaving technique for cell walls (Sassen et al. 1985) 
was used for Zebrina purpusii. This method does not differ essentially from 
shadow-casting, but cells are critically-point-dried prior to cleaving and larger 
surfaces of inner wall may be obtained. 

Specimens were examined with a Philips EM 201 electron microscope. 

R E S U L T S 

В i refringenс e 

Table 1 shows birefringence of young growing root hairs 

of all species studied in this respect including the species 

of the present study. 

Of the 16 species of aquatic plants examined, only root 

hairs of Ranunculus lingua are positively biréfringent, root 

hairs of the other species are optically isotropic (Table 

I). 

Isotropy in the polarizing microscope is a strong indica­

tion for helicoidal cell wall texture. But a random texture 

is also isotropic and a helical texture with alternating 45° 

helices as well as a single helix with 45° pitch will also 

be nearly isotropic in whole mounts (Frey-Wyssling 1976). 

The possibility of a single helix could, however, be can­

celled out by examining single wall preparations. 

Young root hairs of the terrestrial plants (Table 1) are 

positively biréfringent with the exception of all Equiseta-

ceae, Zebrina purpusii, Tradescantia albiflora, Impatiens 
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walleriana and Coleus Ыитеі, which are isotropic in polar­

ized light. 

Cell wall texture in aquatic plants 

Thin transverse as well as longitudinal sections of Hydro-
char is morsus ranae root hairs show two arcs of the helicoi­

dal wall (Fig. 1). The outer layer consists of randomly ori­

ented microfibrils. 

Surface preparations show the inner wall microfibrils a-

ligned in parallel within a lamella. Underneath the inner la­

mella the second innermost lamella is seen and often it is 

possible to discern a third lamella. An angle of approx. 

35° can be observed between the orientations of microfibrils 

in successive lamellae (Fig. 3). Looking from the cytoplasm 

and going from former to later deposited lamellae the rota­

tion mode of the helicoid is clockwise. In Stratiotes aloi-
des up to 4 helicoidal arcs are formed in the full-grown 

hair (Fig. 2). The angle between microfibril orientations in 

adjacent lamellae is approximately 30°. The rotation mode 

is clockwise. 

A helicoidal layer consisting of only one half arc is 

formed in Butomus umbellatus, three arcs in Phragmites and 

up to twelve arcs in Ruppia maritima (data not shown). 

The root hair wall of .Ranunculus lingua was prepared by 

shadow-casting (Fig. 4), and proved to be exceptional for an 

aquatic plant. Microfibrils align more or less in the direc­

tion of the long axis of the hair, which agrees with the ob­

servation that the wall is positive biréfringent in the po­
larizing microscope. This wall texture is comparable to the 
root hair wall texture of most terrestrial plants. 

Cell wall texture in terrestrial plants 

The inner layer of the root hair of Lepidium sativum 
(Fig. 5) has axial microfibril alignment. It has to be noted 
that in cell wall preparations of root hairs with axial mi­
crofibril alignment some transverse single microfibrils do 
always occur. 
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Fig. 1. 

Thin section of cell wall of root hair of Hydrocharis, showing two arcs of the 

helicoidal cell wall. x45 500. Bar: 500 nn. 

Fig. 2. 

Thin section of cell wall of root hair of Stratiotes aloides, showing three 

helicoidal arcs. x45 500. Bar: 500 nm. 

Fig. 3. 

Surface view of cell wall inner side of Hydrocharis root hair, showing two 

consecutive fibril lamellae with an angle of approx. 35° between microfibril 

orientations in adjacent lamellae and a clockwise helicoid rotation. Rotation mode 

is determined looking from the cytoplasm and going from former to later deposited 

fibril lamellae. Pointer: long axis of hair. x45 500. Bar: 500 nm. 

Fig. 4. 

Surface view of inner cell wall of root hair of Ranunculus lingua, prepared by 

shadow-casting, showing microfibrils more or less in the direction of the long axis 

of the hair. Pointer: long axis of hair. x45 500. Bar: 500 nm. 

Fig. 5. 

Surface view of inner cell wall of root hair of Lepidium sativum, prepared by 

shadow-casting, showing microfibrils predominantly in the longitudinal direction. 

Pointer: long axis of hair. x45 500. Bar: 500 nm. 

Fig. 6 a-d. 

Surface views of inner cell wall preparations of root hair of Zebrina purpusii, 

obtained by dry-cleaving, taken at various distances from the hair tip, showing that 

microfibrils of the innermost wall lamella occur at different orientations with 

respect to the long axis of the hair. The angle between adjacent microfibril 

lamellae is approximately АО". The rotation mode is counterclockwise. Pointer: long 

axis of hair. x19 200. Bar: lOOOnm 
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The inner cell wall of the Zebrina purpusii root hair is 
shown in Figs. 6a-d. The micrographs are taken at various 
distances from the hair tip and show that microfibrils of 
the innermost wall lamella occur at various orientations, a 
typical feature for helicoidal cell walls of tip-growing 
cells. The angle between successive lamellae is approx. 40°; 
the rotation mode is counterclockwise, different from the 
rotation mode in Hydrocharis and Stratiotes. 

DISCUSSION 

Shadow-casting and dry-cleaving yield surface views of 
the inner cell wall and thus give data on fibril density 
within a lamella, fibril angle between lamellae, fibril 
angle with long axis of the cell, and rotation mode of the 
helicoid. Because microfibrils in freeze-fractured material 
are straight (Emons 1985) wavy patterns of microfibrils ob­
served in dry-cleaved preparations are likely to be induced 
by the method. However, in dry-cleaved preparations net mi­
crofibril orientation is not altered. 

The helicoidal cell wall texture in root hairs 

In biological systems the chemistry of helicoidal struc­
tures varies. The basic requirements seem to be long crystal­
line rods and a suitable matrix (Neville and Levy 1984). In 
plant cells helicoids are mostly built of cellulose microfi­
brils in a polysaccharide matrix. In the helicoidal root 
hairs studied, surface views show that fibrils within a la­
mella are not contiguous. Fibril density varies between pre­
parations, and is dependent on the stage of lamella comple­
tion. The angle between microfibrils of adjacent lamellae in 
root hairs ranges from an average angle of 23° in Limnobium 
stoloniferum (Pluymaekers 1982) to 40° in Equisetum hyemale 
(Emons, Wolters-Arts 1983). Roland et al. (1983) have hypo­
thesized that the rotation mode is the same for all helicoi­
dal plant cell walls. However, in root hairs the rotation 
mode, looking from the cytoplasm and according to the se­
quence of deposition may be clockwise as in Hydrocharis 
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(Fig. 3) and Stratiotes, as well as in Limnobium 
(Pluymaekers 1982) and Ceratopteris (Meekes 1985) or counter 
clockwise as in Zebrina (Figs. 6 a-d) and Equisetum (Emons 
and Wolters-Arts 1983), but is constant within one species. 
This observation constitutes constraints for possible models 
of helicoid formation. Neville (1985) speculated that all 
cell wall helicoids may have left-handed rotation as a conse­
quence of the hypothesis that "Hemicellusoses self-assemble 
to form a cholesteric liquid crystal, which is in turn res­
ponsible for interacting with, and orienting cellulose micro­
fibrils into a helicoid". 

Occurrence of helicoids in cell walls of root hairs 

The helicoidal texture has been argued to be the most 
effective wall texture for root hairs of aquatic plants 
(Sassen et al. 1985). Indeed, all but one of the studied 
hairs of aquatic plants have a helicoidal wall texture. The 
exception is .Ranunculus lingua, which is rooted in the 
submerged substratum. However, other aquatic species, for 
instance Stratiotes, may also root in the mud. In no species 
a difference in structure was found between root hairs of 
free floating roots and roots growing in mud. Absence of 
influence of the substrate has been shown for Equisetum 
hyemale (Emons, 1986). 

Root hair initiating cells, trichomes, may be of two 
types, type I or type II (Leavitt 1904, Cormack 1962). In 
type I any rhizodermal cell may form a hair after the cell 
has extended considerably. Trichomes of type II originate 
early in the development of the rhizodermis. Only predeter­
mined cells, trichoblasts, form root hairs. An asymmetric 
division leads to the formation of a trichoblast and has 
been shown for Hydrocharis to be predicted by the presence 
of a pre-prophase band of microtubules (Gunning et al 1978). 

Most species with a helicoidal cell wall investigated in 
the present study fall within type II (Table I), also the 
terrestrial Commelinaceae and Equisetaceae. .Ranunculus 
lingua, which proved to be exceptional with respect to wall 
texture, has trichome type I root hairs. The grasses, howev­
er, do not show coincidence between trichome type and wall 
texture (Table 1). 
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TABLE 1 

Cell wall texture of young growing root hairs of different plant species, 
studied with polarizing microscopy (Birefringence) and electron microscopy 
(Texture); distribution of trichome type I and II cells according to 
Leavitt (1904). Trichome type I cells are not predetermined in the nascent 
epidermis; trichome type II cells are predetermined to differentiate in 
root hair forming trichoblasts. (I) and (II) means that trichome type is 
hypothesized from related species. 

Plant species 

EQUISETINAE 
Equisetum arvense 

Equisetaceae 

Equisetum fluviatile 
Equisetaceae 

Equisetum palustre 
Equisetaceae 

Equisetum pratense 
Equisetaceae 

Equisetum sylvaticun 
Equisetaceae 

Equisetum telmateia 

Equisetaceae 
Equisetum hyemale 

Equisetaceae 

Equisetum ramos i ss imum 

Equisetaceae 

Equisetum scirpoides 
Equisetaceae 

Equisetum variegatum 
Equisetaceae 

FILICES 

*Pteris crética 
Polypodiaceae 

*Asplemum viviparum 
Polypodiaceae 

Trichome 

Type 

II 

II 

(II) 

(II) 

(II) 

(Π) 

II 

II 

II 

и 

I 

(I) 

Ceratopteris thalictroides 

Parken aceae 

*Azolla caroliniana 

Azollaceae 

M 

ι Birefrin­

gence 

none
a ) 

none 

none 

none
3
) 

none
a
> 

none
a ) 

none 

none
a ) 

none
a ) 

none 

pos. 

pos. 

none 

none 

Wall 

Texture 

helicoidal
35 

helicoidal 

helicoidal
b) 

helicoidal
3
' 

helicoidal
c
> 

Environment 

terrestrial 

aquatic 

marshland 

terrestrial 

terrestrial 

terrestrial 

terrestrial 

terrestrial 

terrestrial 

terrestrial 

terrestrial 

terrestrial 

aquatic 

aquatic 

(continued on next page) 

32 



(TABLE 1 continued) 

DICOTYLEDONAE 
Urtica dioica 

Urticaceae 
Urtica cannabina 

Urticaceae 
Parietaria officinalis 

Urticaceae 
•Ranunculus lingua 

Ranunculaceae 
*Lepidium sativum 

Crue i ferae 
Sinapis alba 

Cruci ferae 
Raphanus sat ivus 

Crue i ferae 
• Impatiens walleri ana 

Balseminaceae 
+Coleus blumei 

Labiatae 

pos. 

pos.d) 

pos.d> 

pos. 

pos. 

pos. 

pos. 

noned) 

noned> 

helicald> 

axial 

axiale> 

axialf> 

terrestrial 

terrestrial 

terrestrial 

aquatic/ 
marshland 

terrestrial 

terrestrial 

terrestrial 

terrestrial 

terrestrial 

MONOCOTYLEDONAE 
•Sagittaria sagittifolia 

Alismataceae 
*Butomus umbel latus 

Butomaceae 
*Stratiotes aloides 

Hydrocharitaceae 
•Hydrocharis morsus ranae 

Hydrocharitaceae 
Limnobium stoloni ferum 

Hydrocharitaceae 
•Potamogetón crispus 

Potamogetonaceae 
•Potamogetón pectinatus 

Potamogetonaceae 
•Ruppia maritima 

Potamogetonaceae 
•Zannichellia peltata 

Zanm'chel I iaceae 
•Aponogeton distachyos 

Aponogetaceae 

(II) none 

11 none 

11 none 

(II) none 

(II) none 

(II) none 

(ID none 

II 

II 

aquatic 

helicoidal aquatic 

helicoidal aquatic 

helicoidal aquatic 

helicoidalS' aquatic 

aquatic 

helicoidal 

aquatic 

aquatic 

aquatic 

aquatic 

(continued on next page) 
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(TABLE 1 continued) 

"Allium сера 

Li liaceae 

Tradescantia a Ibi f lora 

Commelinaceae 

•Zebrina purpusi i 

Conine l inaceae 

*Cyperus asper 

Cyperaceae 

Tri ti cum monococcum 

Gramineae 

•Phragmites australis 

Gramineae 

Zea mays 

Gramineae 

(II) 

(II) 

II 

none«) 

none 

none 

pos 

none 

pos 

helicoidal
115 

helicoidal 

axial
1
'' 

helicoidal 

axialJ) 

terrestrial 

terrestrial 

terrestrial 

aquatic 

terrestrial 

aquatic 

terrestrial 

* these species investigated in this study 

+ these species need further investigation 

° Allium is a special case. In many Allium species root hairs do not 

originate in the epidermis, but in the hypodermal layer, or exoderm. 

Leavitt (1904) compares the short piliferous cells of the exoderm with 

trichome type II. 

a) Emons 1986 

b) Emons 1982, Emons and Uolters-Arts 1983 

c) Meekes 1985 

d) Sassen et al. 1981 

e) Belford and Preston 1961 

f) Newcomb and Bonnett 1965 

g) Pluymaekers 1982 

h) Sassen et al. 1985 

i) Pluymaekers 1979 

j) Frey-Wyssling and Muhlethaler 1949 
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The formation of a helicoidal cell wall texture 

Microtubules have been hypothesized to control microfi­
bril orientation (Robinson and Quader 1982). Hence, the nas­
cent microfibrils would be expected to parallel the microtu­
bules. However, this is not observed in root hairs with he­
licoidal cell walls: Hydrocharis (Traas, personal communica­
tion), Equisetum hyemale (Emons 1982, Emons and Wolters-Arts 
1983), Ceratopteris thalictroides (Meekes 1985), Linmobium 
stoloniferum (Traas et al. 1985). 

Because coincidence in orientation between microtubules 
and the extracellular crystalline rods has never been repor­
ted in animal cells, self-assembly has been considered as an 
alternative model for the control of helicoid formation 
(Neville and Levy 1984, Neville 1985, 1986). The self-assem­
bly process is thought to occur in the periplasm (Roland 
1979) and is easily disturbed (Reis et al. 1985). In self-as­
sembly the face involved in helicoidal control is the inner 
surface of the previously deposited wall lamella. 

The control of microfibril orientation is far from being 
understood. The hypothesis that microtubules control microfi­
bril orientation shifts the problem to explaining the orien­
tation of microtubules. Coincidence in microtubule- and mi­
crofibril alignment has been found especially in expanding 
cells (see review: Robinson and Quader 1982). This coinci­
dence has also been found with freeze-substitution in the 
expanding part, the tip, of young growing root hairs (Emons 
and Derksen 1986). The growing cotton hair is different from 
the root hair in that the cotton hair expands not only at 
the tip but over its total length (Willison 1982), while the 
root hair expands only at the tip (Sievers and Schnepf 
1981). Indeed, in the cotton hair, microtubules and microfi­
brils are in parallel (review: Ryser 1985). 

Microtubule and microfibril parallelism has further been 
found in non-expanding cells where local wall thickening 
occurs, as in differentiating x^lem vessels (Falconer and 
Seagull 1985, review: Robinson and Quader 1982), but not in 
full-grown cells with wall deposition over the entire sur­
face of the cell. 
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Microtubules and m i c r o f i b r i l s both funct ion in morpho­
genes is and are p a r a l l e l in expanding c e l l s (Hardham 1982, 
Busby and Gunning 1984), but t h e r e i s i n s u f f i c i e n t proof 
t h a t microtubules o r i e n t a t e the nascent m i c r o f i b r i l s . Also 
Hahne and Hoffmann (1985) concluded t h a t microtubules e x e r t 
no in f luence on the o r i e n t a t i o n of m i c r o f i b r i l s . 

The study of h e l i c o i d a l c e l l wal l d e p o s i t i o n may prove t o 
be p a r t i c u l a r l y important to discover the o r i e n t a t i n g mecha­
nism of m i c r o f i b r i l s in p l a n t c e l l s . 
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ABSTRACT 

Two groups can be distinguished within the ten species of Equisetum, listed in the 

Flora Europaea, based on cell wall texture of root hairs. This distinction coincides 

with the division of the genus Equi set un into two subgenera: Equisetum (horsetails) 

and Hippochaete (scouring rushes). All species of the subgenus Equisetum have a 

helicoidal cell wall texture in young growing root hairs as well as in full-grown 

hairs. All species of the subgenus Hippochaete deposit an additional inner cell wall 

layer against this helicoidal layer when elongation has stopped. The microfibrils in 

this additional layer do not form a helicoidal texture, but are helically arranged, 

forming a Z-helix. 

The presence of a helical layer in full-grown hairs is not a prerequisite for 

growth in soil but an exclusively helicoidal root hair wall texture might be favoura­

ble for life in water. The wall texture is not influenced by the consistency of the 

substratum. 

La "Flora Europaea" distingue dix espèces du genre Equisetum. La présente étude 
montre que la texture des parois cellulaires des poils radicaux permet de distinguer 
deux groupes parmi les espèces. Cette distinction coïncide avec la division du 
genre Equisetum en deux sous-genres: Equisetum et Hippochaete. Toutes les espèces du 
sous-genre Equisetum ont une texture hélicoïdale, aussi bien dans les poils jeunes 
en croissance que dans les poils pleinement développés. Toutes les espèces du 
sous-genre Hippochaete déposent une couche supplémentaire à l'intérieur d'une couche 
hélicoïdale de la paroi cellulaire une fois que la croissance s'est arrêtée. Les 
microfibrilles de la couche supplémentaire ne sont pas déposées hélicoïdalement 
mais s'arrangent dans une hélix-Z. 

La présence d'une couche hélicale dans des poils pleinement développés n'est pas 
une qualité requise pour la croissance en terre, mais une texture de parois entière­
ment hélicoïdale pourrait être favorable à la situation aquatique. La texture 
cellulaire n'est pas influencée par la consistence du substratum. 
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INTRODUCTION 

The Equisetinae, belonging to the Pteridophyta, appeared 
and speciated in the Palaeozoic (ARNOLD 1947). Today, only 
one family, the Equisetaceae, which appeared in the Carbon­
iferous, persists. It is represented by the single genus 
Equisetum. 

BRAUN (1844) divided the genus into two groups: Equiseta 
speiropora, the horsetails, with irregularly dispersed sto­
mata over the whole surface of the grooves of the stem and 
Equiseta stichopora, the scouring rushes or winter-Equiseta, 
with irregularly dispersed stomata in two distinct lines or 
bands, one on each side of the grooves. 

The stomata of the horsetails appear as pores, flush with 
the epidermis; the stomata of the scouring rushes are sunk­
en, a difference considered by MILDE (1865) to be important 
enough to separate the group into two genera, Eu-Equisetum 
and Hippochaete. MANTÓN (1950) demonstrated a marked differ­
ence in chromosome size in comparing Eu-Equisetum with Hippo­
chaete, Eu-equisetum having smaller chromosomes; she, howev­
er, considered them to be subgenera. HAUKE (1963,1978) also, 
in his monographs on Equisetum, rejected a division into two 
genera since the similarities in general morphology, anatomy 
and reproductive system outweigh the differences in stomatal 
structure and chromosome size. He argues, however, that 
treating them as sections would underestimate the differ­
ences that do exist. He therefore considered the family 
Equisetaceae to be monogeneric, the single genus Equisetum 
consisting of two subgenera, Equisetum and Hippochaete. 

In an extensive study on the cell wall texture of the 
root hair of Equisetum hyemale (EMONS and WOLTERS-ARTS 1983) 
the secondary wall layer, i.e. the texture of microfibrils 
deposited in the not growing hair tube against the randomly 
textured primary wall layer of the young tip-growing hair, 
was shown to be of the helicoidal type. The term helicoidal 
was first applied to plant cell walls by Bouligand (1972). 
The helicoidal cell wall texture is made up of a stack of 
parallel-fibred lamellae, one fibril thick; microfibril 
orientation in subsequent lamellae is progressively rotated 
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(NEVILLE and LEVY 1984, EMONS and WOLTERS-ARTS 1983). The he­
licoidal wall texture has been found primarily in root hairs 
of aquatic plants (SASSEN et al. 1981), but in the full-
grown hair of Equisetum hyemale a helical wall texture is de­
posited against the helicoidal wall layer, causing positive 
birefringence in the polarizing microscope (EMONS and 
WOLTERS-ARTS 1983). The helical layer is not found in aquat­
ic plants, but terrestrial plants show only an axial or heli­
cal microfibril orientation in the secondary wall layer of 
their root hairs (SASSEN et al. 1981). Although E. hyemale 
is a terrestrial plant, it has become adapted for dispersal 
from stem fragments carried by water (WAGNER and HAMMITT 
1970). 

The aim of the present study was to investigate a). wheth­
er the cell wall of young root hairs of Equisetum hyemale is 
also helicoidal (the aquatic trait) in soil and in agar me­
dia of different consistencies, b). whether the other terres­
trial species of Equisetum acquire the additional helical 
wall layer (the terrestrial feature) and c). whether Equise­
tum fluviatile, an aquatic, and Equisetum palustre, a marsh­
land plant, lack the additional helical wall layer (the ter­
restrial feature). In the first instance, data were obtained 
with the polarizing microscope. 

Two problems were addressed using the transmission elec­
tron microscope: 1). Do the isotropic hairs have a helicoid­
al wall texture, as described for E. hyemale? This question 
is relevant, because a hair with random microfibril align­
ment and with alternating 45° helices will also be isotrop­
ic. As examples E. fluviatile, E. palustre and E. varíegatum 
were taken. 2). Do the full-grown isotropic hairs indeed 
lack a helical fibrillar alignment. The helical layer may be 
too thin to detect with the polarizing microscope. As ex­
amples E. fluviatile and E. palustre were studied. 

All of the European species of Equisetum, covered in the 
Flora Europaea (TUTIN et al. 1964), were studied. 
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MATERIAL AND METHODS 

Growth conditions 

Ten different species of Equisetum were grown in the botanical garden of the 

University of Nijmegen: E. arvense L., E. fluviatile L. (= E. limosum L., E. 

heleocharis Ehrh.), E. hyemale L., E. palustre L., E. pratense Ehrh., E. ramosis-

simum Desf., (= E. campanulatum Poiret), E. scirpoides Michx, E. sylvaticum L., E. 

variegatum Schleicher ex Weber & Mohr, and E. telmateia Ehrh. (= E. maximum auct., 

E. majus Gars.). Root hairs were collected from plants living in situ: water in the 

case of E. fluviatile, marsh in the case of E. palustre and soil in all other cases. 

In addition, stem cuttings containing several nodes were grown on an aqueous soil 

extract (for preparation, cf. Meekes 1985) under greenhouse conditions: 18" С to 25° 

C, 1000 lux, with a light/dark regime of 16/8 h. In this soil extract, stem cuttings 

of E. fluviatile, E. hyemale, E. palustre, E. ramosissimum, E.scirpoides and E. 

variegatum developed roots with root hairs. However, E. arvense, E. pratense, E. 

sylvaticum and E. telmateia did not develop roots on stem cuttings in an aqueous 

growth medium. Root hairs of Equisetum hyemale, grown in different agar concentra­

tions (0.5%, 1%, 1.5%, 2%) in a similar soil extract, were also studied. 

Light microscopy 

Birefringence of root hairs of different ages was determined by means of a polar­

izing microscope (Leitz HM Pol) using the procedure of Preston (1974). Both fresh 

root hairs and hairs treated with hydrogen peroxide/glacial acetic acid (HjOj/HAc 

1:1, v/v) were used. This treatment removes the cell cytoplasm and the cell wall 

matrix, leaving the cellulose microfibriIs intact. For fibril angle measurement, 

single wall preparations obtained by cutting root hairs obliquely with a razor 

blade, were treated with the dichroitic stain eh Iorozine-iodine to enhance 

birefringence (cf., EMONS and WOLTERS-ARTS 1983). 

Electron microscopy 

Two procedures were used to visualize cell wall microfibrils . Uhole roots with 

hairs, fixed in 2% glutaraldehyde in phosphate buffer pH 7 for I hour, were treated 

with Н2О2/НАС for 1 hour at 100° in order to remove all matrix substances, which 

obscure the microfibrils. The material was washed in buffer, dehydrated in aqueous 

ethanol and flat embedded in Spurr's resin. Thin sections were stained with a 3% 

aqueous solution of potassium permanganate. 

To visualize the innermost layer of the cell wall, i.e. the last deposited micro­

fibril lamella situated at the plasma membrane, fixed hairs treated with H2O2/HAC 

were mounted on poly-L-lysine coated grids, critical point dried, cleaved, and shad­

owed with platinum and carbon (for procedure cf. Sassen et al. 1985). 

Specimens were examined in a Philips EM 201 electron microscope at 60 KV. 

Herbarium vouchers of the material studied are deposited in the Rijksherbarium of 

the University of Leiden. 
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RESULTS 

Polarizing microscopy 

Isotropy in the polarizing microscope means that none of 

the orientations of crystalline microfibrils of the cell 

wall predominates. Positive birefringence is caused by a 

predominance of the axial alignment of the wall crystalline 

microfibrils. 

The mature hair is incrusted with a tawny brown sub­

stance, which appears at the time that hairs become positive 

biréfringent. To be sure that birefringence is not caused by 

this substance both fresh hairs and hairs treated with 

HoOn/HAc, which removes all material except the microfi­

brils, were used. But no difference in birefringence was 

found between treated and untreated hairs. 

Table 1 summarizes the data for the various Equisetum 
species. In all species, the young growing hairs were iso­

tropic in polarized light. The full-grown hairs in all of 

the species of the subgenus Equisetum were isotropic while 

those of all species of the subgenus HippochaeCe showed posi­

tive birefringence, a phenomenon which started at the base 

of the hair. Hairs grown in soil and hairs grown in an aque­

ous medium exhibited similar optical behaviour in polarized 

light. 

The influence of the consistency of the medium on root 

hairs of E. hyemale is shown in Table 1. Hairs grown in 

different media exhibited the same optical behaviour: young, 

growing hairs were isotropic and full-grown hairs showed 

positive birefringence. 

In full-grown hairs of the species of the subgenus Hippo-
chaete an angle of mean microfibril direction with the long 

axis of the hair could be measured in single wall prepara­

tions (Table 2). This angle varied between 9° and 16° in E. 
ramosissimum and was 25° to 42° in E. variegatum, indicating 

that the overall fibril direction in full-grown hairs can be 

described as a helix with a pitch angle of more than 45°, 

causing positive birefringence in the polarizing microscope. 

In all Hippochaete a Z-helix was found. 
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Fig. 1. 

Root hair of Equisetum hyemale in the polarizing microscope: a: hair seen without 

analyzer to show the shape of the flared end; b and c: hair between crossed polariz­

ers: b: hair positioned 45° to the directions of polarizer and analyzer: the whole 

hair is brightest in this direction, which is perpendicular to the extinction direc­

tion; c: hair rotated such that the single wall layer (flared end) is brightest. The 

angle between the orientations b and с corresponds with the mean angle microfibrils 

in the root hair make with the long axis of the hair (cf. EMONS and WOLTERS ARTS 

1983). ХІ800. 

Fig. 2,3,4. 

Longitudinal thin sections of the root hair wall of E. hyemale (2a,b), E. 

fluviatile (3a,b) and E. palustre (4a,b); a: young hairs, b: full-grown hairs, r: 

outer wall layer with randomly oriented microfibrils. This layer is the same in all 

species, is deposited at the tip of the growing hair and lines the tube of the whole 

hair; h: helicoidal layer, consisting of parallel-fibred lamellae in rotating orien­

tations; L: helical layer in which microfibrils make an angle of less than 45° with 

the long axis of the hair. This layer is present in E. hyemale but not in E. 

fluviatile and E. palustre. Scale bar: 500 nm. 
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Fig. 5,6. 
Shadow-cast preparations of young growing root hairs of E. hyemale (5) and E. 

variegatum (6), showing the inner wall layer, the layer against the plasma membrane, 
in surface view: the lamella under deposition (double arrow) and the previous lamel­
la (single arrow) in a different orientation can be observed. Fibrils within a com­
pleted lamella are not contiguous. Pointer designates long axis of root hair. Scale 
bars: 1000 nm. 

Fig. 7a,b 
Fig. 7a is a schematic representation of the cell wall texture in an Equisetum 

root hair. Randomly oriented microfibrils, deposited at the hair tip, form the 
outside of the whole hair. The helicoidal texture consists of superimposed lamellae, 
each of which is built up of parallelly oriented microfibrils. In subsequent lamel­
lae there is a progressive rotation of the microfibril orientation. In full-grown 
hairs of the subgenus Hippochaete the innermost layer consists of microfibrils orien 
ted in a Z-helix. 

Fig.7b shows how the helicoidal wall is seen in section and in surface view. 
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Fig. 1 shows a fractured hair with flared end of E. 
hyemale between crossed polarizers: the angle between the 
positions of the hair in lb, the position in which the whole 
hair is brightest, and 1c, position in which the single wall 
is brightest, corresponds to the mean angle microfibrils 
make with the long axis of the hair. 

Single wall preparations of the subgenus Equisetum showed 
no birefringence, ruling out the possibility of wall texture 
with a 45° helix, which would also be nearly isotropic in 
whole mounts. 

Electron microscopy 

Data on wall texture, obtained with the polarizing micro­
scope, were verified with the electron microscope. It is not 
necessary to confirm helical wall texture with the electron 
microscope in positive biréfringent hairs, since, in single 
wall preparations, the mean microfibril angle can be measur­
ed. 

Figs. 2a, 3a and 4a show the wall texture in thin longi­
tudinal sections of young growing hairs of E. hyemale, E. 
fluviatile and E. palustre respectively. Fig. 2a shows one 
and a half arcs of the helicoidal wall in Equisetum hyemale, 
Fig. 3a shows two and a half arcs in E. fluviatile and in 
young E. palustre (Fig. 4a) the random wall and an initial 
alignment of the helicoidal layer are observed. 

A schematic representation of the various wall orienta­
tions is given in Figs. 7a and 7b. The ambiguity in the ter­
minology of right and left-handed helices in the botanical 
bibliography on chiral problems is avoided by calling the 
helix shown in Fig. 7a a Z-helix and a helix of opposite 
sign an S-helix (Frey-Wyssling 1976). 

The helicoidal wall seen from the cytoplasmic side of the 
hair shows successive fibril lamellae oriented in progres­
sively further rotated planes. Fig. 5 shows this for a young 
E. hyemale root hair. Fig. 6 shows the helicoidal pattern in 
surface view from the cytoplasmic side in a root hair of E. 
variegatura: the lamella under deposition can be seen in a 
transverse orientation to the long axis of the hair, over­
lying a lamella with oblique orientation. From Figs. 5 and 6 

49 



—helical 
z-helix 

—helicoidal 

-random 

transverse 
section 

7a 

-surface view 

longitudinal 
section 7 b 

50 



it is clear that microfibrils within a lamella are not con­
tiguous; there is much space between adjacent microfibrils. 

Fig. 2b shows this helical layer in a thin longitudinal 
section. Though lamellae with different microfibril orienta­
tions do alternate, in all of the lamellae the microfibrils 
form a Z-helix of more than 45° pitch angle around the hair. 
Neither lamellae with transversely oriented microfibrils nor 
S-helices were found at this stage of microfibril depo­
sition. It is the helically arranged layer which causes the 
positive birefringence in the polarizing microscope. The 
layer becomes very thick in these persistent hairs, making 
the lumen of the cell very narrow. Full-grown hairs of E. 
palustre and E. fluviatile, subgenus Equisetum, were 
analyzed with the electron microscope up to a known age of 5 
weeks and never exhibited this helical wall texture (Figs. 
3b and 4b). Also the persistent hairs of E. fluviatile and 
E. palustre grown in situ and much older than 5 weeks were 
isotropic in polarized light, whereas the E. hyemale root 
hairs showed positive birefringence at the base of the hair 
when they were 3 to 9 days old. In hairs at an age of 5 
weeks 6 arcs of the helicoidal wall were formed in E. 
fluviatile and not more than 2 arcs in E. palustre. 

DISCUSSION 

A helicoidal wall texture consists of successive lamellae 
with parallel fibrils in each of them. In each subsequent 
lamella the fibril orientation is rotated, in a regular 
manner, with respect to the orientation in the previous la­
mella. In thin slightly oblique sections, this wall texture 
appears as arcs. One arc corresponds to a 180° rotation of 
the helicoid. For discussion of this wall texture compare 
SASSEN et al. 1981, PLUYMAEKERS 1982, EMONS 1982, EMONS and 
WOLTERS-ARTS 1983, NEVILLE 1984, BONFANTE FASOLO and VIAN 
1984, REIS et al. 1985. 

Boiling of hairs in H2O2/HAC does not alter microfibril 
orientation in plant cells: Equisetum hyemale root hairs pre­
pared by freeze-fracturing show a similar helicoidal cell 
wall texture (EMONS 1985). 
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Table 1 

Birefringence of root hairs of Equisetum species, grown in different media 

subgenus 

Equisetum 

Hippochaete 

spec i es 

E. 
E. 
E. 

E. 
E. 

E. 

E. 

E. 

E. 

E. 

arvense 

fluviatile 

palustre 

pratense 

sylvaticum 

telmateia 

hyemale 

ramos ι ss ι mum 

scirpoides 

variegati um 

medium 

soil 

water 

marsh 

water 

soi l 

soi l 

soi l 

soi l 

water 

agar, 

agar, 

agar, 

agar, 

soil 

water 

soil 

water 

soi I 

water 

0.5% 

1% 
1.5% 

2% 

birefi 

young 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

none 

гingenee 

hairs 

biregringence 

full-grown hairs 

none 

none 

none 

none 

none 

none 

none 

positive 

positive 

positive 

positive 

positive 

positive 

positive 

positive 

positive 

positive 

positive 

positive 

Table 2. 

Mean microfibril angle with the long axis of full-grown hairs 

measured on single wall preparations in the polarizing microscope 

species microfibril-

angle 

number 

of hairs 

E. hyemale 

E. ramosi ssimun 

E. scirpoides 

E. variegatum 

150-4Г 
9°-16β 

2Γ-42° 
250-420 

116 
14 
11 
20 
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Cell wall texture and environment 

The helicoidal wall texture has been found in root hairs 
of aquatic plants, while hairs of terrestrial plants have an 
axial or helical microfibril pattern (SASSEN et al. 1981, 
SASSEN et al. 1985). The E. hyemale root hair was found as 
an exception, being a terrestrial plant and having a 
helicoidal wall texture in the root hairs, though only when 
young and growing (SASSEN et al. 1981, EMONS and 
WOLTERS-ARTS 1983). This helicoidal wall texture is now 
shown to be present not only in young hairs grown in water, 
but also in hairs grown in soil and hairs grown in different 
agar concentrations. This trait, therefore, is not 
influenced by the consistency of the substrate, but is 
species specific. 

E. fluviatile, an aquatic Equisetum, and E. palustre, a 
marshland Equisetum lack a helical fibril pattern when full-
grown. E.sylvaticum, E. pratense, E. telmateia and E. 
arvense, normally growing in soil, however, also do not ac­
quire this additional wall texture, indicating that a terres­
trial plant may have only a helicoidal wall texture in the 
root hair cell wall and that the presence of a helical (or 
axial) layer is not a prerequisite for growth in soil as the 
natural medium. 

Cell wall texture as a systematic trait 

All of the species without the additional helical cell 
wall layer in full-grown root hairs belong to the subgenus 
Equisetum, and none of the species with this layer is includ­
ed in this subgenus. It is clear that none of the studied 
species of the subgenus Equisetum shows positive birefrin­
gence, while the species in the subgenus Hippochaete all 
have positive biréfringent thick walled root hairs when 
full-grown. The angle of this helix with the long axis of 
the hair (90°-helix pitch angle), measured on single wall 
preparations, varied from 9° to 16" for E. ramosissimum and 
from 25" to 42° for E. variegatura. The significance of this 
difference is not clear. How microfibril helices in root 
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h a i r s are o r i e n t e d i s not known. In EquiseCum hyemale the 
c o r t i c a l microtubules , which are hypothes ized t o o r i e n t a t e 
the nascent m i c r o f i b r i l s (HEATH and SEAGULL 1982) are not 
p a r a l l e l to the l a s t - d e p o s i t e d m i c r o f i b r i l s (EMONS 1982). 
Also in E. fluviatile, microtubules remain a x i a l l y a l i g n e d , 
while m i c r o f i b r i l s a r e depos i ted in s u s s e s s i v e l y d i f f e r i n g 
o r i e n t a t i o n s (EMONS, u n p u b l i s h e d ) . N e v i l l e and Levy (1984) 
have suggested sel f-assembly for h e l i c o i d a l c e l l w a l l s . 

In conclus ion, the a d d i t i o n a l h e l i c a l inner c e l l wal l 
l ayer in full-grown h a i r s i s not a s p e c i a l t r a i t of the 
t e r r e s t r i a l spec ies but of the subgenus Hippochaete. This 
c o r r o b o r a t e s the d i v i s i o n of the genus EquiseCum i n t o two 
subgenera. 
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Summary 

The secondary cell wall layer of the young root hair of Equisctum 

hyemale (L) has a helicoidal texture The cortical microtubules in 

these hairs maintain an аяіаі alignment while microfibnls are being 

deposited with a difTerent orientation in each subsequent layer The 

role of cortical microtubules in microfibril orientation is disputed 

Keywords Microtubules Microfibril orientation, Helicoidal cell 

wall Root hair Equisetum hyemale 

1. Introduction 

In many plant cell walls the cellulose microfibrils are 

laid down in a highly organized pattern Studies on 

microfibril alignment center around the hypothesis that 

microfibril orientation is determined by the direction of 

microtubules subjacent to the cell wall (NEWCOMB 

1980) Ever since its postulation (LFDBETTER and 

PORTER 1963) this hypothesis has found much 

experimental support, especially from cell walls with 

parallelly oriented microfibrils (ROBINSON 1977), and 

has been generally accepted Little is known, however, 

about microtubule behaviour during deposition of a 

helicoidal cell wall A helicoidal wall is composed of 

successive parallel fibred lamellae in each of which fibril 

orientation is rotated with respect to that of the 

previous lamella This texture is transient in a growing 

wall, or consolidated m a typical secondary wall 

(ROLAND 1981) The present observations on the 

secondary wall behind the extending tip of root hairs of 

* Correspondence and Repnnis Department of Botany University 

of Nijmegen 6525 ED Nijmegen. The Netherlands 
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Orientation 

Equisetum hyemale (L), common scouring rush, con­

travenes the hypothesis that cortical microtubules direct 

the microfibrils of the cell wall as a general rule 

2. Material and Methods 

Stem cuttings of Equisetum hyemale, containing several nodes, were 

grown on an aqueous soil extract under greenhouse conditions To 

visualize the microfibrils in the cell wall untreated root hairs, still 

attached lo the root, placed between copper plates, were frozen with 

liquid propane in a Cryo-jel device of Balzers Samples were fractured 

at - 100 С in a Balzers double replica device, etched for 2 minutes at 

— 100 С, at 10 ^ lorr and replicated with Platinum'Carbon in a 

Balzers freeze etch unit Replicas were cleaned with 70% sulfuric acid 

In addition whole roots with hairs were treated, for extraction of cell 

wall matrix with H2O2 HOAc (hydrogen peroxide/glacial acetic 

acid) (I 1, v/v) for 1 hour at 100oC, dehydrated and flat embedded 

in Spurrs medium Sections of root hairs were stained with 3 % 

КМпОд for 30 minutes 

To visualize the microtubules whole roots with hairs were primarily 

fixed at room temperature for 2 hours m the culture medium to 

which glutaraldehyde buffered with 0 2 M cacodylate pH 7 2 (final 

concentration 2° o) was added post fixed for 2 hours with 20/o 

osmium tetroxide dehydrated, and flat embedded in Spurrs 

medium Sections of root hairs were stained with saturated aqueous 

uranylacetate for 20 minutes and with leadcitrate for 7 minutes 

Sections were obtained with a Sorvall Porter Blum ultramicrotome 

MT 2 or MT 5000 Specimens were examined in a Philips EM 201 or 

EM 300 eleclronmicroscope at 60 kV 

3. Results and Discussion 

In polarized light the young root hair of Equisetum 

h\emale is isotropic in plane view The cell wall consists 

of an outer layer with a dispersed texture to which an 
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Fig. 1 3 Transmission Electron micrographs of young root hairs of Equisetum hyemalt· 

Fig. 1. Longitudinal thin section of the secondary cell wall showing the characteristic parabolic pattern of the helicoidal wall. Marker bar 1 urn 

Fig. 2. Freeze fracture image of the cell wall Arrow indicates direction of shadowing. Marker bar 1 im 

Fig. 3. Longitudinal thin section through the cortical cytoplasm of the root hair showing microtubules more or less axially aligned. Arrow 

indicates long axis of root hair mt = microtubule Marker bar 1 am 

inner non-extending layer has been deposited (SASSEN el 
al. 1981). In sections ol'hairs treated with H2O2 HOAe 
and stained with К.МПО4 this inner layer shows 
parabolic patterns (Fig. 1); a similar pattern is shown 
after freeze-fracturing of untreated hairs (Fig. 2). All 
observations clearly demonstrate that the inner 
secondary cell wall layer of the young root hair of 
Equisetum hyemule has a helicoidal texture. A similar 
cell wall texture has been observed in root hairs of 
Lmmobium stotomjerum (PLUYMAEKERS 1982. in press). 
Fixation of root hairs with glutaraldehyde/osmium-
tetroxide and staining with uranylacetate leadcitrate 

did not reveal the cell wall texture conclusively, 
although electron-dense lines were observed in these 
preparations. Observations obtained with this method 
have been incorrectly interpreted as indication for 
axially aligned cellulose microfibrils in the cell wall of 
Equisetum hyemale root hairs (HARRIS 1979). 
Microtubules were visualized by this last method. 
Cross sections of young root hairs show transverse 
profiles of microtubules only. In tangential sections 
through the cortical cytoplasm the microtubules are 
oriented more or less parallel to the long axis of the hair 
(Fig. 3). The microtubules remain axially aligned 
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Fig 4 Angular deviation of microtubules from the long axis of young 

root hairs of Equiselum hxemale 0 - long axis of the hair 632 

microtubules from 57 sections from 16 root hairs 

during wall deposition, although they subtend micro­
fibrils with a different orientation in each subsequent 
layer In this study 632 microtubules from 57 sections 
from 16 root hairs were examined, they show a pattern 
of angular deviation from the long axis of the hair 
(Fig 4) which is similar to the microtubule deviation 
pattern in root hairs of radish (Raphanus satmii) 
(SEAGLLL 1980) In radish, however, the secondary wall 
microfibrils are axially aligned, thus reflecting the 
orientation ol the subjacent microtubules 
Microtubules in young root hairs of Equisetum 
hyemale, not participating in the orienting of 
microfibrils, might function in maintaining polarity of 
the cytoplasm during apical growth A similar role has 
been postulated for microtubules in caulonema tip cells 
of the moss Fuñaría hygrometnca, which also elongate 
exclusively by tip growth (ScuMitDEL and SCHNEPF 
1980) 

As microfibrils are not directed by microtubules, 
there must be another cause for their ordered deposi­
tion A self-assembly process for the morphogenesis of 
helicoidal structures in biological systems has been 
suggested (NEVILLE 1976), analogous to the spon­

taneous helicoidal assembly of cholesteric liquid 
crystals The self-assembly process could take place on 
the fluid mosaic structure of the plasma membrane 
where the cellulose microfibrils probably arc syn­
thesized (NEWCOMB 1980) Alternatively, deposition of 
microfibrils might be directed by a plasma membrane 
associated apparatus (MOMI-ZINOS and BROWN 1978). 
In either case, from the results of this study it seems 
unlikely that the force directing the cellulose synthetase 
complex is generated by cortical microtubules as 
postulated in HEATH'S theory (1974). 

I gratelully acknowledge the support of Professor Dr M M A 

SASSEN and the technical assistance of M WOLTLRS-ARTS 
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Summary 

The cell wall of root hairs of tqutsttum hi emale is shown to be 
composed оГ three different cell v. all textures The growing cell v, all at 
the tip of the hair is composed of a dispersed texture of microfibrils 
which continues along the outside of the whole hair With increasing 
distance from the lip an increasing number of helicoidally arranged 
lamellae is deposited These findings correspond with the observed 
isotropism of young hairs in polarized light 
Hairs of approximately 4 days old become positive biréfringent 
indicating that longitudinally oriented layers presali oser layers with 
a transverse direction This phenomenon starts al the base of the hair 
Full grown hairs are positive biréfringent up to the lip and 
concordantlv show a thick additional inner cell wall layer which 
forms a helical pattern the length of the hair with a mean microfibril 
angle of 25 with the cell axis 

Cortical microtubules subjacent to the dispersed the helicoidal and 
the helical wall texture arc axially aligned and thus not in co 
alignment with the last deposited microfibrils 
Coated and smooth vesicles arc present in the conical cytoplasm of 
both growing and full grown hairs Electron dense profiles (20 nm in 
diameter) surrounded by a halo (of 50 nm) were observed on the 
wall plasmalemma interface in full grown hairs only Л relation of 
these structures with microfibril deposition could nol bc 
demonstrated They might represent channels transporting material 
to the wall which in full grown hairs is heavily impregnated with a 
tawny brown substance 

The general hypothesis that cortical microtubule orientation directs 
microfibril deposition is disputed 

Keywords Cell wall texture Cortical microtubules Microfibril 
deposition Equisetum h\emale Root hair 
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in the Cell Wall 

1. Introduction 

Crystalline cellulosic microfibrils provide the ar­

chitectural framework of the cell wall of most green 

plants and, together with the non-cellulosic matrix 

materials and cytoskeletal components, they determine 

cell shape (review HHPIIR and PALFVIIZ 1974) Much 

attention is currently devoted lo the nature of the 

mechanisms that are supposed to orient these 

microfibrils during their deposition on the inner surface 

of the plant cell wall The site of microfibril formation is 

conceived to be on the surface or outside of the plasma 

membrane [eg , HFRTII 1980) and polymerization and 

crystallization to be consecutive processes (HAIGLLR 

el al 1980 and IImгн 1980) Microtubules have been 

demonstrated in the cortical cytoplasm of many types 

of plant cells during primary and secondary wall 

deposition In most instances they have been observed 

in parallel alignment with the cellulose microfibrils of 

the underlying wall and hence, have been generally 

hypothesized to play an orienting role in microfibril 

deposition (HFATH 1974, reviews by HLPLLR and 

PALEVITZ 1974, IUPLFR 1981, GUNNING and HARDHAM 

1982) Microtubule disrupting agents, for instance 

colchicine lead to an aberrant microfibrillar pattern 

(review ROBINSON 1977) Although this corroborates 

the above hypothesis, it is no final proof for a cause and 

effect relationship Moreover exceptions to the 

parallelism between microtubules and microfibrils have 

been reported (review H I P I F R and PALEVITZ 1974) 
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The root hair of Equisi'tum h\cmak> (L), common 
scouring rush, being easil> accessible for fixation and 
m mo observation, has been chosen lor investigating 
microfibril deposition and the relationship between 
microtubule and microfibril orientation Lntil recently 
the cell wall of root hairs was conceived to be composed 
of a typical primary wall with randomly oriented 
microfibrils and in the lateral walls an additional inner 
layer of parallel, mainly axially oriented microfibrils 
(review Snvms and SciiNrrr 1981) However, the 
aquatic plants С eratoptens thalicIronies (SASSI Ν eì al 
1981) and Limnobium stolomferum (PLL>\IAFK.FRS 
1982) have an inner cell wall in their root hairs with a 
helicoidal texture, consisting of successive parallel-
fibred lamellae m each of which fibril orientation is 
rotated with respect to the previous lamella, whereas in 
the inner cell wall layer of Lrtua dioica microfibrils 
align according to a helix (SASSI-N el al 1981) In a 
previous paper (Evioss 1982) it was reported that the 
inner layer of young root hairs of Equisetum Inemule 
has a helicoidal texture, while cortical microtubules in 
the subtending cytoplasm are axially aligned Hence, it 
was concluded that microtubules cannot exert 
directional control of microfibril alignment in the case 
of this helicoidal texture 
The present paper deals with microfibril deposition at 
the growing Up of root hairs ol Equm tum /ιι emale and 

with microfibril deposition and microtubule orien­

tation in full-grown hairs The control of the 

organization of microfibrils in the cell л all is discussed 

2. Material and Methods 

2 I Plaru Uattriiil 

Slcm cuttings of tifiwutuni h\tmali (I ) common scouring rush 

conldimng several nodes were grown on an iqucous soil extract 

under greenhouse conditions After si\ dass roots emerged at the 

nodes and produced extensive root hair populations Го decide upon 

root hair age root length seas measured four limes a week 

2 2 Llalli \liiroscop\ 

To irack root hair growth lengths of root hairs along the root were 

measured under a dissecting microscope Birefringence of root hairs 

of different age was determined with the polan/ing microscope (Leit? 

UM Pol) Both fresh root hairs and hairs treated with hsdrogen 

peroxide glacial acetic acid (11:02 HOAc l i v e ) were used for 

Iibnl angle measurement single wall preparations were stained with 

the dichroitic cellulose staining ehlorozmc iodine to enhance 

birefringence UÍ L I N O 1981) 

2 3 Eledron Uiiri)\iop\ 

In order Ιο \isuali7c microfibrils roots with hairs were frozen 

between glass slides in liquid nitrogen and alter removing all root 

parts the frozen hairs were scraped from the slides with a razor blade 

I his procedure causes the root hairs to break thus revealing the inner 

laser of the cell wall 

For extraction ol cell wall matrix the root hair fragments were treated 

with H О HOAc ( I l ν ν) lor 1 hour al 100 С Cleaned wall 

preparations placed on formvar coaled grids were shadowed with 

platinum 

In addition whole roots with hairs were treated with H1O2 HOAc 

for I hourat lOfl С dehvdraled in a graded series of aqueous ethanol 

and flat embedded in Spurr s medium F or dclcrmmalion of distances 

01 the sections from the rool hair up hairs were marked with Petunia 

pollen grains (for procedure ol flat embedding and marking cj 

PtLYMMkiRS 1982) sections were stained with a l ^ aqueous 

solution ol potassium permanganate (К.МПО4) 

To visualize microtubules whole roots wilh hairs were preliminary 

fixed with 2 glularaldehvdebufferea withO 2 M с icodylalc(pH 7 2) 

in the culture medium at room temperature for 2 hours Some 

samples were lixed with Ihc addition of 0 2U

0 tannic acid After a 

2 hours postfixation in 2n osmium tclroxide all samples were washed 

m buílcr deh>diatcd in ethanol and flat embedded in Spurr s 

medium Single hairs still attached to the root were selected under a 

light microscope on the basis of unaltered morphologv rclalivc to 

Iresh hairs and marked with Pt іипні pollen grains Sections were 

stained with saturated aqueous uran>l acetate lor 20 minutes 

(ollowed b> Rcvnold s lead curate for ^ minutes 

Sections were obtained with a Sorvall Porter lïlum ultramicrotome 

M I 2 or Μ Г SOOO and specimens examined m 1 Philips LM 201 or 

I M "ЧЮ electron microscope at 60 kV 

3. Results 

3 I Rool Han Growth and Birefringence 

The growth rale of root hairs of Fquiseiwn Inemale is 
approximately 40 im per hour They are not purely 
cyhndncally shaped girth decreases Irom base to tip 
(F-igs \a,b,i) Less than approx 4 days old root hairs 
proved to be isotropic in plane view in the polarizing 
microscope (Figs 1 a and 2) there is no predominant 
orientation of the microfibrils in the cell wall In 
contrast, hairs more than approx 10 days old are 
positive biréfringent (I~igs I с and 2) microfibrils align 
mainly lengthwise Positive birefringence starts at the 
base of the root hair between day 3 and day 9 and 
reaches the tip of the first root hairs at day 6 which 
coincides with the inflection point on the growth curve 
(big 2) From day 14 on, when almost all hairs are 
positive biréfringent right up to the tip, their growth has 
stopped They are tawny brown, whereas young hairs 
are colourless Birefringence is not due to the colouring 
substance since treatment with HsOs HOAc did 
dissolve the colour while birefringence remained At a 
root length of approx 70 mm, when nearly all hairs at 
the base of the rool are positive biréfringent up to the 
tip, side roots appear Hairs of up to 8 weeks were 
examined and were concluded to be alive from the 
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Fig 1 Birefringence of root hairs of E^HiÏf/umAiÉ-ma/c. χ 800 α r Increase of birefringence with age All preparations were positioned 45 to 

the plane of polarized light and photographed under identical conditions / base of hair. // tip of the same hair Root hair length it 2 >miii-

h 5 6mm. г 6 2mm of resp 3. 6. and 11 days old hairs (/ hractured hair with flared end: / positioned 45 to the planeo! polarized light In the 

complete hair the mean microfibril orientation is lengthwise, efleeting the most bright appearance in the black field ol the crossed polarizers at an 

angle of 45 . // Positioned such that the single wall layer (llared end Ms).appears most brightly the angle between /and //is the same as the angle-

bet ween the extinction positionsof the complete hair (the horizontal) and that of the single wall, which is the mean angle microfibrils in the single-

wall make with the longaxis of the root hair, in thiscase 30 e Split hair in normal light / Same hair ase between crossed polarizers / single 

wall layer(s) in extinction position microfibrils in this layer are oriented parallel to the horizontal The angle between 1 and the horizontal 

(extinction position of complete hair) is the same as the mean microfibril angle with (he long axis in this ease 20 . // Rotary stage of the 

microscope turned such that single wall layer appears brightly 

occurrence of cytoplasmic streaming In the field they 

remain intact for a much longer period At the 

beginning of winter the roots are fully covered with 

brown thick-walled hairs 

Under the polarizing microscope the extinction 

position of single wall preparations obtained by 

fracturing of full-grown hairs and stained with 

chlorozinc-todtnc, makes an angle with the extinction 

position ofcomplete hairs (Figs. 1 </./). This angle is an 

indication of the general orientation of microfibrils in 

the single cell wall, being the pitch angle between 

the cell axis and the tangent to the helical curve. 

All hairs examined showed a so-called z-helix. The 

mean pitch angle measured in 52 root hairs. 

proved to be 26.3 with a standard deviation 

of 8.3 (Fig. 8 «), Without analyser it coulf be 

detected whether the flared end of the fractured hairs 

belonged to the front or to the back wall of the hair. 

3.2. Cell Wall Texture of Young Hairs 

In transverse sections of young growing root hairs the 

chaicicteristic parabolae of the helicoidal wall are 

revealed after treatment with FbOi HOAc and staining 

with KMn0 4 (Fig. 3j?). The cell wall of the growing 

root hair tip. however, is a primary wall and shows 

randomly oriented microfibrils. Only this randomly 

textured primary wall is present in the first 300 u.m of 

the tip of young hairs (Figs. За. Л). Figs. 3 <· /show that. 

with increasing distance from the tip. an increasing 
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hip 2 Growth and bircfringt-ncc of root hdirsof hquiwlumlnemuU Mean data from 51 roots Note that the inlleuion point on the growth curve 

coincides with hircfringence reaching the tip of (he first root hairs 

number of hchcoidally arranged lamellae becomes 
visible A shadow-cast preparation of a fractured hair 
( 1-ig 3 Л) shows the outer layer with dispersed texture of 
the front wall, the inner cell wall layer with helicoidal 
texture ol the back wall (3 superimposed lamellae of the 
helicoidal wall are visible) and the outer layer with 
dispersed texture of the back wall The angle between 
subsequent helicoidal lamelldc was measured in 136 
shadowcast preparations and proved to be approxi­
mately 40 (Fig 5) I he rotation of the helicoid is in a 
clockwise direction big 6 represents a schematic 
drawing of the young growing wall of tquisetum 
hi emale root hairs 

3 3 Cell Wall Texture of l-ull-Gronn Hairs 

Longitudinal thin sections of full-grown, 40 days old, 
7 mm long, root hairs show a thick layer of 
approximately axially oriented microfibrils on the 
inside of the helicoidal wall (Figs 4a, b) The transition 
from helicoidally to more or less axially ordered layers, 
being indistinct in all preparations is probably gradual 
The fibril angle of this layer, found by means of the 
polarizing microscope could be verified in shadow-cast 
preparations The angle of mean microfibril direction 
with the long axis of the root hair, measured in 116 
shadow-cast preparations, proved to be 23 1 with a 

standard deviation of 12 2 (Fig 8/J) Again microfibrils 
were found to be positioned according to a /-helix (fig 
4с), with considerable displacement, however, of 
individual microfibrils from the mean helical 
orientation Fibril layers with two alternating 
directions with an acute angle to each other seem to be 
present (Figs 4a, c) However, as opposed to the 
helicoidal wall, no transversely oriented layers occur 
In the apical dome of full-grown hairs a helicoidal layer 
is present under the primary wall (Fig 7) 

3 4 Cortical Murolubule Direction 

The addition of 0 2 0

0 tannic acid to the fixing solution 
did not yield more or better preserved microtubules At 
the very lip of the growing root hair, where the primary 
wall is deposited, no microtubules were observed 
Transverse sections through the subapical and basal 
part of young root hairs (isotropic in polarized light') 
show transverse sections of microtubules only The 
eleclronlucent sheath touches the plasma membrane, 
but no cross-bridges of microtubules to the plasma 
membrane were observed Tangential sections of young 
hairs through the cortical cytoplasm show a constant 
pattern of more or less axially oriented microtubules 
without changes at the onset of helicoidal texture at 
approximately 300 .im from the hair tip (Fig 9 e) 
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In lull grown ham .іпуіеч hei«oen the mtlnuhial 

mn-rolLibules jiul the long axis ol the LOII were 

mcasureil hs otViCmng sections through the cortical 

csioplasm ol the hack wall onh since averaging the 

measuremenlsol ihc front wall and the back wall would 

confuse the lesults especialK when microtubules 

would align with the hehcallv arranged microlibnls 

I heangulardeviaiion pattern ol microtubules I rom the 

long axis is also similar to the pattern in voung hairs 

with a helicoidal wall (Hgs 9«. Λ and 10) Hence 

microtubules are in no msuince in mutual alignment 

with the adjacent microlibnls 

? ϊ i cycles and PUiwui Uimhiane Stiiuiuie\ 

Coated vesicles with a diameter of approximately 

90nm. including coal, are prcsenl in the cortical 

cvloplasm and were unserved in voung as well asm lull-

grown root hairs (Tigs 9<\ /) Also numerous smooth 

vesicles are present in the conical evloplasm. especiallj 

in lull-grown hairs (</ fig 9h) Thev contain a liglilK 

staining material 

Λ remarkable feature on the wall-plasma intei lace was 

found in tangential sections of full-giown hairs onlv 

randomly distributed electron dense proliles sur­

rounded by a halo diameters approximately 20 nm 

wiihout and approximately M)nm including ihc halo 

(Hg 9d) 

4. Discussion 

4 1 Cell И nil Ісмшс 

Root hairs grow at their tips onlv (Sit vi usane! Sc нм η 

1981) The apical cell wall is a pnmary wall with 

randomlv oriented microfibrils Accoidine to SIIVI RS 

percep'aqe 

J -
10 ЭС 50 70 

Angie between lame'lae 
(in '0 degree ncrements ) 

Ημ ^ Лпуііс belween helicoidal lamellae of >oung root hairs ol 

/ί/ши tum Іптшк 

and Sc HNt IM (1981) m the subapical and basal part of 

root hairs two lavers of microfibrils are present in the 

cell wall "an outer laver similar to the apical cell wall 

and an inner layer ot parallel mainl> axiallv oriented 

microfibrils" The outer la>er of randomlv oriented 

microfibrils is present in the Lqimetum fncmale root 

hair Ihc thickness of this layer increases in the 

extension zone, but is constant along the side-walls of 

the hair fhc inner laver, however, has a helicoidal 

texture as in root hairs of Limtwbium stolomferum 

(Pi iwmkf-Rs 1982) and Ceratoptens tlialictroides 

(SASSPS et ui 1981) both aquatic plants- The 

I ш 1 С ell wall K M U K ol voung unmini; rooi hairs ol f (¡und urn Int mah Bars 0 ι ¿m o I 1 ninsvcrse sections at increasing distances from (he 

iip(respetmel\ 10 40 4IH) SOO 1 Ш) 1 9 0 0 л т і о І о п с Я Ш) tin Ьпц hair isotropiL in the polan/ing microscope и ft Onl> the dispersed laver 

(f/) о! ihepnmarv wall is present which increases m thickness with increasing distance Iгот the lip χ 27 "ϊΟΟ ι Al about this distance from the 

tip (100 4(H) tm) the lust lamella ol ihc helicoidal lava appears \ 27 KM) d Haifa parabola ol ihc helicoidal wall is shown (A) χ 27, W 

( I he (irsi parabola of the helicoidal wall is completed </ί) χ У "WO / Onset of the stcond parabola of the helicoidal wall χ 27 300 g 

Tritb\erse section ihroueh base ol an isotropie 4 m in Ιοημ root hair 1 ρ irabol ie ol the helicoidal wall are present (/;) χ 22 100 Λ Shadow cast 

preparation ol a Iraetured hair showing 1 Mipernnposcd hmellae ol the inner hcheoidal wall (small double arrows) and the dispersed texture 

(black. (I) ol the front a-> well as ol the back (while (I) wall Double arrow indícales long axis of root hair χ 24 KOO 

big 4 С ell wall texture ol lull grown root h a m ol /І/ШН tum Aw тик Bars 0 ^ im 1 arge double arrows represent long axis of the hair 

a I oncitudmal section through basent a 7 m m long hair 40da\sold blowing re sped i\ civ the dispersed outer laver (r/) three parabolaeof the 

hcheoidal laver (h) a less distinel part and the longiludinallv inclined helical laver (/) near the lumen of the cell Note acute angled alternating 

libnl oneninuonsin the helical laver (small double-arrows) ft langenlial section through ncwlv deposited helicalK oriented microfibril layer(/) 

in the proximal pari ol a "mm long 40davsold root hair > 2^ 400 < Shadow cast preparation ol a 40davsold fractured hair showing ihe 

dispersed outer I iver Uf) ol the lioni wall and the new К deposited hehcallv oriented (Л inner microtibnl laver of ihe back wall with a mean 

microlibnl angle with ihe lone axis ol іік hair ol 2"* \euic angkd ulicrnaimg microfibril lamellae can be observed in this laver (small double-

arrows) 
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Kig 6 Schematic drawing of the cell wall texture of young growing root hairs ot Equiscnim hvemalc (A) Longitudinal sections of consecutive root 

hairs showing, within the randomly textured extending primary wall, an increasing number of helicoidall> arranged microfibril layers, represent­

ing the secondary wall behind the growing tip (/?) The same hairs, fractured at their bases, showing the newly deposited mierofibril layers 

Fig 7 Longitudinal thin section through the dome of a full-grown. 7mm long. 40 days old. root hair of £(/(Ш('М(тЛі^т«/е. showing the dispersed 

outer wall {(!) and the thick helicoidal inner wall (Λ), made up ol successive parallel fibred lamellae in which the microfibril orientation 

progressively rotates Bar U5j.m χ 16.800 
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Polarizing microscope (n = 52) 
i 26 3 s d 63 

Percentage 

20 0 
Angle with long axis 

( in 10 degree increments ) 

Shadow-cast preparations ( n = 116) 
ж 23 1 s d 12 2 

Percentage 

30 

20 

60 40 20 0 
Angle with long axis 

( in 10 degree increments) 

Fig 8 Mean microfibril angle with the long axis of full-grown root hairs of Equtwtum hamate, a measured in fractured hairs, stained with 

chloro7inc-iodine bv polarizing microscopy 26 1 with a standard deviation of 8 1 h measured in shadow-cast preparations of fractured hairs 

treated with H^O^ HOAc and shadowed with Pt 23 I . with a standard deviation ol 12 2 

parabolae of the helicoidal wall have also been 

revealed, in Equisetum hvemale, by freeze fracturing of 

untreated hairs (EMONS 1982) Additionally, in full-

grown hairs of Equisetum h\emale, a thick microfibril 

layer with a helical texture (Z-helix) is present, as has 

been found in the inner layer of growing root hairs of 

I'rtica dioica (SASSFN el al 1981). In Urtica, however, 

an S-hehx has been found For terminology of chirality 

sec FREY-WYSSLING (1976) 

Although the microfibrilb in the apical wall show 

randomly oriented microfibrils, it cannot be concluded 

from the results of this study that they are interwoven 

nor that their deposition occurs indeed randomly. The 

wall expands during deposition and fibrils within one 

layer are continually dispersed with the result that the 

outer side of the primary wall may only appear to 

consist of a felted mass of microfibrils (BOYD and 

FOSTI-R 1975) In the tip of growing root hairs of 

Raphanus sativus a random texture, similar to that of 

Equisetum hyemale, has been observed (NbvuoMBand 

BONNI-TT 1965) Incontrasi, in root hairs of Limnobium 

stohmjerum helicoidal layers have been reported to 

occur within the dome of young growing hairs 

(PLLYMAt-KtRS 1982), a difference with Equisetum 

hyemale which we cannot explain. Evidence for 

microfibrils to be deposited transversely to the cell-

axis, according to the multi-net-growth-hypothesis 

(RoELOhSEN and HOUWINK 1953), was not found by 

means of polarizing nor electron microscopy This 

would mean that the manner of growth in the tip is such 

that axial extension does not in any area prevail over 

transverse extension, just as HOUWINK and ROELOFSEN 

(1954) concluded from their studies on Zea mavs root 

hairs. 

Deposition of the helicoidal wall occurs along the 

whole length of the hair Hence, the statement of 

BbimRDand PRFSION (1961) that synthesis of cell wall 

material in root hairs is limited to a short portion 

behind the tip, does not apply to Equisetum hyemale. 

Autoradiographic observations by WARDROP(I959) on 

Avena root hairs also showed that wall synthesis takes 

place over the whole cell surface "even in regions where 

growth has stopped". The helicoidal wall of Equisetum 

hyemale is a real secondary wall laid down in the non-

extcnding part of the growing root hair. When growth 

slops, a secondary wall, similar in texture —i.e., 

helicoidal - , is deposited in the apical dome of the root 

hair 
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Fig 9 Cortical cytoplasm of root hairs of £'£/Iíí^tƒí/ш/м i'mrt/fseenin longitudinal thin sections Bars 0 5 ̂ m Double-arrows indicate long axis of 

root hair (ml) microtubule, ( n ) coated vesicle, ( я ) smooth \esicle a Axialh aligned microtubules in tull-grown hairs χ 36.400- h A s a note 

bending of microtubules at organelles, smooth vesicles, containing a hghtlv staining material are present χ 49.000 с Axiall> aligned 

microtubules in young hairs: note anastomosing arrays (arrows) χ 25.500 à Grazing section through the wall-plasmalemma interface, showing 

spots. 20nm in diameter, surrounded by a halo 5ünm in diameter (arrows) The striated background putatively represents the microfibrillar 

patternof the newly deposited wall layer χ 70.000 t· Coated vesicle (< ι Mn young root hair χ 49.000 ƒ Coated vesicle ( π ) and smooth vesicle 

( M ) m lull-erown hair χ 49.000 
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с Г microiuDuies in JJ 
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"U 
60 40 20 0 20 «0 60 80 

Angular deviation 
(in 10 degree increments) 

Fig 10 Angular deviation of microtubules from the long axis offull 

grown root hairs of Fquisetum hxemale 0 long axis of root hair 

Regarding the description of polylamellate cell wall 

textures, many different names have been used 

( R O L A N D 1981) A crossed-polylamellate wall, which 

gives herringbone patterns in oblique sections should 

be distinguished from a helicoidal wall with parabolic 

patterns in oblique sections, a texture defined by 

BOLLICANO(1972) N E V I L L E S al (1976) differentiated 

between the rotated ply-structure (the hehcoid) and the 

ply-structure with alternation of fiber direction in 

successive layers (the crossed-polylamellate structure) 

on account of the supposed difference in behaviour 

during cell enlargement The crossed-polylamellate 

textures described by TAKEDA and SHIBAOKA (1981 a) 

and by Ітон (1979) are possibly helicoidal textures 

because, beside layers with longitudinal and transverse 

orientations, they describe layers with oblique 

orientations The pattern of microfibrils on transverse 

membranes adjacent to the wall of maize root 

parenchyma cells might imply a helicoidal wall texture 

(unlike the pattern on longitudinal membranes), as 

micrographs of M U E L L E R and BROWN (1982a) show 

T A K E D A and S HIBAOKA (1981a) describe a polylamellate 

cell wall texture with microfibril layers in longitudinal, 

oblique and transverse directions in the outer tangential 

walls of the epidermal cells of azuki-bean epicotyls 

( Vigna angularis) This wall texture changes, m older 

cells, to a texture consisting of axially oriented 

microfibrils They relate the pattern of microfibril 

deposition to the size of the cell to the extent of further 

elongation A similar change has been found now in 

root hairs of Equnelum h\emale, though in secondary 

non-extending walls The change cannot be related to 

the extent of further elongation but, possibly, to the age 

of the cell, / e , to changes in cell metabolism 

The lenticular trellis-like configurations described by 

BOYD ( 1975) and hypothesized as evidence for bonding 

of microfibrils within lamellae and between adjacent 

lamellae are obvious m shadow-cast preparat ions of the 

randomly, the helicoidally and the helically textured 

walls of root hairs of Eqmsetum h\emale 

4 2 Role of Microtubules 

If microtubule orientation did control microfibril 

orientation, the variability in microfibril orientation of 

the innermost wall layer, the lajcr adjacent to the 

plasma membrane, would be expected to reflect the 

microtubule deviation pattern in the cortical cyto­

plasm However, during all stages of wall development 

in root hairs of Eqmsetum h\emale, microtubule 

orientation does not parallel the orientation of the 

newly deposited microfibrils and, hence, cannot 

regulate their ordered deposition Exceptions to the 

parallelism of microtubules and adjacent microfibrils 

have been reported before (review H E P L E R and 

PALFVITZ 1974), and universality of the role of 

microtubules in microfibril orientation has been 

questioned (Se HNFPÎ et al 1978) But, although not all 

reports on parallelism of microtubules and microfibrils 

are equally convincing ( O ' B R I L N 1972), there is no 

doubt that the mutual alignment of microtubules and 

cellulose microfibrils occurs widely, especially in 

elongating primary walls (review G i NMNG 1981) and 

in secondary walls of tracheary elements and guard cells 

(review HFPLFR 1981) 

In the tubular part of tip-growing cells microtubules are 

aligned predominantly parallel to the long axis of the 

cell in root hairs (NEWCOMB and BONNETT 1965, 

S E A O U H and HEATH 1980, EMONS 1982), in pollen tubes 

(FRANKE et al 1972, MIKI-HIROSIOE and NAKAMURA 

1982), in fungal hyphae (HOWARD 1981), in Funana 

caulonema tip cells (SCHMIEDEL and SCHNFPF 1980) 

Only in the subapical part , from 25 j.m behind the tip 

onwards of root hairs of radish are microfibrils known 

to align in the same axial direction (NEWCOMB and 

BONNETT 1965, SFAC.I'LI and HFATH 1980) At 3 25 urn 

behind the tip of radish root hairs (NFWCOMB and 

BONNETT 1965), in pollen tubes (SASSFN 1964, 

CRABBENDAM, personal communication) and in the 

hyphae of Sthizophillum commune (VAN DFR VALK 
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1976) microfibrils show a random pattern The 
Ph\com\ces sporangiophore resembles root hairs of 
Raphanm in depositing a layer of axially oriented 
microfibrils (of chitin not cellulose) on the inner 
surface ofthe side wall, but no microtubules are present 
(NEWCOMB 1969) In all mentioned examples of tip-
growing cells, the arrangement of the microtubules is 
complex, showing considerable heterogeneity in 
orientation In Egunetum faemale root hairs they form 
anastomosing arrays as described for subsidiary cells in 
the cortex of Phleumpratense (РАІ.Ь ІТ7 1981 ) and bend 
around vesicles and globules 
In intercalanly growing, rapidly expanding walls, 
microtubules align in parallel and close to each other 
Their orientation is transverse to the long axis of the cell 
and parallel lo the cellulose microfibrils in the wall 
Moreover, their orientation alters when lateral organs 
arc initiated, preceding the conversion of the local 
pattern of microfibrils (HARDIIAM et al 1980) This 
might confirm microtubule involvement in morpho­
genesis, in cell shaping, but not necessarily their direct 
control of microfibril orientation In Clostenum 
acerosum cells (Htx.iTsu and SHIBAOKA 1978) the 
microfibrils on the inner surface of the expanding walls 
are deposited in a direction transverse to the cells axis 
and parallel to the underlying microtubules But when 
the cells have ceased to elongate an ordered pattern 
consisting of bundles of 7 11 microfibrils running in 
directions w ith marked angles to each other is being laid 
down, whereas there are no underlying microtubules 
Sc ΗΝΕΡΓ( 1974) suggested that microtubules function as 

cytoskeletal elements and model the cell surface against 

turgor pressure and surface tension to form the relief 

for the wall depositions The cytoskeletal function 

tallies with axial microtubule orientation in lip-growing 

cells, with transverse microtubules in expanding walls, 

with microtubules underlying local thickenings in 

secondary wall formation of vessels and guard cells and 

(DOMOZYCHC/ al 1981) with their cytoskeletal function 

presumed in wall-less cells However, microtubular 

control of microfibril directionality by lifting of the 

plasma membrane (Sc НЧЬРІ- 1974), or via channeling by 
restricting the fluidity of the plasma membrane (H ERTH 
1980) only holds if microtubule and microfibril 
orientation match This is not the case in root hairs of 
Equisetum h\emale 

Indications of microtubular control of microfibril 
orientation have been derived from studies utilizing 
microtubule disrupting agents such as colchicine 
Although the orientation of microfibril deposition 
mostly changes when microtubules have been depoly-

merized by this treatment, several different, even 
orderly, textures are deposited randomly oriented 
microfibrils in the lorica of Potenochromonas (SCIINEPF 
et al 1975), parallel texture with similar frequencies of 
cells having transverse, oblique and longitudinal 
microfibrils in the epidermal cell walls of the epicotyl of 
Vigna angularis (TAKEDA and SHIBAOKA 1981 b), 

bundles of microfibrils in swirls deposited at marked 
angles to other groups of microfibrils in tracheary 
elements of Coleus (HEPLER and FOSKET 1971) The 
green alga Ooc\sm solitaria has been thoroughly 
investigated with many different microtubule inhibitors 
by ROBINSON and co-workers The cell wall has a typical 
crossed polylamellate texture (ROBINSON et al 1976) 
Depending on the type of inhibitor and its 
concentration microtubule inhibitor application 
induces two forms of aberrant microfibrillar cell wall 
patterns (QUADER et al 1978) 10"2mM colchicine 
causes the microtubules to disappear, while parallel 
oriented microfibrils are being deposited in one 
preferential direction, in 5 Ю - ' to 10 'mM colchicine, 
however microtubules are present and an inter­
mediate cell wall texture may be obtained in 
which microtibrils are arranged in bow-shapes 
(ROBINSON and HLRZOO 1977), te, a helicoidal wall 
texture It might be crucial whether or not these 
colchimzcd walls are expanding 
In parenchyma cells of pine seedlings helicoidal 
deposition, similar to that ofthe wall texture of control 
cells, continues after microtubules have been depoly-
merued by colchicine (Ітон 1976) Also in Pelila setae 
(StHNEPband DEICMGRABER 1979) the disappearance of 
microtubules after colchicine treatment had no 
influence on microfibril arrangement Possibly, colchi­
cine exerts two separate effects it depolymenzes 
microtubules and sometimes changes microfibril 
orientation с q through the plasma membrane The 
results of WuNobRLic Η et al (1973) indicate the role of 

colchicine as an inhibitor of membrane fluidity Also 

M u n t ER and BROWN (1982b) concluded microfibril 

deposition during colchicine treatment to be much 

more orderly than has been thought (see HEPLER and 

PALEVITZ 1974) 

4 3 Control of Microfibril Orientation 

As there is no congruence in orientation of cortical 

microtubules and currently deposited microfibrils in 

root hairs of Equisetum h\emale, microtubule direction 

cannot orient the microfibrils and, hence, another force 

has to cause their ordered deposition The first-
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presumed force was cytoplasmic streaming (CRCGIÎR 
1885). Proponents of this model (WKSTAFF.R and BROWN 
1976 and COLVIN 1980) suggest that the mechanism 
operates through its effect on the plasma membrane of 
the cell. Microtubules and microfibrils, then, might be 
often parallel because both are, possibly, oriented by 
cyclosis. If cyclosis is weak or variable in a particular 
cell no coïncidence in microtubule and microfibril 
direction will appear (COLVIN 1980). As a factor 
affecting cyclosis he mentioned ageing of cells. Cyclosis 
in Equisetum hyemale root hairs will be studied. 
Self-assembly of microfibrils has been hypothesized for 
helicoidal walls (NEVILLE el al. 1976). Although self-
assembly might explain one specific texture (helicoidal) 
it cannot equally account for another texture (helical as 
observed in Equisetum hyemale root hairs), if we 
presume the same chemical structure for the 
microfibrils of these walls. 
Plasma membrane complexes (MUELLER and BROWN 
1980) moving in the plane of the membrane (MUELLER 
and BROWN 1982 a, 1982 b) remain likely candidates for 
controlling microfibril orientation. Grazing sections 
through the wall-plasmalemma interface of full-grown 
root hairs of Equisetum hyemale show electron dense 
profiles (diameter 20 nm) surrounded by a halo 
(diameter 50 nm). 
Whether these structures may be compared with the 
terminal complexes (diameter 28 nm) or with the 
particle rosettes (diameter 25 nm) found in Zea mays 
roots (MUELLER and BROWN 1980), or with the 26nm 
granules found in leaves and roots of nine species 
(OLESON 1980) or with the 50 nm pits in Acanthosphaera 
(SCHNEPF et al. 1982), all of which have been 
hypothesized lo play a role in microfibril development 
cannot be concluded from the results of this study. 
SCOTT et al. (1963) reported on pits in the cell wall of 
different roots hairs, which they suggested to be 
channels for cuticular substances. The electron dense 
profiles found in Equisetum hyemale root hairs might 
represent channels transporting material through the 
plasma membrane. They were not present in 
abundance, never formed a hint of a pattern and were 
not found in young hairs. Full-grown hairs are tawny 
brown, whereas young hairs are colourless. Im­
pregnation of the cell wall of root hairs with a brown 
substance has been found in more species with thick-
walled persistent root hairs and has been called 
"Metadermisierung" (c/!, GUTTENBERG 1968). 
A freeze-fracture investigation, which will be under­
taken, might elucidate this feature and plasma 
membrane involvement in microfibril deposition. 

4.4. Vesicles 

Smooth vesicles, containing a lightly staining material, 
have already been reported to occur in root hairs of 
Equisetum hyemale by HARRIS (1979). He did, however, 
not observe coated vesicles. Nevertheless, coated 
vesicles are present in the cortical cytoplasm of young 
as well as of full-grown hairs. Although they have been 
seen in many plant cells (see review by N EWCOMB 1980), 
their function is still obscure. They might be involved in 
wall deposition. 
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ABSTRACT 

By means of f reeze-subst i tut ion the dome of the root hair of Equisetum hyemale is 
shown t o contain randomly oriented microtubules. Such an arrangement allows c e l l 
expansion in a l l d i r e c t i o n s . The pattern is in agreement with the hypothesis that 
microtubules funct ion in c e l l morphogenesis. In the hair dome the m i c r o f i b r i l s of 
the c e l l wall are randomly or iented. 

In the non-expanding tube of root hairs of Equisetum hyemale microtubules are 
a x i a l l y a l igned. M i c r o f i b r i l alignment in the Equisetum hyemale root hair is h e l i c o i ­
d a l : successive p a r a l l e l - f i b r e d lamellae with m i c r o f i b r i l s in subsequently rotated 
or ientat ions. From hair t i p to base d i f f e r e n t lamellae are in the process of deposi­
t i o n , thus, d i f f e r e n t f i b r i l or ientat ions a l i g n the plasma membrane. A near trans­
verse o r i e n t a t i o n occurs from 0.6 mm to 1.2 im from the hair t i p , which is perpen­
dicular to the microtubules, and not in agreement with the hypothesis that microtu­
bules generally act as m i c r o f i b r i l or ientat ing structures. 

M i c r o f i b r i l growth rate under the conditions of the experiment is calculated to 
amount to 700 nm/minute. 

KEY UORDS; microtubules, m i c r o f i b r i l s , he l ico idal c e l l wall texture, Equisetum 
hyemale, root h a i r s . 

INTRODUCTION 

The mechanism by which m i c r o f i b r i l s a r e a s s e m b l e d i s one 

of t h e p r e e m i n e n t q u e s t i o n s c o n c e r n i n g t h e c y t o l o g y of p l a n t 

c e l l w a l l f o r m a t i o n . 

I t h a s b e e n s u g g e s t e d t h a t h e l i c o i d a l w a l l s s e l f - a s s e m b l e 

l i k e l i q u i d c r y s t a l s i n t h e p e r i p l a s m i c s p a c e ( N e v i l l e e t 

a l . 1976, R o l a n d and Vian 1 9 7 9 ) . However, i n a r o o t h a i r 

w i t h h e l i c o i d a l w a l l t e x t u r e p a r t i c l e r o s e t t e s h a v e b e e n 
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found on the protoplasmic fracture face of the plasma mem­
brane and terminal globules on the extraplasmic face (Emons 
1985) . Rosettes together with terminal globules constitute 
the putative microfibril synthesizing complexes (Brown 
1985) . The occurrence of particle rosettes and terminal 
globules agrees with the concept of microfibril tip-growth. 

Parallelism between cortical microtubules and nascent mi­
crofibrils has been found in the majority of plant cells 
studied (Robinson and Quader 1982). Experiments with anti-mi-
crotubular agents have further strengthened the idea that mi­
crotubules determine microfibril orientation (Robinson and 
Quader 1982), though probably indirectly (Heath and Seagull 
1982). 

However, this coalignment between cortical microtubules 
and nascent microfibrils has not been found in root hairs 
with helicoidal wall texture of Equisetum hyemale (Emons 
1982, Emons and Wolters-Arts 1983, Emons and Derksen 1986, 
Traas et al. 1985), Limnobium stoloniferum (Traas et al. 
1985) Ceratopteris Chalíctroides (Meekes 1985), and Equise­
tum fluviatile (Emons 1986). Net-axial microtubule alignment 
has been found in thin sections, in dry-cleaved preparations 
and by immunofluorescence 

Lloyd and Wells (1985) have suggested that the buffers 
(cacodylate and phosphate), used for fixation, may alter the 
microtubular skeleton e.g. because of osmotic conditions. 
They thus explain why microtubules and microfibrils do not 
always coorientate. This suggestion would, however, also in­
validate data showing parallelism between these structures 
if they are obtained by fixation of material in these buf­
fers, which covers the majority of the cases studied. Fur­
thermore, Traas et al. (1985) used Pipes, the buffer Lloyd 
and Wells (1985) recommended for use instead of phosphate 
buffer, but obtained results similar to these obtained with 
phosphate and cacodylate. 

In order to avoid the suggested artefacts and because 
root hairs are particularly susceptible to osmotic condi­
tions, the cortical microtubule orientation in root hairs of 
Equisetum hyemale was reexamined by means of freeze-substitu-
tion, where the first step in fixation is purely physical. 
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For a better understanding of the helicoidal wall texture, 

the wall was studied by means of dry-cleaving (Sassen et al. 

(1985) . This method is to be preferred to the traditional 

shadow-casting method because very large stretches (up to 

2mm) of inner cell wall are revealed. The meandering of 

microfibrils within lamellae in dry-cleaved preparations is 

not seen in freeze-fractured preparations, and is therefore 

regarded as an artefact. However, dry-cleaving does not 

influence microfibril orientation per se. 

This study reports the pattern of microtubules, and de­

tails of the helicoidal wall in Equisetum hyemale root 

hairs: proportion of transverse microfibrils, bending of mi­

crofibrils, and density of microfibrils within lamellae. 

MATERIAL AND METHODS 

Cuttings from Equisetum hyemale were grown as previously described (Emons and 
Wolters-Arts 1983). Only young growing hairs were used. 

Freeze-substitution was carried out as described by Emons and Derksen (1986), 
which is an adaptation of the method described by Heath and Rethoret (1982). 

Dry-cleaving was performed according to the method described by Sassen et al. 
(1985). 

Preparations were examined in a Philips EM 201. 

RESULTS 

Microtubules 

Figure 1 shows tangential thin sections of the tip of a 

root hair. Microtubules are present in the extreme tip and 

line the hemisphere in random orientations (Fig. la). Some 7 

micrometers away from the extreme end of the hair, but still 

in the hemisphere, microtubules are still in various orienta­

tions (Fig. lb). Further from the tip the alignment of the 

cortical microtubules shows less variation, becoming more 

and more axial. Outside the hemisphere, in the tube of the 

hair, microtubules are axially aligned (Fig. 1c). 

Figures 2a and b show tangential thin sections in the re­

gion of the hair with transverse microfibrils, at approx. 
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1 mm from the hair tip. Microtubule alignment is axial. Mi­

crotubules in this area are less abundant. In the tube of 

freeze-substituted root hairs of Equisetum hyemale an axial 

alignment was always observed. 

By means of freeze-substitution it was possible to ob­

serve cortical microtubules and nascent microfibrils in the 

same preparation of the trichoblast of Limnobium stoloni-

ferum. Microfibrils do not coorientate with the cortical 

microtubules. The microtubules are oriented parallel to the 

long axis of the root hair (Fig. 3). 

Microfibrils 

Figure 4 shows the inner cell wall of the hair tip. The 

cell wall in the hair tip is very thin. Here, in growing 

hairs, always a random microfibril pattern is observed. Fi­

gure 5 shows the inner cell wall at 0.16 mm from the hair 

tip, composed of a thicker layer of microfibrils than found 

near the tip. The last deposited microfibrils are oriented 

more or less longitudinally. Figure 6 shows the inner cell 

wall at 0.9 mm from the tip of the hair: microfibrils in the 

last deposited lamella are almost perpendicular to the long 

axis of the hair. A near transverse orientation is main­

tained from 0.6 mm to 1.2 mm from the tip. 

Figure 7 shows the inner cell wall of one and the same 

hair at distances from 1.09 mm to 2.35 mm from the hair tip. 

From tip to base of the hair the microfibrils in the last de­

posited lamella lie in orientations going from transverse to 

longitudinal. The wall consists of a stack of fibril lamel­

lae. Looking from the cytoplasm and going from former to la­

ter deposited lamellae the progressive rotation in microfi­

bril direction is counter-clockwise. 

The angles formed by microfibrils of the three last-depos­

ited lamellae with the long axis of the hair were measured 

at 60 places of a 1.26 mm long wall area (Fig. 8a). The num­

ber of microfibrils in the last two lamellae was counted 

(Fig. 8b). Fig. 8a shows that microfibrils maintain mean 

orientation within lamellae and that the number of microfi­

bril lamellae increases from tip (distal part) to base (prox­

imal part) of the hair. The angle between adjacent lamellae 
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Figs. 1 a-c: Tangential thin sections of the tip of a root hair of Equisetum hyemale 
prepared by means of freeze-substitution, showing the cortical cytoplasm at resp. 2 
micrometers, 7 micrometers and 18 micrometers from the extreme tip of the hair. Hair 
diameter was 14 micrometers. Arrow: long axis of hair, mt: microtubule. x26 600. 
Bar: 500 ran. 

Figs. 2a and b: Tangential thin section at approx. 1 mm from the hair tip of root 
hair of Equisetum hyemale. Wall microfibrils, not clearly visible, lie 
perpendicularly to the axis of the hair, microtubules lie in an axial orientation. 
Arrow: long axis of hair, mt: microtubule, mfil: microfilament bundle. x21 350. Bar: 
500 nm. 

Fig. 3: Tangential thin section of freeze-substituted trichoblast (root hair forming 
cell) of Limnobium stoloni ferum, showing microfibrils and microtubules. Microfibrils 
and microtubules are not in parallel alignment. Arrow: long axis of hair, mt: 
microtubule, mf: microfibrils. x15 400. Bar: 500 ran 

Fig. 4: Shadow-cast preparation of inner cell wall of hair tip of growing root hair 
of Equisetum hyemale, showing a random pattern of microfibrils. Arrow: long axis of 
hair.x28 600. Bar: 500 ran. 

Fig. 5: Inner cell wall at 0.16 mm from the tip of a root hair of Equisetum hyemale, 
showing the last-deposited microfibrils in a more or less longitudinal orientation 
overlying a random texture. Arrow: long axis of hair. x28 600. Bar: 500 nm. 

Fig. 6: Inner cell wall at 0.9 nm from the tip of a root hair of Equisetum hyemale, 
showing the last-deposited lamella with microfibrils in a nearly perpendicular orien 
tation to the long axis of the hair. Arrow: long axis of hair. x28 600 Bar: 500 ran. 
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Figs. 7a-d: Inner cell wall of one and the same root hair of Equisetum hyema I e at 

distances of resp. 1.49, 1.825, 2.105 and 2.35 mm from the tip. Microfibril 

orientation in the last-deposited lamella is from transverse to longitudinal. The 

rotation in microfibril direction is counterclockwise (looking from the cytoplasm 

and going from former to later deposited lamellae.). Double arrow: last deposited 

lamellae, single arrow: last but one lamellae, short arrow: long axis of hair. x28 

600 Bar: 500 nm. 

Fig. 8a: Mean angle of microfibils with long axis in successive lamellae of the heli­

coidal cell wall of the root hair of Equi setun hyemale. A to G represent different 

lamellae. Only the last three lamellae can be seen, but all lamellae are present up 

to 2.4 imi from the tip (known from thin sections). 

Fig. 8b: Number of microfibrils in subsequent lamellae of the cell wall of a root 

hair of Equisetum hyemale. Lamellae B-G are the same as lamellae B-G in Fig. 8a. At 

1.2 mm from the hair tip В and С are completed lamellae, D starts at this point, E,G 

and F start at resp. 1.58 mm, 1.96 mm and 2.24 nm from the hair tip. Upon lamella 

completion the number of parallel microfibrils per 4 micrometers perpendicularly is 

approx. 24. 
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is 30° to UO". Figure 8b shows that the number of microfi­

brils within a lamella increases from distal to proximal end 

of the hair and that microfibril density in a completed la­

mella is approx. 6 per micrometer, measured by counting the 

number of microfibrils perpendicularly intersecting 

4 micrometers. Figures 9a,b,с are schematical representa­

tions of possible microfibril alignment, given a helicoidal 

wall. The data confirm the schematical representation pre­

sented in Fig. 9a. 

DISCUSSION 

The dry-cleaving method for cell walls has been described 

by Sassen et al. (1985). The procedure visualizes large are­

as of inner cell wall. That the inner cell wall is revealed 

is apparent from two phenomena: sometimes patches of plasma 

membrane with microfibril imprints stuck to the microfibrils 

(Fig. 4) and the clumped cytoplasm did not contain microfi­

brils . 

In studies on the role of microtubules on microfibril de­

position it is essential to know that microfibril deposition 

is actually going on at the moment of cell fixation. There 

are strong indications that most of the hairs must be in the 

process of microfibril deposition: wall thickness increases 

with hair length and hair age (Emons and Wolters-Arts 1983) 

and particle rosettes and terminal globules, the putative 

microfibril synthesizing complexes, are present in plasma 

membranes of young freeze-fractured hairs (Emons 1985). 

The helicoidal wall 

An interesting feature of a helicoidal wall of a cell 

with tip-growth is that fibril lamellae are seen not only 

stacked horizontally as in a multiple plywood but also next 

to one another vertically in different stages of completion. 

The root hair, therefore, is an excellent system to study he­

licoidal wall deposition. 

Within a lamella there is a large deviation from the mean 

orientation. The mean orientation is maintained over the to-
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tal length of the lamella. Going from hair tip to hair base 
the number of lamellae increases as also fibril density with­
in lamellae increases up to a maximum level. It is concluded 
that microfibrils in root hairs grow from hair base to hair 
tip. 

Microfibril growth rate 

The consecutive lamellae of the helicoidal wall texture 
stay behind the growing tip at a certain, more or less con­
stant distance from the tip (Fig. 8a), dependent on e.g. tem­
perature conditions. Lamellae with microfibrils in a near 
axial direction lengthen at the rate of root hair growth, 
which, under the conditions of the experiment, is approx. 
700 nm/minute. The growth rate of microfibrils found here is 
well within the range of cellulose microfibril elongation 
calculated for other objects: Acetobacter: 2000 nm/min 
(Brown et al. 1976), Acanthosphaera: 500 nm/min (Schnepf et 
al. 1982), the cotton hair: 1300-2600 nm/min (Willison 
1982), Fuñaría caulonema tip cells: 900 nm/min (Reiss et al. 
1984), maize xylem: 931/min (Schneider and Herth 1986), 
cress xylem: 1283/min (Schneider and Herth 1986) . Elongation 
rate of microfibrils of different cells can only be compared 
if growth conditions such as temperature and light/dark re­
gime are known. Indeed Sassen (personal communication) found 
that with decreasing temperature, apart from growth rate of 
the root hair of Limnobium stoloniferum, distances of sub­
sequent lamellae to the hair tip and distances among the on­
sets of subsequent lamellae decreased. 

Assuming that particle rosettes function in microfibril 
deposition it is possible to calculate the rate of cellulose 
production per rosette per minute: the number of microfi­
brils intersecting a μια perpendicularly in a completed lamel­
la is 5 to 7 (Fig. 8b). Per minute (5 to 7) χ 700 nm fibril 

7 9 

is deposited on a membrane area of 0.7 χ 1 дт . Α μ large 

area of plasma membrane contains 5 to 15 rosettes (Emons 

1985). Therefore approx. 600 nm microfibril is deposited per 

rosette per minute, which means that approx. all rosettes 

are in the process of microfibril formation. 
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Microtubule involvement in microfibril deposition 

Microtubules have not been found in sections of chemically 
fixed root hair tips of Equisetum hyemale (Emons and 
Wolters-Arts 1983). However, freeze substitution clearly 
demonstrates their occurrence in this area. Also in freeze-
substituted hyphae microtubules were encountered in cell 
tips whereas they had not been seen previously in chemically 
fixed hyphae tips (Howard and Aist 1979). Lloyd and Wells 
(1985) found microtubules in root hair tips of radish by 
immunofluorescence where they had not been seen earlier in 
thin sections (Seagull and Heath 1980). The exact orienta­
tion in the tip cannot be seen clearly in immunofluorescence 
preparations. 

Microtubules line the hairs hemisphere in all different 
orientations, but attain a net-axial alignment in the transi­
tion area of hemisphere and tube, which is maintained 
throughout the rest of the hair. Microtubules and microfi­
brils in the expanding wall of the tip have the same distri­
bution pattern. 

However, parallelism is absent during secondary wall de­
position in the hair tube. Though microfibrils and microtu­
bules were not visualized in the same preparations, the area 
with almost transverse microfibrils is so large (0.6 mm, 
Fig. 8) that preparations of the cortical cytoplasm could 
easily be selected from the same area. Microtubule deviation 
from the axial orientation in freeze-substituted prepara­
tions is even less than in chemically fixed preparations. 

The data confirm the hypothesis (Emons and Wolters-Arts 
1983, Traas et al. 1985) that microtubules play a role in 
cell morphogenesis during cell expansion. But a direct chan­
neling of microfibrils by cortical microtubules (Heath and 
Seagull 1982) seems unlikely because in cases where no cell 
expansion takes place no parallelism is found (cf. Emons 
1982, Emons and Wolters-Arts 1983, Meekes 1985, Traas et al. 
1985, Emons and Derksen 1986). 

Predetermination of microfibril orientation in the tricho-
blast by microtubules is refuted by the formation of a heli­
coidal wall adjacent to unidirectional microtubules (Emons 
and Derksen 1986). 
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Directed membrane particle flow 

Mueller and Brown (1982) suggested, on evidence based on 
the positioning of microfibrils around stationary pit 
fields, that "membrane flow" might be involved in microfi­
bril orientation. "Directed membrane particle flow" would be 
a better term for the phenomenon of directed lateral mobili­
ty of molecules in the plane of the membrane, because Franke 
et al. (1971) have determined "membrane flow" as the trans­
fer of biomembranes from one compartment of the endomembrane 
system to another. 

In the "directed membrane particle flow model" the micro­
fibril is free to move in the membrane in the direction of 
synthesis, the kinetic force of crystallization being suffi­
cient to propel the synthesizing complex through the mem­
brane (Herth 1980) . 

If directed membrane particle flow is generated by unidi­
rectional microtubules, and supposed that initial microfi­
bril orientation is tranverse, the change in microfibril ori­
entation of subsequent lamellae of the helicoidal wall would 
cease as soon as the microfibrils in a lamella have adopted 
the microtubule direction. Then, only half arcs of the heli-
coid are formed. In Equisetum hyemale, however, only full 
helicoidal arcs occur. 

If, however, directed membrane particle flow is generated 
otherwise, there are two possible models for helicoidal wall 
formation: the orientating system may change direction in 
consecutive steps or gradually and constantly. The former 
model would generate straight microfibrils within lamellae 
(Fig. 9b), whereas the latter would generate slowly bending 
microfibrils (Fig. 9c). An abruptly changing directed mem­
brane particle flow is unlikely (Neville and Levy 1984) and 
Fig. 8a shows that within a lamella microfibrils maintain 
orientation around a mean orientation. Therefore the hypothe­
sis that directed membrane particle flow is the orientating 
force for the microfibrils of the cell wall is not supported 
by the present data. 

Figure 9a is a representation of the helicoidal wall tex­
ture in root hairs of Equisetum hyemale. Though mean micro­
fibril orientation within a lamella does not change, it re-
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mains 
bend. 

p o s s i b l e t h a t i n d i v i d u a l m i c r o f i b r i l s c o n t i n u a l l y 

Figs. 9 a,b and c: Schematical representations of possible microfibril alignments, 
given a helicoidal texture. Fig. 9a is in accordance with the texture found in root 
hairs of Equi set ил hyema le, In Fig. 9Ь microfibriIs within lamellae are straight, 
and in Fig. 9c microfibrils within lamellae bend parallelLy. 

Self-assembly 

Because of the s i m i l a r i t y of a r c h i t e c t u r e between b i o l o g i ­
c a l h e l i c o i d s and c h o l e s t e r i c l i q u i d c r y s t a l s , which are 
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known to form helicoids spontaneously, self-assembly has 

been suggested for helicoids of insect cuticles (Neville and 

Luke 1969) and for plant cell wall (Bouligand 1972, Neville 

et al. 1976). In this model the inner surface of the previ­

ously deposited wall is involved in control of microfibril 

assembly. A large range of different angles between microfi­

brils in subsequent lamellae has been found in material from 

different plants (Neville and Levy 1984, Emons and van 

Maaren, submitted). In a self-assembly process the differ­

ence in texture of different walls must reflect a difference 

in cellulose polymer molecules, in side chains of the cellu­

lose molecules, or in wall matrix molecules interacting with 

the cellulose. Indeed, cell walls differ biochemically 

(Darvill et al. 1985). The gradual transition from helicoi­

dal to helical cell wall texture in full-grown root hairs of 

Equisetum hyemale (Emons and Wolters-Arts 1983) would imply 

a change in chemical composition of the wall. Though such a 

change may well occur, the occurrence of two textures in a 

single cell disputes Neville and Levy's distinction (1984) 

between cells with helicoidal walls and cells with a smaller 

number of different microfibril orientations, the latter be­

ing under the controle of microtubules, the former not. 

A mathematical model for helicoidal wall deposition has 

been worked out (this thesis, chapter 12). 

ACKNOWLEDGEMENT 

I thank Prof. Dr. M.M.A. Sassen and Dr. J. Derksen for valuable discussions. 

REFERENCES 

BROWN R. H., Jr. (1985). Cellulose microfibril assembly and orientation: recent de­
velopments. J. Cell Sci suppl. 2, 13-32. 

BROWN, R.M., WILLISON, J.H.M. & RICHARDSON, C.L. (1976). Cellulose biosynthesis in 
Acetobacter xylinum: visualization of the site of synthesis and direct measurement 
of the in vivo process. Proc. Natl. Acad. Sci. USA 73, 4565-4569. 

96 



BOULIGAND, Y. (1972). Twisted fibrous arrangements in biological materials and cho-

lesteric mesophases. Tissue & Cell 4, 189-217. 

DARVILL, A.G., ALBERSHEIM, P., MCNEIL, M., LAU, J.H., YORK, U.S., STEVENSON, T.T., 

THOMAS, J., DOARES, S., GOLLIN, D.J., CHELF, P., DAVIS, K. (1985). Structure and 

function of plant cell wall polysaccharides. J. Cell Sci. Suppl. 2, 203-217. 

EMONS, A.M.C. (1982). Microtubules do not control microfibril orientation in a heli­

coidal cell wall. Protoplasma 113, 85-87. 

EMONS, A.M.C. (1985). Ρlasma-membrane rosettes in root hairs of Equisetum hyemale. 

Planta 163, 350-359. 

EMONS, A.M.C. (1986). Cell wall texture in root hairs of the genus Equisetum. Can J. 

Bot. 64, in press. 

EMONS, A.M.C. & DERKSEN, J. (1986). Microtubules, microfibrils and microfilaments of 

the trichoblast of Equisetum hyemale. Acta Bot. Neerl. 35, (3) in press. 

EMONS, A.M.C. & VAN MAAREN, N. Helicoidal cell wall texture in root hairs, 

submitted. 

EMONS, A.M.C. & UOLTERS-ARTS A.M.C. (1983). Cortical microtubules and microfibril 

deposition in the cell wall of root hairs of Equisetum hyemale. Protoplasma 

117,68-81. 

FRANKE, W.U., MORRE, P.J., DEUMLING, В., CHEETHAM, R.D., KARTENBECK, J., JAROSCH, 

E.D. & ZENTGRAF, H.W. (1971). Synthesis and turnover of membrane proteins in rat 

liver: An examination of the membrane flow hypothesis. Z. Naturforsch. 26b, 

1031-1039. 

HEATH, I.B. & RETHORET, K., (1982). Mitosis in the fungus Zygorynchus moelleri: Evi­

dence for stage specific enhancement of microtubule preservation by 

freeze-substitution. Eur. J. Cell Biol. 28, 180-189. 

HEATH, I.B. & SEAGULL, R.U. (1982). Oriented cellulose fibrils and the cytoskeleton: 

a critical comparison of models. In: The cytoskeleton in plant growth and 

development (ed. C U . LLOYD) pp. 163-182. London: Academic Press. 

HERTH, U. (1980). Calcofluor white and congo red inhibit chitin microfibril assembly 

of Poterioochromonas: evidence for a gap between polymerization and fibril 

formation. J. Cell Biol. 87, 442-450. 

HOUARD, R.J. & AIST, J.R. (1979). Hyphal tip cell ultrastructure of the fungus Fus­

arium: improved preservation by freeze-substitut i on. J. Ultrastr. Res. 66, 224-234. 

LLOYD, C U . & UELLS, B. (1985). Microtubules are at the tips of root hairs and form 

helical patterns corresponding to inner wall fibrils. J. Cell Sci. 75, 225-238. 

97 



MEEKES, H.T.H.M. (1985). Ultrastructure, differentiation and cell wall texture of 
trichoblasts and root hairs of Ceratopteris thalictroides (L.) Brong. 
(Parkeriaceae). Aquatic Botany 21, 347-362. 

MUELLER, S.C. & BROWN, R.M., Jr. (1982). the control of cellulose microfibril deposi­

tion in the cell wall of higher plants. Planta 154, 489-515. 

NEVILLE, A.C., GUBB, D.C. & CRAWFORD, R.M. (1976). A new model for cellulose archi­
tecture in some plant cell walls. Protoplasma, 90, 307-317. 

NEVILLE, A.C. & LEVY (1984). Helicoidal orientation of cellulose microfibrils in 
Nitella opaca internode cells: ultrastructure and computed theoretical effects of 
strain reorientation during wall growth. Planta 162, 370-384. 

NEVILLE, A.C. & LUKE, B.M. (1969). A. two-system model for chitin-protein complexes 
in insect cuticles. Tissue & Cell 1, 689-707. 

REISS, H.D., SCHNEPF, E. & HERTH, W.(1984). The plasma membrane of Fuñaría caulonema 

tip cell: morphology and distribution of particle rosettes and the kinetics of cellu­

lose synthesis. Planta 160, 428-435. 

ROBINSON, D.G. & QUADER, H. (1982). The microtubule-microfibriI syndrome. In: The 
cytoskeleton in plant growth and development (ed. C.W. LLOYD) p. 109-126. London: 
Academic Press. 

ROLAND, J.С & VIAN, В. (1979). The wall of the growing plant cell: its three dimen­

sional organization. Int. Rev. Cyt. 61, 129-166. 

SASSEN, Μ.Μ.Α., WOLTERS-ARTS, A.M.C. & TRAAS, J.Α. (1985). Deposition of cellulose 

microfibrils in cell walls of root hairs. Eur. J. Cell Biol. 37, 21-26. 

SCHNEIDER, В., HERTH, W. (1986). Distribution of plasma membrane rosettes and 

kinetics of cellulose formation in xylem development of higher plants. Protoplasma 

131, 142-152. 

SCHNEPF, E., DEICHGRABER, G. & HERTH, W. (1982). Development of cell wall appendages 

in Acanthosphaera zachariasi (Chlgrococcales): kinetics, site of cellulose synthesis 

and microfibril assembly and barb formation. Protoplasma 110, 203-214. 

SEAGULL, R.W. & HEATH, I.B. (1980). The organization of cortical microtubule arrays 

in the radish root hair. Protoplasma 103, 205-229. 

TRAAS, J.Α., BRAAT, P., EMONS, A.M.C., MEEKES, Η. & DERKSEN, J. (1985). Microtubules 

in root hairs. J. Cell Sci. 76, 303-320. 

WILLISON, J.H.M. (1982). Microfibril-tip growth and the development of pattern in 

cell walls. In: Cellulose and other natural polymer systems (ed. R.M. BROWN, Jr.) 

p.105. New York: Plenum Press. 

98 



CHAPTER б 

Microfibrils, Microtubules and Microfilaments 

of the Trichoblast of Equisetum Hyemale 





M I C R O F I B R I L S , MICROTUBULES AND MICROFILAMENTS 

OF THE TRICHOBLAST OF Equisetum hyemale 

ANNE MIE С. EMONS AND JAN DERKSEN 

Department of Botany, Universi ty of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The 
Netherlands 

Acta Bot. Neerl. 35 ( 3 ) , 19B6 

ABSTRACT 

The c e l l wall of the t r i c h o b l a s t i c part of the root hair c e l l is h e l i c o i d a l , l i k e 
the c e l l wall of the root hair proper. The r o t a t i o n mode of the h e l i c o i d is counter­
clockwise and the angle between m i c r o f i b r i l s in adjacent lamellae is 30° to 40°. 

During t r ichoblast elongation c o r t i c a l microtubules l i e perpendicular to the axis 
of elongation. During root hair i n i t i a t i o n and root hair growth c o r t i c a l microtu­
bules a l i g n according to the long axis of the forming h a i r , not in p a r a l l e l with the 
m i c r o f i b r i l s . The f reeze-subst i tut ion technique reveals microtubules in the apical 
dome of the forming h a i r , where they l i e in random or ientat ions enabling isodiamet-
r i c expansion. Microtubules in these c e l l s funct ion in morphogenesis, but not in 
m i c r o f i b r i l o r i e n t a t i o n . 

F-actin cables, microfi laments, are present in the t r i c h o b l a s t ; they form a net­
work in the c e l l i n t e r i o r . They do not coal ign with the m i c r o f i b r i l s nor with the 
microtubules. 

Key words: M i c r o f i b r i l s , microtubules, microfi laments, Equisetum, t r i c h o b l a s t 

INTRODUCTION 

I n many p l a n t c e l l s , n a s c e n t m i c r o f i b r i l s and c o r t i c a l mi­

c r o t u b u l e s h a v e b e e n found i n p a r a l l e l o r i e n t a t i o n s and 

t h e r e f o r e m i c r o t u b u l e s have b e e n h y p o t h e s i z e d t o o r i e n t a t e 

t h e n a s c e n t m i c r o f i b r i l s . I t i s , however , n o t known how t h e y 

do s o ; and s e v e r a l h y p o t h e s e s h a v e b e e n p r o p o s e d ( H e a t h and 

S e a g u l l 1 9 8 2 ) . 

The c o a l i g n m e n t b e t w e e n t h e s e s t r u c t u r e s h a s e s p e c i a l l y 

b e e n s t u d i e d i n e n l a r g i n g c e l l s u r f a c e s (Hardham 1982, 

Gunning and Hardham 1982) and i n xylem e l e m e n t s , i n which 

l o c a l w a l l t h i c k e n i n g o c c u r s ( F a l c o n e r and S e a g u l l 1 9 8 5 ) . 
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Absence of parallelism has been explained by pointing out 

that microtubules were already in the position of the expec­

ted new microfibril orientation (Newcomb and Bonnett 1965, 

Seagull and Heath 1980). 

Recent investigations on root hairs with helicoidal 

walls, however, did not allow for such an explanation (Emons 

1982, Emons and Wolters-Arts 1983, Meekes 1985, Traas et al. 

1985). In these cells, microtubules align longitudinally 

while in time and in place the adjacent microfibrils attain 

all different orientations with respect to the long axis of 

the hair. Therefore, the microtubules cannot orientate the 

microfibrils by their own direction. It has to be emphasized 

that root hairs are tip-growing cells (Sievers and Schnepf 

1981) and that the helicoidal wall is a secondary wall de­

posited in the non-enlarging hair tube (Emons and Wolters-

Arts 1983) . 

F-actin strands, microfilaments, have recently been 

shown, by means of the F-actin specific probe rhodamine-

phalloidin, to be a normal component of plant cells 

(Parthasarathy 1985, Parthasarathy et al. 1985, Derksen et 

al. 1986, Pierson et al. 1986). They may be involved in 

cytoplasmic streaming (Pesacreta and Parthasarathy 1984, 

Parthasarathy et al 1985, Derksen et al. 1986) and may 

interact with microtubules (Pollard et al. 1984). 

We studied microfibrils, microtubules and microfilaments 

in trichoblasts of Equisetum hyemale to investigate their 

possible interactions. A root hair is a protuberance of an 

epidermis cell. This cell is called a trichoblast. In this 

paper the term trichoblast is used for the epidermis cell be­

fore, during and after root hair formation. As fibril lamel­

lae of the root hair seem to originate from this part of the 

cell (Emons and Wolters-Arts 1983) a clue for the micro­

fibril orientating mechanism might be found in the tricho­

blast. 

MATERIAL AND METHODS 

The microtubules of the cytoplasm were visualized by immunofluorescence (Wick and 
Duniec 1983, Traas et al. 1985,). 

The microfibrils of the cell wall were visualized by thin-sectioning (Emons and 
Wolters-Arts 1983) and by dry-cleaving (Sassen et al. 1985). 
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Microfibrils and microtubules were also visualized with the freeze-substitution 

procedure. For freeze-substitution, pieces of roots with hairs were placed on pieces 

of boiled dialysis tubing as large as a grid. These pieces were rapidly frozen by 

plunging them in liquid propane, cooled by liquid nitrogen. They were transferred to 

a substitution fluid composed of anhydrous aceton containing 2% OsÔ  and 0.1% uranyl 

acetate precooled at -78° С in a metal vial. The metal vials, containing the speci­

mens were transferred to a freeze-drying device held at a temperature of -80" С (±5° 

С) by liquid nitrogen during 20 h. The material was brought to room temperature in 

this apparatus very slowly during another 6 h. At room temperature the specimens 

were rinsed with anhydrous aceton several times, infiltrated with spurr's resin and 

embedded as a flat layer. Under a light microscope individual cells, showing no evi­

dence of gross ice crystal damage, were selected. The selected hairs were sectioned 

tangentionally with a Sorvall Porter Blum MT 5000 onto formvar coated grids and 

stained with uranyl acetate/lead citrate. 

Sections were examined with a Philips EM 201 electron microscope. 

The microfilaments of the cytoplasm were visualized using rhodamine-label led phal-

loidin (Derksen et al. 1986). 

RESULTS 

Freeze-substitution gave good preservation of the cyto­

plasm of the root hair, in which the longitudinal microtu­

bule alignment could be ascertained (Emons, submitted). The 

microfibrils of the cell wall of the root hair were not 

visualized by this method, but the method did visualize mi­

crofibrils in the trichoblast cell wall. Sofar, in this part 

of the cell we did not succeed to preserve the cytoplasm 

with cortical microtubules. 

The cell wall of the trichoblast is clearly of the heli­

coidal type (Fig. 1). This is also shown by thin-sectioning 

of material from which matrix substances had been dissolved 

(Fig. 2 ) . Dry-cleaving shows the last-deposited microfibrils 

in surface view (Fig. 3). The angle between microfibril ori­

entations in adjacent lamellae is 30° to 40°. Looking from 

the cytoplasm and going from former to later deposited lamel­

lae the rotation of the helicoid is counterclockwise. 

Microfibrils within a lamella are not contiguous. 

The three different methods employed show that the cell 

wall texture of the trichoblast is helicoidal with the same 

angle between fibril orientations of successive lamellae and 

with the same rotation of the helicoid as in the root hair 

cell wall. 
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Fig. 1. Thin section of the cell wall of a trichoblast with short, growing root 
hair, prepared by freeze-substitut i on and in-block staining with uranyl acetate, 
showing the arcs of the helicoidal cell wall. Width of parabolae in a micrograph 
depends on obliqueness of sections. 13 200 x, bar: 500 nm. 

Fig. 2. Thin section of the cell wall of a trichoblast with a long, growing root 
hair, prepared by dissolving the wall matrix prior to embedding and staining of the 
sections with permanganate. In cells with longer root hairs more helicoidal arcs are 
present in the proximal part of the hair than in cells with shorter root hairs. 
27 300 x, bar: 500 nm. 

Fig. 3. Surface view of the innermost layer of the cell wall prepared by dry cleav­
ing and shadowing, showing the three last deposited microfibril lamellae. Arrows 
indicate the direction of the three last-deposited lamellae. Looking from the cyto­
plasm, going from former (a) to later (b resp. c) deposited lamellae, the rotation 
mode of the helicoid is counterclockwise. The angle between consecutive lamellae is 
approximately 40°. 27 000 x, bar: 500 nm. 

Fig. 4. Thin section of tip of very young root hair, prepared by freeze-substitu­
tion. Small arrows indicate microtubules. Microtubules occur in random orientations. 
13 200 x, bar: 500 nm. 

Fig. 5. Microtubule alignment of undifferentiated epidermis cells during cell elonga 
tion, visualized by immunofluorescence. Cortical microtubules align transverse to 
the axis of elongation. As to microtubule alignment, trichoblasts and atrichobtasts 
are the same. Arrow designates long axis of root, which is the axis of elongation of 
the cell. 1000 x. 

Fig. 6 a,b,c. Microtulule alignment in trichoblasts during root hair growth, visual­
ized by immunofluorescence. Microtubules mainly occur in the cortical cytoplasm. 
a), trichoblast, which has a short protuberance, b). trichoblast, which has a grow­
ing hair, c). trichoblast,which has a full-grown hair. During hair growth microtu­
bules lie in the direction of the long axis of the hair; after growth this alignment 
is more or less lost in the trichoblastic part of the cell. 960-1000 x. 

Fig. 7. Microfilament alignment in a trichoblast, bearing a growing hair, visualized 

using the F-actin specific probe rhodamine-phalloidin. Microfilaments occur at dif­

ferent levels in the cell, not only in the cortical cytoplasm. 1200 x. 
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Fig. 5 shows the microtubule pattern in epidermis cells 
before root hair formation. Figs. 6 a,b,c show the microtu­
bule pattern in a trichoblast with a short protuberance 
(Fig. 6a), a trichoblast with a growing root hair (Fig. 6b) 
and a trichoblast with a full-grown root hair (Fig. 6c). In 
elongating epidermis cells before root hair initiation mi­
crotubules align transverse to the axis of elongation of the 
root and of the epidermis cell (Fig. 5). In a trichoblast 
with short protuberance (Fig. 6a) the original microtubule 
alignment in the tangential wall is lost; alignment in the 
radial walls is still transverse to the axis of elongation 
of the root (Fig. 6a). Microtubules protrude into the form­
ing hair and lie in the direction of the long axis of this 
hair. The same microtubule pattern is conserved during root 
hair growth (Fig. 6b). In Fig. 6c it can be seen that in a 
trichoblast with a full-grown hair all regular microtubule 
alignment is more or less lost. Microfibril deposition in 
the trichoblast goes on during all these stages (Figs. 1 
and 2). 

Freeze-substitution reveals a random microtubule orienta­
tion in the tip of the protuberance (Fig. 4). 

Fig. 7 reveals the alignment of F-actin cables, microfila­
ments, in a trichoblast with a young growing root hair. 
These microfilaments are situated in the cell interior un­
like microtubules, which are present predominantly in the 
cortical cytoplasm. Throughout hair growth they conserve 
this alignment. They do not coalign with the microfibrils of 
the cell wall. 

DISCUSSION 

Microfibril visualization by means of freeze substitution 

Uranyl acetate has no chemical affinity for cellulose. 
The image of cell walls after this staining is often unrelia­
ble (Neville and Levy 1984). Cox and Juniper (1972) have re­
ported that uranyl acetate stains cellulose microfibrils but 
that this staining is physical in nature and therefore re-
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moved by washing of the material on the grids. In-block 
staining would reveal microfibrils. The dark threads seen by 
freeze-substitution of material in-block stained with uranyl 
acetate (Fig. 1) occur in the same pattern as in thin sec­
tions from which matrix material has been dissolved (Fig.2), 
in shadowed dry-cleaved material (Fig.3) and in freeze-et-
ched material (Emons 1985) and are therefore interpreted as 
cellulose microfibrils. 

In freeze-fractured preparations microfibrils of root 
hairs of Equisetum hyemale measured 8.5 run (±1.5 nm) includ­
ing shadow deposit (Emons 1985). In dry-cleaved preparations 
(Fig. 3) microfibrils measure 8 nm (±1 nm) including shadow 
deposit. However, in thin sections of material from which 
the cell wall matrix has been dissolved (Fig. 2) their diame­
ter is much smaller (approximately 3.5 nm). The diameter of 
microfibrils in the helicoidal layer of the wall prepared 
with freeze-substitution is much larger (compare Fig. 1 and 
Fig. 2), which could point at the possibility that a hydro-
phylic sheath of less-crystalline glucans, which surrounds 
the crystalline core, is positively stained. 

Freeze-substitution of in-block stained material is one 
of the means to elucidate the debate on microtubule and mi­
crofibril coalignment (Emons 1982, Emons and Wolters-Arts 
1983, Lloyd and Wells 1985, Traas et al. 1985), because arte­
facts of chemical fixation are ruled out and microtubules 
and microfibrils may be visualized at the same time in the 
same preparation. 

Microtubules and morphogenesis 

In a review article, Cormack (1949) stated that there was 
general agreement that retardation in vertical elongation of 
the trichoblasts is a prerequisite for epidermal cells to 
give rise to root hairs. 

It has become known since then that microtubule orienta­
tion is at least one of the factors that determine the orien­
tation of cell elongation (Gunning and Hardham 1982, Hardham 
1982, Busby and Gunning 1984). In cells expanding uniformly 
in one direction, microtubules lie perpendicular to the axis 
of elongation (Gunning and Hardham 1982, Hardham 1982, Busby 
and Gunning 1984, Sassen and Wolters-Arts 1986). This can 
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also be seen in epidermis cells before root hair initiation 
(Fig. 5). In isodiametrically expanding cells, as proto­
plasts, microtubules lie in random orientations (Marchant 
1979, Lloyd et al. 1980, van der Valk et al. 1980). The ran­
dom microtubule orientations occur also in the expanding tip 
of Equisetum hyemale root hairs (Fig. 4). 

Cells, which have completed elongation, never form hairs 
(Cormack 1949). In these cells microtubules occur in random 
orientations (data not shown). It seems that a microtubule 
alignment perpendicular to the axis of elongation of the 
trichoblast, i.e. according to the long axis of the protuber­
ance, is one of the prerequisites needed to form a hair, but 
it is not the root hair initiating factor as atrichoblasts 
have the same microtubule pattern and do not form hairs. In 
Equisetum hyemale the trichoblast stops elongating at the on­
set of root hair formation. 

Our observations clearly indicate a morphological role of 
the cortical microtubules: at the time that the protuberance 
forms, microtubule alignment along the tangential wall of 
the trichoblastic cell changes (Fig. 6). Microtubules loose 
alignment around the cell, but along the radial walls they 
lie in the direction of the long axis of the protuberance. 
At the tip of the protuberance they span the hemisphere and 
lie in random orientations allowing isodiametric expansion. 
The crucial question therefore is: "What determines microtu­
bule orientation?" 

It further remains to be explained how transverse hair ex­
pansion is inhibited in tip-growing cells, which have axial 
microtubule alignment. 

Microtubules and microfibril orientation 

Cortical microtubules lie against the plasma membrane. 
Across the membrane, microfibrils are deposited. During root 
hair growth, microfibril deposition occurs along the whole 
Equisetum hyemale root hair and the cell wall of the tricho­
blast thickens also (compare Figs. 1 and 2). As in the hair, 
microfibrils in this basal part of the cell are deposited 
according to a helicoid, showing parabolae in thin sections 
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(Figs. 1 and 2). Thus, lamellae with microfibrils in subse­
quently differing orientations are deposited while microtu­
bules remain aligned in one direction only. This corrobo­
rates the statement that microtubules do not orientate the 
nascent microfibrils in a helicoidal cell wall (Emons 1982, 
Emons and Wolters-Arts 1983). 
Lloyd and Wells (1985) have suggested that phosphate buff­

er somehow would disorientate transversely oriented microtu­
bules in root hairs. Traas et al. (1985), however, did not 
find any differences in microtubule pattern between cells 
processed in phosphate buffer and cells processed in Pipes 
buffer recommended by Lloyd and Wells (1985) . 

Microtubules and microfibrils influence plant cell morpho­
genesis. Microtubules constitute the inner skeleton, with a 
role in maintenance and alteration of cell shape, comparable 
to their role in animal cells (erythrophores: Ochs 1982, a-
moebae: Uyeda and Furuya (1985). Microfibrils constitute the 
outer skeleton of a plant cell, with a role in more perma­
nently shaping cells. This outer skeleton is transient in 
growing cells or cell parts and permanent in full-grown 
cells or cell parts. An enlarging cell in a transient wall 
needs the microtubules as the inner cytoskeleton and to 
alter the axis of elongation. Absence of coalignment of 
microfibrils and microtubules has also been shown in Valonia 
(Itoh and Brown 1984). Mizuta and Wada (1982) concluded 
that microtubules do not orientate the nascent microfibrils, 
because anti-microtubule agents did not affect microfibril 
orientation in Boergesenia. Hahne and Hoffmann (1985) have 
found that in mesophyll cells microtubules are present dur­
ing cell division and cell enlargement but not during cell 
wall deposition. 

As microtubules and microfibrils have some functions in 
common, microtubules and microfibrils lie in parallel in 
enlarging cells, but microtubules do not directly orientate 
the nascent microfibrils. 

Microfilaments 

The orientation of F-actin cables, microfilaments, visual­
ized with rhodamine-labelied phalloidin differs from the 
orientation of microtubules and is not correlated to the 
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o r i e n t a t i o n of nascent m i c r o f i b r i l s . We conclude t h a t the 
a c t i n cables observed are not involved in c e l l morphogenesis 
nor i n m i c r o f i b r i l o r i e n t a t i o n . 

In f r e e z e - s u b s t i t u t e d r o o t h a i r s of Equisetum hyemale mi­
crof i laments a r e often seen along the microtubules (Emons, 
s u b m i t t e d ) . These f i laments are not v i s u a l i z e d with the 
rhodamine l a b e l l e d p h a l l o i d i n . They may i n t e r a c t with micro­
tubules ( P o l l a r d e t a l . 1984). 
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ABSTRACT 

Roots of Equisetum hyemale and Raphanus sativus were grown in a concentration of 
colchicine that slowed down root hair growth without stopping growth completely. The 
treatment effected depoIymeri zat ion of microtubules and increase in root hair diame­
t e r . In root hairs of Raphanus sativus the deposit ion o r i e n t a t i o n of m i c r o f i b r i l s 
changed to oblique and even transverse or ientat ions, whereas untreated hairs show 
axial m i c r o f i b r i l alignment. In root hairs of Equisetum hyemale a hel icoidal wall 
was deposited, which is the same as without treatment. I t is concluded that microtu­
bules funct ion in determining c e l l shape, but do not d i r e c t l y control or ientat ion of 
nascent m i c r o f i b r i l s . 

KEY WORDS: microtubules, m i c r o f i b r i l s , colchic ine, hel ico idal wall texture 

INTRODUCTION 

I n r o o t h a i r s d i f f e r e n t t y p e s of w a l l t e x t u r e s have b e e n 

f o u n d : a x i a l , h e l i c a l , h e l i c o i d a l ( S a s s e n e t a l . 1981) and 

c r o s s e d p o l y l a m e l l a t e (Lloyd and Wel l s 1 9 8 5 ) . The h e l i c o i d a l 

w a l l i s b u i l t of a s t a c k of p a r a l l e l - f i b r e d l a m e l l a e . M i c r o ­

f i b r i l o r i e n t a t i o n i n e v e r y s u b s e q u e n t l a m e l l a i s r o t a t e d 

w i t h r e s p e c t t o t h e p r e v i o u s l a m e l l a . I n g e n e r a l , c o r t i c a l 

m i c r o t u b u l e s i n r o o t h a i r s a r e a x i a l o r s t e e p l y h e l i c a l 

( S e a g u l l and H e a t h 1980, Emons 1982, Lloyd and Wel l s 1985, 

T r a a s e t a l . 1 9 8 5 ) , though more c o m p l i c a t e d c o n f i g u r a t i o n s 

have b e e n r e p o r t e d f o r A l l ium (Lloyd and W e l l s 1985, T r a a s 

e t a l . 1 9 8 5 ) . Thus , i n r o o t h a i r s w i t h a x i a l o r h e l i c a l w a l l 
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t ex tu r e microtubules and nascent m i c r o f i b r i l s are often in 
p a r a l l e l , while in roo t h a i r s with h e l i c o i d a l wal l t e x t u r e 
such a c o o r i e n t a t i o n has not been found. In young root h a i r s 
of £guisetuni hyemale, which have a h e l i c o i d a l wall t e x t u r e , 
(Emons 1982, Emons and Wolters-Arts 1983) a x i a l microtubule 
alignment was found c o n s i s t e n t l y by means of d i f f e r e n t 
methods: t h i n - s e c t i o n i n g of chemically f ixed ma te r i a l (Emons 
1982, Emons and Wolters-Arts 1983), dry c leav ing (Traas e t 
a l . ) , immunofluorescence (Traas e t a l . 1985, Emons and 
Derksen 1986) and f r e e z e - s u b s t i t u t i o n ( t h i s t h e s i s chapter 
5 ) . 

Colchic ine depolymerizes microtubules and has var ious ef­
f e c t s on c e l l wal l t ex tu r e (review: Robinson and Quader 
1982). To study the e f f e c t of co lch ic ine on roo t h a i r s , we 
used Equisetum hyemale and Raphanus sativus wi th well known 
r o o t h a i r w a l l t e x t u r e : h e l i c o i d a l i n E. hyemale (Emons and 
W o l t e r s - A r t s 1983) and a x i a l i n R. sativus ( S a s s e n e t a l . 
1 9 8 5 ) . 

MATERIAL AND METHODS 

Root hairs of Equi set im hyemale were taken from stem cuttings (cf . Emons and 
Uolters-Arts 1983). Root hairs of Raphanus sativus were taken from seedlings 
germinated on moist f i l t e r paper and grown in bidest in petri dishes. Plantlets were 
grown in special cuvettes in which adherent roots of stem cuttings and intact seed­
lings could be examined under a light microscope to follow hair in i t iat ion and 
growth, and in which the growth medium could be changed without disturbing the 
roots. Only hairs growing in the medium were used. Roots were fixed in these cu­
vettes. Concentrations and treatment times were: 10"^ M colchicine during 7 h and 
10"^ M colchicine, overnight. 

Microtubules were studied by means of irmunofluorescence (Traas et a l . 1985). 
Cell wall texture was examined by means of the dry-cleaving technique (Sassen et a l . 
1985). 

RESULTS 

Fig. la shows microtubules in an untreated root hair. 
Fig. lb shows a root hair of Equisetum hyemale grown in 
colchicine: most of the microtubules are depolymerized, the 
orientation of the remaining microtubules deviates more from 
the axial direction than microtubules in untreated hairs do. 
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Figs. 1a,b: Microtubules in root hairs of Equisetum hyemale visualized by immuno­

fluorescence a: control, b: hair treated with 10 M colchicine, during 7h. 1250x. 

Figs. 2a-d: Surface views of inner cell wall of root hair of E. hyemale deposited 
during colchicine treatment: Fig. 2a: random texture at the hair tip. Fig. b-d: the 
last-deposited lamellae have different orientations according to the long axis of 
the hair. 20 160x, bar: 500 nm. 

Figs. 3a-d: Surface views of inner cell wall of root hair of Raphanus sativus depos­
ited during colchicine treatment: the last deposited microfibrils have different 
orientations. 20 240x, bar: 500 nm. 
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The cell wall texture of root hairs of Equisetum hyemale 
deposited during colchicine treatment was clearly helicoidal 
(Fig. 2 b,c,d), with a random texture at the hair tip (Fig. 
2a). The microfibrils in the last-deposited lamella showed 
different orientations at different places along the hair, 
as is found in control preparations (this thesis, chapter 
5). The rotation mode of the helicoid is counterclockwise. 
The angle between microfibrils in adjacent lamellae, 30° to 
40°, did not differ significantly from the control. 

The effect of colchicine, in the same concentrations, on 
microtubules of Raphanus saCivus root hairs was similar, 
though less prominent, as on Equisetum. hyemale root hairs. 
More microtubules remained after treatment. 
However, the generic axial microfibril deposition pattern 

changed: microfibrils deposited in different orientations 
(Figs. 3 a,b,c,d) and wall texture became helicoidal-like. 

DISCUSSION 

It has been proposed that helicoidal microfibril deposi­
tion is controlled by shifting microtubular helices (Roberts 
et al. 1985), or alternatively originates from self-assembly 
like in liquid crystals (Neville 1986). 

The concentration of colchicine used did not result in a 
complete loss of cell polarity, though hair width increased. 
It has been postulated that the pattern of microfibril de­
position is related to the shape of the cell (Takeda and 
Shibaoka 1981) and that the helical angles of various wall 
layers correlate with cell dimensions (Preston 1974). 

A mathematical model has been worked out according to 
which a helicoidal wall can be formed without any orientat­
ing force of microtubules (Emons 1986) . In this model the 
wall texture is determined by cell shape, polysaccharides ad­
herent to microfibrils and density of microfibril initiation 
points (Emons 1986, this thesis chapter 12). The model pre­
dicts that, given a root hair with axial wall texture, suf­
ficient increase in cell diameter will result in the forma­
tion of a helicoidal wall texture. 
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The c o l c h i c i n e t r e a t m e n t we a p p l i e d t o r o o t h a i r s r e s u l t ­

ed i n d e p o l y m e r i z a t i o n of m i c r o t u b u l e s , i n c r e a s e i n h a i r 

w i d t h , p e r s i s t e n c e of a h e l i c o i d a l c e l l w a l l t e x t u r e i n Equi-

setum hyemale, b u t d e p o s i t i o n of m i c r o f i b r i l s i n o b l i q u e and 

t r a n s v e r s e o r i e n t a t i o n s i n Raphanus sativus r o o t h a i r s . 

F u r t h e r r e s e a r c h , e s p e c i a l l y by means of t h i n - s e c t i o n i n g , 

i s n e e d e d t o e s t a b l i s h t h e n a t u r e of t h e c e l l w a l l of r o o t 

h a i r s of Raphanus sativus d e p o s i t e d a f t e r c o l c h i c i n e t r e a t ­

m e n t . We t h e r e f o r e p r e s e n t t h e s e r e s u l t s a s p r e l i m i n a r y . 
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Plañía (ІВДэ) 161 ЪО Ъ9 

Plasma-membrane rosettes in root 
of Equisetum hyemale 

Anne Mie С Emons 
Dcparimcnl ol Bolan\ Univcrsitv of Nijmegen Tocrnooivcid N L 

Abstract. Particle arrangement in the plasma mem­
brane during cell wall formation was investigated 
by means of the double replica technique in root 
hairs ol Ьс/ипеШт InenuiU' Particle density in the 
protoplasmic fracture face of the plasma mem­
brane was higher than in the extraplasmic fracture 
face Apart from randomly distributed particles, 
particle rosettes were visible in the PF- face of the 
plasma membrane The rosettes consisted of six 
particles arranged in a circle and had an outer di­
ameter of approx 26 nm No gradient in the 
number of rosettes was found which agrees with 
micnfibnl deposition taking place over the whole 
hair The particle rosettes were found individually, 
which might indicate that thev spin out thin micro­
fibrils as found in higher-plant cell walls Indeed 
microfibril width in these walls measured in sha­
dowed preparations is 8 5 + 1 5 nm It is suggested 
that the rosettes are involved in microfibril synthe­
sis Non-turgid cells lacked microfibril imprints in 
the plasma membrane and no particle rosettes were 
present on their PI lace I ixalion with glutaralde-
hyde caused probably as a result ol plasmolysis 
the microfibri' imprints to disappear together with 
the particle rosettes The PF face of the plasma 
membrane ol non turgid hairs sometimes showed 
domains in which the inlramembrane particles 
were aggregated in a hexagonal pattern Microfi­
bril oncnlalion during deposition will be discussed 

Key words: Cellulose microfibril - Fqui\etum (root 
hair) Plasma membrane rosette 

Introduction 

Synthesis and ordered deposition of microfibrils 
in the cell wall is one of the important events deler-

Ahhniianoin Ft -cxlraplasmic fracture lace Ph = protoplas­
mic fraciurc face 

Planta 
( Springer Verldf 1985 

hairs 

6^25 F-D \i jmcgcn The Neihcrlands 

mining plant cell morphogenesis The hypothesis 
that microfibrils are synthesized by enzyme com­
plexes in the plasma membrane was formulated 
by Preston (1974) The putative enzymes, however, 
have only seldom and poorly been revealed in ul-
trathin sections (Mueller and Brown 1980 Olesen 
1980) The freeze-fracture technique has allowed 
the visualization of a morphologically recognizable 
complex, embedded in the plasma membrane, pre­
sumed to represent the cellulose-synthesizing en­
zyme (for review see Mueller 1982) The putative 
synthesizing structure manifests itself on the ex­
traplasmic fracture face (EF) of the plasma mem­
brane as a globular, approximately 25 nm wide ter­
minal complex (Mueller et al 1976) and on the 
protoplasmic fracture face (PF) of the plasma 
membrane as a particle rosette (Mueller and 
Brown 1980), consisting of six circularly arranged 
inlramembranous particles Rosettes measure 
about 24 nm in diameter, their constituting parti­
cles 8 nm (Mueller and Brown 1980) Since, in ГиІ1> 
turgid cells, they are attached to the most recently 
deposited microfibrils (Mueller 1982), the com­
plexes might spin out microfibrils into the wall as 
they move through the membrane (Lloyd 1980) 

Single particle rosettes have been identified in 
protonemata of the lern Adianihum (Wada and 
Stachelm 1981), in corn, bean and pine seedlings 
(Mueller and Brown 1980), during primary wall 
formation in Murasienas (Giddings et al 1980) 
and. recently, in Fuñaría caulonema tip cells (Reiss 
el al 1984) Hexagonal arrays of rosettes have 
been found during secondary wall deposition in 
the algae Murauenas (Giddings et al 1980). Clos-
tenum (Stachelm and Giddings 1982), and Spiro-
g\ra (Herth 1984) In contrast, the PF of plasma 
membranes of isolated cell-wall-regenerating plant 
protoplasts from different origin exhibit arrays of 
closely hcxagonally packed particles (Robenek and 
Pcvcling 1977, Davcy and Mathias 1979, Schnabl 
et al 1980, Wilkinson and Northcote 1980) 
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Λ M С ï-mons Pldsma-niembrdiie roscuc^ m root hairs 

Previous studies on the Equnetum h\ emale root 
hair (Emons 1982, bmons and Wolters-Arts 1983) 
have shown that in young growing hairs, as well 
as in full-grown hairs, microfibrils are deposited 
along the whole hair tube and that the cortical 
microtubules and the nascent microfibrils are not 
in parallel Thus it was concluded that the microtu­
bules cannot exert, at least not by their direction. 
control of microfibril orientation. 

The present study was undertaken lo investi­
gate the membrane-mediated control of microfi­
brillar order in cell walls of E hvemale root hairs. 

Material and methods 

Stem cuttings of Equisi'tum Ini'mttk' (I ). cultivated in the bo­
tanical garden containing se\eral nodes, were grown in wide 
test-tubes in lap water, at room temperature under normal 
light conditions This studv deals loremost wiih >oung glowing 
hairs but full-grown hairs are also considered For Ггсс7е-Ггас-
tunng. a monolaser of root hairs, still atlached to the root 
and remaining under water, was placed between two thin cop­
per specimen holders Without any prior treatment with fixative 
or crvo-protcctant. root hairs were rapidly Iro/en by two jets 
oí liquid propane, one on either side, in a cryojcl (Of D 101 
Bal/crs Liechtenstein), and transferred to liquid nitrogen lor 
storage Other samples were fixed m 2"n gluleraldehvdc in caco-
dylatc buflcr (0 2 M, pH 7 2) lor 1 h and processed in the same 
way Keeping them under liquid nitrogen specimens were 
transferred to the lunged double-replica device (Balzers) and 
translcrrcd to the specimen stage Л Hal/ers [ree/e-etch appara­
tus was used at — lOK Ĉ I he material was etched for 30 b. 
60 s or 2 mm. shadowed with platinum and carbon and coaled 
with carbon at an initial vacuum ol Ì 10 *' lorr Replicas were 
cleaned with ΊΟ0» chiomic acid, washed in aqua bidest and 
mounted on lormvar-coated copper grids The replicas were 
examined and photographed with the model EM 201 electron 
microscope (Philips. Lindhovcn The Netherlands) 1 he termi­
nology of Ilranton et al (ІУ?1!) is used lor designating the frac­
ture faces 

Results 

/ The freeze-fracture technique Although initially 
designed for monolayers of unicellular organisms, 
propane-jct-freezing proved to be very useful with 
these cells of a higher plant, since the hairs could 
be spread in a monolayer on the copper plate, 
while the root itself rested in the groove between 
the copper plates The fracture plane seldom went 
through the inner part of the cell, which would 
have exposed the different cell organelles, never 
through the cortical cytoplasm so as to disclose 
the microtubules, often the fracture plane was 
through the wall only and many cells fractured 
within the plasma membrane. Etching lor 2 mm 
uncovered the microfibrils, as in Fig 1 and 3 The 
plasma membrane, however, was better preserved 
with an etching time of 30 s. By etching for 60 s 

the membranes were well preserved and the adja­
cent wall texture could be observed too 

2 The cell nail I he architecture of the cell wall, 
observed by frcczc-fracturing, was similar to that 
observed by shadow-casting and thin-sectioning 
(Fig 1) The outer primary wall, deposited in the 
growing tip, has randomly arranged microfibrils 
against which, in the lateral wall of young hairs, 
a helicoidal microfibril texture is deposited from 
approx 300 μιη behind the growing tip onwards. 
Figure 2 shows that lamellae with a transverse mi­
crofibril orientation also occur in the helicoidal 
wall. Later, in full-grown hairs, an additional inner 
helically oriented layer is deposited, starling at the 
base of the hair (bmons and Wolters-Arts 1983). 
The transition from random lo helicoidal is very 
gradual (data not shown) In freeze-fracture micro­
graphs, microfibrils of the cell wall of E. hvemale 
measured 8 5 + 1 5 nm in width Microfibril width 
was measured with a calibrated 10 χ ocular on 
microfibrils lying perpendicular to the direction of 
shadowing from replicas of 50 different, 2-min-
etched, cells with a magnification ranging from 
30000 to 70000 χ (Fig 3) 

3. Particle rosettes m turgid hairs. Replicas of tur­
gid hairs were obtained from young, untreated, 
growing hairs Figure 4a shows the EF adjacent 
to the helicoidal part ol' the wall with imprints -
seen as elevations on the EF - of wall microfibrils 
in two superimposed differently oriented lamellae. 
Terminal globules were only seldom observed 
(Fig 4b) 

Protoplasmic fracture faces of the plasma mem­
brane of E In emale root hairs clearly reveal inlra-
membrane particle rosettes (Fig 4c, d), consisting 
of six intramembrane particles arranged in a circle. 
Microfibril imprints were either slight (Fig 4c) or 
obvious (Fig 4d), in the latter case rosettes were 
sometimes seen at the ends of microfibril imprints. 
In a high magnification of the PF of the plasma 
membrane, the helicoidal nature of the adjacent 
wall does not appear clearly because, between the 
interspaces of microfibril imprints of the last-de­
posited lamella, imprints of the previous lamellae 
show up The density of the rosettes varied from 
5 to 15 μιτι" 2 The diameter of the rosettes, mea­
sured from the edges of particles on either side, 
was 26 ± 5 nm The large variation in rosette dia­
meter appears to be independent of shadowing 
characteristics and of the size of the constituting 
particles, but to depend rather on the compaction 
of the particles of a rosette The constituting parti­
cles are either more or less tightly packed as if 
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Fig. I. Oblique fracture through the cell wall of a full-grown root hair of Equiseium hyenmle. showing the dispersed texture 
of the outer layer (i/), three parabolac of the helicoidally textured layer (/7). the helically arranged microfibrils of the inner layer 
(/). Arrow indicates long axis of the hair: 2-min etch, χ 2.1 ООП 

Fig. 2. Lengthwise slit-open cell wall of young Eqmseium hyenmle root hair, showing several microfibril lamellae, some of them 
transverse to the hair Arron indicates long axis of the hair; 6U-s etch: χ 22000 

Fig. 3. Oblique fracture through cell wall of Equisetum hyemale root hair, showing two microfibril lamellae of the helicoidal 
part of the wall. Microfibril width was measured on microfibrils {Jouhle arrow) lying in the direction of shadowing. 2-min etch. 
χ 60200 EncircledarroM \ indicate the direction of shadowing: bars = 0.5 μητ 

rosettes are aggregating or disintegrating. Figure 5 
shows micrographs of differently sized particle ro­
settes, taken from one and the same hair. Rosettes 
arc randomly distributed over the membrane. They 
are not arranged in distinct clusters or in rows 

and differently shaped rosettes are randomly inter­
spersed. 

Only rarely did the hair fracture through the 
,. ρ proper. Figure 6 a shows an E F near to the 
hemisphere with microfibril imprints in random di-
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Fig. 4a-d. Plasma membrane against helicoidal wall of young untreated root hair of Eqmsetum hvcmale. a The EF with microfibril 
imprints of two subsequent lamellae (аггои 0. 60-s etch, χ 64400 b The 1 I with microfibril imprints and some terminal globules 
at the ends of imprints {arrows). 60-s etch, χ 42000 с The PF with slight microfibril imprints and with particle rosettes {26±5 nm 
in diameter); 60-s etch; x96600 d The Pl· with clear microfibril imprints and particle rosettes sometimes at one end of an 
imprint. 60-s etch, χ 64400 Encircled arrows indicate the direction of shadowing. bars^O 5 μιτι 
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Hg. 5a-i. Particle rosettes of different si/es. taken from one 
and the same hair, the particle arrangement is as in Fig- 10. 
The arrangement in ι is possibly accidental and these rosettes 
were not, therefore, included m rosette-diameter measurement. 
60-s etch, encircledarron indicates the direction of shadowing, 
Ьаг-0 .5йт; χ 147000 

Hg. 7a, b. Plasma membrane of young untreated non-turgid 
root hair of fcquisetum hxemale a The EF with regular mtra-
membranc-particle distribution and no microfibril imprints, 
taken as proof that the cell is not turgid: 30-s etch; χ 64400 
b The PF with regular intramembranc particle distribution, no 
microfibril imprints and no rosettes, 30-s etch, χ 64400 

Fig. 8a, b. Plasma membrane of full-grown untreated root hair 
of EqwM'ium h\emale a The EF with regular intramembranc 
particle distribution and no microfibril imprints; 30-s etch; 
χ 64400 b The PF with regular intramembranc particle distri­

bution, without microfibril imprints and without particle ro­
settes. 30-s etch: χ 64400 

Fig. 9a, b. Plasma membrane of young glutaraldehyde-Iìxcd 
root hair of Equisctum hxemale with less-regular particle distri 
bution than in unfixed hairs a The EF without microfibril 
imprints. 30-8 etch: χ 64400 b The PF without microfibril 
imprints and without particle rosettes: 30-s etch, χ 64400 En­
circled arrows indicate the direction of shadowing: bars = 
0.5 цт 

Fig. 6a, b. Plasma membrane against randomly textured wall of the tip near the hemisphere of an untreated young Equisefum 
h\emalc root hair a The EF of a lurgid hair with microfibril imprints in random directions, lying on the dispersed microfibrils 
of the primary cell wall d. Near-transverse fracture of this wall, arrow, long axis of the hair, 60-s etch, χ42000 b The ΡΓ 
of a turgid hair with microfibril imprints m random directions and with particle rosettes, 60-s etch, χ 70000 Encircled arrows 
indicate the direction of shadowing, bars —0 5 μιη 
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Fig. IO. The PF of the plasma membrane against a randomly textured wall near the hemisphere of the tip of an untreated 
young root hair oí Eqmsetum Invnwle In the upper part of the micrograph, the plasma membrane is appressed to the microfibrils 
of the cell wall and shows microfibil imprints (arrows): the lower part of the plasma membrane is retracted from the wall and 
has no microfibril imprints. Both parts as well as the transition area have hexagonal particle arrays (encircled areas). 6()-s etch. 
χ 70000. Inset: a clear hexagonal particle array. 60 s etch, χ 70000. Encircled arrow indicale the direction of shadowing, bar = 0.5 μιη 

rections. The PF of the plasma membrane in this 
area shows a pattern and density of particle ro­
settes (Fig. 6b) similar to those found in the area 
against the helicoidal wall. 

4. The plasma membrane of non-turgid and glutaral-
dehyde-fixed hairs. The absence of microfibril im­
prints on the plasma membrane was taken as proof 
that the plant cell was not fully turgid, either physi­
ologically or artefactually (Fig. 7a). On the PF of 
the plasma membrane of non-turgid hairs, particle 
rosettes were absent (Fig. 7b). Note that, as is 
common in plant cells, the EF has fewer intramem-
branous particles than the PF. Possibly as a conse­
quence of their length and fragility, full-grown 
hairs were never observed to be turgid by means 
of this freezing method, which may account for 
the absence of particle rosettes in plasma mem­
branes of full-grown hairs (Fig. 8a: PF, 8b: EF). 

Also, young hairs fixed in glutaraldehyde in 
buffer showed no microfibril imprints, and particle 
rosettes were not seen on the PF of the plasma 
membranes (Fig. 9a: PF, 9 b : EF). Furthermore. 
particles were less regularly distributed in fixed 
hairs. Amongst the usually randomly distributed 
particles of the PF of the plasma membrane of 
young unfixed hairs, membrane domains showing 
a regular hexagonal array of particles were some­

times interspersed. The hexagonal particle arrays 
were seen in non-turgid cells and in cells which 
were in the process of loosing turgidity, that is, 
in which the plasma membrane was still partly ap­
pressed to the wall microfibrils but had in another 
part retracted from the cell wall (Fig. 10). 

Discussion 

The idea that microfibrils are synthesized at the 
plasma membrane has recently been corroborated 
by work on freeze-fracturcd membranes adjacent 
to cellulosic cell walls (for review sec Mueller 
1982). Indications have been found that specialized 
particle rosettes play a role in microfibril synthesis. 
The presence of such rosettes is confirmed now 
for young growing root hairs of E. hyemale by 
freeze-fracturing of unfixed, uncryoprotected, rap­
idly frozen hairs. 

Particle rosettes in the plasma membrane. In the 
E. hyemale root hair, the density of rosettes is the 
same as has been found in other studies (approx. 
Ι Ο μ π ι " 2 ) (Mueller 1982). Recently, Herth (1984 
lecture "Third Cell Wall" Meeting. Fribourg) has 
found 160 rosettes ц т ~ 2 in cress xylem cells. The 
difference may be explained by a difference in turn-
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over rate or, more probably, by a difference in 
proximity ol the nascent microfibrils Also from 
dry-cleaved preparations (data not shown) it can 
be deduced that there may be a considerable dis­
tance between nascent microfibrils 

In Adicmthum (Wada and Staehelin 1981) and 
in the cells of higher plants investigated by Mueller 
(1982) the particle rosettes in the Pf- of the plasma 
membrane do not form rows or any geometrical 
pattern In the PF of Ihe plasma membrane against 
the secondary wall of some algae, hexagonal pat­
terns of rosettes have been found in MicraVenas 
(Giddmgs et al 1980), СІочіспит (Staehelin and 
Giddings 1982) and Spirogira (Herth 1984) Gid-
dings et al (1980) suggest that each of the rosettes 
accounts for one thin microfibril as found in high­
er-plant cell walls, whereas rows of rosettes would 
lead to lateral aggregation of microfibrils into the 
wider microfibrils of these algae Microfibrils in 
the cell wall of E h\emak' are 8 5 + 1 5 nm wide, 
measured in shadow cast preparations, as is com­
mon in higher plants (for discussion of microfibril 
width and microfibril width measurement see Pre­
ston 1974) 

Herth (1981) presumes that each of the six units 
of a rosette might svnthesize six glucan chains. 
which then co-crystalli/c into a 36-glucan-chain el­
ementary fibril Microfibrils in Equisctum root 
hairs are 8 5 + 1 5 nm in diameter One rosette 
might synthesi/c one crystalline core, the width of 
an elementary fibril which is then surrounded by 
a paracryslallme cortex, consisting of an admixture 
of cellulose and hemicellulose (Preston 1974) In 
the wider fibrils of Spirog\ra (Herth 1984) this cor­
tex possibly surrounds the whole wide fibril, but 
not the constituting elementary fibrils 

However, since the biochemical analysis of the 
microfibril synthesizing complex has not yet been 
accomplished, the synthetic activities of the parti­
cle rosettes remains a matter of speculation Ro­
settes might also represent condensation centers, 
crystallizing the already-synthesized glucan chains, 
or extrusion sites through which the cellulose pre­
cursors are excreted or as suggested by Wilhson 
(1984), rosettes might function in fixing enzymes 
in the membrane or in connecting microfibrils to 
guiding structures Wilhson (1983) argues that the 
rosettes arc not the enzyme complexes for microfi­
bril biosynthesis and assembly because their den­
sity in root tissues and cotton hairs is lower than 
that of terminal globules and because they are not 
always microlibril-terminal In the £ hu'male root 
hairs, however terminal globules in the EH of the 
plasma membrane were seldom seen, while rosettes 
in the PF occurred with a frequency of 5 15 μιη~2 

In addition the individual glucan chains will not 
leave imprints on the membrane onl> after crystal­
lization ol the glucan chains at the outside of the 
plasma membrane will a microfibril imprint be visi­
ble Indeed, experiments with calcofluor white and 
congo red have shown that the steps of polymeriza­
tion and crystallization are not simultaneous 
(Haigler et al 1980, Herth 1980, Herth and 
Hausser 1984) 

Turgulit\ and presence of particle rowttei Mueller 
(1982) has already emphasized the importance of 
cellular turgor for visualizing the membrane com­
plexes In the root hairs of E Inemale turgidily 
was indeed required Also, cells fixed in glutaraldc-
hyde were never observed in their turgid state and 
displayed no particle rosettes 

The absence of particle rosettes in other plant 
tissues (Crevecoeur et al 1982, Sjolund and Shih 
1983) is probably a consequence of gluteraldehyde 
fixation The particle aggregates seen in fixed, 
frcczc-fractured cress seedlings (Volkmann 1983) 
show a different morphology from the particle ro­
settes shown here 

So far, particle rosettes have not been observed 
in full-grown hairs of t Inemale, which are known 
to continue microfibril deposition (Emons and 
Wolters-Arts 1983) Full-grown hairs, however, 
were never turgid, and thus, like young non-turgid 
hairs, lacked particle rosettes The full-grown hairs 
were longer than the copper plates between which 
they were sandwiched and therefore more succept-
able to mechanical damage than the younger short­
er hairs Whether non-lurgid hairs can synthesize 
microfibrils is not known For Trucie « anna, mi­
crofibril deposition in plasmolysed root hairs has 
been reported (Schröter and Sievers 1971) 

In young non-turgid hairs and in hairs engaged 
in the process of loosing lurgidity, hexagonal ar­
rays of particles occur Similar arrays have been 
found in microfibril-forming protoplasts isolated 
from higher plants (for review see Wilhson and 
Klein 1982) These particle arrays have been ar­
gued to function in micrifibnl synthesis (Robcnek 
and Pcvcling 1977), in solute transport (Schnabl 
et al 1980) or to have no function at all, being 
plasmolysis-induced (Wilkinson and Northcote 
1980) Indeed, the absence of microfibril imprints 
reveals the non-turgidity of the wall-regenerating 
protoplasts It is quite conceivable that the uncou­
pling of the plasma membrane from the cell wall 
leads to alterations in the arrangement of particles 
within the membrane, in which case, the hexagonal 
array would be a stress phenomenon Recently 
similar hexagonal particle arrays have been found 
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in glularaldchydc- gl)cerol- or sucrose prelrealed 
Lepiäium root hairs (Volkman 1984) 

Control of microfibril oru nial ion The c\toplasmic 
agents governing microfibril deposition are not >ct 
known Cortical microtubules have been proposed 
to control microfibril orientation (lor review sec 
Robinson and Quader 1982) In E In ι так root 
hairs however the microtubules are not in parallel 
with the nascent microfibrils (hmons and Wolters 
Arts 1981) Recently a discrepancy in orientation 
between microtubules and nascent microfibrils has 
also been reported for the alga \ aloma (Itoh and 
Brown 1984) 

If particle rosettes represent the tdlulose-mi-
crofibnl-synlhesi/mg enzymes their movement in 
the plasma membrane dclcrmincs microfibril on 
cntation The energy for the propulsion ol the ro 
scttes might be delivered by the formation of the 
microfibril itself (compare Hcrth 1980) and if no 
forces from the cell interfere propulsion will con 
linue in the same direction The propulsion ol the 
rosettes however is influenced by the medium the 
fluid membrane The directed lateral mobility of 
molecules within the plasma membrane is cur 
rently attributed to the aclin-myosin filaments of 
the cytoskclcton possibly conducted by microlu 
bules (Berlin et al 1979 Heath and Seagull 1982) 
Plasma-membrane-bound filaments have recently 
been revealed in plant cells (Traas 1984) Microfi­
bril orientation thus would be subjected to two 
forces the kinetic force of fibril formation and 
the cell directed movement of the plasma mem­
brane (compare Mueller 1982) Microfibril orienta 
lion then will be the resultant of these two forces 
and need not lie in the direction of the microlu 
bules Therefore with the present assumption that 
the force generated by the microtubules is insuffi 
cienl in some instances to channelize the microfi 
brils the discongruily in microtubule microfibril 
orientation can be explained Whether or not a 
helicoidal wall can thus be made is under lurther 
investigation 

I am greatly mdcbkcl to Professor Μ Μ Л Sassui and I lhank 
Dr J W M Dcrkscn for hclplul discussions I also thank Pro 
fcssorW llcrth (Zel lenkhn. U n n c r s i l a t Heidelberg I R d ) for 
reading of the manuscript and lor providing useful criticisms 
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ABSTRACT 

Intramembranous p a r t i c l e s in the plasma membranes of pol len tubes and generative 
c e l l s of pol len grains of L i l ium longif lorum and of root hairs of Equisetum hyemale 
and Lepidium sativum were studied by means of f reeze-fractur ing. Two hexagonal 
p a r t i c l e configurat ions were observed in these higher plant c e l l s : a s ingle roset te, 
containing six p a r t i c l e s and a regular pattern of hexagonally ordered p a r t i c l e s . The 
hexagonal pattern d i f f e r s from the hexagonal pattern known to occur in yeast c e l l s . 
The hexagonal pattern in yeast is one of the f i v e Bravais- lat t ices described in crys­
tal lography. I t is proposed to use the term "honeycomb pattern" for hexagonal pat­
terns in higher plant c e l l s to d i f f e r e n t i a t e between the two types of hexagonal pat­
terns. 

I t is hypothesized that the honeycomb p a r t i c l e configurat ion functions i n 
transport of solutes through the membrane, the s ingle rosette c o n s t i t u t i n g a channel 
for transport of m i c r o f i b r i l precursors. 

KEY WORDS: freeze-fracture, hexagonally ordered p a r t i c l e s , plant c e l l , plasma 
membrane rosettes 

INTRODUCTION 

F r e e z e - f r a c t u r i n g h a s d i s c l o s e d a v a r i e t y of p a r t i c l e p a t ­

t e r n s i n p l a s m a membranes. Plasma membranes of p l a n t c e l l s 

e x h i b i t randomly d i s p e r s e d i n t r a m e m b r a n o u s p a r t i c l e s ( I M P s ) , 

u n e q u a l l y d i s t r i b u t e d b e t w e e n t h e p r o t o p l a s m i c (PF) and ex-

t r a p l a s m a t i c (EF) f r a c t u r e f a c e s . However, IMPs o c c u r a l s o 

i n s p e c i f i c p a t t e r n s : a) p a r t i c l e r o s e t t e s (Emons 1985, 

r e v i e w : Brown 1 9 8 5 ) , b) h e x a g o n a l a r r a y s of r o s e t t e s 

( G i d d i n g s e t a l . 1980, H e r t h 1983, H o g e t s u 1 9 8 3 ) ; c ) 

h e x a g o n a l l y o r d e r e d p a r t i c l e s ( W i l l i s o n and K l e i n 1982, 

Volkmann 1984, Emons 1985, Kroh and Knuiman 1 9 8 5 ) ; d) h e x -
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agonal patterns such as found in yeast cells (Moor and 

Mühlethaler 1963); e) granule bands (Robinson and Preston 

1972, Brown and Montezinos 1976) and f) parallel strings of 

particles (Robenek and Peveling 1977). 

Particle rosettes (a), hexagonal arrays of particle ro­

settes (b) and granule bands (e) have been hypothesized to 

function in microfibril synthesis (review: Brown 1985). Two 

functions have been attributed to the hexagonally ordered 

particles (c): microfibril synthesis (Robenek and Peveling 

1977, Volkmann 1984) and solute transport (Schnabl et al. 

1980, Kroh and Knuiman 1985). It has, however, also been 

hypothesized that hexagonally ordered particles are an ef­

fect of plasmolysis (Wilkinson and Northcote 1980, Emons 

1985). 

Volkmann (1984) reported the presence of hexagonally or­

dered particles in Lepidium root hairs and the absence of 

particle rosettes in this plant material during active 

growth and microfibril synthesis. In Equisetum root hairs, 

however, particle rosettes were regularly observed, hexagon­

ally ordered particles were seen during retraction of the 

plasma membrane from the cell wall (Emons 1985). 

To investigate whether the different particle patterns 

are related, we studied intramembranous particle distribu­

tion in the plasma membranes of: Lilium longiflorum pollen 

tubes and generative cells of Lilium longiflorum pollen 

grains, Lepidium sativum root hairs and Equisetum hyemale 
root h a i r s . 

M A T E R I A L A N D M E T H O D S 

Plant material: 

Pollen grains and tubes of Lilium longiflorum were obtained as described for 
tobacco by Kroh and Knuiman (1905). Root hairs of Equisetum hyemale were obtained 
from stem cuttings grown as described by Emons and Uolters-Arts (1983). Lepidium 
sativum seeds were sown in petri-dishes in moist air. After germination, they were 
grown in small dishes with bidest. Root hairs grown in water were examined. 

Methods: 

Freeze-fracturing of pollen grains and tubes was as described by Kroh and Knuiman 
(1985) and of root hairs as described by Emons (1985). 
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RESULTS 

The freeze-fractured membrane 

Apart from regions with randomly scattered single parti­
cles, the PF-face of the plasma membrane of lily pollen 
tubes shows hexagonally ordered particles (Fig. la). Some­
times imprints of hexagonally ordered particles are visible 
on the EF-face of the plasma membrane (Fig. lb), which 
proves that they really exist in the intact membrane. In the 
lily pollen tube single particle rosettes also occur on the 
PF-face of the plasma membrane. The generative cell is en­
closed by two membranes: the plasma membrane of the genera­
tive cell itself and the plasma membrane of the vegetative 
cell. The PF-face of the plasma membrane of the generative 
cell of lily pollen grains as well as the PF-face of the 
plasma membrane of the vegetative cell, which surrounds the 
generative cell, contain hexagonally ordered particles 
(Figs. 2a,b). 

In Equisetum hyemale root hairs particle rosettes were 
regularly observed, but hexagonally ordered particles may 
also occur in plasma membranes. Hexagonally ordered parti­
cles occur in regions with and without microfibril imprints 
(Figs. 3 a,b). Microfibril imprints are caused by a close 
apposition of the membrane to the cell wall microfibrils 
and, therefore, are seen only in fully turgid cells. Plasma 
membranes with hexagonally ordered particles may also 
contain single particle rosettes (Fig. 3c), and pairs of 
rosettes, sharing a pair of adjacent particles (Fig. 3d). 

Lepidium sativum root hairs grown in bidest contained 
particle rosettes on the PF-face of the plasma membrane 
(Fig. 4); hexagonally ordered particles were seldom ob­
served, a situation comparable to the situation in Equisetum 
hyemale root hairs. 

Fig. 6a shows the particle pattern in yeast. The pattern 
is different from the pattern found in pollen tubes and root 
hairs. Figure 6b is a schematic representation of the lat­
tice found in yeast. The basic unit of this lattice is a tri­
angle (Fig. 6b), whereas the basic unit of the pattern found 
in higher plant cells is a hexagon (Fig. 7). 
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Fig. 1: Plasma membrane of pollen tube of Lilium longiflorum, showing hexagonally 

ordered particles (honeycomb pattern) on the PF-face of the membrane (Fig. la) and 

imprints of hexagonally ordered particles (honeycomb pattern) on the EF-face of the 

membrane (arrows) (Fig. lb). 

Bars: 200 nm, a: χ 144 000, b: χ 92 200. 

Fig. 2a: Cytoplasm of pollen grain of Lilium longiflorum. PF-face of the plasma 

membrane of the generative cell (GPF) containing the honeycomb particle pattern 

(arrows), and the EF-face of the plasma membrane of the vegetative cell (VEF). Being 

an EF-face, the plasma membrane of the vegetative cell has many particles. 

Bar: 200nm, χ 51 100. 

Fig. 2b: EF-face of the plasma membrane of the generative cell (GEF) showing 

relatively many particles, and PF-face of the plasma membrane of the vegetative cell 

(VPF) showing a honeycomb particle pattern (arrow). 

Bar: 200 nm, χ 80 500. 

Fig. 3: PF-face of plasma membrane of root hair of Equisetun hyemale showing 

hexagonally ordered particles (honeycombs) in cell regions with microfibril imprints 

(Fig. 3a) and without microfibril imprints (Fig.3b). Figs. 3a and 3b are from one 

and the same cell. Single rosettes (Fig. 3c) and pairs of rosettes are present in 

membranes containing honeycomb patterns. 

Bars: 200 nm, 3a,b: χ 64 400, 3c,d: χ 126 000. 

Fig. 4: PF-face of plasma membrane of root hair of Lepidi um sativum, frozen in 

bidest, showing particle rosettes (encircled). 

Bar: 200 nm, χ 147 000. 

Fig. 5: EF-face of the plasma membrane of young Equisetun hyemale root hair showing 

a terminal globule (arrow). 

Bar: 200 nm, χ 64 400. 

Fig. 6a: PF-face of plasma membrane of yeast, showing a hexagonal pattern of intra-

membranous particles (not honeycombs). Bar: 200 rm, χ 64 400. 

Fig. 6b: Schematic representation of the particle configuration found in the plasma 

membrane of yeast cells. The basic unit of this lattice is a triangle. 
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DISCUSSION 

Hexagonally ordered particles 

The particle pattern found in yeast cells (Figs. 6a and 
b) has been called an hexagonal array of particles (Moor and 
Mühlethaler 1963). In this view, "hexagonal" is the term 
used in crystallography. The hexagonal lattice has been 
described as one of the five possible two-dimensional 
Bravais lattices. Mathematically, it is trigonal (Fig. 6b). 
The pattern found in higher plant cells has also been called 
a hexagonal particle pattern (Wilkinson and Northcote 1980). 
Being built of hexagons, mathematically it is a hexagonal 
pattern. It is, however, not one of the Bravais lattices of 
crystals. In crystallography, the five two-dimensional 
Bravais lattices constitute modes in which globular subunits 
pack regularly in a plane. Wilkinson and Northcote (1980) 
have shown that both types of hexagonal particle configura­
tions may occur in plant protoplasts. There is need to dis­
tinguish the two patterns. We propose that the pattern found 
in yeast be called a hexagonal pattern, because in animal 
cell literature the term is widely in use for this pattern, 
and the pattern described in the present paper be called a 
honeycomb pattern. 

The honeycomb pattern 

The honeycomb pattern of particles found in lily pollen 
tubes has also been found in pollen tubes of tobacco (Kroh 
and Knuiman 1985) . Reiss and coworkers found only particle 
rosettes in lily pollen tubes. They used short germination 
tubes (length- 0.5 χ pollen grain diameter); we used longer 

tubes (length = 6 χ pollen grain diameter). 

Volkmann distinguished three zones in the PF-face of the 

plasma membrane of growing root hairs of Lepidium sativum 
with respect to the distribution and frequency of intramem-

branous particles. In 60% of the root hairs the plasma mem­

brane of the vacuolation zone of the hair revealed areas of 

hexagonally ordered particles, honeycomb patterns. The honey­

comb pattern of particles was absent from the apical and the 

basal zone of the hair. He hypothesized that hexagonally or-
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dered particles (the honeycombs) are involved in the syn­
thesis of cellulose microfibrils. 

We, however, find particle rosettes in Lepidium sativum 
root hairs as in root hairs of Equisetum hyemale (Emons 
1985) . The difference in procedure between our preparation 
and Volkmann1s is that we used uncryoprotected roots in bi-
dest and Volkmann (1984) used glycerinated or sucrose incuba­
ted roots. We rarely found honeycomb patterns of particles 
in Lepidium and Equisetum root hairs. 

Culture conditions have been argued to induce hexagonally 
ordered particles (honeycombs) (Wilkinson and Northcote 
1980). Culture media for plant protoplasts always contain 
sucrose. Pollen tube culture media also contain sucrose. The 
germination conditions used for lily pollen tubes by Reiss 
and coworkers (1985) were not reported. 

Pearce (1985) has found patterns of particles, which are 
clearly honeycombs, on PF-faces from wheat leaf bases dehy­
drated over 8 hours to a water content of 11% of that of the 
fully turgid tissue. In the same membrane, particle-free pat­
ches occurred. The particle-free patches were hypothesized 
to be induced by cell dehydration (Pearce 1985). No explana­
tion was given for the occurrence of honeycomb patterns of 
particles. 

Thus, in plant plasma membranes honeycomb patterns of 
particles are present if the medium contains sucrose or gly­
cerol and during plasmolysis and dehydration. 

In animal cells, particles of gap junctions have been 
shown to occur under both polygonal and linear form. After 
10 minutes exposure to 20 mM glucose, 51% of the recogniza­
ble gap junctional particles (GJP) of isolated perfused rat 
pancreas were present in polygonal form (In 't Veld et al. 
in press). The remaining particles were in linear arrays and 
the total number of GJP was identical. The glucose induced 
formation of polygonally packed particles from linear arrays 
was concluded to be a reversible calcium and glucose 
dependent process. 

Just as the linear particle array of gap junctions is 
easily transformed into a hexagonal array (In 't Veld in 
press), rosettes of plant cell membranes might easily trans-
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form in single particles (Emons 1985) or in honeycomb 
patterns of particles and vice versa. The occurrence of 
rosettes with varying diameters (Emons 1985) and rosettes 
missing a particle (Reiss et al. 1984) have been seen to be 
an indication for rosette formation or disintegration. 

Particle rosettes: 

Particle rosettes have been found in a variety of plant 
cell membranes (review: Brown 1985), and have been regularly 
found in the PF-face of the plasma membrane of Equisetum 
hyemale root hairs (Emons 1985). 

Particle rosettes have also been found in animal cells. 
Miller and Pinto da Silva (1977) found particle rosettes pre­
ferentially associated with the cytoplasmic leaflet (PF) of 
the periaxonal Schwann cell membrane. Rosettes had a diame­
ter of approximately 13 nm and consisted of 6 particles in a 
hexagonal pattern comparable to the particle rosettes of 
plant cell membranes, which, however, measure approximately 
25 nm in diameter. In the periaxonal Schwann cell often two 
or more rosettes were joined, sharing a pair of adjacent par­
ticles, as is also seen in the Equisetum hyemale root hair 
plasma membrane, that contains hexagonally ordered particles 
(Fig. 2d). The function of rosettes in the Schwann cell mem­
brane is not clear (Miller and Pinto da Silva 1977). 

Relation between rosettes and honeycombs 

Figure 7a is a schematic representation of a honeycomb 
pattern, 1,11 and III are the symmetry axes. Fig. 7b repre­
sents the honeycomb pattern of particles, Fig. 7c shows that 
single particle rosettes are sufficient and necessary for 
the construction of this pattern, fig. 7d shows an hexagonal 
pattern of particle rosettes, obtained by converging the par­
ticles of the hexamers, that constitute the building ro­
settes of the honeycomb pattern (Fig. c). The hexagonal pat­
tern of particle rosettes thus obtained is similar to the 
pattern found in some algae (Giddings et al. 1980, Herth 
1983, Hogetsu 1983) . 

Thus Fig. 7 shows the relation between the single ro­
sette, the honeycomb pattern of particles and the hexagonal 
pattern of rosettes. 
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Fig. 7: Schematic drawing of a honeycomb pattern: 

A: I, II and III are symmetry axes, B: honeycomb pattern of particles, C: honeycomb 

pattern constructed out of single particle rosettes., D: hexagonal pattern of 

particle rosettes, obtained by converging the hexamers that constitute the building 

rosettes. 
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Function of honeycomb patterns of particles 

The hexagonal pattern of particle rosettes in algae has 
been hypothesized to be the microfibril synthesizing complex 
(Giddings et al. 1980, Herth 1983, Hogetsu 1983). And indeed 
the complexes are seen at the ends of microfibril imprints 
and microfibril width is correlated to the number of ro­
settes in line with the fibril (Staehelin and Giddings 1982, 
Herth 1983). Single particle rosettes -single hexagons- have 
also been hypothesized to be involved in microfibril syn­
thesis (review: Brown 1985). Schnepf et al. (1985) showed 
that site and intensity of growth were related closely to 
the distribution and frequency of particle rosettes in the 
PF-face of the plasma membrane. 

Rosettes seem to function in microfibril synthesis, 
though they are not necessarily the microfibril synthesizing 
enzymes (Willison 1983, Emons 1985). 

Honeycomb patterns of particles seem to be related to 
solute transport, whether or not in combination with loss of 
turgor. The fact that plasma membranes of generative cells 
of pollen grains contain the honeycomb pattern, indicates 
that honeycombs are not merely plasmolysis induced, because 
plasmolysis in plant cells is the retraction of the plasma 
membrane from the cell wall, and the lily generative cell 
lacks a cell wall (Fig. 2a, Sassen and Kroh 1974). It is 
possible that honeycomb patterns of particles function 
physiologically in transport of small molecules through the 
membrane. 

Figure 7 shows a close relationship between the three 
honeycomb patterns. During cell wall synthesis molecules 
have to pass through the plasma membrane. Cell wall matrix 
is thought to be brought through the membrane by insertion 
of golgi-derived smooth vesicles (Sievers and Schnepf 1981) 
containing the matrix material. Oligomers for the synthesis 
of microfibrils might pass the membrane via the particle 
rosettes. It is known that membranes can regulate the pas­
sage of ions and/or small molecules by ordering membrane 
proteins, thus creating channels in the membrane for this 
purpose. Regulation is achieved by conformational changes 
of the protein in response to chemical and electrical sti-
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m u l i . An example of such a p r o t e i n i s t h e one which forms 

t h e gap j u n c t i o n i n a n i m a l c e l l s (Unwin and E n n i s ( 1 9 8 4 ) . A 

p a r t i c l e of t h e gap j u n c t i o n i s composed of s i x i d e n t i c a l 

r o d - s h a p e d u n i t s and s p a n s t h e b i l a y e r , c r e a t i n g a c h a n n e l a-

l o n g i t s c e n t r a l hexad a x i s (Unwin and E n n i s 1 9 8 4 ) . 

Honeycomb p a t t e r n s of p a r t i c l e s a s w e l l a s p a r t i c l e r o ­

s e t t e s m i g h t f u n c t i o n i n s o l u t e t r a n s p o r t , r o s e t t e s b e i n g 

s i t e s i n t h e membrane where c e l l u l o s e p r e c u r s o r s p a s s t h e 

membrane. P r e c u r s o r s would p a s s t h r o u g h t h e p r o t e i n p a r ­

t i c l e , t h e a r r a n g e m e n t of p a r t i c l e s i n a r o s e t t e a l l o w i n g 

i n d i v i d u a l g l u c a n - c h a i n s t o c o - c r y s t a l l i z e i n t o a c e l l u l o s e 

m i c r o f i b r i l . 

I n t h i s h y p o t h e s i s , t e r m i n a l g l o b u l e s of t h e EF-face of 

t h e p l a s m a membrane ( F i g . 5) m i g h t be t h e m i c r o f i b r i l 

s y n t h e s i z i n g enzymes. To u n d e r s t a n d c e l l u l o s e m i c r o f i b r i l 

d e p o s i t i o n i n h i g h e r p l a n t s t h e m i c r o f i b r i l s y n t h e s i z i n g 

complexes n e e d t o b e c h a r a c t e r i z e d b i o c h e m i c a l l y . 
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CHAPTER 10 

Coated Pits on the Plasma Membrane of Plant Cells 
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Coated pit drv-cleamng —freeze fracturing — plant cell—plasma 
membrane 

The cytoplasmic surface of the plasma membrane of root hairs and 
cortical root cells, both growing and full grown, of several plant 
species and of plant protoplasts, is shown to contain numerous 
coated pits Specimens were prepared by the dry cleaving method 
Freeze substitution and freeze fracturing were used as control 
methods 

The densit) of coated pits in different cells vanes greatly Pils 
are more numerous in root hair tips and in tubes of dp growing 
hairs than in full-grown hairs, and are also more numerous in mer-
istematic and expanding root cells than in elongated cortical root 
cells 

Planar pits with protruding chains measure 60 to 170 nm in di 
ameter and are primarily built up of hexagons but often planar 
pits, irrespective of size, contain a pentagon Clearly curved pits, 
which range in diameter 92 to 124 nm, contain hexagons and some 
pentagons Coated vesicles measure 72 to 96 nm in diamter includ­
ing coat, a size typical lor plant cells The vesicle in the coat has a 
unit membrane structure The center-to-center distance of the po 
lygons in the pus is 23 to 2*5 nm, the sides of the polygonal net­
works are 7 to 8 nm m width 

Coated pits and coated vesicles on the plasma membrane are 
suggested as functioning in membrane turnover 

Introduction 

Coated pits and coated vesicles arc two related structures 
found m all eukaryoUc cells Their cytoplasmic sides are 
constituted of polyhedral coats of cUthnn and associated 
polypeptides [25] According to a widely accepted hypo­
thesis, coated vesicles on the plasma membrane in animal 
cells derive from coated pits by a budding process by 
which the polyhedral coat structure rearranges [16] Upon 
budding, the coats are shed and the vesicles fuse with their 
target membranes, whereas the clathnn molecules are 
thought to return to the plasma membrane to reassociate 
with an incipient coated pit [14] The coated structures in 
animal cells thus function in several ways [4] they bring 
macromoleculcs into the cell and transport them across the 
cell, they retneve membrane from the plasma membrane 
and thus function in membrane turnover 

11 Anne Mie С Emons, Department of Botany, University of Nij 
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membrane of plant cells 

Coated vesicles are also present in plant cells [23] where 
they have been observed near the plasma membrane and 
near dictyosomes Little is known, however, about their 
functioning m plant cells Franke and Hert h [12], working 
on growing suspension culture cells of Haplopappus gra­
cilis, have suggested that they play a role in exocytosis Ac­
cordingly, from studies on other plant cells it has been pro­
posed that coated vesicles derive from dictyosomes and 
fuse with the plasma membrane [8, 27, 33] 

However, Joachim and Robinson [17] and Tanchak et al 
[30] showed that cationic ferritin is endocytosed by proto­
plasts through coated pits 

To put constraints on models regarding dynamics and 
functioning of coated membranes of plant cells, quantità 
tivc data on occurrence, distribution, density, dimension 
and ultrastructure are necessary Detailed quantitative 
data Irom plant cells have only been reported from prepa­
rations of protoplasts [11, 33] We have therefore studied a 
variety of plant material growing as well as full-grown tip-
growing cells, and uniformly expanding as well as elon­
gated cells of the root cortex and plant protoplasts Coated 
structures were visualized with the dry-cleaving method 
To identify possible artefacts of the procedure, the dry-
cleaved material was compared with freeze-substttuted and 
freeze-fractured specimens 

The results are discussed with respect to a possible func­
tion of coated pits and coated vesicles in the retrieval of 
excess plasma membrane during cell expansion 

Materials and methods 

Plant cells from different origins were used growing root hairs of 
Fquisetum hyemale and Raphanus sativus, full-grown root hairs of 
bquisetum hyemale, menstematic and elongating cortical root 
cells of Raphanus sativus and Allium сера, elongated cortical root 
cells of Raphanus sativus, I imnobtum stolomferum and Ceratop-
lens thalictroides Furthermore, protoplasts of suspension culture 
cells of Nicotiana plumbagimfolia were used 

Roots of Equisetum hyemale were taken from stem cuttings 
growing in tap water, roots of Ceratoptens thalictroides and Lim 
nobium stolomferum of plantlets obtained by cutting buds from 
the mother plants and growing them in an aqueous soil extract [19] 
and of Raphanus sativus and Allium сера from seedlings grown 
on moist filter paper 
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РгоіорІаьЬ were prepared by incubating suspension culture 
cells m 0 4 м mannitol with 4Û cellulase and 0.5% hemicellulase 
during Ì h at 50 rpm. 28 0C. 

The cytoplasmic side of the membrane of root cells was investi­
gated with the dry cleaving method debcnbed by Traas [32] Proto­
plasts were fixed in 2% glutaraldehyde in 0 4 м mannitol in Pipes 
buffer (50 mM) during I h After fixation they were rinsed in buffer 
and treated with tannic acid (l"- m Pipes) during 30 mm Subse­
quently. the cells were rinsed in the buffer and allowed to settle on 
poly-L lysine coated grids They were successively postfixed in 10о 
osmium tetroxide in bidest, stained in uranyl acetate l0o in bidest 
and critical point dried after dehydration ш ethanol Subsequent­

ly. the cells were cleaved on adhesive tape as described by Traas 
[32]. 

In order to identify possible artefacts of the chemical fixation. 
the dr> cleaved preparations were compared to material obtained 
with freeze-substitution Freeze substitution was carried out as de­
scribed by Tiwan et al- [31] and references in that paper 

Furthermore, the plasmatic (PF) and extraplasmatic (bF) faces 
of the plasma membrane were studied with freeze-fracturmg The 
freeze-fracture procedure was carried out as described by Emons 

[io]. 
The material was photographed in a Philips FM 201 Density 

and dimensions of the coated pits were measured from photo-

FiS- 1 
male 

Dry-cleaved preparation of root hairs of Equisetum hye-
a. Tip-region of growing hair — b. Tube of tip-growing 

hair. — с Tube of full-grown root hair Pit density in the growing 
hair is higher than in the full-grown hair Bars 250 nm 
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graphs, printed at a final magnification of 35000 to 40000. Density 
of pits is given as numbers/surface area. 

Results 

Density and distribution of coated pits on the plasma 
membrane 

Figures la to с show the cortical cytoplasm of: Equisetum 
hyemaie root hitir tip of growing hair, Equisetum hyemale 
root hair tube of growing hair and Equisetum hyemale 
root hair tube of full-grown hair. The density of coated pits 
is high in growing hairs, tips (2.5-4.5 pits/μηΓ) as well as 
tubes (0.3-3.4 риз/цп ), but low in full-grown root hairs 
(0.1-0.6 ρ ^ / μ η ν ) (Tab. 1). Pit densities tend to be higher 
in the extreme tip. 

The number of coated p i t s ^ m 2 on plasma membranes 
of cortical root cells of different plant species and of pro­
toplasts of Nicotiana plumbaginifolia is also given in Ta­
ble 1. The density of coated pits varies greatly. The density 
in meristematic and elongating cells of Raphanus and Al­
lium is higher than the density in elongated cells. Elon-

Tab. I. Density of coated pits on the plasma membrane of differ­
ent plant cells. Surfaces of 20 to 203 цт сеІІ were measured. 

Species 

Equisetum 
Equisetum 
Equisetum 
Raphanus 
Raphanus 
Raphanus 
Allium 
Limnobium 
Ceratoptens 
Nicotiana 

Cell type 

root hairs, growing, lip 
root hairs growing, tube 
root hairs, full grown 
root hairs, growing, tube 
menstematic/elongating 
cortical elongated 
menstematic/elongating 
cortical, elongated 
cortical, elongated 
protoplasts 

Number 
Of cells 

4 
18 
11 
6 
6 
7 
2 
3 
5 

15 

Density 
of p i t s ^ m 2 

25-45 
0 3-3 4 
0 1-06 
40 80 
05 1 3 
0 5-0 6 
1 6-6 6 
07 1 2 
03 09 
0 6-2 0 

gated cortical root cells of Raphanus, Limnobium and Cer-
atopteris all show values within the same range. 

Also clearly curved pits, either budding from or fusing 
with the plasma membrane, may be seen: in one particular 
area of 180 μητ of Equisetum hyemale root hair plasma 
membrane 15 coated vesicles, 25 curved pits and 78 more 
planar pits were counted. Figure 2 is a stereomicrograph of 
a curved pit. 

The distribution of pits does not show a special pattern; 

sometimes two or three pits are found in close proximity 

(Fig. 3 0-

Ullraslntclure and dimensions of coaled pils and coaled 
vesicles 

Apart from single clathrin timers and very small pits, all 

stages of pit formation and all stages between pits and ves­

icles were observed (Figs. 3a-g). 
Planar pits have protruding chains of the clathrin mole­

cules around them (Figs. 3a d). They measure 60 to 
170 nm in diameter, the smaller consisting of some poly­
gons, the larger pits of up to 25 complete polygons. Planar 
pits usually contain hexagons but also small pits contain­
ing a pentagon are seen (Fig. 3b). 

The size of clearly curved pits depends on the degree of 
curvature and ranges from 72 to 124 nm in diameter. They 
consist of hexagons and on top of the curved coat usually 
a pentagon occurs (Fig. 3e). Strongly curved pits some­
times seem to have a ring-like boundary, due to the fact 
that the protruding chains of the curved pit are below the 
pit and cannot be seen anymore. 

Figure 4 shows the size range of pits given as the number 
of polygons/pit. Sometimes pits with a diameter above 
170 nm were observed, but these clearly represent con­
fluent pairs (Fig. 3 0-

Coated vesicles measure 72 to 96 nm in diameter includ­
ing the coat (Fig. 3g), which corresponds with the size of 

Fig. 2. Stereo micrograph of the cyto­
plasmic side of a protoplast of Nicotiana 
plumbaginifolia prepared by dry-cleav­

ing showing two curved pits with a pen­
tagon at the top. — Note filaments at­
tached to the pit, — Bar 100 nm. 
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Fig. 3. Different stages of coated pit formation in protoplasts of 
Nicotiana plumbagimfolia — a. Small pit with a complete hexa­
gon. — b. Small pit with a pentagon m the center of the pit. — c, d. 
Large pits with protruding clathnn chains around them. — e. 

Curved pit with pentagon — f. Confluent pairs of coated pits 
g. Coated vesicle, the coat contains a vesicle with unit-membrane 
structure — Bars 100 nm 

the largest planar pits. A sphere of 85 nm in diameter has a 
surface of 170 nm". A small vesicle with unit-membrane 
structure is present within the coat. 

Equisetum (root h o r s ) 
- cells 

Л 
15 20 

No ot polygons 

Fig. 4. Distribution of coated pit sizes in dry-cleaved root hairs 
of Equisetum hyemale, given as the number of polygons per 
coated pit 

The center-to-center distance of the polygons in the 
coated pits Is 23 to 25 nm, the sides of the polygonal net­
works measure 7 to 8 nm in width. 

Coated pits in freeze-subsdtuted and freeze-fractured 
preparations 

The density of coated pits in oblique sections of freeze-
substituted young Equisetum hyemale root hairs (Fig. 5) is 
comparable to the density observed with dry-cleaving. 
Also size and morphology do not differ from dry-cleaved 
material. 

Freeze-fracturing reveals the plasmatic, PF face, and the 
extra-plasmatic, EF face, of the plasma membrane Inden­
tations are visible in the PF face of the plasma membrane 
(Figs. 6a, b) and elevations in the EF face (Figs. 6c, d). 
Density and size of indentations and elevations are com­
parable to coated pit density and size in dry-cleaved mate­
rial. 

Discussion 

The dry-cleaving method permits the visualization of large 
areas of the cytoplasmic side of the plasma membrane with 
clearly visible coated pits. In all cells various stages of pit 
formation were observed. 
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A distinct variety of coated vesicle, the "spiny coated 
vesicle" [21]. which occurs in clusters and is variable in size 
and shape, was not found in our material. 

Densilv of coated pits on the plasma membrane 

The density of pits varies greatly between cells (Tab. I). 
The plasma membrane areas in this study may be catego­
rized as follows: a) rapidly expanding membrane of root 
hair tips, b) membrane of the non-expanding lubes of hairs 
growing at the tip, cj uniformly expanding membrane of 
root cells of the meristematic and elongating zone, d) mem­
brane of elongated cortical root cells, e) non-expanding 
membrane of full-grown root hairs,/} membrane of proto­
plasts before microfibril deposition takes place. 

From Table I it is clear that plasma membranes of grow­
ing cells contain more pits than plasma membranes of full-
grown cells, even in the root hair tube, where no cell ex­
pansion takes place. 

In thin-sectioned root hairs of white clover [27] the num­
ber of coated pits was about 20 times larger at the tip of 

Hg. 5. Thin oblique section of cortical cytoplasm of freeze-sub-
slituled root hair of Equisetum hyemale. taken near the tip of the 
young growing hair with abundant coated pits on the small stretch 
of membrane visible in thin section. Bar 250 nm, 

root hairs (1.7 coated ρύβ/μπν) than the number towards 
the base of the hair (0.1 coated p i t s ^ n v ) . Bonnett and 
Newcomb [3] did not record a higher frequency of coated 
vesicles at the lip of the growing root hair in Raphanus. 
We found a high frequency in growing hairs, in the tip 
(Equisetum hyemale: 2.5-4.5 ρήβ/μπτ) as well as in the 
tube (Equisetum hyemale: 0.3-3.4 p i t s ^ n r , Raphanus sa­
tivas: even up to 8 ρύ5/μιη :) of growing hairs, but a 
smaller frequency in full-grown hairs (Equisetum hyemale: 
0.1-0.6 ρΚ5/μηι2). Similarly, pit frequencies found in ex­
panding cortical root cells are higher than those found in 
elongated cortical root cells. Meristematic cells with a 
clear plasma membrane were difficult to obtain; often an 
unidentified precipitate obscured the coated pits. 

Density of coated pits in freeze-substiluted cells resem­
bles the pit densities found by dry-cleaving. The corre­
spondence between these values indicates that coated pits 
are neither artefactually induced by chemical fixation nor 
by the other steps of the dry-cleaving method. 

Freeze-fractured plasma membranes of hair tubes show 
indentations in the PF face (Figs. 6a, b) and elevations in 
the EF face of the membrane (Figs. 6c, d). The size of in­
dentations and elevations agrees with the coated pit size. 
They are not caused by exocytosis of smooth vesicles. 
Smooth vesicles are exocytosed at the hair tip [29]. The in­
dentations and elevations seen in the hair tube are most 
probably from coated pits. Size and density of them corre­
sponds to size and density of coated pits. 

Ultrastructure of coated pits and coated vesicles 

Coated pits on the plasma membrane of the plant cells 
studied are primarily built up of hexagons and are 60 to 
170 nm in diameter. Even small pits with protruding clath-
rin chains often contain a pentagon. The clearly curved 
pits consist of hexagons and one or more pentagons, a re­
quirement for the formation of a globular structure [14]. 
The maximum pit size, 170 nm, is the size required to form 
vesicles in the range of 72 to 96 nm. 

The coated vesicles measure 72 to 96 nm. a size typical 
for plant cells [23]. In animal cells these organelles range 
more widely in size, from about 60 to 160 nm. Croze et al. 
[7] classified clathrin-coated vesicles in rodent liver into 
three distinct populations: 60 to 80-nm vesicles, almost ex­
clusively found within the Golgi apparatus region, 100 to 
160-nm vesicles within 100 to 500 nm of the cell surface 
and 90-nm vesicles present both at the Golgi membranes 
and at the cell surface. Preliminary studies on Equisetum 
hyemale root hairs indicate that coated vesicles near dic-
tyosomes are different in size and morphology from these 
organelles near the plasma membrane (data not shown). 

The center-to-center spacing of the polygons (23-25 nm) 
and the diameter of the sides (7-8 nm) is in the range of 
values calculated from coated vesicles of animal cells [16]. 

Mechanism of coat and vesicle formation 

The mechanism of coat formation is still poorly under­
stood. For animal cells it has been proposed that coats at 
the plasma membrane surface gradually increase by addi-
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tion of coat subunits rather than by fusion of small coated 
pits [16]. Accordingly, in our preparations of Equisetum 
hyemale root hairs a smooth gradation in pit sizes was 
found (Fig. 4). 

The mechanism of vesicle formation originally postu­
lated by Kanaseki and Katoda [18] envisages a rearrange-

Fig. 6. Freeze-fractured root hair of fcquiselum hyemale showing 
the plasmatic fracture face (PF) (a, b) and the extraplasmatic frac­
ture face (FF) (c, d) of the plasma membrane- — a, c. At low mag­
nification b. Detail of PF face with indentations — d. Detail of 

160 

mem of clathrin molecules by which hexagons turn into 
pentagons This conversion of hexagons into pentagons 
could create sufficient strain into the lattice to introduce 
curvature [16]. However, the properties of clathrin in vitro 
suggest that pentagons and hexagons form simultaneously 
[6, 14]. Indeed, we found very small planar pits, that con-

EF face with elevations — Aar through indentations and eleva­
tions is 90 nm. arrow indicates direction of shadow. — Bars 
1000 nm («, c). 250 nm {b, d). 



Um pentagons (Fig 3b) Thus, curvature and closure are 
built into the geometry and bonding properties of the cla-
thnn tnmer 

Results obtained with both animal and plant cells [25, 
30] indicate that a coated pit has a lifetime of less than 
60 s Given the pit density and vesicle diameter and assum­
ing that each coated pit is internalized within 60 s, the rate 
of entire plasma membrane internalization can be calcu­
lated Assuming that all pits are involved in a budding 
process, that each vesicle is formed in 30 to 60 s and given 
the mean diameter of the naked vesicles (about 60 nm), the 
entire plasma membrane of a growing cell with a density of 
two pits per square micron (root hair tubes, menstematic 
cells, protoplasts) is internalized in 20 to 40 mm Given a 
density of 0 7 pits per square micron (nongrowing cells) 
internalization is achieved in 60 to 115 mm 

Function of coaled structures at the plasma membrane 

In plant cells, coated pits have been suggested as originat­
ing from dictyosomes and to function in the exocytosis of 
cell wall precursors and in the transfer of membrane to the 
plasma membrane 13, 20, 21, 23, 33] 

Recent observations, however, argue for an endocytolic 
role of coated pits protoplasts internalize ferritin via 
coated pits [17, 30] Coated vesicles appear to shed their 
coat immediately after formation before they fuse with 
their target membranes [17, 25, 30] Coated vesicles asso­
ciated with dictyosomes of plant protoplasts are smaller 
than coated vesicles associated with the plasma membrane, 
suggesting that they represent two different classes (30, 33] 
A role of coated pits in endocytosis has also been con­
cluded by O'Neill and La Claire [24] from the induction of 
coated pits and coated vesicles through mechanically 
wounding cells of the giant alga Boergesenia Furthermore, 
if a coal inhibits fusion while uncoated membranes rapidly 
fuse with other membranes, as has been convincingly argu 
mented by Altstiel ctnd Branton [2], the visible clathnn coat 
must always be in the process of budding, of retrieving 
membrane from another membrane, rather than being in 
the process of fusing 

We have found low pit-frequencies in non-expanding 
full-grown root hairs, which are actively depositing micro­
fibrils [9] This is a further argument against a role of 
coated pits in exocytosis of cell wall precursors In our 
view the clathnn coat provides л structural framework nec­
essary for the invagination of a vesicle and is thus a site for 
membrane retrieval after exocytosis of wall material by 
smooth vesicles It is known that during release of secre­
tory products by exocytosis, smooth vesicles are inserted at 
the tip of the growing root hair [29] The insertion of mem­
brane at the tip and retrieval of excess membrane along the 
whole root hair causes a constant flow of membrane Also 
Picton and Steer [26] found that excess membrane is in­
serted by smooth vesicles in the plasma membrane of 
growing pollen tubes Wall formation might be expected to 
require more vesicle fusion than does plasma membrane 
growth In this hypothesis the abundance of coated vesi­
cles found in cell plates [20, 21] might also be explained as 
the retrieval of excess membrane from the forming plate 

Whether coated pits in plant cells also function to inter­
nalize substances into the cell cannot be concluded from 
our data Substances thus brought into the cell could be 
the wall oligosacchanns, or substances released by them, 
which Albersheim et al [I] have suggested to be regulating 
substances for many plant cell functions 

Our suggestion for an endocytotic role of coated struc­
tures associated with the plasma membrane does, however, 
not exclude an exocytotic process by which cell wall mate­
rial is extruded through the plasma membrane by insertion 
of Golgi-denved coated vesicles But when fusing, their 
coats must have been shed 

This implies that, if rosettes, the putative microfibril syn­
thesizing complexes, visualized by freeze-fractunng [5, 10, 
15], are inserted in the plasma membrane by vesicles [28], 
these vesicles are not the coated vesicles 
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ABSTRACT 

The ultrastructure of root hairs of Equisetum h yema l e and Limnobiuii stoloniferum 

was studied by means of freeze-substitution. Special attention was given to the Gol­

gi apparatus and the cytoskeleton. Rate of cytoplasmic streaming in developmental 

stages of root hairs of Equisetum hyemale was measured. 

The structural polarity of the dictyosomes is in keeping with the membrane flow 

concept. Polarity is shown in staining properties of the membranes and in inter- and 

intra-cisternal width; the cis-face may be juxtaposed to the endoplasmic reticulum. 

The vesicles at the outside of the trans-face of the dictyosomes are similar in ap­

pearance and size to the "secretory vesicles". Secretory vesicles, smooth vesicles 

primarily located in the hair tip, measure approx. 300 nm. 

Coated pits occur in abundance at the plasma membrane and are occasionally seen 

on the trans-cisterna of the dictyosomes. 

Besides microtubules, two distinguishable classes of filaments can be identified 

in the root hairs. Single filaments occur in the cortical cytoplasm, and are in asso­

ciation with microtubules. Bundles of filaments are found throughout the cytoplasm 

with the exception of the tip region of the hair. This region is characterized by 

the absence of the central vacuole, and decreases in length during hair growth. Bund­

les of microfilaments stained with rhodamine-labelled phalloidin and are presumably 

F-actin. 

At a temperature of 25" С cytoplasmic streaming is absent from the tip region of 

short hairs, but gradually increases up to 3.5 micrometers/sec in the base of the 

hair. In long hairs cytoplasmic streaming reaches up to the tip and is up to 

7 micrometers/sec in the tube of the hair. ι 
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INTRODUCTION 

Root hairs develop from trichoblasts, epidermal cells 

which are densely cytoplasmic (Harris 1979, Meekes 1985). 

They lengthen by tip-growth (Sievers and Schnepf 1981) . 

Detailed ultrastructural and cytochemical analyses have been 

published (review: Sievers and Schnepf 1981) and have shown 

a polar organization of the cytoplasm. These analyses were 

based on conventional glutaraldehyde/osmium tetroxide fixa­

tions, which have their limitations (Howard and Aist 1979, 

Howard 1981, Heath et al. 1985). Hoch and Howard (1980) have 

discussed these limitations and have shown in a study on 

fungal hyphae that they can be overcome by means of freeze-

substitution. Especially "secretory vesicles" and microfila­

ments are better preserved by means of freeze-substitution 

(Heath et al. 1985). 

Secretory vesicles in tip-growing cells appear to be pro­

duced from Golgi bodies and to be transported to the cell 

tips, where they are thought to deliver their contents to 

the wall after exocytosis (Sievers and Schnepf 1981). 

Microfilament bundles have been shown by means of rhoda-

mine-labeled phalloidin to occur in plant cells 

(Parthasarathy et al. 1985, Derksen et al. 1986), among 

which root hairs (Emons and Derksen 1986). Microfilaments 

are hypothesized to be related to cytoplasmic streaming 

(Pesacreta and Parthasarathy 1984). They can also be 

visualized by freeze- substitution (Tiwari et al 1984). 

The objective of this paper is to give a description of 

the Golgi system and its secretory vesicles and to correlate 

the presence of microfilaments with the occurrence of cyto­

plasmic streaming. 

MATERIAL AND METHODS 

Roots were taken from stem cuttings of Equi setum hyemale, grown as described by 
Emons and Wolters-Arts (1983) and of young plantlets of Limnobium stoloni ferum 
(Sassen et al. 1985). Freeze-substitution was carried out as described by Emons and 
Derksen (1986), which is an adaptation of the method described by Heath and Rethoret 
(1982). Freeze-fracturing was carried out as described by Emons (1985). Preparations 
were examined with a Philips EM 201 electron microscope. 
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For determination of cytoplasmic streaming roots with hairs of Equisetum hyemale 

were placed on viewing slides in a drop of the same incubation medium in which they 

grew, and examined in a light microscope. By means of a flask, filled with 0.1% cop­

per sulphate placed between light source and condenser lens, care was taken that a 

more or less constant temperature was conserved during examination. Temperature was 

25° С ± 2.5° C. The movement of granules (granule diameter approx. 2.5 micrometers) 

was recorded on video-tape and analysed in slow-motion to calculate velocity of cyto­

plasmic streaming. 

R E S U L T S 

Cytoplasmic organization and ultrastructure of organelles 

Longitudinal sections through the root hair reveal the 

polar distribution of the cytoplasm (Fig. 1). 

The plasma membrane in freeze-substituted preparations is 

not undulated and there is no periplasmic space between the 

plasma membrane and the cell wall (Fig. 2a). Coated pits are 

present abundantly on the plasma membrane (Fig. 2b). No coat­

ed vesicles clearly free from the plasma membrane were ob­

served. Microtubules line the plasma membrane of the tip in 

random orientations (Fig. 3). The apex is filled with a clus­

ter of smooth vesicles: the "secretory vesicles" (Fig. 3), 

which have circular profiles 150-300 nm in diameter . These 

vesicles have intensely stained contents. Similar vesicles 

are seen at the trans- face of Golgi cisternae. The 

secretory vesicles measure around 300 nm in diameter, the 

smaller profiles being sections out of the centre of the 

vesicle. This is known from dry-cleaved preparations which 

yield only whole vesicles (data not shown). 

Secretory vesicles lie minimally 10 nm from each other 

and from the plasma membrane (Fig. 3). 

Along the sides of the hair, secretory vesicles are pre­

sent and are often observed in association with microtubules 

with a minimum spacing of 10 nm between vesicles and microtu­

bules (Fig. 4). 

Besides secretory vesicles, (poly)ribosomes (Fig.5a) and, 

cisternae of the endoplasmic reticulum (Fig.5b) occur in the 

tip of the root hair. The latter are especially abundant in 
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Limnobíum. 
The subapical region of the cytoplasm contains many dicty-

o 

osomes: in thin sections 16 dictyosomes/micrometer . Five to 
six cisternae are stacked together. The central cisternae 
measure 800 nm to 1200 run in diameter, including the vesi­
cles. There is a clear structural gradation from the cis- to 
the trans-face of the dictyosome: the inter-cisternal width 
increases, while the intra-cisternal width decreases. The in­
tensity of staining of the membrane is another indicator of 
polarity. The procedure used stains trans-cisternae darker 
than cis-cisternae. The latter are comparable in staining to 
the endoplasmic reticulum. The size of attached vesicles 
increases across the stacked cisternae from cis- to trans-
face, and the substance contained within the vesicles is dar­
ker in the larger trans-face vesicles than in the smaller 
cis-face vesicles (Fig. 6). Polarity of dictyosomes is also 
observed in freeze-fractured preparations (Fig. 7). (for pro­
cedure cf. Emons 1985). The cis-face of the dictyosome may 
be adjacent to the endoplasmic reticulum (Fig.6a). Sometimes 
dictyosomes lie close together in all kinds of juxtaposi­
tions. Always numerous vesicles lie at the trans-face of the 
dictyosome (Fig. 6 b). The trans-face sometimes contains 
coated pits (Fig.6c). 

Mitochondria are located basipetal from the region with 
secretory vesicles. Along with cisternae of the endoplasmic 
reticulum they are oriented primarily parallel to the long 
axis of the hair. Longitudinal sections near the hair tip 
show short or even globular mitochondria while in the subapi­
cal region mitochondria are more elongate (Fig. 1). 

Vacuoles in the subapical zone increase in volume from 
hair tip to hair base (Fig. 1). In longer hairs a vacuole 
largely fills the subapical part of the hair. In young hairs 
of Equisetum hyemale the nucleus lies in the trichoblast, 
the root hair forming cell. In longer hairs the nucleus 
moves into the basal part of the hair (Fig. 8). Especially 
in Equisetum, many plastids occur in the root hair. From tip 
to base of the hair they increase in length (Fig.l). 
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Fig. 1: Longitudinal thin section of young root hair of Equisetum hyemale, showing 

the polar distribution of the cell (from the tip to 22 micrometers from the tip). 

The tip region is free from organelles other than secretory vesicles. Length of 

mitochondria and plastids increases from hair tip to hair base. 

χ 9000, Bar: 1000 nm. 

Fig. 2a: Longitudinal thin section of root hair of Equisetum hyemale showing 

non-undulated plasma membrane profile appressed to the cell wall, leaving no peri-

plasmi с space. 

χ 45 500, Bar: 500 nm. 

Fig. 2b: Tangential thin section of root hair of Equisetum hyemale, showing coated 

pits on the plasma membrane (arrows). 

χ 45 500, Bar: 500 nm. 

Fig. 3: Tangential thin section of root hair tip of Equisetum hyemale, showing 

microtubules (mt) lining the plasma membrane in random orientations. The tip is 

filled with secretory vesicles. 

χ 22 000, Bar: 500 nm. 

Fig. 4: Microtubule in cortical cytoplasm of Equisetum hyemale with adjacent 

secretory vesicles. Spacing between microtubules and vesicles is minimally 10 nm. 

χ 22 000, Bar: 500 nm. 

Fig. 5a: Tangential thin section of subapical part of root hair of Equisetum hye­

male, -subjacent to the cortical region with microtubules- showing polyribosomes, χ 

22 000, Bar:500 nm 

Fig. 5b: Longitudinal thin section of root hair of Limnobium stoloni ferum near the 

hair tip, showing cisternae of the endoplasmic reticulum (ER). 

χ 7500, Bar: 1000 nm. 

Fig. 6a,b,c: Thin longitudinal sections of root hair of Limnobium stoloni ferum 

showing dictyosomes in various positions with respect to each other and to the 

endoplasmic reticulum. Dictyosomes show structural gradation from cis- to 

trans-face: inter-cisternal width increases, intra-cisternal width decreases, 

cis-cisternae are lighter stained than trans-cisternae, size of attached vesicles 

increases from cis- to trans-face. ER: endoplasmic reticulim, CF: Cis-face of 

dictyosome, TF: Trans-face of dictyosome, sv: secretory vesicle, encircled: coated 

vesicle. 

χ 32 000, Bars: 500 nm. 

Fig. 7: Freeze-fracture preparation of root hair of Equisetum hyemale, showing 

dictyosomes (arrows). 

χ 18 000, Bar: 500 rvn. 
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Fig. 8: Longitudinal thin section of basal part of long hair of Equisetum hyemale 

showing the nucleus. This hair was glutaraldehyde/osmium tetroxide fixed. For the 

basal region of long hairs chemical fixation gave better preservation than freeze-

substitution. N: nucleus, V: central vacuole. 

χ 4 500, Bar: 1000 nm. 

Fig. 9. Tangential thin section of cortical cytoplasm of Limnobium stoloniferum 

showing filaments lying along microtubules (arrows). 

χ 45 500, Bar: 500 nm. 

Figs. 10a,b: Longitudinal thin sections of cortical cytoplasm of Equisetum hyemale 

1 imi from the hair tip, showing microfilament bundles axially oriented (10a) and tra­

versing the hair (10b). Note that in both preparations microtubules are axially 

oriented, mt: microtubule, mfil: microfilament bundle. 

χ 36 500, Bars: 500 nm. 

Fig. 11: Young root hair of Equisetum hyemale stained with rhodamine-labelled 

phalloidin showing microfilament bundles in the hair tube and a fuzzy staining in 

the hair tip. 

χ 1500 

Fig. 12: Graph showing velocity of cytoplasmic streaming in root hairs of Equisetum 

hyemale of different lengths. 

Velocity of 
cytoplasmic streaming (jum/s) 1 

. lamellae 
• • 2 days 

» » 7 days 

Distance from hair tip Ipm] 
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The cytoskeleton 

Cortical microtubules are observed in all cortical areas 

of the root hair and are oriented parallel to the long axis 

of the hair, the direction of growth. In the hair tip they 

lie in random orientations (Fig.l). 

Two classes of filaments are observed. Single filaments 

lie parallel to the microtubules. Their diameter is ca. 6 nm 

(Fig. 9). Bundles of filaments are observed deeper in the cy­

toplasm (Fig. 10a and b). They are not observed in the tip 

region. Most filament bundles are in the direction of the 

long axis of the hair (Fig. 10a). However, bundles of fila­

ments are occasionally seen in oblique directions (Fig. 

10b). 

By means of rhodamine-labelled phalloidin microfilament 

bundles are made visible in root hairs (Fig 11). Microfila­

ment bundles are mainly longitudinally oriented, through the 

whole hair and do traverse the cytoplasm. 

Cytoplasmic streaming in Equisetum hyemale 

Large organelles, such as plastids, move singly, slowly 

and irregularly. Smaller granules (2.5 micrometers in dia­

meter) move in rows over longer distances with a more regu­

lar velocity. They travel bidirectionally along specific 

cytoplasmic longitudinal tracks in the subapical and basal 

regions of the hair, occasionally stopping abruptly and star­

ting in reversed direction. In the middle and basal region 

of the hair transvacuolar strands appear, where particles 

move from one side of the hair to the other. In 2 days old. 

2.42 mm long hairs no streaming is measured in the tip re­

gion of the hair. From 0.3 mm of the hair tip onwards, 

streaming velocity increases to 3.5 micrometers/sec (Fig. 

12). In longer growing (4mm long, 5 days old and 5mm long, 

7 days old) and in full-grown (7mm long, 20 days old) hairs 

streaming reaches the tip. Streaming velocity in the full-

grown hair is 6 to 7 micrometers/sec. (Fig.12) 

The application of cytochalasin В (5.10" mg/ml), an 

agent which destroys microfilaments, did stop streaming of 

most particles within 20 min. Very small particles, however, 

did not stop streaming. 
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DISCUSSION 
Freeze-substituted biological specimens generally show 

improved ultrastructural preservation than chemically fixed 
material (Howard 1981, Hippe 1985, Tiwari et al. 1984). In 
freeze-substituted material membrane profiles are smooth. 
The root hair plasma membrane is appressed to the cell wall, 
leaving no periplasmic space as is often seen in chemically 
fixed material. The periplasmic space has been hypothesized 
to be the place where microfibrils self-assemble in a crys­
tallization process like liquid crystals (Roland and Vian 
1979). 

Secretory vesicles and Golgi apparatus 

Secretory vesicles are primarily located in the extreme 
tip of the root hair. They are suggested to bring wall 
matrix material in the cell wall (Sievers and Schnepf 1981). 
Pulse-chase experiments with [ H] glucose confirmed the role 
of the Golgi apparatus in secretion of wall matrix poly­
saccharides in protoplasts (Griffing et al. 1986). For pol­
len tubes it has been shown that the rate of fusion of se­
cretory vesicles with the plasma membrane is proportional to 
the rate of diffusion of calcium ion across the plasma mem­
brane at the tip (Picton and Steer 1982). 

In hyphae of Saprolegnia, Heath and coworkers (1985) have 
found a mixture of spherical and elongated secretory ve­
sicles. In root hairs of Equisetum hyemale and Limnobium 
stoloniferum secretory vesicles are spherical and measure 
approx. 300 run in diameter. 

As in the hyphae the secretory vesicles have very intense­
ly stained electron opaque contents; Together with the cell 
wall they are the most electron opaque structures of the 
hairs. 

Dictyosomes in Closterium produce large trans-face flat 
vesicles during formation of a special cell wall layer 
(Noguchi and Ueda 1985) comparaole to the spherical trans-
face vesicles in Equisetum and Limnobium root hairs. 
Simultaneously hexagonal arrays of particle rosettes occur 
in the PF-face of the plasma membrane of Closterium. Noguchi 
and Ueda (1985) have hypothesized that hexagonal arrays of 
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particle rosettes are inserted in the membrane by the flat 
vesicles. EquiseCum hyemale (Emons 1985) and Limnobium 
stoloniferum (Emons unpublished) have single particle 
rosettes in the PF-faces of the plasma membranes of the root 
hairs. Similarly these could be inserted in the plasma mem­
brane by the secretory vesicles. 

Secretory vesicles are smooth; they do not have the radi­
al spokes of clathrin seen around coated vesicles. 

Coated pits are seen in abundance on the plasma membrane 
of root hairs (Fig. 2b) and have been hypothesized to re­
trieve the excess membrane from the plasma membrane, which 
results from the incorporation of secretory vesicles (Emons 
and Traas 1986). Coated vesicles were only rarely seen near 
dictyosomes. In favourable sections coated pits were ob­
served on the trans-face cisterna. They appear similar to 
the coated pits of the plasma membrane. They may function in 
membrane turn-over as has also been suggested by McFadden 
and Melkonian (1986) for the green flagellate Scherffelia 
dubia. A large polygonal vesicle as is seen in this flagel­
late is not present in the root hairs. In hormone secreting 
cells Orci and coworkers (1985) have detected a marked level 
of clathrin immunoreactivity at the trans-face of the Golgi 
apparatus only. 

Dictyosome polarity in the root hair is typically ex­
pressed in terms of progressive differences in staining from 
one cisterna to the next within the stack. This structural 
gradient has been recorded for many plant and animal cells 
(Whaley and Dauwalder 1979, Shannon et al. 1982). In root 
hairs of EquiseCum hyemale as in other cell types (Morré and 
Mollenhauer 1983, Morré and Ovtracht 1977) the polarity is 
from endoplasmic reticulum like at the cis-face to plasma 
membrane like at the trans-face. Evidence for the 
involvement of endoplasmic reticulum in the functioning of 
higher plant dictyosomes is controversial (Robinson 1980, 
review: Robinson 1985). 

Although electron microscopy reveals the structural rela­
tionships of the cell cytoplasm and provides a basis for an 
assessment of the functional potential of the system, there 
is need to assess the pathway of molecules in the plant cell 
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by tracer studies. Recently, Kappler and coworkers (1986) 
showed in fractionated germinating tobacco pollen a rapid 
incorporation of [H]leucine into endoplasmic reticulum 
followed by a rapid chase out. The Golgi-apparatus fraction 
was labeled reaching a maximum 20 minutes post chase. Their 
results suggest membrane flow from endoplasmic reticulum to 
Golgi apparatus. 

Cytoplasmic streaming and wall texture 

It has been suggested that cytoplasmic streaming somehow 
influences microfibril orientation and therefore cell wall 
texture (Colvin 1980). The utmost 0.3 mm of the growing tip 
of Equisetum hyemale root hairs with little or no cyto­
plasmic streaming has a random cell wall texture (Emons and 
Wolters-Arts 1983) ; the tube of the young hair with cytoplas­
mic streaming up to 3.5 micrometers/sec has a helicoidal 
cell wall texture (Emons 1982, Emons and Wolters-Arts 1983); 
the full-grown hair with cytoplasmic streaming up to 
7 micrometers/sec has a helical wall texture (Emons and 
Wolters-Arts 1983). One cannot, however, conclude that wall 
texture is directly related to cytoplasmic streaming, 
because root hairs of Limnobium stoloniferum (Pluymaekers 
1982) and Ceratopteris thalictroides (Meekes 1985) both have 
helicoidal wall texture, but cytoplasmic streaming in 
Limnobium is fast and in Ceratopteris is barely visible. 

Cytoplasmic streaming and the cytoskeleton 

Cytoplasmic streaming is seen in the cytoplasm located 
between the plasma membrane and the vacuole membrane of root 
hairs. Microtubules are located in the utmost cortical re­
gion of the cytoplasm. Single filaments are sometimes ob­
served in association with the microtubules (Fig. 9), as has 
also been shown by Tiwari and coworkers (1984). Microtubules 
with associated filaments occupy a sheath of cytoplasm of 
not more than 300 nm. Cytoplasmic streaming, however, is 
visible in the total compartment between plasma membrane and 
vacuole membrane and moves organelles as mitochondria and 
plastids. Also in Nitella and Chara internodal cells it has 
been found that microtubules are not in a position to be 
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part of a motive force generation system (review: Allen and 
Allen 1978). 

The proximity of some secretory vesicles and microtubules 
might point to a transport function of these microtubules. 
However, only a minor number of vesicles is located near 
microtubules. By means of video-enhanced microscopy Allen 
and coworkers (1985) have shown transport of particles along 
microtubules. Using cytochalasin D, Picton and Steer (1981) 
showed that secretory vesicles in pollen tubes might be 
transported from the dictyosomes to the cell tip by a micro­
filament dependent process. 

Bundles of filaments occur deeper in the cytoplasm (Fig. 
10 a and b). Their morphology resembles the filaments seen 
in other higher plant cells (Tiwari et al. 1984), where they 
have been referred to as microfilaments. These bundles are 
probably the actin-microfilament bundles visualized with 
rhodamine-labelled phalloidin (Fig. 11). In thin sections 
filament bundles were not observed in the tip region of 
short, growing hairs of Equisetum hyemale. Rhodamine-
labelled phalloidin staining produced a fuzzy staining in 
the tip and clear bundles in ths tube of the hair. The 
bundles are mainly longitudinally oriented but do occasional­
ly traverse the hair (Emons and Derksen 1986). Visible cyto­
plasmic streaming is also absent from the tip region of 
short, growing, hairs. Streaming is mainly in the longitudi­
nal direction but does also traverse the hair occasionally. 
The data suggest that microfilament bundles play a role in 
cytoplasmic streaming as has been suggested before 
(Yamaguchi 1981, Pesacreta and Parthasarathy 1984, 
Parthasarathy 1985, Derksen et al. 1986). However, the 
number of microfilament bundles is not related to the 
velocity of cytoplasmic streaming. In Ceratopteris root 
hairs, which show a very slow cytoplasmic streaming, 
microfilament bundles occur in abundance (Derksen et al. in 
preparation). Cytoplasmic streaming in Nitella is caused by 
the interaction between subcortical filaments and an endo­
plasmic factor (Kamitsubo 1981). 

Secretory vesicles do not need cytoplasmic streaming to 
reach the plasma membrane of the tip. In young hairs these 
vesicles are located in the part of the root hair where no 
visible streaming occurs. 
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ABSTRACT 

A mathematical model for the deposition of he l ico ida l wall texture is postulated. 
The model presupposes the insert ion in the plasma membrane of m i c r o f i b r i l i n i t i o n 
complexes, which, once inserted are moved through the f l u i d plane of the membrane by 
the k i n e t i c force of m i c r o f i b r i l synthesis and leave m i c r o f i b r i l s in t h e i r wake. The 
m i c r o f i b r i l s are l inked to wall matrix molecules. M i c r o f i b r i l o r i e n t a t i o n is ruled 
by the laws of geometry only. 

KEY WORDS: he l ico ida l c e l l wall texture, mathematical model. 

INTRODUCTION 

S p a t i a l o r d e r c a n be u s e d a s a s o u r c e of i n f o r m a t i o n a-

b o u t t e m p o r a l o r d e r of e v e n t s (Mendelson 1 9 8 4 ) . An example 

of s p a t i a l and t e m p o r a l o r d e r i n t h e b i o l o g i c a l w o r l d i s t h e 

d e p o s i t i o n of s u c c e s s i v e l a m e l l a e of t h e h e l i c o i d a l c e l l 

w a l l of p l a n t c e l l s ( R e i s e t a l . 1985, R o l a n d e t a l . 1 9 8 3 ) . 

A h e l i c o i d a l t e x t u r e i s d e f i n e d a s a s t a c k of l a m e l l a e , 

e a c h one f i b r i l t h i c k , i n which t h e m i c r o f i b r i l o r i e n t a t i o n 

i s r o t a t e d w i t h r e s p e c t t o t h e m i c r o f i b r i l o r i e n t a t i o n of 

t h e p r e v i o u s l a m e l l a ( S a r g e n t 1978, P l u y m a e k e r s 1982, Emons 

1982, Emons and W o l t e r s - A r t s 1983, Emons and v a n Maaren, 

s u b m i t t e d , N e v i l l e and Levy 1984, N e v i l l e 1985, 1 9 8 6 ) . The 
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helicoidal structure has not only been found in plant cells, 
but in several different biological materials (Bouligand 
1972, Neville 1976). 

Though microfibril orientation is generally believed to 
be determined by the orientation of the microtubules in the 
underlying cytoplasm, the nascent microfibrils of the heli­
coidal cell wall are not in parallel with the cortical micro­
tubules (Emons 1982, Emons and Wolters-Arts 1983, Itoh and 
Brown 1984, Meekes 1985, Traas et al. 1985, Emons and Derk-
sen 1986). 

Because there is evidence that microfibrils in a helicoi­
dal wall lengthen by tip growth (Emons 1985) it seems unlike­
ly that the wall texture is formed like a liquid crystal, as 
has been proposed by Roland (1979) and Neville (1986). 

A mathematical model can explain how helicoidal wall tex­
ture can be generated. 

THE CELL WALL TEXTURE OF THE ROOT HAIR OF EQUISETUM HYEMALE 

To elucidate the organization of the cell wall texture, 
root hairs of stem cuttings of Equisetum hyemale have been 
studied by means of several methods: thin-sectioning, shad­
ow-casting, dry-cleaving, freeze-fracturing, freeze-substitu-
tion (Emons 1982, Emons and Wolters-Arts 1983, Traas et al. 
1985, Emons and Derksen 1986). Schematical representations 
of helicoidal wall texture in root hairs is shown in Figs. 1 
and 2. In a growing root hair the number of lamellae and al­
so the number of microfibrils within a lamella under deposi­
tion increases from hair tip to hair base (this thesis, chap­
ter 5). Microfibrils grow from hair base to hair tip. 

Particle rosettes and terminal complexes are the putative 
microfibril synthesizing structures (review: Brown 1985), 
and have been demonstrated in plasma membranes of root hairs 
of Equisetum hyemale (Emons 1985) . The formation of microfi­
bril bundles, and subsequently a lamella, by dispersed syn­
thesizing complexes, is pictured in Fig. 3. Rosettes in the 
plasma membrane of Equisetum hyemale occur in large clus­
ters. Reiss and coworkers (1984) have found areas in plasma 
membranes with and without particle rosettes in Funaria 
caulonema tip cells. The optical brightener Photine H.V. 
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revealed highly fluorescent bands and spots, which were 
supposed to be sites of cellulose synthesis in root hairs of 
Peperomia (Tampion et al. 1973). If particle rosettes are in­
volved in cellulose microfibril formation, formation does 
not take place at the same time in the whole hair. 
From the Equisetum hyemale root hair it is known that 

1. the helicoidal wall is deposited against the inside of a 
cylinder: the randomly textured primary wall; 
2. microfibrils have a constant diameter; 
3. the number of microfibril lamellae increases from hair 
tip to base; 
4. the number of microfibrils within a lamella increases 
from hair tip to base; 
5. microfibrils within a lamella are not strictly parallel; 
6. microfibrils are linked to wall matrix molecules; 
7. rosettes in the plasma membrane occur in large clusters. 

Assuming that rosettes and/or terminal globules are micro­
fibril initiation points, it can be deduced that: 
8. (from 3 and 4) a cluster of microfibril initiation points 
travels from hair base to hair tip; 
9. (from 7) there are several clusters of microfibril initia­
tion points, that pass along the hair; 

It is further supposed that 
10. microfibrils with the adherent matrix molecules pack in 
such a way that available surface is occupied completely, 
subjecting microfibril deposition to space-limiting condi­
tions ; 
11. microfibrils have a given length. 

THE HELIX MODEL FOR HELICOIDAL WALL DEPOSITION 

The geometrical relationships of the model can be demon­
strated by wrapping string of constant width closely on a 
cylinder. Four variables define the system: 1) cylinder 
diameter, 2) string width, 3) pitch angle of the strings 
wrapped on the cylinder surface, 4) number of parallel 
strings on the cylinder surface. 

The four parameters are related by the following equa­
tion: sin̂ J = Nrei 
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in whichv? : pitch angle, N
r e
^ =

 N
/

N
max 

with N: number of strings, N
m a x

: maximum number of strings, 

given by N
m a x

 = D/d 

with D: cylinder diameter, d:string width. 

sine of pitch angle - number of strings χ width of string 

cylinder diameter χ тг 

This relationship holds for strings of any diameter, as 

long as all strings have the same diameter, for strings of 

any length, as long as all strings are longer than the cy­

linders' circumference and for strings of any composition. 

The relationship in which cylinder diameter and string width 

are constant and therefore pitch angle varies as a function 

of string number is given in Fig. 4. 

Given a cylinder of constant diameter and strings of con­

stant width, the orientation of a single string is nearly 

perpendicular to cylinder length, and its pitch angle is 

defined by the width of the string itself. However, when a 

second string of similar diameter is inserted in parallel, 

the pitch angle of the two-string array changes as shown in 

Fig. 4. Addition of new strings will cause constant shift of 

pitch angle until all strings lie parallel to the long axis 

of the cylinder, at which point the pitch angle of the 

string is 90°. The product of string number times string 

diameter will then equal cylinder circumference. No new 

strings can be added without increasing cylinder diameter. 

Strings may be inserted at a single location on the cylin­

der. This is the simplest situation. But also a series of 

independent string insertion locations, may be present on a 

given length of cylinder. The helical wrapping may be right 

or left handed, but once initiated all strings pack parallel 

to the first string in the same helix hand. 

Mendelson (1982) developed the helix model of cell growth 

and regulation for the helical growth of Bacillus subtilis. 
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Fig. 1.: Schematical representation of the cell wall texture of an Equisetum hyemale 
root hair: randomly oriented microfibrils in the outer layer of the whole hair and 
helicoidal texture consisting of superimposed lamellae with progressive rotation of 
microfibril orientation. 

Fig. 2.: Schematical representation of helicoidal cell wall texture in section and 
in surface view. 

Fig. 3.: Schematical representation showing the formation of microfibril bundles and 

the resulting lamella by dispersed synthesizing complexes. 

Fig. 4.: Relationship between helix pitch angle and number of parallel strings for 
helical wrapping of strings on a cylinder under space limiting conditions. 

Fig. 5.: Schematical drawing showing microfibril orientation in developmental stages 
of microfibril deposition according to the "helix model". The hair is cut open 
lengthwise, revealing the complete circumference of the hair in a plane. For explana­
tion see text. 

Figs. 6a,b.: Schematical representation showing part of the helix described by a 

single microfibril while encircling the hair. Fig.6a.: Pitch angle is constant. 

Fig. 6b.: Pitch angle changes constantly. 

Fig. 7.: Longitudinal thin section of the cell wall of a full-grown root hair of 
Equisetum hyemale, showing the outer layer with randomly oriented microfibrils (r), 
three arcs of the helicoidal layer (h), a transition layer having microfibrils in va­
rious orientations except the transverse orientation (v), and the longitudinally in­
clined helical layer (I). 
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THE HELIX-MODEL APPLIED TO THE EQUISETUM ROOT HAIR CELL WALL 

The relationship in which cylinder diameter and string 

width are constant and therefore pitch angle varies as a 

function of string number represents the geometrical basis 

for secondary wall deposition in root hairs (Fig. 4). It 

must be noted, however, that in root hairs 

"string-insertion" occurs at the inside of the "cylinder". 

A field of microfibril initiation points, probably par­

ticle rosettes and terminal globules, moves in the plasma 

membrane of the root hair. At the distal end of the field 

new microfibril initiation points are constantly added; at 

the proximal end they disintegrate after having completed 

the formation of a microfibril. Thus "string insertion" 

occurs via a mobile "insertion site", which moves in one 

direction at the inside of a "cylinder". 

At (a) (Fig. 5) the first initiation point is brought 

into the membrane and circles the inner surface of the hair 

leaving a microfibril in its wake. According to the laws of 

geometry the orientation will be nearly transverse but will 

depend on microfibril width including adherent matrix mole­

cules. Some time later two new microfibril initiation 

points are inserted: (b) and (a
1
). (b) lies above (a) and 

(a') lies at the same level as (a) is at this stage. Micro­

fibril (b) will circle the inner surface of the hair in the 

same direction as (a) did before. Microfibrils (a.a
1
), how­

ever, will have a pitch angle larger than microfibril (a) 

had before. The same interval of time later three microfi­

brils will be inserted: (c), lying above (b), being single 

and travelling nearly transverse; (b'), lying at the level 

of (b), forming a two-string pattern on the hair with a 

pitch angle larger than (c), but similar to the two-string 

pattern (a,a') had before; (a
1
') joining (a.a

1
), forming a 

three- string pattern, with pitch angle larger than (a,a'). 

Up to this point there is little variation in orientation 

of microfibrils. Microfibrils do not cross and they form a 

lamella composed of "parallel" microfibrils deviating around 

a mean orientation. For the sake of simplicity, not every 

single microfibril is drawn in Fig. 5.: (a) contains χ micro­

fibrils, (a,a') contains 2x microfibrils, etc. 
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At a certain time starting at the base of the hair, new 
microfibrils cannot be added to the existing lamella and 
will have to cross the already apposed microfibrils. In Fig. 
5 the array (a,a',a'',a''') crosses already apposed microfi­
brils. This is the onset of a new lamella. The orientation 
of the microfibrils in this array is still determined by the 
number of microfibrils in the array. While towards the tip 
of the hair the process of depositing a lamella with near 
transverse microfibrils is going on, a second lamella is 
started at the base with microfibrils in oblique orientation 
and is apposed against the earlier lamella with near trans­
verse microfibrils. 

The whole process is repeated until microfibrils in the 
last lamella under deposition lie more or less axially, 
which occurs first at the base of the hair. Towards the hair 
tip a lamella with microfibrils in oblique direction is un­
der deposition and near the hair tip a lamella with trans­
verse microfibrils is still being formed. Microfibrils in 
every lamella deviate around a mean orientation. A single 
microfibril describes a helix of continually changing pitch 
(Fig. 6), but the mean microfibril orientation in a lamella 
remains contstant (cf.this thesis, chapter 5). An individual 
microfibril takes part in several successive lamellae 
(Fig. 5) in time and its orientation is according to the 
curve of Fig. 4, an arc sine. A lamella is made up of 
microfibrils (in Fig. 5: a.a'.a'1, b.b'.b'', c.c'.c'1, etc.) 
all describing the same part of this arc sine. The angle 
between lamellae is determined by the proportion of the 
curve, that microfibrils can describe without crossing. This 
proportion is determined by the parameters of the equation 
and by the distance between the insertion sites of (a) and 
(b). 

In Equisetum hyemale root hairs the lamella directly fol­
lowing the axially oriented lamella is oblique, but in the 
reversed helix-hand. If microfibril initiation points have a 
limited time span and move in clusters, their number de­
creases if no new microfibril initiation points are inserted 
in the membrane. The orientation of individual microfibrils 
changes in a process which is the reverse of what has been 
described above. Pitch angle will decrease from 90° to 0°. 
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The last initiation point will move transverse to the cylin­

der axis. One helicoidal arc has been completed. 

A new cycle may be started. 

DEDUCTIONS FROM THE MODEL 

sine of pitch angle = number of strings χ width of string 

cylinder diameter χ тг 

1. Cell dimension (D) determines microfibril orientation. 

If cylinder diameter decreases while number of strings 

and width of strings are constant, helix angle increases: 

the microfibril angle will be transverse over a shorter 

stretch of hair. A still narrower cylinder will have helical 

or axial wall texture. Indeed the cell wall texture of the 

young Equisetum hyemale root hair, which has a larger dia­

meter, is helicoidal, whereas the wall texture of the full-

grown hair, which, due to extensive wall deposition, has a 

much smaller diameter, is helical (Fig. 7). 

2. Size, shape and density of microfibril initiation field 

(N) determines microfibril orientation. 

If number of strings increases, while cylinder diameter 

and width of strings are constant, the axial orientation is 

attained sooner. If the field of microfibril initiation 

points has a wide front, transverse microfibril orientation 

does not occur. The insertion of microfibril initiation 

points is a cell regulated process. 

3. Cellulose-linked matrix polysaccarides determine microfi­

bril orientation 

Width of cellulose microfibrils of higher plant cell 

walls is constant (3 to 4 nm in thin sections, 6 to 10 nm in 

shadowed preparations (Emons and Derksen 1986, Preston 

1974), but microfibrils are linked to other molecules in the 

cell wall (Albersheim 1976, Hayashi and Maclachlan 1984). 

Therefore, the matrix molecules highly determine string 

width and therefore orientation. 

On the basis of results indicating a correlation between 

a local concentration in glucuronoxylan and the helicoidal 
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transition zone in Linden wood, Vian and coworkers (1986) 
concluded that glucuronoxylans, which constitute the major 
hemicellulosic component of the wall matrix, act in the for­
mation of helicoidal assembly of cellulose. 

THE EFFECT OF COLCHICINE ON CELL WALL TEXTURE 

The application of colchicine on plant cells does not 
have a uniform effect on cell wall texture. After colchicine 
treatment the orientation of microfibrils in a cell wall may 
be "random" (Schnepf et al. 1975), "in swirls" (Hepler and 
Fosket 1971), helicoidal (Quader 1978), unidirectional 
(Quader 1978), or undisturbed (Itoh 1976). 
Colchicine depolymerizes microtubules; microtubules deter­
mine cell shape (Dustin 1984). In the model, cell shape de­
termines cell wall texture. 
Colchicine depolymerizes microtubules; microtubules function 
in exocytosis of matrix material containing vesicles (Dustin 
1984). In the model the wall matrix determines cell wall tex­
ture by determining the intermicrofibrillar space. 

The model predicts that if the diameter of a root hair 
with axial wall texture increases, while the number of micro­
fibril initiation points and width of microfibrils with ad­
herent matrix molecules remains constant, the helix-pitch 
angle will change and a helicoidal-like wall with microfi­
brils in varying orientations will be formed. But, if the 
diameter of a root hair with helicoidal wall texture in­
creases, the helicoidal wall texture will be preserved. A 
high increase of hair diameter in a short hair will lead to 
transverse layers only. 

Colchicine was applied to roots of Equisetum hyemale and 
Raphanus sativus. (this thesis, chapter 7). The treatment 
depolymerized microtubules and widened root hairs. The cell 
wall texture in Equisetum hyemale remained helicoidal, as 
before treatment. The newly formed wall texture of Raphanus 
sativus root hairs, however, contained lamellae with 
microfibrils in oblique and even transverse orientations. 
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SUMMARY 

The cell wall of higher plants constists of a configura­
tion of crystalline microfibrils embedded in a matrix of 
proteins and non-cellulosic polysaccharides. The configura­
tion of microfibrils constitutes the texture of the cell 
wall. This thesis reports on an investigation of cell wall 
texture and cytoplasmic structures, that are thought to con­
tribute to microfibril deposition. 

As a prototype of a higher plant cell the root hair was 
chosen as object of study because of its accessibility to 
chemical and physical fixation and the possibility to follow 
cell growth in vivo. The wall texture, the microfibril depos­
ition and the cytoplasmic structures supposed to contribute 
to wall deposition as cortical microtubules, microfilaments, 
the inner faces of the plasma membrane, the cytoplasmic side 
of the plasma membrane with coated pits and the Golgi-de-
rived wall vesicles were studied. 

Most root hairs of aquatic plants have a helicoidal wall 
texture. But this wall texture is found also in root hairs 
of some terrestrial plants. With the exception of the grass­
es wall texture coincides with a special type of trichome, 
the root hair initiating cell (chapter 1). The wall textures 
found in root hairs of the European species of the genus 
EquiseCum lends support to the division of this genus in the 
two subgenera Equisetum and Hippochaete (chapter 2). 

The cell wall texture of young root hairs of Equisetum hy-
emale is helicoidal. A helicoidal wall consists of a stack 
of microfibril lamellae. Microfibril orientation in succes­
sive lamellae is rotated with respect to the orientation in 
the previous lamella. In the cell wall of the young Equise­
tum hyemale root hair density of microfibrils in a lamella 
is 5 to 7 per micrometer, angle between fibril orientations 
in adjacent lamellae is 30° to 40°, and rotation mode of the 
helicoid is counter clockwise (chapters 4 and 5). In the 
tip-growing root hair, microfibril lamellae are stacked 
vertically but also lie next to one another horizontally. 
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Thus, along the hair tube microfibril lamellae with 

microfibrils in subsequently differing orientations lie 

adjacent to the plasma membrane (chapters 4 and 5). The 

cortical microtubules, however, align in the axial direction 

of the hair only, and thus do not coorientate with the 

nascent microfibrils (chapters 3, 4 and 5). Nor do 

microtubules and microfibrils coorientate in the tri-

choblastic part of the cell during root hair initiation and 

growth (chapter 6). The observation, based on thin-section­

ing of chemically fixed material, that nascent microfibrils 

are not parallel to the cortical microtubules was verified 

by means of freeze-substitution (chapter 5). The observa­

tions contradict the currently held hypothesis that the 

orientation of microtubules determines microfibril orienta­

tion. 

In the expanding root hair tip, microtubules show a ran­

dom configuration. In the transition area of hemisphere and 

tube they are gradually more axially aligned, and in the 

hair tube they align axially (chapter 5). It is hypothesized 

that microtubules in plant cells play a role in morphogene­

sis . 

The application of colchicine causes depolymerisation of 

most of the microtubules of root hairs of Equisetum hyemale 
and Raphanus sativus. The wall texture deposited during col­

chicine treatment remains helicoidal. In Raphanus sativus, 
however, a root hair with axial microfibril alignment, col­

chicine, in a concentration that depolymerized microtubules, 

effects the formation of a wall texture containing lamellae 

with oblique and even transverse microfibril orientations (a 

helicoidal-like cell wall texture) (chapter 7). The data are 

in keeping with the hypothesis drawn from ultrastructural 

data found in chapters 3,4, 5 and 6. 

The plasma membrane lying adjacent to the microfibrils of 

the helicoidal wall of Equisetum hyemale root hairs contains 

the putative microfibril synthesizing complexes: terminal 

globules in the extraplasmic (EF) face and particle rosettes 

in the protoplasmic (PF) face. Their presence indicates that 

in a helicoidal wall the microfibrils lengthen by tip-growth 

(chapter 8). This contradicts the hypothesis that helicoidal 

walls form like liquid crystals in a self-assembly process. 
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The complexes disappear after loss of turgor of the cells, 

even by fixation of the cells in glutaraldehyde, which ex­

plains why they have often not been found in freeze-fractur­

ed plasma membranes of plant cells. 

Particle patterns in plasma membranes of root hairs are 

compared with patterns in pollen tubes and other cells. It 

is hypothesized that particle rosettes are configurations of 

protein in the membrane, allowing microfibril precursors to 

pass the membrane (chapter 9). In this view, terminal glo­

bules of the EF-face of the membrane might be the microfi­

bril synthesizing enzymes. Isolation and biochemical charac­

terization of terminal complexes, i.e. particle rosettes and 

terminal globules, is needed to understand the process of 

microfibril formation. 

The cytoplasmic side of growing root hairs bears many 

coated pits, in the expanding tip as well as in the non-ex­

panding tube, whereas full-grown hairs have a much smaller 

number of pits (chapter 10). From the ultrastructural data 

obtained and from additional data from the literature it is 

hypothesized that coated pits in plant cells function in en-

docytosis. 

Golgi-derived wall vesicles are incorporated in the plas­

ma membrane of the tip of growing hairs. They release their 

contents against the cell wall. The excess membrane is re­

trieved from the plasma membrane by coated pits. There is a 

clear structural polarity of the dictyosome from cis-face to 

trans-face: in membrane staining and in inter- and intra-cis-

ternal width of the dictyosome and the dictyosome-derived 

vesicles (chapter 11). Coated pits near dictyosomes might 

function in turn-over of excess membrane of dictyosome 

stacks. 

Cytoplasmic streaming is absent from the apical part of 

the growing root hair. During hair growth, velocity of 

streaming increases from 3.5 micrometers per second in the 

subapical part of young hairs to 7 micrometers per second in 

the whole tube of full-grown hairs. The pattern of streaming 

is related to the pattern of microfilaments (chapter 11). 

A mathematical model for helicoidal wall deposition is 

proposed (chapter 12). In this model mobile microfibril 

initiation complexes are inserted in the plasma membrane. 
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The complexes move in the fluid plane of the membrane, leav­
ing microfibrils in their wake. Microfibril orientation is 
forced upon the depositing microfibrils by the laws of geo­
metry only. A single microfibril describes a helix of con­
tinually changing pitch on the cell cylinder, an arc sine. 
The orientation of the microfibrils depends on i) the 
density of microfibril initiation complexes in the plasma 
membrane, ii) the amount and composition of matrix 
polysaccharides linked to the cellulose microfibrils and 
iii) cell dimension. 
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SAMENVATTING 





CELWANDVORMING IN WORTELHAREN 

De rol van microtubuli en plasma membraan 

in de afzetting van microfibrillen. 

SAMENVATTING 

De celwand van hogere planten bestaat uit een configura­
tie van kristallijne cellulose microfibrillen, ingebed in 
een matrix van andere Polysacchariden en eiwitten. Deze con­
figuratie van microfibrillen noemt men de textuur van de cel­
wand. Van wortelharen van hogere planten zijn deze textuur 
en de cytoplasmatische structuren, die mogelijk bijdragen 
aan de totstandkoming ervan onderzocht. 

De wortelharen van de meeste onderzochte waterplanten heb­
ben een hélicoïdale celwandtextuur (H.l). Anders dan voor­
heen aangenomen is, komen er onder de landplanten echter ook 
soorten voor met een uitsluitend hélicoïdale textuur in de 
celwand van de wortelharen. Met uitzondering van de grassen 
lijkt er een verband te bestaan tussen een bepaald type tri-
choblast, de wortelhaarvormende cel, en de textuur van de 
celwand (H.l). 

De verschillen in de textuur van de celwand in wortelha­
ren van het genus EquLsetum is in overeenstemming met de op­
splitsing van dit genus in twee subgenera (H.2). 

EquLsetum hyemale, schaafstroo, heeft in de jonge wortel­
haren een hélicoïdale celwand. Een hélicoïdale wand is opge­
bouwd uit lamellen van fibrillen. Een lamel is een fibril 
dik en fibrillen in een lamel lopen ongeveer parallel. De 
richting van fibrillen in opvolgende lamellen maakt een con­
stante hoek met de richting in de vorige lamel. Voor jonge 
wortelharen van Equisetum hyemale is de dichtheid van micro­
fibrillen 5 tot 7 per micrometer, de hoek tussen de fibril­
len in opvolgende lagen 30 tot 40 graden, en de richtings-
verandering van microfibrillen in opvolgende lagen tegen de 
wijzers van de klok in (H.4 en 5). 

De corticale microtubuli in jonge wortelharen van Equise­
tum hyemale lopen min of meer in de lengterichting van de 
cel (H.3, 4, en 5), dus niet evenwijdig aan de microfibril-
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len, zoals voorkomt in de meeste onderzochte plantecellen. 
In de top van groeiende wortelharen vertonen microtubuli en 
microfibrillen beide een 'random' patroon. Daarom is de 
hypothese opgesteld, dat microtubuli weliswaar niet recht­
streeks microfibrillen richten, maar wel een morfogenetische 
factor zijn, evenals de microfibrillen (H.5 en 6). Tijdens 
de uitgroei van de wortelhaar zijn ook in de trichoblast 
microtubuli en microfibrillen niet parallel (H.6). 

Behandeling van wortels met colchicine veroorzaakt depoly-
merizatie van de meeste microtubuli in wortelharen van Equi-
setum hyemale en Raphanus sativus, radijs, en een vergroting 

van de diameter van de wortelhaar. De celwand afgezet na col­
chicine behandeling is in Equisetum helicoidaal, evenals in 
onbehandelde haren. In Raphanus sativus, een haar met van 
nature axiale microfibrillen, worden door de colchicine be­
handeling microfibrillen in verschillende richtingen afge­
zet; dit lijkt meer op een hélicoïdale celwandtextuur (H.7). 
Deze data zijn in overeenstemming met de hypothese, dat mi­
crotubuli een rol spelen bij de vormbepaling van een cel 
(H.5 en 6), dat microtubuli niet nodig zijn om een hélicoï­
dale wand te vormen (H.3, 4, 5 en 6) en dat de diameter van 
de cel mede de textuur van de celwand bepaalt (H.12). 

De plasma membraan van groeiende wortelharen van Equise­
tum hyemale bevat in het PF-vlak de rozetten en in het EF-
vlak de terminale complexen, waarvan wordt aangenomen dat 
zij samen het microfibril-synthetiserende-complex van de ho­
gere planten vormen (H.8). De aanwezigheid van deze complex­
en verwijst ernaar, dat microfibrillen ook in hélicoïdale 
wanden groeien aan de top en niet, zoals wel is veronder­
steld, crystalliseren als "liquid crystals" in de periplasma-
tische ruimte. 

Het verband dat gelegd kan worden tussen de hexagonale pa­
tronen en de rozetten, het kleinste hexagonale patroon, kan 
een aanwijzing zijn dat de rozetten niet de microfibril syn­
thetiserende enzymen zelf zijn, maar plaatsen in de membraan 
waar microfibril precursors de membraan passeren (H.9). Vol­
gens deze hypothese zijn de terminale complexen in het EF-
vlak de microfibril synthetiserende enzymen. De isolatie en 
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biochemische karakterisering van het microfibril synthetise­
rende complex zal een belangrijke stap zijn in het celwandon-
derzoek. 

Op de cytoplasmatische kant van groeiende wortelharen ko­
men vele 'coated pits' voor, zowel in de expanderende top 
als in de niet-expanderende buis, terwijl volgroeide wortel­
haren slechts weinig 'coated pits' hebben (H.10). 

De dictyosomen vertonen een duidelijke polariteit van 
cis- naar trans-cisternae (H.ll). De blaasjes aan de trans-
cisternae hebben dezelfde structuur en inhoud als de blaas­
jes, die langs de plasma membraan en met name in de groeien­
de wortelhaartop voorkomen. De blaasjes brengen waarschijn­
lijk matrix moleculen in de wand en enzymen voor de cellu­
lose synthese in de membraan. Het surplus aan membraan dat 
ingebracht wordt, wordt via de 'coated pits' weer in de cel 
gebracht (H.10). 'Coated-pits' bevinden zich ook aan de 
trans-cisternae van de dictyosomen (H.ll). 

In het apicale deel van groeiende wortelharen komt geen 
lichtmicroscopisch zichtbare cytoplasma stroming voor. De 
snelheid van stroming neemt toe van 3 micrometer/sec in 
jonge wortelharen tot 7 micrometer/sec in volgroeide haren 
(H.ll). Het patroon van cytoplasma stroming is gecorreleerd 
aan het patroon van microfilamenten. Deze microfilamenten be­
staan waarschijnlijk uit F-actine (H.6 en 11). Een rol van 
cytoplasma stroming in het oriënteren van de microfibrillen 
zoals wel is verondersteld, kon niet aangetoond worden. 

Een mathematisch model voor hélicoïdale wandvorming wordt 
gepresenteerd (H.12): microfibril-initierende-complexen bewe­
gen in de membraan en vormen microfibrillen. De richting van 
de microfibrillen wordt uitsluitend bepaald door geometri­
sche wetten. Een individuele microfibril beschrijft een he­
lix met een steeds veranderende stijghoek, een boogsinus. 
Lamellen worden gevormd door niet overkruisende microfibril­
len, die eenzelfde deel van deze boogsinus beschrijven. De 
oriëntatie van de microfibrillen is afhankelijk van i) de 
dichtheid van de microfibril-initierende-complexen in de 
plasma membraan, ii) de hoeveelheid en aard van matrix mole­
culen, die tegelijk met de microfibrillen door de cel afge­
zet worden, iii) de celdiameter. 
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behorende b i j h e t p r o e f s c h r i f t 

CELL WALL FORMATION IN ROOT HAIRS 

Role of plasma membrane and cytoskeleton 
in m i c r o f i b r i l depos i t ion 
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I 

Bij de helicale celwandtextuur van wortelharen valt de as 

van de mathematische figuur samen met de as van de wortel-

haar, terwijl bij de hélicoïdale textuur de as van de mathe­
matische figuur loodrecht staat op de as van de wortelhaar. 

II 

Aangezien glucuronoxylanen een rol lijken te spelen in de 
hélicoïdale assemblage van cellulose (Vian et al.), ver­
dient het aanbeveling om te onderzoeken of er verschillen 
in matrixmateriaal zijn tussen wortelharen met verschilende 
celwandtexturen. 
Vian, В., Reis, D., Mosiniak, H., Roland, J.C., Protoplasma 131, 185-190, 1986 

III 

Albersheims interpretatie van het boogjespatroon, dat zicht­

baar is in doorsneden van hélicoïdale celwanden, als cellu­
lose microfibrillen met aangehechte Polysacchariden, past 
goed in zijn concept van de celwand, maar is onjuist. 
Albersheim, P., Scientific American 232 (4) 81-95, 1975 

IV 

De diameter van microfibrillen in de celwand van de alg Boer-
gesenia forbesii is niet 300 run (Brown 1985), maar 30 run. 
Broun, R.M., Jr., J.Cell Sci., suppl. 2, 13-32, 1985 
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In het boek "Cell Components" i s t e weining aandacht besteed 
aan h e t Golgi-apparaat, h e t cytoskelet en de coated p i t s . 
Linskens, H.F., Jackson, J.F., eds.: Cell Components, Modern Methods of Plant 
Analysis, New Series Volume 1, 1985, Springer-Verlag, Berlin Heidelberg New York 
Tokyo 

VI 

Protofilamenten van ongekleurde microtubuli, zichtbaar ge­

maakt door middel van cryo-electronenmicroscopie, vertonen 

een rechtshändige draaiing rond de as van de microtubulus. 

Mandel kou, E.M., MandeIkow, E., J. Mol. Biol. 181, 123-135, 1985 

VII 

Het feit, dat bij een gekruiste helicale celwandtextuur in 

wortelharen van de broccoli een axiaal patroon van microtu­

buli voorkomt en bij eenzelfde textuur in wortelharen van de 

ui de microtubuli in verschillende richtingen liggen, (Lloyd 

en Wells 1985), ondergraaft de stelling van Lloyd en Wells 

(1985), dat helicale patronen van microtubuli in wortelharen 

overeenkomen met de richting van de jongste microfibrillen 

van de celwand. 

Lloyd, CU., Wells, В., J. Celi Sci. 75, 225-238, 1985 

Vili 

Op grond van de door Heuser en Kirchhausen gerapporteerde 
data over clathrine-assemblages moet het door Crowther en 
Pearse opgestelde schema voor de assemblage van t r i s k e l i o n s 
t o t polygonale c l a t h r i n e - s t r u c t u r e n herz ien worden. 
Heuser, J., Kirchhausen, T., J. Ulstrastr. Res. 92, 1-27, 1985 
Crowther, R.A., Pearse, B.M.F., J. Cell Biol. 91, 790-797, 1981 

IX 

De gist Saccharomyces cerevisiae heeft geen clathrine nodig 

voor celgroei en eiwitsecretie. 

Payne, G.S., Schekman, R., Science 230, 1009-10H,1985 



χ 

Myosine is aanwezig in hogere planten en vertoont tijdens de 

cytokinese eenzelfde verdeling als actine. 

Parke, J., Hiller, С, Anderton, B.H., Eur. J. Cell Biol. 41, 9-13, 1986 

XI 

T a b a k s e x p l a n t a a t , g e b r u i k t door Tran Than Van en medewer­
k e r s , i s een t e complex sys teem om t e onderzoeken welke r o l 
o l i g o s a c c h a r i n e n u i t de celwand s p e l e n i n de c e l . 
Tran Than Van, К., Toubart, P., Cousson, Α., Darvill, A.G., Collin, D.J., Chelf, P., 

Albersheim. P., Nature 314, 615-617, 1985 

XII 

I n de c u t í c u l a van de Drosoph i l a -pop gaan v e r s c h i l l e n i n h é ­

l i c o ï d a l e g e l a a g d h e i d samen met v e r s c h i l l e n i n e iwi t samen­

s t e l l i n g . 

Wolfgang, U.J., Firstrom, D., Firstrom, J.U., J. Cell Biol. 102, 306-311, 1986 

XIII 

Hadleys gebruik van de term "lamella" is niet conform het 

gebruik in de literatuur over hélicoïdale wanden van plante-

cellen. 

Hadley, N.F., Scientific American 255 (1) 98-106, 1986 

XIV 

Verminder ing van h e t a a n t a l n i v e a u s van v o o r t g e z e t o n d e r w i j s 

l e i d t t o t een l a g e r gemiddeld n i v e a u van de l e e r l i n g e n . 

John H.A.L. de Jong, Studies in Educational Evaluation 12 (3), 1986, in press. 

XV 

In het Disciplineplan Biologie 1986 is het onderzoek van cy-

toskelet, celmembraan, celwandvorming en celwandafbraak van 

plantecellen ten onrechte ingedeeld bij plantenmorfologie. 



XVI 

De verwerking in tandpasta van Equisetum hyemale (schaaf-
stroo), een plant met een sterk siliciumhoudende stengel, 
wijst erop dat men zijn tanden dient te onderhouden als 
gereedschap. 

XVII 

De vrouwelijke natuurwetenschapper lijkt gevangen tussen 
twee tegengestelde idealen. De westerse cultuur van de negen­
tiende eeuw accepteerde voor vrouwen slechts zachtheid, ge­
voeligheid en niet-competitieve activiteiten, terwijl de 
zich in dezelfde tijd ontwikkelende natuurwetenschap werd 
gezien als nuchter, zakelijk en competitief. Een synthese 
van deze idealen is mogelijk. 

XVIII 

Tweede-kans-onderwijs impliceert vernederingen voor degene 
die dit onderwijs geniet. 

XIX 

De bewering van Rousseau: "A tout âge l'étude de la nature 
émousse le goût des amusements frivoles, prévient le tumulte 
des passions, et porte à l'âme une nourriture qui lui pro­
fite en la remplissant du plus digne objet de ses contem­
plations" geldt voor de biologie als zuivere wetenschap en 
niet voor de biotechnologie. 
Rousseau, J.J., "La Botanique", lettre première, 1771 






