
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/113592

Please be advised that this information was generated on 2018-07-08 and may be subject to

change.

http://hdl.handle.net/2066/113592

PARALLEL GRAPH REWRITING

Some Contributions to its Theory,

its Implementation and its Application

een wetenschappelijke proeve op het gebied van de Wiskunde en Natuurwetenschappen.

Proefschrift

ter verkrijging van de graad van doctor aan de Katholieke Universiteit te Nijmegen,

volgens besluit van het college van decanen in het openbaar te verdedigen op

vrijdag 2 december 1988 te 13.30 uur precies

door

Marius Cornelis Johannes Dionisius van Eekelcn

geboren op 5 december 1956 te Bergen op Zoom.

И
Krips Repro Meppel

Promotor: Prof. dr. Н.Р. Barendregt

Co-referent: Dr. ir. M.J. Plasmeijer

Aan mijn vader

Manuscriptcommissie:

Prof. dr. J.W. Klop, Centrum voor Wiskunde en Informatica, Amsterdam &

Vrije Universiteit, Amsterdam;

Prof. dr. M.R. Sleep, University of East Anglia, Norwich, United Kingdom;

Prof. dr. S.D. Swierstra, Rijksuniversiteit Utrecht

Dankbetuiging:

Op deze plaats wil ik iedereen bedanken die op zijn of haar manier aan dit proefschrift heeft
bijgedragen. Zonder jullie directe en indirecte hulp zou dit proefschrift nooit tot stand zijn
gekomen.

Acknowledgements:

I would like to express my gratitude to everyone who has contributed one way or another to this
thesis. Without your direct and indirect assistance this thesis would never have been produced.

PREFACE

Historical background

The main part of this thesis is a collection of papers which are the result of the research
performed by the author as a member of the computer science department of the Nijmegen
University. The research has been partly sponsored by the Dutch Parallel Reduction Machine
Project.

In 1984 this project was set up by the government of The Netherlands. The project was led by
Prof. Henk Barendregt and involved teams at the universities of Amsterdam, Utrecht, and
Nijmegen. The group at Nijmegen was led by Rinus Plasmeijer with the author of this thesis.
The aim of the PRM-project was to investigate the feasibility of building a parallel reduction
machine for the efficient evaluation of functional languages.

A related project in the United Kingdom, the Flagship project, was following the path of fine-
grain execution, developing dataflow ideas and experience with the ALICE project: a multi­
processor project of Imperial College London. The Dutch project investigated coarse-grain
parallelism on fairly conventional loosely coupled multiprocessor architectures. In common with
the team of the University of East Anglia (Prof. Ronan Sleep, John dauert and Richard
Kennaway) which was part of the Flagship project, the Nijmegen group had a strong interest in
developing an intermediate language based on a computational model which should reflect the
essential aspects of both functional languages as their implementation. It was recognized that the
choice of the computational model was the most critical decision to make. It would highly
influence the needed compilation effort and the final efficiency of the obtained code.

During a meeting in Oosterbeek (in the Netherlands) a subgroup consisting of Henk Barendregt,
Rinus Plasmeijer and the author of this thesis decided that, in principle. Term Rewriting Systems
would be best suited as the computational model to use. The patterns which are the basis of Term
Rewriting Systems, were expected to contain essential information necessary for efficient
implementation. Sharing of terms was felt to be essential in order to obtain efficient
implementations on sequential hardware. However, the sharing of terms would be a problem in a
parallel environment. We hoped that this problem could be solved in the future. To model this
sharing of terms it was decided that therefore graphs had to be used instead of terms. Following
meetings at a workshop on the island of Ustica, and at the second Conference on Functional
Programming Languages and Computer Architecture at Nancy, September 1985, collaborative
work was undertaken by the Nijmegen group and the UEA team.

After some very beneficial initial consultations with Prof. Jan-Willem Klop, a model of graph
rewriting was developed within a sound theoretical framework. Spin-offs included a clear theory
of Term Graph Rewriting and the intermediate languages Lean, Dae til and Clean, all published
in 1987. All these intermediate languages have the same underlying model of graph reduction.

VI Preface

The Dutch Parallel Reduction Machine Project ended in 1987. Its main results are summarized in
Barendregt et al. (1987c). An international evaluation committee with representatives of
universities and industry stressed the high quality of the research meeting international standards
and having important practical applications.

The authors work which is reflected in this thesis, focusses on the level of the intermediate
language and its underlying model of computation.

Contents of this thesis

Chapter 1 gives an introductory overview of the fields of functional programming and models of
computation. It can be skipped by readers who are familiar with these topics.

In chapter 2 the interconnections between the topics of the following chapters are explained and it
is motivated why Graph Rewriting Systems are a promising model of computation.

This thesis is essentially a collection of papers: the chapters 3, 4, 5, 6 and 7 are reprints of co-
authored papers which are also published elsewhere. The papers are unchanged: only the layout
is changed in order to make it more or less uniform and the references are merged in chapter 8.
There was a great temptation to revise the papers (e.g. add the improved efficiency figures of the
Clean compiler; remove inaccuracies; merge introductions etcetera). This is not done however in
order to avoid doing the work twice in different contexts: an integrated overview of the field of
functional programming and parallel graph rewriting will already appear as a textbook for
students (Plasmeijer & van Eekelen (198-)).

In chapter 3 (van Eekelen & Plasmeijer (1986)) we introduce a new high level specification
method for rewriting strategies, which simplifies the reasoning about the correctness of a
specification of a reduction strategy. This method is being used for specifying strategies and with
a minor change for specifying the semantics of Concurrent Clean. The paper was presented by
the author of this thesis at the Workshop on Graph Reduction at Santa Fe, New Mexico.

Chapter 4 is also published in the Proceedings of the Conference on Parallel Architectures and
Languages Europe (PARLE) at Eindhoven (Barendregt et al. (1987a)). It gives some basic
soundness and completeness results of a graph rewriting class which is used to implement term
rewriting. This makes it possible to identify restrictions guaranteeing correctness of
implementations of Term Rewriting which use sharing.

Chapter 5 is a revised version of Barendregt et al. (1987b) which was presented by the author of
this thesis at the PARLE conference at Eindhoven. It defines generalized graph rewriting which
can also be applied in general declarative and even in non-declarative environments. This chapter
will also appear in the special issue of the Journal of Parallel Computing with revised versions of
selected papers of the PARLE conference (Barendregt et al. (1988)).

Chapter 6 has also been published in the Proceedings of the Third International Conference on
Functional Programming Languages and Computer Architecture, Portland, Oregon, USA (Brus

Preface vu

et al. (1987)). It describes a functional intermediate language based on graph rewriting with
which it is shown in practise that functional languages can be efficiendy implemented.

Chapter 7 broadens the scope of parallelism in functional graph rewriting to general loosely
coupled parallel evaluation. This chapter is also published as internal report of the University of
Nijmegen (van Eekelen et al. (1988)) and it is also submitted for publication elsewhere. It will
form the basis of actual implementations of functional languages on parallel computer
architectures like e.g. a Transputer Rack or the DOOM machine of Philips Research Laboratories
at Eindhoven.

TABLE OF CONTENTS

Preface

Table of Contents

1 Functional Programming and Computational Models

1.1 Paradigms of Programming: Languages and Models
1.2 Functional Programming Languages
1.3 Traditional Models of Computation for Functional Languages
1.4 Conclusion

2 Graph Rewriting Systems: a Promising Computational Model

2.1 Why graph rewriting?
2.2 Introduction to generalized graph rewriting
2.3 High level specification with multi-level rewriting systems
2.4 Term graph rewriting
2.5 Generalized graph rewriting: Lean
2.6 Functional graph rewriting: Clean
2.7 Extending functional graph rewriting systems: PC-FGRS's
2.8 Conclusion

3 Specification of Reduction Strategies in Term Rewriting Syst

3.1 Introduction
3.2 Transforming a TRS to an Annotation TRS
3.3 Transforming the TRS to an Annotation TRS with Priority Rules
3.4 Defining the Strategy Separately
3.5 Conclusions and Further Research
3.6 Acknowledgements

4 Term Graph Rewriting

4.1 Introduction and background
4.2 Terms as trees and graphs
4.3 Homomorphisms of graphs and trees
4.4 Graph rewriting
4.5 Tree rewriting
4.6 Relations between tree and graph rewriting
4.7 Normalising Strategies
4.8 Conclusion

Table of contents ix

5 LEAN: an Intermediate Language based on Graph Rewriting 81

5.1 Introduction 81
5.2 General description of Lean 82
5.3 Translating to canonical form 86
5.4 Semantics of Lean 88
5.5 Some Lean programs 92
5.6 Future work 94
5.7 Conclusions 95
5.8 Acknowledgements 95
5.A Appendix: Syntax 96

6 Clean — A Language for Functional Graph Rewriting 97

6.1 Introduction 97
6.2 General idea of the language 98
6.3 Examples of Clean programs 106
6.4 The implementation of Clean 108
6.5 Conclusions and future research 113
6.6 Acknowledgements 114
6.A Appendix A: Clean Syntax 114
6.В Appendix B: Performance measurements 115

7 Parallel Graph Rewriting on Loosely Coupled Machine Architectures 117

7.1 Introduction 117
7.2 Graph Rewriting 120
7.3 Extending FGRS's with Lazy Copying: C-FGRS's 123
7.4 Extending FGRS's with Dynamic Process Creation: P-FGRS's 132
7.5 The descriptive power of PC-FGRS's 134
7.6 General Discussion 149
7.7 Conclusions 151
7.8 Acknowledgements 151

8 References 153

Summary 160

Samenvatting 162

Curriculum vitae 165

1

FUNCTIONAL PROGRAMMING

AND COMPUTATIONAL MODELS

In this introductory chapter an overview is given of the field of models of computation with
respect to functional programming languages. The importance of defining a model of
computation is explained. The correspondence between paradigms in programming languages
and computational models is discussed. The importance of functional languages is addressed.
Furthermore some basic models of computation which are used traditionally for describing the
behaviour of implementations of functional languages, are introduced very briefly.

More information on paradigms, functional languages, computational models, graph rewriting,
implementation methods, intermediate languages, compilation schemes and abstract and concrete
machine architectures can be found in Plasmeijer & van Eekelen (198-).

1.1 PARADIGMS OP PROGRAMMING: LANGUAGES AND MODELS

LANGUAGES

A language is a programming language if its syntax and semantics are formally defined and
implementable. Such a formal definition can be based on any formal description method e.g.
denotational, algebraic, categorical or operational. In particular, a compiler and an interpreter are
themselves formal definitions of the semantics, where another programming language is used as
the formal operational description method. In the case of a compiler generally even two other
programming languages are used. The basis of all implemented formal descriptions of semantics
is the operational semantics of the machine language which by itself is realized in hardware via a
particular machine architecture.

Every program which accepts input induces its own special purpose programming language.
Some examples of special purpose languages are the set of commands for an editor, the Unix
shell and a data base query language. Usually no model of computation is given for a special
purpose language. The meaning of such languages is mostly defined via user manuals.

General purpose languages do not focus on a specific (class of) algorithm(s). Being general
purpose they have a general view on the world. Such a view can be formalized yielding a model
of computation of the language.

MODELS

A general purpose programming language is usually composed out of many language constructs.
Examining the semantics of a language carefully it is possible to classify these constructs: some

2 Functional Programming and Computational Models

of them can be regarded as the basic concepts of the language, while others are purely syntactic
sugar added to the language for programming convenience or for software engineering reasons.
In order to understand the facilities offered by a language it is important to know what the
essential language constructs are and what they mean. It is sufficient to examine the semantics of
these essential language constructs since the semantics of other language constructs can be
expressed in terms of the basic constructs by removing syntactical sugar. A computational model
tries to capture the essential aspects of a programming language in a formal model in order to be
able to reason about them. However, in principle for a specific language there are many
computational models which can be used. For instance, any deterministic computation can be
expressed on a Turing Machine (Turing (1936)). But this will not gready simplify the reasoning
about the correctness of a particular program written in a specific language because the Turing
machine generally is too far away from the semantics of a specific language.

Furthermore, a computational model tries to capture the essential aspects of (a class of)
implementations of the programming language.

A model of computation tries to capture the essential aspects of a language by making some
abstractions. A model of compuxation (or a computational model) of a programming language is a
formal model as close as possible to both semantics and implementation still modelling only the
essential aspects of them. If such a model of computation is known it is much easier to reason
about the correctness of specific programs, the essential properties of the language, the
expressive power, the orthogonality of the design, the implementation methods for a given
computer architecture and the design constraints for new architectures to support the language.

It is of course very difficult to find such an ideal model which models every essential aspect of a
programming language. In fact the classical (sequential and imperative) programming languages
all have the same model of computation: the Turing machine. Clearly this model can only
describe the very basic concepts of those languages. Lately, newly defined programming
languages all come with a model of computation. The new language and the model of
computation are closely related: either the language is built on top of the model or the other way
around or sometimes they are even developed together. When defining a model of computation
for a language one often has to choose between what does the language mean (the semantical
aspects) and how is it done (the behavioural aspects). Many times this leads to a language having
both a denotational and an operational semantics. These two semantics may be based on different
models of computation which together fully specify what the language is about.

PARADIGMS

A paradigm in programming is an intuitive view on what the essence of programming is. In the
computer science community the traditional imperative paradigm has prevailed for many years.
Until recently, proposals for new programming languages based on other paradigms did not
really catch on because the implementation techniques to translate them efficiently to the
imperative machine architectures were not developed enough. The most important proposed new

Functional Programming and Computational Models 3

paradigms for programming languages are object-oriented, dataflow and declarative. In the
following paragraphs each of the paradigms will be discussed.

Imperative

Von Neumann machine architectares (Burks et al. (1946)) all use the imperative paradigm. In the
imperative paradigm there is a memory containing data and this memory also contains an ordered
sequence of commands (instructions) and a locus of control which indicates which instruction
has to be executed next. The instructions may or may not change any part of the memory. For
many years, using this paradigm implementation and programming techniques were developed,
refined and optimized. Many imperative programming languages were introduced generally
leading to higher levels of abstraction in programming. This trend towards higher levels of
abstraction is enabled by improved implementation techniques and by increased computational
power of the hardware.

An imperative program (written in Modula-2 (Wirth (1982)) calculating an array with the first N Fibonacci
numbers:

VAR
fib: ARRAY [0..N-1] OF INTEGER;
i : CARDINAL;

BEGIN
fib[0] := 1; fib[l] :- 1; i := 1;
WHILE i < (N-l)
DO

i := i + 1;
f i b [i l := f i b t i - l] + f i b [i - 2]

END
END

The basic computational model for Von Neumann machine architectures is introduced by Turing
in 1936: the Turing machine (Turing (1936)). This model of computation is used for complexity
theory and other theoretical issues (e.g. the Halting Problem (Lewis & Papadimitriou (1981)).

However, there are some small problems with the computer systems based on the imperative
paradigm. It is hard to find a piece of software without any bugs. Computer scientists have
learned to live with the software crisis, and they accept that most software products are
unreliable, unmanageable and unprovable. Although hardware is much more reliable than
software, most hardware systems appear to be designed in a hurry and even well-established
processors now and then go down because of undocumented race-conditions. Clearly software
and hardware systems have become very complex. So it seems to be understandable that these
systems contain bugs. A good, orthogonal design costs many, many, man years of research and
development. The good news is that hardware becomes cheaper and cheaper (thanks to the Very
Large Scale Integration) and speed can be bought for prices never dreamed of. Of course it never
goes fast enough. Yet it seems that the maximum speed that can be obtained with present day
technology in Von Neumann architectures is beginning to reach its limit.

The two key problems that the computer science community has to solve are how to make
reliable and user-friendly software at low costs and how to increase processing power at low
costs. Researchers are looking for solutions for these problems: investigating software

4 Functional Programming and Computational Models

engineering techniques, to deal with problems related to the construction of very large software
programs; designing new proof techniques to tackle the problems in proving the correctness of
systems; developing program transformation techniques, to transform the specification of a
problem to a program which solves it, designing new (parallel) computer architectures using
many processors (up to thousands or more) to increase execution speed.

One approach which eventually may help to find a solution for the key problems, is based on the
idea that these problems are fundamental problems which cannot be solved unless a totally
different approach is taken and hardware and software is designed with a completely different
model of computation in mind. We believe that this idea is true and that the solution lies in non-
imperative paradigms.

An imperative programming style has the following drawbacks.

- It consists of a sequence of commands of which the dynamic behaviour must be known in
order to understand how such a program works. Particularly the assignment causes
problems, because it changes the value (and often the meaning) of a variable. Evaluating the
same expression in succession may produce different answers. Reasoning about the
correctness of an imperative program is therefore very difficult.

- In addition, due to the relatively low expressive power of the present high-level programming
languages, programs become large and therefore hard to understand.

- Because of the command sequence, algorithms are more sequential than necessary. Therefore
it is hard to detect which parts of the algorithm can or cannot be executed concurrently.

So, we believe that the software crisis and the speed problem are inherent to the nature of
imperative programming languages and the underlying model of computation.

Object-oriented

The introduction of multiprocessing on a single machine, led to a new paradigm for parallel
languages, which is also used for programming parallel machines:

In the object-oriented (or actor-based) paradigm a program describes the behaviour of a system in
terms of its constituents, the objects. In object-oriented programming languages each object has
some internal data and the ability to act on (change) these data. Objects may have an internal
activity of their own. Objects only interact by sending messages to each other. One could say that
each object is a process controlled by an imperative subprogram communicating via message
passing with other processes.

An object-oriented program (written in POOL2 (America (1988))) that generates all prime numbers using the
sieve method:

IMPL UNIT Sieve
USE File_IO
GLOBAL driver := Driver.new ()

Functional Programming and Computational Models S

CLASS Driver
VAR first := Sieve.new ()
BODY FOR i FROM 2 DO first ! input (i) OD
YDOB
END Driver

CLASS Sieve

VAR myprime, current : Int
next : Sieve

METHOD input (n : Int) : Sieve
BEGIN current := n;

RESULT SELF
END input

BODY ANSWER (input);
myprime := current; %% the first input is a prime number
standard_out ! write_Int (myprime, 0) ! new_line ();
next := Sieve.new ();
DO ANSWER (input);

IF current // myprime -= 0
THEN next ! input (current)
FI

OD %% forever
YDOB
END Sieve

The main parts of the program arc the class D r i v e r of which there is only one object (created with
D r i v e r . new ()) and the class S i e v e of which there is in principle an infinite number of objects (every
sieve starts a new sieve). The d r i v e r generates all natural numbers greater than 2. The class S i e v e contains
a method input which if called (by other objects) and answered saves the argument in a local variable. Every
S i e v e has an activity of its own which is defined in the body. Its prime number is printed on the standard
output file. It starts a new S i e v e and it loops forever sieving out multiples of its primenumber.

The most commonly used basic computational model for object-oriented machine architectures is
the Calculus of Communicating Systems (Hoare (1985)). This model of computation is used for
complexity theory and other theoretical issues (e.g. fairness, proof theory). Process Algebra
(Baeten (1986)) might be an alternative when one is more interested in describing the behaviour
of processes.

Modularisation is an important technique which is used in the development of large programs. In
the object-oriented paradigm a program is modularised by the introduction of the objects. One
can imagine that in parallel machines different objects might live on different processors.

The activity of a single object is usually defined in an imperative language. In that case the object-
oriented language essentially inherits the disadvantages of the imperative paradigm. In chapter 7
of this thesis we present some promising fundamental research in combining the object-oriented
view with functional languages.

Dataflow

In the dataflow paradigm the data moves to the instructions instead of the other way around. An
instruction may start executing as soon as its data is available. So, the flow of data determines the
execution order. This approach has gained a lot of interest because of envisaged fast parallel
hardware designs.

6 Functional Programming and Computational Models

Dataflow languages or single assignment languages are languages in which variables are

assigned only once: i.e. a variable is undefined until it gets a value and then it can never change

afterwards. Single assignment languages are made to fit the dataflow model of computation.

A dataflow program (written in SISAL (dauert (1978)) calculating an array with the first N Fibonacci numbers:

fibnumbers :=
FOR

INITIAL
fibl := 1; fib2 := 1

REPEAT
fibl, fib2 :=- OLD fib2, OLD fibl + OLD fib2

WHILE
fib2 < N

RETURNS ARRAY OF fib2
END FOR

Also imperative and functional languages can be translated more or less efficiently to dataflow

languages (Veen (1985)). It seems that functional languages are better suited to be efficiently

translated to dataflow than imperative languages.

To exploit the advantages of the dataflow model special machine architectures are necessary

which realize the inherent parallelism. Unfortunately, actual dataflow architectures (Gurd et al.

(1985), (Arvind et al. (1987)) are very complex and not yet commercially available.

Declarative

In the declarative paradigm a desired computation is expressed in a static fashion as a list of

declarations and an expression to be evaluated. A program is considered to be an executable

specification.

A declarative language has the following advantages which are common in any mathematical

notation.

- Mathematics is static (no assignments, side effects): a function will always give the same

answer if it is applied on the same arguments.

- There is consistency in the use of names (like in x 2 - 2 χ + 1). Variables do not vary,

they stand for a, perhaps not yet known, constant value throughout their scope.

- An expression always has the same meaning independent of the history of the computation

(refereraial transparency).

- Because equal expressions are always and everywhere interchangeable, declarative languages

are convenient to reason about.

The class of languages using the declarative paradigm can be split up in grammar, logic and

functional languages.

Grammar languages

Grammar languages are based on the idea that a program essentially just parses its input and

produces a result accordingly. The programmer specifies in a grammar what the input may look

Functional Programming and Computational Models 7

like and which semantic actions must be taken. In the field of compiler development these

languages have lifted software development to a higher level and they have greatly increased the

programming productivity.

A grammar program (written in enhanced Extended Affix Grammars (Meijer 1986)) that appends two lists into
another list:

append (>empty, >list, list>): ;
append (>elt®listlr >list2, elt01i3t3>) : append (>listl, >list2, Ii3t3>).

The > signs define the flow of the arguments: before the argument they denote an input parameter, after the
argument they denote an output parameter.

Although all grammar languages are based on grammars they do not all have the same

computational model. The kind of grammars that are used, identifies the computational model:

e.g. affix grammars (Koster (1971)) or graph grammars (Nagl (1979)).

Grammar languages originated as special purpose languages but it has been proven to be
worthwhile to investigate whether they can also serve as general purpose languages. Problems
occur in userfriendliness, debugging facilities and programming environments.

Logic languages

Logic languages are based on the idea of a program being a set of rules which state that
predicates are true if certain conditions are met. These rules are multi-directional. So, you can ask
whether a predicate is true with certain values for specific logical variables but you can also ask
for which values of these variables the predicate holds.

A logic program (wrillen in PROLOG (Clocksin & Mellish (1984))) thai appends two lists into another list:

append ([], List, List).
append ([Elt|Listi], List2, [EltIList3]) : - append (Listi, List2, List3).

The logic program is very much like the grammar program. The main difference is the multi-directionality of
the logic program. The logic program will give a result for the first parameter if the other two are specified but
it will also give a result for the third parameter if the first two are specified. This difference is perhaps not really
essential but it is typical for the general view on programming.

In logic languages evaluation means investigating whether a formula in first-order predicate logic

can be true. The evaluation method uses unification and is based on the resolution method of

Robinson (Robinson (1965)). In fact the languages are quite close to the model by contrast with

the imperative languages and the Turing machine model. Logic languages can often be seen as a

subset of the general model defined by certain restrictions and extended with some specific

constructs for efficiency and software engineering purposes.

The Japanese Fifth Generation Computers project has had a great impact on the world-wide

interest for logic languages. Logic languages are now widely used in the context of database

systems. In the context of logic languages data is often called knowledge.

g Funclional Programming and Computational Models

Functional languages

In afunctional language every program is just a collection of function definitions. Each function
can be seen as a kind of program which accepts input (its arguments) and produces output (its
result). The concept of a function is one of the fundamental notions in mathematics.

Some functional programs (wrillen in Miranda™* (Turner (1985)):

Fibonacci numbers:

fibs thisfib nextfib = thisfib : fibs nextfib (thisfib + nextfib)

take η (fibs 1 1)

A functional program for sieving prime numbers can be found in chapter 7.

Append two lists into another list:

append [] list - list

append (elt:listl) list2 = elt : (append listi list2)

One of the greatest advantages of functional programming languages is that they are based on a
sound and well understood mathematical model, the λ-calculus (Church (1932/1933)). In terms
of denotational semantics one could say that functional programming languages are sugared
versions of this λ-calculus. This computational model is introduced more or less at the same time
as the Turing model. The power of these models is the same (Turing (1937)). Beside the λ-
calculus there are other related computational models which can be seen as a basis of functional
programming languages, namely combinatory logic (Schönfinkel (1924), Curry (1930)) and
rewriting systems (Klop (1987)). These computational models are very important because they
have a great influence on the specification of the semantics of functional programming languages
and on their implementations. In section 1.3 the traditional models are discussed and compared.
In chapter 2 rewriting models will be discussed. Recently many researchers started to investigate
sequential and parallel machine architectures especially suited te these models of computation.
These architectures are called reduction machines.

The main advantages that are offered by functional languages, are a great expressive power,
relatively easy correctness proofs and a relatively high suitability for parallel evaluation.
Therefore functional languages are a veiy important research topic. An overview of the field of
functional programming is given in Field & Harrison (1988).

1.2 FUNCTIONAL PROGRAMMING LANGUAGES

In Backus (1978) it is pointed out that the solution for the software problems should be searched
in finding a new programming discipline. He proposed to investigate functional programming
languages, also called applicative programming languages (sometimes the notion "functional"
programming languages is used for languages which support higher order functions and the
notion "applicative" programming languages for languages which have application as the overall

Miranda is a trademark of Research Software Limited.

Functional PrograiTuning and Computational Models 9

basic concept; outside the functional programming community the notion "functional" is widely
used as a synonym of useful).

To be able to program with functions a suitable rich set of basic functions has to be defined and
then they have to be used to define new functions in terms of these. Thus a whole library of
useful functions may be built. Some of those library functions are probably built upon layers of
others.

The question arises, whether more is needed than just a repertoire of basic functions and the
ability to combine them in order to define a library of functional programs? Fortunately, there is a
mathematical thesis, known as the Church's thesis (Church & Rosser (1936)), which states that
the class of computable functions is exactly the same as the class of recursive functions. This
class of recursive functions is exactly the class of functions you can get by combining some basic
functions via primitive recursion, composition and minimalisation.

In functional languages the programmer can only define functions which compute values
uniquely determined by the values of their arguments. Consequently, many of the familiar
concepts of conventional programming languages are missing in purely functional languages.
Most important, assignment is missing. So is the heavily used programming notion of a variable,
something which holds a value that is changed from time to time by an assignment. Rather, the
variables that exist in purely functional language are used like in mathematics to name and refer to
a yet unknown constant value. Once the value is known it cannot be altered anymore: in
mathematics a variable does not vary.

FUNCTIONAL PROGRAMMING IN AN IMPERATIVE LANGUAGE

Perhaps a functional programming style is important, like avoiding goto's. But are new
languages really needed? Imperative languages also have functions, so why not just use the
functional subset of e.g. C, Algol or Modula. Well, even if only the functional subset of these
languages would be used (this means leaving out the assignment) these languages are not as
suitable as the new functional programming languages. The reason is that functions in the
imperative language are often not treated as first-class citizens. This is a fact of life, not a
fundamental problem. In some languages a function cannot be an argument of a function, only
values can be arguments. In other languages functions cannot yield a function as result.
Sometimes these restrictions arc present because one did not know how to make an (efficient)
implementation of such functions. Furthermore, the available type systems of the classical
imperative languages makes it impossible to fill the gap without a complete redesign of these
languages. Also nice features of functional programming languages such as infinite data
structures (see the following section) are not possible in imperative languages because of the
evaluation order which is used in these languages.

10 Functional Programming and Computational Models

BASIC CONCEPTS OF FUNCTIONAL PROGRAMMING LANGUAGES

In this section the most common concepts of functional languages are introduced. When not

explicitly stated otherwise, all examples are written in the functional programming language

Miranda.

Function definitions

A program contains an expression to be computed and a collection of function definitions written

in the form of recursive equations.

Some simple function definitions:

increase χ = χ + 1
square χ = χ * χ
squareinc χ

 —
 square (increase χ)

constant = 7

In the definitions of these functions, χ is a. formal parameter от formal argument. It is essentially

like a bound variable in mathematical logic. Its scope is limited to the equation in which it occurs

(whereas the other names introduced above have the whole program as scope).

The basic operation in functional programming languages is function application. Because
function application is so fundamental in functional programming languages, the operator is
generally not written down explicitly. Application is simply denoted by juxtaposition.

For example, in case the function square is applied to the value 3, we simply write down:

square 3

In some languages however, application has to be written explicitly with a special binary
function.

For example:

Apply (square, 3)

The expression on which a function is applied (in the example the value 3) is called the actual
parameter or actual argument. The notation where the application operator is hidden is called the
applicative style and the notation in which the application is explicitly present as binary function
is called the functional style.

As usual in programming languages, one can denote and manipulate objects of certain predefined
types. The following basic data types, with appropriate basic operations, are usually available.

Data types: Operations: Notation of constant values:

numbers
truth values
characters

+, -, *
and, or
=, <

1, 34. 12, .
True, False.
'a', 'c'

The execution of a functional program simply consists of the evaluation of an initial expression in
the context of the function definitions in the program. Evaluating means repeatedly performing

Functional Programming and Computational Models 11

reduction or rewriting steps. In each reduction step (indicated by an "->") a function application
in the expression is replaced (reduced, rewritten) according to its definition (by the right-hand-
side of the equation), substituting the formal arguments by the corresponding actual arguments.
The subexpression that is rewritten is called a redex (reducible expression). The reduction
process stops when none of the function definitions can be applied anymore (there are no redexes
left). Then the initial expression is in its most simple form, the normal form. This result of the
evaluation is printed.

For instance, given the function definitions above (the environment), the expression s q u a r e i n c c o n s t a n t
can be evaluated (reduced) as follows. The expression which will be icwriuen, is underlined.

squarcine non.qtant -) square (increase rrm.qtanl-.ï
-> square (constant + 1)
-» square (7 + 1)
-* square 8
-> £_

64

Higher order functions

Compared with the traditional imperative languages, which normally allow also the declaration of
functions, functional programming languages have a sound view on the concept of a function:
functions are treated as first-class citizens.

A first-order function is a function which can only have basic types as argument and as result. A
higher order function is a function which can have a function as argument or as result.
Languages which support higher order functions in a general way are also called higher order
languages. Functional languages are higher order languages.

The possibility to yield a function as result makes it unnecessary to consider functions with more
than one argument. A function with η arguments can be constructed by a function with one
argument that returns a function that can be applied to the next argument, and so on.

In general a function definition has the following form:

function-name argi агдг ... = expression

In these definitions each function actually has only one argument. The convention is used that
function application is associative to the left, so the parentheses are left out. But actually this
must be read as:

. . ((function-name агді) агдг) ... = expression

This way of considering all functions as functions of one argument is called Currying. At first
sight, Currying perhaps looks a bit strange, but keep in mind that the basic operation in
functional programming languages is binary function application, which is hidden by the
applicative notation using juxtaposition. With explicit application the definition would be:

.. Apply (Apply (function-name, argi) , arg
2
), ..." expression

12 Functional Piogrammmg and Computational Models

Currying enables a familiar notation to be used, but furthermore it enables "the application of

functions with any number of arguments", which gives an additional descriptive flexibility. This

encourages a programmer to write "parametrized functions".

A simple Cumed definition:

p lus χ y - χ + y I I the type of plus is: num -» num -> num. The -» 's are right associative,
I | so given an object of type num, the higher order function p lus produces
I I an object of type: num -> num

So, also the following definition is allowed:

ine = plus 1 II the type of ine is: num-» num

This enables the following reducuons:

inC 3 -» plus 1 3 -> 1 + 3 -» 4

Patterns

In functional programming languages functions are defined by a series of equations. In the left-

hand-side of an equation one can specify that the equation in question can only be applied if the

actual arguments of the function are of a certain shape. The execution mechanism must be given

the "intelligence" to match actual parameters with the patterns used in the definition of a function

so that it can decide which equation to use. Generally, the equations are tried in the textual order

they are specified, from top to bottom. Within one equation the arguments are tried from left to

right. The patterns may consist of expressions with variables (e.g. n, values (e.g. o) and data

constructors (e.g. the infix :, which is used to represent a list; see also the next section on data

structures). This facility, which is called pattern-matching, offers an alternative to conditional

expressions. It often leads to clearer and more concise definitions.

Pauems and pattern-matching:

fac 0 - 1
fac η = η * fac (η - 1)

hd (a:b) - a
t l (a:b) = b

cond True χ y - χ
cond False χ y - y

'0' and 'η' are the patterns of the first two rules (a simple variable as pattern indicates that it docs not matter
what is on that position) Reducing 'fac 7' will result m a call to the pattern-matching facility, which decides
that only the second rule is applicable.

The functions hd and 11 require a non-empty list as actual argument The head of the list is mapped on a, the
tail of the list is mapped on b. Again these vanables indicate that the contents of the list are irrelevant.

A conditional can easily be defined. The choice between "then" and "else" part will depend on the actual value of
the fust argument as indicated by the pattern.

Data structures

Lists are a rather important data structure in many functional programming languages. Lists, like

any data structure in a functional programming languages, are constructed with the help of so

called data constructors. Such a constructor can be seen as a kind of identification or tag which

Functional Programming and Computational Models 13

uniquely identifies (and is part of) a "record" of a particular type. The list-constructor is usually
named "cons" (prefix notation) or ": " (infix notation). The type of a list could recursively be
defined as (usually it is predefined):

l i s t * ::= Cons * (l i s t *) I Nil

List-types are denoted by l i s t * or [*]. A list contains two elements and the list-constructor
cons, or, a list is an empty list denoted by Nil or []. If the list is non-empty it contains a list
element of a certain type * as head while the tail of the list is again a list of the same type. One
could say that the head and the tail are "glued" together with help of the list-constructor. Lists are
declared either by enumeration or by (recursive) definitions. The syntax we use for lists, is
illustrated by the following examples.

Lists, explicit infix notation:

1: (2 : (3 : (4 : (5: [])))) II t h e l i s t of numbers from 1 up t o 5
T r u e : (F a l s e : (F a l s e : [])) Il a l i s t of t h r e e boo l eans
[] II denote s the empty l i s t
1 : 2 : 3 : 4 : 5 : [] II ":" i s r i g h t a s s o c i a t i v e

For convenience of the programmer there is a shorthand notation for lists, using square brackets.

Lists, shorthand notation:

[1, 2, 3, 4,5] II the same list of numbers as above
[True, False, False] I I again the same list with 3 booleans
0 : [1, 2, 3] II same as [0, 1, 2, 3]

One of the powerful features of functional programming languages is the possibility to declare
infinite data structures via recursive definitions.

Definition of an infinite list equal to [1, 1,1,1,]:

ones = 1 : ones

ones is a recursive function yielding an infinite list

Programs having infinite data structures as result do not terminate of course. For practical
reasons such a result is printed as soon as possible. For an infinite list this means that, from "left
to right", the elements of the list are printed as soon as they are in normal form.

The possibility of defining infinite data structures puts some restrictions on the evaluation
strategy which is explained in the following section.

Some predefined operations on lists are generally available. These are: length of a list (denoted
by #), subscription (!) and concatenation (++). The operations are assumed to be predefined in a
library for reasons of efficiency and convenience.

Predefined list-operations·

12, 3, 4,5] || length of list, -» 4
[2, 3, 4, 5] ' 2 || subscription, -» 4
[0, 1] ++ [2, 3] || concatenation, -> [0, 1, 2, 3]

14 Functional Programming and Computalional Models

Evaluation

As explained in the previous section, the evaluation of a functional program has the intention to

find a final non-reducible expression denoting the same value as the initial expression E by

repeatedly performing reduction steps. Because there are in general many redexes in the

expression to reduce, one can perform these steps in several ways. This is determined by the so

called reduction strategy which controls the evaluation. A reduction strategy is sometimes also

called an order because it is used to indicate the next redex to reduce. There are a couple of

important things to know about the ordering of reduction steps.

In functional languages the final result of the computation (the normal form) does not depend on

the order in which the redexes were reduced: the normal form is unique (see also section 1.3).

However, there are restrictions that have to be put on the evaluation order. The specification of a

pattern forces evaluation in order to decide whether or not a particular rule for a function can be

applied.

Forced evaluation:

f a c 0 = 1
f a c η = η * fac (η - 1)

The expression fac (1-1) should of course not match the second rule, but the argumenl has to be evaluated
first After the evaluation of the argument the rules may be matched in order.

Furthermore, some reduction orders may not lead to the normal form at all (such a computation

will not terminate).

Non-terminating reduction: define

i n f = i n f

then the following reduction order may be taken:

cond True 1 in f —» cond True 1 i n i —> cond True 1 in f —» . . .

In this case another choice would lead to termination and to the normal form:

nnnri Trug 1 in f -» 1

The reduction strategy followed depends on the functional programming languages. In some

languages, e.g. Lisp and Hope, the arguments of a function are always reduced before the

function itself is considered as a redex. This is called eager evaluation and languages which use

such an evaluation strategy, are sometimes called eager languages. Infinite data structures cannot

be handled in these languages, because they are evaluated as soon as they are passed as

arguments, which leads to infinite computations.

Nowadays, in many functional programming languages the rewriting is done lazy. That is, the

value of a subexpression (redexes) is calculated if and only if this value must be known to do the

rewriting. Lazy evaluation makes it possible to handle infinite data structures.

Functional Programming and Computational Models 15

Lazy evaluation and infinite lists:

hd (t i unas.) -» hd (t l <1:опеэ)) -• hd а п е а -» hd П ; П П Р Я 1 -> 1

In eager languages the evaluation of the parameter ones would not terminate:

hd (t l ansa) -» hd (t l (Irfiiiss)) -* hd (t l (1 : (1 :£ЩЁа))) ->

There is a trade-off in the choice between lazy and eager evaluation: on one hand lazy evaluation
gives better expressiveness in the language and on the other hand eager evaluation simplifies the
implementation of a language. We have chosen for lazy evaluation because we like to improve
the expressiveness of programming languages.

Typing

There are untyped functional languages (Twentel, KRC and SASL) but most functional
languages are typed. In untyped languages any kind of functions can be written which is at the
same time their advantage and their disadvantage. After all, every function is written with
intended argument and result domains. In practise, a programmer will want to restrict himself
deliberately to using these functions with elements of the intended domains only. Essentially, the
type of a function is precisely this information on the intended domains. The type information
can not only be used as a filter to restrict the set of acceptable programs, but it can also be useful
for a compiler to produce faster code for specific types.

Two ways of typing are distinguished: explicit typing and implicit typing.

Explicit typing (or type checking) means that the compiler or the interpreter checks the type
which is explicitly given by the programmer. Type checking occurs e.g. in the languages FP,
HOPE, PONDER, ML and Miranda. There are many different algorithms for type checking in
functional languages, differing in the kind of types they allow.

Implicit typing (or type inference or type deduction) means that the compiler or interpreter of the
language will try to infer the types of a program. So in principle, the programmer does not need
to supply any type information.

From a software engineering point of view it can be argued that explicit typing is much better
because it forces the user to think about what he really wants to do with the functions he defines.
However, for simple functions a lot of (error prone) specifying is asked from the programmer
and then it is of course very nice if the types are deduced by the system. Since Miranda (the
language we use in our examples) has implicit as well as explicit typing we will discuss implicit
typing some more and we will give some comments on this combination of both ways of typing.

The type inference algorithms are usually based on the Сиіту+ type system of the λ-calculus. In

the Cuny+ type system it is inherently undecidable to determine the type of a λ-term, because

this type system contains a special type deduction rule (EQ: if two terms are ß-equal they have
the same type) which (in programming terms) means that in order to determine the type of an

16 Functional Programming and Computational Models

expression the expression first has to be fully evaluated. So any practical algorithm based on the

Сигту+ type system must be an approximation.

Milner (Milner (1978)) has given such an approximating algorithm which is used in Miranda.
This algorithm uses the Curry type system (i.e. Cun-y1" without EQ) and with some small
extensions. It can deal with polymorphism i.e. a function can be applied on objects of different
types (e.g. the identity function delivers an expression of the same type as its argument). But it
can not handle internal polymorphism i.e. polymorphism of locally defined functions or
polymorphism of arguments in the definition itself.

Milncr-untypablc function definitions:

length: : [*] -> пшп

length [] = 0

length (a:b) - 1 + length b

fun: : (* -> num) - > * - > * -> пшп

fun f listi list2 - f listi + f list2

missionimpossible = fun length [1,2,3] "abc"

In the righl-hand-side of the definition of m i s s i o n i m p o s s i b l e the type system does not allow the actual
argument l e n g t h to get two different types in the body of the function fun. l e n g t h cannot get type (пшп]
-> numon [1 , 2 , 3] and also type [char] -> num on "abc" . These types arc consistent with the
definition of l e n g t h but they arc not consistent with the definition of fun.

Although the deduction scheme can be improved for some cases, a fully satisfactory type

inference algorithm is not yet found.

In Miranda type inference and type deduction are combined. A programmer may specify types
but he does not need to do so. For this purpose Miranda uses the type checking algorithm of
Mycroft (Mycroft (1984)) which only slightly differs from the type deduction algorithm of
Milner. At first sight this is a very nice feature. However, in certain cases it may lead to not very
admirable situations.

For instance, suppose a programmer gives the following definition:

g χ = 1 : g (g ' с ")

The type deduction algorithm of Milner which is used in Miranda cannot deduce the type of g
because of the internal polymorphism of g. g is used polymorphic in the right hand side of its
own definition, namely with type instances: char -> [num] and [num] -> [num]. Hence, an
error message will be given by the compiler.

However, when the user explicitly specifies the type of g as: * -> [num] the type checker has

no problems with this case: the specified type is accepted and no error message is produced.

For a programmer it might be very confusing when on one hand a program has a type error if
types are deduced while on the other hand if a type is explicitly given the program is typed

Functional Programming and Computational Models 17

correctly. This confusion might be prevented if the language has explicit typing only. The

programming environment could then have a facility built in that on explicit request of the user

does its best trying to infer the type. This would give the user a clearer view on type inference

and type checking.

Examples

The power of functional programming languages is illustrated in two examples which use the

general features of functional programming languages.

Sorting a list.

The function s o r t needs a list of any type as argument and delivers as result the sorted list which has the same
type as the argument.

sort:: [*] -> [*]

sort [] = []

sort (a:x) - sort (smalleq a x) ++ [a] ++ sort (greater a x)

The funclions s m a l l e q and g r e a t e r need (wo arguments: a hst and an element. This clement must have the
same type as the elements of the list.

s m a l l e q : : * -) [*] - > [*]

smalleq a
smalleq a

greater: :

greater a
greater a

[]
(b:x)

[]
(b:x)

- []
- cond (b <= a

->[]-* [*]

- []
= cond (b > a) (b : (g r e a t e r a x)) (g r e a t e r a x)

Obviously, the type of the elements of ihe list must be such, (hat the operations '<=' and '>' are well defined.

Roman numbers.

Roman numbers are built up from ihe characters M, D, C, L, X, V and I Each of these characters has ils own
value These characters always occur in sorted order, characters with a higher value before characters with a lower
value. Exceptions to this rule arc a number of 'abbreviations', given below. The value of a Roman number
which contains no abbreviations, can be found by adding the values of the characters that occur m the Roman
number (MCCLVI = 1000 + 100 + 100 + 50 + 5 + 1 = 1256). The abbreviations make tt less simple to
calculate the value of a Roman number because now the value of the character depends on its relevant position
in the string. Negative numbers, or the number zero cannot be expressed in Roman numbers. The values of the
Roman characters and the values of the common abbreviations are

M
D
С
L
X
V
I

=
=
=
=
=
=
=

1000
500
100
50
10
5
1

CM =
CD =
XC =
XL =
К =
IV =

DCCCC

ecce LXXXX
XXXX

ПП

nn

= M
= D
= С
= L
= X
= V

- С
- С
- χ
- χ
- I
- I

A Roman number is represented as a string. It is assumed that the specified functions are applied on correct
arguments only.

18 Functional Programming and Computational Models

I I value defines the value of a Roman digit.

value: : char —» num

value
value
value
value
value
value
value

•M'

'D'
•c
'L'
'X'

•v
'I·

-
=
=
"
=
=
=

1000
500
100
50
10
5
1

I I rconvert converts a Roman number to a decimal number.

rconvert:: [char] —» num

rconvert ('С^'М':x)
rconvert
rconvert
rconvert
rconvert
rconvert
rconvert
rconvert

DISCUSSION

CC';
('X' :

('X' :

(•I
1
:

('1';
(a :
[]

: 'D'
¡•c
: 'L'
: "X*
: 'V'
: x)

:x)
:x)
:x)
:x)
:x)

value 'M'
value 'D'
value 'C'
value 'L'
value 'X'
value 'V'
value a
0

value 'C' + rconvert χ
value
value
value
value
value

'C'
•X'

'X'
'I'
•I'

rconvert

rconvert

rconvert

rconvert

rconvert

rconvert

The following claims have been made in favour of functional programming.

- Functional languages have a sound mathematical basis, with function definition and

application as the essential concepts.

- Because of the lack of side-effects, which leads to referential transparency, program

correctness proofs are easier. Proofs can be constructed with classical mathematical

techniques like induction. Proofs are compositional i.e. properties of a function which are

proven, can be used directly in other functions. Also it makes program transformations easier:

a programmer can start with a straightforward solution of a problem and via transformations

convert this solution to a more efficient one. Therefore it is less difficult to develop reliable

software.

- Mainly because of the use of higher order functions the expressive power of functional

programming languages is higher than of conventional languages. Programming is more like

mathematically specifying the algorithm. Programs are therefore in generally shorter than their

conventional counterparts and thus easier to enhance and maintain.

- A functional programming style is a mathematical style. Therefore a functional language is in

particular suited as a specification language. The fact that it is also a programming language

can be seen as a convenient additional feature. For instance, in Boute (1986) it is shown that

the functional paradigm can be used for the description of digital and analog circuits.

- In the evaluation process of an expression it may occur that there is more then one redex in

that expression. So, the evaluation process may continue in different ways. The Church-

Rosser property states that this evaluation order is unimportant if the choice does not lead to

an infinite evaluation process. The Church-Rosser property is a property of the set of

definitions, which forms the program of a functional programming language. The Church-

Funcliona] Programming and Computational Models 19

Rosser property is also valid in (subclasses of) the models that are used for functional
languages (see also section 1.3 and chapter 2). Due to the Church-Rosser property,
alternative evaluation orders, such as parallel evaluation, will never produce a wrong result,
although special care has to be taken in order to avoid non-termination. So, functional
languages seem to be very suited for parallel evaluation.

There also are the following serious disadvantages which however may be taken away by further
research.

- Some algorithms seem to be difficult to express in a functional programming style. Although
it is in principle not impossible to do, those programs which have a strongly imperative
nature (process control, operating systems, concurrently accessed databases) look not
elegant. There is some hope for improvement because functional languages are still under
development and because one still is learning how to express algorithms better in these
languages.

- Efficient implementations are now becoming available (Johnson (1984), Brus et al. (1987))
but they are still somewhat slower than implementations of imperative languages. However,
space and time efficiency can still be improved by further applying and improving
implementation techniques e.g. strictness analysis, avoidance of space leaks and introduction
and implementation of arrays with fast creation, access and update. Furthermore, one has to
keep in mind that a certain loss of efficiency was also accepted when high level imperative
languages were started to be used.

- From the software engineering point of view functional languages still lack several essential
aspects:
• Firstly, there is no well established programming style. Only the first attempts are made

towards establishing such a programming style.
• Secondly, there is no well established proposal for modularity, although several attempts

have been made.
• Thirdly, there are hardly any debugging facilities yet. Although programs tend to contain

relatively few errors, debugging cannot totally be avoided. Especially in lazy languages it
is difficult for the programmer to be able to get an idea of the exact execution order which
influences the real-time behaviour of a program.

• Lastly, early programmers training and education is just getting started in an experimental
way.

The balance between advantages and disadvantages is such that further research on functional
programming languages is more than justified.

1.3 TRADITIONAL MODELS OF COMPUTATION FOR FUNCTIONAL LANGUAGES

In this section we will discuss some traditional models of computation for functional
programming languages. For these models some properties are given in relation to other models.
All these models are capable of representing every computable function. Each model can be used

20 Functional Programming and Computational Models

as computational model for functional languages. Our choice for a non-traditional model is

motivated.

GENERAL TERMINOLOGY: ABSTRACT REDUCTION SYSTEMS

The general terminology which is used in functional languages and in all models for these

languages is contained in Abstract Reduction Systems (ARS's). ARS's abstract from the precise

structure of the objects and from the way reduction takes place.

An Abstract Reduction System (ARS) is a pair (E,->), where E is a set of elements and -> is a

binary relation on E. The transitive reflexive closure of —» is denoted by —»* or —». A similar

definitions or ARS's can be found in Klop (1987).

The intuitive idea is that each element represents a program at some state of execution. If χ -> y

then a next step in the execution could be transforming the element χ to y.

We say that χ can be reduced or rewritten to y in one step. We also say χ reduces to y and y is

called a one-step reduci of x. An element χ of an ARS is a redex (reducible egression) if there

exists an y such that χ —» y. A reduction sequence of an ARS is a sequence XQ—»XJ—»...-»xn.

The length of this sequence is n. A sequence of length 0 is empty.

An element χ of an ARS is a normal form if for there is no y such that χ —» y. An element χ has a

normal form if there is an element y such that χ —» y and y is a normal form.

Given an ARS (E,—»), a (reduction) strategy for this system is a function S which takes each

xeE to a set S(x) of nonempty finite reduction sequences, each beginning with x. Note that S(x)

can be empty.

A strategy S is deterministic if, for all x, S(x) contains at most one element. A strategy S is a

one-step strategy (or 1-strategy) if for every χ in E, every member of S(x) has length 1.

Write x—>s y if S(x) contains a reduction sequence ending with y. By abuse of notation, we may

write x—>s У to denote some particular but unspecified member of S(x). An S-sequence is a
reduction sequence of the form XQ—»S X! —»s X2 -* s A strategy S is normalising if for all

x0 having a normal form any S-sequence XQ-^S X I ~^S X 2 ~*S must eventually terminate
with a normal form.

A reducer with strategy S is a process which starts with an element x, chooses a reduction

sequence of S(x) and repeats this with the end of the chosen reduction sequence as the new

element x. A result χ of a reducer is reached when S(x) is empty. Reducers are deterministic or

non-deterministic. A reducer is deterministic if a reduction sequence in S(x) is chosen via a

function.

An ARS is confluent or has the Church-Rosser property (is Church-Rosser) if for all elements x,

y and ζ for which χ —» y and χ —w ζ, there exists а с such that у —» с and ζ -» с. It can be
proven that confluent ARS's have the unique normal form property i.e. each element has almost

Functional Programming and Computational Models 21

one normal form. The unique normal form property implies that different normalising reducers

all will have the same result if there is a normal form. This is useful for implementations which

can improve efficiency by using other (possibly parallel) reduction orders.

In Klop (1987) many other interesting properties of ARS's can be found.

LAMBDA-CALCULUS

The theory of the λ-calculus (an overview is given in Barendregt (1984)) as a model of

computation has been introduced by Church in 1936 (the very same year in which Turing

introduced the Turing machine model of computation) and is further investigated since. The basic

concepts of λ-calculus are application and abstraction. The set of terms Λ is the following.

λ-calculus: terms

Every constant с of the set of constants С is a term. Every variable ν of the set of variables V is a term.
If M and Ы arc terms then Μ N is also a term. (application)
If M is a term and χ is a variable then λχ. M is also a term, (abstraction)

Reduction is done by substitution of the variables (like in e.g. f (x)= χ + x ; f (2) = 2 +

2). The reduction relation is defined as follows.

λ-calculus: reduction relation (ß-reduetion)

(λχ.Μ) Ν ->p M [x:=N]

where [x:=N] denotes substitute N for χ . This reduction relation is closed under contexts, e.g. if Μ -»ο Ν
then also λχ.Μ Ζ -»β λχ.Ν Ζ.

The abstract reduction system corresponding to λ-calculus is of course (Λ,—>β). The substitution

mechanism is not at all trivial so in implementations it has to be taken care of in a special way.

Not all occurrences of the variable may be substituted (only so called free occurrences).

Furthermore it might be necessary to change the names of some variables during substitution.

Changing the name of a variable is also called a-conversion.

λ-calculus: substitution

(λ χ . χ (λ χ . χ) χ) с -ta χ (λχ.χ) χ [х : = с] = с (λχ.χ) с
(λ χ . (λ γ . γ χ)) у ->β (λ γ . γ χ) [х : = у] = α (λ ζ . ζ χ) [х : = у] = λ ζ . ζ у

Lazy evaluation (leftmost) is normalising for the λΚ-calculus. Eager evaluation is not

normalising for the λΚ-calculus. In λΐ-calculus terms which have a normal form, have no non-

terminating reduction order. So, eager evaluation is normalising for λΐ-calculus. Definitions of

λΚ- and λΐ-calculus can be found in Barendregt (1984).

λ-calculus is confluent. So alternative (possibly parallel) orders of evaluation can never yield a

wrong result. Extending λ-calculus with so called delta rules which act on normal forms and use

some internal representation to produce a result (e.g. arithmetical functions), is still confluent

(Barendregt (1988)).

22 Functional PrograjTuning and Computational Models

λ-calculus can be implemented using sharing (Wadsworth (1971)). It is very difficult to do this

optimally avoiding copying of redexes always. The following term communicated to us by J.J.

Levy, illustrates the essential issues for this optimality problem:

(λ ζ . ζ (λχ .χ) ζ) (Xf.(Xz.z ((λ χ . κ) ζ)) (f с))

Traditionally, the λ-calculus is considered to be a suitable model for functional languages

(Peyton Jones (1988b)). However, certain aspects of functional languages and the way they are

usually implemented, cannot be modelled within this calculus. In particular, the λ-calculus lacks

explicit recursion, pattern matching and the explicit notion of sharing of computations. With λ-

calculus it is impossible to reason about these aspects which, in our opinion, are essential for the

languages and their implementation.

COMBINATORY LOGIC

Combinatory logic (Schönfinkel (1924)) is closely related to λ-calculus. In λ-calculus terms a

combinator is a λ-tenn without free variables. All recursive functions can be defined with

applications of only two basic combinatore s and к which are defined below.

SK-combinatory logic: terms

S is a term and К is a term; if M and N aie terms then Μ N is also a term (application).

SK-combinatory logic: the reduction relation follows from the definitions of S and К in λ-calculus: S s
λχ.λγ.λζ.χ ζ (y ζ) and Κ s λχ.λγ.χ.

S x y z —> χ ζ (y ζ)
Κ χ y —* χ

Of course, it is impossible to make an efficient implementation based on the combinatore s and к
only. A simple function needs already lots of s's and K'S.

A simple algorithm for translating λ-calculus to s- and κ-combinators is the following. This is

one of the several algorithms which are called bracket-abstraction because the translation of a λ-

term χ to a combinator term is indicated by [xj.

A bracket-abstraction algorithm:

[λχ.χ] ш S К К
[λχ.ν) = К у
[λχ.Ρ Q] s S [λχ.Ρ] [λχ.Ο]

[Ρ Q] = [Ρ] [Q]

The abstraction algorithm reveals an important intuitive aspect of the combinators. They

distribute an argument over the function body; к means the argument is not needed here and s
means distribute the argument over both parts of the application. This intuitive idea is applied
more clearly in the concept of Director Strings (Kennaway & Sleep (1988)).

David Turner was the first to introduce an implementation of a functional language using
combinators as an intermediate language (Turner (1979a)). He did not use the set of two
combinators mentioned above but he used an extended set of about 15 combinators and of course
some delta-rules. His paper induced much research on which set of combinators was best for

Functional Progranunrng and Computational Models 23

implementation purposes and it also induced research on machine architectures based on such

sets of combinators. This research was very colourful with concepts as supercombinators and

superdoopercombinators and machines with names such as NORMA and SKIM. However it

turned out that using an intermediate language with graph primitives and special compiler

techniques it was possible to get at least an order of magnitude increase in efficiency beating on

an ordinary VAX the expected performance of special-purpose hardware based on these

combinators.

An interesting more recently proposed combinator model is built with the so called categorical

combinators (Curien (1986)) based on a category theoretical model of the λ-calculus. These

combinators encode an environmental implementation of the λ-calculus using eager evaluation.

Leftmost-outermost reduction implemented with sharing is normalising and optimal for

combinator systems.

Just as λ-calculus, combinatory logic lacks explicit recursion, pattern matching and the explicit

notion of sharing of computations. With combinatory logic it is impossible to reason about these

aspects which, in our opinion, are essential for the languages and their implementation.

1.4 CONCLUSION

We believe that the use of the declarative paradigm (and functional languages in particular) might

contribute to solving the software crisis.

In our opinion both λ-calculus and combinatory logic are not the best suited models of

computation for functional languages and their implementation because they lack recursion,

pattern matching and sharing. Therefore, we will consider term and graph rewriting systems in

the next chapter.

25

2

GRAPH REWRITING SYSTEMS:

A PROMISING COMPUTATIONAL MODEL

Graph rewriting systems are the key computational model throughout this thesis. So, in this

chapter we will first motivate why graph rewriting is so well suited for serving as a model of

computation for implementations of functional languages. Then a short introduction is given to

generalized graph rewriting as it is defined in the chapters 4 and 5 of this thesis including its

extensions which are defined in chapter 7 of this thesis.

An overview of the main results which are presented in this thesis, is given in the rest of this

chapter beginning with section 2.3. Motivations are given for the choices which were made.

Relations between various topics of this thesis are discussed.

2.1 WHY GRAPH REWRITING?

The reason for choosing graph rewriting as the model of computation for implementations of

functional languages is that graph rewriting is built around two basic concepts: pattern matching

and sharing. The advantages of these concepts are discussed below.

PATTERN MATCHING

Pattern matching is the basic operation for Term Rewriting Systems (TRS's). A tutorial on

TRS's is given in Klop (1987).

TRS's are more general than λ-calculus and combinatory logic because TRS's allow non-

Church-Rosser computations to be specified. In TRS terms combinators are very simple rewrite

systems without recursion and with patterns with a simple specific structure only. TRS's do not

have free variables.

Combinatory logic defined as a TRS:

Apply (Apply (Apply S χ) y) ζ -> Apply (Apply χ ζ) (Apply y ζ)
Apply (Apply Κ χ) y —> χ

Sometimes a special notation is used not writing down the binary Apply operators:

S x y z —> χ ζ (y ζ)
Κ χ y — » χ

In TRS's also ambiguous, non-confluent computations can be specified. However, Regular

TRS's i.e. TRS's with no overlaps between the rules and without multiple occurrences of

variables on the left-hand-side, are confluent. So, this class of TRS's is suited for modelling

functional languages.

26 Graph Rewriting Systems: a promising model of computation

Parallel outermost reduction is a normalising strategy for regular TRS's. Because strategies
influence the reduction order and hence the run-time behaviour of a program, it is necessary to be
able to reason about them. Strategies are very often only informally defined which makes this
reasoning almost impossible. Formal specification and comparison of reduction strategies is not
only important for reasoning about these strategies but it is also important for implementing
them. In chapter 3 of this thesis some specification methods are compared and a new high level
specification method is introduced which simplifies the reasoning about reduction strategies.

TRS's are very close to functional languages because the basic concept is pattern matching.
Patterns contain important information for strictness analyzers (Nöcker (1988)). Strictness
analysis tries to find opportunities to deviate from the standard reduction strategy in order to
achieve a more efficient implementation (e.g. many times eager evaluation can be more efficient
than lazy evaluation). The following example illustrates the importance of the use of patterns for
strictness analysis.

Patterns may contain important information for strictness analyzers:

F χ -> G (Cons χ N i l) ;
G (Сопз a b) -> a I
G χ -> N i l

Using the pattern-match information of G a very simple analysis shows that F is strict in its first argument.

With combina tors or with λ-calculus an analysis which effectively uses the pattem-match
information would be very cumbersome. Therefore, we consider TRS's to be better suited than
λ-calculus to serve as a computational model for functional languages and their implementations.

TRS's are very close to functional languages and they even broaden the scope of investigation to

non-confluent computations. Unfortunately, TRS's lack the explicit notion of sharing of

computations which, in our opinion, is an essential notion in the implementation of functional

languages.

SHARING

Sharing of computations is essential to obtain efficient implementations on traditional hardware,
although it might be a problem in a parallel environment. Machine architectures generally have a
memory which has addresses and contents; instructions change the contents of the memory. The
memory can be seen as a not connected graph and the instructions can be seen as rewrite rules cm
the graph. Furthermore, every program which contains non-trivial data structures deals with a
certain notion of graph rewriting. So, we feel that it is important to investigate general graph
rewriting.

Referential transparency obviously gives many opportunities for sharing computations. So, in

the context of functional programming various implementation methods with different ways of

sharing are investigated (Wadsworth (1971), Turner (1979a), Johnson (1984) and many others).

So if we take sharing seriously, it has to be incorporated in the model of computation which is

the basis for an intermediate language between functional language and machine architecture.

Graph Rewriting Systems: a promising model of computation 27

Then the model of computation will be close to the implementation and the issues concerning

sharing can be discussed and investigated within the model.

Graph rewriting systems extend TRS's with a general notion of sharing. We believe that

compared to the λ-calculus, combinatory logic and term rewriting systems, graph rewriting

systems are best suited to serve as computational model for functional languages. Therefore,

graph rewriting systems were chosen to be the basic model of computation in the Dutch Parallel

Reduction Machine Project (Barendregt et al. (1987c)) and in the U.K. Flagship project (dauert

et al. (1987c)).

It has been shown that with intermediate languages based on this model of graph rewriting

(Clean, Concurrent Clean, Dactll) efficient implementations of functional languages are possible

on various sequential and parallel machine architectures (Brus et al. (1987), van Eekelen et al.

(1988), Kennaway (1988b), an overview is given in Glauert et al. (1988)).

2.2 INTRODUCTION TO GENERALIZED GRAPH REWRITING

In this section generalized graph rewriting as defined in chapters 4 and 5 of this thesis is

introduced informally. Also the extensions which are introduced in chapter 7, are briefly

explained. A more rigorous treatment can be found in those chapters.

TERMINOLOGY

In graph rewriting systems a program is represented by an initial graph and a set of rewrite rules.

Each rewrite rule consists of a left-hand-side graph (the pattern), an optional right-hand-side

graph (the contractum) and one or more redirections. A graph is a set of nodes, one of which is

distinguished as being the root of the graph. Each node has a defining node-identifier (the

nodeid). A node consists of {contains) a symbol and a (possibly empty) sequence of applied

nodeid's (the arguments of the symbol). Applied nodeid's can be seen as references (arcs) to

nodes in the graph, as such they have a direction: from the node in which the nodeid is applied to

the node of which the nodeid is the defining identifier. Starting with an initial graph the graph is

rewritten according to the rules. When the pattern matches a subgraph, a rewrite can take place

which consists of building the contractum and doing the redirections. A redirection of one nodeid

to another nodeid means that all applied occurrences of one nodeid are replaced by occurrences of

the other (in implementations this is generally realized by overwriting the node, possibly by an

indirection node).

In abstract reduction systems anything that can be rewritten is a redex. In graph rewriting (and in

other models with structured terms such as λ-calculus, combinatory logic and TRS's) mostly the

term redex is reserved for that part of the structure that actually matches a rule. A graph is then

said to be in normal form if it contains no redex. Furthermore, a graph is in root normal form

when the root of a graph is not the root of a redex and it is sure that it can never become the root

of a redex. Note that whether a graph has such a root normal form is in general undecidable.

When a reducer terminates, its result is that part of the final graph which is accessible from the

root. A result generally is a root normal form. Even if a graph has only one unique normal form,

28 Graph Rewriting Systems: л promising model of computation

this graph may be reduced to several root normal forms depending on how far the subgraphs are

reduced.

A rule is left-comparing or non left-linear if a variable occurs more than once in the left-hand-

side. A graph rewriting system is left-comparing or non left-linear if it contains a left-comparing

rule.

REWRITING

In standard graph theory, a graph in a general graph rewriting system (as defined in chapter 5) is

a form of directed graph in which each node is labeled with a symbol, and its set of out-arcs is

given an ordering. In general graph rewriting systems nodes are denoted by their names, i.e.

their nodeid's. The denotation of a graph can be regarded as a tabulation of the contents function

which gives the contents of every node of the graph.

Denotation of a cyclic graph which might occur during execution of example 6.3 in chapter 6:

01: Сопз @2 @3,
@2: 1,
03: Merge 04 05,
04: Map 06 01,
05: Map 07 01,
06: *I 08,
07: *I 09,
08: 2,
09: 3;

A pictorial view on this graph:

Cons

Û Merge

Map

Q f
Map

G T

I
To get an idea of what general graph rewriting is we will discuss the main differences with term

rewriting.

Of course, the objects are graphs so all kinds of sharing (including cyclic structures) can be

expressed. The variables in the graphs stand for nodeid's which among other things means that

the natural meaning of left-comparing is not just a test for syntactical equivalence but a test on

Graph Rewriting Systems: a promising model of computation 29

actually sharing the same structure. Furthermore, on the right-hand-side of a rule the new
structure may contain nodeid variables which do not occur on the left-hand-side. For these
variables new nodeid's must be invented while building the actual contractum.

Graphs need not be connected. When the computation is finished, the final result is the subgraph
that is connected to the root. This gives rise to the elimination of nodeid's that are not connected
to the root anymore (garbage collection). These nodeid's can be reused instead of inventing new
nodeid's. Unconnected patterns in the rules give rise to a kind of context dependent rewriting
where a part which is connected to the root may be rewritten if a non-connected part of the graph
contains some symbol for instance. For tracing purposes this can be very useful.

Rewriting is done via redirections. A redirection of the root of the redex to another nodeid more
or less corresponds to rewriting in term rewriting systems. However, multiple redirections which
are performed in parallel, and non-root redirections give rise to complex changes of the graph
structure.

The actual nodeid's of a graph that is rewritten are also called global nodeid's. Explicit
redirection of a global nodeid has as a consequence that all references to the original global
nodeid have to be changed. So also references in the rewrite rules to global nodeid's have to be
redirected. Hence global nodeid's can be viewed as global variables (they have a global scope),
where nodeid variables are local variables (they have a meaning only within a single rule).

EXTENDING THE REWRITE SEMANTICS

In chapter 7 of this thesis the following extensions are discussed and used extensively. In order
to make it possible to discuss the relations between the chapters the extensions are briefly
explained here.

Influencing the order of evaluation

We can allow graph rewriting systems to be annotated in order to influence the sequential order
of evaluation. To every node and to every nodeid one or more attributes can be assigned via
annotations. Annotations can belong to a node (node annotation which is placed before the
symbol of the node) and to an argument (argument annotation placed in front of the argument).
Annotations may occur on the right-hand-side as well as on the left-hand-side of a rule.

In this thesis only one sequential annotation is defined indicating that the reduction of the
annotated argument of a symbol (function or constructor) is demanded. This annotation will
force the evaluation of the corresponding argument before it is tried to rewrite the graph
according to a rule definition of the symbol. Note that such annotations may make the reduction
strategy deviate from the default evaluation order which then becomes partially eager instead of
lazy. When more than one such annotation occurs on a right-hand-side, they are effectuated
depth-first from left to right.

30 Graph Rewriting Systems: a promising model of computation

These annotations play an important role because they are parameters of the reduction strategy.
The reduction strategy takes them into account and therefore they influence the way in which a
result is achieved. This is important if one wants to optimize the time and space behaviour of the
reduction process. It is assumed that annotations are never used in such a way that they influence
the result of the computation or the termination of the reduction.

In reasoning about programs with these annotations on the left-hand-side it will always be true
that the annotated argument will be in root normal form when the corresponding rule is applied.
The semantics of annotations on the left-hand-side can be explained via transformations to sets of
rules with right-hand-side annotations only. Intuitively, the transformation involves introducing
an extra internal reduction with an annotated right-hand-side which forces evaluation after some
matching but before the rule is applied.

Explicit parallelism

As said before, in general there will be several redexes in a graph. One single sequential reducer
repeatedly chooses one of the redexes which are indicated by the reduction strategy and rewrites
it. Interleaved reduction can be obtained by incarnating several sequential reducers which reduce
different parts of the same graph. As has been explained by using annotations it is also possible
to influence the order in which the redexes are reduced by a single reducer.

Loosely coupled machine architectures, such as Transputer racks, are available on a wide scale.
But one of the major problems is that most reductions of function applications will not contain a
sufficient amount of computation compared with the overhead costs caused by the inter-
processor communication (grain size problem). Therefore, for these architectures only those
redexes which yield a large amount of computation are suited to be evaluated in parallel. The
complexity of a grain is in general undecidable and furthermore no satisfactory automatic
approximation method has been developed. So, it is necessary to have an explicit way of
indicating the parallel redexes in a program by using special language constructs. Developing an
efficient program starts with some sequential algorithm which is converted by one or more
program transformation steps in order to obtain a program containing useful grains.

By denoting subgraphs on which reduction processes have to be created, parallelism in graph
rewriting can be modelled. Reduction processes which evaluate an indicated subgraph, can be
created dynamically in an eager manner (immediately) and in a lazy manner (when needed).

The process annotation indicates that a new sequential reducer has to be created with the
following properties:

- the new reducer reduces the corresponding graph to root normal forni after which the reducer
dies;

- the new reducer can proceed interleaved with the original reduction process;
- all rewrites are assumed to be indivisible actions;

Graph Rewriting Systems: α promising model of computation 31

- if for pattern matching or reduction a reducer needs access to a graph which is being rewritten

by another reducer, the first reducer will wait until the second one has reduced the graph to

root normal form.

The process annotation influences the overall order of evaluation because a new reducer proceeds

interleaved with the other reduction processes. If the process annotation appears on the right-

hand-side processes are created eagerly, if the annotations appear on the left-hand-side processes

are created lazy.

Lazy copying

Explicitly controlled copying can be very useful. In a sequential environment explicit control over

the copying process can be used to improve the efficiency of memory management. In a parallel

environment communication between processors with local memory always involves copying.

Although in implementations generally some kind of copying/sharing scheme is used, up to now

it has never been incorporated in graph rewriting models. With an explicit mechanism for

copying in the model the communication can be controlled on the level of the rewriting system

itself.

In chapter 7 of this thesis graph rewriting is extended with a notion of explicit (lazy) copying.

When a full copy is made, sharing is lost. Intentionally, sharing is used to prevent that the same

computation is performed more than once. With lazy copying it is possible to make a copy

without loosing this advantage. In general the phrase 'lazy copying' will stand for the notion of

having the possibility to explicitly denote that a copy or a lazy copy has to be made. By

introducing the possibility to use subtle combinations of sharing and copying this greatly

improves the expressive power of graph rewriting systems. Furthermore, in chapter 7 it will be

shown that lazy copying can also be the basis for communication in a parallel environment.

Classes of GRS's

A subclass of general GRS's in which the order of evaluation can be influenced via annotations

will be prefixed with A. So the abbreviation for general graph rewriting systems with these

annotations is A-GRS.

A subclass of general GRS's in which reducers can be created explicitly will be prefixed with P.

So the abbreviation for general graph rewriting systems with explicit parallelism is P-GRS.

Because generally the sequential control annotations are also used when the parallel annotations

are used, classes which use both annotations are also just prefixed with P.

A subclass of general GRS's which is extended with lazy copying will be prefixed with С So

the abbreviation for general graph rewriting systems with lazy copying is C-GRS.

2.3 HIGH LEVEL SPECIFICATION WITH MULTI-LEVEL REWRITING SYSTEMS

With multi-level rewriting systems (defined in chapter 3) high level specifications of reduction

strategies can be made. With this method specifications can be constructed which are relatively

32 Graph Rewriting Systems: a promismg model of computation

easy to prove. As is shown in chapter 3 transformations on these specifications can be elegantly
performed in order to obtain certain properties.

In Goos & van Latum (1987) this method is applied successfully for various strategies. They
have specified the strategies and they have proved several properties.

This method of specification can easily be extended to graph rewriting systems as defined in
chapters 4 and 5. This is achieved by using GRS's where TRS's are used in chapter 3.

In Smetsers et al. (1988) a slightly adapted version of the method is being used to specify the
operational semantics of Concurrent Clean (a language based on the extensions of graph
rewriting systems which are given in chapter 7). Since this specification adopts the syntax of
Clean (a functional language based on graph rewriting defined in chapter 6), such a specification
also yields a directly executable (slow) interpreter for Concurrent Clean.

2.4 TERM GRAPH REWRITING

Term graph rewriting (defined in chapter 4) connects term rewriting systems in which no sharing
can be expressed, with graph rewriting systems. Term graph rewriting means that a TRS is
inteipreted (lifted) as a GRS. The normal forms of the GRS which are graphs, are unravelled to
terms in the TRS world. Via term graph rewriting it is proven that sharing terms is sound.
Furthermore restrictions are given which ensure completeness of sharing implementations. Using
C-GRS's (to denote sharing as well as copying; see section 2.2 for a brief introduction) and PC-
GRS's (to denote copying with explicit parallelism); see sections 2.2 and 2.7) alternative ways of
lifting TRS's can be investigated. This might lead to proving the correctness of parallel
implementations of more general (not necessarily regular) TRS's. Term graph rewriting is a very
promising topic for further research.

Different ways of lifting TRS's lead to the investigation of special classes of GRS's. These
classes have the following restrictions of general graph rewriting systems in common:

- all graphs are connected and global nodeid's do not occur in the rules;
- every rale has exactly one redirection which is a redirection from the root of the pattern to the

root of the contractum or when there is no contractum, to a nodeid indicated in the pattern;
- no left-comparing rules which implies that it is impossible to pattern match on equivalency of

nodeid's (sharing). This is a difference with TRS's: the corresponding property of TRS's can
not be lifted to GRS's.

Because of the last restriction which implies that left-hand-side are actually more like terms, the
classes are called Term ... Rewriting Systems where ... captures the extra restrictions that are put
on the right-hand-sides.

In a Term Tree Rewriting System (TTRS) right-hand-sides are dag's (directed acyclic graphs)
and furthermore all variables on the right-hand-side have copy indications as defined in chapter
7. If TRS's are lifted by adding these copy indications, then with trees as initial graphs this class

Graph Rewriting Systems: a promising model of computation 33

of GRS's exactly corresponds to term rewriting which is shown in chapter 4 with somewhat
different terminology.

In a Term Dag Rewriting System (TDRS) right-hand-sides are dag's without further restrictions.
With these systems it is shown in chapter 4 that sharing implementations of a fairly general class
of term rewriting systems are sound and complete. Furthermore, it is shown that sib-normalising
strategies (a large subclass of normalising strategies) can be lifted from TRS's to normalising
strategies in TDRS's.

In a Term Graph Rewriting System (TGRS) right-hand-sides are graphs (possibly containing
cycles). Special transformations during lifting of TRS's might make use of cycles. The
intermediate language Clean which is introduced in chapter 6, uses TGRS's to implement
functional languages. Infinite data structures can be efficiently implemented with cyclic graphs. A
typical example is the solution to the Hamming problem given in section 6.3.3.

The unravelling of the normal forms of a rule system with lazy copying will always be the same
as the unravelling of the normal forms of the same rule system without lazy copying. In other
words lazy copying is invariant under unravelling. This is an interesting property for the
implementation of functional languages and for term graph rewriting because it means that when
we model TRS's by term graph rewriting the results in the TRS world are not affected by lazy
copying.

2.5 GENERALIZED GRAPH REWRITING: LEAN

Lean (defined in chapter 5) is an experimental language for specifying computations in terms of
graph rewriting. It is designed to be a useful intermediate language for those language
implementations which rely on graph rewriting. An interpreter for Lean is available (Jansen
(1987)) which allows mixing of several reduction strategies. The design of Lean has heavily
influenced the design of Dactll (dauert (1987c)), which the UK Flagship machine (Watson &
Watson (1987)) supports.

The graph rewriting model underlying Lean is of independent interest as a general model of
computation for parallel architectures. This model of generalized graph rewriting has a very high
expressive power because there are few restrictions on the graph that is transformed and the
transformations that can be performed. This induces a trade-off: adding restrictions decreases
expressivenes but it may yield important properties for reasoning or implementation (e.g.
referential transparency or efficient fine-grain parallelism). So, an important line of research tries
to identify restricted subclasses which are tuned for specific properties. This may yield as a spin­
off programming languages based on subclasses with specific properties and advantages (see
also sections 2.4 and 2.7).

Term dag rewriting systems are an example of an important subclass of generalized graph
rewriting. They are used in chapter 4 to model term rewriting systems by term graph rewriting.

34 Graph Rewriting Systems: a promising model of compulation

Lean and Dactll are the first two examples of spin-off languages. The reduction relation of the
languages is identical. Lean is used for experiments with generalized graph rewriting. With
features such as multiple redirection and global nodeid's also non-functional algonthms such as
unification and tracing can be modelled. Dactll is tuned for fine grain parallelism by adding fine
grain control markings and removing global nodeid's.

Clean which is described in the next section, is another example of such a spin-off language. The
language is functional and efficiently implementable.

Concurrent Clean will be yet another spin-off language based on the extensions of the rewrite
semantics defined in chapter 7. This language is now being defined (Smetsers et al. (1988)). It
will be an extension of Clean which is very suited for coarse-grain parallel implementation on
loosely coupled machine architectures.

2.6 FUNCTIONAL GRAPH REWRITING: CLEAN

The motivation for the design of Clean was to obtain an efficient implementation of functional
languages on traditional sequential hardware. Instead of making a direct implementation of a
specific language on a specific target machine it was decided to design an intermediate language
based on an appropriate model of computation. This should make it possible to experiment with
different kinds of program transformation schemes (SKI-combinators, supercombinators,
rewrite rules). Besides, it would make it possible to concentrate on the implementation of a
relatively simple system instead of getting lost in the details of a specific functional language. We
believed that this intermediate level would not yield a loss of efficiency compared with a direct
implementation. Because we wanted to experiment with the intermediate language we demanded
that this language could be used as a simple programming language.

In Clean a special reduction strategy is used: the functional reduction strategy which resembles
very much the way execution proceeds in lazy functional languages (a full formal definition of
this strategy can be found in Smetsers et al. (1988). The functional strategy can be used in TRS's
and in TGRS's. This is particularly useful in so called totally overlapping rule systems in which
the only overlaps which are allowed to occur between rules, are overlaps where a complete left-
hand-side of a rule is an instance of a left-hand-side of another rule.

The functional strategy effectively disambiguates the rewriting system because the order in which
redexes are evaluated is fixed and furthermore the rules are tried for matching in textually
topmost order. This is done by forcing evaluations to root normal form in such a way that when
a lower rule is actually applied on a redex, no higher rule is applicable on that redex. This
property can be seen as a practical approximation of the scmantically difficult property of Priority
Rewrite Systems (Baeten et al. (1987)) that a rule with lower priority is applied only if no higher
rule can ever be applied on the subterm in question.

Although the functional strategy is intuitively appealing and important for practical use, it is not a
normalising strategy for TTRS's (and hence neither for TDRS's and TGRS's) as is shown by
the following example.

Graph Rewriting Systems: a promising model of computation 35

A TTRS for which the functional strategy is not normalising:

A B C -> Ζ
A χ D —» Ζ
W -> W

With as initial term A w D the evaluation of the first argument of A is forced because there occurs a non-
variable in the pattern. This forced evaluation does not terminate. Nevertheless A W D has Ζ as normal form.

The fact that the functional reduction strategy is used, has a great impact on the meaning of a rule
system. Therefore, the following terminology is introduced.

Functional Graph Rewriting Systems (FGRS's) is the class of TGRS's in which the functional
strategy is used. FGRS's are the basis for Clean. Every Clean program is an FGRS.

It is shown that efficient state-of-the-art implementations on sequential hardware can be obtained
compiling functional languages via Clean (Koopman & Nöcker (1988), van Hintum & van
Schelven (1988)). Clean is implemented sequentially with reasonable efficiency. Clean has
fulfilled the demands which were set for it

Further research will increase the efficiency of the implementation and it will be investigated how
Clean can be extended for e.g. unification without loosing the efficiency. Concurrent Clean will
be the extension of Clean suited for parallel implementations on loosely coupled machine
architectures based on extended functional graph rewriting systems as is explained in the
following section.

2.7 EXTENDING FUNCTIONAL GRAPH REWRITING SYSTEMS: PC-FGRS'S

In chapter 7 we define extensions of special classes of graph rewriting systems which enable the
specification of general loosely coupled parallel evaluation in graph rewriting systems in a object-
oriented manner.

In that chapter it will be shown that extended FGRS's: PC-FGRS's (FGRS's with strict
annotations, explicit parallelism and lazy coping) have a surprisingly high expressive power.
Arbitrary process and processor topologies can be modelled, as well as synchronous and
asynchronous process communication. In particular, loosely coupled parallel evaluation can be
modelled such that any process communication structure can be defined. PC-FGRS's will be the
basis of the new intermediate language Concurrent Clean (Smetsers et al. (1988)).

Although in PC-FGRS's the normal form is not unique, the different normal forms which can be
produced are related. Modulo unravelling they are the same, i.e. if the normal forms are
unravelled to terms, these terms are the same. This is a very important property. The
consequence is that the use of PC-FGRS's as a base for the implementation of functional
languages or of term rewriting systems is sound. With term graph rewriting always the same
term will be yielded.

PC-FGRS's are well suited to serve as a base for the implementation of functional languages.
Sequential functional languages can efficiently be implemented by translating them to FGRS's.

36 Graph Rewriting Systems: a promising model of computation

The expressive power of PC-FGRS's and the properties of these systems gives high
expectations for a better exploitation of the potential parallelism in functional programs.

2.8 CONCLUSION

Graph Rewriting Systems are in our opinion most suited as a model of computation for
functional languages and their implementations.

Multi-level rewriting systems are very useful for high level specifications varying from
specifying reduction strategies to operational semantics. With term graph rewriting nice results
can be obtained on modelling term rewriting with graph rewriting. Generalized graph rewriting is
very powerful and of independent interest as a general model of computation for parallel
architectures. Based on a restricted subset of generalized graph rewriting Clean is in practise
proven to be very suited as an intermediate language for functional languages and sequential
machine architectures. Extending graph rewriting with lazy copying and explicit parallelism gives
a very promising model for loosely coupled parallel evaluation of functional programs. Its
expressive power and its properties will make it also possible in the near future to generally
exploit the potential parallelism in functional programs successfully.

Much research on graph rewriting systems still has to be done (taxonomy, typing, strategies,
strictness analysis, implementation techniques, parallel evaluation, garbage collection, etcetera).
But the results achieved so far are very promising, justifying further research on graph rewriting
theory and on identifying special classes of graph rewriting systems. Furthermore, actual
experiments with sequential and parallel implementations will be necessary to achieve more
experience and to identify key issues.

37

3

SPECIFICATION OF

REDUCTION STRATEGIES

IN TERM REWRITING SYSTEMS

M.C.J.D. van Eekelen, M.J. Plasmeijer.

Nijmegen University, The Netherlands.

partially supported by the Dutch Parallel Reduction Machine Project.

Abstract.

There is a growing interest m Term Rewnlmg Systems (TRS's), which are used as a conceptual
basis for new programming languages such as functional languages and algebraic specification
languages. TRS's serve as a computational model for (parallel) implementations of these
languages. They also form the foundation for a calculus for Graph Rewriting Systems (GRS's)
In Rewriting Systems reduction strategies play an important role because they control the actual
rewnung process. Strategies determine the order of the rewriting and the rules to apply Hence
they have a great influence on the efficiency and the amount of parallelism in the computation.
In ambiguous or non-dctcrminislic TRS's, they even influence the outcome of the computation.
Some of the reducuon strategies used in TRS's are extremely complex algorithms.
Unfortunately, there is no common formal specification method for reducuon strategics yet.

In this paper three formal methods for specifying reduction strategies in TRS's are presented. In
the first method the reduction strategy is encoded in the TRS itself The original TRS is
transformed to a so called annotation TRS in which the strategy is encoded using functions. This
annotation TRS itself may use any normalizing reducuon strategy. Unfortunately, compared
with the number of rules of the onginal TRS, the annotation TRS may contain an exponential
number of addiuonal rules. In the second method this drawback is prevented, simply by using a
pnonty TRS as annotation TRS The desire to specify a strategy uniformly for all TRS's leads
to the third method. A new TRS system is introduced that uses two basic primitives for
matching and rewriting and that is build out of three separate TRS's The use of this abstract-
mterpretauon TRS is shown to be the most promising method.

3.1 INTRODUCTION

A Term Rewriting System (TRS) consists of a term τ to rewrite and a set ρ of rewrite rules. A

reduction strategy σ is an algorithm which determines in which order the rewritable subterms of

the terra (the so called redoxes i.e. reducible expressions) have to be rewntten and which rules

have to be applied. A TRS with a strategy will be called a term reducer or a term rewriter. A

redex is a subtemi which matches the left-hand-side (LHS) of a rewrite rule. TRS's consist of

variables and symbols. Symbols start with an upper case character. All symbols that occur as

left-most symbol of a rewrite rule are functions, other symbols are constructors.

For instance when we have the following well-known set of rewrite rules:

Ap (Ap (Ap S χ) y) ζ ->Αρ (Ар χ ζ) (Ар у ζ) (S)
Αρ (Αρ Κ χ) у - » χ (Κ)

38 Specification of rewriting strategies in Temi Rewriting Systems

the term Ар (Ар (Ар К S) S) (Ар (Ар к К) К) can be rewritten to Ар S (Ар (Ар К К) К) and finally to
Ар S К by applying two times the rule (K). In this example Ap is a function, S and к are
constructors and x, у and ζ are variables.

A thorough introduction to TRS's is given in Юор (1985). TRS based languages like DACTL
(dauert et al. (1985)) and Lean (Barendregt et al. (1986b)) are used as a computational model
for implementations of new languages such as Miranda (Turner (1985)) and OBJ (Futatsugi et al.
(1985)). Currently various attempts (Barendregt et al. (1986a) based on Raoult (1984) and van
den Broek & van der Hoeven (1986) based on Ehrig (1979)) are made to extend TRS's to a
calculus for Graph Rewriting Systems (GRS's), in order to make them serve as a computational
model of (parallel) graph reducing implementations.

A strategy in a TRS can be compared with the control flow in an ordinary imperative
programming language. In the example above the strategy recursively takes the left-most redex in
the term until the term after rewriting contains no redexes anymore and therefore it is in normal
form. The outcome of the rewriting process may depend on the strategy followed. In particular
this is the case if the TRS is ambiguous.

We distinguish the following forms of ambiguity:

- Non-deterministic type of rules, i.e. rules of which the LHS's match the same instance, such
as

Choose χ y -»χ
Choose χ у —»у

- Strongly ambiguous rules of which (an instance of) a subterm of a LHS is a redex, e.g.

G (Κ η 1) - * ι
Κ χ у —»χ

or, more subtle

F (F X) -> . . .

which is ambiguous with itself.

For TRS's like these the outcome is depending on the strategy that is followed. Non-

deterministic rules such as Choose might be useful but, of course, the strategy must support it by

making a non-deterministic choice between the rules. Another example of a useful ambiguous

definition is the following TRS which still has the Church-Rosser property (i.e. the system has

an unique normal form):

Or True χ —»True
Or χ True —»True
Or False False -»False

Although in the case that the TRS is Church-Rosser, the outcome of the computation will not

depend on the order in which redexes are chosen, it can happen that depending on the strategy

Specification of rewriting strategies in Term Rewriting Systems 39

followed the rewrite process may or may not terminate. Take for instance Berry's example which

has a unique normal form:

F χ 0 1 - » χ
F 0 χ 0 -> χ
F 1 1 χ - » χ

Let's assume that of the actual arguments of F in the term there are two arguments which reduce

to the indicated normal form while the other argument has no normal form at all. The most

efficient strategy would not touch the latter. Unfortunately, on forehand we do not know which

argument that is. Forcing argument evaluation if a pattern is specified on the corresponding

position in a rule will start a non terminating computation. The only safe way to reach the normal

form is to reduce each argument of F once to see if the term has become a redex (the parallel

outermost strategy). This strategy is not always the most efficient one.

Another example which shows the importance of strategies is the following program with a

pretty familiar appearance:

F a c 0 - » 1 (1)
F a c η -» * η (F a c (- n i)) (2)

It only has the obvious semantics if the right strategy is chosen. In general the rules are

ambiguous because Fac 0 matches both rules. Fac (-11) even matches the wrong rule. However a

valid definition of Fac can be obtained if the argument of Fac is evaluated on forehand and the first

rule has priority over the second rule. Now Fac (-11) will be reduced to Fac 0 and the priority of

the rules guarantees that Fac 0 now matches only the first rule. The reduction strategies in most

functional languages are of this type.

Hence we must conclude that, unfortunately, there is no best strategy for all TRS's. Safe

strategies are not always in all cases efficient. Efficient strategies are not always in all cases safe.

Some algorithms can be expressed more conveniently in one strategy than another. Also one

could prefer some strategies for specific reasons, e.g. for a parallel architecture one would like to

reduce as much redexes as possible in parallel. One could also imagine, as is proposed in Lean,

that several strategies are mixed in one and the same TRS in order to optimize performance and

descriptive power. All this gives rise to complex strategies which cannot be explained anymore in

terms like "take the left-most redex". Hence there is a need to specify strategies formally.

Before we will specify reduction strategies we must first ask ourselves the question what the

properties must be of a good strategy specification. Of course it must specify which redexes are

to be rewritten in which order and which of the matching rules have to be applied. If we see the

specification as an algorithm, the execution of that algorithm must reduce exactly the same

redexes in exactly the same order as the original strategy does. There is however a problem in the

case of parallel reduction strategies which is caused by the concept time. The question arises if

two redexes, which according to the original strategy have to be reduced in parallel, also have to

be executed at the same time when we execute the corresponding specification.

40 Specification of rewriting strategics in Term Rewriting Systems

This consideration leads to two views on parallel reduction: synchronous and asynchronous.
According to the synchronous view the strategy recursively determines one or more redexes
which have to be reduced in parallel after which these redexes are all rewritten in one step. This
view is often used in a theoretical framework but in practice there are only very few machines for
which this view is applicable (e.g. Magò (1980)). In most distributed environments the strategy
algorithm is also implemented distributed and the asynchronous view is therefore more
appropriate. In the asynchronous view redexes which are reduced in parallel are actually reduced
in any (possibly parallel) order while the strategy may already have determined new redexes
although not all previously assigned redexes were rewritten. In the asynchronous view we
cannot state that the execution of the specification must rewrite all redexes in the same order as
the original strategy would do. A specification can only model the dynamic behaviour. Though in
this paper the specifications are used mainly in a sequential context, they can be easily extended
to a parallel environment with the synchronous view as well as using the asynchronous view.

There are many ways in which strategies can be specified. In this paper three methods are
introduced and a comparison between them is made. All methods create TRS's which can be
reduced with any normalizing strategy.

1. Specification of the strategy by transforming the TRS τ to another one annotation-τ; reducing

the latter induces the wanted strategy on τ.
2. Same as 1., but now in annotation-τ there is a priority in the rewrite rules (specificity).

3. The strategy is specified in a separate TRS on a different level.

For each method we will work out as a simple example the TRS consisting of the Curry

combinatore К and S (notated with explicit application functions). The strategy to be specified
will be head reduction, i.e. left-most reduction to head normal form. A term is in head normal
form if no reduction can possibly lead to a rewrite of the head of the term. We will refer to the
example as Curry's example. For every method Curry's example will be proven correct. These
proofs will be using O'Donnell's definition of a TRS simulating another TRS (O'Donnell
(1985)). The methods are compared in terms of ease of correctness proving, ease of developing,
ease of expressing efficient strategies etcetera.

3.2 TRANSFORMING A TRS TO AN ANNOTATION TRS

3.2.1 DESCRIPTION OF THE METHOD

The method is inspired by the use of strictness annotations in functional programming languages
(Miranda e.g.) which serve as compiler directives. The general idea is that we use such
annotations, for instance a shriek "!", for labeling those redex(es) in the term that should be
rewritten. Instead of directives we use functions. These functions have ordinary semantics which
enables us to use the full TRS semantics to reason about their meaning. Therefore the original
TRS is transformed to an annotation TRS. All rules in this annotation TRS start with these
functions and therefore only those redexes of the original TRS which are "annotated", are also

Specification of rewriting strategies in Term Rewriting Systems 41

redexes in the annotation TRS. The annotation TRS itself can be reduced with any normalizing

reduction strategy.

A small example: if the rules of the original TRS are:

Ap (Ap (Ap S χ) y) ζ - * Α ρ (Ар χ ζ) (Ар у ζ) (S)
Αρ (Αρ Κ χ) у - » χ (Κ)

Then these rules are transformed to:

! (Ap (Ap (Ap S χ) y) ζ) - » А р (Ар χ ζ) (Ар у ζ) (1)
! (Ар (Ар К х) у) - + х (2)

This TRS has only one function; the function !. The transformation has as a consequence that
functions in the original TRS (Ap in the example) now become constructors in the annotation
TRS. Of course, also the term to reduce must be marked. For instance if Ар ((Ар (Ар к S) S) (Ар
(Ар к К) К) is transformed to Ар (' (Ар (Ар К S) S)) (Ар (Ар к К) К) it has only one redex in the
annotation TRS. Due to the applicative order reduction this redex will be reduced giving Ap S (Ap
(Ар К К) К) as result.

Hence only one of the redexes that is present in the original TRS, is reduced. This is the one
which was marked.

In order to continue this process one also has to insert new markings for those redexes which
have to be reduced next. When we specify a strategy in this way quite a lot of additional rules
have to be added to deal with markings in the right way. Also the outcome of the computation
must be the same as in the original TRS, i.e. all marking must disappear at the end. Let's try to
make clear what kind of additional rules are needed by looking at our example.

3 . 2 . 2 EXPRESSING HEAD REDUCTION FOR CURRY'S EXAMPLE

We start off with the rules of the ordinary TRS:

Ap (Ap (Ap S χ) y) ζ -»Ар (Αρ χ ζ) (Ар y ζ) (S)
Ap (Ap Κ χ) y - > х (К)

We add exclamation marks to the left-hand-side of the rules of the original TRS in order to
promote the original redexes to redexes in the new system.

1 (Ap (Ap (Ap S χ) y) ζ) -»Ар (Αρ χ ζ) (Ар y ζ) (1)
1 (Ар (Ар К χ) у) - > х (2)

Note that the function ! has only one argument, hence the parentheses around the argument will
be sometimes redundant. When there can be no confusion, we will leave them out

We need a general propagation rule to achieve a left-most search for a redex.

! (Ap (Ap (Ap (Ap ν w) x) y) z) ->Ap (! (Ap (Ap (Ap ν w) x) y)) ζ (3)

42 Specification of rewriting strategies in Term Rewriting Systems

S

к
(Ар
(Ар
(Ар

К х)
S χ)
(Ар S χ) У)

- » S
->К
->Ар
->Ар
-> Ар

К χ
S χ
(Ар S

The propagation rule takes care of the propagation of the ! for the case that we have a pattern with
four Ap's on the left. We also have to specify what happens for all other cases, i.e. when we
have less than four Ap's. They can be divided in two classes:

1) The ! may have an argument which contains no redex at all. In this case the ¡-function must
reduce to its argument in order to get the same normal form as in the original TRS. For each
non-redex we have to add a rule. This gives us five additional rules.

(4)
(5)
(6)

m
χ) y (θ)

Note that we could not write a more general rule like

! (Ap χ y) -»Ap χ y

because this rule is ambiguous with the к rule. This would introduce the danger that ! (Ap (Ap
к К) К) is reduced to Ар (Ар к К) к instead of being reduced to K.

2) The ! may have an argument of which a subterm is a redex. We call rules that are introduced
to handle these cases envelope-rules. In this example only one envelope-rule is needed:

! (Ap (Ap (Ap Κ χ) у) ζ) -»Ар χ ζ (9)

The nine rules we have given so far, model exactly one step of the head reduction strategy. In

order to model the complete reduction to head normal form, the exclamation mark has to be

created over and over in a driver rule like

* t e r m -» * (! t e r m)

In order to let this reduction stop we must encode in the term whether or not a rewrite (according
to the strategy on the original TRS) was done. We use a success constructor '+' to denote that a
rewrite was done and a failure constructor '-' to denote that it wasn't. We add the following
'driver' rules

* (- t e r m) - » t e r m (1 0)
* (+ t e r m) - * * (! t e r m) (1 1)

The strategy stops if on the term no rewrite was done (10). Of course we must also change all the
other rules to make them produce a result with the proper success or failure constructor (+/-).
Furthermore we must also propagate these constructors back to the beginning of the term so that
we can make the decision whether or not to stop the strategy. This is done by adding the
following rules:

- (Ap (- x) y) - > - (Ap χ y) (1 2)
- (Ap (+ x) y) - > + (Ap χ y) (1 3)

and by changing the propagation rule to:

Specification of rewriting strategies in Term Rewriting Systems 43

! (Ap (Ap (Ap (Ap ν w) x) y) z) -> - (Ap (! (Ap (Ap (Ap ν w) x) y)) z) (3)

Finally the complete set of rules is:

(Ap (Ap (Ap S χ)

(Ар (Ар Κ x) у)
(Ар (Ар (Ар (Ар
S
К
(Ар К х)
(Ар S χ)
(Ар (Ар S χ) у)
(Ар (Ар (Ар К х)
(- term)
(+ term)
(Ар (- χ) у)
(Ар (+ х) у)

У) ζ)

ν w) х) у)

У) ζ)

->+ (Ар (Ар x z) (Ар y ζ))
->+ X

г) ->- (Ар (! (Ар (Ар (Ар ν w) χ)
-»- S
->- К
->- (Ар К χ)
-*- (Ар S χ)
->- (Ар (Ар S χ) у)
->+ (Ар χ ζ)
-» term
-> * (! term)
-»- (Ар x у)
->+ (Ар x у)

У))

(1)
(2)

г) (3)
(4)
(5)
(6)
П>
(8)
(9)

(10)
(11)
(12)
(13)

The initial term is

* (! term)

Note that it was also possible to achieve the same result using only one annotation function in
stead of three different functions. This was not done for reasons of clarity.

3.2.3 CORRECTNESS PROOF

In this section we first formally define what it means for a strategy to specify another strategy.
This definition will also be used in the proofs of the other methods. Then we proof that Curry's
example, as it was specified with this method, satisfies the corresponding conditions and we
finish this section with some general remarks on proving specifications that are constructed with
this method. We also introduce some new terminology for a special kind of TRS that we
encounter.

Definition of Specification

In his excellent book (O'Donnell (1985)) Michael O'Donnell defines what it means for a TRS to
simulate another TRS. When one considers a strategy of a TRS to be giving a restriction on the
reduction relation, then restricting the reduction relation to what is specified by the strategy, his
definition can be used directly as the definition for one term rewriter specifying another. This
results in the following definition:

Let <τ 0 , —>σ> and <τ$, -*π> be reducers where —»σ and -»π are the reduction relations of τ 0

(the original TRS) and xs (the specification TRS) restricted to the strategies σ and π, then τ 5 π

specifies XQQ if there exist

an encoding set Ε ε i s ,

a decoding function d: Ts —» τ 0 и (nil) with nil 4 x0,
a computation relation —>c S —>s,

such that

44 Specificalion of rewriting strategies in Term Rewriting Systems

1. d[E] = τ 0 & d-llNiool η E e Nx s n

where Ντ χψ is the set of normal forms of a TRS τ χ with respect to the strategy ψ,

2. Va, β e TS a -»c β => d(a) ^ 0 d(ß),
3. Va, β € xs a (-»s„~»c) β => d(a) = d(ß)

where —>SJt—»c stands for any sn reduction that is not а с reduction,
4. Va € Ε, β € το d(o) ->οσ β => 3δ € E a (->sw_»c)* -» c (->srt~>c)* δ & d(5) = β,

5. Va € Nxs7ü d(a) € Ντ^ υ {nil),

6. There is no infinite (—>sn— ĉ) reduction path and moreover there exists a bounded function

b: XQ -* IN such that Va, β € Ε α (-*$π—>c)m ^ с (->5Я~^с)п ß =* m < b(d(a)) & η <

b(d(a)).
The specification is called effective if b, —»c, d and E are all total computable.

Intuitively, this means that we encode terms into another TRS allowing multiple encodings. The

first condition requires that decoding respect normal forms. The specifying TRS has

computational reductions which mirror a rewrite in the original TRS and non-computational

reductions which are internal book-keeping steps. Conditions 2,3 and 4 require that every

original reduction is simulated by any number of book-keeping steps which do not change the

encoded expression, followed by exactly one computational reduction to effect the change in the

encoded expression. This reduction may again be followed by book-keeping steps. Condition 5

prevents dead ends in the specification. Condition 6 states that the number of book-keeping steps

is not allowed to grow without bound, otherwise e.g. all possible original reduction sequences

could be simulated before officially choosing one of them, which clearly is not what we want.

All conditions together mean that we really simulate the steps of the original TRS and not only

return the appropriate normal forms as a result

For the function d we basically need to describe which term is encoded for all reducts of the

elements of the encoding set, but we also have to define which terms are not reducts of elements

of E and are therefore decoded to nil. Maybe it is possible to give a precise definition of a TRS

simulating another one using a decoding function which is only defined on reducts of elements of

E. In the future we would like to do research along this line to find out whether for our purposes

it is possible to simplify this definition.

Proof of Curry's Example

We define the encoding set E as Ν χ ο σ υ { * (! t) 11 € XQ-NXOCT), where XQ-NX,^ stands for the
set of all terms of x0 that are not terms of Νχ ο σ . The set of constructors *,+,-,!,- is called A. The

decoding function d is defined as follows:

χ € Νχοσ => d(x) = χ

χ matches one of the rules of xs

and the subterms matching variables

do not contain elements of A =» d(x) = x with all applications of elements of A

skipped

in all other cases d(x) = nil.

SpecificaUon of rewriting strategies in Term Rewriting Systems 45

The computation relation с is given by rules (1), (2) and (9). This leaves us to proof that all
conditions are satisfied. When we are not interested in the strategy π of τ 5 π (i.e. the statement

holds for any normalizing strategy of 1S), we will leave out the strategy suffix π.

la.dlE] = T0

Clear from the definitions.

l b . d - l [N X o d n E s N T s

Suppose we have α € E and β € Ν τ ο σ with d(a) = β, then a = β and because α does not

contain any elements of Α, α € Nts.

2. Va, β € xs a ->c β => d(a) -> 0 d(ß)
Reductions according to the rules (l), (2) and (9) decode into S and К reductions.

3. Va, β 6 xs a (->s—>c) β => d(a) = d(ß)
Follows directly from the definition of d.

4. Va € Ε, β € x0 d(a) - > ο σ β => 3δ € E a (->s—>c)* "»с (-*s~»c)* δ & d (5) = ß
Suppose we have α € E, d(a) -» ο σ β; then d(a) 4 Ν τ ο σ , hence a is of the form * (! t) with t $
Νχ ο σ . So d(a) = t and t reduces in χ ο σ to β. We have to find a δ € xs such that d(5) = β and α
(—)s—»c) —»c (—»s—>c) δ; t 4 Νχ ο σ , so t has a head-redex r in t 0 , hence t is of the form Ap1 (
... Apn (Ap (Ap (Ap S χ) y) ζ) argn)... argj or Ap1 (... Apn (Ар (Ар Κ χ) y) argn)... arg]. Consequently,
the form of β is also known (apply S or К rule). Take δ = * (! β) then trivially d(6) = β.

Let us first assume that r is a S redex. If η > 0 then the only rule that is applicable on α is rule (3)

which is not a computational rule. After one step this reduces to - (Ap1 (! (Ap2 (... Apn (Ap (Ap

(Ap S χ) y) ζ) argn)... arg]) and again if η-1 > 0 only rule (3) is applicable. So after η steps the result

is - (Ap1 (~ (Ap2 (... ~ (Apn (! (Ap (Ap (Ap S χ) y) ζ)) argn)... arg]). These η steps are the internal

steps of xs preceding the computational step which is applying rule (l), resulting into - (Ap1 (-

(Ap2 (... - (Apn (+ (Ap (Ap χ y) (Ap χ ζ)) argn)... arg]). Now the only possible reductions are η

applications of rule (13), which gives us * (+ β), which can only reduce to * (! β) = δ.

The other case we look at, is г being а К redex. We now have to be careful because there can be
two computational rules corresponding to а к reduction. If η > 1, then we can follow the same

reasoning as in the S case. We have n-1 applications of rule (3) on application of rule (9) and n-1

applications of rule (13), followed by one application of rule (l 1); if n=0, then we can only apply

directly the computational rule (2) and we have only one internal step from * (+ β) to * (! β).

5. Va € Nxs d(a) € Ν χ ο σ u (nil)

Take α € Nxs then either α is also a term of Νχ ο σ and then d(a) = a and d(a) € Ν χ ο σ or a is

not a term of NXQQ and then d(a) is nil because α is not a redex in xs.

6. There is no infinite (—»s—>c) reduction path and moreover there exists a bounded function b:

x 0 -» IN such that Va, β € Ε α (- V - * c) m -*c (->s~»c)n β => m < b(d(a)) & η <

b(d(a)).

46 Specification of rewriting strategies in Temi Rewriting Systems

In the proof of 4 it is shown implicitly that there is no infinite internal reduction path. We define

b as b(t) = 3 * (the number of Ap's on the spine) + 1. Take α, β € E then β сап be an element of
Ν ο σ or not: β 4 Ν τ ο σ => β = * (! d(ß)) and in the proof of 4 we saw that both m and η are less

than the number of Ap's on the spine in respectively α and β. So certainly m < b(d(a)) and η <

b(d(ß)); analogously to the reasoning in 4 one can easily show that β € NT^J => a (->s—>c)
ml

-»c (-^s—^c)"1 (* (+ ß)) ("^s—^c)"12 Y (^s—>c)n2 (* (• ß)) where γ is a term not containing ! and

nl, n2, ml and m2 are all less or equal to the number of Ap's on the spine of α, β and γ

respectively. Proving this we use the fact that rules (l), (2), (3), (4), (5), (6) and (9) cover all

possible terms ! t with t € T0(J.

The specification is effective because b, ->c, d and E are all total computable.

Remarks

Several parts of the proof heavily relied on the specific rules, the specific structure of the term
and of course on the specific strategy. We see no way to easily extend these proofs to other
reducers.

Note that starting with tenns * (! ι) every possible reduct had at most one redex. We call a term

with such a property linear, because the reduction path is linear. A TRS where all terms are linear

is called a linear TRS. For those who think this is confusing considering the concept of left-

linearity, i.e. having repeated variables on the left-hand-side, we suggest left-comparing as a

possibly better name in stead of left-linear. It does not have the relation to polynomial terms

(linear, quadratic etc.) and moreover it names the essential aspect of left-linearity which is that

arguments have to be identical in order to be able to apply the rule. Linear TRS's have good

prospects for efficient sequential execution, and left-comparing TRS's can cause trouble during

execution when used with infinitely growing arguments.

3.2.4 EVALUATION OF THE METHOD

Although it is possible to convert the original TRS to an annotation TRS in which the strategy is

explicitly encoded, the method has severe drawbacks.

First of all our annotation TRS has many more rules than the original TRS. Unfortunately the

number of extra 'non-redex' rules per function can become exponential: the number of constants,

that can occur, to the power of the width of the pattern. This results in too many rules. Some of

these rules are very awkward such as the envelope rule. Furthermore the rules in the annotation

TRS not only depend on the strategy but also on the original TRS. Consequently the correctness

of the strategy can not be proven for all TRS's at once, but it must be proven for every TRS

separately. Furthermore it is rather tedious work to give such a proof.

Concluding we can state that though it is very well possible to express a strategy in an annotation
TRS, the number of rules and their complexity makes this method not very suitable for practical
use.

Specification of rewriting strategies in Temi Rewriting Systems 47

3.3 TRANSFORMING THE TRS TO AN ANNOTATION TRS WITH PRIORITY RULES

3.3.1 DESCRIPTION OF THE METHOD

The method we will describe in this section is very closely related to the way strategies are

expressed in Dactl (dauert et al. (1985)). It differs from the previous method in that we will use

a different kind of annotation TRS namely an annotation TRS with priority rules (Baeten et al.

(1986)), a so called priority rewriting system (PRS). The difference with an ordinary TRS is that

whenever a rule matches a given redex, it may only be chosen if none of the rules with higher

priority can ever be applicable on the (internally rewritten) term.

3.3.2 EXPRESSING HEAD REDUCTION FOR CURRY'S EXAMPLE

We start again with the rules of the ordinary TRS

Ap (Ap (Ap S χ) y) ζ -»Ар (Ар χ ζ) (Ар у ζ) (А)
Ар (Ар К χ) у - » х (В)

and we add exclamation marks to the rules

! (Ap (Ap (Ap S χ) y) ζ) -»Ар (Ар χ ζ) (Ар у ζ) (1)
! (Ар (Ар К х) у) - > х (2)

Our propagation rule is much simpler now:

! (Ap χ y) ->Ap (! x) у (3)

The reason for this is that if a redex matches the third rule and one of the other two rules, the
topmost rule (not rule 3) is taken because It has higher priority. We indicate this by putting an
arrow in front of rules with decreasing priority. Rules with the same priority are indicated by
adding a bar in front of them. Rules without any indication are not affected by the priority
mechanism.

The non-redex rules are extremely simple now:

! χ - » χ (4)

Anything that does not match one of the other rules, is not a redex. That's it! The somewhat

strange envelope-rule of the previous section is also not necessary any more.

So we have elegantly modelled one step of this strategy. In order to model the strategy

completely we still must encode whether or not a subterm was successfully rewritten. This is

modelled by exactly the same changes and extra rules as in the previous section. Note that in

general we must be careful with adding rules because our PRS could cause that they will never

be applied. In this case we have no problems with that issue.

The complete set is now:

48 Specification of rewriting strategics m Term Rewriting Systems

II ' (Ap (Ap (Ap S X) y) ζ) -*+ (Ар (Ар χ г) (Ар у ζ)) (1)
il ' (Ар (Ар К х) у) ->+ χ (2)
I ' (Ар χ у) ->- (Ар (' х) у) (3)
J. ' χ -> - χ (4)

* (- term) ->term (5)
* (+ term) -» * (' term) (6)
- (Ар (- χ) у) -»- (Ар χ у) (7)
- (Ар (+ х) у) -»+ (Ар χ у) (8)

Again, the initial term must be of the form

* (' term)

Note that only the third and the fourth rule really rely on the order in which rules are matched

3.3.3 CORRECTNESS PROOF

In order to prove this specification we first define what the semantics of a PRS is Then we will
show that in this case the semantics of the PRS is equivalent to the semantics of a TRS without
pnonty. This TRS will turn out to be equivalent to the one we constructed using the previous
method.

Semantics of a PRS

A PRS has a unique semantics (is well-defined) if it has a unique sound and complete rewnte set.
Unfortunately our underlying TRS is not strongly normalizing nor bounded So we have to use
the stabilization lemma formulated in Baeten et al (1986) We have to prove that starting with RÖ
= ^max (^max being the set of all possible rewntes of τ 5 ι e. all possible instances of all rules

not considenng the pnonty), there exists a η for which Rn = RDtL, where RHÜ- is defined as
(Rfl)c with (R)c being the set of all rewntes that is correct with respect to R A rewnte t —>r s is
correct if there is no internal R-reduction t -» t' to an r'-rewnte t' —»r s' € R with r' > r (r' has
higher pnonty than r) R is sound if all rewntes which are an element of R, are correct w r t R
R is complete if it contains all possible rewntes of Rmax which are correct w r t R

Proof

Because this method resembles the previous one, we can take all definitions the same except for
the computation relation с which will be given by rules 1 and 2 only But before we can even
start to say something about this solution, we must prove that this PRS has a unique semantics.

If we restnet ourselves to those terms t for which d(t) * ml, then one can easily see that the term
has at most one redex for which several rules with different pnonties can be applied Of course,
the intended semantics is that the rule with the highest pnonty is applied Since there is always at
most one redex, there are no internal reductions of more than zero steps Yet there are inviai
zero-step reductions using other instantiations for the vanables. So we start with the set R m a x

and compute (Rmax)0 We prove that it is sound and complete, hence ((Rmax)c)c = (^тах)с ^ ^
(R m a x) c is the semantics of our PRS

Spectfîcation of rewriting strategies in Term Rewriting Systems 49

We want to determine the set of rewrites that are correct w.r.t. Rmax· As was already stated, the
only internal redexes to be considered are other instantiations of variables. We know the structure
of the terms, so all instantiations of the left-hand-side of rule (4) are ruled out by rule (3) except
for the instantiations S and K. So the PRS is equivalent to another one where rule (4) is
substituted by the rules:

! S -> - S (4 ')
! К -> - К (4 ")

In the same way we can determine the patterns for which rule (3) is really applicable i.e. not ruled
out by rule (1) or rule (2), giving the following rules replacing rule (3):

! (Ap S y) -> - (Ар (! S) y) (3 ·)
! (Ар К y) -> - (Ар (! К) y) (3 ")
! (Ар (Ар S а) у) -> - (Ар (! (Ар S а)) у) (3 " ·)
! (Ар (Ар (Ар К а) Ь) у) -> - (Ар (! (Ар (Ар К а) Ь)) у) O · · ")
! (Ар (Ар (Ар (Ар а Ь) с) d) у) -> - (Ар (! (Ар (Ар (Ар а Ь) с) d)) у)

(3 " ' ")

So the set (Rmax)0 i s ^ 6 s e t determined by this new TRS without priority. This set is sound
because evidently all rewrites in it are correct and it is complete because it also contains all
rewrites which are correct with respect to it. One easily checks that the resulting rules that
determine the semantics of the PRS, are equivalent to the rules of the previous example. So we
have proven that our PRS model specifies Curry's example correctly.

Remarks

Note that this proof more or less included the proof for the previous method and that we needed
special analysis to determine the semantics of this PRS. In general there is not even always a
unique semantics and it is not known whether a semantics always exists (Baeten et al. (1986)).

3.3.4 EVALUATION OF THE METHOD

Clearly this method is a lot better than the previous one. There are more rules in the annotation
TRS than in the original TRS, but the growth is no longer exponential because the non redex
case can now be expressed with one rule (4). Also the funny envelope rules have disappeared.

Still this method has a severe disadvantage. The rules generated still heavily depend on the
original TRS so if we want the same strategy for other TRS's we still have to change the rules of
each one of them. The proof must be given for every TRS separately as was the case with the
previous method. The complexity of the proof is even worse than the complexity of the previous
proof because we also have to prove the well-definedness of the PRS. It would be better if we
could define a strategy in such a way that the same description is valid for all TRS's.

50 Specification of rewriting strategies in Term Rewriting Systems

3.4 DEFINING THE STRATEGY SEPARATELY

IN AN ABSTRACT-INTERPRETATION TRS

3.4.1 DESCRIPTION OF THE METHOD

In order to be able to specify strategies uniformly for all TRS's we will consider three different

conceptual levels of TRS's:

a) The first TRS is the user-defined TRS. This is the original TRS which now remains

unchanged. An example of such a TRS is the S-K TRS.

b) The reduction strategy for the user-defined TRS is specified in a separate TRS called the

interpretation TRS. Functions in the interpretation TRS may have a user-defined TRS or any

subterm of such a TRS as argument. For instance one may write:

HeadReduceS -> S (I-a)
HeadReduceAT ->K (I-b)

The arguments of HcadRcducc are written in italic style to indicate that they are part of a TRS on

another level. Instead of the rules above one can write a more general rule which is valid for

all combinatore:

HeadReducc с : Combinaior -> с (1-е)

In this rule с is a variable which will be bound to a (sub)term of a TRS. The suffix Combinator

restricts the number of matching expressions. Such a suffix is called an abstraction.

c) These abstractions which are used as patterns in the interpretation TRS's, are defined by a

third TRS: the abstraction TRS. This abstraction TRS is used to make an abstract syntax of

the user-defined TRS available to the interpretation TRS. An example of such an abstraction

TRS is:

Combinaior -» 5 (A-a)
Combinator -* К (A-b)

Now the extra restriction on с imposed by the suffix Combinator implies that the actual value of

с must be a normal form of the term Combinator in the abstraction TRS. Hence only HeadReduce

S and HeadReduce К will match rule (1-е). The abstraction level can be seen as a preprocessing

level where things are done like syntactical categorizing, type checking, strictness analysis

etcetera.

To make the specification of strategies really easy we introduce two primitive functions which

can be used in the interpretation TRS:

Match term rules

which returns Trae if the tem is a redex according to the rules and False otherwise.

Specification of rewriting strategies in Term Rewriting Systems 51

Rewrite term rules

which returns the term after one rewrite according to the rules if the term matches the rules and the

term itself otherwise.

The match function only checks whether or not the given term as a whole matches one of the

given rules. The rewrite function will make a non-deterministic choice out of the matching rules.

Although it is possible to define these primitive functions precisely in the interpretation TRS, the

formal definition is rather tedious.

3.4.2 EXPRESSING HEAD REDUCTION FOR CURRY'S EXAMPLE

First we give the rules of the user-defined TRS:

Ap (Ap (Ap S χ) y) ζ -> Ар (Ар χ ζ) (Ар у ζ) (U-S)
Ар (Ap Κ χ) у -> χ (U-K)

Furthermore we have to define those abstractions of the TRS that we need at the interpretation

level. In this example these abstractions are extremely trivial. The abstraction TRS is:

Combinator —> S (A-l)
Combinator -> К (A-2)

Finally we have to define the interpretation TRS. We will start with describing one step of the

strategy: we will call that OneSiepHead.

When the term is a redex we rewrite it and otherwise we search in the function part of apply for a

redex (the propagation rule):

OneSiepHead (Ap f a) rules -»Cond (Match (Ap ƒ a) rules)
(Rewrite (Ap f a) rules)
(Ap (OneSiepHead ƒ rules) a) (1-1)

In this rale Cond has the ordinary meaning. The result of OneSiepHead applied to a function Ap with

parameters is, if it matches as a whole, the rewrite of it, otherwise the result is the function Ap

with as new parameters the result of OneSiepHead applied to the function part. This surely

terminates because of the next rule (1-2). Note that functions now also must have rules as

parameter in order to be able to use the matching and rewriting primitives.

Again S and К cannot be rewritten, which we can now express in one rule:

OneSiepHead с.Combiruuor rules -»c (1-2)

The result of OneSiepHead applied to a single combinator is that combinator itself.

We will now extend the one-step strategy to a complete strategy by adding another function:

Head term rules -» Cond (ContainsAHeadRedex term rules)
(Head (OneSiepHead term rules) rules)
term (1-3)

52 Spccificaiion of rewriting strategics in Temi Rewriting Systems

When our term contains a head-redex we do one left-most rewrite and continue, in the other case

we stop and the result is the term itself.

The definition of ContainsAHeadRedcx is very similar to the definition of OneSicpHcad. When there is

a Rewrite in the definition of OneStepHead, we return True and when in OneSicpHcad we return the

parameter as a result, we return False in ContainsAHeadRedex. Of course, recursive calls in

OneStepHead are simply converted to recursive calls in ContainsAHeadRedex.

The definition of ContainsAHeadRedex is:

ContainsAHeadRedex c:Combinator rules -
ContainsAHeadRedex (Apfa) rules

The complete set is now:

OneStepHead (Apfa) rules

OneStepHead cX^ombinator rules
Head term rules

ContainsAHeadRedex c:Combinator rules
ContainsAHeadRedex (Apfa) rules

The initial term must be:

Head Term SKRules

3 .4 .3 CORRECTNESS PROOF

> False
>Cond

>Cond

• Cond

> False
>Cond

(Malch (Apfa) rules)
True
(ContainsAHeadRedex ƒ rules)

(Match (Apfa) rules)
(Rewrite (Apfa) rules)
(Ap (OneStepHead/ rules) a)

(ContainsAHeadRedex term rules)
(Head (OneStepHead term rules) rules)
term

(Match (Apfa) rules)
True
(ContainsAHeadRedex ƒ rules)

a-4)

(1-5)

a-D
(1-2)

(1-3)
a-4)

(1-5)

In order to prove this specification w e first define what the semantics of the abstract-

interpretation TRS is. We will proof that the conditions are satisfied after proving some simple

lemmas. These lemmas state general facts on the functions that are defined. These facts are easy

to find because they cover the intention with which we constructed the functions. It will be rather

simple to prove those lemmas.

Semantics of the Abstract-interpretation TRS

W e start with settling the semantics of c:Combinator in the rules for OneStepHead and

ContainsAHeadRedex. Because of the structure of the terms OneStepHead is equivalent to:

OneStepHead (Apfa) rules

OneStepHead 5 rules
OneStepHead К rules

>Cond

• S
К

(Match (Apfa) rules)
(Rewrite (Apfa) rules)
(Ap (OneStepHead ƒ rules) a) (1-1)

For our semantics this eliminates the abstraction TRS. Furthermore the user-defined and the

interpretation TRS can be seen as one and the same TRS with restrictions on the construction of

terms, such as: the first argument of OneStepHead is an element of τ 0 , the second argument are the

Specification of rewriting strategics in Term Rewriting Systems 53

rules, etcetera. During reduction reducts of terms that meet these restrictions also meet these

restrictions. So we now have only one TRS with the ordinary meaning. However we do not deal

with the full reduction relation but only with those reductions that are allowed by normalizing

strategies. Strategies for this TRS are normalizing if they reduce the first argument of Cond and

the Cond itself without reducing the other arguments and if they reduce the argument of Head to a

term which is an element of τ 0 , before applying the Head rule again (this restriction is a

consequence of uniting the two levels). So we simply remove those reductions out of the

reduction relation. The reducer we get this way is called τ 8 again and we will prove the

specification following again O'Donnell's definitions.

Proof

Before we proof that the specification satisfies O'Donnell's definitions we want to prove some

lemmas about the functions we have defined. The formulation of these lemmas is simple because

of the way the functions were constructed.

Lemma The normal form of ContainsAHeadRedex χ SKRulcs with χ € x 0 is True if χ has a head-redex

in τ 0 . False otherwise.

Proof: Recall the definitions:

Def: χ contains a head-redex *» χ matches a S or к rule or else

if χ = Ap a b, a contains a head-redex.

ContainsAHeadRedex S rules -» False (1-4^
ContainsAHeadRedex К rules -» False (My
ContainsAHeadRedex (.Apfa)rules -»Cond (Match (Apfa)rules)

Тшс
(ContainsAHeadRedex ƒ rules) (1-5)

Suppose χ € x 0 contains a head-redex then χ * S and хФ К (S and к themselves do not match the

S or К rule) so χ = Ар a b. So ContainsAHeadRedex χ SKRules reduces in Ts to Cond (Match (Ap a b)

SKRulcs) True (ContainsAHeadRedex f SKRulcs). If χ matches a S or К rule then obviously the normal

form is True because we restricted the reduction relation to safe strategies. If χ does not match a S

or К rule then the left part of the application contains a head-redex which by induction and the

absence of terms with an infinite spine results in the correct normal form. Proceeding this way it

is veiy simple to prove the other parts of the lemma.

The following lemma is just as simple to proof :

Lemma OneStepHead χ SKRulcs with χ 6 τ 0 has as its normal form: if χ has a head-redex in τ 0 , the

reduci of χ after reducing this head-redex and if χ does not have a head-redex in x 0, its normal

form is x.

We can use these lemmas in our proof of the specification. It will make everything very easy. We

define E as: χ € Ν τ 0 =» E(x) = χ ; χ i Ν τ 0 ^ E(x) = Head χ SKRules. The computational

relation is given by reductions of the primitive Rewrite. The definition of d is:

54 Specification of rewriting strategies in Term Rewriting Systems

if x is an element of Ντ 0 then d(x) = x;

if χ can be reduced via non computational reductions to a x' which is an element of Ντ 0 then

also d(x) = x;

if χ is not an element of Ντ 0 then we define d a bit special: if χ can be reduced to x' via non

computational reductions until the only possible reduction is a computational one and x' is of

the form : Ap1 (Ap" ((Rewrite (Ap f a))), perhaps surrounded by Head and SKRules then

the decoding of χ is defined as x' with applications of Head, SKRules and Rewrite skipped.

In other cases the decoding of χ is nil.

Because we are only interested in reducts of elements of E, we restrict xs to those reducts.

la.d[E]=T 0

Trivially true.

lb. d-^NXoo] η E = Nxs

Suppose α € E and β € Ντ 0 with d(a) = β, then clearly α = β, and since Nx0 S Nxs, α is an

element of Nxs.

2. Va, β € xs a ->c β => d(a) - У 0 d(ß)
Suppose a reduces to β via a reduction of Rewrite then if α and β ar# reducts of elements of E

then clearly the decodings also reduce to each other.

3. Va, β € xs a (-»S"*c) ß => d(a) = d(ß)
Analogously to 2.

4. Va € Ε, β € τ 0 d(a) - > ο σ β =* 3δ € E a (->s—>c)* ->0 (->s~»c)* δ & d (8) = ß
Suppose a € E, d(a) —>ο σ β =» a 4 Nx0, so a = Head o' SKRules with α' € x0. Furthermore
d(tt) -*oc P· s o a ' has a head-redex. Then OneSiepHead o' SKRules reduces to δ with d(5) = β and
Head a' SKRules reduces to Head δ SKRules.

5. Va € Nxs d(a) € Nx^j и (nil)
If a is a normal form of an element of E then d(a) € Νχ ο σ , d(a) is nil otherwise.

6. There is no infinite (—»s—>c) reduction path and moreover there exists a bounded function b:

x 0 -* IN such that Va, β € Ε α (- » s ~ > c) m -»ς (-»s™»с)" β => m < b(d(a)) & η <

b(d(a)).

There is no infinite non computational path because we only use safe strategies. We define b to

be: b(x) = 3*(the number of Ap's on the spine of x) + 3. We notate sp(x) for the number of Ap's

on the spine of x. If χ € x0 then ContainsAHeadRcdex χ SKRules has a number of non computational

reductions which is bound by 3*sp(x). OneSiepHead χ SKRules is bound by 3*sp(x) + 1 because it

has an extra Rewrite. So if β $ Nxs then m= 3*sp(a) + 1 and η = 1; if β € Nxs then we may
need 3*sp(ß) + 2 non computational reductions to discover that we have a normal form.

The specification is effective because b, —»c, d and E are all total computable.

Specification of rewriting strategies in Term Rewriting Systems 55

Remarks

The proof was easy because the most essential aspects were already covered by the lemmas
which were themselves simple and easy to proof. The use of the primitives Match and Rewrite
made it possible to reason easily about the TRS system.

3.4.4 TRANSFORMATIONS OF THE SPECIFICATION

The description we have developed is a very nice one but operationally it is not the same as in the
other two sections, because a call of ContainsAHcadRcdcx will induce an extra sweep through the
term. If we want our description to mirror exactly the operations that were performed by the
other methods, then we must change the rules and make them deliver a composite result
consisting of the term and a boolean indicating whether the term was rewritten. The resulting
rules are:

OneStepHead(Ap/a)ru/ei -»Cond (Match (Ap f a) rules)
(Pair True (Rewrite (Ap f a) rules))
(Pair (First (OncStcpHead ƒ rules))

(Ap (Second (OncStcpHead ƒ rules)) a)) (I-l1)
OncStcpHead c.Combinator rules -» Pair False с (I-2Ó
Head (Pair False term) rules -» term (1-3^
Head (Pair Tnie term) rules -> Head (OneS tcpHcad term rules) rules (M1)

with as initial term:

Head (OneStepHead Term SKRules) SKRules.

Probably it will not be very difncult to prove this specification to be equivalent to the one without
the booleans. Though this specification can now be considered to be just as efficient as the
specifications in the other sections, it does not exactly mirror the same actions. In the other
sections annotation functions were used in stead of booleans. Of course it is also possible to give
a similar description with the abstract-interpretation method. We will rename Head to * and
OneStepHead to !. We will also introduce success and failure constructors +/- and a propagate
function called -. The set of corresponding rules is:

l(Apfa) rules -»Cond (Match (Ap f a) rules)
(+ (Rewrite (Ap ƒ a) rules))
(-(Ap(\frules)a)) (І-П

! c:Combinator rules -> - с (1-2")
* (- term) rules -» term (1-3")
* (+ term) rules -> * (! term rules) rules (1-4")
~(Ap(+ x)y)rules -* + (Apxy) (1-5")
-(Ap(-x)y) rules -*-(Apxy) (1-6")

If this specification is compared with that of section 3.2.2 we see that the redex rules and the
propagation rule are now all covered by rule (І-Г) thanks to the power of the match and rewrite
primitives. The non-redex rules are covered by rule (1-2"). The last four rules are the same.

We have shown that it is relatively easy to express a reduction strategy using the abstract-
interpretation TRS with several algorithms and that it is also simple to transform one specification
to another.

56 Specification of rewriting strategies in Term Rewriting Systems

3 . 4 . 5 EVALUATION OF THE METHOD

This method enables us to write elegant strategy specifications. The non-redex cases are easily
handled using the Match and Rewriic primitives. The different actions for syntactically different
terms are conveniently dealt with using the abstraction mechanism. The fact that we write our
strategy description on another level helps us in specifying strategies more generally.

The abstract-interpretation TRS system makes it possible to specify strategies formally in such a
way that the specification holds for a large class of TRS's. For instance the description given at
the interpretation level in this section is a valid head reduction specification for all TRS's using
explicit application functions. Only a very trivial adaptation to the abstraction TRS is necessary in
order to summarize all combinators. The proof then also holds for this large class of TRS's.
Besides that, the proof was less tedious because we were led immediately to some general
lemmas which themselves were easy to proof using the properties of the primitives Match and
Rewrite. This specification is very short and readable and it appeals to our intuition. It enables us
to easily give transformations of one specification to other specifications which have specific
properties.

Concluding we can state that we have a promising facility with a great expressive power for
describing strategies independendy of the TRS.

3.5 CONCLUSIONS AND FURTHER RESEARCH

AH of the three methods introduced in this paper are suitable for the specification of reduction
strategies. Using an ordinary TRS gives rise to an exponential number of rewrite rules. This
drawback disappears when a PRS is used. However the proof of the specification using this
PRS was even more difficult than the proof with an ordinary TRS.

The most readable and general specification can be obtained by using an abstract-interpretation
TRS extended with special primitives for matching and rewriting. The structure of the
specification made it possible to give a simple proof and to construct transformations of the
specifications in order to get alternative specifications with special desirable properties. Although
this new TRS system is specially designed for the specification of reduction strategies, we think
that its descriptive power is suitable for the specification of abstract interpretations (Bum et al.
(1985)) in general.

In the near future we will search for simplifications of the definition of specification and we will
investigate the use of the abstract-interpretation TRS in its full strength for the specification of
strategies in graph rewriting systems, for giving correctness proofs of more complex strategies
and for the investigation of the descriptive power for other domains.

3.6 ACKNOWLEDGEMENTS

We would like to thank Ronan Sleep, John dauert and Richard Kennaway of the University of
East-Anglia for the many fruitful discussions about reduction strategies and we also thank Jan-

Specification of rewriting strategies in Term Rewriting Systems 57

Willem Klop of the Centre for Mathematics and Computer Science in Amsterdam for his
explanations. Most of all we are grateful to Henk Barendregt of the University of Nijmegen for
several important observations and valuable improvements.

59

4

TERM GRAPH REWRITING

H.P. Barendregti, M.C.J.D. van Eekelcnj, J.R.W. Glaue^,

J.R. Kennaway2« M.J. Plasmeijer^ and M.R.Sleep2.

1 Universily of Nijmegen, Nijmegen, The Netherlands.

Partially supported by the Dutch Parallel Reducuon Machine Project.

2 School of Information Systems, University of East Anglia, Norwich, U.K.

Partially supported by the U.K. ALVEY Project.

Abstract

Graph rewnting (also called reducüon) as defined in Wadsworth (1971) was introduced in order to
be able to give a more efficient implementation of functional programming languages m the
form of lambda calculus or term rewrite systems: identical subterms are shared using pointers.

Several other authors, e g. Ehng (1979), Staples (1980a,b,c), Raoult (1984) and van den Broek
SL van der Hoeven (1986) have given mathematical descriptions of graph rewriting, usually
employing concepts from category theory. These papers prove among other things the
correctness of graph rewriting in the form of the Church-Rosser property for "well-behaved" (i e.
regular) rewnle systems However, only Staples has formally studied the soundness and
completeness of graph rewriting wilh respect to term rewriting.

In this paper wc give a direct operational description of graph rewnting that avoids the category
theoretic notions. We show that if a term t is interpreied as a graph g(t) and is reduced in the
graph world, then the result represents an actual reduci of the original term t (soundness). For
weakly regular term rewrite systems, there is also a completeness result every normal form of a
term t can be obtained from the graphical implementation. We also show completeness for all
term rewrite systems which possess a so called hypcrnormahsing strategy, and in that case the
strategy also gives a normalising strategy for the graphical implementation.

Besides having nice theoretical properties, weakly regular systems offer opportunities for
parallelism, since redexes at different places can be executed independently or in parallel, without
affecting the final result.

4.1 INTRODUCTION AND BACKGROUND

Graph rewriting is a well-known and standard technique for implementing functional languages
based on term rewriting (e.g. Turner (1979a)), but the correctness of this method has received
little attention, being simply accepted folklore. For both theory and practice, this makes a poor
foundation, especially in the presence of parallelism. Staples (1980a,b,c) provides the only
published results we are aware of. (A digested summary of these papers is in Kennaway
(1984).) Wadsworth (1971) proves similar results for the related subject of pure lambda
calculus.

Our principal result is that the notion of graph rewriting provides a sound and complete
representation (in a sense precisely defined below) of weakly regular TRS's. A counterexample
is given to show that for non-weakly regular TRS's completeness may fail: some term rewriting
computations cannot be expressed in the coiresponding graph rewrite system. A second result

60 Тепп Graph Rewriting

concerns the mapping of evaluation strategies between the term and the graph worlds. A
counterexample is exhibited to show that an evaluation strategy which is normalising (i.e.
computes normal forms) in the term world may fail to do so when it is transferred to the graph
world. We prove that any strategy which satisfies a stronger condition of being hypernormalising
in the term world is normalising (and indeed hypernormalising) in the graph world. We briefly
consider the problem of defining a graph rewriting implementation of non-left linear term rewrite
rules.

The general plan of the paper is as follows: Section 4.2 presents basic definitions, and introduces
a linear syntax for terms represented as graphs. Section 4.3 introduces a category of term graphs.
Section 4.4 defines the notion of graph rewriting, and section 4.5 introduces the notion of tree
rewriting as a prelude to section 4.6, which develops our theory of how to relate the worlds of
term and graph rewriting. Section 4.7 considers the problem of mapping strategies between the
two worlds. Finally, section 4.8 gives a summary of the work.

4.2 TERMS AS TREES AND GRAPHS

4.2.1 Definition.

(i) Let F be a (finite or infinite) set of objects called function symbols. A,B,... range over
F.

(ii) The set Τ of terms over F is defined inductively by:

Ae F, tj tne Τ => Ad! !„)€ Τ (η>0)

AQ is written as just A. •

4.2.2 Example. Let F={0,S}. Then Τ ={0,S(0),0(S>S(0>0)), S(S,S,S)...}. Note that we do

not assume that function symbols have fixed arities. This might appear inconvenient if one

wished to represent, for example, the Peano integers, with a constant 0 and a successor operator

S, since one also obtains extra "unintended" terms such as some of those listed above. When we

define rewrite systems in section 4.4, we will see that this does not cause any problems. •

4.2.3 Dennition. A labelled graph (over F) is a triple (N,lab,succ) involving a (finite or

infinite) set N of nodes, a function lab: N—>F, and a function succ:N—>N*. In this case we say

that the nj,....^ are the successors of n. The ith component of succ(n) is denoted by 5исс(п);. •

When we draw pictures of graphs, a directed edge will go from each node η to each node in

succ(n), with the left-to-right ordering of the sources of the edges corresponding to the ordering

of the components of succ(n). The identity of nodes is usually unimportant, and we may omit

this information from pictures.

4.2.4 Example. Let N=(^^2^3} and define lab and succ on N as follows.
lab(n1)=G, lab(n2)=A) ІаЬ(пз)=В,

5иСС(П1)=(п2,Пз), SUCC(n2)=(), 5иСС(Пз)=().

Temi Graph Rewriting 61

This defines a labelled graph that can be drawn as:

V G с
У \. or more simply: S \.

η2:Λ ι^:Β A В

Using this notation, four more examples of graphs are the following.

G

A
S \ G H G H « ""•

^ ^ В B B A B

G II

Ч У
η

G H

1 1
в в

A В
В

4.2.5 Definition.
(i) A path in a labelled graph (N.lab.succ) is a list (no,io>ni»ii»"· 'nm-i'im-i»nm) where

m>0, n0,... ,nm€ Ν, ¡о,... .^ . jeN (the natural numbers) and η ^ is the ί|ς-ιΗ successor
of nk. This path is said to be from n0 to nm and m is the length of the path.

(ii) A cycle is a path of length greater than 0 from a node η to itself, η is called a cyclic node.
(iii) A graph is cyclic if it contains a cyclic node, otherwise it is acyclic. •

4.2.6 Definition.
(i) A term graph (often, within this paper, simply a graph) is a quadruple (N,lab,succ,r)

where (N.lab.succ) is a labelled graph and r is a member of N. The node г is called the
root of the graph. (We do not require that every node of a term graph is reachable by a
path from the root.) For a graph g, the components are often denoted by N.. lab., suce.,
andrg.

(ii) A path in a graph is rooted if it begins with the root of the graph. The graph is root-cyclic
if there is a cycle containing the root.
When we draw pictures of term graphs, the topmost node is the root. •

Term graphs are exactly the graphs discussed in the paper Barendregt et al. (1987b), which
defines a language of generalised graph rewriting of which the rewriting treated in this paper is a
special case.

4.2.7 Dennition. Let g = (N.lab.succ) be a labelled graph and let neN. The subgraph of g
rooted at η is the term graph (N',lab',succ',n) where N'=(n'eN I there is a path from η to n'}

and lab' and succ' are the restrictions of lab and succ to N'. We denote this graph by gin. The

definition also applies when g is a term graph. •

4.2.8 Examples.

(i)

'I
Î The subgraph rooted at n- is:

гц : о * D

62 Term Graph Rewriting

(ii) A cyclic graph. A (iii) A rool-cyclic graph. A

A*—-^ в

A formal description of a graph requires a complete specification of the quadruple (N.lab.succ j) .
When writing down examples of finite graphs, it is convenient to adopt a more concise notation,
which abstracts away from details such as the precise choice of the elements of N. We will use a
notation based on the definition of terms in definition 4.2.1, but with the addition of node-
names, which can express the sharing of common subexpressions. The notation is defined by the
following context-free grammar, with the restrictions following it.

4.2.9 Definition (linear notation for graphs).
graph ::= node I node + graph
node ::= A(node,...,node) Ι χ I χ : A(node,...,node)

A ranges over F. χ ranges over a set, disjoint from F, of nodeid's ('node identifiers'). Any

nodeid χ which occurs in a graph must occur exactly once in the context χ : A(node,...,node).

Nodeid's are represented by tokens beginning with a lower-case letter. Function symbols will be

non-alphabetic, or begin with an upper-case letter. We again abbreviate AQ to A. •

This syntax is, with minor differences, the same as the syntax for graphs in the language LEAN

(Barendregt et al. (1987b)). The five graphs of the examples 4.2.4 are in this notation: G(A,B),

G(A(x:B),x), G(x:B) + H(x), G(B) + H(B) and x:G(A,B(x)). Note that multiple uses of the

same nodeid express multiple references to the same node.

The definition of terms in 4.2.1 corresponds to a sublanguage of our shorthand notation,

consisting of those graphs obtained by using only the first production for graph and the first

production for node. So terms have a natural representation as graphs.

4 . 2 . 1 0 Examples.

(i) G(Plus(l,2), Plus(l,2)) (ii) G(Plus(n,: 1, n2: 2), Plus(n l t n2))

(iii) G(n:Plus(l,2), η) (iv) ni: Cons(3, ni)

(ii) G (iii) G (iv) ^ ~

/ v / v Plus Plus Plus / ^ S

1 2
3

2

4.2.H Definition. A tree is a graph (N,lab,succ,r) such that there is exactly one path from г to
each node in N. •

Thus example (i) above is a tree, and (ii), (iii), and (iv) are not. Trees are always acyclic. Notice
that a graph g is a finite tree iff g can be written by the grammar of 4.2.9 without using any
nodeid's.

Terni Graph Rewriting 63

The natural mapping of terms to graphs represents each term as a finite tree. However, some
terms can also be represented as proper graphs, by sharing of repeated subterms. For example,
the term G(Plus(l,2),Plus(l,2)) can be represented by any of the graphs pictured in example
4.2.10 (i), (ii), or (iii), as well as by the graphs G(Plus(x:l,2),Plus(x,2)) or
G(Plus(l,x:2),Plus(l,x)).

4.3 HOMOMORPHISMS OF GRAPHS AND TREES

4.3.1 Definition. Given two graphs gj = (Nj.lab^succ!,^) and g2 = (КгДаЬг.зиссг.Гг), a
homomorphism from g! to g2 is a map f:N1->N2 such that for all ne N^

lab^fOi)) = labjin)
succ2(f(n)) = fisucc^n))

where fis defined by fOi!,...,^) = (fin^...·.^^). That is, homomorphisms preserve labels,
successors, and their order. •

4.3.2 Definition. Graph(F) is the category whose objects are graphs over F and whose
morphisms are homomorphisms. Tree(F) is the full subcategory of Graph(F) whose objects are
the trees over F. It is easy to verify that these are categories. •

4.3.3 Examples. We shall write Ei ^ B2

when there is a homomorphism from g! to g2. We have the following pictures.

V\ -
в с

В D

лА
/ с

В D

(ii)

y В

А

и
в

4.3.4 Definition.

(і) A homomorphism f:gi-*g2 is rooted if Κ η) ^ ·

(ii) An isomorphism is a homomorphism which has an inverse. We write g - g' when g and

g' are isomorphic.

(iii) Two graphs are equivalent when they are isomorphic by a rooted isomorphism. We write

g = g' when g and g' are equivalent. •

4.3.5 Proposition.

(i) For any graphs g¡ and & we have g¡=g2=>gi~ 82-
(ii) Every rooted homomorphism from one tree to another is an isomorphism, ш

64 Temi Graph Rewriting

4.3.6 Example. These two graphs are isomorphic but not equivalent (recall that in
diagrammatic representations the root node is the topmost):

A

I
в

с

5 « - ^
4.3.7 Definition. Given any graph g=(N,lab,succ,r) we can define a tree U(g) which results
from "unravelling" g from the root. We start with some examples.

(0 A A

•-Ü U(8)V\
в в в

(üi) g = c)

(ü)

U(g) =

А

В С

w
D

С

/ \
A С

/ \
A С

A

в С

; ;
D D

l

Now we give the formal definition. U(g) has as nodes the rooted paths of g. The root of U(g) is
the path (r). For a path p=(n0,i0 η,,,.,,ϊ,,,^,η,,,), labU(g)(p) = labg(nm) and succU(g)(p) =

(Pi·—>Pk) where p¡ is the result of appending (i.sucCgin,,,),) to p. Clearly this is a tree. •

4.3.8 Proposition. For every graph g there is a rooted homomorphism
ug: U(g)-*g defined by: ug(n0,i0,...,nm) = nn. и

4.3.9 Proposition. A graph g is a tree iff g = U(g). m

4.3.10 Definition. Two graphs g and g' are tree-equivalent, notated g =, g', if U(g) = LKg') •

For example, the graphs of example 4.2.10 (i), (ii) and (iii) are all tree-equivalent. So are these
two graphs:

0 о
4.4 GRAPH REWRITING

We now turn to rewriting. First we recall the familiar definitions of terms with free variables and
term rewriting. We then explain informally how we represent terms with free variables as 'open'

Term Graph Rewriting 65

graphs, and define our notion of graph rewriting. Our definition is quite similar to the one in

Staples (1980a).

4.4.1 Definition (term rewriting).

(i) Let V be a fixed set of function symbols, disjoint from F. The members of V are called
variables, and are denoted by lower-case letters. An open term over a set of function
symbols F is a term over FuV in which every node labelled with a variable has no
successors. An open term containing no variables (that is, what we have been calling
simply a term) is a closed term.

(ii) A term rewrite rule is a pair of terms tL and tR (written 1Ь—» tR) such that every variable
occurring in tR occurs in tL. tL and tR are, respectively, the left- and right-hand sides of
the term rewrite rule іц-* tR.

(iii) A term rewrite rule is left-linear if no variable occurs more than once in its left-hand
side. •

The usual definition of a term rewrite rule requires that tL be not just a variable. However, our
results are not affected by the presence of such rules, so we do not bother to exclude them.

In order to introduce graph rewriting, first we need some preparatory definitions.

4.4.2 Definition.

(i) An open labelled graph is an object (N,lab,succ) like a labelled graph, except that lab and
succ are only required to be partial functions on N, with the same domain. A node on
which lab and succ are undefined is said to be empty. The definition of an open (term)
graph bears the same relation to that of a (term) graph. When we write open graphs, we
will use the symbol -L to denote empty nodes. As with terms, we talk of closed (labelled
or term) graphs and closed trees as being those containing no empty nodes.

(ii) A homomorphism from one open graph gj to another g2 is defined as for graphs, except
that the "structure preserving" conditions are only required to hold at nonempty nodes of

E l · "

Open term graphs are intended to represent terms with variables. Instead of using the set V of
variables, we find it more convenient, for technical reasons, to follow Staples (1980a) by using
empty nodes. The precise translation from open graphs to open terms is as follows. Given an
open graph over F, we first replace each empty node in it by a different variable symbol from V,
and then unravel the resulting closed graph over FuV, obtaining an open term over F. Thus
where a graph has multiple edges pointing to the same empty node, the term will have multiple
occurrences of the same nodeid.

66 Term Graph Rewriting

For example, the graph Ap(Ap(l,w:l),Ap(l,w)) translates to the term Ap(Ap(x,z),Ap(y,z)):

graph term

Ар Ap

Ар Ар Ар Ар

/SxC* /"Ч У Ч
We could obtain any term which only differs from this one by changes of variables. We shall

treat such terms as the same.

We now tum to the graph representation of term rewrite rules. We only deal with left-linear rules
in this paper. In 4.6.13 we discuss briefly the problems in graphically describing non-left-linear
rules.

4.4.3 Definition.

(i) A graph rewrite rule is a triple (g.n.n'), where g is an open labelled graph and η and n'

are nodes of g, called respectively the left root and the right root of the rule.

(ii) A redex in a graph go is a pair Δ = (R,f). where R is a graph rewrite rule (g.n.n") and f is

a homomorphism from gin to g^ The homomorphism f is called an occurrence of R. Ш

Rather than introduce our formal definition of graph rewriting immediately, we begin with some
examples. The formal definition is given in section 4.4.6.

4.4.4 Translation of term rules to graph rules.

Let I I —» IR be a left-linear term rewrite rule. We construct a corresponding graph rewrite rule
(g,n,n'), where g is a labelled graph and η and n' are nodes of g. First take the graphs

representing tj, and tR. Form the union of these, sharing those empty nodes which represent the

same variables in ^ and tR. This graph is g. Take η and n' to be the respective roots of I I and IR.

Here are two examples which should make the correspondence between term and graph rewrite

rules clear.

(i) Term rule: Ap(Ap(Ap(S,x),y),z)-> Ap(Ap(x,z),Ap(y,z))

Graph rule: (nrApCApiApCS.xrlJ.y:!)^:!) + n':Ap(Ap(x,z),Ap(y,z)), n, n')

left root η

Term Graph Rewriting

(ii) Temi rule: head(cons(x,y)) —» χ

Graph rule: (n:head(cons(x:l,l)), η, χ)

left rooi η

head

67

cons

right root χ

4.4.5 Informal definition of graph rewriting.

A redex ((g.n.n'), f: gin —¥ g0) in a graph gg is reduced in three steps. We shall use the following

redex as an example: (g,n,n') is the S-rule above, gg = G(a,Ap(Ap(a:Ap(S,P),Q),R)) and f

operates on η as indicated in the picture (which completely determines how f behaves on the rest

of gin).

First (the build phase) an isomorphic copy of that part of gin' not contained in gin is added to go,

with lab, succ, and root defined in the natural way. Call this graph gj. Then (the redirection

phase) all edges of gj pointing to f(n) are replaced by edges pointing to the copy of n', giving a

graph g2. The root of g2 is the root of gj, if that node is not equal to f(n). Otherwise, the root of

g2 is the copy of n'.

68 Term Graph Rewriting

Lastly (the garbage collection phase), all nodes not accessible from the root of g2 are removed,
giving g3, which is the result of the rewrite.

Note that the bottommost Ap node of the redex graph and the S node remain after garbage
collection, since they are still accessible from the root of the graph. The other two Ap nodes of
the redex vanish.

4.4 .6 Formal defînition of graph rewriting.

We now give a formal definition of the general construction. Let ((g,n,n'), f: gin —» g0) be a
redex in a graph gg. The graphs gj (the build phase), g2 (the redirection phase) and g3 (the
garbage collection phase) are defined as follows.

(i) The node-set N of gj is the disjoint union of Ngo and ΝΕ|η· - N g |n. The root is г80. The
functions labgi and sucCgj are given by:

labgl(m) = labg0(m) (m e Ng 0)
= labg(m) (m e Ng|n. - Ng |n)

5исс81(т) ; = succgoím); (m e Ng0)
= succgím); (m, succg(m)¡ € Nghl. - Ng|n)
= físuccgím);) (m e Ngln· - Ng|n, 5исс8(т); e Ng|n)

We write g! = g0 +г (g,n,n').
(ii) The next step is to replace in gj all references to f(n) by references to n'. We can define a

substitution operation in general for any term graph h and any two nodes a and b of h.

h[a:=b] is a term graph (Nh,lab,succ,r), where lab, succ, and r are given as follows.

lab(c) = labhtc) for each node с of Nh

if 5исС(,(с)| = a then succfc); = b, otherwise succ(c)¡ = sucede);
if rh = a then г = b, otherwise r = rh

With this definition, g2 is gi[f(n):=n'].
(iii) Finally, we take the part of g2 which is accessible from its root, by defining g^ = g^tgi-

We give this operation a name: for any term graph h, we denote hlrh by GC(h) (Garbage
Collection).

Term Graph Rewriting 69

We denote the result of reducing a redex Δ in a graph g by REDÍA.g). Collecting the
notations we have introduced, we have
RED(((g,n,n,),f),g0) = GC((go +f (g,n,n'))[f(n):=n']). •

Our definition of graph rewriting is a special case of a more general notion, defined in dauert et
al. (1987) by a category-theoretic construction. Those familiar with category theory may
recognise the build phase of a rewrite as a pushout, and redirection and garbage collection can be
given definitions in the same style (though the categories involved are not those defined in this
paper). For the purpose of this paper - describing graph rewritings which correspond to
conventional term rewritings - the direct "operational" definition we have given is simpler.

4.4.7 Definition.

(i) If g reduces to g' by reduction of a redex Δ, we write g —>Δ g', or g —» g' if we do not

wish to indicate the identity of the redex. The reflexive and transitive closure of the

relation -» is ->*.

(ii) A graph rewriting system (GRS) over F consists of a pair (G,R) where R is a set of

rewrite rules and G is a set of graphs over F closed under rewriting by the members of

R.

(iii) We write g —>R g' if g —» g' by reduction of a redex using one of the rules in R. The

reflexive and transitive closure of —»R is —»*R. If clear from the context, we omit the

subscript R.

(iv) A graph g such that for no g' does one have g —>R g' is said to be an R-normal form (or

to be in R-normal form). If g —>*R g' and g' is in R-normal form, we say that g' is an

R-normal form of g, and that g has an R-normal form. Again, we often omit the R. •

Note that a GRS is not required to include all the graphs which can be formed from the given set

of function symbols F. Any subset closed under rewriting will do. This allows our definition to

automatically handle such things as, for example, sorted rewrite systems, where there are

constraints over what function symbols can be applied to what arguments, or arities, where each

function symbol may only be applied to a specified number of arguments. From our point of

view, this amounts to simply restricting the set of graphs to those satisfying these constraints. So

long as rewriting always yields allowed graphs from allowed graphs, we do not need to develop

any special formalism for handling restricted rewrite systems, nor do we need to prove new

versions of our results.

Our definition of a graph rewrite rule allows any conventional term rewrite rule to be interpreted

as a graph rewrite rule, provided that the term rewrite rule is left-linear, that is, if no variable

occurs twice or more on its left-hand side. As some of the following examples show, however,

some new phenomena arise with graph rewrite rales.

4.4.8 Examples.

(i) Term rule: A(x) -> B(x); Graph rule: (n:A(x:l) + n':B(x), n, n')

Graph: x:A(x); Result of rewriting: x:B(x)

70 Term Graph Rewiiiing

(ii) Term rule: I(x) -> x; Graph rule:(nrUn':!), n, n')
Graph: 1(3); Result of rewriting: 3

(iii) The fixed point combinator Y has the term rewrite rule Ap(Y,x) —» Ap(x,Ap(Y,x)). This
can be transformed into the graph rewrite rule (n:Ap(Y,x:J.) + n':Ap(xFAp(Y,x)),n,n').
However, it can also be given the graph rewrite rule: (η^ρίΥ,χ:!) + η^Αρζχ,η'Χη,η'):

AK ΑΦ
U/ γ χ

(n:Ap{Y,x:-L) + п'.Ар(.хАр(У.х)).п,п') (n:Ap(Y.xJ-) + n':Ap(x,n,),n,n')

This captures the fact that the Böhm tree (Barendregt (1984)) of the term Ap(Y,x) is:

Ap

^Ч
χ Лр

/ \
χ Ар

The graph rule can do all the 'unravelling' in one step, which in the term rewrite world requires
an infinite sequence of rewritings.

(iv) Here is a more subtle example of the same phenomenon illustrated by (iii). Consider the
term rewrite rule

F(Cons(x,y)) -> G(Cons(x,y))

Our standard representation of this as a graph rewrite rule is:

(n:F(Cons(x:l,y:l)) + n':G(Cons(x,y)), n, n')

Note that each application of this rule will create a new node of the form Cons(), which
will have the same successors as an existing node Cons (...,...). In a practical implementation,
there is no need to do this. One might as well use that existing node, instead of making a copy of
it. The following graph rewrite rule does this:

(n:F(z:Cons(l,l)) + n':G(z), n, n')

Both the languages Standard ML and Hope, which are languages of term rewriting, allow an
enhanced form of term rewrite rules such as (using our syntax):

F(z:Cons(x,y)) -> G(z)

Term Graph Rewriting 71

with precisely this effect. Of course, given referential transparency (which ML lacks) there is no
reason for an implementation not to make this optimisation wherever there is an opportunity,
even if the programmer does not. But providing this feature to the programmer may make his
programs more readable.

(v) Term rule: I(x) —» x; Graph rule: (n:!^':!), n, n')
Graph: x:I(x); Result of rewriting: x:I(x)

Example 4.4.8(v) is deliberately pathological. Consider the GRS for combinatory logic, whose
rules are those for the S, K, and I combinaiors. The graph can be interpreted as "the least fixed
point of I" (cf. the example of the Y combinator above), and in the usual denotational semantics
in terms of reflexive domains should have the bottom, "undefined" value. As the graph reduces
to itself (and to nothing else), it has no normal form. Thus our operational semantics of graph
rewriting agrees with the denotational semantics. This is not true for some other attempts we
have seen at formalising graphical term rewriting.

We now study some properties of graph rewrite systems. We establish a version of the theorem
of finite developments for term rewriting, and the confluence of weakly regular systems. For
reasons of space, the longer proofs are omitted from this paper. They appear in Barendregt et al.
(1986a).

4.4.9 Proposition. Garbage collection can be postponed. That is, given g —^1 g] -^42 g2, A¡
= (RJò· Ri = (gi^i-n'i) С' = M) and g'l = (g +fi Ri)[f(n) = n'l, then ^ " also a redex ofg'i,
and g', -τ»42 g2. •

4.4.10 Definition. Two redexes Δ] = ((Ηι,η^η'ι),^) and Δ2 = ((і2.П2>п,2)>^2) 0 ^ а graph g are
disjoint if:

(i) ГгОіг) is not equal to fj(n) for any nonempty node η of gjlni, and
(ii) fi(ni) is not equal to f2(n) for any nonempty node η of g2ln2-

Δ] and Δ2 are weakly disjoint if either they are disjoint, or the only violation of conditions (i) and
(ii) is that fi(ni) = f2(n2), and the results of reducing Δ! or Δ2 are identical.

A GRS is regular (resp. weakly regular) if for every graph g of the GRS, every two distinct
redexes in g are disjoint (resp. weakly disjoint). •

4.4.11 Proposition. Lei Aj = ((gj.n^n']), fj) and Δ2 = ((g2,n2,n'2), /2) be two disjoint

redexes of a graph g. Let g —^1 g'. Then either /гСяг̂ '* not a node of g', or there is a redex

((g2'n2-n'2)S) of g'such thatf(n2) =/2(12)· •

4.4.12 Definition.
(i) With the notations of the preceding proposition, if ίι^τ)IS n o t a n o de of g' then Δ^Δ) is

the empty reduction sequence from g' to g'; otherwise, Δ2/Δ, is the one-step reduction
sequence consisting of the reduction of ((g2,n2,n'2),0· This redex is the residual of Δ2
by Δι and is denoted by Δ^/Δρ For weakly disjoint Δ, and Δ2, Δ2/Δ! is the empty

72 Term Graph Rewriting

reduction sequence from g' to g'. Δ2/Δ! is not defined when Δ! and Δ2 are not weakly

disjoint, and ί^ΙΙ^ is not defined when Δ[and Δ2 are not disjoint.

(ii) Given a reduction sequence g —>Δ1 —»Δ2 ... —»Δι g' and a redex Δ of g, the residual of Δ

by the sequence А^.Д, denoted Л/ДД^.Д) is (Α//(Δ1...Αί_]))//Δι (provided that

(Δ/ΛΔι.,.Δ,.])) exists and is disjoint from Δ^. •

4.4.13 Proposition. Let Aj and ^ be weakly disjoint redexes of g, and let g —И' gì (i = 1,2).
Then there is a graph h such that gl -^2'ΔΙ h and g2 -)ЛЛЛ2 f, jfat ; J weakly disjoint redexes
are subcommutative, ш

4.4.14 Corollary. Every weakly regular GRS is confluent. That is, if g —»* g, (i = 1,2), then

there is an h such that g, -** h (i = 12). m

4.4.15 Dennition. Let g be a graph and F be a set of disjoint redexes of g. A development of F
is a reduction sequence in which the redex reduced at each step is a residual, by the preceding
steps of the sequence, of a member of F. A complete development of F is a development of F, at
the end of which there remain no residuals of members of F. •

4.4.16 Proposition. Every complete development of a finite set ofpairwise disjoint redexes Fis
finite. In fact, its length is bounded by the number of redexes in F. m

4.4.17 Proposition. Let F be a set of redexes of a graph g. Every finite complete development
of Fends with the same graph (up to isomorphism). This graph is:

GC((g +f] R, +J2 ... +fi RJlfrfni) -- n'i]...lf¿nJ:=n'J)

where the redexes whose residuals are reduced in the complete development are á¡ =

(ГіЯі),...А = №,)• •

Note that since we allow infinite graphs, a set of redexes F as in the last two propositions may be
infinite. Nevertheless, it may have a finite complete development, if rewriting of some members
of F causes all but finitely many members of F to be erased

4.5 TREE REWRITING

In order to study the relationship between term rewriting and graph rewriting, we define the
notion of tree rewriting. This is a formalisation of conventional term rewriting within the
framework of our definitions of graph rewriting.

4.5.1 Dennition.
(i) A tree rewrite rule is a graph rewrite rule (g,n,n') such that gin is a tree. For a set of tree

rewrite rules R, the relation —»̂ of tree rewriting with respect to R is defined by:
ιι -»m h <=> for some graph g, tj ->R g and U(g) = t2

(ii) A tree rewrite system (TreeRS) over F is a pair (T,R) where R is a set of tree rewrite

rules and Τ is a set of trees over F closed under ->&. A term rewrite system (TRS) is a

TreeRS, all of whose trees are finite.

Term Graph Rewriting 73

When t! reduces to t2 by tree rewriting of a redex Δ, we write Ц —>,Δ t2, or t! —>, t2 when we do

not wish to indicate the identity of the redex. •

Tree rewrite systems differ from conventional term rewrite systems in two ways. Firstly, infinite

trees are allowed. We need to handle infinite trees, since they are produced by the unravelling of

cyclic graphs. We need to handle cyclic graphs because some implementors of graph rewriting

use them, and we do not want to limit the scope of this paper unnecessarily. Secondly, the set of

trees of a TreeRS may be any set of trees over the given function symbols which is closed under

tree rewriting. This is for the same reason as was explained above for GRS's.

If for each rule (g,n,n') in the rule-set, g is finite and acyclic, the set of all finite trees generated
by the function symbols will be closed under tree rewriting. This is true for those rules resulting
from term rewrite rules by our standard representation. Thus the conventional notion of a TRS is
included in ours.

4.5.2 Definition. Let t, ti,... t; be trees, and η^.,.,η; be distinct nodes of t. We define

^η^ΐ] , . . . ,^ :^] to be the tree whose nodes are

(i) all paths of t which do not include any of nj,...,^, and

(ii) every path obtained by taking a path ρ of t, which ends at n; (l<j<i) and contains no
other occurrence of η¡...nj, and replacing the last node of ρ by any path of tj.

For any of these paths p, the label of ρ is the label of the last node in p, in whichever of t, Ц,... t;
that came from. The successors function is defined similarly. •

The results concerning disjointness, regularity, and confluence which we proved for graph
rewriting all have versions for tree rewriting. Again we omit proofs. We also have the following:

4.5.3 Proposition. Unravelling can be postponed. That is, if t¡ -», ij ~>t h· {^еп there are
graphs g and g' such that

(1) ¡2 = U(g) and t] —>g (by graph rewriting)
(2) g-^g'andt3-*\U(g).m

4.6 RELATIONS BETWEEN TREE AND GRAPH REWRITING

In this section we prove our principal result: for weakly regular rule-systems, graph rewriting is
a sound and complete implementation of term rewriting.

4.6.1 Definition. Let (T.R) be a TreeRS.
(i) L(T,R), the lifting of this system, is the GRS whose set of graphs is L(T) = (g I

U(g)eT], and whose rule set is R (but now interpreted as graph rewrite rules). It is
trivial to verify that L(T) is closed under -+R.

(ii) A graphical term rewrite system (GTRS) is a GRS of the form L(T,R), where (T,R) is a
term rewrite system.

(iii) A GRS (G,R) is acyclic if every member of G is acyclic. •

74 Temi Graph Rewriting

When (T,R) is a term rewrite system, L(T,R) represents its graphical implementation. There are
two fundamental properties it must have to be a correct implementation, which we now define.

4.6.2 Definition.
(i) A TreeRS (T,R) is called graph-reducible if for every graph g in L(T), if t is a normal

form of U(g) in (T,R), then there is a normal form g' of g in L(T,R) such that U(g') = t,
and if U(g) has no normal form in (T,R), then g has no normal form in L(T,R).

(ii) A GRS (G,R) is tree-reducible if there is a TreeRS (T,R) such that (G,R) = L(T,R), and
such that if g' is a normal form of g in (G,R), then U(g') is a normal form of U(g) in
(T,R), and if g has no normal form in (G,R), then U(g) has no normal form in (T,R). ш

L(T,R) is the graphical implementation of (T,R). Tree-reducibility of L(T,R) expresses
soundness: every result which is obtainable by graph rewriting in L(T,R) is also obtainable by
tree rewriting in (T,R). Graph-reducibility of (T,R) expresses completeness: every result which
is obtainable by tree rewriting is also obtainable by graph rewriting. We shall see that every
GTRS is tree-reducible, and every weakly regular TRS is graph-reducible. Not all GRS's, even
those of the form L(T,R), are tree-reducible, nor is every TreeRS graph-reducible, as the
following examples show.

4.6.3 Example. Tree reducibility can fail when there are cyclic graphs. Consider the term
rewrite rule A(x) —» B(x), represented graphically by:

±

A cyclic graph may contain a single redex with respect to this rule, while its unravelling contains
infinitely many:

о—-о
в

I
в

ι
4.6.4 Example. The following TreeRS is not graph-reducible:

T: trees over {A,D,0,1,2}, with the following arities: A is binary, D is unary, and 0,1, and 2 are

miliary.

A

I
A
A

R: A(l,2) -> 0; 1 -> 2; 2 -• 1; D(x) -> A(x,x).

Term Graph Rewriting 75

For a counterexample, consider the following tree rewriting sequence:

Ï *" у\ ®*~ УК. *"" 0

1 1 1 1 2

In the graph rewriting system we have:

D ES»- А $ш, А ^>. A jSfr. A ^ s v .

I U «. tt U
1 1 2 1 2

In this example, the sharing of (tree) subterms in the graph world has excluded from the graph
world certain rewrite sequences of the tree world. Distinct subterms of A(l,l) correspond to the
same subgraph of A(x:l,x), forcing synchronized rewriting of siblings, which makes the normal
form inaccessible.

4.6.5 Definition.

(i) Redexes Δ = ((g,n,n'),f) and Δ' = ((g',m,m'),f) in a graph h are siblings if h[f(n) =>,
hlf(m).

(ii) For a redex Δ = ((U(g),n,n'),f) of a tree U(g) we define ug(A) to be the redex

((g,n,n'),ug-f) of g.
(ш) For a redex Δ of a graph g, the set of redexes Δ' of U(g) such that ug(.A') = Δ is denoted

by Ug-̂ A). For a set of redexes F of a graph g, Ug-^F) denotes LJf UgHA') Ι Δ' e F }.

(iv) A redex Δ of a graph G is acyclic if u/'iA) is finite. •

4.6.6 Proposition. Let g —* g' by rewriting of an acyclic redex Δ. Then U(g) —>*¡ U(g') by
complete development ofUg^A). For any redex A' of g, weakly disjoint from Δ, ug '(ΔΊΙΔ) =

Ug-'fAy/Ug'fá). m

4.6.7 Proposition. Let g —>* g' by a complete development of a set F of disjoint acyclic
redexes of g whose associated rewrite rules are acyclic. Then U(g) —>*¡ U(g') by a complete
development of Ug^ F), m

4.6.8 Definition.
(i) In a weakly regular GRS, the relation of Gross-Knuth reduction, notation ->GK, is

defined as follows
g —»GK g' <=> g —>* g' by complete development of the set of all redexes of g.

(ii) In a weakly regular TreeRS we define Gross-Knuth reduction by
t —»GK

t t' <=> t —»*t t' by complete development of the set of all redexes of t. •

4.6.9 Proposition. Let (T,R) be a weakly regular TRS. Then L(T,R) is weakly regular. Let g
and g' be graphs in ЦТ) such that g -^K g'. Then U(g) -iCK

t U(g'). и

4.6.10 Proposition, /ƒ every graph in ЦТ) is acyclic, then ЦТД) is tree-reducible. In
particular, a graphical term rewrite system is tree-reducible. •

76 Term Graph Rewriting

4.6.11 Proposition. For any TreeRS (T,R) and any graph g in ЦТ), g is a normal form of
ЦТД) iff U(g) is a normal form of(T,R). m

Thus in a graphical term rewrite system L(T,R), everything which can happen can also happen in
the term rewrite system, and all the normal forms are the same. Graph-reducibility may fail,
however, since it may be that for some graph g, U(g) has a normal form but g does not.

4.6.12 Theorem. Every weakly regular TRS is graph-reducible.

Proof. Let (T,R) be a weakly regular TRS. Let g be a graph of L(T,R) such that U(g) has a

normal form. Proposition 4.6.7 relates the Gross-Knuth reduction sequences for g and U(g) in

the following way.

oc oc cae
U(g) -»-, UCg,) - ^ , VigJ -*t

It is a standard result that for regular TRS's, Gross-Knuth reduction is normalising (Klop
(1980)), and the proof carries over immediately to weakly regular TreeRS's. Therefore the
bottom line of the diagram terminates with some tree U(g') in normal form such that g reduces to
g' in L(T,R). Therefore g' is a normal form of g, and (T,R) is graph-reducible. •

4.6.13 Non-left-linearity.

We shall now discuss non-left-linearity, and indicate why we excluded non-left-linear TRS's
from consideration. In term rewriting theory, for a term to match a non-linear left-hand side, the
subterms corresponding to all the occurrences of a repeated variable must be identical.

Our method of using empty nodes to represent the variables of temi rewrite rules suggests a very
different semantics for non-left-linear rules. Our representation of a term rule A(x,x) —» В would
be (n:A(x:l,x), n, x). This will only match a subgraph of the form a:A(b: ..., b). That is, the
subgraphs matched by the repeated variable must be not merely textually equal, but identical - the
very same nodes. If one is implementing graph rewriting as a computational mechanism in its
own right, rather than considering it merely as an optimisation of term rewriting, then this form
of non-left-linearity may be useful. However, it is not the same as non-left-linearity for term
rules.

To introduce a concept more akin to the non-left-linearity of term rules, we could use variables in
graphs, just as for terms, instead of empty nodes. A meaning must then be chosen for the
matching of a graph A(Vari,Vari) where Vari is a variable symbol, occurring at two different
nodes. Two possibilities naturally suggest themselves. The subgraphs rooted at nodes matched
by the same variable may be required to be equivalent, or they may only be required to be tree-
equivalent. The latter definition is closer to the term rewriting concept.

Тепп Graph Rewriting 77

When a variable occurs twice or more on the left-hand side of a rule, there is also a problem of
deciding which of the subgraphs matched by it is referred to by its occurrences on the right-hand
side. One method would be to cause those subgraphs to be first coalesced, replacing the
equivalence or tree-equivalence which the matching detected by pointer equality. This technique
may be useful in implementing logic programming languages, where non-linearity is much more
commonly used than in functional term rewriting. Further investigation of the matter is outside
the scope of the present paper.

Lastly, we note that although some term rewriting languages, such as SASL (Turner (1979b))
and Miranda (Turner (1986)), allow non-left-linear rules, they generally interpret the implied
equality test neither as textual equality, nor as pointer equality, but as the equality operator of the
language (although pointer equality may be used as an optimisation). In these languages, any
program containing non-left-linear rules can be transformed to one which does not.

4.7 NORMALISING STRATEGIES

In this section we define the notion of an evaluation strategy in a general setting which includes
term and graph rewrite systems. We then study the relationships between strategies for term
rewrite systems and for the corresponding graph systems.

4.7.1 Definition.

(i) An abstract reduction system (ARS) is a pair (O,—>), where О is a set of objects and —» is
a binary relation on O. This notion abstracts from term and graph rewrite systems. The
transitive reflexive closure of —> is denoted by —>*.

(ii) An element χ of an ARS is a normal form (nf) if for no у does one have x->y.
(iii) An element χ has a normal form if x->* у and у is a normal form.

(iv) A reduction sequence of an ARS is a sequence XQ—>XI-*...—>xn. The length of this
sequence is n. A sequence of length 0 is empty. •

4.7.2 Definition.

(i) Given an ARS (О,-*), a strategy for this system is a function S which takes each хе О to
a set S(x) of nonempty finite reduction sequences, each beginning with x. Note that S
can be empty.

(ii) S is deterministic if, for all x, S(x) contains at most one element.
(iii) S is a one-step strategy (or 1-strategy) if for every χ in O, every member of S(x) has

length 1.

(iv) Write x—»s y if S(x) contains a reduction sequence ending with y. By abuse of notation,

we may write x—»s y to denote some particular but unspecified member of S(x).

(v) An S-sequence is a reduction sequence of the form XQ—>S XJ —»s X2 —»s

(vi) S is normalising if for all χ having a normal form any sequence XQ—*S XI —>S X 2

-»s m u s t eventually terminate with a normal form. •

78 Term Graph Rewriting

4.7.3 Definition.
(i) Let S be a strategy of an ARS (0,->). Quasi-S is the strategy defined by:

quasi-S(x) = (x -V x' -> s y I x' in O).
Thus a quasi-S path is an S-path diluted with arbitrary reduction steps.

(ii) A strategy S is hypernormalising if quasi-S is normalising, ш

A 1-strategy for a TreeRS or GRS can be specified as a function which takes the objects of the

system to some subset of its redexes. This will be done from now on.

4.7.4 Definition. Let S be a 1-strategy for a TreeRS (T,R). The strategy SL for the lifted graph
rewrite system L(T,R) is defined by SL(g) = ug(S(U(g)). •

For l-strategies on TreeRS's, this is a natural definition of lifting. For multi-step strategies, it is

less clear how to define a lifting, and we do not do so in this paper.

Although a 1-strategy for a TreeRS may be normalising, its lifting may not be. This may be
because the lifting of the TreeRS does not preserve normal forms (e.g. as in example 4.6.4), or
for more subtle reasons, such as in the following example.

4.7.5 Example. Consider the following TreeRS:
Function symbols: A (binary), B, 1, 2 (nullary).
Rules: 1 -» 2, 2 -> 1, A(x,y) -> B.

By stipulating that A is binary and B, 1, and 2 are nullary, we mean, as discussed following
definitions 4.4.7 and 4.5.1, that trees not conforming to these arities are not included in the
system. Define a strategy S as follows (where the redexes chosen by S are boldfaced):

A(l,l)-» A(2,l) A(2,2) -> A(2,l)
A(x,y) —» B, if neither of the preceding cases applies

S takes the tree A(l,l) to normal form В in two steps. SL takes the graph A(x:l,x) to A(x:2,x)
and back again in an infinite loop.

The next theorem shows that if a 1-strategy S for a TreeRS is hypernormalising, then SL is

hypernormalising for the corresponding GRS.

4.7.6 Theorem. Let (T,R) be a TreeRS and let S bea J -strategy for it. Let (GJt ') be the lifting

of(T,R). If S is hypernormalising then Si is hypernormalising.

Proof. Assume S is hypernormalising. Let g be a graph in G having a normal form, and consider

a quasi-SL reduction sequence starting from g.

Term Graph Rewriting 79

By proposition 4.6.7 and the definition of 8Ь, we can construct the following diagram, where the
top line is the quasi-SL reduction sequence:

S i S I S Ì

E = • g' » • E, • Ej • • f e • ^ — · • · • ·

Î"8 Î Î"81 Î \\ Î
U (g) Í ^ t - » ^ U (g ,) - » ^ U (g I) ^ t 1 - » ^ U (g ¡) - » ^ U (g í) ^ t 2 - # ^ U (g i) - » ^ . . .

Since g has a normal form, so does U(g), so since quasi-S is normalising, the bottom line must
stop at some point, with a normal form of U(g). Therefore the top line also stops, and must do
so with a graph which unravels to the normal form in the bottom line. •

4.7.7 Example. The converse does not hold. If SL is hypernormalising, S need not be.
Consider the following TRS.

Function symbols: A (binary), В (nullary)
Rules: A(x,y) -> В A(x,y) -» A(x,x)

Every non-normal form of this system has the form Α(α,β) for some terms α and β. Let S be the

strategy:

Α(<χ,β)-»s Α(α,ο) (if α * β)

Α(α,α) -» s В

The first SL-step in any quasi-Si/sequence will produce either a graph of the form A(x:a,x) or
the normal form B. In the former case, whatever extra steps are then inserted, the result can only
be either another term of the same form or B. In the former case, the next Sĵ -step will reach B.
Therefore SL is hypernormalising. However, S is not hypernormalising. A counterexample is
provided by the term A(A(B,B),B). An infinite quasi-S sequence beginning with this term is:

A(A(B,B),B) ->s A(A(B,B),A(B,B)) -» A(A(B,B),B) -> s A(A(B,B),A(B,B)) -»...

4.7.8 Corollary. If a TreeRS (T,R) has a hypernormalising 1-strategy then it is graph
reducible.

Proof. By theorem 4.7.5 the lifting (G,R) of the TreeRS has a normalising strategy. Now
assume U(g) = t. Suppose g has no nf. Then the SL path of g is infinite. This gives, by the
construction of 4.7.6, an infinite quasi-S-path of t, hence t has no normal form. •

An application of this result is that strongly sequential TRS's (in the sense of Huet & Levy
(1979)) are graph reducible. This follows from their theorem that the 1-strategy which chooses
any needed redex is hypernormalising.

The condition that a strategy be hypernormalising is unnecessarily strong. Inspection of the
proofs of the preceding theorem and corollary shows that the following weaker concept suffices.

80 Term Graph Rewriiing

4.7.9 Definition.

(i) Let S be a 1-strategy of a TreeRS (T,R). Then sib-S is the strategy defined by:

sib-S(x) = { χ -> s y —>* ζ I the sequence y —>* ζ consists of siblings of S(x)).

That is, a sib-S path is an S-path diluted with arbitrary sib-steps from the reduction

relation.

(ii) A strategy S is sib-normalising if sib-S is normalising. Ш

4.7.10 Theorem. Lei (T,R) be a TreeRS and let S be a 1-strategyfor it. Let (GJt') be the lifting

of(T,R). If S is sib-normalising then SL is sib-normalising and (T,R) is graph-reducible.

Proof. Immediate from the proofs of theorem 4.7.6 and corollary 4.7.8. •

4.8 CONCLUSION

Graph rewriting is an efficient way to perform term rewriting. We have shown:

1. Soundness: for all TRS's, graph rewriting cannot give incorrect results.

2. Completeness: for weakly regular TRS's, graph rewriting gives all results.
3. Many normalising strategies (the hypemormalising, or even the sib-normalising ones) on

terms can be lifted to graphs to yield normalising strategies there. In particular, for
strongly sequential term rewrite systems, the strategy of contracting needed redexes can
be lifted to graphs.

We have also given counterexamples illustrating incompleteness for non-weakly regular TRS's
and for liftings of non-sib-normalising strategies.

81

5

LEAN: AN INTERMEDIATE LANGUAGE

BASED ON GRAPH REWRITING

H.P. Barendregt2, M.C.J.D. van Еекеіепг, J.R.W, dauert!,

J.R. Kennawayj, M.J. Plasmeije^ and M.R. Sleepy

^School of Information Systems, University of East Anglia, Norwich, Norfolk NR4 7TJ, U.K.,

partially supported by the U.K. ALVEY project,

^Computing Science Department, University of Nijmegen, Toemooiveld 1,6525 ED Nijmegen, The Netherlands,

partially supported by the Dutch Parallel Reduction Machine Project.

Abstract.

Lean is an experimental language for specifying computations in terms of graph rewriting. It is
based on an alternative to Term Rewriting Systems (TRS) in which the terms are replaced by
graphs Such a Graph Rewriting System (GRS) consists of a set of graph rewrite rules which
specify how a graph may be rewnttcn. Besides supporting functional programming, Lean also
describes imperative constructs and allows the manipulation of cyclic graphs. Programs may
exhibit non-determinism as well as parallelism. In particular. Lean can serve as an intermediate
language between declarative languages and machine architectures, both sequential and parallel.
This paper is a revised version of Barcndrcgt et al (1987b) which was presented at the ESPRIT,
PARLE conference in Eindhoven, The Netherlands, June 1987.

5.1 INTRODUCTION

Emerging technologies (VLSI, wafer-scale integration), new machine architectures, new
language proposals and new implementation methods (Vegdahl (1984)) have inspired the
computer science community to consider new models of computation. Several of these
developments have little in common with the familiar Turing machine model. It is our belief that
in order to be able to compare these developments, it is necessary to have a novel computational
model that integrates graph manipulation, rewriting, and imperative overwriting. In this paper we
present Lean, an experimental language based on such a model. In our approach we have
extended Term Rewriting Systems (O'Donnell (1985), Klop (1985)) to a model of general graph
rewriting. Such a model will make it possible to reason about programs, to prove correctness,
and to port programs to different machines.

A Lean computation is specified by an initial graph and a set of rules used to rewrite the graph to
its final result. The rules contain graph patterns that may match some part of the graph. If the
graph matches a rule it can be rewritten according to the specification in that rule. This
specification makes it possible first to construct an additional graph structure and then link it into
the existing graph by redirecting arcs.

Lean programs may be non-deterministic. The semantics also allows parallel evaluation where

candidate rewrites do not interfere. There are few restrictions on Lean graphs (cycles are allowed

82 Lean: an Intermediate Language based on Graph Rewriting

and even disconnected graphs). Lean can easily describe functional graph rewriting in which

only the root of the subgraph matching a pattern may be overwritten. Through non-root

overwrites and use of global nodeids in disconnected patterns imperative features are also

available.

In this paper we first introduce Lean informally. Then we show how a Lean program can be
transformed to a program in canonical form with the same meaning. The semantics of Lean is
explained using this canonical form. The semantics adopted generalises Staples' model of graph
rewriting (Staples (1980a)), allowing, for example, multiple redirections. A formal description of
the graph rewriting model used in this paper can be found in Barendregt et al. (1987a), as it
applies to the special case of purely declarative term rewriting. After explaining the semantics we
give some program examples to illustrate the power of Lean. The syntax of Lean and the
canonical form is given in the appendix.

5.2 GENERAL DESCRIPTION OF LEAN

5.2.1 LEAN GRAPHS

The object that is manipulated in Lean is a directed graph called the data graph. When there is no
confusion, the data graph is simply called the graph. Each node in the graph has an unique
identifier associated with it (the node identifier or nodeid). Furthermore a node consists of a
symbol and a possibly empty sequence of nodeids which define arcs to nodes in the graph. We
do not assume that symbols have fixed arides. The data graph is a closed graph, that is, it
contains no variables. It may be cyclic and may have disjoint components. This class of data
graphs is, abstractly, identical to that discussed in Barendregt et al. (1987a). We refer to that
paper for a formal discussion of the precise connection between graphs and terms.

Programming with pictures is rather inconvenient so we have chosen a linear notation for graphs.
In this notation we use brackets to indicate tree structure and repeated nodeids to express sharing,
as shown in the examples below. Nodeids are prefixed with the character '0'. Symbols begin
with an upper-case character.

Lean notation: Graphical equivalent:
Hd

I
Hd (Сопз 0 N i l) ; Cons

0 Nil

eCyclic: F eCyclic; SCyclic: F -л

Lean: ал Intermediale Language based on Graph Rewriting 83

Plus

Plus @Child Schild, @Child:F?c

SChild: Fac 1000;

О
Fac

1000

Tuple

Tuple 1 -3 5 -7 11;

Fac 1000,

@Trace: TRUE;

5.2.2 LEAN PROGRAMS

-3

Fac

[

1 -3 5 - 7 11

Fac

ЙТгасе: True

1000

A Lean program consists of a set of rewrite rules including a start rule. A rewrite rule specifies a
possible transformation of a given graph. The initial graph is not specified in a Lean program
(see also section 5.4.2).

The left-hand-side of a rewrite rule consists of a Lean graph which is called a redex pattern. The
right-hand-side consists of a (possibly empty) Lean graph called the contractum pattern and,
optionally, a set of redirections. The patterns may be disconnected graphs and they are open, that
is, they may contain nodeid variables. These are denoted by identifiers starting with a lower-case
letter. Nodeids of the data graph may also occur in the rules. These are called global nodeids.
When there can be no confusion with the nodeids in the data graph, we sometimes refer to the
nodeid variables and the global nodeids in the rules just as nodeids. Here is an example program:

Hd (Cons a b)

Fac 0
Fac n:INT

F (F χ)

Start

-»

->

->

-*

a

1

*I η (Fac (-1 η 1))

X

Fac (Hd (Cons 1000 Nil))

The first symbol in a redex pattern is called the function symbol. Rule alternatives starting with

the same function symbol are collected together forming a rule. The alternatives of a rule are

separated by а 'Г. Note that function symbols may also occur at other positions than the head of
the pattern. A symbol which does not occur at the head of any pattern in the program is called a
constructor symbol.

5.2.3 REWRITING THE DATA GRAPH

The initial graph of a Lean program is rewritten to a final form by a sequence of applications of
individual rewrite rules. A rule can only be applied if its redex pattern matches a subgraph of the
data graph. A redex pattern in general consists of variables and symbols. An instance of a redex

84 Lean: ал Intermediate Language based on Graph Rewriting

pattern is a subgraph of the data graph, such that there is a mapping from the pattern to that
subgraph which preserves the node structure and is the identity on constants. This mapping is
also called a match. The subgraph which matches a redex pattern is called a redex (reducible
expression) for the rule concerned.

We will use the following rules which have a well-known meaning as a running example to illustrate several
concepts of Lean.

Add Zero ζ -» ζ I (1)

Add (Succ a) ζ -> Suce (Add a z) ; (2)

Now assume that wc have the following data graph:

Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) ;

There are two redexes:

Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) redex matching rule 2

Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) redex matching rale 2

In graphical form this is:

data graph redex pattern data graph redex pattern

Adçl Add Add

u c c ^ Ade

LA
Succ ^ Addi Succ ζ Succ

ЕЙ·

Zero^» Succ Zero

1
Succ

i
Zero Zero

Note that there may be several rules for which there are redexes in the graph. A rule may match
several redexes and a redex can match several rules. For instance, in the example above there is
only one rule which matches any part of the data graph, but it matches two redexes. In general,
therefore, there are many rewriting sequences for a given graph.

Evaluation of a Lean program is controlled by a rewriting strategy. In its most general form:

1. It decides which rewritings to perform.

2. It decides when to perform no further rewritings. The graph at this point is said to be in
strategy normal form, or briefly, in normal form.

3. It specifies what part of the resulting graph is the outcome of the computation.

Lean: ал Intermediate Language based on Graph Rewriting 85

For the purposes of graphical implementations of functional languages, strategies need only
consider the subgraph of nodes accessible from the data root, for the purposes of identifying
both redexes and terminal states. However, more general applications of Lean may not wish to
be constrained in this way: for example, graphical rewrite rules may be used to represent non-
terminating behaviours of practical interest such as operating systems.

The choices made by a rewriting strategy may affect the efficiency of rewriting, as well as its
termination properties. We have not imposed an a priori restriction on the reduction strategy with
which a Lean program should be evaluated, e.g. the rules are ordered but the strategy may or
may not make use of this ordering. In the future we aim to incorporate facilities into Lean to
permit programmer control of strategy where necessary, this would enable the user to guide the
evaluation.

Once the strategy has chosen a particular redex and rule, rewriting is performed. The first step is
to create an instantiation of the graph pattern specified on the right-hand-side of the chosen rule.
This instantiation is called the contractum. In general this contractum has links to the original
graph since references to nodeid variables from the left-hand-side are linked to the corresponding
nodes identified during matching. A new data graph is finally constructed by redirecting some
arcs from the original graph to the contractum. In most cases all arcs to the root node of the redex
are redirected to the root node of the contractum as in Staples' model (Staples (1980a)). This has
an effect similar to "overwriting" the root of the redex with the root of the contractum. This is
what happens when no redirections are given explicitly in the rule. Explicit redirection of
arbitrary nodes is also possible.

The process of performing one rewrite step is often called a reduction. The graph after one
reduction is called the result of the reduction. Initially, the data graph contains a node with the
symbol s tar t . Hence, the rewriting process can begin with matching the start rule and hereafter
rewriting is performed repeatedly until the strategy has transformed the graph to one which it
deems to be in normal form.

Barendregt et al. (1987a) gives a formal discussion of how graph rewrite rules with root-only
redirection model term rewriting, and proves certain soundness and completeness results. The
definition of rewriting given in that paper only covers rules of this form, but the extension of the
formal description to the general cases of multiple and/or non-root redirection is straightforward.

The data graph of the previous example can be rewritten in the following way:

Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) -> (2)
Succ (Add Zero (Add (Succ (Succ Zero)) Zero)) -> (1)
Succ (Add (Succ (Succ Zero)) Zero) -* (2)
Succ (Succ (Add (Succ Zero) Zero)) -> (2)
Succ (Succ (Succ (Add Zero Zero))) -» (1)
Succ (Succ (Succ Zero))

Note that in this example the graph was actually a tree, and remained a tree throughout. There
was no difference with a Term Rewriting System. In the following example there is a data graph

86 Lean: an Intermediate Language based on Graph Rewriting

in which parts are shared. Rewriting the shared part will reduce the number of rewriting steps

compared to an equivalent Term Rewriting System.

Add @X @X, ЭХ: Add (Succ Zero) Zero
Add @X @X, @X: Succ (Add Zero Zero)
Add SX @X, @X·. Succ Zero
Succ (Add @Z @X), @X: Succ @Z, @Z: Zero
Succ (Succ Zero)

5.2.4 PREDEFINED DELTA RULES

For practical reasons it is convenient that rules for performing arithmetic on primitive types

(numbers, characters etc.) are predefined and efficiendy implemented. In Lean a number of basic

constructors for primitive types such as INT, REAL and CHAR are predefined. Representatives of

these types can be denoted: for instance 5 (an integer), 5.0 (a real), '5' (a character). Basic

functions, called delta rules, are predefined on these basic types.

The actual implementation of a representative of a basic type is hidden for the Lean programmer.

It is possible to denote a representative, pass a representative to a function or delta-rule and check

whether or not an argument is of a certain type in the redex pattern.

Nfib 0 -* 1 I
Nfib 1 -> 1 I
Nfib n:INT -> ++I (+1 (Nfib (-1 η 1)) (Nfib (-1 η 2)))

In this example Ό ' is an abbreviation of INT . . . which is a denotation for some hidden

representation of the number 0 (analogue for Ί ' and '2 '), ' + 1 ' , ' - i ' and '++1' are function

symbols for predefined delta rules defined on these representations. Hence, an integer consists of

the unary constructor INT and an unknown representation. Note that in general one is allowed to

specify just the constructor in the redex pattern of a rule. The value can be passed to a function

by passing the corresponding nodeid (n in the example).

These predefined rules are however not strictly necessary. For instance, one could define

numbers as: INT zero to denote 0, INT (Succ zero) to denote 1, INT (Succ (SUCC Zero))

to denote 2 etc., and define a function for doing addition

P l u a l (INT x) (INT y) -> INT (Add χ y)

where Add is our running example. This kind of definition makes it possible to do arithmetic in a

convenient way. However, for an efficient implementation one would probably not choose such

a Peano-like representation of numbers, but prefer to use the integer and real representation and

the arithmetic available on the computer.

5.3 TRANSLATING TO CANONICAL FORM

Lean contains syntactic sugar intended to make programs easier to read and write. Explaining the

semantics of Lean will be done with a form with all syntactic sugar removed known as Canonical

Lean. In this section we show how a Lean program can be transformed to its canonical form.

Canonical Lean programs are valid Lean programs and are unaffected by this translation

- » (2)

- » (1)
-» (2)

- » (1)

Lean: an Inlermedìate Language based on Graph Rewriting 87

procedure. Every Lean program can be seen as a shorthand for its canonical form. Note that this
section is all about syntax. The semantics of the canonical form are explained in section 5.4.

In the canonical form every node has a definition and definitions are not nested. Every
redirection, including any redirection of the root, is done explicitly and in patterns all arguments
of constructors are specified. In this canonical form a rewrite rule has the following syntax:

Graph —> [Graph,] R e d i r e c t i o n s

The first Graph is the redex pattern. The second is the optional contractum pattern. Each pattern
is represented as a list of node definitions of the form:

Nodeid: Symbol (Nodeid)

Braces mean zero or more occurrences. The initial Nodeid identifies the node, Symbol is some
function or constructor symbol and the sequence of nodeids identifies zero or more child nodes.
Occurrences of nodeids before a colon are defining occurrences. Every nodeid must have at most
one defining occurrence within a rule. Defining occurrences of global nodeids are allowed on the
left-hand-side only. Within a rule a nodeid which appears on the right-hand-side must either have
a definition on the right-hand-side or it must also appear on the left-hand-side.

5.3.1 ADD EXPLICIT NODEIDS AND FLATTEN

In the canonical form all nodes have explicit nodeids and there are no nested node definitions.
Hence in each rule we have to introduce a new unique nodeid variable for every node that does
not yet have one. Every nested node definition in the rule is then replaced by an application of the
corresponding nodeid variable, and the definitions are moved to the outer level. Applying this
transformation to our running example gives:

Add y ζ,
y: Zero -> ζ I
Add y ζ,
y: Suce a — » m : Suce n,

n: Add a ζ ;

All arguments of symbols (such as Add and ucc) have now become nodeids and brackets are no
longer needed.

5.3.2 SPECIFY THE ARGUMENTS OF CONSTRUCTORS

In Lean one may write the following function which checks to see if a list is empty:

IsNil n,
n: Nil -» t: TRUE |
I3NÌ1 П,
η : Cons -> t : FALSE

cons is a binary constructor symbol, but in Lean one may omit the specification of the arguments
if they are not used elsewhere in the rule. This is not allowed in the canonical form hence the
arguments are made explicit by introducing two new nodeid variables. Transformation of the
example above will give:

88 Lean: an Intermediate Language based on Graph Rewriting

I s N i l n,
n : N i l -» t : TRUE I
I s N i l n r

n : Cons y ζ -» t : FALSE

5.3.3 MAKE ROOT REDIRECTIONS EXPLICIT

The meaning of both rules in the running example is that the root of the pattern is redirected to the

root of the contractum. Redirections are always made explicit in the canonical form. If no

redirections are specified explicitly, a redirection is introduced to redirect the redex root to the

contractum root. Note that if the right-hand-side of a rule consists only of a nodeid, the root of

the redex is redirected to this nodeid. The running example with explicit redirections now

becomes:

x : Add y ζ ,
y : Zero -» χ := ζ I
χ : Add y ζ ,
y : Suce a - » m : Suce n,

n : Add a z ,
χ : = m ;

5.4 SEMANTICS OF LEAN

5.4.1 GRAPH TERMINOLOGY

- Let F be a set of symbols and N be a set of nodes.

- Further, let С be a function (the contents f unction) from N to F χ Ν*.

- Then С specifies a Lean Graph over F and N.

- If node η has contents F ni П2 ... п^ we say the node contains symbol F and arguments

n b n 2 "к-
- There is a distinguished node in the graph which is the root of the graph.

In standard graph theory, a Lean graph is a form of directed graph in which each node is labelled

with a symbol, and its set of out-arcs is given an ordering. In Lean nodes are denoted by their

names, i.e. their nodeids. The canonical form defined in section 5.3 can be regarded as a

tabulation of the contents function. We will explain the semantics of Lean using this canonical

form.

5.4.2 THE INITIAL GRAPH

The initial graph is not specified in a program. It always takes the following form:

SDataRoot: Graph SStartNode SGlobldi @GlobId2 ... SGlobldm,
@StartNode: Start,
GGlobldi: Initial,
eGlobId2: Initial,

SGlobldn,: Initial;

The root of the initial graph contains the nodeid of the start node which initially contains the

symbol s t a r t . The root node will always contain the root of the graph to be rewritten.

Lean: ал Intermediate Language based on Graph Rewriting 89

Furthermore the root node contains all global nodeids addressed in the Lean rules. The
corresponding nodes are initialised with the symbol i n i t i a l .

5.4.3 OPERATIONAL SEMANTICS FOR REWRITING

Let G be a Lean graph, and R the ordered set of rewrite rules. A reduction option, or redop, of G
is a triple Τ which consists of a redex g, a rule г and a match μ. The match μ is a mapping from

the nodeids of the redex pattern ρ to the nodeids of the graph G such that for every nodeid χ of p,

if Cp(x) = s χι X2 ... Xn then Cg^(x)) = s μ(χι) μ(χ2) ··· Ц(хп) · Th a t is, μ preserves node

structure. Note that μ maps multiple occurrences of nodeids in a redex pattern to one and the

same node in the graph. A redop introduces an available choice for rewriting the graph. A rcdop

that is chosen is called a rewrite of the graph. The process of performing a rewrite is also called

rewriting.

The contractum pattern may contain nodeid variables which are not present in the redex pattern.

These correspond to the identifiers of new nodes to be introduced during rewriting. The mapping

μ' is introduced taking as its domain the set of nodeid variables which only appear in the

contractum pattern. Each of these is mapped to a distinct, new, nodeid which does not appear in

GorR.

The domains of μ and μ' are distinct, but every nodeid variable in the contractum pattern is in the

domain of one or the other. In order to compute the result of a rewrite one applies the mapping

μ" formed by combining μ and μ', to the contractum pattern resulting in the contractum.

Finally the new graph is constructed by taking the union of the old graph and the contractum,

replacing nodeids in this union (and in the case that global nodeids are mentioned also in the

rules) as specified by the redirections in the rewrite rule of the chosen redop.

Hence rewriting involves a number of steps:

1. A redop is chosen by the rewriting strategy. This gives us a redex in the graph G, a rule

which specifies how to rewrite the redex and a mapping μ.

2. The contractum is constructed in the following way.

- invent new nodeids (not present in G or R) for each variable found only in the contractum

pattern. This mapping is called μ'.

- apply μ", the combination of μ and μ', to the contractum pattern of the rule yielding the

contractum graph С Note that the contractum pattern, and hence C, may be empty.

3. The new graph G' is constructed by taking the union of G and C.

4. Each redirection in a rule takes the form О := N. In terms of the syntactic representation, this
is performed by substituting N for every applied occurrence of О in the graph G' and in the
rules R. The definition of О still remains. The nodeids О and N are determined by applying
μ" to the left-hand-side and the right-hand-side of the redirection. All redirections specified in

the rule are done in parallel. This results in the new graph G".

90 Lean: an Intermediate Language based on Graph Rewriting

The strategy will start with a rewrite rule which matches the symbol s ta r t in the initial graph.

When a computation terminates, its outcome is that part of the final graph which is accessible

from the root. Thus a "garbage collection" is assumed to be performed at the end of the

computation only. A real implementation may optimise this by collecting nodes earlier, if it can

predict that so doing will not affect the final outcome. Which nodes can be collected earlier will in

general depend on the rule-set of the program and the computation strategy being used. Note that

before the computation has terminated, nodes which are inaccessible from the root may yet have

an effect on the final outcome, so they cannot necessarily be considered garbage. For certain

strategies and rule-sets they will be, but inaccessibility is not in itself the definition of garbage.

Redirection of global nodeids has as a consequence that all references to the original global

nodeid have to be changed. An efficient implementation of redirection can be obtained by

overwriting nodes and/or using indirection nodes. Also references in the rewrite rules to global

nodeids have to be redirected. Hence global nodeids can be viewed as global variables (they have

a global scope), where nodeid variables are local variables (they have a meaning only within a

single rule). If global nodeids are redirected, also references to them in the rewrite rules change

accordingly.

5.4.4 A SMALL EXAMPLE

We return to our running example with a small initial graph and see how rewriting proceeds. The

rewriting strategy we choose will rewrite until the data graph contains no redexes only examining

nodes accessible from the soataroot.

x: Add y ζ,
y: Zero -» χ :- ζ I (1)
χ: Add y ζ,
y: Suce a - » m : Suce n,

n: Add a z,
χ :- m ; (2)

x: Start —» m: Add n o,
n: Suce o,
o: Zero,
χ :- m ; (3)

Initially we have the following graph G:

eoataRoot : Graph @StartNode,
estartNode: Start;

We now follow the rewrite steps.

1. The start node is the only redex matching rule (3). The mapping is trivial: μ(χ) = estartNode

and the redex in the graph is:

estartNode: Start;

2. The variables found only in the contractum pattern are m, n, and o. We invent a new nodeid

for each of these, defining a mapping μ'(πι) = @A, μ'(η) = ев, μ'(ο) = ее. Applying μ", the

combination of μ and μ', to the contractum pattern gives the contractum C:

Lean: ал Intermediate Language based on Graph Rewriting 91

@A: Add @B @C,
@B: S u c c @C,
@C: Z e r o ;

In fact, for this example, μ is not used in making the contractum, as the contractum pattern

does not refer to x.

3. The union of С and G is G':

BDataRoot : Graph @StartNode,
GStartNode: S t a r t ,
@A: Add @B @C,
@B: Succ @C,
@C: Zero;

4. We have to redirect μ"(χ) = estartNode to μ"(πι) = SA. All applied occurrences of

estartNode will be replaced by occurrences of @A. The graph G" after redirecting is:

BDataRoot : Graph @A,
8StartNode: Start,
GA: Add ев ее,
@B: Succ ее,
ее: Zero;

This completes one rewrite. The start node will not be examined by the strategy anymore, as it is
inaccessible from eoataRoot. Therefore it can be considered as garbage and it will be thrown
away. The strategy will not stop yet because the graph still contains a redex accessible from the
eDataRoot.

1. The strategy will choose the only redop. It matches rule 2: μ(χ) = ел, μ^) = @в, μ(ζ) = ее,

μ(3) = ее;

2. Invent new nodeids and map the variables as follows: μ'(ιη) = en, μ'(η) = @E. The

contractum is:

eo: succ ев,
ев: Add ее ее,-

3. The union of the graph and the contractum is:

SDataRoot: Graph @A,
ΘΑ: Add ев ее,
ев: succ ее,
ВС: Zero,
BD: Succ BE,
@E: Add ВС eC;

4. We have to redirect μ"(χ) = ел to μ"(πι) = eo. Then after removing garbage the graph is:

SDataRoot: Graph 8D,
ВС: Zero,
3D: Succ @E,

eE: Add ее ec,-

92 Lean: an Intermediate Language based on Graph Rewriting

It is now clear how this process may continue: e E is a redex and it matches rule 1: μ(χ) = SE,

μ^) = @c, μ(ζ) = @c. The strategy chooses this redop, there is no new contractum graph but just

a single redirection which takes μ"(χ) = @E to μ"(ζ) = @c yielding the expected normal form:

GDataRoot: Graph @D,
OC: Zero,
@D: Succ @C;

5.5 SOME LEAN PROGRAMS

5.5.1 MERGING LISTS

The following Lean rules can merge two ordered lists of integers (without duplicated elements)

into a single ordered list (without duplicated elements).

Merge
Merge
Merge
Merge

Nil Nil
f : Cons Nil
Nil s:Cons
f : (Cons a b)
s: (Cons с d)

->
—»
->

-»

Nil
f
s

IF

1
1
1

(<I a c)
(Cons a (Merge b s))
(IF (=1 a c)

(Merge f d)
(Cons с (Merge f d)))

=1 and IF are predefined delta rules with the obvious semantics. Note that the right-hand-side of

the last rule uses an application of the argument as a whole as well as its decomposition.

5.5.2 HIGHER ORDER FUNCTIONS, CURRYING

In this example we show how higher-order functions are treated in Lean, by giving the familiar

definition of the function Map.

Map f
Map f
Ар (*I
Start

Nil
(Cons a b)
a) b

-»
-»
-»
->

Nil
Cons (Ap f a) (Map f b)
*I a b
Map (*I 2) (Cons 3 (Cons 4 Nil))

1 (1)
(2)
(3)
(4)

This can be rewritten, for example, in the following way:

Start -> (4)
Map (*I 2) (Cons 3 (Cons 4 Nil)) -> (2)
Cons (Ap @L 3) (Map @L (Cons 4 Nil)), @L:*I 2 -» (3)
Cons (*I 2 3) (Map @L (Cons 4 Nil)), @L:*I 2 ->(*I)
Cons 6 (Map @L (Cons 4 Nil)), @L:*I 2 ->(2)
Cons 6 (Cons (Ap @L 4) (Map @L Nil)), @L:*I 2 -» (3)
Cons 6 (Cons <*I 2 4) (Map @L Nil)), @L:*I 2 -» (*I)
Cons 6 (Cons 8 (Map @L Nil)), @L:*I 2 -» (1)
Cons 6 (Cons 8 Nil)

Rule (3) of this example will rewrite (Ap (*i 2) 3) to its uncurried form (*i 2 3) which

makes multiplication possible. One will need such an "uncurry" rule for every function which is

used in a curried manner. Note that during rewriting the node ei.: <*i 2) is shared. In this case

sharing only saves space, but not computation.

Lean: an Intermediate Language based on Graph Rewriting 93

5.5.3 GRAPHS WITH CYCLES

The following example is a solution for the Hamming problem: it computes an ordered list of all

numbers of the form 2n3m, with n, m > 0. We use the map and merge functions of the previous

examples.

Ham -) Cons 1 (Merge (Map (*I 2) Ham) (Map (*I 3) Ham))

A more efficient solution to this problem can be obtained by means of creating cyclic sharing in

the contractum making heavy use of computation already done. This cyclic solution has a

polynomial complexity where the previous one has an exponential complexity. The new

definition is:

x : Ham -> Cons 1 (Merge (Map (*I 2) x) (Map (*I 3) x))

5.5.4 COPYING A TREE STRUCTURE

This example is very straightforward if the structure of tree nodes is known. Here is a program

which copies a binary tree structure.

Copy (Bin left right) -» Bin (Copy left) (Copy right) I
Copy Leaf —» Leaf ;

In the present version of Lean it is not possible to copy an arbitrary unknown data structure. We

hope to support more general solutions in a future version of Lean.

5.5.5 COUNTING SPECIFIC REWRITES VIA GLOBAL ASSIGNMENT

r: Hd (Cons a b),
GHdCount: Total n:INT -> newvalue: Total (++I η),

r := a,
@HdCount :- newvalue ;

r: Start -• nr: Hd (Cons 1 (Cons 2 Nil)),
initvalue: Total 0,
r :— nr,
SHdCount := i n i t v a l u e ;

We are dealing with disconnected graphs and patterns in this example. The global nodeid

SHdCount in the graph is addressed in a rewrite rule. The integer value in @HdCount will be

increased each time a head of a list is taken. Global nodeids and arbitrary redirections in rewrite

rules make other styles of programming possible involving globals and side effects. Here, the

retention of the canonical notation forces the user to make his text inelegant. Perhaps a useful

danger signal, both to reader and writer?

5.5.6 UNIFICATION USING REDIRECTION

This program implements a simple unification algorithm. It operates on representations of two

types, returning "cannot unify" in case of failure. The types are contmcted from three basic types

i, в and var and a composing constructor com. Different type variables are represented by
distinct nodes. Repeated type variables are represented by shared nodes. References to such a
shared node are taken to be references to the same type variable.

94 Lean: an Intermediate Language based on Graph Rewriting

r: Start -» Unify tl t2 r,
tl: Com i tl,
t2: Com i (Com i t2),
i: I

Unify χ χ r - » x
o: Unify tl: (Com χ y) t2: (Com ρ q) г

-» η: Com (Unify χ ρ r) (Unify y q r)
о := η, tl := η, t2 := η

o: Unify tl:Var t2 r -* о := t2, tl :- t2
o: Unify tl t2:Var r -> о := tl, t2 := tl

Unify tl:Com t2:I r -» n: "cannot unify", r := η
Unify tl:Com t2:B r -> n: "cannot unify", r := η
Unify tl:I t2:Com r -> n: "cannot unify", r := η
Unify tl:B t2:Com r -> n: "cannot unify", r := η
Unify tl:I t2:B r —> n: "cannot unify", r := η
Unify tl:B t2:I r -> n: "cannot unify", r := η ;

Of course this does not solve the general unification problem, but it gives an idea of the power of

redirection and how it might be used to solve this kind of problems.

5.5.7 COMBINATORY LOGIC

Here we show the Lean equivalent of a well-known TRS using explicit application: combinatory

logic.

Ap (Ap (Ap S a) b) c) -» Ар (Ар а с) (Ap b c) I
Ар (Ар К a) b) -> a

S t a r t -> Ap (Ap (Ap S (Ар К К)) (Ap S К)) (Ар (Ар К К) К))

5.6 FUTURE WORK

Lean is the result of collaboration between two research groups: the Dutch Parallel Reduction
Machine (DPRM) group at Nijmegen and the Declarative Alvey Compiler Target Language
(DACTL) group at UEA. Recognising the current instability of emerging languages and
architectures, both groups wish to identify a computational model appropriate to a new
generation rewriting model of computing. The DPRM group has developed a subset of Lean,
called Clean (Brus et al. (1987)), for the support of purely functional languages. DactlO (dauert
et al. (1987c)) predates Lean, and includes some concepts not present in Lean. In the future, our
groups plan to continue to collaborate on further developing and refining the computational
model and the Lean language based on it. It is intended that later versions of Lean and Dacd will
converge.

Because rewriting strategies have a critical influence on efficiency and outcome, future versions
of Lean aim to offer the programmer explicit control. Strategies should be based mainly on local
information so that concurrent evaluation is not constrained. One approach is to employ fine
grain control annotations so that a rule may nominate which of the nodes it creates should be
considered as roots for future redexes. DactlO adopts this approach. Its main advantage is that a
simple execution model is obtained. Another approach is to have a high level specification of
strategies and a formalism for combining strategies during evaluation. This approach holds out
promise for global reasoning (van Eekelen & Plasmeijer (1986)). We believe that the way

Lean: ал Inlermediate Language based on Graph Rewriting 95

forward should involve a careful combination of these approaches. At the high level formally
specified strategy information should be used, allowing analysis and transformation of programs
using abstract interpretation techniques. Correctness preserving translation tools would then
convert such a program into a form using a small set of well-designed control primitives suitable
for efficient parallel implementation.

Besides strategies, there are several other concepts that may be incorporated in Lean in the near
future. These include: more general typing; annotations to allow compiler optimisations;
interfacing with the outside world; modules and separate compilation facilities; support for
unification.

5.7 CONCLUSIONS

Lean is an experimental language for specifying computations in terms of graph rewriting. It is
very powerful since there are few restrictions on the graph that is transformed and the
transformations that can be performed.

The graph rewriting model underlying Lean is of independent interest as a general model of
computation for parallel architectures. It includes as special cases, more restricted systems, such
as Graph Rewriting Systems which model Term Rewriting Systems. For these GRS's certain
soundness and completeness results are shown in Barendregt et al. (1987a).

Lean is designed to be a useful intermediate language for those language implementations which
rely on graph rewriting. Compilers targeted to Lean are being implemented for functional
languages. An interpreter for Lean is available (Jansen (1987)) which allows mixing of several
reduction strategies. A compiler for a restricted subset of Lean (Clean) is running on a Vax750
(Unix) (Brus et al. (1987)). The performance is encouraging.

The design of Lean has heavily influenced the design of Dactl 1 (dauert et al. (1987d), dauert et
al. (1987a)), which the UK Flagship machine (Watson & Watson (1987)) supports. Apart from
some surface syntax differences which reflect local prejudices, Dactl 1 is essentially Lean PLUS
fine grain control markings MINUS global terms. The reduction relation is identical: all that
Dactll control markings do is to prohibit certain reduction sequences.

5.8 ACKNOWLEDGEMENTS

We would like to thank Jan-Willem Klop of the Centre for Mathematics and Computer Science in

Amsterdam for his explanations and Nie Holt of ICL for his valuable comments.

96 Lean: an Intermediate Language based on Graph Rewriting

5.A APPENDIX: SYNTAX

LeanPxogram
Rule
RuleAlt

Graph
NodeDefinition
Node
Term

Redirections

Redirection

(Rule).
RuleAlt { ' I · RuleAlt) • ; · .
Graph '->' Graph [',' Redirections]
Graph '-V Redirections.
[Nodeid ':'] Node (',' NodeDefinition)
Nodeid •:' Node .
Symbol (Term).
Nodeid
[Nodeid ':'] Symbol
[Nodeid ':'] "(' Node ·)'.
Redirection {',' Redirection)
Nodeid {',' Redirection).
Nodeid ':=' Nodeid.

For the canonical form of Lean replace the following rules in the syntax above:

RuleAlt = Graph '->' [Graph ','] Redirections.
Graph = NodeDefinition (',' NodeDefinition).
Term = Nodeid.
Redirections ~ Redirection (',' Redirection).

6

CLEAN — A LANGUAGE

FOR FUNCTIONAL GRAPH REWRITING

Т.Н. Brus, M.C.J.D. van Eekelen, M.O. van Leer, M.J. Plasmeijer.

Computing Science Department, University of Nijmegen,

Tocmooivcld 1, NL-6525 ED Nijmegen, The Netherlands.

E-mail:. !mcvax!hobbit!(lom,marko,maanen,nnas)

Partially supported by the Dutch Parallel Reduction Machine Project,

sponsored by the Dutch ministry of Science and Education.

Abstract.

Clean is an experimental language for specifying functional computations in terms of graph
rewriting. It is based on an extension of Term Rewriting Systems (TRS) in which the terms are
replaced by graphs Such a Graph Rewriting System (GRS) consists of a, possibly cyclic,
directed graph, called the data graph and graph rewrite rules which specify how this data graph
may be rewritten. Clean is designed to provide a Πιπί base for functional programming. In
particular, Clean is suitable as an intermediate language between functional languages and
(parallel) target machine architectures A sequential implementation of Clean on a conventional
machine is described and its performance is compared with other systems. The results show that
Clean can be efficiently implemented.

6.1 INTRODUCTION

In order to be able to reason about (future) functional languages and their implementations as

well as for the comparison of new machine architectures (reduction machines), it is necessary to

choose a computational model. Functional languages and their implementations have very little in

common with the familiar Turing machine model of computation. The λ-calculus is often seen as

the computational model for these languages (Peyton Jones (1987a)). However, most

implementations are not really based on λ-calculus but on combinatory logic (Turner (1979a),

Johnson (1984), Cousineau et al. (1985)). Furthermore graphs are used for the representation of

functional programs in which redundant computations are prevented via sharing of subgraphs.

The presence of patterns in functional languages is very essential. Though it is possible to

translate them to ordinary tests it appears to be worth-while to incorporate patterns in the

computational model. Consequently, if one wants to have a computational model for functional

languages which is also close to their implementations, pure λ-calculus is not the obvious choice

anymore.

Another reason for reconsidering the computational model is that functional languages are still

being further developed. Several researchers investigate how to incorporate concepts such as

parallelism and unification (Hudak & Smith (1986), de Groot & Lindstrom (1986)). These

98 Clean - A Language for Functional Graph Rewriting

appreciated concepts in some declarative languages are not straightforward to incorporate in

functional languages nor in the underlying computational model of the λ-calculus.

Hence, we have developed an alternative computational model by extending Term Rewriting

Systems (OOonnell (1985), Klop (1985)) to a model of general graph rewriting. Via this general

model it must be possible to reason about differences between languages, to prove correctness,

to port declarative programs to different (parallel) machines. Lean (the Language of East-Anglia

and Nijmegen) (Barendregt et al. (1987b)) is a first proposal for a language based on such a

model. It is the result of collaboration between two research groups: the Declarative Alvey

Compiler Target Language group at the University of East-Anglia (dauert et al. (1985)) and the

Dutch Parallel Reduction Machine group at Nijmegen.

The language Clean presented in this paper is roughly the subset of Lean intended for functional

languages only. In Clean, graph representations of terms are used to perform term rewriting

more efficiently. The design of Clean, done in parallel with the Lean language, was triggered by

the need for an intermediate language and corresponding computational model in the Dutch

Parallel Reduction Machine Project. This project, a collaboration between the Dutch Universities

of Amsterdam, Utrecht and Nijmegen, has as its goal the development of a parallel reduction

machine. An overview of the results of the project is given in Barendregt et al. (1987c).

The basis of Clean is that a computation is represented by an initial data graph and a set of rules

used to rewrite this graph to its result. The rules contain graph patterns that may match some part

of the graph. If the data graph matches a rule it can be rewritten according to the specification in

that rule. This specification makes it possible to first construct an additional graph structure and

then link it into the data graph by redirecting arcs from the original graph. Clean describes

functional graph rewriting in which only the root of the subgraph matching a pattern may be

overwritten. The semantics allow parallel rewriting where candidate rewrites do not interfere.

The rewriting process stops if none of the patterns in the rules match any part of the graph which

means that the graph is in normal form.

In this paper we first informally introduce the language Clean giving some examples how graph

rewriting is performed. The general semantics of the graph rewriting process is explained in

Barendregt et al. (1987b). A formal description of the basis and theoretical properties of the

graph rewriting model followed in this paper can be found in Barendregt et al. (1987a). After the

introduction to the language some examples are given to show its expressive power. Hereafter an

implementation of Clean on a conventional machine is discussed. Its speed will be compared to

other implementations of functional languages.

6.2 GENERAL IDEA OF THE LANGUAGE

6.2.1 CLEAN GRAPHS

The object that is manipulated in Clean is a connected, possibly cyclic, directed graph called the

data graph. When there is no confusion, the data graph is simply called the graph. Each node in

the graph has an unique identifier associated with it (the node identifier or nodeid). Each node

Clean - A Language for Functional Graph Rewriling 99

contains a symbol and a possibly empty sequence of nodeid's (the arguments of the symbol)

which define directed arcs to nodes in the graph. Symbols have fixed arities. The data graph is a

closed graph i.e. contains no variables, this in contrast with the Clean graphs specified in rules.

Programming with pictures is rather inconvenient so we have chosen for a linear notation for

graphs. In the most extensive form of this notation (the canonical form) graphs are represented

by giving the list of the nodes out of which the graph is builL

Clean canonical notation

(Hd Β),
(Cons C D) ,
(0) ,
(N i l) ;

• graph example-

Graphical equivalent

А:ГМ ΓΤΙ

Bri Cons I Л « ì ^ ^

In order to get a more readable form we may substitute the contents of a node for a nodeid
mentioned in a node and furthermore we only explicitly have to notate nodeid's if we need them
to express sharing. Brackets are left out if they are redundant. This way of representing graphs
has the advantage that it is very comprehensive. Note that each Clean graph described in this way
can be transformed to an equivalent graph notated in Clean's canonical form. The syntax of
Clean is given in appendix A.

й1 I Cons I Ш
Γ Ν η Ι

Hd (Cons 0 N i l)

— examples of Clean graphs

| Plus I » I f I ; Cyclic:Гг"

P l u s X X,
X: Fac 1000;

5)
C y c l i c : F C y c l i c ;

6.2.2 CLEAN PROGRAMS

Although for the understanding of the rewriting process it is important to know what a data graph
looks like, the data graph itself is never specified in a Clean program. The initial data graph is a
given object generated by the operating system as we will explain later. Consequently a Clean
program only consists of a set of rewrite rules. Each rewrite rule specifies a possible
transformation of the data graph.

100 Clean - A Language for Functional Graph Rewriting

Hd (Cons a b)

Add Zero η
Add (Succ m) η

Fac 0
Fac η

F (F χ)

Start stdin

->

->

->

->

->

->

->

a

η

Succ

1
*I η

X

Add

(Add

(Fac

(Succ

m η)

(-1 η 1

Zero) (

The left-hand-side of a rewrite rule consists of a Clean graph which is called a redex pattern. The

right-hand-side either consists of a Clean graph called contractum pattern or the right-hand-side

contains only a redirection. The patterns are said to be open since they contain variable nodeid's

expressed by the identifiers starting with a lower-case letter. A redirection is not a graph but just

consists of a single nodeid variable. The first symbol in a redex pattern is called the function

symbol. Rules starting with the same function symbol are collected together forming a rule-

group. The members of a rule-group are separated by a Ί '. Symbols other than function

symbols are called constructors because they are usually used to construct data structures or data

types. Note that function symbols may also occur at other positions than the head of the pattern.

At such occurrences function symbols are also called constructors. The use of the start rule and

its special argument is explained in the section on input/output.

6 . 2 . 3 REWRITING THE DATA GRAPH

The initial graph of a Clean program is rewritten to a final form by a sequence of applications of

individual rewrite rules. For a rule to be included in the sequence, there must be a

correspondence between a redex pattern of the rule and some subgraph of the data graph.

An instance of a redex pattern is a subgraph of the data graph for which there exists a mapping

from the pattern to that subgraph in such a way that the mapping preserves the node structure

(corresponding nodes must have the same arity) and that it is the identity on constants. This

mapping is also called a match. The subgraph which matches a redex pattern is called a redex

(reducable expression) for the rule concerned.

Assume that we have the following Clean rules:

Add Zero η -> η I (1)

Add (Succ m) η -> Succ (Add m η) ; (2)

and assume that we have the following data graph

Add (Succ Zero) (Add (Succ (Succ Zero)) Zero)

There are two redexes, both matching rule 2:

Add (Succ m) О

Add (Succ Zero) (Add (Succ (Succ Zero)) Zero)

and:

Clean A Language for Functional Graph Rewriting 101

Add (Succ J _n_
Add (Succ Zero) (Add (Succ (Succ Z e r o)) Zero)

In graphical form the first redex can be found by performing the following mapping:

program graph redex pattern

l A d d l f I *t A: Add

A Д _ D:|Idd I f I Л ^ Ч
B:| S u c c i Ψ Ι Λ / Ч

С:| Zero Ι Ε· | Succ | • I H: |Zero

F : | S u c c | * |

¥.
G : Zero

-tirst redex

We see that the redex pattern of rule 2 matches the indicated subgraph of the data graph if we

substitute the following nodeid's of the graph for the variable nodeid's in the redex pattern к ·=
Α, ι .= в, m ·= с and η = о Note that in order to perform this mapping we have to use the
canonical form of the graphs This means for nodeid's not explicitly mentioned in the patterns
new unique variable nodeid's (in the example к and i) have to be invented

The redex pattern of rule 2 can also be mapped on another part of the data graph if we substitute
к = D, ι := E, m = F and η = н, as shown in the next picture.

program graph redex pattern

A.| Add Ι Τ I f I

J - p-iAdd 11 ι Γ Ν ' k.iAdd ι f ι Л

C . | Z e r o | E | Succ | f | Н:П

F : | S u c c T

G.| Zero

• second redex

If a particular rule is applied to a matching redex, the graph is rewntten according to the nght-
hand-side of that rule If this nght-hand-side consists of a contractum pattern, the first step is to
create an instantiation of this pattern which is called the contractum The contractum is a new

102 Clean - A Language for Functional Graph Rewriting

Clean graph as specified in the right-hand-side in which the nodeid variables defined on the left-
hand-side are replaced by the corresponding matching nodeid's in the redex. New nodeid
constants are created for those nodeid variables in the right-hand-side which are not defined in
the left-hand-side.

The new data graph is finally constructed by taking all arcs pointing to the root node of the redex
and redirecting them to the root node of the contractum. This has the effect of "overwriting" the
root of the redex with the root of the contractum. If the right-hand-side is a redirection no
contractum has to be built. All arcs pointing to the root node of the redex are now redirected to
the single nodeid that matches that nodeid variable. This "overwrites" the root of the redex with
the root of a subgraph of the data graph. This concept of redirecting has the advantage over the
usual "overwriting of node's" semantics that we do not have to deal with indirection nodes on the
semantic level.

After the rewriting, nodes which are no longer reachable from the root of the data graph are

considered to be garbage and may be collected by a garbage collector.

We see that in the example above the second redex matches the data graph if we take the
following mapping from the nodeid variables to the nodeid of the data graph: к := D, ι := E, m :=

F and η := н. The right-hand-side of the second rule specifies that in this case the contractum can
be constructed as follows:

redex

D:|Add | t | " Π

E:|Succ | ΐ ~ |

" [ƒ I |'

¥
• contractum construction

contractum

J : | Succ | t I ucc | f

K:|Add | 7 | . |

F H

For the variables m and η in the right-hand-side we have to take the same mapping (m := F, η :=

н). For the other variables (say о and p, they are not specified explicitly) we invent new unique
nodeid's (say J and κ). Now the contractum is glued to the data graph by redirecting all nodes

pointing to the root of the redex (D) to the root of the contractum (j). All nodes not reachable

from the root of the data graph are considered to be garbage. If we remove these nodes (D and E)

we finally have the new data graph and can start another rewriting.

Clean - A Language for Functional Graph Rewriting 103

new program graph

A = i A d d ι.» i f i

:|Succ| f~\

C:| Zero

garbage nodes

Τ J : | Succ | f

B : | S u c c l j | ' ZU

A . K:|Add¿t I | I

F : | s u c c I i~l H:|Zero K#4

D:|Add | f~T

E:| Succ | > |

içU^_

G: Zero

• result of rewrite •

The graph after rewriting is called the result. The process of performing a rewriting is often
called a reduction step. A data graph containing no redexes is said to be in normal form. The
rewriting process will start with the start rule and rewriting is performed repeatedly until the
strategy has transformed the data graph to normal form.

6.2.4 REDUCTION STRATEGIES

In general there will be several possible redexes in the graph. It may even be the case that one
and the same redex can be reduced according to more than one rule; a typical situation which is
called an ambiguity in the literature. An algorithm which repeatedly rewrites the graph making
choices out of the available redexes and out of all the possible matches of those redexes is called
a rewriting strategy or a reduction strategy. Note that this definition of strategy is somewhat more
liberal than some definitions circulating in the literature. It allows the strategy to choose out of
several possible matches of one and the same redex. Furthermore, it is also not necessary for a
strategy to rewrite the graph until a normal form is reached, which e.g. allows strategies that
reduce to head normal form only.

Given a set of rules (including a start rule), an initial graph and a rewriting strategy we have a
system with a dynamic behavior, a rewriter. Although it is sometimes only implicitly defined,
every implementation of a rewriting system must rewrite according to a given strategy. If the
strategy is deterministic, every program (including a so-called ambiguous one) will always have
exactly the same result.

Every Clean program is reduced with one and the same strategy. This strategy is called the
functional strategy, because it resembles very much the way in which normally reducing is
performed in lazy functional languages. Below we will give an operational definition of the
functional strategy. A formal description can be found in Goos & van Latum (1987) using a
formal method described in van Eekelen & Plasmeijer (1986).

The functional strategy proceeds as follows: the strategy considers one or more candidates for
rewriting. When a match is found rewriting is performed as described in the previous section.

104 Clean - A Language for Functional Graph Rewriting

The functional strategy starts with reducing the root node of the graph to head normal form

(RtoHNF). The result will be a graph with the property that its root is not part of any redex.

Thereafter this reduction to head normal form is recursively called on the arguments of the

obtained result (from left to right).

The RtoHNF starts with the examination of the graph it is applied to: if the symbol in the root

node of that graph is a constructor the reduction is finished. If the symbol is a function symbol

the corresponding rewrite rules for that function are examined in order to see if the given graph is

a redex or can become a redex. In textual order the corresponding rules are examined to see if

one of the redex patterns matches or can be made to match. The graph is rewritten according to

the first rule that matches and hereafter the RtoHNF is recursively applied to the subgraph with

the redirected nodeid as root. If no rule can be made to match the reduction is finished.

In order to examine the matching of redex pattern and graph the redex pattern is traversed in

preorder and, possibly after forcing evaluation of corresponding parts in the graph, redex pattern

and graph are compared. If there is a variable in the pattern, the traversal is continued. If a

function symbol is encountered in the graph where there is a symbol in the pattern, the RtoHNF

recursively calls itself to force evaluation of this function. This aspect of the functional strategy is

remarkable because evaluation is forced during a matching attempt. The resulting graph will be in

head normal form. Hereafter a symbol encountered in the pattern must be the the same symbol as

in the graph. If they are different a match is impossible and the next rule is tried. If they are the

same the traversal is continued. If the traversal reaches the end of the pattern a match is found.

The result of this lazy evaluation scheme is that after the traversal we might end up with a redex

after all and the rule can be applied.

In the following example a data graph is conslrucled in which parts are shared. Note that when the data graph is
actually a tree there is no difference with a term rewnung system.

Start stdin -> Double (Add (Succ Zero) Zero) ; (A)
Double a -> Add a a ; (B)
Add Zero η -> η I (1)
Add (Succ m) η -> Succ (Add m η) ; (2)

Rewnung a shared part will reduce the number of rewriting steps compared to ал equivalent term rewnung
system. The rewnung will take place as specified below. Note thai when a nodeid variable appears more than
once at a nght-hand-sidc, the rewnung process will generate a contracium in which the corresponding matching
node is shared.

Start Nil -> (A)
Double (Add (Succ Zero) Zero) -> (B)
Add X X, X:Add (Succ Zero) Zero -» (2)
Add X X, X:Succ (Add Zero Zero) -> (2)
Succ (Add M X) , X:Succ M, M:Add Zero Zero -» (1)
Succ (Add Ζ X) , X:Succ Z, Z:Zero -> (1)
Succ (Succ Zero)

Although this functional strategy will look very familiar for people acquainted with functional

languages, it really is a very peculiar strategy in the TRS and GRS world. To have a priority in

the rewrite rules leads in general to a rewrite system without proper semantics (Klop (1985)). In

this case the system is sound due to the forced evaluation of the arguments of a function as

Clean - A Language for Functional Graph Rewriting 105

described above. Although we theoretically prefer a TRS without such a priority in rules, we

have adopted the functional strategy because it is used so often in practice.

6.2.5 DATA TYPES

Constructors are not only handy to create datastructures in the form of directed, possibly cyclic

graphs, such as list and tuples, but they can also be used to represent any other object or to

indicate the type of an object. For instance, one can define numbers as:

0 -> Num Zero ;
1 -> Num (Succ Zero) ;
2 -> Num (Succ (Succ Zero) ;

Here the constructor Num (also called a type constructor) indicates the type of the number objects

while the constructors succ and zero (also called data constructors) are used to represent

numerical values. A function for doing addition that yields a result of type Num could look like:

Add (Num x) (Num y) -> Num (Add2 χ y)
Add2 Zero y -> y I
Add2 (Succ x) y -> Succ (Add2 χ y)

In Clean one is not obliged to specify the arguments of a constructor in a redex pattern if they are

not used elsewhere in the rule. This is in particular a handy notation when one wants to write

rules for objects of a certain type. For example instead of:

Fac 0 -> 1 I
Fac n:(Num x) -> Times η (Fac (Minus η 1))

one may write:

Fac 0 -> 1 I

Fac n:Num -> Times η (Fac (Minus η 1)) ;

The value can be passed to a function by passing the corresponding nodeid (n in the example).

Note that in this example the type of the argument is checked at run-time in the matching phase.

Of course this check can be prevented by not using the Num constructor in the pattern or the

objects.

6.2.6 BASIC TYPES AND PREDEFINED DELTA RULES

For practical reasons it is convenient that rules for performing arithmetic on primitive types

(numbers, characters etc.) are predefined such that they can be implemented efficiently,

preferably by using the integer and real representation and corresponding arithmetic available on

the computer.

In Clean for primitive types a number of constructors such as INT, REAL and CHAR are predefined

with hidden arity. Objects of these primitive types can be denotated: for instance 5 (an integer),

5.0 (a real), · 5 • (a character). The standard basic functions for arithmetic defined on these basic

types are also predefined. These predefined rules are called delta rules.

106 Clean - A Language for Functional Graph Rewriting

The possibility in Clean to leave out the specification of the arguments of a constructor in a redex
pattern is mandatory for primitive type constructors. As a consequence how an object of a certain
primitive type is represented will be hidden for the Clean programmer. Besides this special
restriction, added only for software engineering reasons, primitive type constructors act as
ordinary constructors.

6.2.7 INPUT AND OUTPUT

Input and output is always somewhat problematic in functional languages. We have chosen for a
solution in which the operating system builds the initial graph. The initial graph contains the
standard input as shown below.

Root: Start Stdin,

Stdin: Cons
 n
linel\n" (Cons "line2\n

n
 (Cons));

The input can be accessed in the Clean program via the argument of the s t a r t rule. The output
generated by a Clean program is in principle a depth-first representation of the normal form to
which the initial data graph is reduced. As soon as the initial graph is in head normal form the
head symbol is printed and hereafter the printing process is recursively applied to the arguments
of that symbol. In the near future it will be possible to associate printing actions with predefined
constructors like in Miranda (Turner (1985)).

6.2.8 ANNOTATIONS

In Clean to every node an attribute can be assigned via an annotation. Annotations have in
general the form of a list of strings between curly braces. Annotations are to be considered as
compiler and run-time directives (pragmats). The number and type of annotations are left open
and will depend on the actual implementation. Although annotations may influence the efficiency
and strategy of the rewriting process, they are of course not allowed to influence the outcome of
a computation. It is all right for a Clean compiler to ignore annotations.

At this moment in our compiler only one annotation is implemented indicating that the annotated
argument is needed for the computation (" ! " or " (s t r i c t) "). Future annotations are planned for
work to be done in parallel, for load distribution, etc.

6.3 EXAMPLES OF CLEAN PROGRAMS

6.3.1 MERGING LISTS

The following Clean rules are capable of merging two ordered lists of integers (without duplicate
elements) into a single ordered list (again without duplicate elements)* :

Merge Nil Nil -> Nil I
Merge f : Cons Nil -> f I
Merge Nil s : Cons -> s I
Merge f :(Cons a b) з:(Сопз с d) -> IF (<I a c)

(Cons a (Merge b s))

<I and =1 are delta rules for integer comparison, I F is a delta rule for the conditional.

Clean - A Language for Functional Graph Rewriting 107

(IF (-1 a c)
(Merge £ d)
(Cons с (Merge f d))) ;

Note that in the last rule the arguments as a whole as well as their decomposition is used.

6.3.2 HIGHER ORDER FUNCTIONS, CURRYING

In this example we show how higher-order functions are treated in Clean, by giving the familiar
definition of the function map.

Map f Nil -> Nil I (1)
Map f (Cons a b) -> Cons (Ap f a) (Map f b)
Ap (*IC a) b -> *I a b
Start stdin -> Map (*IC 2) (Cons 3 (Cons 4 Nil))

This will be rewritten in the following way:

(2)
(3)
(4)

Start Nil Nil Nil -» (4)
Map (*IC 2) (Cons 3 (Cons 4 Nil)) -> (2)
Cons (Ap L 3) (Map L (Cons 4 Nil)), L: (*IC 2) -» (3)
Cons (*r 2 3) (Map L (Cons 4 Nil)), L:(*IC 2) -» *I
Cons 6 (Map L (Cons 4 Nil)), L: (*IC 2) -» (2)
Cons 6 (Cons (Ap L 4) (Map L Nil)), L: (*IC 2) -» (3)
Cons 6 (Cons (*I 2 4) (Map L Nil)), L:(*IC 2) -> *I
Cons 6 (Cons 8 (Map L Nil)), L: (*IC 2) -> (1)
Cons 6 (Cons 8 Nil)

*i is a predefined delta rule which multiplies two integers. Rule 3 of this example will rewrite
(Ap (*ic 2) 3) using the constructor *ic which is the curried version of *i, to its uncurried
form (*i 2 3) making the multiplication possible. One will need such an "uncurry" rule for
every function which is used on a curried manner. Note that during rewriting the node L: <*IC
2) is shared. In this case sharing only saves space, but not computation.

6.3.3 GRAPHS WITH CYCLES

The following example is is a solution for the Hamming problem: it computes an ordered list of
all numbers of the form 2n3m, with n,m > 0. We use the map and merge functions of the
previous examples.

Ham -> Cons 1 (Merge (Map (*IC 2) Ham) (Map (*IC 3) Ham))

A more efficient solution to this problem can be obtained by creating a cycle in the contractum.

With these cycles we make heavy use of computations already performed. The new definition is:

Ham -> x : Cons 1 (Merge (Map (*IC 2) x) (Map (*IC 3) x))

6.3.4 COMBINATORY LOGIC

Finally we show the Clean equivalent of a well-known TRS.

Ap (Ap (Ap S a) b) с -> Ap (Ap a c) (Ap b c) I
Ар (Ар К a) b -> a

108 Gean - A Language for Functional Graph Rewriting

6.4 THE IMPLEMENTATION OF CLEAN

This section will describe the current implementation of Clean. This implementation was
developed as a testbed for the definition of Clean. It was partly constructed concurrendy with the
language itself. The advantage was that the definition of Clean could often be corrected or
adjusted when an inconsistency was overlooked and became apparent in the implementation.

The Clean compiler was developed on a VAX/750 running UNIX BSD 4.2. UNIX and VAX
specific aspects will now and then surface in the implementation and in the following sections.
We have tried to minimize this.

6.4.1 CLEAN RUN-TIME PHILOSOPHY

Clean is a graph rewriting language, therefore in principle we need a heap to build graphs in. The
initial graph is built by the run-time system. Under control of the reduction strategy this graph
will be transformed to normal form. These transformations are performed by the compiled code,
using a heap and 2 stacks (a system stack and an argument stack). The functional strategy is
compiled into this code. This means that for the implementation of a new strategy it is necessary
to change the compiler or at least its code generator.

The basic implementation algorithm looks for a matching redex according to the functional
strategy. It will overwrite the matching redex with the corresponding right-hand-side, thereby
realizing redirection. This continues until there is no redex left. The main work that is being done
this way is building graphs. Hence the code will not be fast, because the system is continuously
allocating nodes in the heap. As a stack mechanism is inherently faster then a heap mechanism, at
least in Von Neumann like machine architectures, we have tried to put the graph on a stack
instead of in a heap whenever possible. The main issue in this respect is the LIFO access
characteristic of a stack opposed to the random access in a heap. We had to find LIFO behaving
mechanisms in our language, or its implementation. Lazy evaluation does not behave LIFO,
eager evaluation does. This is the reason we need a strictness analyzer, which could free us from
a lot of laziness, and give us eagerness instead. In 4.5 we discuss how we used strictness.

6.4 .2 GRAPHS

In a Clean graph we can distinguish regular nodes and leaf nodes. Every node has a symbol field
which indicates the kind of symbol stored in the node. It is implemented as a pointer to a record
containing all the necessary symbol information. If the symbol field labels a node as a regular
node it can only be filled with references to nodes. If the symbol field indicates a leaf node then
the rest of the node has no node reference at all. The other bits of the node will contain
information like a number or a character code.

Clean - A Language for Functional Graph Rewriting 109

' regular node -

Ï
1.2345678Ε-Π0 |

- leaf node -

This strict division is made to enable the garbage collector to easily and quickly follow all the

necessary links in the heap.

Regular nodes are either rule or constructor instantiations. Rules have code associated with them

which needs to be called for reduction to head normal form. Constructors have code, that will be

called when the constructor needs to be printed. This includes code to evaluate arguments.

RULE
•Factorial"

#args. 1

- rule node-

Π' reducing
code

^—con

ν/ΖύγΛ ν//Ψ//λ

i
CONSTRUCTOF
-Cons-
#args: 2

structornode

Λ pfinting
code

Graphs are built from right to left, from bottom to top using the argument stack. This works fine

if we have no sharing and cycles in the right-hand-side. If a certain subtree is shared, we will

save a reference to this subtree as soon as it is built. If the subtree is needed again, the saved

reference can be taken. Cycles can be solved by inserting a place holder on the argument stack

whenever we find a link back to a former node. We save a reference to the node with the place

holder in it. As soon as the node to which the link back referred has been built, the place holder

is replaced by the actual reference.

6.4.3 REDUCING GRAPHS

Reducing first involves finding a redex, using the functional strategy, by matching the formal

and actual arguments of a rule. Every formal argument is a graph of node patterns. A node

pattern can either be a variable or a pattern. In case of a variable the reference to the actual

argument is copied to the argument stack. In case of a pattern, the actual argument is first reduced

to head normal form. If the result matches the pattern a pointer to the actual argument is copied to

the argument stack.

no Clean - A Language for Functional Graph Rewriiing

After a match has been found the rule must be rewritten. Due to the match the argument stack
contains references to all the left-hand-side variables. The rewrite code of the rule will use these
during its rewrite. Having rewritten the rule all the references are popped of the stack and the
result is pushed on top of it. The following picture will illustrate this* :

FromBy (Bind f b) -> Cons f (FromBy (Bind (+1 f b) b)) ;

enter 'FromBy'

unevaled
arg

s-O
/ \

after match

• argument stack states while reduci ng -

leave 'FromBy'

) j |FromBy| <]
^ . iBindi « Г П

The above scheme works fine for eager evaluation. We actually have the top node available on
the stack at all times. Using lazy evaluation we sometimes have to rewrite a node which has
already been built, therefore we have to adapt this scheme. First the contents of the node in the
graph is copied to the stack, then it is rewritten. This will return a new node, in head normal
form, on the stack. But the real top node is still untouched in the heap. The redirection is
implemented by making the old node an indirection node pointing to the new node. Overwriting
the old node is in general impossible because the new node could be bigger than the old one.

6 . 4 . 4 HEAP MANAGEMENT

The heap delivers variable sized nodes. Once created, a nodes size can not be changed. Heap
management routines take care of garbage collection in the heap. The garbage collector is based
on a simple mark/scan algorithm.

The memory management used is an ad hoc solution, which happens to perform satisfactory. It
could be streamlined significantly, or even be replaced altogether, to get a better perfomiance. A
fast memory management is essential.

Here it becomes clear why we can not merge the argument stack with the system stack, why we
need a separate stack with node references. Our compilation scheme does not guarantee that all
non-garbage nodes can be found from the mot of the data graph. Therefore the garbage collector
will have to look in the stack for references to find all non-garbage nodes. Because it is
impossible for the garbage collector to identify items on a stack as node references or other
values, such as reals or integers, we save references to nodes on a special stack.

+1 is the della rule for integer addition.

Clean - A Language for Functional Graph Rewriting 111

6 . 4 . 5 OPTIMISATIONS USING STRICTNESS

As we have seen, we want to make use of the stack, and ban the use of the heap, as much as

possible. Lazy evaluation prohibits this, eager evaluation enables this. This led us to methods of

trading laziness for eagerness where ever possible, without endangering the termination of the

reduction process.

The functional strategy enables us to compile the right-hand-side of rules in an efficient way. To

illustrate this we will first introduce two types of contexts which can be identified in the right-

hand-side. Then we will see how to use them.

• Immediate context: upon entering the rule, nodes in an immediate context may be evaluated to

head normal form immediately.

• Postponed context: upon entering the rule, nodes in a postponed context may not be

evaluated, and must be built as graphs, which can be passed as arguments to other rules, or

given as a result.

We will call nodes immediate or postponed according to their context. The top node of a right-

hand-side is an immediate node. All subnodes of a postponed node are postponed. The symbol

of an immediate node determines the context of its argument nodes. For a node with a rule

symbol all strict arguments are immediate, all other arguments are postponed. For nodes with a

constructor symbol all arguments are postponed. Strictness for user-rules is given by

annotations, for delta-rules it is known by the compiler.

Consider the following rules, in which rule 's' has one strict argument and rule 'NS' has one

non-strict argument (the boxes are postponed contexts):

f _ N

Fl χ -> Cons I (s Q)Цміі| ;

F2 x -> +1 (*I χ 10) 20 ;

F3 χ -> +1 (S x) (N S Q) ;

F4 x -> IF (=1 (S χ) (NSQ)) (S x) (N S Q) ;

^ — postponed contexts '

In principle we have to build the right-hand-side graphs, as they are. However, if we discover an

immediate node, while building the right-hand-side, we will not allocate it in the heap, but try to

reduce it first and use the result. For user-rules this means calling the reduction code, for delta-

rules the appropriate instructions are executed. If the top node of a right-hand-side contains a

function symbol, the user rule will always be called (the top node is always immediate!). In the

code we change this to a jump to the rule. This way we automatically remove tail recursion. For

example:

112 Сіеал - A Language for Functional Graph Rewriting

F x -> F (...argument...),

-tail recursion

F will actually be a loop in the generated code.

Things are less straightforward when we introduce sharing and cycles. We will not discuss the

solutions here. We were able to devise a compilation scheme to cover all possible combinations

of sharing and cycles in right hand sides, with the above principles.

6.4.6 SMALL STRICTNESS ANALYSIS

Although we consider strictness annotations to be generated by the compiler generating Clean,

we incorporated a very simple strictness analyzer in our compiler. This analysis is based on

certain aspects of the functional strategy.

Consider a rule with a pattern at the left-hand-side. Upon entering the rule we will always
evaluate the actual argument for the first pattern. At compile time it is undecidable whether we
have to match any of the other patterns in this rule, because the first match may fail. Therefore it
is only the first argument with a pattern in a rule that can be marked as strict.

For example (the strict arguments are surrounded by boxes):

- strict arguments

Fl

F2
F2

x|y: (Cons a

Nil
X

F3 X
F3 10

10

У

F4|Nil| Nil Nil

bj ζ -> ;

-> 1

->

-> 1

->

-> ;

6.4.7 EFFICIENCY OF THE GENERATED CODE

The compiler we constructed is slow, due to the fact that flexibility of the compiler was more

important than compilation speed. The speed of the generated code, on the other hand, was of

primary importance. The optimisations we devised are very suitable for VAX-like machines

(PDP, MC68000). For other machines they may not always be the best. To get an impression of

the speed of the code generated by the current implementation one can look in appendix В where

some benchmark results are shown. Although these results show that 1ml is an order of

magnitude faster then Clean, we may conclude that we are on the right track. Specially when we

bear in mind that not yet all of the possible optimisations are included in the current Clean

Clean - A Language for Functional Graph Rewriting 113

implementation. For example, leaf nodes are always built in the heap while the values could often
be maintained on a stack.

6.5 CONCLUSIONS AND FUTURE RESEARCH

Clean is an experimental language with many facets. First of all it is a language for specifying
computations in terms of graph rewriting. As such it is a convenient and elegant language.

Clean also has a very interesting underlying model of computation: a Graph Rewriting System
which can be seen as an extension of a Term Rewriting System (Klop (1985)). This has the
advantage that a lot of theoretical properties from the TRS world are inherited and provide a
sound foundation for a GRS theory. For instance, in Barendregt et al. (1987a) it is proven that
all hyper-normalizing strategies in the TRS world, a class to which all well-known normalizing
strategies belong, are also normalizing in the GRS world.

Clean can be used as intermediate language between functional languages and (parallel) machine
architectures. In (Koopman & Nöcker (1988)) it is shown that functional languages like SASL
(Turner (1979a)), Miranda (Turner (1985)), OBJ2 (Futatsugi (1985)) and Tale (Barendregt &
van Leeuwen (1986)) can easily be compiled to Clean code. Compilers (one written in Modula2,
one written in Miranda) are being implemented targeted to Clean. With the current Clean
implementation they run 30 to 50 times faster than the current Miranda system. The Clean
implementation described in this paper runs reasonably fast considering the fact that we did not
want to spend much time on trivial, but time-consuming, ad hoc optimisations (see appendix B).

Our plans are to improve Clean in the near future. We will do this in the more general Lean
framework (Barendregt et al. (1987b)) in which Clean will be one of several possible subsets
with certain desired properties (in this case geared to functional languages and suited for parallel
architectures). Our intentions are to include separate compilation, modularization, general type
system, unification, general IO etc. All this must be accomplished without loosing the basic
elegance, the practical usability and the theoretical framework of the model. This will take some
time.

Because strategies have a critical influence over efficiency future versions of Clean aim to give
the programmer explicit control over rewrite order, for instance via high level specification of
(parallel) reduction strategies and a formalism for mixing several strategy schemes during
evaluation (van Eekelen & Plasmeijer (1986)).

We will improve the efficiency of the compiler and the code generated by the compiler.
Implementations of Clean are planned for Motorola based architectures and parallel architectures
like the Experimental Parallel Reduction Machine (Hand & Vree (1986)) and the Distributed
Object Oriented Machine (Odijk (1985)) being developed in the Philips Laboratories, the
Netherlands. Requests for the current implementation can be sent to one of the authors or E-
mailed to:.. Jmcvaxlhobbitlcleanrequest.

114 Clean - A Language for Functional Graph Rewriting

6.6 ACKNOWLEDGEMENTS

We are grateful to Henk Barendregt and Pieter Koopman of the University of Nijmegen for
several suggestions and inspiring discussions. We also thank Ronan Sleep, John dauert and
Richard Kennaway of the University of East-Anglia very much for the fruitful collaboration on
the Lean work, which heavily influenced Clean.

6.A APPENDIX A: CLEAN SYNTAX

Qean syntax:

CleanProgram
RuleGroup
Rule

Graph
Redirection
NodeDefinition
Node
Annotation

Term

{ RuleGroup }
['STRATEGY' StrategyName
Graph '->' Graph
Graph "-^ Redirection
[Annotation] [Nodeid '
[Annotation] Nodeid
[Annotation] Nodeid ':'
Symbol { [Annotation]
"{ ' AnnotationName { *,
ShorthandAnnotation
Nodeid
[Nodeid ":'] Symbol
[Nodeid ':'] '(' Node

•] Rule { ' I ' Rule }

] Node (','

':' Node
Term)
,' AnnotationName

)'

NodeDefinition}

} '}'

Clean name conventions:

Symbol

Nodeid
FunctionSymbol
ConstructorSymbol
DeltaRuleSymbol
AnnotationName
ShorthandAnnotation
StrategyName
TypeConstructor
TypeDenotation

™ FunctionSymbol
I ConstructorSymbol
I DeltaRuleSymbol
I TypeConstructor
I TypeDenotation
= (* Character sequence starting with a lower-case character
= (* Character sequence starting with a upper-case character
= (* Character sequence starting with a upper-case character
= (* A predefined delta rule name
= (* Implementation dependent
= (* Implementation dependent
= " F u n c t i o n a l '
= 4 N T ' I 'REAL' | 'CHAR' I 'STRING' I 'BOOL'
= 5,4.6e-3, 'a',"a string\007",TRUE (»Examples*)

Some context sensitive restraints:

Graphs are connected.
Sharing of labels is not allowed in left hand sides of rules.
Symbols have a fixed arity.
Every function is defined once.
Every label is defined once in a rule.
Delta rules can not be re-defined.

Clean - A Language for Functional Graph Rewriting 115

6.В APPENDIX B: PERFORMANCE MEASUREMENTS

The results of two benchmarks are reproduced here to give an idea about the speed of the

compiled code. Benchmark 1 involves the reversion of a list, benchmark 2 is the all time favorite

nfib number. The reversion benchmark reverses a list of η elements η times, this means doing n2

reversion steps. In our tests η ranged from 1 to 1000. The nfib benchmark gives the number of

function calls it did as output. We will only give the Clean programs here, it is straightforward to

translate them to other languages*.

Reverse η

Walk (Cons χ Nil)
Walk (Cons χ r)

Rev_n 1 list
Rev_n η list

Rev (Cons χ r) list
Rev Nil list

-> Walk (Rev_n η (FromTo 1 n)) ;

-> χ |

-> Walk r;

-> Rev list Nil |
-> Rev_n (--I n) (Rev list Nil) ;

-> Rev r (Cons χ list) 1
-> list

• benchmark 1, Clean version.

Nfib 0 -> 1
Nfib 1 -> 1
Nfib η -> ++I (+1 (Nfib (—I n)) (Nfib (-1 η 2))),

• benchmark 2, Clean version.

The following programming systems were tested:

Clean Clean Compiler, version 4.0, University of Nijmegen, Netherlands.
Authors: Tom Bras, Maarten van Leer.

lisp Franz Lisp inlerprcter. Opus 38.79, Unix 4.2 BSD distribution.
Author: Keith Skowlcr.

liszl lisp compiler, VAX version 8.36 [.79], Unix 4.2 BSD distribution.
Author. John Fodcraro.

1ml 1ml compiler, preliminary version, Chalmers, Sweden.
Author: Lennart Auguslsson, Thomas Johnsson.

miranda miranda interpreter, version 0.292, Research Software Lid., England.
Author. David Turner.

saslcom sasl compiler, version 1.1, University of Nijmegen, Netherlands.
Author: Riet Dolman.

saslint sasl interpreter, version 1.1, University of Nijmegen, Netherlands.
Author: Riet Oolman.

All tests were done on a VAX11/750 under UNIX BSD 4.2, partly during working hours. All

times mentioned are user times returned by the time(l) command. We measured the number of

reverse steps per second (for reverse), and the number of function calls per second (for nfib):

* ++I and — I aie delta rules for integer increment and decrement, - I is for integer subtraction.

116 Clean - A Language for Funclional Graph Rewnting

number of ге та steps per second. In reveree(n)

-
•o-

*-
•CK

* •

·*-
—

Οβαη

mlfonda

sasteom

sasllnt

llszt

Bsp

Imi

1 10 100 1000 10000 100000 1000000
total number ot reverse steps In test (ηΛ2)

nfb number at nflb(n)

~
•o-

· • *
• * -

*
—

Clean

mirando

saste om

sasllnt

llszt

lisp

Imi

1 10 100 1000 10000 100000 1000000 lE-f07
nftKn)

We see that these numbers stabilize to what we call the reverse number and the nfib number of

the implementation. Below, these numbers are tabled separately.

language

sasllnt

m i r a

lisp

saslcom

l iszt

clean

Imi

rev number

8

123

151

6 7 7

1669

3521

2 3 4 3 6

nlib number

7

1 2 0

4 6 7

7 2 8

1 2 5 8

2 3 2 2

1 9 6 3 5

nfbnum
(colls/sec)

ІІЛЛЯЛІ

10000

1000

100

10

1

0

¿& π y

¿ <r

Y

/ ·

ρ» s

^г

*»-~,
гт~

^ и . .

o-o-o-o-c

**-»«-•

O-O-fMW

» - · - ·
·-•-•

117

PARALLEL GRAPH REWRITING ON

LOOSELY COUPLED MACHINE ARCHITECTURES
M.C.J.D. van Eekelcn, M.J. Plasmeijer, J.E.W. Smetsers.

Department of Theoretical Computer Science and Computauonal Models,

University of Nijmegen, Toemooiveld 1,6525 ED Nijmegen, The Nelhcrlands,

June 1988.

Abstract

Graph rewnung models are very suited to serve as the basic computational model for functional
languages and their implementation Graphs are used to share compulations which is needed to
make efficient implementations of functional languages on scqucnual hardware possible When
graphs are rewnlten (reduced) on parallel loosely coupled machine architectures, subgraphs have
to be copied from one processor to another such that sharing is lost. In this paper we introduce
the notion of lazy copying With lazy copying it is possible to duplicate a graph without
duplicating work Lazy copying can be combined with simple annotations which control the
order of rcducUon. In principle, only interleaved execution of the individual rcducUon steps is
possible However, a condition is deduced under which parallel execution is allowed When only
certain combinations of lazy copying and annotations are used it is guaranteed that this so-called
non-interference condition is fulfilled Abbreviations for these combinations are introduced Now
complex process behaviours, such as process communication on a loosely coupled parallel
machine architecture, can be modelled This also includes a special case modelling
multiprocessing on a single processor Arbitrary process topologies can be created Lazy and
eager process creation is possible Synchronous and asynchronous process communication can
be modelled Complicated parallel algorithms can be expressed which can go far beyond divide-
and-conqucr like applications.

7.1 INTRODUCTION

In the following paragraphs the importance of computational models is addressed. It is explained
why Graph Rewriting Systems are suited to model the essential aspects of functional languages
and their implementation. However, if one wants to model parallel evaluation Graph Rewnting
Systems have to be extended. The motivation for the proposed computational model is given and
the context is described in which the model will be used.

Computational models

In general, a programming language is composed out of many language constructs. Examining
the semantics of a language carefully it is possible to classify these constructs: some of them can
be regarded as the basic concepts of the language, while others are purely syntactic sugar added
to the language for programming convenience or for software engineering reasons. In order to
understand the facilities offered by a language it is important to know what the essential language
constructs are and what they mean. The key question is: what is the ideal basic model of
computation for the language? If this model of computation is known it is much easier to reason
about the essential properties of the language, the expressive power, the orthogonality of the

118 Parallel Graph Rewriting on Loosely Coupled Machine Architectures

design, the implementation methods for a given computer architecture and the design constraints
for new architectures to support the language.

One problem is that there are, in principle, many computational models which can be used. For
instance, any deterministic computation can be expressed on a Turing Machine. But this will not
make reasoning more easy because this computational model is too restrictive. Ideally, a
computational model of a language is a formal model as close as possible to both its semantics
and its implementation, still it models only the essential aspects of them.

Graph rewriting systems and functional languages

Our prime interests are functional languages and their implementation on sequential and parallel
hardware.

Traditionally, the lambda calculus (Church (1932/1933), Barendregt (1984)) is considered to be
a suitable model for these languages. However, in our opinion, some important aspects of
functional languages and the way they are usually implemented, cannot be modelled with this
calculus. In particular, the calculus lacks pattern matching and the notion of sharing of
computations. Patterns contain important information for strictness analyzers (Nöcker (1988)).
Sharing of computations is essential to obtain efficient implementations on traditional hardware.

Graph Rewriting systems are based on pattern matching and sharing. We believe that compared
to the λ-calculus graph rewriting systems (Barendregt et al. (1987a,b)) are better suited to serve
as computational model for functional languages. In the past we have defined and implemented
the intermediate language Clean (Brus et al. (1987)) based on graph rewriting systems with a
functional evaluation strategy and we have shown that efficient state-of-the-art implementations
on sequential hardware can be obtained by compiling functional languages to Clean (Koopman &
Nöcker (1988), van Hintum & van Schelven (1988)). However, on parallel hardware sharing
has to be handled with care, so it is not at all simple to make an efficient parallel implementation.

Lazy copying

Explicitly controlled copying can be very useful. In a sequential environment explicit control over
the copying process can be used to improve the efficiency of memory management In a parallel
environment communication between processors with local memory always involves copying.
With an explicit mechanism for copying the communication can be controlled on the level of the
rewriting system itself.

In this paper graph rewriting is extended with a notion of explicit (lazy) copying. When a full
copy is made, sharing is lost. Intentionally, sharing is used to prevent that the same computation
is performed more than once. With lazy copying it is possible to make a copy without loosing
this advantage. In this paper lazy copying will stand for the notion of having the possibility to
explicitly denote that a copy or a lazy copy has to be made.

Parallel Graph Rewriting on Loosely Coupled Machine Archileclures 119

Although in implementations generally some kind of copying/sharing scheme is used, up to now
it has never been incorporated in graph rewriting models.

For all these reasons we have given a more firm basis to lazy copying by explicitly incorporating

it in graph rewriting systems. Its merits in sequential and parallel environments will be

discussed.

A subclass of GRS's which is extended with lazy copying will be prefixed with С So the
abbreviation for general graph rewriting systems with lazy copying is C-GRS.

Parallel evaluation

At any stage during its evaluation a functional program may contain more than one function
application that can be rewritten (reducible expression or shorter redex). If in this context redexes
are rewritten in any order, the normal form (if it exists) will always be the same. The worst thing
that can happen is that a computation does not terminate. The unicity of normal forms offers the
theoretical possibility to reduce redexes in parallel. So, functional languages are often considered
to be well suited for parallel computation. Two kinds of parallelism are distinguished: fine grain
and coarse grain.

Fine grain parallelism

Although strictness is in general undecidable, it can be approximated by using strictness
analyzers which can find enough redexes (grains) that can be evaluated in parallel without
causing termination problems.

Fine grain machine architectures try to exploit this parallelism fully. In principle, any strict redex

is a candidate for evaluation. Unfortunately, these architectures, such as data flow machines

(Gurd et al. (1985), Arvind et al. (1987)), are very complex and not yet commercially available.

Coarse grain parallelism

Loosely coupled machine architectures, such as Transputer racks, are available on a wide scale.
But now one of the major problems is that most reductions of function applications will not
contain a sufficient amount of computation compared with the overhead costs caused by the inter-
processor communication (grain size problem). Therefore, for these architectures only those
redexes which yield a large amount of computation are suited to be evaluated in parallel. The
complexity of a grain is in general undecidable and furthermore no satisfactory automatic
approximation method has been developed.

So in this case it is necessary to have an explicit way of indicating the parallel redexes in a
program by using special language constructs. Developing an efficient program starts with some
sequential algorithm which is converted by one or more program transformation steps in order to
obtain a program containing useful grains. Especially the so called Divide-and-Conquer
algorithms are well suited to be treated in such a way. With only a few extra language primitives
Divide-and-Conquer algorithms have been implemented efficiently on parallel machines

120 Parallel Graph Rewriting on Loosely Coupled Machine Architectures

(McBurney & Sleep (1987)). However, this approach is only suited for hierarchical process
creation and communication, which is in general too restrictive.

In analogy with the concurrent imperative languages, a parallel functional language should
provide a way to create concurrent entities (processes) in a program, preferably without violating
the functional semantics. Arbitrary communications between processes have to be definable in a
general way. Special language constructs have been proposed to make process creation and
communication possible (see section 7.6). Mostly, these constructs are either rather ad hoc or
have limited expressive power. We are looking for powerful but elegant basic components
needed to realize dynamic process creation with arbitrary communication.

Parallel graph rewriting

By denoting subgraphs on which reduction processes have to be created, parallelism in graph
rewriting can be modelled. Reduction processes which evaluate an indicated subgraph, can be
created dynamically in an eager manner (immediately) and in a lazy manner (when needed).

A subclass of GRS's in which reducers can be created explicitly will be prefixed with P. So the
abbreviation for general graph rewriting systems with explicit parallelism is P-GRS.

Parallel graph rewriting with lazy copying

It will be shown that PC-GRS's (GRS's with explicit parallelism and lazy coping) have a
surprisingly high expressive power. Various process behaviours in different environments can
be described in PC-GRS's. In particular, loosely coupled parallel evaluation can be modelled
such that any process communication structure can be defined. In order to illustrate the
expressive power examples will be given of some non-trivial parallel algorithms.

Structure of this paper

The next section introduces graph rewriting briefly. After that in section 7.3 graph rewriting is
extended with lazy coping. In section 7.4 eager and lazy process creation are introduced. The
power of the combination of lazy copying and eager and lazy process creation is shown in
section 7.5. In particular, the use of the system to model parallel graph reduction on loosely
coupled parallel architectures is demonstrated. In section 7.6 comparisons with related work,
implementation aspects and directions for future research are given.

7.2 GRAPH REWRITING

In graph rewriting systems (Barendregt et al. (1987b)) a program is represented by a set of
rewrite rules. Each rewrite rule consists of a left-hand-side graph (the pattern), an optional right-
hand-side graph (the contractum) and one or more redirections. A graph is a set of nodes. Each
node has a defining node-identifier (the node id). A node consists of a symbol and a (possibly
empty) sequence of applied nodeid's (the arguments of the symbol). Applied nodeid's can be
seen as references (arcs) to nodes in the graph, as such they have a direction: from the node in
which the nodeid is applied to the node of which the nodeid is the defining identifier. Starting

Parallel Graph Rewriting on Loosely Coupled Machine Architectures 121

with an initial graph the graph is rewritten according to the rules. When the pattern matches a
subgraph, a rewrite can take place which consists of building the contractum and doing the
redirections. A redirection of one nodeid to another nodeid means that all applied occurrences of
one nodeid are replaced by occurrences of the other (in implementations this is realized by
overwriting the node or by using an indirection node). The part of the graph which matches the
pattern is sometimes called a redex.

A reduction strategy is a function which makes choices out of the available redexes. A reducer is
a process which reduces redexes which are indicated by the strategy. The result of a reducer is
reached as soon as the reduction strategy does not indicate redexes anymore. Reducers are
deterministic or non-deterministic. A reducer chooses (non-)deterministically one of the redexes
which are indicated by the strategy. In this paper only deterministic reducers are used. A graph is
in normal form if none of the patterns in the rules match any part of the graph. A graph is said to
be in root normal form when the root of a graph is not the root of a redex and can never become
the root of a redex. Note that the root normal form property is in general undecidable. When a
reducer terminates its result generally is a root normal form. Even if a graph has only one unique
normal form, this graph may be reduced to several root normal forms depending on how far the
subgraphs are reduced.

An important subclass of graph rewriting systems is the class which is defined by the following
restrictions:

- all graphs are connected;
- every rule has exactly one redirection which is a redirection from the root of the pattern to the

root of the contractum (or when there is no contractum, to the root of a subgraph indicated in
the pattern);

- no rule is left-comparing (rewriting systems where multiple occurrences of variables on left-
hand-sides are allowed are called left-comparing or non left-linear). No multiple occurrence of
variables implies that it is impossible to pattern match on equivalency of nodeid's (sharing).
In fact, a left-hand-side is always a graph without sharing (like a term).

- a special reduction strategy is used: the functional reduction strategy which resembles very
much the way execution proceeds in lazy functional languages (a full formal definition of this
strategy can be found in Smetsers et al. (1988)).

This class will be called: Functional Graph Rewriting Systems (FGRS's). In an FGRS every
rewrite implies that the root of the redex is redirected to another graph. Every node that after the
rewrite is not connected to the root of the graph, is considered to be non-existent (garbage).

FGRS's can be used for term graph rewriting (Barendregt et al. (1987a)). Term graph rewriting
connects term rewriting systems (TRS) (Klop (1987)) in which no sharing can be expressed,
with graph rewriting systems. Term graph rewriting means that a TRS is interpreted (lifted) as an
FGRS. The normal forms of the FGRS which are graphs, are unravelled to terms in the TRS
world. Via term graph rewriting in (Barendregt et al. (1987a)) it is proved that sharing terms is

122 Parallel Graph Rewriting on Loosely Coupled Machine Architectures

sound, furthermore restrictions are given which ensure completeness of sharing

implementations.

FGRS's are also the basis for Clean. Clean is an experimental functional language based on

graph rewriting (Brus et al. (1987)). The language is designed to provide a firm base for

functional programming. In particular, Clean is suitable and used as an intermediate language

between functional languages and sequential machine architectures. Every Clean program is an

FGRS.

Although the proposed extensions are also meaningful in more general graph rewriting systems,

throughout the rest of this paper it will be assumed that FGRS's are used. In all examples the

Clean syntax will be used. The extensions to graph rewriting which are proposed in this paper

will be incorporated in a new intermediate language: Concurrent Clean. This language is now

being defined (Smetsers et al. (1988)).

For an intuitive understanding of what follows it is not necessary to know all details of FGRS's.

Some general knowledge about graphs and functional languages will be sufficient. By giving

some FGRS examples the similarity between functional languages and FGRS's is illustrated.

Hd (Cons a b) -> a ;

Fib 0 -> 1 I
Fib 1 -> 1 I
Fib η -> +1 (Fib (—I n)) (Fib (-1 η 2))

First (Pair x:(Cons a b) y) -> χ ;

Ones -> χ : Cons 1 χ ;

Every expression is actually a graph consisting of nodes. Each node contains a symbol and a possibly empty
sequence of argument nodcid's. ΙΓ (hese nodcid's arc implicit, an ordinary tree structure is assumed. Using them
explicitly, one can define any graph siruciure. The last rule in the example is a typical graph rewrite rule
containing a cycle in the right-hand-side.

In many cases, the functional graph rewrite rules can intuitively be seen as ordinary function

definitions. Each function has one or more alternatives which are distinguished by patterns on the

left-hand-side of the definition. Symbols other than function symbols are called constructors

because they are usually used as data structures (i.e. constructs for defining new data types). For

practical reasons some types are assumed to be predefined, such as INT or BOOL. Furthermore,

some functions for arithmetic are assumed to be defined on these types, such as ++I (i.e. integer

increment) or *I (i.e. integer multiplication).

Influencing the order of evaluation

The FGRS's which are used in this paper, are allowed to be annotated. To every node and to

every nodeid one or more attributes can be assigned via annotations. Annotations have the form

of a string placed between curly braces. The only annotations which are used in this paper, are

annotations which influence the order of evaluation. These annotations play an important role

because they are parameters of the reduction strategy. The functional reduction strategy takes

them into account and therefore they influence the way in which a result is achieved. This is

Parallel Graph Rewriting on Loosely Coupled Machine Architectures 123

important if one wants to optimize the time and space behaviour of the reduction process. It is

assumed that annotations are never used in such a way that they influence the outcome of the

computation or the termination of the reduction.

In sequential FGRS's only one annotation is defined indicating that the reduction of the annotated

argument of a symbol (function or constructor) is demanded. This annotation, denoted by {! (or

(s tr ict) , will force the evaluation of the corresponding argument before it is tried to rewrite the

graph according to a rule definition of the symbol. Note that these annotations may make the

reduction strategy deviate from the default evaluation order which then becomes partially eager

instead of lazy. When more than one (!} annotation occurs on a right-hand-side, they are

effectuated depth-first from left to right.

The (s t r i c t) annotation is important because, in general, rules with strict arguments can be

implemented more efficiendy (Brus et al. (1987), Plasmeijer & van Eekelen (198-)).

Annotations can belong to a node (node annotation which is placed before the symbol of the

node) and to an argument (argument annotation placed in front of the argument). Annotations

may occur on the right-hand-side as well as on the left-hand-side of a rule.

Example of (!) on the righl-hand-sidc:

G η -> F (!) η

At this occurrence of F the evaluation of the argument is forced before F is applied.

Example of (!) on the left-hand-side:

F (Cons (!) n r) -> *I η (— I n)

At all occurrences of F the evaluation of the (sub)argumcnt is forced before applying ihe F rule. This can also
be achieved by the following transformed set of rules:

F (Cons η r) -> F' (Cons (!) n r)

F' (Cons η r) -> *I η (--I n)

In reasoning about programs with (!) annotations on the left-hand-side it will always be true that

the annotated argument will be in root normal form when the corresponding rule is applied. The

semantics of annotations on the left-hand-side can be explained via transformations to sets of

rules with right-hand-side annotations only. Intuitively, the transformation involves introducing

an extra internal reduction with an annotated right-hand-side which forces evaluation after some

matching but before the rule is applied. The precise transformation for ι !) can be found in

Smetsers et al. (1988).

7.3 EXTENDING FGRS'S WITH LAZY COPYING: C-FGRS'S

7.3.1 WHY COPYING?

It is very useful to have explicit graph copying in sequential environments (for reasons of

memory management) and in parallel environments (for off-loading a copy to another processor).

124 Parallel Graph Rewriting on Loosely Coupled Machine Architectures

One would expect however that it is already possible to express graph copying in graph rewriting

systems. Although this is indeed the case, it is rather complex.

A function has to be defined which duplicates its argument. Evidently, the following definition

only produces two pointers to the argument but it does not duplicate the argument itself!

An ordinary rewrite rule:

D u p l i c a t e χ -> Pair χ χ

the left graph

0 1 : D u p l i c a t e @2, -:
0 2 : P a i r 03 02,
0 3 : 1;

which is illustrated in the following picture:

reduces lo the right graph (@x is a denotation for a nodcid).

04
02
03

Pair 02 02,
Pair 03 02,
1;

Duplicate

rW Pair

ώ
ΐ ч

The only way to access the structure of the argument is to use pattern matching. The only way to
duplicate a constructor is to match on it on the left-hand-side and to create a new node with the
same constructor on the right-hand-side. Such a rewrite rule is needed for every constructor that
may appear. Furthermore, on the right-hand-side the graph structure of the argument has to be
duplicated. In order to make it possible to detect the shared nodes multiple occurrences of the
same nodeid on the left-hand-side should be introduced in FGRS's. Then, with many of such
left-comparing rules (and a special strategy that handles left-comparing rules: say the left-
comparing functional strategy) a structure can be copied unless it contains redexes and they have
to be copied too. To include that case the reduction strategy has to be changed again. All in all it
is very cumbersome to do graph copying within graph rewriting systems, because the copying is
not inherent. Rules that define copying, are themselves part of the system which makes it
difficult to reason about them because the copying gets intertwined with the rest of the
evaluation. In other words: copying is not part of the semantics of graph rewriting!

So, extending the semantics of FGRS's with a special tool to explicitly copy graphs (possibly
containing redexes) would considerably increase the expressive power of these graph rewriting
systems.

7.3.2 EAGER COPYING

To denote a graph g that should be copied, the node identifier which refers to the root of g is
attributed with a subscript с or copy. The с subscript can be placed on nodeid's of the right-hand-
side only. The copying takes place after the contractum is built and after the root of the redex is

Parallel Graph Rewriting on Loosely Couplcd Machine Architectures 125

redirected to the root of the contractum. All copies of one right-hand-side are instantiated

simultaneously.

Copying a graph g implies that an equivalent graph g' is made which has no nodes in common

with the original graph g. No reduction takes place. So, for every node of g (also for redexes)

there is an equivalent node in g'. Note that copy-equivalency is very much different from

reduction-equivalency.

A graph copying example:

Duplicate χ -> P a i r χ x c

the left graph
such

01: Duplicate @2,
@2: Pair @3 @2,
03: 1;

which is also illustrated in the following picture:

reduces to the right graph. The new nodeid's are chosen in
a way that the structure is easily seen.

04:
02:
03:
012:
013:

Pair
Pair
1,
Pair
1;

02 012,
03 02,

013 012,

Duplicate

I 1
A more complicated example with the same rule:

the left graph reduces lo the right graph

01: Duplicate 02,
02: Pair 01 03,
03: Pair 01 02;

* l P a i r I T I j l

P a i r

04
02
03
012
013
014

Pair
Pair
Pair
Pair
Pair
Pair

02 012,
04 03,
04 02,
014 013,
014 012,
012 012;

1
ù

126 Parallel Graph Rewriting on Loosely Coupled Machine Architectures

Note that the copying lakes place after the root of the ordinary redex is redirected to the root to the contractum.
The reduction is also illustrated in the following picture:

ê Pair liH-
J-S Palr

• Pair

_ ^ J

"T 1 * 1

Duplicate 1_

г

1
t Pair i 1

Pair (L i

"Я pai r iS_
r̂1—*-
r-b

 P a l r

••1 Pair

T ^ l

ту?!
This way of copying is also called eager copying in contrast to lazy copying which is defined in
the following sections.

7.3 .3 WHY LAZY COPYING?

Take a graph containing redexes. The extension of explicit copying to graph rewriting introduces
the possibility to copy this graph including all its redexes. There also is the possibility of sharing
the graph. Unfortunately, there is nothing in between.

However, duplication of work can be avoided by maintaining the sharing with the original graph
as long as the corresponding function applications have not been evaluated. If after the evaluation
to root normal form the copying is continued, the graph is duplicated after the work is done.

But, also it can be useful to break up the sharing. Take for example a function application that
delivers a large structure after relatively few reduction steps. When several parts of the program
only need certain parts of this structure, then in terms of memory management it can be more
efficient to copy the function application instead of sharing the large structure all the time.

Copying with the choice of maintaining or breaking up the sharing is called lazy copying.

Apart from the benefits of lazy copying in a sequential environment, lazy copying will serve as
the basis for the communication of processes in a parallel environment.

7.3.4 LAZY COPYING

A function application on which copying will be stopped temporarily, is called a deferred

function application. To denote a deferred function application the corresponding node is

Parallel Graph Rewriting on Loosely Coupled Machine Archileclures 127

attributed with a subscript d or deter. Such a node is called a deferred node. Because every node

has an explicit symbol, it is syntactically convenient to attach the attribute of the node to the

symbol of the node.

Lazy copying implies that when a copy action hits a deferred node, the copying itself is deferred.

The applied occurrence of the nodeid of the deferred node of which the (now deferred) copy was

being made, will be administered as being a copying deferred nodeid. When a deferred node is in

root normal form, the node will not longer be deferred. The actual copying may continue, but

this will only happen when this copy is demanded. The actual copy of a deferred node will not be

deferred.

Nodeid's of which the contents need to be known for matching, are according to the functional

reduction strategy first reduced to root normal form. Then, before the nodeid is accessed, a copy

will be made. So, read access via a copying deferred nodeid never occurs.

A lazy copying example:

S t a r t -> D u p l i c a t e (Facd 6)

•I n))

@2: Duplicate S3,

@3: Fac
d
 6;

@4: Pair @5 @5
C
,

05: 720
d
;

84: Pair @5 015,
05: 720,
815: 720;

Dupl

Fac
Fac

i c a t e χ -> P a i r χ x c

0 -> 1
η -> *I η (Fac (-

the following rewrites occur:

8 1 :

8 4 :
8 3 :

8 4 :
8 5 :

S t a r t ;

P a i r 03 0 3 c ,
Fac d 6;

Pa i r 05 0 5 c ,
720;

The nodeid attribute с in the graph is used to denote thai that the nodeid is a copying deferred nodeid. Note that
the с attribute was inherited when the node 0 3 was redirected to 0 5 which corresponded with the reduction of
the node. Do not confuse the с attribute in the graph with the с attribute in the rules which denotes that a copy
action has to be started. The deferred attribute of the node 0 5 is taken away when it is recognized that the node
is in root normal form.

The rewrites are also shown in the following picture:

Start I .> Duplicate a I ->

Fac,

I

128 Parallel Graph Rewriting on Loosely Coupled Machine Architectures

f
Fa с,

Pair

§
^ Ц 720d ~ |

Pair Pair
• ·

720 720

720

The fact that copying is deferred will be an attribute of an applied occurrence of a nodeid in the
graph, this attribute is always inherited when the nodeid is redirected to another nodeid.
However, when there are multiple copies they have to be distinguished. Multiple copies are
distinguished by numbering the attributes.

A lazy copying example with multiple copies:

Start -> Duplicate (Fac
d
 6) ;

Duplicate χ -> Triple χ x
c
 x

c
 ;

Fac 0
Fac η

-> 1

-> *I (Fac (—1 n))

the following rewrites occur:

@1: Start; @2: Duplicate @3,

@3: Facd 6;

84: Triple @5 в5
С 1
 @5

C2
,

35: 720d;

@4: Triple @5 015 @5
C2
,

@5: 720,
815: 720;

Both copies are deferred. They arc distinguished via numbers. Eventually, in the normal form two copies occur.

The copying deferred attribute number is not written down when there can be no confusion but

actually it is always there. Every copying deferred attribute is actually a number. When a copy

action has to be deferred, a new number is taken as the unique identification of this copy. So,

two applied occurrences of the same nodeid can have the same attribute number (meaning they

stand for the same copy of the nodeid), but it is impossible that two different nodeid's have the

same attribute number (the same copy of two different things is contradictory).

84:
83:

84:
85:

84:
85:
815:
825:

Triple
Facd 6,

Triple
720;

Triple
720,
720,
720;

83

85

85

еэ
С 1
 з

С 2
,

5
С1
 5

С2
,

815 825,

Parallel Graph Rewriting on Loosely Coupled Machine Archilecmres 129

As was already said, the attribute number is always inherited when a copying deferred nodeid is

redirected to another nodeid. When a not copying deferred nodeid is redirected to a copying

deferred nodeid, all replaced occurrences stand for one and the same copy all having the attribute

number of the copying deferred nodeid. Also when a copying deferred nodeid is bound on the

left-hand-side and used several times on the right-hand-side, all occurrences stand for the same

copy.

During a copy action all occurrences of attribute numbers are replaced by new attribute numbers

because a new copy of these nodeid's is demanded. Of course, the attribute number which stands

for the copy action that is being done, is not replaced. Furthermore, when an attribute number is

copied several times, all copies are replaced by the same new attribute number.

At first sight the fact that copying deferred attributes are numbered and that nodeid's with the

same attribute number must yield a pointer to the same copy, might seem hard to implement. In

the following paragraph the operational semantics of lazy copying is given. It also shows that

lazy copying is in fact very easy to implement via special indirection nodes. The actual nodeid's

of these indirection nodes represent the attribute numbers of the copying deferred nodeid's.

7.3.5 OPERATIONAL SEMANTICS OF LAZY COPYINC.

In this section the operational semantics of eager and lazy copying is explained informally. The

formal definition is given in Smetsers et al. (1988).

In order to explain the semantics introduce two special kind of indirection nodes are introduced: a

D(eferred) node: this node indicates that the function it is pointing to has the deferred attribute.

And a C(opy of such a deferred node) node: this node indicates that the graph it is pointing to still

has to be copied: the copying is deferred. If on a right-hand-side nodeid η is attributed with the

copy subscript, all nodes accessible from η have to be copied such that the new graph structure is

copy-equivalent with the old one. However, if the copy action hits on a D-node, a C-node which

refers to the D-node is created and the subgraph to which the D-node refers is not copied. If the

copy action hits on а С node, a new С node is created which has the same argument as the
original С node. The nodeid of the C-node represents the attribute number of the copying
deferred nodeid. After the copying has been performed this way, this rewrite is finished and
reduction continues as usual. The internal reduction rules of the D and C-nodes are the following:

D {!} χ - > χ
с {!) χ - > x c

Note that in this way the property that a function is "deferred" or "not yet copied" is inherited by

all function results until finally a root normal form is reached. Hereafter the reducer is able to

apply the special rewrite rules for D and С which will make these nodes disappear. Sharing a C-
node represents having the same attribute number and so it will lead to sharing of the same copy
after this indirection node is vanished. The mechanism of sharing and redirecting of indirection
nodes implements the attribute number administration.

If the previous example is considered again, it should be more clear what the semantics are:

130 Parallel Graph Rewriling on Loosely Coupled Machine Architectures

S I : S t a r t ;

@4

@i

ei
83

@4

01
Θ5

Pair Si @j,

D 83,

с ei,
Fac 6;

Pair 85 ej,
С 85,

720;

-»

which is also illusuated in the following picture:

Start

82

ei
83

Dupl icate 0i,

D 83,

Fac 6;

84: Pair ei @j,

Si

81
es

D 05,

с ei,
720;

@4: Pair 05 015,

85: 720,

815: 720;

Duplicate

L>
D

* J
Fac

->

->

±J

P a i r

D » 4 * F a c

g
Pair

D 720

P a i r

720

Pair

720

720

Note that when the deferred copy turns out to be not needed by the reduction strategy, the С rule

will never be executed, so the copying will not be continued.

7 . 3 . 6 DISCUSSION

Lazy copying can be used in two extreme ways: the case that all nodes are defenred and the case
that none of the nodes is deferred. This first form of copying will be called fully lazy copying. In
the second form always an equivalent copy of the original graph is made immediately (eager
copying).

An interesting aspect of lazy copying is that normal forms do not contain defer or copying

deferred attributes. In a normal form every subgraph is trivially in root normal form. Evaluation

Parallel Graph Rewriting on Loosely Coupled Machine Architectures 131

of nodes to root normal form eliminates the defer attributes. Evaluation to root normal form

and/or the attempt to access a node will cause the deferred copying to continue.

Normal forms:

this will be the normal form of S t a r t : With the following rule:

Start -> x: Pair 1 χ ;

Start -> x: Paird 1 χ :

Start -> x: Pair 1 x
c
;

it:

Start -> x: Paird 1
 x
c'"

Start -> x: Tripled 1 Xc
 x
c''

81: Pair 1 81;

81: Pair 1 81;

81: Pair 1 811,

811:Pair 1 811;

81: Pair 1 811,
eil:Pair 1 011;

8 1 : T r i p l e 1 811 S l c i ,
8 1 1 : T r i p l e 1 811 8 1 c , ;

Il a cycle.

Il a cycle.

Il a cycle with a copy of

II a once unravelled cycle.

II again:
Il a once unravelled cycle.

II every copy thai is done,
II leads to more
II unravelling: yielding
II an infinite normal form!

Lazy copying does influence the normal forms in the graph world. Sharing may be broken up

when a cycle is copied which contains deferred nodes. The result will be partly unravelled with

respect to a full copy. A typical example is given below.

With the following rules:

S t a r t r: A x c ,
x : В у,
у : Id ζ ,
ζ : С χ ;

the normal form is:

81 : A 812,
812: В 814,
814: С 822,
822: В 814;

without copy & d e f e r
the normal form is:

8 1 : A 8 2 ,
8 2 : В 8 4 ,
8 4 : С 8 2 ;

I x - > χ ;

Note that the right-hand-side of the Sta r t rule contains a cycle which can only be copied partly because the I
node is deferred. The ВС-cycle is once unravelled when it is copied, without the copy and d e f e r indications
the normal form would be just the cycle.

In C-FGRS's the normal form is also influenced by the order of evaluation (and hence by

annotations). If the deferred nodes are not reduced before an attempt to copy them is made, the

result will be partly unravelled. A typical example is given below.

With the following rules:

S t a r t

F χ

I χ

->

->

->

r: A (F x) ,
x : В у,
у : < !) I d ζ ,

ζ : С χ ;

X c ;

χ ;

the normal form is:

81 : A 813,
8 1 3 : В 815,
815: С 813;

without the (!)
the normal form is:

81 : A 013,
013 : в 015,
015 : С 0113,
0113: В 015;

Note thai an extra rule had to be introduced in order to delay the copying.

The unravelling of the normal forms of a rule system with lazy copying will always be the same

as the unravelling of the normal forms of the same rale system without lazy copying. In other

132 Parallel Graph Rewriting on Loosely Coupled Machine Architectures

words lazy copying is invariant under unravelling. This is an interesting property for the
implementation of functional languages and for term graph rewriting as in Barendregt et al.
(1987a). It seems that it enables the proof of the soundness and completeness of implementations
which use sharing and copying via term graph rewriting. Lazy copying and term graph rewriting
is a very promising topic for further research.

With the copy indication and the defer indication lazy copying is introduced in graph rewriting
systems. By introducing the possibility to use subtle combinations of sharing and copying this
greatly improves the expressive power of graph rewriting systems. Furthermore, in section 7.5 it
will be shown that lazy copying can also be the basis for communication in a parallel
environment.

7.4 EXTENDING FGRS'S WITH DYNAMIC PROCESS CREATION: P-FGRS'S

In this section graph rewriting will be extended with a way to create more reducers. Together
with the extension of the previous section this completes the proposed extensions to graph
rewriting.

As said before, in general there will be several redexes in the graph. One single sequential
reducer repeatedly chooses one of the redexes which are indicated by the reduction strategy and
rewrites it. Interleaved reduction can be obtained by incarnating several sequential reducers
which reduce different parts of the same graph. As has been explained in section 7.2 by using
(!) annotations it is possible to influence the order in which the redexes are reduced by a single
reducer.

Now a new annotation is introduced: (! !) or (process), to indicate that a new sequential
reducer has to be created with the following properties:

- the new reducer reduces the corresponding graph to root normal form after which the reducer
dies;

- the new reducer can proceed interleaved with the original reduction process;
- all rewrites are assumed to be indivisible actions;
- if for pattern matching or reduction a reducer needs access to a graph which is being rewritten

by another reducer, the first reducer will wait until the second one has reduced the graph to
root normal form.

The (process) annotation influences the overall order of evaluation because a new reducer
proceeds interleaved with the other reduction processes. In this paper all reducers are assumed to
use the same strategy. More precisely, they all use the functional strategy parametrized by
(s t r ic t) annotations (see also section 7.4.3).

If the (! !) annotation appears on the right-hand-side processes are created eagerly (see section
7.4.1), if the annotations appear on the left-hand-side processes are created lazy (see section
7.4.2).

Parallel Graph Rewnüng on Loosely Coupled Machine Architectures 133

7.4 .1 EAGER PROCESS CREATION

If a {! !) annotation is encountered in the right-hand-side by a reducer, a new reducer is created
after the redirection has been done (and if there is copying, also after the copying). This is called
eager process creation because for every (' !) annotation on the right-hand-side a process is
created before the next rewrite can be done.

Example of eager process creation:

Fib 0 -> 1 I
Fib 1 -> 1 I
Fib η -> +1 (Fib (-1 η 1)) [' ¡ ((F i b (-1 η 2))

The second operand of the integer addition will be calculated by a new reducer The original reducer can proceed
with the addition, calculating the first operand. Note that both reducers work on a subgraph sharing information
at node η . Due to the recursive définition of F ib a whole tree of reducers will be dynamically created in this
way.

7 .4 .2 LAZY PROCESS CREATION

If a {! !) annotation is specified on the left-hand-side, a new reducer is created just before the
original reducer would reduce the corresponding function application.

Example of I ! !) on ihe left-hand-side:

Fib 0 -> 1 I
Fib 1 -> 1 I
Fib η -> ParPlusI (Fib (-1 η 1)) (Fib (-1 η 2))

ParPlusI { ' !)n (!')m -> +1 η m

This is equivalent to the transformed set of rules given below.

Fib 0 -> 1 I
Fib 1 -> 1 I
Fib η -> ParPlusI (Fib (-1 η 1)) (Fib (-1 η 2))

ParPlusI η m -> ParPlusI' ('Чп { ' ']m
ParPlusI' (! }n (! }m -> +1 η m

It should be clear that with some internal reductions now in general two new reducers are created for each of ihe
operands of the integer addiUon. The extra { ' } annotations are introduced to ensure that the reduction strategy
will not reduce ParPlusI ' before Ihe processes on the arguments are finished.

In reasoning about programs with (' ') annotations on the left-hand-side it will always be true

that the annotated argument will have been reduced (by another reducer) to root normal form

when the corresponding rule is applied. The transformations for (' ·} on a left-hand-side are

similar to the ones for {!). They can be found in Smetsers et al. (1988).

7.4.3 DISCUSSION

The process annotation proposed in this section is very straightforward and quite similar to other

proposals (see section 7.6). Note the analogy between the (') and (' '} annotations. They both

influence the reduction order. They both make the evaluation partially eager instead of lazy. The

only aspect in which (· ·) differs from { м, is that a graph annotated with {' !) is reduced by a
new reducer while the original reducer can proceed with its reduction scheme.

134 Parallel Graph Rewriting on Loosely Coupled Machine Archilectures

Another way of looking at (! !) annotations is that they influence the overall reduction order. In
this view, {! !) annotations are parameters of the global reduction strategy (just as (!)). The
global reduction strategy will then indicate possibly more than one redex (every process may
have a redex). The global reducer will make a non-deterministic choice out of the redexes
indicated by the global strategy. A reference interpreter for PC-FGRS's which is being
developed at the University of Nijmegen adopts this view. There is no essential difference, but in
the context of this paper, the process view with deterministic reducers is preferred. This will
simplify the reasoning about locally weakening in the semantical restriction of interleaving to
parallelism.

Note that a deadlock of processes arises when processes are demanding each others results on a
cycle in the graph.

Ал example where deadlock may arise:

S t a r t - > x : (! ! } A y ,

у : (! ! } Β χ

A C - > С

В С - > С

Note that actually the graph is in normal form.

However if we analyze the rule system that is specified above, it is not surprising at all that the
evaluation may end in a deadlock sitution, namely, the rules define a process structure wherein
two processes are waiting for each others results: a classical deadlock. The possible occurence of
deadlock is inherent to systems in which one can describe arbitrary process communication. So,
just as one has to be careful to avoid non-termination due to the {!} annotations, one has to be
careful to avoid deadlock due to the {! !} annotations.

7.5 THE DESCRIPTIVE POWER OF PC-FGRS'S

In this section the power of the PC-FGRS's is illustrated by showing how with certain
combinations of process creation and lazy copying various kinds of process behaviours can be
modelled.

There are several kinds of behaviours one may be interested in, such as fine and coarse grain

parallelism, all kinds of process topologies (hierarchical and non-hierarchical process

topologies), synchronous and asynchronous communication between processes, etcetera.

At first glance it may seem easy to specify these behaviours in PC-GRS's, since there is the
possibility to create reducers dynamically. However, note that a rewriting step is considered to be
indivisible and without this assumption reasoning about rewriting systems is in general not
possible. Still, of course, one would like to be able to create reducers of which the rewriting
steps can be performed in parallel instead of interleaved. However, it should be clear that,
without any restrictions, parallel rewriting may cause a disaster. Imagine that a copy of a
subgraph is made while another reducer is working on that subgraph. Problems may also arise

Parallel Graph Rewriting on Loosely Coupled Machine Architectures 135

when redirections are performed in parallel. Probably there will not be a problem when two
reducers are running on subgraphs which have no node in common and no reference to each
other. One can imagine that, in general, the actual effect of parallel rewrites will highly depend on
the kind of implementation.

To call a reducer a parallel reducer with respect to another reducer it has to be proven that the
constraint that a rewrite step is an indivisible action can be weakened. More precisely, it has to be
proven that the corresponding rewrite steps actually can be performed in parallel because they
cannot interfere with each other and therefore may be considered as being indivisible. This
condition that has to be proven is also called the non-interference condition.

Hence, the claim that parallel computations can be expressed in our model can only be justified
by proving that, under specific conditions, certain reducers are parallel reducers with respect to
certain other reducers. Assumptions have to be made on the kind of machine architecture the
reduction is performed on. As argued in the introduction, we consider loosely coupled parallel
machine architectures (each processor has its private memory) as the most interesting class of
architectures. Therefore the possibility to model rewriting on this kind of architectures is treated
in detail in the next sections. The suitability to use the system to model rewriting on other
architectures is briefly discussed in section 7.5.3.

7 . 5 . 1 MODELLING REWRITING ON LOOSELY COUPLED PARALLEL ARCHITECTURES

A loosely coupled parallel computer is defined as a multiprocessor system which consists of a
number of self-contained computers, i.e. processors with their private memory, which are
connected by a sparsely connected network. An important property of such system is that for
each processor it is more efficient to access objects located in its own local memory than to use
the communication medium to access remote objects. In order to achieve an efficient
implementation it is necessary to map the computation graph to the physical processing elements
in such a way that the communication overhead due to the exchanging of data is relatively small.
Therefore, the computation graph is divided into a number of subgraphs (grains) which have the
property that the intermediate links are sparsely used.

Unfortunately, it is undecidable how much work the reduction of a subgraph involves.
Furthermore, there are no well-established heuristics for dividing a graph into grains. So, this
partition of the graph cannot automatically be performed. Therefore, in the program it has to be
explicitly indicated what is expected to represent a large amount of reductions relative to the
expected communication overhead. In this way the program can be tuned to a particular parallel
machine architecture.

The annotations and indications in the PC-FGRS have to be used in such a way that non­
interference can be proven for reducers which might be reduced on different processors.

In order to avoid the need for a proof for every PC-FGRS methods of annotating and indicating
will be developed. Using these methods will guarantee that parallel execution of groups of
reducers is allowed. The methods differ in expressive power with respect to process creation and

136 Parallel Graph Rewriting on Loosely Coupled Machine Archuectures

communication. They range from divide-and-conquer process behaviour to remote lazy process

creation.

Dmde-and-Conquer evaluation

An obvious method to get safe parallelism is to create a reducer on a copy of an indicated

subgraph. Such a copied subgraph has the property that it is self-contained, i.e. the root of the

subgraph is the only connection between the subgraph and the rest of the graph. This will make it

possible that the copied subgraph is reduced in parallel on another processor. When it is reduced

to root normal form the result will be copied back to the father processor. So, copying is

performed twice: one copy is made of the task for the off-loading of the task and one copy is

made of the result to communicate it to the father.

A self-contained subgraph will be regarded as a virtual processor because it has the property that

it may be reduced on another processor. A reducer is also called a process.

It is easy to prove that on a self-contained subgraph it is allowed to weaken the interleaving

restriction to parallelism: the self-contained subgraph can only be accessed by other reducers via

the root and the semantics of P-FGRS's does not allow reducers to access a node on which

another reducer is running.

Example of a divide-and-conquer algonihnr

Fib 0 -> 1 I
Fib 1 -> 1 I
Fib η -> +1 l e f t c r i g h t c ,

l e f t : t 'MFibd (-1 n c 1) ,
r i g h t : { ' ' } F i b d (-1 n c 2)

The { ' ' } annotations combined with the copy and defer indications specify lhat both calls of F ib can be
evaluated in parallel The graph on which each process runs is self-contained because the root of (he graph on
which a process is started, is built with copies of subgraphs as arguments. The father reducer is already started
with copying the result but this is immediately deferred. The copying of the result can continue each time when
an argument of +1 is in root normal form The following picture illustrates the virtual processor structure after
one reducuon of Fib 5:

V.

+1

F l b d

- I

с

Î 4

t
τ г
τ

Л r

1
Ι ι r

г]

>

*
F i b d

- I

J_
Τ
1

1
1

1
5 и

processor 2 Vpr processor 3

Parallel Graph Rewriting on Loosely Coupled Machine Architectures 137

An alternative hierarchical process structure is obtained if the father reducer would reduce the left argument by
itself. This woould have been easily achieved by leaving out all annotations and indications in the definition and
application of l e f t and by replacement of 1 ! !) by (! 1.

This way of modelling divide-and-conquer algorithms relies on the fact that the subgraph to be
reduced is self-contained and that after the reduction to root normal form, the result is also self-
contained. However, this method of modelling can only be used for this kind of algorithms.

Modelling loosely coupled evaluation

A method which makes it possible to model process behaviours which are more general than
divide-and-conquer, must provide a way to define arbitrary connections between processes and
processors. So, self-contained subgraphs as used in the previous section are in general too
limited.

The lazy copy scheme introduced in section 7.3 provides a way to make a self-contained copy on
a lazy manner. Such a lazy copy is a self-contained subgraph with the exception of copying
deferred nodeid's, which are references to deferred nodes in the graph. These deferred nodes
will be copied later if they are in root normal form and needed for the evaluation. So, copying
deferred nodeid's are natural candidates for serving as interconnections between parallel
executing processes because they induce further copying when they are accessed. Therefore,
communication between parallel processes will be realized via copying deferred nodeid's. In this
context copying deferred nodeid's are also called communication channels or just channels.

A subgraph is loosely connected if channels (copying deferred nodeid's) are the only connections
between the subgraph and the rest of the graph. Note that this implies that a self-contained
subgraph is loosely connected if its root is a channel. A loosely connected subgraph is called a
virtual processor because it has the property that it may be reduced on another processor. Several
processes (reducers) can run on such a virtual processor. Processes running on the same virtual
processor are running interleaved. So, there is interleaved multiprocessing on each virtual
processor. Processes running on different virtual processors run in parallel.

Note that the definition of virtual processor in this section differs from the definition which was
given in the previous section. In all following sections the new (more general) definition will be
used.

Now, suppose that a parallel process is reducing a loosely connected subgraph. This process
may need the reduction of a channel connected to another processor. This channel cannot be
reduced by the demanding process. It has to be reduced by another process running on the virtual
processor which contains the channel.

The semantics of copying deferred nodeid's implies that channels have the following properties.
The flow of data through a channel is the reverse of the direction of the copying deferred nodeid
in the graph. Since channels are nodeid's, they can be passed as parameters or copied. However,
when the subgraph to which the channel refers to is needed, the process will be suspended until
the result is calculated by a process running on the other processor. A channel can be used to

138 Parallel Graph Rcwiilmg on Loosely Couplcd Machine Architectures

retrieve an (intermediate) result in a demand-driven way, i.e. as soon as the result of a
subreduction is needed a request for the result is made. This request will be answered if the
corresponding result is in root normal form. Note that the channel vanishes after the result has
been returned. Because the copying is lazy new channels may have come into existence.

The question is now when is the non-interference condition fulfilled for reducers running on
different virtual processors such that they can run in parallel instead of interleaved. The non­
interference condition is satisfied if the following conditions are met. It must be guaranteed
throughout the execution of the program that when a parallel reducer is demanding information
from a channel which refers to another virtual processor,

- this subgraph is either in root normal form (such that it can be lazy-copied to the demanding
process) or,

- there is a process running on the other virtual processor which is reducing the subgraph if it is
not yet in root normal form (such that the demanding process will wait until the information
has been reduced to root normal form).

Virtual processors which satisfy these conditions are called loosely coupled virtual processors.

It is possible to prove that this allows the weakening of the restriction of interleaving to
parallelism with respect to the loosely coupled virtual processors: parallel reducers running on
different virtual processors work on loosely connected subgraphs. They can only access
subgraphs on other processors via copying deferred nodeid's (channels). The demanding reducer
will wait if the information is not in root normal form because in that case another process is
reducing the information. If the information is in root normal form a lazy copy is made. In that
case the resulting graph, i.e. the original graph of the demanding reducer together with the copy
that has been made, is also loosely connected.

Unfortunately, it is in general undecidable whether virtual processors are also loosely coupled
virtual processors. In general one cannot prove, when a parallel reducer is demanding
information from a channel, that this information will either be in root normal form or that there
will be a process running on it.

A method to create loosely coupled virtual processors

The obvious method which guarantees that virtual processors are loosely coupled, is by creating
a reducer on every deferred node. Hence, when a deferred node is created, at the same time also
a process is started which reduces the deferred node. So, when via a copy a channel will be
created to the node, the node will already be in root normal form or a reducer is still reducing it to
root normal form. Therefore using this method the non-interference condition is guaranteed to be
true.

We introduce two abbreviations (e) and (i] that can be put on a node n.

Parallel Graph Rewriting on Loosely Coupled Machine Architectures 139

Example:

Fib η -> +1 left right,
left: (i) Fib (-1 η 1),
right: (e) Fib (-1 η 2)

The {e} abbreviation (e for external) will create a new loosely coupled virtual processor together

with an external reducer which reduces the corresponding loosely connected subgraph in parallel.

To realize this, a channel to a lazy copy of the subgraph is made and a process is created to

reduce this copy. The channel provides that a (lazy) copy of the result is returned if its value is

demanded on other processors. In particular a lazy copy of the result is returned to the father

process if it demands its value.

The Ш abbreviation (i for internal) will create a new internal reducer on the same virtual

processor which reduces the corresponding subgraph interleaved with the other processes on the

same virtual processor. A deferred node to this subgraph is created which provides that a (lazy)

copy of the result is returned if its value is demanded on other virtual processors (since all virtual

processor are created via lazy copies, this demand will come via a channel). To realize this, a

deferred node to the indicated subgraph is made and a process is created to reduce it.

The fe} and [i} abbreviations may be used on the same positions as annotations. For each

occurrence a simple program transformation is made. More precisely,

Each occurrence of: will be substituted by:

η : {e} Sym aj . . an η : I x c ,
χ : (! !) Id Ус,

у : Sym ax . . an

A reducer is created by the (! ! } annotation, it will reduce a node which contains the identity function of a lazy
copy of ihe annotated node Sym ai . . an. The node on which the reducer is started, is itself deferred and a
channel is immediately created to it via the copy in the new definition of the node n.

η : (i) Sym a! . . an η : {! !) Id x,

χ : Sym a i . . a n

A reducer is created on a deferred node. All sharing is maintained.

The nodeid's χ and у in the substitution rules stand for nodcid's not used elsewhere in the rewrite rale.

I is just the identity function: ι χ -> χ;
The indirection nodes are created to see to it that the copies are made correctly. In the following they are
considered to be internal nodes.

When an {e) or (i) abbreviation is put on a nodeid, this is equivalent with putting it on the node

the nodeid belongs to.

Examples

In this section some small examples are given illustrating the expressive power of the method for

loosely coupled evaluation.

140 Parallel Graph Rewriting on Loosely Coupled Machine Architectures

Non-hierarchical process topology

With the (e) abbreviation parallel (sub)reduction can be created and distnbuted over a number of

virtual processors. With the creation of internal processes by using {ι), multiprocessing can be

realized on each virtual processor. The only way to refer to such an internal process is via its

channel. If such a channel node is passed (via a lazy copy) to another virtual processor, a

communication channel between this processor and the reducer on the original processor is

established. In this way any number and any topology of communication channels between

processes and processors can be set up. For instance, it is possible to model a cycle of virtual

processors. An example of this is given in one of the example programs of section 7.5.2. In the

following example a simple non-hierarchical process topology is demonstrated. It serves the

purpose of explaining how such process topologies can be expressed (it does not realistically

implement the Fibonacci function).

The F i b example using a non-hierarchical process structure (which is very unconventional for Fib) : the
second call of F i b will be executed on another virtual processor but the argument of lhat call is reduced
internally on the virtual processor lhat also does the first call of Fib

F ib 0
Fib 1
F i b η

1
1
+ 1
m:
о:

(Fib (-ι η и :
(e l Fib о,
(i l - Ι η 2

which is equivalent to:

Fib 0
Fib 1
Fib η

1

1

+ 1

m :

χ :

У :

(Fib (-1 ni)) m,

I Xa
(") Id Ус/
Fib о,

1'') Id ζ,
-Ι η 2

So the following process topology is obtained (a snapshot of Ihc program execution of Fib 5 is given):

r
+ 1

F i b

- I

1

'

1

'

1

'
1

r

d

jj

^•process 1 -

^-processor 1

Ί
n.

^-process 2
IE

-** h

Fib

-process 3·

V

?

processor 2

In the picture it is shown how the graph is dislnbulcd over two virtual processors Channels are dashed. Note
that the direction of the flow of data through a channel is the reverse of the direction of the corresponding

Parallel Graph Rewnlmg on Loosely Coupled Machine Architectures 141

reference in the graph In the following, internal indirection nodes are noi shown in pictures and their defer
indications are added to the nodes they refer to.

Asynchronous Virtual Processor Communication with Streams

It is possible to model asynchronous communication between virtual processors, i.e. a virtual

processor is already computing the next data before the previous data is communicated. To

achieve this a family of internal processes has to be created connected to the communication

channel between the processors. Each process computes a partial result which can be send across

the channel. Just before a process delivers the partial result (and dies) it creates a new process

chained via a new channel to the delivered result This new member of the family will compute

the next partial result on the same way. For convenience sake, such a cascaded family of

processes is often regarded as being one (asynchronously) sending process with some family

name. The chain of channels is then regarded to be one channel. The total result which is copied,

is sometimes called a stream. Note that this kind of stream is capable of sending over more than

one node (a burst) at the same time. Furthermore, these streams can contain cyclic graphs such

that cycles can be sent to another processor.

A virtuai processor may contain several such families each producing a stream via a chain of

channels. In the case of the following filter example the virtual processor contains exactly one

such process: F i l t e r . It sends a stream via the channel to the process P r i n t .

The following example describes an asynchronous communication behaviour with streams:

Start list -> Print s,

s: {el Filter list 2

Filter Nil η -> Nil I
Filter (Cons f r) η -> IF (=1 (MOD f η) 0)

(Filter r n)
(NewFilter f r pr)

NewFilter f r pr -> Cons f rest,

rest: (i(Filter r pr

The main virtual processor creates a new virtual processor on which the F i l t e r process is started The channel
s is the communication channel between the two processors. The function F i l t e r removes from its first
argument, which is a list, all the elements which are divisible by the number η A part of the stream becomes
available as soon as F i l t e r has computed an clement of the result list and a new interleaved F i l t e r process
has been created. It may start already computing the next element of the stream before the first is asked to be
communicated. The partial stream result is a list containing the first clement and a new channel reference to the
new filtenng process.

Assume that the list to be filtered is the list containing the natural numbers from 1 to 7. Then the following
situations can anse:

142 Parallel Graph Rewriting on Loosely Coupled Machine Architectures

•»processor 1
" a c t i v e P r i n t e r p r o c e s s

Cons ^ ^ f j Γι
• « l i ; » Cons ·

ш 1 ...a '"•died Filter ../ '•-died Filter .S '*·-αιβα Filter
t

I
F i l t e r

· - r u u

^processor 2 active Filter process
IH) У

Now the three list elements, root normal forms yielded by successive filter processes, can be shipped with one
lazy copy action.

/
P r i n t

s » ·—I №· Cons 4

• δ
• ·

" p r o c e s s o r 1
•active Printer process

(7*

F i l t e r d · · • Cons Ч^

\ì i r

7 I N i l

active Filter process
^ - p r o c e s s o r 2

The sieve of Eratosthenes

The sieve of Eratosthenes is a classical example which generates all prime numbers. A pipeline of
virtual processors is created. On each processor a sieve process (a family of processes actually)
is running. Those Sieves hold the prime numbers in ascending order, one in each sieve. Each
Sieve accepts a stream of integers as its input. Those integers are not divisible by any of the

Parallel Graph Rewriting on Loosely Coupled Machine Architectures 143

foregoing primes in the pipeline. If an incoming integer is not divisible by the local prime as

well, it is send to the next sieve. A newly created sieve accepts the first incoming integer as its

own prime and outputs this prime and the channel of the next sieve to a printing processor.

After that it starts sieving. A virtual processor called Gen sends a stream of integers greater than

one to the first sieve.

The Gen process and every sieve process proceed in more or less the same way as the Fi l ter
process of the previous example. They all are actually families of processes servicing chains of
channels. They are regarded as single processes. Every chain of channels is regarded as one
channel.

This can be represented in a picture as below (all arrows indicate flow of data on channels):

Print

Gen Sievel $s- Sieve2 Зіе еЗ

So sievel holds 2 as its own prime, sieve2 holds 3, sieve3 holds 5, and so on. The printing
process one by one receives the channel identifications from these sieves and collects the
corresponding primes. Seen through the time this can be illustrated as follows:

Print

Gen

ti
¡

ъ- Sievel

»

ki. Sieve2 Шт « . , - . . - ,

The Sieve:

Start

Sieve (Cons pr stream)

Gen η

Filter (Cons f r) pr

NewFilter f r pr

Print s,
s: (e) Sieve g,
g: (e) Gen 2

Cons pr s,
s: (e) Sieve f,
f: {i| Filter stream pr

Cons η rest,
rest : (i) Gen (!) (++I n)

IF (=1 (MOD f pr) 0)
(Filter r pr)
(NewFilter f r pr)

Cons f rest,

rest: fi) Filter r pr

Note that when the (!} annotation in Gen would be left out, the increments of the integers would

not be evaluated by Gen but by the first sieve. Even worse: because the result of Gen is copied,

the sieve would have to recalculate every new integer by increments starting from 2.

144 Parallel Graph Rewriting on Loosely Coupled Machine Architectures

Extending the method with lazy process creation

With the {i) and (e) abbreviations processes and processors are created eagerly. However,

sometimes it is necessary that processes and processors are created lazy. Since on a real

architecture resources are limited, eager process and processor creation may cause serious

problems in practise.. Furthermore, eager evaluation may cause infinite computations. With the

following abbreviations we extend our method with (2.1} lazy process and (ex} lazy processor

creation.

Each occurrence of:

η : (e i) Sym a i .

η : (i i) Sym a ! .

• a n

• a n

will be substituted by.

η : I x c ,
χ : Lid У с
у : Sym a i

η : Lid x#
χ : Sym a i

I is just the idenuty funcüon: Ι χ -> χ ;

LI is an idenuty funcüon on which a process is created when its evaluation is demanded:

(· ') LI χ -> x ;

The nodeid's χ and y m the Subsumtion rules stand for nodeid's not used elsewhere in the rewrite rule Just as
with eager virtual processor creation, the indirection nodes are created to see to it that the copies are made
correctly. In the following they are considered to be internal nodes.

Note that this extended method will create a channel on which a process is created automatically

when its result is demanded. So, the non-interference condition which allows the weakening the

restriction of interleaving, is fulfilled trivially.

Compare the next example with the previous filter example. The filtering now only takes place on demand of
the pnnung process Only when the printer wants a new filtered value, the filter calculates the next value.

Start list -> Print s,

з: (ei) Filter list 2

Filter Nil η -> Nil I
Filter (Cons f r) η -> IF (=1 (MOD f η) 0)

(Filter r n)
(NewFilter f r n) ;

NewFilter f r η -> Cons f rest,

rest: (ii) Filter r η ;

7.5.2 CHALLENGES FOR PARALLEL GRAPH REWRITING

Finally, the descriptive power of the proposed methods for loosely coupled evaluation is

illustrated by applying them to meet two challenges which have been set for parallel graph

rewriting. The classical Bounded Buffer algorithm and Warshall's shortest path algorithm. The

second algorithm has also been used in a large ESPRIT project on parallel architectures and

languages (Augusteijn (1985a), Augusteijn (1985b)) to test the expressiveness of parallel

languages.

Parallel Graph Rewriting on Loosely Coupled Machine Architectures 145

Bounded Buffer

The first challenge to consider is the classical bounded buffer algorithm which is a test in

expressing a certain memory and synchronization behaviour. In terms of its result as a function it

is equivalent to the identity function.

The wanted memory and synchronization behaviour is the following. Other processes are trying

to put elements in the buffer or to take elements out the buffer. At any time not more than s i z e

elements are in the buffer. When the buffer is full, no element can be put in. When the buffer is

empty, no element can be taken out. When the buffer is not full or not empty, elements must be

allowed to be put in or taken out.

The memory and synchronization behaviour will be modelled via a family of processes. Together

they are executed externally. Putting an element in the buffer is modelled via the list which is an

argument of the function Buffer. When a reducer has rewritten GetNextEi or Buffer with the

element to put in the buffer at the head of the list, then the element is in the buffer. Taking an

element out of the buffer is modelled via the copying of the element of the result list to the

Consume prOCCSS.

S t a r t

Buffer size (Cons hd tl)

GetNextEi 0 list
GetNextEi η (Cons hd tl)

Consume χ

Produce

BufferSize

Consume x,
x: (e) Buffer BufferSize y,
y: (e) Produce

Cons hd rb,
rb: fill Buffer size re,
re: (i(GetNextEi size tl

>
>

>

>

>

list
Cons hd re,
re: U) GetNextEi

Print χ

Gen 2

100

< — I n) tl

This is the complete program. When an element is taken out of the buffer, a new Buffer is lazy

created. By rippling through the buffer this new Buffer reducer will start a new GetNextEi

reducer to input an element when s ize- i other elements have been put in.

A parallel version of Warshall's shortest path algorithm

The second challenge that is considered, is a parallel version of Warshall's solution for the

shortest path problem :

Given a graph G consisting of N nodes and directed edges with a distance associated with each edge. The graph
can be represented by an Ν χ N matrix in which the clement at the i-th row and in the j-th column is equal to
the distance from node i to node j . Warshall's shortest path algorithm is able to find the shortest path within
this graph between any two nodes.

146 Parallel Graph Rewriting on Loosely Coupled Machine Architectures

Warshall's shortest path algorithm:

A path from node j to node к is said to contain a node i if iL can be splil in two paths, one from node j lo node i
and one from node i to node к (i/j & i^k). Let SP(j,k,i) denote Ihc length of the shortest path from node j to
node к that contains only nodes less than or equal to i (0<i & l<j,k & i JJÍ<N).
So

SP(j,M>) =0 ifj=k
= d if there is an edge from j lo к with distance d
= «о otherwise

SP (j.k,i) = minimum (SP O.k.i-1). SP (M.'"1) + SP (i,k,i-l))

Define a matrix M as follows: M[j,kJ = SP QM,i) for some i. The final shortest path matrix can be computed
itcralively by varying i from 0 to N using the equations as described above.

Observing the algorithm it can be concluded that during the i-th iteration the updating of the rows

of the matrix can be performed in parallel. Therefore a separate process is introduced for each

row of the matrix that updates its row during each iteration step. In the i-th iteration all the

processes need to have access to row i as well as to their own row. This can be achieved by

letting process i distribute its own row as soon as the i-th iteration starts. At first sight it seems to

be difficult to express this updating and iterating in a parallel functional language. It will be

shown how it can be expressed using the proposed method for loosely coupled evaluation.

As in previous examples, all processes are actually families of processes.

Representing the process structure in a picture gives (all arrows indicate flow of data on

channels):

Collect

Τ
¿»I Ro Row 1 Row 2 •%» Row i Row i+1 RowN

Initially, all the row processes Row i are created and the initial matrix is distributed to these

processes. Before Row i performs its i-th iteration it distributes its own row to the other

processes. This is done in a pipeline, i.e. Row i sends its own row to Row j via Row i+i,.. . ,

Row j - i and Row j (counting modulo N from i to j). Process c o l l e c t asks all the row

processes for sending their final result in the same way as the Print process asked for all prime

numbers in the s ieve example of section 7.5.1 (in the picture all channels are drawn which at

different moments serve this purpose).

All processes are to be created eagerly, so the proposed method will be used without the

extensions for lazy process creation. Then, the fairly complicated process graph can be specified

directly in the following way:

Start -> Collect out,
out: le) Create

Create out: Row 1 Initmat (Second out)

Parallel Graph Rewriting on Loosely Coupled Machine Architectures 147

Row к (Cons row_n Nil) left -> Tup (Cons chanl Nil) chan2,
chanl: (i) Finalrow chan2,
chan2: (i) Iterate к 1 row_n left I

Row к (Cons row_k restmat) left -> Tup (Cons chanl (!)(First next))
I !) (Second next),

chanl: (i) Finalrow chan2,
chan2: (i) Iterate к 1 row_k left,
next: (e) Row (!)(++! k) restmat

chan2;

Create becomes the first Row process which has a reference to itself in order to make it possible
to expand it to a cyclic row of processes. Each Row has two internal reducers of which one
process will communicate with the other Rows during the iteration. The other selects the final
result and communicates it to Collect. Each newly created ROW process should be connected to
the preceding process by a channel. In order to create a channel from the process Row i to the
process Row i+i, a reference to the first one should be given to the second one. This reference is
passed via the parameter le f t of the function Row. The result of Row is a tuple (finalmat,
rowprocN) in which finalmat is a list of channels to the Row processes. These can be used by
Collect to retrieve the final result matrix. The second part of the result of create, called

О

rowprocN, is a reference to process Row Ν which should be given to the first one in order to

make the cycle of Row processes complete.

In this context, the iteration process is very simple:

Iterate к i row_k left ->
IF <>I i Size)

(Cons row_k Nil)
(IF (=1 к i)

(Cons row_k nextit)
(Cons row_i update)

> ,
nextit: (i) Iterate к (++I i) row_k (Tail left),
update: (i) Iterate к (++I i) (Updaterow row_k row_i dist_k_to_i)

(Tail left),
row_i: Head left,
dist_k_to_i: Get row_k i ;

Every iteration starts the next iteration as a new incarnation of itself via a new internal process.

Before an iteration starts, i t e r a t e should output the i-th row. The i-th row is either the row of

i terate itself or the row belonging to the left Row process. At the end i t e r a t e outputs its own

row. The rest of the program is straightforward.

7.5.3 MODELLING REWRITING ON OTHER ARCHITECTURES

In this section the possibility to use PC-FGRS's to model rewriting on other kind of architectures
is briefly discussed.

Multiprocessing on a single processor

Consider a single processor. Such a processor can be regarded as a special case of a
multiprocessor architecture: there is only one processor. Therefore, a PC-FGRS is also suited to
model rewriting on such an architecture. Although no real parallelism is possible on a single
processor, the possibility to have "multireducing" is important. The classical example is of

148 Parallel Graph Rewriting on Loosely Coupled Machine Architeclures

course an operating system. On a single processor the context switch between reducers can be
controlled without problems such that it can be guaranteed that each rewrite step is indeed
indivisible in practise.

Parallel architecture with global memory

Consider a multiprocessor architecture with a global memory and a reducer running on every
processor. If each rewrite step really would be indivisible there would be no parallelism left. If
the indivisibility is not guaranteed one has to be very careful to assure that the modification of the
graph by one reducer does not interfere with the rewrite action of another reducer.

One can regard this kind of architecture as a special case of a loosely coupled architecture. The
methods introduced for loosely coupled architectures introduced in the previous section, can also
be used for architectures with global memories.

If one would like to have maximum benefit of the global memory, the level of PC-FGRS's is too
high. An other method is to make detailed assumptions on the way reducers are actually
implemented. For instance, one can make an abstraction of the kind of machine code that
presumably will be generated (take for example G-machine code (Johnson (1984)) or ABC-
machine code (Plasmeijer & van Eekelen (198-)). With this knowledge one can invent some
clever locking scheme which assures that, preferably without loosing too much parallelism,
wrong results cannot be produced. Another possibility is to search for certain classes of PC-
FGRS's for which it can be proven that the reducers can run in parallel without additional
locking (Kennaway (1988a)).

Research aimed at identifying situations in which in global memory architectures copying can be
an efficient alternative for locking, might be very worthwhile.

Systolic arrays

It is possible to model synchronous communication which occurs in parallel architectures like
systolic arrays. In such architectures the processors are synchronized and must communicate at
exactly the same moment. This involves communication with a central clocking device. By
specifying the clocking device explicitly as a separate process in the system also systolic
synchronous communication can be modelled.

7.5 .4 DISCUSSION

It is clear that with the proposed abbreviations parallel programming is much easier than without
them. They clearly represent the process structure. Still one has to be careful with their use.
Normally the abbreviations will be used to obtain a parallel version of an ordinary sequential
program. In general the sequential program has to be transformed to create the wanted processes
and process topologies.

If the abbreviations of any parallel program are regarded as comments, again a sequential version
of the program is obtained. In the given examples such a sequential version would yield the same

Parallel Graph Rewriting on Loosely Coupled Machine Architectures 149

rith the fol

Start

F χ

I χ

lowing

->

->

->

: rules:

r: A (F x) ,
x : В у,
у : (Ü H d ζ ,
ζ : С χ ;

Х с ;

χ ;

die normal form can be:
(doing I before F)

8 1 : A @13,
813: В 015,
S I S : С 013;

result as the parallel version. Unfortunately, in general the normal form is not unique. In section
7.3.6 it was showed that the normal form in a C-FGRS depends on the order of evaluation. In
section 7.4.3 it was explained that the overall reduction strategy of a P-FGRS is non-
deterministic. Hence the normal form PC-FGRS will in general depend on the choices made by
the reducer. A typical example is given below.

but also it can be:
(doing F before I)

01 : A 013,
013 : В 015,
015 : С 0113,
0 1 1 3 : В 015;

Although the normal form is not unique, the different normal forms which can be produced are
related. Modulo unravelling they are the same, i.e. if the normal forms are unravelled to terms,
these terms are the same. This is a very important property. The consequence is that the use of
PC-FGRS's as a base for the implementation of functional languages or of term rewriting
systems is sound. In these cases first the terms are lifted to graphs and after reduction the graph
in normal form will be unravelled to a term again. Then, always the same term will be yielded.

Although the proposed abbreviations are very promising, perhaps for certain problems other
combinations of lazy copying and process creation can be found which for such a particular case
guarantee non-interference.

7.6 GENERAL DISCUSSION

Related work

The idea to use annotations (Burton (1987), Glauert et al. (1987c), Goguen et al. (1986), Hudak
& Smith (1986)) or special functions (Kluge (1983), Vree & Hartel (1988)) which control the
reduction order is certainly not new. Some of them are introduced on the level of the
programming language (Burton (1987), Hudak & Smith (1986), Vree & Hartel (1988)) while
others are introduced on the level of the computational model (Glauert et al. (1987c), Goguen et
al. (1986), rouge (1983)). They all express that an indicated expression has to be shipped to
another (or to some concrete) processor. Most annotations (Hudak & Smith (1986), Goguen et
al. (1986), Kluge (1983), Vree & Hartel (1988)) are only capable of generating strict hierarchical
"divide-and-conquer parallelism". Non-hierarchical process structures are possible in Burton's
proposal. He proposes a call-by-name parameter passing mechanism (which must involve
copying of some nodes) between mutual recursive functions. In DACTL (Glauert et al. (1987c)),
also based on Graph Rewriting Systems (Barendregt et al. (1987b)) there is no overall reduction
strategy. This means that the reduction order is completely controlled by the annotations in the
rewrite rules. This makes DACTL very suited for fine grain parallelism, but makes it very hard to

150 Parallel Graph Rewriting on Loosely Coupled Machine Architectures

reason about the overall behaviour of the program. In all proposals copying graphs from one
processors to another and back is implicit and cycles cannot be copied.

Some annotations (Burton (1987), Hudak & Smith (1986)) are not only used to control
parallelism but also to control the actual load distribution. Annotations for load distribution are
not yet incorporated in the model, primarily because virtual processors can be freely created on
the level of the computational model. Hence, another processor is just created (for instance using
(e) and (ei)) when it is needed. However, not only for practical reasons, but also in order to
reason about issues like load balancing, we will investigate the specification of load distribution
in the future.

Implementation aspects

We already know that efficient implementation of FGRS's is possible on sequential hardware
(Brus et al. (1987)). Type information (Plasmeijer & van Eekelen (198-)) and strictness
analyzers (Nöcker (1988)) play an important role.

An efficient implementation of multiprocessing (interleaved execution) is possible by indicating
fixed places at which a process switch may occur. Examples of such places are termination of
reduction, suspension of reduction and creation of an intermediate result. Compared with a pure
sequential implementation a multiprocessing version will loose a bit of efficiency due to these
context switches. Furthermore, each reducer has to check whether or not another reducer is
working on its redex.

PC-FGRS's are very suited for implementation on loosely coupled parallel architectures. Most
problems which have to be solved of a more general nature: "How can a graph (with cycles) be
shipped fast from one processor to another?", "What is the best suited algorithm for distributed
garbage collection?", "What happens if one of the processors is out of memory or is completely
out of order?". The efficiency of a parallel implementation will strongly depend on the solutions
found for these general type of problems. These problems have to be solved for other kinds of
concurrent languages too. Perhaps it is possible to adopt existing solutions. But also alternative
solutions which take the special behaviour of GRS's into account are thinkable.

Future work

At the moment we are developing a reference simulator for PC-FGRS's. The ideas introduced in
this paper will be incorporated in the language Concurrent Clean. Besides the concepts
introduced in this paper (lazy copying, annotations for dynamic process creation, abbreviations)
we will add annotations for load distribution and add predefined rules such that frequently used
process topologies (pipelines, array of processes) can easily be defined. Efficient implementation
of Concurrent Clean are planned on loosely coupled multiprocessor systems (e.g. a Transputer
rack or a DOOM machine (Odijk (1987))). Developing an efficient implementation will also
involve research to load balancing and garbage collection (without stopping all processors).

Parallel Graph Rewriting on Loosely Coupled Machine Architectures 151

The theoretical properties of PC-FGRS's will be further investigated. Especially in the context of
term graph rewriting new results are envisaged. Using sharing and lazy copying, different ways
of lifting term rewriting systems to graph rewriting systems can be investigated.

The combination with other strategies than the functional strategy may be interesting (van
Eekelen & Plasmeijer (1986)). For instance, adding reducers following a non-deterministic
strategy may be useful for the specification of process control, including scheduling and
interrupts.

7.7 CONCLUSIONS

In this paper two extensions of Functional Graph Rewriting Systems are presented: lazy copying
and annotations to control the order of evaluation. The extensions are simple and elegant.

The expressive power of a FGRS extended with both notions is very high. Multiprocessing can
be modelled as well as graph reduction on loosely coupled systems. Arbitrary process and
processor topologies can be modelled, as well as synchronous and asynchronous process
communication.

The introduced abbreviations guarantee that the indicated subgraphs can be evaluated in parallel
instead of interleaved. The abbreviations directly correspond with the notion of processes and
processors and they are therefore relatively simple to use. The user-friendliness can be increased
by creating libraries with functions which can create often used processor topologies like
pipelines and arrays of processors.

Efficient implementation of the proposed model on loosely coupled parallel architectures should
be possible. Actual implementations are started.

PC-FGRS's are very suited to serve as a base for the implementation of functional languages.
Sequential functional languages can efficiently be implemented by translating them to FGRS's.
The expressive power of the proposed abbreviations in PC-FGRS's and the properties of these
systems will now make it also possible to exploit the potential parallelism in the programs
successfully.

7.8 ACKNOWLEDGEMENTS

We thank Ronan Sleep of the University of East-Anglia for patiently lending us his ear and in
particular for his advice to isolate the lazy copying from the process creation. We thank Pieter
Koopman of the University of Nijmegen for proof reading and correcting this paper while it was
written.

153

8

REFERENCES

America, P. (1988). Definition of POOL2, a parallel object-oriented language. Philips Research

Laboratories, Eindhoven, The Netherlands. ESPRIT project 415 A Doc. 0364.

Arvind, Nikhil, Rishiyur S. (1987). Executing a Program on the MIT Tagged Token Dataflow
Architecture. Proceedings of Parallel Architectures and Languages Europe (PARLE), part I,
Eindhoven, The Netherlands. Springer Lee. Notes Сотр. Sci. 258, 1-29.

Augusteijn L. (1985a). The Warshall shortest path algorithm in POOL-T. Philips Research
Laboratories, Eindhoven, The Netherlands. Esprit project 415 A Doc. 0105.

Augusteijn L. (1985b). POOL_T User Manual. Philips Research Laboratories, Eindhoven, The
Netherlands. Esprit project 415 A Doc. 0104.

Backus, J. (1978). Can programming be liberated from the Von Neumann style? A functional
style and its algebra of programs. Communications of the ACM, Vol 21, 613-641.

Baeten, J.C.M. (1986). Procesalgebra. Kluwer.

Baeten, J.СМ., Bergstra, J.Α., Klop, J.W. (1986). Term Rewriting Systems with Priorities.

University of Amsterdam, Report FVI 86-03.

Baeten, J.C.M., Bergstra, J.A., Klop, J.W. (1987). Term Rewriting Systems with Priorities.

Proceedings of the conference on Rewriting Techniques and Applications, Bordeaux,

Springer Lee. Notes Сотр. Sci. 256, 83-94.

Barendregt, H.P. (1984). The Lambda Calculus, Its Syntax and Semantics (revised edition).
Studies in Logic and the Foundations of Mathematics 103, North-Holland.

Barendregt, H.P., Leeuwen, M. van (1986). Functional Programming and the Language Tale.
Springer Lee. Notes Сотр. Sci. 224, 122-207.

Barendregt, H.P., Eekelen, M.C.J.D. van, dauert, J.R.W., Kennaway, J.R., Plasmeijer,
M.J., Sleep, M.R. (1986a). Term graph rewriting. Internal Report 87, Department of
Computer Science, University of Nijmegen, and also as Report SYS-C87-01, School of
Information Systems, University of East Anglia.

Barendregt, H.P., Eekelen, M.C.J.D. van, dauert, J.R.W., Kennaway, J.R., Plasmeijer,
M.J., Sleep, M.R. (1986b). Towards an Intermediate Language based on Graph Rewriting.
University of East Anglia and University of Nijmegen, Nijmegen internal report 88.

154 References

Barendregt, H.P., Eekelen, M.CJ.D. van, dauert, J.R.W., Kennaway, J.R., Plasmeijer,
M.J., Sleep, M.R. (1987a). Term Graph Rewriting. Proceedings of Parallel Architectures
and Languages Europe (PARLE), part II, Eindhoven, The Netherlands. Springer Lee. Notes
Сотр. Sci. 259, 141-158.

Barendregt, H.P., Eekelen, M.CJ.D. van, dauert, J.R.W., Kennaway, J.R., Plasmeijer,
M.J., Sleep, M.R. (1987b). Towards an Intermediate Language based on Graph Rewriting.
Proceedings of Parallel Architectures and Languages Europe (PARLE), part II, Eindhoven,
The Netherlands. Springer Lee. Notes Сотр. Sci. 259, 159-175.

Barendregt, H.P., Eekelen, M.CJ.D. van, Plasmeijer, MJ., Hartel, P.H., Hertzberger, L.O.,
Vree, W.G. (1987c). The Dutch Parallel Reduction Machine Project. Proceedings of the
International Conference on Frontiers in Computing, Amsterdam, to appear in Future
Generations Computer Systems.

Barendregt, H.P. (1988). Functional Programming and Lambda calculus, to appear in the
Handbook of Theoretical Computer Science, North-Holland.

Barendregt, H.P., Eekelen, M.CJ.D. van, dauert, J.R.W., Kennaway, J.R., Plasmeijer,
M.J., Sleep, M.R. (1988). Towards an Intermediate Language based on Graph Rewriting.
Revised version, to appear in the special issue of the Journal of Parallel Computing with
selected papers of the conference on Parallel Architectures and Languages Europe (PARLE),
Eindhoven, The Netherlands.

Boute, R.T. (1986). System Semantics and Formal Circuit Description. IEEE Transactions on

circuits and Systems, Vol. CAS-33, No 12, 1219-1231.

Broek, P.M. van den. Hoeven G.F. van der (1986). Combinatorgraph Reduction and the
Church-Rosser Property. Department of Informatics, Twente University of Technology.
Internal Report INF-86-15.

Brus, T., Eekelen, M.CJ.D. van, Leer, M.O. van, Plasmeijer, MJ. (1987). Clean - A
Language for Functional Graph Rewriting. Proceedings of the Third International Conference
on Functional Programming Languages and Computer Architecture, Portland, Oregon, USA.
Springer Lee. Notes Сотр. Sci. 274, 364-384.

Burks, A.W., Goldstine, H.H., Neumann, J. von, (1946). Preliminary discussion of the logical
design of an electronic computing instrument, in John von Neumann, Collected Works, Vol.
5, Oxford, 35-79.

Bum, G.L., Hankin, C.L., Abramsky, S. (1985). The Theory and Practice of Strictness

Analysis for Higher Order Functions. Research Report DoC 85/6, Imperial College London.

Burton, F.W. (1987). Functional Programming for Concurrent and Distributed Computing. The
Computer Journal 30-5, 437-450.

References 155

Church, A. (1932/1933). A Set of Postulates for the Foundation of Logic. Annals of Math. (2)

33, 346-366 and 34, 839-864.

Church, Α., Rosser, J.B. (1936). Some Properties of Conversion. Trans. Amer. Math. Soc.

39, 472-482.

Clocksin, W.F., Mellish, CS. (1984). Programming in Prolog. Springer-Verlag.

Cousineau, G., Curien, P.L., Mauny, M. (1985). The Categorical Abstract Machine.

Proceedings of the 2n d International Conference on Functional Programming Languages and

Computer Architecture, Nancy, 50-64.

Curien, P.-L. (1986). Categorical Combinators, Sequential Algorithms, and Functional

Programming. Pitman.

Curry, H. B. (1930). Grundlagen der Kombinatorischen Logik. Amer. J. Math. 52, 509-536,

789-834.

Eekelen, M.C.J.D. van, Plasmeijer, M.J. (1986). Specification of rewriting strategies in Term

Rewriting Systems. Proceedings of the Workshop on Graph Reduction, Santa Fe, New

Mexico. Springer Lee. Notes Сотр. Sci. 279, 215-239.

Eekelen, M.C.J.D. van, Plasmeijer, M.J., Smetsers, J.E.W. (1988). Parallel Graph Rewriting
on Loosely Coupled Machine Architectures. University of Nijmegen, Internal Report 88-9.

Ehrig, H. (1979). Introduction to the algebraic theory of graph grammars, in: Graph grammars

and their Applications in Computer Science and Biology. Springer Lee. Notes Сотр. Sci.

73, 1-69.

Field, A.J., Harrison, P.G. (1988). Functional Programming. Addison-Wesley Publishers Ltd.

Futatsugi, K., Goguen, J., Jouannaud, J.P., Meseguer, J. (1985). Principles of OBJ2. 12,h

ACM Symp. on Principles of Programming Languages, 52-66.

Glauert, J.R.W. (1978). A Single Assignment Language for Data Flow Computing. M.Sc.

Thesis, Victoria University of Manchester.

Glauert, J.R.W., Holt, N.P., Kennaway, J.R., Reeve, M.J., Sleep, M.R., Watson, I. (1985).

DACTLO: A Computational Model and an associated Compiler Target Language. University

of East Anglia, internal report.

Glauert, J.R.W., Hammond, K., Kennaway, J.R., Sleep, M.R., Somner, G.W., Holt, N..
Reeve, M., Watson, I. (1987a). Extensions to Core Dactll. University of East Anglia.

Glauert, J.R.W., Kennaway, J.R., Sleep, M.R. (1987b). Category theoretic concepts of graph
rewriting and garbage collection, in preparation. School of Information Systems, University
of East Anglia.

156 References

dauert, J.R.W., Kennaway, J.R., Sleep, M.R. (1987c). DACTL: A Computational Model and
Compiler Target Language Based on Graph Reduction. ¡CL Technical Journal 5, 509-537.

dauert, J.R.W., Kennaway, J.R., Sleep, M.R. (1987d). Specification of Core Dactll.
University of East Anglia, report SYS-C87-09.

dauert, J.R.W., Plasmeijer, M.J., Reeve, M.J. (198-)- Programming and Implementing
Parallel Systems using Graph Rewriting. To appear, MIT-Press.

Goguen, J., Kirchner, С, Meseguer, J. (1986). Concurrent term rewriting as a model of
computation. Proceedings of the Workshop on Graph Reduction, Santa Fe, New Mexico.
Springer Lee. Notes Сотр. Sci. 279, 53-94.

Goos, J., Van Latum, F. (1987). Complete specification of practical rewriting strategies. M.Sc.
Thesis, University of Nijmegen.

Groot, D. de & Lindstrom G. (eds) (1986). Logic Programming: Functions, Relations and
Equations. Prentice-Hall.

Gurd, J.R., Kirkham, C.C., Watson, I. (1985). The Manchester Prototype Dataflow Computer.
Communications of the ACM. 28-1, 34-52.

Hartel, P., Vree, W. (1986). A Load Distribution Network for a Multi Processor Reduction
Machine. Internal Report D-6, Dutch Parallel Reduction Machine project. University of
Amsterdam.

Hintum, M. van, Schelven, R. van. (1988). MCC V3.0 Implementation Manual - a Miranda to
Clean Compiler. University of Nijmegen. Internal Report 88-2.

Hoare, C.A.R. (1985). Communicating sequential processes, Prentice-Hall.

Hudak, P., Smith, L. (1986). Para-functional Programming: A Paradigm for Programming
Multiprocessor Systems. 12th ACM Symp. on Principles of Programming Languages, 243-
254.

Huet, G. and Levy, J.J. (1979). Call-by-need computations in non-ambiguous term rewriting
systems. IRIA-Laboria, B.P. 105, 78150 Le Chesney, France, Report 359.

Jansen, T. (1987). Interpreting Lean. M. Sc. thesis, University of Nijmegen.

Johnson Th. (1984). Efficient compilation of lazy evaluation. Proceedings of the ACM
SIGPLAN '84, Symposium on Compiler Construction. SIGPLAN Notices 19/6.

Kennaway, J.R. (1984). An outline of some results of Staples on optimal reduction orders in
replacement systems, Report CSA/19/1984, School of Information Systems, University of
East Anglia, Norwich, England.

References 157

Kennaway, J.R. (1988a). Correctness proof for Functional Dactll. University of East Anglia.
Internal Report: in preparation.

Kennaway, J.R. (1988b). Implementing Term Rewrite Languages in Dactl. Proceedings of the
13th Colloquium on Trees in Algebra and Programming (CAAP'88), Nancy. Springer Lee.
Notes Сотр. Sci. 299, 102-116.

Kennaway, J.R., Sleep, M.R. (1988). Director Strings as Combinators. to appear in
Transactions on Programming Languages and Systems.

Klop, J.W. (1980). Combinatory Reduction Systems, Mathematical Centre Tracts n.127,
Mathematical Centre, Kruislaan 413,1098 SJ Amsterdam.

Klop, J.W. (1985). Term rewriting systems. Notes for the Seminar on Reduction Machines,
Ustica, to appear.

Klop, J.W. (1987). Term rewriting systems: a tutorial. Center for Mathematics and Computer
Science, CWI Amsterdam. Note CS-N8701.

Kluge, W.E. (1983). Cooperating reduction machines. IEEE Transactions on computers C-
32/11, 1002-1012.

Koopman, P.W.M., Nöcker, E.G.J.M.H. (1988). Compiling Functional Languages to Term
Graph Rewrite Systems. University of Nijmegen. Internal Report 88-1.

Koster, C.H.A. (1971). Affix Grammars, in: Algol68 Implementation, 95-109, North-Holland.

Lewis, H.R., Papadimitriou, C.H. (1981). Elements of the theory of Computation. Prentice-
Hall.

Magò, G.A. (1980). A Cellular Computer for Functional Programming, digest of Papers, IEEE
Comp. Soc. COMPCON, 179-187.

McBurney D.L., Sleep, M.R. (1987). Transputer-based experiments with the ZAPP architecture.
Proceedings of Parallel Architectures and Languages Europe (PARLE), part I, Eindhoven,
The Netherlands. Springer Lee. Notes Сотр. Sci. 258, 242-259.

Meijer, H. (1986). Programmar. Ph.D. Thesis, University of Nijmegen, The Netherlands.

Milner, R. (1978). A Theory of Type Polymorphism in Programming, Journal of Computer and
System Sciences, Vol. 17, no. 3., 348-375, Academic Press.

Mycroft, A. (1984). Polymorphic type checking and recursive definitions, Proceedings б1*1

International Conference on Programming, Toulouse, Springer Lee. Notes Сотр. Sci. 167.

Nagl, M. (1979). Graph Grammars - Theory, Applications, Implementation (in German),
Vieweg Verlag.

158 References

Nöcker E. (1988). Strictness analysis and pattern matching. University of Nijmegen. Internal
Report: in preparation.

O'Donnell, M.J. (1985). Equational Logic as a Programming Language. Foundations of
Computing Series, MIT Press.

Odijk, E.A.M. (1985). DOOM: a Decentralized Object-Oriented Machine. Philips, Eindhoven,
Esprit 415 A internal report, Doc. 0125.

Odijk, E.A.M. (1987). The DOOM system and its applications: a survey of Esprit 415 subproject
A. Proceedings of Parallel Architectures and Languages Europe (PARLE), part I, Eindhoven,
The Netherlands. Springer Lee. Notes Сотр. Sci. 258, 461-479.

Peyton Jones, S. L. (1987a). FLIC - a Functional Language Intermediate Code. Dept. of Comp.
Sc, University College London, internal working paper.

Peyton Jones, S.L. (1987b). The Implementation of Functional Programming Languages.
Prentice-Hall.

Plasmeijer, M.J., Eekelen, M.C.J.D. van (198-). Functional Programming and Graph Rewriting
Systems. To appear as textbook, end of 1989.

Raoult, J.C. (1984). On graph rewritings. Theor. Comput. Sci. 32, 1-24, North-Holland.

Robinson, J.A. (1965). A machine-oriented logic based on the resolution principle. Journal of
the A.CM. 12, 1.

Schönfinkel, M. (1924). Über die Bausteine der mathematischen Logik. Math. Annalen 92, 305-
316.

Smetsers, J.E.W., Eekelen, M.C.J.D. van, Plasmeijer, M.J. (1988). Operational semantics of
Concurrent Clean. University of Nijmegen. Internal report: in preparation.

Staples, J. (1980a). Computation on graph-like expressions, Theor. Comput. Sci. 10, 171-185,
North-Holland.

Staples, J. (1980b). Optimal evaluations of graph-like expressions, Theor. Comput. Sci. 10,
297-316, North-Holland.

Staples, J. (1980c). Speeding up subtree replacement systems, Theor. Comput. Sci. 11, 39-47,
North-Holland.

Turing, A.M. (1936). On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings, London Mathematical Society, 2, no. 42 (1936), 230-
265, and no. 43, 544-546.

Turing, A.M., (1937). Computability and λ-definability. J. Symbolic Logic 2,153-163.

References 159

Turner, D.A. (1979a). A new Implementation Technique for Applicative Languages. Softw.

Pract. and Experience, Vol 9 (1), 31-49.

Turner, D.A. (1979b). SASL Language Manual, "combinators" version, University of St.

Andrews, U.K.

Turner, D.A. (1985). Miranda: A non-strict functional language with polymorphic types.
Proceedings of the 2n d International Conference on Functional Programming Languages and
Computer Architecture, Nancy, Springer Lee. Notes Сотр. Sci. 201, 1-16.

Turner, D.A. (1986). Miranda System Manual. Research Software Ltd.

Veen, A.H. (1985). The Misconstrued Semicolon. Ph.D. Thesis, Technical University
Eindhoven, The Netherlands.

Vegdahl, Steven R. (1984). A Survey of Proposed Architectures for the Execution of Functional
Languages. IEEE Transactions on Computers, vol. c-33, no. 12.

Vree, W.G., Hartel, P.H. (1988). Parallel graph reduction for divide-and-conquer applications;
Part I - programme transformations. University of Amsterdam. Internal Report D-15.

Wadsworth, C.P. (1971). Semantics and Pragmatics of the Lambda-Calculus. Ph.D. Thesis,
Oxford University.

Watson P., Watson I. (1987). Evaluating Functional Programs on the Ragship Machine.
Proceedings of the 3 r d International Conference on Functional Programming Languages and
Computer Architecture, Portland, Oregon, USA. Springer Lee. Notes Сотр. Sci. 274, 88-
97.

Wirth, N. (1982). Programming in Modula-2. Springer-Verlag.

160

SUMMARY

A model of computation (or a computational model) of a programming language is a formal

model as close as possible to both semantics and implementation modelling only the essential

aspects of them by making some abstractions. Via a model of computation it is much easier to

reason about the language, its programs, its compilers and its dedicated machines.

It is of course very difficult to find an ideal model which models every essential aspect of a

programming language. In fact the classical (sequential and imperative) programming languages

all have the same model of computation: the Turing machine. Clearly this model can only

describe the very basic concepts of those languages. In this thesis a computational model is

investigated for a general paradigm of programming (the declarative paradigm) and for one style

of programming in particular (functional programming).

In the declarative paradigm a desired computation is expressed in a static fashion as a list of

declarations and an expression to be evaluated. A program is considered to be an executable

specification. The most important property in the declarative paradigm is that an expression

always has the same meaning independent of the history of the computation (referential

transparency). Functional programming is very attractive because mainly through the use of

higher order functions the expressive power of functional programming languages is higher than

of conventional languages. Functional programming is more like mathematically specifying the

algorithm. Functional programs are therefore generally shorter than their conventional

counterparts and thus easier to enhance and maintain.

Originally, the λ-calculus was commonly used as the computational model for functional

languages. Combinatory logic however, has a much simpler substitution mechanism than the λ-

calculus but it lacks pattern matching. Term rewriting systems do contain pattern matching but it

is impossible to express sharing directly in term rewriting systems. Graph rewriting systems

combine all these aspects, so they are investigated in this thesis in a general context and more

specifically as the model of computation for functional languages and their implementations.

In chapter 3 we have introduced multi-level rewriting systems which in practise are proven to be

very useful for high level specifications varying from specifying reduction strategies to

specifying the operational semantics of a programming language.

With term graph rewriting which is introduced in chapter 4, some fundamental theoretical results

are obtained on modelling term rewriting with graph rewriting. Term graph rewriting means that

a term rewriting system (TRS) is interpreted (lifted) as a graph rewriting system (GRS). The

normal forms of the GRS which are graphs, are unravelled to terms in the TRS world. Via term

graph rewriting it is proven that sharing terms is sound. Furthermore restrictions are given which

ensure completeness of sharing implementations. Term graph rewriting is a very promising topic

for further research.

Summary 161

In chapter 5 generalized graph rewriting is defined which is very powerful and of independent
interest as a general model of computation for parallel architectures. Lean is an experimental
language for specifying computations in terms of graph rewriting. It is very powerful since there
are few restrictions on the graph that is transformed and the transformations that can be
performed. It is worthwhile to further investigate generalized graph rewriting yielding as a spin­
off programming languages based on subclasses with specific properties and advantages

Clean which is described in chapter 6, is an example of such a spin-off language. The language
is based on restricted graph rewriting (functional graph rewriting). Clean is in practise proven to
be very suited as an intermediate language for functional languages and sequential machine
architectures. An efficient sequential implementation of a high level functional language has been
constructed by using Clean as an intermediate language.

In chapter 7 graph rewriting is extended with lazy copying and explicit parallelism yielding a ve^
promising model for loosely coupled parallel evaluation of functional programs. Its expressive
power and its properties will make it possible in the near future to exploit the potential parallelism
in functional programs successfully in a general way. Actual parallel implementations are started.

Much research on graph rewriting systems still has to be done (taxonomy, typing, strategies,
strictness analysis, implementation techniques, parallel evaluation, garbage collection, etcetera).
But the results achieved so far are very promising, justifying further research on graph rewriting
theory and on identifying special classes of graph rewriting systems. Furthermore, actual
experiments with sequential and parallel implementations are necessary to achieve more
experience and to identify key issues.

162

Parallel Graphherschríjven

Enkele bijdragen aan de theorie, de implementane en de toepassing ervan.

SAMENVATTING

Een berekeningsmodel van een programmeertaal is een formeel model zo dicht mogelijk bij zowel
de semantiek als de implementatie waarbij alleen de essentiële aspecten gemodelleerd worden
door enkele abstracties te maken. Door zo'n berekeningsmodel is het veel gemakkelijker om te
redeneren over de taal en de bijbehorende programma's, vertalers en machines.

Het is natuurlijk heel moeilijk om een ideaal model te vinden dat elk essentieel aspect van een
programmeertaal modelleert. Alle klassieke (sequentiële en imperatieve) programmeertalen
hebben in feite het zelfde berekeningsmodel: de Turing machine. Het is duidelijk dat dit model
alleen de meest fundamentele aspecten van die talen kan modelleren. Dit proefschrift beschrijft
onderzoek naar een berekeningsmodel voor een algemeen paradigma van het programmeren (het
declaratieve paradigma) en voor één stijl van programmeren in het bijzonder (functioneel
programmeren).

In het declaratieve paradigma wordt een gewenste berekening uitgedrukt op een statische manier
als een lijst van decalaraties met een expressie die geëvalueerd dient te worden. Een programma
wordt beschouwd als een executeerbare specificatie. De belangrijkste eigenschap in het
declaratieve paradigma is het feit dat een expressie altijd dezelfde betekenis heeft onafhankelijk
van de geschiedenis van de berekening (de taal is referentieel transparant). Functioneel
programmeren is heel aantrekkelijk omdat voornamelijk door het gebruik van hogere orde
functies de uitdrukkingskracht van functionele programmeertalen groter is dan die van
conventionele talen. Functioneel programmeren lijkt meer op het mathematisch specificeren van
het algorithme. Functionele programma's zijn daarom over het algemeen korter dan hun
conventionele tegenhangers en dus zijn ze gemakkelijker te verbeteren en te onderhouden.

Oorspronkelijk werd λ-calculus algemeen gebruikt als het berekeningsmodel voor functionele
talen. Combinatorische logica heeft echter een eenvoudiger substitutiemechanisme dan de λ-
calculus maar het heeft geen pattern matching. Tenmherschrijfsystemen bevatten wel pattern
matching maar termherschrijfsystemen hebben niet de mogelijkheid om sharing direct uit te
drukken. Graphherschrijfsystemen combineren al deze aspecten. Daarom zijn graphherschrijf-
systemen het onderwerp van onderzoek in dit proefschrift. Graphherschrijfsystemen worden
onderzocht in algemene zin en als berekeningsmodel voor functionele talen en hun
implementaties.

Samenvatting 163

In hoofdstuk 3 hebben we meer-niveau herschrijfsystemen geïntroduceerd. Van deze systemen is
het in de praktijk bewezen dat ze bijzonder nuttig zijn voor hoog niveau specificaties variërend
van het specificeren van reductiestrategieën tot het specificeren van de operationele semantiek van
een programmeertaal.

Met behulp van termgraphherschnjven (ingevoerd in hoofdstuk 4) zijn enkele fundamentele
resultaten behaald op het gebied van het modelleren van termherschrijven met graphherschrijven.
Termgraphherschrijven betekent dat een TermHerschrijfSysteem (THS) wordt geïnterpreteerd als
(getild naar) een GraphHerschrijfSysteem (GHS). De normaalvormen van het GHS, dat zijn
graphen, worden ontrafeld tot termen in de THS-wereld. Via termgraphherschrijven wordt
bewezen dat het 'sharen' van termen gezond is. Bovendien worden restricties gegeven die de
compleetheid garanderen van implementaties die sharing gebruiken. Termgraphherschrijven is
een veelbelovend onderwerp voor verder onderzoek.

In hoofdstuk 5 wordt gegeneraliseerd graphherschrijven gedefinieerd. Dit berekeningsmodel is
bijzonder krachtig en het is van onafhankelijk belang als algemeen berekeningsmodel voor
parallelle architecturen. Lean is een experimentele taal voor het specificeren van berekeningen in
termen van graphherschrijvingen. Deze taal is bijzonder krachtig aangezien er slechts weinig
restricties zijn op de graph die getransformeerd wordt, en eveneens zijn er weinig restricties op
de transformaties die uitgevoerd kunnen worden. Het is de moeite waard gegeneraliseerd
graphherschrijven verder te onderzoeken, wat als 'spin-off programmeertalen oplevert die
gebaseerd zijn op deelklassen met specifieke eigenschappen en voordelen.

Clean (beschreven in hoofdstuk 6) is een voorbeeld van zo'n spin-off taal. De taal is gebaseerd
op een beperkt soort graphherschrijven (functioneel graphherschrijven). De praktijk heeft
uitgewezen dat Clean zeer geschikt is als tussentaal voor functionele talen en sequentiële
machine-architecturen. Een efficiënte sequentiële implementatie van een hogere functionele
programmeertaal is met behulp van Clean als tussentaal tot stand gekomen.

In hoofdstuk 7 wordt graphherschrijven uitgebreid met lui copiëren en expliciet parallellisme,
hetgeen een veelbelovend model oplevert voor los-gekoppelde parallelle evaluatie van functionele
programma's. De uitdrukkingskracht en de eigenschappen van die uitbreidingen zullen het in de
nabije toekomst mogelijk maken om het potentiële parallellisme in functionele programma's op
een algemene manier succesvol te benutten. Met daadwerkelijk parallelle implementaties is een
begin gemaakt.

Er dient nog veel onderzoek op het gebied van graphherschrijfsystemen gedaan te worden
(taxonomie, typering, strategieën, strictheidsanalyse, implementatietechnieken, parallelle
evaluatie, 'garbage' collectie, etcetera). Maar de tot nu toe geboekte resultaten zijn veelbelovend
hetgeen verder onderzoek rechtvaardigt op het gebied van de graphherschrijftheorie en naar het
indentificeren van speciale klassen van graphherschrijfsystemen. Bovendien zijn daadwerkelijke
experimenten met sequentiële en parallelle implementaties noodzakelijk om meer ervaring te
verkrijgen en om de kernproblemen te identificeren.

165

CURRICULUM VITAE

De schrijver van dit proefschrift is geboren op 5 December 1956 in Bergen op Zoom (N-B). Na
aldaar aan de St. Jozefschool het lager onderwijs genoten te hebben, ging hij op tienjarige leeftijd
naar het Mollerlyceum in dezelfde plaats waar hij het gymnasium-ß diploma in 1973 behaalde. In
hetzelfde jaar begon hij aan de wiskunde studie op de Katholieke Universiteit Nijmegen waar hij
in 1981 het doctoraalexamen wiskunde behaalde inclusief onderwijsbevoegdheid.

Sindsdien is hij als wetenschappelijk medewerker/universitair docent werkzaam bij de
sectie/discipline Informatica van de Faculteit der Wiskunde en Natuurwetenschappen aan de
Katholieke Universiteit Nijmegen. In die hoedanigheid heeft hij achtereenvolgens gewerkt bij de
afdeling Informatica I (Programmeertalen en hun Vertalers) bij Prof. C.H.A. Koster, de afdeling
Informatica II (Machinearchitectuur en Bedrijfssystemen) bij Prof. dr. ir. R.T. Boute en de
vakgroep Theoretische Informatica en Berekeningsmodellen bij Prof. dr. H.P. Barendregt.
Voorts heeft hij onder leiding van Dr. ir. M.J. Plasmeijer van 1984 tot en met 1987 gewerkt bij
de Nijmeegse tak van het Nederlandse Parallelle-Reductie-Machine project (een samenwerkings­
project van drie Nederlandse Universiteiten).

Stellingen behorend bij het proefschrift

Parallel Graph Rewriting

Some Contributions to its Theory, its Implementation and its Application

Marko van Eekelen 2 December 1988

1 Het is mogelijk met behulp van graphherschrijfsystemen functionele programmeertalen
efficiënt te implementeren op parallelle machine-architecturen die bestaan uit los-gekoppelde
traditionele sequentiële processoren.

2 Het overvloedig gebruik van functiecompositie als programmeerstijl komt weliswaar vaak de

correctheid en de bewijsbaarheid ten goede maar de leesbaarheid wordt er veelal door

geschaad.

3 Het afleiden van types in de functionele programmeertaal Miranda dient beschouwd te worden

als een faciliteit van de programmeeromgeving en niet als een inherente eigenschap van die

programmeertaal.

4 Het verdient aanbeveling bij het inleidend universitair programmeeronderwijs de beginselen

van functioneel programmeren te onderwijzen voordat de beginselen van imperatief

programmeren aan de orde komen.

5 Samenwerking tussen onderzoekers op internationaal en op nationaal niveau is vruchtbaarder

naarmate de motivatie voor de samenwerking meer op inhoudelijk dan op financieel gebied

ligt.

6 De totale tijd die door systeembeheerders en gebruikers besteed wordt aan het functioneren

van electronic mail, is veel groter dan de resulterende tijdswinst bij het overbrengen van

boodschappen.

7 Bij elk nieuw boek dient de verantwoordelijke uitgever de inhoud via electronische middelen

aan de blindenbibliotheek ter beschikking te stellen opdat het boek ook in braille snel en

goedkoop beschikbaar kan komen.

8 De bepaling in de promotie-reglementen dat in een proefschrift de promotor en de co-referent

niet bedankt mogen worden, doet onrecht aan hun voortreffelijke ondersteuning bij het tot

stand komen van het proefschrift.

9 Wanneer men de vergrijzing van Nederland effectief wil bestrijden dan moet men er voor

zorgen dat er bij elke werkplek in Nederland op geringe afstand goede kinderopvang

aanwezig is.

10 Voor het welslagen van een volksdansdemonstratie is het noodzakelijk dat de

demonstratiegroep zich in de betreffende volksaard inleeft zonder dat spontaniteit en

enthousiasme verloren gaan. Wellicht is dit de reden dat veelal het meest treffende resultaat

bereikt wordt, wanneer dans en volksaard natuurlijkerwijs overeenkomen.

11 Hoewel de uitspraak "D'r ga niks bove Beilege" geografisch en taalkundig evident onjuist is,

verkondigt hij voor diegenen bij wie de Bergse Vastenavend met de paplepel is ingegoten,

gevoelsmatig een eeuwigdurende waarheid.

12 Een kwaliteitskrant zou niet alleen gekenmerkt moeten worden door het feit dat de lezer zelden

afgeeft op de krant, maar ook door het feit dat de krant zelden afgeeft op de lezer.

