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PREFACE

This thesis is about research that has not been finished yet. It does
not present a rounded off study. This has to do with the subject of the
matter. The title says “Classification of regular holonomic D-modules”
and we can merely dream of a title like “The regular holonomic D-
modules classified”.

About four and a half years ago when we started our investigations
little or nothing was known about the problem of classifying regular
holonomic D-modules. By that time it had become clear that the the-
ory of D-modules is a very useful tool in various parts of mathemat-
ics. In particular the so-called regular holonomic D-modules played
a major role. One of the highlights of the theory of D-modules is the
Riemann-Hilbert correspondence. It establishes a one-to-one correspon-
dence between regular holonomic D -modules and perverse sheaves on
X (where X denotes a complex manifold). Now a perverse sheaf isn’t
really a sheaf but rather a complex of sheaves. More precise it is an
object of a derived category. Also the notion of a morphism between
perverse sheaves is difficult to handle. But on the other side it is clear
what is meant by a Dy-module and a D x-linear morphism. So if one
wants to understand the structure of the perverse sheaves on X it is
certainly worth-while to take advantage of the Riemann-Hilbert corre-
spondence and to study the category of regular holonomic Dy -modules.
These objects are perhaps more accessible.

An example of a perverse sheaf is the intersection eochomology sheaf
IC)x, which was expected to carry a pure Hodge structure. And indeed,
quite recently, this was shown to be true by M. Saito using D-module
theoretic methods.

Our philosophy is to get a better understanding of e.g., the perverse
sheaves by means of a good knowledge of the regular holonomic D-
modules. Besides the regular holonomi¢ D-modules are important in
themselves. Another point is that the Riemann-Hilbert cotrespondence
is complicated and therefore one would like to understand both sides.

Regular holonomic D-modules have been the subject of our investi-
gations for the past few years. A number of articles appeared on the
subject of classifying regular holonomic D-modules or perverse sheaves.
In fact most authors classified perverse sheaves. Just a few cases are
understood thus far; there is still a lot to be done. We briefly discuss the
known cases in the last part of Chapter I. In that chapter we also provide
some examples to motivate the study of regular holonomic D-modules.
For the reader’s convenience the first part of Chapter I contains a survey
of the theory of D-modules. It is illustrated by a number of examples.

The organization of the rest of the material is more or less reflected by
our approach to the classification problem. We study regular holonomic
D -modules whose singular loci are contained in a fixed hypersurface
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Xy given by f € I'(X,0x). Let us assume that the situation is local
ie., f:X — S is a good representative of a germ f:(C",0) — (C,0).
In case X, = f~!(0) is a divisor with normal crossings (f = z1...2,)
the classification is well-known by now. Chapter II deals with it.

But how to proceed in more general situations? We use an idea in-
spired by Verdier’s extension theorem (cf. §2.2.1.6). In fact in Chapter
IV we prove a D-module theoretic analogue of this theorem. It states
that a regular holonomic Dy-module M such that M|x_x, is “with-
out singularities” is determined by the data (M[f~!], ¢ M =:! YyM).
Here ¢ M and ¥ M are regular holonomic Py -modules supported on the
hypersurface Xg. The arrows represent certain D y-morphisms. Now
M(f~1] is just the Deligne extension of the Dy _x -module M|x_x,.
Saying that M|x_x, is “without singularities” means that it is a vec-
tor bundle with an integrable connection. Hence M|x_x, is deter-
mined by a finite dimensional representation of the fundamental group
7l’1(X - Xo).

Let us turn to the modules ¢ M and ¥ M. As we already mentioned
these are regular holonomic D y-modules with support contained in Xg.
Since dim Xy = dim X — 1 we have, in principal, reduced the problem
of describing them to a lower dimensional case. If X is smooth then
by Kashiwara’s equivalence (cf. §1.6.2.1) ¢ M and ¢ M correspond to
regular holonomic D y -modules. However in general X, will have sin-
gularities. Here we meet a drawback of the theory of D-modules: on a
singular variety the notion of D-modules is of no use in general.

Let us assume that X is a hypersurface of dimension 1, thus a plane
curve. Assume furthermore that f:(€%0) — (C,0) is an irreducible
germ with an isolated singularity at 0. Let =:(C,0) — (Xo,0) be the
normalization of (Xp,0) and put #:(€,0) — (Xp,0) — (€%,0). In
Chapter III we derive a modification of Kashiwara’s equivalence which
yields that the direct image functor #, establishes an equivalence be-
tween the categories of D¢ o-modules and the category of Dga y-modules
with support contained in Xy. Hence the pair ¢ M z%t YM is iden-
tified as a pair of regular holonomic D¢ g-modules. These have been
dealt with in Chapter II. Thus far we haven’t obtained more general
results e.g., when X is of dimension 2.

We should like to add a remark. We started our investigations by
looking at the normal crossings case. We found an elegant way to
describe holonomic D-modules with regular singularities along normal
crossings. To be more concrete let us consider the one dimensional case
X =€, f = z. We introduced a pair of D¢ o-modules ¥ == F/0. To
any regular holonomic D¢ g-module M is associated the pair of finite
dimensional vector spaces

S(M) := Hom p(M, F) = Hom (M, F/0O).
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To a pair E = F of finite dimensional vector spaces we associated the
D¢ o-module
Hom(E = F,F = F/0)

and we showed that this yields an inverse functor to S. A similar dis-
cussion applies in higher dimensions.

For a while we tried to generalize this to situations with arbitrary
singularities. However we did not obtain satisfactory results. It is easy
to give an intrinsic definition of F, namely F is the sheaf on X, of the
Nilsson class functions. It follows that

RHomp, (M, F)|x, = ¥(L)

and

RHomy, (M, F/O)ix, = &,(L),

where £ = RHomyp, (M,0Ox). ¥; and ®; are functors introduced by
Deligne (cf. Ch. IV). But ¥;(L) and ®;(L) are perverse sheaves on Xg;
we are out of the framework of D-modules, something which we didn’t
want to do.

Remark.

The chapters II, III and IV appeared earlier as reports 8504, 8608 and
8713 of the Department of Mathematics of the University of Nijmegen
under the same title as the chapter in question.

Chapter II has been published in Comp. Math. 60 (1986), 19-32.

The chapters III and IV are submitted for publication to RIMS.
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Chapter I
BRIEF ENCOUNTERS

0 Introduction

This chapter consist roughly of two parts. In the first part—§l—we give
a review of the theory of D-modules. Throughout the text we supply
some examples to illustrate the theory. We have included a subsection
on derived categories because the theory of D-modules most naturally
fits into this framework. Also the so-called perverse sheaves are ob-
jects of a derived category. The last subsection contains the definition
of regular holonomic D-modules and the statement of the celebrated
“Riemann-Hilbert correspondence”. It sets up a dictionary between
regular holonomic Dyx-modules and perverse sheaves on X (where X
denotes a complex manifold).

In the second part—§2—we want to give some kind of a motivation
for studying regular holonomic D-modules. We mention three examples
which should convince the reader. Next we concentrate on the prob-
lem of classifying regular holonomic P-modules. Equivalently there is
the problem of classifying perverse sheaves. We summarize the results
obtained up to now. (As far as they are known to the author!)

1 Review of the theory of D-modules

There are at least two survey articles on the theory of D-modules,
namely [Lé and Mebkhout, 1983] and [Oda, 1983]. Of course we profited
from these. We also learned a lot from several fabulous talks of Bjork
(see e.g., [Bjork, 1984]). Furthermore there are the papers [Brylinski,
1982a, 1983] on D-modules and related topics. Certainly these provide a
nice and sometimes speculative picture of the interplay between regular
holonomic D-modules, intersection cohomology and Hodge structures.

Perhaps the first systematic use of D-modules appeared in [Sato,
Kashiwara, Kawai, 1973). Since then there have appeared several arti-
cles by Kashiwara and others. We should also mention the contributions
of Malgrange. Furthermore Mebkhout used the theory of D-modules to
study the topology of singular varieties. Last but not least we mention
the work of Beilinson and Bernstein regarding the algebraic aspect of
the theory.

The picture we present is complex analytic i.e., concerns differential
operators on complex manifolds. We do not deal with the algebraic—
meaning differential operators on algebraic varieties—theory of D-mo-
dules. In the algebraic theory the notions of holonomicity and regularity
behave well with respect to direct and inverse images. This in contrast
to the analytic theory (compare §1.6). Recently there has appeared the
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Chapter I (2]

very nice book [Borel, 1987] that gives a good account of the algebraic
theory. We refer the reader also to [Bernstein, 1983].

We also bypass the microlocal aspect of the theory. This is a powerful
machinery that has been used to attack several problems in the theory
of D-modules. The reader may consult e.g., [Schapira, 1985] for a nice
account of this aspect or [Pham, 1979]. For the algebraic counterpart
see e.g., [Laumon, 1983, 1985] and also [van den Essen, 1986].

The plan of the exposition is as follows. First of all some generalities
on D-modules. Next comes a subsection on derived categories and de-
rived functors. After this we are sufficiently armed to enter the scene of
D-modules. We introduce the reader to the functorial aspect i.e., direct
and inverse images. After that it is about time for a closer examination
of the D-modules themselves. This culminates in a class of D-modules
of utmost importance: the regular holonomic P-modules. These are the
subject of our study.

In the sequel X denotes a smooth complex analytic variety of dimen-
sion n. Oy denotes the sheaf of holomorphic functions on X.

1.1 Differential operators on X
The sheaf of differential operators, denoted Dy, is the subsheaf of
Endg(Oy) defined as follows:

Let U C X be open and suppose z,,...,z, are coordinates on U. Put
8 = 5%_-, for all i € {1,...,n}. Sections of Dy above U can be written

as
)" a,8% € Endg(Oy)
lalgm
where m € N, 8 = 8{ ...95", a, € T(U,0x%), all « € N",|a| < m.
Composition of operators gives Dy the structure of a sheaf of non-
commutative algebras. It is the subalgebra of Endg(Ox ) generated by
Ox and Derg(Oyx); Dy is a coherent sheaf of rings. It is a quasi-

coherent O y-module. The structure sheaf Oy becomes in an obvious
way a coherent left Dy -module.

1.1.1 Example Let X = €". Then Dy = Ox[8;,...,8,]. Further-
more Ox = Dy /Dx(01,...,8n) is a coherent Dy -module.

1.1.2 Kashiwara notes the following. Consider a system of linear ho-
mogeneous partial differential equations

P
(*) ZRJ“J':O‘ i=1,...,q
=1

with P;; € I'(X,Dy). Letting the matrix (P,) act from the right on
Dy yields
(Pyy)
DY ¥ DY — M.

2
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So M := Coker(P;;) is a left Dy-module of finite presentation. The
holomorphic solutions of our system () can be interpreted as elements
of the C-vector space Homp (M, Oy) and vice versa. This leads one
to consider coherent left D y-modules and the sheaf of €-vector spaces
Homp (M, Ox); more generally £zt (M, N) for coherent left Dy-
modules M and V.

1.2 Left versus right

1.2.1 Consider the (locally free of rank 1) O x-module Q% =: wy. It
has in a natural way the structure of a right Dy-module. Namely for
all w Ewy put

wf:=~Lew Ewy, forall £ € Derg(Oy),
where L, denotes the Lie derivative taken in the direction of the vec-

torfield €.
1.2.2 Let M be a left Dy-module and consider the O x-module

UXC;O;‘M.

It has in a natural way a right Dy-structure given by, for all £ €
D€T¢(0x)

(wemM) =wE@m-w@ém, forallwecwy,meM.
1.2.3 Let AN be a right Dy-module. The O x-module

H""‘ox(”x: N)

has in a natural way a left Dy -structure given as follows: for all £ €
Derg(Ox), all p € Homg , (wx, N)

(§p)(w) := p(wf) — p(w)§, forallw € wy.

1.2.4 Clearly the second application is an inverse for the first one.
Hence this sets up an equivalence between the category of left Dy-
modules and the category of right D,.-modules.

It has become customary to restrict attention to the left Dy -modules.
As we can move freely from left modules to right modules and back, no
harm is done. One often omits the word “left” and just writes “D -
module” instead of “let Dy-module”. We’ll do likewise.

Notation Mod(Dy) denotes the category of Dy-modules. Coh(Dy)
denotes the category of coherent Dy-modules.



Chapter 1 [4]
1.3 Examples of D x-modules

1.3.1 Let P € I(X,Dy). Then Dy /Dy P is a coherent Dy-module.
(Compare with Example 1.1.1.)

1.3.2 The structure sheaf Oy is a coherent Dy-module.

1.3.3 More general: Let V be a vector bundle on X (i.e., a locally free
O x -module of finite rank) with an integrable connection V. Recall that
this is a @©-linear mapping

V:V—»Q}YC;Q y
X

satisfying the Leibniz-rule V(av) = da ® v + aVv, for all a € Oy and
v € V. V is called integrable if its curvature is zero i.e.,

VoV:Vv—=Qk @V
Ox

is the zero map. Equivalently one can say that
Vigm = [Ve: Vo, for all £,n € Dere(Ox).

Now V can be given the structure of a coherent Dy -module by defining
for all ¢ € Derg(Ox)

€v = (Ve v), for allv e V.

Conversely suppose M is a coherent Dy-module such that the un-
derlying Oy -structure is coherent, then one can show—which is not
difficult—that M is in fact a vector bundle with connection.

1.4 Derived categories and derived functors

For an adequate setting of the theory of P-modules the machinery of de-
rived categories is indispensable. We will give a simplified description of
the derived category in a particular case which applies to almost all sit-
uations we have in mind. A similar treatment may be found in {Iversen,
1986]). For a detailed treatment we refer the reader to [Hartshorne,
1966], [Verdier, 1977] or [Borel, 1987], Ch. 1. Of course the ultimate
test to try one’s hand on is [Beilinson, Bernstein, Deligne, 1982].
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1.4.1 Derived categories

Let A be an abelian category. C(.A) denotes the abelian category of com-
plexes of objects of .A. K(A) denotes the additive category consisting
of the objects of C(.4) but the morphisms are homotopy classes of mor-
phisms in C(.A). Note that .4 may be identified as the full subcategory
of K(.A) consisting of objects A* with A" = 0 for all n # 0. A mor-
phism in K(A) f: A" — B’ is called a quasi-isomorphism—abbreviated
as q.i.—if H*(f) is an isomorphism for all k € Z; notation f: A" = B".

Denote by K+(A) (resp. K~(A), resp. K®(A)) the full subcategory
of K(.A) consisting of complexes A" € K(A) which are bounded below
i.e., A" =0 for n € 0 (resp. bounded above, resp. bounded).

Assume that 4 has enough injectives. Denote by I the additive
subcategory of injective objects. K*(Z) C K*(A) is the additive sub-
category of bounded below complexes of injective objects. I' € K+(Z)
is called an injective resolution of A" € K+(A) if there exists a quasi-
isomorphism A" = I'. Every object in K*(A) has up to isomorphism
a unique injective resolution i.e., there exists a functor

p:K¥(A) = K*(2)
sending A" to its injective resolution.

Define D*(A) := K+(Z). This is called “the derived category of
bounded below complexes of objects of A”. It comes together with
a functor p: K*¥(A) — D*(A). Often one identifies .A with the full
subcategory of D(.4) consisting of complexes I' with H*¥(I') = 0, for
all k # 0. If moreover any object in A has a bounded resolution by
injectives, one may define DP(.A) := K®(Z). It is the full subcategory of
D*(.A) consisting of objects I' such that H*(I') =0 for k > 0.

A similar discussion applies when .4 has enough projectives. Then
D~(A) := K~ (P) where P C A denotes the class of projective objects.

1.4.1,1 Examples and notations We give some notations that will
be used later.

D*(Dy) := D¥(Mod(Dy))
D(Dy) := D°(Mod(Dy))
D"(X) := D" (Mod(€yx)),
where Mod(€ x) denotes the category of sheaves of €C-vector spaces.

1.4.1.2 D%, (D) denotes the full subcategory of D®(Dy) consisting
of objects whose cohomology modules are coherent D y-modules.

1.4.1.3 In general, for any thick abelian subcategory A’ C A one de-
fines D%,(A) as the full subcategory of D*(A) consisting of objects A’
such that H*(A") € A’ for all k € Z. Similarly for DY, (A) and D7, (A).
Recall that “thick” means the following: any extension of objects in A’
is again in A'.
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1.4.2 Derived functors
Let A, B be abelian categories with enough injectives. Denote T C A
(resp. J C B) the class of injective objects in A (resp. B). Denote by

p:K*(A) = D¥(4), p:K*(B) — D*(B)
the canonical functors.
Let F: A — B be a left exact functor. It induces a functor on com-
plexes F+:K+(A) — K*(B). The “right derived functor”
RF:D*(A) - D¥(B)
is defined by
RF(I') := p'FY*(I'), for all I' € K*(I) = D¥(A).

For all n € Z define R"F := H™ o RF. Abusing notation we write
RF(A’) instead of RF(pA’) for all A" € K¥(.A). Even more one often
omits the “R” and denotes the derived functor also by F.

1.4.2.1 Let A € A. Then R*F(A) = H"(F(I')) where I' = pA is
an injective resolution of A. Hence R" F coincides with the usual n-th
derived functor.

1.4.2.2 Let A" € K*(A). Let I' = pA’ be an injective resolution. Then
R*F(A’)= H"(p'F(I')) = H*(F(I')),

Thus R™F is nothing else but the n-th hypercohomology of F.

1.4.2.3 An object C € A is called F-acyclic if R*F(C) = 0 for all
n#0. If A € K*(A) and A" S C" where C" is a complex of F-
acyclic objects, then RF(A’) = p' F*(C’). So in order to calculate RF
it suffices to construct F-acyclic resolutions.

1.4.2.4 A nice and important property is the following. Let A4, B and
C be three abelian categories with enough injectives. Let F: A — B and
G:B — C be left exact functors. Assume that F sends injective objects
to G-acyclic objects. Then R(Go F) = RGoRG.

1.4.2.5 Similarly in case A and B have enough projectives one defines
the “left derived functor” LF for any right exact functor F: A — B.

1.4.2.6 Examples (i) We have the bifunctors
RHom-Dx(-, ), RMom ‘Dx(" -).
The k-th derived functors are denoted Ext3, (-, -), resp. &th (-, -).

6



(71
(ii) The bifunctor - g - has a left derived functor denoted

L
C® -.

o
The (—k)-th derived functor is Tor$ (-, -).
(iii) The global section functor has a right derived functor RI'(X, -).
Its k-th derived functor is denoted H* (X, -); this yields the hypercoho-
mology.
(iv)

RT (X, RHom p (M, N)) = RHom p (M, N).

1.4.3 Distinguished triangles

In general the categories K*(.A) and D+ (A) are not abelian anymore.
Therefore one has introduced the concept of “triangulated category”
(cf. [Beilinson, Bernstein, Deligne, 1982]). Let A" € K(A) be given
and denote by d,. the differential of A". For any n € Z the complex
A’[n] € K(A) is given by

(A[)* =A™, forallk€Z; dypy=(-1)"d,..

A triangle in K(A) is a sextuple (A", B",C",u,v,w) of objects and
morphisms u: A" — B', : B' = C", w:C' — A’[1] in K(A).

For any morphism u: A" — B’ in K(A) denote by C,, the mepping
cone of u. It comes equipped with natural morphisms p:C,, — A'[1]
and i:B° — C,. The sextuple (4", B",C,,u,i,p) is called a standard
triangle. A distinguished triangle in K(A) (resp. K*(A), resp. K*(7))
is a triangle isomorphic to a standard triangle in K(.A) (resp. K*(A),
resp. K¥(7)).

The functor p sends distinguished triangles to distinguished ones.
The derived functor RF transforms distinguished triangles in D¥(A)
into distinguished ones in D*(B).

A distinguished triangle is often written as

c
Y N\
A— B
where C° —*+ A’ denotes a morphism C° — A’[1). Applying the
cohomology functor H to this triangle yields the long exact sequence

v~ HYA) = HY(B') — HY(C') —» HM*H(A) — -
1.4.3.1 Example Every short exact sequence A« B —» Cin A
gives rise to a distinguished triangle in D¥(.A)

C
Y N\
A—— B,

7



Chapter I (8]

1.4.3.2 Example Let Z C X be a closed subset. Put U = X - Z,
j:U — X the inclusion. Let F be a sheaf of €C-vector spaces on X.
There exists a distinguished triangle in D®(X)

Rj.j~'F
Y AN

RT, F F.

The same holds for a complex F* € DP(X).
1.5 Solution functor, de Rham complex
1.5.1 We have already seen that it makes sense to consider the sheaves
of vector spaces £xtp, (M, Ox) for any M € Mod(Dy). These are the
derived functors of

S:DP(Dy) — DP(X)
defined by

M’ RHom p (M, 0x).

Thus S maps each Dy-module M to its complex of solutions.
1.5.2 To any M € Mod(Dyx) there is associated another complex in
DP(X) called the de Rham complex DR(M) of M,

o= oMok IMo O M o0
0x Ox
where M is placed in degree 0. For M = Oy this yields the usual de

Rham complex Q.
1.5.3 Example Let P € I'(X,Dx). Put M = Dy /Dx P. Then

SM)= Ox E20x

Consequently
Ker(P, Ox) = %me(M,Ox)
Coker(P,Ox) = &ty (M, Ox).

1.5.4 Example Let V be a vector bundle with an integrable connnec-
tion V. Then

DR(V) = ® V = Qx (V) = Kex(V,V)

by the Poincaré lemma.

Ker(V,V) is called the sheaf of horizontal sections of (V,V). It is a
local system on X i.e., a locally constant sheaf of complex vector spaces
of finite dimension.

In particular DR(Ox) = Qy = Cx.

8
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1.6 Construction of inverse, direct images and RIz).

In this subsection we discuss three operations on D-modules. Let Y
be a complex manifold of dimension m and suppose we are given a
holomorphic map f: X — Y.

1.6.1 Inverse images
Let N be a left Dy-module. We get a quasi-coherent Oy-module by
putting
PN=0x © [N
/-0y

Here f~! denotes the usual inverse images of sheaves; f* A is the inverse
images in the category of @-modules. f*N is in a natural way a left
Dx-module. In local coordinates y,,...,ym on Y and zy,...,2, on X
this structure is given by

NN YU YT '}
bz, 088 = 5o ®et X;a ® ;"

forallie {1,...,n},alla € Ox,alls e N.
One usually writes

'Y — -1 -1 - -1
[°N=(0x 1—;96,, f Dv)!_@py [T N=Dx_y !'%yf N,
where

Dx_.y = OX 0 f_lDy f'Dy

! l

is a left Dy-, right f~!Dy-bimodule. f* is right exact and its left
derived functor Lf* is given by

L
LP'N' =Dx_y ® [N
=Y

because f~! is exact.
1.6.1.1 Remark Alternatively one may view Oy @ f~!Dy as the
/-0y

module of differential operators from f~!0y to Ox. This module has
the structure of a leff Dy-module by composition of operators. This
structure coincides with the above one.

1.6.1.2 Example Let j:U —— X be an open embedding. Then
Dy_x = Dy and Lj* = j* = j~1 is just the restriction to U.

1.6.1.3 Example Let X = €" <~ €"*! =Y be the closed submani-
fold given by x; = 0. Then

l.‘Dy = Dx_.y = Dy/zlvy &~ Dx[ajl

In particular i*Dy is not of finite type over Dy.

9



Chapter I (10]

1.6.1.4 Example Ifi: X — Y is a closed embedding, then the previous
example shows that Dy _,y is a locally free left Dyx-module. Further-
more it is coherent as a right Dy -module. In fact

Dx_y =Dy/IxDy
if Ty denotes the ideal sheaf of the submanifold X.

1.6.1.5 Example Let f:X =Y x Z — Y be a submersion, say the
projection onto the first factor. Then f* is exact because Oy is a flat
f~10y-module. Moreover Dy _,y is a coherent D x-module.

1.6.2 Direct images
The construction of the direct image is more involved. For any right
Dx-module N one defines f.(N ®p, Dx_y) to be the direct image.
Here f. denotes the direct image functor in the category of sheaves.
Notice that the right f~1Dy -structure on Dy _ y gives rise to a right
Dy -structure on the direct image.

But we prefer to work with left modules. Let M be a left Dy -module.
By §1.2.2 wy ®o, M is a right Dy-module. Taking the direct image
and tensoring with wy;! yields a left Dy -module (cf. §1.2.3)

1o f. D .
wy c%f ((wng)% X—Y)
This can be rewritten as
-1 -1
» Dy M}
f((f wy f_;@oy(“xc?; x Y))% )

Put
Dy x=flug! ® (wx®D .
Yex =fwy PR Y( Xo, X Y)

This has the structure of a left f~1Dy -, right Dx-bimodule. We define
the direct image functor

f+:DP(Dy) — D°(Dy)
by

£H(M) = RE.(Dy_x § M).

If instead we had put foM = f.(Dy _ x ®p, M), we run into trouble
because it turns out that in general (go f)o # goo fo for g:Y — Z.

Since every holomorphic map f: X — Y splits as a composition of a
closed embedding followed by a submersion, it is worth-while to study
the complicated direct image functor f, in these two cases.

Remark 1. In case j: U «— X is an open embedding then Dy _y =
Dy and j; = Rj. the ordinary direct image.

2. Other notations for the direct image found in the literature are f,
and f,.

10
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1.6.2.1 Case of a closed embedding

Let : X «— Y be a closed submanifold. Dy, x is a locally free right
Dy-module. It is coherent as a left i~!Dy -module (cf. §1.6.1.4). More-
over i, is exact, hence

i+(-) =i(Dyx 2 )
is an exact functor from Mod(Dy) to Mod(Dy) that preserves co-

herency.

Theorem. (Kashiwara’s equivalence, cf. [Kashiwara, 1978], Prop. 4.2).
The functor i, establishes an equivalence between Coh(Dy) and the
category of coherent Dy -modules with support contained in X.

The inverse to i, is the restriction of the functor
it: Mod(Dy) = Mod(Dy)
N — Hom i-lDY (DY._X ] i_lN)
to the category of coherent Dy -modules with support contained in X.

Note. it and i* are related to each other by the formula
Rit(d) = Li*,

where d = codim(X,Y).
Example (Cf. §1.6.1.3). Let X = €" < €"*! = Y be the closed
submanifold given by z; = 0. Then i, M = M[8:], i* N = Ker(z,, N).

Case of a submersion
Let f: X — Y be a submersion. In this situation there exists a well-
known short exact sequence

) — ok — Q}qy.

Q}( y —the sheaf on X of relative differential forms—is locally free of
ran{: d=n-m=dimX -dimY and gives rise to the relative de Rham
complex R,y (cf. Example 1.6.2.3). It follows

QfY/Y = wxée; f-u]—,l =wy I-;@OY f—lw;l

yielding that
Dy-x =%y @ ' Dy.
X

We have a surjection Dy —» f*Dy, which gives rise to a surjection
Q%/y ®ox Dx —» Dy._x.

11
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We obtain a relative de Rham complex for Dy

DRy;y(Dx) = Qxy 59; Dx

and a verification in local coordinates (cf. [Pham, 1979], Ch. II, 14.3.5)
yields that the relative de Rham complex DR,y (Dx)[d] is a locally
free resolution of Dy, x in the category of right Dx-modules. The
differential maps in the relative de Rham complex DR,y (Dx)[d] are
linear for the left f~!Dy-structure. Hence we obtain that for all left
Dx-modules M

S+ M = Rf. (Qx)y (M) [d)-

1.6.2.3 Example Let X = €™ x €%, Y = C€™. Let f: X — Y be
the projection (¥1,...,Ym)21,..-12d) — (¥1,---,Ym). Then an element
wE Q}/y can be written as

w= Z a;,...indzi, A...Adz;,, witha; . ; €0y
1< <y

The differential d is given by

dw=) > Q’-‘J—d ; Adzi, A ... Adz,.

i <<

We have the identification Dy,_x = Dx /(8;,,...,0:.)Dx.

1.6.2.4 Example Let f: X = €~ x € — C€"~! = Y be the projec-
tion. Then Dy, x = Dx/8,Dx. Let M be a left Dy-module. The
direct image is given by the complex

feM = M 2 M
Hence

Hf M =M[0, M,  H !f M = Ker(8,, M).

1.6.2.5 Example (Cf. [Pham, 1979], Ch. II, §15). Let us denote by
f:(€"*!,0) - (€,0) a map-germ with an isolated singularity at 0. Let
f:& — Abe agood representative. Consider the submersion f: X — S,
where X = X — £~1(0), S = A — {0}. By the relative Poincaré lemma
f'0s — Qy,s is a quasi-isomorphism. By [Deligne, 1970], Ch. I,
Prop. 2.28

Rf.f-IOS = Rf.ﬂ,x %05

12
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It follows that

f+Ox[-n]= Rf.(Qx/s) = Rf.Cx %05-
In particular
H°f+0x = R"f.ﬂzx %05

at least as Og-modules. Hence the Dg-module HOf,. Oy is a locally
free Og-module (cf. §1.3.3) i.e., a vector bundle with an integrable con-
nection.

On the other hand R*f.C x is a local system on S (of rank g the
Milnor number of f) and R f,€x ®¢ Og is the corresponding vector
bundle with connection. This connection coincides with the one arising
from the left Dg-structure. It is known as the Gauss-Manin connection.

1.6.3 Algebraic local cohomology
Finally let us define a third operation on D-modules. We are aiming at
an analogue for the usual functor “sections with support”™.

Let Z C X be a closed subvariety defined by an ideal Z C Ox. For
any Dy-module M define

IzjM := lim Homo (O x /I, M).

It is the subsheaf of M of sections annihilated by some power of 7.
Moreover it is a Dy-submodule of M because ¢Z¥ C I:-! for every
derivation §. Ijz(-) is a left exact functor on Mod(Dy). Its k-th
derived functor is often denoted by H["z]( ).

Let i:Y «—— X be a closed submanifold of codimension d. Then one
has (cf. §1.6.2.1)
RF[y] = i+ Ri+.

Furthermore one puts By x := HE‘YIOX.
Closely related is the following

I‘[x|z]M = li_ﬂ’]’HDWlox(Ik, M)

Again this has the structure of a Dy-module. It is a D y-submodule of
J»J~IM, where j:U — X denotes the inclusion of U = X — Z in X.
In D®(Dx) one obtains a distinguished triangle

Rljx|z)M
v

M.

RIjziM

13
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1.6.3.1 Remark
(i) RIjz3M = M implies supp(M) C Z.
(i) If M € Coh(Dx) and supp(M) C Z, then R} ;)M = M.

1.6.3.2 Example Suppose Z C X is a hypersurface given by f = 0,
where f € T(X,0x). In that case

RIjx iz M = M[f1].

1.6.3.3 Example Suppose Z C X is a divisor with normal crossings.
Then
RI‘[)(|Z](9J|r = Ox[+Z]

the sheaf of holomorphic functions on X — Z with poles along Z. There
exists an exact sequence

Ox — Ox[+Z] — Nz Ox.
1.6.3.4 Example Let X = €, Z = {0} < X, T = (z) C Oy,
jU=€ - {0} — X. Put
M= j.0y/Ox = RIT;0.
This is a Dx-module with support the origin. Clearly i+ M = €. Thus
ipitM = R[50y = Ox[z7")/Ox,

which is a proper subsheaf of M. Hence M cannot be a coherent Dx-
module (Kashiwara's equivalence). In particular j,.Op = j.Oy is not
coherent as a D y-module i.e., the direct image functor does not preserve
coherency.

Note further that & := M/R!'I;7)Ox is a non-zero Dx-module sup-
ported at the origin. However RI{zJA' = 0, so the implication in the
previous remark §1.6.3.1(i) cannot be reversed.
1.6.3.5 Example (Cf. 1.6.1.3.) Let X = €" < €"*! = Y be the
closed submanifold given by z; = 0. By Kashiwara’s equivalence

ﬂEX]DY = i+Rli+Dy

is a coherent Dy-module iff R'i*Dy is a coherent Dy-module. But
RlitD, = D,[0:] which is not coherent. Hence RI{x) does not preserve
coherency.

There exists an exact sequence
DY —y 'Dy[::l'l] — H[lx]D}"

It follows that Dy [2]!] is not coherent over Dy . Later (§1.8.10) we will
see that Oy [z;'] is a coherent Dy -module.

14
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1.7 The characteristic variety

Now we are acquainted with various operations on D-modules, let us
take a closer look at the modules themselves. First we introduce the
important notion of the characteristic variety or singular support of a
coherent Dy-module. It is defined by means of so-called “good filtra-
tions”. Next we go into the geometry of the characteristic variety. This
leads to the important result in §1.7.8.

1.7.1 The sheaf Dy is filtered according to the degree of a differential

operator. In local coordinates z;,...,z, on an open U C X
T(U,Dx(m)) = {PETW.,Dx) | P= ) 6ad*, aa €0y},
lalgm

for all m € N. This yields an increasing filtration on Dy by coherent
O x -submodules.

Let m:T*X — X denote the canonical projection. The quotient
Dy (m)/Dx(m — 1) can be identified with x, (O7«x(m)), where we
denote by Or.x(m) the subsheaf of Op. y of sections homogeneous of
degree m in the fibres. Furthermore

grDx = P Dx(m)/Dx(m-1)
meN
identifies with the sheaf of holomorphic functions on T* X which are
polynomial in the fibres.

Example Put X = €", T*X = €. Then

ger = OX[E11-~-’£H]
by sending 3% € Dx(1) to the indeterminate ;.

1.7.2 An increasing filtration (My)iez by coherent O x-submodules of
a Dx-module M is called a good filtration if

(i) Dx(m)Me C Miym, forallmeN, ke Z;
(i) Ugez Me = M;
(iii) locally: if k 3 0, then Dx(m)Mjy = Myym, for all m € N;
if £ < 0, then M; =0.

In that case
gM= @Mk/Mk-l
k€Z

is a coherent gr D y-module. Locally every coherent D y-module M has
a good filtration, induced by the local presentation
DL — DL W M.

In fact any good filtration locally arises in this way, up to some shift
in degree. In particular this implies that a Dy -module carrying a good
filtration is coherent.

15
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1.7.3 Let M be a coherent Dy-module. Locally this gives rise to a
coherent ideal in gr Dy namely the annihilator of gr M. It turns out
that its radical does not depend on the good filtration. So these locally
defined radical ideals patch together and yield a coherent homogeneous
radical ideal in O« x. This defines a closed conic subvariety SS(M),
called the singular support of M or the characteristic variety of M.

1.7.3.1 Let M be a coherent Dy-module. Closely related to the singu-
lar support SS(M) is the characteristic cycle char(A). This is the for-
mal linear combination of the irreducible components of SS(M) counted
with their multiplicities. This notion has been introduced in [Kashiwara,
1983b] (cf. also [Schapira, 1985]) and has many important applications.

1.7.4 Example Let X = €. Let P=Y_"",a;8° € Dx, am # 0. Then
U'(P) = amfm € ger = Ox[fl C OT.X = 0¢2

and SS(Dx/Dx P) = V(a(P)) a hypersurface in 7*X. Traditionally
o(P) is called the principal symbol of P. Suppose that a, = z"p(z)
with (0) # 0. Then char(Dy/DxP) = n[{z = 0}]+ m[{¢ = 0}]
(cf. [Kashiwara, 1983b], §2.6.15).

1.7.5 Example Let (V, V) be a vector bundle on X with an integrable
connection. Then SS(V) = Tx X the zero section of x. Note that

ocvycvc.-.

is a good filtration on V.

1.7.6 Example (Cf. [Brylinski, 1982], §2.) (i) Let f: X — S be as in
Example 1.6.2.5. Let V = H'f,05x = R"f,Cx ®¢ O with the Gauss-
Manin connection V. V is equipped with a descending filtration—the
Hodge filtration—{FP} of subbundles of V. V satisfies the transversality
condition of Griffiths

V(FP)C QL 8 Fr-l
S

Consider the increasing filtration given by V, = ¥~ on V. This yields
a good filtration on the Dg-module V because V¢(V,) C Vp4, for every
vector field £.

(i) In general, let V be a vector bundle with a connection V. As-
sume V carries a descending filtration by subbundles {#?}. Then the
transversality condition is equivalent to the fact that the V, = F~*
define a good filtration on V (cf. [loc. cit.]).

1.7.7 In general the structure of the characteristic variety is very com-
plicated. The geometry of the characteristic variety can be studied in
the cotangent bundle T* X . The locally defined 1-form };_, £ dz; does

16
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not depend on the choice of coordinates and defines a global 1-form §—
the canonical 1-form—on T X. It makes T" X into a symplectic man-
ifold. w = df is called the canonical 2-form. For any point £ € T* X,
T¢T"* X is equipped with a bilinear, antisymmetric, nondegenerate form
we.
Let V C T* X be a closed subvariety. V is called involutive if for any
smooth point £ € V
(TeV)r c TV

Involutivity of V implies that dim V' > dim X.
V is called Lagrangian—or holonomic—if for any smooth point £ € V

(TeV)E =TV

If V € T* X is an irreducible conic Lagrangian subvariety of 7" X, then
x(V) is an irreducible subvariety of X and V = T;(V)X which is by
definition the closure in T X of T:(‘,)MX .

1.7.8 We are arrived at a deep theorem, proved microlocally in [Sato,
Kashiwara, Kawai, 1973] (see also [Malgrange, 1979]). Later Gabber
[Gabber, 1981] found a purely algebraic proof.

Theorem. The characteristic variety SS(M) of a coherent D x -module
M # 0 is involutive.

This implies dim SS(M) > dim X. This is known as Bernstein’s in-
equality (cf. [Bernstein, 1972]). Next we single out the important class
of modules whose characteristic varieties have the minimal possible di-
mension (i.e., equal to dim X). The so-called maximally overdetermined
or holonomic systems.

1.8 Holonomic modules

A Dyx-module is said to be holonomic if it is coherent and its charac-
teristic variety is Langrangian. Equivalently the characteristic variety
is of dimension equal to dim X since it is always involutive.

1.8.1 Example Let X = €, 0 # P € Dy. Then Dy /Dx P is holo-
nomic {cf. §1.7.4).

1.8.2 Example Dy is never holonomic (unless dim X = 0) because
SS(Dx)=T"X.

1.8.3 Example Assume dimX > 1. Let P € Dy and assume that
Dyx/DPxP # 0. Then it is not holonomic since dimSS(Dx /DxP) =
2n — 1 (cf. 1.7.4).

1.8.4 Example Any vector bundle with an integrable connection is
holonomic.

17
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1.8.5 Let M’ — M —» M" be an exact sequence of Dy-modules.
If two of them are holonomic so is the third. Moreover a coherent sub-
module of a holonomic module is again holonomic. So the category of
holonomic D y-modules forms a thick abelian subcategory of Mod(Dy)
(cf. §1.4.1.3). Denote by D2(Dy) the derived category of bounded com-
plexes of Dx-modules with holonomic cohomology.

1.8.6 Let M be a holonomic Dy-module. The characteristic variety is
of the form (cf. 1.7.7)

Ss(M)=JT3, X

a

where S, = 7(V,) and the V,, are the irreducible components of SS(M).

The set
U s

dim So <n

is called the singular locus of M (cf. [Pham, 1979]). Outside the singular
locus M is a vector bundle with an integrable connection or zero. This
follows from the fact that any holonomic module whose characteristic
variety is the zero section of T* X, is a coherent O x-module (cf. 1.3.3).

The characteristic cycle of a holonomic D x-module M is of the form

char(M) = Z maTs X

for certain my € N.

1.8.7 Let us recall the notion of constructibility. (See e.g., [Borel,
1984].) A sheaf F on X of complex vector spaces is called constructible
if there exists a stratification X = |J, S such that the restriction of
F to each stratum S, is a local system i.e., locally constant with finite
dimensional stalks. A complex F* € D®(X) is called constructible if its
cohomology is constructible. Denote by D2(X) the derived category of
complexes with constructible cchomology.

1.8.8 The importance of the holonomic modules stems from

Theorem. (Cf. [Kashiwara, 1975]). The solution complex S(M) of a
holonomic D y-module M is constructible.

Kashiwara even proves that there exists a Whitney stratification X =
U, Sa such that SS(M) c U, Ts, X and S(M) is constructible with
respect to this stratification.

Example Let X = €. Put M =Dy /Dx(z0 — a), a € € — Z. Then
S(M)|c-(o} is a local system; its monodromy is given by exp(2ria).
S(M){0} = 0.

18
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1.8.9 The category D2(X) is equipped with a notion of duality—called
Verdier duality—defined by

(F)' = RHom ¢(F', Cx)-

A holonomic Dy-module has the remarkable property that for all
E#n=dimX
&t} (M, Dx) = 0.

In fact this characterizes the holonomic modules. The left D y-module

&t%x(M' DX) 68;‘ w;'l

is again holonomic (if M is s0). The contravariant functor on D}(Dy)
defined by
M &tt%x(M,'Dx)c;@ wy! = M*
X

establishes an equivalence of DJ(Dx) with itself (cf. [Kashiwara, 1975)).
One has M** = M and SS(M*) = SS(M). For every holonomic D x-
module M there are natural isomorphisms in D2(X) (cf. [Mebkhout,
1981])

S(M*) = DR(M) = S(M)".

It follows that the de Rham complex DR(M) of a holonomic D x-module
is constructible.

Example (i) Let X = €. Put M = Dy /Dy (8z) = Ox[z~!]. Then
M* 2= Dy /Dx(28). Furthermore

S(M)le-(0} = Cg-{0}s S(M)o=0;

H°DR(M) = Homp (M*,0x) = Cx;

H'DR(M) = &ty (M*,0x) = €.
(ii) Let V be a vector bundle with connection V. Then DR(V) is a local
system on X (cf. §1.5.4), hence constructible.

1.8.10 So far we have seen just a few examples of holonomic Dy-
modules. The following result changes this. Cf. [Kashiwara, 1978] and
in the particular case of Oy also [Mebkhout, 1977].

Theorem. Let Z C X be a closed subvariety and M a holonomic
Dx-module. Then RIjz;M has holonomic cohomology.

Using the distinguished triangle of §1.6.3 it follows that we have also
RIjx1z)M € Dp(Dy).

The proof of the theorem is reduced to the case of a hypersurface;
say Z is defined by f € I'(X,0x). It suffices to show that M[f~1]
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is holonomic for any holonomic Dy-module M. The difficult part is
the assertion that M[f~!] is coherent as a D x-module. (Compare with
Example 1.6.3.5.)

In particular one has to show that Oy [f~!] is coherent as a Dyx-
module. Since the ascending chain of coherent submodules

Dyt cDyhkc---CcO[f

is exhaustive, it is necessary and sufficient to see that the chain is sta-
tionary. This means: find N € N such that

fl—kGDfoN, forallk > N.

The key to solve this is the existence of the Bernstein-Sato polynomial.

1.8.11 Theorem. There exists a non-zero polynomial b(s) and a dif-
ferential operator P(s) € Dx/[s) such that

P(s)f*+! = b(s)f".

The unitary polynomial of lowest degree satisfying the theorem is
called the Bernstein-Sato polynomial or the b-function of f. The name
“b-function” originates independently from Sato and from Bernstein
(cf. [Kashiwara, 1976]). The existence in the polynomial case was proved
by Bernstein [Bernstein, 1972]. Bjérk [Bjork, 1979] generalized this to
analytic functions. Kashiwara [Kashiwara, 1976] proved the rationality
of the roots of the b-function. In case f has an isolated singularity
Malgrange [Malgrange, 1976)] also showed this; moreover he shows that
{exp(27ia) | « is a root of the b-function of f } is the collection of the
eigenvalues of the monodromy. The rationality of the roots implies also
that the monodromy is quasi-unipotent.

Although the origins of the b-function are seemingly unrelated to
D-modules, the existence of b-functions has become one of the corner-
stones of the theory of D-modules.

1.8.12 Example (i) Let X = €". Let f = Y_"_, z?. Then one has
Y Pt = 2s+1)(25 +n)f.
i=1 oz;
For more examples and relations with the singularity of f see [Yano,
1983].
(il) Let Y <% X be a closed submanifold. Then By)x is holonomic.
SS(By|x) = Ty X. In particular By |y is coherent over Dy. Further-
more

i*(By)x) = R%tOx = i"Ox = Oy.
Thus by Kashiwara’s equivalence i, Oy = By|x (cf. §1.6.2.1).
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1.8.13 Functorial behaviour of holonomicity.
As we have seen the notion of coherency behaves very bad under the
operations of inverse images (Ex. 1.6.1.3), direct images (Ex. 1.6.3.4)
and local cohomology (Ex. 1.6.3.5). Let us investigate the holonomic
modules in this aspect. The algebraic local cohomology has already
been dealt with. It is not difficult to infer from this

Theorem. (Cf. [Kashiwara, 1978], Thm 44.) Let f:X — Y be a
morphism of complex manifolds. Then for any holonomic Dy -module
N, the complex Lf* N has holonomic cohomology.

The direct images are nastier. The following result has been obtained
by Kashiwara ([Kashiwara, 1976], Thm 4.2).

Theorem. Let f: X — Y be a projective morphism. Let M be a holo-
nomic D x-module and assume that M carries a global good filtration.
Then the direct image f,M has holonomic cohomology. Moreover

Rf.S(M)[dim X] = S(f+ M)[dimY]
(cf. [Mebkhout, 1984], Thm 3.1.1.)

Remark If i:Y < X is a closed embedding then i, preserves holo-
nomicity. (Compare with Kashiwara’s equivalence in §1.6.2.1.)

Remark An important ingredient to obtain results like those above is
of course a study of the behaviour of the singular support—or better
the characteristic cycle (cf. §1.7.3.1)—of the module in question. (See
e.g., [Ginzburg, 1986] or [Malgrange, 1985).)

1.9 Regular holonomic D-modules

At last we encounter the main topics: regular holonomic D-modules,
the Riemann-Hilbert correspondence, perverse sheaves. We will treat
these successively in the remaining subsections.

The notion of regular singularities is classical. For an overview see
for instance [Bertrand, 1980]. We also refer the reader to the chap-
ters III and IV of [Borel, 1987] for a nice account of the theory. One
studies systems of linear differential equations in the complex plane in
the neighbourhood of a singular point. There are various ways to decide
wether or not a system has a regular singularity (cf. [Gérard and Levelt,
1973]). The notion of regular singularity has been successfully general-
ized to higher dimensions by Deligne [Deligne, 1970]. Generalizations to
D-modules may be found in [Kashiwara and Kawai, 1981], [Mebkhout,
1979] and [Ramis, 1978]). We ignore here systems with irregular singu-
larities. These have been studied mainly in the one dimensional case
(see e.g., [Levelt, 1973]). A complete classification is due to Malgrange
(cf. [Malgrange, 1983¢]).

One meets several equivalent definitions of the notion of regularity
in the literature. Let us say a few words on the one dimensional case in
order to motivate some of the definitions in higher dimensions.
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1.9.1 Let X = A C € be a disc around 0. Put U = A* = A — {0}.
Let P = 6,,8™ + - - -+ ap be a differential operator with a; € ['(X,0y),
a,, # 0. Suppose furthermore that a;}(0)N A* = 0.

(a) P is said to have regular singularities at 0 if the (multivalued)
solutions of Pu = 0 have a moderate growth near 0. Equivalently all
(multivalued) solutions of P are of the form

Z 8a,iz%(log 3)..! with a5 € Oy.
aé

Now consider the situation at the stalk in 0 i.e.,
Ox, £+ 0x.

In [Malgrange, 1974] Malgrange shows that the complex vector spaces
Ker(P,Ox ) and Coker(P,Oy ¢) are finite dimensional and that

x(P,0Ox o) = dim ¢ Ker P — dim g Coker P = m — v(ap,)

(where v(g) denotes the valuation of g € Ox at 0). If we replace Ox o
by its completion @ = €[[z]), then

x(P,0) = sup{p—v(a,) |0< p<m}

(b) Moreover he proved: the operator P has regular singularities at
0 iff x(P,Ox,) = x(P, O). In particular this gives a classical result of
Fuchs that says: P has regular singularities at 0 iff v(a,)—v(am) > p—m
for all pi.e., f:— has a pole of order at most m — p.

(c) In terms of complexes: P has regular singularities at 0 iff the

complex “Oyx o £, Ox,” is quasi-isomorphic to “O 2.0".

1.9.2 Suppose X is an n-dimensional manifold. We will write down
some equivalent definitions of regular holonomic D x-modules.

Let M be a holonomic Dy-module. The following statements are
equivalent.

(i) For any smooth curve C and any morphism f:C — X, Lf*Misa
complex whose cohomology modules have regular singularities.
(ii) (Compare with (b).) For every z € X

Y (-1) dim gExth, (M, Ox.c)

=0

= 3 (~1) dim ¢Exth,, (M., Ox.,),

i=0
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where 0’; ¢ denotes the completion of Oy .
(iii) (Cf. [Mebkhout, 1984] and also [Ramis, 1978).) For every closed
subspace Z C X

DR(RI};;M) = RI; (DR(M)).
Or equivalently

S(M)z = S(RIjz M)

= RH”""Dx(M’O;ﬂ?)'

where Oﬁ? = lim Oy /I% is the formal completion of Oy along
Z. (Compare with (c).)

(iv) (Cf. [Kashiwara and Kawai, 1981], Cor. 5.1.11.) There exists a
global good filtration on M such that the annihilator of gr M is a
radical ideal in gr Dy.

If one of these equivalent conditions is satisfied, M is said to be regular
holonomic. A complex M’ € DY(Dy) is called regular holonomic if its
cohomology is regular holonomic. DR (D) denotes the corresponding
category.

1.9.3 Remarks
(1) Regularity can be checked locally on X.
(2) Conditions (i), ..., (iv) remain equivalent if one replaces M by a

bounded complex M’ with holonomic cohomology.

1.9.4 Example Oy is a regular holonomic. To see this we may assume
that X = €". Thus grDy = Ox[é1,...,£n). Take the good filtration
0COx COx C---. It follows that the annihilator of grQy is the
ideal generated by §,...,£,, which is a radical ideal.

1.9.5 Example If V is a vector bundle with an integrable connection,
then V is regular holonomic (on X!).

1.9.6 Example Let M be a regular holonomic Dx-module. Let Z C X
be a closed subspace. Then RIjzjM and RIjy z;M are again regular
holonomic. This follows immediately from 1.9.2(iii).

1.9.7 Example If M is regular holonomic, then its dual M"® is regular
holonomic (cf. [Mebkhout, 1984)).

1.9.8 Example Let X = €. Put M = Dx/Dx (228 — 1). Then M is
holonomic, but not regular.
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1.9.9 Inverse images of regular holonomic modules

Theorem. (Cf. [Mebkhout, 1984], Thm 3.2.1 and also [Kashiwara and
Kawai, 1981], Cor. 5.4.8.) Let f: X — Y be a holomorphic map. Let N
be a regular holonomic Dy -module. Then Lf*N has regular holonomic

cohomology and S(Lf*N) = f~1S(N).

1.9.10 Direct images of regular holonomic modules

Theorem. Let f: X — Y be a proper morphism. Let M be a regular
holonomic Dy -module. Then f, M has regular holonomic cohomology.

(Cf. [Kashiwara and Kawai, 1981], Thm 6.2.1 or [Mebkhout, 1984] in
case f is projective.) Generalizations of this result are obtained in
[Malgrange, 1985], [Houzel and Schapira, 1984] and [Kashiwara and
Schapira, 1985).

1.9.11 Remark If M is a holonomic D y-module one defines the local
index of M at z as

X(M,2) = 37(=1)" dim st (M, Ox),

If X = € and M = Dy /Dy P (notations as in §1.9.1), then x(M,0) =
X(P,Ox (). The index theorem due to Malgrange x(P,Ox ) = m —
v(am) (cf. §1.9.1) relates the local index with the multiplicities of the
characteristic cycle of M, char(M) = v(an)[{z = 0}] + m[{£ = 0}]
(cf. Example 1.7.4). This generalizes to a general index formula due
to Dubson (cf. [Brylinski, Dubson, Kashiwara, 1981]) relating the local
index at z, the multiplicities m, of the irreducible components Tg X
(compare §1.8.6) and a topological invariant—the Euler obstruction—of
Sq at z.

1.9.12 Example Let f:(€"*!,0) — (C,0) be a germ of an isolated
singularity at 0. Let f: X — A be a good representative. Then f,O y is
a regular holonomic D,-module. In particular the Gauss-Manin system
G = H°f, Oy is regular holonomic. Cf. [Brieskorn, 1970] and §2.1.2.

1.10 The Riemann-Hilbert correspondence
Theorem. The solution functor S restricted to D2 (Dy ) establishes an
equivalence of categories

S: Dp(Dx) — DE(X).

The Riemann-Hilbert correspondence is one of the highlights in the the-
ory of D-modules. It establishes a bridge between analytic objects (reg-
ular holonomic modules) and geometric ones (constructible sheaves). It
has been proved independently by Mebkhout (cf. [Mebkhout, 1984a,b])
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and Kashiwara (cf. [Kashiwara and Kawai, 1981]). Its proof uses the
whole machinery of D-modules, Hironaka’s resolution of singularities
and Deligne’s canonical extension of connections. In [Kashiwara, 1984]
Kashiwara constructs an inverse functor using the sheaf of distributions
on X. One interprets the Riemann-Hilbert correspondence as a gener-
alization of Deligne’s solution of the 21-st problem of Hilbert (cf. [Katz,
1976] and also [Mebkhout, 1980]).

1.10.1 Example (i) S(Ox)=Cx.
(ii) Let Z C X be a closed subvariety. Then

S(RIz0x) =S(0x); =€z (cf. 19.2(iii)).

Note that in general RI1;|Ox is a complex, however € is a single
sheaf. Example 1.8.9(i) shows an occurrence of the other extreme.

1.10.2 Example If V is a vector bundle with connection V, then
S(V) = DR(V)* is the Verdier dual of the local system Ker(V,V). So in
a sense the Riemann-Hilbert correspondence generalizes the well-known
one-to-one correspondence between vector bundles with integrable con-
nection and local systems.

1.11 Perverse sheaves

Recall that we have identified Mod(Dy ), as the full subcategory of
DE.(Dx) consisting of complexes M’ satisfying H¥(M') = 0 for all
k # 0. The constructible complexes of sheaves that correspond via S to
an object in Mod(Dy )y, can be nicely characterized.

An object F* € DB(X) is called a perverse sheaf if it satifies:

(i) H'(F) =0, for all § < 0;
(ii) codimsupp(H*(F')) > i, for all i € N;
(ii1) the Verdier dual (F')* satifies (i) and (ii).

The category of perverse sheaves is denoted Perv(X). Note that a per-
verse sheaf is in general a complex of sheaves. For many reasons the
category of perverse sheaves is important. See e.g., the nice survey arti-
cle [MacPherson, 1984]. (Cf. also §2 and [Beilinson, Bernstein, Deligne,
1982].) We have (cf. [Brylinski, 1982a) for a prove)

Theorem. The Riemann-Hilbert correspondence induces an equiva-
lence of categories

S: Mod(Dx )y, — Perv(X).
1.11.1 Example Let Y <+ X be a closed submanifold of codimension

d. Then
S(By)x) = S(RI}y|0x[d]) = €y [—d]

is a perverse sheaf on X.
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1.11.2 Example Let us mention a nice application of the above theo-
rem. Let Z C X be a closed subvariety of codimension d. Assume that
Z is not locally a complete intersection. Then, in general, RI{7 Oy is
a complex and thus €;[-d] = S(RIjz|0x[d]) is not perverse.

1.11.3 The intersection complex

Examples of perverse sheaves are the intersection complexes (see §2.1.3).
This leads to a formulation in terms of D-modules. Let Y C X be a
closed subvariety of codimension d. Let L C Y be a closed subspace
containing Y;ing. Finally let V be a local systemon Y — L.

Theorem. (Cf. [Brylinski and Kashiwara, 1981], Prop. 8.5.) There
exists a unique regular holonomic Dy-module, denoted by L(Y, X, V),
such that

() LY, X,V)|x-g = V%’B}'-mx-n
(i) Mgy (LY, X, V) = 1y (EV. X, YY) =0,
The module £(Y,X,V) corresponds to the intersection complex (see
§2.1.3 for notation)
DR(L(Y, X,V)) = ICy(V)[—d]
1.11.4 Example Let V be the constant sheaf €y_y. Put M =
uf,,_mox. Then
LY, X) = L(Y, X, V) = (M*/ Hgy(M"))*
1.11.5 Example Let Y be a submanifold of X of codimension d and
denote i:Y «—— X the inclusion. Then
By|x c% Qx =DR(By|x) = Cy[-d]
which implies that
H'*+4(X,DR(By,x)) = H'(Y,C).
Now By x = E&t?,x(ox/l"‘,Ox) is filtered by the coherent O x-
modules £ztd, (Ox/T*,0x). Give Qy the stupid filtration. This yields

a filtration on DR(By,x) and hence a filtration on H'(Y,€). If Y is
projective this is the Hodge filtration (cf. [Brylinski, 1982a}, §3).

1.11.6 Example Suppose that X is a projective manifold and let Y
be a divisor with normal crossings. Note j:U = X =Y «— X the open
embedding. Note that (by 1.9.2(iii))
DR(RI[x)y)0x) = Rj.j"'Cx = Rj.Cy.

Now RlIixyjOx = Ox[+Y] (cf. Example 1.6.3.3) is filtered by pole
order. Again this yields a filtration on DR(O x [*Y]) and thus a filtration
on

' (X,DR(Ox [«Y])) = H(X,Rj.Cy) = H'(U, T),
the Hodge filtration (cf. [loc. cit.]).

26



[27]
2 Motivation and summary

2.1 Motivation
The interest in the theory of D-modules is due to its applications in
various parts of mathematics. We briefly discuss three examples.

2.1.1 Representation theory

2.1.1.1 Let G be a semi-simple, connected linear algebraic group over
€. Let B C G be a Borel subgroup. Let X = G/B be the flag variety
of G. This is a projective manifold. One may identify the Lie algebra
L = L(G) of G with the right invariant vector fields on G. This gives
rise to a homomorphism

p:U(L) = (X, Dx).

Let Z be the centre of /(L) and let I be the ideal in /(L) generated by
ZNU(L)L. One can show that Ker ¢ = I and even that ¢ is surjective
(cf. [Brylinski, 1981]).

Example. Let G = SL; and B the subgroup of the upper triangular
matrices. Then X = G/B 2 P!, the projective line. Let (zg : z1) be
homogeneous coordinates on P!, then

p:U(sl) = D(PY)
is given by

eij '-’2.'%. 0<i,j<1.
J

2.1.1.2 Define O to be the category of #(L)-modules M that satisfy:

(i) M is a finitely generated &(L)-module;
(ii) for any m € M, dim gU4(L(B))m < oo, (where L(B) denotes the
Lie algebra of B).

One can prove that any object of @ has a composition series of finite
length. Furthermore this category contains all the Verma modules. The
multiplicities of the simple modules appearing in a composition series
of a Verma module have been conjectured by Kazhdan and Lusztig.

Finally let Ot...,, be the subcategory of @ consisting of objects M € o
that satisfy IM = (0. Now we are in a position to state (cf. [Brylinski
and Kashiwara, 1981) and [Beilinson and Bernstein, 1981])

Theorem. The functor F: M — T'(X, M) establishes an equivalence
between the category of regular holonomic Dy -modules whose charac-

teristic varieties are contained in Uwew Tx X and the category 5”“.

Here W denotes the Weyl group and X = |J,, ¢ Xu is the stratification
of X by the Bruhat cells X,,.
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2.1.1.3 In [loc. ¢it.] this result is used to prove the Kazhdan-Lusztig
conjecture about the multiplicities of the simple modules appearing in
a composition series of a Verma module. (Cf. also [Springer, 1982].)
One proceeds by invoking the Riemann-Hilbert correspondence. This
yields an interpretation of the Kazhdan-Lusztig conjecture in topologi-
cal terms, which then could be solved.

The Verma modules correspond to 1-{";:5'")0 x, w €W (where n =
dim X') whereas the simple modules correspond to (see § 1.11 for nota-
tion) E(Yw, X), w € W. Via the Riemann-Hilbert correspondence the
Verma modules agree with €x_[l/(w)— n] and the simple modules agree
with the intersection cohomology complexes IC% [I(w) — n].

2.1.2 Singularity theory

2.1.2.1 Suppose f:(C"*!,0) — (€, 0) is a germ of a holomorphic func-
tion with an isolated singularity. Let f: X — S be a good representa-
tive. Now f defines a submersion f: X’ = X - {0} - §' = § - {0}.
One obtains a local system R"f; €. on S’ whose stalk above s € S’
equals H*(X,,C) =: H, the cohomology of the Milnor fibre. Equiva-
lently one has the associated vector bundle H := R" f{€ x' ® Qg with
an integrable connection V, which is traditionally called the Gauss-
Manin connection (cf. [Brieskorn, 1970]). The vector bundle X ex-
tends uniquely to a vector bundle #x on S with a logarithmic connec-
tion V such that the eigenvalues of the residue of V are contained in
{ze€C|-1<Rez<0}.

2.1.2.2 The projective case. Assume f is projective. In that case
H"(X,,C) carries a pure Hodge structure. This gives rise to a Hodge
filtration on the vector bundle ¥ satisfying Griffiths’ transversality. Ac-
cording to Schmid (cf. [Schmid, 1973)) this filtration extends to Hx and
yields a mixed Hodge structure on Hyx,o/tHx,0 = H.

2.1.2.3 The general case. In [Steenbrink, 1976] Steenbrink constructed
a mixed Hodge structure on H by using a resolution of singularities of
f. Varchenko [Varchenko, 1980, 1982] defined a mixed Hodge struc-
ture on H by using the asymptotic expansion of period integrals. One
is interested in these because the mixed Hodge structure gives rise to
useful invariants of the singularity of f. Pham [Pham, 1983] (cf. also
[Pham, 1979]) advocated the use of D-modules in these. In [Scherk and
Steenbrink, 1985] Steenbrink’s filtration is described using the theory of
regular holonomic P-modules. Similar results are obtained by M. Saito
(cf. [Saito, 1982, 1984]).

2.1.2.4 Let us briefly indicate how one proceeds. The vector bundle X
with connection V may be viewed as a Dg:;-module (cf. §1.3.3). As such
it coincides with HO(f,Ox:), where the subscript “+4” indicates the
direct image in the theory of D-modules (see §1.6.2 and example 1.6.2.5).
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Put G := H°(f+Oyx), then G|ss = H. G is called the Gauss-Manin
system (cf. [Pham, 1979]). Decompose f as an embedding i: X «— X xS
on the graph of f, followed by the projection m: X x S — S. Then
(cf. Example 1.6.2.5)

G =R"'x.(Qxus/s 02, Bx xsji(x))-

Here
Bxxsiix) =i+0x = Oxxsl(t— £)7']/Oxxs

and t is a coordinate on S. The Dy, g-module By 5;(x) is naturally
filtered by pole order. Giving Q x, /5 the stupid filtration yields a
filtration on G. (Cf. [Brylinski, 1982a]{. Now G contains the canonical
lattice H x (cf. [Pham, 1983] and also [Barlet and Kashiwara, 1986]) and
Hx,oftHx,0 = H. The induced filtration on H gives rise to the mixed
Hodge structure of [Steenbrink, 1976] (cf. [Scherk and Steenbrink, 1985]
and [Saito, 1982]).

Remark. Consider again the particular case that f is a projective mor-
phism. Then i,: X, < P"*! is a closed submanifold and

g = Hﬂ+l(Pn+1,Qi)-+]IX. ® BPn+IIX.).

Since Qpay1 /x, ® Bpntyx, 18 quasi-isomorphic to the shifted complex
1,480, [—1] (cf. [Pham, 1979], Ch. I §14.2.2), this implies

G, = H*(X,,2%,) = H*(X,, ©).

Moreover the induced filtration corresponds to the Hodge filtration on
H"(X,,€). Thus the filtration on G is an extension of the Hodge fil-
tration on M. (Cf. [Brylinski, 1982a] and Example 1.11.5.)

2.1.3 Cohomology of singular spaces

2.1.3.1 Let Y be a complex analytic variety of dimension m. Y admits
a stratification into disjoint connected nonsingular analytic subvarieties
{Ya}- T := Ugmy, <m Yo contains the singular points of Y. Goresky
and MacPherson introduced the notion of intersection cochain complex
IC (Y)onY. This calculates the intersection cohomology IH (Y). The
intersection cohomology for a singular variety Y satisfies many impor-
tant properties such as Poincaré duality and hard Lefschetz theorem.
We refrain from recalling these, but instead we refer the reader to the
nice paper [MacPherson, 1984] (and also [Brylinski, 1982b)).

The notion of intersection cochain can be sheafified and gives rise to
a complex of sheaves IC,,. Using sheaf theoretic constructions Deligne
gave another construction of ZCy, (cf. [Beilinson, Bernstein, Deligne,
1982]). The intersection complex IC;, may be characterized by the
following properties:
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(i) Z¢} =0 ifi <0;
ICy is a bounded complex with constructible cohomology i.e., for
some stratification {Y,} of Y H(ZCy)|Y, is a local system, for
all o and 3;
(ii) codim supp(H*(ZCy)) > i, for all i € Z;
(iii) the Verdier dual (ZCy )* satisfies (i) and (ii);
(iv) for some stratification {Y,} of Y one has: ICy |y-x = Cy_g-

The construction of ZCy generalizes as follows. For any local system
V on Y — X one defines a perverse sheaf ZCy (V). It is characterized as
above but (iv) has to be replaced by

(iv") ICy(V)ly-g 2 V.

2.1.3.2 The complexes ZCy (V) are examples of perverse sheaves (com-
pare §1.11). For many reasons the category of perverse sheaves on Y is
important. We refer the reader to [MacPherson, 1984] for a nice account
of this. We single out two major themes.

Let us assume that Y is a closed subvariety of a complex manifold
X. Let i:Y < X denote the inclusion. Put d = codim(Y, X). The
complexes i, (ZCy (V))[—d] are all perverse sheaves on X. Usually one
drops the i, and considers ZCy (V)[—-d] as a perverse sheaf living on
X. By the Riemann-Hilbert correspondence the category of perverse
sheaves on X, Perv(X), is equivalent to the category of regular holo-
nomic Dy-modules. The regular holonomic D y-modules £(Y, X, V),
introduced in §1.11, correspond to ZCy (V)[—d].

2.1.3.3 Theorem. LetY be a projective irreducible variety. Assume V
is the underlying local sytem of a polarized variation of Hodge structure
onY — E. Then the intersection cohomology groups IH'(Y,V) carry a
pure Hodge structure.

This was conjectured in [Cheeger, Goresky, MacPherson, 1982] and has
recently been proved in a pioneering paper by M. Saito [Saito, 1986¢].
(Cf. also {Saito, 1985).) In fact he derives a much more general result
(cf. [Saito, 1986¢], Thm. 5.3.1). In order to establish this he works in
the category of filtered D y-modules and introduces the notion of Hodge
modules. He studies the functorial behaviour of the Hodge modules
(cf. also [Saito, 1986b]).

2.1.3.4 Another consequence of his work is a proof of the

Decomposition theorem. Let f:Z — Y be a projective morphism
of complex varieties. Then f,IC} is a direct sum of intersection coho-
mology complexes of the form ICy (V).

(Cf. also [Saito, 1983b].) Until then the only known proof used charac-
teristic p methods (cf. [Beilinson, Bernstein, Deligne, 1982], Thm 6.2.5).
The decomposition theorem has important consequences; for example
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see [Goresky and MacPherson, 1981), [MacPherson, 1984] and [Springer,
1982].

2.1.3.5 L%-cohomology. Finally we would like to mention the fol-
lowing. Let Y be a compact analytic variety. Let V be as above.
The question is wether the intersection cohomology groups and the L2-
cohomology groups associated with V' coincide (cf. [Zucker, 1982]). In
the one-dimensional case this was shown by Zucker [Zucker, 1979). In
case Y is a non-singular Kahler manifold and ¥ a divisor with normal
crossings it has been confirmed by Kashiwara and Kawai (cf. [Kashiwara
and Kawai, 1986]) and independently by Cattani, Kaplan and Schmid
[Cattani, Kaplan, Schmid, 1987]. Recently there has appeared a proof
by Looijenga [Looijenga, 1987] in the context of locally symmetric va-
rieties.

2.2 Summary of results

We focus our attention on the category of regular holonomic modules. In
the preceding examples it has become clear that in general this category
is very complicated. One would like to get a better understanding of
its structure. Below we summarize results in this direction. First of all
we mention those where one works in the category of perverse sheaves.
Next we come to the cases where the study i8 done in the framework of
D-modules.

2.2.1 Classifying perverse sheaves

2.2.1.1 Deligne [letter to MacPherson, 1981] gives a combinatorial de-
scription of the category Pervi® (C) of perverse sheaves on € with
respect to the stratification {0}, © — {0}. It uses a characterization of
constructible sheaves given in [Deligne, 1973a,b].

The category Perv{O}(C) is equivalent to the category of pairs E fi—';" F
of finite dimensional complex vector spaces E, F and linear maps can,
var, satisfying 1 + var o can is an automorphism of E.

If ¥ is a perverse sheaf on @€ (w.r.t. the stratification {0}, €—{0}), then
E = F|, the stalk above 1. (E, 1+varocan) represents the local system
F’|c-{0y- The complex “E -2+ F” (E in degree 0) is quasi-isomorphic
to F'|(o}. In fact E = ¥(F’), F = ®(F’), where ¥ (resp. ®) denote
the nearby cycle functor (resp. the vanishing cycle functor) defined in
[Deligne, 1973a). He generalizes this to the normal crossings case in C"
(see §1.2.1.2).

2.2.1.2 In [Galligo, Granger, Maisonobe, 1985a] a classification of per-
verse sheaves on €" with regular singularities along normal crossings is
given. The result is analogous to that of Deligne, but their method is
quite different. Let T' C €" be the divisor with normal crossings given
by z; ...z, = 0. Denote PervT(€") the category of perverse sheaves on
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C€" whose singular loci are contained in T. Introduce the category C,
of 2"-tuples {Fy : I C {1,...,n}} of finite dimensional complex vector
spaces related by a set of linear maps

u: Fr = Froyy  vwi:Froy — F
satisfying
YU = U Uy,  Viv; = VY, YU = ViU,
1+ v;u; is an isomorphism.

Theorem. There exists an equivalence of categories
PervT(C") — C,,.

Their method to show this consists in using suitable real scissions of
€"—or rather of T—and studying the associated distinguished trian-
gles.

An appeal to the Riemann-Hilbert correspondence yields an equiv-
alence between the category of holonomic Dga-modules with regular
singularities along T and the category C,. In a second paper [Galligo,
Granger, Maisonobe, 1985b] the authors apply their results to obtain
some corollaries on holonomic Dg«-modules.

2.2.1.3 In [Granger and Maisonobe, 1984] one studies the case where
the singular locus is a cusp. In [Maisonobe, 1985] this is generalized
to the case of a plane curve A. They use a suitable scission of the
real surface A. Their method is very laborious and it requires a good
understanding of the topology of the situation. The method is similar
to the one for the normal crossings case.

Theorem. Let X C €2 be an open disc around 0. Let A C X be a
plane curve. There exists an equivalence of categories

Perv3(X) — C(A).

The category C(A) consists of (§ + 2)-tuples of finite dimensional €
vector spaces related by linear maps

EshFe2G, ke{l,...0),
Vi

satisfying a set of conditions (cf. [loc. cit.], Ch. IV, §1). The number §
is given by topological means (cf. [loc. cit.], Ch. I, Prop. 2.2).

2.2.1.4 In [MacPherson and Vilonen, 1986) an elementary construction
of perverse sheaves is given. Elementary in the sense that the construc-
tion uses only topology and linear algebra. Furthermore it is clear from
their construction that the category of perverse sheaves is abelian.
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Denote by Perv(X) the category of perverse sheaves with respect to
a given stratification of the variety X. Their construction of Perv(X)
is by induction on the strata and starts with X — . The inductive
step constructs Perv(X) from Perv(X — S) for a closed stratum S C
X. Perv(X) is then obtained as a category consisting of objects A €
Perv(X — S) together with a commutative diagram

F(a) —T G(A)
NG/
B

where F and G are certain functors on Perv(X — S) and T is a natural
transformation.

In a second paper [MacPherson and Vilonen, 1985] they use their re-
sult to obtain a classification of the perverse sheaves on €2 with respect
to the stratification {0}, {y* = z™} — {0}, €% - {y™ = z™}. Their
description is analogous to the one of [Maisonobe, 1985] (see §2.2.1.3).

2.2.1.5 Narvaez Macarro [Narvaez Macarro, 1984) considers the fol-
lowing. Let f:(€?,0) — (€,0) be an irreducible germ with an isolated
singularity. Let f: X — D be a good representative. Suppose 1 € D and
fix 2o € X,. Let £ be a local system on U = X — X,. Note that ¥ (L)
is a perverse sheaf on Xj. Since Xj is homeomorphic to €, ¥(L) is
determined by a pair of vector spaces (cf. 2.2.1.1). Narvaez Macarro
gives an explicit description of this pair.

Theorem. Put L = x,(X,,20) and E = L,,. Denote I(L) the aug-
mentation ideal of C[L), then ¥, (L) is given by

E == Homgyj(I(L), E).

Here 1g + ve gives the monodromy.

Next he applies the extension theorem of Verdier (see 2.2.1.6) to ob-
tain a combinatorial description of Perv*°(X), the category of perverse
sheaves on X with respect to the stratification {0}, Xo — {0}, U.

Theorem. PervX°(X) is equivalent to the category consisting of ob-
Jects
E F—3 ¢1

(= 1 1)
Homc[L](I(L),E) = ¢2

Here E is a €[x (U, z0)}-module and ¢,, ¢; are finite dimensional
complex vector spaces. The arrows represent linear maps satisfying
some relations (cf. [loc. cit.], Thm 2).
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2.2.1.6 Although it is not really a classification of perverse sheaves we
like to remark the following. Let f: X — @ be a holomorphic map. Put
Xo=f710), U = X - Xo.
Theorem. (Extension theorem) The functor

F s (Flu, ¥y(F) 52 #;(F),0)
defines an equivalence between Perv(X) and the category consisting of
objects (G,G; z%? G2,a). Here G € Perv(U), G,,G; € Perv(Xy) and
a:¥;(G) =+ G, is an isomorphism such that 1g + a~'vca gives the
monodromy of G.

This is a result of Verdier [Verdier, 1985a] (cf. also [Verdier, 1985b])
on extensions of perverse sheaves over a hypersurface. In Chapter IV we
will give a proof of an analogous version in the language of D-modules.

If we take the special case X = €, Xo = {0}, we get back the
classification of perverse sheaves on € as mentioned in §2.2.1.1.

2.2.2 Classifying D-modules

2.2.2.1 Let z be a coordinate on €. Boutet de Monvel gives a de-
scription of holonomic Dg-modules which are regular at the origin
(cf. [Boutet de Monvel, 1983b]).

Theorem. Let M be a holonomic Dg-module, regular at {0}. Then
M is isomorphic to a direct sum of indecomposable modules. The in-
decomposable modules are isomorphic to one of

Dg/De(20 — a)*,(a ¢ Z);,Dg/D¢(...2020); Dg /D¢ (. .. 282).

For a proof see [Boutet de Monvel, 1983b] and also [Briangon and
Maisonobe, 1984], Cor. 19.

Boutet de Monvel proceeds with a classification of holonomic Dg-
modules, regular at {0}. His treatment is not correct but can be easily
adapted to yield the following. Let M be a holonomic Dg-module, reg-
ular at {0}. Put E := (Homp(O, M)),. Denote by y the monodromy.
Next put (compare Ch. II)

Vo i= U Ker((8z — o), Mo); V= @ Vas
neN 0SRea<1

Wq = U Ker((zd — )", Mo); W := @ W,.
nEN 0<Rea<l1

These are finite dimensional vector spaces over €. Multiplication by
z (resp. 0) induces a linear map u:V — W (resp. v:W — V). Then
exp(2mriuv) agrees with y. W, identifies with

U Ker((y — e2"®1g)", E)
neEN

and W identifies with F.
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Theorem. The holonomic Dg-modules, regular at {0}, are classified
by pairs E a%! V such that for every eigenvalue A of uv, 0 < Re A < 1.

A similar discussion applies to holonomic Dg-modules with regular
singularities at the points {a;,...,a,}. These are classified by (n + 1)-
tuples (E,Vi,...,V,) and linear maps

E2V, ie{l,...n}
Furthermore, as Boutet de Monvel noted, essentially the same applies
when X is a Riemann surface.

2.2.2.2 Two more cases of a classification of regular holonomic D-
modules are described in [Gelfand and Khoroskhin, 1985]. Let X = €"
and o = {£,,...,I;} a stratification of X. Denote Mod(Dx,0c),, the
category of regular holonomic Dx-modules M satisfying

k
SS(M) c | Tz, X.

i=1

Let n = 2. Let (z, y) be coordinates on X. Put Xo = {zy(z+y) =0}
and let & be the obvious stratification. Let 4 denote the category of
objects (U, V1, Va, V3, W) of finite dimensional complex vector spaces
related by linear maps (i € {1,2,3})

a:U—-V, b:Vi->U c:Vi=W d:W-YV,
satisfying

(i) the eigenvalues of b;a; (resp. c;d;) are contained in {2z € € |0 <
Rez< 1}
(ll) Zc.-a; = Zb.d. = 0;
(iii) asbj + dic; =0, for all i # ;.

Theorem. The category Mod(Dy,o),, is equivalent to A.
A similar description is obtained in [Maisonobe, 1985] (cf. §2.2.1.3).
Let n > 4 and let Xo = {3 z? = 0}, 0 = {{0}, X0 - {0}, X — X,}.
Denote B, the category of objects
Uerverw
of finite dimensional vector spaces and linear maps satisfying

(i) the eigenvalues of ba are contained in {z€ € |0 < Rez < 1};
(ii) ab—ed =0, if n is even;
ab—cd = %lv, if n is odd.

Theorem. The category Mod(Dx, o)y, is equivalent to B,.

In each case the authors give an explicit description of the Dy -module
belonging to a given element in A (resp. B,).
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Chapter I1
CLASSIFICATION OF D-MODULES WITH REGULAR
SINGULARITIES ALONG NORMAL CROSSINGS
by
M.G.M. van Doorn

0 Introduction

0.1 To classify regular holonomic D;-modules Boutet de Monvel [2] uses
pairs of finite dimensional €-vector spaces related by certain €-linear
maps. Galligo, Granger and Maisonobe [4] obtain, using the Riemann-
Hilbert correspondence, a classification of holonomic D,-modules with
regular singularities along z; ...z, by means of 2"-tuples of @-vector
spaces provided with a set of linear maps. We mention that also Deligne
(not published) gets a classification of regular holonomic D;-modules.

The aim of this paper is to get such a classification in a direct way.
The idea is roughly as follows. Denote by Cl the category whose objects
are diagrams E &= T’ F of finite dimensional €-vector spaces such that
{A] A eigenvalue of vu} C {ad € € | 0 < Rea < 1}. We construct D;-
modules F’ (“Nilsson class functions”), " (“micro Nilsson class func-
tions”) and D;-linear maps U: ¥’ — F" (“canonical map”), V: F" — F'
(“variation”). For M € Mod;(D; ), i.e., M is a regular holonomic left
D;-module, we consider the solutions of M with values in ¥’ (resp. F")
i.e., Homp, (M, ') (resp. Homp, (M, F")). In this way we get an ob-
ject in €y i.e., a functor S: Modi(D1)hr — Ci. In order to prove that S
defines an eqmvalence of categories we exhibit an inverse functor T of
S. As a matter of fact T(E = F) = Hom(E = F, ¥’ &= F"). The
proof that S and T are inverse to each other reduces to a study of what
happens to simple objects of both categories.

The generalization to several variables is more or less straightfor-
ward, but the proofs get more involved. In proving statements we use
induction on n to step down to the case n = 1 (or n = 0 if you wish).
This causes some technical problems (c¢f. Lemma 4). At the end the
proof of the equivalence (Proposition 3) becomes a formal exercise.

Notations Let n € N. Write §; = 5;'—, i € {1,...,n}. Denote
0 =0, =C[[z1,...,2,]] (resp. C{z,,.. .,z,,}), = on[a,,...,a,,].
Denote O(,) = €[[zn]] (resp. ©{za}); Dn) = O(n)[On]. Let D be Dn
or D(n). Denote by Mod,(D) the category of left D-modules. If P € D
the left D-module D/DP is denoted by D/(P). If M € Mod;(D) and
P € D, left multiplication with P on M is denoted by M -2+ M.

Finally weput J .= {a € C|0< Rea<1}.
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0.2 Throughout the paper we assume that the reader has some famil-
iarity with the language of D-modules. He may consult e.g., [1], [7].

Let M, N € Mod;(D,,). Then the tensor product M ®o N has in a
natural way a left D,-module structure, namely given by

8; = 8;(m) ® n + m ® 9i(n), all 4.

Let M € Modi(Dy,—1), then O®p,_, M has a left D,-module structure
given by (cf. [7], Ch. 2, 12.2)

di(a®m)=08i(a)®m+a®di(m), allie{l,...,n-1}
On(a® m) = Op(a) ®m.

In a similar way © ®0, NV has a left D,-structure if N € Mod;(D(n))-
If Qi € D(;), the following is easily verified

(0,8 Po-1/(@11:-2@n-)) 8(0 8 P/Qm)
=2D/(Q1,.--,Qn)-

1 The operation C

1.1 In order to state the results in a neat way we introduce some
general notions. Let A be a category. Denote C(A) the category
whose objects are quadruples (E, F,u,v), whete E, F are objects of A,
u € Homy(E, F) and v € Homu(F, E). If (E, F,u,v) and (E', F',u',?')
belong to C(A), then

Hom ¢ ((E, F,u,v), (E', F', o', v"))

= {(f’g) € Hom 4(E, EI)
x Hom ((F,F') | u'f = gu, fo=1'g}.

Hence C(.A) is the category of diagrams in A over the scheme “. = -”,
Cf. Grothendieck [5] and Mitchell [6], Ch. II §1. C(A) may be seen as a
functor category and as such it inherits the properties of A. In particular
C(A) is an abelian category if A is abelian. We have two evaluation
functors eg and e; from C(A) to A. If X = (E, F,u,v) € C(A) then
ea(X) = E, e;(X) = F. If Ais an abelian category these functors are
exact and collectively faithful. Hence in particular: X' — X — X" is
exact in C(A) if and only if e;(X’) — €;(X) — €;(X") is exact in A, for
all ¢ € {0,1}. Notice that we have natural transformations u:eq — ey,
vies — eg. If F: A — B is a functor between categories A and B,
there is obviously an induced functor C(F):C(A) — C(B). Clearly if A
and B are additive and F is an additive functor, then C(F) is additive.
Exactness properties of F are transferred to C(F). Furthermore, if
G: A — B is another functor and 7: F — G is a natural transformation
(resp. equivalence), there is a natural transformation (resp. equivalence)

C(n):C(F) = C(G).
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1.2 Let A be a category. For all n € N we define inductively

Co(A) := A
Cas1(A) = C(Ca(A)).

For each n € N we have 2" evaluation functors defined inductively as
follows: for all iy,...,5,41 € {0,1}

e.-,...,-_“ = €4y, O e.-_“.

If £E € Ch(A) and iy,...,i, € {0,1} we mostly write E(i;...4,) or
E;,..i. instead of ;,..;, (E).

For every j € {1,...,n} and all 4,...,8j_1,8j41,...,in € {0,1} we get
A-morphisms

E(il e ij_IO‘l'J'...l ’e 1,.) hnd E(l]_ . .t'j_llij+1 e l'n)

E(ll v I'j_llij+l . tn) ad E(l]_ . .i,-_10ij+l e in)
It is easily seen that the category C,(A) can be identified with the
category whose objects are 2"-tuples (E(il ceetn);i1,...,0n € {0,1})
of objects of A, connected by .A-morphisms, for all j € {1,...,n}, all
i1,...,in € {0,1},

u: E(-0-) — E(-1-) v: E(-1-) — E(-0-),

where E(—r—) stands for E(i;...4;_1rij41...1,). The following dia-
grams have to commute

Ew = Ey Ew < En Ew — Ey Ew < Eg
lu " ul Tv . v Tv " v Ju . u |
Ew — Enw Ewo ~ Eun Epw — En Ew ~ En
where for simplicity we have written E,, instead of
E(i1...d4jo1rijq1 .. ig—18ik41...10), allr,s € {0,1}.
Remark Let A be a ring and let Mod;(A) be the category of left A-

modules. We write C,,(A) instead of C, (Mod;(A)). Furthermore we put
Cn = Cn(c)-
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2 Definition and properties of F,

2.1 Our next goal is to construct a particular object F,, of C,(Dp). Let
therefore n € N, n # 0. For a € J, i € N — {0} define

f(ln).a.-' = D(,,)/((a,,z,. - a)’) J-'(':.).a',- = ’D(,,)/((z,.a,. -a)').
For each a € J, the D(y,)-linear maps

Fiayai = Flayaitrr  induced by P s P(pz, — @)
and
Flnyas = Flnyoi+1s induced by P — P(z,8, — a)

yield inductive systems (.7-'('")'“'..).- and (Fg,q,)i- Define
Foy =D Im Flpyai  Foy = D lim Fip o
a€lJ a€l

Furthermore, the D(,,)-linear maps

f('n)'a,.. — J-'(':,)'a_.-, induced by P — P3,,

Finyai = Fn)air induced by P+ Pz,
give rise to D(y,,)-linear maps

Up): Finy = Fimy Ve Fimy = Fmy-
Hence we have constructed an object
Fn) = (f('n),f(':,),U(n),V(n)) € Cy(D(n))-
By extending coefficients we get Oo® Fin) € C1(Dn).
(=)

Remark Instead of the clumsy notation C; (O o® *)(¥(n)) we prefer
(=)

to write O ® F(n).
O(n)

2.2 The preceding constructions lead immediately to

Lemma 1. There exist short exact sequences of D(,)-modules

U
Oty = D)/ (8n) —Flay—+F(m)

Vin
Diny/(2n) —F{py—>F{p)

V(,.)u(.)—al

D(n)/(anl'n - a) i——»}-(’n) .1'-(’"), a€J- {0}_
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PROOF. Let a € J — {0}. The D(,)-linear map D(n)/(GnZn — a) —
D(n)/(Zn0n — @), induced by P — P3, is an isomorphism (left to the
reader). We have the commutative diagram with exact rows

1=8uzp-a 11
}-("l)-ﬂ.l' — ('n),a.l'+1 I D(n)/(anzn - 0)
" 1=Za8p—a 11

(n),a.i — }-(Icl),a,i+l —* D(")/(z"a" - a)

where the vertical maps are induced by P — Pd,. Hence, by induction
on i, it follows that ]-'('")'a'l. — f(’:‘)'av.-, 1 — 9, is an isomorphism for
all i € N - {0}.

It is easily verified that we have a commutative diagram with exact
rows

1ezq(8aza)' "} 18, 11
D(n)/(8n) — ('n),o..' - ('Q),o.-' — D(n)/(8n)
1 1
11 laulfn lzllal lo
1z (8pzs)’ 1~ 8, —
D(n)/(8n) - m0i+1 — Fin)oi+t = D(n)/(8n)

Taking the direct limit and summing over a € J we obtain the exact
sequence of D(,)-modules
U
Dia)/(8n) — Fioy =% Finy-
The other two sequences are obtained in a similar way.

2.3 Consider the bifunctor ®o:Mod;(D,) x Modi(D,,) — Mod(D,,),
(M,N)+— M ®o N. It induces a bifunctor from C,—1(Dy) x C1(Dy) to
Cn(Dy), also denoted by ®o. Keeping this in mind we define inductively
onn€N

.ro =C
Fn = (0 ® .7"'.—1) g(ooﬁ., }-(n)) € Cn(Dn).

Hence

Faliy...ta) = (00%)}'(1)("1)) g"'g(o o%) Fia)in))

for all iy,...,i, € {0,1}. The D,-linear maps are identified as

lou(.i)®1
. . . o -—_— . 3 o .
]'-,.(11...11'_101,'.'.1...3,;) ¢ fn(ll --‘1j-lhj+l---'n)-
18V(»®1
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We are ready now to define the functor S,. Therefore consider the
bifunctor H,: Mod;(D,) x Modi(Dys) — Co, (M, N) — Homp, (M, N).
It induces a bifunctor Cy,(Hp): Modi(Dy,) X Ca(Dp) — Cn. So there arises
a contravariant functor

Sn:Modi(Ds) = Cn Sa(M) := Cu(Ha)(M, Fa).
Notice that S, is characterized by
Sa(M)(i1...in) = Homp_(M, Fa(iy ... in))
for all 4,...,i, € {0,1}.
3 Study of the functor S,

3.1 We restrict our attention to the category Modi(Dn)it "* the full
subcategory of Mod;(D,,) consisting of holonomic D,-modules with reg-
ular singularities along z,...z,. For a definition we refer to van den
Essen [3], Ch. I, Def. 1.16. He gives also a description of the simple ob-
jects in Mod;(D,);! "~ (loc. cit. Ch. I, Th. 2.7). They are of the form
Dn/(q1y...,qn) with ¢; € {2;,8:}U{8izi —ai |a; € C, 0 < Rea; < 1}
for all i € {1,...,n}. It is suitable for us to write this as

(0,2,%)8(0 8 Pwan)

where N = D,_1/(q1,...,gn-1) 18 & simple object from the category

Modi(Dn-1);; “*~*. To simplify notations we introduce:

For @ € J U {1} define g,(a) € Dy a8

n(0) :=8n; an(1):=2n; n(a):=08nzn—0a, a€J—{0}.
For N € Mod;(D,,—;) define

Po(N) := (0 o2 N) g(o o%) D(n)/(q..(a))).
For M € Mod;(Dy,) define
Qa(M) := Ker(M ) ap).

So for each a € J U {1} we have a pair of functors (Py,Qq)

Py:Mod)(Dr—-1) = Modi(Dy) Qa:Modi(Dy) — Mod(Dp-1).
Obviously:

- Qq is left exact;
- P, is exact because O ®o,,, 'D(,,)/(q,.(a)) is a flat @,,_;-module;
- P, is a leRt adjoint of Q,.

3.2 By a direct calculation, using the definitions of ¥, and F" one

establishes the following. For convenience we write ® instead of ® .
Oy
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Lemma 2. There exist short exact sequences of D,_j-modules

0 @ F(y) <2 0@ Fy On-1 <= O @ F(y) 22+ 0O F,)

O ® Fiy 2+ 0@ Fy On-1— O @ F(1) =2+ 08 Fy)
on-l — O® (In)'n(a)o ® ([n) On—l — 0 ® (l:‘) 1-(0)0 ® (n)

for all « € J - {0}.

ProorF. During the proof we write ® instead of ®0(.) Letae J. Itis
straightforward to verify that O,_; = Q,(0® ). One may use

e.g.,

(n)cn

O ® Fip)as = Olzzn " (logza) ~! + -+ + Olzg |23~
or the lemma on page 39 in [7]. Furthermore

(Onza

On_1 2 Coker (o ® Diny/ (Bnn — )25 0 ® Diy/(Bnn — a))

Consider the short exact sequences of D-modules
o® f(',.),.,,.- —0Q® .7"(',,)',',-“ —» O ® D(n)/(Onzn — ).

Writing ¢; for the map: left multiplication with 8,2, —a on 0@.1-'(’"), aj
for all j € N — {0}, we obtain a long exact sequence

On_1 = Ker¢; «— Ker¢;4) = On_;y — Ker¢p = Oy
4, Coker ¢; - Coker diy1 — Coker ¢y = O,

where every map is D,_i-linear. By induction on i we have that
Coker¢; = On-1. Now O,_; is a simple D,_;-module, hence § is
an isomorphism. Moreover ¢ = 0 and Coker ¢i4+; = On-1. So we have,
for all i € N — {0}, a commutative diagram with exact rows

0- -
Onoy — 00 (n),cn ("’_"’) 08 F (n)al — On

ll l (Onsn—a) 1 lo

On-l — O ® }-('n),a.i'{-l -_— 0 ® (’ﬂ),a.i+l — oﬂ—l

Another calculation learns that left multiplication with d,z, — a on
O ® F(n),p,i 18 a bijection for all i € N — {0}, all f € J, B # o (use
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induction on i). After taking the direct limit and summing over g € J
we arrive at the short exact sequence

(8-’-

On-1 — 0@ Fpy) "5V 0@ .

Using that left multiplication with 8,z, — a@ on O is bijective and
the commutativity of the next diagram with exact rows (¢f. Lemma 1)

0 — 08F, — 087y,
l(b.:,—a) 1(8.3.—0) l(&.z,-a)
0 — 08F, — 08F,

one establishes the exactness of
0n-1 — 0 ® f(") (0.:. ) 0 ® (")

It is immediately verified that left multiplication with x, on O®.7-'(’n)

is bijective. Furthermore left multiplication with z, on O ® D(n)/(zn)
is surjective and has Ker = O,_;. Consider the second sequence in
Lemma 1, argue as above and obtain the exactness of

Opn_1 — OB F (,,) RN 0@-1'-(")

Combining results on left multiplication with 8,2, and left multiplica-
tion with z,, yields the exactness of the upper sequences in the lemma.

3.3 At this point we introduce a category C as follows.

Co is the category of finite dimensional €-vector spaces;

C,.+1 is the full subcategory of Cn41 consisting of all the objects
(E, F,u,v) € Cay that satisfy:

(i) E,F €Cp;

(i) {A] A eigenvalue of e;,...;,(vu)} C J for all 4y,...,i, € {0,1}.

Notice that C, is a thick abelian subcategory of Cn. For each a € JU{1}
we introduce a functor Ls:Cp-; — C, by putting for all £ € Cn_;:

Lo(E) := (E, 0,0,0)
Li(E) := (0, E, 0,0)
Lo,(E):=(E,E,1,al) forall a € J - {0}.

These are all exact functors. Clearly for each a € J U {1} Lq restricts
to a functor from C,-1 to C,, also denoted by L.
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3.4 Putting n = 1 in Lemma 2 we may reformulate it as

51 (DI/(‘Il(a))) = Lo(T) € G
Exth, (D1/(21(2)), 1)) =0 alla€ JU{1}, all é € {0,1}.
However elements of Mod;(D) ), have finite length. Hence S, induces a

contravariant exact functor—denoted S;—from Mod;(D) )y, to ;. This
result generalizes to

Proposition 1. S, induces a contravariant exact functor
Sn:Mod(Dn);t ** —C,.

ProoF. By induction on n. We need only to consider a simple module
M € Mod)(D,,)?* =*. Hence let a € J U {1}, N € Mody(Dp_,)7} >
such that M = PoN. Let iy,...,i5 € {0,1}. Write ¢ = gn(a), P = Pa,
Q = Qa, L = Ly. Lemma 2 says that left multiplication with ¢ is
surjective on O ®o,, F(n)(in). Furthermore O ®o,, F(n)(in) is a flat
Opn-1-module and ¢ € D(,), hence

Qi in)) = Facalis-ine1) @ Q[0 8 Finfi).

Again using Lemma 2 we get 1(Q)(O®o0,,, F(n)) = L(On-1). It follows
that

Sa(PN) = Ca(Ha)(PN, Fn) = Co(Hn-1)(N,Ca(Q)(Fn))
= cn(Hn-l)(ann—l o?; cl(Q)(oo%) }.(")))

= c,.(H,._,)(N, Fasr® L(m))
= (Ca—1(Hn=1)(N, Fa-1)) % L(€C)= LS,\N

The exactness of S,, follows, by induction, from the next general result.

Lemma 3. Let A, B be abelian categories with enough injectives. Let
G:B — A be a lefi adjoint of F: A — B and assume that G is exact.
Furthermore, let A € A be such that R! F(A) = 0. Then one has that
Ext) (G(B), A) = Ext}(B, F(A)), for all B € B.

Remark R!'Q(F,(i1...in)) = 0 because lefR multiplication with g is
surjective.
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PROOF. Notice that for an injective object I € A, F(I) is injective in B
because one has Homg (-, F(I)) = Homu(G(-),I) and this last functor
is exact. Consider a short exact sequence 4 «— I —» R in A with I
injective object in A. Since R F(A) = 0 we get an exact sequence in B

F(A) — F(I) —» F(R).

(Obvious F is left exact.) Let B € B. There results a commutative
diagram of abelian groups with exact rows

Homy (G(B),A) «— Homy(G(B),I)

Homg (B, F(A)) «— Homg(B, F(I))
— Homu(G(B),R) —» Extl(G(B),A)

— Homg(B,F(R)) —» Exty(B, F(A4))
Hence the lemma follows.

4 The inverse functor

4.1 In order to prove that S, defines an equivalence of categories we
come up with an inverse functor. First some generalities. Let A be an
additive category and let R be a ring. A left R-object in A is an object
A € A together with a homomorphism of rings p: R — Homy(A, A).
(Cf. Mitchell [6], Ch. II, §13.) For instance the objects of C,(R) are
R-objects. Further if A € A is any left R-object, then the abelian
group Hom (B, A) gets in a canonical way a left R-module structure.
If « € Hom, (B, B’) then Homy(a, A) is a morphism of left R-modules.
In particular we have a left exact contravariant functor

Th:Cq — Modi(Dy,) E v Hom_(E,F,).

4.2 In order to study this functor T,, we first consider the operation C.
We recall that for any additive category A we defined Home)(E, F)
for all E,F € A in such a way that the following sequence of abelian
groups is exact

Homc(_A)(E', F) b’I‘l()rl"lA(E‘O, Fo) x HomA(El,Fl)
— Hom_A(Eo, Fl) x HomA(El,Fo)
(f,9) = (upf — gug, fvg — vpg)

This observation enables us to prove the following.
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Lemma 4. Let A be a C-algebra, B an A-algebra. Let A be an abelian
subcategory of Cy. Suppose G: Mod;(B) — Mod;(A) is a left exact func-
tor. Let Oo:G(Homc( . )) — Homc(-.G(-)) be a natural transfor-
mation (resp. equivalence) of bifunctors from A x Mod;(B) to Mod,(A).
Then there is a natural transformation (resp. equivalence)

6n:G(Hom, (-, -)) — Home, (-,Ca(G)(-))
of bifunctors from Cn(A) x Cn(B) to Mod;(A).
4.3 Finally let us define for each @ € J U {1} a functor Kq:Cn — Cn_1
as follows:
Ko(E, F,u,v) := Keru
Ki(E, F,u,v) := Kerv
Kq4(E, F,u,v) := Ker(vu — al), all « € J — {0}.

Clearly K, is left exact for all a € J U {1}. Furthermore, as one easily
verifies, L, is a left adjoint of K,.

4.4 Before we return to the functor T, we need a description of the
simple objects of C,. We leave it to the reader to verify

Lemma 5. (i) Every F € G, F # 0, has a subobject of the form L, E,
for some a € J U {1} and some simple object E € Cp_1.

(ii) The simple objects in E,. are those of the form L, E for some o« €
J U {1} and some simple object E € C,_;.

(iii) Every object in C,, has a finite length.

4.5 Now we are ready to prove

Proposition 2. T, restricts to a contravariant exact functor Co —
Mod;(D,);2 "*=, that takes simple objects to simple objects (and is still

denoted T, ).

PRooF. By induction on n. We may assume F' € G, tobe simple. Let us
say F = LoE,a€ JU{1}, E € C,_, simple. Write L = Lo, K = K,,
P = P,. For each i € {0,1} O ®o,., Fn)(i) is a flat O,_1-module.
Hence in virtue of Lemma 1 we get

K(Fa)= Fa-i 8 (08 Do/ (an(@)) = Cas(P)(Fa-s).

Apply Lemma 4 to the well-known equivalence Home(F, M) ®o N =
Homeg(F,M ®o N), where F is a finite dimensional C-vector space,
M € Mod(O), N a flat O-module, gives

Ta(LE) = Hom¢,_ (E, K(¥a)) = Hom__, (E,Cac1(P)(Fn-1))
= PT,.\E
In fact these isomorphisms are Dp-linear. To exhibit the exactness of

T we use

55



Chapter II [12]

Lemma 6. Let R:Mod;(D,) — Cp be an exact functor. Then, for all
E € Cn, Ext¢,_(E,Ca(R)(Fa)) = 0.
PROOF. According to Lemma 1 Uy, V(n) 80d V(n)l(n) — al are sur-

jective, hence R! K(F,) = 0. Since R is exact it commutes with K and
R!K (Ca(R)(Fa)) = 0. Hence according to Lemma 3 it follows that

Ext¢, (LE,Ca(R)(¥n)) & Extg, (E,Co-1(RP)(Fa-1)) = 0.

Remark According to Mitchell [6], Ch. VI, Corollary 4.2 (with R = C),
C, is equivalent to a category of right modules over a certain ring of
endomorphisms. (Recall, cf. §1, that C, is a functor category of the
kind mentioned in this Corollary.) Hence C, has enough injectives.

5 The equivalence of categories

In the preceding pages we have shown the existence of two contravariant
exact functors

Sn:Modl(Dn)::. fn é;; Tn:En - MOdl(Dn):: i

By some formal considerations it follows now that S, defines an equiv-
alence of categories with inverse Tp,.

Proposition 3. S, and T,, are inverse to each other.

ProoF. First we mention the natural equivalence of €-vector spaces
Homg (E, Homp, (M, N)) = Homp,_ (M, Home(E, N)), where E € Co,
M, N € Mod;(D,,). By Lemma 4 there results a natural equivalence

Hom¢_(E,Ca(Ha)(M, F)) 2 Homp_(M,Hom¢_(E, F))

where E € C,,, M € Mod;(D,,), F € C,(D,). So in particular we get a
natural equivalence

Hom_(E, S.(M)) & Homp_(M,T,(E))

where E € G, M € Mod;(Dn);? **. Or, working in the dual category
(.
Hom s (S5(M), E) = Hom p, (M, TR(E)).

Hence S} is a left adjoint of T. This gives rise to natural transforma-
tions ¥:1 > T2S? = T,5n, ¢:S:T; — 1 and dual ¢°:1 — S, T;,. Both
S; and T, are exact and take simple objects to simple objects. Hence
in particular both functors are faithful. Hence ¥(M) and ¢°(E) are
monomorphisms if M € Mod;(D,);! ", E € C.. Hence both are iso-
morphisms in case the object is simple. So, by induction on the length,
1 and ¢° are equivalences.
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Chapter III
D-MODULES WITH SUPPORT ON A CURVE
by
M.G.M. van Doorn and A.R.P. van den Essen

0 Introduction
0.1 In [10] (see also [2], [4]) Kashiwara proves the following

Theorem. Let X be a complex manifold and Y a closed submanifold.
Leti:Y —— X be the inclusion. The direct image functor i, establishes
an equivalence between the category of Dy-modules and the category
of D x-modules with support contained in Y.

What happens in case Y is no longer smooth, but only a closed subva-
riety? Following [9], [5], [14], [13] one defines the ring Dy of differential
operators on Y. In case Y is non-singular this definition coincides with
the usual one i.e., the subalgebra of Endg(Oy ) generated by Oy and
Derg(Oy).

Bloom [5), [6], Vigué [14], Bernstein a.o. [1], and recently Smith and
Stafford [13] in the algebraic case, investigated these kind of rings and
showed that in general they fail to have some nice properties such as
being left or right noetherian. However, as already Bloom and Vigué no-
ticed, in case Y is a curve the situation is more pleasant. Investigations
have culminated in a nice

Theorem. (Smith and Stafford [13], Thm B.) Let X be an affine curve
and 7: X — X the normalization. Assume = is injective. Then D(X) is
Morita equivalent to D(X).

It goes without saying that X is non-singular, hence D(f ) is well-
known. (See e.g., [3].) Using this we are able to modify Kashiwara’s
theorem as follows.

Theorem. Let (X,0) be an irreducible germ of a curve in (C",0).
Then the category of Dy o-modules is equivalent to the category of
D, o-modules with support contained in X.

0.2 In this paper we take a ringtheoretic point of view. O, is the
formal (resp. convergent) power series ring in n indeterminates over k,
an algebraically closed field of characteristic zero (resp. €). p C O, is a
prime ideal of height n— 1. Our aim is to prove that the category of D -
modules with support contained in V(p) is equivalent to the category
of D(0,,/p)-modules and thus to the category of D,-modules.

In §1 we collect some facts concerning differential operators over a
commutative k-algebra. In §2 we introduce the functors which are going
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to establish the required equivalence. We derive a necessary and suffi-
cient condition for the equivalence to hold. In §3 we investigate “dis-
tribution” modules i.e., D(O,, /p)-modules with support at the origin.
We exhibit the equivalence for these modules. In §4 we use Kashiwara'’s
theorem for the regular case and the result of §3 to obtain that the
afore mentioned condition in §2 is fulfilled. §5 contains an application.
We show that for irreducible f € O, = O the left D-module 0;/0 is
simple. (Cf. [8], [15].)

We should like to thank Prof. S.P. Smith for the many valuable dis-
cussions during his short stay in Nijmegen. Much of the formalism and
facts of differential operators as in §1 we learned from him.

1 Generalities on differential operators

1.1 Let A be a commutative k-algebra. Throughout this paper k will
denote an algebraically closed field of characteristic zero. Let M and N
be A-modules. One defines D3 (M, N), the space of k-linear differential
operators from M to N of order < n, inductively by D'(M, N) := 0
and forn >0

D3 (M, N) := {6 € Hom(M, N) | [8,a] € D}~ (M, N), alla€ A}
Put

o2}

Da(M,N) = | | D3(M, N).

n=0
Da(M) := D4(M, M) is a k-subalgebra of Endp(M). Dy(M,N) is a
DA(N)-Da(M) bimodule. The module action is given by composition
of maps. We refer the reader to the paper of Smith and Stafford [13],
§1, where a nice survey of results on diflerential operators is given. The
reader may also consult [9] or [11].
1.2 We would like to add the following observation:

Let M be an A-module of finite presentation. Then Dy(M,N) =
Homy (M yDa(A,N )) as A-modules, where the A-module structure
on D4(A, N) is the one coming from the right D4(A)-structure.

The short proof runs as follows:

“(M, N) = Hom4 (P} ?M, N) = Hom (M, Homs(P3, N)),

where Hom4(P%, N) is formed by viewing P} as an A-module through
the left action of A (see note below). Hom,(P%,N) is considered as
an A-module through the right action of A on P}. As M is finitely
presented we may apply [7], §1, Prop. 8a and conclude

lim D% (M, N) = HomA(M,MHomA(P:,N)).
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Note Let p: A ®: A — A be the multiplication map a ® b — ab. Put
Ja = Kerpu, P} = A®: A/J:"". P} has two structures of an A-
module. Namely multiplication on the left, giving the “left” structure
and multiplication on the right, giving the “right” structure. (See e.g.,
[9].) Observe that in case the P are projective A-modules of finite
type, then

Da(AN) = N?’DA(A)

and D4(A) is a flat A-module. This occurs for instance when A is a
regular k-algebra of finite type or when A = 0,,.

1.3 Due to the absence of an appropriate reference we mention the
following: (See also [13], end of §4.)

Let I C A be an ideal, then (by induction on the order of an operator)

Da(A A/ C D {6 € Hom(A, A/T) | 6(I") =0}.
n=1

Hence

Da(A, A/I) = lim Hom, (A/I", Da(A, A/T))

ie., supp(DA(A,A/I)) C V(I). In particular, if M C A is a maximal
ideal such that k =2 A/, then as one easily verifies by induction on n:

Da(A, k) = G{o € Hom(A,k) | 6(m™) =0}
n=1

2 lim Homy (A/Mm™, k).

Hence in case A is a noetherian, local k-algebra with maximal ideal m
such that 4/m 2 k then, according to [7], exercise 32 of §1, D4(A, k)
is a dualizing module for A. So in particular D4(A, k) is the injective
hull of the A-module k. (This fact was kindly pointed out to us by
S.P. Smith.)

Note that we are considering D4(A, A/I) as an A-module through it’s
right D(A)-structure.

1.4 To finish this section we fix the setting for the rest of the paper.
Let n € N, n #0. O := O, denotes the formal (resp. convergent)
power series ring in the indeterminates z, zy, ..., z,, over k (resp. €).
O, denotes the formal (resp. convergent) power series ring in the inde-
terminate ¢ over k (resp. €). O, denotes the formal (resp. convergent)
power series ring in the indeterminate z over k (resp. T).

D:=Dy(0,0)=0[0,8,,...,8] D, :=Dp (0,,0,)=0,[d]
M= (z,21,...,Z,) denotes the maximal ideal in O.
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Let p C O be a prime ideal of height n such that z ¢ p. A:= O/p
is a local ring of dimension 1 with maximal ideal & = Mm/p. The
normalization of A i.e., the integral closure of A in its field of fractions,
is O;. In the sequel we will identify O/m = k = A/X, k = 0,/tO,.
We fix once and for all some canonical maps

mO—A 110—k TTA—k
with Tr = 7.
We have
D(A) := Da(A, A) = I(pD)/pD = Endp(D/pD)
where
I(pD) = the idealizer of pD in D

={DeD|D(p)Cp}
See [13], 1.6 or [5], [11], [14). The identification arises as follows. If
D € D such that D(p) C p, then xD(p) = 0. Hence it induces a k-
linear map D:A — A such that xD = Dx. In fact D € D(A). Note
that 1.2 implies that, at least as left D(A)-modules,

D(4) = Do(4, A) 2 Hom 5 (0/p, Do (0, 4)) = Endp(D/pD).
1.5 Morita equivalence. The D(A)-D; bimodule P := D4(0, A) is
isomorphic to a right ideal in D;. Hence P is projective and a generator

because gl.dimD; = 1. The rings D(A) and D, are Morita equivalent
if the natural map

Pgool—»A. p® f—p(f)

is surjective. (See [13], Prop. 3.3.) As P is a left D(A)-module we only
need verify that 1 is in the image. That is the case; arguing as in [13]
we get Anng(01/A) DtV O, for some N € N. Put p = [/2;' (19 - j),
then p(t’) = 0 for all j € {1,...,N =1}, p(t¥) = (N = 1)!t¥ and
p(1) = (—1)(~2)...(=N +1), thus p € P. So D(A) and D, are Morita
equivalent.

The functor

N—N® P
D(A)

from Mod-D(A), the category of right D(A)-modules, to Mod-D;, the
category of right D;-modules, is an equivalence of categories. The in-
verse functor is M — Homp, (P, M).
Similarly
N—H P,N)=P*° N
~ Hompu(P,N) = P*

gives an equivalence between D(A)-Mod, the category of leR D(A)-
modules and D;-Mod, the category of left D;-modules. One has

P* := Hom p(4)(P, D(A)) = Da(4,0,).
The reader is referred to [13], §2, 3 for the details.
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Remark Let (X,0) C (€C",0) be a germ of a curve. Let X =X
be the normalization. According to [13], Thm 3.13: If #x~1(0) = 1,
then Dz _, ©) is Morita equivalent to Dy 4. Now #x~!(0) = number
of the irreducible components of the germ (X, 0). Hence in case (X,0)
is an irreducible germ of a curve Dy  is Morita equivalent to Dy g.

(Cf. [14), 1L

2 The main theorem

2.1 As we have mentioned in the introduction we want to compare
D-modules with support contained in V(p) and D(A)-modules. Let
Mod,-D denote the category of right D-modules M such that, consid-
ered as O-module supp(M) C V(p). It is a full abelian subcategory of
Mod-D, which is closed under extensions. In case A is regular i.e., V(p)
is non-singular, the A-module A ®o D can be given the structure of a
left D(A)-module. (See e.g., [2], [3).) This enables one to define inverse
images of D-modules. Now A®o D = Dy (0, A) and it is not difficult to
show that the above mentioned left D(A)-module structure on A®o D,
in case A is regular, coincides with the usual left D(A)-module structure
on Do(o, A).
This motivates the following

Definition. B :=Dy(0, A).

B is a D(A)-D bimodule and as we already saw, suppo(B) C V(p),
where B is considered as an @-module via the action of D. Moreover
the natural inclusion

lim H O/p" N B N B

fim Homo(O/8™ N 8y BY = N o
is an isomorphism for all N € Mod-D(A4). So N ®p(4) B is a right
D-module with supp(N ®p(4) B) C V(p). This justifies the following

Definition.

i4:Mod-D(4) = Mod,-D, N~ Nvg) B;

it:Mod-D — Mod-D(A), M — Homyp(B, M).

We make the following observations:

- 14 is a left adjoint of it.

- it is left exact; i4 is right exact.

-If M € Mod,-D, M # 0, then i*(M) # 0. This is obvious since
it M = Homo (O/p, M).
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2.2 Theorem. i, defines an equivalence between the category of right
D(A)-modules and the category of right D-modules with support con-
tained in V(p).

2.2.1 In the remainder of the paper we shall be mainly concerned with
the proof of this theorem. In fact the theorem follows directly from
Proposition 2 and the Corollary to Proposition 5. As a first step we
have

Proposition 1. i} is an exact, faithful functor.

Proor. We want to prove that iy is an exact functor. Or what amounts
to the same B is a flat D(A)-module. Now as we already saw B =
ligl’ B, where

B,, := Hom (0/g", B).
By induction on n we show that each B, is a projective left D(A)-
module. This certainly implies the flatness of B. For n = 1 we have

B, = Hom(O/p, B) = Hom p(D/pD, D/pD) = D(4),

hence B; is projective.
For each n € N we have an exact sequence of O-modules

p" /"t — O/fp™t — O/p",
which gives rise to an exact sequence of left D(A)-modules
B~ Bny1 — Homo(p"/p" ', B).

Now p"/p™*! is an O/p-module of finite type. Hence we have a sur-
Jjection

r
Pose — " /6"
=1
and an injection

Homo (p"/p"+!, B) — (P Homo(0/p, B) = (D D(4).

i=1 i=1

So Bn41/Bn may be identified with a submodule of @]_, D(A). Since
D(A) is Morita equivalent to Dy, gl.dimD(A) = 1. This implies that
every submodule of a projective D(A)-module is itself projective. So
Bnt1/B, is a projective left D(A)-module and we have a split exact
sequence

By« Bpyp —» Bn+l/Bn-
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By induction on n, Bpy is a projective left D(A)-module. We can say
even more, namely

B2 B, ®B;/B,® B3/B: & -+
So B, = D(A) is a direct sum factor of B and this implies

N ® B=0 iff N=0.
D(A)

Hence i, is faithful.
2.2.2 Our aim is to show that i, defines an equivalence of categories.

Now Mod,_-D is closed under extensions in Mod-D, hence we should
have

Extp(B,is N) = Extp4)(D(A),N) =0, for all N € Mod-D(A).
We claim that this is also sufficient. Let us first mention the existence
of natural transformations n:1 — i*i,, e:i i* — 1, arising from the
adjointness of i, and it.

Proposition 2. Assume Ext,(B,i4N) = 0, for all N € Mod-D(A).
Then i, is an equivalence of categories.

PROOF. Let N be a right D(A)-module. Since gl.dimD(A4) = 1, N has
a projective resolution of length 1

Py— Py —» N.
Applying iti, we get a commutative diagram with exact rows
iti,P, «— iti,Py — iti,N — Extp(B,i;P)=0

Juee [ace ]n(N)

Py — Py e N

Now n(P,) and n(P,) are isomorphisms, [7], §6, Prop. 7. Hence r)(N ) is
an isomorphism. Hence 1 is an equivalence.
Furthermore we have for any M € Mod—D a composition of maps

MM Gt O ey

ite(M)on(i*tM) = 1.
Since n(it M) is bijective, ite(M) is bijective. Hence it (Kere(M)) = 0,
implying Kere(M) = 0 because Kere(M) is a submodule of i it M,
hence Ker (M) € Mod,-D. Consider
i it M &M M . Cokere(M).
Applying it yields an exact sequence
it M O M i Cokere(M) — Exth(B, iy it M) = 0.
Hence it Cokere(M) = 0 because ite(M) is surjective. Now if M €

Mod,,-D, then Coker e(M) € Mod,,-D. It follows that Coker e(M) = 0.
This proves that £(M) is an isomorphism for all M € Mod,,-D.
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2.3 So we see that a necessary and sufficient condition for i4 to be an
equivalence is the vamshmg of the Ext},(B,i,N). Later we will see
that it suffices to show Ext%,(B,B) = 0 for all k € {1,...,n}. Even
k € {1,2} suffices.

3 The module D4(A,k)

3.1 Before we proceed, we focus our attention on a D(A)-module with
support {#M} namely D4(A, k). We already mentioned in the introduc-
tion (1.2) that, for A-modules of finite presentation, one has an iso-
morphism of A-modules D (M, N) = Hom 4, (M, D,(A, N)). It follows

immediately that
it (D (0, k) = Homg (4, Do (0, k) = Do(A, k) = D4(A, k).
This means that we have a bijective map
$:D (A, k) — i* (Do (O, k),
which is A-linear. It is straightforward to check that for every D €
D 4(A, k), $(D) € it (Do(0, k) = Homp (B, Do(O, k)) is the D-linear

map
Ew DE, for all E € B = Dy(0, A).

Hence ¢ is a right D(A)-linear isomorphism.

3.2 Let I C O be an ideal containing p and let T = I/p the corre-
sponding ideal in A. Then

i+ (D(4)/TD(4)) = A/T® Do(0, 4) = Do (0, 0/1).
Applied to I = m this gives
i+(D(A)/%D(A)) = Do(O, k).
The faithfulness of i; and the fact that Dy(O, k) is a simple right D-
module imply that also D(A)/AcD(A) is a simple right D(A)-module.
Hence the natural map
D(A)/MD(A) — D4(A, k)
is injective. The surjectivity is established by the following
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Lemma 1. D ,(A,k) is a simple right D(A)-module.

ProoF. Consider the canonical map

(D1/tD1) ® P* = Do, (01, k) @ Da(4, 01) — Dy(A, ).
1 1

Clearly this map is non zero and hence injective because D, /tD; is a
simple right D;-module. It remains to show the surjectivity. According
to 1.5 P®p, P* = D(A). Hence 1 = 3__ ./ Paga (for some finite set I,
with ps € P = D,(01,A), ga € P* = D4(A,Oy), for all a € I. Now
let 8 € D,(A, k). Then 0p, € Dy, (O1,k), for all @ € I and

Z(opa) ®ga o(z p.,q,) =4.

a€l a€l

Corollary. i+i, (D (A,k)) = D, (A, k).

3.3 Remark In case of a right ideal I C D(A), I = (Ay,...,An)D(A)
one finds a right ideal J C D such that

i (D(A)/I) = D/J.

One may argue as follows. Choose a finite presentation of D(A)/I i.e.,
an exact sequence

D(A)™ -2+ D(4) —» D(A)/.

Apply iy and recall that B = D/pD; the map i(a) liftis to a map
a:D™ — D to give a commutative diagram with exact rows

B~ 48 p ., i (DAY/])

I [s

p» & D —» D/Ima
and Ker 8 = pD/(ImanpD) = (pP+Ima)/Ima. Furthermore Ima =
(Dy,...,Dm)D with #D; = Ajx for all j € {1,...,m}. So D;j(p) C p
and D; induces A; € D(A). One concludes that
i+(D(4)/1) =D/J,

where J = pD + Ima@ = pD + (Dy,...,Dn)D.
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4 The modules Ext, (4, B)

4.1 Let us now attack the problem of proving ExtL(B,i,N) = 0 for
all right D(A)-modules N. As noted before such a module N has a
projective resolution of length 1

P1 — Po —» N,
Applying i*i, one finds a commutative diagram with exact rows

i+i+P1 — i+1'+Po <= i+i+N

(1) [aceny [nce ey
Py — Py — N
and long exact sequences
(2) Exth(B,isPy) — Extf(B,izN) —
Ext5t(B, iy P) — Ext5t (B, iy Po).
For a projective right D(A)-module P the obvious map
Pvg ) Ext} (B, B) — Ext},(B, Pvg | B)

is an isomorphism. ([7], §6, Prop. 7.) It follows that np(N) is injective,
establishing again that i, is faithful. Furthermore
(3) Coker n(N) = Coker &

& Ker(Exth(B, iy P,) = Ext}(B,i4 Py))

= Ker(P Dg ) Exth(B,B) — Py pﬁ )Ext-},(B, B))

= Tory ) (N, ExtL (B, B)).

Observe that Ext-’f-,(B.B), for all k € {1,...,n}, has a left and a right
D(A)-module structure. Since we are only interested here in the left
one, we prefer to write Ext5 (A, B) instead of Ext5(B, B). (Note that
Ext§ (A, B) = Ext% (B, B); this uses A®o D = Dp(0, A) = B and the
fact that D is a flat O-module. (7], §6, Prop. 8.)

For notational convenience we introduce the left D(A)-modules

C* .= Ext(A,B), forallke{l,...,n).
The previous observations (2) and (3) can be reformulated as
Cokern(N) = Torf(A)(N. cl);

(4)

Po ® C*—>Exts(B,iyN)= P, ® C*!' =Py ® C*,
D(A) D(A) D(A)

are exact sequences.
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4.2 Our aim is to prove C* = 0 for all £ € {1,...,n} and thereby
establishing Ext%(B,i,N) = 0 for all k € {1,...,n}. The first result
to this end is the following proposition, whose proof is postponed till
the end of this section. We are still considering C* = Ext§ (A, B)
as a left D(A)-module. In particular C* inherits the structure of an A-
module. We discard the other A-module structure. Note that in forming
Ext}, (A, B), B is viewed as an O-module through its right D-module
structure.

Proposition 3. supp,(C') C {#}, for alll € {1,...,n}.

The proposition emphasizes that the left D(A)-modules C' are sup-
ported on the singular point {#1}. Before we proceed we need a technical

Lemma 2. Let p € P* = D,(A,0,), m € N and t™ € D(A). There
exist ¢ € P*, N € N such that tNp = qt™.

ProoF. By induction on the order of p.

(i) p€ DY(A,0;:) = Hom 4(A,0,). Take g=p, N =m.

(i) p € D4*(A,01). Then [p,t™) € D4(A,0,). Hence there exist
g € P*, N € N such that tN[p,t™] = ¢gt™. It follows that tNpt™ —
tN+mp — gt™ and thus tNt™p = (tNp — ¢)t™.

Proposition 4. Let [l € {1,...,n}. Assume
Tor? ) (D (A, k),C") = 0.

Then C' = 0.

ProoF. Let | € {1,...,n} and put C = C'. Assume to the contrary
that C # 0. It implies P*®p(4)C # 0. Hence there exist p€ P*,c € C,
such that p® ¢ # 0. According to Proposition 3 some power M of X1
annihilates c. Choose m € N big enough such that t™ € ¥ C D(A).
(This is possible because Ann4(0;/A) # 0.) By Lemma 2 we can find
g € P*, N € N such that tNp = qt™. It follows that t"(p® ¢) =
" ®c = ¢g@t™c = 0. We arrive at the conclusion that P* ®p4) C
contains a non-zero element which is annihilated by ¢. A contradiction
because

Ker(t-, P* C) = Tor> (D, /tDy, P* C
er( 'D%) ) ory (D1 /tDy _D%‘) )

= Tor?(A)(DA(A, k),C)
which by assumption vanishes.

So we are reduced to prove that all these Tor;’s vanish. This is the
content of
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Proposition 5. For alll € {1,...,n}
Tor? ™) (D 4(4,k),C") = 0.

ProoF. By induction on [.
Hi=1

Tor?) (D, (A, k),C*) = Cokern(D4(A, k) =0
by the Corollary at the end of §3.
(ii) Assume the proposition has been proven for 1, ..., l. By the previous

Proposition C' = 0. Applying the long exact sequence (4) with k = I
we get

TorP ) (D 4 (A, k), CH*1) = Exth (B, iy D (A, k)
= Exth (4, Do (O, k)) =0
because Dy (O, k) is an injective O-module. (Cf. 1.3.)
Corollary. Exth(B,i+N)=0, for alll € {1,...,n}, N € Mod-D(A).
4.3 Proof of Proposition 3.
Let I € {1,...,n}. We have to show that supp,(C') C {#}. Now A is

a local ring with only two prime ideals (0) and X1. We need only show
that (0) ¢ supp(C'). Now

Aw) §C' =0, gc' = Exth(A,0, ® B).

Furthermore

O, g B=0, % Do (0,A) = Do (04, 0p/90,),
so it is a right D(O,)-module and we are done if we can show that

Ext,‘:,’ (Op/pO,,, Do, (op: OP/POP)) =0.

In fact we will prove that for any right D, = O,[9,d:,...,8,]-module
M with supp(M) C V(pO,)

Extp (0p/p0p, M) =0, foralll€{l,...,n}.

By a suitable change of coordinates we can manoeuvre ourselves into
the following situation (Normalization theorem. See [3], Ch. 3, 3.22):
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(i) = ¢ p (this we already assumed from start);

(ii) p contains an element f; such that f; € Og[z;] is an irreducible
Weierstrass polynomial in z;;

(iii) Let A € Op be the discriminant of fi. p contains elements fa,
<.y fn, such that for any i € {2,...,n} fi = Az; — T;, for certain
T; € Oo[z1);

(iv) pO0a = (fi,. .-+ fn);

(v) Notice that A ¢ p; hence pOp, = (f1,...,fn) and (f1,...,fn) is a
regular sequence in pQO,;

(vi) 8i(fi) € Op — pOy ie., 8i(f;) is a unit in O, for all i € {1,...,n}.
ai(f;)=0,ifi,je€ {1,...,n},i>j.

By induction on d one proves

Sublemma. Let M be a right O,[0,,...,084)-module with supp(M) C
V(fi,..-»fa). Then (fi,...,fq) is an M-coregular sequence.

(The reader is referred to [7], §9, No. 6 for the definition of coregular
sequence.)

ProoF. By induction on d (fi,..., fi—1) i8 an M-coregular sequence.
We need to verify that right multiplication by f, is surjective on

M' = Ker(fi,M)N...NKer(fi_1, M).

Put f := f4, 8§ := 84. The right O,[6]-module M’ has supp(M’') C
V(f). Let m € M’. Some power N of f annihilates m i.e., mfV = 0.
Hence 0 = mfN6 = (méf — mN6(f))f¥-1. By induction on N we
may assume that méf — mN§(f) = mof, for some mg € M’. Hence
m = (m6 — mo)(N6(f))”" f because 6(f) is a unit in O,,.

It follows that (fy,..., fs) is M-coregular for any right Dy-module
M with supp(M) C V(pO,). Hence for any such module

Extp, (0p/p0p, M) = Hu_i((f1,- .., f)s M) =0,

for all I € {1,...,n} according to {7}, §9, No. 7.

Remark No doubt the reader familiar with the theory of D-modules
will have recognized this proof as one for a special case of Kashiwara’s
theorem. (Cf. e.g., [4].)

4.4 Remark Let Y be an affine non-singular variety over k, an al-
gebraically closed field of characteristic zero. Let i: X «— Y be a
closed subvariety of dimX = 1. Assume that the normalization map
7: X — X is injective. Then Modx-D(Y), the category of right D(Y)-
modules with support contained in X, is equivalent to Mod-D(X).
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Of course the “same” proof as above applies. Put
B := Doy (O(Y), O(X))

as in §2. Note that in case X is non-singular, B corresponds to the

sheaf Dx_,y. Put
iy = ® B,
D(X)

= Hom-D(y)(B, . ),

a pair of adjoint functors. D(X) is Morita equivalent to D(X) (cf. [10],
Thm B), which achieves that i, is faithful and exact.
By Kashiwara’s theorem (cf. (2], [4])

Ext!D(y)(B, B) = Ext'o(y)(O(X), B) = C'

to be viewed as a left D(X)-module, is for I # 0 supported at the
singular points of X. Write A := O(X), A= O(X). Let z € X be
a singular pomt correspondmg to a maximal ideal M in A. As 7 is
injective, let M be the unique maximal ideal of A which is above m.
Identify k = A/m = A/i. The D(X)-module D,(A, k) has support
{m}. As in Lemma 1 one obtains

D4(A k) = Hom, 5 (P, D HA,F)),

where P = D(X,X) is the bimodule establishing the Morita equiva-
lence. One derives that

0 = Coker n(D (A, k)) = Tor (A)(DA(A k),C")

= Tor. (“)(‘D-(A k),P‘ C‘)

Now R := A~ is a regula.r local ring, whose maximal ideal MA~ is a
principal |deal say tA~ = MAZ. Then

0 = Tor? ™ (D(R)/tD(R), P, ® CL.),

which means that C1, = (C!),, the stalk at z, has no t-torsion. But
then C,, = 0 because supp(Cl,) C {mA,,}. By induction on I one
derives that C', = 0.

4.5 Let f € O, be irreducible and let M be a right D;-module with
supp(M) C V( 2 i.e.,, My = 0. Then the Corollary to Proposition 5
implies that Extp, (B, M) = 0. Hence the right multiplication by f on
M 1is surjective.
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5 An application

5.1 The application we have in mind is to show the following propo-
sition. We will not dwell on its meaning but refer the reader to [8)
or [15].

Proposition 6. Let f € O3 =: O be irreducible. Then O;/O is a
simple left D-module.

PRoOF. There exists a k-linear involution on D—transposition of dif-
ferential operators—determined by

(i) o' = a, for all a € O;

(1) 8} = —&, for all ;
(iii) (PQ)t=Q'P* forall P,Q€D.
Clearly this involution turns every left D-module into a right one, de-
noted by M?*, and vice versa. This involution induces a k-algebra anti-
isomorphism

I(Df)/Df = I(fD)/fD = D(A).

Furthermore there exists a k-algebra isomorphism

¢:1(fD)/fD = I(Df)/Df,

induced by the map: for all D € I(fD), D — D', whete D’ € I(Df) is
the unique element such that Df = fD'.

Composing both maps gives a k-linear involution on D(A), which
turns A into a right D(A)-module, provisionally denoted by A*. It is
straightforward to check that

i*((0,/0)) = 4.

Since A is a simple left D(A)-module (as D(A) is Morita equivalent to
D), it follows that A* is a simple right D(A)-module. Hence (O;/0)"
is a simple right D-module, which implies that O;/O is a simple left
D-module.

Remark The above proposition has been obtained independently by
S.P. Smith [12] by a quite different method.
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Appendix

For later use we derive a slight reformulation of our main theorem.
Let (X,0) C (€"*1,0) be an irreducible germ of a curve; denote by
i:(X,0) — (C"*1,0) the inclusion. Let x:(X,0) — (X,0) be the
normalization. Note that (X,0) = (€,0) (cf. §1.5 Remark). Finally
put ¥ :=iom.

Theorem. The direct image functor %, defines an equivalence between
the category of right D io-modules and the category of right Dgn+1 o-
modules with support contained in (X,0).

PROOF. Put O = Ognr+1 4, A = Ox g, A= Oz o We will write D =
Dt g D(A) = Dy, D(A) = Dg,. Recall that the direct image
functor 74 is defined by

Nw—N ® D ~C o
D(A) '

for all right D(A)-modules N, where
D =Z§'D='DO(O,Z).

X0

Xt

The bimodule Do (0, A) viewed as a right P-module is supported at
X. If for a moment we forget the left D(A)-structure on B, we obtain
isomorphisms of A-modules

i*(Do(0, 4)) = Hom (B, Do (0, 4))
= Hom g (4, Do (0, A))
= Dy(A,A) by 1.2
=D,(A A) = P,
Obviously the isomorphisms are linear for the left ’D(Z)-structure Fur-

ther it is straightforward to check that this yields an lsomorphlsm
it (Do (0, A)) = P* of right D(A)-modules. In virtue of the main

theorem 2.2 this yields an isomorphism of P(A)-D bimodules
Do(0,A) = P* ® B.
0(0, 4) vg)

Now we are done since

#(N)Z(N ® P) @ B=ir(N @ P°)
D(A) D(A) D(A)

ie, 4 = my oiy where 7y () ;= - ® P establishes the Morita
D(A)
equivalence (cf. 1.5) and i is the equivalence of the main theorem 2.2.

Remark Since #:(X,0) — (€"*1,0) is a holomorphic map of smooth
germs the ordinary theory of D-modules applies to it.

74



(17]
References

[1] J.N. Bernstein, .M. Gelfand and S.I. Gelfand. Differential Opera-
tors on the Cubic Cone. Russian Math. Surveys, 27 (1972), 169-
174.

[2] J.N. Bernstein. Algebraic theory of D-modules. Luminy, 1983. Mi-
meographed notes.

3] J.-E. Bjork. Rings of differential operators. North-Holland Mathe-
matical Library. North-Holland, 1979.

[4] J.-E. Bjork. Lectures at Luminy, 1983. Mimeographed notes.

[5] T. Bloom. Opérateurs différentiel sur les espaces analytique, in
Séminaire Lelong. Lecture Notes in Mathematics, 71. Springer-
Verlag, 1968, exposé 1.

[6) T. Bloom. Differential Operators on Curves. Rice Univ. Studies,
59 (1973), 13-19.

(7] N. Bourbaki. Algébre. Chapitre 10, Algébre homologique. Masson,
1980.

[8] 3J.-L. Brylinski. La classe fondamentale d’une variétés algébrique
engendre le D-module qui celcule sa cohomologie d’intersection, in
Systémes différentiels et singularités. Astérisque, 130 (1985), 260-
271.

[9) A. Grothendieck. Eléments de Géométrie Algébrique. IV. Publ.
Math. IHES, 32 (1967).

[10] M. Kashiwara. On the holonomic systems of linear differential equa-
tions, II. Invent. Math., 49 (1978), 121-135.

[11] T. Levasseur. Anneaux d’opérateurs différentiels, in Séminaire d’
Algébre P. Dubreil et M.-P. Malliavin. Lecture Notes in Mathe-
matics, 867. Springer-Verlag, 1981.

(12] S.P. Smith. The simple D-module associated to the intersection
homology complex for a class of plane curves. Preprint. University
of Warwick, 1985.

{13]) S.P. Smith and J.T. Stafford. Differential Operators on an Affine
Curve. Preprint. University of Warwick, 1985.

[14] J.P. Vigué. Opérateurs différentiels sur les espaces analytique. In-
vent. Math., 20 (1973), 313-336.

(15) K. Vilonen. Intersection homology P-module on local complete in-
tersections with isolated singularities. Invent. Math., 81 (1985),
107-114.

75






Chapter IV
VANISHING CYCLES AND D-MODULES
by
M.G.M. van Doorn

0 Introduction

This paper arose while we where working on the problem of classifying
regular holonomic Dx-modules (X a complex manifold) with a pre-
scribed singular support i.e., the projection under x:T°X — X of the
characteristic variety. In [vD] we treated the normal crossings case. We
believe that such classifications should be done by “D-module theoretic”
methods. In other words one should not start to translate the problem
into one on classifying perverse sheaves.

The theorem on extensions of perverse sheaves of Verdier [V] has of
course an analogue in the framework of D-modules. This analogy arises
by means of the Riemann-Hilbert correspondence (Cf. [Me] or [KK2)).
The main goal of this paper is to give a “D-module theoretic” proof
of the analogue of the extension theorem (cf. Thm 3.2). Meanwhile
we establish some results (Prop. 1.5.1 and Prop. 2.4.3) which might be
important on their own.

As a preliminary task one is forced to find analogous versions of
the nearby cycle functor ¥, and the vanishing cycle functor ®; of
Deligne [D}], (where f: X — € is a non-constant holomorphic function)
and the natural morphisms can: ¥; — &;, var:®; — ¥,;. In [Ma]
Malgrange considered the structure sheaf Oy and defined D y-modules
corresponding with ¥;Cy and ®;Cx. In [K1] Kashiwara treats the
general case; he defines functors ¢ and v such that for every regular
holonomic D x-module M, ¢M resp. Y M agree with ®;F resp. ¥, F,
where ¥ = RMomp (M,Ox). Furthermore there are natural mor-
phisms ¢(M): ¢M — Y M, v(M): Y M — ¢ M corresponding with can,
var. The main result (Theorem 3.2) is then as follows (cf. [V], Cor.1).

Theorem. The functor
F:M e (M[f7), 6M == yM, ¢(x))

defines an equivalence between the category of regular holonomic Dy -
modules and the category of triples (N, M} z% Ny,a). Here m: M —

M(f~!] denotes the canonical map and N, N, N, are regular holo-
nomic D x-modules such that:

77



Chapter 1V (2]

N2 Nf1);

N1, N3 are supported by X, = £~1(0);

U, V are Dx-morphisms;

a: N2 =+ YN is an isomorphism satisfying aUV = ¢(N)v(N)a.

In §1 we introduce Kashiwara’s filtration and state the main prop-
erties (Thm. 1.4). Moreover we put forward a nice description of this
filtration (Prop. 1.5.1). This enables a rather easy proof of the Artin-
Rees property (cf. 1.6.3) .

In §2 following Kashiwara (cf. [K1)] and also [Ma]) we introduce func-
tors ¢, ¥ on Mod(Dy),, We list some properties. Using material from
§1 we deduce the existence of a distinguished triangle in D, (Dx)

RIx, M(1]
¥

oM

yM .

We obtain some corollaries to be used later. We make some comment
on relations with Deligne’s functors and add a remark concerning why
one should restrict attention to regular holonomic P y-modules.

In §3 we formulate the main theorem 3.2. This section is rather
technical. By then it is obvious that the functor F is exact and faithful.
However the difficulty is to show that F is essentially surjective. To
solve this problem we introduce an inverse functor G, which does the
reconstruction for us. The details are in 3.2.3.

For a moment we return to the classification problem mentioned at
the beginning. Suppose one wants to classify holonomic D y-modules
with regular singularities along Xo. The main theorem reduces this to
a problem of classifying pairs My == N3 of regular holonomic Dx-
modules with support contained in Xj. In a subsequent paper we will
return to this question.

N.B. If we write “module” we always mean “lef module”.
Mod(Dy )y, denotes the category of regular holonomic D x-modules.
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1 The canonical good filtration

1.1 Definition

Let Y be a complex manifold and let Z be a closed submanifold of Y.
Let T be the defining ideal of Z C Y i.e., the sections of Oy vanishing
on Z. Following Kashiwara [K1], (see also [S]), we define a descending
filtration F"Dy on Dy by

F*Dy :={P €Dy | PI’ cTitt, all jeN}, forallkeZ.

In local coordinates (y;,...,Ym,21,.-.,2s) on Y such that Z is given
by y1 =0, ..., Yym =0, one has

8 1 9 -1 .
% 5 €EF'Dy, y; € FDy, 5% € F~1Dy;

F%Dy is the subring of Dy generated over Oy by

9 lij d i)

H,...,oz",yl-a—yl—,...,ymm.

F%D,, is a noetherian sheaf of rings. (Cf. [S], Ch.III §1.4 and appendix
C.5; cf. also [KK2], Ch.I §1.1.) The F¥D, are coherent modules over
F°Dy,. F°Dy /F'D, is a coherent sheaf of rings.

1.2 Definition of good filtration
Let M be a coherent Dy -module. A descending filtration F'M on M
is called a good filtration if

(1) F'Dy F*M C F*¥'M,  forall k,l € Z.
(3) F*M is a coherent F®Dy -module, for all k € Z.
(4) Locally one has:
FIDyF* M =F*M if (1>20,k3»0)or (I1<0,k<0).

If this is the case then for any k € Z, gr* M = FEM/FtHIM is
a coherent FODy /F'Dy-module. Notice that a coherent Dy-module
has locally a good filtration. Moreover if M is a regular holonomic
Dy -module, such a filtration exists globally.
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1.3 Definition of canonical good filtration

From now on we assume Y = X x €, X a complex manifold. Let ¢ be
a coordinate on €. The ideal T = t0, defines the closed submanifold
X x {0}, which we identify with X. Let 8 denote the vectorfield t8 on
Y, where 8 = %. Clearly we have

o - FODytt, if keN
YT\ L, FoDy &, if -k €N.

The coherent sheaf of rings F°Dy, /F! D, may be identified with D [§].

Let M be a coherent Dy -module with a good filtration F'M. The
filtration is called a canonical good filtration if

(5) there exists a non-zero polynomial b € €[0] such that
(i) b(6 —k)F*M C FE'M, forallk € Z,
(ii) -1(0)C{z€C|0<Rez< 1}.

1.4 Theorem. (Cf.[K1], Thm1 and [L], Thm 3.1) Let M be a coherent
Dy -module. Then:

(i) M admits at most one canonical good filtration.

(ii) If M is holonomic, then M carries locally a canonical good filtra-
tion.

(iii) If M is regular holonomic, then M has a canonical good filtration.

(iv) If M is regular holonomic, then for all k € Z, gr* M is a coher-
ent D y-module, where F' M denotes the canonical good filtration.
[Notice that Dy C Dx[td] = F'Dy /F'Dy and in general gt*M
is only coherent over Dy [td).] In that case gr*tM is a regular
holonomic Dy -module.

1.5 Let M be a coherent Dy -module equipped with a canonical filtra-
tion F' M. We want to give a more explicit description of this filtration.
Therefore we introduce the following notation: for a linear subspace
L C M and any k € N put

t*C:={meM|t*tme L}
Consider the descending chain of subspaces of M
e CtTPFPPM I FPM C FPM CtFPM C 2F' M C -

We claim that this is just the canonical good filtration.

1.5.1 Proposition. Let M be a coherent Dy -module carrying a canon-
ical good filtration F°' M. Then for all k € Z

FEM = t*FO'M.
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PROOF. Let b € €[B] be a non-zero polynomial satisfying condition (5)
of 1.3. Observe that for k € N*,

FEMcCt*r'M, ¢F'McFEM.

Let us prove the other inclusions.

(1) Let £ € N*. Suppose m € t~*F°M ie., t*m € F°M. Hence
0*t*m € F~*M; thus (6 + k)...(8 + 1)m € F~*M. On the other
hand there exists N € N, N > k + 1, such that m € F~NAM; thus
b(6+k+1)...b(6 + Nym € F~* M. Because of condition (ii) of 1.3(5)
(0+k)...(6+1) and b(6 +k +1)...5(8 + N) are relatively prime. This
yields m € F~*M.

(2) Locally there exists jo € N such that FiDy, FieM = Fitio M,
for all j > 0. It follows that FietIpM = ! FiopM, for all § > 0. If
jo = 0 we are done, so assume j; > 0. We will derive that FI°M =
tFio-1M. Let m € F°M. Then b(6 — jo)m € Flt'M. Hence
there exists mg € Fj"M C Fr-lpMm such that b(8 — jo)n = tm.
Writing b(6 — jo) = 0b(6) + b(—jo), with b € €[©}, we have b(—jo)m =
t(mp — 8b(f)m). Note that b(—jo) € €*, mo — 8b(d)m € Fr-'M
and thus m € tF7°~1M. This yields FieM C tFio-! M. The other
inclusion is obvious. It follows that already Fio—1+ipf = ¢ Fio—1 M,
for allj > 0. By descending induction we arrive at F/ M = ¢/ FOM, for
all j > 0.

1.6 Using this description of the canonical good filtration we will de-
rive that a morphism ¢: M; — Mj of coherent D, -modules, carrying
a canonical good filtration, is a strict morphism between the filtered
modules. By this we mean that

ImpN F*My = o(FEM,), forallk€Z.

This will be done by proving an Artin-Rees lemma for canonical good
filtrations. As a preliminary step we have:

1.6.1 The canonical filiration on fo]M
Let us first recall the following. Let Z C Y be a subvariety defined by
an ideal Z. For a Dy-module M one defines

P[z]M = ]TlmmoY(Oy/I",M)

This is 2 Dy -module with support contained in Z. (Cf. [K2], §1 or [Me].)
Let 'Hle denote the k-th derived functor of I'(z). If M is coherent it is
not necessarily the case that Hfz]M is coherent. However Kashiwara

proved:
- If M is holonomic, then 'Hfz]M is holonomic. ([K2], Thm 1.4).
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- If M is regular holonomic, then also 'H['Z]M. ((KK2), Thm 54.1).

The ideal 1Oy defines the closed submanifold X x {0} = X. Let M
be a coherent Dy -module and assume that H?XJM is also coherent. We

make the following observations:

(1) 'HfX]M = {m € M | there exists N € N such that t"m =0}

= U Ker(t*, M).
keEN

(2) H[x;M carries a descending filtration given by

Ker(t™*,M) if-keN
F* o M = { ’
Hix) 0 if k€N.
(3) This is a good filtration, because:
(i) Conditions (1) and (2) of 1.2 are trivially satisfied.
(ii) 1.2(4) is true, because Ker(#, M) = @'} &’ Ker(t, M).
(iii) Ker(t, M) is a coherent Dy-module (tK2], Prop. 4.2), and
thus a coherent F°Dy -module. This implies 1.2(3).
(4) Furthermore (t0 — k)F* HPyM C F**' 4P M, forall k € Z as
one easily verifies. Thus the filtration given by (2) on ’H?X]M is the
canonical good filtration.

1.6.2 The induced filtration on a quotient
Let M be a coherent Dy-module and let N’ C M be a coherent Dy -
submodule. Suppose M is equipped with a filtration F' M which is
canonical good. There are induced filtrations on A" and M/N defined
by

FEN=NNF*M, forallkeZ,

FEMIN) := FEM/FEN,  forallk € Z.
Proposition. The induced filtration F'(M/N) is canonical good.

ProoF. Clearly the induced filtration satisfies properties (1), (2), (4)
and (5) of the definition of canonical good filtration. Condition (3) is
fulfilled, because locally F¥(M/N) is a F®Dy-module of finite type
and it is a FODy -submodule of the coherent Dy-module M/N. By [S],
Prop. 1.4.2 and the last lines of 1.1 F¥(M/N) is a coherent F*D,-
module, for all k € Z.

Note. By the last line F*A is a coherent FODy -module, all k € Z.
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1.6.3 The induced filtration on a holonomic submodule

Proposition. Let M be a coherent Dy-module and let N' C M be
a coherent submodule. Assume M carries a canonical good filtration
F'M. Then:

(i) Ker(t, M)N F°M =0;
(ii) the induced filtration on N is canonical good.

ProoF. We begin the proof of (ii) and meanwhile obtain (i) as a special
case. The induced filtration satisfies conditions (1), (2), (3) and (5).
The problem is to show that F" A satisfies condition (4) i.e., locally

FID,FIN=FN if (120,k>0)or (I<0,k<0).

We proof this in two steps.
1: F'D,F*N = F¥IN  foralll <0, k< -1.
It is enough to prove

FEIN=F-1D, F-*N, forallk>1.

Therefore let k € N* and n € F~¥~1N. Let b € €[Q] be a non-zero
polynomial belonging to the canonical good filtration F'M (cf. 1.3(5)).
Then b(8 + k+1)n € NNFtM = F~EN. Write (0 + k + 1) =
Otb(8 + 1) + b(k), b € €[O] and b(k) € €*. Further tb(d + 1)n € F~EN,
yielding that n € F~*N + 0F “*N = F-1D, F~tN.

2: The problem seems to be in the tail of the filtration. We shall derive
that
F'DyFEN = F¥'N,  forall k,l € N.

It suffices to show that FE*HIN C tFEN, forall k€ N.
Let us first treat the special case
2a: N = 'H[ox]M.

Let £ € N and n € F¥!N = A n F*+ M. By proposition 1.5.1.
there exists m € F*AM such that n = tm. Because N = H?X]M
there exists N € N such that tn = 0. It follows also tN+!m = 0,
hence m € ’H?x]M = N. So n = tm with m € F*N. This yields
FFHIN CtFAN.

Hence in the particular case N = H?X]M we have established that
the induced filtration is canonical good and by unicity (Th. 1.4 (i))
equals the filtration given in 1.6.1. In particular Ker(t, M) N F°M C
NN F°M =0, so this yields part (i).
2b: The general case.

Let £k € N and let n € F¥!A, There exists m € F*M such
that n = tm (Prop. 1.5.1). Denote with @ the image of m in M/N.
Then tit = 0 in M/N. Hence @ € Ker(t, M/N) N FX(M/N) C
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Ker(t, M/N) N F°(M/N). By proposition 1.6.2 the induced filtration
on M/N is canonical good, hence by (a) above 7@ = 0. It follows that
meNNFM = FEN and n = tm € tFXN. This yields F¥*'N C
tFEN for all k € N.

1.6.4 Corollary. Let ¢: M; — M3 be a morphism of coherent Dy -
modules. Assume M; and M, carry canonical good filtrations F'M,,
F'Mag. Then yp is a strict morphism of filtered modules.

Proor. Put N = Imy C M;. Then F'M; induces a canonical good
filtration onA (Prop. 1.6.2). Also F'M; induces a canonical good
filtration on A (Prop. 1.6.3). But there can be only one canonical good
filtration on N, hence p(F*M,) = NN F¥M,, for all k € Z.

1.6.5 Corollary. Let M; — My —» M3 be a short exact sequence
of coherent Dy -modules with a canonical good filtration. Then for all
k € Z we have exact sequences:

(i) F*M, < F* My —» F*Mj of FODy -modules;
(i) gr* My — grf My —» grt M3 of D x[f]-modules.

1.6.6 Remark

Let M be a coherent Dy-module admitting a canonical good filtration
F°M. The multiplication with ¢ induces, for all ¥ € N, a bijection
gr* M = grt+! M. This follows from 1.6.3(i) and 1.5.1.

2 Vanishing cycles and nearby eycles
Let X,Y be asin 1.3. Let f: X — € be a non-constant holomorphic
function on X.
Let
£t X=-Y=XxC, z (2, f(z))

be the embedding on the graph of f.
Finally put Xg := f~1(0).

2.1 Let M be a coherent D yx-module. Then
M= (Dy/[Dy(t- f))‘l% M

(where we have identified X with the graph of f) is a coherent Dy -
module supported on the graph of f. If M is holonomic, then i.M
is holonomic (cf. [KK2), Lemma 5.1.9.). If M has regular singulari-
ties, then i,.M has regular singularities (ibid.). In fact i, is an exact
functor and establishes an equivalence between the category of coherent
Dy -modules and the category of coherent Dy -modules with support
contained in the graph of f (cf. [K2], Prop. 4.2.). The inverse functor
of i. is given by

Ker(t - f,-) = Homo, (Oy /(t — f)Oy, ).
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In fact one has the identification
M= C[F] @M,

where the Dy, -structure on the right-hand side is determined by (in local
coordinates z,,...,z4,t o0 Y):
forallmeM,ieN:

t(ai ®m)= -i0'®@m+8'® fm
Feom)=6t' em
0a(8' @m) =8 ® Bom — 8! ® 8, (f)m,
forall e € {1,...,d}, (8a = 5—2;)

2.2 Definitions

2.2.1 The category of coherent Dy-modules M satisfying the require-
ment that i, M admits a canonical good filtration is by 1.6.2, 1.6.3 and
1.6.4 an abelian category. Let us denote this category by R. Following
Kashiwara [K1] (see also Malgrange [Ma] and M. Saito [Sa]) we define
forany M € R

YM = F(i,M)/F(i. M)

oM = F~Hi.M)/F°(i. M),
where F'(i,M) denotes the canonical good filtration on i, M.

2.2.2 Left multiplication with ¢ resp. d induces maps
(M) ¢ M — Y M,

v(M): Y M — ¢ M.

2.2.3 If we make the identification X = X x {0} (see 1.3), then y M
and ¢M have the structure of a module over FOD, /F!D, = D,[t8].
Moreover Yy M and ¢ M are coherent Dy [t8]-modules. The mappings
c(M) and v(M) are D -linear and the action of t8 on ¢ M (resp. Y M)
is given by v(M)o (M) — 14 (tesp. ¢(M)ov(M)). The D x-modules
¥ M and ¢ M have their support contained in

i(X)N(X x {0}) = graph(f) N (X x {0}) = Xo x {0}.
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2.3 Restriction to regular holonomic modules

By Thm 1.4(iii) the category R contains the category of the regular
holonomic modules Mod(Dy),,. According to theorem 1.4(iv) yM
and ¢M are regular holonomic D y-modules if M is regular holonomic.
The restrictions of ¢ and ¢ to Mod(Dy )y, are still denoted ¥ and ¢. We
view them as functors from Mod(Dy),, to itself. There exist natural
transformations ¢:¢ — 9, v:yY — ¢. These satisfy the condition that
for any M € Mod(Dy ), there exists a non-zero polynomial b € C[O]
such that:

(i) the ¥ M-endomorphism ¢(M)v(M) satisfies b(c(M)v(M)) = 0,
(i) 5-1(0) C {z€ C|0<Rez<1}.

2.4 A distinguished triangle

Our goal in this subsection is to show the existence of a distinguished
triangle in Dy (Dx), the derived category of bounded complexes of D y-
modules with regular holonomic cohomology. For any M € Mod(Dx )y,
there exists a distinguished triangle

RF[XO]MII]
Y

oM YM.

Or in more down to earth terms, there exists an exact sequence of
regular holonomic P x-modules

HiygM — M = 9M —» 1l M.

We start with a lemma; its proof is a bit technical.

2.4.1 Lemma. Let M be a Dy-module. There exists a natural iso-
morphism of Dy -modules

Hix M = Ker(t,i.M) = Homg, (Oy /1Oy, i M).
ProoF. Recall that (cf. 1.6.1, 2.1)

HixgM = LGJN Ker(f", M)  i.M = C[5]® M.

Let p=3%_ & @ m; € i.M.
Then tp = Z;;ol 3 ®(—(j+1)mjp1 + fm;) + 6" ® fm,. Hence

PeKer(tvi—M) ifft fm,.:O,nm,.:fm,,_l,...,ml=fmo
iff  f*tlmgy =0,

j'm; = fim, forall je{1,...,n}.
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This clearly implies that the injective maps
En(M): Ker(f", M) — Ker(t, itM))

m Z ;—,ai ® fim, for all m,

=07’
induce a bijective O x-linear map
e(M): ’H?xo]M — Ker(¢,i, M).

Clearly ¢ is functorial in M, so it remains to check that (M) is Dy-
linear. Therefore let £ € Der(Ox), m € Ker(f",M). Then {m €
Ker(f"*+!, M). Using the description of the Dy -structure on C[8}® M
in 2.1 one obtains

Ee(M)(m) =€) %ai ® fim
=07"
= Z S @Efm=Y <o @ E(N)fim

=0

=Y 58 & (fie+ N m
=0
n+tl 1

- i =1
;U_l)!a ® (1)

=3 jl,af ® f&m = e(M)(ém).
y=0"

2.4.2 Corollary. Let M be a Dy-module. Then
RIjx, M -5 RHomo, (Oy /10y i M).

Proor. The result follows once we have checked that
M injective Dy -module = i, M is acyclic for Homg (Oy /1Oy, —).

But this is clear, because an injective D x-module M is injective when
considered as an O yx-module. Hence M is divisible by f i.e., mul-
tiplication by f on M is surjective. This implies that the multipli-
cation with ¢ on i, M is surjective ie., £zt (Oy/Oypt,i.M) = 0,
for all ¢ > 0. The argument is as follows: Let m € M. There ex-
ists n € M such that fn = m. Proceed by induction on j, using
' @n)=—j""1@n+ & ®m.
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2.4.3 Proposition. Let M € Mod(Dx)y,,. In Dy (Dx) we have a
distinguished triangle, functorial in M,

RI{x, M (1]
7 AN

oM YyM.

PROOF. LetM be a regular holonomic Dy -module. Consider the short
exact sequence of FODy -modules

FO% M — i, M —» i, M/ F%.M,

where F"i. M denotes the canonical good filtration on i,M. The functor
RHomg, (Oy /tOy,—) applied to this sequence yields a distinguished
triangle
R?{DmOY(Oy/tO‘r, '.M/FO’.M)
N
R%moY(OY /tOY , FOi.M) -_— RmmOY(Oy/toY ’ ’..M).

By 2.4.2 we have
RMomo (Oy /t0y,i. M) = Rl [x M.
By Proposition 1.6.3(i) and Proposition 1.5.1 it follows
RHomg (Oy /tOy, F%i,M) = FYi, M[tF%i,M[-1] = y M[-1].
By Proposition 1.5.1
Ker(t, . M/F%, M) = t"' FO%i, M/ F%.M = ¢ M.

Let us investigate Coker(t, i, M/F°,M). Therefore let m € i, M. For
some N € N*, m € F~Ni, M. 1t follows that a(f)m € F° .M, where
a(f) = b(@+1)...5(6 + N) and b € €[O] is a non-zero polynomial
satisfying (5) of subsection 1.3. Then a(8) = td@(8)+a(0) with @ € C[O]
and a(0) € €*. Thus a(0)m + tda(6)m € F%i.M. We conclude that
Coker(t, i, M/F%,M) = 0.

Finally collecting things we end up with a distinguished triangle

oM
Y

N
$M([-1] —— RI[y M.
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2.4.4 Some easy consequences
Let M € Mod(Dy),,,. There are two natural distinguished triangles in

Dhr(DX)
Ry, M[1] Ry M(1]
Y AN b

¢M M)

M M

It follows immediately from these triangles.

2.4.4.1 Proposition. For every M € Mod(Dy),, the following are
equivalent:

(i) M = M(fY;
(ll) RF[Xu]M = 0,'
(ii1) ¢(M):¢M — Y M is an isomorphism.

2.4.4.2 Proposition. For every M € Mod(Dy),,, the following are
equivalent:

(i) supp(M) C Xo;
(ii) ‘HE’XO]M =M;
(i) M[F~1]=0;
(iv) oM =M.
Furthermore any of these conditions implies Y M = 0.

ProoF. The equivalence of (i), (ii) and (iii) is well-known. (iv) = (i) is
clear. Now (ii) implies i, M = H{y (o)ji+M, hence M =0 (cf. 1.6.1.)
and thus ¢M = RI‘[XOJM =M.

Remark. With a little more effort one can show that ¥ M = 0 implies
oM=M.

2.4.4.3 Corollary. Let M € Mod(Dy),, and let =: M — M[f~1] be
the canonical map. Then:

(1) ¥(7):pM — P(M[f~1]) is an isomorphism;

(i) there exists an exact sequence
HixM — ¢M 8 §MIF1]) —» My M

(iii) c(M[f~!]) 0 g(r) = ¥(7) o c(M).
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2.4.5 An alternative proof of 2.4.3
The reader who is not happy with the given proof of 2.4.3 is offered a
different approach. We give a derivation, in the category Mod(Dx ), of
an equivalent formulation of 2.4.3. We avoid the use of Corollary 2.4.2.
First we need some preliminary results.

2.4.5.1 Sublemma, Let M be a coherent D y-module with support
contained in X¢ (thus M = 'H?XO]M). Then ¢ M = M and Yy M =0.

Proor. Note that i, M is coherent Dy -module supported on X = X x
{0} ie., 4. M = ﬂf’x]i.M. Thus the canonical good filtration F'i, M
satisfies (cf. 1.6.1) F~'i,M = Ker(t,i.M) and F*¥i,M = 0, for all
k € N. Thus Yy M = 0 and by Lemma 2.4.1 ¢ M = M.
2.4.5.2 Sublemma. Let M be a Dy-module. Then the map “multi-
plication by t”

WM A i (M)
is bijective.
ProoF. The injectivity follows using Lemma 2.4.1. The surjectivity

follows (as in the proof of Corollary 2.4.2) by induction on j, using
(0@ f'm)=—jo '@ f'm+ 8 @m for all m € M[f!].

2.4.5.3 Corollary. Let M be a coherent D y-module such that i,M
admits a canonical good filtration. Assume that the canonical map
M — M(f!) is an isomorphism. Then ¢(M):¢M — YM is an
isomorphism.

ProoF. Consider the commutative diagram with exact rows
FY%M — FUHUM — ¢M
N
FYM — FHY M — YM
The left arrow is bijective by Prop. 1.5.1. and Prop. 1.6.3(i). By Sub-
lemma 2.4.5.2 the middle arrow is injective. This Lemma together with

the fact that F~1i,M = t='FOi, M (cf. Prop. 1.5.1) yield the surjec-
tivity of the middle arrow. Hence c is bijective.

2.4.5.4 Proposition. Let M € Mod(Dy)y,,. There exists a natural
exact sequence of regular holonomic Dy -modules

Hix M > M 2 yM —» Iy M.

Proor. Consider the short exact sequences of Dy -modules
’H?xo]M - M - M
M — MfY) — Hix M
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where M = Im(M — M[f~!]). In view of Sublemma 2.4.5.1 these give
rise to two commutative diagrams with exact rows

—

HyyM — M — $M

! Lok

0 ‘—-"l/JM-——»'/JH

M — M) — Hix M

5 - |
VM — YM[f])) — 0
By Corollary 2.4.5.3 c(M[f‘l]‘)Vis bijective. Hence the second diagram
gives Kerc(M) = 0, Coker ¢(M) = H[lx.,]M' Now using the first dia-
gram it follows that

Kerc(M) = Hiy M,  Cokerc(M) = Hiy M.

2.5 Relation with Deligne’s functors

2.5.1 It is well-known that the contravariant “solution” functor

S: Mod(Dy )y, — Perv(X)
defined by
S(M) = RHomp (M, Ox),

establishes an (anti-)equivalence of categories. Here Perv(X) denotes
the category of perverse sheaves on X. This is known as the Riemann-
Hilbert correspondence (cf. [Me] or [KK2]). Via this equivalence the
functors ¢ resp. v correspond to the vanishing cycle functor ®; resp.
the nearby cycle functor ¥; as introduced by Deligne [D]. More precise
for M € Mod(Dx )y, there are natural isomorphisms (cf. [K1], Thm 2)

S(eM)lx, = @ (SM)[-1],

S(YM)lx, = ¥ (SM)[-1].

¢ agrees with the canonical map can: ¥; — ®, and vi’ﬂzz—”)'—l agrees
with the variation map var:®; — ¥,, where § = cv. The monodromy
on ¥, is given by S(exp 27if) (loc. cit.).
Furthermore
S(RI(x, M) = S(M)|x,
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for every regular holonomic D x-module M. (Cf. [Me] , Prop. 1.2.1). So
our distinguished triangle corresponds to the fundamental distinguished
triangle in Perv(X)

®s(SM)
Y

S(M)lx, ¥y (SM).

2.5.2 We have seen that we might define functors ¢ and ¢ on a some-
what bigger category R (cf. 2.2.1), the abelian category of coherent
Dx-modules M such that i, M carries a canonical good filtration. To
assure that M and Y M are again regular holonomic Dy -modules we
restricted those functors to the category Mod(Dyx )y, (cf. Thm. 1.4(iv)).
We shall indicate that in some sense this is necessary too.

Note that, for M € Mod(Dy)n, S(M) € Dc(X), the derived cate-
gory of bounded complexes of € y-modules with constructible cohomol-
ogy. On this level S is not an equivalence. The functors ®; and ¥,
are defined on D.(X) and take their values in D.(Xo). In D.(Xo) there
exists, for all ¥ € D.(X), a distinguished triangle

o, F
Y N\
'rlxo

¥, F.

e Assume that for any M € Ry := RN Mod(Dx)y:

- there exist natural isomorphisms
S(@M)lx, = By (SM)[-1},  S(¥M)ix, = ¥, (SM)[-1].

Note that ¢ M and M are holonomic D x-modules.

Under these assumptions 2.4.3 still holds i.e., for any M € Ry, we
have a distinguished triangle in Mod(Dy),

RIx, MI1]
Y

oM YM.

This triangle corresponds via S to the triangle above (take F = S(M)).
This yields S(RI(x ;M) = S(M)lx, i.e., M is regular along X,. So
in order that (e) holds, we have to limit ourselves to regular holonomic
D x-modules.
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3 The main theorem

Let X,Y, f, Xo be as in §2. In this section we prove that the mapping,
for all M € Mod(Dy),:

M= (M[f71], M == ¥M, (1))

(with #: M — M[f~!] the canonical map), defines an equivalence of
categories. By the Riemann-Hilbert correspondence (cf. 2.5.1) this cor-
responds to Verdier’s extension theorem of perverse sheaves (cf. [V]). Of
course this offers a way to prove the above claim, but we prefer to give
a derivation using only the language of D-modules (without an appeal
to the Riemann-Hilbert correspondence).

3.1 Definitions and notations

First of all we introduce some notations in order to be able to formulate
the theorem correctly. Let Mod(Dyx)x, n denote the category of regular
holonomic D x-modules with support contained in Xj.

3.1.1 Let C(Dx)x, nr denote the category determined as follows:

- Objects: quadruples (M;, My, U, V) where
M, M3 € MOd(Dx)Xn,hr’
Ue Hompx(Mth), Ve Hompx(Mz,Ml).

- Morphisms: (a1, az) € Hom((M;, M2, U, V), (M}, M5,U', V"))
iff @1 € Hom p, (M), M}), a2z € Hom (M2, M3) such that
U’al = C!zU, C!1V = V'Qz.

C(Dx)x,nr is an abelian category. For details we refer to [vD, §1].
Note that for all M € Mod(Dy);,, we have (¢ M, Y M, ¢(M),v(M)) €
C(Dy), where for convenience we dropped “Xo,hr”. If a: M — M’ is
a morphism, then (¢(a),¥(a)) is a morphism in C(Dy).

Notation. In the sequel we use the notation M, 1%! M3 to denote the
object (My, M2, U,V) € C(Dy).

3.1.2 Let Re(X, Xo) denote the category determined as follows:;

- Objects: triples (M, M, 1%2 M3, a) where
M € Mod(Dy )y, such that M —=5 M([f~!] (canonical map);
My =2 My € C(Dx);
a: My =5 Yy M is a Dy -linear isomorphism such that
alV = e(M)v(M)a.
- Morphisms:
(8,81, B2) € Hom((M, My = My, a),(M', M} == M), a’))
iff : M — M’ is Dy-linear and
(81, B2) € Hom ¢(M; = My, M| == M}) such that
o'fy = P(B)a.
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Rc(X, Xo) is an abelian category. Note that for all M € Mod(Dyx )y,
(M, My == Mj,a) € Re(X,Xo), c(M):¢M — $M is an iso-
morphism (by 2.4.4.1(iii)). Note furthermore that we have a morphism
(e(M)~'al,a) € Hom (M) == Mz, ¢ M = Yy M).

3.1.2.1 Remark

Let (M, M, % Mgz, a) € Re(X, Xo). M (resp. M3) can be given
the structure of a Dx[td]-module by defining the action of td as the
Dx -endomorphism VU — 1 (resp. UV) (1 denotes the identity map on
M,). Let b € €[B) be a non-zero polynomial belonging to the canonical
good filtration F'i, M (cf. (5) of 2.1). This implies:

b(t8)YM = 0,
b-1(0) C {z€ T |0<Rez< 1}.

Hence b(t8)M3 = 0. Further Ub(td + 1)M; = b(td)UM; = 0 ie.,
Otb(0t)M; = 0. So we see that M; == M satisfies the additional
requirement (compare with 2.3): there exists a non-zero polynomial
a € €C[O] with:

a(ta)Mg=0,
a(td + )M, =0,
a”!(0)Cc {zeC|0<Rez< 1}

3.1.2.2 Remark

Let M € Mod(Dy),, and denote m: M — M[f~!] the canonical map.
By Corollary 2.4.4.3 we have that i(x) is an isomorphism and that
Y(m)e(M)v(M) = o(M[f~e(M[f~1])¥(r). From this it follows that
(M[f~1], oM =2 Y M, %(x)) € Re(X, Xo).

Furthermore if a: M — M’ is a morphism, then (a[f~!], ¢(a), ¥(a)) is
a morphism in Re(X, Xo).

3.2 Theorem. The functor
F: Mod(Dy )y, — Re(X, Xo)
defined by, for all M € Mod(Dy),,
M (M[F71],6M 72 Y M, §(7))

establishes an equivalence of categories.

The rest of this subsection is devoted to the proof of the theorem.
As we mentioned already this theorem is an analogue of a theorem on
extensions of perverse sheaves due to Verdier [V]. Before we begin with
the proof we derive two lemmas. These throw some light on how to
reconstruct M from the data F(AM). Needless to say that they will be
used in the derivation of 3.2.
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The difficulty of the derivation lies in the reconstruction. Given
an object (N,N1 = MN3,a) € Re(X, Xp), find a regular holonomic
Dy -module M such that F(M) is isomorphic to the given element in
Rc(X, Xo). The idea is to recapture the various levels of the filtration
from the given data and thereby reconstructing M. By considerations
in §1 F%,M, the zeroth-level, must equal F%,N. The first lemma we
derive, Lemma 3.2.1 tells us how the (—1)-level can be regained. Succes-
sive applications of the second Lemma 3.2.2 take care of the (—k)-levels
for all k& > 2.

During this process a lot of things need to be checked. This we plan
to do in subsection 3.2.3. Finally in subsection 3.2.4 we finish the proof
of theorem 3.2.

3.2.1 Lemma. Let M € Mod(Dy),. Denote F'i.M the canonical
good filtration on i.M. Denote :: M — M[f~!] the canonical map.
Consider the commutative diagrams

Foi.M —» YyM F-Y4 .M —» oM
:l.'.w slu;(r) l-‘.r 1¢(r)
FOUMIf ] — oM[fY), F UM — oMY

where the horizontal arrows are the obvious projections.
Then these are pull-back diagrams of F®Dy -modules.

Proor. By Cor. 2.4.4.3(i) ¥(=) is an isomorphism. It follows from the
Corollaries 1.6.4 and 1.6.1(2) that i,x: F%i,M — F%, M[f~!] is an
isomorphism. This settles the diagram on the left. The assertion about
the diagram on the right is easily verified by chasing in the following
commutative diagram with exact rows and exact columns. We leave it
to the reader.

FlUaHi M = $(HE M)
Fo% M — FY4.M — oM
gli.r li.r loi(‘l')

FOUM[f-1] «— F-HUM[f] — M)

3.2.2 Lemma. Let M be a coherent Dy -module carrying a canonical
good filtration F' M. Then, for any k € N, k # 0, we have a push-out
diagram of pr~ 1D x-modules (pr: X x € — X denotes the projection)

FHIM —  FEM

l Lo

FEM s F-¥-1p.
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PROOF. Let k € N, k # 0. We must show that the following sequence
is exact (as pr~1D y-modules)

F MM I FE*M @ F*M & F-EIM —0.
m+ (-8m,m)  (m,m') —» m+om’

Clearly sr = 0. Now let m,m’ € F~*M be such that s(m,m') = m +
dm’ = 0. Hence tdm' = —tm € F~*t1 M. But b(t8+k)m’ € F~*+ M,
where b € €[O] is a non-zero polynomial as in (5) of 1.3. As k # 0, td
and b(t + k) are relatively prime, this implies that m’ € F~*+! M and
thus (m, m’) = r(m’). This establishes the exactness in the middle.

Finally let us show that s is surjective. Let n € F~*-1A{. Then
b8+ k+1)n € F~*M. As b(td + k + 1) = 8tb(td + 1) + b(k), with
b(k) € €* (because k # 0) and some b € €[O], it follows that n €
F~*M 4 8F*M =1Ims.

Remark. We have seen in 1.1 that pr~!Dy is a subring of FODy.
Elements of pr~!Dy commute with 8. In fact pr*Dy [t0] = F°D,.

Remark. The lemma implies that 3: gr—*M — gr=¥~!M is bijective
for k > 1. Compare this with 1.6.6.

3.2.3 The reconstruction procedure
The reconstruction is rather technical. We begin with defining an
abelian category A and an additive subcategory A*. The category
A* serves as an intermediate in the construction of a Dy-module M
from the given data N = (M, N = AN3,a) € Re(X, Xq), such that
F(M) = N. We define a functor P: A* — A* that takes us from the
(—k)-level to the (—k — 1)-level of the filtration to exist on i,M. Re-
peated applications of P yield an inductive system. Taking the direct
limit gives a functor P*: A* — Mod(Dy ) which regains i, M from the
(—1)-level of the filtration.

Finally in 3.2.3.5 we define a functor Q: Re(X, Xo) — A* that ex-
tracts the (—1)-level from the given element N € Re(X, X).

In 3.2.3.6 we consider the composition P*®@Q and introduce an inverse
functor for F, namely G: Re(X, Xg) — Mod(Dy )y -

3.2.3.1 Denote A the category defined as follows:

- Objects: (G, H,t,6) where G and H are pr=!Dy-modules and
¢,6:G — H are pr~!Dy-morphisms.

- Morphisms: (a,) € Hom ,((G, H,:,6),(G',H',/,8"))
iff :G — @', B: H — H' are pr~!Dy-morphisms satisfying
fe="la, 6= 8a.

A is an abelian category (because it is a functor category. Cf. [vD], §1).

The kernel and the cokernel of a morphism in A are evident.
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Define a map P: A — A as follows: for every (G, H,,8) € A, let
P(G,H,.,6) = (H,I,,4,6;) € A be given by the push-out diagram of
pr~ D, -modules

G - H
16 161
H =% 1

Because of the universal property of push-out, P is functorial. This
yields also that P is rightexact.

3.2.3.2 Denote A* the subcategory of A given as follows:

- Objects: (G, H,t,6) € A that satisfy the additional requirements:

(i) the pr~'Dy-structure on G (resp. H) comes from a F9D, -
structure on G (resp. H);

(ii) ¢ is a FODy-linear injection;

(iti) for all h € Oy: 6k — hé = 13(h);

(iv) tH CIm: ie., t: H — H factors through ¢; [Abusing language
we denote the factorisation by ¢: H — G (thus ¢t = t). There
will be no ambiguity for ¢ is injective.]

(v) the action of t8 € F°Dy on G (resp. H) is given by the pr~D x-
endomorphism t6 (resp. 6t — 1).

- Morphisms: (a,f) as above but « and # are now supposed to be

F°Dy -linear.

Certainly A" is an additive subcategory of A; it is not abelian, because
of the injectivity condition in (ii). But it perfectly makes sense to talk
about exact sequences in A*, namely those sequences which are exact
when considered in A.

3.2.3.3 Lemma. P restricts to an exact functor from A* to A* which
we still denote by P; let (G, H,t,6) € A* and let us put (H,I,41,6,) =
P(G,H,+,5). Then there exists a unique structure of a FODy-module
on I that satisfies (i) to (v) above.

PROOF. Let us first see that P(A*) C A*. Let (G, H,:,6) € A*. Then
P(G, H,+,6) is given by the push-out of pr~!Dy-modules

G < H
16 161
H =~

I is a pr~!Dy-module. We extend this structure to one over F°Dy, as
follows. Let h € Oy . Consider the €-linear mappings

61h — 4118(h): H — I, uh:H =1
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These satisfy

(61h — ¢18(h))e = 61¢h — 41:8(h) (¢ is FODy-linear)
= 11(6h — 8(h))
=uhs  (by (iii) of 3.2.3.2).

Thus by the universal property of push-out there exists a unique C-
linear map, denoted h:I — I, satisfying hé; = §;h — ¢;0(h) and hyy =
t1h. This defines the structure of a pr*Dx-module on I, extending the
pr~!Dx-structure and satisfying (iii) of 3.2.3.2.

Further ¢; becomes pr*D x-linear. Observe that ¢, is injective. Note
that ;¢ — ¢y = 43(6t — 1), so t: I — I factors through ¢;: H — I. This
yields 3.2.3.2(iv).

Denote t: I — H the factorisation. One has t§; = 6t—1i.e., the action
of td € F*Dy on H is given by t6;. Define the action of t8 € F*Dy on
I to be 6t — 1. This gives I the desired structure of a FDy-module
i.e., 3.2.3.2(i) and establishes 3.2.3.2(iv).

Note further that (£8)¢; = (61t — 1)y = &1t —¢; = (6t —1) = ¢1(29),
hence ¢; is FOD, -linear. This establishes 3.2.3.2(ii) and all together
P(A*) C A*.

The next thing we must check is the functoriality of P|4.. So let
(a,8):(G,H,¢,8) = (G',H',/,§) be a morphism in A*. By the uni-
versal property of push-out there exists a unique pr~!Dy-linear map
v:I — I' satisfying v6; = 618, yuu = ¢{f, where I is as above and
(H',I',{,8)) = P(G',H',/,8'). Thus P(a,f) = (B,7). We must ver-
ify that vy is F®Dy-linear. Therefore let A € Oy and consider the
C€-linear mapping yh — hy: I — I'. It satisfies:

(vh — hy)éy = vhéy — hvéy
= v(61h — 110(h)) — hé, B
= 818h — i, BO(h) — hé1 B
= (6{h —18(h) - h6})B =0
and
(vh = hy)ar =y h — heif = }(Bh - hB) = 0.
It follows, by the universal property of push-out, that vh — Ay = 0.
Consequently ¥ is pr* D x-linear. Especially we have | 8t = vt = 4/ t7,
yielding Bt = ty as ¢} is injective. This implies
v(18) = y(61t — 1) = b1t —y = 618t — v = (61t — 1)y = (t6)7
i.e., v is FODy -linear.

Finally the fact that ¢ is injective implies that P is exact.
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3.2.3.4 From A* to Mod(Dy)

Let A € A®. Lemma 3.2.2 suggests that we should take a series of push-
outs, yielding an inductive system {((P*A);,u) | k € N} of FOD,-
modules. Here for any j € {1,2,3,4} (-); denotes projecting on the j-th
factor; for all k € N, ¢ := (P*A)j is an injective FODy -morphism from
(P*A): into (PE+14),.

Put P®A := inj. im(P* A), € Mod(F°Dy).
We give P® A a Dy -structure as follows. For any k ¢ N define 6 :=
(P*A)4 a pr~1Dy-linear map from (Pt A); to (P¥+! A),. These satisfy
Sk+1tk = tk416s,dor all k € N, yielding a pr~!Dy-endomorphism § of
P> A, For any h € Oy we have
§h = inj. im(6xh) = inj.lim(h8y + «8(h)) = hé + 8(h).

Consequently P®A becomes a Dy-module by defining the action of
0 € Dy as the endomorphism 6. Obviously P> A is functorial in A4 ie.,
we get an exact functor

P%®: A* — Mod(Dy).
Note that (P*A), may be regarded as a F?Dy-submodule of P*A.
These induce a filtration on P™A.

3.2.3.5 From Re(X, Xo) to A*
The final step (that is the first step of the reconstruction) is to define a
functor @: Re(X, Xo) — A*. Its definition is suggested by Lemma 3.2.1.

Let (M, M % N2, a) € Re(X, Xop). One has:
(1) N = N[f~1), thus ¢(N) is an isomorphism (cf. Prop. 2.4.4.1.);
(i) M, Nz, ¢N, YN have the structure of a modulc over gr°Dy =
Dx[td] (see 2.2.3) and thus a FODy -structure;
(ili) a and ¢(N)~'aU are FODy -linear;
(iv) U, V, ¢(N), v(N) commute with pr=!Dy C F°D,,.

Denote F'i, N the canonical good filtration on . A and define G :=
F%,N. Consider the diagram of F°Dy -modules

M
lc(N)"aU
F-li.N —_—h ¢N

Define H to be the pull-back (as FODy-modules). This yields a com-
mutative diagram with exact rows

G s H — N

|1 e

FUN — FUHUN — ¢N
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Evidently we have a pull-back diagram

G — N
II |-
FUN —= YN.

By the universal property of pull-backs V: A3 — N induces an unique
pr~'Dy-linear map 6:G — H.

We verify that (G, H,¢,8§) € A*. Cleatly 3.2.3.2(i), (ii) are true.
Also 3.2.3.2(iii) is easily checked. Of course U:N; — N; agrees with
t: H — G, which establishes 3.2.3.2(iv). Finally the action of td on G
(resp. H) is given by t6 (resp. 6t — 1), which takes care of 3.2.3.2(v).

Clearly this construction is functorial and therefore yields a functor

Q:Re(X, Xo) — A".

Note furthermore that @ is exact.

3.2.3.6 The inverse functor G

In this subsection we investigate the effect of the functor P*Q on ob-
jects in the image of F', the one in theorem 3.2. Does the reconstruction
work well?

Let M € Mod(Dyx ), and denote F'i, M the canonical good filtra-
tion on i, M. For all k € N denote by ¢p: F-*¥i, M — F~%-1i, M the
inclusion. By Lemma 3.2.1 and the definition of @ there exists a natural
isomorphism

Q(FM) = (F%, M, F~Yi,M, to,0).

Applying P to both sides and using Lemma 3.2.2 yields a natural
isomorphism

PEQ(FM) = (F~%i,M,F~*'{M,;,8), forallkeN.
Hence there exists a natural isomorphism
P®Q(FM) =i M.
Therefore the next definition doesn’t come as a surprise. Define
G:Re(X, Xo) — Mod(Dy)
by putting for all M € Re(X, Xq),
G(M) := Ker(t — f, PQ(M)).

The foregoing can then be restated as: there exists a natural isomor-

phism GF(M) = M, for all M € Mod(Dx)y,,-
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3.2.4 Proof of theorem 3.2
It remains to verify that for all M € Re(X, Xo):

(i) G(M) € Mod(Dx)ne;
(ii) FG(M) = M, functorial in M.

(i) Let M = (N, My == N3,a) € Re(X, Xo). In C(Dx) we have an
exact sequence

KerU M oN Coker U
(:"‘.cU)
I — V[k.’ —_— u]} — Tl
0 N YN 0
This yields an exact sequence in Re(X, Xj)
(*) F(KerU) «— M — F(N) —» F(Coker U).

Here
F(KerU) = (0,Ker U = 0,1),
F(Coker U) = (0, Coker U =0, 1),

because KerUU and Coker U are regular holonomic Dy-modules with
support contained in Xp (¢f. Prop. 2.4.4.2);

FN) = (N, 6N == yN, 1)

because N = N[f~!]. By 3.2.3.6 we obtain an exact sequence (for P*®
and Q are exact) of Dy -modules

is Ket U «— P*Q(M) — i,N' —» i, Coker U.

It follows that P> Q(M) is supported on i(X), so applying the functor
Ker(t — f,) yields an exact sequence of Dx-modules

KerU «— G(M) — N —» Coker U.

So finally we arrive at the conclusion that G(M) is a regular holonomic
Dx-module and G(M)(f~!] = N.

(i) Let M € Re(X, Xo) be as above; then i,G(M) = P2 Q(M). Let
k € N. Applying the exact functor P*Q to the exact sequence (*) yields
(by 3.2.3.6) an exact sequence of F°D,,-modules
F=ti, Ker U — (P*Q(M)); — F~*i,N' —» F~*i, Coker U.
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It follows that (P*Q(M)); is a coherent F?Dy -module, for every k € N.
By construction i,G(M) = P*Q(M) carries a filtration F'i,G(M),
where for k € Z

-k . .
Fi,G(M) = {‘;“(,E’.’ QM) — .G, i~k €N
t* F%,G(M), if keN*.

So we have established that this filtration satisfies 1.2 (3). By con-
struction of P™ it satisfies 1.2, (2) and (4). The definition of the Dy -
structure on P Q(M) implies that the filtration fulfils 1.2 (1). Hence
it is a good filtration. By 3.1.2.1 there exists a non-zero polynomial
b € C[O] with: b=1(0) C {2z €€ ]0< Rez < 1}, b(t8)N3 = 0 and
b(t8+1)N; = 0. Clearly this implies 1.3 (5) i.e., it is the canonical good
filtration on i.G(M). Consequently FG(M) = M.

We leave it to the reader to verify that the isomorphism is functorial
in M.
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CLASSIFICATIE VAN REGULIERE
HOLONOME P-MODULEN

SAMENVATTING

Dit proefschrift vormt een neerslag van onderzoek aan het classificatie-
probleem van reguliere holonome D-modulen. Het proefschrift bestaat
uit vier hoofdstukken. Te weten een inleiding gevolgd door drie hoofd-
stukken die afzonderlijk gepubliceerd zijn en/of zullen worden.

De strategie die bij het onderzoek gevolgd werd komt het best tot
uiting in hoofdstuk vier. Het betreft de reductie van het classificatiepro-
bleem tot een probleem in lagere dimensie. We bewijzen hier een stelling
analoog aan Verdier’s uitbreidingsstelling voor perverse schoven. In het
bijzonder wordt de classificatie van reguliere holonome D-modulen met
als singulier support een irreducibele vlakke kromme herleid tot een pro-
bleem van classificeren van paren van D-modulen met support op die
kromme.

Hoofdstuk drie betreft gezamelijk werk van de auteur met Dr. A.R.P.
van den Essen. Hierin wordt aangetoond dat de twee categorieén “D-
modulen met support op een irreducibele kromme” en “D;-modulen met
reguliere singulariteiten te 0”, equivalent zijn. Aldus vindt een herlei-
ding plaats van bovenstaand classificatieprobleem tot een eenvoudigere
situatie met normale kruisingen.

De classificatie in het laatste geval gebeurt onder meer in het tweede
hoofdstuk van het proefschrift. Dit deel betreft de eerste kennismaking
van de auteur met het classificatieprobleem van reguliere holonome D-
modulen. We behandelen hier het geval van normale kruisingen.

In hoofdstuk één wordt allereerst een overzicht van de theorie van
D-modulen gegeven. Daarna volgt een drietal toepassingen van regu-
liere holonome D-modulen. Dit ter motivatie voor het onderzoek van de
categorie van reguliere holonome D-modulen. Tenslotte geven we een
overzicht van de tot nu toe bekende resultaten betreffende de classifi-
catie.
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STELLINGEN
behorende bij het proefschrift
“Classification of regular holonomic D-modules”

van

M.G.M. van Doomn

. De definitie van het begrip “duale connectie” in hoofdstuk 3, §2.2 in
het erg mooie boek “Algebraic D-Modules” van A. Borel et al. is
niet correct.
Cf. A. Borel et al., Algebraic D-Modules. Perspectives in Mathe-
matics, 2. Academic Press (1987).

. Met het computeralgebrasysteem MACSYMA kan men soms fouten
in integraaltafels vinden. Soms lukt ook het omgekeerde, zoals blijkt
bij berekening door MACSYMA van f: "(2+4sinz)"! dz.
Cf. [1] R. Pavelle en P.S. Wang, MACSYMA from F to G, J.
Symbolic Computation 1 (1985}, p.81.
[2] Standard Mathematical Tables. Twentieth edition. The =
Chemical Rubber Co. (1972). Voorbeeld op pagina 394.

. Het bewijs van Habicht’s stelling dat R. Loos geeft is niet vlekkeloos.
In tegenstelling tot zijn bewering is bovendien een rechtstreeks bewijs
van de subresultantenstelling eenvoudiger dan het zijne dat gebaseerd
is op Habicht’s stelling.
Cf. R. Loos, Generalized Polynomial Remainder Sequences, in
Computer Algebra, Symbolic and Algebraic Computation. Sec-
ond edition. Springer-Verlag (1983), 115-137.

. Het bewijs van Proposition 14.1 in F. Pham, Singularités des Sys-
témes Différentiels de Gauss-Manin. Progress in Mathematics, 2.
Birkhauser (1979), p.136 deugt niet.

. Het is jammer dat zo weinig wiskundigen kennis nemen van moderne
verworvenheden in de wiskunde.

“How sad that modern science has come to this pass. Not only
are we misunderstood by the world at large, but so few of us actually
understand the greatest achievements in our own fields.”

Cf. S. Bloch, in Bull. Amer. Math. Soc. (N.S.) 4 (1981), 235-239.






10.

11.

12.

. Het schort veel beginnende studenten aan elementaire vaardigheid in

logisch redeneren. Ook het handschrift is vaak niet om over naar huis
te schrijven.

Een recensent dient zich bij de bespreking van een artikel niet te
beperken tot een citaat uit de inleiding.

Het is vermetel om te menen dat een theorie die de vier fundamentele
natuurkrachten in zich verenigt het einde van de fysica zou betekenen.
Cf. J. de Kam, ‘Het einde van de fysica?’, Intermediair 19 (1987).

. Het verband dat gelegd wordt tussen Qosterse mystiek en fysica is

slechts schijnbaar en moet niet serieus genomen worden.

Het is een vergissing aan te nemen dat goede preventie de gezond-
heidszorg goedkoper maakt.

De Nederlandse agrariér dreigt aan zijn eigen vlijt ten onder te gaan.

In het tijdperk van de glasvezelkabel worden de PC’s in het Mathe-
matisch Instituut d.m.v. staalkabel met elkaar verbonden.












