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Introduction 

The interaction of an animal with its environment is under the control of 
the nervous system. Information concerning the state of the external world 
is registered by the sensory system of the animal. The sensory information 
is passed to the nervous system for further analysis as to its relevance for the 
animal. After evaluation appropriate command signals may be sent to the motor 
system to act in response to the external stimuli. 

The influence of a sensory stimulus depends on the properties of the sensory 
system. The sensitivity to a sensory modality is species-dependent. In this 
thesis, attention is focused on acoustic stimuli and their transformation by the 
auditory system of a lower vertebrate, the grassfrog (βαηα temporaria L.). The 
grassfrog is the animal used to investigate the auditory system, and neural data 
will be presented from this animal. 

The auditory system of the grassfrog is sensitive to frequencies between 100 
and 5000 Hz. Sound enters the ear of the grassfrog at the ear-drum (tympanic 
membrane). Vibrations of the tympanic membrane are transported to the inner 
ear. In contrast to higher vertebrates, frogs have two inner ear organs sensitive 
to sound: the amphibian papilla processes sound with frequencies in the range 
100-1000 Hz, and the basilar papilla sound with frequencies above 1000 Hz. 
Hair cells located at the amphibian and basilar papilla change the mechanical 
vibrations into electrical action potentials suited for further processing by the 
brain. 

The brain consists of numerous neurons (Katz 1966) which form a network. 
Structurally a neuron can be divided into three parts: the dendrites (input), its 
soma, and an axon (output). The dendritic tree combines the messages of many 
other connecting neurons and transforms them into a generator potential. 
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Figure 1: Schematic overview of the auditory nervous system of the grassfrog 
(an anuran). For convenience only ascending neural pathways entering and 
leaving the ¡eft torus semicircularis are indicated (with kind permission of W. 
Epping (1985)). 

The generator potential controls the generation of action potentials at the 
soma. The output channel of a neuron is formed by an axon along which the 
action potential is transported to other parts of the nervous system. Interaction 
between neurons occurs at the synapse, the junction between different neurons. 
In this perspective the nervous system is an intricate network of cell bodies 
connected by axons and dendrites. Along this wiring neural communication 
takes place. 

Neurons are to a certain degree grouped into functional units or nuclei. Some 
of them are more specialized in the processing of a certain sensory modality. 
In general nuclei in peripheral parts of the brain receive input from only one 
sensory modality e.g. vision or hearing. At higher levels, the various information 
sources are integrated. The largest auditory nucleus of the grassfrog is the torus 
semicircularis (TS), which is located in the midbrain and contains about 30000 
neurons. 

Neural activity is recorded by means of micro-electrodes (for experimental 
procedures the reader is refered to Epping and Eggermont 1985). Here attention 
will be focused upon the electrical pulses or action potentials related to sensory 
stimuli. An action potential or neural event lasts about 1 millisecond. During 
the refractory period of several milliseconds directly after the generation of an 
action potential, new action potentials cannot be generated; moreover neural 
activity is suppressed for another few milliseconds. The action potential is 
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the manifestation of ionic currents through the nerve membrane . The action 
potential occurs at the axon-hillock peripheral to the soma, and propagates 
along the axon away from the soma. The action potential is combined with 
output from other neurons in the dendritic tree. The result of the interaction 
of post-synaptic potentials is the generator potential and current . When they 
cross a critical level a new action potential is likely to be generated. 

In peripheral par ts of the sensory system, neural activity is often clearly 
related to a stimulus. For instance, many neurons in the TS of the grassfrog re
spond with characteristic activity pat terns to a mat ing call (B-call) (see Chapter 
4, figure 13). A common method to s tudy the st imulus-(neural)event relation 
is by means of correlation procedures. An experiment-oriented approach is the 
reverse correlation method (de Boer and Kuyper 1968, Eggermont et al. 1983) 
which describes average properties of stimuli which have evoked a neural event. 
The reverse correlation method is put on a sound formal base through the con
cept of the pre-event stimulus ensemble (Aertsen et al. 1980, Johannesma and 
Aertsen 1982). Reverse correlation functions are obtained by suitable averages 
over the pro-event stimulus ensemble. From the pre-event stimulus ensemble 
the spectro-temporal receptive field (STRF) (Aertsen et al. 1980) can be de
termined which yields the frequency content of the stimulus as a function of 
time. However this characteristic in general depends on the part icular stimulus 
ensemble used(Aertsen and Johannesma 1981). 

The behavior of neurons in lower auditory stat ions can be related to simple 
characteristics (spectral, temporal , and spatial) of sound. In the midbrain of 
the grassfrog the various aspects are intricately coupled. This finding provides 
evidence for the presence of interneuronal connections. Functional connections 
can be determined by observing the activity of several neurons simultaneously. 
These functional connections might explain the capabilities of the grassfrog to 
identify and localize various (species-specific) sounds. Multi-unit activity was 
studied by Epping and Eggermont (1987). The correlation of the activity of 
different neurons appears to be st imulus-dependent. 

The correlation between two time series of neural events requires a distance 
function. However, no objective distance function or measure for point processes 
is as yet available. In most experimental studies t ime is divided into "bins" and 
the choice of the binwidth is left to the experimenter 's intuition of what is 
appropriate . 

The work mentioned above is single-spike oriented: given the occurrence of 
an action potential what are the properties of the acoustic stimulus? Here this 
question will be generalized to actitivity pa t te rns of several neurons: given the 
neural activity, what might have been the stimulus or stimulus characteristics? 
This question has been posed before in a more limited form. Given the neural 
activity, a small set of stimulus parameters , like intensity and frequency, has 
been est imated. See Chapter 2 for references. The validity of such an approach 
is of course limited to cases dealing with a low-dimensional stimulus ensemble. 
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Figure 2: The stimulus is transformed into neural activity by the sensory system 
and mapped back into the stimulus space. 

Here all stimulus aspects will be investigated, although the examples presented 
are low-dimensional, limited as they are by the two dimensions of this paper. 
The reverse mapping from the neural activity into the stimulus space is called 
the sensory interpretation of the neural activity (see figure 2). This implies that 
the evoked activity in the nervous system is interpreted as an internal image 
of the outer world which is decoded by the reverse map (Johannesma 1981, 
Johannesma et al. 1986). 

Neural activity is interpreted within the context of a model of sensory trans
formation. A complete description of the activity of a single neuron already 
requires a model depending upon many variables. However, due to e.g. the 
Hodgkin-Huxley equations these variables are interdependent, and a reduction 
to a few descriptive variables might be feasible. The model used in this thesis is 
based upon previous work by Johannesma and van den Boogaard (1985), and 
consists of two parts: 1) a low-order Volterra system followed by 2) an expo
nential pulse generator. The Volterra system incorporates the deterministic and 
dynamic aspects of neural interaction: dendritic integration. The output of the 
Volterra system is the generator potential. The generator potential represents 
the state of the neuron. The exponential pulse generator reflects the stochas
tic nonlinear process of action potential generation at the axon-hillock. The 
description of the action potential is reduced to the moment of its occurrence. 
The waveform is not taken into account and is used only for identification of 
action potentials in multi-unit recordings (Epping and Eggermont 1987). Such 
an abstracted sequence of action potentials is called a point process. For an 
extensive treatise concerning point processes in relation to the present model 
the reader is refered to van den Boogaard 1985. 

Once a model is set up, the neural activity pattern can be related to the 
time-space of sensory stimuli. A stochastic approach is taken to describe the 
set of stimuli. The model and the realization of the neural activity pattern 
determine the conditional probability distribution of the stimulus. 
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Figure 3: Schematic representation of the neuron model. 

The reverse mapping from neural activity into sensory stimuli is probabilis
tic. The conditional distribution may be characterized by its maximum: the 
most plausible stimulus (Chapter 2). However this method fails when the max
imum is not unique. Many neurons in the TS are insensitive to variations in 
the absolute phase of the stimulus signal. Therefore a more general approach 
is needed. This is done in Chapter 3, where the characteristic functional is 
introduced. 

From the characteristic functional experimental quantities such as correla
tion functions can be obtained easily. Correlation functions can be ordered 
into a series of increasing complexity. In general all correlation functions are 
required to describe a set of signals completely. However if the ensemble is 
Gaussian distributed only two correlation functions are needed: average and 
covariance. In Chapter 4 the stimulus distributions are assumed to be approxi
mately Gaussian. In this case, the average equals the most plausible stimulus. 
Since the most plausible stimulus is inappropriate to characterize the mapping 
by neurons in the TS, the second correlation function is used in Chapter 4. Af
ter a few approximations and a linear transformation of the second correlation 
function, a spec tro-temporal representation of the stimulus is obtained. The 
validity of the approximations is supported by neural data. The approxima
tions exclude neural interaction. This omission is corrected by the theoretical 
analysis of Chapter 5. As an addendum, in the final Chapter 6, the Optimal' 
model given the experimental correlation functions is derived. Here 'optimal' is 
to be understood as maximally random given the restraints. The outcome turns 
out to be the model introduced by Johannesma and van den Boogaard (1985) 
and used in this thesis. 
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Sensory Interpretation of Neural Activity 
Patterns 

С. С. A. M. Gielen G. H. F. M. Hesselmans 
P. I. M. Johannesma 

Abstract 

Interaction of an animal with its environment depends on motor ac
tivity and sensory stimuli from the environment. Sensors (e.g. visual, 
auditory, vestibular) give a transformation of stimuli into neural activity 
patterns which can be used to construct or update the internal represen
tation. This procedure requires an evaluation of the neural activity in 
terms of sensory processes. 

This paper presents a theoretical approach for the sensory interpre
tation of neural activity based on a Bayesian estimation. The procedure 
implies a maximum likelihood estimation of the sensory stimulus that 
could have induced the observed neural activity pattern. The theoretical 
procedure is tested in a model study simulating the stochastic activity of 
a set of auditory nerve fibers. The results of the reconstructed stimuli are 
in good agreement with the stimuli that induced the neural activity in the 
auditory nerve fibers. 

1 Introduction 

Interaction of an animal with it on the sensory stimuli induced by the motor 

activity and/or generated by the environment. Sensors allow the animal to 

transform stimuli into a neural signal which is used to construct an internal 

representation of the environment. Effectors, such as muscles, allow the animal 

to interact with its environment. The role of the nervous system is to evaluate 

the signals from the sensors and to transform the information into a command 

signal for the effector system. As such the properties of the sensors determine the 

characteristics and limitations of the internal representation and, consequently, 

the behavioral repertoire. 

These considerations have led to the question to what extent bounds can 

be defined for the internal representation, such as range and resolution, from 

knowledge of the peripheral transducer elements, which transform a st imulus 

into a neural code. 

MATHEMATICAL BIOSCIENCES 87: (1987) 
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A large amount of information is available concerning the properties of sen
sory neurons of different modalities. For most sensory systems the main trans
duction properties of the sensors or receptors are known (see e.g. (2lj, [27], [31], 
[32]). Given the mapping of the stimulus into an activity pattern of sensory 
neurons the question arises, whether the inverse map, from a neural activity 
pattern into a sensory stimulus, exists and can be determined. This inverse 
mapping is a necessary requisite for an effective interaction of the organism 
with its environment. Apart from properties of the sensory transducer elements 
this inverse mapping is also determined by the topological structure of the neu
ral elements. For each sensory modality part of the stimulus space is covered 
by a large number of elements, which together give a neural representation of 
the stimulus. Just as with the receptive fields in the retina ([22]) each point 
of the stimulus space is covered by the receptive field of more than one sensor, 
such that neural activity in different neurons is correlated. Since the distribu
tion of receptive fields of the sensors is not homogeneous ([30, 21]) qualitative 
and quantitative aspects of the neural representation of the stimulus will not be 
homogeneously represented. This puts some constraints on the interpretation 
of multi-unit activity, i.e. the map from the neural activity in a large number 
of neurons to the stimulus space. 

If the inverse map can be defined and determined in relation to experimental 
data, then what type of insight does it supply, We suggest that this inverse map 
can be considered as a sensory interpretation of the neural activity. It limits the 
perceptual resolution, which is constrained by the characteristics of the sensory 
neurons, and may indicate the relevant 'dimensions' in perception. 

Proposals for a "sensory interpretation" of the activity of sensory neurons 
have been presented before. However in these publications the stimulus-space 
is reduced to a low-dimensional one, e.g. stimulus intensity and frequency in 
the auditory field ([6, 36]) and intensity, saturation and hue perception in vision 
research ([5, 8]). All these investigations were concerned with the estimation 
and discriminability of few parameters of simple stimuli, e.g. sustained tones 
or clicks. This paper presents a way to deal with time varying stimuli and to 
construct dynamic estimates of the complete stimulus. 

In section 2 a set of formal definitions are presented to describe the stimulus 
space and the neural activity of a population of neurons. The characteristics 
of these sensory neurons will be assumed to be known. Next a Bayesian esti
mation procedure is developed to find the map φ, which represents the sensory 
interpretation of the neural activity, i.e. a map from the space of neural states 
into the stimulus space. Subsequently, the most plausible stimulus associated 
with this pattern of neural activity is defined and approximatively computed. 
This estimation procedure uses probability functions, which are conceptually 
closely related to the information processing by the nervous system, since the 
generation of action potentials by neurons is a stochastic process. In section 3 
the theory to find the most plausible stimulus is further elaborated. Relevant 
questions in this context concern existence, uniqueness and characteristics of 
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the map φ. It will be shown t h a t under some general conditions at least one, 

but in general more t h a n one most plausible stimulus exists, thus leading to 

ambiguity in sensory interpretat ion. 

In section 4 t h e theoretical procedure, outlined in sections 2 and 3, is applied 

to a model of a p a r t of the nervous system, which is reasonably well understood: 

the auditory nerve, which carries the auditory information into the brain from 

the cochlea, where the mechanical vibrations, induced by a sound, are trans

formed into neural activity of the approximately 30,000 auditory nerve fibers. 

2 Probabilistic description of sensory stimulus 
and neural activity 

Neural activity and sensory stimuli will be described as variables in discrete 

t ime. T h e discretization of t ime is represented by intervals Δ ί . T h e restrictions 

on Δ ί will become clear in the text . 

The neural activity at t ime t in populat ion of К neurons is given by the 

vector ζ = ζ( ί ) of dimension К with 

zk(t)€{0,l}. (1) 

In this equat ion г^(() is 1 or 0 corresponding to presence or absence of an 

action potential in neuron к in the time interval \t,t + At). Since the description 

in this paper is based on probability functions, it implies t h a t valuable results 

can be obtained only if the number К of neurons is sufficiently large. One reason 

for the t ime discretization is given by the discontinuous character of the neural 

activity. A single neuron can be considered as being in one of two s tates : it 

generates (z^ = 1) or no (z^ — 0) an action potential . T h e s ta te of a neuron 

depends on the combined effect of all input signals and on t ime. T h e probability 

for the neuron to generate an action potential increases monotonically with the 

sum of all input signals. After an action potential has been generated the 

probability for another action potential to occur is lowered for a short while 

(approximately 1 msec). Because of the stochastic n a t u r e of this process the 

probability function, describing the probability of the neural s tates as a function 

of the st imulus will be considered. The definition ( l ) imposes the restriction on 

At to be so small, t h a t a neuron can generate at most one action potential in 

the time interval Δ ί . Therefore Δ ί should be in the order of 1 rns, definitely 

not longer. 

In the following t h e vector χ denotes a st imulus. Depending on the sensory 

system under investigation χ represents the pressure fluctuations of the air in 

t h e ear as a function of t ime for the auditory system, or a two-dimensional 

spatial intensity distr ibution as a function of t ime for t h e visual system. The 

time discretization will be introduced here too : the tth component of the vector 

χ is given by 

і Д і ) = χ ( ί - ( ι - 1 ) Δ ί ) . (2) 
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Notice that the ¿Ih component хг(і) is not necessarily a scalar. For a vi
sual stimulus Xi(t) may represent the two-dimensional intensity distribution of 
luminous and chromatic contrast. Δί should be so small that the complete in
formation remains present and that the phenomenon of aliasing does not occur. 
A finite choice of Δ( is based on the assumption that an upper frequency can be 
found for each stimulus modality. Clearly the size of Δί is determined by the 
upper frequency Wi in the stimulus ensemble and by the upper frequency W2 
in the frequency sensitive range of the sensory system under investigation. If W 
represents the upper frequency relevant for the analysis (W = m a x ^ ^ H ^ ) ) 
then At is defined by 

Δί = min {ims,^}. (3) 

The dimension of χ is given by the smallest upper bound of the range of 
the autocorrelation time Τχ of stimuli in the stimulus ensemble and the memory 
span of time constant T2 of the sensory system under investigation. This leads 
to an upper limit for the stimulus duration t = т а х ^ і . Г г ) , which influences 
the generation of an action potential at time t. It defines the dimension of χ as 
N where 

N = integer i - ^ j + 1 . (4) 

Clearly χ is a single stimulus from a collection of possible stimuli, which 
together form the stimulus space S, which forms a subspace of RN for audi
tory stimuli. A real-valued function ƒ on 5 will be defined, which describes a 
probability function over the stimulus space: ƒ (x) is the a priori probability of 
occurrence of stimulus x. 

In a similar way a real-valued function ft, defined on the space of all neural 
states, is defined, which gives the probability distribution of all possible states 
z. We further define the neural response function g(z|x). It is the probability 
function to find the neural state ζ provided a stimulus χ was presented. Finally 
the probability distribution of a sensory stimulus given a neural activity pattern 
is represented by φ. It is the probability function to find the stimulus χ given 
the fact that the neural state ζ was measured. The probability functions defined 
above are mutually related by the theorem of Bayes: 

/(x)ff(*|x) = ft(z)¿(x|z). (5) 

Now we can state the problem of this paper in a formal way. The best 
strategy to find the most plausible stimulus is to look for the stimulus χ which 
gives a maximum for <£(x|z) given a neural state z. A necessary condition for 
the most plausible stimulus is, that it satisfies the equation 

0 = Vxln<¿(x|z) 

= х [1п/(х) + М * | х ) - 1 п Л ( * ) ] , (6) 
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where Vx is the gradient operator with respect to the stimulus x. Since 
Vx[ln h(z)] = 0 the term In h(z) in Equation (6) may be dropped without loss of 
generality. In principle the remaining terms can be known by the experimenter. 

The first term in Equation (6) is related to the distribution of the stimuli in 
the stimulus space S. The stimulus space 5 is a subspace of the space RN, which 
contains all possible stimuli. S contains those stimuli, which when presented 
to man or animal can elicit a behavioral response. For example, the human 
auditory system has an upper frequency sensitivity of about 20 kHz. Therefore, 
the stimulus space for auditory stimuli is limited to frequencies below 20 kHz. 
The human eye has a temporal (flicker fusion frequency of about 60 Hz [19], 
[20]) as well as a spatial upper bound (small details up to 1 min. of arc can be 
discerned in the fovea [28]). These limits of sensory systems have been inves
tigated extensively in psychophysics and electrophysiological experiments and 
form the boundaries of the stimulus space S. For animals these upper bounds 
are investigated with behavioral response tests and with electrophysiological 
means. So in principle we know the stimuli, which form the stimulus space 5. 
Moreover, the stimuli from S are observable, which allows one to determine the 
probability ƒ (x) that a stimulus χ is found. 

Further calculations will be limited to a Gaussian distribution of stimuli. 
This amounts to the assumption that first and second-order stimulus character
istics supply a sufficient description. As a consequence 

/(x) = /oexp - ( х - а Г в - ^ х - а ) (7) 

where 

/n = normalization factor, such that jdx. f(x) — 1, 
a — expected or mean valued of stimulus, 
В — covariance matrix of stimulus ensemble. 

Since В is the covariance matrix of the stimuli from S, В is positive definite 
and the number of eigenvalues of В equals the dimension of 5. Therefore the 
mapping on S, which corresponds with the matrix B, is a homomorphism. 
Moreover there exists an inverse mapping B - 1 , such that B~lB = I, where I 
represents the identity matrix. 

Although theoretically all stimuli from RN may occur, in practice, sound 
pressure level of auditory stimuli will be limited to an appropriate upper value 
E. Therefore, only stimuli χ with 

(x,x) < E (8) 

will be considered where (x,x) represents the inner product of vector χ with 
itself. This choice restricts the stimulus space to a compact (i.e. closed and 
bounded) and convex subset U of RN. 
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For neurons of the nervus acousticus evidence has been presented that direct 
neural interactions between neurons are absent ([17]). Correlations in activity 
of these neurons are caused by common stimulus properties and overlapping 
receptive fields but not by neural interactions. This also appears to hold for 
the nervus opticus. Therefore g(z|x) can be deduced from the neural response 
functions gií(zií\x) of the individual neurons. Formally this can be expressed as 

к 

g{z\x)='[[gk(zk\x). (9) 

The neural response function gfc(2fc|x) gives the conditional probability of 
finding neuron k in the state z^ (ζ*; = 1 if an action potential; Zk = Ü if no action 
potential is generated) after stimulus χ is presented. By this definition the value 
of the function <7fc(zfc|x) will be between zero and one. In fact the probability of 
finding neuron k in one of the two possible states equals one (z^ G {0, l}). Since 
the probability of finding an action potential is close to zero for weak stimuli 
(|x| <C 1), increasing gradually to one for very intense stimuli (|x| 3> l), the 
probability gk{zk\x) can be written without loss of generality in the form 

ι ι ^ expGfr(zfc,x) 
ff/J2** •= v̂  ΤΗ! T' 0°) 

. expGt(z,x) 

ff*(z x ) = v̂  A it \ · t 1 1 

¿ jçexpGfc^x) 
The summation in the denominator of g^ and g over all neural activity 

patterns ζ gives the normalization to values between zero and one. Combination 
of Equations (9), (10), and (11) leads to the expression 

к 
С(в,х) = ]5Гсгк(гк|х). (12) 

k=l 

Because of the binary nature of z^ and ζ the following concrete forms can 
be given to G^ and G 

G fc(z fc,x) = zfcVfc(x) (13) 
к 

G(z,x) = £2 f ci/fc(x) = (z,v(x)) , (14) 
fc=l 

where (z,v(x)) represents the inner product between the vectors ζ and v(x). 
The function v(x) is related to the generator potential of the neuron. Compari
son with Equation (10) shows that for increasing values of Ufc(x) the probability 
to find an action potential in neuron k (zk = 1) increases and that the proba
bility to find no action potential (zk = 0) decreases. 
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The assumption to define the function СдДг/^х) by the product of the neural 
state zk and the stimulus χ excludes nonlinearities in the spike generating mech
anism such as the absolute refractory period. This restriction does not affect the 
generality of our approach since the refractory period influences the sequence of 
action potentials only for very effective, large amplitude stimuli, giving rise to a 
saturation of the response. A similar saturation is described by Equations (10) 
and (11) which prohibits very short spike intervals for physiologically relevant 
stimuli. 

Related models were formulated by Siebert (36] in the auditory system and 
Buchsbaum [5] in vision. The scheme proposed by Buchsbaum consists of linear 
filters corresponding to the three colour mechanisms of the retina. The status of 
the output of these filters is comparable with the generator potential. The rate 
of the neural Poisson generators is however linearly controlled by the output 
of the filters. The model formulated by Siebert, can easily be separated into 
two similar blocks. The first one being a distributed system of linear filters 
whose output, after a short-time mean square procedure is equivalent to the 
generator potential VA.(X) presented in this paper. The second block consists of 
a no-memory spike generating mechanism, however with a different nonlinear 
saturating behavior. Due to the mean-square procedure, the validity of this 
model is limited to high frequency neurons without phase-lock. Colburn (6) 
indicates how to generalize this model to transient stimuli. 

The fact that the function Gk(zk,x) does not depend explicitly on time 
disregards effects of prolonged stimulation such as depletion of transmitter. It 
is equivalent to the assumption that the system under study behaves stationary. 
For example, it assumes that time constants related to modification of the neural 
circuitry in ontogenetic development are long relative to the duration of the 
experiment. 

The function Vfc(x) needs further clarification. A general way to character
ize neuronal properties is given by the Wiener-Volterra expansion ([23, 25]). 
With this expansion the neural characteristics can be represented by a series of 
functionals of increasing complexity. Studies in the auditory system ([27, 3]), 
visual system ([9, 34, 26]) and vestibular system |29] have shown, that for a 
good approximation this series may be truncated after the second-order term. 
Therefore we write 

Vfc(x) = bh + (cfc.x - a) + - ( x - a)TDk(x - a ) , (15) 

where Cfc and D^ are related to the first and second-order Wiener kernels of 
neuron k. Evidence for the fact, that neural responses can be predicted with 
this choice for Vfc(x) can be found in [10], [ll], [18] and [26]. For linear systems 
the first two terms of i>fc(x) suffice for a full characterization of the system. The 
third term in Equation (15) is required for second degree nonlinear systems. At 
this moment the exact properties of c/t and Dk are irrelevant, however, it is im
portant to notice that Vk{x) is a continuously differentiable real-valued function, 
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defined on the stimulus space 5 and that ff(z|x) can be known by calculation 
of the Wiener kernels for the individual neurons. To obtain an estimate of the 
sensory interpretation of the neural activity ζ several lines of thought can be 
followed. One possible approach is to determine the most plausible stimulus, 
which is the stimulus x, which gives a maximum for </>(x|z) for a given z. An
other estimate is obtained if one calculates the average plausible stimulus, given 
by ^ χ χ < ^ ( χ | ζ ) . In general, these estimates will not be the same if the function 
</>(x|z) is asymmetric with respect to the maximum. In this study the approach 
will be adapted to determine the most plausible stimulus. 

3 Determinat ion of most plausible stimulus 

A necessary condition on the most plausible stimulus is that it satisfies Equation 
(6). Since V x ln/i(z) = 0, (6) leads to 

χ = a + B V x [ z , v ( x ) ] - ß ΣΠ ν*(^ ν( χ))} 6 χρ(^ ν( χ)) 
Σΐ«φ(Ε.ν(χ)) 

= a + B V ( 8 - n ( x ) ) , (16) 

where 

a = expected value of stimulus ensemble, 
В = covariance matrix of stimulus ensemble, 
V = V x v(x) is Ν χ К matrix of functions ' ' ^ * 1 relating 

the N stimulus components with the К neurons, 
n(x) = expected neural activity pattern for sensory stimulus χ defined by 

, - Σ ; £ β χ ρ ( £ , ν ( χ ) ) 
η x = - ^ 77—ΓΤΓ · 1 7 ) 

Е«ехр(С, (х)) 
Equation (16) shows that the most plausible stimulus is determined by α 

prior» information about the stimulus ensemble (a and B), by properties of the 
neural transducer elements (V), by the actual neural activity pattern (z) and 
by the expected neural activity pattern n(x) of the population neurons for the 
stimulus x. A similar equation was obtained by Johannesma (¡13)), who made 
the approximation n(x) = 0; this led to a simplification for the solution of the 
most plausible stimulus. 

The general solution of Equation (16) is complicated by the fact that V and 
n(x) are functions of x. Especially the relation between n(x) and χ is compli
cated. In the following the existence and nature of the solution of Equation (16) 
will be discussed. By the choice of the stimulus ensemble, as given in Equation 
(7) and Equation (8), all stimuli are embedded in a compact and convex subset 
U of RN. Then a mapping M is introduced by 

M:x ->a + BV(z-n(x)). (18) 
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In a first approximation we assume 

Wfc(x) = bk + ( с ь , х - а ) . (19) 

This assumption implies that a first-order, linear approximation describes 
the 'potential' ffc(x)· Solutions for Equation (16), if Vfc(x) is nonlinearly related 
to χ are discussed later. 

Since z*. £ {0,1} and 0 < 7u(x) < 1, it follows that 0 < |zfc — nfc(x)| < 1. 
Moreover Вс^ and a are limited, resulting in an upper bound of the energy of 
the image of χ 

к 
£?' = |a| + ^ | £ í c f c | . (20) 

k=l 

Choosing the upper energy E of the stimulus space U larger than £", M 
becomes a map from U to itself. From the definition of η*(χ) and Equation (15), 
it follows that the function in Equation (18) is continuous and differentiable. 
Then the following theorem of Brouwer guarantees at least one fixed point for 
map M, i.e. a vector χ such, that M(x) = x. 

Theorem of Brouwer Every continuous mapping from a compact and 
convex set to itself has at least one fixed point. 

A proof of this theorem can be found in any textbook on Topology (see 
e.g. [35]). This theorem guarantees the existence of an extreme (most or least 
plausible) stimulus. 

With the approximation in Equation (19), the gradient of ln0(x|z) is given 

by 
к 

BVxìn<t>{x\z)=x + a + J2Bck-{zk-nk (χ)} . (21) 
fc=l 

Since В is positive definite and nk is increasing in vk, for any у € U each line 
χ = ay + β in U (a G R, β € S) has at most one stimulus such, that the Equa
tion (21) equals zero. This can easily be verified by substituting χ — ay + β 
in Equation (21) and multiplying by yB~l, then the right-hand side is a de
creasing function in a. Therefore, each line contains at most one most plausible 
stimulus. Since this result applies to each line in U and since there is at least 
one most plausible stimulus, with the approximation given by Equation (19) 
there is exactly one most plausible stimulus. 

Since | 5Zfc=i Bci-\ < E Ъу the choice of E, Equation (21) becomes zero only 
for χ £ U and not for stimuli χ with |x| > E. Consequently, the restriction to 
look for most plausible stimuli with a power less than E does not influence the 
results. 

A way to find the most plausible stimulus is given by the following procedure. 
Let xo be some arbitrary vector from U. Then we define a series of vectors in 
U by 

x w = M ( x m _ i ) . (22) 
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Using the definition of M given in Equation (18) this becomes 

к 
x m = a + В {ъ - n ( x m _ i ) ) = a + В ^ с · {zk - nk{-x.m-y)} . (23) 

If this series does not converge, then one can resort to the series: 

χ = (1 - είχ™,! + eMíx™-!) (24) 

which will always converge for ε small enough because the function nk has a 
sigmoid shape, increasing monotonicaily as a function of (с^,х). The rate of 
convergence depends on whether each function rifc increases fast or slow from 0 
to 1 as a function of x. 

If instead of the linear approximation of Vfc(x) as given in Equation (19) the 
nonlinear expression of Equation (15) is used, the gradient of ln</>(x|z) is given 
by 

к 

BVxln^(x|z) = - ( x - a ) +ß]rcfc{zfc-nfc(x)} 
fc=l 

к 
^B^2Dk{jí-a){zk -n fc(x)} 

k=í 
К 

= - ( х - а ) +В5^{ск + 1?к(х-а)}{^-л л (х)} (25) 
fc=l 

Depending on the properties of Dk, there may be more than one most plau
sible stimulus. 

For example, suppose that the stimulus ensemble is Gaussian white noise, 
then a = 0 and В = I. Moreover, suppose that the nonlinearity is a pure 
two-sided rectification; then Dk = I and c^ = 0. In that case, Equation (25) 
reduces to 

к 
Vxln<¿(x|z) =-x.+ Y2x{zk-nk{x)} (26) 

with 

nk(x)= exPfr'*) for fc 6 { 1 , 2 , . . . , * } · (27) 
1 + exp(x,x) 

This shows, that there is more than a single stimulus χ for which expression 
(26) is zero. Two cases arise. 

1. χ = 0 is a trivial solution. This is a minimum of <£(x|z) and not a most 
plausible stimulus. 

2. If χ ^ 0, the solution of 
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Figure 1: /J/ustration of the modei, which transforms the stimulus χ into a 
sequence of events Zfc. The event generating system consists of a iinear filter 
followed by an instantaneous, nonnegative noniinearity. 

x = x f ( «¡feEM (28) 
¿ j V * l + e x p ( x , x ) ; V ; 

consists of a set of stimuli on a hypersphere. These solutions can be interpreted 
as 'most' plausible stimuli. 

Grashuis ([11]) demonstrated that for some neurons in the auditory system 
the neural activity was determined by (ск,х) 2 + (сд,,х)2, where Ct is the Hilbert 
transform of the vector c^ and is orthogonal to Cfe. This implies that all stimuli 
for which (x,x) is constant in the hyperplane, spanned by the orthogonal vectors 
Cfc and c¿, give an equal probability for an action potential. This noniinearity 
also results in the fact that not one but a set of stimuli in a closed curve in S 
form a set of most plausible stimuli. 

Here is shown, that for each sensory system satisfying the assumptions de
scribed in Section 2, we can find at least one stimulus, most likely to have 
elicited the neural activity z. Clearly the precise properties of / (x ) and ff(z|x) 
determine whether there is only one such stimulus or whether more stimuli are 
equally plausible. In the next section the theory is used to find the most plausi
ble stimulus for a set of simulated neurons in the auditory nerve, which transfers 
information from the cochlea, where a separation of frequencies takes place, to 
central brain structures. 

4 Stimulus reconstruction: model simulation 

We simulated a set of neurons in the auditory nerve, since the information 
processing by these neurons is well understood. A model can be made, which 
simulates these neurons with reasonable accuracy in several aspects. The model 
used in this study is given in Figure 1. 

The process of sound transmission from the ear-drum via the middle ear 
and then travelling along the basilar membrane in the cochlea can be con
sidered mainly as a mechanical filtering. Vibration of the basilar membrane 
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stimulates the hair cells which effect on the transduction process is a further 
filtering narrowing the band-pass characteristics of the mechanical filter [33]. 
The combined effect of these filtering stages is represented by the filter c*,. The 
release of transmitter generating post synaptic potentials on the dendrites of 
the auditory nerve fibers is related to the output of filter c^. The input on the 
dendrites of each neuron is summated in the soma and related to this summated 
input action potentials are generated peripheral to the soma. 

The probability of creating an action potential in neuron A;, gk{zk = l |x) 
depends on the summated input: the generator potential t)fc(x). 

Wfc(x) = bfc + (cfc,x), (29) 

exp(t;fc(x) 
9k{zk = 1 x) = — — , , s- 3 0 ) 

l + exp(r fc(x) 
The approximation introduced by Equation (29) is supported by the result 

of Moller [27] and Grashuis [il] that neurons in the auditory nerve with a char
acteristic frequency below 1 kHz are characterized by their first-order Wiener 
kernels Сц.. For a more detailed description see [4], [7], and [15]. 

Since there are no data available about the precise structure of the stimulus 
space S of all auditory stimuli, we assume that all stimuli with equal energy are 
equally likely to occur and that stimuli with higher intensity are less probable 
according to a Gaussian distribution. This reduces Equation (7) to 

/(x) = /oexp{--x/x} = /oexp{--(x,x)} , (31) 

where I represents the identity matrix which is the covariance matrix of Gaus
sian white noise. 

A set of 64 neurons with characteristic frequencies from 200 Hz to 2000 Hz 
equidistant on a linear scale was simulated. The experimental procedure was 
that to each neuron was presented the same stimulus and the neural response 
was recorded. The set of stimuli consisted of a frequency sweep of constant 
amplitude from 0 to 2000 Hz, a series of positive and negative clicks and a set of 
Ti-tones [l]. Then in every time interval [i,i + Δί) a stimulus x ' was calculated 

according to the equation 
к 

x' = ^ c f c 2 f c . (32) 

These separate signals were simply added, following the additive procedure 
suggested by Johannesma [16]. This implies that Equation (32) is a first-order 
approximation of the most plausible stimulus and that for every action potential 
of neuron k the first-order kernel c^ is substituted. 

Results for the frequency sweep are shown in Figure 2. The reconstructed 
stimulus appears to have a reasonable resemblance to the presented stimulus. 
Only during the onset of the frequency sweep there is a considerable difference. 
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Figure 2: frequency sweep. Top: the stimulus, a frequency sweep up to 2000 Hz 
as presented to the model. Middle: the neural activity pattern associated with 
the frequency sweep. The neural activity pattern of each neuron is plotted as 
a sequence of dots on a line. Activity of neurons with a different characteristic 
frequency (cf) is plotted at different lines. Bottom: the estimated most plausible 
stimulus. 
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Figure 3: dick sequence. Top: the stimulus consisting of 5 clicks (three positive, 
two negative). Middle: the neural activity pattern. The neural activity pattern 
of each neuron is plotted as a sequence of dots on a iine. Activity of neurons with 
a different characteristic frequency (cf) is plotted at different lines. Bottom: the 
estimated most plausible stimulus. 

This can be explained by the lack of neurons in the model with a characteristic 
frequency below 200 Hz. The fluctuation in the overall amplitude of the recon
structed signal can be explained by two arguments. One reason is that there are 
frequency gaps of about 30 Hz between the consecutive neurons thus producing 
gaps in the frequency content of the reconstructed stimulus. Another reason 
is that 60% of the approximately 1000 simulated events can be attributed to 
the spontaneous incoherent activity of the neurons. Increasing the number of 
neurons in the neural population reduces this stochastic effect. The stimulus 
reconstruction for the clicks and 7-tones are shown in Figures 3, 4, and 5. 

The most obvious failure of the reconstructions is that low and high frequen
cies are lost in the reconstructed signal. The explanation for this has been given 
above. However, we conclude that although quantitative differences exist, there 
is a general qualitative similarity. 
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Figure 4: 7-tones. Top: the stimulus consisting of 32 η-tones with characteristic 

frequencies from 96 Hz to 2080 Hz, with increments of 64 Hz. Middle: the 

neural activity p a t t e r n . The neurai activity p a t t e r n of each neuron is plotted as 

a sequence of dots on a line. Activity of neurons with a different characteristic 

frequency (cf) is plotted at different lines. Bottom: the estimated most plausible 

stimulus. 

Real neurons with a characteristic frequency above 1 kHz demonst ra te an 

increasing loss of phase-lock. As a consequence these neurons cannot be com

pletely characterized by a first-order kernel c^ but require a second-order kernel 

Dk for an adequate characterization. This loss of phase-lock is a result of the 

filtering properties of the inner hair cells and of the synaptic transmission, which 

acts as a rectifying mechanism followed by a low-pass filter with a cut-off fre

quency near 1 kHz. Physiologically the need of a second-order kernel is related 

to the fact, t h a t the neural response is not anymore related to the phase of the 

stimulus, a phenomenon called loss of 'phase-lock' [21]. As a consequence no 

first-order Wiener-Volterra kernel exists and no stimulus reconstruction would 

be possible. This phenomenon is precisely predicted by the theory: if second-

order kernels are involved, the most plausible stimulus consists of a set of stim

uli, a hyperellipsoid in the stimulus space S, which contains all stimuli with 

the same frequency content but with variable phase relations between the fre

quency components . In this condition the first-order approximation (32) for the 

reconstructed signal is not satisfactory anymore. Therefore, for neurons with 

a characteristic frequency above 1 kHz it has been proposed to introduce the 

analytic signal ξ in (9), (10), ( l l ) , (13) and (14) instead of x . T h e analytic 

signal is defined by: 

£ = χ + гх (33) 

where χ is the Hilbert transform of the signal χ ([l]). 

Although it does not add more information, it might suggest an alternative 

representation, which incorporates the phase of the stimulus. 
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0 ms t i m e > 25 ms 

Figure 5: 7-tones (grey scale). Enlargement of stimulus and stimulus recon

struction as shown in figure 4. Each of the 32 rows represents one tonepip 

(η-tone). The instantaneous amplitude x(t) of the signal is projected on a lin

ear grey scale (white negative, dark positive). Top: the stimulus, 32 η-tones. 

Bottom: the estimated most plausible stimulus. 

In fact the reconstructed stimulus obtained from Equation (32) is a first 

approximation to the asymptotic solution given by Equation (28). Evidently 

how well this first-order approximation describes the reconstructed stimulus 

will depend on the type of st imulus. However, the fact t h a t for the three types 

of stimuli used in this simulation the result is in reasonable agreement with the 

presented st imulus indicates t h a t the result does not critically depend on the 

type of stimulus. 

5 Discussion 

The aim of this paper is to present a tentative solution for the problem how 

to interprete a neural activity p a t t e r n . In traditional single-unit recordings a 

relation between stimulus and neural activity can be obtained by correlation 

techniques. However, it is generally accepted t h a t s tudy of neural information 

processing in central stages of the nervous system requires the evaluation of 

multi-unit activity. Procedures to interpret the physiological significance of this 

multi-unit activity are suggested in this paper. It does not pretend to present 

a solution used by the brain but ra ther to present a solution t h a t is useful for 

the experimenter. 

The number of assumptions which form the base of this approach is ra ther 

small. One important assumption is t h a t neurons do not influence each other, 

neither by direct mutual neural connections, nor by some kind of feedback mech-
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aiiism. This assumption does not exclude a correlation between neural activity 
in auditory nerve fibers. A correlation may be induced by common input to 
auditory nerve fibers, e.g. from identical hair cells. This is particularly t rue for 
auditory nerve fibers which characteristic frequency if very close. The present 
assumption excludes a correlation due to neural interactions by collaterals. Al
though this assumption has been confirmed for the auditory nerve under sta
tionary stimulus conditions, such as Gaussian white noise [17], this assumption 
is in general not correct. In the auditory system there is an efferent feedback 
to the muscles of the inner ear, which acts as an automat ic gain control and 
which protects the cochlea from damage by excessive sound volumes. In the 
visual system there is the pupil, which compensates to a moderate extent the 
rapid variations in light intensity. However, the assumption of independency of 
neural activity is convenient for mathematical reasons, but it is not essential to 
this theory. The main reason, which led us to this assumption, is the lack of 
knowledge about neural interactions. If neural interactions are incorporated, an 
additional te rm has to be added to Equations (13, 14): 

G ( z , x ) = ( z , v (x ) ) + ( z , i y ( x ) z ) (34) 

in which the neural interactions are incorporated in the second term. Especially 
if one tries to describe neural information processing in more central s t ructures 
in the nervous system the second term will gain in importance. A special type 
of neural interaction which can be included in the second te rm of Equat ion 
(34), refers to the refractory period of a neuron. In fact, this is equivalent to a 
nonlinear neural interaction of a neuron with itself. However, as explained earlier 
this nonlinearity does not affect the responses appreciably for physiologically 
relevant stimuli, i.e. as long as stimulus intensities are not excessively high. 

The fact tha t in general a nonlinear expression for the neural response prop
erties in Equat ion (15) gives rise to more than one most plausible st imulus, may 
be a common phenomenon in na ture . For example, auditory neurons, which 
participate in sound localization may be triggered equally well by stimuli in 
the same direction but at different distances, whatever the frequency of the 
sound. Very likely, as soon as general features are extracted from the general 
neural representation of the stimulus, some stimulus properties are lost and a 
reinterpretation will give rise to a class of stimuli with some common properties. 

Another assumption was that the probability function, which describes the 
probability t ha t a specific stimulus occurs, is characterized by the first two 
moments of the stimuli in the stimulus space S. This assumption clearly is a 
simplification since the function ƒ (x) may depend on previous stimuli with some 
weighting factor in t ime and probably also requires a te rm, which describes 
the interaction between stimuli from different sensory modalities, such as for 
example auditory, tactile, visual, etc. Other evidence for a more complicated 
function ƒ comes from theories, supported by Mackay [24] and Sommerhoff [37], 
which s ta te tha t a subject builds up an internal representation of the outer 
world. In this view the subject has some expectancy about the probability of 
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occurrences in this internal representation and incoming sensory information is 
used to check whether it corresponds, within certain error boundaries, with this 
internal representation. In this view the function f is a very complicated function 
of present and previous stimuli in a broad context. Up till now not enough is 
known about the psychological processes, involving perception and the creation 
of an internal representation, to specify the mapping in more detail. The aim 
of this paper is to present a possible interpretation of neural activity obtained 
in neurophysiological experiments. It does not pretend to simulate processes. 

A practical disadvantage of this method might be, that it requires knowledge 
of the Wiener-Volterra kernels and the neural response to a particular stimulus 
for all neurons in a sensory system, something which is impossible to realize in 
normal experimental situations. One way to solve this problem is to use the fact 
that neurons in one nucleus of the brain do differ in their quantitative properties 
but usually have common qualitative properties. Even though neighbouring 
neurons differ in morphology and electrotonic properties, giving rise to very 
different response properties, usually a rather limited number of cell types can 
be distinguished within a particular nucleus. Therefore, a good insight in the 
response properties may be obtained by recording from a rather limited sample 
of cells in a nucleus. Moreover the quantitative properties of neurons within 
a particular cell type always change gradually, never discontinuously. If the 
variations in the quantitative properties are known, one may extrapolate neural 
properties obtained from a limited sample of neurons to the whole population. 
A similar problem is seen in statistical physics, where the state of a gas (macro 
state) is defined by a probability function, which depends on the micro-states 
of the individual elements in a statistical way. 

A fundamental problem in the sensory interpretation of neural activity pat
terns is the relation between the о prion distribution of the stimulus ensemble 
as presented to the animal and the a posteriori distribution of the ensemble of 
stimuli associated with the occurrence of this pattern of neural activity. The 
relation of the original distribution and the one estimated from neural activity 
is in general complex. A less ambitious approach is to use just a few descrip
tive parameters of both distributions. Which type of parameters to choose, 
should be guided by о priori knowledge about the stimulus and sensory system. 
Possible descriptive quantities are moments and cumulants. If the distribution 
is Gaussian then the first moment or average signal equals the most plausible 
signal. The second moment, which is closely related to the concept of the re
ceptive field, may be applied in case of neurons without phase-lock. Use of the 
estimation of the second moment leads to a spectro-temporal characterization 
of the stimulus [14]. An approach complementary to the detailed study of the 
estimation of a particular stimulus, is to look into the more global transforma
tion properties of the sensory system. A comparison of the entropy of the a 
prion stimulus ensemble and the о posteriori stimulus ensemble should supply 
a measure for the information content of the neural activity. 
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The Characteristic Functional of the 
Peri-event Stimulus Ensemble 

Gerard H. F. M. Ilesselmans Henk F. P. van den Boogaard 
Peter I. M. Johannesma 

A b s t r a c t 
A neuron is considered as a stimulus selective system. Stimuli from 

tlie stimulus ensemble (SE) presented to the neuron, which are associated 
with the generation of an action potential, form the peri-event stimulus 
ensemble (PESE). The relation between PESE and SE is analysed on 
the basis of characteristic functionals. Examples are given for different 
models of the neuron. For a multiplicative model a simple relation between 
the characteristic functional of stimulus ensemble and peri-event stimulus 
ensemble exists. 

1 Introduction 
In neurophysiological experiments the activity of one or more neurons is mea
sured in response to sensory stimuli. Neural responses consist of sequences of 
electric pulses (spikes or action potentials), whose shape may be characteristic 
for the type of neuron. Although differences of shape can be used to separate 
the activity of simultaneously recorded neurons (Eggermont et al. (9j), the form 
of the action potential is assumed to be of secondary physiological importance. 
Since the durat ion is short compared with the time interval between successive 
spikes, the occurrence of an action potential may be considered as an event in 
t ime. As such, a sequence of action potentials can be seen as a realization of a 
stochastic point process n( ·) . 

Analysis of the transformation of the stimulus to a point process can be 
made by reverse correlation methods (Boer and Kuyper [4]; Eggermont et al. 
(IO]). In this analysis the peri-event stimulus ensemble (PESE) (Johannesma 
[13]; Aertsen [l , 2]; Hermes [12]) is compared with the st imulus ensemble (SE) 
presented to the animal. If the stimulus influences the neural activity, then the 
s t ructure of the ensemble selected by the neuron (X,.) differs from the one pre
sented to the neuron (X). Therefore the neuron may be considered as a system 
mapping the SE into the PESE by selection; this point of view is illustrated in 
Figure 1. 

MATHEMATICAL BIOSCIENCES 85 211-230 (1987) 
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Figure 1: Construction of the PESE from a realization of the stimulus process 
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Since this map is determined by the dynamics of the neuron, comparison of 
SE and PESE may give insight into properties of the neuron. The sensitivity 
of the neuron to certain stimuli can be established, and sometimes even system 
identification is possible. 

The goal of this investigation is to find an exact mathematical description 
of the relation of PESE and SE for certain classes of neurons. This relation 
then forms a complete characterization of the neuron and a formal base for the 
concept of receptive field, as used widely in neurophysiology. The discussion 
is based on product densities and the characteristic functional, which are in
troduced in Section 2. The general result given in Section 3 imposes almost 
no restrictions upon the model. Some examples for a model of the neuron are 
included in Section 4. 

2 Representat ion of a stochastic process 

the characteristic functional 

The output process of the neuron, a sequence of action potentials, will be rep
resented by a point process; however, the stimulus input can still be a contin
uous (Gaussian) process or a (Poisson) point process. Several descriptions of a 
stochastic process are available. One that completely determines an arbitrary 
stochastic process is the characteristic functional (Snyder [19]; van Kampen 
[15]; Srinivasan [20]), which is a generalization of the characteristic function 
(Lukacs [17]). Let the stimulus x(·) be a continuous stochastic process defined 
on the sample space X with probability distribution P, and £(·) an appropriate 
complex-valued test function. Then the characteristic functional Φ\ζ\ is defined 
by the following expectation value: 

exp ƒ с Φ [ ξ ] : = £ χ \exp d3x(s)t(s) (1) 

where the expectation is taken with respect to χ = {Χ,Ρ} . Knowledge of 
the characteristic functional Φ[£] for an appropriate set of test functions £(·) 
supplies a complete description of the stochastic process x(·) . An equivalent 
characterization of the process is given by the logarithm of the characteristic 
functional . 

*[€]:= In Φ[ζ] = l n £ x \exp ] dsx.{s)t(s) . (2) 

On the other hand, the stimulus might be a point process, e.g. the sequence 
of action potentials generated by another neuron. In that case x(·) is a sequence 
of delta functions: 

x(o = χ ; 6{t -1,), (3) 
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where the {tj}iez denote the (stochastic) times of occurrence of an input event. 
In the literature on point processes it is common to introduce the associated 
counting process defined by 

N(t) 
/ > 

(s)ds. (4) 

As a consequence x(s)ds in Equation (1) is replaced by dN(s) , and in the 
format of point-process theory the characteristic functional becomes 

m = E, [
e xp/ dN(5)£(5) (5) 

m o m e n t s a n d p r o d u c t densities 

In theory the space of test functions £(·) is infinite-dimensional. However, 
this space has a denumerably infinite base; therefore a reduction to a finite-
dimensional subspace is possible. The dimensionality of the subspace is deter
mined by the point process under consideration. Since the number of relevant 
dimensions is usually large, the characteristic functional Φ of a stochastic pro
cess x(·) is a function of many variables. As a consequence it is difficult to 
estimate from experimental data. Therefore we look for characteristics of the 
process more directly related to experimental observables; these can be found in 
moments or cumulants. The nth moment of a stochastic process x(·) is defined 

m, i(h,· •· ,tn) '·— Εχ Пх('··) 
.¿=ι 

(6) 

The moments mn are the expansion 'coefficients' of the characteristic func
tional Ф|£] at ξ = 0. From Φ[ξ] the moments can be derived by functional 
differentiation (Stratonovich [2lj). Therefore the characteristic functional is 
sometimes called moment generating functional (Billingsley [3]; van Kampen 
[15]): 

/ £ \ " 

(7) ,(tl,...,tn)= (£)nm 
ί=ο 

where the following abbreviation has been used: 

Ш" ^ ( t l ) № ) ' " í í ( tn ) ' ( 8 ) 

The cumulants c„ are the combinations of moments such that information 
contained in low-order cumulants is, to a large extent, eliminated in high-order 
cumulants. The cumulants are the expansion 'coefficients' of Я/[ζ]. They can be 
derived from Φ by functional differentiation 

cn{ti,...,t„) 
fé)" 

*[íl (9) 
ί=ο 

31 



If the stochastic process x(·) is stationary, then the moments and cumulants 
no longer depend on absolute moments of time, but only on differences of time: 

m „ ( í i , . . . , í „ ) -> тп(ті,...,тп-і), 

with г, = t 1 + 1 — іг . 
In the case of a point process n(·) moments are replaced by (factorial) prod

uct densities (Stratonovich [21]). At different times these are defined by 

ƒ „ ( * ! , . . . , * „ ) := Hm E 
Ι Ι Ι Λ Χ Δ Ι , Ι Ο 

Π 
ΔΝ(*,) 

Δί, 
(10) 

where ΔΝ(ί) is the increment of the counting process N(·) over the time incre
ment Δί . Factorial product densities will be used instead of ordinary product 
densities because they show no delta functions on their diagonals. They are re
lated to the characteristic functional by (see Kuznetsov and Stratonovich [16]) 

Φ[ί| = 1 + Σ ^ у ds,. • • • dsn / п ( в 1 , . . . ,βη) Π [e*1''1 - l] . (11) 
г = 1 ) = ί 

The factorial product densities fn(·) can be found by functional differentia
tion of Φ[ξ] (Stratonovich [21]). In the same way the cumulants are translated by 
factorial cumulant densities. The factorial cumulant densities are the expansion 
'coefficients' of *[f] : 

1ηΦ[£] = Φ[ξ] = Σ - ^ / ^ 1 · · · ^ Μ 5 ι , . . . , 5 η ) Π Η " , - 1 
»=i ^ ' э=і 

(12) 

Cumulant densities and product densities are related to one another in the 
same way as cumulants and moments, e.g. 

MO = /i(0. 
M«,*) = /з(*,в)-/і(0/і(')· 

(13) 

(14) 

3 Representat ion of the peri-event stimulus en
semble 

the characteristic functional 

The aim of this paper is to find the characteristic functional Φ**[£](<) of the 
PESE, the characteristic functional of the SE, defined in Equation (1) ,is known: 

φ-[ί] := E. íe ехрУ ds χ wew (15) 
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where the expectation is taken with respect to χκ = {X, P r } . Realizations of 
the PESE are elements of the same sample space X with different probability 
density Pr [see Equation (1)]. χΓ is the conditional measure, conditioned on the 
occurrence of an output event. The right-hand side of Equation (15) depends 
implicitly upon the time t at which the output event is supposed to occur via 
the PESE χ,, . The explicit time dependence becomes clear from 

:= Ex l̂ exp J Φ*·[ί]:=£?χ exp dsx(s)i(s) ΔΜ(ί) = 1 Δ< small enough, (16) 

where M(-) is a realization of the output counting process, with an event about 
time i. 

In order to arrive at explicit results assumptions have to be made about the 
nature of the SE and/or event generation. The first assumption concerns the 
SE: the stochastic process x(·) forming the input to the neuron is assumed to 
be stationary. While this assumption does not appear to be necessary, it does 
simplify the relations. Since the time t indicating the time of occurrence of 
the output event can be set equal to zero without loss of generality, the label 
t will be omitted whenever possible. The second assumption is related to the 
neuron: only neurons whose output point process is orderly for arbitrary input 
are considered (Daley [8]; Snyder [19]). This is expressed in the condition 

Ρ[ΔΜ(ί) = l | i( ·)] = I[x](t) Δι + ο(Δ<), (17) 

Ρ[ΔΜ(<) > 1|ζ(.)1 = ο(Δί) , (18) 

where 

ι(·) — realization of the stochastic input process χ , 
ΔΜ(<)= increment of the counting process M(·) over the time increment Δί , 
ƒ(·) — nonnegative functional, 
/[.τ](·) = intensity function [7]. 

Through Equations (17) and (18) the property of the output process being 
orderly has been made explicit; the probability that more than one action po
tential will occur in a small time increment Δί is negligible compared to the 
probability of there occurring just one event. 

Under the assumption of orderliness and using conditional expectation, the 
characteristic functional of the PESE can be evaluated by taking expectation 
values over the SE (see Appendix): 

9r,ñ Ex[llx]expfdsx(s)t{s)] 
Ш~ Ex{I[x}} • [19) 

Equation (19) forms the fundamental equation of this paper; it relates the 
SE, event generation, and the PESE. If the statistics of the input process x(·) 
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Figure 2: Illustration of the model: the transformation of the stimuius pro
cess x(·) into a point process m(·). The e vent-gen erat ing system consists of a 
Vo/terra system followed by an instantaneous, nonnegative noniinearity. 

and the event generating system /[x](·) are known, then the characteristic func
tional of the PESE can be calculated. 

The denominator Ex [/[x]] in Equation (19) is the intensity of the output 
point process. The characteristic functional Ф[£] of the PESE is the average of 
exp.(dsx(s)£(.s) weighted by the intensity function /[x](·) . If exp fdsx(s)^(s) 
and f[x] are uncorrelated, then input and output process are independent and 
ΦΙ*] = * [£] . 

moments and product densities 

Using functional differentiation and Equation (19), the moments of the PESE 
can be derived from the characteristic functional; they are given by 

m « ( < b - - 4 í n ) = 
£χ zw n;=ix(íy) 

ε* [/[xi: 
(20) 

The factorial product densities of the PESE in the case of an input point 
process π(·) are given by 

fn(tu...,tn)= lim • 
ішіхДі, 10 

Ev Цп] uu ΔΝ(«,) 
Δί, 

ЕЛЫ 
(21) 

A possible neural model in accordance with Equations (17) and (18) is a 
Volterra system followed by an event generator (see Section 4). In that case 
Equations (17) and (18) specify that the sequence of action potentials can be 
represented by a Poisson process whose intensity is governed by the stochastic 
stimulus process x(·) , and the output process m(·) is a doubly stochastic Poisson 
process (Cox and Isham [7]). In Figure 2 an illustration of such a model is given. 

It should be stressed here that while the stimulus ensemble is stationary and 
the neuron is time-invariant, the peri-event stimulus ensemble is nonstationary: 
its statistical characteristics depend on the time with respect to the occurrence 
of the action potential. 
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4 Examples 

input process 

In order to arrive at explicit results, assumptions have to be made about the 
nature of the SE and the event generation. We will restrict the input to Gaussian 
processes in the case of continuous processes, and to (Gauss-)Poisson processes 
in the case of point processes, since their characteristic functionals are relatively 
simple. In case of the Gauss-Poisson process (Milne and Westcott |18]) the first 
two cumulant densities are sufficient for a complete description of the process; 
higher-order cumulants are zero. The characteristic functional takes the form 

Ψ|Ε] = / ώ Μ ί ) [ β ί Μ - ΐ ] - Ι - - ] dr J dsh2(r,s)\e^r) -ί\ [ e ^ ' - l ] . (22) 

For the simpler Poisson processes, h2(r,s) = 0 and Equation (22) reduces to 

*le] = jdsh^le^-l] . (23) 

Comparison of f2(r,s) and fi(r) • fi(s) gives an impression of the devia
tion of the process from the Poisson process [see Equation (14)]. If, as al
ready assumed, the stochastic input process is stationary, then f ι (s) —> fi and 

f2{r,s) -• /2(r - s) = his - г) . 
The formula (22) is comparable to the one for the Gaussian process, a contin

uous stochastic process (van Kampen [15]), since both processes are described 
by their first two cumulants: 

9[ξ} = J dadieWa) + 1 J dr j ааъ^аЖтЩа). (24) 

the model 

The model for the transformation of the input process into an output point 
process is chosen according to Johannesma and van den Boogaard [14] as elab
orated by van den Boogaard et al. [5,6]. Briefly we recall that in this model 
the neuron performs a linear or nonlinear integration of the neural input x(t) . 
The result of this integration is a stochastic process u(() which represents the 
state of the neuron (generator potential). This analogue variable governs the 
generation of an output event. The mathematical formulation of the preceding 
reads 
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Figure 3: Illustration of the model: the transformation of a point process n(·) 
inío another point process ηι(·). The event-generating system consists of a 
iinear fiiter followed by an instantaneous, exponential nonlinearity, 

U\x) = ii(t) (25) 

/[х|(0 

where 

uo + I ds c(t - s)x(s) + - J dr I ds D(t - r, í - s)x(r)x(s) H , 

g{U[x\) = g(u(t)) , (26) 

«и = working point of the neuron, 
c(i - 5) = linear filter, 
D(t — r,t — s) = nonlinear filter of second degree, 
g(·) = instantaneous, nonnegative nonlinearity. 

In this paper the nonsaturating exponential pulse generation is chosen for 
the event-generating nonlinearity g. This is combined with a linear or a second-
degree filter. 

Example A (Linear filter and exponential event generation). For the event gen
eration an exponential form has been chosen : 

ff(u)=eu

) (27) 

and as a consequence 
I[x\ = euW . (28) 

Substitution of Equation (28) into Equation (19) gives for the characteristic 
functional of the PESE 

, , [ ; r , _ Ex[exp(Ulx} + Jd8x{sK{8))] 
Φ Ι ξ ) Ex\expU[x}) 

(29) 

A general relation for an arbitrary SE can be formulated if the filter f/jx] is 
linear: /· 

u(f) = uo + J ds x{s)c(t - 3). (30) 
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If the moment of occurrence of the event is defined as t = 0, then Equa
tion (30) can be written as 

U\x\ = Uo + J dsx (sh{s), 

where 7 is the time-inverted form of c(s): 

7(5) = c(-s) 

(31) 

(32) 

Substitution of Equation (31) into Equation (32) leads to the elimination of 
Un, and the result is 

Ф'[€1 
_ Дх[ехр/гідх(а)Ь(д) + е(л)}] 

£?x[exptf[x]] 

Recall of Equation (2) gives the relation 

•Ία = Φ ы 

(33) 

(34) 

or 
*e[É] = Щі + б] - * W · (35) 

Equation (34) shows that for exponential event generation preceded by a 
linear filter the characteristic functional of the PESE can be expressed as the 
characteristic functional of the SE taken at a different position in f-space; this 
property holds for an arbitrary SE. Since moments or cumulants of the PESE 
can be expressed as functional derivatives of Фс or Φ" at ζ = 0, it follows 
from Equation (34) that these moments or cumulants are derivatives of the 
characteristic functional Φ or its logarithm Φ evaluated at ζ = η : 

(LYrw = (±Yîh±A = (±γ m 
Ф[7] 

(36) 

«=-» î=0 V W ^ l 'J ί= 

In order to make this more explicit we consider a stationary Poisson process 
as SE. The logarithm of its characteristic functional is given by Equation (23); 
for the stationary Poisson process this becomes 

m = h f ds [e«'» - l] . 

The associated PESE is then characterized by 

(37) 

(38) 

Comparison of Equation (37) and Equation (38) indicates that the PESE is 
again a Poisson process, but now modulated with the intensity function 

flH = he Ί{τ) (39) 
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where τ is the time relative to the neural event. 
To illustrate the feasibility of the above model, theoretical calculations and 

a simulation are compared with experimental results. The neural data were 
obtained from a single unit (unit 270-0.1-1) in the auditory midbrain (torus 
semicircularis) of the grassfrog (jRano temporaria L.). For details about the 
experimental set-up see Epping and Eggermont [11]. Equation (39) relates the 
intensity functions of SE and PESE to the filter. The filter weis adapted in order 
to yield the least possible rms difference. The SE was a homogeneous Poisson 
point process with intensity 16 pulses per second. The linear filter was 

, ν _ Í 19exp(-35.7i)[l - cxp(-6.67S) | if а > 0 
C l e ' _ \ 0 if s < 0 · l 4 U ; 

Furthermore a delay of 37 msec was introduced. The results are shown 
in Figure 4. The first-order product densities in the first row of Figure 4 are 
quite similar, as should be expected from the above procedure. However, the 
agreement between the second-order product densities as obtained from the 
experimental data on the one hand and those obtained from theory and simu
lation on the other hand is in general not to be expected, unless there is some 
correspondence between the model and the behavior of the real neuron. 

Secondly we consider a stationary Gauss-Poisson process as SE. Substitu
tion of Equation (22) results in the logarithm of the characteristic functional 
of the PESE. From its general form it can be shown that the PESE is again a 
Gauss-Poisson process but, as should be expected, nonstationary. The (facto
rial) cumulant densities of the PESE can be computed in the normal way from 
Ψ''[£); they turn out to be 

(41) h\{t) = />ie^>(l + / d S ^ - ^ [ e ^ > - l ] ) 

Л5(М) - М М И 0 ^ ' " · (42) 

Simulations have been made to illustrate the theoretical results. For the SE 
a Gauss-Poisson process has been chosen with intensity /i of 8 events/second 
and second-order cumulant density 

, . ƒ 40 if | ί - θ | < 0 . ] sec . . 
М « . * ) = ( 0 i f ¡ Í - ^ o.l sec (43) 

The linear filter was 

ƒ e"1 0 ' if 3 > 0 
С ^ = 1 0 if s < 0 ' ( 4 4 ) 

and the event generator 
g{u) = e" . (45) 
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Figure 4: Comparison of the product densities of the PESE as derived from 
theory, simulation, and experiment. The model used in theory and simulation 
consisted of a linear niter followed by an exponential event generator. The same 
stimulus, a homogeneous Poisson process, was used during the simulation and 
the experiment. 
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Gauss-Poisson process m(·) (PESE) by a multiplicative neuron. The results 
of a computer simulation are compared with calculations based on equations 
(41, 42). 
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The output intensity was approximately 7.3 events/second. 
The results in the left column of Figure 5 are computed from Equations 

(41, 42), while the right column of Figure 5 shows the results of the simulation. 
Because both SE and model obey the theoretical assumptions, the agreement 
between left and right columns should be expected. The intensity of the PESE 
fi (τ) reflects influence of the filter (r < 0) and of the structure of the SE 
( г > 0 ). The structure of the second-order product density /^(σ, 7") appears 
to bo a superposition of /['(σ) ·/[(τ) and the structure of the stimulus-ensemble 
Μσ,τ). 

Example В (Second-degree flter and exponential event generation). In the pre
vious section the filter was assumed to be linear as expressed in Equation (30). 
In this section we take a second-degree form 

u(i) - uo + J dsc{t s)-x.(s) +- I dr I dsD(t-r,t-s)-x{r)x(s) . (46) 

Again defining the moment of occurrence of the event to be t = 0, Equa
tion (46) can be written 

f/[x] = uo + J dsi(s)x(s) + - J dr I ds A(r,s)x{r)x(s), (47) 

where 
n{e)=e{-a)t^{r,s)=D{-r,-a). (48) 

In a compact notation we rewrite Equation (47) in the form 

U\x} - Uo -l-Tf o x + - x o Δ ο χ . (49) 

Making use of Equation (29), we find for the characteristic functional of the 
PESE 

φ, , , , _ M e x p { x o U + -7) + é x ° A ° x } ] , _ , 
[ ζ | Εχ [ е х р { х о 7 + і х о Д о х } ] · ^ ' 

In this section the exact solution of Equation (50) will be given if x(t) is a 
Gaussian process with zero mean and covariance B{t,s). Johannesma [13] solved 
the problem by discretizing time. In this way the stimulus is reduced to a ri
dimensionai subspace. Using the theory of multivariate normal distributions, 
the n-dimensional problem can be solved. However, the transition from discrete 
time back to continuous time is not clear, since the behavior of the process x(·) 
between sample points is not taken into account. 

Another way of solving the problem posed by Equation (50) is by expanding 
the stimulus x(·) in the eigenfunctions e_)(-) of its covariance: 

oo 

х ( і ) = $ > , е Д 0 (51) 
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with ç 

JÍJ = J dtx^e^t). (52) 

The expansion coefficients JÌ3 are independent and normally distributed. The 

eigenfunctions ej{t) are assumed to be sorted by decreasing eigenvalue Xj : 

λ,- = E [xj] > λ,·+ 1 = E [xj+ 1] , all j € ΛΓ, (53) 

and the power of the stimulus is finite: 

J dsx{s)2 =Y^Xj < A, A e R+. (54) E 

Under these assumptions it is possible to choose an n-dimensional subspace 
such that the power contained in its orthogonal complement is arbitrarily small: 

oo 

The expectation values in Equation (50) can be evaluated in two independent 
steps. The contribution of the first η expansion coefficients can be calculated by 
using the same arithmetic operations as in Johannesma [13], while the influence 
of the other components is limited to order e. Taking the limit ε J. 0,n —» oo 
leads to 

*"[£] = \{ξ + Ί)οΒ'0{ξ + η)-^οοΒβοΊ, (56) 

where 

Ββ = [Β-ι-Δ)~ί (57) 

is the covariance of the PESE. One can readily check the formula in case D = 0 
[see Equation (24)], or with some difficulty if В and D share the same eigenfunc
tions. Note that a stationary stimulus x(·) does not have a finite power; this 
can be circumvented by considering first a finite interval [—T, T) and afterwards 
taking the limit Τ to infinity. 

Equation (56) shows that Ψ''[£] is a second-degree functional in ζ and there
fore the PESE is also a Gaussian process, with mean and covariance 

mï(i) = J dsB''(t,s)c{s-t), (58) 

B ^ i . s ) = \в{1,э)~1 - A{t,s) . (59) 

The PESE, as should be expected, is nonstationary. To illustrate the theo
retical results, simulations have been made. For the stimulus, zero-mean pseudo
random Gaussian white noise has been chosen. The linear filter was 

, , Г 0.2e-1 0" if 5 > 0 ,„„. 
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the second-degree filter 

D(t,s) = -c(s + 0.1)c(t + 0.1), (61) 

and the event generator 

ff(u) = e u . (62) 

The output intensity was approximately 9.7 events/second. The results of 
the simulation are compared with the theory in Figure 6. 

The structure of the PESE can be split into two parts. From 100 ms before 
until the generation of an action potential, the average stimulus is completely 
described by the filter c(s). Before that time the average stimulus is almost 
unchanged; however, the PESE shows a negative covariance. Since the stimulus 
is iid, the PESE is not different from the SE after the occurrence of the action 
potential. 

5 Conclusions and discussion 

In this paper we have shown that under the general assumption of orderliness 
the characteristic functional of the PESE can be calculated in principle. If a 
multiplicative neural model is chosen, a simple relation between the characteris
tic functionals of SE and PESE can always be established. Given the structure 
of the SE and the filter of the exponential system, a complete description of 
the PESE can be given. For example, in Example A a Gauss-Poisson process 
was transformed into another Gauss-Poisson process. In both examples both 
SE and PESE belong to the same class of processes; this property seems to be 
limited to multiplicative models. This class invariance is important, since it al
lows a comparison of the receptive field of the neuron (PESE) and the stimulus 
ensemble. Note that the theorem can be used, and in Example A has been used, 
for system identification, as can be understood from e.g. Equations (39) and 
(41, 42). 

Appendix 

In this section we will show that Equation (19) holds if the output process M(·) 
is orderly for arbitrary input. We recall that we have to prove 

ΦΓ[ί] := Ex \exp J dsx.(s)t(s)\dM{t) = 1 

Ex[l\x}{t)expfdsx(s)^{s)} 

Ex [/[x](t)] 

(63) 

(64) 
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Figure 6: The Transformation of a Gaussian process (SE) into another Gaussian 
process (PESE) by a muitipJicative леигоп. The results of a computer simulation 
are compared with calculations based on Equations (58) and (59). 
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The validity of this equation can be shown starting from 

AM(i)exp dsx Ш*) 

Using conditional expectation [3], (65) equals 

£v £[ΔΜ(ί)|χ(·)]βχρ / dsx.(s)£(s) Jds: 

(65) 

(66) 

The orderliness of M implies (Daley [8]) 

£[ΔΜ(ί) |χ(·)1 = Ρ(ΔΜ(ί) = l|x(-)] + o{At). 

and substituting the model (17), (18), one gets 

= Ex [{/[χ](ί)Δί + ο(Δί)} exp ¡dsx(s)«7(5)] 

= AtEx [l\x\{t)expfdsx.(s)Ç{s)\ + ο(Δ<) . 

On the other hand, using conditional expectation again, (65) may be written as 

= Ex [expfdsx(s)£(s)\AM{t) - ΐ ] Ρ [ Δ Μ ( ί ) = 1] 

+EX [AM{t)expldsx{s)fa)\AM{t) > l] Ρ ( Δ Μ ( ί ) > 1] . (70) 

If the real part of £(·) is zero, then since M(·) has already been assumed to 
be ordeily, the second term of (70) can be approximated by 

(67) 

(68) 

(69) 

\E4 [ΔΜ(<)εχρ/<ίβχ(β)£(θ)|ΔΜ(ί) > l] P\AM{t) > l] 

< Ε [ Δ Μ ( 0 | Δ Μ ( 0 > 1| Ρ [ΔΜ(ί) > 1] = ο(Δί) . (71) 

Substitution of (71) in (70), followed by setting (69) and (70) equal, leads to 

Ex [expJdsx{s)t{s)\AM{t) = l] Ex [I[x\{t)\ At + o{At) 

= EX [7[x)(í)exp/dsx(s)e(s)|AM(í) = l] Δί . (72) 

Taking the limit Δί J. 0 completes the proof of the theorem of Section 3. 

The authors wish to thank Jos Eggermont, who critically read the manuscript 
and gave valuable comment. For software support, making the figures and sim
ulations possible, we are indebted to Theo van Aerts and Jan Bruyns. Editing 
and typing of the manuscript has been done by Astrid van Alst and Marianne 
Nieuwenhuizen. 

45 



References 
1. A. M. H. J. Aertsen, P. I. M. Johannesma, and D. J. Hermes, Spectro-

tomporal receptive fields of auditory neurons in the grassfrog. II. Analysis 
of the stimulus-event relation for tonal stimuli, Biol. Cybernet. 38:235-248 
(1980). 

2. A. M. II. J. Aertsen and P. I. M. Johannesma, The spectro-temporal 
receptive field. A functional characterization of auditory neurons, Biol. 
Cybernet. 42:133-143 (1981). 

3. P. Billingsley, Probability and Measure, Wiley, New York, 1979. 

4. E. de Boer and P. Kuyper, Triggered correlation, IEEE Trans. Bto-Med. 
Eng., July 1968, pp. 169-179. 

5. II. F. P. van den Boogaard and P. I. M. Johannesma, The master equation 
for neural interaction, IMA J Math. Appi. Med. Biol. l(4):365-389 
(1984). 

6. H. F. P. van den Boogaard, G. H. F. M. Hesselmans, and P. I. M. Jo
hannesma, System identification based on point processes and correlation 
densities. I. The nonrefractory model, Math. Biosc. 80:143-171 (1986). 

7. D. R. Cox and V. Isham, Pomt Processes, Monographs on Applied Prob
ability and Statistics, Chapman and Hall, London, 1980. 

8. D. J. Daley, Various concepts of orderliness for point processes, in Stochas
tic Geometry, (E. F. Harding and D. G. Kendall, Eds.), Wiley, London, 
1974, pp. 148-161. 

9. J. J. Eggermont, W. J. M. Epping, and A. M. H. J. Aertsen, Stimulus 
dependent neural correlations in the auditory midbrain of the grassfrog 
(Rana temporaria L.), Biol. Cybernet. 47:103-117 (1983). 

10. J. J. Eggermont, P. I. M. Johannesma, and A. M. H. J. Aertsen, Re
verse correlation methods in auditory research, Quori. Rev. Biophys. 
16(3):341-414 (1983). 

11. W. J. M. Epping and J. J. Eggermont, Sensitivity of neurons in the au
ditory midbrain of the grassfrog to temporal characteristics of sound. I. 
Stimulation with acoustic clicks, Hearing Res. 24:37-54 (1986). 

12. D. J. Hermes, J. J. Eggermont, A. M. H. J. Aertsen, and P. I. M. Jo
hannesma Spectro-temporal characteristics of single units in the auditory 
midbrain of the lightly anesthetized grassfrog {Rana temporaria L.) inves
tigated with noise stimuli, Hearing Res. 5:145-179 (1981). 

46 



13. P. I. M. Johannesma, Functional identification of auditory neurons based 
on stimulus-event correlation, in Psychophysical, Physiological and Be
havioural Studies in Hearing (G. Drink and F. A. Bilsen, Eds.), Delft 
U.P., Delft, 1980, pp. 77-84. 

14. P. I. M. Johannesma and H. F. P. van den Boogaard, Stochastic formula
tion of neural interaction, Acta Appi. Math. 4:201-224 (1985). 

15. N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North-
Holland, Amsterdam, 1981. 

16. P. 1. Kuznetsov and R. L. Stratonovich, A note on the mathematical theory 
of correlated random points, in Nonlinear Transformations of Stochastic 
Processes, pp. 101-115. (P. I. Kuznetsov, R. L. Stratonovich, and V. I. 
Tikhonov, Eds.), Pergamon, Oxford, 1965. 

17. E. Lukacs, Characteristic Functions, Griffin, London, 1960. 

18. R. K. Milne and M. Westcott, Further results for Gauss-Poisson processes, 
Adv. Appi. Prob., 4:151-176 (1972). 

19. D. L. Snyder, Random Point Processes, Wiley, New York, 1975. 

20. S. K. Srinivasan, Stochastic Point Processes and Their Applications, Grif
fin, London,1974. 

21. R. L. Stratonovich, Topics in the Theory of Random Noise, Vol. 1, Gordon 
and Breach, New York, 1963. 

47 



Spectro-Temporal Interpretation of Activity 
Patterns of Auditory Neurons 

Gerard H. F. M. Hesselmans Peter I. M. Johannesma 

A b s t r a c t 
Sensory receptora tranaform an external sensory stimulus into an inter

nal neural activity pattern. This mapping ia atudied through its inverse. 
In a preceding paper we showed that within the context of a neuron model 
composed of a linear filter followed by an exponential pube generator and 
a Gaussian stimulus ensemble a unique 'most plausible' firat-order alimu-
lus estimate can be constructed. This method, applicable only to neurons 
showing phase-lock, ia extended to neurons without phase-lock. In this 
situation second-order spectro-temporal stimulus estimates are produced; 
examples are given from simulation. The method is applied to activity of 
neurons in the auditory system of the frog. 

1 Introduction 
Animals obtain information about the environment through sensory receptors. 
Stimuli from the external world are transformed into a neural signal leading 
to an internal representation of the environment. Given the mapping of the 
stimulus into an activity pa t te rn of sensory neurons the question arises, whether 
the inverse map , from a neural activity pa t te rn into a sensory stimulus, exists 
and can be determined. 

In Gielen et al. 1987 these questions are investigated within the context 
of a neural model. In this model the neurons, conditional the sensory input , 
are assumed to behave independently. For primary neurons (nervus acousticus) 
this appears to be correct. It has been shown experimentally tha t there are 
no interactions between primary neurons; correlations in activity of these neu
rons are caused by common stimulus properties and overlapping receptive fields. 
Therefore the transformation of a stimulus into a neural activity pa t t e rn is com
pletely determined by the neural response functions of the individual neurons. 
Gielen et al. considered the auditory neuron as a Volterra system followed by 
an exponential event generator. 

In search of a most plausible first-order stimulus est imate it was concluded 
tha t one should distinguish between linear and nonlinear Volterra systems. If 

subm to MATHEMATICAL BIOSCIENCES 
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the system is linear and the stimulus is Caussian, then a unique most plausible 
first-order stimulus estimate exists, i.e. the mapping is invertible. If the Volterra 
system is second-order nonlinear, then the solution is a hyperplane in stimulus 
space. These different types of behavior are related to the phenomenon of phase-
lock (Epping et al. 1986; Gielen et al. 1987). 

Measurement of the correlation functions indicates that low-pass neurons 
can be approximated by a linear first-order Volterra system (Grashuis 1974). 
If the stimulus is Gaussian and all neurons are low-pass, then for every neural 
activity pattern, there exists at most, one 'most plausible' stimulus. This most 
plausible stimulus can be approximated by replacing every action potential by 
its first-order correlation function. The effectiveness of this inverse map has 
been verified by computer simulations. 

Above a critical frequency, auditory neurons show loss of phase-lock. As 
a consequence the second-order stimulus-event correlation is needed for the 
characterization of the neural response function. The second-order kernel can 
be considered as the spectro-temporal sensitivity of the neuron (Aertsen and 
Johannesma 1981). Due to loss of phase-lock the neural activity is primarily a 
result of the spectro-temporal content of the stimulus signal. The inverse map 
in this situation can no longer be based upon first-order properties. In this 
paper an inverse map based on the spectro-temporal sensitivity is constructed 
which results in an estimation of the spectro-temporal characteristics of the 
stimulus presented to the animal. It is an extension of the first-order method 
which is adapted to higher-order stimulus properties. Results of simulations and 
experimental data from the auditory midbrain of the grassfrog will be shown. 

2 Description of sensory stimuli 

The sensory environment of an animal is composed of several modalities. In this 
paper the auditory system will be investigated. In the following ι(·) denotes a 
stimulus signal, it represents the pressure fluctuations of the air as a function 
of time for the auditory system. In Figure 1 the call of a toad is given. 

In a natural environment many different acoustic sources are present. The 
composition of all the sounds in a given ecosystem is called the acoustic environ
ment (Johannesma et al. 1986). In order to compare signals within the acoustic 
environment a representation like the one shown in Figure 1 seems to be far from 
optimal since it does not show the structure within the signal. Structure within 
a signal becomes visible in higher-order representations, e.g. product functions. 
The η-fold product functions ρ,„(·) of a stimulus signal £,(·) are defined by: 

η 

Ρ«1(ίι,...,<,0 = Π 1 · ^ ) · ί1) 
3=1 

The first product function of a signal is the signal itself (see Figure l ) . The 
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Figure 2: Second-order product function of the call of the Bufo 
shown in Figure 1. Amplitude is coded in grey. 
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Figure 3: W/gner CoSTID of the call of the Bufo querctcus. Amplitude is coded 
in grey. 

higher-order product functions show the structure within the signal. Figure 2 
shows the second product function of (again) a call of a toad. 

Although Figure 2 shows a large amount of structure in this rather com
plicated signal, it is difficult to interpret. An associated representation which 
is easier to display and perceptually more acceptable for the human investiga
tor is the Wigner CoSTID (Johannesma et al. 1981; Hermes 1985; Yen 1987). 
It is a linear transformation of the second product function which leads to a 
ical-valued coherent spectro-temporal representation of the signal (Aertsen et 
al. 1984). The calculation of the (Wigner) CoSTID starts from the analytic 
signal ζ. 

ζ(ί) = x{t) + ti(t) (2) 

with x{t) the Hilbert transform of α;(ί). The (lagged) product function (Johannesma 
et al. 1984; Aertsen et al. 198 bitemporal representation (Hermes 1985) of the 
analytic signal is defined by: 

n(í,r) = r(í-y)e(t+j) (3) 
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where ' * ' denotes complex conjugation. Note that also the product function 

ρ·2(·, ·) of the real-valued stimulus signal i(-) and the product function Π(·, ·) of 

the complex-valued analytic signal £(·) are linearly related. By Fourier t rans

formation of Π(·, ·) with respect to the t ime difference τ the Wigner CoSTID 

Ξ(ω,ί) is obtained. 

Ξ(ω,ή = jdre-^n^T) (4) 

The Wigner CoSTID gives b o t h frequency content and phase of the signal 

as a function of t ime. The power of the signal is given by the ampli tude. Con

sidering the signal as a superposition of tone-pips; a Gaussian ampli tude mod

ulated sinusoid (Hermes 1985), wi th either different carrier frequencies and/or 

different onset-times then the fluctuations or 'ghost-images' can be explained 

by their interference products . T h e frequency of the speclro-temporal fluctua

tions is proport ional to the difference in carrier frequencies and onset-times of 

the tone-pips. Since different onset-times and phase differences are related, the 

phase differences are coded by the fluctuations. Note t h a t only relative phase 

relations are known. T h e Wigner CoSTID determines the signal apar t from one 

overall phase factor. Projections of the CoSTID upon time-axis and frequency-

axis result in respectively the temporal-intensity and spectral-intensity. More 

about the interpretat ion of the Wigner CoSTID can be found in Hermes 1985 

and Yen 1987. An example of a Wigner CoSTID is given in Figure 3. 

The call of t h e toad consist mainly of frequency components around 4.4 kHz, 

with phase relations shifting in t ime. Compare Figures 2 and 3. P r o d u c t func

tions of order higher t h a n 2, share the interpretat ion problems known from the 

second order product function. Unfortunately no satisfactory transformations 

like the Wigner CoSTID are available. 

Product functions can not only be used to distinguish between separate 

stimuli, but also to give a statistical description of the stimulus ensemble (SE) 

as a whole. T h e moments of the SE are found by averaging the product functions 

of the N individual signal elements of the SE: 

rrir^ti,... ,tn) = - — 2_^ Pm(ti.··-Λ»)· (5) 

In general, many moments are necessary for a complete statistical descrip

tion. However, if the ensemble is Gaussian, the first two moments are sufficient 

(van K a m p e n 1981). T h e stimuli experienced by an animal under natura l condi

tions are not Gaussian distr ibuted, however the acoustical environment might be 

approximated by a Gaussian ensemble and during an electro-neurophysiological 

experiment t h e experimenter may choose such a SE. 
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Figure 4: Construction of the peri-event stimulus ensemble from the stimulus 
and recorded neural events. 
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3 Description of response-related stimuli 
The auditory system transforms the stimulus (e.g. a mating call) into a series 
of action potentials. To analyse this transformation reverse correlation methods 
(de Boer and Kuyper 1968; Eggermont et al. 1983) will be used. This analysis 
method compares the ensemble of all stimuli presented to the animal during 
the experiment with those associated with the occurrence of an action potential 
(neural event). How to construct such a peri-event stimulus ensemble (PESE) 
which seems to contain stimuli of special interest for the neuron, is shown in 
Figure 4. 

To characterize the stimuli in the PESE again a statistical description by 
means of moments will be used. The moments of the PESE are found by 
averaging the product functions of the Nr selected individual signal elements: 

ßn[ti,...,tn) = - — Σ Pni{ti,...,tn). (6) 

The moment calculated using only the stimuli associated with the generation 
of an action potential by a particular neuron. The moments of the PESE are 
found by averaging over a subset of the SE. In Equation (6) properties of the 
PESE are obtained by means of an ensemble average. For practical reasons 
this is often replaced by a time average which is allowed in case of a stationary 
stimulus and a time-invariant system. 

For auditory neurons, the stimuli in the PESE are in someway different 
from those in the SE. Both ensembles can be compared by looking at their 
respective moments. If SE and PESE are Gaussian, then differences, if any, 
should be visible in their first two moments, or equivalently their average signal 
and Wigner CoSTID. 

4 Estimation of stimulus characteristics from 
neural activity 

In the previous sections attention has been focused upon stimulus description. 
However inside the brain not the signals but sequences of action potentials 
are present which code the relevant stimuli. In this section a method will be 
proposed for interpreting the neural activity patterns by means of stimulus 
characteristics. 

An optimal stimulus reconstruction scheme to the animal is likely to en
hance relevant stimulus aspects. Since beforehand the set of relevant stimuli 
is not known, the best one can do, is try to reconstruct the actual stimulus or 
its characteristics from the neural activity pattern. Due to adaptation by the 
animal, it is to be expected, that the set of relevant stimuli to a large extent 
covers the set of stimuli, that can be represented by the nervous system. 
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For an optimal estimation by an external observer of the sensory stimulus 
associated with a neural activity pattern, knowledge both of the structure of the 
nervous system and of the characteristics of the SE are necessary (Johannesma et 
al. 1986). Although knowledge of the SE is readily accessible for the observer, 
at least during a neurophysiological experiment, this is not the case for the 
nervous system. Without irreversibly damaging the brain it is impossible to 
obtain detailed information about neural connections. Therefore, it is assumed 
that 

1. sufTicient knowledge about the SE is available, and 

2. correlation of the neurons within the observational set is determined by 
their stimulus dependency. 

As a consequence each sequence of ad ion potentials is modelled by a Poisson 
point process with a stimulus driven intensity (Cox and Isham 1980; Snyder 
1975) and structure within the neural activity process is solely due to stimulus 
correlations. This approximation is quite realistic in peripheral parts of the 
nervous system if firing intensities are low. 

Since neural events are assumed to be generated independently they are 
given equal weight in the stimulus estimation procedure. Each time an action 
potential occurs the estimate is changed by an amount suitable for the specific 
neuron. In order to balance this cumulative procedure the estimate should 
drift in the opposite direction during the absence of events. For a stimulus 
characterization by means of moments we propose: 

dt 

where 

-m,l{tl,...,t,i\ii(t)) =Σ > Л 0 - А , Δ τ η ^ ( ί , - ί , . . . , ί „ - ί ) (7) 

mt, (• • • |W (£)) = estimate of the nth moment of the stimulus based 
upon the observed history of neural activity H (t), 

# (t) = symbolic denotation of the neural activity in the observation 
interval, 

Л/Д·) = counting point process which models the neural activity of 
neuron j 

dN^t) = the number of events in [t,t + di), 
λ, = average intensity of neuron 7, 
ArñJ

tl(· • •) = change in the estimate of the nth moment of the stimulus 
caused by the occurrence of an event of neuron j . 

Each neuron contributes in the same way to the updating. The change in 
the estimate is determined by the difference between actual and expected neural 
activity. The change is abrupt if an event occurs and gradual in the absence 
of events. On the average no change occurs, because E\dNj(t) — Xjdt] = 0. A 
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Figure 6: First-order reverse correlation function of noise stimulus and neural 
activity in the dorsal nucleus of the grassfrog (Rana temporaria L.J. 

logical starting-point of the estimate updating procedure is the о priori stimulus 
distribution. This results in the following integral formulation. 

rñn{ti,...,tn\){(t)) =тп(іі,...,Іп) + 

Σ; [¡лЩЦ)ошЦи - ί,... ,in _ Í) _ ^dtXjAmiit, - t,... ,tn - t)] (8) 

where 

m t ;( · · ·) = o priori estimate of the nth moment of the stimulus ensemble, 
A — observation interval. 

The stimulus estimate consists of 1) an α priori estimate, 2) contributions 
of the individual neurons induced by the occurrence of an event and 3) a global 
opposite effect. During the recording of the neural activity the observation 
interval A increases in time. Figure 5 shows a dynamic application of formula 
(8) for an imaginary electro-neurophysiological recording, to obtain an estimate 
of the first-order moment. 

Before the first event occurs, the stimulus estimate becomes more and more 
negative, indicating the absence of an excitatory stimulus or the presence of 
a suppressive stimulus. The estimation 'kernel' Am¿(··-) relates the α priori 
properties of the stimulus with those leading to an event. Combining this notion 

58 



with Section 3 leads to: 

Δτη^ί ! , . . . ,« , , ) = м і ( * і , . . . , * „ ) - m № ( í i , . . . , * „ ) . (9) 

The estimate of the stimulus is based upon knowledge of the SE and the 
PESE. An animal, if it should make use of a similar estimation procedure, may 
obtain this information while being in constant interaction with its environment 
and by inheritance. The investigator however can obtain α priori knowledge by 
invoking a learning phase. 

If the stimulus has zero mean, then mi(·) = 0, and the first-order kernel 
in Equation (9) reduces to the reverse correlation function μ\{τ) (de Boer and 
Kuiper 1968). In case of primary neurons (nervus acousticus) or neurons from 
the dorsal nucleus this reverse correlation function often shows a band-pass 
behavior (see Figure 6). Therefore its average is approximately zero: 

ƒ diAm-d íAm^í i -i) ~ 0 , (10) 

and the cumulative effect can be neglected. As a consequence Equation (8) 
reduces to: * 

m^iilW (i)) - У1 / ¿ В Д А З Д і - <)· (И) 
У A 

Using a somewhat different approach the same result was obtained by Gielen 
et al. 1987. 

Such a 'simplification' is not possible in the second-order case, since second-
order functions in general are positive definite. The second-order formulation 
of Equation (8) reads: 

rñ2{tl,t2\)i{t))=m.2{tut2)+ (12) 

Ey [!AdNj{t)uañií{tL -t,t2-t)- lAdt \3AmÍ{tl -t,t2-t) . 

Using the linear relations between the real-valued product function, the 
complex-valued product function of the analytic signal, and the Wigner CoSTID 
a transition from Equation (12) to a Wigner CoSTID format is possible. 

S(w,t|tf (0) =Ξ(α;,<) + ^ \j dN¿s)ΔΨ[ω,t - s) - J dsXjAE3(w,t - i 

(13) 
A dynamic application of Equation (13) is given in Figure 7. The method is 

used to estimate the spectro-temporal stimulus properties. 

59 



-іупэгіі ι с s t ι m 

t ι me 

Figure 7: Stylized example of the spectro-temporal stimulus estimation pro
cedure From top to bottom: A) Wigner CoSTID of the stimulus. B) Neural 
activity pattern. C) estimation kernels. D) Dynamic estimation of the stimu
lus. Result of the estimation procedure based upon the observation of neural 
activity during 1 up to 4 time units. 
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Figure 8: f-Tone. -y = 3, τ = 1 0 msec, A = 1.5 and f = 96 Hz. 

5 Stimulus reconstruction: model simulation 

The estimation procedure sketched in Section 4 has been applied in a computer 
simulation. The stimulus consisted of 8 7-tones (Aertsen and Johannesma 1980). 
Α -γ-ΐοηε is given by: 

m(t) = A(-j e x p ( - - ) s i n ( 2 7 r / < ) . (14) 

All tone-pips had the same amplitude (/1 = 1), time constant ( r = 5 msec) 
and form (-7=3). The carrier frequencies were distributed between 96 and 544 
Hz on a linear scale. 

The model has been taken from van den Boogaard et al. 1985 and consists of 
16 independent neurons. Each neuron is composed of a second-order band-pass 
filter followed by an exponential event generator (see Figure 9). 

The transformation of the stimulus into a generator potential by the filter is 
given by: 

u(t) = J dsx(s)w(t - s) (15) 
— oo 

with 

x(-) = stimulus, 
w(·) = impulse response of the filter, 

u(·) = generator potential. 

The generator potential controls the probability for an event to be generated. 

Ρ | Δ Ν ( ί ) = l |u(t) = u] = Д і і /е и + о(Д) (16) 

Ρ[ΔΝ(ί) > l|u(<) = u] = ο(Δί), Δί small enough (17) 
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Figure 9: The model. The transformation of the stimulus x(-) into a sequence 
of events. The event generating system consists of a linear niter followed by an 
instantaneous, exponential nonlinearity. 

with 

AN(t) number of events in the interval [t,t + At), 

ν spontaneous firing rate in the 'absence' of a stimulus. 

Given the stimulus the neural activity is described by an inhomogeneous Poisson 
point process (Cox and Isham 1980; Snyder 1975). The model parameters were 
choosen as follows: 

filters 

time constant 
central frequencies 

amplitude 

τ : 5 msec, 
cf : 16 neurons distributed between 200 Hz 

and 500 Hz on an equidistant scale, 
A : 1800, 

event generator 
spontaneous activity и : 200/sec. 

A similar set of parameters, although larger, has been used previously by 
Gielen et al. 1987 to estimate first-order stimulus properties. Here second-order 
properties are of interest. 

Figure 10 gives an overview of the results. The top row (part A) shows the 
sequence of Ti-tones. Carrier frequencies increase from left to right. The next 
row (part B) shows this frequency increase more clearly in the Wigner CoSTID. 
Between the CoSTID's of the individual 7-tones some interference products are 
visible. However the calculation of the Wigner CoSTID of the series of 8 'y-tones 
should be done coherently and more interference products should be present, 
eg . the interference product of the first and third 7-tone is located on top of 
the Wigner CoSTID of the second 7-tone. Since such a long range coherence is 
undesirable at this stage, the temporal integration mentioned in Equation (4) is 
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Figure 10: Stimulus reconstruction based on computed simulated data. A) 
Sequence of η-tones. B) Wigner CoSTID of the η-tone sequence. C) Neural 
activity pattern. Events of neurons with a different characteristic frequency 
(cf) are plotted at different lines. Activity patterns are sorted by the cf. of 
the neurons; high-frequency neurons at the top and low-frequency neurons at 
the bottom. D) Wigner CoSTID of 4 out of 16 stimulus driven model neurons 
and one independently generated Poisson process. E) Stimulus estimate after 1 
stimulus presentation. 
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performed using a sliding window of width equal to the length of just one ir-tone. 
This procedure mimics short term coherence. Part С gives the neural events as 
a sequence of dots on a line. Activity of neurons with a different characteristic 
frequency (cf) is plotted at different lines. Neurons increase their activity if 
Ti-tones with a similar carrier frequency are presented. Using the PESE of each 
neuron, all Wigner CoSTlD's were calculated. Results of some representative 
neurons are shown in the last row but one (part D). Since the neurons only 
differ in their characteristic frequency, the only difference between the respective 
CoSTlD's is their position along the vertical frequency-axis. Other differences 
are due to statistical fluctuations. The last column in this row shows the result 
based on a (stimulus independent) homogeneous Poisson process. This last 
CoSTID is an estimate of the spectro-temporal stimulus properties to expect α 
priori. The fifth and last row (part E) gives the stimulus estimate using the 
previously calculated Wigner CoSTlD's and the same neural activity patterns, 
i.e. learning and 'estimation phase' use the same neural data. The first (low-
frequency) and last (high-frequency) ^-tones are not or only weakly recovered, 
because they are outside the range of spectral-sensitivity of the model neurons; 
"7-tones within this range are well estimated. Note that the interference products 
are also present in the estimated Wigner CoSTID. This is due to the coherent 
presentation of the 7-tones in the 'learning-phase', and the presence of the 
interference products in the estimation kernels. 

6 Stimulus reconstruction: applied to neural 
data 

The reconstruction method has also been applied to data from the auditory 
midbrain (torus semicircularis) of the grassfrog (Rana temporaria L.). The 
response of 6 neurons in 6 different frogs was recorded during auditory stimu
lation with Gaussian noise and mating-call vocalizations. Since the recordings 
have been obtained from 6 different frogs, independence of the neural activity is 
guaranteed. For details about the experimental set-up see Epping et al. 1985. 

During the first part of the experiment Gaussian noise (90 dB SPL) was pre
sented. The estimation kernels were calculated. The resulting Wigner CoSTlD's 
are shown in Figure 11. The neurons show a broad range of spectro-temporal 
sensitivity. 

During the second part a mating call was presented each 2.8 seconds. In 
order to maintain the same adaptation level, the mating call was presented 
together with the Gaussian noise used in part one (see Figure 12). This mating 
call or B-call can be approximated by a series of 7-tones with varying amplitude. 

The recorded neural events together with the Wigner CoSTlD's were used to 
estimate the spectro-temporal stimulus characteristics. The results are shown 
in Figure 13. 
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Figure 11: Wigner CoSTID of 6 neurons from the midbrain of the grassfrog 
based on a Gaussian stimuius ensenibie. 
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Figure 12: Auditory stimulus A) Part of a mating call of the grassfrog. B) Part 
of the Gaussian noise. C) Superposition of mating call and Gaussian noise. 
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Figure 13: Stimulus reconstruction based on experimental data. A) Mating 
call of the grassfrog B) W/gner CoSTID of the mating call C) Neural activity 
pattern. After the unit number of the neuron the neural activity is plotted at 
different lines. Each line shows the response to 6 presentations of mating call 
and noise. The time span of this part is 16864.4 msec. D) Average estimated 
stimulus Wigner CoSTID after 196 stimulus presentations. 
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Part A gives the mating call and part В of this figure shows its Wigner 
CoSTID. Note the interference products. Part С gives the neural response. An 
estimate based upon just one stimulus presentation is rather poor, since it is 
based upon the activity patterns of just 6 neurons and it is also corrupted by 
the influence of the simultaneously presented noise sequence. 

Since the Gaussian noise was presented incoherent with the mating calls, its 
influence can be suppressed by averaging the results of the 196 presentations 
of the frog-vocalization. The result is shown in part D of Figure 13. Since the 
Gaussian noise used in the learning-phase is an incoherent signal compared with 
the mating call, interference products are neither present in the kernels nor in 
the estimated Wigner CoSTID of the stimulus. 

7 Conclusion and discussion 

In this paper a procedure is proposed for the estimation of the sensory stimulus 
presented to an animal. It is based upon the observed activity of a set of neurons, 
о priori statistical knowledge of the stimulus, and statistical knowledge of the 
response of the neuron to the stimulus. The procedure is taken form the view
point of the experimenter who has statistical knowledge of both SE and PESE. 

The stimulus is assumed to be stationary; it may be Gaussian noise, a set of 
randomly distributed artificial tones or an ensemble of natural sounds derived 
from the acoustic biotope of the animal. Although the neurons may be con
nected, they are assumed to have no functional interaction; the correlation of 
the neurons within the observational set is determined only by their stimulus 
dependency. Due to this stimulus dependency or stimulus selection property 
of the neurons, the PESE is nonstationary. In the first part of the procedure 
statistical knowledge has to be acquired about the PESE: distribution, moments 
or cumulants. In line with experimental practice the first two moments or cu
mulants are determined. The first cumulant forms the characteristic stimulus 
of the neuron, the second one is equivalent to its spectro-temporal receptive 
field. If SE and PESE are Gaussian distributed, then their first two moments 
or cumulants are sufficient for a complete statistical characterization of both 
ensembles. For a system theoretical analysis a Gaussian ensemble is attractive, 
for a neuro-ethological approach a natural ensemble of stimuli based on the 
acoustic biotope opens the possibility to investigate the base of natural forms of 
auditory behavior. In the latter case an analysis based upon just the first two 
cumulants is bound to be incomplete. 

Since the estimation procedure is based upon statistical characteristics of the 
SE, its applicability is limited to a single stimulus ensemble. A transfer from 
one SE to another is in principle only possible through a full characterization 
of the relevant part of the nervous system (e.g. by its Volterra kernels). The 
updating process is essentially linear. No scaling of the estimate is necessary, 
if one remains within the same stimulus ensemble. Using a least square error 
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criterion and a linear estimation procedure, one can easily show that the pro
posed estimate is optimal, if correlation is absent. Poisson processes have this 
property. Experimental data show that if intensities are low, neural activity 
often can be described by a Poisson process. 

Two final remarks are related to the appreciation of the method. Firstly no 
neural interaction has been taken into account. As a consequence the function 
of the nervous system considered here is filtering and representation of the 
stimulus. Active aspects of perception such as extrapolation were not regarded. 
Secondly this method of sensory interpretation of neural activity is not intended 
to represent an internal image present in the animal but to give a systematic 
description for an external observer of the observational bounds of the animal 
and of the limits to perception based on the patterns of neural activity. Its 
predictions however can be tested in behavioral experiments. 
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Distribution of Sensory Stimulus Estimated 

from Neural Activity 

Gerard H. F. M. Hesselmans 

A b s t r a c t 

The relation between the α priori distribution of the stimulus ensemble 
as presented to the animal and the a posteriori distribution of the ensemble 
of stimuli associated with the occurrence of the induced neural activity 
pattern is studied within the context of a model. In three successive 
steps the model is further specified; orderly, multiplicative, and ¡ι Volterra 
expansion. A dynamic method is presented, yielding an estimate of the 
complete α poâienon stimulus distribution. 

1 Introduction 
By means of its sensory system an animal obtains information about its envi
ronment. Sensors transform stimuli into neural activity pa t te rns . The responses 
of primary neurons to stimuli of different modality provide the only represen
tat ion of the environment to the central nervous system. The neural signals 
can be used to construct an internal representation of the environment. After 
an evaluation by the nervous system command signals for the effector systems 
are generated. Effectors, such as muscles, allow the animal to interact with its 
environment. 

The neural activity pa t te rns are comprised by trains of action potentials 
propagating in the nerve-fibers. The short wave forms ( l ms) of the action 
potentials are to a good approximation identical in case of one neuron. There
fore a neural activity pa t te rn is almost completely described by the times of 
occurrence of identical neural events. A mathematical tool to describe such an 
abstracted phenomenon is provided by point-process theory (Snyder 1975). 

The analysis of a series of events by means of point-process theory leads to 
a description of the train of events, e.g. it can be modelled by a renewal process 
or by a Gauss-Poisson process. For the animal it is however more relevant to 
know the relation between the neural activity pa t te rn and the possible stim
ulus, i.e. a sensory interpretation of neural activity. Proposals for a stimulus 
based explanation of neural activity have been presented before (for references 
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see e.g. Gielen et al. 1987). However in these publications the stimulus-space 
is projected onto a low-dimensional subspace, e.g. stimulus intensity and fre
quency in the auditory field and intensity, saturation and hue perception in 
vision research. 

Johannesma (1981) gave an impulse to a more general sensory interpreta
tion of neural activity and formulated an estimation method based upon the 
characteristic stimuli of a set of independent low frequency auditory neurons. 
Along the same line Gielen et al. (1987) estimated the most plausible stimulus. 
This paper presents a way to estimate the complete stimulus. 

The structure of this paper is as follows. In Section 2 the neural activity is 
idealized by an orderly point process. Under this rather mild restriction with 
respect to the neuron model, general results describing the evolution of the 
stimulus estimate can be formulated. In fact orderliness is a property of neural 
activity which is a direct consequence of the refractory period: neurons do not 
fire more than once within about 1 msec. The conditional distribution changes 
as more and more neural activity is observed in time. In Sections 3 and 4 the 
neural model is limited to more concrete forms. First, the sensory input and the 
neural feedback mechanism are separated. As a result the neural feedback does 
not appear explicitly in the equations. Second, an explicit model of stimulus 
dependency is given. The model that will be used is adopted from Johannesma 
and van den Boogaard (1985). The description of the output point process is 
intensity based (Cox 1972; Snyder 1975). The intensity A(<) depends upon a 
record of the data available at time t, including the history of the output point 
process. In the analysis we prefer the more intuitive and more tractable intensity 
approach above the alternative martingale description (Segali and Kailath 1975; 
Bremaud 1981). Consequently the intensity approach is used in this paper. 

2 Time dependent description of sensory stimuli 

The aim of this paper is to characterize the stimulus given the neural activity 
in a certain time interval [0,t). The stimulus x ( ) is stochastic and not directly 
observable, but its a priori distribution ƒ [x] is known. The dimensionality of the 
stimulus is as yet of no importance, but depends upon the sensory system under 
investigation and the number of sensors, e.g. one or two eyes. As a function of 
time it may be a scalar for the monaural auditory system or a two-dimensional 
spatial intensity distribution for the visual system. It is in the final model that 
we will restrict ourselves two the one dimension of sound: pressure fluctuations 
of the air as a function of time at one ear. 

The neuron responds to the stimulus by generating action potentials. It is 
through the neural activity pattern that an a posteriori estimate of the stimulus 
can be obtained. Some stimuli result in characteristic neural activity patterns. 
The inverse also holds: a neural activity pattern might point at a specific stim
ulus or a specific set of stimuli. The presence of the pattern changes the о 
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priori statistics /[ι] of the stimulus ensemble. The stochastics of the 'new' con
ditional ensemble given the activity pattern N(·) on [Ο,ί) can be described by 
a conditional probability distribution / [ і | І (г), г 6 [Ο,ί)]. If the condition is 
to be written in full in each equation, expressions will be awkward. In order 
to improve the readability of the coming expressions, the history of the neural 
activity from time zero till the end of the observation interval at time ί will 
be abbreviated by W(i). Using this new convention the conditional stimulus 
distribution is denoted by /[ ι | ί / ( ί ) ] . We will first consider a situation, where 
we have one stimulus input and one sensory neuron. 

We assume that the probability of an event to occur is influenced both by 
the stimulus process ι(·) and by the previous events. In general different stimuli 
mean different neural activity properties. E.g. the autocorrelation density of 
the sequence of action potentials is stimulus dependent (Eggermont et al. 1983). 
In order to arrive at an explicit result the class of neural models is limited. 

A s s u m p t i o n 1 The neural activity can be modelled by an orderly output point 
process N(·), depending on the sensory stimulus x(·) and history M (t) of the 
point process. 

This is expressed by: 

Ρ[ΔΝ(ί) = 0 |χ ,^( ί ) ] = 1-λ[χ,)/(ί)]( ί)Δί + ο(Δί) (1) 

Ρ[ΔΝ(ί) = 1|χ,Ν(0] = λ[χ,)/(ί)](ί)Δί + ο(Δί) as Δί 1 0 (2) 

Ρ [ Δ Ν ( ί ) > 1 | χ , ^ ( ί ) Ι = 0 ( Δ ί ) (3) 

where 

ΔΝ(ί) = number of neural events in the interval [ί,ί + Δί) . 
A[]() = intensity function (Cox and Isham 1980). 

Equations (1,2,3) show the characteristic property of orderly point processes 
(Daley 1974). The probability of 2 or more events to occur in a small time 
increment can be neglected (Snyder 1975; Cox and Isham 1980). Multiple events 
are ruled out. From neurophysiological data it is known that neurons exhibit 
inhibition: directly after the occurrence of an event, the generation of another 
event is completely suppressed during about 1 ms and partially the next few 
milliseconds. As a result the right-hand side of Equation (3) equals zero if Δί 
is less than the absolute refractory period; Ρ[ΔΝ(ί) > l\x, Ή (ί)] = 0. 

Equations (1,2,3) give the probability of events to occur given both stimulus 
input ι(·) and neural history )( (i). The conditional probabilities given only the 
neural history are given by: 

Ρ ( Δ Ν ( ί ) = 0 | Ν ( 0 ] = 1 - λ [ Κ ( ί ) ] ( ί ) Δ ί + ο ( Δ ί ) (4) 

Ρ [ Δ Ν ( ί ) - l | ) / ( í ) ] = λ[>/(ί)](ί)Δί + ο(Δί) 3 3 Δ ί | 0 (5) 

Ρ[ΔΝ(ί) > 1|Κ(ί)] = ο(Δί) (6) 
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with X[M (t)}(t) = E\X[x,M {t)\{t)\H (<)] t.he average intensity function. The 'un
conditional' point process is also orderly. Given the past of the process, the 
probability of two or more events to occur in a small time increment can still 
be neglected. 

Neural activity is not limited to a certain time span, it evolves in time. 
Given the estimated stimulus distribution ƒ [і|.У (f)] at time t and the number 
of events ΔΝ(ί) in the next time increment [(, t + Δί), we would like to estimate 
the stimulus distribution f\x\H {t + Δί)] at time t + At. Note that the neural 
history up to time t + Δ* can be described by M (t + Δί) or by X (t) combined 
with Δ Ν ( ί ) . By applying a few times Bayes' theorem concerning conditional 
probabilities: 

P[A\B] • P\B} = P[AB] = P[B\A} • P[A\, (7) 

the stimulus distribution at time ί + Δί can be related to the one at time t. 

The influence of the addition of neural information is determined by knowl
edge from the past. Note that Equation (8) holds for all Δ7ν(ί). Substitution 
of the orderly model (see Equations (1, 2, 3) and (4, 5, 6) yields difference 
equations for updating the estimated stimulus distribution: 

Δ ƒ | i | U (t),AN(t)} := f[x\)l (i), AN(t)\ - f\x\M (t)} = (9) 

-Δλ[* (01(0 [ Э Д М ' - l] /M* (Ol f o(At) if AN(t) = 0 

[%Vff - '] M" M + "W if ANW =1 

The values of the conditional density are irrelevant in case Δ7ν(ί) > 2, as 
they always will be multiplied by factors of order P[AN(t) > 2] = ο(Δί). Equa
tion (9) shows how the conditional distribution is changed by the addition of 
neural information present in the activity pattern. The change in the probabil
ity distribution can be described by a jump if an action potential occurs and 
by a small step proportional to Δί if no neural activity is present. During the 
absence of neural activity the stimulus properties drift at a rate of A[.V (ί)](ί) in 
the direction opposite to the one imposed by the possible neural events. 

A similar result in case AN(t) — 1 was obtained by Johannesma (1980) and 
Hesselmans et al. (1987) for the Fourier/Laplace transform of the distribution. 
This transform is known as the characteristic functional (see Section 5). Strictly 
speaking their results were only formulated in the context of a stationary stimu
lus. However following the rationale given by Hesselmans et al. (1987) no reason 
could be found why this result should not be applicable in the nonstationary 
case as well. 

Note that during an absolute refractory period no events occur. As a con
sequence the evolution of the conditional distribution is completely described 
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by the case AN(t) = 0 of Equation (9), in which moreover the intensity 
λ | ι , W (01(0 = 0· So we may conclude that the conditional distribution /[i|W (01 
does not change during the absolute refractory period. 

Without loss of precision Equation (9) can be integrated to a single version: 

Д / [ х | ^ ( 0 , Д І ( 0 ] - (10) 

{AN(t) - AtX\M (0](0} [ЭД, ' , 1 , ' ] ' - ! ] + 0(At) i f ΑΝΜ Ϊ- 1 • 

The change of distribution is determined by what actually happens: AN(t), 
and what is expected to happen: λ[#(0](0 · Unless λ[)/(0](0 = 0 these two 
quantities cannot be equal. 

Since Ε[ΑΝ(ή\Μ (t)} = AtX\)t {t)}{t), the conditional distribution is on the 
average not changed by additional neural information. 

In addition the size of the change depends on the ratio of X[x, M (ОКО a n < ^ 
λ(ί/(0](0· If the neural activity does not depend upon the stimulus then 
A | : r ,#(0K0 = ^ |Я(01(0 a n < i the distribution is not changed. 

Equation (10) is the fundamental equation of this paper and allows, at least 
in principle, a solution of the distribution problem. More explicit results con
cerning the quantities X\x, # (0)(0 a n < i ·4Μ(0](0 w ' ^ ^ 8 8 l v e n ' n ^ е n e x t 

sections. 

3 A multiplicative model 

The results of Section 2 are quite general. In order to arrive at more specific 
results the generality of Section 2 will be restricted by additional assumptions 
about the model. The model is inspired by Johannesma and van den Boogaard 
(1985). In the model two types of variables occur: action and state variables. 
The action variable is the action potential. The neural activity and the sensory 
input are integrated deterministically to a state variable: the generator poten
tial, which is stochastic as a function of a stochastic phenomenon. The generator 
potential governs the generation of an output event. In order to separate the 
neural input from the stimulus input we propose (see also Cox 1972; Brillinger 
1975; Johnson and Swami 1983): 

Assumpt ion 2 The contribution of neural and sensory input to the intensity 
function is multiplicative. 

The mathematical formulation of the preceding reads: 

λ[*,*(0](0 = expi/[x,K(0](0 (И) 
[/[χ, К (01(0 = V\x\(t)+W\)imt) (12) 

where 
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Figure 1: Mu/tip/icative model. The generator potentiai [/[ι, ί/] is the sum 
of the sensory and neural contributions, V[x] respectively W\)i]. The output 
intensity depends exponentially upon the generator potential. 

U\x,)( (t)}(t) = generator potential 
y|x](i) = stimulus contribution to the generator potential 
W[)i (t)](t) = neural contribution to the generator potential. 

A flow diagram of the model is given in figure 1. Substitution of Equa
tions (11, 12) in the two quantities of interest X\M (t)\(t) and λ[ι, ){(f)](t) yields 
respectively: 

and 

λ[^(ί)](ί) = Ε[λ[χ,Κ(ί)](ί)Ι*(0] 

-= E[exp{V\^(t)+W[)i(t)}(t)}\)i(t)} 

-- £?[expV[x](i)|«(0]expïV[^(i)l(i). 

Ajx.J/ (t)}(t) _ expV[x\{t) + W\)t{t)}{t) 
X[)i{t)}(t) E[expV\x\(t)\)i {t)\expW\)i {t)}(t) 

_ expV[x\(t) 

í;[expV[xJ(í)|^(í)] 

Substitution of Equation (14) into Equation (10) leads to: 

Af[x\)i(t),AN(t)} = 

(13) 

(14) 

(15) 

{AN{t)-At\lH(t)}{t)} 
J«fa./|x|V(t)|oxi.V| !r](t) 

f\x\M(t)} + o(At) 

if AN(t) < 1. 

The jump in the conditional stimulus distribution induced by the occurrence 
of an event does not explicitly depend upon the neural feedback mechanism 
W[)( (<)](*)· Only indirectly via the intensity λ[# (<)](<) and through the change 
of the distribution in the absence of neural events the feedback is of importance. 
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4 A Volterra model 

In this section a more explicit form is given of the model by Johannesma and 
van den Boogaard (1985). The stimulus component V|i](i) is chosen to be a 
Volterra system, whose order is limited to kernels of maximal degree 2. The 
addition of higher degree kernels would lead to mathematically unmanageable 
formulas, while an analysis by Grashuis (1974) shows that the activity of primary 
auditory neurons can be described by just 2 kernels. Note that Grashuis (1974) 
did not include refractory mechanisms. Results are likely to improve, when this 
neural feedback is taken into account. 

Assumpt ion 3 The stimulus is transformed by a second degree Volterra sys
tem. 

The mathematical formulation of the preceding results in: 

V\x}(t) = vo + I da c(a)x(t - σ) + - I da Ι άτΌ^,^χ^ - a)x(t - τ) (16) 

where 

Vn = working point of the neuron 
c(·) — linear filter 
£>(·,·) = nonlinear filter of second degree 

The contribution of the sensory input is processed nonlinearly. Given the 
conditional stimulus distribution at time t, the influence of the occurrence of an 
event in the next time increment on the conditional distribution can be solved 
by means of Equation (15). 

The relation between the original distribution and the one estimated from 
neural activity is in general complicated. However if Gaussian distributions are 
assumed, it suffices to relate the α priori and α posteriori mean and covariance 
or the first two moments, which completely determine both distributions. First 
and second-order properties have simple meanings of which the first needs no 
comment. The second has two interpretations. Firstly, the covariance, gives 
the uncertainty with respect to the average or expected stimulus value and 
secondly the second moment is directly related to the concept of a spectro-
temporal receptive field (Aertsen and Johannesma 1981). 

If the stimulus distribution given the neural activity up to time t is Gaussian 
then it is fully described by its average m(-\M (t)) and covariance Β(·,·\Μ (t)). 
Substitution of Equation (16) into Equation (15) yields the a posteriori average 
and covariance (see Johannesma (1980); Hesselmans et al. (1987)): 

mr

t = Br

t[Bt-
lmt + ct} (17) 

Bï = [Brl-Dt\-
1 (18) 

where 
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m, (τ) = m ( r | K ( t ) ) 
Bt{T,a) =Β{τ,σ\Η(ή) 
mí (г) =т(г |И(«),ДЛГ(*) = 1) 
ß ; ( r , a ) = i7(r,a|W(i),A7V(i) = l) 
Ci ( г ) = c( í - г ) 

Dt{T,a) = Z?(í - r , í σ). 

The stimulus remains Gaussian with mean and covariance given by Equa
tions (17, 18). The addition of an extra neural event increment [ί,ί ^Δ<) changes 
the stimulus parameters with a jump but leaves the stimulus class unaltered. 
Unfortunately this class-invariance property is lost during a period of no neural 
activity. This can be shown through a study of the case AN(t) = 0 of Equation 
(9). 

Although the assumptions of a second-order Volterra system and a Gaussian 
stimulus distribution have some advantages, the loss of class-invariance limits 
the applicability of the Gaussian approximation to neurons with weak connectiv
ities. This problem cannot be overcome by limiting the Volterra system to just 
one kernel. Other explicit formulations of stimulus distributions that have some 
realism are not available. Therefore, in the next section, the distribution format 
will be put aside in favour of its Fourier/Laplace transform, the characteristic 
functional. In this domain it is possible to drop the Gaussian assumption. 

5 The characteristic functional 

A stimulus description equivalent with the distribution formulation is the char
acteristic functional (Srinivasan 1974; Snyder 1975; van Kampen 1981). The 
characteristic functional Φ\ξ] of the stochastic continuous stimulus process x(·) 
is defined by the following expectation value: 

•ƒ Φ[ζ]:=Ε\αχρ]άσχ{σ)ξ{σ)]. (19) 

Knowledge of the characteristic functional Φ[£] for an appropriate set of test 
functions £(·) supplies a complete description of the stochastic process x ( ) . The 
conditional characteristic functional given the neural activity is given by: 

•ƒ Φ\ξ\}ί{ή]:^Ε[α4>]άσχ(σ)ξ{σ)\)ί(1)\. (20) 

Although descriptions by means of the distribution and the characteristic 
functional are equally powerful, expressions in either format do not have to be 
equally simple. A straightforward transformation of Equation (15) yields: 

ΔΦΚ|Κ(0,ΔΛΓ(0]= (21) 

В\ещ> \х.]іфіН\ *[É|W (Ol {ΔΛΓ(ί)-Δίλ[^(ί)]( ί)} 
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if ΔΝ(ή < 1, with (recall Equation (13)) 

λ[)ί (t))(t) = E\expV[x}(t)\)i (t)}expW\M (t)}(t) . (22) 

Equations (21, 22) give the time evolution of the characteristic functional 
under the influence of neural activity. The a priori stimulus distribution is still 
arbitrary. It is of course possible to assume as in the previous section a second 
degree Volterra system, but this would make Equations (21, 22) unsolvable or 
reduce the stimulus class to approximate Gaussian distributions. Observe the 
linear form in the exponent of the characteristic functional. This linear form 
fits well with a first degree Volterra system. 

/ da c{a)x(t — σ) — vo + I da Ct V\x](t) = Vo+ I da c(a)x(t - a) = vo + J da ct(a)x{a) (23) 

Substitution of Equation (23) into Equations (21 ,22) yields: 

•ф[1 + <ч|У(0] 
ΔΦ|ξ|^(ί),Δ^ν(ί)1 = {AN{t)-AtX\H(t)}{t)} •ыт - m m 

(24) 
if AN(t) < 1, with 

λ[* (<)](<) = Ф Ы * ( í ) ] e x p b + W[M (t)](t)} . (25) 

Equations (24, 25) form a closed set, which describes the evolution of a 
stimulus estimate with arbitrary о priori distribution. 

6 Stimulus description based on multi-unit ac
tivity 

The results obtained in this paper in case of one neuron, can easily be generalized 
to the multi-unit case. Due to the orderliness of the set of point processes, the 
probability of 2 events of different neurons to occur in the same small time 
increment can be neglected. The η-unit equivalent of Equation (8) is: 

я*ітл",-(«)і = ̂ ™^/м»«)] m 
where )( (() is a description of all point processes under consideration. If more 
units are considered, then Equation (26) is the new starting point of the analysis. 
As a result the basic Equation (9) is modified as follows. The influence of the 
addition of an event is described by a set of formulas, one for each neuron. The 
behavior in the absence of neural events is determined by an equation where 
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the right-hand side is replaced by a sum of individual contributions. 

ДЛх|У(*),Д7 Л « ) а М = (27) 

-Δ*EU \,ix (ОКО [^Fïïff - !] M* (0) + "(ΔΟ 
if Σ , · Δ ^ ( ί ) = 0 

/[x|^(<)] + o(l) 

if Δ ^ ( ί ) = 1 and Σί ΔΛ,(ί) = 1 

\,[tr.1t[t)\[t) 
A , | « ( t ( ] | t | 

with Ajj·] the intensity function of process j . The first case of Equation (27) 
applies if no event occurs in the time interval \t,t + At), the second case if 
exactly one event occurs, whatever its type. Recall that the occurrence of more 
events has probability of smaller order than Δί. A more compact formulation 
of Equation (27) is: 

Af\x\)i(t),AN3{t) a.\\j}= (28) 

Σ, {ДВД - Δίλ,Ι* (ί))(ί)} [^'ІДІіК' - l] fW» (01 + o(At) 

if Σ, Δ ^ (*)<!· 

The change in distribution equals the sum of the contributions of the indi
vidual neurons. In general Equation (28) cannot be separated explicitly, since 
neural activity is correlated through direct neural interaction and/or indirectly 
via the stimulus. 

7 Discussion 

In this paper a dynamic estimation procedure based on neural activity is pre
sented. This estimate changes stepwise if an action potential is detected, while 
the behavior is continuously in the interval between two neural events. 

Starting with a Gaussian distributed stimulus and a neuron model with 
connectivities which are not too large, the α posteriori stimulus distribution 
associated with a neural activity pattern is also approximately Gaussian. In 
this case the time dependence of the stimulus parameters: mean and covariance, 
can be determined. 

The results obtained in this paper in case of one neuron, can easily be gen
eralized to the multi-unit case. If more units are considered, then the basic 
Equation (10) should be modified. The history M (t) should be extended to a 
description of all point processes under consideration. In general, an estimate 
of the stimulus based upon several neurons cannot be separated into contribu
tions of estimates based upon the activity patterns of the individual neurons. 
If neural interaction is present then Ау[і, M (t)\{t) / λ^χ, )/j(t)](í), with Mj 
the history of the neural activity of neuron j ' , and Я the history of the activity 
pattern of the set of neurons. Even if neural connections are absent then still 
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Äj(W {t)\(t) ψ \}\)l j(í)](í) due to stimulus correlation. Sufficient conditions that 
allow complete separation in Equation (28) appear to be: 

1. neural interaction is absent, 

2. neurons respond to different stimulus features; 
receptive fields do not overlap, 

3. stimulus features for which neurons are sensitive are independent. 

If more neurons are considered it is increasingly unlikely that these conditions 
are met. Unfortunately these conditions appear to be necessary for a separation 
of the multi-unit estimate into a combination of single-unit estimates. 

In this paper the rationale is provided for a more detailed sensory interpre
tation of neural activity. Since the evolution of the distribution can be traced, 
the behavior of stimulus characteristics like moments, cumulants or most plau
sible stimulus can be investigated as well. Gielen et al. (1987) proposed a 
first-order estimate for a most plausible stimulus. Under the assumption of 
Gaussian distributions this is equivalent to the estimation of the first moment 
of the о posteriori stimulus distribution. This approach can easily be extended 
to the second-order case. Within what range of parameters the method is valid 
may be investigated by simulations. Afterwards it can be applied to real neural 
data. 

The author wishes to thank Peter Johannesma, who critically read the manu
script and gave valuable comment. 
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Maximum Entropy, Correlation Functions, 
and Exponential Models 

Gerard H. F. M. Hesselmans 

Abstract 

Input-output relations of a neuron can be studied through correla
tion functions. Input and output processes are assumed to be stationary. 
Based on a maximum-entropy argument we conclude that the interpreta
tion of correlation functions can be done in an 'optimal' form by assuming 
a model consisting of a Volterra system followed by an exponential event 
generator. 

1 Introduction 
To investigate complex neural networks correlation techniques (de Boer and 
Kuiper 1968, Eggermont et al. 1983) have been used. Conclusions about func
tional connections are made , based upon these correlations, but no explicit 
model is formulated. Conclusions drawn from the correlations functions, how
ever, often assume implicitly a linear or low-order Volterra system. The aim of 
this paper is to form an explicit description of the neural t ransducer , based on 
the correlation functions obtained from experiments. The neuron is described 
completely by all joint correlation functions of its input and ou tpu t . However, 
only the first can be est imated reliably from experimental data . A prudent 
method is required to fill in the remaining uncertainty: making minimal con
straints on the neural activity given some correlation functions or equivalently 
making the process as random as possible. 

Neural activity can be modelled by a set of point processes. Point pro
cesses are fully described by product densities. The product densities are the 
theoretical counterpar ts of the experimentally observed correlation functions. 
Probability distr ibutions of a set of stochastic point processes are determined 
by their joint product densities. 

The above problem is reformulated mathematical ly as follows. Determine 
an optimal set of probability distributions given jus t a few product densities. 
Optimal is as indicated before to be interpreted as: maximizing the increase 
in entropy of the point processes. The entropy increase is maximized at every 
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time instant. Of course results obtained at different times need to be consistent. 
The definition of entropy as given by McFadden (1965) will be used. McFad-
den determined the process yielding a maximum increase of entropy given only 
the first product density or intensity of the process, and found it to be the 
(in)homogeneous Poisson point process. In this paper the problem is general
ized to constraining product densities of higher order. 

The use of a maximum-entropy increase estimate formalizes an assumption 
of ignorance about aspects of the distribution other than the functions explicitly 
used as constraints. The maximum-entropy approach yields a set of extremiza-
tion conditions. These conditions result directly in a generator of the point 
process, or less formally, a model of the neuron. The maximum-entropy distri
bution itself, however is not derived, but is determined indirectly by the model. 
Also the error introduced by using estimates of the product densities instead 
of their exact values is not discussed. We will argue that as a consequence of 
the decision to use correlation functions a low-order Volterra system is not an 
optimal choice, but should be followed by an exponential event generator. For 
clarity this statement is first made in case of one point process. Then it is 
extended to two point processes followed by a general conclusion. A treatise 
concerning continuous stochastic processes in which the total entropy is maxi
mized, is given by Victor and Johannesma (1986), and yields distributions which 
are described by an exponentiation of a low-order Volterra series. 

In Section 2 the product densities and sample function densities are intro
duced. They are related to each other and their time dependence is discussed. 
In Section 3 the time dependence of the point process is given. In Section 4 
the concept of entropy as a measure of disorder is introduced. A definition 
based upon sample function densities is given and in Section 5 the incretise of 
entropy is maximized under the restriction of known correlations. In Section 6 
the results of the previous sections are generalized to two and more processes. 

2 Densities 

Consider a point process N(·). This process is observed during a time interval 
[0,i). The events which constitute realizations of the point process occur at 

random instants Tt, 0 < ΤΊ < T2 < The number of events in intervals [0, t) 
is given by the random variable N(t), N(t) > 0. For ease of notation vector 
variables like (i 1, . . . , tn) will be abbreviated by t „ . The point process on [0, i) 
can be completely determined in two ways. The product densities / t l ( t t t ) are 
defined by (Snyder 1975): 

fn{tn) := lim E 
m.ix At, 10 

Π длг(д 
. 1 = 1 

(1) 
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The sample function densities p,i(tTl;i) are defined on [0,t)n by(Snyder 1975): 

p„(t„) := lim E 
m.ix At, [О 

Л AN(tt) 
V(Í )=»] i l л .=1 Δ ί · 

(2) 

where l^[t\=t,] is the indicator function of the outcome [N(t) = n). 
The product densities yield the probability to find events at different times i» 

irrespectively of what happens between events. This in contrast with the sample 
function densities for which we explicitly require that no intermediate events 
occur. The sample function density gives the joint probability for a realization 
of iV(i) = η events which occur at different times Tj = i,. We assume that all 
the η-dimensional functions of both densities exist. Observe that the random 
instants Tj are ordered, while the arguments of /n(t„) and p„(t f l ; t) are not. For 
convenience of notation, we have extended them to functions on [0,<)" which 
are invariant for permutation of the components of t „ . Without this extension 
formulae (3) and (4) below would become rather awkward. As a consequence 
of this extension, the weights assigned to [0, ()"· by /„(t„) and pT l(t r e;i) have to 
be reduced by a factor n!. 

Note that the product densities / n ( t n ) do not depend upon a particular 
time interval [0, t), this makes them easier to estimate from experimental data 
and more suitable for a first analysis of the experimental data. The product 
densities are the theoretical counterparts of the correlation functions. However 
the sample function densities are more suited for a theoretical analysis when 
a model is known. The sample function densities yield a more transparent 
definition of the entropy (see next section). 

The product densities ƒ„ (tM) are related to the sample function densities 
р.Ді^;«) by (Stratonovich 1963): 

L· » v.. ƒ»(*„) = > — / <iufcpn+fc(tn,Ufc;t). (3) 
k=o - '" ' 

The inverse is given by: 

^ (-l)fc f 
f»(tft;t) = Х]Цгγ-J dukfn+h(tn,uk;t). 

fc=o * ! Ίο*)* 
(4) 

Henceforth Jduh for к = 0 is to be interpreted as evaluation of the integrand 
at i, i.e., p„.(t„;t) in (3). 

3 Time evolution of t h e process 

The evolution of the point process is determined by the underlying model. In 
view of present understanding of neural behavior the point process is represented 
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as a generalized birth process or a conditional Poisson process. The probability 
of an event to occur in the time increment (i, f -t-Δί) given the history of N(t) = η 
events having occurred at times t n is given by: 

P[AN(t)=0\N{t) = n\TH = t„} = 1 - λ „ ( ί | ί η ) + ο ( Δ ί ) (5) 

P[AN{t)^l\N(t) = n;Tn = tn} = A n ( t | t n ) + ο(Δί) asA<jO,(6) 

P[&N{t)>l\N{t) = n;Tn = tn\ - ο(Δί) (7) 

with A n ( t | t n ) the conditional intensity of the point process. The occurrence 
of more than one event in a small time increment is of smaller order than Δί 
and can be neglected. This is called orderliness (Daley 1974). The property of 
the process being conditionally Poisson can be used to obtain two equations of 
continuity. For all η > 0, we have the following (McFadden 1965): 

^ P » ( t „ ; t ) = -Xn{t\tn)pn{tn;t) (8) 

P»+i( t„, i ;0 = \n{t\tu)pn{tn;t). (9) 

The process changes from a state of η events into a state of η + 1 events 
at a rate proportional to λπ(<|ί„) and the probability densities of these two 
states are related via λ τ ι ( ί | ΐ η ) . The A r i(t | t n) are the 'generators' of the proba
bility distribution of the point process. Together with the initial conditions and 
Equations (8,9), they determine the process completely. 

Note that the model cannot be chosen arbitrarily. It is subject to the con
straints imposed by the experimental observations: the correlation functions or 
estimated product densities. The product densities /„.(t,,.) and the conditional 
intensity A n(t | t f t) are related as follows: 

fn+i{t,tn) = У ] — / du f cpn +fc+i(i,tn,Ufc;<) (10) 
^ — ' Kl • , i n i t ) i 

dUfeÄn+fc^lt^Ufc^«.^^. . .^*). (11) 

fe=o kl >·<>'' 

•ta 
In the first step (10) the relation between sample function densities and 

product densities as expressed by Equation (3) is used. In the second step (11) 
the equation of continuity (9) has been inserted. 

The remaining task is to provide a satisfactory form of the 'model' A t l(t|tn) 
constrained by (11). If m product densities fn(t„) are estimated from experi
mental data then the conditional intensities A>1(t|tn) are subject to the m con
straints given by Equation (11). 

4 Entropy 

The entropy of a process is a measure of its disorder, or equivalently, the un
certainty about which realization is to be expected. It indicates the amount of 
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information needed to fix or predict a particular realization of the process. The 
entropy H{t) of a point process in the interval |0,t) is defined by (McFadden 
1965): 

00 1 Í 
Я(*) = - ] Г - / dt np u(t n;t)logP u(t„;t). (12) 

Note that a different notation was used by McFadden (in our version of 
(12) the integration domain has been extended to all of [0,t) r l). In order to 
investigate the increase of the entropy we now consider the time derivative: 

d ^ 1 Í 
-H(t)= - У " — / d t „p r i + 1 ( t n , t ; í ) logp„ + 1 ( t „ , í ; í ) 
M *—* Til J In i l » dt » = 0 - I0 4» 

^ о n ! V«>" dt 
¿ t „ — p„(tf l ; í ) [ H - b g p r i ( t n ; i ) ] . (13) 

The first term results from the differentiation of the multiple integral with 
respect to the outer limit t and shifting the summation variable n, and the 
second term results from the differentiation of the integrand. Substitution of 
the equations of continuity (8,9) into (13) leads to: 

d "'if 
-H(t) = Y-. ^p^t^OA^Mil-logÀ^iM] 
dt n^,4· V'»" 

= £ ; [À w ( t |TV) ( l - l ogA N ( f |T w ) ) ] . (14) 
The expectation in Equation (14) is taken over all random variables Tjv, 

including N. The increase of the entropy of the process at time t depends upon 
the distribution of the process up to time i, and upon the growth of the process 
via the conditional intensity λ „ ( ί | ί η ) . We may extend the usual convention 
OlogO := 0 for entropies to expressions with λ„(ί|1„) at the place of 0. 

5 Maximum-entropy increase 

Up to this point we have followed closely the reasoning by McFadden. We will 
generalize McFaddens approach to the case where: 

A s s u m p t i o n 1 The first m product densities are given (also after time t). 

McFadden assumed only the intensity to be known (m = 1). The first prod
uct density depends upon just one time argument. The stochastic properties of 
the process at different times are independent. In this paper, higher-order prod
uct densities are considered as well. Therefore the stochastics of the process at 
time t depends on the realization of the process before time i. As a consequence 
the time derivative of the entropy at time t depends also on the distribution of 
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the point process before time t. In order to get consistent results with respect 
to the distribution of the process we impose the following relation: 

0 0 (- l ) f c f 
Pn{tn;t) = Y] / d\ikpn+k{tn,uk;t + τ). (15) 

for г > 0. The distribution of the process on [0, t) is not changed on the average 
by what happens on [ί,ί + r ) . The distribution on [0,t + Δί) can, with the help 
of the continuity equations (8,9), be related to the distribution on [0,t). 

ρ η ( ί „ ; ί + Δί) 

Ρ » + ι ( ΐ „ + ι ; ί + Δ<) 

[1 - Xn(t\tn)}pn(tn;t + At) + o{At) (16) 

A „ ( i „ + i | t n ) p n ( t u ; t ) + ο ( Δ ί ) , (17) 

as t n G [0, t)n and i n + i G [ί,ί + Δί). Note that Equation (16) describes the case 
of zero events in [ί,ί + Δί) and (17) the case of one event in [ί,ί f Δί) . Recall that 
the occurrence of more events has probability of smaller order than Δί, and can 
be neglected. With the aid of Equations (16,17) the sample function densities 
p,i(t n ; i) can be obtained by recursion. The initial values are: pn(i = 0) = 1 
and pt, ( t f l ; i = 0) = 0 for η > 1 and t„ = 0. Due to the consistency relation 
(15) and Equations (16,17) the maximization of the entropy increase at time ί 
should be done only with respect to Αη.(ί|ΐη) once the distribution on [0,i) is 
determined. 

Consider as fixed the quantities: i, t^ , and p n ( t „ ; i ) for η G Ν, t n G [0,ί)η . 
We will maximize ^ in (14) for varying A, t(t |tn) η G Ν, under the restraints in 
(11) for η = 1,2,... ,m and t„, G [Ο,ί)'1. We may and will restrict our attention 
to vectors tu with all components different. Consider the Mu(tn; i) as "Lagrange 
multipliers" in the maximization procedure of: 

d 'n~l Í 
— H{t) - Y dvnßn(vn;t)x 

Λ»+ι(ί,νη) - V / dufe A„+fc(í|Vu,ufe)p„+fc(Vu,ufe;í) (18) 

Let, for fixed η and t n , 6n(· — tn) be the sum of the n! Dirac ¿-functions 
with peaks at tn. and all its permutations. Replace in (18) the λ η ( ί | υ η ) by 
λΓ, (tju,,) + ε δ „ ( υ η - t r l ) , differentiate to ε, and obtain the result for ε = 0. Solve 
ДтЛтмО from all these results for varying η and t n to find: 

m— 1 

logÀ( i | t „ ) - 5 ^ м Л * н ; 0 * 
J=0 

Pn(tn|í) = o (19) 

Неге "*" expresses that a sum over all subsets of size j out of the η time 

arguments t n should be taken, e.g. Дз(із;і)* = /¿2(<і)<2;0 + М2(<і,*з;0 + 
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M2(Í2^3;í)· The reader who verifies Equation (19) might come up with an 
additional factor j ! . This depends on how the symmetry of the time arguments 
tj is taken care of. However this additional factor can easily be absorbed in the 
ßi(tj; t). The ßjftjit) are determined by (19) and (11) for η = 0 , 1 , . . . ,m — 1. 
If P„(Ui;t) = 0, then the value of A„(t|t„) is irrelevant for the distribution of 
the point process, so we may simplify (19) in all cases to: 

rn — 1 

A„(t|t„) = exp^-^it»;«)* (20) 

m-l Г 

= exp£ / dN(s)}n3(s};t) (21) 
,=ο l0*>· 

where dN(s)j is an abbreviation of ¿N(3^ • · •(iiV(Sj). Equation (20,21) de
termines a class of generators An(t|tn) of the point process. Less formally it 
gives an 'optimal' model which might underly the correlation functions esti
mated from experiments. Of course the parameters of the model still have to be 
determined. The Lagrange multipliers μ ί(ί : (;<) determine via Equations (8,9) 
the distribution pu(t I 1,|t) of the process, now also an infinitesimal time beyond t. 
Substitution of these model-dependent sample function densities in Equations 
(11) yield a set of constraining equations according to which the parameter 
functions μ ^ ^ ; ί ) should be chosen. 

The case m = 1, corresponds to a result of McFadden (1965). The entropy 
increase is a maximum if the process is the (inhomogeneous) Poisson process. 
Note that the increase of entropy is not maximized by varying the distribution of 
the point process in the past, but by a proper choice of the conditional intensities 
A,i(<|t„), which regulate the distribution in [0,t + dt) at its right end. 

At this point we introduce a second assumption: 

Assumpt ion 2 The point process has a finite memory h. 

In case of a strictly finite memory the integral in Equation (21) can be 
restricted to [O, h) for t > h: 

w-l r 

A„(i | t n ) = exp V -: / dN(t - u ) , μ,(ί - u,; t) (22) 

where t — Uj is an abbreviation of ί — i t i , . . . , t — Uj. Note that some elements in 
tT, have become obsolete. The intensity of the point process at time t depends 
only on those elements of t n for which t% > t — h. In formula, if λλ(<|νι^) is 
the conditional intensity at ί given N(t) N{t — h) = к and occurrences of the 
point process at t — u^, then 

A„(i |tn) = Afe(i|ufc) if N(t) - N{t - h) = к and u fc := t - t , ; t , > t - h (23) 

If we assume that: 
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Volterra system 

μ0 μ{ μ2 

UC D NC ì 

Figure 1: The optimal single unit model. It consists of a Volterra system and 
an exponential event generator 

Assumpt ion 3 The point process is stationary, 

then Лд(<|ид.) in (23) does not depend on i. Consequently, ßj(tj;t) in (22) is a 
function of Uj = i — t j , which, by abuse of notation, we will write as ß^Uj). 
We have found that in a time-invariant neuron model with finite memory the 
dependence on the past is a matter of relative times. Note that the results 
hold for an arbitrary time-horizon h. Therefore the results can be extended 
to processes with an infinite memory which can be approximated by a finite-
memory process. Such processes are said to have a fading memory, i.e. two 
input signals which are close in the recent past, but not necessarily close in the 
remote past yield present outputs which are close (Boyd and Chua 1985). 

In many analyses of experimental data only the intensity of the process 
fi{t) = fi, the autocorrelation /a(i 1,̂ 2) — /2(^2 — ¿i), and sometimes the 
joint occurrence density or second-order Poisson kernel based on /З((І,<2»ЕЗ) = 
/з('з — *ь*з — h) a r e established. Based on such experimental observations and 
the criterion of maximal entropy increase the following model is 'optimal': 

λ,ΛίΙί«) = exp Mo 

η 1 η η 

+ 5>i(t - и) + - Σ Σ > ( ί - t.,t - tj) 
1=1 i = l j = l 

(24) 

exp Mo + / άΝ{σ)μι{ί-σ) + ^ dN(r) / άΝ{σ) μ 2 (ί - σ,ί - г) 

The model consists of a Volterra system and an exponential event generator 
(see figure 1). The neuron model is time-invariant, and the dependence upon 
the past is a matter of relative times. The output is a conditional Poisson 
process. This model which is generalized in the next section, has been introduced 
before by Johannesma and van den Boogaard (1985) and elaborated by van den 
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Boogaard (1986). In general we get: 

00 1 f 
A u ( i | t , è ) = e x p ^ - y dN{yk)ßk(t-yk) (25) 

fc=o ' l n |o.t)fc 

with μλ(υΑ.) = 0 if /fc+i(tfc+i) is unknown (not estimated), 
and ßki^k) properly chosen if /fc+i(tfe+i) is known. 

The /к+і(1к+і) need not be consecutive. The relations between the different 
quantities are summarized in the following scheme: 

ƒ» ^ P. % Κ Φ M. (26) 

The product densities fn on the left represent the experimental data. They 
determine via the sample function densities p^ and the conditional intensities λ„ 
the "Lagrange multipliers" μη on the right. In the transformation from prod
uct densities into sample function densities all densities are required. However 
the set of product densities ƒ„. is incomplete, therefore the maximum-entropy 
increase argument is introduced. 

6 Multi-unit model 

Results of the previous sections were related to only one neuron. In this section 
we first extend the results to two neurons and then results in the general case 
are given. The joint entropy of two point processes Ni(-) and ./VgO) is defined 
by (see Equation (12)): 

Hi2(t) = - > —: / dtn } —- I d s r a p „ m ( t r i , s r n ; < ) l o g p „ m ( t n , s m ; t ) 

(27) 
where p „ n i ( t n , s m ; t) is the joint probability density to find events of point 

process N\(·) at times tn and events of point process Λ^·) at times s m . The 
joint product densities f,i,n(tri\sm) and sample function densities are related 
in a similar way as mentioned in Section 2. The sums should be replaced by 
double sums. 

If the two point processes are modelled as generalized birth processes, then 
3 equations of continuity can be formulated. For all η > 0, m > 0 we have the 
following (see Equations (8,9)): 

-j-tPnm(tn,stn;t) = - [\1

пт{і\іп,вш) + \*m[t\tn,8m)]pnm{tn,8m;t\2S) 

P»+i.m(*,t„,8m;i) = A¿ m ( t | t „ ,8 m )p„ m ( t n , e m ; í ) (29) 

Pu.m+i{tn,t,sm;t) = Xntn{t\trt,sm)pnm(tn,sm;t) (30) 

91 



with Ar
l;trt(í|tn,sm) and A^ffl(<|t„,sm) the intensity functions of the respective 

point processes. Note that none of the Equations (28,29,30) contains a cross-
term. This is a consequence of the fact that the bivariate process is also a 
conditional Poisson process. The occurrence of an event of one process and 
another event of the other process in a small time increment can be neglected. 
With the help of the new relations (27) and (28,29,30) the time derivative of 
the entropy of the combined process can be found (see also Equation (14)). 

dt 
°^ 1 f ' " l i 

Hi2{t) = Σ ΓΤ / d t » Σ —i / а 8 ' " Pnrn(tn, e m ; í) x (31) 
„ = ο n · lo.«)" m = n m ! [o.tr 

Κ , , Λ Φ - S m ) [1 - logA^íílt^.B,«)] + A*m( í | tn ,em) [1 - logA2m(<|tr i,sm)] } 

The extreme points of this derivative with respect to Àf
1

im(t|tM,8„l) and 
A^m( t | t„ ,sm) have to be found subject to the following constraining relations 
(see Equation (11)). 

/fi + l .m( t , t n , S m ) — (32) 

^ 1 f ^ 1 f 

/ri.tir + l ( t , i , í , S m ) — (33) 

^ 1 f '"if 
к=»к· ν*·"1· ,·=ο·,! I0·'»' 

If we assume again that the product densities / n m ( t „ , 8 m ) have been esti
mated from experimental data up to order 3; m + η < 3, then by the calculus 
of variations we will find another similar set of conditions on extreme points of 
the constrained maximum entropy (see Equation (19)). As a consequence of the 
previous reasoning we find for the model of the first neuron (see Equation (24)): 

« п (Ф«.вт)^«ф[/*А?. + / άΝ^μβμ - σ) + / άΝ2{σ)μ}№ - σ) 
•Ό Jo 

+ i / dN^T) / dNiia) μ^( ί -σ,ί-τ) 

+ i / άΝ2(τ) / dN2(a) ß£{t -a,t-T) 
¿ -Ό "Ό 

+ ¡dN^r) Γ άΝ2(σ) ßZ(t - o,t - τ)] (34) 

The superscript г in μ'· refers to the point process under consideration and 
the subscript j to the order of the constraining product density or correlation 
function. The model can be represented by a Volterra system followed by an 
exponential event generator (see figure 2). 
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Figure 2: The optima] double unit model. Neural input is processed by Vb/terra 
syst pms and event generation depends exponentially upon the output of the 
Volterra system. 
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The order of the Volterra system corresponds to the order of the constraining 
functionals. This conclusion can be extended to relations between an arbitrary 
number of neurons and arbitrary order of the correlations. 

Conclusion: The 'optimal' model based on the measurement of correlation 
functions consists of Volterra systems followed by exponential event generators. 
The order of the kernels of the Volterra systems corresponds with the order of 
the experimentally obtained correlation functions. 

7 Conclusions and discussion 

In this paper a model is proposed for a neural transducer. This model con
forms to the experimental data, and the ignorance about the unknown aspects 
is formalized by the assumption of maximum-entropy increase. An approach 
along the line of a maximum-entropy increase instead of an overall maximum 
is taken since the latter leads to a maximum-entropy distribution and not to 
a 'model'. A transition from the distribution to a ti me-invar i ant model seems 
to be a difficult problem, since the distribution is influenced by the edges. The 
maximum-entropy increase approach suffers only from an onset phenomenon, 
the overall approach suffers also from offset problems. Furthermore in a sta
tionary situation, we expect the entropy in the limit to be a linear function of 
time. In this situation both approaches may yield the same solutions. 

The maximum-entropy distribution can be described by an exponentiation 
of a low-order Volterra series. This distribution is akin to the one given by 
Victor and Johannesma (1986). The distribution function here is a functional 
on the realizations of a point process, while the paper by Victor and Johannesma 
was concerned with continuous processes. In the second-order case the Volterra 
kernels of the latter are related to the cumulants of the continuous stochastic 
process. This relation does not exist for point process. 

It might be possible to choose constraints in such a way that no maximizing 
model exists. Two results by van den Boogaard (1985) point at such a possibility. 
First, if we restrict ourselves to the single-unit case, the autocorrelation equals 
in first order the connectivity. Second, a 'positive' filter results in an explosion 
of activity and no point process to describe the model exists. Therefore a 
'positive' autocorrelation will not match with a linear Volterra system followed 
by an exponential event generator. A way out of such a pathologic situation is 
to include more correlation functions or choose another model based upon other 
considerations. 

The proposed model is only an approximation of the neuron under study. Dy 
incorporating the effect of higher-order correlations the model should approach 
the actual neuron. Since the presented model is basically an element of the 
subclass of Volterra systems which yield a nonnegative output, it will approach 
the 'real' model if this model is analytic. 
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In the literature the most common models belong to the class of Wiener-
Volterra systems. The reason is the simplicity attributed to them. If we look 
at self-exciting systems, the only model solved explicitly is the linear model 
(Hawkes 1971). All elements of this type of population of mutually connected 
point processes are connected by linear filters and fire according to a linear 
pulse generator. Although the linear model allows the derivation of explicit 
forms of the filters, it is restricted to excitatory connectivities, which should 
be sufficiently bounded to avoid instabilities. These excitatory connections are 
in conflict with the inhibitory auto-connectivities of 'real' neurons which show 
refractory effects. If connectivity loops are included then both Wiener-Volterra 
systems and the model proposed in this paper can be solved only numerically. 
If connectivity loops are excluded then Wiener-Volterra systems seem to be 
preferable. However refractory mechanisms require feedback for a correct de
scription of neural activity. In contrast with the presented model, nonnegative 
firing intensities, are not guaranteed by the Wiener-Volterra model. Therefore 
the argument that low-order Wiener-Volterra systems are mathematically easier 
to treat is invalid. 

The author wishes to thank Peter Johannesma for his help in the interpre
tation of mathematical concepts, and Wim Vervaat for corrections on imprecise 
mathematical formulations. 
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Summary and discussion 

The nervous system can be represented by a network, a system of cell bodies 
(somata) connected by axons and dendrites. The axons and dendrites are the 
wiring along which the cell bodies communicate by means of short electrical 
pulses or action potentials. The triple of soma, axon and dendrites forms an 
anatomical unit called a neuron. Because of their brevity compared to other 
relevant phenomena, and the similarity of different action potential waveforms 
generated by a single neuron, a sequence of action potentials is sufficiently char
acterized by their times of appearance. Such an abstraction is called a point 
process. Point-process theory has been applied before to quite different kinds 
of random processes as queues and earthquakes. 

A neural network can be studied through its input-output relations. The 
usual procedure is to present a sensory stimulus, e.g. a sound, and determine 
the response of the network, a realization of a point process. By presenting a 
representative sample of signals and recording the evoked response, the neural 
network can be characterized. However this method provides no answer to 
questions concerning the function of neural networks, such as: "What is the 
functional difference between two neural networks?". To answer this question it 
is more relevant to record the response of both networks upon the presentation of 
the same stimulus, and form an estimation of the plausibility of stimuli to have 
been the cause of this response. If both probability distributions are similar, 
then the function of the two neural networks may be said to be similar. 

Note that a direct comparison of the neural output of the two neural networks 
is not feasible since a direct measure on point processes is not available at the 
moment. Furthermore it makes no sense to look at details of the neural activity. 
A comparison of letters in two books written in English and German tells very 
little about the subjects of both books. 

The reverse mapping from neural activity patterns back to the stimulus-
space is the central issue of this thesis. The conditional stimulus distribution 
given a realization of the neural activity is investigated. This transformation 
can be studied once a model is set up. The selected model of auditory neurons 
is based on experimental work by Grashuis (1974) and a general theoretical 
study by Johannesma and van den Boogaard (1985). Grashuis used the same 
special case of the general model to predict the response of auditory neurons in 
the cochlear nucleus of the cat (forward approach). In this thesis the auditory 
system of the grassfrog (Rana temporaria L.) is modeled and the model is used 
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NEURAL ftCTIVITY STIMULUS ESTUATE 

Figure 1: The functional comparison of two neural networks done through re
verse maps of the neural activity. 
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in the reverse approach. The model consists of a Volterra system followed by 
an exponential event generator. 

The implications by this model on the structure of neural processes are 
discussed in Chapter 6. Some information about the structure in a sequence 
of action potentials is provided by the experimentally determined correlation 
functions. It appears that the above model imposes the least possible additional 
structure on the neural activity. 

Neural data from the grassfrog have been taken, because this animal has been 
studied extensively. Furthermore, since the grassfrog is a lower vertebrate, the 
mapping induced by its auditory system is expected to be not too complicated. 

The reverse mapping given the recorded neural activity results in a proba
bility distribution for possible sensory (auditory) stimuli. This probability dis
tribution cannot be visualized in general, because of its high dimensionality. In 
Chapter 2 the maximum or most, plausible stimulus is used as a one-dimensional 
characteristic of the distribution. The reverse mapping is determined for a set 
of sixty-four parallel model neurons, which are composed of a Volterra system 
followed by an exponential pulse generator. 

Two cases are considered. In case of a linear system (first degree Volterra) 
a unique most plausible stimulus is shown to exist. In case of a second degree 
Volterra system, most plausible stimuli are shown to form a hyperplane. The 
linear case is further elaborated and a first approximation of the reverse map 
is given. In this approximation each neural event is substituted by the impulse 
response of the Volterra system of the associated neuron. The summation of 
impulse responses gives an estimate of the most plausible stimulus. Computer 
simulations using the responses of the set of parallel neurons after presentation 
of clicks, gamma-tones and a frequency sweep yield a satisfactory similarity of 
original and estimate. 

Experimental data indicate that the linear model can be applied to primary 
neurons in the nervus acusticus or to neurons in the dorsal medullary nucleus, 
since these neurons show phase-lock. The generation of action potentials is 
synchronized to the phase of excitatory tonal stimuli. However phase-lock is 
largely lost in the subsequent stages in the processing of auditory stimuli, as 
neurons respond equally to stimuli with the same frequency but with different 
phase. Therefore a more general model, e.g. a second degree Volterra system is 
needed to model neurons in the torus semicircularis (TS). Furthermore, a unique 
most plausible stimulus can no longer be found when phase-lock is absent. 

In Chapter 3 a general description of the stimulus distribution is provided 
by the characteristic functional. It can be considered as an infinite-dimensional 
Fourier/Laplace transform of the probability distribution. By functional differ
entiation moments and cumulants can be derived from the characteristic func
tional. The moments and cumulants are the theoretical counterparts of the 
experimental correlation functions. If the distribution is Gaussian, it is fully 
determined by its first two moments or cumulants. The characteristic func-
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tional can not only be calculated for the stimulus ensemble (SE), but also for 
the set of stimuli associated with the generation of an action potential : the peri-
event stimulus ensemble (PESE) which is an extension of the pre-event stimulus 
ensemble (Aertsen et al. 1980). 

The characteristic functionals of SE and P E S E are related by the model. 
This relation provides a means for system identification. In case of the lin
ear Volterra system the impulse response of the filter can be found as follows. 
Present Gaussian white noise to the auditory neuron, record its response and 
determine the set of stimuli occurring prior to the action potentials. The average 
of this P E S E gives the time-reverse of the linear filter. 

Explicit relations between SE, PESE, and model are obtained for the 'sec
ond degree' model in combination with a Gaussian or Gauss-Poisson SE. The 
theoretical results are supported by computer simulations and applied to exper
imental da ta . In part icular , the model is fitted to da t a from a single neuron 
in the TS of the grassfrog. Although the filter (linear Volterra system) is only 
adjusted to fit to the average conditional st imulus, second order properties (co-
variance) can be explained by the model as well. This adds to the credibility of 
the model. 

In Chapter 4 the ideas presented in Chapters 2 and 3 are combined to char
acterize the mapping by neurons from the torus semicircularis. From Chapter 
2 the idea is taken to subs t i tu te each neural event by a characteristic quan
tity. The impulse responses used previously had zero mean. This cannot be 
expected in general. Therefore the reverse mapping procedure is slightly modi
fied by subtract ing the characteristic quantity when no action potential occurs. 
From Chapter 3 we use the idea of taking for the characteristic quantity the 
difference between stimulus characteristics of PESE and SE, and the moment 
description. The basic elements are given by the difference of what is to be 
expected a priori and what is expected given the occurrence of a single event. 

To est imate the first characteristic moment quantity, the average stimuli of 
SIÍ and P E S E should be subtracted from each other, and the difference should 
be used in the way mentioned above. An analogue procedure should be applied 
to es t imate the higher order moments . For neurons in the TS without phase-
lock, the averages of a Gaussian SE and P E S E are equal and as a result the 
est imate of the first moment of the conditional distr ibution equals zero. In 
the Gaussian case the first moment equals the most plausible stimulus which is 
already studied in Chapter 2. Therefore the second moment is used to study 
the mapping by neurons in the TS (Chapter 5). 

Actually, not the second moment is used, but ra ther the Wigner CoSTID. 
The Wigner CoSTID, a coherent spectro-temporal intensity density, yields the 
frequency content of the stimulus as a function of t ime, and can be obtained by 
a linear transformation of the second moment. The Wigner CoSTID is chosen, 
because it allows easier interpretation than the second moment . Elementary 
Wigner CoSTID's of 6 neurons in the TS are obtained during stimulation wi th 
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Gaussian noise. These are used to interpret the responses to a mating-call 
masked with noise. The conditional Wigner CoSTID resembles the a priori one, 
although some of the coherence in the original mating-call is lost (see Hermes 
1985). 

The estimation procedure can be divided into two parts. First, the charac
teristic quantities are determined. Second, these quantities are substituted for 
the neural events in the sensory interpretation of a neural activity pattern. To 
get an 'optimal' result, both steps require a SE with the same properties. 

In Chapter 2, a Gaussian SE is used implicitly in the first step, while in 
the next step the response to three quite different stimuli is interpreted. The 
results indicate that the method is rather insensitive for a transfer from one SE 
to another. 

In Chapter 4, again a Gaussian SE is used to characterize six neurons in the 
TS of the grassfrog. An ensemble of natural stimuli would be more appropriate, 
however these stimuli from the environment or biotope of the animal are very 
diverse (Aertsen et al. 1979). The acoustic biotope of the grassfrog includes 
wind, mating calls, the clatter of a stork, clicks etc. The obtained elementary 
Wigner CoSTID's seem to be good enough for interpreting the response to a 
mating-call in a noisy background. 

With the interpretation of the response to the masked mating-call, most of 
the noise is lost. The estimated Wigner CoSTID resembles more the CoSTID of 
the pure mating-call than the corrupted one. The six neurons of the TS perform 
a kind of selection. This part of the nervous system of the grassfrog seems to 
be more sensitive to the mating-call than to noise. 

In Chapter 5 the general solution to the interpretation problem is derived. 
This result does not change the qualitative properties of the sensory interpre
tation of neural activity. The occurrence of an action potential changes the 
estimate with a jump, while the estimate drifts in the opposite direction in 
the absence of events. However, the quantitative details are different in the 
exact procedure. The changes which are kept fixed in Chapters 2 and 4, de
pend upon the previous neural activity and the current estimate of the stimulus 
distribution. Furthermore the stimulus characteristics (moments) cannot be 
estimated independently, but should be considered simultaneously. The esti
mation procedures applied in Chapters 2 and 4 can be considered as first-order 
approximations. 

Chapter 5 provides an exact solution to the interpretation of multi-unit activ
ity and gives the conditions under which the previously sketched approximations 
might be applicable. They are: 

1. neural interaction is absent, 

2. neurons respond to different stimulus features: receptive fields do not 
overlap, 

3. stimulus features for which neurons are sensitive are independent. 
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Examples in this thesis are chosen to satisfy these conditions as far as pos
sible. In particular condition l) is fulfilled all the time. Restrictions 2) and 
3) do not require more explicit knowledge about the neuron model. Therefore 
an estimation procedure including overlapping stimulus sensitivities might be 
developed in the near future. Inclusion of neural interaction is harder to tackle. 
The introduction of interconnections in system identification leads to recursive 
relations. Partial solution of these equations is in general impossible. They 
should be solved simultaneously. Unfortunately full knowledge of the (func
tional) connections in the model is required for obtaining the exact conditional 
stimulus distribution given a realization of neural activity. 

By comparing the presented stimulus and the conditional stimulus distri
bution, information about the selectivity and sensitivity of the nervous system 
is obtained. It is in the stimulus-space that functional measures on neural ac-
tivitity patterns can be found. Therefore the sensory interpretation of neural 
events gives a better understanding of the image the animal might have of its 
environment. 
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Samenvatting 

De interactie tussen een dier en zijn omgeving wordt geregeld door het zenuw
stelsel. Informatie over de buitenwereld wordt door de zintuigen geregistreerd 
en doorgegeven aan de hersenen. Aldaar vindt een nadere analyse plaats, en 
worden indien nodig spieren geactiveerd. 

In dit proefschrift wordt de relatie tussen de prikkel uit de buitenwereld en 
de gemeten activiteit in de hersenen bestudeerd. De verzameling prikkels die 
gebruikt is bestaat uit geluiden die voor het proefdier, de bruine kikker, en voor 
de (theoretisch-)onderzoeker van belang kunnen zijn: ruis, klikken, toonstootjes, 
paringsroepen enz. Gemeten is in de grootste auditive kern (torus semicircularis) 
in de middenhersenen van de bruine kikker (Rana temporaria L.). 

De electrische activiteit in de hersenen wordt veroorzaakt door zenuwcellen. 
Een zenuwcel bestaat uit drie delen: de dendrietenboom, het cellichaam en het 
axon. De dendrietenboom verwerkt de signalen van andere zenuwcellen tot de 
generatorpotentiaal, die de toestand van de zenuwcel beschrijft. Afhankelijk van 
de waarde van de generatorpotentiaal wordt er in het cellichaam een actiepoten
tiaal gegenereerd. De actiepotentiaal wordt via het axon verder getransporteerd 
naar andere zenuwcellen of naar spieren. 

De gedurende een experiment gemeten signalen in de hersenen van de bruine 
kikker bestaan uit actiepotentialen. Dit zijn spanningspulsjes met een duur 
van 1 milliseconde. De vorm van deze pulsjes varieert nauwelijks voor iedere 
zenuwcel afzonderlijk en de duur ervan is kort vergeleken met de tijdschaal 
waarop verschijnselen in de buitenwereld zich afspelen. Daarom kan bij de 
beschrijving van een rij actiepotentialen volstaan worden met de tijdstippen 
waarop ze optreden. De wiskundige theorie die hierop van toepassing is heet 
puntprocessentheorie. Deze theorie is al eerder toegepast op o.a. wachtrij
problemen en aardbevingen. 

Het patroon van actiepotentialen in centrale delen van de hersenen ziet er in 
het algemeen chaotisch uit. In minder centrale delen, dat wil zeggen dichter bij 
een zintuig (oor), kan de neurale activiteit meer direct in verband gebracht wor
den met do prikkel (geluid). Ook hier geldt echter dat het door een enkel geluid 
opgewekte neurale activiteitspatroon sterk varieert. De vraag, hoe groot deze 
variatie is kan echter niet onmiddellijk worden beantwoord, omdat er nog geen 
goede afstandsmaat tussen reeksen actiepotentialen gevonden is. Afstanden 
tussen geluiden kunnen echter wel gegeven worden. Hierdoor wordt het indi-
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reet toch mogelijk om over het verschil tussen twee reeksen actiepotentialen te 
spreken. Daarvoor is het nodig om het geluid dat geassocieerd kan worden met 
de neurale activiteit te kennen. 

Hetzelfde probleem treedt op als men de functie van twee verschillende 
zenuwstelsels of delen daarvan wil vergelijken. Het direct vergelijken van de 
door beide zenuwstelsels voortgebrachtte reeksen actiepotentialen is een zinloze 
bezigheid. Zoals bij het vergelijken van Duitse en Franse woorden, waarbij 
men niet naar uitspraak of spelling moet kijken maar naar betekenis, is het 
van meer belang om datgene waarnaar de reeksen actiepotentialen verwijzen te 
onderzoeken. 

Het centrale probleem van dit proefschrift luidt: welke prikkel of verzameling 
prikkels kan de oorzaak zijn van de gemeten activiteit in de hersenen. 

Zonder een model kan bovenstaande vraag niet beantwoord worden. Daarom 
is er een model geformuleerd dat voldoende aansluit bij experimentele gegevens 
en dat wiskundig nog hanteerbaar is. Gegeven dit model is geprobeerd onder 
andere de meest waarschijnlijke prikkel, de gemiddelde prikkel en de frequen-
tieinhoud van de geluidsprikkel te schatten. De geschatte prikkel gegeven de 
gemeten reeksen actiepotentialen noemen we de sensorische interpretatie van 
deze hersenactiviteit. 

In eerste benadering blijken deze grootheden geschat te kunnen worden met 
een som van elementaire stukjes signaal. Schatting van bijvoorbeeld het meest 
waarschijnlijke geluid (Hoofdstuk 2) in de buitenwereld gebeurt door op mo
menten dat een actiepotentiaal optreedt een vast stukje signaal bij de bestaande 
schatting op te tellen en gedurende de afwezigheid van actiepotentialen de schat
ting in de omgekeerde richting bij te stellen. 

De elementaire stukjes signaal worden gevonden uit het verschil van de vooraf 
verwachte prikkeleigenschap en de gemiddelde prikkeleigenschap waarop een 
actiepotentiaal volgt van de betreffende zenuwcel. In hoofdstuk 3 zijn deze 
grootheden door middel van het model met elkaar verbonden. Het model bleek 
een goede beschrijving te geven van metingen aan een zenuwcel in de bruine 
kikker. 

In hoofdstukken 2 en 4 is de sensorische interpretatie van enkele activiteitspa
tronen bepaald. In hoofdstuk 2 is dit gedaan voor de opgewekte activiteit van 
enkele met behulp van een computer gesimuleerde zenuwcellen op drie verschil
lende geluiden: een in frequentie oplopende toon, een serie kliks en toonstootjes. 
Deze modelmatige zenuwcellen vormen een redelijke beschrijving voor zenuw
cellen in de nervus acusticus. Hoewel de karakteristieke stukjes signaal bepaald 
waren met behulp van ruis, bleken de geschatte meest waarschijnlijke geluiden 
goed te lijken op de feitelijk aangeboden geluiden. Dit duidt op een zekere 
robuustheid van de procedure. 

In hoofdstuk 4 zijn zes zenuwcellen in de torus semicircularis van de bruine 
kikker bestudeerd. Voor deze zenuwcellen geldt dat schattingen van het gemid
delde of het meest waarschijnlijke geluid dat het opgewekte activiteitspatroon 
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tot gevolg heeft, geen zinvol resultaat geven. Het is beter om naar de frequen-
tieinhoud van het signaal als functie van de tijd te kijken. Dit kan met behulp 
van de Wigner CoSTID: een geavanceerde notenbalk, waarbij de fase-relaties 
tussen de verschillende tonale componenten behouden blijven. Op basis van 
ruis is de frequentiegevoeligheid van iedere zenuwcel bepaald. Deze frequen-
tiegevoeligheid is daarna gebruikt om uit de gemeten reeksen actiepotentialen 
de bij de aangeboden paarroep behorende 'notenbalk' terug te schatten. Dit 
lukt heel aardig, echter een deel van de samenhang tussen de verschillende fre
quentiecomponenten in de paarroep gaat verloren. 

Tenslotte wordt in hoofdstuk 5 een algemene oplossing gegeven. In principe 
kan, gegeven het model en algemene kennis over de omgeving(sgeluiden), bij 
ieder patroon van actiepotentialen de voorwaardelijke kansverdeling van de 
(geluids)prikkel gevonden worden. Uit de oplossing blijkt ook wanneer de 
bovengenoemde benadering geldig is. Tenminste dient aan de volgende voor
waarden voldaan te zijn: 

1. er zijn geen verbindingen tussen zenuwcellen, 

2. verschillende zenuwcellen dienen te reageren op onderling verschillende 
prikkeleigenschappen: verschillende frequenties, 

3. de prikkeleigenschappen dienen onafhankelijk te zijn. 

De uitgewerkte voorbeelden blijken achteraf gezien slechts aan voorwaarde 
1) volledig te voldoen. Aan de beide andere voorwaarden is slechts gedeeltelijk 
voldaan. Omdat voorwaarden 2) en 3) niet meer kennis van het model vereisen, 
ligt een uitbreiding van de procedure in die richting binnen de mogelijkheden. 
De toevoeging van verbindingen tussen zenuwcellen stuit op ernstige practische 
en theoretische problemen. Zonder gebruik te maken van gegevens uit andere 
disciplines, als b.v. anatomie en neurofysiologie, lijkt schatten van de verbindin
gen niet mogelijk. Zonder extra beperkingen aan mogelijke zenuwmodellen zijn 
binnen de huidige opzet onrealistisch langdurige experimenten nodig. Ook de 
wiskunde biedt weinig soelaas. De introductie van koppelingen in een systeem
identificatieprocedure leidt in het algemeen tot recurrente relaties. Slechts in 
een enkel geval zijn die expliciet op te lossen. Dit betekent dit men vaak zijn 
toevlucht zal moeten nemen tot numerieke benaderingen met behulp van een 
computer. Kennis van de zenuwverbindingen is echter noodzakelijk voor het 
bepalen van de stimulus behorende bij een bepaald neuraal activiteitspatroon. 

Door het vergelijken van de gepresenteerde prikkel met de geschatte prikkel 
is het mogelijk om de gevoeligheid en de selectiviteit van het zenuwstelsel te 
bepalen. De functie van het zenuwstelsel kan nu kwantitatief bestudeerd worden. 
Hierdoor draagt de sensorische interpretatie van neurale activeit bij aan het 
verkrijgen van een beter inzicht in het beeld dat het dier zich kan vormen omtrent 
zijn buitenwereld. 
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Stel l ingen 

behorende bij het proefschrift 

SENSORY INTERPRETATION OF NEURAL EVENTS 

1. In het model voor een zenuwcel bestaande uit een tweede-orde Volterra-
systeem gevolgd door een exponentiële pulsgenerator leidt een Gaussisch 
stimulusensemble tot een eveneens Gaussisch регі-event-stimulusensemble 
(PESE). Deze klasse-invariantie gaat echter verloren zodra aanwezigheid 
van neurale activiteit als voorwaardelijke gebeurtenis in het PESE ver
vangen wordt door afwezigheid. De verdeling van de α posteriori stimulus 
geschat op basis van een rij actiepotentialen is derhalve niet-Gaussisch. 

Hoofdstuk 5 

2. De beschrijving van een niet-Gaussisch symmetrisch stimulusensemble ver
eist minimaal nog een vierde- en een zesde-orde cumulant. Een op basis 
van tweede-orde eigenschappen berekende spectro-temporele beschrijving 
(CoSTID) is dan dus onvolledig. 

Hoofdstuk 3 

3. De beschrijving van een puntproces door een rij van 'nullen' en 'enen' leidt 
tot conceptuele misverstanden. Binnen het comp ut erj argon zijn 'nul' en 
'een' namelijk uitwisselbaar en voegen ze evenveel informatie toe. Bin
nen de puntprocessen-theorie voegt in een infinitesimaal kort tijdsinterval 
slechts het optreden van een gebeurtenis informatie toe. De afwezigheid 
van een gebeurtenis bevat echter door zijn overweldigende waarschijn
lijkheid geen informatie. 

P. Bremaud, Point processes and queues; 

martingale dynamics, Springer, New York, 1981. 

4. Het toevoegen van extra (neurale) informatie leidt niet altijd tot een 
nauwkeuriger o posteriori schatting van de externe sensorische stimulus. 
Het is zelfs zo dat de onzekerheid, gegeven door de entropie van de schat
ting toe kan nemen. 



5. Gezien het abstracte karakter van bepaalde passages uit dit proefschrift is 
een sensorische interpretatie van het bij de lezer dezes opgewekte neurale 
activiteitspatroon niet zinvol. 

6. In deze tijd van automatisering moet het mogelijk zijn dat het controle
ren op spellingsfouten van drukproeven door promovendi achterwege kan 
blijven. 

7. De bouw van eenpersoons-wooneenheden in afgelegen buitenwijken plaatst 
alleenstaanden in een isolement en past derhalve niet in een sociaal beleid. 

8. Gezien het feit dat pathologische verschijnselen zich statistisch gezien 
slecht door normale verdelingen laten beschrijven, verdient het aanbe
veling ruime aandacht te schenken aan niet-normale verdelingen in het 
statistiek-programma voor geneeskunde-studenten. 

9. De wetenschappelijke inhoud van een promovendus wordt door zijn colle
gae afgemeten aan het aantal publicaties, de inhoud van zijn proefschrift 
door familie en vrienden aan de vormgeving. 

10. Ter verkrijging van inzicht in neurale informatieverwerking is het zelf 
uitvoeren van (computer)simulatles van neurale netwerken door de weten
schappelijk onderzoeker een vereiste. 

11. Bewondering begint te vaak daar waar begrip eindigt. 

Nümegen, april 1988 Gerard Hesselmans 






