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PREFACE 

Historical background 

The main part of this thesis is a collection of papers which are the result of the research 
performed by the author as a member of the computer science department of the Nijmegen 
University. The research has been partly sponsored by the Dutch Parallel Reduction Machine 
Project. 

In 1984 this project was set up by the government of The Netherlands. The project was led by 
Prof. Henk Barendregt and involved teams at the universities of Amsterdam, Utrecht, and 
Nijmegen. The group at Nijmegen was led by Rinus Plasmeijer with the author of this thesis. 
The aim of the PRM-project was to investigate the feasibility of building a parallel reduction 
machine for the efficient evaluation of functional languages. 

A related project in the United Kingdom, the Flagship project, was following the path of fine-
grain execution, developing dataflow ideas and experience with the ALICE project: a multi­
processor project of Imperial College London. The Dutch project investigated coarse-grain 
parallelism on fairly conventional loosely coupled multiprocessor architectures. In common with 
the team of the University of East Anglia (Prof. Ronan Sleep, John dauert and Richard 
Kennaway) which was part of the Flagship project, the Nijmegen group had a strong interest in 
developing an intermediate language based on a computational model which should reflect the 
essential aspects of both functional languages as their implementation. It was recognized that the 
choice of the computational model was the most critical decision to make. It would highly 
influence the needed compilation effort and the final efficiency of the obtained code. 

During a meeting in Oosterbeek (in the Netherlands) a subgroup consisting of Henk Barendregt, 
Rinus Plasmeijer and the author of this thesis decided that, in principle. Term Rewriting Systems 
would be best suited as the computational model to use. The patterns which are the basis of Term 
Rewriting Systems, were expected to contain essential information necessary for efficient 
implementation. Sharing of terms was felt to be essential in order to obtain efficient 
implementations on sequential hardware. However, the sharing of terms would be a problem in a 
parallel environment. We hoped that this problem could be solved in the future. To model this 
sharing of terms it was decided that therefore graphs had to be used instead of terms. Following 
meetings at a workshop on the island of Ustica, and at the second Conference on Functional 
Programming Languages and Computer Architecture at Nancy, September 1985, collaborative 
work was undertaken by the Nijmegen group and the UEA team. 

After some very beneficial initial consultations with Prof. Jan-Willem Klop, a model of graph 
rewriting was developed within a sound theoretical framework. Spin-offs included a clear theory 
of Term Graph Rewriting and the intermediate languages Lean, Dae til and Clean, all published 
in 1987. All these intermediate languages have the same underlying model of graph reduction. 
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The Dutch Parallel Reduction Machine Project ended in 1987. Its main results are summarized in 
Barendregt et al. (1987c). An international evaluation committee with representatives of 
universities and industry stressed the high quality of the research meeting international standards 
and having important practical applications. 

The authors work which is reflected in this thesis, focusses on the level of the intermediate 
language and its underlying model of computation. 

Contents of this thesis 

Chapter 1 gives an introductory overview of the fields of functional programming and models of 
computation. It can be skipped by readers who are familiar with these topics. 

In chapter 2 the interconnections between the topics of the following chapters are explained and it 
is motivated why Graph Rewriting Systems are a promising model of computation. 

This thesis is essentially a collection of papers: the chapters 3, 4, 5, 6 and 7 are reprints of co-
authored papers which are also published elsewhere. The papers are unchanged: only the layout 
is changed in order to make it more or less uniform and the references are merged in chapter 8. 
There was a great temptation to revise the papers (e.g. add the improved efficiency figures of the 
Clean compiler; remove inaccuracies; merge introductions etcetera). This is not done however in 
order to avoid doing the work twice in different contexts: an integrated overview of the field of 
functional programming and parallel graph rewriting will already appear as a textbook for 
students (Plasmeijer & van Eekelen (198-)). 

In chapter 3 (van Eekelen & Plasmeijer (1986)) we introduce a new high level specification 
method for rewriting strategies, which simplifies the reasoning about the correctness of a 
specification of a reduction strategy. This method is being used for specifying strategies and with 
a minor change for specifying the semantics of Concurrent Clean. The paper was presented by 
the author of this thesis at the Workshop on Graph Reduction at Santa Fe, New Mexico. 

Chapter 4 is also published in the Proceedings of the Conference on Parallel Architectures and 
Languages Europe (PARLE) at Eindhoven (Barendregt et al. (1987a)). It gives some basic 
soundness and completeness results of a graph rewriting class which is used to implement term 
rewriting. This makes it possible to identify restrictions guaranteeing correctness of 
implementations of Term Rewriting which use sharing. 

Chapter 5 is a revised version of Barendregt et al. (1987b) which was presented by the author of 
this thesis at the PARLE conference at Eindhoven. It defines generalized graph rewriting which 
can also be applied in general declarative and even in non-declarative environments. This chapter 
will also appear in the special issue of the Journal of Parallel Computing with revised versions of 
selected papers of the PARLE conference (Barendregt et al. (1988)). 

Chapter 6 has also been published in the Proceedings of the Third International Conference on 
Functional Programming Languages and Computer Architecture, Portland, Oregon, USA (Brus 
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et al. (1987)). It describes a functional intermediate language based on graph rewriting with 
which it is shown in practise that functional languages can be efficiendy implemented. 

Chapter 7 broadens the scope of parallelism in functional graph rewriting to general loosely 
coupled parallel evaluation. This chapter is also published as internal report of the University of 
Nijmegen (van Eekelen et al. (1988)) and it is also submitted for publication elsewhere. It will 
form the basis of actual implementations of functional languages on parallel computer 
architectures like e.g. a Transputer Rack or the DOOM machine of Philips Research Laboratories 
at Eindhoven. 
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1 

FUNCTIONAL PROGRAMMING 

AND COMPUTATIONAL MODELS 

In this introductory chapter an overview is given of the field of models of computation with 
respect to functional programming languages. The importance of defining a model of 
computation is explained. The correspondence between paradigms in programming languages 
and computational models is discussed. The importance of functional languages is addressed. 
Furthermore some basic models of computation which are used traditionally for describing the 
behaviour of implementations of functional languages, are introduced very briefly. 

More information on paradigms, functional languages, computational models, graph rewriting, 
implementation methods, intermediate languages, compilation schemes and abstract and concrete 
machine architectures can be found in Plasmeijer & van Eekelen (198-). 

1.1 PARADIGMS OP PROGRAMMING: LANGUAGES AND MODELS 

LANGUAGES 

A language is a programming language if its syntax and semantics are formally defined and 
implementable. Such a formal definition can be based on any formal description method e.g. 
denotational, algebraic, categorical or operational. In particular, a compiler and an interpreter are 
themselves formal definitions of the semantics, where another programming language is used as 
the formal operational description method. In the case of a compiler generally even two other 
programming languages are used. The basis of all implemented formal descriptions of semantics 
is the operational semantics of the machine language which by itself is realized in hardware via a 
particular machine architecture. 

Every program which accepts input induces its own special purpose programming language. 
Some examples of special purpose languages are the set of commands for an editor, the Unix 
shell and a data base query language. Usually no model of computation is given for a special 
purpose language. The meaning of such languages is mostly defined via user manuals. 

General purpose languages do not focus on a specific (class of) algorithm(s). Being general 
purpose they have a general view on the world. Such a view can be formalized yielding a model 
of computation of the language. 

MODELS 

A general purpose programming language is usually composed out of many language constructs. 
Examining the semantics of a language carefully it is possible to classify these constructs: some 
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of them can be regarded as the basic concepts of the language, while others are purely syntactic 
sugar added to the language for programming convenience or for software engineering reasons. 
In order to understand the facilities offered by a language it is important to know what the 
essential language constructs are and what they mean. It is sufficient to examine the semantics of 
these essential language constructs since the semantics of other language constructs can be 
expressed in terms of the basic constructs by removing syntactical sugar. A computational model 
tries to capture the essential aspects of a programming language in a formal model in order to be 
able to reason about them. However, in principle for a specific language there are many 
computational models which can be used. For instance, any deterministic computation can be 
expressed on a Turing Machine (Turing (1936)). But this will not gready simplify the reasoning 
about the correctness of a particular program written in a specific language because the Turing 
machine generally is too far away from the semantics of a specific language. 

Furthermore, a computational model tries to capture the essential aspects of (a class of) 
implementations of the programming language. 

A model of computation tries to capture the essential aspects of a language by making some 
abstractions. A model of compuxation (or a computational model) of a programming language is a 
formal model as close as possible to both semantics and implementation still modelling only the 
essential aspects of them. If such a model of computation is known it is much easier to reason 
about the correctness of specific programs, the essential properties of the language, the 
expressive power, the orthogonality of the design, the implementation methods for a given 
computer architecture and the design constraints for new architectures to support the language. 

It is of course very difficult to find such an ideal model which models every essential aspect of a 
programming language. In fact the classical (sequential and imperative) programming languages 
all have the same model of computation: the Turing machine. Clearly this model can only 
describe the very basic concepts of those languages. Lately, newly defined programming 
languages all come with a model of computation. The new language and the model of 
computation are closely related: either the language is built on top of the model or the other way 
around or sometimes they are even developed together. When defining a model of computation 
for a language one often has to choose between what does the language mean (the semantical 
aspects) and how is it done (the behavioural aspects). Many times this leads to a language having 
both a denotational and an operational semantics. These two semantics may be based on different 
models of computation which together fully specify what the language is about. 

PARADIGMS 

A paradigm in programming is an intuitive view on what the essence of programming is. In the 
computer science community the traditional imperative paradigm has prevailed for many years. 
Until recently, proposals for new programming languages based on other paradigms did not 
really catch on because the implementation techniques to translate them efficiently to the 
imperative machine architectures were not developed enough. The most important proposed new 
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paradigms for programming languages are object-oriented, dataflow and declarative. In the 
following paragraphs each of the paradigms will be discussed. 

Imperative 

Von Neumann machine architectares (Burks et al. (1946)) all use the imperative paradigm. In the 
imperative paradigm there is a memory containing data and this memory also contains an ordered 
sequence of commands (instructions) and a locus of control which indicates which instruction 
has to be executed next. The instructions may or may not change any part of the memory. For 
many years, using this paradigm implementation and programming techniques were developed, 
refined and optimized. Many imperative programming languages were introduced generally 
leading to higher levels of abstraction in programming. This trend towards higher levels of 
abstraction is enabled by improved implementation techniques and by increased computational 
power of the hardware. 

An imperative program (written in Modula-2 (Wirth (1982)) calculating an array with the first N Fibonacci 
numbers: 

VAR 
fib: ARRAY [0..N-1] OF INTEGER; 
i : CARDINAL; 

BEGIN 
fib[0] := 1; fib[l] :- 1; i := 1; 
WHILE i < (N-l) 
DO 

i := i + 1; 
f i b [ i l := f i b t i - l ] + f i b [ i - 2 ] 

END 
END 

The basic computational model for Von Neumann machine architectures is introduced by Turing 
in 1936: the Turing machine (Turing (1936)). This model of computation is used for complexity 
theory and other theoretical issues (e.g. the Halting Problem (Lewis & Papadimitriou (1981)). 

However, there are some small problems with the computer systems based on the imperative 
paradigm. It is hard to find a piece of software without any bugs. Computer scientists have 
learned to live with the software crisis, and they accept that most software products are 
unreliable, unmanageable and unprovable. Although hardware is much more reliable than 
software, most hardware systems appear to be designed in a hurry and even well-established 
processors now and then go down because of undocumented race-conditions. Clearly software 
and hardware systems have become very complex. So it seems to be understandable that these 
systems contain bugs. A good, orthogonal design costs many, many, man years of research and 
development. The good news is that hardware becomes cheaper and cheaper (thanks to the Very 
Large Scale Integration) and speed can be bought for prices never dreamed of. Of course it never 
goes fast enough. Yet it seems that the maximum speed that can be obtained with present day 
technology in Von Neumann architectures is beginning to reach its limit. 

The two key problems that the computer science community has to solve are how to make 
reliable and user-friendly software at low costs and how to increase processing power at low 
costs. Researchers are looking for solutions for these problems: investigating software 
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engineering techniques, to deal with problems related to the construction of very large software 
programs; designing new proof techniques to tackle the problems in proving the correctness of 
systems; developing program transformation techniques, to transform the specification of a 
problem to a program which solves it, designing new (parallel) computer architectures using 
many processors (up to thousands or more) to increase execution speed. 

One approach which eventually may help to find a solution for the key problems, is based on the 
idea that these problems are fundamental problems which cannot be solved unless a totally 
different approach is taken and hardware and software is designed with a completely different 
model of computation in mind. We believe that this idea is true and that the solution lies in non-
imperative paradigms. 

An imperative programming style has the following drawbacks. 

- It consists of a sequence of commands of which the dynamic behaviour must be known in 
order to understand how such a program works. Particularly the assignment causes 
problems, because it changes the value (and often the meaning) of a variable. Evaluating the 
same expression in succession may produce different answers. Reasoning about the 
correctness of an imperative program is therefore very difficult. 

- In addition, due to the relatively low expressive power of the present high-level programming 
languages, programs become large and therefore hard to understand. 

- Because of the command sequence, algorithms are more sequential than necessary. Therefore 
it is hard to detect which parts of the algorithm can or cannot be executed concurrently. 

So, we believe that the software crisis and the speed problem are inherent to the nature of 
imperative programming languages and the underlying model of computation. 

Object-oriented 

The introduction of multiprocessing on a single machine, led to a new paradigm for parallel 
languages, which is also used for programming parallel machines: 

In the object-oriented (or actor-based) paradigm a program describes the behaviour of a system in 
terms of its constituents, the objects. In object-oriented programming languages each object has 
some internal data and the ability to act on (change) these data. Objects may have an internal 
activity of their own. Objects only interact by sending messages to each other. One could say that 
each object is a process controlled by an imperative subprogram communicating via message 
passing with other processes. 

An object-oriented program (written in POOL2 (America (1988))) that generates all prime numbers using the 
sieve method: 

IMPL UNIT Sieve 
USE File_IO 
GLOBAL driver := Driver.new () 
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CLASS Driver 
VAR first := Sieve.new () 
BODY FOR i FROM 2 DO first ! input (i) OD 
YDOB 
END Driver 

CLASS Sieve 

VAR myprime, current : Int 
next : Sieve 

METHOD input (n : Int) : Sieve 
BEGIN current := n; 

RESULT SELF 
END input 

BODY ANSWER (input); 
myprime := current; %% the first input is a prime number 
standard_out ! write_Int (myprime, 0) ! new_line (); 
next := Sieve.new (); 
DO ANSWER (input); 

IF current // myprime -= 0 
THEN next ! input (current) 
FI 

OD %% forever 
YDOB 
END Sieve 

The main parts of the program arc the class D r i v e r of which there is only one object (created with 
D r i v e r . new ( ) ) and the class S i e v e of which there is in principle an infinite number of objects (every 
sieve starts a new sieve). The d r i v e r generates all natural numbers greater than 2. The class S i e v e contains 
a method input which if called (by other objects) and answered saves the argument in a local variable. Every 
S i e v e has an activity of its own which is defined in the body. Its prime number is printed on the standard 
output file. It starts a new S i e v e and it loops forever sieving out multiples of its primenumber. 

The most commonly used basic computational model for object-oriented machine architectures is 
the Calculus of Communicating Systems (Hoare (1985)). This model of computation is used for 
complexity theory and other theoretical issues (e.g. fairness, proof theory). Process Algebra 
(Baeten (1986)) might be an alternative when one is more interested in describing the behaviour 
of processes. 

Modularisation is an important technique which is used in the development of large programs. In 
the object-oriented paradigm a program is modularised by the introduction of the objects. One 
can imagine that in parallel machines different objects might live on different processors. 

The activity of a single object is usually defined in an imperative language. In that case the object-
oriented language essentially inherits the disadvantages of the imperative paradigm. In chapter 7 
of this thesis we present some promising fundamental research in combining the object-oriented 
view with functional languages. 

Dataflow 

In the dataflow paradigm the data moves to the instructions instead of the other way around. An 
instruction may start executing as soon as its data is available. So, the flow of data determines the 
execution order. This approach has gained a lot of interest because of envisaged fast parallel 
hardware designs. 
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Dataflow languages or single assignment languages are languages in which variables are 

assigned only once: i.e. a variable is undefined until it gets a value and then it can never change 

afterwards. Single assignment languages are made to fit the dataflow model of computation. 

A dataflow program (written in SISAL (dauert (1978)) calculating an array with the first N Fibonacci numbers: 

fibnumbers := 
FOR 

INITIAL 
fibl := 1; fib2 := 1 

REPEAT 
fibl, fib2 :=- OLD fib2, OLD fibl + OLD fib2 

WHILE 
fib2 < N 

RETURNS ARRAY OF fib2 
END FOR 

Also imperative and functional languages can be translated more or less efficiently to dataflow 

languages (Veen (1985)). It seems that functional languages are better suited to be efficiently 

translated to dataflow than imperative languages. 

To exploit the advantages of the dataflow model special machine architectures are necessary 

which realize the inherent parallelism. Unfortunately, actual dataflow architectures (Gurd et al. 

(1985), (Arvind et al. (1987)) are very complex and not yet commercially available. 

Declarative 

In the declarative paradigm a desired computation is expressed in a static fashion as a list of 

declarations and an expression to be evaluated. A program is considered to be an executable 

specification. 

A declarative language has the following advantages which are common in any mathematical 

notation. 

- Mathematics is static (no assignments, side effects): a function will always give the same 

answer if it is applied on the same arguments. 

- There is consistency in the use of names (like in x 2 - 2 χ + 1). Variables do not vary, 

they stand for a, perhaps not yet known, constant value throughout their scope. 

- An expression always has the same meaning independent of the history of the computation 

(refereraial transparency). 

- Because equal expressions are always and everywhere interchangeable, declarative languages 

are convenient to reason about. 

The class of languages using the declarative paradigm can be split up in grammar, logic and 

functional languages. 

Grammar languages 

Grammar languages are based on the idea that a program essentially just parses its input and 

produces a result accordingly. The programmer specifies in a grammar what the input may look 
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like and which semantic actions must be taken. In the field of compiler development these 

languages have lifted software development to a higher level and they have greatly increased the 

programming productivity. 

A grammar program (written in enhanced Extended Affix Grammars (Meijer 1986)) that appends two lists into 
another list: 

append (>empty, >list, list>): ; 
append (>elt®listlr >list2, elt01i3t3>) : append (>listl, >list2, Ii3t3>). 

The > signs define the flow of the arguments: before the argument they denote an input parameter, after the 
argument they denote an output parameter. 

Although all grammar languages are based on grammars they do not all have the same 

computational model. The kind of grammars that are used, identifies the computational model: 

e.g. affix grammars (Koster (1971)) or graph grammars (Nagl (1979)). 

Grammar languages originated as special purpose languages but it has been proven to be 
worthwhile to investigate whether they can also serve as general purpose languages. Problems 
occur in userfriendliness, debugging facilities and programming environments. 

Logic languages 

Logic languages are based on the idea of a program being a set of rules which state that 
predicates are true if certain conditions are met. These rules are multi-directional. So, you can ask 
whether a predicate is true with certain values for specific logical variables but you can also ask 
for which values of these variables the predicate holds. 

A logic program (wrillen in PROLOG (Clocksin & Mellish (1984))) thai appends two lists into another list: 

append ([], List, List). 
append ([Elt|Listi], List2, [EltIList3]) : - append (Listi, List2, List3). 

The logic program is very much like the grammar program. The main difference is the multi-directionality of 
the logic program. The logic program will give a result for the first parameter if the other two are specified but 
it will also give a result for the third parameter if the first two are specified. This difference is perhaps not really 
essential but it is typical for the general view on programming. 

In logic languages evaluation means investigating whether a formula in first-order predicate logic 

can be true. The evaluation method uses unification and is based on the resolution method of 

Robinson (Robinson (1965)). In fact the languages are quite close to the model by contrast with 

the imperative languages and the Turing machine model. Logic languages can often be seen as a 

subset of the general model defined by certain restrictions and extended with some specific 

constructs for efficiency and software engineering purposes. 

The Japanese Fifth Generation Computers project has had a great impact on the world-wide 

interest for logic languages. Logic languages are now widely used in the context of database 

systems. In the context of logic languages data is often called knowledge. 
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Functional languages 

In afunctional language every program is just a collection of function definitions. Each function 
can be seen as a kind of program which accepts input (its arguments) and produces output (its 
result). The concept of a function is one of the fundamental notions in mathematics. 

Some functional programs (wrillen in Miranda™* (Turner (1985)): 

Fibonacci numbers: 

fibs thisfib nextfib = thisfib : fibs nextfib (thisfib + nextfib) 

take η (fibs 1 1) 

A functional program for sieving prime numbers can be found in chapter 7. 

Append two lists into another list: 

append [] list - list 

append (elt:listl) list2 = elt : (append listi list2) 

One of the greatest advantages of functional programming languages is that they are based on a 
sound and well understood mathematical model, the λ-calculus (Church (1932/1933)). In terms 
of denotational semantics one could say that functional programming languages are sugared 
versions of this λ-calculus. This computational model is introduced more or less at the same time 
as the Turing model. The power of these models is the same (Turing (1937)). Beside the λ-
calculus there are other related computational models which can be seen as a basis of functional 
programming languages, namely combinatory logic (Schönfinkel (1924), Curry (1930)) and 
rewriting systems (Klop (1987)). These computational models are very important because they 
have a great influence on the specification of the semantics of functional programming languages 
and on their implementations. In section 1.3 the traditional models are discussed and compared. 
In chapter 2 rewriting models will be discussed. Recently many researchers started to investigate 
sequential and parallel machine architectures especially suited te these models of computation. 
These architectures are called reduction machines. 

The main advantages that are offered by functional languages, are a great expressive power, 
relatively easy correctness proofs and a relatively high suitability for parallel evaluation. 
Therefore functional languages are a veiy important research topic. An overview of the field of 
functional programming is given in Field & Harrison (1988). 

1.2 FUNCTIONAL PROGRAMMING LANGUAGES 

In Backus (1978) it is pointed out that the solution for the software problems should be searched 
in finding a new programming discipline. He proposed to investigate functional programming 
languages, also called applicative programming languages (sometimes the notion "functional" 
programming languages is used for languages which support higher order functions and the 
notion "applicative" programming languages for languages which have application as the overall 

Miranda is a trademark of Research Software Limited. 
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basic concept; outside the functional programming community the notion "functional" is widely 
used as a synonym of useful). 

To be able to program with functions a suitable rich set of basic functions has to be defined and 
then they have to be used to define new functions in terms of these. Thus a whole library of 
useful functions may be built. Some of those library functions are probably built upon layers of 
others. 

The question arises, whether more is needed than just a repertoire of basic functions and the 
ability to combine them in order to define a library of functional programs? Fortunately, there is a 
mathematical thesis, known as the Church's thesis (Church & Rosser (1936)), which states that 
the class of computable functions is exactly the same as the class of recursive functions. This 
class of recursive functions is exactly the class of functions you can get by combining some basic 
functions via primitive recursion, composition and minimalisation. 

In functional languages the programmer can only define functions which compute values 
uniquely determined by the values of their arguments. Consequently, many of the familiar 
concepts of conventional programming languages are missing in purely functional languages. 
Most important, assignment is missing. So is the heavily used programming notion of a variable, 
something which holds a value that is changed from time to time by an assignment. Rather, the 
variables that exist in purely functional language are used like in mathematics to name and refer to 
a yet unknown constant value. Once the value is known it cannot be altered anymore: in 
mathematics a variable does not vary. 

FUNCTIONAL PROGRAMMING IN AN IMPERATIVE LANGUAGE 

Perhaps a functional programming style is important, like avoiding goto's. But are new 
languages really needed? Imperative languages also have functions, so why not just use the 
functional subset of e.g. C, Algol or Modula. Well, even if only the functional subset of these 
languages would be used (this means leaving out the assignment) these languages are not as 
suitable as the new functional programming languages. The reason is that functions in the 
imperative language are often not treated as first-class citizens. This is a fact of life, not a 
fundamental problem. In some languages a function cannot be an argument of a function, only 
values can be arguments. In other languages functions cannot yield a function as result. 
Sometimes these restrictions arc present because one did not know how to make an (efficient) 
implementation of such functions. Furthermore, the available type systems of the classical 
imperative languages makes it impossible to fill the gap without a complete redesign of these 
languages. Also nice features of functional programming languages such as infinite data 
structures (see the following section) are not possible in imperative languages because of the 
evaluation order which is used in these languages. 



10 Functional Programming and Computational Models 

BASIC CONCEPTS OF FUNCTIONAL PROGRAMMING LANGUAGES 

In this section the most common concepts of functional languages are introduced. When not 

explicitly stated otherwise, all examples are written in the functional programming language 

Miranda. 

Function definitions 

A program contains an expression to be computed and a collection of function definitions written 

in the form of recursive equations. 

Some simple function definitions: 

increase χ = χ + 1 
square χ = χ * χ 
squareinc χ

 —
 square (increase χ) 

constant = 7 

In the definitions of these functions, χ is a. formal parameter от formal argument. It is essentially 

like a bound variable in mathematical logic. Its scope is limited to the equation in which it occurs 

(whereas the other names introduced above have the whole program as scope). 

The basic operation in functional programming languages is function application. Because 
function application is so fundamental in functional programming languages, the operator is 
generally not written down explicitly. Application is simply denoted by juxtaposition. 

For example, in case the function square is applied to the value 3, we simply write down: 

square 3 

In some languages however, application has to be written explicitly with a special binary 
function. 

For example: 

Apply (square, 3) 

The expression on which a function is applied (in the example the value 3) is called the actual 
parameter or actual argument. The notation where the application operator is hidden is called the 
applicative style and the notation in which the application is explicitly present as binary function 
is called the functional style. 

As usual in programming languages, one can denote and manipulate objects of certain predefined 
types. The following basic data types, with appropriate basic operations, are usually available. 

Data types: Operations: Notation of constant values: 

numbers 
truth values 
characters 

+, -, * 
and, or 
=, < 

1, 34. 12, . 
True, False. 
'a', 'c' 

The execution of a functional program simply consists of the evaluation of an initial expression in 
the context of the function definitions in the program. Evaluating means repeatedly performing 
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reduction or rewriting steps. In each reduction step (indicated by an "->") a function application 
in the expression is replaced (reduced, rewritten) according to its definition (by the right-hand-
side of the equation), substituting the formal arguments by the corresponding actual arguments. 
The subexpression that is rewritten is called a redex (reducible expression). The reduction 
process stops when none of the function definitions can be applied anymore (there are no redexes 
left). Then the initial expression is in its most simple form, the normal form. This result of the 
evaluation is printed. 

For instance, given the function definitions above (the environment), the expression s q u a r e i n c c o n s t a n t 
can be evaluated (reduced) as follows. The expression which will be icwriuen, is underlined. 

squarcine non.qtant -) square (increase rrm.qtanl-.ï 
-> square (constant + 1) 
-» square (7 + 1) 
-* square 8 
-> £_ 

64 

Higher order functions 

Compared with the traditional imperative languages, which normally allow also the declaration of 
functions, functional programming languages have a sound view on the concept of a function: 
functions are treated as first-class citizens. 

A first-order function is a function which can only have basic types as argument and as result. A 
higher order function is a function which can have a function as argument or as result. 
Languages which support higher order functions in a general way are also called higher order 
languages. Functional languages are higher order languages. 

The possibility to yield a function as result makes it unnecessary to consider functions with more 
than one argument. A function with η arguments can be constructed by a function with one 
argument that returns a function that can be applied to the next argument, and so on. 

In general a function definition has the following form: 

function-name argi агдг ... = expression 

In these definitions each function actually has only one argument. The convention is used that 
function application is associative to the left, so the parentheses are left out. But actually this 
must be read as: 

. . ( (function-name агді) агдг) ... = expression 

This way of considering all functions as functions of one argument is called Currying. At first 
sight, Currying perhaps looks a bit strange, but keep in mind that the basic operation in 
functional programming languages is binary function application, which is hidden by the 
applicative notation using juxtaposition. With explicit application the definition would be: 

.. Apply (Apply (function-name, argi) , arg
2
), ..." expression 
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Currying enables a familiar notation to be used, but furthermore it enables "the application of 

functions with any number of arguments", which gives an additional descriptive flexibility. This 

encourages a programmer to write "parametrized functions". 

A simple Cumed definition: 

p lus χ y - χ + y I I the type of plus is: num -» num -> num. The -» 's are right associative, 
I | so given an object of type num, the higher order function p lus produces 
I I an object of type: num -> num 

So, also the following definition is allowed: 

ine = plus 1 II the type of ine is: num-» num 

This enables the following reducuons: 

inC 3 -» plus 1 3 -> 1 + 3 -» 4 

Patterns 

In functional programming languages functions are defined by a series of equations. In the left-

hand-side of an equation one can specify that the equation in question can only be applied if the 

actual arguments of the function are of a certain shape. The execution mechanism must be given 

the "intelligence" to match actual parameters with the patterns used in the definition of a function 

so that it can decide which equation to use. Generally, the equations are tried in the textual order 

they are specified, from top to bottom. Within one equation the arguments are tried from left to 

right. The patterns may consist of expressions with variables (e.g. n, values (e.g. o) and data 

constructors (e.g. the infix :, which is used to represent a list; see also the next section on data 

structures). This facility, which is called pattern-matching, offers an alternative to conditional 

expressions. It often leads to clearer and more concise definitions. 

Pauems and pattern-matching: 

fac 0 - 1 
fac η = η * fac (η - 1) 

hd (a:b) - a 
t l (a:b) = b 

cond True χ y - χ 
cond False χ y - y 

'0' and 'η' are the patterns of the first two rules (a simple variable as pattern indicates that it docs not matter 
what is on that position) Reducing 'fac 7' will result m a call to the pattern-matching facility, which decides 
that only the second rule is applicable. 

The functions hd and 11 require a non-empty list as actual argument The head of the list is mapped on a, the 
tail of the list is mapped on b. Again these vanables indicate that the contents of the list are irrelevant. 

A conditional can easily be defined. The choice between "then" and "else" part will depend on the actual value of 
the fust argument as indicated by the pattern. 

Data structures 

Lists are a rather important data structure in many functional programming languages. Lists, like 

any data structure in a functional programming languages, are constructed with the help of so 

called data constructors. Such a constructor can be seen as a kind of identification or tag which 
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uniquely identifies (and is part of) a "record" of a particular type. The list-constructor is usually 
named "cons" (prefix notation) or ": " (infix notation). The type of a list could recursively be 
defined as (usually it is predefined): 

l i s t * ::= Cons * ( l i s t *) I Nil 

List-types are denoted by l i s t * or [*]. A list contains two elements and the list-constructor 
cons, or, a list is an empty list denoted by Nil or [ ]. If the list is non-empty it contains a list 
element of a certain type * as head while the tail of the list is again a list of the same type. One 
could say that the head and the tail are "glued" together with help of the list-constructor. Lists are 
declared either by enumeration or by (recursive) definitions. The syntax we use for lists, is 
illustrated by the following examples. 

Lists, explicit infix notation: 

1: ( 2 : ( 3 : ( 4 : (5: [ ] ) ) ) ) II t h e l i s t of numbers from 1 up t o 5 
T r u e : ( F a l s e : ( F a l s e : [ ] ) ) Il a l i s t of t h r e e boo l eans 
[] II denote s the empty l i s t 
1 : 2 : 3 : 4 : 5 : [ ] II ":" i s r i g h t a s s o c i a t i v e 

For convenience of the programmer there is a shorthand notation for lists, using square brackets. 

Lists, shorthand notation: 

[1, 2, 3, 4,5] II the same list of numbers as above 
[True, False, False] I I again the same list with 3 booleans 
0 : [1, 2, 3] II same as [0, 1, 2, 3] 

One of the powerful features of functional programming languages is the possibility to declare 
infinite data structures via recursive definitions. 

Definition of an infinite list equal to [1, 1,1,1, ]: 

ones = 1 : ones 

ones is a recursive function yielding an infinite list 

Programs having infinite data structures as result do not terminate of course. For practical 
reasons such a result is printed as soon as possible. For an infinite list this means that, from "left 
to right", the elements of the list are printed as soon as they are in normal form. 

The possibility of defining infinite data structures puts some restrictions on the evaluation 
strategy which is explained in the following section. 

Some predefined operations on lists are generally available. These are: length of a list (denoted 
by #), subscription (!) and concatenation (++). The operations are assumed to be predefined in a 
library for reasons of efficiency and convenience. 

Predefined list-operations· 

# 12, 3, 4,5] || length of list, -» 4 
[2, 3, 4, 5] ' 2 || subscription, -» 4 
[0, 1] ++ [2, 3] || concatenation, -> [0, 1, 2, 3] 
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Evaluation 

As explained in the previous section, the evaluation of a functional program has the intention to 

find a final non-reducible expression denoting the same value as the initial expression E by 

repeatedly performing reduction steps. Because there are in general many redexes in the 

expression to reduce, one can perform these steps in several ways. This is determined by the so 

called reduction strategy which controls the evaluation. A reduction strategy is sometimes also 

called an order because it is used to indicate the next redex to reduce. There are a couple of 

important things to know about the ordering of reduction steps. 

In functional languages the final result of the computation (the normal form) does not depend on 

the order in which the redexes were reduced: the normal form is unique (see also section 1.3). 

However, there are restrictions that have to be put on the evaluation order. The specification of a 

pattern forces evaluation in order to decide whether or not a particular rule for a function can be 

applied. 

Forced evaluation: 

f a c 0 = 1 
f a c η = η * fac (η - 1) 

The expression fac (1-1) should of course not match the second rule, but the argumenl has to be evaluated 
first After the evaluation of the argument the rules may be matched in order. 

Furthermore, some reduction orders may not lead to the normal form at all (such a computation 

will not terminate). 

Non-terminating reduction: define 

i n f = i n f 

then the following reduction order may be taken: 

cond True 1 in f —» cond True 1 i n i —> cond True 1 in f —» . . . 

In this case another choice would lead to termination and to the normal form: 

nnnri Trug 1 in f -» 1 

The reduction strategy followed depends on the functional programming languages. In some 

languages, e.g. Lisp and Hope, the arguments of a function are always reduced before the 

function itself is considered as a redex. This is called eager evaluation and languages which use 

such an evaluation strategy, are sometimes called eager languages. Infinite data structures cannot 

be handled in these languages, because they are evaluated as soon as they are passed as 

arguments, which leads to infinite computations. 

Nowadays, in many functional programming languages the rewriting is done lazy. That is, the 

value of a subexpression (redexes) is calculated if and only if this value must be known to do the 

rewriting. Lazy evaluation makes it possible to handle infinite data structures. 
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Lazy evaluation and infinite lists: 

hd ( t i unas.) -» hd ( t l <1:опеэ)) -• hd а п е а -» hd П ; П П Р Я 1 -> 1 

In eager languages the evaluation of the parameter ones would not terminate: 

hd (t l ansa) -» hd (t l (Irfiiiss)) -* hd (t l (1 : (1 :£ЩЁа) ) ) -> 

There is a trade-off in the choice between lazy and eager evaluation: on one hand lazy evaluation 
gives better expressiveness in the language and on the other hand eager evaluation simplifies the 
implementation of a language. We have chosen for lazy evaluation because we like to improve 
the expressiveness of programming languages. 

Typing 

There are untyped functional languages (Twentel, KRC and SASL) but most functional 
languages are typed. In untyped languages any kind of functions can be written which is at the 
same time their advantage and their disadvantage. After all, every function is written with 
intended argument and result domains. In practise, a programmer will want to restrict himself 
deliberately to using these functions with elements of the intended domains only. Essentially, the 
type of a function is precisely this information on the intended domains. The type information 
can not only be used as a filter to restrict the set of acceptable programs, but it can also be useful 
for a compiler to produce faster code for specific types. 

Two ways of typing are distinguished: explicit typing and implicit typing. 

Explicit typing (or type checking) means that the compiler or the interpreter checks the type 
which is explicitly given by the programmer. Type checking occurs e.g. in the languages FP, 
HOPE, PONDER, ML and Miranda. There are many different algorithms for type checking in 
functional languages, differing in the kind of types they allow. 

Implicit typing (or type inference or type deduction) means that the compiler or interpreter of the 
language will try to infer the types of a program. So in principle, the programmer does not need 
to supply any type information. 

From a software engineering point of view it can be argued that explicit typing is much better 
because it forces the user to think about what he really wants to do with the functions he defines. 
However, for simple functions a lot of (error prone) specifying is asked from the programmer 
and then it is of course very nice if the types are deduced by the system. Since Miranda (the 
language we use in our examples) has implicit as well as explicit typing we will discuss implicit 
typing some more and we will give some comments on this combination of both ways of typing. 

The type inference algorithms are usually based on the Сиіту+ type system of the λ-calculus. In 

the Cuny+ type system it is inherently undecidable to determine the type of a λ-term, because 

this type system contains a special type deduction rule (EQ: if two terms are ß-equal they have 
the same type) which (in programming terms) means that in order to determine the type of an 
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expression the expression first has to be fully evaluated. So any practical algorithm based on the 

Сигту+ type system must be an approximation. 

Milner (Milner (1978)) has given such an approximating algorithm which is used in Miranda. 
This algorithm uses the Curry type system (i.e. Cun-y1" without EQ) and with some small 
extensions. It can deal with polymorphism i.e. a function can be applied on objects of different 
types (e.g. the identity function delivers an expression of the same type as its argument). But it 
can not handle internal polymorphism i.e. polymorphism of locally defined functions or 
polymorphism of arguments in the definition itself. 

Milncr-untypablc function definitions: 

length: : [*] -> пшп 

length [] = 0 

length (a:b) - 1 + length b 

fun: : (* -> num) - > * - > * -> пшп 

fun f listi list2 - f listi + f list2 

missionimpossible = fun length [1,2,3] "abc" 

In the righl-hand-side of the definition of m i s s i o n i m p o s s i b l e the type system does not allow the actual 
argument l e n g t h to get two different types in the body of the function fun. l e n g t h cannot get type ( пшп] 
-> numon [ 1 , 2 , 3 ] and also type [char] -> num on "abc" . These types arc consistent with the 
definition of l e n g t h but they arc not consistent with the definition of fun. 

Although the deduction scheme can be improved for some cases, a fully satisfactory type 

inference algorithm is not yet found. 

In Miranda type inference and type deduction are combined. A programmer may specify types 
but he does not need to do so. For this purpose Miranda uses the type checking algorithm of 
Mycroft (Mycroft (1984)) which only slightly differs from the type deduction algorithm of 
Milner. At first sight this is a very nice feature. However, in certain cases it may lead to not very 
admirable situations. 

For instance, suppose a programmer gives the following definition: 

g χ = 1 : g (g ' с " ) 

The type deduction algorithm of Milner which is used in Miranda cannot deduce the type of g 
because of the internal polymorphism of g. g is used polymorphic in the right hand side of its 
own definition, namely with type instances: char -> [num] and [num] -> [num]. Hence, an 
error message will be given by the compiler. 

However, when the user explicitly specifies the type of g as: * -> [num] the type checker has 

no problems with this case: the specified type is accepted and no error message is produced. 

For a programmer it might be very confusing when on one hand a program has a type error if 
types are deduced while on the other hand if a type is explicitly given the program is typed 
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correctly. This confusion might be prevented if the language has explicit typing only. The 

programming environment could then have a facility built in that on explicit request of the user 

does its best trying to infer the type. This would give the user a clearer view on type inference 

and type checking. 

Examples 

The power of functional programming languages is illustrated in two examples which use the 

general features of functional programming languages. 

Sorting a list. 

The function s o r t needs a list of any type as argument and delivers as result the sorted list which has the same 
type as the argument. 

sort:: [*] -> [*] 

sort [] = [] 

sort (a:x) - sort (smalleq a x) ++ [a] ++ sort (greater a x) 

The funclions s m a l l e q and g r e a t e r need (wo arguments: a hst and an element. This clement must have the 
same type as the elements of the list. 

s m a l l e q : : * - ) [ * ] - > [*] 

smalleq a 
smalleq a 

greater: : 

greater a 
greater a 

[] 
(b:x) 

[] 
(b:x) 

- [] 
- cond (b <= a 

*->[*]-* [*] 

- [ ] 
= cond (b > a) ( b : ( g r e a t e r a x ) ) ( g r e a t e r a x) 

Obviously, the type of the elements of ihe list must be such, (hat the operations '<=' and '>' are well defined. 

Roman numbers. 

Roman numbers are built up from ihe characters M, D, C, L, X, V and I Each of these characters has ils own 
value These characters always occur in sorted order, characters with a higher value before characters with a lower 
value. Exceptions to this rule arc a number of 'abbreviations', given below. The value of a Roman number 
which contains no abbreviations, can be found by adding the values of the characters that occur m the Roman 
number (MCCLVI = 1000 + 100 + 100 + 50 + 5 + 1 = 1256). The abbreviations make tt less simple to 
calculate the value of a Roman number because now the value of the character depends on its relevant position 
in the string. Negative numbers, or the number zero cannot be expressed in Roman numbers. The values of the 
Roman characters and the values of the common abbreviations are 

M 
D 
С 
L 
X 
V 
I 

= 
= 
= 
= 
= 
= 
= 

1000 
500 
100 
50 
10 
5 
1 

CM = 
CD = 
XC = 
XL = 
К = 
IV = 

DCCCC 

ecce LXXXX 
XXXX 

ПП 

nn 

= M 
= D 
= С 
= L 
= X 
= V 

- С 
- С 
- χ 
- χ 
- I 
- I 

A Roman number is represented as a string. It is assumed that the specified functions are applied on correct 
arguments only. 
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I I value defines the value of a Roman digit. 

value: : char —» num 

value 
value 
value 
value 
value 
value 
value 

•M' 

'D' 
•c 
'L' 
'X' 

•v 
'I· 

-
= 
= 
" 
= 
= 
= 

1000 
500 
100 
50 
10 
5 
1 

I I rconvert converts a Roman number to a decimal number. 

rconvert:: [char] —» num 

rconvert ('С^'М':x) 
rconvert 
rconvert 
rconvert 
rconvert 
rconvert 
rconvert 
rconvert 

DISCUSSION 

CC'; 
('X' : 

('X' : 

(•I
1
: 

('1'; 
( a : 
[] 

: 'D' 
¡•c 
: 'L' 
: "X* 
: 'V' 
: x) 

:x) 
:x) 
:x) 
:x) 
:x) 

value 'M' 
value 'D' 
value 'C' 
value 'L' 
value 'X' 
value 'V' 
value a 
0 

value 'C' + rconvert χ 
value 
value 
value 
value 
value 

'C' 
•X' 

'X' 
'I' 
•I' 

rconvert 

rconvert 

rconvert 

rconvert 

rconvert 

rconvert 

The following claims have been made in favour of functional programming. 

- Functional languages have a sound mathematical basis, with function definition and 

application as the essential concepts. 

- Because of the lack of side-effects, which leads to referential transparency, program 

correctness proofs are easier. Proofs can be constructed with classical mathematical 

techniques like induction. Proofs are compositional i.e. properties of a function which are 

proven, can be used directly in other functions. Also it makes program transformations easier: 

a programmer can start with a straightforward solution of a problem and via transformations 

convert this solution to a more efficient one. Therefore it is less difficult to develop reliable 

software. 

- Mainly because of the use of higher order functions the expressive power of functional 

programming languages is higher than of conventional languages. Programming is more like 

mathematically specifying the algorithm. Programs are therefore in generally shorter than their 

conventional counterparts and thus easier to enhance and maintain. 

- A functional programming style is a mathematical style. Therefore a functional language is in 

particular suited as a specification language. The fact that it is also a programming language 

can be seen as a convenient additional feature. For instance, in Boute (1986) it is shown that 

the functional paradigm can be used for the description of digital and analog circuits. 

- In the evaluation process of an expression it may occur that there is more then one redex in 

that expression. So, the evaluation process may continue in different ways. The Church-

Rosser property states that this evaluation order is unimportant if the choice does not lead to 

an infinite evaluation process. The Church-Rosser property is a property of the set of 

definitions, which forms the program of a functional programming language. The Church-
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Rosser property is also valid in (subclasses of) the models that are used for functional 
languages (see also section 1.3 and chapter 2). Due to the Church-Rosser property, 
alternative evaluation orders, such as parallel evaluation, will never produce a wrong result, 
although special care has to be taken in order to avoid non-termination. So, functional 
languages seem to be very suited for parallel evaluation. 

There also are the following serious disadvantages which however may be taken away by further 
research. 

- Some algorithms seem to be difficult to express in a functional programming style. Although 
it is in principle not impossible to do, those programs which have a strongly imperative 
nature (process control, operating systems, concurrently accessed databases) look not 
elegant. There is some hope for improvement because functional languages are still under 
development and because one still is learning how to express algorithms better in these 
languages. 

- Efficient implementations are now becoming available (Johnson (1984), Brus et al. (1987)) 
but they are still somewhat slower than implementations of imperative languages. However, 
space and time efficiency can still be improved by further applying and improving 
implementation techniques e.g. strictness analysis, avoidance of space leaks and introduction 
and implementation of arrays with fast creation, access and update. Furthermore, one has to 
keep in mind that a certain loss of efficiency was also accepted when high level imperative 
languages were started to be used. 

- From the software engineering point of view functional languages still lack several essential 
aspects: 
• Firstly, there is no well established programming style. Only the first attempts are made 

towards establishing such a programming style. 
• Secondly, there is no well established proposal for modularity, although several attempts 

have been made. 
• Thirdly, there are hardly any debugging facilities yet. Although programs tend to contain 

relatively few errors, debugging cannot totally be avoided. Especially in lazy languages it 
is difficult for the programmer to be able to get an idea of the exact execution order which 
influences the real-time behaviour of a program. 

• Lastly, early programmers training and education is just getting started in an experimental 
way. 

The balance between advantages and disadvantages is such that further research on functional 
programming languages is more than justified. 

1.3 TRADITIONAL MODELS OF COMPUTATION FOR FUNCTIONAL LANGUAGES 

In this section we will discuss some traditional models of computation for functional 
programming languages. For these models some properties are given in relation to other models. 
All these models are capable of representing every computable function. Each model can be used 
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as computational model for functional languages. Our choice for a non-traditional model is 

motivated. 

GENERAL TERMINOLOGY: ABSTRACT REDUCTION SYSTEMS 

The general terminology which is used in functional languages and in all models for these 

languages is contained in Abstract Reduction Systems (ARS's). ARS's abstract from the precise 

structure of the objects and from the way reduction takes place. 

An Abstract Reduction System (ARS) is a pair (E,->), where E is a set of elements and -> is a 

binary relation on E. The transitive reflexive closure of —» is denoted by —»* or —». A similar 

definitions or ARS's can be found in Klop (1987). 

The intuitive idea is that each element represents a program at some state of execution. If χ -> y 

then a next step in the execution could be transforming the element χ to y. 

We say that χ can be reduced or rewritten to y in one step. We also say χ reduces to y and y is 

called a one-step reduci of x. An element χ of an ARS is a redex (reducible egression) if there 

exists an y such that χ —» y. A reduction sequence of an ARS is a sequence XQ—»XJ—»...-»xn. 

The length of this sequence is n. A sequence of length 0 is empty. 

An element χ of an ARS is a normal form if for there is no y such that χ —» y. An element χ has a 

normal form if there is an element y such that χ —» y and y is a normal form. 

Given an ARS (E,—»), a (reduction) strategy for this system is a function S which takes each 

xeE to a set S(x) of nonempty finite reduction sequences, each beginning with x. Note that S(x) 

can be empty. 

A strategy S is deterministic if, for all x, S(x) contains at most one element. A strategy S is a 

one-step strategy (or 1-strategy) if for every χ in E, every member of S(x) has length 1. 

Write x—>s y if S(x) contains a reduction sequence ending with y. By abuse of notation, we may 

write x—>s У to denote some particular but unspecified member of S(x). An S-sequence is a 
reduction sequence of the form XQ—»S X! —»s X2 -* s A strategy S is normalising if for all 

x0 having a normal form any S-sequence XQ-^S X I ~^S X 2 ~*S must eventually terminate 
with a normal form. 

A reducer with strategy S is a process which starts with an element x, chooses a reduction 

sequence of S(x) and repeats this with the end of the chosen reduction sequence as the new 

element x. A result χ of a reducer is reached when S(x) is empty. Reducers are deterministic or 

non-deterministic. A reducer is deterministic if a reduction sequence in S(x) is chosen via a 

function. 

An ARS is confluent or has the Church-Rosser property (is Church-Rosser) if for all elements x, 

y and ζ for which χ —» y and χ —w ζ, there exists а с such that у —» с and ζ -» с. It can be 
proven that confluent ARS's have the unique normal form property i.e. each element has almost 
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one normal form. The unique normal form property implies that different normalising reducers 

all will have the same result if there is a normal form. This is useful for implementations which 

can improve efficiency by using other (possibly parallel) reduction orders. 

In Klop (1987) many other interesting properties of ARS's can be found. 

LAMBDA-CALCULUS 

The theory of the λ-calculus (an overview is given in Barendregt (1984)) as a model of 

computation has been introduced by Church in 1936 (the very same year in which Turing 

introduced the Turing machine model of computation) and is further investigated since. The basic 

concepts of λ-calculus are application and abstraction. The set of terms Λ is the following. 

λ-calculus: terms 

Every constant с of the set of constants С is a term. Every variable ν of the set of variables V is a term. 
If M and Ы arc terms then Μ N is also a term. (application) 
If M is a term and χ is a variable then λχ. M is also a term, (abstraction) 

Reduction is done by substitution of the variables (like in e.g. f (x)= χ + x ; f ( 2 ) = 2 + 

2). The reduction relation is defined as follows. 

λ-calculus: reduction relation (ß-reduetion) 

(λχ.Μ) Ν ->p M [x:=N] 

where [x:=N] denotes substitute N for χ . This reduction relation is closed under contexts, e.g. if Μ -»ο Ν 
then also λχ.Μ Ζ -»β λχ.Ν Ζ. 

The abstract reduction system corresponding to λ-calculus is of course (Λ,—>β). The substitution 

mechanism is not at all trivial so in implementations it has to be taken care of in a special way. 

Not all occurrences of the variable may be substituted (only so called free occurrences). 

Furthermore it might be necessary to change the names of some variables during substitution. 

Changing the name of a variable is also called a-conversion. 

λ-calculus: substitution 

( λ χ . χ ( λ χ . χ ) χ ) с -ta χ (λχ.χ ) χ [ х : = с ] = с (λχ.χ ) с 
( λ χ . ( λ γ . γ χ ) ) у ->β ( λ γ . γ χ ) [ х : = у ] = α ( λ ζ . ζ χ ) [ х : = у ] = λ ζ . ζ у 

Lazy evaluation (leftmost) is normalising for the λΚ-calculus. Eager evaluation is not 

normalising for the λΚ-calculus. In λΐ-calculus terms which have a normal form, have no non-

terminating reduction order. So, eager evaluation is normalising for λΐ-calculus. Definitions of 

λΚ- and λΐ-calculus can be found in Barendregt (1984). 

λ-calculus is confluent. So alternative (possibly parallel) orders of evaluation can never yield a 

wrong result. Extending λ-calculus with so called delta rules which act on normal forms and use 

some internal representation to produce a result (e.g. arithmetical functions), is still confluent 

(Barendregt (1988)). 
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λ-calculus can be implemented using sharing (Wadsworth (1971)). It is very difficult to do this 

optimally avoiding copying of redexes always. The following term communicated to us by J.J. 

Levy, illustrates the essential issues for this optimality problem: 

( λ ζ . ζ (λχ .χ ) ζ) (Xf.(Xz.z ( ( λ χ . κ ) ζ ) ) (f с ) ) 

Traditionally, the λ-calculus is considered to be a suitable model for functional languages 

(Peyton Jones (1988b)). However, certain aspects of functional languages and the way they are 

usually implemented, cannot be modelled within this calculus. In particular, the λ-calculus lacks 

explicit recursion, pattern matching and the explicit notion of sharing of computations. With λ-

calculus it is impossible to reason about these aspects which, in our opinion, are essential for the 

languages and their implementation. 

COMBINATORY LOGIC 

Combinatory logic (Schönfinkel (1924)) is closely related to λ-calculus. In λ-calculus terms a 

combinator is a λ-tenn without free variables. All recursive functions can be defined with 

applications of only two basic combinatore s and к which are defined below. 

SK-combinatory logic: terms 

S is a term and К is a term; if M and N aie terms then Μ N is also a term (application). 

SK-combinatory logic: the reduction relation follows from the definitions of S and К in λ-calculus: S s 
λχ.λγ.λζ.χ ζ (y ζ) and Κ s λχ.λγ.χ. 

S x y z —> χ ζ (y ζ) 
Κ χ y —* χ 

Of course, it is impossible to make an efficient implementation based on the combinatore s and к 
only. A simple function needs already lots of s's and K'S. 

A simple algorithm for translating λ-calculus to s- and κ-combinators is the following. This is 

one of the several algorithms which are called bracket-abstraction because the translation of a λ-

term χ to a combinator term is indicated by [xj. 

A bracket-abstraction algorithm: 

[λχ.χ] ш S К К 
[λχ.ν) = К у 
[λχ.Ρ Q] s S [λχ.Ρ] [λχ.Ο] 

[Ρ Q] = [Ρ] [Q] 

The abstraction algorithm reveals an important intuitive aspect of the combinators. They 

distribute an argument over the function body; к means the argument is not needed here and s 
means distribute the argument over both parts of the application. This intuitive idea is applied 
more clearly in the concept of Director Strings (Kennaway & Sleep (1988)). 

David Turner was the first to introduce an implementation of a functional language using 
combinators as an intermediate language (Turner (1979a)). He did not use the set of two 
combinators mentioned above but he used an extended set of about 15 combinators and of course 
some delta-rules. His paper induced much research on which set of combinators was best for 
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implementation purposes and it also induced research on machine architectures based on such 

sets of combinators. This research was very colourful with concepts as supercombinators and 

superdoopercombinators and machines with names such as NORMA and SKIM. However it 

turned out that using an intermediate language with graph primitives and special compiler 

techniques it was possible to get at least an order of magnitude increase in efficiency beating on 

an ordinary VAX the expected performance of special-purpose hardware based on these 

combinators. 

An interesting more recently proposed combinator model is built with the so called categorical 

combinators (Curien (1986)) based on a category theoretical model of the λ-calculus. These 

combinators encode an environmental implementation of the λ-calculus using eager evaluation. 

Leftmost-outermost reduction implemented with sharing is normalising and optimal for 

combinator systems. 

Just as λ-calculus, combinatory logic lacks explicit recursion, pattern matching and the explicit 

notion of sharing of computations. With combinatory logic it is impossible to reason about these 

aspects which, in our opinion, are essential for the languages and their implementation. 

1.4 CONCLUSION 

We believe that the use of the declarative paradigm (and functional languages in particular) might 

contribute to solving the software crisis. 

In our opinion both λ-calculus and combinatory logic are not the best suited models of 

computation for functional languages and their implementation because they lack recursion, 

pattern matching and sharing. Therefore, we will consider term and graph rewriting systems in 

the next chapter. 
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2 

GRAPH REWRITING SYSTEMS: 

A PROMISING COMPUTATIONAL MODEL 

Graph rewriting systems are the key computational model throughout this thesis. So, in this 

chapter we will first motivate why graph rewriting is so well suited for serving as a model of 

computation for implementations of functional languages. Then a short introduction is given to 

generalized graph rewriting as it is defined in the chapters 4 and 5 of this thesis including its 

extensions which are defined in chapter 7 of this thesis. 

An overview of the main results which are presented in this thesis, is given in the rest of this 

chapter beginning with section 2.3. Motivations are given for the choices which were made. 

Relations between various topics of this thesis are discussed. 

2.1 WHY GRAPH REWRITING? 

The reason for choosing graph rewriting as the model of computation for implementations of 

functional languages is that graph rewriting is built around two basic concepts: pattern matching 

and sharing. The advantages of these concepts are discussed below. 

PATTERN MATCHING 

Pattern matching is the basic operation for Term Rewriting Systems (TRS's). A tutorial on 

TRS's is given in Klop (1987). 

TRS's are more general than λ-calculus and combinatory logic because TRS's allow non-

Church-Rosser computations to be specified. In TRS terms combinators are very simple rewrite 

systems without recursion and with patterns with a simple specific structure only. TRS's do not 

have free variables. 

Combinatory logic defined as a TRS: 

Apply (Apply (Apply S χ) y) ζ -> Apply (Apply χ ζ) (Apply y ζ) 
Apply (Apply Κ χ) y —> χ 

Sometimes a special notation is used not writing down the binary Apply operators: 

S x y z —> χ ζ (y ζ ) 
Κ χ y — » χ 

In TRS's also ambiguous, non-confluent computations can be specified. However, Regular 

TRS's i.e. TRS's with no overlaps between the rules and without multiple occurrences of 

variables on the left-hand-side, are confluent. So, this class of TRS's is suited for modelling 

functional languages. 
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Parallel outermost reduction is a normalising strategy for regular TRS's. Because strategies 
influence the reduction order and hence the run-time behaviour of a program, it is necessary to be 
able to reason about them. Strategies are very often only informally defined which makes this 
reasoning almost impossible. Formal specification and comparison of reduction strategies is not 
only important for reasoning about these strategies but it is also important for implementing 
them. In chapter 3 of this thesis some specification methods are compared and a new high level 
specification method is introduced which simplifies the reasoning about reduction strategies. 

TRS's are very close to functional languages because the basic concept is pattern matching. 
Patterns contain important information for strictness analyzers (Nöcker (1988)). Strictness 
analysis tries to find opportunities to deviate from the standard reduction strategy in order to 
achieve a more efficient implementation (e.g. many times eager evaluation can be more efficient 
than lazy evaluation). The following example illustrates the importance of the use of patterns for 
strictness analysis. 

Patterns may contain important information for strictness analyzers: 

F χ -> G (Cons χ N i l ) ; 
G (Сопз a b) -> a I 
G χ -> N i l 

Using the pattern-match information of G a very simple analysis shows that F is strict in its first argument. 

With combina tors or with λ-calculus an analysis which effectively uses the pattem-match 
information would be very cumbersome. Therefore, we consider TRS's to be better suited than 
λ-calculus to serve as a computational model for functional languages and their implementations. 

TRS's are very close to functional languages and they even broaden the scope of investigation to 

non-confluent computations. Unfortunately, TRS's lack the explicit notion of sharing of 

computations which, in our opinion, is an essential notion in the implementation of functional 

languages. 

SHARING 

Sharing of computations is essential to obtain efficient implementations on traditional hardware, 
although it might be a problem in a parallel environment. Machine architectures generally have a 
memory which has addresses and contents; instructions change the contents of the memory. The 
memory can be seen as a not connected graph and the instructions can be seen as rewrite rules cm 
the graph. Furthermore, every program which contains non-trivial data structures deals with a 
certain notion of graph rewriting. So, we feel that it is important to investigate general graph 
rewriting. 

Referential transparency obviously gives many opportunities for sharing computations. So, in 

the context of functional programming various implementation methods with different ways of 

sharing are investigated (Wadsworth (1971), Turner (1979a), Johnson (1984) and many others). 

So if we take sharing seriously, it has to be incorporated in the model of computation which is 

the basis for an intermediate language between functional language and machine architecture. 
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Then the model of computation will be close to the implementation and the issues concerning 

sharing can be discussed and investigated within the model. 

Graph rewriting systems extend TRS's with a general notion of sharing. We believe that 

compared to the λ-calculus, combinatory logic and term rewriting systems, graph rewriting 

systems are best suited to serve as computational model for functional languages. Therefore, 

graph rewriting systems were chosen to be the basic model of computation in the Dutch Parallel 

Reduction Machine Project (Barendregt et al. (1987c)) and in the U.K. Flagship project (dauert 

et al. (1987c)). 

It has been shown that with intermediate languages based on this model of graph rewriting 

(Clean, Concurrent Clean, Dactll) efficient implementations of functional languages are possible 

on various sequential and parallel machine architectures (Brus et al. (1987), van Eekelen et al. 

(1988), Kennaway (1988b), an overview is given in Glauert et al. (1988)). 

2.2 INTRODUCTION TO GENERALIZED GRAPH REWRITING 

In this section generalized graph rewriting as defined in chapters 4 and 5 of this thesis is 

introduced informally. Also the extensions which are introduced in chapter 7, are briefly 

explained. A more rigorous treatment can be found in those chapters. 

TERMINOLOGY 

In graph rewriting systems a program is represented by an initial graph and a set of rewrite rules. 

Each rewrite rule consists of a left-hand-side graph (the pattern), an optional right-hand-side 

graph (the contractum) and one or more redirections. A graph is a set of nodes, one of which is 

distinguished as being the root of the graph. Each node has a defining node-identifier (the 

nodeid). A node consists of {contains) a symbol and a (possibly empty) sequence of applied 

nodeid's (the arguments of the symbol). Applied nodeid's can be seen as references (arcs) to 

nodes in the graph, as such they have a direction: from the node in which the nodeid is applied to 

the node of which the nodeid is the defining identifier. Starting with an initial graph the graph is 

rewritten according to the rules. When the pattern matches a subgraph, a rewrite can take place 

which consists of building the contractum and doing the redirections. A redirection of one nodeid 

to another nodeid means that all applied occurrences of one nodeid are replaced by occurrences of 

the other (in implementations this is generally realized by overwriting the node, possibly by an 

indirection node). 

In abstract reduction systems anything that can be rewritten is a redex. In graph rewriting (and in 

other models with structured terms such as λ-calculus, combinatory logic and TRS's) mostly the 

term redex is reserved for that part of the structure that actually matches a rule. A graph is then 

said to be in normal form if it contains no redex. Furthermore, a graph is in root normal form 

when the root of a graph is not the root of a redex and it is sure that it can never become the root 

of a redex. Note that whether a graph has such a root normal form is in general undecidable. 

When a reducer terminates, its result is that part of the final graph which is accessible from the 

root. A result generally is a root normal form. Even if a graph has only one unique normal form, 
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this graph may be reduced to several root normal forms depending on how far the subgraphs are 

reduced. 

A rule is left-comparing or non left-linear if a variable occurs more than once in the left-hand-

side. A graph rewriting system is left-comparing or non left-linear if it contains a left-comparing 

rule. 

REWRITING 

In standard graph theory, a graph in a general graph rewriting system (as defined in chapter 5) is 

a form of directed graph in which each node is labeled with a symbol, and its set of out-arcs is 

given an ordering. In general graph rewriting systems nodes are denoted by their names, i.e. 

their nodeid's. The denotation of a graph can be regarded as a tabulation of the contents function 

which gives the contents of every node of the graph. 

Denotation of a cyclic graph which might occur during execution of example 6.3 in chapter 6: 

01: Сопз @2 @3, 
@2: 1, 
03: Merge 04 05, 
04: Map 06 01, 
05: Map 07 01, 
06: *I 08, 
07: *I 09, 
08: 2, 
09: 3; 

A pictorial view on this graph: 

Cons 

Û Merge 

Map 

Q f 
Map 

G T 

I 
To get an idea of what general graph rewriting is we will discuss the main differences with term 

rewriting. 

Of course, the objects are graphs so all kinds of sharing (including cyclic structures) can be 

expressed. The variables in the graphs stand for nodeid's which among other things means that 

the natural meaning of left-comparing is not just a test for syntactical equivalence but a test on 



Graph Rewriting Systems: a promising model of computation 29 

actually sharing the same structure. Furthermore, on the right-hand-side of a rule the new 
structure may contain nodeid variables which do not occur on the left-hand-side. For these 
variables new nodeid's must be invented while building the actual contractum. 

Graphs need not be connected. When the computation is finished, the final result is the subgraph 
that is connected to the root. This gives rise to the elimination of nodeid's that are not connected 
to the root anymore (garbage collection). These nodeid's can be reused instead of inventing new 
nodeid's. Unconnected patterns in the rules give rise to a kind of context dependent rewriting 
where a part which is connected to the root may be rewritten if a non-connected part of the graph 
contains some symbol for instance. For tracing purposes this can be very useful. 

Rewriting is done via redirections. A redirection of the root of the redex to another nodeid more 
or less corresponds to rewriting in term rewriting systems. However, multiple redirections which 
are performed in parallel, and non-root redirections give rise to complex changes of the graph 
structure. 

The actual nodeid's of a graph that is rewritten are also called global nodeid's. Explicit 
redirection of a global nodeid has as a consequence that all references to the original global 
nodeid have to be changed. So also references in the rewrite rules to global nodeid's have to be 
redirected. Hence global nodeid's can be viewed as global variables (they have a global scope), 
where nodeid variables are local variables (they have a meaning only within a single rule). 

EXTENDING THE REWRITE SEMANTICS 

In chapter 7 of this thesis the following extensions are discussed and used extensively. In order 
to make it possible to discuss the relations between the chapters the extensions are briefly 
explained here. 

Influencing the order of evaluation 

We can allow graph rewriting systems to be annotated in order to influence the sequential order 
of evaluation. To every node and to every nodeid one or more attributes can be assigned via 
annotations. Annotations can belong to a node (node annotation which is placed before the 
symbol of the node) and to an argument (argument annotation placed in front of the argument). 
Annotations may occur on the right-hand-side as well as on the left-hand-side of a rule. 

In this thesis only one sequential annotation is defined indicating that the reduction of the 
annotated argument of a symbol (function or constructor) is demanded. This annotation will 
force the evaluation of the corresponding argument before it is tried to rewrite the graph 
according to a rule definition of the symbol. Note that such annotations may make the reduction 
strategy deviate from the default evaluation order which then becomes partially eager instead of 
lazy. When more than one such annotation occurs on a right-hand-side, they are effectuated 
depth-first from left to right. 
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These annotations play an important role because they are parameters of the reduction strategy. 
The reduction strategy takes them into account and therefore they influence the way in which a 
result is achieved. This is important if one wants to optimize the time and space behaviour of the 
reduction process. It is assumed that annotations are never used in such a way that they influence 
the result of the computation or the termination of the reduction. 

In reasoning about programs with these annotations on the left-hand-side it will always be true 
that the annotated argument will be in root normal form when the corresponding rule is applied. 
The semantics of annotations on the left-hand-side can be explained via transformations to sets of 
rules with right-hand-side annotations only. Intuitively, the transformation involves introducing 
an extra internal reduction with an annotated right-hand-side which forces evaluation after some 
matching but before the rule is applied. 

Explicit parallelism 

As said before, in general there will be several redexes in a graph. One single sequential reducer 
repeatedly chooses one of the redexes which are indicated by the reduction strategy and rewrites 
it. Interleaved reduction can be obtained by incarnating several sequential reducers which reduce 
different parts of the same graph. As has been explained by using annotations it is also possible 
to influence the order in which the redexes are reduced by a single reducer. 

Loosely coupled machine architectures, such as Transputer racks, are available on a wide scale. 
But one of the major problems is that most reductions of function applications will not contain a 
sufficient amount of computation compared with the overhead costs caused by the inter-
processor communication (grain size problem). Therefore, for these architectures only those 
redexes which yield a large amount of computation are suited to be evaluated in parallel. The 
complexity of a grain is in general undecidable and furthermore no satisfactory automatic 
approximation method has been developed. So, it is necessary to have an explicit way of 
indicating the parallel redexes in a program by using special language constructs. Developing an 
efficient program starts with some sequential algorithm which is converted by one or more 
program transformation steps in order to obtain a program containing useful grains. 

By denoting subgraphs on which reduction processes have to be created, parallelism in graph 
rewriting can be modelled. Reduction processes which evaluate an indicated subgraph, can be 
created dynamically in an eager manner (immediately) and in a lazy manner (when needed). 

The process annotation indicates that a new sequential reducer has to be created with the 
following properties: 

- the new reducer reduces the corresponding graph to root normal forni after which the reducer 
dies; 

- the new reducer can proceed interleaved with the original reduction process; 
- all rewrites are assumed to be indivisible actions; 
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- if for pattern matching or reduction a reducer needs access to a graph which is being rewritten 

by another reducer, the first reducer will wait until the second one has reduced the graph to 

root normal form. 

The process annotation influences the overall order of evaluation because a new reducer proceeds 

interleaved with the other reduction processes. If the process annotation appears on the right-

hand-side processes are created eagerly, if the annotations appear on the left-hand-side processes 

are created lazy. 

Lazy copying 

Explicitly controlled copying can be very useful. In a sequential environment explicit control over 

the copying process can be used to improve the efficiency of memory management. In a parallel 

environment communication between processors with local memory always involves copying. 

Although in implementations generally some kind of copying/sharing scheme is used, up to now 

it has never been incorporated in graph rewriting models. With an explicit mechanism for 

copying in the model the communication can be controlled on the level of the rewriting system 

itself. 

In chapter 7 of this thesis graph rewriting is extended with a notion of explicit (lazy) copying. 

When a full copy is made, sharing is lost. Intentionally, sharing is used to prevent that the same 

computation is performed more than once. With lazy copying it is possible to make a copy 

without loosing this advantage. In general the phrase 'lazy copying' will stand for the notion of 

having the possibility to explicitly denote that a copy or a lazy copy has to be made. By 

introducing the possibility to use subtle combinations of sharing and copying this greatly 

improves the expressive power of graph rewriting systems. Furthermore, in chapter 7 it will be 

shown that lazy copying can also be the basis for communication in a parallel environment. 

Classes of GRS's 

A subclass of general GRS's in which the order of evaluation can be influenced via annotations 

will be prefixed with A. So the abbreviation for general graph rewriting systems with these 

annotations is A-GRS. 

A subclass of general GRS's in which reducers can be created explicitly will be prefixed with P. 

So the abbreviation for general graph rewriting systems with explicit parallelism is P-GRS. 

Because generally the sequential control annotations are also used when the parallel annotations 

are used, classes which use both annotations are also just prefixed with P. 

A subclass of general GRS's which is extended with lazy copying will be prefixed with С So 

the abbreviation for general graph rewriting systems with lazy copying is C-GRS. 

2.3 HIGH LEVEL SPECIFICATION WITH MULTI-LEVEL REWRITING SYSTEMS 

With multi-level rewriting systems (defined in chapter 3) high level specifications of reduction 

strategies can be made. With this method specifications can be constructed which are relatively 
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easy to prove. As is shown in chapter 3 transformations on these specifications can be elegantly 
performed in order to obtain certain properties. 

In Goos & van Latum (1987) this method is applied successfully for various strategies. They 
have specified the strategies and they have proved several properties. 

This method of specification can easily be extended to graph rewriting systems as defined in 
chapters 4 and 5. This is achieved by using GRS's where TRS's are used in chapter 3. 

In Smetsers et al. (1988) a slightly adapted version of the method is being used to specify the 
operational semantics of Concurrent Clean (a language based on the extensions of graph 
rewriting systems which are given in chapter 7). Since this specification adopts the syntax of 
Clean (a functional language based on graph rewriting defined in chapter 6), such a specification 
also yields a directly executable (slow) interpreter for Concurrent Clean. 

2.4 TERM GRAPH REWRITING 

Term graph rewriting (defined in chapter 4) connects term rewriting systems in which no sharing 
can be expressed, with graph rewriting systems. Term graph rewriting means that a TRS is 
inteipreted (lifted) as a GRS. The normal forms of the GRS which are graphs, are unravelled to 
terms in the TRS world. Via term graph rewriting it is proven that sharing terms is sound. 
Furthermore restrictions are given which ensure completeness of sharing implementations. Using 
C-GRS's (to denote sharing as well as copying; see section 2.2 for a brief introduction) and PC-
GRS's (to denote copying with explicit parallelism); see sections 2.2 and 2.7) alternative ways of 
lifting TRS's can be investigated. This might lead to proving the correctness of parallel 
implementations of more general (not necessarily regular) TRS's. Term graph rewriting is a very 
promising topic for further research. 

Different ways of lifting TRS's lead to the investigation of special classes of GRS's. These 
classes have the following restrictions of general graph rewriting systems in common: 

- all graphs are connected and global nodeid's do not occur in the rules; 
- every rale has exactly one redirection which is a redirection from the root of the pattern to the 

root of the contractum or when there is no contractum, to a nodeid indicated in the pattern; 
- no left-comparing rules which implies that it is impossible to pattern match on equivalency of 

nodeid's (sharing). This is a difference with TRS's: the corresponding property of TRS's can 
not be lifted to GRS's. 

Because of the last restriction which implies that left-hand-side are actually more like terms, the 
classes are called Term ... Rewriting Systems where ... captures the extra restrictions that are put 
on the right-hand-sides. 

In a Term Tree Rewriting System (TTRS) right-hand-sides are dag's (directed acyclic graphs) 
and furthermore all variables on the right-hand-side have copy indications as defined in chapter 
7. If TRS's are lifted by adding these copy indications, then with trees as initial graphs this class 
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of GRS's exactly corresponds to term rewriting which is shown in chapter 4 with somewhat 
different terminology. 

In a Term Dag Rewriting System (TDRS) right-hand-sides are dag's without further restrictions. 
With these systems it is shown in chapter 4 that sharing implementations of a fairly general class 
of term rewriting systems are sound and complete. Furthermore, it is shown that sib-normalising 
strategies (a large subclass of normalising strategies) can be lifted from TRS's to normalising 
strategies in TDRS's. 

In a Term Graph Rewriting System (TGRS) right-hand-sides are graphs (possibly containing 
cycles). Special transformations during lifting of TRS's might make use of cycles. The 
intermediate language Clean which is introduced in chapter 6, uses TGRS's to implement 
functional languages. Infinite data structures can be efficiently implemented with cyclic graphs. A 
typical example is the solution to the Hamming problem given in section 6.3.3. 

The unravelling of the normal forms of a rule system with lazy copying will always be the same 
as the unravelling of the normal forms of the same rule system without lazy copying. In other 
words lazy copying is invariant under unravelling. This is an interesting property for the 
implementation of functional languages and for term graph rewriting because it means that when 
we model TRS's by term graph rewriting the results in the TRS world are not affected by lazy 
copying. 

2.5 GENERALIZED GRAPH REWRITING: LEAN 

Lean (defined in chapter 5) is an experimental language for specifying computations in terms of 
graph rewriting. It is designed to be a useful intermediate language for those language 
implementations which rely on graph rewriting. An interpreter for Lean is available (Jansen 
(1987)) which allows mixing of several reduction strategies. The design of Lean has heavily 
influenced the design of Dactll (dauert (1987c)), which the UK Flagship machine (Watson & 
Watson (1987)) supports. 

The graph rewriting model underlying Lean is of independent interest as a general model of 
computation for parallel architectures. This model of generalized graph rewriting has a very high 
expressive power because there are few restrictions on the graph that is transformed and the 
transformations that can be performed. This induces a trade-off: adding restrictions decreases 
expressivenes but it may yield important properties for reasoning or implementation (e.g. 
referential transparency or efficient fine-grain parallelism). So, an important line of research tries 
to identify restricted subclasses which are tuned for specific properties. This may yield as a spin­
off programming languages based on subclasses with specific properties and advantages (see 
also sections 2.4 and 2.7). 

Term dag rewriting systems are an example of an important subclass of generalized graph 
rewriting. They are used in chapter 4 to model term rewriting systems by term graph rewriting. 
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Lean and Dactll are the first two examples of spin-off languages. The reduction relation of the 
languages is identical. Lean is used for experiments with generalized graph rewriting. With 
features such as multiple redirection and global nodeid's also non-functional algonthms such as 
unification and tracing can be modelled. Dactll is tuned for fine grain parallelism by adding fine 
grain control markings and removing global nodeid's. 

Clean which is described in the next section, is another example of such a spin-off language. The 
language is functional and efficiently implementable. 

Concurrent Clean will be yet another spin-off language based on the extensions of the rewrite 
semantics defined in chapter 7. This language is now being defined (Smetsers et al. (1988)). It 
will be an extension of Clean which is very suited for coarse-grain parallel implementation on 
loosely coupled machine architectures. 

2.6 FUNCTIONAL GRAPH REWRITING: CLEAN 

The motivation for the design of Clean was to obtain an efficient implementation of functional 
languages on traditional sequential hardware. Instead of making a direct implementation of a 
specific language on a specific target machine it was decided to design an intermediate language 
based on an appropriate model of computation. This should make it possible to experiment with 
different kinds of program transformation schemes (SKI-combinators, supercombinators, 
rewrite rules). Besides, it would make it possible to concentrate on the implementation of a 
relatively simple system instead of getting lost in the details of a specific functional language. We 
believed that this intermediate level would not yield a loss of efficiency compared with a direct 
implementation. Because we wanted to experiment with the intermediate language we demanded 
that this language could be used as a simple programming language. 

In Clean a special reduction strategy is used: the functional reduction strategy which resembles 
very much the way execution proceeds in lazy functional languages (a full formal definition of 
this strategy can be found in Smetsers et al. (1988). The functional strategy can be used in TRS's 
and in TGRS's. This is particularly useful in so called totally overlapping rule systems in which 
the only overlaps which are allowed to occur between rules, are overlaps where a complete left-
hand-side of a rule is an instance of a left-hand-side of another rule. 

The functional strategy effectively disambiguates the rewriting system because the order in which 
redexes are evaluated is fixed and furthermore the rules are tried for matching in textually 
topmost order. This is done by forcing evaluations to root normal form in such a way that when 
a lower rule is actually applied on a redex, no higher rule is applicable on that redex. This 
property can be seen as a practical approximation of the scmantically difficult property of Priority 
Rewrite Systems (Baeten et al. (1987)) that a rule with lower priority is applied only if no higher 
rule can ever be applied on the subterm in question. 

Although the functional strategy is intuitively appealing and important for practical use, it is not a 
normalising strategy for TTRS's (and hence neither for TDRS's and TGRS's) as is shown by 
the following example. 
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A TTRS for which the functional strategy is not normalising: 

A B C -> Ζ 
A χ D —» Ζ 
W -> W 

With as initial term A w D the evaluation of the first argument of A is forced because there occurs a non-
variable in the pattern. This forced evaluation does not terminate. Nevertheless A W D has Ζ as normal form. 

The fact that the functional reduction strategy is used, has a great impact on the meaning of a rule 
system. Therefore, the following terminology is introduced. 

Functional Graph Rewriting Systems (FGRS's) is the class of TGRS's in which the functional 
strategy is used. FGRS's are the basis for Clean. Every Clean program is an FGRS. 

It is shown that efficient state-of-the-art implementations on sequential hardware can be obtained 
compiling functional languages via Clean (Koopman & Nöcker (1988), van Hintum & van 
Schelven (1988)). Clean is implemented sequentially with reasonable efficiency. Clean has 
fulfilled the demands which were set for it 

Further research will increase the efficiency of the implementation and it will be investigated how 
Clean can be extended for e.g. unification without loosing the efficiency. Concurrent Clean will 
be the extension of Clean suited for parallel implementations on loosely coupled machine 
architectures based on extended functional graph rewriting systems as is explained in the 
following section. 

2.7 EXTENDING FUNCTIONAL GRAPH REWRITING SYSTEMS: PC-FGRS'S 

In chapter 7 we define extensions of special classes of graph rewriting systems which enable the 
specification of general loosely coupled parallel evaluation in graph rewriting systems in a object-
oriented manner. 

In that chapter it will be shown that extended FGRS's: PC-FGRS's (FGRS's with strict 
annotations, explicit parallelism and lazy coping) have a surprisingly high expressive power. 
Arbitrary process and processor topologies can be modelled, as well as synchronous and 
asynchronous process communication. In particular, loosely coupled parallel evaluation can be 
modelled such that any process communication structure can be defined. PC-FGRS's will be the 
basis of the new intermediate language Concurrent Clean (Smetsers et al. (1988)). 

Although in PC-FGRS's the normal form is not unique, the different normal forms which can be 
produced are related. Modulo unravelling they are the same, i.e. if the normal forms are 
unravelled to terms, these terms are the same. This is a very important property. The 
consequence is that the use of PC-FGRS's as a base for the implementation of functional 
languages or of term rewriting systems is sound. With term graph rewriting always the same 
term will be yielded. 

PC-FGRS's are well suited to serve as a base for the implementation of functional languages. 
Sequential functional languages can efficiently be implemented by translating them to FGRS's. 
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The expressive power of PC-FGRS's and the properties of these systems gives high 
expectations for a better exploitation of the potential parallelism in functional programs. 

2.8 CONCLUSION 

Graph Rewriting Systems are in our opinion most suited as a model of computation for 
functional languages and their implementations. 

Multi-level rewriting systems are very useful for high level specifications varying from 
specifying reduction strategies to operational semantics. With term graph rewriting nice results 
can be obtained on modelling term rewriting with graph rewriting. Generalized graph rewriting is 
very powerful and of independent interest as a general model of computation for parallel 
architectures. Based on a restricted subset of generalized graph rewriting Clean is in practise 
proven to be very suited as an intermediate language for functional languages and sequential 
machine architectures. Extending graph rewriting with lazy copying and explicit parallelism gives 
a very promising model for loosely coupled parallel evaluation of functional programs. Its 
expressive power and its properties will make it also possible in the near future to generally 
exploit the potential parallelism in functional programs successfully. 

Much research on graph rewriting systems still has to be done (taxonomy, typing, strategies, 
strictness analysis, implementation techniques, parallel evaluation, garbage collection, etcetera). 
But the results achieved so far are very promising, justifying further research on graph rewriting 
theory and on identifying special classes of graph rewriting systems. Furthermore, actual 
experiments with sequential and parallel implementations will be necessary to achieve more 
experience and to identify key issues. 
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Abstract. 

There is a growing interest m Term Rewnlmg Systems (TRS's), which are used as a conceptual 
basis for new programming languages such as functional languages and algebraic specification 
languages. TRS's serve as a computational model for (parallel) implementations of these 
languages. They also form the foundation for a calculus for Graph Rewriting Systems (GRS's) 
In Rewriting Systems reduction strategies play an important role because they control the actual 
rewnung process. Strategies determine the order of the rewriting and the rules to apply Hence 
they have a great influence on the efficiency and the amount of parallelism in the computation. 
In ambiguous or non-dctcrminislic TRS's, they even influence the outcome of the computation. 
Some of the reducuon strategies used in TRS's are extremely complex algorithms. 
Unfortunately, there is no common formal specification method for reducuon strategics yet. 

In this paper three formal methods for specifying reduction strategies in TRS's are presented. In 
the first method the reduction strategy is encoded in the TRS itself The original TRS is 
transformed to a so called annotation TRS in which the strategy is encoded using functions. This 
annotation TRS itself may use any normalizing reducuon strategy. Unfortunately, compared 
with the number of rules of the onginal TRS, the annotation TRS may contain an exponential 
number of addiuonal rules. In the second method this drawback is prevented, simply by using a 
pnonty TRS as annotation TRS The desire to specify a strategy uniformly for all TRS's leads 
to the third method. A new TRS system is introduced that uses two basic primitives for 
matching and rewriting and that is build out of three separate TRS's The use of this abstract-
mterpretauon TRS is shown to be the most promising method. 

3.1 INTRODUCTION 

A Term Rewriting System (TRS) consists of a term τ to rewrite and a set ρ of rewrite rules. A 

reduction strategy σ is an algorithm which determines in which order the rewritable subterms of 

the terra (the so called redoxes i.e. reducible expressions) have to be rewntten and which rules 

have to be applied. A TRS with a strategy will be called a term reducer or a term rewriter. A 

redex is a subtemi which matches the left-hand-side (LHS) of a rewrite rule. TRS's consist of 

variables and symbols. Symbols start with an upper case character. All symbols that occur as 

left-most symbol of a rewrite rule are functions, other symbols are constructors. 

For instance when we have the following well-known set of rewrite rules: 

Ap (Ap (Ap S χ ) y ) ζ ->Αρ (Ар χ ζ ) (Ар у ζ ) (S) 
Αρ (Αρ Κ χ ) у - » χ (Κ) 
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the term Ар (Ар (Ар К S) S) (Ар (Ар к К) К) can be rewritten to Ар S (Ар (Ар К К) К) and finally to 
Ар S К by applying two times the rule (K). In this example Ap is a function, S and к are 
constructors and x, у and ζ are variables. 

A thorough introduction to TRS's is given in Юор (1985). TRS based languages like DACTL 
(dauert et al. (1985)) and Lean (Barendregt et al. (1986b)) are used as a computational model 
for implementations of new languages such as Miranda (Turner (1985)) and OBJ (Futatsugi et al. 
(1985)). Currently various attempts (Barendregt et al. (1986a) based on Raoult (1984) and van 
den Broek & van der Hoeven (1986) based on Ehrig (1979)) are made to extend TRS's to a 
calculus for Graph Rewriting Systems (GRS's), in order to make them serve as a computational 
model of (parallel) graph reducing implementations. 

A strategy in a TRS can be compared with the control flow in an ordinary imperative 
programming language. In the example above the strategy recursively takes the left-most redex in 
the term until the term after rewriting contains no redexes anymore and therefore it is in normal 
form. The outcome of the rewriting process may depend on the strategy followed. In particular 
this is the case if the TRS is ambiguous. 

We distinguish the following forms of ambiguity: 

- Non-deterministic type of rules, i.e. rules of which the LHS's match the same instance, such 
as 

Choose χ y -»χ 
Choose χ у —»у 

- Strongly ambiguous rules of which (an instance of) a subterm of a LHS is a redex, e.g. 

G (Κ η 1) - * ι 
Κ χ у —»χ 

or, more subtle 

F (F X) -> . . . 

which is ambiguous with itself. 

For TRS's like these the outcome is depending on the strategy that is followed. Non-

deterministic rules such as Choose might be useful but, of course, the strategy must support it by 

making a non-deterministic choice between the rules. Another example of a useful ambiguous 

definition is the following TRS which still has the Church-Rosser property (i.e. the system has 

an unique normal form): 

Or True χ —»True 
Or χ True —»True 
Or False False -»False 

Although in the case that the TRS is Church-Rosser, the outcome of the computation will not 

depend on the order in which redexes are chosen, it can happen that depending on the strategy 
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followed the rewrite process may or may not terminate. Take for instance Berry's example which 

has a unique normal form: 

F χ 0 1 - » χ 
F 0 χ 0 -> χ 
F 1 1 χ - » χ 

Let's assume that of the actual arguments of F in the term there are two arguments which reduce 

to the indicated normal form while the other argument has no normal form at all. The most 

efficient strategy would not touch the latter. Unfortunately, on forehand we do not know which 

argument that is. Forcing argument evaluation if a pattern is specified on the corresponding 

position in a rule will start a non terminating computation. The only safe way to reach the normal 

form is to reduce each argument of F once to see if the term has become a redex (the parallel 

outermost strategy). This strategy is not always the most efficient one. 

Another example which shows the importance of strategies is the following program with a 

pretty familiar appearance: 

F a c 0 - » 1 (1) 
F a c η -» * η ( F a c ( - n i ) ) (2 ) 

It only has the obvious semantics if the right strategy is chosen. In general the rules are 

ambiguous because Fac 0 matches both rules. Fac (-11) even matches the wrong rule. However a 

valid definition of Fac can be obtained if the argument of Fac is evaluated on forehand and the first 

rule has priority over the second rule. Now Fac (-11) will be reduced to Fac 0 and the priority of 

the rules guarantees that Fac 0 now matches only the first rule. The reduction strategies in most 

functional languages are of this type. 

Hence we must conclude that, unfortunately, there is no best strategy for all TRS's. Safe 

strategies are not always in all cases efficient. Efficient strategies are not always in all cases safe. 

Some algorithms can be expressed more conveniently in one strategy than another. Also one 

could prefer some strategies for specific reasons, e.g. for a parallel architecture one would like to 

reduce as much redexes as possible in parallel. One could also imagine, as is proposed in Lean, 

that several strategies are mixed in one and the same TRS in order to optimize performance and 

descriptive power. All this gives rise to complex strategies which cannot be explained anymore in 

terms like "take the left-most redex". Hence there is a need to specify strategies formally. 

Before we will specify reduction strategies we must first ask ourselves the question what the 

properties must be of a good strategy specification. Of course it must specify which redexes are 

to be rewritten in which order and which of the matching rules have to be applied. If we see the 

specification as an algorithm, the execution of that algorithm must reduce exactly the same 

redexes in exactly the same order as the original strategy does. There is however a problem in the 

case of parallel reduction strategies which is caused by the concept time. The question arises if 

two redexes, which according to the original strategy have to be reduced in parallel, also have to 

be executed at the same time when we execute the corresponding specification. 
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This consideration leads to two views on parallel reduction: synchronous and asynchronous. 
According to the synchronous view the strategy recursively determines one or more redexes 
which have to be reduced in parallel after which these redexes are all rewritten in one step. This 
view is often used in a theoretical framework but in practice there are only very few machines for 
which this view is applicable (e.g. Magò (1980)). In most distributed environments the strategy 
algorithm is also implemented distributed and the asynchronous view is therefore more 
appropriate. In the asynchronous view redexes which are reduced in parallel are actually reduced 
in any (possibly parallel) order while the strategy may already have determined new redexes 
although not all previously assigned redexes were rewritten. In the asynchronous view we 
cannot state that the execution of the specification must rewrite all redexes in the same order as 
the original strategy would do. A specification can only model the dynamic behaviour. Though in 
this paper the specifications are used mainly in a sequential context, they can be easily extended 
to a parallel environment with the synchronous view as well as using the asynchronous view. 

There are many ways in which strategies can be specified. In this paper three methods are 
introduced and a comparison between them is made. All methods create TRS's which can be 
reduced with any normalizing strategy. 

1. Specification of the strategy by transforming the TRS τ to another one annotation-τ; reducing 

the latter induces the wanted strategy on τ. 
2. Same as 1., but now in annotation-τ there is a priority in the rewrite rules (specificity). 

3. The strategy is specified in a separate TRS on a different level. 

For each method we will work out as a simple example the TRS consisting of the Curry 

combinatore К and S (notated with explicit application functions). The strategy to be specified 
will be head reduction, i.e. left-most reduction to head normal form. A term is in head normal 
form if no reduction can possibly lead to a rewrite of the head of the term. We will refer to the 
example as Curry's example. For every method Curry's example will be proven correct. These 
proofs will be using O'Donnell's definition of a TRS simulating another TRS (O'Donnell 
(1985)). The methods are compared in terms of ease of correctness proving, ease of developing, 
ease of expressing efficient strategies etcetera. 

3.2 TRANSFORMING A TRS TO AN ANNOTATION TRS 

3.2.1 DESCRIPTION OF THE METHOD 

The method is inspired by the use of strictness annotations in functional programming languages 
(Miranda e.g.) which serve as compiler directives. The general idea is that we use such 
annotations, for instance a shriek "!", for labeling those redex(es) in the term that should be 
rewritten. Instead of directives we use functions. These functions have ordinary semantics which 
enables us to use the full TRS semantics to reason about their meaning. Therefore the original 
TRS is transformed to an annotation TRS. All rules in this annotation TRS start with these 
functions and therefore only those redexes of the original TRS which are "annotated", are also 
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redexes in the annotation TRS. The annotation TRS itself can be reduced with any normalizing 

reduction strategy. 

A small example: if the rules of the original TRS are: 

Ap (Ap (Ap S χ ) y ) ζ - * Α ρ (Ар χ ζ ) (Ар у ζ ) (S) 
Αρ (Αρ Κ χ ) у - » χ (Κ) 

Then these rules are transformed to: 

! (Ap (Ap (Ap S χ ) y ) ζ ) - » А р (Ар χ ζ ) (Ар у ζ ) (1) 
! (Ар (Ар К х) у ) - + х (2) 

This TRS has only one function; the function !. The transformation has as a consequence that 
functions in the original TRS (Ap in the example) now become constructors in the annotation 
TRS. Of course, also the term to reduce must be marked. For instance if Ар ((Ар (Ар к S) S) (Ар 
(Ар к К) К) is transformed to Ар (' (Ар (Ар К S) S)) (Ар (Ар к К) К) it has only one redex in the 
annotation TRS. Due to the applicative order reduction this redex will be reduced giving Ap S (Ap 
(Ар К К) К) as result. 

Hence only one of the redexes that is present in the original TRS, is reduced. This is the one 
which was marked. 

In order to continue this process one also has to insert new markings for those redexes which 
have to be reduced next. When we specify a strategy in this way quite a lot of additional rules 
have to be added to deal with markings in the right way. Also the outcome of the computation 
must be the same as in the original TRS, i.e. all marking must disappear at the end. Let's try to 
make clear what kind of additional rules are needed by looking at our example. 

3 . 2 . 2 EXPRESSING HEAD REDUCTION FOR CURRY'S EXAMPLE 

We start off with the rules of the ordinary TRS: 

Ap (Ap (Ap S χ ) y ) ζ -»Ар (Αρ χ ζ ) (Ар y ζ ) (S) 
Ap (Ap Κ χ ) y - > х (К) 

We add exclamation marks to the left-hand-side of the rules of the original TRS in order to 
promote the original redexes to redexes in the new system. 

1 (Ap (Ap (Ap S χ ) y ) ζ ) -»Ар (Αρ χ ζ ) (Ар y ζ ) ( 1 ) 
1 (Ар (Ар К χ ) у ) - > х (2) 

Note that the function ! has only one argument, hence the parentheses around the argument will 
be sometimes redundant. When there can be no confusion, we will leave them out 

We need a general propagation rule to achieve a left-most search for a redex. 

! (Ap (Ap (Ap (Ap ν w) x ) y ) z ) ->Ap (! (Ap (Ap (Ap ν w) x ) y ) ) ζ (3 ) 
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S 

к 
(Ар 
(Ар 
(Ар 

К х ) 
S χ ) 
(Ар S χ ) У) 

- » S 
->К 
->Ар 
->Ар 
-> Ар 

К χ 
S χ 
(Ар S 

The propagation rule takes care of the propagation of the ! for the case that we have a pattern with 
four Ap's on the left. We also have to specify what happens for all other cases, i.e. when we 
have less than four Ap's. They can be divided in two classes: 

1) The ! may have an argument which contains no redex at all. In this case the ¡-function must 
reduce to its argument in order to get the same normal form as in the original TRS. For each 
non-redex we have to add a rule. This gives us five additional rules. 

(4) 
(5) 
(6 ) 

m 
χ) y (θ) 

Note that we could not write a more general rule like 

! (Ap χ y ) -»Ap χ y 

because this rule is ambiguous with the к rule. This would introduce the danger that ! (Ap (Ap 
к К) К) is reduced to Ар (Ар к К) к instead of being reduced to K. 

2) The ! may have an argument of which a subterm is a redex. We call rules that are introduced 
to handle these cases envelope-rules. In this example only one envelope-rule is needed: 

! (Ap (Ap (Ap Κ χ ) у ) ζ ) -»Ар χ ζ (9 ) 

The nine rules we have given so far, model exactly one step of the head reduction strategy. In 

order to model the complete reduction to head normal form, the exclamation mark has to be 

created over and over in a driver rule like 

* t e r m -» * ( ! t e r m ) 

In order to let this reduction stop we must encode in the term whether or not a rewrite (according 
to the strategy on the original TRS) was done. We use a success constructor '+' to denote that a 
rewrite was done and a failure constructor '-' to denote that it wasn't. We add the following 
'driver' rules 

* ( - t e r m ) - » t e r m ( 1 0 ) 
* (+ t e r m ) - * * (! t e r m ) ( 1 1 ) 

The strategy stops if on the term no rewrite was done (10). Of course we must also change all the 
other rules to make them produce a result with the proper success or failure constructor (+/-). 
Furthermore we must also propagate these constructors back to the beginning of the term so that 
we can make the decision whether or not to stop the strategy. This is done by adding the 
following rules: 

- (Ap ( - x ) y ) - > - (Ap χ y ) ( 1 2 ) 
- (Ap (+ x ) y ) - > + (Ap χ y ) ( 1 3 ) 

and by changing the propagation rule to: 
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! (Ap (Ap (Ap (Ap ν w) x) y) z) -> - (Ap (! (Ap (Ap (Ap ν w) x) y) ) z) (3) 

Finally the complete set of rules is: 

(Ap (Ap (Ap S χ) 

(Ар (Ар Κ x) у) 
(Ар (Ар (Ар (Ар 
S 
К 
(Ар К х) 
(Ар S χ) 
(Ар (Ар S χ) у) 
(Ар (Ар (Ар К х) 
(- term) 
(+ term) 
(Ар (- χ) у) 
(Ар (+ х) у) 

У) ζ) 

ν w) х) у) 

У) ζ) 

->+ (Ар (Ар x z) (Ар y ζ)) 
->+ X 

г) ->- (Ар (! (Ар (Ар (Ар ν w) χ) 
-»- S 
->- К 
->- (Ар К χ) 
-*- (Ар S χ) 
->- (Ар (Ар S χ) у) 
->+ (Ар χ ζ) 
-» term 
-> * ( ! term) 
-»- (Ар x у) 
->+ (Ар x у) 

У)) 

(1) 
(2) 

г) (3) 
(4) 
(5) 
(6) 
П> 
(8) 
(9) 

(10) 
(11) 
(12) 
(13) 

The initial term is 

* (! term) 

Note that it was also possible to achieve the same result using only one annotation function in 
stead of three different functions. This was not done for reasons of clarity. 

3.2.3 CORRECTNESS PROOF 

In this section we first formally define what it means for a strategy to specify another strategy. 
This definition will also be used in the proofs of the other methods. Then we proof that Curry's 
example, as it was specified with this method, satisfies the corresponding conditions and we 
finish this section with some general remarks on proving specifications that are constructed with 
this method. We also introduce some new terminology for a special kind of TRS that we 
encounter. 

Definition of Specification 

In his excellent book (O'Donnell (1985)) Michael O'Donnell defines what it means for a TRS to 
simulate another TRS. When one considers a strategy of a TRS to be giving a restriction on the 
reduction relation, then restricting the reduction relation to what is specified by the strategy, his 
definition can be used directly as the definition for one term rewriter specifying another. This 
results in the following definition: 

Let <τ 0 , —>σ> and <τ$, -*π> be reducers where —»σ and -»π are the reduction relations of τ 0 

(the original TRS) and xs (the specification TRS) restricted to the strategies σ and π, then τ 5 π 

specifies XQQ if there exist 

an encoding set Ε ε i s , 

a decoding function d: Ts —» τ 0 и (nil) with nil 4 x0, 
a computation relation —>c S —>s, 

such that 



44 Specificalion of rewriting strategies in Term Rewriting Systems 

1. d[E] = τ 0 & d-llNiool η E e Nx s n 

where Ντ χψ is the set of normal forms of a TRS τ χ with respect to the strategy ψ, 

2. Va, β e TS a -»c β => d(a) ^ 0 d(ß), 
3. Va, β € xs a (-»s„~»c) β => d(a) = d(ß) 

where —>SJt—»c stands for any sn reduction that is not а с reduction, 
4. Va € Ε, β € το d(o) ->οσ β => 3δ € E a (->sw_»c)* -» c (->srt~>c)* δ & d(5) = β, 

5. Va € Nxs7ü d(a) € Ντ^ υ {nil), 

6. There is no infinite (—>sn— ĉ) reduction path and moreover there exists a bounded function 

b: XQ -* IN such that Va, β € Ε α (-*$π—>c)m ^ с (->5Я~^с)п ß =* m < b(d(a)) & η < 

b(d(a)). 
The specification is called effective if b, —»c, d and E are all total computable. 

Intuitively, this means that we encode terms into another TRS allowing multiple encodings. The 

first condition requires that decoding respect normal forms. The specifying TRS has 

computational reductions which mirror a rewrite in the original TRS and non-computational 

reductions which are internal book-keeping steps. Conditions 2,3 and 4 require that every 

original reduction is simulated by any number of book-keeping steps which do not change the 

encoded expression, followed by exactly one computational reduction to effect the change in the 

encoded expression. This reduction may again be followed by book-keeping steps. Condition 5 

prevents dead ends in the specification. Condition 6 states that the number of book-keeping steps 

is not allowed to grow without bound, otherwise e.g. all possible original reduction sequences 

could be simulated before officially choosing one of them, which clearly is not what we want. 

All conditions together mean that we really simulate the steps of the original TRS and not only 

return the appropriate normal forms as a result 

For the function d we basically need to describe which term is encoded for all reducts of the 

elements of the encoding set, but we also have to define which terms are not reducts of elements 

of E and are therefore decoded to nil. Maybe it is possible to give a precise definition of a TRS 

simulating another one using a decoding function which is only defined on reducts of elements of 

E. In the future we would like to do research along this line to find out whether for our purposes 

it is possible to simplify this definition. 

Proof of Curry's Example 

We define the encoding set E as Ν χ ο σ υ { * (! t) 11 € XQ-NXOCT), where XQ-NX,^ stands for the 
set of all terms of x0 that are not terms of Νχ ο σ . The set of constructors *,+,-,!,- is called A. The 

decoding function d is defined as follows: 

χ € Νχοσ => d(x) = χ 

χ matches one of the rules of xs 

and the subterms matching variables 

do not contain elements of A =» d(x) = x with all applications of elements of A 

skipped 

in all other cases d(x) = nil. 
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The computation relation с is given by rules (1), (2) and (9). This leaves us to proof that all 
conditions are satisfied. When we are not interested in the strategy π of τ 5 π (i.e. the statement 

holds for any normalizing strategy of 1S), we will leave out the strategy suffix π. 

la.dlE] = T0 

Clear from the definitions. 

l b . d - l [ N X o d n E s N T s 

Suppose we have α € E and β € Ν τ ο σ with d(a) = β, then a = β and because α does not 

contain any elements of Α, α € Nts. 

2. Va, β € xs a ->c β => d(a) -> 0 d(ß) 
Reductions according to the rules (l), (2) and (9) decode into S and К reductions. 

3. Va, β 6 xs a (->s—>c) β => d(a) = d(ß) 
Follows directly from the definition of d. 

4. Va € Ε, β € x0 d(a) - > ο σ β => 3δ € E a (->s—>c)* "»с (-*s~»c)* δ & d ( 5 ) = ß 
Suppose we have α € E, d(a) -» ο σ β; then d(a) 4 Ν τ ο σ , hence a is of the form * (! t) with t $ 
Νχ ο σ . So d(a) = t and t reduces in χ ο σ to β. We have to find a δ € xs such that d(5) = β and α 
(—)s—»c) —»c (—»s—>c) δ; t 4 Νχ ο σ , so t has a head-redex r in t 0 , hence t is of the form Ap1 ( 
... Apn (Ap ( Ap (Ap S χ) y) ζ) argn)... argj or Ap1 (... Apn (Ар (Ар Κ χ) y) argn)... arg]. Consequently, 
the form of β is also known (apply S or К rule). Take δ = * (! β) then trivially d(6) = β. 

Let us first assume that r is a S redex. If η > 0 then the only rule that is applicable on α is rule (3) 

which is not a computational rule. After one step this reduces to - ( Ap1 ( ! (Ap2 (... Apn ( Ap ( Ap 

(Ap S χ) y) ζ) argn)... arg]) and again if η-1 > 0 only rule (3) is applicable. So after η steps the result 

is - (Ap1 ( ~ (Ap2 (... ~ (Apn (! ( Ap ( Ap (Ap S χ) y) ζ)) argn)... arg]). These η steps are the internal 

steps of xs preceding the computational step which is applying rule (l), resulting into - (Ap1 ( -

(Ap2 (... - (Apn (+ ( Ap ( Ap χ y) (Ap χ ζ)) argn)... arg]). Now the only possible reductions are η 

applications of rule (13), which gives us * (+ β), which can only reduce to * (! β) = δ. 

The other case we look at, is г being а К redex. We now have to be careful because there can be 
two computational rules corresponding to а к reduction. If η > 1, then we can follow the same 

reasoning as in the S case. We have n-1 applications of rule (3) on application of rule (9) and n-1 

applications of rule (13), followed by one application of rule (l 1); if n=0, then we can only apply 

directly the computational rule (2) and we have only one internal step from * (+ β) to * (! β). 

5. Va € Nxs d(a) € Ν χ ο σ u (nil) 

Take α € Nxs then either α is also a term of Νχ ο σ and then d(a) = a and d(a) € Ν χ ο σ or a is 

not a term of NXQQ and then d(a) is nil because α is not a redex in xs. 

6. There is no infinite (—»s—>c) reduction path and moreover there exists a bounded function b: 

x 0 -» IN such that Va, β € Ε α ( - V - * c ) m -*c (->s~»c)n β => m < b(d(a)) & η < 

b(d(a)). 
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In the proof of 4 it is shown implicitly that there is no infinite internal reduction path. We define 

b as b(t) = 3 * (the number of Ap's on the spine) + 1. Take α, β € E then β сап be an element of 
Ν ο σ or not: β 4 Ν τ ο σ => β = * (! d(ß)) and in the proof of 4 we saw that both m and η are less 

than the number of Ap's on the spine in respectively α and β. So certainly m < b(d(a)) and η < 

b(d(ß)); analogously to the reasoning in 4 one can easily show that β € NT^J => a (->s—>c)
ml 

-»c (-^s—^c)"1 (* (+ ß)) ("^s—^c)"12 Y (^s—>c)n2 (* (• ß)) where γ is a term not containing ! and 

nl, n2, ml and m2 are all less or equal to the number of Ap's on the spine of α, β and γ 

respectively. Proving this we use the fact that rules (l), (2), (3), (4), (5), (6) and (9) cover all 

possible terms ! t with t € T0(J. 

The specification is effective because b, ->c, d and E are all total computable. 

Remarks 

Several parts of the proof heavily relied on the specific rules, the specific structure of the term 
and of course on the specific strategy. We see no way to easily extend these proofs to other 
reducers. 

Note that starting with tenns * (! ι) every possible reduct had at most one redex. We call a term 

with such a property linear, because the reduction path is linear. A TRS where all terms are linear 

is called a linear TRS. For those who think this is confusing considering the concept of left-

linearity, i.e. having repeated variables on the left-hand-side, we suggest left-comparing as a 

possibly better name in stead of left-linear. It does not have the relation to polynomial terms 

(linear, quadratic etc.) and moreover it names the essential aspect of left-linearity which is that 

arguments have to be identical in order to be able to apply the rule. Linear TRS's have good 

prospects for efficient sequential execution, and left-comparing TRS's can cause trouble during 

execution when used with infinitely growing arguments. 

3.2.4 EVALUATION OF THE METHOD 

Although it is possible to convert the original TRS to an annotation TRS in which the strategy is 

explicitly encoded, the method has severe drawbacks. 

First of all our annotation TRS has many more rules than the original TRS. Unfortunately the 

number of extra 'non-redex' rules per function can become exponential: the number of constants, 

that can occur, to the power of the width of the pattern. This results in too many rules. Some of 

these rules are very awkward such as the envelope rule. Furthermore the rules in the annotation 

TRS not only depend on the strategy but also on the original TRS. Consequently the correctness 

of the strategy can not be proven for all TRS's at once, but it must be proven for every TRS 

separately. Furthermore it is rather tedious work to give such a proof. 

Concluding we can state that though it is very well possible to express a strategy in an annotation 
TRS, the number of rules and their complexity makes this method not very suitable for practical 
use. 
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3.3 TRANSFORMING THE TRS TO AN ANNOTATION TRS WITH PRIORITY RULES 

3.3.1 DESCRIPTION OF THE METHOD 

The method we will describe in this section is very closely related to the way strategies are 

expressed in Dactl (dauert et al. (1985)). It differs from the previous method in that we will use 

a different kind of annotation TRS namely an annotation TRS with priority rules (Baeten et al. 

(1986)), a so called priority rewriting system (PRS). The difference with an ordinary TRS is that 

whenever a rule matches a given redex, it may only be chosen if none of the rules with higher 

priority can ever be applicable on the (internally rewritten) term. 

3.3.2 EXPRESSING HEAD REDUCTION FOR CURRY'S EXAMPLE 

We start again with the rules of the ordinary TRS 

Ap (Ap (Ap S χ ) y ) ζ -»Ар (Ар χ ζ ) (Ар у ζ ) (А) 
Ар (Ар К χ ) у - » х (В) 

and we add exclamation marks to the rules 

! (Ap (Ap (Ap S χ ) y ) ζ ) -»Ар (Ар χ ζ ) (Ар у ζ ) (1) 
! (Ар (Ар К х ) у ) - > х (2) 

Our propagation rule is much simpler now: 

! (Ap χ y ) ->Ap (! x ) у ( 3 ) 

The reason for this is that if a redex matches the third rule and one of the other two rules, the 
topmost rule (not rule 3) is taken because It has higher priority. We indicate this by putting an 
arrow in front of rules with decreasing priority. Rules with the same priority are indicated by 
adding a bar in front of them. Rules without any indication are not affected by the priority 
mechanism. 

The non-redex rules are extremely simple now: 

! χ - » χ (4) 

Anything that does not match one of the other rules, is not a redex. That's it! The somewhat 

strange envelope-rule of the previous section is also not necessary any more. 

So we have elegantly modelled one step of this strategy. In order to model the strategy 

completely we still must encode whether or not a subterm was successfully rewritten. This is 

modelled by exactly the same changes and extra rules as in the previous section. Note that in 

general we must be careful with adding rules because our PRS could cause that they will never 

be applied. In this case we have no problems with that issue. 

The complete set is now: 
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II ' (Ap (Ap (Ap S X) y) ζ) -*+ (Ар (Ар χ г) (Ар у ζ)) (1) 
il ' (Ар (Ар К х) у) ->+ χ (2) 
I ' (Ар χ у) ->- (Ар (' х) у) (3) 
J. ' χ -> - χ (4) 

* (- term) ->term (5) 
* (+ term) -» * (' term) (6) 
- (Ар (- χ) у) -»- (Ар χ у) (7) 
- (Ар (+ х) у) -»+ (Ар χ у) (8) 

Again, the initial term must be of the form 

* (' term) 

Note that only the third and the fourth rule really rely on the order in which rules are matched 

3.3.3 CORRECTNESS PROOF 

In order to prove this specification we first define what the semantics of a PRS is Then we will 
show that in this case the semantics of the PRS is equivalent to the semantics of a TRS without 
pnonty. This TRS will turn out to be equivalent to the one we constructed using the previous 
method. 

Semantics of a PRS 

A PRS has a unique semantics (is well-defined) if it has a unique sound and complete rewnte set. 
Unfortunately our underlying TRS is not strongly normalizing nor bounded So we have to use 
the stabilization lemma formulated in Baeten et al (1986) We have to prove that starting with RÖ 
= ^max (^max being the set of all possible rewntes of τ 5 ι e. all possible instances of all rules 

not considenng the pnonty), there exists a η for which Rn = RDtL, where RHÜ- is defined as 
(Rfl)c with (R)c being the set of all rewntes that is correct with respect to R A rewnte t —>r s is 
correct if there is no internal R-reduction t -» t' to an r'-rewnte t' —»r s' € R with r' > r (r' has 
higher pnonty than r) R is sound if all rewntes which are an element of R, are correct w r t R 
R is complete if it contains all possible rewntes of Rmax which are correct w r t R 

Proof 

Because this method resembles the previous one, we can take all definitions the same except for 
the computation relation с which will be given by rules 1 and 2 only But before we can even 
start to say something about this solution, we must prove that this PRS has a unique semantics. 

If we restnet ourselves to those terms t for which d(t) * ml, then one can easily see that the term 
has at most one redex for which several rules with different pnonties can be applied Of course, 
the intended semantics is that the rule with the highest pnonty is applied Since there is always at 
most one redex, there are no internal reductions of more than zero steps Yet there are inviai 
zero-step reductions using other instantiations for the vanables. So we start with the set R m a x 

and compute (Rmax)0 We prove that it is sound and complete, hence ((Rmax)c)c = (^тах)с ^ ^ 
( R m a x ) c is the semantics of our PRS 
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We want to determine the set of rewrites that are correct w.r.t. Rmax· As was already stated, the 
only internal redexes to be considered are other instantiations of variables. We know the structure 
of the terms, so all instantiations of the left-hand-side of rule (4) are ruled out by rule (3) except 
for the instantiations S and K. So the PRS is equivalent to another one where rule (4) is 
substituted by the rules: 

! S -> - S (4 ' ) 
! К -> - К ( 4 " ) 

In the same way we can determine the patterns for which rule (3) is really applicable i.e. not ruled 
out by rule (1) or rule (2), giving the following rules replacing rule (3): 

! (Ap S y) -> - (Ар (! S) y) ( 3 · ) 
! (Ар К y) -> - (Ар (! К) y) ( 3 " ) 
! (Ар (Ар S а) у) -> - (Ар (! (Ар S а ) ) у) ( 3 " · ) 
! (Ар (Ар (Ар К а) Ь) у) -> - (Ар (! (Ар (Ар К а) Ь) ) у) O · · " ) 
! (Ар (Ар (Ар (Ар а Ь) с) d) у) -> - (Ар (! (Ар (Ар (Ар а Ь) с) d) ) у) 

( 3 " ' " ) 

So the set (Rmax)0 i s ^ 6 s e t determined by this new TRS without priority. This set is sound 
because evidently all rewrites in it are correct and it is complete because it also contains all 
rewrites which are correct with respect to it. One easily checks that the resulting rules that 
determine the semantics of the PRS, are equivalent to the rules of the previous example. So we 
have proven that our PRS model specifies Curry's example correctly. 

Remarks 

Note that this proof more or less included the proof for the previous method and that we needed 
special analysis to determine the semantics of this PRS. In general there is not even always a 
unique semantics and it is not known whether a semantics always exists (Baeten et al. (1986)). 

3.3.4 EVALUATION OF THE METHOD 

Clearly this method is a lot better than the previous one. There are more rules in the annotation 
TRS than in the original TRS, but the growth is no longer exponential because the non redex 
case can now be expressed with one rule (4). Also the funny envelope rules have disappeared. 

Still this method has a severe disadvantage. The rules generated still heavily depend on the 
original TRS so if we want the same strategy for other TRS's we still have to change the rules of 
each one of them. The proof must be given for every TRS separately as was the case with the 
previous method. The complexity of the proof is even worse than the complexity of the previous 
proof because we also have to prove the well-definedness of the PRS. It would be better if we 
could define a strategy in such a way that the same description is valid for all TRS's. 
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3.4 DEFINING THE STRATEGY SEPARATELY 

IN AN ABSTRACT-INTERPRETATION TRS 

3.4.1 DESCRIPTION OF THE METHOD 

In order to be able to specify strategies uniformly for all TRS's we will consider three different 

conceptual levels of TRS's: 

a) The first TRS is the user-defined TRS. This is the original TRS which now remains 

unchanged. An example of such a TRS is the S-K TRS. 

b) The reduction strategy for the user-defined TRS is specified in a separate TRS called the 

interpretation TRS. Functions in the interpretation TRS may have a user-defined TRS or any 

subterm of such a TRS as argument. For instance one may write: 

HeadReduceS -> S (I-a) 
HeadReduceAT ->K (I-b) 

The arguments of HcadRcducc are written in italic style to indicate that they are part of a TRS on 

another level. Instead of the rules above one can write a more general rule which is valid for 

all combinatore: 

HeadReducc с : Combinaior -> с (1-е) 

In this rule с is a variable which will be bound to a (sub)term of a TRS. The suffix Combinator 

restricts the number of matching expressions. Such a suffix is called an abstraction. 

c) These abstractions which are used as patterns in the interpretation TRS's, are defined by a 

third TRS: the abstraction TRS. This abstraction TRS is used to make an abstract syntax of 

the user-defined TRS available to the interpretation TRS. An example of such an abstraction 

TRS is: 

Combinaior -» 5 (A-a) 
Combinator -* К (A-b) 

Now the extra restriction on с imposed by the suffix Combinator implies that the actual value of 

с must be a normal form of the term Combinator in the abstraction TRS. Hence only HeadReduce 

S and HeadReduce К will match rule (1-е). The abstraction level can be seen as a preprocessing 

level where things are done like syntactical categorizing, type checking, strictness analysis 

etcetera. 

To make the specification of strategies really easy we introduce two primitive functions which 

can be used in the interpretation TRS: 

Match term rules 

which returns Trae if the tem is a redex according to the rules and False otherwise. 
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Rewrite term rules 

which returns the term after one rewrite according to the rules if the term matches the rules and the 

term itself otherwise. 

The match function only checks whether or not the given term as a whole matches one of the 

given rules. The rewrite function will make a non-deterministic choice out of the matching rules. 

Although it is possible to define these primitive functions precisely in the interpretation TRS, the 

formal definition is rather tedious. 

3.4.2 EXPRESSING HEAD REDUCTION FOR CURRY'S EXAMPLE 

First we give the rules of the user-defined TRS: 

Ap (Ap (Ap S χ) y) ζ -> Ар (Ар χ ζ) (Ар у ζ) (U-S) 
Ар (Ap Κ χ) у -> χ (U-K) 

Furthermore we have to define those abstractions of the TRS that we need at the interpretation 

level. In this example these abstractions are extremely trivial. The abstraction TRS is: 

Combinator —> S (A-l) 
Combinator -> К (A-2) 

Finally we have to define the interpretation TRS. We will start with describing one step of the 

strategy: we will call that OneSiepHead. 

When the term is a redex we rewrite it and otherwise we search in the function part of apply for a 

redex (the propagation rule): 

OneSiepHead ( Ap f a ) rules -»Cond ( Match ( Ap ƒ a ) rules ) 
( Rewrite ( Ap f a ) rules ) 
(Ap (OneSiepHead ƒ rules) a) (1-1) 

In this rale Cond has the ordinary meaning. The result of OneSiepHead applied to a function Ap with 

parameters is, if it matches as a whole, the rewrite of it, otherwise the result is the function Ap 

with as new parameters the result of OneSiepHead applied to the function part. This surely 

terminates because of the next rule (1-2). Note that functions now also must have rules as 

parameter in order to be able to use the matching and rewriting primitives. 

Again S and К cannot be rewritten, which we can now express in one rule: 

OneSiepHead с.Combiruuor rules -»c (1-2) 

The result of OneSiepHead applied to a single combinator is that combinator itself. 

We will now extend the one-step strategy to a complete strategy by adding another function: 

Head term rules -» Cond ( ContainsAHeadRedex term rules ) 
( Head ( OneSiepHead term rules ) rules ) 
term (1-3) 
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When our term contains a head-redex we do one left-most rewrite and continue, in the other case 

we stop and the result is the term itself. 

The definition of ContainsAHeadRedcx is very similar to the definition of OneSicpHcad. When there is 

a Rewrite in the definition of OneStepHead, we return True and when in OneSicpHcad we return the 

parameter as a result, we return False in ContainsAHeadRedex. Of course, recursive calls in 

OneStepHead are simply converted to recursive calls in ContainsAHeadRedex. 

The definition of ContainsAHeadRedex is: 

ContainsAHeadRedex c:Combinator rules -
ContainsAHeadRedex ( Apfa ) rules 

The complete set is now: 

OneStepHead ( Apfa ) rules 

OneStepHead cX^ombinator rules 
Head term rules 

ContainsAHeadRedex c:Combinator rules 
ContainsAHeadRedex ( Apfa ) rules 

The initial term must be: 

Head Term SKRules 

3 .4 .3 CORRECTNESS PROOF 

> False 
>Cond 

>Cond 

• Cond 

> False 
>Cond 

( Malch ( Apfa ) rules ) 
True 
( ContainsAHeadRedex ƒ rules ) 

( Match ( Apfa ) rules ) 
( Rewrite ( Apfa ) rules ) 
( Ap ( OneStepHead/ rules ) a ) 

( ContainsAHeadRedex term rules ) 
( Head ( OneStepHead term rules ) rules ) 
term 

( Match ( Apfa ) rules ) 
True 
( ContainsAHeadRedex ƒ rules ) 

a-4) 

(1-5) 

a-D 
(1-2) 

(1-3) 
a-4) 

(1-5) 

In order to prove this specification w e first define what the semantics of the abstract-

interpretation TRS is. We will proof that the conditions are satisfied after proving some simple 

lemmas. These lemmas state general facts on the functions that are defined. These facts are easy 

to find because they cover the intention with which we constructed the functions. It will be rather 

simple to prove those lemmas. 

Semantics of the Abstract-interpretation TRS 

W e start with settling the semantics of c:Combinator in the rules for OneStepHead and 

ContainsAHeadRedex. Because of the structure of the terms OneStepHead is equivalent to: 

OneStepHead ( Apfa ) rules 

OneStepHead 5 rules 
OneStepHead К rules 

>Cond 

• S 
К 

( Match ( Apfa ) rules ) 
( Rewrite (Apfa) rules ) 
( Ap ( OneStepHead ƒ rules ) a ) (1-1) 

For our semantics this eliminates the abstraction TRS. Furthermore the user-defined and the 

interpretation TRS can be seen as one and the same TRS with restrictions on the construction of 

terms, such as: the first argument of OneStepHead is an element of τ 0 , the second argument are the 
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rules, etcetera. During reduction reducts of terms that meet these restrictions also meet these 

restrictions. So we now have only one TRS with the ordinary meaning. However we do not deal 

with the full reduction relation but only with those reductions that are allowed by normalizing 

strategies. Strategies for this TRS are normalizing if they reduce the first argument of Cond and 

the Cond itself without reducing the other arguments and if they reduce the argument of Head to a 

term which is an element of τ 0 , before applying the Head rule again (this restriction is a 

consequence of uniting the two levels). So we simply remove those reductions out of the 

reduction relation. The reducer we get this way is called τ 8 again and we will prove the 

specification following again O'Donnell's definitions. 

Proof 

Before we proof that the specification satisfies O'Donnell's definitions we want to prove some 

lemmas about the functions we have defined. The formulation of these lemmas is simple because 

of the way the functions were constructed. 

Lemma The normal form of ContainsAHeadRedex χ SKRulcs with χ € x 0 is True if χ has a head-redex 

in τ 0 . False otherwise. 

Proof: Recall the definitions: 

Def: χ contains a head-redex *» χ matches a S or к rule or else 

if χ = Ap a b, a contains a head-redex. 

ContainsAHeadRedex S rules -» False (1-4^ 
ContainsAHeadRedex К rules -» False (My 
ContainsAHeadRedex (.Apfa)rules -»Cond (Match ( Apfa )rules) 

Тшс 
(ContainsAHeadRedex ƒ rules) (1-5) 

Suppose χ € x 0 contains a head-redex then χ * S and хФ К (S and к themselves do not match the 

S or К rule) so χ = Ар a b. So ContainsAHeadRedex χ SKRules reduces in Ts to Cond (Match (Ap a b) 

SKRulcs) True (ContainsAHeadRedex f SKRulcs). If χ matches a S or К rule then obviously the normal 

form is True because we restricted the reduction relation to safe strategies. If χ does not match a S 

or К rule then the left part of the application contains a head-redex which by induction and the 

absence of terms with an infinite spine results in the correct normal form. Proceeding this way it 

is veiy simple to prove the other parts of the lemma. 

The following lemma is just as simple to proof : 

Lemma OneStepHead χ SKRulcs with χ 6 τ 0 has as its normal form: if χ has a head-redex in τ 0 , the 

reduci of χ after reducing this head-redex and if χ does not have a head-redex in x 0, its normal 

form is x. 

We can use these lemmas in our proof of the specification. It will make everything very easy. We 

define E as: χ € Ν τ 0 =» E(x) = χ ; χ i Ν τ 0 ^ E(x) = Head χ SKRules. The computational 

relation is given by reductions of the primitive Rewrite. The definition of d is: 
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if x is an element of Ντ 0 then d(x) = x; 

if χ can be reduced via non computational reductions to a x' which is an element of Ντ 0 then 

also d(x) = x; 

if χ is not an element of Ντ 0 then we define d a bit special: if χ can be reduced to x' via non 

computational reductions until the only possible reduction is a computational one and x' is of 

the form : Ap1 ( Ap" ( (Rewrite (Ap f a)) ), perhaps surrounded by Head and SKRules then 

the decoding of χ is defined as x' with applications of Head, SKRules and Rewrite skipped. 

In other cases the decoding of χ is nil. 

Because we are only interested in reducts of elements of E, we restrict xs to those reducts. 

la.d[E]=T 0 

Trivially true. 

lb. d-^NXoo] η E = Nxs 

Suppose α € E and β € Ντ 0 with d(a) = β, then clearly α = β, and since Nx0 S Nxs, α is an 

element of Nxs. 

2. Va, β € xs a ->c β => d(a) - У 0 d(ß) 
Suppose a reduces to β via a reduction of Rewrite then if α and β ar# reducts of elements of E 

then clearly the decodings also reduce to each other. 

3. Va, β € xs a (-»S"*c) ß => d(a) = d(ß) 
Analogously to 2. 

4. Va € Ε, β € τ 0 d(a) - > ο σ β =* 3δ € E a (->s—>c)* ->0 (->s~»c)* δ & d ( 8 ) = ß 
Suppose a € E, d(a) —>ο σ β =» a 4 Nx0, so a = Head o' SKRules with α' € x0. Furthermore 
d(tt) -*oc P· s o a ' has a head-redex. Then OneSiepHead o' SKRules reduces to δ with d(5) = β and 
Head a' SKRules reduces to Head δ SKRules. 

5. Va € Nxs d(a) € Nx^j и (nil) 
If a is a normal form of an element of E then d(a) € Νχ ο σ , d(a) is nil otherwise. 

6. There is no infinite (—»s—>c) reduction path and moreover there exists a bounded function b: 

x 0 -* IN such that Va, β € Ε α ( - » s ~ > c ) m -»ς (-»s™»с)" β => m < b(d(a)) & η < 

b(d(a)). 

There is no infinite non computational path because we only use safe strategies. We define b to 

be: b(x) = 3*( the number of Ap's on the spine of x) + 3. We notate sp(x) for the number of Ap's 

on the spine of x. If χ € x0 then ContainsAHeadRcdex χ SKRules has a number of non computational 

reductions which is bound by 3*sp(x). OneSiepHead χ SKRules is bound by 3*sp(x) + 1 because it 

has an extra Rewrite. So if β $ Nxs then m= 3*sp(a) + 1 and η = 1; if β € Nxs then we may 
need 3*sp(ß) + 2 non computational reductions to discover that we have a normal form. 

The specification is effective because b, —»c, d and E are all total computable. 
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Remarks 

The proof was easy because the most essential aspects were already covered by the lemmas 
which were themselves simple and easy to proof. The use of the primitives Match and Rewrite 
made it possible to reason easily about the TRS system. 

3.4.4 TRANSFORMATIONS OF THE SPECIFICATION 

The description we have developed is a very nice one but operationally it is not the same as in the 
other two sections, because a call of ContainsAHcadRcdcx will induce an extra sweep through the 
term. If we want our description to mirror exactly the operations that were performed by the 
other methods, then we must change the rules and make them deliver a composite result 
consisting of the term and a boolean indicating whether the term was rewritten. The resulting 
rules are: 

OneStepHead(Ap/a)ru/ei -»Cond ( Match ( Ap f a ) rules ) 
( Pair True ( Rewrite ( Ap f a ) rules )) 
(Pair (First ( OncStcpHead ƒ rules )) 

(Ap (Second ( OncStcpHead ƒ rules )) a )) (I-l1) 
OncStcpHead c.Combinator rules -» Pair False с (I-2Ó 
Head (Pair False term) rules -» term (1-3^ 
Head (Pair Tnie term) rules -> Head ( OneS tcpHcad term rules ) rules (M1) 

with as initial term: 

Head (OneStepHead Term SKRules) SKRules. 

Probably it will not be very difncult to prove this specification to be equivalent to the one without 
the booleans. Though this specification can now be considered to be just as efficient as the 
specifications in the other sections, it does not exactly mirror the same actions. In the other 
sections annotation functions were used in stead of booleans. Of course it is also possible to give 
a similar description with the abstract-interpretation method. We will rename Head to * and 
OneStepHead to !. We will also introduce success and failure constructors +/- and a propagate 
function called -. The set of corresponding rules is: 

l(Apfa) rules -»Cond (Match (Ap f a) rules ) 
( + ( Rewrite ( Ap ƒ a ) rules )) 
(-(Ap(\frules)a)) (І-П 

! c:Combinator rules -> - с (1-2") 
* ( - term ) rules -» term (1-3") 
* ( + term ) rules -> * ( ! term rules ) rules (1-4") 
~(Ap( + x)y)rules -* + (Apxy) (1-5") 
-(Ap(-x)y) rules -*-(Apxy) (1-6") 

If this specification is compared with that of section 3.2.2 we see that the redex rules and the 
propagation rule are now all covered by rule (І-Г) thanks to the power of the match and rewrite 
primitives. The non-redex rules are covered by rule (1-2"). The last four rules are the same. 

We have shown that it is relatively easy to express a reduction strategy using the abstract-
interpretation TRS with several algorithms and that it is also simple to transform one specification 
to another. 
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3 . 4 . 5 EVALUATION OF THE METHOD 

This method enables us to write elegant strategy specifications. The non-redex cases are easily 
handled using the Match and Rewriic primitives. The different actions for syntactically different 
terms are conveniently dealt with using the abstraction mechanism. The fact that we write our 
strategy description on another level helps us in specifying strategies more generally. 

The abstract-interpretation TRS system makes it possible to specify strategies formally in such a 
way that the specification holds for a large class of TRS's. For instance the description given at 
the interpretation level in this section is a valid head reduction specification for all TRS's using 
explicit application functions. Only a very trivial adaptation to the abstraction TRS is necessary in 
order to summarize all combinators. The proof then also holds for this large class of TRS's. 
Besides that, the proof was less tedious because we were led immediately to some general 
lemmas which themselves were easy to proof using the properties of the primitives Match and 
Rewrite. This specification is very short and readable and it appeals to our intuition. It enables us 
to easily give transformations of one specification to other specifications which have specific 
properties. 

Concluding we can state that we have a promising facility with a great expressive power for 
describing strategies independendy of the TRS. 

3.5 CONCLUSIONS AND FURTHER RESEARCH 

AH of the three methods introduced in this paper are suitable for the specification of reduction 
strategies. Using an ordinary TRS gives rise to an exponential number of rewrite rules. This 
drawback disappears when a PRS is used. However the proof of the specification using this 
PRS was even more difficult than the proof with an ordinary TRS. 

The most readable and general specification can be obtained by using an abstract-interpretation 
TRS extended with special primitives for matching and rewriting. The structure of the 
specification made it possible to give a simple proof and to construct transformations of the 
specifications in order to get alternative specifications with special desirable properties. Although 
this new TRS system is specially designed for the specification of reduction strategies, we think 
that its descriptive power is suitable for the specification of abstract interpretations (Bum et al. 
(1985)) in general. 

In the near future we will search for simplifications of the definition of specification and we will 
investigate the use of the abstract-interpretation TRS in its full strength for the specification of 
strategies in graph rewriting systems, for giving correctness proofs of more complex strategies 
and for the investigation of the descriptive power for other domains. 
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Abstract 

Graph rewnting (also called reducüon) as defined in Wadsworth (1971) was introduced in order to 
be able to give a more efficient implementation of functional programming languages m the 
form of lambda calculus or term rewrite systems: identical subterms are shared using pointers. 

Several other authors, e g. Ehng (1979), Staples (1980a,b,c), Raoult (1984) and van den Broek 
SL van der Hoeven (1986) have given mathematical descriptions of graph rewriting, usually 
employing concepts from category theory. These papers prove among other things the 
correctness of graph rewriting in the form of the Church-Rosser property for "well-behaved" (i e. 
regular) rewnle systems However, only Staples has formally studied the soundness and 
completeness of graph rewriting wilh respect to term rewriting. 

In this paper wc give a direct operational description of graph rewnting that avoids the category 
theoretic notions. We show that if a term t is interpreied as a graph g(t) and is reduced in the 
graph world, then the result represents an actual reduci of the original term t (soundness). For 
weakly regular term rewrite systems, there is also a completeness result every normal form of a 
term t can be obtained from the graphical implementation. We also show completeness for all 
term rewrite systems which possess a so called hypcrnormahsing strategy, and in that case the 
strategy also gives a normalising strategy for the graphical implementation. 

Besides having nice theoretical properties, weakly regular systems offer opportunities for 
parallelism, since redexes at different places can be executed independently or in parallel, without 
affecting the final result. 

4.1 INTRODUCTION AND BACKGROUND 

Graph rewriting is a well-known and standard technique for implementing functional languages 
based on term rewriting (e.g. Turner (1979a)), but the correctness of this method has received 
little attention, being simply accepted folklore. For both theory and practice, this makes a poor 
foundation, especially in the presence of parallelism. Staples (1980a,b,c) provides the only 
published results we are aware of. (A digested summary of these papers is in Kennaway 
(1984).) Wadsworth (1971) proves similar results for the related subject of pure lambda 
calculus. 

Our principal result is that the notion of graph rewriting provides a sound and complete 
representation (in a sense precisely defined below) of weakly regular TRS's. A counterexample 
is given to show that for non-weakly regular TRS's completeness may fail: some term rewriting 
computations cannot be expressed in the coiresponding graph rewrite system. A second result 
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concerns the mapping of evaluation strategies between the term and the graph worlds. A 
counterexample is exhibited to show that an evaluation strategy which is normalising (i.e. 
computes normal forms) in the term world may fail to do so when it is transferred to the graph 
world. We prove that any strategy which satisfies a stronger condition of being hypernormalising 
in the term world is normalising (and indeed hypernormalising) in the graph world. We briefly 
consider the problem of defining a graph rewriting implementation of non-left linear term rewrite 
rules. 

The general plan of the paper is as follows: Section 4.2 presents basic definitions, and introduces 
a linear syntax for terms represented as graphs. Section 4.3 introduces a category of term graphs. 
Section 4.4 defines the notion of graph rewriting, and section 4.5 introduces the notion of tree 
rewriting as a prelude to section 4.6, which develops our theory of how to relate the worlds of 
term and graph rewriting. Section 4.7 considers the problem of mapping strategies between the 
two worlds. Finally, section 4.8 gives a summary of the work. 

4.2 TERMS AS TREES AND GRAPHS 

4.2.1 Definition. 

(i) Let F be a (finite or infinite) set of objects called function symbols. A,B,... range over 
F. 

(ii) The set Τ of terms over F is defined inductively by: 

Ae F, tj tne Τ => Ad! !„)€ Τ (η>0) 

AQ is written as just A. • 

4.2.2 Example. Let F={0,S}. Then Τ ={0,S(0),0(S>S(0>0)), S(S,S,S)...}. Note that we do 

not assume that function symbols have fixed arities. This might appear inconvenient if one 

wished to represent, for example, the Peano integers, with a constant 0 and a successor operator 

S, since one also obtains extra "unintended" terms such as some of those listed above. When we 

define rewrite systems in section 4.4, we will see that this does not cause any problems. • 

4.2.3 Dennition. A labelled graph (over F) is a triple (N,lab,succ) involving a (finite or 

infinite) set N of nodes, a function lab: N—>F, and a function succ:N—>N*. In this case we say 

that the nj,....^ are the successors of n. The ith component of succ(n) is denoted by 5исс(п);. • 

When we draw pictures of graphs, a directed edge will go from each node η to each node in 

succ(n), with the left-to-right ordering of the sources of the edges corresponding to the ordering 

of the components of succ(n). The identity of nodes is usually unimportant, and we may omit 

this information from pictures. 

4.2.4 Example. Let N=(^^2^3} and define lab and succ on N as follows. 
lab(n1)=G, lab(n2)=A) ІаЬ(пз)=В, 

5иСС(П1)=(п2,Пз), SUCC(n2)=(), 5иСС(Пз)=(). 
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This defines a labelled graph that can be drawn as: 

V G с 
У \. or more simply: S \. 

η2:Λ ι^:Β A В 

Using this notation, four more examples of graphs are the following. 

G 

A 
S \ G H G H « ""• 

^ ^ В B B A B 

G II 

Ч У 
η 

G H 

1 1 
в в 

A В 
В 

4.2.5 Definition. 
(i) A path in a labelled graph (N.lab.succ) is a list (no,io>ni»ii»"· 'nm-i'im-i»nm) where 

m>0, n0,... ,nm€ Ν, ¡о,... .^ . jeN (the natural numbers) and η ^ is the ί|ς-ιΗ successor 
of nk. This path is said to be from n0 to nm and m is the length of the path. 

(ii) A cycle is a path of length greater than 0 from a node η to itself, η is called a cyclic node. 
(iii) A graph is cyclic if it contains a cyclic node, otherwise it is acyclic. • 

4.2.6 Definition. 
(i) A term graph (often, within this paper, simply a graph) is a quadruple (N,lab,succ,r) 

where (N.lab.succ) is a labelled graph and r is a member of N. The node г is called the 
root of the graph. (We do not require that every node of a term graph is reachable by a 
path from the root.) For a graph g, the components are often denoted by N.. lab., suce., 
andrg. 

(ii) A path in a graph is rooted if it begins with the root of the graph. The graph is root-cyclic 
if there is a cycle containing the root. 
When we draw pictures of term graphs, the topmost node is the root. • 

Term graphs are exactly the graphs discussed in the paper Barendregt et al. (1987b), which 
defines a language of generalised graph rewriting of which the rewriting treated in this paper is a 
special case. 

4.2.7 Dennition. Let g = (N.lab.succ) be a labelled graph and let neN. The subgraph of g 
rooted at η is the term graph (N',lab',succ',n) where N'=(n'eN I there is a path from η to n'} 

and lab' and succ' are the restrictions of lab and succ to N'. We denote this graph by gin. The 

definition also applies when g is a term graph. • 

4.2.8 Examples. 

(i) 

'I 
Î The subgraph rooted at n- is: 

гц : о * D 
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(ii) A cyclic graph. A (iii) A rool-cyclic graph. A 

A*—-^ в 

A formal description of a graph requires a complete specification of the quadruple (N.lab.succ j) . 
When writing down examples of finite graphs, it is convenient to adopt a more concise notation, 
which abstracts away from details such as the precise choice of the elements of N. We will use a 
notation based on the definition of terms in definition 4.2.1, but with the addition of node-
names, which can express the sharing of common subexpressions. The notation is defined by the 
following context-free grammar, with the restrictions following it. 

4.2.9 Definition (linear notation for graphs). 
graph ::= node I node + graph 
node ::= A(node,...,node) Ι χ I χ : A(node,...,node) 

A ranges over F. χ ranges over a set, disjoint from F, of nodeid's ('node identifiers'). Any 

nodeid χ which occurs in a graph must occur exactly once in the context χ : A(node,...,node). 

Nodeid's are represented by tokens beginning with a lower-case letter. Function symbols will be 

non-alphabetic, or begin with an upper-case letter. We again abbreviate AQ to A. • 

This syntax is, with minor differences, the same as the syntax for graphs in the language LEAN 

(Barendregt et al. (1987b)). The five graphs of the examples 4.2.4 are in this notation: G(A,B), 

G(A(x:B),x), G(x:B) + H(x), G(B) + H(B) and x:G(A,B(x)). Note that multiple uses of the 

same nodeid express multiple references to the same node. 

The definition of terms in 4.2.1 corresponds to a sublanguage of our shorthand notation, 

consisting of those graphs obtained by using only the first production for graph and the first 

production for node. So terms have a natural representation as graphs. 

4 . 2 . 1 0 Examples. 

(i) G( Plus(l,2), Plus(l,2) ) (ii) G(Plus( n,: 1, n2: 2 ), Plus( n l t n2 )) 

(iii) G( n:Plus(l,2), η ) (iv) ni: Cons( 3, ni ) 

(ii) G (iii) G (iv) ^ ~ 

/ v / v Plus Plus Plus / ^ S 

1 2 
3 

2 

4.2.H Definition. A tree is a graph (N,lab,succ,r) such that there is exactly one path from г to 
each node in N. • 

Thus example (i) above is a tree, and (ii), (iii), and (iv) are not. Trees are always acyclic. Notice 
that a graph g is a finite tree iff g can be written by the grammar of 4.2.9 without using any 
nodeid's. 
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The natural mapping of terms to graphs represents each term as a finite tree. However, some 
terms can also be represented as proper graphs, by sharing of repeated subterms. For example, 
the term G(Plus(l,2),Plus(l,2)) can be represented by any of the graphs pictured in example 
4.2.10 (i), (ii), or (iii), as well as by the graphs G(Plus(x:l,2),Plus(x,2)) or 
G(Plus(l,x:2),Plus(l,x)). 

4.3 HOMOMORPHISMS OF GRAPHS AND TREES 

4.3.1 Definition. Given two graphs gj = (Nj.lab^succ!,^) and g2 = (КгДаЬг.зиссг.Гг), a 
homomorphism from g! to g2 is a map f:N1->N2 such that for all ne N^ 

lab^fOi)) = labjin) 
succ2(f(n)) = fisucc^n)) 

where fis defined by fOi!,...,^) = (fin^...·.^^). That is, homomorphisms preserve labels, 
successors, and their order. • 

4.3.2 Definition. Graph(F) is the category whose objects are graphs over F and whose 
morphisms are homomorphisms. Tree(F) is the full subcategory of Graph(F) whose objects are 
the trees over F. It is easy to verify that these are categories. • 

4.3.3 Examples. We shall write Ei ^ B2 

when there is a homomorphism from g! to g2. We have the following pictures. 

V\ -
в с 

В D 

лА 
/ с 

В D 

(ii) 

y В 

А 

и 
в 

4.3.4 Definition. 

(і) A homomorphism f:gi-*g2 is rooted if Κ η ) ^ · 

(ii) An isomorphism is a homomorphism which has an inverse. We write g - g' when g and 

g' are isomorphic. 

(iii) Two graphs are equivalent when they are isomorphic by a rooted isomorphism. We write 

g = g' when g and g' are equivalent. • 

4.3.5 Proposition. 

(i) For any graphs g¡ and & we have g¡=g2=>gi~ 82-
(ii) Every rooted homomorphism from one tree to another is an isomorphism, ш 
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4.3.6 Example. These two graphs are isomorphic but not equivalent (recall that in 
diagrammatic representations the root node is the topmost): 

A 

I 
в 

с 

5 « - ^ 
4.3.7 Definition. Given any graph g=(N,lab,succ,r) we can define a tree U(g) which results 
from "unravelling" g from the root. We start with some examples. 

(0 A A 

•-Ü U(8)V\ 
в в в 

(üi) g = c ) 

(ü) 

U(g) = 

А 

В С 

w 
D 

С 

/ \ 
A С 

/ \ 
A С 

A 

в С 

; ; 
D D 

l 

Now we give the formal definition. U(g) has as nodes the rooted paths of g. The root of U(g) is 
the path (r). For a path p=(n0,i0 η,,,.,,ϊ,,,^,η,,,), labU(g)(p) = labg(nm) and succU(g)(p) = 

(Pi·—>Pk) where p¡ is the result of appending (i.sucCgin,,,),) to p. Clearly this is a tree. • 

4.3.8 Proposition. For every graph g there is a rooted homomorphism 
ug: U(g)-*g defined by: ug(n0,i0,...,nm) = nn. и 

4.3.9 Proposition. A graph g is a tree iff g = U(g). m 

4.3.10 Definition. Two graphs g and g' are tree-equivalent, notated g =, g', if U(g) = LKg') • 

For example, the graphs of example 4.2.10 (i), (ii) and (iii) are all tree-equivalent. So are these 
two graphs: 

0 о 
4.4 GRAPH REWRITING 

We now turn to rewriting. First we recall the familiar definitions of terms with free variables and 
term rewriting. We then explain informally how we represent terms with free variables as 'open' 
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graphs, and define our notion of graph rewriting. Our definition is quite similar to the one in 

Staples (1980a). 

4.4.1 Definition (term rewriting). 

(i) Let V be a fixed set of function symbols, disjoint from F. The members of V are called 
variables, and are denoted by lower-case letters. An open term over a set of function 
symbols F is a term over FuV in which every node labelled with a variable has no 
successors. An open term containing no variables (that is, what we have been calling 
simply a term) is a closed term. 

(ii) A term rewrite rule is a pair of terms tL and tR (written 1Ь—» tR) such that every variable 
occurring in tR occurs in tL. tL and tR are, respectively, the left- and right-hand sides of 
the term rewrite rule іц-* tR. 

(iii) A term rewrite rule is left-linear if no variable occurs more than once in its left-hand 
side. • 

The usual definition of a term rewrite rule requires that tL be not just a variable. However, our 
results are not affected by the presence of such rules, so we do not bother to exclude them. 

In order to introduce graph rewriting, first we need some preparatory definitions. 

4.4.2 Definition. 

(i) An open labelled graph is an object (N,lab,succ) like a labelled graph, except that lab and 
succ are only required to be partial functions on N, with the same domain. A node on 
which lab and succ are undefined is said to be empty. The definition of an open (term) 
graph bears the same relation to that of a (term) graph. When we write open graphs, we 
will use the symbol -L to denote empty nodes. As with terms, we talk of closed (labelled 
or term) graphs and closed trees as being those containing no empty nodes. 

(ii) A homomorphism from one open graph gj to another g2 is defined as for graphs, except 
that the "structure preserving" conditions are only required to hold at nonempty nodes of 

E l · " 

Open term graphs are intended to represent terms with variables. Instead of using the set V of 
variables, we find it more convenient, for technical reasons, to follow Staples (1980a) by using 
empty nodes. The precise translation from open graphs to open terms is as follows. Given an 
open graph over F, we first replace each empty node in it by a different variable symbol from V, 
and then unravel the resulting closed graph over FuV, obtaining an open term over F. Thus 
where a graph has multiple edges pointing to the same empty node, the term will have multiple 
occurrences of the same nodeid. 



66 Term Graph Rewriting 

For example, the graph Ap(Ap(l,w:l),Ap(l,w)) translates to the term Ap(Ap(x,z),Ap(y,z)): 

graph term 

Ар Ap 

Ар Ар Ар Ар 

/SxC* /"Ч У Ч 
We could obtain any term which only differs from this one by changes of variables. We shall 

treat such terms as the same. 

We now tum to the graph representation of term rewrite rules. We only deal with left-linear rules 
in this paper. In 4.6.13 we discuss briefly the problems in graphically describing non-left-linear 
rules. 

4.4.3 Definition. 

(i) A graph rewrite rule is a triple (g.n.n'), where g is an open labelled graph and η and n' 

are nodes of g, called respectively the left root and the right root of the rule. 

(ii) A redex in a graph go is a pair Δ = (R,f). where R is a graph rewrite rule (g.n.n") and f is 

a homomorphism from gin to g^ The homomorphism f is called an occurrence of R. Ш 

Rather than introduce our formal definition of graph rewriting immediately, we begin with some 
examples. The formal definition is given in section 4.4.6. 

4.4.4 Translation of term rules to graph rules. 

Let I I —» IR be a left-linear term rewrite rule. We construct a corresponding graph rewrite rule 
(g,n,n'), where g is a labelled graph and η and n' are nodes of g. First take the graphs 

representing tj, and tR. Form the union of these, sharing those empty nodes which represent the 

same variables in ^ and tR. This graph is g. Take η and n' to be the respective roots of I I and IR. 

Here are two examples which should make the correspondence between term and graph rewrite 

rules clear. 

(i) Term rule: Ap(Ap(Ap(S,x),y),z)-> Ap(Ap(x,z),Ap(y,z)) 

Graph rule: ( nrApCApiApCS.xrlJ.y:!)^:!) + n':Ap(Ap(x,z),Ap(y,z)), n, n' ) 

left root η 
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(ii) Temi rule: head(cons(x,y)) —» χ 

Graph rule: ( n:head(cons(x:l,l)), η, χ ) 

left rooi η 

head 

67 

cons 

right root χ 

4.4.5 Informal definition of graph rewriting. 

A redex ((g.n.n'), f: gin —¥ g0) in a graph gg is reduced in three steps. We shall use the following 

redex as an example: (g,n,n') is the S-rule above, gg = G(a,Ap(Ap(a:Ap(S,P),Q),R)) and f 

operates on η as indicated in the picture (which completely determines how f behaves on the rest 

of gin). 

First (the build phase) an isomorphic copy of that part of gin' not contained in gin is added to go, 

with lab, succ, and root defined in the natural way. Call this graph gj. Then (the redirection 

phase) all edges of gj pointing to f(n) are replaced by edges pointing to the copy of n', giving a 

graph g2. The root of g2 is the root of gj, if that node is not equal to f(n). Otherwise, the root of 

g2 is the copy of n'. 
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Lastly (the garbage collection phase), all nodes not accessible from the root of g2 are removed, 
giving g3, which is the result of the rewrite. 

Note that the bottommost Ap node of the redex graph and the S node remain after garbage 
collection, since they are still accessible from the root of the graph. The other two Ap nodes of 
the redex vanish. 

4.4 .6 Formal defînition of graph rewriting. 

We now give a formal definition of the general construction. Let ((g,n,n'), f: gin —» g0) be a 
redex in a graph gg. The graphs gj (the build phase), g2 (the redirection phase) and g3 (the 
garbage collection phase) are defined as follows. 

(i) The node-set N of gj is the disjoint union of Ngo and ΝΕ|η· - N g |n. The root is г80. The 
functions labgi and sucCgj are given by: 

labgl(m) = labg0(m) (m e Ng 0) 
= labg(m) (m e Ng|n. - Ng |n) 

5исс81(т) ; = succgoím); (m e Ng0) 
= succgím); (m, succg(m)¡ € Nghl. - Ng|n) 
= físuccgím);) (m e Ngln· - Ng|n, 5исс8(т); e Ng|n) 

We write g! = g0 +г (g,n,n'). 
(ii) The next step is to replace in gj all references to f(n) by references to n'. We can define a 

substitution operation in general for any term graph h and any two nodes a and b of h. 

h[a:=b] is a term graph (Nh,lab,succ,r), where lab, succ, and r are given as follows. 

lab(c) = labhtc) for each node с of Nh 

if 5исС(,(с)| = a then succfc); = b, otherwise succ(c)¡ = sucede); 
if rh = a then г = b, otherwise r = rh 

With this definition, g2 is gi[f(n):=n']. 
(iii) Finally, we take the part of g2 which is accessible from its root, by defining g^ = g^tgi-

We give this operation a name: for any term graph h, we denote hlrh by GC(h) (Garbage 
Collection). 
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We denote the result of reducing a redex Δ in a graph g by REDÍA.g). Collecting the 
notations we have introduced, we have 
RED(((g,n,n,),f),g0) = GC((go +f (g,n,n'))[f(n):=n']). • 

Our definition of graph rewriting is a special case of a more general notion, defined in dauert et 
al. (1987) by a category-theoretic construction. Those familiar with category theory may 
recognise the build phase of a rewrite as a pushout, and redirection and garbage collection can be 
given definitions in the same style (though the categories involved are not those defined in this 
paper). For the purpose of this paper - describing graph rewritings which correspond to 
conventional term rewritings - the direct "operational" definition we have given is simpler. 

4.4.7 Definition. 

(i) If g reduces to g' by reduction of a redex Δ, we write g —>Δ g', or g —» g' if we do not 

wish to indicate the identity of the redex. The reflexive and transitive closure of the 

relation -» is ->*. 

(ii) A graph rewriting system (GRS) over F consists of a pair (G,R) where R is a set of 

rewrite rules and G is a set of graphs over F closed under rewriting by the members of 

R. 

(iii) We write g —>R g' if g —» g' by reduction of a redex using one of the rules in R. The 

reflexive and transitive closure of —»R is —»*R. If clear from the context, we omit the 

subscript R. 

(iv) A graph g such that for no g' does one have g —>R g' is said to be an R-normal form (or 

to be in R-normal form). If g —>*R g' and g' is in R-normal form, we say that g' is an 

R-normal form of g, and that g has an R-normal form. Again, we often omit the R. • 

Note that a GRS is not required to include all the graphs which can be formed from the given set 

of function symbols F. Any subset closed under rewriting will do. This allows our definition to 

automatically handle such things as, for example, sorted rewrite systems, where there are 

constraints over what function symbols can be applied to what arguments, or arities, where each 

function symbol may only be applied to a specified number of arguments. From our point of 

view, this amounts to simply restricting the set of graphs to those satisfying these constraints. So 

long as rewriting always yields allowed graphs from allowed graphs, we do not need to develop 

any special formalism for handling restricted rewrite systems, nor do we need to prove new 

versions of our results. 

Our definition of a graph rewrite rule allows any conventional term rewrite rule to be interpreted 

as a graph rewrite rule, provided that the term rewrite rule is left-linear, that is, if no variable 

occurs twice or more on its left-hand side. As some of the following examples show, however, 

some new phenomena arise with graph rewrite rales. 

4.4.8 Examples. 

(i) Term rule: A(x) -> B(x); Graph rule: ( n:A(x:l) + n':B(x), n, n' ) 

Graph: x:A(x); Result of rewriting: x:B(x) 
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(ii) Term rule: I(x) -> x; Graph rule:( nrUn':!), n, n') 
Graph: 1(3); Result of rewriting: 3 

(iii) The fixed point combinator Y has the term rewrite rule Ap(Y,x) —» Ap(x,Ap(Y,x)). This 
can be transformed into the graph rewrite rule (n:Ap(Y,x:J.) + n':Ap(xFAp(Y,x)),n,n'). 
However, it can also be given the graph rewrite rule: (η^ρίΥ,χ:!) + η^Αρζχ,η'Χη,η'): 

AK ΑΦ 
U/ γ χ 

(n:Ap{Y,x:-L) + п'.Ар(.хАр(У.х)).п,п') (n:Ap(Y.xJ- ) + n':Ap(x,n,),n,n') 

This captures the fact that the Böhm tree (Barendregt (1984)) of the term Ap(Y,x) is: 

Ap 

^Ч 
χ Лр 

/ \ 
χ Ар 

The graph rule can do all the 'unravelling' in one step, which in the term rewrite world requires 
an infinite sequence of rewritings. 

(iv) Here is a more subtle example of the same phenomenon illustrated by (iii). Consider the 
term rewrite rule 

F(Cons(x,y)) -> G(Cons(x,y)) 

Our standard representation of this as a graph rewrite rule is: 

( n:F(Cons(x:l,y:l)) + n':G(Cons(x,y)), n, n' ) 

Note that each application of this rule will create a new node of the form Cons( ), which 
will have the same successors as an existing node Cons (...,...). In a practical implementation, 
there is no need to do this. One might as well use that existing node, instead of making a copy of 
it. The following graph rewrite rule does this: 

( n:F(z:Cons(l,l)) + n':G(z), n, n' ) 

Both the languages Standard ML and Hope, which are languages of term rewriting, allow an 
enhanced form of term rewrite rules such as (using our syntax): 

F(z:Cons(x,y)) -> G(z) 
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with precisely this effect. Of course, given referential transparency (which ML lacks) there is no 
reason for an implementation not to make this optimisation wherever there is an opportunity, 
even if the programmer does not. But providing this feature to the programmer may make his 
programs more readable. 

(v) Term rule: I(x) —» x; Graph rule: ( n:!^':!), n, n' ) 
Graph: x:I(x); Result of rewriting: x:I(x) 

Example 4.4.8(v) is deliberately pathological. Consider the GRS for combinatory logic, whose 
rules are those for the S, K, and I combinaiors. The graph can be interpreted as "the least fixed 
point of I" (cf. the example of the Y combinator above), and in the usual denotational semantics 
in terms of reflexive domains should have the bottom, "undefined" value. As the graph reduces 
to itself (and to nothing else), it has no normal form. Thus our operational semantics of graph 
rewriting agrees with the denotational semantics. This is not true for some other attempts we 
have seen at formalising graphical term rewriting. 

We now study some properties of graph rewrite systems. We establish a version of the theorem 
of finite developments for term rewriting, and the confluence of weakly regular systems. For 
reasons of space, the longer proofs are omitted from this paper. They appear in Barendregt et al. 
(1986a). 

4.4.9 Proposition. Garbage collection can be postponed. That is, given g —^1 g] -^42 g2, A¡ 
= (RJò· Ri = (gi^i-n'i) С' = M) and g'l = (g +fi Ri)[f(n) = n'l, then ^ " also a redex ofg'i, 
and g', -τ»42 g2. • 

4.4.10 Definition. Two redexes Δ] = ((Ηι,η^η'ι),^) and Δ2 = ((і2.П2>п,2)>^2) 0 ^ а graph g are 
disjoint if: 

(i) ГгОіг) is not equal to fj(n) for any nonempty node η of gjlni, and 
(ii) fi(ni) is not equal to f2(n) for any nonempty node η of g2ln2-

Δ] and Δ2 are weakly disjoint if either they are disjoint, or the only violation of conditions (i) and 
(ii) is that fi(ni) = f2(n2), and the results of reducing Δ! or Δ2 are identical. 

A GRS is regular (resp. weakly regular) if for every graph g of the GRS, every two distinct 
redexes in g are disjoint (resp. weakly disjoint). • 

4.4.11 Proposition. Lei Aj = ((gj.n^n']), fj) and Δ2 = ((g2,n2,n'2), /2) be two disjoint 

redexes of a graph g. Let g —^1 g'. Then either /гСяг̂  '* not a node of g', or there is a redex 

((g2'n2-n'2)S) of g'such thatf(n2) =/2(12)· • 

4.4.12 Definition. 
(i) With the notations of the preceding proposition, if ίι^τ)IS n o t a n o de of g' then Δ^Δ) is 

the empty reduction sequence from g' to g'; otherwise, Δ2/Δ, is the one-step reduction 
sequence consisting of the reduction of ((g2,n2,n'2),0· This redex is the residual of Δ2 
by Δι and is denoted by Δ^/Δρ For weakly disjoint Δ, and Δ2, Δ2/Δ! is the empty 
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reduction sequence from g' to g'. Δ2/Δ! is not defined when Δ! and Δ2 are not weakly 

disjoint, and ί^ΙΙ^ is not defined when Δ[ and Δ2 are not disjoint. 

(ii) Given a reduction sequence g —>Δ1 —»Δ2 ... —»Δι g' and a redex Δ of g, the residual of Δ 

by the sequence А^.Д, denoted Л/ДД^.Д) is (Α//(Δ1...Αί_]))//Δι (provided that 

(Δ/ΛΔι.,.Δ,.])) exists and is disjoint from Δ^. • 

4.4.13 Proposition. Let Aj and ^ be weakly disjoint redexes of g, and let g —И' gì (i = 1,2). 
Then there is a graph h such that gl -^2'ΔΙ h and g2 -)ЛЛЛ2 f, jfat ; J weakly disjoint redexes 
are subcommutative, ш 

4.4.14 Corollary. Every weakly regular GRS is confluent. That is, if g —»* g, (i = 1,2), then 

there is an h such that g, -** h (i = 12). m 

4.4.15 Dennition. Let g be a graph and F be a set of disjoint redexes of g. A development of F 
is a reduction sequence in which the redex reduced at each step is a residual, by the preceding 
steps of the sequence, of a member of F. A complete development of F is a development of F, at 
the end of which there remain no residuals of members of F. • 

4.4.16 Proposition. Every complete development of a finite set ofpairwise disjoint redexes Fis 
finite. In fact, its length is bounded by the number of redexes in F. m 

4.4.17 Proposition. Let F be a set of redexes of a graph g. Every finite complete development 
of Fends with the same graph (up to isomorphism). This graph is: 

GC( (g +f] R, +J2 ... +fi RJlfrfni) -- n'i]...lf¿nJ:=n'J ) 

where the redexes whose residuals are reduced in the complete development are á¡ = 

(ГіЯі),...А = №,)• • 

Note that since we allow infinite graphs, a set of redexes F as in the last two propositions may be 
infinite. Nevertheless, it may have a finite complete development, if rewriting of some members 
of F causes all but finitely many members of F to be erased 

4.5 TREE REWRITING 

In order to study the relationship between term rewriting and graph rewriting, we define the 
notion of tree rewriting. This is a formalisation of conventional term rewriting within the 
framework of our definitions of graph rewriting. 

4.5.1 Dennition. 
(i) A tree rewrite rule is a graph rewrite rule (g,n,n') such that gin is a tree. For a set of tree 

rewrite rules R, the relation —»̂  of tree rewriting with respect to R is defined by: 
ιι -»m h <=> for some graph g, tj ->R g and U(g) = t2 

(ii) A tree rewrite system (TreeRS) over F is a pair (T,R) where R is a set of tree rewrite 

rules and Τ is a set of trees over F closed under ->&. A term rewrite system (TRS) is a 

TreeRS, all of whose trees are finite. 
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When t! reduces to t2 by tree rewriting of a redex Δ, we write Ц —>,Δ t2, or t! —>, t2 when we do 

not wish to indicate the identity of the redex. • 

Tree rewrite systems differ from conventional term rewrite systems in two ways. Firstly, infinite 

trees are allowed. We need to handle infinite trees, since they are produced by the unravelling of 

cyclic graphs. We need to handle cyclic graphs because some implementors of graph rewriting 

use them, and we do not want to limit the scope of this paper unnecessarily. Secondly, the set of 

trees of a TreeRS may be any set of trees over the given function symbols which is closed under 

tree rewriting. This is for the same reason as was explained above for GRS's. 

If for each rule (g,n,n') in the rule-set, g is finite and acyclic, the set of all finite trees generated 
by the function symbols will be closed under tree rewriting. This is true for those rules resulting 
from term rewrite rules by our standard representation. Thus the conventional notion of a TRS is 
included in ours. 

4.5.2 Definition. Let t, ti,... t; be trees, and η^.,.,η; be distinct nodes of t. We define 

^η^ΐ] , . . . ,^ :^] to be the tree whose nodes are 

(i) all paths of t which do not include any of nj,...,^, and 

(ii) every path obtained by taking a path ρ of t, which ends at n; (l<j<i) and contains no 
other occurrence of η¡...nj, and replacing the last node of ρ by any path of tj. 

For any of these paths p, the label of ρ is the label of the last node in p, in whichever of t, Ц,... t; 
that came from. The successors function is defined similarly. • 

The results concerning disjointness, regularity, and confluence which we proved for graph 
rewriting all have versions for tree rewriting. Again we omit proofs. We also have the following: 

4.5.3 Proposition. Unravelling can be postponed. That is, if t¡ -», ij ~>t h· {^еп there are 
graphs g and g' such that 

(1) ¡2 = U(g) and t] —>g (by graph rewriting) 
(2) g-^g'andt3-*\U(g).m 

4.6 RELATIONS BETWEEN TREE AND GRAPH REWRITING 

In this section we prove our principal result: for weakly regular rule-systems, graph rewriting is 
a sound and complete implementation of term rewriting. 

4.6.1 Definition. Let (T.R) be a TreeRS. 
(i) L(T,R), the lifting of this system, is the GRS whose set of graphs is L(T) = (g I 

U(g)eT], and whose rule set is R (but now interpreted as graph rewrite rules). It is 
trivial to verify that L(T) is closed under -+R. 

(ii) A graphical term rewrite system (GTRS) is a GRS of the form L(T,R), where (T,R) is a 
term rewrite system. 

(iii) A GRS (G,R) is acyclic if every member of G is acyclic. • 
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When (T,R) is a term rewrite system, L(T,R) represents its graphical implementation. There are 
two fundamental properties it must have to be a correct implementation, which we now define. 

4.6.2 Definition. 
(i) A TreeRS (T,R) is called graph-reducible if for every graph g in L(T), if t is a normal 

form of U(g) in (T,R), then there is a normal form g' of g in L(T,R) such that U(g') = t, 
and if U(g) has no normal form in (T,R), then g has no normal form in L(T,R). 

(ii) A GRS (G,R) is tree-reducible if there is a TreeRS (T,R) such that (G,R) = L(T,R), and 
such that if g' is a normal form of g in (G,R), then U(g') is a normal form of U(g) in 
(T,R), and if g has no normal form in (G,R), then U(g) has no normal form in (T,R). ш 

L(T,R) is the graphical implementation of (T,R). Tree-reducibility of L(T,R) expresses 
soundness: every result which is obtainable by graph rewriting in L(T,R) is also obtainable by 
tree rewriting in (T,R). Graph-reducibility of (T,R) expresses completeness: every result which 
is obtainable by tree rewriting is also obtainable by graph rewriting. We shall see that every 
GTRS is tree-reducible, and every weakly regular TRS is graph-reducible. Not all GRS's, even 
those of the form L(T,R), are tree-reducible, nor is every TreeRS graph-reducible, as the 
following examples show. 

4.6.3 Example. Tree reducibility can fail when there are cyclic graphs. Consider the term 
rewrite rule A(x) —» B(x), represented graphically by: 

± 

A cyclic graph may contain a single redex with respect to this rule, while its unravelling contains 
infinitely many: 

о—-о 
в 

I 
в 

ι 
4.6.4 Example. The following TreeRS is not graph-reducible: 

T: trees over {A,D,0,1,2}, with the following arities: A is binary, D is unary, and 0,1, and 2 are 

miliary. 

A 

I 
A 
A 

R: A(l,2) -> 0; 1 -> 2; 2 -• 1; D(x) -> A(x,x). 
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For a counterexample, consider the following tree rewriting sequence: 

Ï *" у\ ®*~ УК. *"" 0 

1 1 1 1 2 

In the graph rewriting system we have: 

D ES»- А $ш, А ^>. A jSfr. A ^ s v . 

I U «. tt U 
1 1 2 1 2 

In this example, the sharing of (tree) subterms in the graph world has excluded from the graph 
world certain rewrite sequences of the tree world. Distinct subterms of A(l,l) correspond to the 
same subgraph of A(x:l,x), forcing synchronized rewriting of siblings, which makes the normal 
form inaccessible. 

4.6.5 Definition. 

(i) Redexes Δ = ((g,n,n'),f) and Δ' = ((g',m,m'),f ) in a graph h are siblings if h[f(n) =>, 
hlf(m). 

(ii) For a redex Δ = ((U(g),n,n'),f) of a tree U(g) we define ug(A) to be the redex 

((g,n,n'),ug-f) of g. 
(ш) For a redex Δ of a graph g, the set of redexes Δ' of U(g) such that ug(.A') = Δ is denoted 

by Ug-̂ A). For a set of redexes F of a graph g, Ug-^F) denotes LJf UgHA') Ι Δ' e F }. 

(iv) A redex Δ of a graph G is acyclic if u/'iA) is finite. • 

4.6.6 Proposition. Let g —* g' by rewriting of an acyclic redex Δ. Then U(g) —>*¡ U(g') by 
complete development ofUg^A). For any redex A' of g, weakly disjoint from Δ, ug '(ΔΊΙΔ) = 

Ug-'fAy/Ug'fá). m 

4.6.7 Proposition. Let g —>* g' by a complete development of a set F of disjoint acyclic 
redexes of g whose associated rewrite rules are acyclic. Then U(g) —>*¡ U(g') by a complete 
development of Ug^ F), m 

4.6.8 Definition. 
(i) In a weakly regular GRS, the relation of Gross-Knuth reduction, notation ->GK, is 

defined as follows 
g —»GK g' <=> g —>* g' by complete development of the set of all redexes of g. 

(ii) In a weakly regular TreeRS we define Gross-Knuth reduction by 
t —»GK

t t' <=> t —»*t t' by complete development of the set of all redexes of t. • 

4.6.9 Proposition. Let (T,R) be a weakly regular TRS. Then L(T,R) is weakly regular. Let g 
and g' be graphs in ЦТ) such that g -^K g'. Then U(g) -iCK

t U(g'). и 

4.6.10 Proposition, /ƒ every graph in ЦТ) is acyclic, then ЦТД) is tree-reducible. In 
particular, a graphical term rewrite system is tree-reducible. • 
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4.6.11 Proposition. For any TreeRS (T,R) and any graph g in ЦТ), g is a normal form of 
ЦТД) iff U(g) is a normal form of(T,R). m 

Thus in a graphical term rewrite system L(T,R), everything which can happen can also happen in 
the term rewrite system, and all the normal forms are the same. Graph-reducibility may fail, 
however, since it may be that for some graph g, U(g) has a normal form but g does not. 

4.6.12 Theorem. Every weakly regular TRS is graph-reducible. 

Proof. Let (T,R) be a weakly regular TRS. Let g be a graph of L(T,R) such that U(g) has a 

normal form. Proposition 4.6.7 relates the Gross-Knuth reduction sequences for g and U(g) in 

the following way. 

oc oc cae 
U(g) -»-, UCg,) - ^ , VigJ -*t 

It is a standard result that for regular TRS's, Gross-Knuth reduction is normalising (Klop 
(1980)), and the proof carries over immediately to weakly regular TreeRS's. Therefore the 
bottom line of the diagram terminates with some tree U(g') in normal form such that g reduces to 
g' in L(T,R). Therefore g' is a normal form of g, and (T,R) is graph-reducible. • 

4.6.13 Non-left-linearity. 

We shall now discuss non-left-linearity, and indicate why we excluded non-left-linear TRS's 
from consideration. In term rewriting theory, for a term to match a non-linear left-hand side, the 
subterms corresponding to all the occurrences of a repeated variable must be identical. 

Our method of using empty nodes to represent the variables of temi rewrite rules suggests a very 
different semantics for non-left-linear rules. Our representation of a term rule A(x,x) —» В would 
be (n:A(x:l,x), n, x). This will only match a subgraph of the form a:A(b: ..., b). That is, the 
subgraphs matched by the repeated variable must be not merely textually equal, but identical - the 
very same nodes. If one is implementing graph rewriting as a computational mechanism in its 
own right, rather than considering it merely as an optimisation of term rewriting, then this form 
of non-left-linearity may be useful. However, it is not the same as non-left-linearity for term 
rules. 

To introduce a concept more akin to the non-left-linearity of term rules, we could use variables in 
graphs, just as for terms, instead of empty nodes. A meaning must then be chosen for the 
matching of a graph A(Vari,Vari) where Vari is a variable symbol, occurring at two different 
nodes. Two possibilities naturally suggest themselves. The subgraphs rooted at nodes matched 
by the same variable may be required to be equivalent, or they may only be required to be tree-
equivalent. The latter definition is closer to the term rewriting concept. 
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When a variable occurs twice or more on the left-hand side of a rule, there is also a problem of 
deciding which of the subgraphs matched by it is referred to by its occurrences on the right-hand 
side. One method would be to cause those subgraphs to be first coalesced, replacing the 
equivalence or tree-equivalence which the matching detected by pointer equality. This technique 
may be useful in implementing logic programming languages, where non-linearity is much more 
commonly used than in functional term rewriting. Further investigation of the matter is outside 
the scope of the present paper. 

Lastly, we note that although some term rewriting languages, such as SASL (Turner (1979b)) 
and Miranda (Turner (1986)), allow non-left-linear rules, they generally interpret the implied 
equality test neither as textual equality, nor as pointer equality, but as the equality operator of the 
language (although pointer equality may be used as an optimisation). In these languages, any 
program containing non-left-linear rules can be transformed to one which does not. 

4.7 NORMALISING STRATEGIES 

In this section we define the notion of an evaluation strategy in a general setting which includes 
term and graph rewrite systems. We then study the relationships between strategies for term 
rewrite systems and for the corresponding graph systems. 

4.7.1 Definition. 

(i) An abstract reduction system (ARS) is a pair (O,—>), where О is a set of objects and —» is 
a binary relation on O. This notion abstracts from term and graph rewrite systems. The 
transitive reflexive closure of —> is denoted by —>*. 

(ii) An element χ of an ARS is a normal form (nf) if for no у does one have x->y. 
(iii) An element χ has a normal form if x->* у and у is a normal form. 

(iv) A reduction sequence of an ARS is a sequence XQ—>XI-*...—>xn. The length of this 
sequence is n. A sequence of length 0 is empty. • 

4.7.2 Definition. 

(i) Given an ARS (О,-*), a strategy for this system is a function S which takes each хе О to 
a set S(x) of nonempty finite reduction sequences, each beginning with x. Note that S 
can be empty. 

(ii) S is deterministic if, for all x, S(x) contains at most one element. 
(iii) S is a one-step strategy (or 1-strategy) if for every χ in O, every member of S(x) has 

length 1. 

(iv) Write x—»s y if S(x) contains a reduction sequence ending with y. By abuse of notation, 

we may write x—»s y to denote some particular but unspecified member of S(x). 

(v) An S-sequence is a reduction sequence of the form XQ—>S XJ —»s X2 —»s 

(vi) S is normalising if for all χ having a normal form any sequence XQ—*S XI —>S X 2 

-»s m u s t eventually terminate with a normal form. • 



78 Term Graph Rewriting 

4.7.3 Definition. 
(i) Let S be a strategy of an ARS (0,->). Quasi-S is the strategy defined by: 

quasi-S(x) = (x -V x' -> s y I x' in O). 
Thus a quasi-S path is an S-path diluted with arbitrary reduction steps. 

(ii) A strategy S is hypernormalising if quasi-S is normalising, ш 

A 1-strategy for a TreeRS or GRS can be specified as a function which takes the objects of the 

system to some subset of its redexes. This will be done from now on. 

4.7.4 Definition. Let S be a 1-strategy for a TreeRS (T,R). The strategy SL for the lifted graph 
rewrite system L(T,R) is defined by SL(g) = ug(S(U(g)). • 

For l-strategies on TreeRS's, this is a natural definition of lifting. For multi-step strategies, it is 

less clear how to define a lifting, and we do not do so in this paper. 

Although a 1-strategy for a TreeRS may be normalising, its lifting may not be. This may be 
because the lifting of the TreeRS does not preserve normal forms (e.g. as in example 4.6.4), or 
for more subtle reasons, such as in the following example. 

4.7.5 Example. Consider the following TreeRS: 
Function symbols: A (binary), B, 1, 2 (nullary). 
Rules: 1 -» 2, 2 -> 1, A(x,y) -> B. 

By stipulating that A is binary and B, 1, and 2 are nullary, we mean, as discussed following 
definitions 4.4.7 and 4.5.1, that trees not conforming to these arities are not included in the 
system. Define a strategy S as follows (where the redexes chosen by S are boldfaced): 

A(l,l)-» A(2,l) A(2,2) -> A(2,l) 
A(x,y) —» B, if neither of the preceding cases applies 

S takes the tree A(l,l) to normal form В in two steps. SL takes the graph A(x:l,x) to A(x:2,x) 
and back again in an infinite loop. 

The next theorem shows that if a 1-strategy S for a TreeRS is hypernormalising, then SL is 

hypernormalising for the corresponding GRS. 

4.7.6 Theorem. Let (T,R) be a TreeRS and let S bea J -strategy for it. Let (GJt ') be the lifting 

of(T,R). If S is hypernormalising then Si is hypernormalising. 

Proof. Assume S is hypernormalising. Let g be a graph in G having a normal form, and consider 

a quasi-SL reduction sequence starting from g. 



Term Graph Rewriting 79 

By proposition 4.6.7 and the definition of 8Ь, we can construct the following diagram, where the 
top line is the quasi-SL reduction sequence: 

S i S I S Ì 

E = • g' » • E, • Ej • • f e • ^ — · • · • · 

Î"8 Î Î"81 Î \\ Î 
U ( g ) Í ^ t - » ^ U ( g , ) - » ^ U ( g I ) ^ t 1 - » ^ U ( g ¡ ) - » ^ U ( g í ) ^ t 2 - # ^ U ( g i ) - » ^ . . . 

Since g has a normal form, so does U(g), so since quasi-S is normalising, the bottom line must 
stop at some point, with a normal form of U(g). Therefore the top line also stops, and must do 
so with a graph which unravels to the normal form in the bottom line. • 

4.7.7 Example. The converse does not hold. If SL is hypernormalising, S need not be. 
Consider the following TRS. 

Function symbols: A (binary), В (nullary) 
Rules: A(x,y) -> В A(x,y) -» A(x,x) 

Every non-normal form of this system has the form Α(α,β) for some terms α and β. Let S be the 

strategy: 

Α(<χ,β)-»s Α(α,ο) (if α * β) 

Α(α,α) -» s В 

The first SL-step in any quasi-Si/sequence will produce either a graph of the form A(x:a,x) or 
the normal form B. In the former case, whatever extra steps are then inserted, the result can only 
be either another term of the same form or B. In the former case, the next Sĵ -step will reach B. 
Therefore SL is hypernormalising. However, S is not hypernormalising. A counterexample is 
provided by the term A(A(B,B),B). An infinite quasi-S sequence beginning with this term is: 

A(A(B,B),B) ->s A(A(B,B),A(B,B)) -» A(A(B,B),B) -> s A(A(B,B),A(B,B)) -»... 

4.7.8 Corollary. If a TreeRS (T,R) has a hypernormalising 1-strategy then it is graph 
reducible. 

Proof. By theorem 4.7.5 the lifting (G,R) of the TreeRS has a normalising strategy. Now 
assume U(g) = t. Suppose g has no nf. Then the SL path of g is infinite. This gives, by the 
construction of 4.7.6, an infinite quasi-S-path of t, hence t has no normal form. • 

An application of this result is that strongly sequential TRS's (in the sense of Huet & Levy 
(1979)) are graph reducible. This follows from their theorem that the 1-strategy which chooses 
any needed redex is hypernormalising. 

The condition that a strategy be hypernormalising is unnecessarily strong. Inspection of the 
proofs of the preceding theorem and corollary shows that the following weaker concept suffices. 
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4.7.9 Definition. 

(i) Let S be a 1-strategy of a TreeRS (T,R). Then sib-S is the strategy defined by: 

sib-S(x) = { χ -> s y —>* ζ I the sequence y —>* ζ consists of siblings of S(x)). 

That is, a sib-S path is an S-path diluted with arbitrary sib-steps from the reduction 

relation. 

(ii) A strategy S is sib-normalising if sib-S is normalising. Ш 

4.7.10 Theorem. Lei (T,R) be a TreeRS and let S be a 1-strategyfor it. Let (GJt') be the lifting 

of(T,R). If S is sib-normalising then SL is sib-normalising and (T,R) is graph-reducible. 

Proof. Immediate from the proofs of theorem 4.7.6 and corollary 4.7.8. • 

4.8 CONCLUSION 

Graph rewriting is an efficient way to perform term rewriting. We have shown: 

1. Soundness: for all TRS's, graph rewriting cannot give incorrect results. 

2. Completeness: for weakly regular TRS's, graph rewriting gives all results. 
3. Many normalising strategies (the hypemormalising, or even the sib-normalising ones) on 

terms can be lifted to graphs to yield normalising strategies there. In particular, for 
strongly sequential term rewrite systems, the strategy of contracting needed redexes can 
be lifted to graphs. 

We have also given counterexamples illustrating incompleteness for non-weakly regular TRS's 
and for liftings of non-sib-normalising strategies. 
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Abstract. 

Lean is an experimental language for specifying computations in terms of graph rewriting. It is 
based on an alternative to Term Rewriting Systems (TRS) in which the terms are replaced by 
graphs Such a Graph Rewriting System (GRS) consists of a set of graph rewrite rules which 
specify how a graph may be rewnttcn. Besides supporting functional programming, Lean also 
describes imperative constructs and allows the manipulation of cyclic graphs. Programs may 
exhibit non-determinism as well as parallelism. In particular. Lean can serve as an intermediate 
language between declarative languages and machine architectures, both sequential and parallel. 
This paper is a revised version of Barcndrcgt et al (1987b) which was presented at the ESPRIT, 
PARLE conference in Eindhoven, The Netherlands, June 1987. 

5.1 INTRODUCTION 

Emerging technologies (VLSI, wafer-scale integration), new machine architectures, new 
language proposals and new implementation methods (Vegdahl (1984)) have inspired the 
computer science community to consider new models of computation. Several of these 
developments have little in common with the familiar Turing machine model. It is our belief that 
in order to be able to compare these developments, it is necessary to have a novel computational 
model that integrates graph manipulation, rewriting, and imperative overwriting. In this paper we 
present Lean, an experimental language based on such a model. In our approach we have 
extended Term Rewriting Systems (O'Donnell (1985), Klop (1985)) to a model of general graph 
rewriting. Such a model will make it possible to reason about programs, to prove correctness, 
and to port programs to different machines. 

A Lean computation is specified by an initial graph and a set of rules used to rewrite the graph to 
its final result. The rules contain graph patterns that may match some part of the graph. If the 
graph matches a rule it can be rewritten according to the specification in that rule. This 
specification makes it possible first to construct an additional graph structure and then link it into 
the existing graph by redirecting arcs. 

Lean programs may be non-deterministic. The semantics also allows parallel evaluation where 

candidate rewrites do not interfere. There are few restrictions on Lean graphs (cycles are allowed 
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and even disconnected graphs). Lean can easily describe functional graph rewriting in which 

only the root of the subgraph matching a pattern may be overwritten. Through non-root 

overwrites and use of global nodeids in disconnected patterns imperative features are also 

available. 

In this paper we first introduce Lean informally. Then we show how a Lean program can be 
transformed to a program in canonical form with the same meaning. The semantics of Lean is 
explained using this canonical form. The semantics adopted generalises Staples' model of graph 
rewriting (Staples (1980a)), allowing, for example, multiple redirections. A formal description of 
the graph rewriting model used in this paper can be found in Barendregt et al. (1987a), as it 
applies to the special case of purely declarative term rewriting. After explaining the semantics we 
give some program examples to illustrate the power of Lean. The syntax of Lean and the 
canonical form is given in the appendix. 

5.2 GENERAL DESCRIPTION OF LEAN 

5.2.1 LEAN GRAPHS 

The object that is manipulated in Lean is a directed graph called the data graph. When there is no 
confusion, the data graph is simply called the graph. Each node in the graph has an unique 
identifier associated with it (the node identifier or nodeid). Furthermore a node consists of a 
symbol and a possibly empty sequence of nodeids which define arcs to nodes in the graph. We 
do not assume that symbols have fixed arides. The data graph is a closed graph, that is, it 
contains no variables. It may be cyclic and may have disjoint components. This class of data 
graphs is, abstractly, identical to that discussed in Barendregt et al. (1987a). We refer to that 
paper for a formal discussion of the precise connection between graphs and terms. 

Programming with pictures is rather inconvenient so we have chosen a linear notation for graphs. 
In this notation we use brackets to indicate tree structure and repeated nodeids to express sharing, 
as shown in the examples below. Nodeids are prefixed with the character '0'. Symbols begin 
with an upper-case character. 

Lean notation: Graphical equivalent: 
Hd 

I 
Hd (Сопз 0 N i l ) ; Cons 

0 Nil 

eCyclic: F eCyclic; SCyclic: F -л 
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Plus 

Plus @Child Schild, @Child:F?c 

SChild: Fac 1000; 

О 
Fac 

1000 

Tuple 

Tuple 1 -3 5 -7 11; 

Fac 1000, 

@Trace: TRUE; 

5.2.2 LEAN PROGRAMS 

-3 

Fac 

[ 

1 -3 5 - 7 11 

Fac 

ЙТгасе: True 

1000 

A Lean program consists of a set of rewrite rules including a start rule. A rewrite rule specifies a 
possible transformation of a given graph. The initial graph is not specified in a Lean program 
(see also section 5.4.2). 

The left-hand-side of a rewrite rule consists of a Lean graph which is called a redex pattern. The 
right-hand-side consists of a (possibly empty) Lean graph called the contractum pattern and, 
optionally, a set of redirections. The patterns may be disconnected graphs and they are open, that 
is, they may contain nodeid variables. These are denoted by identifiers starting with a lower-case 
letter. Nodeids of the data graph may also occur in the rules. These are called global nodeids. 
When there can be no confusion with the nodeids in the data graph, we sometimes refer to the 
nodeid variables and the global nodeids in the rules just as nodeids. Here is an example program: 

Hd (Cons a b) 

Fac 0 
Fac n:INT 

F (F χ) 

Start 

-» 

-> 

-> 

-* 

a 

1 

*I η (Fac (-1 η 1)) 

X 

Fac (Hd (Cons 1000 Nil)) 

The first symbol in a redex pattern is called the function symbol. Rule alternatives starting with 

the same function symbol are collected together forming a rule. The alternatives of a rule are 

separated by а 'Г. Note that function symbols may also occur at other positions than the head of 
the pattern. A symbol which does not occur at the head of any pattern in the program is called a 
constructor symbol. 

5.2.3 REWRITING THE DATA GRAPH 

The initial graph of a Lean program is rewritten to a final form by a sequence of applications of 
individual rewrite rules. A rule can only be applied if its redex pattern matches a subgraph of the 
data graph. A redex pattern in general consists of variables and symbols. An instance of a redex 
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pattern is a subgraph of the data graph, such that there is a mapping from the pattern to that 
subgraph which preserves the node structure and is the identity on constants. This mapping is 
also called a match. The subgraph which matches a redex pattern is called a redex (reducible 
expression) for the rule concerned. 

We will use the following rules which have a well-known meaning as a running example to illustrate several 
concepts of Lean. 

Add Zero ζ -» ζ I (1) 

Add (Succ a) ζ -> Suce (Add a z) ; (2) 

Now assume that wc have the following data graph: 

Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) ; 

There are two redexes: 

Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) redex matching rule 2 

Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) redex matching rale 2 

In graphical form this is: 

data graph redex pattern data graph redex pattern 

Adçl Add Add 

u c c ^ Ade 

LA 
Succ ^ Addi Succ ζ Succ 

ЕЙ· 

Zero^» Succ Zero 

1 
Succ 

i 
Zero Zero 

Note that there may be several rules for which there are redexes in the graph. A rule may match 
several redexes and a redex can match several rules. For instance, in the example above there is 
only one rule which matches any part of the data graph, but it matches two redexes. In general, 
therefore, there are many rewriting sequences for a given graph. 

Evaluation of a Lean program is controlled by a rewriting strategy. In its most general form: 

1. It decides which rewritings to perform. 

2. It decides when to perform no further rewritings. The graph at this point is said to be in 
strategy normal form, or briefly, in normal form. 

3. It specifies what part of the resulting graph is the outcome of the computation. 
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For the purposes of graphical implementations of functional languages, strategies need only 
consider the subgraph of nodes accessible from the data root, for the purposes of identifying 
both redexes and terminal states. However, more general applications of Lean may not wish to 
be constrained in this way: for example, graphical rewrite rules may be used to represent non-
terminating behaviours of practical interest such as operating systems. 

The choices made by a rewriting strategy may affect the efficiency of rewriting, as well as its 
termination properties. We have not imposed an a priori restriction on the reduction strategy with 
which a Lean program should be evaluated, e.g. the rules are ordered but the strategy may or 
may not make use of this ordering. In the future we aim to incorporate facilities into Lean to 
permit programmer control of strategy where necessary, this would enable the user to guide the 
evaluation. 

Once the strategy has chosen a particular redex and rule, rewriting is performed. The first step is 
to create an instantiation of the graph pattern specified on the right-hand-side of the chosen rule. 
This instantiation is called the contractum. In general this contractum has links to the original 
graph since references to nodeid variables from the left-hand-side are linked to the corresponding 
nodes identified during matching. A new data graph is finally constructed by redirecting some 
arcs from the original graph to the contractum. In most cases all arcs to the root node of the redex 
are redirected to the root node of the contractum as in Staples' model (Staples (1980a)). This has 
an effect similar to "overwriting" the root of the redex with the root of the contractum. This is 
what happens when no redirections are given explicitly in the rule. Explicit redirection of 
arbitrary nodes is also possible. 

The process of performing one rewrite step is often called a reduction. The graph after one 
reduction is called the result of the reduction. Initially, the data graph contains a node with the 
symbol s tar t . Hence, the rewriting process can begin with matching the start rule and hereafter 
rewriting is performed repeatedly until the strategy has transformed the graph to one which it 
deems to be in normal form. 

Barendregt et al. (1987a) gives a formal discussion of how graph rewrite rules with root-only 
redirection model term rewriting, and proves certain soundness and completeness results. The 
definition of rewriting given in that paper only covers rules of this form, but the extension of the 
formal description to the general cases of multiple and/or non-root redirection is straightforward. 

The data graph of the previous example can be rewritten in the following way: 

Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) -> (2) 
Succ (Add Zero (Add (Succ (Succ Zero)) Zero)) -> (1) 
Succ (Add (Succ (Succ Zero)) Zero) -* (2) 
Succ (Succ (Add (Succ Zero) Zero)) -> (2) 
Succ (Succ (Succ (Add Zero Zero))) -» (1) 
Succ (Succ (Succ Zero)) 

Note that in this example the graph was actually a tree, and remained a tree throughout. There 
was no difference with a Term Rewriting System. In the following example there is a data graph 
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in which parts are shared. Rewriting the shared part will reduce the number of rewriting steps 

compared to an equivalent Term Rewriting System. 

Add @X @X, ЭХ: Add (Succ Zero) Zero 
Add @X @X, @X: Succ (Add Zero Zero) 
Add SX @X, @X·. Succ Zero 
Succ (Add @Z @X), @X: Succ @Z, @Z: Zero 
Succ (Succ Zero) 

5.2.4 PREDEFINED DELTA RULES 

For practical reasons it is convenient that rules for performing arithmetic on primitive types 

(numbers, characters etc.) are predefined and efficiendy implemented. In Lean a number of basic 

constructors for primitive types such as INT, REAL and CHAR are predefined. Representatives of 

these types can be denoted: for instance 5 (an integer), 5.0 (a real), '5' (a character). Basic 

functions, called delta rules, are predefined on these basic types. 

The actual implementation of a representative of a basic type is hidden for the Lean programmer. 

It is possible to denote a representative, pass a representative to a function or delta-rule and check 

whether or not an argument is of a certain type in the redex pattern. 

Nfib 0 -* 1 I 
Nfib 1 -> 1 I 
Nfib n:INT -> ++I (+1 (Nfib (-1 η 1)) (Nfib (-1 η 2) ) ) 

In this example Ό ' is an abbreviation of INT . . . which is a denotation for some hidden 

representation of the number 0 (analogue for Ί ' and '2 '), ' + 1 ' , ' - i ' and '++1' are function 

symbols for predefined delta rules defined on these representations. Hence, an integer consists of 

the unary constructor INT and an unknown representation. Note that in general one is allowed to 

specify just the constructor in the redex pattern of a rule. The value can be passed to a function 

by passing the corresponding nodeid (n in the example). 

These predefined rules are however not strictly necessary. For instance, one could define 

numbers as: INT zero to denote 0, INT (Succ zero) to denote 1, INT (Succ (SUCC Zero)) 

to denote 2 etc., and define a function for doing addition 

P l u a l (INT x ) (INT y) -> INT (Add χ y ) 

where Add is our running example. This kind of definition makes it possible to do arithmetic in a 

convenient way. However, for an efficient implementation one would probably not choose such 

a Peano-like representation of numbers, but prefer to use the integer and real representation and 

the arithmetic available on the computer. 

5.3 TRANSLATING TO CANONICAL FORM 

Lean contains syntactic sugar intended to make programs easier to read and write. Explaining the 

semantics of Lean will be done with a form with all syntactic sugar removed known as Canonical 

Lean. In this section we show how a Lean program can be transformed to its canonical form. 

Canonical Lean programs are valid Lean programs and are unaffected by this translation 

- » ( 2 ) 

- » ( 1 ) 
-» ( 2 ) 

- » ( 1 ) 
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procedure. Every Lean program can be seen as a shorthand for its canonical form. Note that this 
section is all about syntax. The semantics of the canonical form are explained in section 5.4. 

In the canonical form every node has a definition and definitions are not nested. Every 
redirection, including any redirection of the root, is done explicitly and in patterns all arguments 
of constructors are specified. In this canonical form a rewrite rule has the following syntax: 

Graph —> [ Graph, ] R e d i r e c t i o n s 

The first Graph is the redex pattern. The second is the optional contractum pattern. Each pattern 
is represented as a list of node definitions of the form: 

Nodeid: Symbol ( Nodeid ) 

Braces mean zero or more occurrences. The initial Nodeid identifies the node, Symbol is some 
function or constructor symbol and the sequence of nodeids identifies zero or more child nodes. 
Occurrences of nodeids before a colon are defining occurrences. Every nodeid must have at most 
one defining occurrence within a rule. Defining occurrences of global nodeids are allowed on the 
left-hand-side only. Within a rule a nodeid which appears on the right-hand-side must either have 
a definition on the right-hand-side or it must also appear on the left-hand-side. 

5.3.1 ADD EXPLICIT NODEIDS AND FLATTEN 

In the canonical form all nodes have explicit nodeids and there are no nested node definitions. 
Hence in each rule we have to introduce a new unique nodeid variable for every node that does 
not yet have one. Every nested node definition in the rule is then replaced by an application of the 
corresponding nodeid variable, and the definitions are moved to the outer level. Applying this 
transformation to our running example gives: 

Add y ζ, 
y: Zero -> ζ I 
Add y ζ, 
y: Suce a — » m : Suce n, 

n: Add a ζ ; 

All arguments of symbols (such as Add and ucc) have now become nodeids and brackets are no 
longer needed. 

5.3.2 SPECIFY THE ARGUMENTS OF CONSTRUCTORS 

In Lean one may write the following function which checks to see if a list is empty: 

IsNil n, 
n: Nil -» t: TRUE | 
I3NÌ1 П, 
η : Cons -> t : FALSE 

cons is a binary constructor symbol, but in Lean one may omit the specification of the arguments 
if they are not used elsewhere in the rule. This is not allowed in the canonical form hence the 
arguments are made explicit by introducing two new nodeid variables. Transformation of the 
example above will give: 
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I s N i l n, 
n : N i l -» t : TRUE I 
I s N i l n r 

n : Cons y ζ -» t : FALSE 

5.3.3 MAKE ROOT REDIRECTIONS EXPLICIT 

The meaning of both rules in the running example is that the root of the pattern is redirected to the 

root of the contractum. Redirections are always made explicit in the canonical form. If no 

redirections are specified explicitly, a redirection is introduced to redirect the redex root to the 

contractum root. Note that if the right-hand-side of a rule consists only of a nodeid, the root of 

the redex is redirected to this nodeid. The running example with explicit redirections now 

becomes: 

x : Add y ζ , 
y : Zero -» χ := ζ I 
χ : Add y ζ , 
y : Suce a - » m : Suce n, 

n : Add a z , 
χ : = m ; 

5.4 SEMANTICS OF LEAN 

5.4.1 GRAPH TERMINOLOGY 

- Let F be a set of symbols and N be a set of nodes. 

- Further, let С be a function (the contents f unction) from N to F χ Ν*. 

- Then С specifies a Lean Graph over F and N. 

- If node η has contents F ni П2 ... п^ we say the node contains symbol F and arguments 

n b n 2 "к-
- There is a distinguished node in the graph which is the root of the graph. 

In standard graph theory, a Lean graph is a form of directed graph in which each node is labelled 

with a symbol, and its set of out-arcs is given an ordering. In Lean nodes are denoted by their 

names, i.e. their nodeids. The canonical form defined in section 5.3 can be regarded as a 

tabulation of the contents function. We will explain the semantics of Lean using this canonical 

form. 

5.4.2 THE INITIAL GRAPH 

The initial graph is not specified in a program. It always takes the following form: 

SDataRoot: Graph SStartNode SGlobldi @GlobId2 ... SGlobldm, 
@StartNode: Start, 
GGlobldi: Initial, 
eGlobId2: Initial, 

SGlobldn,: Initial; 

The root of the initial graph contains the nodeid of the start node which initially contains the 

symbol s t a r t . The root node will always contain the root of the graph to be rewritten. 



Lean: ал Intermediate Language based on Graph Rewriting 89 

Furthermore the root node contains all global nodeids addressed in the Lean rules. The 
corresponding nodes are initialised with the symbol i n i t i a l . 

5.4.3 OPERATIONAL SEMANTICS FOR REWRITING 

Let G be a Lean graph, and R the ordered set of rewrite rules. A reduction option, or redop, of G 
is a triple Τ which consists of a redex g, a rule г and a match μ. The match μ is a mapping from 

the nodeids of the redex pattern ρ to the nodeids of the graph G such that for every nodeid χ of p, 

if Cp(x) = s χι X2 ... Xn then Cg^(x)) = s μ(χι) μ(χ2) ··· Ц(хп) · Th a t is, μ preserves node 

structure. Note that μ maps multiple occurrences of nodeids in a redex pattern to one and the 

same node in the graph. A redop introduces an available choice for rewriting the graph. A rcdop 

that is chosen is called a rewrite of the graph. The process of performing a rewrite is also called 

rewriting. 

The contractum pattern may contain nodeid variables which are not present in the redex pattern. 

These correspond to the identifiers of new nodes to be introduced during rewriting. The mapping 

μ' is introduced taking as its domain the set of nodeid variables which only appear in the 

contractum pattern. Each of these is mapped to a distinct, new, nodeid which does not appear in 

GorR. 

The domains of μ and μ' are distinct, but every nodeid variable in the contractum pattern is in the 

domain of one or the other. In order to compute the result of a rewrite one applies the mapping 

μ" formed by combining μ and μ', to the contractum pattern resulting in the contractum. 

Finally the new graph is constructed by taking the union of the old graph and the contractum, 

replacing nodeids in this union (and in the case that global nodeids are mentioned also in the 

rules) as specified by the redirections in the rewrite rule of the chosen redop. 

Hence rewriting involves a number of steps: 

1. A redop is chosen by the rewriting strategy. This gives us a redex in the graph G, a rule 

which specifies how to rewrite the redex and a mapping μ. 

2. The contractum is constructed in the following way. 

- invent new nodeids (not present in G or R) for each variable found only in the contractum 

pattern. This mapping is called μ'. 

- apply μ", the combination of μ and μ', to the contractum pattern of the rule yielding the 

contractum graph С Note that the contractum pattern, and hence C, may be empty. 

3. The new graph G' is constructed by taking the union of G and C. 

4. Each redirection in a rule takes the form О := N. In terms of the syntactic representation, this 
is performed by substituting N for every applied occurrence of О in the graph G' and in the 
rules R. The definition of О still remains. The nodeids О and N are determined by applying 
μ" to the left-hand-side and the right-hand-side of the redirection. All redirections specified in 

the rule are done in parallel. This results in the new graph G". 
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The strategy will start with a rewrite rule which matches the symbol s ta r t in the initial graph. 

When a computation terminates, its outcome is that part of the final graph which is accessible 

from the root. Thus a "garbage collection" is assumed to be performed at the end of the 

computation only. A real implementation may optimise this by collecting nodes earlier, if it can 

predict that so doing will not affect the final outcome. Which nodes can be collected earlier will in 

general depend on the rule-set of the program and the computation strategy being used. Note that 

before the computation has terminated, nodes which are inaccessible from the root may yet have 

an effect on the final outcome, so they cannot necessarily be considered garbage. For certain 

strategies and rule-sets they will be, but inaccessibility is not in itself the definition of garbage. 

Redirection of global nodeids has as a consequence that all references to the original global 

nodeid have to be changed. An efficient implementation of redirection can be obtained by 

overwriting nodes and/or using indirection nodes. Also references in the rewrite rules to global 

nodeids have to be redirected. Hence global nodeids can be viewed as global variables (they have 

a global scope), where nodeid variables are local variables (they have a meaning only within a 

single rule). If global nodeids are redirected, also references to them in the rewrite rules change 

accordingly. 

5.4.4 A SMALL EXAMPLE 

We return to our running example with a small initial graph and see how rewriting proceeds. The 

rewriting strategy we choose will rewrite until the data graph contains no redexes only examining 

nodes accessible from the soataroot. 

x: Add y ζ, 
y: Zero -» χ :- ζ I (1) 
χ: Add y ζ, 
y: Suce a - » m : Suce n, 

n: Add a z, 
χ :- m ; (2) 

x: Start —» m: Add n o, 
n: Suce o, 
o: Zero, 
χ :- m ; (3) 

Initially we have the following graph G: 

eoataRoot : Graph @StartNode, 
estartNode: Start; 

We now follow the rewrite steps. 

1. The start node is the only redex matching rule (3). The mapping is trivial: μ(χ) = estartNode 

and the redex in the graph is: 

estartNode: Start; 

2. The variables found only in the contractum pattern are m, n, and o. We invent a new nodeid 

for each of these, defining a mapping μ'(πι) = @A, μ'(η) = ев, μ'(ο) = ее. Applying μ", the 

combination of μ and μ', to the contractum pattern gives the contractum C: 
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@A: Add @B @C, 
@B: S u c c @C, 
@C: Z e r o ; 

In fact, for this example, μ is not used in making the contractum, as the contractum pattern 

does not refer to x. 

3. The union of С and G is G': 

BDataRoot : Graph @StartNode, 
GStartNode: S t a r t , 
@A: Add @B @C, 
@B: Succ @C, 
@C: Zero; 

4. We have to redirect μ"(χ) = estartNode to μ"(πι) = SA. All applied occurrences of 

estartNode will be replaced by occurrences of @A. The graph G" after redirecting is: 

BDataRoot : Graph @A, 
8StartNode: Start, 
GA: Add ев ее, 
@B: Succ ее, 
ее: Zero; 

This completes one rewrite. The start node will not be examined by the strategy anymore, as it is 
inaccessible from eoataRoot. Therefore it can be considered as garbage and it will be thrown 
away. The strategy will not stop yet because the graph still contains a redex accessible from the 
eDataRoot. 

1. The strategy will choose the only redop. It matches rule 2: μ(χ) = ел, μ^) = @в, μ(ζ) = ее, 

μ(3) = ее; 

2. Invent new nodeids and map the variables as follows: μ'(ιη) = en, μ'(η) = @E. The 

contractum is: 

eo: succ ев, 
ев: Add ее ее,-

3. The union of the graph and the contractum is: 

SDataRoot: Graph @A, 
ΘΑ: Add ев ее, 
ев: succ ее, 
ВС: Zero, 
BD: Succ BE, 
@E: Add ВС eC; 

4. We have to redirect μ"(χ) = ел to μ"(πι) = eo. Then after removing garbage the graph is: 

SDataRoot: Graph 8D, 
ВС: Zero, 
3D: Succ @E, 

eE: Add ее ec,-
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It is now clear how this process may continue: e E is a redex and it matches rule 1: μ(χ) = SE, 

μ^) = @c, μ(ζ) = @c. The strategy chooses this redop, there is no new contractum graph but just 

a single redirection which takes μ"(χ) = @E to μ"(ζ) = @c yielding the expected normal form: 

GDataRoot: Graph @D, 
OC: Zero, 
@D: Succ @C; 

5.5 SOME LEAN PROGRAMS 

5.5.1 MERGING LISTS 

The following Lean rules can merge two ordered lists of integers (without duplicated elements) 

into a single ordered list (without duplicated elements). 

Merge 
Merge 
Merge 
Merge 

Nil Nil 
f : Cons Nil 
Nil s:Cons 
f : (Cons a b) 
s: (Cons с d) 

-> 
—» 
-> 

-» 

Nil 
f 
s 

IF 

1 
1 
1 

(<I a c) 
(Cons a (Merge b s)) 
(IF (=1 a c) 

(Merge f d) 
(Cons с (Merge f d))) 

=1 and IF are predefined delta rules with the obvious semantics. Note that the right-hand-side of 

the last rule uses an application of the argument as a whole as well as its decomposition. 

5.5.2 HIGHER ORDER FUNCTIONS, CURRYING 

In this example we show how higher-order functions are treated in Lean, by giving the familiar 

definition of the function Map. 

Map f 
Map f 
Ар (*I 
Start 

Nil 
(Cons a b) 
a) b 

-» 
-» 
-» 
-> 

Nil 
Cons (Ap f a) (Map f b) 
*I a b 
Map (*I 2) (Cons 3 (Cons 4 Nil)) 

1 (1) 
(2) 
(3) 
(4) 

This can be rewritten, for example, in the following way: 

Start -> (4) 
Map (*I 2) (Cons 3 (Cons 4 Nil)) -> (2) 
Cons (Ap @L 3) (Map @L (Cons 4 Nil)), @L:*I 2 -» (3) 
Cons (*I 2 3) (Map @L (Cons 4 Nil)), @L:*I 2 ->(*I) 
Cons 6 (Map @L (Cons 4 Nil)), @L:*I 2 ->(2) 
Cons 6 (Cons (Ap @L 4) (Map @L Nil)), @L:*I 2 -» (3) 
Cons 6 (Cons <*I 2 4) (Map @L Nil)), @L:*I 2 -» (*I) 
Cons 6 (Cons 8 (Map @L Nil)), @L:*I 2 -» (1) 
Cons 6 (Cons 8 Nil) 

Rule (3) of this example will rewrite (Ap (*i 2) 3) to its uncurried form (*i 2 3) which 

makes multiplication possible. One will need such an "uncurry" rule for every function which is 

used in a curried manner. Note that during rewriting the node ei.: <*i 2) is shared. In this case 

sharing only saves space, but not computation. 
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5.5.3 GRAPHS WITH CYCLES 

The following example is a solution for the Hamming problem: it computes an ordered list of all 

numbers of the form 2n3m, with n, m > 0. We use the map and merge functions of the previous 

examples. 

Ham -) Cons 1 (Merge (Map (*I 2) Ham) (Map (*I 3) Ham)) 

A more efficient solution to this problem can be obtained by means of creating cyclic sharing in 

the contractum making heavy use of computation already done. This cyclic solution has a 

polynomial complexity where the previous one has an exponential complexity. The new 

definition is: 

x : Ham -> Cons 1 (Merge (Map (*I 2) x) (Map (*I 3) x) ) 

5.5.4 COPYING A TREE STRUCTURE 

This example is very straightforward if the structure of tree nodes is known. Here is a program 

which copies a binary tree structure. 

Copy (Bin left right) -» Bin (Copy left) (Copy right) I 
Copy Leaf —» Leaf ; 

In the present version of Lean it is not possible to copy an arbitrary unknown data structure. We 

hope to support more general solutions in a future version of Lean. 

5.5.5 COUNTING SPECIFIC REWRITES VIA GLOBAL ASSIGNMENT 

r: Hd (Cons a b), 
GHdCount: Total n:INT -> newvalue: Total (++I η), 

r := a, 
@HdCount :- newvalue ; 

r: Start -• nr: Hd (Cons 1 (Cons 2 Nil)), 
initvalue: Total 0, 
r :— nr, 
SHdCount := i n i t v a l u e ; 

We are dealing with disconnected graphs and patterns in this example. The global nodeid 

SHdCount in the graph is addressed in a rewrite rule. The integer value in @HdCount will be 

increased each time a head of a list is taken. Global nodeids and arbitrary redirections in rewrite 

rules make other styles of programming possible involving globals and side effects. Here, the 

retention of the canonical notation forces the user to make his text inelegant. Perhaps a useful 

danger signal, both to reader and writer? 

5.5.6 UNIFICATION USING REDIRECTION 

This program implements a simple unification algorithm. It operates on representations of two 

types, returning "cannot unify" in case of failure. The types are contmcted from three basic types 

i, в and var and a composing constructor com. Different type variables are represented by 
distinct nodes. Repeated type variables are represented by shared nodes. References to such a 
shared node are taken to be references to the same type variable. 



94 Lean: an Intermediate Language based on Graph Rewriting 

r: Start -» Unify tl t2 r, 
tl: Com i tl, 
t2: Com i (Com i t2), 
i: I 

Unify χ χ r - » x 
o: Unify tl: (Com χ y) t2: (Com ρ q) г 

-» η: Com (Unify χ ρ r) (Unify y q r) 
о := η, tl := η, t2 := η 

o: Unify tl:Var t2 r -* о := t2, tl :- t2 
o: Unify tl t2:Var r -> о := tl, t2 := tl 

Unify tl:Com t2:I r -» n: "cannot unify", r := η 
Unify tl:Com t2:B r -> n: "cannot unify", r := η 
Unify tl:I t2:Com r -> n: "cannot unify", r := η 
Unify tl:B t2:Com r -> n: "cannot unify", r := η 
Unify tl:I t2:B r —> n: "cannot unify", r := η 
Unify tl:B t2:I r -> n: "cannot unify", r := η ; 

Of course this does not solve the general unification problem, but it gives an idea of the power of 

redirection and how it might be used to solve this kind of problems. 

5.5.7 COMBINATORY LOGIC 

Here we show the Lean equivalent of a well-known TRS using explicit application: combinatory 

logic. 

Ap (Ap (Ap S a) b) c ) -» Ар (Ар а с ) (Ap b c ) I 
Ар (Ар К a) b) -> a 

S t a r t -> Ap (Ap (Ap S (Ар К К) ) (Ap S К) ) (Ар (Ар К К) К) ) 

5.6 FUTURE WORK 

Lean is the result of collaboration between two research groups: the Dutch Parallel Reduction 
Machine (DPRM) group at Nijmegen and the Declarative Alvey Compiler Target Language 
(DACTL) group at UEA. Recognising the current instability of emerging languages and 
architectures, both groups wish to identify a computational model appropriate to a new 
generation rewriting model of computing. The DPRM group has developed a subset of Lean, 
called Clean (Brus et al. (1987)), for the support of purely functional languages. DactlO (dauert 
et al. (1987c)) predates Lean, and includes some concepts not present in Lean. In the future, our 
groups plan to continue to collaborate on further developing and refining the computational 
model and the Lean language based on it. It is intended that later versions of Lean and Dacd will 
converge. 

Because rewriting strategies have a critical influence on efficiency and outcome, future versions 
of Lean aim to offer the programmer explicit control. Strategies should be based mainly on local 
information so that concurrent evaluation is not constrained. One approach is to employ fine 
grain control annotations so that a rule may nominate which of the nodes it creates should be 
considered as roots for future redexes. DactlO adopts this approach. Its main advantage is that a 
simple execution model is obtained. Another approach is to have a high level specification of 
strategies and a formalism for combining strategies during evaluation. This approach holds out 
promise for global reasoning (van Eekelen & Plasmeijer (1986)). We believe that the way 
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forward should involve a careful combination of these approaches. At the high level formally 
specified strategy information should be used, allowing analysis and transformation of programs 
using abstract interpretation techniques. Correctness preserving translation tools would then 
convert such a program into a form using a small set of well-designed control primitives suitable 
for efficient parallel implementation. 

Besides strategies, there are several other concepts that may be incorporated in Lean in the near 
future. These include: more general typing; annotations to allow compiler optimisations; 
interfacing with the outside world; modules and separate compilation facilities; support for 
unification. 

5.7 CONCLUSIONS 

Lean is an experimental language for specifying computations in terms of graph rewriting. It is 
very powerful since there are few restrictions on the graph that is transformed and the 
transformations that can be performed. 

The graph rewriting model underlying Lean is of independent interest as a general model of 
computation for parallel architectures. It includes as special cases, more restricted systems, such 
as Graph Rewriting Systems which model Term Rewriting Systems. For these GRS's certain 
soundness and completeness results are shown in Barendregt et al. (1987a). 

Lean is designed to be a useful intermediate language for those language implementations which 
rely on graph rewriting. Compilers targeted to Lean are being implemented for functional 
languages. An interpreter for Lean is available (Jansen (1987)) which allows mixing of several 
reduction strategies. A compiler for a restricted subset of Lean (Clean) is running on a Vax750 
(Unix) (Brus et al. (1987)). The performance is encouraging. 

The design of Lean has heavily influenced the design of Dactl 1 (dauert et al. ( 1987d), dauert et 
al. (1987a)), which the UK Flagship machine (Watson & Watson (1987)) supports. Apart from 
some surface syntax differences which reflect local prejudices, Dactl 1 is essentially Lean PLUS 
fine grain control markings MINUS global terms. The reduction relation is identical: all that 
Dactll control markings do is to prohibit certain reduction sequences. 
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5.A APPENDIX: SYNTAX 

LeanPxogram 
Rule 
RuleAlt 

Graph 
NodeDefinition 
Node 
Term 

Redirections 

Redirection 

(Rule). 
RuleAlt { ' I · RuleAlt) • ; · . 
Graph '->' Graph [',' Redirections] 
Graph '-V Redirections. 
[Nodeid ':'] Node (',' NodeDefinition) 
Nodeid •:' Node . 
Symbol (Term). 
Nodeid 
[Nodeid ':'] Symbol 
[Nodeid ':'] "(' Node ·)'. 
Redirection {',' Redirection) 
Nodeid {',' Redirection). 
Nodeid ':=' Nodeid. 

For the canonical form of Lean replace the following rules in the syntax above: 

RuleAlt = Graph '->' [Graph ','] Redirections. 
Graph = NodeDefinition (',' NodeDefinition). 
Term = Nodeid. 
Redirections ~ Redirection (',' Redirection). 
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Abstract. 

Clean is an experimental language for specifying functional computations in terms of graph 
rewriting. It is based on an extension of Term Rewriting Systems (TRS) in which the terms are 
replaced by graphs Such a Graph Rewriting System (GRS) consists of a, possibly cyclic, 
directed graph, called the data graph and graph rewrite rules which specify how this data graph 
may be rewritten. Clean is designed to provide a Πιπί base for functional programming. In 
particular, Clean is suitable as an intermediate language between functional languages and 
(parallel) target machine architectures A sequential implementation of Clean on a conventional 
machine is described and its performance is compared with other systems. The results show that 
Clean can be efficiently implemented. 

6.1 INTRODUCTION 

In order to be able to reason about (future) functional languages and their implementations as 

well as for the comparison of new machine architectures (reduction machines), it is necessary to 

choose a computational model. Functional languages and their implementations have very little in 

common with the familiar Turing machine model of computation. The λ-calculus is often seen as 

the computational model for these languages (Peyton Jones (1987a)). However, most 

implementations are not really based on λ-calculus but on combinatory logic (Turner (1979a), 

Johnson (1984), Cousineau et al. (1985)). Furthermore graphs are used for the representation of 

functional programs in which redundant computations are prevented via sharing of subgraphs. 

The presence of patterns in functional languages is very essential. Though it is possible to 

translate them to ordinary tests it appears to be worth-while to incorporate patterns in the 

computational model. Consequently, if one wants to have a computational model for functional 

languages which is also close to their implementations, pure λ-calculus is not the obvious choice 

anymore. 

Another reason for reconsidering the computational model is that functional languages are still 

being further developed. Several researchers investigate how to incorporate concepts such as 

parallelism and unification (Hudak & Smith (1986), de Groot & Lindstrom (1986)). These 
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appreciated concepts in some declarative languages are not straightforward to incorporate in 

functional languages nor in the underlying computational model of the λ-calculus. 

Hence, we have developed an alternative computational model by extending Term Rewriting 

Systems (OOonnell (1985), Klop (1985)) to a model of general graph rewriting. Via this general 

model it must be possible to reason about differences between languages, to prove correctness, 

to port declarative programs to different (parallel) machines. Lean (the Language of East-Anglia 

and Nijmegen) (Barendregt et al. (1987b)) is a first proposal for a language based on such a 

model. It is the result of collaboration between two research groups: the Declarative Alvey 

Compiler Target Language group at the University of East-Anglia (dauert et al. (1985)) and the 

Dutch Parallel Reduction Machine group at Nijmegen. 

The language Clean presented in this paper is roughly the subset of Lean intended for functional 

languages only. In Clean, graph representations of terms are used to perform term rewriting 

more efficiently. The design of Clean, done in parallel with the Lean language, was triggered by 

the need for an intermediate language and corresponding computational model in the Dutch 

Parallel Reduction Machine Project. This project, a collaboration between the Dutch Universities 

of Amsterdam, Utrecht and Nijmegen, has as its goal the development of a parallel reduction 

machine. An overview of the results of the project is given in Barendregt et al. (1987c). 

The basis of Clean is that a computation is represented by an initial data graph and a set of rules 

used to rewrite this graph to its result. The rules contain graph patterns that may match some part 

of the graph. If the data graph matches a rule it can be rewritten according to the specification in 

that rule. This specification makes it possible to first construct an additional graph structure and 

then link it into the data graph by redirecting arcs from the original graph. Clean describes 

functional graph rewriting in which only the root of the subgraph matching a pattern may be 

overwritten. The semantics allow parallel rewriting where candidate rewrites do not interfere. 

The rewriting process stops if none of the patterns in the rules match any part of the graph which 

means that the graph is in normal form. 

In this paper we first informally introduce the language Clean giving some examples how graph 

rewriting is performed. The general semantics of the graph rewriting process is explained in 

Barendregt et al. (1987b). A formal description of the basis and theoretical properties of the 

graph rewriting model followed in this paper can be found in Barendregt et al. (1987a). After the 

introduction to the language some examples are given to show its expressive power. Hereafter an 

implementation of Clean on a conventional machine is discussed. Its speed will be compared to 

other implementations of functional languages. 

6.2 GENERAL IDEA OF THE LANGUAGE 

6.2.1 CLEAN GRAPHS 

The object that is manipulated in Clean is a connected, possibly cyclic, directed graph called the 

data graph. When there is no confusion, the data graph is simply called the graph. Each node in 

the graph has an unique identifier associated with it (the node identifier or nodeid). Each node 



Clean - A Language for Functional Graph Rewriling 99 

contains a symbol and a possibly empty sequence of nodeid's (the arguments of the symbol) 

which define directed arcs to nodes in the graph. Symbols have fixed arities. The data graph is a 

closed graph i.e. contains no variables, this in contrast with the Clean graphs specified in rules. 

Programming with pictures is rather inconvenient so we have chosen for a linear notation for 

graphs. In the most extensive form of this notation (the canonical form) graphs are represented 

by giving the list of the nodes out of which the graph is builL 

Clean canonical notation 

(Hd Β), 
(Cons C D ) , 
( 0 ) , 
( N i l ) ; 

• graph example-

Graphical equivalent 

А:ГМ ΓΤΙ 

Bri Cons I Л « ì ^ ^ 

In order to get a more readable form we may substitute the contents of a node for a nodeid 
mentioned in a node and furthermore we only explicitly have to notate nodeid's if we need them 
to express sharing. Brackets are left out if they are redundant. This way of representing graphs 
has the advantage that it is very comprehensive. Note that each Clean graph described in this way 
can be transformed to an equivalent graph notated in Clean's canonical form. The syntax of 
Clean is given in appendix A. 

й1 I Cons I Ш 
Γ Ν η Ι 

Hd (Cons 0 N i l ) 

— examples of Clean graphs 

| Plus I » I f I ; Cyclic:Гг" 

P l u s X X, 
X: Fac 1000; 

5) 
C y c l i c : F C y c l i c ; 

6.2.2 CLEAN PROGRAMS 

Although for the understanding of the rewriting process it is important to know what a data graph 
looks like, the data graph itself is never specified in a Clean program. The initial data graph is a 
given object generated by the operating system as we will explain later. Consequently a Clean 
program only consists of a set of rewrite rules. Each rewrite rule specifies a possible 
transformation of the data graph. 
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Hd (Cons a b) 

Add Zero η 
Add (Succ m) η 

Fac 0 
Fac η 

F (F χ) 

Start stdin 

-> 

-> 

-> 

-> 

-> 

-> 

-> 

a 

η 

Succ 

1 
*I η 

X 

Add 

(Add 

(Fac 

(Succ 

m η) 

(-1 η 1 

Zero) ( 

The left-hand-side of a rewrite rule consists of a Clean graph which is called a redex pattern. The 

right-hand-side either consists of a Clean graph called contractum pattern or the right-hand-side 

contains only a redirection. The patterns are said to be open since they contain variable nodeid's 

expressed by the identifiers starting with a lower-case letter. A redirection is not a graph but just 

consists of a single nodeid variable. The first symbol in a redex pattern is called the function 

symbol. Rules starting with the same function symbol are collected together forming a rule-

group. The members of a rule-group are separated by a Ί '. Symbols other than function 

symbols are called constructors because they are usually used to construct data structures or data 

types. Note that function symbols may also occur at other positions than the head of the pattern. 

At such occurrences function symbols are also called constructors. The use of the start rule and 

its special argument is explained in the section on input/output. 

6 . 2 . 3 REWRITING THE DATA GRAPH 

The initial graph of a Clean program is rewritten to a final form by a sequence of applications of 

individual rewrite rules. For a rule to be included in the sequence, there must be a 

correspondence between a redex pattern of the rule and some subgraph of the data graph. 

An instance of a redex pattern is a subgraph of the data graph for which there exists a mapping 

from the pattern to that subgraph in such a way that the mapping preserves the node structure 

(corresponding nodes must have the same arity) and that it is the identity on constants. This 

mapping is also called a match. The subgraph which matches a redex pattern is called a redex 

(reducable expression) for the rule concerned. 

Assume that we have the following Clean rules: 

Add Zero η -> η I (1) 

Add (Succ m) η -> Succ (Add m η) ; (2) 

and assume that we have the following data graph 

Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) 

There are two redexes, both matching rule 2: 

Add (Succ m ) О 

Add (Succ Zero) (Add (Succ (Succ Zero)) Zero) 

and: 
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Add (Succ J _n_ 
Add (Succ Zero) ( Add (Succ (Succ Z e r o ) ) Zero) 

In graphical form the first redex can be found by performing the following mapping: 

program graph redex pattern 

l A d d l f I *t A: Add 

A Д _ D:|Idd I f I Л ^ Ч 
B:| S u c c i Ψ Ι Λ / Ч 

С:| Zero Ι Ε· | Succ | • I H: |Zero 

F : | S u c c | * | 

¥. 
G : Zero 

-tirst redex 

We see that the redex pattern of rule 2 matches the indicated subgraph of the data graph if we 

substitute the following nodeid's of the graph for the variable nodeid's in the redex pattern к ·= 
Α, ι .= в, m ·= с and η = о Note that in order to perform this mapping we have to use the 
canonical form of the graphs This means for nodeid's not explicitly mentioned in the patterns 
new unique variable nodeid's (in the example к and i) have to be invented 

The redex pattern of rule 2 can also be mapped on another part of the data graph if we substitute 
к = D, ι := E, m = F and η = н, as shown in the next picture. 

program graph redex pattern 

A.| Add Ι Τ I f I 

J - p-iAdd 11 ι Γ Ν ' k.iAdd ι f ι Л 

C . | Z e r o | E | Succ | f | Н:П 

F : | S u c c T 

G.| Zero 

• second redex 

If a particular rule is applied to a matching redex, the graph is rewntten according to the nght-
hand-side of that rule If this nght-hand-side consists of a contractum pattern, the first step is to 
create an instantiation of this pattern which is called the contractum The contractum is a new 
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Clean graph as specified in the right-hand-side in which the nodeid variables defined on the left-
hand-side are replaced by the corresponding matching nodeid's in the redex. New nodeid 
constants are created for those nodeid variables in the right-hand-side which are not defined in 
the left-hand-side. 

The new data graph is finally constructed by taking all arcs pointing to the root node of the redex 
and redirecting them to the root node of the contractum. This has the effect of "overwriting" the 
root of the redex with the root of the contractum. If the right-hand-side is a redirection no 
contractum has to be built. All arcs pointing to the root node of the redex are now redirected to 
the single nodeid that matches that nodeid variable. This "overwrites" the root of the redex with 
the root of a subgraph of the data graph. This concept of redirecting has the advantage over the 
usual "overwriting of node's" semantics that we do not have to deal with indirection nodes on the 
semantic level. 

After the rewriting, nodes which are no longer reachable from the root of the data graph are 

considered to be garbage and may be collected by a garbage collector. 

We see that in the example above the second redex matches the data graph if we take the 
following mapping from the nodeid variables to the nodeid of the data graph: к := D, ι := E, m := 

F and η := н. The right-hand-side of the second rule specifies that in this case the contractum can 
be constructed as follows: 

redex 

D:|Add | t | " Π 

E:|Succ | ΐ ~ | 

" [ ƒ I |' 

¥ 
• contractum construction 

contractum 

J : | Succ | t I ucc | f 

K:|Add | 7 | . | 

F H 

For the variables m and η in the right-hand-side we have to take the same mapping (m := F, η := 

н). For the other variables (say о and p, they are not specified explicitly) we invent new unique 
nodeid's (say J and κ). Now the contractum is glued to the data graph by redirecting all nodes 

pointing to the root of the redex (D) to the root of the contractum (j). All nodes not reachable 

from the root of the data graph are considered to be garbage. If we remove these nodes (D and E) 

we finally have the new data graph and can start another rewriting. 
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new program graph 

A = i A d d ι.» i f i 

:|Succ| f~\ 

C:| Zero 

garbage nodes 

Τ J : | Succ | f 

B : | S u c c l j | ' ZU 

A . K:|Add¿t I | I 

F : | s u c c I i~l H:|Zero K#4 

D:|Add | f~T 

E:| Succ | > | 

içU^_ 

G: Zero 

• result of rewrite • 

The graph after rewriting is called the result. The process of performing a rewriting is often 
called a reduction step. A data graph containing no redexes is said to be in normal form. The 
rewriting process will start with the start rule and rewriting is performed repeatedly until the 
strategy has transformed the data graph to normal form. 

6.2.4 REDUCTION STRATEGIES 

In general there will be several possible redexes in the graph. It may even be the case that one 
and the same redex can be reduced according to more than one rule; a typical situation which is 
called an ambiguity in the literature. An algorithm which repeatedly rewrites the graph making 
choices out of the available redexes and out of all the possible matches of those redexes is called 
a rewriting strategy or a reduction strategy. Note that this definition of strategy is somewhat more 
liberal than some definitions circulating in the literature. It allows the strategy to choose out of 
several possible matches of one and the same redex. Furthermore, it is also not necessary for a 
strategy to rewrite the graph until a normal form is reached, which e.g. allows strategies that 
reduce to head normal form only. 

Given a set of rules (including a start rule), an initial graph and a rewriting strategy we have a 
system with a dynamic behavior, a rewriter. Although it is sometimes only implicitly defined, 
every implementation of a rewriting system must rewrite according to a given strategy. If the 
strategy is deterministic, every program (including a so-called ambiguous one) will always have 
exactly the same result. 

Every Clean program is reduced with one and the same strategy. This strategy is called the 
functional strategy, because it resembles very much the way in which normally reducing is 
performed in lazy functional languages. Below we will give an operational definition of the 
functional strategy. A formal description can be found in Goos & van Latum (1987) using a 
formal method described in van Eekelen & Plasmeijer (1986). 

The functional strategy proceeds as follows: the strategy considers one or more candidates for 
rewriting. When a match is found rewriting is performed as described in the previous section. 
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The functional strategy starts with reducing the root node of the graph to head normal form 

(RtoHNF). The result will be a graph with the property that its root is not part of any redex. 

Thereafter this reduction to head normal form is recursively called on the arguments of the 

obtained result (from left to right). 

The RtoHNF starts with the examination of the graph it is applied to: if the symbol in the root 

node of that graph is a constructor the reduction is finished. If the symbol is a function symbol 

the corresponding rewrite rules for that function are examined in order to see if the given graph is 

a redex or can become a redex. In textual order the corresponding rules are examined to see if 

one of the redex patterns matches or can be made to match. The graph is rewritten according to 

the first rule that matches and hereafter the RtoHNF is recursively applied to the subgraph with 

the redirected nodeid as root. If no rule can be made to match the reduction is finished. 

In order to examine the matching of redex pattern and graph the redex pattern is traversed in 

preorder and, possibly after forcing evaluation of corresponding parts in the graph, redex pattern 

and graph are compared. If there is a variable in the pattern, the traversal is continued. If a 

function symbol is encountered in the graph where there is a symbol in the pattern, the RtoHNF 

recursively calls itself to force evaluation of this function. This aspect of the functional strategy is 

remarkable because evaluation is forced during a matching attempt. The resulting graph will be in 

head normal form. Hereafter a symbol encountered in the pattern must be the the same symbol as 

in the graph. If they are different a match is impossible and the next rule is tried. If they are the 

same the traversal is continued. If the traversal reaches the end of the pattern a match is found. 

The result of this lazy evaluation scheme is that after the traversal we might end up with a redex 

after all and the rule can be applied. 

In the following example a data graph is conslrucled in which parts are shared. Note that when the data graph is 
actually a tree there is no difference with a term rewnung system. 

Start stdin -> Double (Add (Succ Zero) Zero) ; (A) 
Double a -> Add a a ; (B) 
Add Zero η -> η I (1) 
Add (Succ m) η -> Succ (Add m η) ; (2) 

Rewnung a shared part will reduce the number of rewriting steps compared to ал equivalent term rewnung 
system. The rewnung will take place as specified below. Note thai when a nodeid variable appears more than 
once at a nght-hand-sidc, the rewnung process will generate a contracium in which the corresponding matching 
node is shared. 

Start Nil -> (A) 
Double (Add (Succ Zero) Zero) -> (B) 
Add X X, X:Add (Succ Zero) Zero -» (2) 
Add X X, X:Succ (Add Zero Zero) -> (2) 
Succ (Add M X ) , X:Succ M, M:Add Zero Zero -» (1) 
Succ (Add Ζ X ) , X:Succ Z, Z:Zero -> (1) 
Succ (Succ Zero) 

Although this functional strategy will look very familiar for people acquainted with functional 

languages, it really is a very peculiar strategy in the TRS and GRS world. To have a priority in 

the rewrite rules leads in general to a rewrite system without proper semantics (Klop (1985)). In 

this case the system is sound due to the forced evaluation of the arguments of a function as 
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described above. Although we theoretically prefer a TRS without such a priority in rules, we 

have adopted the functional strategy because it is used so often in practice. 

6.2.5 DATA TYPES 

Constructors are not only handy to create datastructures in the form of directed, possibly cyclic 

graphs, such as list and tuples, but they can also be used to represent any other object or to 

indicate the type of an object. For instance, one can define numbers as: 

0 -> Num Zero ; 
1 -> Num (Succ Zero) ; 
2 -> Num (Succ (Succ Zero) ; 

Here the constructor Num (also called a type constructor) indicates the type of the number objects 

while the constructors succ and zero (also called data constructors) are used to represent 

numerical values. A function for doing addition that yields a result of type Num could look like: 

Add (Num x) (Num y) -> Num (Add2 χ y) 
Add2 Zero y -> y I 
Add2 (Succ x) y -> Succ (Add2 χ y) 

In Clean one is not obliged to specify the arguments of a constructor in a redex pattern if they are 

not used elsewhere in the rule. This is in particular a handy notation when one wants to write 

rules for objects of a certain type. For example instead of: 

Fac 0 -> 1 I 
Fac n:(Num x) -> Times η (Fac (Minus η 1)) 

one may write: 

Fac 0 -> 1 I 

Fac n:Num -> Times η (Fac (Minus η 1)) ; 

The value can be passed to a function by passing the corresponding nodeid (n in the example). 

Note that in this example the type of the argument is checked at run-time in the matching phase. 

Of course this check can be prevented by not using the Num constructor in the pattern or the 

objects. 

6.2.6 BASIC TYPES AND PREDEFINED DELTA RULES 

For practical reasons it is convenient that rules for performing arithmetic on primitive types 

(numbers, characters etc.) are predefined such that they can be implemented efficiently, 

preferably by using the integer and real representation and corresponding arithmetic available on 

the computer. 

In Clean for primitive types a number of constructors such as INT, REAL and CHAR are predefined 

with hidden arity. Objects of these primitive types can be denotated: for instance 5 (an integer), 

5.0 (a real), · 5 • (a character). The standard basic functions for arithmetic defined on these basic 

types are also predefined. These predefined rules are called delta rules. 
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The possibility in Clean to leave out the specification of the arguments of a constructor in a redex 
pattern is mandatory for primitive type constructors. As a consequence how an object of a certain 
primitive type is represented will be hidden for the Clean programmer. Besides this special 
restriction, added only for software engineering reasons, primitive type constructors act as 
ordinary constructors. 

6.2.7 INPUT AND OUTPUT 

Input and output is always somewhat problematic in functional languages. We have chosen for a 
solution in which the operating system builds the initial graph. The initial graph contains the 
standard input as shown below. 

Root: Start Stdin, 

Stdin: Cons
 n
linel\n" (Cons "line2\n

n
 (Cons )); 

The input can be accessed in the Clean program via the argument of the s t a r t rule. The output 
generated by a Clean program is in principle a depth-first representation of the normal form to 
which the initial data graph is reduced. As soon as the initial graph is in head normal form the 
head symbol is printed and hereafter the printing process is recursively applied to the arguments 
of that symbol. In the near future it will be possible to associate printing actions with predefined 
constructors like in Miranda (Turner (1985)). 

6.2.8 ANNOTATIONS 

In Clean to every node an attribute can be assigned via an annotation. Annotations have in 
general the form of a list of strings between curly braces. Annotations are to be considered as 
compiler and run-time directives (pragmats). The number and type of annotations are left open 
and will depend on the actual implementation. Although annotations may influence the efficiency 
and strategy of the rewriting process, they are of course not allowed to influence the outcome of 
a computation. It is all right for a Clean compiler to ignore annotations. 

At this moment in our compiler only one annotation is implemented indicating that the annotated 
argument is needed for the computation (" ! " or " ( s t r i c t ) "). Future annotations are planned for 
work to be done in parallel, for load distribution, etc. 

6.3 EXAMPLES OF CLEAN PROGRAMS 

6.3.1 MERGING LISTS 

The following Clean rules are capable of merging two ordered lists of integers (without duplicate 
elements) into a single ordered list (again without duplicate elements)* : 

Merge Nil Nil -> Nil I 
Merge f : Cons Nil -> f I 
Merge Nil s : Cons -> s I 
Merge f :(Cons a b) з:(Сопз с d) -> IF (<I a c) 

(Cons a (Merge b s)) 

<I and =1 are delta rules for integer comparison, I F is a delta rule for the conditional. 
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(IF (-1 a c) 
(Merge £ d) 
(Cons с (Merge f d ) ) ) ; 

Note that in the last rule the arguments as a whole as well as their decomposition is used. 

6.3.2 HIGHER ORDER FUNCTIONS, CURRYING 

In this example we show how higher-order functions are treated in Clean, by giving the familiar 
definition of the function map. 

Map f Nil -> Nil I (1) 
Map f (Cons a b) -> Cons (Ap f a) (Map f b) 
Ap (*IC a) b -> *I a b 
Start stdin -> Map (*IC 2) (Cons 3 (Cons 4 Nil)) 

This will be rewritten in the following way: 

(2) 
(3) 
(4) 

Start Nil Nil Nil -» (4) 
Map (*IC 2) (Cons 3 (Cons 4 Nil)) -> (2) 
Cons (Ap L 3) (Map L (Cons 4 Nil)), L: (*IC 2) -» (3) 
Cons (*r 2 3) (Map L (Cons 4 Nil)), L:(*IC 2) -» *I 
Cons 6 (Map L (Cons 4 Nil)), L: (*IC 2) -» (2) 
Cons 6 (Cons (Ap L 4) (Map L Nil)), L: (*IC 2) -» (3) 
Cons 6 (Cons (*I 2 4) (Map L Nil)), L:(*IC 2) -> *I 
Cons 6 (Cons 8 (Map L Nil)), L: (*IC 2) -> (1) 
Cons 6 (Cons 8 Nil) 

*i is a predefined delta rule which multiplies two integers. Rule 3 of this example will rewrite 
(Ap (*ic 2) 3) using the constructor *ic which is the curried version of *i, to its uncurried 
form (*i 2 3) making the multiplication possible. One will need such an "uncurry" rule for 
every function which is used on a curried manner. Note that during rewriting the node L: <*IC 
2) is shared. In this case sharing only saves space, but not computation. 

6.3.3 GRAPHS WITH CYCLES 

The following example is is a solution for the Hamming problem: it computes an ordered list of 
all numbers of the form 2n3m, with n,m > 0. We use the map and merge functions of the 
previous examples. 

Ham -> Cons 1 (Merge (Map (*IC 2) Ham) (Map (*IC 3) Ham)) 

A more efficient solution to this problem can be obtained by creating a cycle in the contractum. 

With these cycles we make heavy use of computations already performed. The new definition is: 

Ham -> x : Cons 1 (Merge (Map (*IC 2) x) (Map (*IC 3) x ) ) 

6.3.4 COMBINATORY LOGIC 

Finally we show the Clean equivalent of a well-known TRS. 

Ap (Ap (Ap S a) b) с -> Ap (Ap a c) (Ap b c) I 
Ар (Ар К a) b -> a 
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6.4 THE IMPLEMENTATION OF CLEAN 

This section will describe the current implementation of Clean. This implementation was 
developed as a testbed for the definition of Clean. It was partly constructed concurrendy with the 
language itself. The advantage was that the definition of Clean could often be corrected or 
adjusted when an inconsistency was overlooked and became apparent in the implementation. 

The Clean compiler was developed on a VAX/750 running UNIX BSD 4.2. UNIX and VAX 
specific aspects will now and then surface in the implementation and in the following sections. 
We have tried to minimize this. 

6.4.1 CLEAN RUN-TIME PHILOSOPHY 

Clean is a graph rewriting language, therefore in principle we need a heap to build graphs in. The 
initial graph is built by the run-time system. Under control of the reduction strategy this graph 
will be transformed to normal form. These transformations are performed by the compiled code, 
using a heap and 2 stacks (a system stack and an argument stack). The functional strategy is 
compiled into this code. This means that for the implementation of a new strategy it is necessary 
to change the compiler or at least its code generator. 

The basic implementation algorithm looks for a matching redex according to the functional 
strategy. It will overwrite the matching redex with the corresponding right-hand-side, thereby 
realizing redirection. This continues until there is no redex left. The main work that is being done 
this way is building graphs. Hence the code will not be fast, because the system is continuously 
allocating nodes in the heap. As a stack mechanism is inherently faster then a heap mechanism, at 
least in Von Neumann like machine architectures, we have tried to put the graph on a stack 
instead of in a heap whenever possible. The main issue in this respect is the LIFO access 
characteristic of a stack opposed to the random access in a heap. We had to find LIFO behaving 
mechanisms in our language, or its implementation. Lazy evaluation does not behave LIFO, 
eager evaluation does. This is the reason we need a strictness analyzer, which could free us from 
a lot of laziness, and give us eagerness instead. In 4.5 we discuss how we used strictness. 

6.4 .2 GRAPHS 

In a Clean graph we can distinguish regular nodes and leaf nodes. Every node has a symbol field 
which indicates the kind of symbol stored in the node. It is implemented as a pointer to a record 
containing all the necessary symbol information. If the symbol field labels a node as a regular 
node it can only be filled with references to nodes. If the symbol field indicates a leaf node then 
the rest of the node has no node reference at all. The other bits of the node will contain 
information like a number or a character code. 
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' regular node -

Ï 
1.2345678Ε-Π0 | 

- leaf node -

This strict division is made to enable the garbage collector to easily and quickly follow all the 

necessary links in the heap. 

Regular nodes are either rule or constructor instantiations. Rules have code associated with them 

which needs to be called for reduction to head normal form. Constructors have code, that will be 

called when the constructor needs to be printed. This includes code to evaluate arguments. 

RULE 
•Factorial" 

#args. 1 

- rule node-

Π' reducing 
code 

^—con 

ν/ΖύγΛ ν//Ψ//λ 

i 
CONSTRUCTOF 
-Cons-
#args: 2 

structornode 

Λ pfinting 
code 

Graphs are built from right to left, from bottom to top using the argument stack. This works fine 

if we have no sharing and cycles in the right-hand-side. If a certain subtree is shared, we will 

save a reference to this subtree as soon as it is built. If the subtree is needed again, the saved 

reference can be taken. Cycles can be solved by inserting a place holder on the argument stack 

whenever we find a link back to a former node. We save a reference to the node with the place 

holder in it. As soon as the node to which the link back referred has been built, the place holder 

is replaced by the actual reference. 

6.4.3 REDUCING GRAPHS 

Reducing first involves finding a redex, using the functional strategy, by matching the formal 

and actual arguments of a rule. Every formal argument is a graph of node patterns. A node 

pattern can either be a variable or a pattern. In case of a variable the reference to the actual 

argument is copied to the argument stack. In case of a pattern, the actual argument is first reduced 

to head normal form. If the result matches the pattern a pointer to the actual argument is copied to 

the argument stack. 
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After a match has been found the rule must be rewritten. Due to the match the argument stack 
contains references to all the left-hand-side variables. The rewrite code of the rule will use these 
during its rewrite. Having rewritten the rule all the references are popped of the stack and the 
result is pushed on top of it. The following picture will illustrate this* : 

FromBy (Bind f b) -> Cons f (FromBy (Bind (+1 f b) b ) ) ; 

enter 'FromBy' 

unevaled 
arg 

s-O 
/ \ 

after match 

• argument stack states while reduci ng -

leave 'FromBy' 

) j |FromBy| < ] 
^ . iBindi « Г П 

The above scheme works fine for eager evaluation. We actually have the top node available on 
the stack at all times. Using lazy evaluation we sometimes have to rewrite a node which has 
already been built, therefore we have to adapt this scheme. First the contents of the node in the 
graph is copied to the stack, then it is rewritten. This will return a new node, in head normal 
form, on the stack. But the real top node is still untouched in the heap. The redirection is 
implemented by making the old node an indirection node pointing to the new node. Overwriting 
the old node is in general impossible because the new node could be bigger than the old one. 

6 . 4 . 4 HEAP MANAGEMENT 

The heap delivers variable sized nodes. Once created, a nodes size can not be changed. Heap 
management routines take care of garbage collection in the heap. The garbage collector is based 
on a simple mark/scan algorithm. 

The memory management used is an ad hoc solution, which happens to perform satisfactory. It 
could be streamlined significantly, or even be replaced altogether, to get a better perfomiance. A 
fast memory management is essential. 

Here it becomes clear why we can not merge the argument stack with the system stack, why we 
need a separate stack with node references. Our compilation scheme does not guarantee that all 
non-garbage nodes can be found from the mot of the data graph. Therefore the garbage collector 
will have to look in the stack for references to find all non-garbage nodes. Because it is 
impossible for the garbage collector to identify items on a stack as node references or other 
values, such as reals or integers, we save references to nodes on a special stack. 

+1 is the della rule for integer addition. 
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6 . 4 . 5 OPTIMISATIONS USING STRICTNESS 

As we have seen, we want to make use of the stack, and ban the use of the heap, as much as 

possible. Lazy evaluation prohibits this, eager evaluation enables this. This led us to methods of 

trading laziness for eagerness where ever possible, without endangering the termination of the 

reduction process. 

The functional strategy enables us to compile the right-hand-side of rules in an efficient way. To 

illustrate this we will first introduce two types of contexts which can be identified in the right-

hand-side. Then we will see how to use them. 

• Immediate context: upon entering the rule, nodes in an immediate context may be evaluated to 

head normal form immediately. 

• Postponed context: upon entering the rule, nodes in a postponed context may not be 

evaluated, and must be built as graphs, which can be passed as arguments to other rules, or 

given as a result. 

We will call nodes immediate or postponed according to their context. The top node of a right-

hand-side is an immediate node. All subnodes of a postponed node are postponed. The symbol 

of an immediate node determines the context of its argument nodes. For a node with a rule 

symbol all strict arguments are immediate, all other arguments are postponed. For nodes with a 

constructor symbol all arguments are postponed. Strictness for user-rules is given by 

annotations, for delta-rules it is known by the compiler. 

Consider the following rules, in which rule 's' has one strict argument and rule 'NS' has one 

non-strict argument (the boxes are postponed contexts): 

f _ N 

Fl χ -> Cons I ( s Q )Цміі| ; 

F2 x -> +1 (*I χ 10 ) 20 ; 

F3 χ -> +1 ( S x ) ( N S Q ) ; 

F4 x -> IF (=1 (S χ ) (NSQ )) ( S x ) ( N S Q ) ; 

^ — postponed contexts ' 

In principle we have to build the right-hand-side graphs, as they are. However, if we discover an 

immediate node, while building the right-hand-side, we will not allocate it in the heap, but try to 

reduce it first and use the result. For user-rules this means calling the reduction code, for delta-

rules the appropriate instructions are executed. If the top node of a right-hand-side contains a 

function symbol, the user rule will always be called (the top node is always immediate!). In the 

code we change this to a jump to the rule. This way we automatically remove tail recursion. For 

example: 
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F x -> F (...argument...), 

-tail recursion 

F will actually be a loop in the generated code. 

Things are less straightforward when we introduce sharing and cycles. We will not discuss the 

solutions here. We were able to devise a compilation scheme to cover all possible combinations 

of sharing and cycles in right hand sides, with the above principles. 

6.4.6 SMALL STRICTNESS ANALYSIS 

Although we consider strictness annotations to be generated by the compiler generating Clean, 

we incorporated a very simple strictness analyzer in our compiler. This analysis is based on 

certain aspects of the functional strategy. 

Consider a rule with a pattern at the left-hand-side. Upon entering the rule we will always 
evaluate the actual argument for the first pattern. At compile time it is undecidable whether we 
have to match any of the other patterns in this rule, because the first match may fail. Therefore it 
is only the first argument with a pattern in a rule that can be marked as strict. 

For example (the strict arguments are surrounded by boxes): 

- strict arguments 

Fl 

F2 
F2 

x|y: (Cons a 

Nil 
X 

F3 X 
F3 10 

10 

У 

F4|Nil| Nil Nil 

bj ζ -> ; 

-> 1 

-> 

-> 1 

-> 

-> ; 

6.4.7 EFFICIENCY OF THE GENERATED CODE 

The compiler we constructed is slow, due to the fact that flexibility of the compiler was more 

important than compilation speed. The speed of the generated code, on the other hand, was of 

primary importance. The optimisations we devised are very suitable for VAX-like machines 

(PDP, MC68000). For other machines they may not always be the best. To get an impression of 

the speed of the code generated by the current implementation one can look in appendix В where 

some benchmark results are shown. Although these results show that 1ml is an order of 

magnitude faster then Clean, we may conclude that we are on the right track. Specially when we 

bear in mind that not yet all of the possible optimisations are included in the current Clean 
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implementation. For example, leaf nodes are always built in the heap while the values could often 
be maintained on a stack. 

6.5 CONCLUSIONS AND FUTURE RESEARCH 

Clean is an experimental language with many facets. First of all it is a language for specifying 
computations in terms of graph rewriting. As such it is a convenient and elegant language. 

Clean also has a very interesting underlying model of computation: a Graph Rewriting System 
which can be seen as an extension of a Term Rewriting System (Klop (1985)). This has the 
advantage that a lot of theoretical properties from the TRS world are inherited and provide a 
sound foundation for a GRS theory. For instance, in Barendregt et al. (1987a) it is proven that 
all hyper-normalizing strategies in the TRS world, a class to which all well-known normalizing 
strategies belong, are also normalizing in the GRS world. 

Clean can be used as intermediate language between functional languages and (parallel) machine 
architectures. In (Koopman & Nöcker (1988)) it is shown that functional languages like SASL 
(Turner (1979a)), Miranda (Turner (1985)), OBJ2 (Futatsugi (1985)) and Tale (Barendregt & 
van Leeuwen (1986)) can easily be compiled to Clean code. Compilers (one written in Modula2, 
one written in Miranda) are being implemented targeted to Clean. With the current Clean 
implementation they run 30 to 50 times faster than the current Miranda system. The Clean 
implementation described in this paper runs reasonably fast considering the fact that we did not 
want to spend much time on trivial, but time-consuming, ad hoc optimisations (see appendix B). 

Our plans are to improve Clean in the near future. We will do this in the more general Lean 
framework (Barendregt et al. (1987b)) in which Clean will be one of several possible subsets 
with certain desired properties (in this case geared to functional languages and suited for parallel 
architectures). Our intentions are to include separate compilation, modularization, general type 
system, unification, general IO etc. All this must be accomplished without loosing the basic 
elegance, the practical usability and the theoretical framework of the model. This will take some 
time. 

Because strategies have a critical influence over efficiency future versions of Clean aim to give 
the programmer explicit control over rewrite order, for instance via high level specification of 
(parallel) reduction strategies and a formalism for mixing several strategy schemes during 
evaluation (van Eekelen & Plasmeijer (1986)). 

We will improve the efficiency of the compiler and the code generated by the compiler. 
Implementations of Clean are planned for Motorola based architectures and parallel architectures 
like the Experimental Parallel Reduction Machine (Hand & Vree (1986)) and the Distributed 
Object Oriented Machine (Odijk (1985)) being developed in the Philips Laboratories, the 
Netherlands. Requests for the current implementation can be sent to one of the authors or E-
mailed to:.. Jmcvaxlhobbitlcleanrequest. 
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6.A APPENDIX A: CLEAN SYNTAX 

Qean syntax: 

CleanProgram 
RuleGroup 
Rule 

Graph 
Redirection 
NodeDefinition 
Node 
Annotation 

Term 

{ RuleGroup } 
[ 'STRATEGY' StrategyName 
Graph '->' Graph 
Graph "-^ Redirection 
[ Annotation ] [ Nodeid ' 
[ Annotation ] Nodeid 
[ Annotation ] Nodeid ':' 
Symbol { [Annotation] 
"{ ' AnnotationName { *, 
ShorthandAnnotation 
Nodeid 
[ Nodeid ":' ] Symbol 
[ Nodeid ':' ] '(' Node 

• ] Rule { ' I ' Rule } 

] Node ( ',' 

':' Node 
Term ) 
,' AnnotationName 

)' 

NodeDefinition} 

} '}' 

Clean name conventions: 

Symbol 

Nodeid 
FunctionSymbol 
ConstructorSymbol 
DeltaRuleSymbol 
AnnotationName 
ShorthandAnnotation 
StrategyName 
TypeConstructor 
TypeDenotation 

™ FunctionSymbol 
I ConstructorSymbol 
I DeltaRuleSymbol 
I TypeConstructor 
I TypeDenotation 
= (* Character sequence starting with a lower-case character 
= (* Character sequence starting with a upper-case character 
= (* Character sequence starting with a upper-case character 
= (* A predefined delta rule name 
= (* Implementation dependent 
= (* Implementation dependent 
= " F u n c t i o n a l ' 
= 4 N T ' I 'REAL' | 'CHAR' I 'STRING' I 'BOOL' 
= 5,4.6e-3, 'a',"a string\007",TRUE (»Examples*) 

Some context sensitive restraints: 

Graphs are connected. 
Sharing of labels is not allowed in left hand sides of rules. 
Symbols have a fixed arity. 
Every function is defined once. 
Every label is defined once in a rule. 
Delta rules can not be re-defined. 
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6.В APPENDIX B: PERFORMANCE MEASUREMENTS 

The results of two benchmarks are reproduced here to give an idea about the speed of the 

compiled code. Benchmark 1 involves the reversion of a list, benchmark 2 is the all time favorite 

nfib number. The reversion benchmark reverses a list of η elements η times, this means doing n2 

reversion steps. In our tests η ranged from 1 to 1000. The nfib benchmark gives the number of 

function calls it did as output. We will only give the Clean programs here, it is straightforward to 

translate them to other languages*. 

Reverse η 

Walk (Cons χ Nil) 
Walk (Cons χ r) 

Rev_n 1 list 
Rev_n η list 

Rev (Cons χ r) list 
Rev Nil list 

-> Walk (Rev_n η (FromTo 1 n) ) ; 

-> χ | 

-> Walk r; 

-> Rev list Nil | 
-> Rev_n (--I n) (Rev list Nil) ; 

-> Rev r (Cons χ list) 1 
-> list 

• benchmark 1, Clean version. 

Nfib 0 -> 1 
Nfib 1 -> 1 
Nfib η -> ++I (+1 (Nfib (—I n)) (Nfib (-1 η 2))), 

• benchmark 2, Clean version. 

The following programming systems were tested: 

Clean Clean Compiler, version 4.0, University of Nijmegen, Netherlands. 
Authors: Tom Bras, Maarten van Leer. 

lisp Franz Lisp inlerprcter. Opus 38.79, Unix 4.2 BSD distribution. 
Author: Keith Skowlcr. 

liszl lisp compiler, VAX version 8.36 [.79], Unix 4.2 BSD distribution. 
Author. John Fodcraro. 

1ml 1ml compiler, preliminary version, Chalmers, Sweden. 
Author: Lennart Auguslsson, Thomas Johnsson. 

miranda miranda interpreter, version 0.292, Research Software Lid., England. 
Author. David Turner. 

saslcom sasl compiler, version 1.1, University of Nijmegen, Netherlands. 
Author: Riet Dolman. 

saslint sasl interpreter, version 1.1, University of Nijmegen, Netherlands. 
Author: Riet Oolman. 

All tests were done on a VAX11/750 under UNIX BSD 4.2, partly during working hours. All 

times mentioned are user times returned by the time(l) command. We measured the number of 

reverse steps per second (for reverse), and the number of function calls per second (for nfib): 

* ++I and — I aie delta rules for integer increment and decrement, - I is for integer subtraction. 
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We see that these numbers stabilize to what we call the reverse number and the nfib number of 

the implementation. Below, these numbers are tabled separately. 
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PARALLEL GRAPH REWRITING ON 

LOOSELY COUPLED MACHINE ARCHITECTURES 
M.C.J.D. van Eekelcn, M.J. Plasmeijer, J.E.W. Smetsers. 

Department of Theoretical Computer Science and Computauonal Models, 

University of Nijmegen, Toemooiveld 1,6525 ED Nijmegen, The Nelhcrlands, 

June 1988. 

Abstract 

Graph rewnung models are very suited to serve as the basic computational model for functional 
languages and their implementation Graphs are used to share compulations which is needed to 
make efficient implementations of functional languages on scqucnual hardware possible When 
graphs are rewnlten (reduced) on parallel loosely coupled machine architectures, subgraphs have 
to be copied from one processor to another such that sharing is lost. In this paper we introduce 
the notion of lazy copying With lazy copying it is possible to duplicate a graph without 
duplicating work Lazy copying can be combined with simple annotations which control the 
order of rcducUon. In principle, only interleaved execution of the individual rcducUon steps is 
possible However, a condition is deduced under which parallel execution is allowed When only 
certain combinations of lazy copying and annotations are used it is guaranteed that this so-called 
non-interference condition is fulfilled Abbreviations for these combinations are introduced Now 
complex process behaviours, such as process communication on a loosely coupled parallel 
machine architecture, can be modelled This also includes a special case modelling 
multiprocessing on a single processor Arbitrary process topologies can be created Lazy and 
eager process creation is possible Synchronous and asynchronous process communication can 
be modelled Complicated parallel algorithms can be expressed which can go far beyond divide-
and-conqucr like applications. 

7.1 INTRODUCTION 

In the following paragraphs the importance of computational models is addressed. It is explained 
why Graph Rewriting Systems are suited to model the essential aspects of functional languages 
and their implementation. However, if one wants to model parallel evaluation Graph Rewnting 
Systems have to be extended. The motivation for the proposed computational model is given and 
the context is described in which the model will be used. 

Computational models 

In general, a programming language is composed out of many language constructs. Examining 
the semantics of a language carefully it is possible to classify these constructs: some of them can 
be regarded as the basic concepts of the language, while others are purely syntactic sugar added 
to the language for programming convenience or for software engineering reasons. In order to 
understand the facilities offered by a language it is important to know what the essential language 
constructs are and what they mean. The key question is: what is the ideal basic model of 
computation for the language? If this model of computation is known it is much easier to reason 
about the essential properties of the language, the expressive power, the orthogonality of the 
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design, the implementation methods for a given computer architecture and the design constraints 
for new architectures to support the language. 

One problem is that there are, in principle, many computational models which can be used. For 
instance, any deterministic computation can be expressed on a Turing Machine. But this will not 
make reasoning more easy because this computational model is too restrictive. Ideally, a 
computational model of a language is a formal model as close as possible to both its semantics 
and its implementation, still it models only the essential aspects of them. 

Graph rewriting systems and functional languages 

Our prime interests are functional languages and their implementation on sequential and parallel 
hardware. 

Traditionally, the lambda calculus (Church (1932/1933), Barendregt (1984)) is considered to be 
a suitable model for these languages. However, in our opinion, some important aspects of 
functional languages and the way they are usually implemented, cannot be modelled with this 
calculus. In particular, the calculus lacks pattern matching and the notion of sharing of 
computations. Patterns contain important information for strictness analyzers (Nöcker (1988)). 
Sharing of computations is essential to obtain efficient implementations on traditional hardware. 

Graph Rewriting systems are based on pattern matching and sharing. We believe that compared 
to the λ-calculus graph rewriting systems (Barendregt et al. (1987a,b)) are better suited to serve 
as computational model for functional languages. In the past we have defined and implemented 
the intermediate language Clean (Brus et al. (1987)) based on graph rewriting systems with a 
functional evaluation strategy and we have shown that efficient state-of-the-art implementations 
on sequential hardware can be obtained by compiling functional languages to Clean (Koopman & 
Nöcker (1988), van Hintum & van Schelven (1988)). However, on parallel hardware sharing 
has to be handled with care, so it is not at all simple to make an efficient parallel implementation. 

Lazy copying 

Explicitly controlled copying can be very useful. In a sequential environment explicit control over 
the copying process can be used to improve the efficiency of memory management In a parallel 
environment communication between processors with local memory always involves copying. 
With an explicit mechanism for copying the communication can be controlled on the level of the 
rewriting system itself. 

In this paper graph rewriting is extended with a notion of explicit (lazy) copying. When a full 
copy is made, sharing is lost. Intentionally, sharing is used to prevent that the same computation 
is performed more than once. With lazy copying it is possible to make a copy without loosing 
this advantage. In this paper lazy copying will stand for the notion of having the possibility to 
explicitly denote that a copy or a lazy copy has to be made. 
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Although in implementations generally some kind of copying/sharing scheme is used, up to now 
it has never been incorporated in graph rewriting models. 

For all these reasons we have given a more firm basis to lazy copying by explicitly incorporating 

it in graph rewriting systems. Its merits in sequential and parallel environments will be 

discussed. 

A subclass of GRS's which is extended with lazy copying will be prefixed with С So the 
abbreviation for general graph rewriting systems with lazy copying is C-GRS. 

Parallel evaluation 

At any stage during its evaluation a functional program may contain more than one function 
application that can be rewritten (reducible expression or shorter redex). If in this context redexes 
are rewritten in any order, the normal form (if it exists) will always be the same. The worst thing 
that can happen is that a computation does not terminate. The unicity of normal forms offers the 
theoretical possibility to reduce redexes in parallel. So, functional languages are often considered 
to be well suited for parallel computation. Two kinds of parallelism are distinguished: fine grain 
and coarse grain. 

Fine grain parallelism 

Although strictness is in general undecidable, it can be approximated by using strictness 
analyzers which can find enough redexes (grains) that can be evaluated in parallel without 
causing termination problems. 

Fine grain machine architectures try to exploit this parallelism fully. In principle, any strict redex 

is a candidate for evaluation. Unfortunately, these architectures, such as data flow machines 

(Gurd et al. (1985), Arvind et al. (1987)), are very complex and not yet commercially available. 

Coarse grain parallelism 

Loosely coupled machine architectures, such as Transputer racks, are available on a wide scale. 
But now one of the major problems is that most reductions of function applications will not 
contain a sufficient amount of computation compared with the overhead costs caused by the inter-
processor communication (grain size problem). Therefore, for these architectures only those 
redexes which yield a large amount of computation are suited to be evaluated in parallel. The 
complexity of a grain is in general undecidable and furthermore no satisfactory automatic 
approximation method has been developed. 

So in this case it is necessary to have an explicit way of indicating the parallel redexes in a 
program by using special language constructs. Developing an efficient program starts with some 
sequential algorithm which is converted by one or more program transformation steps in order to 
obtain a program containing useful grains. Especially the so called Divide-and-Conquer 
algorithms are well suited to be treated in such a way. With only a few extra language primitives 
Divide-and-Conquer algorithms have been implemented efficiently on parallel machines 
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(McBurney & Sleep (1987)). However, this approach is only suited for hierarchical process 
creation and communication, which is in general too restrictive. 

In analogy with the concurrent imperative languages, a parallel functional language should 
provide a way to create concurrent entities (processes) in a program, preferably without violating 
the functional semantics. Arbitrary communications between processes have to be definable in a 
general way. Special language constructs have been proposed to make process creation and 
communication possible (see section 7.6). Mostly, these constructs are either rather ad hoc or 
have limited expressive power. We are looking for powerful but elegant basic components 
needed to realize dynamic process creation with arbitrary communication. 

Parallel graph rewriting 

By denoting subgraphs on which reduction processes have to be created, parallelism in graph 
rewriting can be modelled. Reduction processes which evaluate an indicated subgraph, can be 
created dynamically in an eager manner (immediately) and in a lazy manner (when needed). 

A subclass of GRS's in which reducers can be created explicitly will be prefixed with P. So the 
abbreviation for general graph rewriting systems with explicit parallelism is P-GRS. 

Parallel graph rewriting with lazy copying 

It will be shown that PC-GRS's (GRS's with explicit parallelism and lazy coping) have a 
surprisingly high expressive power. Various process behaviours in different environments can 
be described in PC-GRS's. In particular, loosely coupled parallel evaluation can be modelled 
such that any process communication structure can be defined. In order to illustrate the 
expressive power examples will be given of some non-trivial parallel algorithms. 

Structure of this paper 

The next section introduces graph rewriting briefly. After that in section 7.3 graph rewriting is 
extended with lazy coping. In section 7.4 eager and lazy process creation are introduced. The 
power of the combination of lazy copying and eager and lazy process creation is shown in 
section 7.5. In particular, the use of the system to model parallel graph reduction on loosely 
coupled parallel architectures is demonstrated. In section 7.6 comparisons with related work, 
implementation aspects and directions for future research are given. 

7.2 GRAPH REWRITING 

In graph rewriting systems (Barendregt et al. (1987b)) a program is represented by a set of 
rewrite rules. Each rewrite rule consists of a left-hand-side graph (the pattern), an optional right-
hand-side graph (the contractum) and one or more redirections. A graph is a set of nodes. Each 
node has a defining node-identifier (the node id). A node consists of a symbol and a (possibly 
empty) sequence of applied nodeid's (the arguments of the symbol). Applied nodeid's can be 
seen as references (arcs) to nodes in the graph, as such they have a direction: from the node in 
which the nodeid is applied to the node of which the nodeid is the defining identifier. Starting 
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with an initial graph the graph is rewritten according to the rules. When the pattern matches a 
subgraph, a rewrite can take place which consists of building the contractum and doing the 
redirections. A redirection of one nodeid to another nodeid means that all applied occurrences of 
one nodeid are replaced by occurrences of the other (in implementations this is realized by 
overwriting the node or by using an indirection node). The part of the graph which matches the 
pattern is sometimes called a redex. 

A reduction strategy is a function which makes choices out of the available redexes. A reducer is 
a process which reduces redexes which are indicated by the strategy. The result of a reducer is 
reached as soon as the reduction strategy does not indicate redexes anymore. Reducers are 
deterministic or non-deterministic. A reducer chooses (non-)deterministically one of the redexes 
which are indicated by the strategy. In this paper only deterministic reducers are used. A graph is 
in normal form if none of the patterns in the rules match any part of the graph. A graph is said to 
be in root normal form when the root of a graph is not the root of a redex and can never become 
the root of a redex. Note that the root normal form property is in general undecidable. When a 
reducer terminates its result generally is a root normal form. Even if a graph has only one unique 
normal form, this graph may be reduced to several root normal forms depending on how far the 
subgraphs are reduced. 

An important subclass of graph rewriting systems is the class which is defined by the following 
restrictions: 

- all graphs are connected; 
- every rule has exactly one redirection which is a redirection from the root of the pattern to the 

root of the contractum (or when there is no contractum, to the root of a subgraph indicated in 
the pattern); 

- no rule is left-comparing (rewriting systems where multiple occurrences of variables on left-
hand-sides are allowed are called left-comparing or non left-linear). No multiple occurrence of 
variables implies that it is impossible to pattern match on equivalency of nodeid's (sharing). 
In fact, a left-hand-side is always a graph without sharing (like a term). 

- a special reduction strategy is used: the functional reduction strategy which resembles very 
much the way execution proceeds in lazy functional languages (a full formal definition of this 
strategy can be found in Smetsers et al. (1988)). 

This class will be called: Functional Graph Rewriting Systems (FGRS's). In an FGRS every 
rewrite implies that the root of the redex is redirected to another graph. Every node that after the 
rewrite is not connected to the root of the graph, is considered to be non-existent (garbage). 

FGRS's can be used for term graph rewriting (Barendregt et al. (1987a)). Term graph rewriting 
connects term rewriting systems (TRS) (Klop (1987)) in which no sharing can be expressed, 
with graph rewriting systems. Term graph rewriting means that a TRS is interpreted (lifted) as an 
FGRS. The normal forms of the FGRS which are graphs, are unravelled to terms in the TRS 
world. Via term graph rewriting in (Barendregt et al. (1987a)) it is proved that sharing terms is 
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sound, furthermore restrictions are given which ensure completeness of sharing 

implementations. 

FGRS's are also the basis for Clean. Clean is an experimental functional language based on 

graph rewriting (Brus et al. (1987)). The language is designed to provide a firm base for 

functional programming. In particular, Clean is suitable and used as an intermediate language 

between functional languages and sequential machine architectures. Every Clean program is an 

FGRS. 

Although the proposed extensions are also meaningful in more general graph rewriting systems, 

throughout the rest of this paper it will be assumed that FGRS's are used. In all examples the 

Clean syntax will be used. The extensions to graph rewriting which are proposed in this paper 

will be incorporated in a new intermediate language: Concurrent Clean. This language is now 

being defined (Smetsers et al. (1988)). 

For an intuitive understanding of what follows it is not necessary to know all details of FGRS's. 

Some general knowledge about graphs and functional languages will be sufficient. By giving 

some FGRS examples the similarity between functional languages and FGRS's is illustrated. 

Hd (Cons a b ) -> a ; 

Fib 0 -> 1 I 
Fib 1 -> 1 I 
Fib η -> +1 (Fib (—I n) ) (Fib (-1 η 2) ) 

First (Pair x:(Cons a b) y) -> χ ; 

Ones -> χ : Cons 1 χ ; 

Every expression is actually a graph consisting of nodes. Each node contains a symbol and a possibly empty 
sequence of argument nodcid's. ΙΓ (hese nodcid's arc implicit, an ordinary tree structure is assumed. Using them 
explicitly, one can define any graph siruciure. The last rule in the example is a typical graph rewrite rule 
containing a cycle in the right-hand-side. 

In many cases, the functional graph rewrite rules can intuitively be seen as ordinary function 

definitions. Each function has one or more alternatives which are distinguished by patterns on the 

left-hand-side of the definition. Symbols other than function symbols are called constructors 

because they are usually used as data structures (i.e. constructs for defining new data types). For 

practical reasons some types are assumed to be predefined, such as INT or BOOL. Furthermore, 

some functions for arithmetic are assumed to be defined on these types, such as ++I (i.e. integer 

increment) or *I (i.e. integer multiplication). 

Influencing the order of evaluation 

The FGRS's which are used in this paper, are allowed to be annotated. To every node and to 

every nodeid one or more attributes can be assigned via annotations. Annotations have the form 

of a string placed between curly braces. The only annotations which are used in this paper, are 

annotations which influence the order of evaluation. These annotations play an important role 

because they are parameters of the reduction strategy. The functional reduction strategy takes 

them into account and therefore they influence the way in which a result is achieved. This is 
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important if one wants to optimize the time and space behaviour of the reduction process. It is 

assumed that annotations are never used in such a way that they influence the outcome of the 

computation or the termination of the reduction. 

In sequential FGRS's only one annotation is defined indicating that the reduction of the annotated 

argument of a symbol (function or constructor) is demanded. This annotation, denoted by {! ( or 

(s tr ict) , will force the evaluation of the corresponding argument before it is tried to rewrite the 

graph according to a rule definition of the symbol. Note that these annotations may make the 

reduction strategy deviate from the default evaluation order which then becomes partially eager 

instead of lazy. When more than one ( !} annotation occurs on a right-hand-side, they are 

effectuated depth-first from left to right. 

The ( s t r i c t ) annotation is important because, in general, rules with strict arguments can be 

implemented more efficiendy (Brus et al. (1987), Plasmeijer & van Eekelen (198-)). 

Annotations can belong to a node (node annotation which is placed before the symbol of the 

node) and to an argument (argument annotation placed in front of the argument). Annotations 

may occur on the right-hand-side as well as on the left-hand-side of a rule. 

Example of (!) on the righl-hand-sidc: 

G η -> F ( ! ) η 

At this occurrence of F the evaluation of the argument is forced before F is applied. 

Example of ( ! ) on the left-hand-side: 

F (Cons ( ! ) n r) -> *I η ( — I n) 

At all occurrences of F the evaluation of the (sub)argumcnt is forced before applying ihe F rule. This can also 
be achieved by the following transformed set of rules: 

F (Cons η r) -> F' (Cons ( ! ) n r) 

F' (Cons η r) -> *I η (--I n) 

In reasoning about programs with ( ! ) annotations on the left-hand-side it will always be true that 

the annotated argument will be in root normal form when the corresponding rule is applied. The 

semantics of annotations on the left-hand-side can be explained via transformations to sets of 

rules with right-hand-side annotations only. Intuitively, the transformation involves introducing 

an extra internal reduction with an annotated right-hand-side which forces evaluation after some 

matching but before the rule is applied. The precise transformation for ι ! ) can be found in 

Smetsers et al. (1988). 

7.3 EXTENDING FGRS'S WITH LAZY COPYING: C-FGRS'S 

7.3.1 WHY COPYING? 

It is very useful to have explicit graph copying in sequential environments (for reasons of 

memory management) and in parallel environments (for off-loading a copy to another processor). 
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One would expect however that it is already possible to express graph copying in graph rewriting 

systems. Although this is indeed the case, it is rather complex. 

A function has to be defined which duplicates its argument. Evidently, the following definition 

only produces two pointers to the argument but it does not duplicate the argument itself! 

An ordinary rewrite rule: 

D u p l i c a t e χ -> Pair χ χ 

the left graph 

0 1 : D u p l i c a t e @2, -: 
0 2 : P a i r 03 02, 
0 3 : 1; 

which is illustrated in the following picture: 

reduces lo the right graph (@x is a denotation for a nodcid). 

04 
02 
03 

Pair 02 02, 
Pair 03 02, 
1; 

Duplicate 

rW Pair 

ώ 
ΐ ч 

The only way to access the structure of the argument is to use pattern matching. The only way to 
duplicate a constructor is to match on it on the left-hand-side and to create a new node with the 
same constructor on the right-hand-side. Such a rewrite rule is needed for every constructor that 
may appear. Furthermore, on the right-hand-side the graph structure of the argument has to be 
duplicated. In order to make it possible to detect the shared nodes multiple occurrences of the 
same nodeid on the left-hand-side should be introduced in FGRS's. Then, with many of such 
left-comparing rules (and a special strategy that handles left-comparing rules: say the left-
comparing functional strategy) a structure can be copied unless it contains redexes and they have 
to be copied too. To include that case the reduction strategy has to be changed again. All in all it 
is very cumbersome to do graph copying within graph rewriting systems, because the copying is 
not inherent. Rules that define copying, are themselves part of the system which makes it 
difficult to reason about them because the copying gets intertwined with the rest of the 
evaluation. In other words: copying is not part of the semantics of graph rewriting! 

So, extending the semantics of FGRS's with a special tool to explicitly copy graphs (possibly 
containing redexes) would considerably increase the expressive power of these graph rewriting 
systems. 

7.3.2 EAGER COPYING 

To denote a graph g that should be copied, the node identifier which refers to the root of g is 
attributed with a subscript с or copy. The с subscript can be placed on nodeid's of the right-hand-
side only. The copying takes place after the contractum is built and after the root of the redex is 
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redirected to the root of the contractum. All copies of one right-hand-side are instantiated 

simultaneously. 

Copying a graph g implies that an equivalent graph g' is made which has no nodes in common 

with the original graph g. No reduction takes place. So, for every node of g (also for redexes) 

there is an equivalent node in g'. Note that copy-equivalency is very much different from 

reduction-equivalency. 

A graph copying example: 

Duplicate χ -> P a i r χ x c 

the left graph 
such 

01: Duplicate @2, 
@2: Pair @3 @2, 
03: 1; 

which is also illustrated in the following picture: 

reduces to the right graph. The new nodeid's are chosen in 
a way that the structure is easily seen. 

04: 
02: 
03: 
012: 
013: 

Pair 
Pair 
1, 
Pair 
1; 

02 012, 
03 02, 

013 012, 

Duplicate 

I 1 
A more complicated example with the same rule: 

the left graph reduces lo the right graph 

01: Duplicate 02, 
02: Pair 01 03, 
03: Pair 01 02; 

* l P a i r I T I j l 

P a i r 

04 
02 
03 
012 
013 
014 

Pair 
Pair 
Pair 
Pair 
Pair 
Pair 

02 012, 
04 03, 
04 02, 
014 013, 
014 012, 
012 012; 

1 
ù 
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Note that the copying lakes place after the root of the ordinary redex is redirected to the root to the contractum. 
The reduction is also illustrated in the following picture: 
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This way of copying is also called eager copying in contrast to lazy copying which is defined in 
the following sections. 

7.3 .3 WHY LAZY COPYING? 

Take a graph containing redexes. The extension of explicit copying to graph rewriting introduces 
the possibility to copy this graph including all its redexes. There also is the possibility of sharing 
the graph. Unfortunately, there is nothing in between. 

However, duplication of work can be avoided by maintaining the sharing with the original graph 
as long as the corresponding function applications have not been evaluated. If after the evaluation 
to root normal form the copying is continued, the graph is duplicated after the work is done. 

But, also it can be useful to break up the sharing. Take for example a function application that 
delivers a large structure after relatively few reduction steps. When several parts of the program 
only need certain parts of this structure, then in terms of memory management it can be more 
efficient to copy the function application instead of sharing the large structure all the time. 

Copying with the choice of maintaining or breaking up the sharing is called lazy copying. 

Apart from the benefits of lazy copying in a sequential environment, lazy copying will serve as 
the basis for the communication of processes in a parallel environment. 

7.3.4 LAZY COPYING 

A function application on which copying will be stopped temporarily, is called a deferred 

function application. To denote a deferred function application the corresponding node is 
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attributed with a subscript d or deter. Such a node is called a deferred node. Because every node 

has an explicit symbol, it is syntactically convenient to attach the attribute of the node to the 

symbol of the node. 

Lazy copying implies that when a copy action hits a deferred node, the copying itself is deferred. 

The applied occurrence of the nodeid of the deferred node of which the (now deferred) copy was 

being made, will be administered as being a copying deferred nodeid. When a deferred node is in 

root normal form, the node will not longer be deferred. The actual copying may continue, but 

this will only happen when this copy is demanded. The actual copy of a deferred node will not be 

deferred. 

Nodeid's of which the contents need to be known for matching, are according to the functional 

reduction strategy first reduced to root normal form. Then, before the nodeid is accessed, a copy 

will be made. So, read access via a copying deferred nodeid never occurs. 

A lazy copying example: 

S t a r t -> D u p l i c a t e (Facd 6) 

•I n ) ) 

@2: Duplicate S3, 

@3: Fac
d
 6; 

@4: Pair @5 @5
C
, 

05: 720
d
; 

84: Pair @5 015, 
05: 720, 
815: 720; 

Dupl 

Fac 
Fac 

i c a t e χ -> P a i r χ x c 

0 -> 1 
η -> *I η (Fac (-

the following rewrites occur: 

8 1 : 

8 4 : 
8 3 : 

8 4 : 
8 5 : 

S t a r t ; 

P a i r 03 0 3 c , 
Fac d 6; 

Pa i r 05 0 5 c , 
720; 

The nodeid attribute с in the graph is used to denote thai that the nodeid is a copying deferred nodeid. Note that 
the с attribute was inherited when the node 0 3 was redirected to 0 5 which corresponded with the reduction of 
the node. Do not confuse the с attribute in the graph with the с attribute in the rules which denotes that a copy 
action has to be started. The deferred attribute of the node 0 5 is taken away when it is recognized that the node 
is in root normal form. 

The rewrites are also shown in the following picture: 

Start I .> Duplicate a I -> 

Fac, 

I 
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The fact that copying is deferred will be an attribute of an applied occurrence of a nodeid in the 
graph, this attribute is always inherited when the nodeid is redirected to another nodeid. 
However, when there are multiple copies they have to be distinguished. Multiple copies are 
distinguished by numbering the attributes. 

A lazy copying example with multiple copies: 

Start -> Duplicate (Fac
d
 6) ; 

Duplicate χ -> Triple χ x
c
 x

c
 ; 

Fac 0 
Fac η 

-> 1 

-> *I (Fac (—1 n)) 

the following rewrites occur: 

@1: Start; @2: Duplicate @3, 

@3: Facd 6; 

84: Triple @5 в5
С 1
 @5

C2
, 

35: 720d; 

@4: Triple @5 015 @5
C2
, 

@5: 720, 
815: 720; 

Both copies are deferred. They arc distinguished via numbers. Eventually, in the normal form two copies occur. 

The copying deferred attribute number is not written down when there can be no confusion but 

actually it is always there. Every copying deferred attribute is actually a number. When a copy 

action has to be deferred, a new number is taken as the unique identification of this copy. So, 

two applied occurrences of the same nodeid can have the same attribute number (meaning they 

stand for the same copy of the nodeid), but it is impossible that two different nodeid's have the 

same attribute number (the same copy of two different things is contradictory). 

84: 
83: 

84: 
85: 

84: 
85: 
815: 
825: 

Triple 
Facd 6, 

Triple 
720; 

Triple 
720, 
720, 
720; 

83 

85 

85 

еэ
С 1
 з

С 2
, 

5
С1
 5

С2
, 

815 825, 
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As was already said, the attribute number is always inherited when a copying deferred nodeid is 

redirected to another nodeid. When a not copying deferred nodeid is redirected to a copying 

deferred nodeid, all replaced occurrences stand for one and the same copy all having the attribute 

number of the copying deferred nodeid. Also when a copying deferred nodeid is bound on the 

left-hand-side and used several times on the right-hand-side, all occurrences stand for the same 

copy. 

During a copy action all occurrences of attribute numbers are replaced by new attribute numbers 

because a new copy of these nodeid's is demanded. Of course, the attribute number which stands 

for the copy action that is being done, is not replaced. Furthermore, when an attribute number is 

copied several times, all copies are replaced by the same new attribute number. 

At first sight the fact that copying deferred attributes are numbered and that nodeid's with the 

same attribute number must yield a pointer to the same copy, might seem hard to implement. In 

the following paragraph the operational semantics of lazy copying is given. It also shows that 

lazy copying is in fact very easy to implement via special indirection nodes. The actual nodeid's 

of these indirection nodes represent the attribute numbers of the copying deferred nodeid's. 

7.3.5 OPERATIONAL SEMANTICS OF LAZY COPYINC. 

In this section the operational semantics of eager and lazy copying is explained informally. The 

formal definition is given in Smetsers et al. (1988). 

In order to explain the semantics introduce two special kind of indirection nodes are introduced: a 

D(eferred) node: this node indicates that the function it is pointing to has the deferred attribute. 

And a C(opy of such a deferred node) node: this node indicates that the graph it is pointing to still 

has to be copied: the copying is deferred. If on a right-hand-side nodeid η is attributed with the 

copy subscript, all nodes accessible from η have to be copied such that the new graph structure is 

copy-equivalent with the old one. However, if the copy action hits on a D-node, a C-node which 

refers to the D-node is created and the subgraph to which the D-node refers is not copied. If the 

copy action hits on а С node, a new С node is created which has the same argument as the 
original С node. The nodeid of the C-node represents the attribute number of the copying 
deferred nodeid. After the copying has been performed this way, this rewrite is finished and 
reduction continues as usual. The internal reduction rules of the D and C-nodes are the following: 

D {!} χ - > χ 
с {! ) χ - > x c 

Note that in this way the property that a function is "deferred" or "not yet copied" is inherited by 

all function results until finally a root normal form is reached. Hereafter the reducer is able to 

apply the special rewrite rules for D and С which will make these nodes disappear. Sharing a C-
node represents having the same attribute number and so it will lead to sharing of the same copy 
after this indirection node is vanished. The mechanism of sharing and redirecting of indirection 
nodes implements the attribute number administration. 

If the previous example is considered again, it should be more clear what the semantics are: 
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S I : S t a r t ; 

@4 

@i 

ei 
83 

@4 

01 
Θ5 

Pair Si @j, 

D 83, 

с ei, 
Fac 6; 

Pair 85 ej, 
С 85, 

720; 

-» 

which is also illusuated in the following picture: 

Start 

82 

ei 
83 

Dupl icate 0i, 

D 83, 

Fac 6; 

84: Pair ei @j, 

Si 

81 
es 

D 05, 

с ei, 
720; 

@4: Pair 05 015, 

85: 720, 

815: 720; 

Duplicate 

L> 
D 

* J 
Fac 

-> 

-> 

±J 

P a i r 

D » 4 * F a c 

g 
Pair 

D 720 

P a i r 

720 

Pair 

720 

720 

Note that when the deferred copy turns out to be not needed by the reduction strategy, the С rule 

will never be executed, so the copying will not be continued. 

7 . 3 . 6 DISCUSSION 

Lazy copying can be used in two extreme ways: the case that all nodes are defenred and the case 
that none of the nodes is deferred. This first form of copying will be called fully lazy copying. In 
the second form always an equivalent copy of the original graph is made immediately (eager 
copying). 

An interesting aspect of lazy copying is that normal forms do not contain defer or copying 

deferred attributes. In a normal form every subgraph is trivially in root normal form. Evaluation 
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of nodes to root normal form eliminates the defer attributes. Evaluation to root normal form 

and/or the attempt to access a node will cause the deferred copying to continue. 

Normal forms: 

this will be the normal form of S t a r t : With the following rule: 

Start -> x: Pair 1 χ ; 

Start -> x: Paird 1 χ : 

Start -> x: Pair 1 x
c
; 

it: 

Start -> x: Paird 1
 x
c'" 

Start -> x: Tripled 1 Xc
 x
c'' 

81: Pair 1 81; 

81: Pair 1 81; 

81: Pair 1 811, 

811:Pair 1 811; 

81: Pair 1 811, 
eil:Pair 1 011; 

8 1 : T r i p l e 1 811 S l c i , 
8 1 1 : T r i p l e 1 811 8 1 c , ; 

Il a cycle. 

Il a cycle. 

Il a cycle with a copy of 

II a once unravelled cycle. 

II again: 
Il a once unravelled cycle. 

II every copy thai is done, 
II leads to more 
II unravelling: yielding 
II an infinite normal form! 

Lazy copying does influence the normal forms in the graph world. Sharing may be broken up 

when a cycle is copied which contains deferred nodes. The result will be partly unravelled with 

respect to a full copy. A typical example is given below. 

With the following rules: 

S t a r t r: A x c , 
x : В у, 
у : Id ζ , 
ζ : С χ ; 

the normal form is: 

81 : A 812, 
812: В 814, 
814: С 822, 
822: В 814; 

without copy & d e f e r 
the normal form is: 

8 1 : A 8 2 , 
8 2 : В 8 4 , 
8 4 : С 8 2 ; 

I x - > χ ; 

Note that the right-hand-side of the Sta r t rule contains a cycle which can only be copied partly because the I 
node is deferred. The ВС-cycle is once unravelled when it is copied, without the copy and d e f e r indications 
the normal form would be just the cycle. 

In C-FGRS's the normal form is also influenced by the order of evaluation (and hence by 

annotations). If the deferred nodes are not reduced before an attempt to copy them is made, the 

result will be partly unravelled. A typical example is given below. 

With the following rules: 

S t a r t 

F χ 

I χ 

-> 

-> 

-> 

r: A (F x ) , 
x : В у, 
у : < ! ) I d ζ , 

ζ : С χ ; 

X c ; 

χ ; 

the normal form is: 

81 : A 813, 
8 1 3 : В 815, 
815: С 813; 

without the ( ! ) 
the normal form is: 

81 : A 013, 
013 : в 015, 
015 : С 0113, 
0113: В 015; 

Note thai an extra rule had to be introduced in order to delay the copying. 

The unravelling of the normal forms of a rule system with lazy copying will always be the same 

as the unravelling of the normal forms of the same rale system without lazy copying. In other 
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words lazy copying is invariant under unravelling. This is an interesting property for the 
implementation of functional languages and for term graph rewriting as in Barendregt et al. 
(1987a). It seems that it enables the proof of the soundness and completeness of implementations 
which use sharing and copying via term graph rewriting. Lazy copying and term graph rewriting 
is a very promising topic for further research. 

With the copy indication and the defer indication lazy copying is introduced in graph rewriting 
systems. By introducing the possibility to use subtle combinations of sharing and copying this 
greatly improves the expressive power of graph rewriting systems. Furthermore, in section 7.5 it 
will be shown that lazy copying can also be the basis for communication in a parallel 
environment. 

7.4 EXTENDING FGRS'S WITH DYNAMIC PROCESS CREATION: P-FGRS'S 

In this section graph rewriting will be extended with a way to create more reducers. Together 
with the extension of the previous section this completes the proposed extensions to graph 
rewriting. 

As said before, in general there will be several redexes in the graph. One single sequential 
reducer repeatedly chooses one of the redexes which are indicated by the reduction strategy and 
rewrites it. Interleaved reduction can be obtained by incarnating several sequential reducers 
which reduce different parts of the same graph. As has been explained in section 7.2 by using 
( ! ) annotations it is possible to influence the order in which the redexes are reduced by a single 
reducer. 

Now a new annotation is introduced: ( ! ! ) or (process), to indicate that a new sequential 
reducer has to be created with the following properties: 

- the new reducer reduces the corresponding graph to root normal form after which the reducer 
dies; 

- the new reducer can proceed interleaved with the original reduction process; 
- all rewrites are assumed to be indivisible actions; 
- if for pattern matching or reduction a reducer needs access to a graph which is being rewritten 

by another reducer, the first reducer will wait until the second one has reduced the graph to 
root normal form. 

The (process) annotation influences the overall order of evaluation because a new reducer 
proceeds interleaved with the other reduction processes. In this paper all reducers are assumed to 
use the same strategy. More precisely, they all use the functional strategy parametrized by 
(s t r ic t ) annotations (see also section 7.4.3). 

If the ( ! ! ) annotation appears on the right-hand-side processes are created eagerly (see section 
7.4.1), if the annotations appear on the left-hand-side processes are created lazy (see section 
7.4.2). 
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7.4 .1 EAGER PROCESS CREATION 

If a {! ! ) annotation is encountered in the right-hand-side by a reducer, a new reducer is created 
after the redirection has been done (and if there is copying, also after the copying). This is called 
eager process creation because for every ( ' ! ) annotation on the right-hand-side a process is 
created before the next rewrite can be done. 

Example of eager process creation: 

Fib 0 -> 1 I 
Fib 1 -> 1 I 
Fib η -> +1 (Fib (-1 η 1) ) [ ' ¡ ( ( F i b (-1 η 2 ) ) 

The second operand of the integer addition will be calculated by a new reducer The original reducer can proceed 
with the addition, calculating the first operand. Note that both reducers work on a subgraph sharing information 
at node η . Due to the recursive définition of F ib a whole tree of reducers will be dynamically created in this 
way. 

7 .4 .2 LAZY PROCESS CREATION 

If a {! ! ) annotation is specified on the left-hand-side, a new reducer is created just before the 
original reducer would reduce the corresponding function application. 

Example of I ! ! ) on ihe left-hand-side: 

Fib 0 -> 1 I 
Fib 1 -> 1 I 
Fib η -> ParPlusI (Fib (-1 η 1)) (Fib (-1 η 2)) 

ParPlusI { ' ! )n (!')m -> +1 η m 

This is equivalent to the transformed set of rules given below. 

Fib 0 -> 1 I 
Fib 1 -> 1 I 
Fib η -> ParPlusI (Fib (-1 η 1)) (Fib (-1 η 2)) 

ParPlusI η m -> ParPlusI' ('Чп { ' ' ]m 
ParPlusI' ( ! }n ( ! }m -> +1 η m 

It should be clear that with some internal reductions now in general two new reducers are created for each of ihe 
operands of the integer addiUon. The extra { ' } annotations are introduced to ensure that the reduction strategy 
will not reduce ParPlusI ' before Ihe processes on the arguments are finished. 

In reasoning about programs with ( ' ' ) annotations on the left-hand-side it will always be true 

that the annotated argument will have been reduced (by another reducer) to root normal form 

when the corresponding rule is applied. The transformations for ( ' ·} on a left-hand-side are 

similar to the ones for {! ). They can be found in Smetsers et al. (1988). 

7.4.3 DISCUSSION 

The process annotation proposed in this section is very straightforward and quite similar to other 

proposals (see section 7.6). Note the analogy between the ( ' ) and ( ' '} annotations. They both 

influence the reduction order. They both make the evaluation partially eager instead of lazy. The 

only aspect in which ( · · ) differs from { м, is that a graph annotated with {' ! ) is reduced by a 
new reducer while the original reducer can proceed with its reduction scheme. 
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Another way of looking at ( ! ! ) annotations is that they influence the overall reduction order. In 
this view, {! ! ) annotations are parameters of the global reduction strategy (just as ( ! )). The 
global reduction strategy will then indicate possibly more than one redex (every process may 
have a redex). The global reducer will make a non-deterministic choice out of the redexes 
indicated by the global strategy. A reference interpreter for PC-FGRS's which is being 
developed at the University of Nijmegen adopts this view. There is no essential difference, but in 
the context of this paper, the process view with deterministic reducers is preferred. This will 
simplify the reasoning about locally weakening in the semantical restriction of interleaving to 
parallelism. 

Note that a deadlock of processes arises when processes are demanding each others results on a 
cycle in the graph. 

Ал example where deadlock may arise: 

S t a r t - > x : ( ! ! } A y , 

у : ( ! ! } Β χ 

A C - > С 

В С - > С 

Note that actually the graph is in normal form. 

However if we analyze the rule system that is specified above, it is not surprising at all that the 
evaluation may end in a deadlock sitution, namely, the rules define a process structure wherein 
two processes are waiting for each others results: a classical deadlock. The possible occurence of 
deadlock is inherent to systems in which one can describe arbitrary process communication. So, 
just as one has to be careful to avoid non-termination due to the {!} annotations, one has to be 
careful to avoid deadlock due to the {! !} annotations. 

7.5 THE DESCRIPTIVE POWER OF PC-FGRS'S 

In this section the power of the PC-FGRS's is illustrated by showing how with certain 
combinations of process creation and lazy copying various kinds of process behaviours can be 
modelled. 

There are several kinds of behaviours one may be interested in, such as fine and coarse grain 

parallelism, all kinds of process topologies (hierarchical and non-hierarchical process 

topologies), synchronous and asynchronous communication between processes, etcetera. 

At first glance it may seem easy to specify these behaviours in PC-GRS's, since there is the 
possibility to create reducers dynamically. However, note that a rewriting step is considered to be 
indivisible and without this assumption reasoning about rewriting systems is in general not 
possible. Still, of course, one would like to be able to create reducers of which the rewriting 
steps can be performed in parallel instead of interleaved. However, it should be clear that, 
without any restrictions, parallel rewriting may cause a disaster. Imagine that a copy of a 
subgraph is made while another reducer is working on that subgraph. Problems may also arise 



Parallel Graph Rewriting on Loosely Coupled Machine Architectures 135 

when redirections are performed in parallel. Probably there will not be a problem when two 
reducers are running on subgraphs which have no node in common and no reference to each 
other. One can imagine that, in general, the actual effect of parallel rewrites will highly depend on 
the kind of implementation. 

To call a reducer a parallel reducer with respect to another reducer it has to be proven that the 
constraint that a rewrite step is an indivisible action can be weakened. More precisely, it has to be 
proven that the corresponding rewrite steps actually can be performed in parallel because they 
cannot interfere with each other and therefore may be considered as being indivisible. This 
condition that has to be proven is also called the non-interference condition. 

Hence, the claim that parallel computations can be expressed in our model can only be justified 
by proving that, under specific conditions, certain reducers are parallel reducers with respect to 
certain other reducers. Assumptions have to be made on the kind of machine architecture the 
reduction is performed on. As argued in the introduction, we consider loosely coupled parallel 
machine architectures (each processor has its private memory) as the most interesting class of 
architectures. Therefore the possibility to model rewriting on this kind of architectures is treated 
in detail in the next sections. The suitability to use the system to model rewriting on other 
architectures is briefly discussed in section 7.5.3. 

7 . 5 . 1 MODELLING REWRITING ON LOOSELY COUPLED PARALLEL ARCHITECTURES 

A loosely coupled parallel computer is defined as a multiprocessor system which consists of a 
number of self-contained computers, i.e. processors with their private memory, which are 
connected by a sparsely connected network. An important property of such system is that for 
each processor it is more efficient to access objects located in its own local memory than to use 
the communication medium to access remote objects. In order to achieve an efficient 
implementation it is necessary to map the computation graph to the physical processing elements 
in such a way that the communication overhead due to the exchanging of data is relatively small. 
Therefore, the computation graph is divided into a number of subgraphs (grains) which have the 
property that the intermediate links are sparsely used. 

Unfortunately, it is undecidable how much work the reduction of a subgraph involves. 
Furthermore, there are no well-established heuristics for dividing a graph into grains. So, this 
partition of the graph cannot automatically be performed. Therefore, in the program it has to be 
explicitly indicated what is expected to represent a large amount of reductions relative to the 
expected communication overhead. In this way the program can be tuned to a particular parallel 
machine architecture. 

The annotations and indications in the PC-FGRS have to be used in such a way that non­
interference can be proven for reducers which might be reduced on different processors. 

In order to avoid the need for a proof for every PC-FGRS methods of annotating and indicating 
will be developed. Using these methods will guarantee that parallel execution of groups of 
reducers is allowed. The methods differ in expressive power with respect to process creation and 
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communication. They range from divide-and-conquer process behaviour to remote lazy process 

creation. 

Dmde-and-Conquer evaluation 

An obvious method to get safe parallelism is to create a reducer on a copy of an indicated 

subgraph. Such a copied subgraph has the property that it is self-contained, i.e. the root of the 

subgraph is the only connection between the subgraph and the rest of the graph. This will make it 

possible that the copied subgraph is reduced in parallel on another processor. When it is reduced 

to root normal form the result will be copied back to the father processor. So, copying is 

performed twice: one copy is made of the task for the off-loading of the task and one copy is 

made of the result to communicate it to the father. 

A self-contained subgraph will be regarded as a virtual processor because it has the property that 

it may be reduced on another processor. A reducer is also called a process. 

It is easy to prove that on a self-contained subgraph it is allowed to weaken the interleaving 

restriction to parallelism: the self-contained subgraph can only be accessed by other reducers via 

the root and the semantics of P-FGRS's does not allow reducers to access a node on which 

another reducer is running. 

Example of a divide-and-conquer algonihnr 

Fib 0 -> 1 I 
Fib 1 -> 1 I 
Fib η -> +1 l e f t c r i g h t c , 

l e f t : t 'MFibd (-1 n c 1 ) , 
r i g h t : { ' ' } F i b d (-1 n c 2) 

The { ' ' } annotations combined with the copy and defer indications specify lhat both calls of F ib can be 
evaluated in parallel The graph on which each process runs is self-contained because the root of (he graph on 
which a process is started, is built with copies of subgraphs as arguments. The father reducer is already started 
with copying the result but this is immediately deferred. The copying of the result can continue each time when 
an argument of +1 is in root normal form The following picture illustrates the virtual processor structure after 
one reducuon of Fib 5: 
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An alternative hierarchical process structure is obtained if the father reducer would reduce the left argument by 
itself. This woould have been easily achieved by leaving out all annotations and indications in the definition and 
application of l e f t and by replacement of 1 ! ! ) by ( ! 1. 

This way of modelling divide-and-conquer algorithms relies on the fact that the subgraph to be 
reduced is self-contained and that after the reduction to root normal form, the result is also self-
contained. However, this method of modelling can only be used for this kind of algorithms. 

Modelling loosely coupled evaluation 

A method which makes it possible to model process behaviours which are more general than 
divide-and-conquer, must provide a way to define arbitrary connections between processes and 
processors. So, self-contained subgraphs as used in the previous section are in general too 
limited. 

The lazy copy scheme introduced in section 7.3 provides a way to make a self-contained copy on 
a lazy manner. Such a lazy copy is a self-contained subgraph with the exception of copying 
deferred nodeid's, which are references to deferred nodes in the graph. These deferred nodes 
will be copied later if they are in root normal form and needed for the evaluation. So, copying 
deferred nodeid's are natural candidates for serving as interconnections between parallel 
executing processes because they induce further copying when they are accessed. Therefore, 
communication between parallel processes will be realized via copying deferred nodeid's. In this 
context copying deferred nodeid's are also called communication channels or just channels. 

A subgraph is loosely connected if channels (copying deferred nodeid's) are the only connections 
between the subgraph and the rest of the graph. Note that this implies that a self-contained 
subgraph is loosely connected if its root is a channel. A loosely connected subgraph is called a 
virtual processor because it has the property that it may be reduced on another processor. Several 
processes (reducers) can run on such a virtual processor. Processes running on the same virtual 
processor are running interleaved. So, there is interleaved multiprocessing on each virtual 
processor. Processes running on different virtual processors run in parallel. 

Note that the definition of virtual processor in this section differs from the definition which was 
given in the previous section. In all following sections the new (more general) definition will be 
used. 

Now, suppose that a parallel process is reducing a loosely connected subgraph. This process 
may need the reduction of a channel connected to another processor. This channel cannot be 
reduced by the demanding process. It has to be reduced by another process running on the virtual 
processor which contains the channel. 

The semantics of copying deferred nodeid's implies that channels have the following properties. 
The flow of data through a channel is the reverse of the direction of the copying deferred nodeid 
in the graph. Since channels are nodeid's, they can be passed as parameters or copied. However, 
when the subgraph to which the channel refers to is needed, the process will be suspended until 
the result is calculated by a process running on the other processor. A channel can be used to 
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retrieve an (intermediate) result in a demand-driven way, i.e. as soon as the result of a 
subreduction is needed a request for the result is made. This request will be answered if the 
corresponding result is in root normal form. Note that the channel vanishes after the result has 
been returned. Because the copying is lazy new channels may have come into existence. 

The question is now when is the non-interference condition fulfilled for reducers running on 
different virtual processors such that they can run in parallel instead of interleaved. The non­
interference condition is satisfied if the following conditions are met. It must be guaranteed 
throughout the execution of the program that when a parallel reducer is demanding information 
from a channel which refers to another virtual processor, 

- this subgraph is either in root normal form (such that it can be lazy-copied to the demanding 
process) or, 

- there is a process running on the other virtual processor which is reducing the subgraph if it is 
not yet in root normal form (such that the demanding process will wait until the information 
has been reduced to root normal form). 

Virtual processors which satisfy these conditions are called loosely coupled virtual processors. 

It is possible to prove that this allows the weakening of the restriction of interleaving to 
parallelism with respect to the loosely coupled virtual processors: parallel reducers running on 
different virtual processors work on loosely connected subgraphs. They can only access 
subgraphs on other processors via copying deferred nodeid's (channels). The demanding reducer 
will wait if the information is not in root normal form because in that case another process is 
reducing the information. If the information is in root normal form a lazy copy is made. In that 
case the resulting graph, i.e. the original graph of the demanding reducer together with the copy 
that has been made, is also loosely connected. 

Unfortunately, it is in general undecidable whether virtual processors are also loosely coupled 
virtual processors. In general one cannot prove, when a parallel reducer is demanding 
information from a channel, that this information will either be in root normal form or that there 
will be a process running on it. 

A method to create loosely coupled virtual processors 

The obvious method which guarantees that virtual processors are loosely coupled, is by creating 
a reducer on every deferred node. Hence, when a deferred node is created, at the same time also 
a process is started which reduces the deferred node. So, when via a copy a channel will be 
created to the node, the node will already be in root normal form or a reducer is still reducing it to 
root normal form. Therefore using this method the non-interference condition is guaranteed to be 
true. 

We introduce two abbreviations (e) and ( i ] that can be put on a node n. 



Parallel Graph Rewriting on Loosely Coupled Machine Architectures 139 

Example: 

Fib η -> +1 left right, 
left: (i) Fib (-1 η 1), 
right: (e) Fib (-1 η 2) 

The {e} abbreviation (e for external) will create a new loosely coupled virtual processor together 

with an external reducer which reduces the corresponding loosely connected subgraph in parallel. 

To realize this, a channel to a lazy copy of the subgraph is made and a process is created to 

reduce this copy. The channel provides that a (lazy) copy of the result is returned if its value is 

demanded on other processors. In particular a lazy copy of the result is returned to the father 

process if it demands its value. 

The Ш abbreviation (i for internal) will create a new internal reducer on the same virtual 

processor which reduces the corresponding subgraph interleaved with the other processes on the 

same virtual processor. A deferred node to this subgraph is created which provides that a (lazy) 

copy of the result is returned if its value is demanded on other virtual processors (since all virtual 

processor are created via lazy copies, this demand will come via a channel). To realize this, a 

deferred node to the indicated subgraph is made and a process is created to reduce it. 

The fe} and [ i} abbreviations may be used on the same positions as annotations. For each 

occurrence a simple program transformation is made. More precisely, 

Each occurrence of: will be substituted by: 

η : {e} Sym aj . . an η : I x c , 
χ : ( ! ! ) Id Ус, 

у : Sym ax . . an 

A reducer is created by the ( ! ! } annotation, it will reduce a node which contains the identity function of a lazy 
copy of ihe annotated node Sym ai . . an. The node on which the reducer is started, is itself deferred and a 
channel is immediately created to it via the copy in the new definition of the node n. 

η : ( i ) Sym a! . . an η : {! !) Id x, 

χ : Sym a i . . a n 

A reducer is created on a deferred node. All sharing is maintained. 

The nodeid's χ and у in the substitution rules stand for nodcid's not used elsewhere in the rewrite rale. 

I is just the identity function: ι χ -> χ; 
The indirection nodes are created to see to it that the copies are made correctly. In the following they are 
considered to be internal nodes. 

When an {e ) or ( i ) abbreviation is put on a nodeid, this is equivalent with putting it on the node 

the nodeid belongs to. 

Examples 

In this section some small examples are given illustrating the expressive power of the method for 

loosely coupled evaluation. 
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Non-hierarchical process topology 

With the ( e ) abbreviation parallel (sub)reduction can be created and distnbuted over a number of 

virtual processors. With the creation of internal processes by using {ι), multiprocessing can be 

realized on each virtual processor. The only way to refer to such an internal process is via its 

channel. If such a channel node is passed (via a lazy copy) to another virtual processor, a 

communication channel between this processor and the reducer on the original processor is 

established. In this way any number and any topology of communication channels between 

processes and processors can be set up. For instance, it is possible to model a cycle of virtual 

processors. An example of this is given in one of the example programs of section 7.5.2. In the 

following example a simple non-hierarchical process topology is demonstrated. It serves the 

purpose of explaining how such process topologies can be expressed (it does not realistically 

implement the Fibonacci function). 

The F i b example using a non-hierarchical process structure (which is very unconventional for Fib) : the 
second call of F i b will be executed on another virtual processor but the argument of lhat call is reduced 
internally on the virtual processor lhat also does the first call of Fib 

F ib 0 
Fib 1 
F i b η 

1 
1 
+ 1 
m: 
о: 

(Fib (-ι η и : 
(e l Fib о, 
( i l - Ι η 2 

which is equivalent to: 

Fib 0 
Fib 1 
Fib η 

1 

1 

+ 1 

m : 

χ : 

У : 

(Fib (-1 ni)) m, 

I Xa 
( " ) Id Ус/ 
Fib о, 

1'') Id ζ, 
-Ι η 2 

So the following process topology is obtained (a snapshot of Ihc program execution of Fib 5 is given): 
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In the picture it is shown how the graph is dislnbulcd over two virtual processors Channels are dashed. Note 
that the direction of the flow of data through a channel is the reverse of the direction of the corresponding 
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reference in the graph In the following, internal indirection nodes are noi shown in pictures and their defer 
indications are added to the nodes they refer to. 

Asynchronous Virtual Processor Communication with Streams 

It is possible to model asynchronous communication between virtual processors, i.e. a virtual 

processor is already computing the next data before the previous data is communicated. To 

achieve this a family of internal processes has to be created connected to the communication 

channel between the processors. Each process computes a partial result which can be send across 

the channel. Just before a process delivers the partial result (and dies) it creates a new process 

chained via a new channel to the delivered result This new member of the family will compute 

the next partial result on the same way. For convenience sake, such a cascaded family of 

processes is often regarded as being one (asynchronously) sending process with some family 

name. The chain of channels is then regarded to be one channel. The total result which is copied, 

is sometimes called a stream. Note that this kind of stream is capable of sending over more than 

one node (a burst) at the same time. Furthermore, these streams can contain cyclic graphs such 

that cycles can be sent to another processor. 

A virtuai processor may contain several such families each producing a stream via a chain of 

channels. In the case of the following filter example the virtual processor contains exactly one 

such process: F i l t e r . It sends a stream via the channel to the process P r i n t . 

The following example describes an asynchronous communication behaviour with streams: 

Start list -> Print s, 

s: {el Filter list 2 

Filter Nil η -> Nil I 
Filter (Cons f r) η -> IF (=1 (MOD f η) 0) 

(Filter r n) 
(NewFilter f r pr) 

NewFilter f r pr -> Cons f rest, 

rest: (i( Filter r pr 

The main virtual processor creates a new virtual processor on which the F i l t e r process is started The channel 
s is the communication channel between the two processors. The function F i l t e r removes from its first 
argument, which is a list, all the elements which are divisible by the number η A part of the stream becomes 
available as soon as F i l t e r has computed an clement of the result list and a new interleaved F i l t e r process 
has been created. It may start already computing the next element of the stream before the first is asked to be 
communicated. The partial stream result is a list containing the first clement and a new channel reference to the 
new filtenng process. 

Assume that the list to be filtered is the list containing the natural numbers from 1 to 7. Then the following 
situations can anse: 
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•»processor 1 
" a c t i v e P r i n t e r p r o c e s s 

Cons ^ ^ f j Γι 
• « l i ; » Cons · 

ш 1 ...a '"•died Filter ../ '•-died Filter .S '*·-αιβα Filter 
t 

I 
F i l t e r 

· - r u u 

^processor 2 active Filter process 
IH) У 

Now the three list elements, root normal forms yielded by successive filter processes, can be shipped with one 
lazy copy action. 

/ 
P r i n t 

s » ·—I №· Cons 4 

• δ 
• · 

" p r o c e s s o r 1 
•active Printer process 

(7* 

F i l t e r d · · • Cons Ч^ 

\ì i r 

7 I N i l 

active Filter process 
^ - p r o c e s s o r 2 

The sieve of Eratosthenes 

The sieve of Eratosthenes is a classical example which generates all prime numbers. A pipeline of 
virtual processors is created. On each processor a sieve process (a family of processes actually) 
is running. Those Sieves hold the prime numbers in ascending order, one in each sieve. Each 
Sieve accepts a stream of integers as its input. Those integers are not divisible by any of the 
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foregoing primes in the pipeline. If an incoming integer is not divisible by the local prime as 

well, it is send to the next sieve. A newly created sieve accepts the first incoming integer as its 

own prime and outputs this prime and the channel of the next sieve to a printing processor. 

After that it starts sieving. A virtual processor called Gen sends a stream of integers greater than 

one to the first sieve. 

The Gen process and every sieve process proceed in more or less the same way as the Fi l ter 
process of the previous example. They all are actually families of processes servicing chains of 
channels. They are regarded as single processes. Every chain of channels is regarded as one 
channel. 

This can be represented in a picture as below (all arrows indicate flow of data on channels): 

Print 

Gen Sievel $s- Sieve2 Зіе еЗ 

So sievel holds 2 as its own prime, sieve2 holds 3, sieve3 holds 5, and so on. The printing 
process one by one receives the channel identifications from these sieves and collects the 
corresponding primes. Seen through the time this can be illustrated as follows: 

Print 

Gen 

ti 
¡ 

ъ- Sievel 

» 

ki. Sieve2 Шт « . , - . . - , 

The Sieve: 

Start 

Sieve (Cons pr stream) 

Gen η 

Filter (Cons f r) pr 

NewFilter f r pr 

Print s, 
s: (e) Sieve g, 
g: (e) Gen 2 

Cons pr s, 
s: (e) Sieve f, 
f: {i| Filter stream pr 

Cons η rest, 
rest : (i) Gen (!) (++I n) 

IF (=1 (MOD f pr) 0) 
(Filter r pr) 
(NewFilter f r pr) 

Cons f rest, 

rest: fi) Filter r pr 

Note that when the ( !} annotation in Gen would be left out, the increments of the integers would 

not be evaluated by Gen but by the first sieve. Even worse: because the result of Gen is copied, 

the sieve would have to recalculate every new integer by increments starting from 2. 
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Extending the method with lazy process creation 

With the {i) and (e) abbreviations processes and processors are created eagerly. However, 

sometimes it is necessary that processes and processors are created lazy. Since on a real 

architecture resources are limited, eager process and processor creation may cause serious 

problems in practise.. Furthermore, eager evaluation may cause infinite computations. With the 

following abbreviations we extend our method with ( 2.1} lazy process and ( ex} lazy processor 

creation. 

Each occurrence of: 

η : ( e i ) Sym a i . 

η : ( i i ) Sym a ! . 

• a n 

• a n 

will be substituted by. 

η : I x c , 
χ : Lid У с 
у : Sym a i 

η : Lid x# 
χ : Sym a i 

I is just the idenuty funcüon: Ι χ -> χ ; 

LI is an idenuty funcüon on which a process is created when its evaluation is demanded: 

( · ' ) LI χ -> x ; 

The nodeid's χ and y m the Subsumtion rules stand for nodeid's not used elsewhere in the rewrite rule Just as 
with eager virtual processor creation, the indirection nodes are created to see to it that the copies are made 
correctly. In the following they are considered to be internal nodes. 

Note that this extended method will create a channel on which a process is created automatically 

when its result is demanded. So, the non-interference condition which allows the weakening the 

restriction of interleaving, is fulfilled trivially. 

Compare the next example with the previous filter example. The filtering now only takes place on demand of 
the pnnung process Only when the printer wants a new filtered value, the filter calculates the next value. 

Start list -> Print s, 

з: (ei) Filter list 2 

Filter Nil η -> Nil I 
Filter (Cons f r) η -> IF (=1 (MOD f η) 0) 

(Filter r n) 
(NewFilter f r n) ; 

NewFilter f r η -> Cons f rest, 

rest: (ii) Filter r η ; 

7.5.2 CHALLENGES FOR PARALLEL GRAPH REWRITING 

Finally, the descriptive power of the proposed methods for loosely coupled evaluation is 

illustrated by applying them to meet two challenges which have been set for parallel graph 

rewriting. The classical Bounded Buffer algorithm and Warshall's shortest path algorithm. The 

second algorithm has also been used in a large ESPRIT project on parallel architectures and 

languages (Augusteijn (1985a), Augusteijn (1985b)) to test the expressiveness of parallel 

languages. 
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Bounded Buffer 

The first challenge to consider is the classical bounded buffer algorithm which is a test in 

expressing a certain memory and synchronization behaviour. In terms of its result as a function it 

is equivalent to the identity function. 

The wanted memory and synchronization behaviour is the following. Other processes are trying 

to put elements in the buffer or to take elements out the buffer. At any time not more than s i z e 

elements are in the buffer. When the buffer is full, no element can be put in. When the buffer is 

empty, no element can be taken out. When the buffer is not full or not empty, elements must be 

allowed to be put in or taken out. 

The memory and synchronization behaviour will be modelled via a family of processes. Together 

they are executed externally. Putting an element in the buffer is modelled via the list which is an 

argument of the function Buffer. When a reducer has rewritten GetNextEi or Buffer with the 

element to put in the buffer at the head of the list, then the element is in the buffer. Taking an 

element out of the buffer is modelled via the copying of the element of the result list to the 

Consume prOCCSS. 

S t a r t 

Buffer size (Cons hd tl) 

GetNextEi 0 list 
GetNextEi η (Cons hd tl) 

Consume χ 

Produce 

BufferSize 

Consume x, 
x: (e) Buffer BufferSize y, 
y: (e) Produce 

Cons hd rb, 
rb: fill Buffer size re, 
re: (i( GetNextEi size tl 

> 
> 

> 

> 

> 

list 
Cons hd re, 
re: U ) GetNextEi 

Print χ 

Gen 2 

100 

< — I n) tl 

This is the complete program. When an element is taken out of the buffer, a new Buffer is lazy 

created. By rippling through the buffer this new Buffer reducer will start a new GetNextEi 

reducer to input an element when s ize- i other elements have been put in. 

A parallel version of Warshall's shortest path algorithm 

The second challenge that is considered, is a parallel version of Warshall's solution for the 

shortest path problem : 

Given a graph G consisting of N nodes and directed edges with a distance associated with each edge. The graph 
can be represented by an Ν χ N matrix in which the clement at the i-th row and in the j-th column is equal to 
the distance from node i to node j . Warshall's shortest path algorithm is able to find the shortest path within 
this graph between any two nodes. 



146 Parallel Graph Rewriting on Loosely Coupled Machine Architectures 

Warshall's shortest path algorithm: 

A path from node j to node к is said to contain a node i if iL can be splil in two paths, one from node j lo node i 
and one from node i to node к (i/j & i^k). Let SP(j,k,i) denote Ihc length of the shortest path from node j to 
node к that contains only nodes less than or equal to i (0<i & l<j,k & i JJÍ<N). 
So 

SP(j,M>) =0 ifj=k 
= d if there is an edge from j lo к with distance d 
= «о otherwise 

SP (j.k,i) = minimum (SP O.k.i-1). SP (M.'"1) + SP (i,k,i-l)) 

Define a matrix M as follows: M[j,kJ = SP QM,i) for some i. The final shortest path matrix can be computed 
itcralively by varying i from 0 to N using the equations as described above. 

Observing the algorithm it can be concluded that during the i-th iteration the updating of the rows 

of the matrix can be performed in parallel. Therefore a separate process is introduced for each 

row of the matrix that updates its row during each iteration step. In the i-th iteration all the 

processes need to have access to row i as well as to their own row. This can be achieved by 

letting process i distribute its own row as soon as the i-th iteration starts. At first sight it seems to 

be difficult to express this updating and iterating in a parallel functional language. It will be 

shown how it can be expressed using the proposed method for loosely coupled evaluation. 

As in previous examples, all processes are actually families of processes. 

Representing the process structure in a picture gives (all arrows indicate flow of data on 

channels): 

Collect 

Τ 
¿»I Ro Row 1 Row 2 •%» Row i Row i+1 RowN 

Initially, all the row processes Row i are created and the initial matrix is distributed to these 

processes. Before Row i performs its i-th iteration it distributes its own row to the other 

processes. This is done in a pipeline, i.e. Row i sends its own row to Row j via Row i+i,.. . , 

Row j - i and Row j (counting modulo N from i to j). Process c o l l e c t asks all the row 

processes for sending their final result in the same way as the Print process asked for all prime 

numbers in the s ieve example of section 7.5.1 (in the picture all channels are drawn which at 

different moments serve this purpose). 

All processes are to be created eagerly, so the proposed method will be used without the 

extensions for lazy process creation. Then, the fairly complicated process graph can be specified 

directly in the following way: 

Start -> Collect out, 
out: le) Create 

Create out: Row 1 Initmat (Second out) 
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Row к (Cons row_n Nil) left -> Tup (Cons chanl Nil) chan2, 
chanl: (i) Finalrow chan2, 
chan2: (i) Iterate к 1 row_n left I 

Row к (Cons row_k restmat) left -> Tup (Cons chanl (!)(First next)) 
I !) (Second next), 

chanl: (i) Finalrow chan2, 
chan2: (i) Iterate к 1 row_k left, 
next: (e) Row (!)(++! k) restmat 

chan2; 

Create becomes the first Row process which has a reference to itself in order to make it possible 
to expand it to a cyclic row of processes. Each Row has two internal reducers of which one 
process will communicate with the other Rows during the iteration. The other selects the final 
result and communicates it to Collect. Each newly created ROW process should be connected to 
the preceding process by a channel. In order to create a channel from the process Row i to the 
process Row i+i, a reference to the first one should be given to the second one. This reference is 
passed via the parameter le f t of the function Row. The result of Row is a tuple (finalmat, 
rowprocN) in which finalmat is a list of channels to the Row processes. These can be used by 
Collect to retrieve the final result matrix. The second part of the result of create, called 

О 

rowprocN, is a reference to process Row Ν which should be given to the first one in order to 

make the cycle of Row processes complete. 

In this context, the iteration process is very simple: 

Iterate к i row_k left -> 
IF <>I i Size) 

(Cons row_k Nil) 
(IF (=1 к i) 

(Cons row_k nextit) 
(Cons row_i update) 

> , 
nextit: (i) Iterate к (++I i) row_k (Tail left), 
update: (i) Iterate к (++I i) (Updaterow row_k row_i dist_k_to_i) 

(Tail left), 
row_i: Head left, 
dist_k_to_i: Get row_k i ; 

Every iteration starts the next iteration as a new incarnation of itself via a new internal process. 

Before an iteration starts, i t e r a t e should output the i-th row. The i-th row is either the row of 

i terate itself or the row belonging to the left Row process. At the end i t e r a t e outputs its own 

row. The rest of the program is straightforward. 

7.5.3 MODELLING REWRITING ON OTHER ARCHITECTURES 

In this section the possibility to use PC-FGRS's to model rewriting on other kind of architectures 
is briefly discussed. 

Multiprocessing on a single processor 

Consider a single processor. Such a processor can be regarded as a special case of a 
multiprocessor architecture: there is only one processor. Therefore, a PC-FGRS is also suited to 
model rewriting on such an architecture. Although no real parallelism is possible on a single 
processor, the possibility to have "multireducing" is important. The classical example is of 
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course an operating system. On a single processor the context switch between reducers can be 
controlled without problems such that it can be guaranteed that each rewrite step is indeed 
indivisible in practise. 

Parallel architecture with global memory 

Consider a multiprocessor architecture with a global memory and a reducer running on every 
processor. If each rewrite step really would be indivisible there would be no parallelism left. If 
the indivisibility is not guaranteed one has to be very careful to assure that the modification of the 
graph by one reducer does not interfere with the rewrite action of another reducer. 

One can regard this kind of architecture as a special case of a loosely coupled architecture. The 
methods introduced for loosely coupled architectures introduced in the previous section, can also 
be used for architectures with global memories. 

If one would like to have maximum benefit of the global memory, the level of PC-FGRS's is too 
high. An other method is to make detailed assumptions on the way reducers are actually 
implemented. For instance, one can make an abstraction of the kind of machine code that 
presumably will be generated (take for example G-machine code (Johnson (1984)) or ABC-
machine code (Plasmeijer & van Eekelen (198-)). With this knowledge one can invent some 
clever locking scheme which assures that, preferably without loosing too much parallelism, 
wrong results cannot be produced. Another possibility is to search for certain classes of PC-
FGRS's for which it can be proven that the reducers can run in parallel without additional 
locking (Kennaway (1988a)). 

Research aimed at identifying situations in which in global memory architectures copying can be 
an efficient alternative for locking, might be very worthwhile. 

Systolic arrays 

It is possible to model synchronous communication which occurs in parallel architectures like 
systolic arrays. In such architectures the processors are synchronized and must communicate at 
exactly the same moment. This involves communication with a central clocking device. By 
specifying the clocking device explicitly as a separate process in the system also systolic 
synchronous communication can be modelled. 

7.5 .4 DISCUSSION 

It is clear that with the proposed abbreviations parallel programming is much easier than without 
them. They clearly represent the process structure. Still one has to be careful with their use. 
Normally the abbreviations will be used to obtain a parallel version of an ordinary sequential 
program. In general the sequential program has to be transformed to create the wanted processes 
and process topologies. 

If the abbreviations of any parallel program are regarded as comments, again a sequential version 
of the program is obtained. In the given examples such a sequential version would yield the same 
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rith the fol 

Start 

F χ 

I χ 

lowing 

-> 

-> 

-> 

: rules: 

r: A (F x ) , 
x : В у, 
у : ( Ü H d ζ , 
ζ : С χ ; 

Х с ; 

χ ; 

die normal form can be: 
(doing I before F) 

8 1 : A @13, 
813: В 015, 
S I S : С 013; 

result as the parallel version. Unfortunately, in general the normal form is not unique. In section 
7.3.6 it was showed that the normal form in a C-FGRS depends on the order of evaluation. In 
section 7.4.3 it was explained that the overall reduction strategy of a P-FGRS is non-
deterministic. Hence the normal form PC-FGRS will in general depend on the choices made by 
the reducer. A typical example is given below. 

but also it can be: 
(doing F before I) 

01 : A 013, 
013 : В 015, 
015 : С 0113, 
0 1 1 3 : В 015; 

Although the normal form is not unique, the different normal forms which can be produced are 
related. Modulo unravelling they are the same, i.e. if the normal forms are unravelled to terms, 
these terms are the same. This is a very important property. The consequence is that the use of 
PC-FGRS's as a base for the implementation of functional languages or of term rewriting 
systems is sound. In these cases first the terms are lifted to graphs and after reduction the graph 
in normal form will be unravelled to a term again. Then, always the same term will be yielded. 

Although the proposed abbreviations are very promising, perhaps for certain problems other 
combinations of lazy copying and process creation can be found which for such a particular case 
guarantee non-interference. 

7.6 GENERAL DISCUSSION 

Related work 

The idea to use annotations (Burton (1987), Glauert et al. (1987c), Goguen et al. (1986), Hudak 
& Smith (1986)) or special functions (Kluge (1983), Vree & Hartel (1988)) which control the 
reduction order is certainly not new. Some of them are introduced on the level of the 
programming language (Burton (1987), Hudak & Smith (1986), Vree & Hartel (1988)) while 
others are introduced on the level of the computational model (Glauert et al. (1987c), Goguen et 
al. (1986), rouge (1983)). They all express that an indicated expression has to be shipped to 
another (or to some concrete) processor. Most annotations (Hudak & Smith (1986), Goguen et 
al. (1986), Kluge (1983), Vree & Hartel (1988)) are only capable of generating strict hierarchical 
"divide-and-conquer parallelism". Non-hierarchical process structures are possible in Burton's 
proposal. He proposes a call-by-name parameter passing mechanism (which must involve 
copying of some nodes) between mutual recursive functions. In DACTL (Glauert et al. (1987c)), 
also based on Graph Rewriting Systems (Barendregt et al. (1987b)) there is no overall reduction 
strategy. This means that the reduction order is completely controlled by the annotations in the 
rewrite rules. This makes DACTL very suited for fine grain parallelism, but makes it very hard to 
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reason about the overall behaviour of the program. In all proposals copying graphs from one 
processors to another and back is implicit and cycles cannot be copied. 

Some annotations (Burton (1987), Hudak & Smith (1986)) are not only used to control 
parallelism but also to control the actual load distribution. Annotations for load distribution are 
not yet incorporated in the model, primarily because virtual processors can be freely created on 
the level of the computational model. Hence, another processor is just created (for instance using 
( e ) and ( ei ) ) when it is needed. However, not only for practical reasons, but also in order to 
reason about issues like load balancing, we will investigate the specification of load distribution 
in the future. 

Implementation aspects 

We already know that efficient implementation of FGRS's is possible on sequential hardware 
(Brus et al. (1987)). Type information (Plasmeijer & van Eekelen (198-)) and strictness 
analyzers (Nöcker (1988)) play an important role. 

An efficient implementation of multiprocessing (interleaved execution) is possible by indicating 
fixed places at which a process switch may occur. Examples of such places are termination of 
reduction, suspension of reduction and creation of an intermediate result. Compared with a pure 
sequential implementation a multiprocessing version will loose a bit of efficiency due to these 
context switches. Furthermore, each reducer has to check whether or not another reducer is 
working on its redex. 

PC-FGRS's are very suited for implementation on loosely coupled parallel architectures. Most 
problems which have to be solved of a more general nature: "How can a graph (with cycles) be 
shipped fast from one processor to another?", "What is the best suited algorithm for distributed 
garbage collection?", "What happens if one of the processors is out of memory or is completely 
out of order?". The efficiency of a parallel implementation will strongly depend on the solutions 
found for these general type of problems. These problems have to be solved for other kinds of 
concurrent languages too. Perhaps it is possible to adopt existing solutions. But also alternative 
solutions which take the special behaviour of GRS's into account are thinkable. 

Future work 

At the moment we are developing a reference simulator for PC-FGRS's. The ideas introduced in 
this paper will be incorporated in the language Concurrent Clean. Besides the concepts 
introduced in this paper (lazy copying, annotations for dynamic process creation, abbreviations) 
we will add annotations for load distribution and add predefined rules such that frequently used 
process topologies (pipelines, array of processes) can easily be defined. Efficient implementation 
of Concurrent Clean are planned on loosely coupled multiprocessor systems (e.g. a Transputer 
rack or a DOOM machine (Odijk (1987))). Developing an efficient implementation will also 
involve research to load balancing and garbage collection (without stopping all processors). 
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The theoretical properties of PC-FGRS's will be further investigated. Especially in the context of 
term graph rewriting new results are envisaged. Using sharing and lazy copying, different ways 
of lifting term rewriting systems to graph rewriting systems can be investigated. 

The combination with other strategies than the functional strategy may be interesting (van 
Eekelen & Plasmeijer (1986)). For instance, adding reducers following a non-deterministic 
strategy may be useful for the specification of process control, including scheduling and 
interrupts. 

7.7 CONCLUSIONS 

In this paper two extensions of Functional Graph Rewriting Systems are presented: lazy copying 
and annotations to control the order of evaluation. The extensions are simple and elegant. 

The expressive power of a FGRS extended with both notions is very high. Multiprocessing can 
be modelled as well as graph reduction on loosely coupled systems. Arbitrary process and 
processor topologies can be modelled, as well as synchronous and asynchronous process 
communication. 

The introduced abbreviations guarantee that the indicated subgraphs can be evaluated in parallel 
instead of interleaved. The abbreviations directly correspond with the notion of processes and 
processors and they are therefore relatively simple to use. The user-friendliness can be increased 
by creating libraries with functions which can create often used processor topologies like 
pipelines and arrays of processors. 

Efficient implementation of the proposed model on loosely coupled parallel architectures should 
be possible. Actual implementations are started. 

PC-FGRS's are very suited to serve as a base for the implementation of functional languages. 
Sequential functional languages can efficiently be implemented by translating them to FGRS's. 
The expressive power of the proposed abbreviations in PC-FGRS's and the properties of these 
systems will now make it also possible to exploit the potential parallelism in the programs 
successfully. 
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SUMMARY 

A model of computation (or a computational model) of a programming language is a formal 

model as close as possible to both semantics and implementation modelling only the essential 

aspects of them by making some abstractions. Via a model of computation it is much easier to 

reason about the language, its programs, its compilers and its dedicated machines. 

It is of course very difficult to find an ideal model which models every essential aspect of a 

programming language. In fact the classical (sequential and imperative) programming languages 

all have the same model of computation: the Turing machine. Clearly this model can only 

describe the very basic concepts of those languages. In this thesis a computational model is 

investigated for a general paradigm of programming (the declarative paradigm) and for one style 

of programming in particular (functional programming). 

In the declarative paradigm a desired computation is expressed in a static fashion as a list of 

declarations and an expression to be evaluated. A program is considered to be an executable 

specification. The most important property in the declarative paradigm is that an expression 

always has the same meaning independent of the history of the computation (referential 

transparency). Functional programming is very attractive because mainly through the use of 

higher order functions the expressive power of functional programming languages is higher than 

of conventional languages. Functional programming is more like mathematically specifying the 

algorithm. Functional programs are therefore generally shorter than their conventional 

counterparts and thus easier to enhance and maintain. 

Originally, the λ-calculus was commonly used as the computational model for functional 

languages. Combinatory logic however, has a much simpler substitution mechanism than the λ-

calculus but it lacks pattern matching. Term rewriting systems do contain pattern matching but it 

is impossible to express sharing directly in term rewriting systems. Graph rewriting systems 

combine all these aspects, so they are investigated in this thesis in a general context and more 

specifically as the model of computation for functional languages and their implementations. 

In chapter 3 we have introduced multi-level rewriting systems which in practise are proven to be 

very useful for high level specifications varying from specifying reduction strategies to 

specifying the operational semantics of a programming language. 

With term graph rewriting which is introduced in chapter 4, some fundamental theoretical results 

are obtained on modelling term rewriting with graph rewriting. Term graph rewriting means that 

a term rewriting system (TRS) is interpreted (lifted) as a graph rewriting system (GRS). The 

normal forms of the GRS which are graphs, are unravelled to terms in the TRS world. Via term 

graph rewriting it is proven that sharing terms is sound. Furthermore restrictions are given which 

ensure completeness of sharing implementations. Term graph rewriting is a very promising topic 

for further research. 
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In chapter 5 generalized graph rewriting is defined which is very powerful and of independent 
interest as a general model of computation for parallel architectures. Lean is an experimental 
language for specifying computations in terms of graph rewriting. It is very powerful since there 
are few restrictions on the graph that is transformed and the transformations that can be 
performed. It is worthwhile to further investigate generalized graph rewriting yielding as a spin­
off programming languages based on subclasses with specific properties and advantages 

Clean which is described in chapter 6, is an example of such a spin-off language. The language 
is based on restricted graph rewriting (functional graph rewriting). Clean is in practise proven to 
be very suited as an intermediate language for functional languages and sequential machine 
architectures. An efficient sequential implementation of a high level functional language has been 
constructed by using Clean as an intermediate language. 

In chapter 7 graph rewriting is extended with lazy copying and explicit parallelism yielding a ve^ 
promising model for loosely coupled parallel evaluation of functional programs. Its expressive 
power and its properties will make it possible in the near future to exploit the potential parallelism 
in functional programs successfully in a general way. Actual parallel implementations are started. 

Much research on graph rewriting systems still has to be done (taxonomy, typing, strategies, 
strictness analysis, implementation techniques, parallel evaluation, garbage collection, etcetera). 
But the results achieved so far are very promising, justifying further research on graph rewriting 
theory and on identifying special classes of graph rewriting systems. Furthermore, actual 
experiments with sequential and parallel implementations are necessary to achieve more 
experience and to identify key issues. 



162 

Parallel Graphherschríjven 

Enkele bijdragen aan de theorie, de implementane en de toepassing ervan. 

SAMENVATTING 

Een berekeningsmodel van een programmeertaal is een formeel model zo dicht mogelijk bij zowel 
de semantiek als de implementatie waarbij alleen de essentiële aspecten gemodelleerd worden 
door enkele abstracties te maken. Door zo'n berekeningsmodel is het veel gemakkelijker om te 
redeneren over de taal en de bijbehorende programma's, vertalers en machines. 

Het is natuurlijk heel moeilijk om een ideaal model te vinden dat elk essentieel aspect van een 
programmeertaal modelleert. Alle klassieke (sequentiële en imperatieve) programmeertalen 
hebben in feite het zelfde berekeningsmodel: de Turing machine. Het is duidelijk dat dit model 
alleen de meest fundamentele aspecten van die talen kan modelleren. Dit proefschrift beschrijft 
onderzoek naar een berekeningsmodel voor een algemeen paradigma van het programmeren (het 
declaratieve paradigma) en voor één stijl van programmeren in het bijzonder (functioneel 
programmeren). 

In het declaratieve paradigma wordt een gewenste berekening uitgedrukt op een statische manier 
als een lijst van decalaraties met een expressie die geëvalueerd dient te worden. Een programma 
wordt beschouwd als een executeerbare specificatie. De belangrijkste eigenschap in het 
declaratieve paradigma is het feit dat een expressie altijd dezelfde betekenis heeft onafhankelijk 
van de geschiedenis van de berekening (de taal is referentieel transparant). Functioneel 
programmeren is heel aantrekkelijk omdat voornamelijk door het gebruik van hogere orde 
functies de uitdrukkingskracht van functionele programmeertalen groter is dan die van 
conventionele talen. Functioneel programmeren lijkt meer op het mathematisch specificeren van 
het algorithme. Functionele programma's zijn daarom over het algemeen korter dan hun 
conventionele tegenhangers en dus zijn ze gemakkelijker te verbeteren en te onderhouden. 

Oorspronkelijk werd λ-calculus algemeen gebruikt als het berekeningsmodel voor functionele 
talen. Combinatorische logica heeft echter een eenvoudiger substitutiemechanisme dan de λ-
calculus maar het heeft geen pattern matching. Tenmherschrijfsystemen bevatten wel pattern 
matching maar termherschrijfsystemen hebben niet de mogelijkheid om sharing direct uit te 
drukken. Graphherschrijfsystemen combineren al deze aspecten. Daarom zijn graphherschrijf-
systemen het onderwerp van onderzoek in dit proefschrift. Graphherschrijfsystemen worden 
onderzocht in algemene zin en als berekeningsmodel voor functionele talen en hun 
implementaties. 
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In hoofdstuk 3 hebben we meer-niveau herschrijfsystemen geïntroduceerd. Van deze systemen is 
het in de praktijk bewezen dat ze bijzonder nuttig zijn voor hoog niveau specificaties variërend 
van het specificeren van reductiestrategieën tot het specificeren van de operationele semantiek van 
een programmeertaal. 

Met behulp van termgraphherschnjven (ingevoerd in hoofdstuk 4) zijn enkele fundamentele 
resultaten behaald op het gebied van het modelleren van termherschrijven met graphherschrijven. 
Termgraphherschrijven betekent dat een TermHerschrijfSysteem (THS) wordt geïnterpreteerd als 
(getild naar) een GraphHerschrijfSysteem (GHS). De normaalvormen van het GHS, dat zijn 
graphen, worden ontrafeld tot termen in de THS-wereld. Via termgraphherschrijven wordt 
bewezen dat het 'sharen' van termen gezond is. Bovendien worden restricties gegeven die de 
compleetheid garanderen van implementaties die sharing gebruiken. Termgraphherschrijven is 
een veelbelovend onderwerp voor verder onderzoek. 

In hoofdstuk 5 wordt gegeneraliseerd graphherschrijven gedefinieerd. Dit berekeningsmodel is 
bijzonder krachtig en het is van onafhankelijk belang als algemeen berekeningsmodel voor 
parallelle architecturen. Lean is een experimentele taal voor het specificeren van berekeningen in 
termen van graphherschrijvingen. Deze taal is bijzonder krachtig aangezien er slechts weinig 
restricties zijn op de graph die getransformeerd wordt, en eveneens zijn er weinig restricties op 
de transformaties die uitgevoerd kunnen worden. Het is de moeite waard gegeneraliseerd 
graphherschrijven verder te onderzoeken, wat als 'spin-off programmeertalen oplevert die 
gebaseerd zijn op deelklassen met specifieke eigenschappen en voordelen. 

Clean (beschreven in hoofdstuk 6) is een voorbeeld van zo'n spin-off taal. De taal is gebaseerd 
op een beperkt soort graphherschrijven (functioneel graphherschrijven). De praktijk heeft 
uitgewezen dat Clean zeer geschikt is als tussentaal voor functionele talen en sequentiële 
machine-architecturen. Een efficiënte sequentiële implementatie van een hogere functionele 
programmeertaal is met behulp van Clean als tussentaal tot stand gekomen. 

In hoofdstuk 7 wordt graphherschrijven uitgebreid met lui copiëren en expliciet parallellisme, 
hetgeen een veelbelovend model oplevert voor los-gekoppelde parallelle evaluatie van functionele 
programma's. De uitdrukkingskracht en de eigenschappen van die uitbreidingen zullen het in de 
nabije toekomst mogelijk maken om het potentiële parallellisme in functionele programma's op 
een algemene manier succesvol te benutten. Met daadwerkelijk parallelle implementaties is een 
begin gemaakt. 

Er dient nog veel onderzoek op het gebied van graphherschrijfsystemen gedaan te worden 
(taxonomie, typering, strategieën, strictheidsanalyse, implementatietechnieken, parallelle 
evaluatie, 'garbage' collectie, etcetera). Maar de tot nu toe geboekte resultaten zijn veelbelovend 
hetgeen verder onderzoek rechtvaardigt op het gebied van de graphherschrijftheorie en naar het 
indentificeren van speciale klassen van graphherschrijfsystemen. Bovendien zijn daadwerkelijke 
experimenten met sequentiële en parallelle implementaties noodzakelijk om meer ervaring te 
verkrijgen en om de kernproblemen te identificeren. 
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Stellingen behorend bij het proefschrift 

Parallel Graph Rewriting 

Some Contributions to its Theory, its Implementation and its Application 

Marko van Eekelen 2 December 1988 

1 Het is mogelijk met behulp van graphherschrijfsystemen functionele programmeertalen 
efficiënt te implementeren op parallelle machine-architecturen die bestaan uit los-gekoppelde 
traditionele sequentiële processoren. 

2 Het overvloedig gebruik van functiecompositie als programmeerstijl komt weliswaar vaak de 

correctheid en de bewijsbaarheid ten goede maar de leesbaarheid wordt er veelal door 

geschaad. 

3 Het afleiden van types in de functionele programmeertaal Miranda dient beschouwd te worden 

als een faciliteit van de programmeeromgeving en niet als een inherente eigenschap van die 

programmeertaal. 

4 Het verdient aanbeveling bij het inleidend universitair programmeeronderwijs de beginselen 

van functioneel programmeren te onderwijzen voordat de beginselen van imperatief 

programmeren aan de orde komen. 

5 Samenwerking tussen onderzoekers op internationaal en op nationaal niveau is vruchtbaarder 

naarmate de motivatie voor de samenwerking meer op inhoudelijk dan op financieel gebied 

ligt. 

6 De totale tijd die door systeembeheerders en gebruikers besteed wordt aan het functioneren 

van electronic mail, is veel groter dan de resulterende tijdswinst bij het overbrengen van 

boodschappen. 

7 Bij elk nieuw boek dient de verantwoordelijke uitgever de inhoud via electronische middelen 

aan de blindenbibliotheek ter beschikking te stellen opdat het boek ook in braille snel en 

goedkoop beschikbaar kan komen. 

8 De bepaling in de promotie-reglementen dat in een proefschrift de promotor en de co-referent 

niet bedankt mogen worden, doet onrecht aan hun voortreffelijke ondersteuning bij het tot 

stand komen van het proefschrift. 

9 Wanneer men de vergrijzing van Nederland effectief wil bestrijden dan moet men er voor 

zorgen dat er bij elke werkplek in Nederland op geringe afstand goede kinderopvang 

aanwezig is. 

10 Voor het welslagen van een volksdansdemonstratie is het noodzakelijk dat de 

demonstratiegroep zich in de betreffende volksaard inleeft zonder dat spontaniteit en 

enthousiasme verloren gaan. Wellicht is dit de reden dat veelal het meest treffende resultaat 

bereikt wordt, wanneer dans en volksaard natuurlijkerwijs overeenkomen. 

11 Hoewel de uitspraak "D'r ga niks bove Beilege" geografisch en taalkundig evident onjuist is, 

verkondigt hij voor diegenen bij wie de Bergse Vastenavend met de paplepel is ingegoten, 

gevoelsmatig een eeuwigdurende waarheid. 

12 Een kwaliteitskrant zou niet alleen gekenmerkt moeten worden door het feit dat de lezer zelden 

afgeeft op de krant, maar ook door het feit dat de krant zelden afgeeft op de lezer. 








