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INTRODUCTION 

In 1946 the first reports were made of the detection of a nuclear 

magnetic resonance signal of protons in water by Bloch and coworkers [BL46] 

and in solid paraffin by the group of Purcell [PU46]. From that point on the 

development of high resolution NMR of liquids has been a resounding success. 

It was soon discovered that the detected resonance frequencies depended on a 

chemical shift and could be used to obtain information about the structure of 

molecules in solutions. Soon after that spin-spin interactions were found, 

which give information about the chemical bonding in a molecule [HA52, GU53], 

and opened the possibility of double resonance experiments. As a result high 

resolution NMR of solutions rapidly developed into one of the most important 

tools for structural analysis. 

A major step in this evolution was the introduction of Fourier transform 

techniques. Ernst and Anderson [ER66] demonstrated that it was possible to 

obtain a NMR spectrum by Fourier transformation of the response of a spin 

system to pulse excitation. These responses can be added in a computer which 

means an enormous gain in sensitivity, making it possible to record spectra 

of rare nuclei like 1 3C and 15N. The introduction of ST NMR also initiated 

the development of a lot of ingenious pulsed experiments. 

In the course of these developments, Jeener [JE71] proposed in 1971 to 

perform an experiment as a function of two time variables and Fourier 

transform the acquired signals with respect to both variables. This idea was 

picked up by Ernst and coworkers who gave the first thorough theoretical 

treatment of two-dimensional NMR in 1976 [AU76]. The development of 2D NMR 

techniques has now led to a stage that it is possible to solve the 

3-dimensional structure of proteins in solution. 

Meanwhile the initial development of solid state NMR for chemical 

analysis was less successful. The problems in solid state NMR are the 

overwhelming dipolar interactions between neighboring spins leading to broad 

featureless lines. Because of the large line width it is very difficult to 

extract valuable information from the spectra. In liquids the rapid tumbling 

of the spins leads to an averaging of all anisotropic interactions such as 

the dipolar interactions and the resulting spectra consist of very narrow 

lines determined by the isotropic average of the spin interactions. 

The first attempts to overcome the dipolar broadening of solid state 

spectra were made by Andrew [AR58] and Lowe [1*059]. They demonstrated - that 
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spinning of the sample about an axis inclined 54.7° (the magic angle) with 

respect to the magnetic field modulates the angular part of the dipolar 

interaction in such a way that it averages to zero. Unfortunately this 

approach only works when the spinning speed exceeds the dipolar line width 

which is often impractical especially when protons, which have a large 

magnetic moment, are involved. 

In 1966 Waugh and coworkers [0S66] and Mansfield [MA66] presented an 

approach to average homonuclear dipolar interactions by manipulating the 

spins with cycles of resonant rf pulses. The first successful multiple pulse 

cycle resulting in high resolution NMR spectra of solids was the WAHUHA cycle 

of Waugh, Huber and Haeberlen [WA68]. 

A real breakthrough of solid state NMR as a tool for chemical analysis 

was achieved when Schaefer and Stejskal [SC76] showed that high resolution 

spectra of rare spin species (e.g. ̂ 3C) in solids could be obtained. This was 

achieved by irradiating the sample with a strong resonant proton rf field to 

remove the influence of the carbon-proton dipolar interactions on the 

spectrum, combined with magic angle spinning to average the 13C chemical 

shift anisotropy. Furthermore they used cross-polarization [PI73], which is 

based on the double resonance concept of Hartmann and Hahn [HA62], to improve 

the sensitivity. The book of Fyfe [FY83] gives an exhaustive survey of 

applications of solid state NMR in chemistry. 

As a result of the enormous capabilities of two-dimensional NMR in 

solutions, there is now an increased interest in 2D solid state NMR. It is 

striking, however, that many applications of 2D NMR in solids explicitly 

exploit the anisotropic character of the spin interactions. The important 

feature of 2D NMR in this respect is that it can be used to avoid spectral 

overlap by mapping out interactions in two dimensions. For instance, the 

possibility exists to use a specific averaging technique in only one time 

interval of the 2D experiment to suppress a spin interaction in one 

dimension. This thesis will try to illustrate, by discussing some existing 

and newly developed 2D solid state experiments, that two-dimensional NMR of 

solids is a useful and important extension of NMR techniques. 

Chapter 1 gives an overview of spin interactions and averaging 

techniques important in solid state NMR. This overview is probably more 

suited to give people familiar with NMR an "aha-erlebnis" then that it will 

give new insights. As 2D NMR is already an established technique in 

solutions, only the basics of two-dimensional NMR will be presented in 

chapter 2, with an emphasis on the aspects important for solid spectra. The 
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following chapters discuss the theoretical background and applications of 

specific 2D solid state experiments. All these chapters are self-contained if 

the reader is familiar with NMR or is prepared to take a few facts about NMR 

for granted. An application of 2D-J resolved NMR, analogous to J-resolved 

spectroscopy in solutions, to natural rubber is given in chapter 3. In 

chapter 4 the anisotropic chemical shift is mapped out against the 

heteronuclear dipolar interaction to obtain information about the orientation 

of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the 

study of super-slow molecular motions in polymers using a variant of the 2D 

exchange experiment developed by us. Finally chapter 6 discusses a new 

experiment, 2D nutation NMR, which makes it possible to study the quadrupole 

interaction of half-integer spins. 
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CHAPTER 1 

SOLID STATE MMR 

1.1 Introduction 

Nuclear Magnetic Resonance (NMR) has developed to one of the most 

important tools for structural analysis in liquids. Due to the development of 

selective averaging techniques, like Magic Angle Spinning (MAS) and multiple 

pulse techniques, this has also become true for (diamagnetic, non-conducting) 

solids. 

NMR is a spectroscopic method based on the fact that most nuclei of the 

elements in the periodic system have an intrinsic magnetic moment, the spin, 

which interacts with an applied magnetic field B. This leads to a situation 

where the spins can be in energetically different states. Transitions between 

these states can then be induced by radio frequency radiation. Besides this 

major interaction with the external magnetic field, the Zeeman interaction, 

the spins can also interact with each other (dipolar interactions). The 

electronic charges surrounding a spin are also affected by the external 

magnetic field and, as a result the spins do not experience the full external 

field but an effective Zeeman field. The shift due to this "shielding" is 

called chemical shift. Nuclei which possess an electric quadrupole moment may 

in addition have an electric interaction with their surrounding charges. In 

solids most of these interactions are anisotropic and are thus described by 

tensor interactions. This means that the resulting NMR resonance frequencies 

will depend on the orientation of the magnetic field with respect to 

molecular or crystal axes. In randomly distributed poly-crystalline samples 

all possible orientations of crystallites on a sphere are present, which all 

give a specific but different contribution to the resulting NMR spectrum. 

This will lead to very broad NMR line shapes. In liquids this anisotropy is 

averaged by the rapid, random tumbling of the molecules, and thus an 

isotropic resonance frequency will be found. 

As this thesis is concerned with NMR in solids we will briefly discuss 

the basic spin interactions present in solids. Furthermore we describe the 

effect of Magic Angle Spinning (MAS) and multiple pulse techniques on the 

interactions. This chapter is intended to give a general overview of 

interactions and techniques. For a more thorough treatment of the principles 

of magnetic resonance the reader is referred to the monographs of Abragam 
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[AB61] and Slichter [SL80]. Averaging techniques are extensively discussed in 

the books of Haeberlen [HA76] and Mehring [ME76]. A very complete discussion 

of MAS has been given by Maricq and Waugh [MA79]. 

1.2 Basic interactions of spin systems in solids 

Before we explicitly write down the Hamiltonians related to the basic 

interactions of a spin system we must realize that we treat the spin system 

as an isolated system. There is, however, a weak interaction of the spin 

system with all other degrees of freedom of the material (often called the 

"lattice"). This interaction is very important in relaxation processes. As 

relaxation processes are not of explicit interest in the present study, they 

will not be discussed. A detailed account of relaxation can be found in the 

monographs of Abragam [AB61] and Wolf [W079]. 

1.2.1 Zeeman interaction 

The main interaction of a nucleus with an angular momentum In and a 

magnetic moment γΙΊΙ (γ is called the gyromagnetic ratio) is the interaction 

with an external magnetic field В (the Zeeman interaction). In NMR this 

interaction is usually orders of magnitudes larger than all other 

interactions. The associated Zeeman Hamiltonian is given by 

H
z
 = -Yfil-B (1.1) 

For a free spin interacting with a static magnetic field this results in the 

equation of motion 

fi = Tf(ixB
0
) (1.2) 

In order to solve this equation it is useful to transform to a coordinate 

system that rotates with frequency ω about the direction of the magnetic 

field. In NMR jargon this is called the rotating frame. It can be easily 

established that the equation of motion of the spins in the rotating frame 

becomes 

16 



£ = ^<v?» (1.3) 

This has the same form as equation (1.2) but with the actual magnetic field 

BQ replaced with by an effective field B
e
ff = BQ + (ω/γ). Thus transformation 

to the rotating frame introduces a fictitious field ω/γ. When choosing a 

frame rotating with frequency ω = -^BQ, the effective field vanishes, giving 

dl/dt = 0 meaning that the spin vector is static in the rotating frame. 

Therefore, it precesses with an angular frequency <I>Q = -γΒ
0
 (the Larmor 

frequency) about the applied field in the laboratory frame (fig. 1.1). 

± 
Fig. 1.1 Transformation from the laboratory frame (left) to the 

rotating frame (right). In the rotating frame there is no effective 

magnetic field and the nuclear spin vector is static. 

When a rotating radiofrequency field perpendicular to the large time-

independent field BQ (// z) is present, the Hamiltonian in the laboratory 

frame becomes 

H
z
 = -γηΒ

0
Ι

ζ
 - YñB1(Ixcos{Wt} + Iysin{ci)t}) (1.4) 

= -ÍÍÍBQIJ, - ϊϊίΒ
1
βχρ{-ΐωίΙ

ζ
}·Ι

χ
·βχρ{+ΐωΐΙ

ζ
} 

From this equation it is not easy to visualize the resulting motion of the 

spins. To find the appropriate expression for the Hamiltonian in the rotating 

frame we start with the time-dependent Schrödinger equation 
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ili If = H* (1.5) 

To transform to the rotating frame we substitute 

ψ = Rz(ü)t) ψ' (1.6) 

in equation (1.5). Here ψ' represents the transformed wave function and 

R
z
(u)t) = exp{-ii])tl

z
} is the transformation operator representing a rotation 

of the coordinate system over the angle lot about the ζ axis. We see that the 

Schrödinger equation in the rotating frame 

ΑΙ ι ι
 d R

 (
ωΐ
) 

ifi
 3t

 = [R¡ (Ш
 >-

Н
-

 ш
 ) -

 ifi R¡ («t)—^^—]Г (1.7) 

has the same appearance as in the laboratory frame when we define the 

Hamiltonian as 

-1 -1 äR (bit) 
Нд = R

z

 i(œt)-H.Rz(Ut) - ifi Ηζ

1
(ωί) g^ (1.8) 

For the Hamiltonian of equation (1.4 ) t h i s becomes 

HJJ = - ΐ ( ω 0 - ω ) Ι ζ - ftüi1lx (1 .9) 

where OÌQ = γΒο and ω^ = γΒ^. When the frequency of the rf irradiation ω is 

equal to the Larmor frequency OJQ, the first term of equation (1.9) vanishes 

and the spins only experience a static field B^ along the χ axis in the 

rotating frame. In this frame the magnetization will thus precess with a 

frequency ω^ about the χ axis as long as the rf field is present. In other 

words the complex motion of the spins in the presence of a rf field appears 

to be a superposition of two rotations. 

It should be noted that in practice oscillating fields are used in stead 

of rotating fields. An oscillating field, however, can be written as the sum 

of two rotating fields, rotating in opposite directions. If Bj << BQ the 

effect of a rotating field on a magnetic moment is negligible unless its 

frequency ω is in the vicinity of the Larmor frequency. Thus an oscillating 
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field rotating in the opposite direction about the ζ axis then the magnetic 

moment can be neglected as it will be off-resonance by 2ω. 

The rotating frame concept has proven to be very convenient for the 

description of magnetic resonance. When we transform to the rotating frame, 

we get rid of the common Larmor precession of the spins about the magnetic 

field. It is helpful to view the various internal spin interactions, to be 

discussed below, in the rotating frame. As the rotating frame moves in line 

with the free precession of the spins, those terms of ал interaction which 

are static in the rotating frame will affect the spin system, whereas those 

parts of an interaction with a large time dependence in the rotating frame 

hardly affect the spins and may thus be neglected. This is called truncation. 

From equation (1.8) and (1.9) it becomes clear that when the Hamiltonian in 

the laboratory frame has the form H
z
 + H¿ n t, the Hamiltonian in the rotating 

frame will have the form Rz 'H^nt'^z· Looking at the structure of Rg tells 

us that those terms of H^nt which commute with I z will be static in the 

rotating frame. The terms of H i n t that do not commute become oscillating with 

frequency ω (and 2ω) which means that their time average becomes zero and 

thus they can be discarded. It is important to realize that the rotating 

frame is a mathematical concept to describe our spin system and will, of 

course, not affect the resulting spectra. 

1.2.2 Chemical shift 

NMR normally concentrates on diamagnetic materials, i.e. samples without 

electron paramagnetism. As a consequence there exist no direct interactions 

between the magnetic moments of the electrons and the nuclei. The resonance 

frequency of a nucleus embedded in bulk matter differs, however, from that of 

a "bare" nucleus. This frequency shift, named chemical shift, is due to the 

effect of the static magnetic field Bg on the electronic charges. In the 

first place the Lorentz force causes the electronic charges to precess about 

BQ. The resulting electric current induces an additional magnetic field 

antiparallel and proportional to BQ. Secondly, the applied field BQ polarizes 

the electronic shells thus producing a another small field proportional and 

pair al lei to BQ. AS a result the nucleus does not experience the applied field 

BQ, but an effective field (1-σ)Β
0
 where a is a shielding factor independent 

of the magnitude of BQ 

An approach to calculate the chemical shift of a nucleus with a certain 

electronic surrounding can be found in every advanced textbook on magnetic 
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resonance [AB61, SL80]. These calculations are, however, very tedious and 

therefore there are not so many theoretical studies of the chemical shift. 

Experimentally it was established that the chemical shift is very sensitive 

to changes in the electronic surrounding of a nucleus. It is because of this 

sensitivity of the chemical shift that NMR has become such an important tool 

for structural analysis. The reader will be spared the inevitable proton 

spectrum of ethyl alcohol which is presented at this point in many textbooks 

to show the phenomenon of chemical shift by the presence of three lines from 

the three types of protons in CH3CH2OH. 

In general the chemical shift is anisotropic and is represented by a 

symmetric second rank tensor. In the laboratory frame the Hamiltonian is 

given by 

H
CS

 =
 ^

І , о
*

В
0 (1-10) 

As the chemical shift is very small it can be treated by first-order 

perturbation theory. As a consequence we only take that part of Hcg into 

account that commutes with the Zeeman interaction H
z
. This is analogous to 

truncation of the Hamiltonian in the rotating frame. The secular (or 

truncated) Hamiltonian now becomes 

H
CS

 =
 ^z^O

 =
 YlVo<

0
xx

s i n 2 e c o s 2 4 > + σ

γ γ

8
ίη

2 θ
^η

2
φ
 +
 "ζζ

6 0 8
^) 

= γίίΐ Β (σ. + 56{(3cos
2
e-l) + nsin

2
ecos2<p}) (1.11) 

Ζ U ISO ¿ 

where б = σ
ζζ~

σ
ί8θ ^

3 са
11

е(
і the shift anisotropy and η = (σ^χ-σγγ^δ is the 

asymmetry parameter. Ощ^, σγγ and σ
Ζ
2 are the principal values of the 

chemical shift tensor or, in other words, when we express the chemical shift 

tensor in its principal axis system, we find the elements Ощ^, σγγ, σ
Ζ
2 on 

the diagonal. 8 and φ are the polar angles orienting the external magnetic 

field Bg in this principal axis system. The trace of the chemical shift 

tensor is given by o¿so = (σχχ + σγγ + σζζ
)/3. 

In case of isotropic motion as in a fluid, the term of equation (1.11) 

containing the angular dependence of H
c s
 averages to zero and the NMR 

frequency is determined by o^
so
. When we take the spectrum of a 

polycrystalline sample of a rigid solid, the result will be a specific powder 

pattern dispersed around o^
so
. This powder spectrum can be written as 
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Fig. 1.2 a) Chemical shift powder patterns for an axlally symnetric 

and a general chemical shift tensor, b) The powder line shape of 

the axially symmetric shift tensor convoluted with Lorentzian 

broadening functions of different widths. 
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2τι π. 

3(ω) = f Гд[іі) - ω(θ,(ρ)] sinede dtp (1.12) 

О О 

where ω(θ,φ) is the resonance frequency of a spin as determined by equation 

(1.11) and g denotes the line shape function. The powder pattern can thus 

easily be obtained numerically by sampling θ and φ over a sphere, calculate 

ω(θ,φ) in a grid of frequency values and finally convolute the result with 

the line shape function g. Fig. 1.2 shows the result of such a calculation. 

An alternative method is to evaluate cos{ü)(8,<p)t} for every surface element 

of a sphere, sum all these induction signals, multiply the result by a 

linebroadening function (e.g. an exponential decay) and then Fourier 

transform the final result to reveal the powder pattern. 

It is also possible to determine the powder pattern analytically. To do 

so one has to convert the angular distribution function sin6d8d<p to a 

distribution function of ω and then calculate the intensity Ι(ω). This is not 

always a straightforward operation. Very characteristic for powder patterns 

are the peaks and shoulders. Peaks and shoulders are found when singularities 

and discontinuities occur in Ι (ω). This appears to be the case when 

dto/d6 = du)/d<p = 0. If we work this out in the case of chemical shift 

anisotropy (equation (1.11)) we find a shoulder for ω = YUQO^X and ω = iBçOzz 

whereas a peak occurs at ω = γΒ
0
σγγ. In other words the principal values of 

the chemical shift tensor can be directly determined from a powder pattern. 

1.2.3 Indirect spin-spin interactions 

Another interaction that is brought about by the polarizability of the 

electron shells is the indirect interaction between nuclear spins. This 

interaction should not be confused with the direct dipolar interaction 

between nuclear spins which we discuss later on. The idea is that a nuclear 

magnetic moment μ^ produces a field which distorts the electronic shell. This 

distortion of the electron shell produces a small magnetic field proportional 

to μ^ at the site of another nucleus. The interaction is independent of the 

magnitude of the external field. The Hamiltonian associated with this 

interaction thus becomes for two spins labeled r and s 

нт = ν* 1* 2 v5«·*« ( 1 Л З ) 

J r s r rs s 
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where J
r s
 is the spin-spin coupling tensor. Again, as in the case of chemical 

shift, it is rather difficult to calculate J couplings. But experimentally it 

has been established that J couplings can give information about the chemical 

bonds in a molecule and its conformation. Although in theory J is 

anisotropic, for light atoms this anisotropy is very small. In practice only 

the isotropic value of J has been studied. In solution only the isotropic 

value of J can be accessed due to the rapid tumbling of the molecules. In 

polycrystalline solids, as will be discussed in chapter 3, J can only be 

measured when averaging techniques are employed which also average the J 

tensor to its isotropic value. It must be noted, however, that some J tensors 

have been determined in liquid crystal studies [R082]. 

To write down the truncated Hamiltonian we have to distinguish between 

the heteronuclear (coupling between different isotopes) and the homonuclear 

(coupling of like spins) case. For heteronuclear spin-spin interactions, the 

only term surviving truncation is 

H
J - KsVz

 (1Л4) 

where Jjg
1
 is the isotropic value of the J coupling as it is determined 

directly from the spectrum. The second spin species is now denoted S for 

convenience. For couplings between like spins the truncated Hamiltonian 

becomes 

H
T
 = tiJ

1 Ï ·ϊ (1.15) 

J rs г s * ' 

Only when the difference in chemical shift of spin r and spin s is large 

compared to the J coupling, this reduces to 

H
T
 = «J

1
 I I (1.16) 

J rs rz sz ' 

which is identical to the heteronuclear situation. 

1.2.4 Direct dipolar interactions 

The direct interaction between two nuclear spins depends on the 

magnitude of their magnetic moments, the internuclear distance and their 

relative position. The interaction between two magnetic moments is given by 
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the well-known dipole-dipole coupling 

Ύ Ύ îi2 ( Ï »r ) ( I «r ) 
r s ,= = ^ r r s s r s % = -^ і- л - 3 2 ) <1·») 

r r 
r s rs 

where r
r s
 is the internuclear distance. Evaluating equation (1.17) in 

coefficients of Ι
χ
, Ι

γ
, I

z
 and then truncating the resulting Hamiltonian 

(i.e. taking the secular part) gives for the coupling between two like spins 

2,2 
Y I Ä 2 

HTT = - ^ ; (1-3COS Θ)[3Ι I - I ·! ] (1.18) 
II _ 3

 x
 rz sz r s' 

For the heteronuclear case we get 

.2 
Ύ
Ι

Ύ
3* 2 

H
I S
 5 - (l-3cos

Z
e)I

z
S

z
 (1.19) 

r 

θ is the angle of the internuclear vector r with the external field. Note 

that the interaction is coaxial with the internuclear axis of the two 

interacting nuclei and that it is independent of the external magnetic field 

strength. Thus the dipolar interaction can be represented as an axial, 

symmetric tensor whose principal axis lies along the internuclear axis. The 

magnitude of the interaction is proportional to r"^ and is thus sensitive to 

changes in internuclear distances. This also means that only nearby spins 

interact. 

The dipolar tensor is traceless, i.e. for rapid isotropic reorientations 

of the interspin vector the interaction averages to zero. In a solid the 

dipolar interactions often dominate the spectrum, especially when protons 

(which have a large γ) are involved. In a polycrystalline sample the angular 

dependence of equations (1.18) and (1.19) leads to a specific powder pattern. 

For instance, for a system consisting of isolated spin pairs the well-known 

Fake pattern will emerge. However, when more spins are involved the dipolar 

eigenfunctions can no longer be determined and a theoretical description of 

the powder line shape is no longer feasible. Van Vleck [VL48] developed a 

method, named the method of moments, which allows the determination of the 

line shape of a system with several dipole-dipole interactions without 
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solving the eigenfunctions. This approach has been popular in the early days 

of NMR of solids. 

1.2.5 Quadrupole interactions 

The interactions discussed so far are magnetic interactions of the 

nucleus with its surroundings. In general the nuclear charge distribution is 

not spherically symmetric. This means that one should, besides magnetic 

effects, also consider electrical effects on the energy required to reorient 

the nucleus. As the cylindrically syiranetrical nucleus can only be turned end 

over end for nuclei with I = 1/2 there is no change in the electrostatic 

energy for such an operation. Consequently these electrical effects play no 

role for X = 1/2 nuclei. Classically, the interaction energy E of a charge 

distribution of density ρ with a potential V due to external sources is 

E = ƒ p(r)V(r)dx (1.20) 

where the integral runs over the whole nuclear volume. Expansion of the 

potential V(r) in a Taylor series about the centre of gravity of the nucleus 

allows us to write equation (1.20) as a sum of energy contributions. The 

first term in this sum represents the electrostatic energy of the nucleus 

taken as a point charge. This affects every energy level in the same way and 

thus is of no interest for NMR. The second term involves the electric dipole 

moment which vanishes because of the symmetry of the nucleus. The third term 

describes the interaction of the nuclear quadrupole moment with the electric 

field gradient ( d^V/dx^dxJ ). As all higher terms are very small we 

concentrate on this interaction. The part of this term that depends on the 

nuclear orientation can be written as 

E = Σ V. .Q. . (1.21) 
1,3 ^ i'* 

where V^ j represents the electric field gradient tensor and Q¿ j the nuclear 

quadrupole tensor. Equation (1.21) can be converted to its quantum mechanical 

form using the Wigner-Eckart theorem. 
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HQ = lïîffeî) Σ. "i.iibWW - W2] ( 1 · 2 2 ) 

where the summation runs over all components χ,γ and z. The magnitude of the 

nuclear quadrupole moment Q 

Q = ƒ (3z
2
-r

2
)p(r)dx (1.23) 

is a measure of the deviation of the nuclear charge distribution from a 

spherical distribution. The ζ direction is here defined by the orientation of 

the nuclear spin. 

In the principal axis system of the (symmetric) field gradient tensor 

equation (1.22) takes the well-known form 

H
Q = 4ΪΤ^Γ7 t

3I
Z -

 l2 +
 ̂ X - Ф^ ί

1
·

2 4
' 

with eq = V
z z
 and η = {^•χχ'^Τί^^ΖΖ' ^us experimental determination of the 

quadrupole interaction allows us to determine the electric field gradient 

tensor which is directly determined by the electric charges surrounding the 

nucleus under study. The closed electron shells in the vicinity of the 

nucleus are spherically symmetric and thus in first-order do not contribute 

to the field gradient. So the field gradient is generated by charges outside 

of the closed shells. These charges will, however, also polarize the closed 

shells somewhat. Thus the field gradient generated by a charge outside of the 

closed electron shells will also be determined by the departure of spherical 

symmetry of the closed shells due to this polarization. This is taken into 

account with the Sternheimer antishielding factor γ: 

ν
ζζ

 = ν
ζ ζ

( 1
-

Ύ ) ( 1
-

2 5 ) 

2 
•J.V „0 (3cos Θ-1) ,, „ . 

with V
zz
= e -i 1- (1.26) 

г 

where θ is the angle with the principal axis. 

In the high field limit we consider HQ in equation (1.24) to be a 

perturbation relative to the Zeeman interaction. This situation is thoroughly 
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treated in the review article by Cohen and Reif [C057]. For a discussion of 

the low field case were HQ » H
z
 the reader is referred to the article by Das 

and Hahn [DASS]. Transformation of equation (1.24) to the laboratory frame 

followed by a truncation of the result gives the secular Hamiltonian 

2 
H

Q
,sec - Blbf-l) ( 3 c 0 s 2 8

 -
 1 +

 nsin
2
8co

S
2,p)(3l2 - I

2
) (1.27) 

where θ and φ are the polar angles orienting the external magnetic field 

(// z) in the principal axis system of the field gradient tensor. Note that 

equation (1.27) has the same angular dependence as the chemical shift 

(equation (1.11)). This means that, for a polycrystalline sample, we find a 

chemical shift-like powder pattern for each transition m,m±l, except for the 

1/2,-1/2 transition of a half-integer spin. From equation (1.27) it follows 

that the m=l/2 and m=-l/2 eigenstates are both shifted by the same amount. 

Thus the resulting spectrum is a superposition of powder patterns and, for a 

half-integer spin, a narrow peak of the central 1/2,-1/2 transition. 

In many practical cases the quadrupole interaction can become so large 

that first-order perturbation theory is not sufficient. In practice this 

often means that the above mentioned powder patterns are too broad to be 

detected. Then only the central 1/2,-1/2 transition for half-integer spins 

can be determined. Although narrow in first-order perturbation theory, it 

becomes a powder pattern due to the second-order shift of the energy levels 

( fig. 1.3). Second-order perturbation theory gives the expression for the 

orientational dependence of the resonance frequency of the 1/2,-1/2 

transition [NA66] 

2 
V
Q 3 4 2 

^,_$ = ¿Γ (i(i
+
i> - 5)(A(<p)cos*e + mnocos^e + c(<p)) 

ζ 

27 9 3 2 2 
Α(φ) = " g" + J ПСОБ2ф - - η c o s 2<p 

( 1 . 2 8 ) 

30 1 2 3 2 2 
Β(φ) = η - 2ncos2<p + τ η c o s 2φ 

^ / i 3 1 2 1 ., 3 2 2., 
C(q>) = ~ 8 3 η ~ 4 η < : θ 5 2 ( ρ - § Π c o s 2φ 

= e 2qQ/h 
Q 2 1 ( 2 1 - 1 ) 
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v
z
 is the Zeeman frequency of the central transition. The width of the powder 

pattern given by equation (1.28) is therefore inversely proportional to the 

magnetic field strength. Peaks (singularities) and shoulders 

(discontinuities) of the powder pattern are found when dv/de = dv/d<p = 0. 

These have been determined by Baugher et al. [BA69] and are plotted in fig. 

1.4 as a function of η. 

QUMXtUTOLAR 

PATTERN 

0.5 

STATIC 

-р-гт-

MAS 

Fig. 1.3 Second-order powder patterns of the 1/2;-1/2 transition of 

a half-integer quadrupolar nucleus for several values of the 

asymmetry parameter η. Fast spinning of the sample about the magic 

angle (HAS) changes the appearance of the pattern and results in a 

narrowing of a factor ~ 4. 
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α. t 

* ν - υ >' 

Fig. 1.4 Position of peaks (singularities «¡^) and shoulders 

(discontinuities ) of the second order 1/2;-1/2 powder pattern 

as a function of the asymmetry parameter η for a static sample (a) 

and for a sample spinning about the magic angle (b). 

A = <v
Q

2
/16v

z
)[1(1+1) - 3/4] 
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1.2.6 Irreducible tensor operators 

The internal Hamiltonians HQg, Hj, H
D
 and HQ discussed above were all 

presented in their familicir Cartesian form. Their general appearance can be 

written as 

H - C* E R? .T? . (1.29) 
Λ • j - ' - / J -

L
» J 

-w J 

where С contains some fundamental constants and properties of the nucleus 

under study. The T¿ j are the dyadic products of the nuclear spin vector with 

itself (X=Q), with another nuclear spin vector (X=D,J) or with the magnetic 

field (X=CS). The R¿ -; contain the geometrical dependence of the interaction. 

In view of the averaging techniques in coordinate or spin space, to be 

discussed in the next paragraphs, it is advantageous to express the 

Hamiltonians in components of irreducible tensor operators [R057, BR79]. 

Under rotations components of irreducible tensors transform among themselves, 

hence this representation facilitates the study of averaging processes 

brought about by rotations. 

A second-order Cartesian tensor R can easily be decomposed in its 

irreducible constituents: 

R0 = \ Tr(R),
 Κ ι

 = -
1
 (R

l f 3
-R

j f l
). R

2
 = i ( H i ^ . i ) - I

 6
і і

Т г ( Н ) 

(1.30) 

where RQ is a scalar which remains invariant under rotations, R-̂  is the 

antisyitmetric part of R and R2 contains the symmetric part of R. The dyadic 

products T¿ j can also be reduced to irreducible bases sets. The result of 

this operation is given in table 1.1 for every interaction X. The internal 

Hamiltonians can thus be written as 

ÌL. = C^ Σ Σ (-1) < Τ? (1.31) 

* 1=0 m=-l
 1

'
 m 1

'
m 

For symmetric tensor interactions the Rj _
m
 will be zero. When we look at the 

R tensor in its principal axis system, the irreducible components will be 

denoted by p^
 m
, where only components with m=0, ±2 will be non-zero. The 

relation between the components of the irreducible tensors and the principal 

values of the Cartesian tensor are then 
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p
o,o = 5

 Tr(R)
 - bW*^ =

 R
iso 

p
2 > 0

 = 7(3/2) (R
z z
-R

i s o
) = 7(3/2) б (1.32) 

P
2,±2 - ï (RXX-RYY) = ï П б 

From these р^
 m
 in the principal axis system, the R^

 m
 in the laboratory 

frame are easily obtained by a transformation 

i.m , m ,m l,m 
m' 

where Ο^(ο,β,γ) represents the Wigner rotation matrix of the order 1 which is 

needed to transform a spherical tensor operator p^
 m
 over the Euler angles 

α,β,γ. These angles are here determined by θ and φ which are the polar angles 

orienting the external magnetic field in the principal axis system of R. The 

only Wigner matrix we actually need, D
2

m
i

 m
, is given in Appendix I. 

Table 1.1 Irreducible bases sets T^
 m
 contained in the dyadic 

vector products of the internal Hamiltonians. I
±
 are normalized: 

I
+
 = -<I

x
+iI

y
)A/2, I_ = (I

x
-iI

y
)A/2. 

ι 1 1 1 1 1 

I
х
 C* 1*0.0 I

 T
2,0 I

 T
2,±l l

T
2,±2 I 

I 1 1 1 1 1 
|CS γ I I

Z
B

0
| V(2/3)I

Z
B

0
 | I

±
B

0
/V2 | о I 

I j ι |i
r
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s
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r 2
i

s z
-i

r
.i

s
)/V6|(i

r ±
i

s z
+i

r z
i

s ±
)/72|i

r ±
i

e ±
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|D -2Y
r
Y

s
ii |i

r
-i

s
|(3i

r z
i

s z
-i

r
.i

B
)/V6|(i

r ±
i

s z +
i

r z
i

s ±
)/V2|i

r ±
i

e ±
| 

IQ eQ/6I(2I-l)îi| I2 | <3Iz
2-I2)/,/6 | (I±Iz+IzI±)/72 | I ±

2 | 

I I I I I I 

1.3 Coherent averaging techniques 

As was discussed in the preceding paragraph a spin system experiences, 

except for the Zeeman interaction, several internal interactions. Knowledge 

of these interactions can provide, in principle, structural information about 
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the system under consideration. All these interactions appeared to be 

anisotropic. As a result each interaction will give a specific powder pattern 

for a polycrystalline sample. When several spin species are present and/or 

several interactions act simultaneously on a spin, the resulting spectrum 

will very often be a featureless line and the spectroscopist will perish in 

the overabundance of information. In order to avoid this problem one can 

selectively average certain interactions, while leaving other interactions 

intact, in that way making it possible for the spectroscopist to extract 

separate pieces of information from the spin system. In the past years 

several of these techniques have been developed, which have greatly helped 

the progress of solid state NMR. 

1.3.1 Heteronuclear decoupling 

. One of the most used averaging techniques is heteronuclear decoupling 

which totally removes the influence of a certain spin species on the spectrum 

of another spin species that is observed. To be more explicit, solid state 

NMR often studies the ^ С resonance of organic molecules and polymers. The 

informative
 1 3

C chemical shifts can, however, not be extracted from the 

spectrum because of the overwhelming dipolar interactions with the abundant 

proton nuclei. By irradiating the sample with a strong resonant proton rf 

field the effect of the protons on the
 1 3

C spectrum can be removed. The 

result is that the
 1 3

C (1=1/2) spectrum is exclusively determined by the 

carbon chemical shift.
 1 3

c-
1 3
C dipolar interactions are not the present 

because the natural abundance of ^
3
C is only 1% and thus the average 

internuclear
 1 3
c-

1 3
C distance will be very large. 

To examine the effect of a rf field on a system consisting of rare spins 

5 coupled to abundant spins I we write down the relevant truncated 

Hamiltonian in the rotating frame 

«R - * < V
w
)

I
z - ' S

1
*

 + H
C

S
,I

 + H
C

S
,

S

 + H
D,II

 + H
D,IS

 + H
J,IS ^ ^ 

where UJQ = YJBQ and ω^ = ΎιΒ^. We assumed a rf field along the χ axis of the 

I spin rotating frame (which rotates with a frequency ω with respect to the 

laboratory frame). The first two terms of equation (1.34) represent an 

effective magnetic field in the rotating frame of strength 

B
e
 = V(Bi

 +
 (Βο-ω/γ)^), which makes an angle α = агсЬаіі{В^/ІВ0-ш/у)) with 
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the ζ axis. This effective field causes a comnon precession of the 1 spins in 

the rotating frame, as did the Bg field in the laboratory frame. 

We are now going to use the rotating frame concept again. In the same 

way we transformed from the laboratory frame to the rotating frame to remove 

the main Zeeman interaction (except for the small field Βρ-ω/γ) from our 

Hamiltonian we are now transforming a second time to a doubly-rotating frame 

to remove the presence of the effective field from our Hamiltonian. This is 

done in two steps, first we tilt the rotating frame over angle α to align the 

ζ axis with the effective field and then apply a rotation with frequency 

ω
θ
 = yBe about this new z' axis (fig. 1.5). Mathematically this means we have 

a transformation U = βχρ{-ΐω
β
ΐΙ

ζ
ι}βχρ{-ϊαΙ

γ
}. The internal Hamiltonians H^

n
t 

viewed from this doubly-rotating frame become U"^«H¿n^«ü. From this 

transformation we obtain terms that are static in the doubly-rotating frame 

and terms that oscillate with frequency ω
β
 (and 2io

e
). The time average of 

these oscillating terms is zero and they are thus of no importance for the 

system. It must be noted, however, that this is only true when the 

oscillation is fast enough, in other words the frequency ω
β
 must be large 

compared to the spread in frequency due to the internal interactions. 

Fig. 1.5 In the rotating frame (left) the spins precess about the 

effective magnetic field B
e
. In the tilted doubly-rotating frame 

(right) the effect of this effective field is removed and the spins 

appear to be static. 

When we apply these transformations to the internal Hamiltonians of 

equation (1.34) we see that in the doubly-rotating frame the chemical shift 

of the S spins remains unchanged. The horoonuclear I-I dipolar interaction 

transforms to [HA68] 
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IL
 τ τ
 = A(3I I -î ·ϊ )(3cos2

a-l) (1.35) 

ϋ,ΙΙ
 x τζ' sz' r s'

x 

where A contains the geometrical dependence of HQ. The remaining internal 

Hamiltonians of equation (1.34) contain the I
z
 operator which transforms to 

I
z
icosa. Thus for instance the I-S J coupling or the I-S dipolar interaction 

takes the form 

H
T
„ = Bcosa I S (1-36) 

IS Ζ' ζ 

This implies that when we make α = 90
e
 the heteronuclear interactions vanish 

in the doubly-rotating frame and thus when we observe the S spins, only HQ.
 S 

will be important. To make α = 90
e
, Βρ-ω/γ must be zero which means that the 

rf radiation has to be resonant for the I spins (ω=ω
0
=γΒο). 

1.3.2 Homonuclear decoupling 

Equation (1.35) immediately suggests another experiment, namely to make 

α = 54.7
e
, the magic angle, for which 3cos^a-l = 0 and the homonuclear I-I 

dipolar interaction vanishes from the Hamiltonian in the doubly-rotating 

frame. The interactions dependent on the I
z
 operator become scaled by a 

factor cosa = 1/J3 in that case (eq. (1.36)). Consequently, when we irradiate 

the sample with a rf field that is so far off-resonance that the effective 

field in the rotating frame makes the magic angle with the ζ axis, the effect 

of the homonuclear I-I interactions will vanish from our spectra. This 

experiment is known as the Lee-Goldburg experiment named after its inventors 

[LE65]. Suppression of homonuclear I-I interactions is very useful when one 

wants to study the I-S dipolar interactions from the S spin spectra, as will 

be shown in chapter 4. Although the I-I dipolar interaction does not directly 

influence the S spin spectra, it does affect the I-S dipolar interaction 

because an I spin changes its state constantly in a coupled system due to the 

so called flip-flop term I
r+
I

s
_ + I

r
._I

s+
 contained in the homonuclear dipolar 

interaction. Hence, to study the pure I-S interaction the I-I dipolar 

interactions have to be eliminated. In this process, as mentioned above, the 

I-S interactions are scaled by l/ з in the resulting spectra. In chapter 3 it 

will be shown how homonuclear decoupling is used in combination with magic 

angle spinning to reveal the small isotropic J couplings in the solid state. 
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Homonuclear decoupling of abundant nuclei can also be achieved with 

cycles of resonant u/2 pulses. The advantage of the cycles is that there is 

no need to switch the rf irradiation of f-resonance and that the rf radiation 

is not constantly present so that it becomes possible to monitor the I spin 

magnetization free of homonuclear interactions, in that way making it 

possible to study e.g. proton chemical shifts in solids. The first successful 

cycle was the 4-pulse WAHUHA cycle proposed by Waugh, Huber and Haeberlen 

[WA68] shown in fig. 1.6 

WAHUHA 

-Y 

I 

0 χ 2x 3x 4x 5x 6x=t
c
 time > 

Fig. 1.6 WAHUHA cycle where we assumed the π/2 pulses to be ideal 6 

shaped pulses. 

To study the effect of this cycle on the homonuclear dipolar interaction 

we again transform to a sort of "doubly-rotating" frame. However, this frame 

does not constantly rotate around a fixed axis with respect to the (first) 

rotating frame. As there is only a rf field present during a pulse, the 

"doubly-rotating" frame rotates over 90° during this pulse. For each pulse 

the rotation axis is determined by the phase of the pulse. It must be noted 

that these pulse phases (fig. 1.6) are defined in the (first) rotating frame. 

During the so-called windows of the cycle the frame remains static. 

Accordingly this frame jumps (assuming б shaped pulses) with respect to the 

rotating frame in the rhythm imposed by the pulse sequence (fig.1.7). The 

frame is therefore called the toggling frame. After a full cycle this 

toggling frame is again aligned with the rotating frame. 

When we look at the homonuclear dipolar interactions in the rotating 

frame we note that it does not become explicitly time-dependent but that it 

undergoes sudden changes every time a pulse arrives. Assuming the 

magnetization is sampled at the end of every cycle the system is controlled 

by the average of the Hamiltonian over one cycle (if l/t
c
 is large compared 

to the interaction). When evaluating the homonuclear dipolar interaction and 
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the terms linear in I
z
 in the toggling frame one important question arises; 

how does I
z
 (in the rotating frame) look as viewed from the toggling frame 

(fig. 1.7 »table 1.2). The result is that, as in the case of magic angle 

irradiation, the average of the homonuclear dipolar interaction vanishes 

whereas the terms linear in I
z
 become scaled, because I

z
 as viewed from the 

toggling frame lies along the 1,1,1 axis (table 1.2). 

t=o t=T t=2T 

/ 
X 

X 

ζ 

/ 
У 
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/ 
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χ 

ζ 

/ 
У 

У 
/ 

t=AT 

-7^ 

t=5T 

Fig. 1.7 Evolution of the toggling frame (b) during a WAHUHA cycle 

assuming 6 shaped pulses. Every time a pulse arrives in the 

rotating frame (a), the presence of the magnetic field is removed 

by an appropriate rotation. 

Table 1.2 Appearance of I
z
 and 3I

r z
I

s z
-I

r
«I

s
 in the toggling frame 

during the windows óf the multiple pulse cycle shown in fig. 1.6 

and their average over one cycle. The vector product Ir*Is is, of 

course, invariant under rotations. The pulses are assumed to be 6 

shaped. 

ι— — ι 1 1 
| time | U" 1 !^ Ι υ ^ Ο Ι ^ Ι ^ - ν ΐ ^ υ Ι 

| 0-τ, 5х-бх J I z | 3 I r z I s z - I r . I s | 

| χ-2ι,4χ-5τ | I y | 3 Ι Γ γ Ι 3 γ - Ι Γ · Ι 3 | 

Ι 2 ΐ - 4 τ Ι Ιχ 1 3 I r x I s x - V I s 1 

| average | ( Ι χ + Ι γ + Ι ζ ) / 3 | 0 | 
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In practice τι/2 pulses are never δ shaped pulses, and the success of 

multiple pulse cycles depends critically on an accurate adjustment of 

amplitude and phase of the pulses. Problems with the practical exploration of 

pulse cycles arise freon the finite width of the pulses, rf inhomogeneity, 

variations in the amplitude of the rf field resulting in pulse angle errors, 

phase errors etc. After the first applications of the WAHUHA cycle several 

improvements have been proposed, some of which partly compensate pulse 

errors. From all these cycles MREV-8 [RH73] and BR-24 [BU79] have emerged as 

the most effective cycles. 

1.3.3 Magic angle spinning 

In the previous paragraphs it was discussed how interactions can be 

averaged by manipulating the spins with radiofrequency fields. It was 

realized very early by the work of Andrew [AN58] and Lowe [L059] that dipole-

dipole interactions could be averaged by mechanically rotating the sample 

about ал axis inclined at the, by now famous, magic angle ,̂ = 54.7° with 

respect to the external field. As the geometrical part of anisotropic 

interactions becomes time-dependent due to mechanical rotation, the resulting 

spectrum will be determined by the time averaged Hamiltonian when the 

rotation is fast enough. In principle, every interaction which transforms as 

a second-order spherical harmonic (i.e. every internal interaction except the 

second-order quadrupole interaction) can be averaged to its isotropic average 

by magic angle spinning (MAS). 

In order to remove dipolar broadening from the spectrum with MAS, the 

spinning speed must exceed the dipolar line width which is very often not 

feasible, especially when protons are involved. Due to this restriction the 

initial interest in MAS soon subsided. MAS regained its popularity after 

Schaefer and Stejskal [SC76] demonstrated that it could be used to average 

the С chemical shift anisotropy in organic solids when the large dipolar 

interactions with the surrounding protons were removed simultaneously with 

heteronuclear decoupling. As these chemical shift anisotropies are generally 

much smaller than dipolar interactions, the condition that the spinning speed 

must exceed the line width is much easier fulfilled. It appeared from these 

studies that the powder patterns of chemical shift anisotropy (contrary to 

'.hose of homonuclear dipolar interactions) break up into a set of narrow 

spinning sidebands, when the spinning speed is smaller than the linewidth. An 
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excellent description of these phenomena has been given by Maricq and Waugh 

[MA79] and we briefly summarize that description here. 

The general appearance of a truncated Hamiltonian in irreducible 

spherical tensor components is (paragraph 1.2.6) 

"x ^ < o i . O
 + К

2.0^,0) 
(1.37) 

RQ Q is a scalar which is invariant under rotations. RQ Q is only non-zero 

for the chemical shift in which case it represents the isotropic chemical 

shift o^
so
. The geometrical dependence of the Hamiltonian is contained in the 

R
2 0

 w h
i

c
h becomes time-dependent on sample rotation. We know the appearance 

of R2 g (
=
P2 θ) ^

n
 ^

e
 principal axis system of R (eq. (1.32)). To obtain 

R2 g i
n
 the laboratory frame we have to transform from the principal axis 

system (PAS) to a coordinate system fixed in the rotor (RAS), choosing the 

rotation axis for ζ axis. We describe this rotation with Euler angles α,β,γ· 

The next step is to transform from the rotor axis system to the laboratory 

frame. As the position of the magnetic field in the rotor axis system is 

given by the polar angles д,, iii
r
t, the Euler angles for this 

transformation are (D
r
t,

 т
, 0 (fig. 1.8). Summarizing 

α,β,Ύ 
PAS RAS 

ω,-ΐ,^,Ο 

-> LAB 

2 2 PAS 
R̂  = E D (ω t,e ,0) Σ D^,, (α,β,γ) ρ ¿,υ , m ,υ r m ,, m ,m ¿,m 

(1.38) 

RAS 

Fig. 1.8 Principal axis system of a 

spin interaction (PAS) and the 

external field BQ as viewed from a 

coordinate system defined in the 

rotor (RAS). 
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Evaluation of eq. (1.38) and substitution in eq. (1.37) gives the resulting 

time-dependent Hamiltonian 

^ = ^ <
R
iso

T
0,0

 +
 V(3/2)f(t)T

2i0
) (1.39) 

with f(t) = |(Ασο8(2ω
Γ
ί+2γ) + Bsin(2ü>rt+2f)) 

+ -V2 (Ccos((i> t+γ) + Dsin(ci) t+Ύ)) 

A = 56 (η (3+COS2P) cos2a + 3(l-cos2ß)) 
о 

В = -= δη cosß sin2a 

С = τ 6 sin2ß (η cos2α - 3) 

D = -: δη sinß sin2a 

Wien the spinning frequency ω
Γ
 is large with respect to the frequency spread 

due to the interaction we are, as in the case of multiple pulse averaging, 

entitled to take the average Hamiltonian over one cycle. Here the cycle time 

is simply the rotor period 2π./ω
Γ
. Consequently, all oscillatory terms vanish 

from the Hamiltonian leaving only the isotropic term. As was mentioned before 

it is not always possible to attain spinning speeds larger than the 

linebroadening. In that case we must realize that the average Hamiltonian we 

have used so far is in fact the first term in an expansion, the Magnus 

expansion [HA68, HA76]. 

Η = н
0
 + н

1
 + н

2
 + 

(1.40) 

2τι/ω 2τι/ω t ' 
ω J r ιω -' r , 

H 0 = И J H ( f ) d t · , Hj = -^- J J [H(f •J.Htt ' i ldfdf ' 

The magnitude of the higher-order corrections Н^, Нз, H
n
 etc. to the average 

Hamiltonian H
0
 are (tc/¡H¡)

n¡H¡, where ÍH¡ represents the "size" of the 

Hamiltonian. Thus these higher-order corrections may only be neglected when 
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l/tc >> ¡H¡. However, all these higher-order terms involve commutators of the 

time-dependent Hamiltonian with itself at different times. Consequently, for 

interactions which do commute with itself at different times the average 

Hamiltonian will give an accurate description of the system (when 

observations are made at the end of each cycle) even if the condition 

l/tc >> ¡H¡ is not fulfilled. We call such interactions inhomogeneous. 

Clearly, the chemical shift anisotropy, heteronuclear dipolar interactions 

and first-order quadrupole interactions are inhomogeneous. Homonuclear 

dipolar interactions do not meet this condition because 3IrzIsz-I·! does not 

commute for different spin pairs r,s and r,t. We call such an interaction 

homogeneous. To summarize if we monitor the time evolution of a spinning 

system with inhomogeneous interactions synchronously with the rotor 

revolutions, the result will be determined by the isotropic average of these 

interactions even if the spinning speed is smaller than the static linewidth. 

The next question that arises is how the free induction decay of such a 

system will look when we do not make our observations synchronous with the 

rotor. Traditionally the free induction decay of a spin packet with a common 

resonance frequency is given as exp(iu)t). In case of MAS the resonance 

frequency ω is time-dependent, e.g. for the chemical shift we find 

ü>(t) = YB0(aiso + f(t)) (1.41) 

It is of course physically incorrect to substitute equation (1.41) in the 

expression for the FID. We must realize the definition of ω = d<p(t)/dt, where 

<p(t) represents the angle over which a certain spin packet has precessed 

during a time t, and that the FID is given by exp(i<p(t)) where <p(t) = ait only 

when ω is time independent. Generally the FID becomes 

t 

FID " exp{i ƒ id(t) dt} (1.42) 

0 

Because ü>(t) depends on the orientation of a microcrystallite relative to the 

field Bg, in a powder every spin packet will follow a specific path 

determined by <p(t) = Jü)(t)dt. The time-dependent part of (i)(t) only contains 

oscillatory terms of frequency ω
Γ
 and 2ω

Γ
, therefore the integral of this 

function will vanish for t = Ν2α/ω
Γ
 (Ν integer) for every spin packet. This 
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means that although the magnetization will dephase very quick because every 

spin packet follows its own path (in the plane perpendicular to B Q ) , there 

will be a refocussing of every spin packet at the end of every rotor period. 

In other words the FID will consist of a train of echoes, generally referred 

to as rotational echoes (fig. 1.9). Elucidating drawings of the path spin 

packets follow, are given by Olejniczak et al. [0L84]. Note that the rotor 

synchronous data acquisition discussed above means sampling at the top of the 

rotational echoes. 

1Λ3 ms 

Fig. 1.9 Rotational echo pattern 

of a sample spinning at the 

magic angle with a frequency of 

700 Hz, which is small conpared 

to the total anisotropy (~ 3300 

Hz ). The Fourier transform of 

this signal yields a spectrum 

consisting of a central line 

flanked by spinning sidebands. 

700 Hz 

The Fourier transform of such a train of rotational echoes results in a 

spectrum that contains the isotropic line flanked by spinning sidebands 

spaced at the spinning frequency (fig. 1.9). It has been shown by Dixon 

[DI82] that it is possible to get rid of these sidebands using four properly 
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spaced ττ pulses before data acquisition. The sidebands do, however, contain 

useful information about the total anisotropy. As shown by Maricq and Waugh 

[MA79] it is possible to recover б and η by a moment analysis of the sideband 

spectra. The approach of Herzfeld and Berger [HE80] is to evaluate sideband 

intensities numerically. They showed that evaluation of equation (1.42) 

gives, taking all orientations on a sphere in account: 

2я n 

FID = \R \ j ¡Fl2sinßdß da (exp{i(ioisot + Nc^t)} (1.43) 

2ri 

with F = - |βχρ{ί(-ΝΘ + Азіп2 + Bcos2e + Ссов + бзіп )} 

2ТІ J 
О 

γΒ _ γΒ _ γΒ _ γΒ 
where Α = -τ-^ Α, Β = -τ-Ζ В, С = -т-^ 2^2 С and D = —^ 2j2 Ό 

3ω 3ω 3ω 3ω 
г г г г 

A to D were defined in equation (1.39). Next they calculated sideband 

intensities for sideband N=-5 to N=5 for a great number of 6 and η values and 

presented the result graphically. These graphs can be used to recover the 

chemical shift anisotropy of a spinning sample. In chapter 5 of this thesis 

these calculations are extended to calculate sideband intensities in 2D 

exchange experiments used to extract information about super-slow motions in 

solids. 

As was mentioned before, the second-order quadrupole interaction does 

not transform as a second-order spherical harmonic and can therefore not be 

averaged to zero using MAS. Although there are spinning angles, different 

from the magic angle, were appreciable narrowing of the second order 

quadrupole 1/2,-1/2 line shape does occur, no single angle exists where this 

broadening completely disappears. Spinning about an angle different from the 

magic angle [BE82, GA82] is only useful in situations where the second order 

quadrupole interaction is the only linebroadening mechanism, because 

interactions like the chemical shift anisotropy will no longer be averaged in 

these so-called Variable Angle Sample-Spinning (VASS) experiments. 

Nevertheless MAS is advantageous for the central 1/2,-1/2 transition because 

the resulting powder pattern will be narrowed by a factor ~4. Expressions for 

the frequency of this central transition under fast MAS have been derived by 

Behrens and Schnabel [BE82] and by Lippmaa 's group [KU81, SA82] using 
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second-order perturbation theory. These expressions can be written in the 

convenient form of equation (1.28) [ΚΕΘ3] 

2 

V
i,-i

 = ~Ï6v" ( I ( I + 1 ) " |)(A(<P)cos4e + B(Ç)cos
2e + С(ф)) 

(1.44) 

Α(φ) = 2 " 3 I
0 0 8 2 4

* li
 η c o s ф 

2 2 8 7 2 2 

Β(φ) = -3 + ^ η + - Ticos2<p " g Π cos 2φ 

^/ ч 5 1 -. ^
 7 2 2

·, 
С(ф) = g - § Псозгф + ^ η cos 2φ 

where θ and φ are the polar angles orienting the rotation axis in the 

principal axis system of the electric field gradient. For polycrystalline 

samples this leads again to typical powder spectra (fig. 1.3) with peaks and 

shoulders determined by the condition dv/de = dv/d<p = 0 (fig. 1.4). 
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CHAPTER 2 

TWO-DIMENSIONAL· NMR 

2.1 Introduction 

The introduction of Fourier Transform (FT) NMR (in 1966) was a very 

important step in the development of nuclear magnetic resonance. The great 

advantage of FT NMR over the traditional Continuous Wave (CW) techniques is 

the higher sensitivity, arising from the fact that various transitions are 

excited with one short radiofrequency pulse and that the pulse responses of 

many experiments can be accumulated. This gain in sensitivity made it 

possible to record spectra of rare nuclei like 13C. This sensitivity 

improvement is, however, not the only benefit of FT NMR. With the 

introduction of pulse techniques a whole new field of experiments was opened, 

as pulses can be used in various ways to manipulate the spin system. 

A major development was the proposition of two-dimensional FT NMR by 

Jeener in 1971 [JE71]. This concept involves the detection of an NMR signal 

as a function of two time variables so that it becomes possible to relate the 

behaviour of the spin system during two time intervals. Subsequent Fourier 

transformation to both time variables yields a spectrum with two (correlated) 

frequency domains. It took several years before the first 2D experiments were 

actually performed and in 1976 the first thorough theoretical treatment 

appeared in the literature [AU76]. The initial development of 2D NMR was (as 

was the case with standard NMR) somewhat restrained by computer limitations. 

But with the booming expansion· of computer performance in the early eighties 

all these restrictions have vanished and a wealth of 2D experiments has 

emerged. For instance, the elucidation of complex structures like proteins 

and other large organic compounds in solution has become possible using 2D 

NMR. At this moment 2D techniques are used on a routine basis in university 

as well as industrial laboratories for structural analysis of compounds in 

solution. Two-dimensional solid state NMR has not reached that stage yet but, 

as we hope to show in this thesis, holds some promises for the future. 

2.2 General description of two-dimensional NMR 

Aue et al. [AU76] give a thorough quantum mechanical description of 2D 

NMR. This description is presented in a simplified form in the book of Bax 
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[ΒΑΘ2]. We see no benefit in repeating such a description here. In this 

paragraph we first present a less general but more illustrative classical 

approach using "Bloch-type" magnetization vectors. After that we indicate the 

quantum mechanical treatment by introducing the density matrix concept. 

2.2.1 Classical description 

Two-dimensional experiments are divided in four time intervals (fig. 

2.1). The preparation period generally consists of a long delay to allow the 

system to reach thermal equilibrium followed by one or more pulses to bring 

the system in its initial state (which normally means creation of transverse 

magnetization). During the subsequent evolution period the system evolves 

under certain spin interactions chosen by the spectroscopist by eliminating 

all unwanted interactions. The duration of this evolution period is the first 

time variable in the 2D experiment. 

preparation evolution 

н(і) 

< > 

mixing detection 

H(2) 

4 

Fig. 2.1 General division of a two-dimensional experiment in four 

time domains. The mixing time is not always present. 

In some experiments there is a mixing period consisting of pulses and fixed 

delays to relate the evolution to the detection period during which the 

signal is detected. Thus ал experiment is performed for a certain t¿ value. 

By performing a number of experiments for different t1 values while leaving 

all other settings constant a series of time domain signals is obtained. 

Fourier transformation of these signals with respect to t2 and t^ results in 

a two-dimensional frequency spectrum showing the state of the spin system 

during evolution and detection period and their possible correlation. 

This process is most easily understood when considering a specific 

experiment and follow the evolution of a few specific spin packets. Consider, 
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for instance, the so-called proton-flip experiment [B076] to relate the 

heteronuclear JQJ coupling (in one dimension) to the isotropic
 1 3

C chemical 

shift (in the other dimension). The pulse scheme for this experiment in 

solution together with the evolution of the magnetization vectors of a "c 

nucleus coupled to one proton is given in fig. 2.2. After the system is 

allowed to reach thermal equilibrium a " C
 π
/2 pulse is applied to create 

transverse magnetization. For a carbon nucleus coupled to one proton we get 

two magnetization components with a different resonance frequency. The 

precession of the two magnetization components in the x-y plane of the 

rotating frame is determined by their resonance frequencies, ω^ = ιαςς + 2aJ/2 

and u)
s
 = cu

cs
 - 2 η J/2, where f and s refer to the fast and slow component. 

Halfway the evolution time (t^/2) a π pulse is applied to carbon as well as 

proton spins. The " C τι pulse results in a 180° rotation of the magnetization 

vectors. Due to the Ĥ τι pulse every proton changes its state from ¡ l/2> to 

¡-l/2> or vice versa. This means that the resonance frequency of the fast 

component in the first half of the evolution period now becomes slow: 

lüQg - 2nJ/2, and that the slow component now becomes fast: ω ^ + 2іиГ/2. At 

time t^ one of the magnetization components will thus have precessed through 

the angle (2TiJ/2)t̂  and the other component through the angle -(2TiJ/2)t̂ , 

independent of the chemical shift. At this point the " C signal will be 

acquired under heteronuclear decoupling, which means that the resonance 

frequency of both magnetization components will be ÜJCS during the detection 

period t2· Thus the signal acquired during t2 will be modulated in phase by 

the heteronuclear J coupling in tĵ  

tl Ь 
S(t

1
,t

2
) = M

0
 exp{i(e)

cs
t
2
 ± (2^/2)^)} e x p { — ^ } e x p { — ^ } (2.1) 

T
2
 T

2 

where T2' ' and T2^
2
' are the decay rates expressing the decay of 

magnetization during the evolution and detection period. Fourier 

transformation of this signal gives a 2D spectrum with two peaks whose 

position are given by v^g in the F2 dimension and by ±J/2 in the F^ 

dimension. In chapter 3 it will be shown how this experiment can be performed 

in solids using magic angle spinning and multiple pulse decoupling. 

In the case of 2D-J spectroscopy discussed above the signal detected 

during t2 was modulated in phase by the J coupling present during the 

evolution period. Another possibility is that the magnitude of the 

magnetization vectors, whose precession is detected during t2, depends on the 
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interaction present during the evolution period. In that case one speaks of 

amplitude modulation. The general expression for the detected signal is then 

given by 

tl 2 
S(t1,t2) = M0 cosfu)^) exp(iii)2t2) exp{——^} e x p { — — } 

T2 T2 

(2.2) 

where uj and ¡i>2 represent the resonance frequency in respectively the 

evolution and detection period. An example of amplitude modulation is the 2D 

exchange experiment discussed in chapter 5. The effect of phase- and 

amplitude modulation on the resulting line shapes will be discussed in 

paragraph 2.3. 

'H 

-if 

ι DECOUPLING 

U / ι Ί \ 

/ Ц W-* ¿-

2 , 2 \ U ч . 

Fig. 2.2 Pulse sequence for the proton f l ip experiment in 

solutions, and the evolution of the magnetization components of 

carbon spins coupled to one proton, f and s refer to the fast and 

s l o w m a g n e t i z a t i o n component, u>f = шСд + 2n3/2 and 

u) s = iiiQg - 2 T I J / 2 . 
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2.2.2 Quantum mechanical description 

It is not always possible to describe an experiment by a simple picture 

using classical magnetization vectors as was done for the 2D-J experiment in 

the previous section. Especially when multiple quantum transitions play a 

role in the evolution period such a classical description is no longer 

possible. This is because multiple quantum transitions do not lead to 

observable magnetization, still in certain experiments they can modulate the 

signal acquired during the detection period t2- In such a case we have to 

resort to a density matrix calculation. 

The density matrix concept is used to give a statistical description of 

an ensemble of spins. Consider an isolated spin system which can be described 

with a complete set of eigenstates ¡n>. It is possible to expand a general 

state φ in a linear combination of these eigenstates 

ψ = Σ с ¡n> (2.3) 
η 

Consequently, the expectation value <A> of an operator A becomes 

<A> = <ф|А|ф> = Σ с с <m¡A¡n> (2.4) 
m,η 

For an ensemble of identical spin systems, which individually can of course 

be in different states, we have to take the average over the whole ensemble: 

<A> = Σ c_c_ <m¡A¡n> (2.5) 
m,η 

The average of the products of the complex coefficients с are considered to 

be elements of a matrix, the (Hermitian) density matrix σ 

σ = с с = ¡с !¡с ! ехр{і(а -а )} (2.6) 

nm m η ' η' ' m'
 Γ ν ν

 η m " 

where ¡cn¡ represents the absolute value of coefficient cn and Од the 

corresponding phase angle. Using the density matrix the expectation value in 

equation (2.5) is given by the trace Tr{a»A}. 
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The diagonal elements σ
η η
 of a normalized (Σ σ

η η
 = 1) density matrix 

give the probability to find an arbitrary spin system in state ¡n>. 

Accordingly, if one multiplies this number with the total number of spin 

system one finds the population of state ¡n>. The off-diagonal elements of σ 

can only be non-zero when there is a coherence between the phase angles Од, 

and OJJ. In thermal equilibrium these elements are always zero (random phase 

approximation). 

The time dependence of a state ψ in a system described by the time-

independent Hamiltonian Η follows from the Schrödinger equation 

ift gf = Ηψ (2.7) 

Substitution of the expansion of eq. (2.3) in equation (2.7), considering 

only the coefficients c
n
 to be time dependent, is used to obtain the time 

evolution of the density matrix 

f = "i [Η,ο] (2.6) 

This equation is generally known as the Liouville - von Neumann equation, 

whose solution gives 

o(t) = exp{-iHt/fi}'a(0)'exp{iHt/fi} (2.9) 

In a basis of eigenfunctions of Η this becomes 

am(ti = expUdVE^t/fi} 0 ^ ( 0 ) (2.10) 

Thus when a coherence between two different states ¡m> and ¡n> exists, the 

corresponding density matrix element is oscillatory with frequency 

ω^η = Ejĵ Ejj/fi. Usually we work in the rotating frame and the time evolution 

of σ in the rotating frame is found by taking the truncated Hamiltonian in 

the rotating frame for Η in equation (2.9). 

The description of a 2D experiment now simply means the calculation of 

the evolution of the density matrix during the pulse sequence, starting with 

the density matrix in thermal equilibrium. The effect of a ideal π/2 pulse 

along χ axis in the rotating frame, for instance, can be calculated as 

50 



a(t
+
) = exp{i| I

x
}-a(t_).exp{-i| Ι

χ
} (2.11) 

where t_ and t
+
 refer to the time directly before and after the pulse. 

According to the time scale of fig. 2.1 we have to calculate the density 

matrix in four steps [BA82]: 

σ
β
_ thermal equilibrium 

σ(0) at the end of the preparation period 

o(tj) at the end of the evolution period 

σίΐ^,Ο) at the end of the mixing period 

o(tj,t2) at time t2 during the detection period. 

When a(t
1>
t2) has been calculated the detected signal during the 

detection period is given by 

S(t
1
,t

2
) = Tr {o(t

1
,t

2
).(I

x
+iI

Y
)} (2.12) 

Here we assumed quadrature detection, which means that the magnetization is 

monitored along the χ axis and y axis of the rotating frame. It is clear that 

only those elements of a{t^,t2) which correspond to single quantum coherences 

give a contribution to the detected signal. These elements can, however, 

contain contributions of multiple and/or zero quantum coherences of the 

density matrix о(^) during the evolution period. So these multiple quantum 

transitions can be made visible by observing how they modulate the normal 

single quantum transitions during the detection period. In chapter 6 we 

discuss nutation NMR of half'-integer quadrupole nuclei using the density 

matrix concept. In that case there are several transition in an I > 1/2 

system that play a role during the evolution period whereas only the central 

1/2,-1/2 transition is detected during t2. 

2.3 Different kinds of modulation. 

As was mentioned above we distinguish two kinds of modulation in 2D 

experiments. Although the information a phase or amplitude modulated spectrum 

gives is in principle the same, they give different line shapes in the 

frequency domain. To understand this we first have to consider a normal ID 

signal, obtained using quadrature detection. Assume we have a spectrum 

consisting of a single line at frequency F. The signal can be written as 
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S(t) = M0 expUFt} exp{-- } (2.13) 

A complex Fourier transformation of this signal gives 

S(ü>) = f S(t) βχρ{1ωί} dt = Α(ω) + ϊθ(ω) (2.14) 

with Α(ω) = 
1 + T

2

2
(u)-F)

2 

and ο(ω) 
Τ

2
 (ω-F) 

1 + T
2

2
(u)-F)

2 

Actually the computer system stores the real (along χ axis) and imaginary 

(along у axis) signal in separate buffers. The complex Fourier transformation 

is performed by separately transforming the contents of these buffers with a 

sine and a cosine function. Therefore it is useful to know the result of a 

cosine transformation on a cosine signal etc.: 

ι 1 

| Signal 

| cos(Ft) 

| cos(Ft) 

| sin(Ft) 

| sin(Ft) 

1 

Fourier Transform | 

COS(<i)t) | 

sin(u)t) | 

COS(ü)t) | 

sin(ü)t) I 

1 
Result | 

Α(ω)+Α(-ω) | 

D(ÜÜ)-D(-IÚ) | 

0(ω)+0(-ω) I 

-Α(ω)+Α(-ω) | 

The exponential decay function has been omitted and should be thought to be 

implicitly present. By combining these expressions properly the result of 

equation (2.14) is obtained. It is obvious from these expressions that 

quadrature detection is needed to discriminate between positive and negative 

resonance frequencies. The process of Fourier transformation and the 

resulting line shape is given in fig. 2.3. The real part resulting from the 

Fourier transformation, which is the spectrum normally displayed, consists of 

an absorptive Lorentzian line shape. The imaginary term consists of a 

dispersive line shape. The disadvantage of the dispersive signals is that 

they are very broad because of their wide tails, and thus result in a lower 

spectral resolution. 
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Signal 

Fourier transform 

Spectrum 

Imaginary 

sin(Ft) 

Fig. 2.3 Schematic presentation of a NMR signal obtained with 

quadrature detection and the resulting spectrum after Fourier 

transformation. The letters с and s refer to cosine and sine 

transform. 

In a 2D experiment a series of (complex) FID's are collected as a 

function of t¿. These FID's are then transformed in the way described above. 

This gives a series of spectra which are modulated in phase or amplitude 

(fig. 2.4). The next step is to take the n"1 point of the real and imaginary 

buffer of each spectrum and combine these points to form the n^" (complex) 

interferogram, in other words we take a slice along t̂  out of the spectra 

shown in fig. 2.4. These interferograms are damped oscillating functions of 

t̂  like a FID. These interferograms are then Fourier transformed to obtain 

the 2D spectrum. 

53 



Fig. 2.4 Amplitude (a) and phase (b) 

modulation in a 2D spectrum. The 

picture shows the situation after the 

first Fourier transformation to t2. 

Slices in tĵ  direction displaying the 

modulation as function of tj are 

called interferograms. (reproduced 

from [BE83]). 

2.3.1 Phase modulation 

It appears that the result of this operation depends on the type of 

modulation. Consider one line in a 2D spectmm with frequency F^ during the 

evolution period t^ and frequency F2 during t2· In case of phase modulation 

we get 

S(tltt2) = С exp{i(F
1
t

1
+F

2
t

2
)} (2.15) 

For clarity the exponential decay functions are omitted. The Fourier 

transformations and the resulting line shape are given in fig. 2.5. As can be 

seen the real part of the resulting spectrum is a superposition of a 2D 

absorptive and dispersive line shape. In fact we have obtained the notorious 

"phase-twisted" line shape [B077] which has broad flanks. If we divide this 

line in four quadrants, two flanks are positive whereas the two other flanks 

are negative. These phase-twisted line shapes are not very popular in 2D 

spectroscopy of solutions where high resolution is very important. In 2D 

solid state NMR, however, the phase-twisted line shape can lead to disastrous 

results. Here not the lower resolution is a problem, but the negative flanks. 

2D powder patterns consist of broad ridges because the spins have different 

resonance frequencies due to the anisotropy of the spin interactions [LI80]. 
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When the negative flanks of neighboring lines in a ridge point to each other 

this leads to an extinction of the ridge (fig. 2.6). Even when this 

extinction does not (completely) occur the phase-twisted line shape generally 

distorts the resulting spectrum so much that it is no longer possible to 

interpret the spectra "intuitively" using ones common knowledge of the 

appearance of powder patterns. We will show in chapter 4, however, that it is 

possible to interpret the spectrum by convoluting calculated spectra with the 

appropriate line shape. 
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Fig. 2.5 Schematic presentation of 

the processing of a phase modulated 

signal and the resulting phase 

twisted line shape. In practice not 

these phase twisted line shapes are 

displayed but a magnitude calculation 

( V(R2 + I2) where R is the real and 

I is the imaginary signal) is 

performed before displaying the 

spectrum. This to avoid phasing 

problems. 
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Fig. 2.6 Stacked plot of a chemical shift powder pattern with phase 

twisted line shapes. As a result of destructive interference we do 

not observe the expected chemical shift powder pattern along the 

diagonal. Only some intensity at the positions of peaks and 

shoulders of the pattern is left. 

2.3.2 Amplitude modulation 

In case of amplitude modulation, omitting the exponential decay, the 

signal becomes 

3(^,ΐ
2
) = С cos{F

1
t

1
} exp{iF

2
t

2
} (2.16) 

When we transform this signal in the same way as mentioned above, again 

phase-twisted line shapes will be obtained. However if we apply only a real 

transform to the interferograms, the result will be a pure 2D absorptive line 

shape. This effect can be reached by blanking the imaginary buffer before the 

second Fourier Transform is applied (fig. 2.7). Although amplitude modulation 

is favorable in view of line shape it has also a disadvantage. As can be seen 

from the expressions in fig. 2.7 it is no longer possible to determine the 

sign of F^. Without sign discrimination the spectrum will be mirrored with 

respect to the transmitter reference frequency, thus making it impossible to 

know which resonance frequencies are larger and which are smaller than the 

reference frequency. This problem can be avoided by placing the transmitter 

reference frequency at one side of the spectral region. Doing so requires a 
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doubling of the sampling frequency to avoid aliasing of resonance lines about 

the Nyquist frequency. The Nyquist frequency is half the sampling frequency, 

it is the highest frequency that can be sampled properly. In other words when 

dealing with amplitude modulation, one has to obtain twice as many FID's as a 

function of t¿ as compared to phase modulation. 

T Ί 
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| (Α 1 (ω 1 )+Α 1 (-ω 1 ) ) А г ^ ) | ( 0 1 ( ω 1 ) + 0 1 ( - ω 1 ) ^ ( u ^ ) 

Fig. 2.7 Schematic presentation of 

the processing of an amplitude 

modulated signal. When the imaginary 

buffer is blanked prior to the second 

Fourier transformation, a pure 

absorption line shape can be 

obtained. 

2.3.3 Interconversion of modulation type 

As we have seen both types of modulation have their shortcoming, and it 

depends on the specific conditions which type of modulation is preferred. It 

is possible to convert amplitude modulation into phase modulation using 

proper phase cycling of the pulses. This is achieved by carrying out the 

experiment which gives the cosine modulation (eq. (2.16)) first. Then the 

phases of the pulses preceding the evolution period are shifted by π/2 
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radians (for single quantum transitions) to give a sintF^t^) modulated 

signal. Simultaneously the receiver phase is shifted π/2 radians, causing a 

τι/2 shift of the detected signal. The signal then becomes 

8 ( ^ Л
2
) = С sin{F

1
t

1
} exp{i(F

2
t

2
 + я/2)} (2.17) 

Adding of this signal to that of equation (2.16) obviously results in a phase 

modulation 

Sft^t^ = С [cos{F
1
t
1
}+sin{F

1
t
1
} ехр{іті/2}] expiiF^} 

(2.18) 

= С expUFjt^ exp{iF
2
t

2
} 

This means that in an amplitude modulation experiment sign discrimination of 

Fĵ  can be obtained, however, with the introduction of phase-twisted line 

shapes. 

The conversion from phase modulation into amplitude modulation is only 

possible when a so-called reversed precession signal can be obtained [BA77]. 

This is achieved by inserting а я pulse at the end of the evolution period. 

This π pulse changes the angle φ = F^t^ a spin packet has precessed through 

during t^, to -φ. Thus the sum of the normal and the reversed precession 

signal results in an amplitude modulated signal (expi-iFjtj} + exp{iF]tj} = 

cos{F^t^}). When the π pulse mixes the spin states (as is the case when 

homonuclear couplings are present) this approach is not applicable [BA77]. 

2.3.4 Sign discrimination combined with pure absorption line shapes 

Two methods have been proposed to obtain spectra which consist of pure 

absorption line shapes and allow discrimination of the sign of F^ as well. In 

the method due to States et al. [ST82] a cosine and a sine modulated signal 

are recorded separately. These two signals are then transformed with respect 

to t2 

FT 
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The imaginary parts of these two sets of interferograms are (after proper 

phasing of the F2 spectra) eliminated and the real parts of the files are 

merged to form one set of complex interferograms 

5 (
4 '

ω
2

) = C
 <

c c , s
<

F
i V

 +
 isin{F

1
t

1
}) Α

2
(ω

2
) (2.20) 

A Fourier transformation with respect to t^ now gives a spectrum whose real 

part has a pure absorption line shape 3(ω
1
,ω2) = Α

1
(ω

1
)Α2(ω2), which means 

that the intended result has been achieved. 

The method proposed by Marion and WUhtrich [ΜΑΘ3] is based on the time-

proportional phase incrementation (TPPI) technique [RE75] used to obtain 

quadrature detection with only one ADC (Bruker spectrometers work with this 

principle). In the TPPI method the phase of the receiver is shifted π/2 

radians after every sample point. This series of sample points is stored in 

one buffer. With a sampling time τ the signal can be written as 

first point: S(t) = С cos(Fx) = С sin{(F+(ii/2x ))x} 

second point: S(t) = -C sin(F2x) = С sin{(F+(Ti/2x) )2x} 

third point: S(t) = -C cos(F3x) = С sin{(F+(ii/2x) )3i} (2.21) 

fourth point: S(t) = С sin(F4x) = С sin{(F+(n/2x))4x} 

generally: S(t) = С sin{(F+(Tx/2x ) )t} 

As it/2x is equal to half of the spectral width, the spectrum resulting after 

transformation will be shifted by half the spectral width, thus making it 

possible to put the transmitter in the centre of the spectral region and 

discriminate between negative and positive frequencies even though we only 

collected one series of data instead of a separate real and imaginary signal 

as is сошюп in quadrature detection. The 2D generalization of this method 

means that the phase of the pulse preceding the evolution period is increased 

rt/2 radians for every t-̂  value to achieve a TPPI for the t^ amplitude 

modulation. After Fourier transformation and elimination of the complex 

signal, the interferograms look like 

8(ΐ
1
,ω

2
) = С sin{(F+(rt/2x))t

1
} Α

2
(ω

2
) (2.21) 

which obviously can be transformed with a sine to yield pure absorption line 
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shapes combined with sign discrimination because of the τι/2τ frequency 

offset. 

As was mentioned before it is advantageous to obtain pure absorption 

line shapes for optimal resolution and minimal file sizes. Therefore it is 

obvious that one would also like to use the techniques of States et al. 

[ST82] and Marion and Wühtrich [MA83]. The programs to process the acquired 

data in the appropriate way have recently come available on commercial 

spectrometers. If it is not possible to use these techniques, then for 2D 

solid state powder spectra, amplitude modulation is preferred. 

2.4 Present state of 2D solid state NMR 

The main aim in the development of solid state NMR has been toward high 

resolution to obtain spectra that could be compared to spectra obtainea in 

solution. Especially for 13C NMR the combined use of magic angle spinning and 

heteronuclear decoupling has been very successful in this respect. This 

technique is, however, not restricted to 13C. For instance, "Si which is 

important in silicates attracts a lot of attention these days. Recently also 

some progress is made in high resolution proton NMR of solids, combining 

magic angle spinning with homonuclear dipolar decoupling techniques 

(generally known as CRAMPS [PE77, SC76]). 

Some attempts have been made to obtain two-dimensional solid state 

spectra which are analogous to spectra obtained in solution. Caravatti et al. 

have succeeded in obtaining heteronuclear carbon-proton chemical shift 

correlated spectra of single crystals [СА 2]. A variation of this experiment 

was applied to powders by Caravatti et al. [СА З] and Roberts et al. [R084]. 

Heteronuclear 2D-J resolved NMR of solids [TE82, MA84, MI86, KE87], discussed 

in chapter 3 of this thesis, is also based on experiments in solution. To 

perform these experiments multiple pulse techniques are needed which demand 

an accurate setting of the spectrometer. For 2D experiments these settings 

must be stable over longer periods of time. Although commercial high power 

spectrometers suitable for executing multiple pulse cycles are available, 

most multiple pulse experiments were carried out by only a few groups which 

have a long experience with these techniques. 

Bax et al. [BA83] and Takegoshi and McDowell [TA86] showed that methods 

relying on the same idea as used for liquid state coherent off-resonance 

decoupling can be applied in solids to determine proton chemical shifts. 

Menger et al. [ME84] demonstrated that it is possible to observe carbon-
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carbon couplings in solids analogous to the multiple quantum experiments used 

to determine these couplings in solutions. It must be noted, however, that 

none of the above mentioned "liquid like" 2D solid state experiments have 

found many applications of physically or chemically interesting systems. 

It appears that there are more 2D experiments that explicitly exploit 

the anisotropic character of the spin interactions in solids. The advantage 

of 2D NMR in studies of anisotropic interactions is the possibility to map 

out different interactions in two dimensions, thus preventing spectral 

overlap and creating the possibility to study the geometrical interdependence 

of the spin interactions. For instance, as will be discussed in chapter 4, it 

is possible to separate heteronuclear dipolar interactions from the chemical 

shift anisotropy. Waugh and coworkers [HE76, RY77, OP77] used this technique 

to obtain information on the orientation of C-Η bonds in several single 

crystals and oriented polymers. Stoll et al. [ST76] and Linder et al. [LI80] 

applied the technique to powdered samples, demonstrating the potential of the 

technique to obtain geometrical, orientational and motional information. In 

chapter 4 we show how the orientation of the chemical shift tensor in poly-

(oxymethylene) could be determined using this technique [MA87]. Munowitz et 

al. [MU81, MU82, MN82, MU84] developed a slow spinning variant of this 

experiment, which has been used by Schaefer et al. [SC83, SC84, SH84, SA84, 

SC85] to study motions in the kHz regime in polymers. These spinning 

experiments were extended by Terao, Miura and Saika [ΊΈ86, MU86] who switch 

the spinning axis on and off the magic angle between the evolution and 

detection period in order to obtain scaled-down powder patterns of the 

dipolar interactions to facilitate the interpretation of the spectra. Schuff 

and Haeberlen [SU83] described a 2D experiment to obtain homonuclear dipolar-

coupled spectra. 

The above mentioned switching of the spinning axis from off the magic 

angle (during the evolution time) to on the magic angle (during the detection 

time) was originally proposed by Bax, Szeverenyi and Maciel [BX83] to 

determine the chemical shift anisotropy in molecules with several chemically 

different sites. In the evolution period when the sample is spinning off the 

magic angle the chemical shift anisotropy is not fully averaged whereas in 

the detection period with MAS an isotropic spectrum is obtained. Thus for 

every chemically different site in the F2 direction, a scaled powder pattern 

is found in the F^ dimension and the problem of spectral overlap is 

circumvented. Two other approaches to obtain this same results have been 

proposed by the same group. One involves the use of a series of rotor 

61 



synchronized η or 2π pulses [ВЗ Э]. In the other very fancy technique the 

sample is not spun about the magic angle but rotated over 120° in discrete 

steps [ΒΖβ3]. Due to the low sensitivity of this magic angle hopping 

experiment it was never used in real applications. The most straightforward 

method to relate isotropic and anisotropic chemical shifts in a 2D experiment 

is to acquire data synchronously with the rotor during the evolution time 

(giving an isotropic spectrum) and asynchronously during the detection period 

(which leads to a specific spinning sideband pattern dependent on the 

anisotropy) [AUSI, AU84]. Harbison and Spiess [HA86] proposed a 2D experiment 

for the study of partially ordered solids, in which the evolution period is 

started at a fixed orientation of the rotor. This experiment which gives 

information about the chemical shift tensor and the degree of order in the 

sample looks very promising for the study of fibers like the new "super-

strong" fibers. Correlation of chemical shifts in single crystals have been 

studied by Carter et al. [СА 5]. 

In two-dimensional exchange experiments of solids, discussed in chapter 

5, the chemical shift is present in the evolution and detection period. The 

object of this experiment is to detect some kind of spin exchange between 

spins with a different chemical shift during a mixing time that separates the 

evolution and detection period [SZ82]. This has been used in an analogous way 

as in experiments in solutions, to study chemical exchange [SZ83, ΗΑΘ5] or 

spin diffusion [SU82, BR83, C085, TK86] between chemically different sites. 

The anisotropy of the chemical shift is explicitly used to study spin 

diffusion between orientâtionally different, but chemically identical spins 

[ED84, HE84]. The discussion in chapter 5 is focussed on the detection of 

super-slow molecular motions in static [KE87] and slowly rotating samples 

[J084, KE85, KE86, KN87] via natural abundance 13C NMR. 2D deuteron NMR of 

D-enriched samples has been used by Spiess and coworkers to detect such 

super-slow molecular motions [SC86]. 

The recent interest in zeolites, clays and ceramics has focused the 

attention on obtaining structural information from NMR spectra of quadrupolar 

spins. It appears that it is generally very difficult to determine quadrupole 

parameters from high field NMR spectra. In 2D nutation NMR [SA83, SM83] the 

evolution of the spin system is followed in the rotating frame where the 

first-order quadrupole interaction plays a prominent role. In the detection 

period the normal high-field spectrum is acquired, modulated by the first-

order quadrupolar interactions in t^. This experiment is evaluated in chapter 

б [KT87]. The first preliminary applications of this method show promising 
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results [GE85, TR85, MA85, MA86, LI86, KT87]. With the knowledge that the 

majority of nuclei in the periodic table possess a quadrupole moment this 

experiment is likely to find many applications. 

Multiple quantum NMR is also developing very rapidly, and it seems a 

very promising technique. For a review about these experiments the reader is 

referred to Munowitz and Pines [MN86]. 
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CHAPTER 3 

HETERONDCLEAR TWO-DIMENSIONAL J-RESOLVED NMR 

3.1 Introduction 

Isotropic J coupling constants can give information about the electronic 

environment and chemical bonds in a molecule and various one- and two-

dimensional experiments exist to extract this information. In liquids ^C-^H 

coupling constants have proven to be very useful for spectral assignment and 

conformational analysis. If available, they could also play an important role 

in high-resolution solid state NMR. In liquids, all anisotropic interactions 

are averaged by rapid molecular reorientations and thus J-resolved
 1 3

C 

spectra are easily obtained by collecting data without proton decoupling. 

Usually, high resolution -^C spectra of solids are obtained with the CP-MAS 

technique, where magic angle spinning is used to average the anisotropy in 

the chemical shift and linebroadehing due to heteronuclear dipolar 

interactions is removed by high-power proton decoupling. Evidently proton 

decoupling also removes the scalar ^
3
C-

1
H J coupling from the spectrum. 

In principle, dipolar interactions can be averaged by fast MAS, because 

of their angular dependence of (3cos
2
e - 1). The isotropic J term in the 

Hamiltonian has no angular dependence and is not affected by MAS, and thus 

the intended result, a J-coupled ^C spectrum, would be achieved. In case of 

averaging with MAS, however, we have to distinguish between homogeneous and 

inhomogeneous interactions [MA79]. In case of a homogeneous interaction the 

resonance frequency of the spins is not static, in which case MAS is only 

successful when the spinning rate exceeds the line width of the spectrum of a 

static sample. For an inhomogeneous interaction, however, magic angle 

spinning can narrow the resonance line even if the spinning speed is smaller 

than the total width of the spectrum. In that case spinning sidebands arise. 

The relevant term in the heteronuclear dipolar "C-^H interaction looks like 

H = C(3cos
2
e - 1)I

Z
S

Z
, which at first site clearly qualifies as an 

inhomogeneous interaction. However, the homonuclear dipolar ^Η-^Η interaction 

contains a term C(I
r+
I

s
_ + I

r
_I

s +
), the so-called flip-flop term. Due to this 

term the resonance frequency of each proton spin is modulated, and thus the 

^Н-^Н interaction becomes homogeneous. The presence of this homonuclear 

proton dipolar interaction then makes the heteronuclear proton carbon 

interaction also homogeneous [MA79]. As dipolar interactions are homogeneous 
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and of the order of tens of kHz it becomes clear that averaging of these 

interactions by MAS is not yet feasible. 

The solution to this problem is to selectively average the homonuclear 

proton dipolar interaction. This can be done with magic angle irradiation 

[LE65], where the sample is irradiated with a steady proton rf field, shifted 

off-resonance so that in the rotating frame the spins experience an effective 

field oriented at the magic angle with respect to the ζ axis, in which case 

the spin part of the homonuclear dipolar interaction averages to zero. The 

same effect can be achieved with a sequence of strong rf pulses. These 

multiple pulse cycles, which have exotic names like WAHUHA and MREV-8, 

produce spin rotations which cause the homonuclear dipolar interaction to 

average to zero [HA76, HA85]. This selective averaging of the homogeneous 

•̂H-̂ H dipolar interaction renders the heteronuclear dipolar interactions 

inhomogeneous, which can then be averaged with HAS even at low spinning 

speeds. As a result only the isotropic J couplings remain present in the 

spectrum, although they will be scaled by the multiple pulse decoupling. 

Terao et al. [TE81] were the first to perform this experiment on adamantane. 

Until now most applications of this technique were on spherical organic 

molecules, like camphor and adamantane [TESI, TE82, TR82, ZI82, MA84], which, 

at room temperature, are in a "plastic" crystalline state where the molecules 

reorient rapidly around their symmetry axes and even diffuse through the 

lattice. This results in considerable averaging of the dipolar interactions. 

The remaining part of the homonuclear dipolar interaction can then relatively 

easy be averaged by proton multiple pulse decoupling. For rigid systems this 

technique is usually less successful due to the fact that the rf circuitry in 

standard CP-MAS probes of commercial solid state spectrometers does not yet 

allow to get short multiple pulse cycles necessary to average large dipolar 

interactions existing in rigid solids, although progress is made in this 

direction. Most of this work has been done by Terao, Miura and Saika and it 

must be noted that they recently succeeded in resolving J multiplets in rigid 

solids using a double bearing probe with accurate setting of the rotation 

axis and a short multiple pulse cycle (i.e. short τι/2 pulses) [MI86]. 

3.2 Experimental realization 

The experiment to obtain 2D-J resolved spectra is depicted in fig. 3.1, 

it is essentially the solid state analogue of what is referred to as the 

proton flip experiment [BA82]. First, transverse
 1 3
C magnetization is created 
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by cross polarization or a rt/2 pulse, followed by multiple pulse decoupling 

in the t^ interval. At time t^/2 a n-pulse is applied to both proton and 

carbon spins in order to refocus the chemical shift at time t-^ while leaving 

the scalar coupling intact. A further advantage of the n-pulse is that it 

also refocuses linebroadening effects arising from chemical shift 

distributions and/or susceptibility effects. In case of rigid solids it will 

be necessary to synchronize the evolution period tĵ  with the spinner in order 

to get refocussing from the τι-pulse and to avoid the occurrence of spinning 

sidebands in the Fj dimension. In the detection period t2 a FID will be 

acquired, with high-power proton decoupling, that is modulated exclusively by 

the scaled isotropic
 1 3

C-
1
H J coupling. 

Fig. 

2 2 

3.1 Pulse scheme of the solid state analogon of the proton 

flip experiment. Transverse
 1 3

C magnetization is created via cross-

polarization (CP). During the evolution period homonuclear proton 

dipolar interactions are removed using multiple pulse techniques. 

In the detection period high power proton decoupling (HPPD) is used 

to remove the influence of the protons on the
 1 3

C spectrum. 

The experimentally most difficult part of this experiment is the 

multiple pulse decoupling during the evolution period tj. It is now generally 

accepted that the most effective schemes for homonuclear decoupling are the 

MREV-8 [RH73] and the BR-24 [BU79] cycle. As no proton NMR signal has to be 

observed during the multiple pulse decoupling, the pulse widths can be 

increased to the semiwindowless limit [BUBI], in which the small spaces 

between the pulses disappear and the cycle becomes a sequence of joined pulse 

pairs. This makes experimental realization more easy, particulary within the 

restrictions of a double resonance probe. An important point when employing 

multiple pulse decoupling is that the phases of the four pulses have to be 

exactly in quadrature and their amplitudes have to be equal. For accurate 
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adjustments of the pulses several "tune up" cycles exist [HA79, BR81]. As 

amplitudes and phases of the rf pulses in the decoupler channel of our Bruker 

CXP-300 are not easily accessed, the rf signal was fed through a specially 

built "four-phase modulator", which allowed full control of phases and 

amplitudes, in that way circumventing the built in high-power decoupler. At 

the time these experiments were carried out, our spectrometer was equipped 

with an Aspect 2000 computer and Z70 pulse programmer. This means that the 

length of pulse programs is restricted to 16 lines. It is impossible to 

program the pulse scheme of fig. 3.1 using only 16 lines, especially when a 

long multiple pulse cycle is used. Therefore the multipulse decoupling is 

carried out by a separate pulse programmer, the "Spin Smasher", which has 

several multiple pulse schemes preprogrammed. This Spin Smasher can be 

activated with a single gate from the pulse programmer within the 

spectrometer, and thus multiple pulse decoupling (even BR-52) will only take 

one, line in a pulse program. A further advantage of this setup is that one 

can switch from one multiple pulse scheme to the other simply by setting a 

switch on the Spin Smasher. 

i^bïT Trtsc нйс~" ςόττ^—' sdö ' d 

HERTZ 

Fig. 3.2 Heteronuclear 2D-J resolved spectrum of adamantane. 
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Fig. 3.2 shows the heteronuclear 2D-J resolved spectrum of adamantane 

obtained with this setup, where semiwindowless MREV-8 was used for 

homonuclear decoupling. It can be seen that the scaled J multiplets are well-

resolved in the F^ direction. 
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Fig. 3.3 Contour plot of the 2D-J resolved spectrum of camphene 

together with its F2 projection, which gives the normal proton 

decoupled 1 3C spectrum of camphene. The J couplings in the F^ 

direction are scaled by a factor 0.48 due to the multiple pulse 

decoupling. 

Another example of a spherical molecule is camphene, here the J 

multiplets would severely overlap in a ID spectrum and the advantage of the 

2D spectrum becomes clear in fig. 3.3. Again, the J multiplets appear to be 

well-resolved but scaled due to the decoupling by a factor 0.48. The FT 

projection shows the normal proton decoupled ^ C spectrum of camphene. The 

chemical shifts found are, within the experimental error of 1 ppm, identical 

with the values found in liquid [WE72]. If we look at the assignment of the 
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resonances by Werstiuk et al.[WE72], however, we see that in the solid state 

spectrum carbons C-θ and C-6 have changed position, as well as C-9 and C-5. 

This is probably due to a misassignment, or it is due to some effect in the 

solid but that seems, considering the resemblances of the total spectrum, 

unlikely. Because of the line widths in the solid, the C-Η couplings can only 

be determined with an accuracy of several Hertz. For the C-10 carbon we find, 

taking the scaling factor into account, 159 Hz which is a normal value for 

sp^-hybrids. For the carbons C-l, C-4 and C-7 we find approximately 140 Hz. 

These values are in agreement with those in solution [WE73] and show that 

these carbons are the most strained. For carbons C-5, C-6, C-8 and C-9 a 

value of ~130 Hz is found. These results show that the information obtained 

from solid state spectra is identical with that obtained from spectra of 

liquids. This makes this experiment interesting for conformation studies in 

insoluble systems, or in systems were special effects are to be expected in 

the solid state i.e. more strain of certain bonds in the crystal. 

3.3 Carbon black-filled natural rubber 

Early proton NMR studies of rubber samples by Gutowsky et al. [GU53, 

GU57] show very narrow lines at room temperature indicating that dipolar 

interactions are averaged by CH3 rotation and segmental motions. Duch and 

Grant [DU70] succeeded in getting direct " c spectra of natural rubber using 

conventional high resolution techniques. Thus natural rubber seems a good 

candidate for J-resolved spectroscopy in the solid state. It appears that 

even for cured, carbon black-filled, rubber, HAS alone is sufficient to 

obtain heteronuclear J-resolved spectra, showing that there are extensive 

molecular motions present. The nature of these motions are discussed by 

comparing a series of spectra, obtained with and without HAS and dipolar 

decoupling, to those of the well studied plastic crystal adamantane. 

The studied rubber samples were prepared from Standard Halaysian Rubber 

and contained 50 phr HAF carbon black. The samples were cured with 2.5 phr 

Sulfur. The average molecular weight between cross-links is of the order of 

ten thousand. Spectra were recorded on a Bruker СХР 300 (carbon frequency 

75.4 HHz) and on a homebuilt 180 MHz spectrometer (carbon frequency 45.3 

MHz). On the CXP 300 spectra were obtained in a double-bearing CP-HAS probe 

operating with 4.5 цвес 90° pulses. The HAS experiments were carried out with 

spinning speeds between 2 and 3 kHz. 
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Fig. 3.4 shows the heteronuclear 2D-J spectrum of cured, carbon black-

filled, natural rvibber at room temperature, again obtained with the 

proton-flip experiment [BA82], but now no multiple pulse decoupling was 

applied during the evolution period. Thus unlike the "plastic" crystals it is 

not necessary to apply multiple pulse decoupling, meaning that dipolar 

interactions are averaged to an even greater extent in the rubber sample than 

in e.g. adamantane. In the Fl dimension we now find the full unsealed scalar 

13C-1H couplings, being 150 Hz for the C-2 carbon and 127 Hz for the carbons 

C-3, C-4 and C-5. These values are identical with those found in a chloroform 

solution of depolymerized natural rubber. The chemical shift values are, 

within the experimental error of 1 ppm, identical with those found by Duch 

and Grant [DU70]. 

11 poly (cis-1,4-isoprene) 

i lo ÎÎÔ lîo 40 30 20 

Ьс (ppm) 

Fig. 3.4 Stacked plot of the heteronuclear 2D-J spectrum of cured, 

carbon black-filled natural rubber. The proton flip experiment was 

used with high power proton decoupling during the detection time 

(but without multiple pulse decoupling during tj^). The experiment 

was performed with the sample spinning at the magic angle. 
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3.3.1 Motions in natural rubber vs adamantane 

In order to get more insight in the motional processes causing this 

averaging of dipolar interactions in rubber we took spectra under various 

conditions and compared them to adamantane spectra (fig. 3.5). Adamantane 

molecules are globular molecules that are cubic close packed (fee). The 

barrier to molecular reorientation at a site is low. As a result adamantane 

rotates fast about its molecular axes in the crystal (x = 1.7 10"
1 1
 sec at 

room temperature) [RE69]. Proton second moment studies [MC60, SM61] show that 

this rotation averages intramolecular dipolar interaction to zero; at room 

temperature the proton second moment is determined by intermolecular dipolar 

interactions whose magnitude depends on the distance between the molecular 

centers (lattice parameter 9.45 Λ) and amounts to 9 kHz. Diffusion is not 

very prominent at room temperature, only at temperatures above 475 К 

diffusion influences the proton T2. 

Gutowsky and Meyer [GU53] performed proton second moment studies of 

poly-(cis 1,4-isoprene) (natural rubber) as a function of temperature and 

cure time. With rising temperature the line width shows two regions of 

change. The lines start to narrow at temperatures of 140 - 170 K, this is 

assigned to the onset of CH3 group rotation. A second larger decrease (per K) 

in line width was observed at ~ 225 K, assigned to the onset of segmental 

motion. The lines do not narrow further at temperatures above 263 K. The line 

width is relatively narrow for a solid indicating that the chain segments are 

undergoing a considerable amount of random reorientational motions at 

frequencies of the order of 50 kHz or faster [GU57]. ^ C free-induction 

decays of poly-isoprenes have been obtained by Schaefer [SC72] and also 

indicate that there is considerable motional narrowing. In a carbon black-

filled rubber the lines appear to be 5-10 times broader which is interpreted 

as inhibition of certain motions of the polymer chains by the filler. This 

line broadening can be partly removed by MAS [SH72]. Multiple pulse narrowing 

of the proton resonance of both filled poly-isoprene and the pure gum has 

been carried out by Dybowski and Vaughan [DY75], showing that in both samples 

a linebroadening is introduced by anisotropic reorientational motions. Such 

spatial anisotropy of molecular motions has also been found in poly-

(cis-l,4-butadiene) by English and Dybowski [EN84, EN85]. They found that the 

^H and J-
3
C NMR lines could be narrowed by coherent averaging techniques i.e. 

MAS and multiple pulse NMR. This anisotropy in the motion, even without the 

presence of cross-links and filler material, is attributed to the presence of 
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chain entanglements whose lifetime seems to be long on the time scale of an 

NMR experiment. Extensive theoretical and experimental work on the effect of 

chain entanglements has been done by Cohen-Addad and coworkers [C074, CH74, 

С0 2, C085] using high-resolution NMR on, among others, molten polybutadiene 

and poly-(dimethylsiloxane). 

Fig. 3.5A shows adamantane and filled rubber * С spectra obtained 

without MAS and without high-power proton decoupling. For adamantane we see 

one broad resonance ~ 1500 Hz wide, whereas the rubber lines are rauch 

narrower ( ~ 400 Hz ). With high-power proton decoupling, while leaving the 

sample static (fig. 3.5B), the rubber lines are narrowed to 300 Hz. For 

adamantane the change is more drastic, now we can see the two separate carbon 

resonances each ~ 1Θ0 Hz wide. In the adamantane spectrum of fig. 3.5A the 

line width is determined by intermolecular dipolar interactions, these are 

removed by the proton decoupling in fig. 3.5B. The adamantane lines in fig. 

3.5B are inhomogeneouely broadened either by chemical shift anisotropy or by 

susceptibility effects. Broadening by chemical shift anisotropy, however, is 

very unlikely because the rapid reorientations of the molecule which average 

intramolecular dipolar interactions will also average the chemical shift 

anisotropy due to intramolecular interactions. It has been reported that 

compressing adamantane into a sphere reduces the line widths [GA81]. It is 

thought that the compression removes most of the voids in the sample and thus 

reduces the susceptibility distribution through the sample. The result of the 

rubber spectra can be explained along the same lines. It has to be noted, 

however, that the broadening by dipolar interaction of the rubber lines in 

fig. 3.5A is one order of magnitude smaller than for adamantane (100 Hz vs 

1000 Hz). 

The broadening of the rubber spectrum in fig. 3.5B is quite substantial 

(300 Hz), and is proportional to the field (a line width of 180 Hz is found 

on a 180 MHz spectrometer). As the contribution of dipolar interaction to the 

line width in fig. 3. 5A amounts to only 100 Hz, it is evident that there are 

fast, nearly isotropic, motions present which average the dipolar interaction 

and, of course, the chemical shift anisotropy is averaged along with it. Thus 

the rubber line width found in fig. 3.5B is probably due to microscopic 

inhomogeneities generated by the carbon black filler particles. This is in 

contradiction with the result of Schaefer et al. [SH72] who state that the 

1 3
C NMR line in a non-spinning, filled, vulcanized sample is purely 

homogeneous. 
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ADAMANTANE NATURAL RUBBER 
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Fig. 3.5 Spectra of adamantane and natural rubber obtained under 

various conditions. In the rubber spectra there is an extra line 

present at 43 ppm from an antidegradant which was no subject of the 

present study. A. No decoupling and no magic angle spinning. The 

line width for adamantane (ADA) is 1500 Hz and 380 Hz for natural 

rubber (NR). B. High power proton decoupling but no magic angle 

spinning. ADA 180 Hz; NR 300 Hz. C. Magic angle spinning but no 

decoupling. ADA 90 Hz; NR 35 Hz. D. Magic angle spinning combined 

with multiple pulse decouplong (semi-windowless MREV-8 [BU81]). 

ADA 11 Hz; NR 35 Hz. E. MAS and high power proton decoupling. 

ADA 3 Hz; NR 35 Hz. 
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If we now turn the proton decoupling off but spin the sample at the 

magic angle we observe well resolved J-multiplets in rubber. This means that 

all interactions except for the isotropic chemical shift and the scalar J 

coupling are averaged to zero by MAS. In adamantane line widths of 90 Hz are 

observed but although the scalar coupling is approximately 130 Hz no sign of 

a splitting of the lines into J-multiplets is observed. Here MAS is not 

capable of averaging the homonuclear proton dipolar coupling which is of the 

order of 9 kHz. So there are residual proton dipolar fluctuations which 

modulate the coupling Hamiltonian J I»S (I = proton, S = carbon) i.e. make it 

time dependent. As a result J<IZSZ> is too small to be observed. In 

adamantane a combination of MAS and multiple pulse decoupling (fig. 3.5D) is 

necessary to observe scalar couplings. However, we believe that MAS alone 

will be sufficient at spinning speeds above 10 kHz. In the rubber sample the 

residual dipolar couplings are small enough to be completely averaged by 2 

kHz spinning. Here the only effect of multiple pulse decoupling is to scale 

the J-couplings which results in a reduction of the resolution (fig. 3.5D). 

Fig. 3.5E shows the adamantane and rubber spectrum obtained with a 

combination of MAS and proton decoupling resulting in 3 Hz wide lines for 

adamantane and 30 Hz line width for the rubber. This residual line width in 

rubber is probably caused by susceptibility effects not averaged by MAS 

anâ/ox a macroscopic distribution of chemical environments. In conclusion 

these experiments show us that the heteronuclear carbon-proton as well as the 

homonuclear proton-proton dipolar interaction is much smaller in cured, 

filled, natural rubber than in adamantane. This is supported by the fact that 

it is very difficult to establish cross-polarization for the spinning rubber 

sample whereas for adamantane polarization transfer is still possible 

although magic angle spinning already has his effect on the transfer as has 

been studied by Stejskal et al. [ST77]. 

Of course it is not possible to simply translate adamantane results to 

the natural rubber because the systems are very different. Still we can draw 

some conclusions. The fact that intra chain dipolar interactions are averaged 

(which is of the order of tens of kHz) shows that there must be fast motions 

using different degrees of freedom of the chain segments. A simple rotation 

of the chains for instance would scale the dipolar interaction but cannot 

make it vanishingly small. However, the motion must still be restricted i.e. 

cannot use all the degrees of freedom of a chain segment otherwise magic 

angle spinning at the moderate speed of 2 kHz would not be capable to narrow 

the lines further as we observed in fig. 3.5 [ANSI]. Several authors have 
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pointed out before that the motions of elastomers above the glass temperature 

are anisotropic. This anisotropy already exists in uncured rubbers without 

filler material due to chain entanglements [DY75, EN84, EN85] and the effects 

can even be observed by high-resolution NMR [C074, CH74, C082, C085]. So 

these entanglements have a lifetime longer than the time scale of the NMR 

experiment. The only effect of cross-links and filler material is to magnify 

the spatial restrictions on the polymer chain. The fact that (inter) dipolar 

interactions between different chain segments are also very small is 

surprising. As mentioned before inter molecular proton dipolar interactions 

in adamantane are rather big (~ 9 kHz). In the rubber sample discussed here 

and elsewhere [SC72, SH72, DY75] the average -̂Η-̂-Η dipolar interaction for 

protons located on neighboring chains or chain segments is at least 50 times 

smaller than in adamantane. This in spite of the fact that there are filler 

particles, cross-links and entanglements holding different chains together. 

It means that either the inter-chain distance is very large or that there is 

enough diffusion in the natural rubber to average this interaction. With 

diffusion large scale lateral movements of chains with respect to each other 

are meant. It would implicate that large parts of the polymer network have to 

reorient. If this is the case will be investigated further using 2D-exchange 

NMR, as will be described in chapter 5. 
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CHAPTER 4 

20 CORHEIATION OF CHEMICAL· SHIFT AND DIPOLAR INTERACTIONS 

4.1 Introduction 

Many spin interactions in a solid are described by a tensor. As tensor 

interactions are related to molecular and crystal axes, the information 

contained in such a tensor interaction can be used to obtain geometrical 

information about the molecule or crystal being studied. It is well-known, 

for example, that the magnetic dipole interaction between two spins is 

coaxial with the internuclear axis of the two interacting nuclei. Knowledge 

of the ccenplete tensor of the dipolar interaction between a ^ С
 а ш

з
 a
 Іц, f

o r 

instance, yields quantitative information about the C-Η distance and the 

orientation of the C-Η axis with respect to the molecule. 

The first technique to record dipolar modulated " C spectra of solids, 

the 2D separated local field (SLF) experiment, was proposed by Waugh [WA75] 

and applied to single crystals and oriented polymers by his coworkers [HE76, 

RY77, OP77]. Here dipolar modulation refers to the fact that
 1 3

C FIDs are 

collected during the detection period of the 2D experiment, which are phase-

modulated by the dipolar interaction of the
 1 3

C spin with surrounding 

protons. Stoll et al. [ST76] were the first to use the technique in powders. 

They analyzed the spectra after a single Fourier transform, leaving the 

dipolar modulation in the time-space. Linder et al. [LISO] showed that it is 

advantageous to apply a complete two-dimensional Fourier transform of the 

acquired signals, thus obtaining very characteristic 2D powder patterns. 

Munowitz et al. [MUSI, MU82, MN82, MU84] applied this technique, that 

separates the chemical shift and heteronuclear dipolar interactions, to 

samples spinning at the magic angle. As both interaction are inhomogeneous 

(see chapter 1), the resulting two-dimensional spectrum consists of a set of 

spinning sidebands. The analysis of these 2D spinning sideband spectra can 

also give the geometrical information one wants to obtain. Schaefer et al. 

[SC83] used the experiment of Munowitz to detect the averaging of dipolar 

interactions, in that way obtaining information about molecular motions in 

the kHz regime. This has been applied to various polymers. 

Another example of the use of a tensor interaction will be extensively 

treated in the next chapter. There the chemical shift tensor of ^
3
C spins is 

used to detect and analyze slow molecular rotations. Via a novel two-
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dimensional solid state NMR experiment it can be determined for such a case 

about what axis the rotations take place and about what angle. One piece of 

information, however, is needed before the motion can be analyzed: the 

orientation of the chemical shift tensor of the particular
 1 3

C spin, relative 

to the molecular axes. Most conveniently, this can be determined from single 

crystal studies, at least when single crystals are available. For the system 

described in the next chapter, poly-(oxymethylene), single crystals of 

sufficient dimensions can not be obtained. Fortunately, the two-dimensional 

SLF solid state NMR technique allows the determination of a complete ^ C 

chemical shift tensor, including the orientation relative to molecular axes, 

even for non-crystalline material [LISO]. With this technique the orientation 

of the ^
3
C chemical shift tensor is determined relative to the dipolar ^C-^-H 

tensor interaction. Since the orientation of the latter is known, the
 1 3

C 

chemical shift tensor can be determined relative to molecular axes. In this 

chapter we apply this technique to poly-(oxymethYlene), in order to be able 

to analyze slow molecular motions in this polymer, as described in the next 

chapter. 

4.2 Experimental realization 

The pulse scheme (fig. 4.1) used to obtain spectra which correlate 

heteronuclear dipolar interactions and chemical shielding anisotropy is very 

similar to the 2D J-resolved experiment discussed in chapter 3. The main 

difference is that the sample is now static and thus, as multiple pulse 

decoupling is used during t^, the (scaled) heteronuclear dipolar "c-^H 

interaction is the major interaction modulating the signal detected during 

the period t2· When no α pulse is applied in the middle of the evolution 

period, the chemical shift anisotropy will not be refocussed at the end of t^ 

and has to be taken in account as well. In the detection period normal high-

power proton decoupling is used which means that the carbon resonance 

frequencies are determined exclusively by the chemical shift anisotropy. The 

description of this experiment in a vector picture is very straightforward. A 

certain spin packet precesses through an angle m'^'t^ during the evolution 

period, at that point the detection is started. Consequently the detected 

signal is modulated in phase by the interactions present in the evolution 

period. 

As in the case of J-resolved spectroscopy, the multiple pulse decoupling 

is the experimental bottleneck in this experiment. Basically the same setup 
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as described in chapter 3 is used. Here we want to average homonuclear 

dipolar interactions in rigid solids, however, meaning that we need short 

multiple pulse cycles (i.e. short τι/2 pulses). For this purpose a standard 

double resonance probe was equipped with a horizontal coil ( 0 = 6 mm) of flat 

copper wire, allowing π/2 pulses as short as 1.5 цзес. The sample used in 

this experiment was a cylindrical (5 χ 11 im) piece of polY-foxymethylene) 

(conrnercially available Hostaform-C from Hoechst). 

]H\CP 
пиши 
MP HPPD 

13л CP 'Ш^ 
Fig. 4.1 Pulse scheme for dipolar correlated chemical shift 

spectra. Transverse " C magnetization is created via cross-

polarization (CP). Multiple pulse decoupling (MP) is used in tj to 

remove homonuclear proton dipolar interactions. In the detection 

period protons are decoupled from the carbons using high power 

proton decoupling (HPPD). 

4.3 Correlation of dipolar interactions and chemical shift in POM 

Poly-(oxYmethylene) , with chain structure (-CH2-0-)
n
, is the 

polymerization product of formaldehyde. It is rather difficult to grow large 

crystals of the polymer, but some x-ray studies of small single crystals have 

been made. The stable form of POM has trigonal symmetry, with the chains 

arranged in a helical conformation. Within a single crystal only helices with 

the same handedness are found, with right or left handedness equally 

probable. Huggins [HU45] proposed the 9/5 model, meaning that the unit cell 

consists of chains with 9 CH2-0 monomer units in 5 turns of the helix. Uchida 

and Tadokoro [UC67] refined this to a 29/16 model. Both helices are so 

similar, however, that it is difficult to decide which model is the most 

reasonable [WU73]. The local tetrahedral symmetry of the CH2O2 unit appears 

to be hardly distorted by the helix formation (O-C-0 bond angle " 111°). The 

H-C-H angle is 109° and the C-Η bond length is 1.09 A. The H-C-H plane makes 

an angle of 55° with the helix axis [UC67]. This information of the proton 
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positions allows us to find the orientation of the chemical shift tensor 

within the molecule. 

Bulk-crystallized РОИ has a spherulitic structure, consisting of 

crystalline lamellae connected to each other by amorphous material. The 

lamellae, in which the molecular chains are folded, are approximately 100 Â 

thick [MC67]. The crystallinity is approximately 60 %. A detailed description 

of a spherulitic structure in crystalline polymers is given by Sharpies 

[SH72]. 

Proton-decoupled 13C spectra of a static sample of bulk-crystallized POM 

at room temperature show separate signals of the crystalline and the 

amorphous phase [VE79] (fig. 4.2b). Because the glass temperature of the 

amorphous phase is below room temperature, a lot of motion exists in this 

part of the polymer. In fact there is so much motion in the amorphous 

material that the chemical shift anisotropy is largely averaged, which 

results in a fairly narrow line in the NMR spectrum. For the rigid 

crystalline regions in the sample we observe a structured line determined by 

the chemical shielding anisotropy. 

α 

120 100 80 60 

ppm 

Fig. 4.2 •'•
J
C chemical shift spectra of bulk-crystallized poly-

(oxymethylene). spectrum b) gives the direct signal showing, 

besides the powder pattern of the crystalline parts of the polymer, 

the motionally narrowed line of the amorphous part. In spectrum a) 

the amorphous signal is removed by a selection on T^ (fig. 4.3a). 
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Fig. 4.3 a) Pulse scheme to obtain a chemical shift powder pattern 

of the crystalline part of POM without the amorphous signal via a 

T
1
 selection (see text). Scheme b) is used to obtain a 2D dipolar 

correlated spectrum free of the signal of the amorphous POH. 

The presence of the signal of the amorphous part obstructs the recovery 

of the principal values of the chemical shielding tensor from a ID spectrum, 

as well as the determination of the orientation of the tensor from a 2D 

dipolar correlation spectrum. Therefore we want to eliminate the signal of 

the spins in the amorphous regions from our spectra. This is easy because the 

spin-lattice relaxation time T^ is vastly different for the amorphous and the 

crystalline phase. At 75 MHz we find а " С ^ = go msec for the amorphous 

region and T^ = 18 sec for the crystalline region, in accordance with 

observations of Menger et al. [ME82] at 45 MHz. Fig. 4.3 displays the pulse 

scheme to eliminate the signal of the amorphous phase. First, transverse
 1 3

C 

magnetization, from amorphous as well as crystalline spins, is created using 

cross-polarization. This magnetization is rotated inmediately to the negative 

ζ axis with a n/2 pulse. Now the spins are affected by spin-lattice 

relaxation only, and thus relaxation to the positive ζ axis will start. At 

the point where the magnetization of the amorphous spins passes through zero, 

another π/2 pulse is applied, bringing the magnetization of the crystalline 

regions, which (because of its long T^) is hardly influenced by the short 
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delay, back in the x-y plane of the rotating frame. At this point we can 

start collecting data for a ID powder pattern or start the evolution period 

of the 2D dipolar correlation experiment (fig. 4.3). Fig. 4.2a shows the 

spectrum of the crystalline regions obtained in this way, giving the 

principal values Ощ^ = 67 ppm, σγγ = 86 ppm and 022
 =
 Ш PPm- The 2D 

spectrum separating heteronuclear dipolar interactions from the chemical 

shielding anisotropy, obtained with the pulse scheme of fig. 4.3b, is shown 

in fig. 4.4a. MREV-8 (π./2 pulse length 1.6 цзес) was used for homo nuclear 

decoupling during t-̂ . We observe a well resolved 2D powder pattern which 

should enable us to find the orientation of the shielding tensor in the 

molecule by simulation of the spectrum for different relative orientations of 

the
 1 3

C-
1
H dipolar tensor and the

 1 3
C shift tensor. 

4.4 Calculation of two-dimensional powder spectra 

A general description of the calculation of powder spectra resulting 

from experiments correlating tensorial interactions is given by Linder et al. 

[LISO]. Here we describe the specific case of the correlation of the 

heteronuclear dipolar interaction to the chemical shielding anisotropy in a 

CH2 group of poly-toxymethylene). During the evolution period t^, the strong 

homonuclear
 1

Η-·'Ή is suppressed by multiple pulse decoupling. Thus the 

relevant Hamiltonian for the
 1 3

C spins is determined by the chemical shift 

Hçg and the heteronuclear dipolar interaction HD. During the detection period 

normal high-power proton decoupling is applied so that only the 13C Zeeman 

interaction remains. 

H ( 1 ) = «CS + C «D Н ( 2 )
 -

 H
CS <ΛΛ) 

where С represents the scaling factor due to the homonuclear decoupling. Of 

course it is possible to remove the influence of H^g during t^ by applying a 

π pulse in the middle of the evolution period, as has been described by Stoll 

et al. [ST76]. But the effect of Hçg during t^ can also be calculated, 

therewith avoiding the need of an accurately adjusted к pulse in the 

experiment. 

Evaluation of the Hamiltonians H ^ ' and H ^ ) gives us the resonance 

frequencies during evolution and detection period, thus allowing the 

calculation of the total 2D powder pattern. Suiraning over all transitions (i 

and j), with resonance frequencies ω^^^θ,φ) and ω-:(
2
'(θ,φ), we get 
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POLY-(OXYMETHYLENE) 

1 kHz 
2 

0ί = 180 j3=90 У=90 

Fig. 4.4 a) 2D dipolar correlated
 1 J

C spectrum of crystalline ροίγ-

(oxymethylene) obtained with the pulse scheme of fig. 4.3b. MREV-8 

(τι/2 pulse length 1.6 με, cycle time 28.8 με) was used during t^. 

400 scans were accumulated for 34 t^ values. In t-^ a cosine filter 

was applied prior to Fourier transformation, b) Simulation of 

spectrum a) giving the orientation of the chemical shift tensor in 

POM (see text). 
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where θ and φ гиге the polar angles that describe the orientation of randomly 

distributed microcrystals with respect to the external magnetic field. The 

line shapes are denoted by the functions g. 

The resonance frequency of a certain " C
 S

pi
n
 during the evolution 

period depends on the eigenstate of the connected protons and on the 

orientations of the chemical shielding and dipolar tensors with respect to 

the external field. 

ω[ = <іі
сз
( ,<р) + С (ω

01
(θ,φ,α,β,γ) + ω^θ,φ,α,β,γ)) 

ü»2 = <і)
сз
(
 #
<р) + С (ω

01
(θ,φ

/
α,β,Ύ) - ω^ίθ,φ,α,β,γ)) 

(4.3) 

ω^ = ii>
cg
(e,<p) - С (ω^ίθ,φ,α,β,γ) - ω^θ,φ,α,β,γ)) 

ω
4
 = ы

СЗ
(
 '

ф )
 "

 С ((0D1(
e',P'a'ß'Y) + ω

02
(θ,φ,ο,β,Ύ)) 

During the detection period we simply find 

ω
( 2 )

 = ш
с д
( ,ф) (4.4) 

Here θ and φ are the polar angles which orient the external magnetic field in 

the principal axis system of the chemical shielding tensor, α,β and у are the 

Euler angles relating the dipolar interaction to the principal axis system of 

the CS tensor. The expression for ш
с з
 is easily obtained by transforming the 

Hamiltonian I^g from the principal axis system to the laboratory frame over 

the Euler angles φ,θ,Ο: 

2 2 2 2 2 

ω (θ,φ) = ω sin θ cos φ + w^sin θ sin φ + ω cos θ (4.5) 

with ωχχ = тВдОщс etc. In order to obtain expressions for IDQ^ and ω
0
2 for the 

two protons, we have to evaluate the dipolar Hamiltonian HQ in the laboratory 

frame. To get similar expressions for both protons we define a local axis 
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system (LOC) in the CH2O2 unit whose ζ axis is the bisector of the H-C-H 

angle and the γ axis perpendicular to the H-C-H plane (fig. 4.5). To come 

from the principal axis system of the dipolar interaction (D-PAS) to this 

axis system, one has to rotate over an angle І6 about the γ axis for proton 1 

and -іб for proton 2 (6 = H-C-H angle = 109°). As we like to determine the 

orientation of the chemical shielding tensor within the molecule, we 

transform from this local axis system to the principal axis system of the 

chemical shielding tensor (CS-PAS) over the Euler angles α,β,γ. These angles 

α,β,γ are thus the unknown parameters which we want to recover from the 

simulated spectra. The last step is then to transform from the CS-PAS to the 

laboratory frame (LAB) over angles φ,θ,Ο. 

D
.p

A S

 0
'**

6
-

0
 > LOC

 α
' Μ > CS-PAS Τ'

9
'

0
 > LAB 

(4.6) 

H
D
 = Σ D^ (,.θ.0) E UfB(a.ß.,> DJ (0,±ів.О) / г ^ * А 

m m 

Some algebra eventually yields the contributions of the dipolar interactions 

to the resonance frequencies during t̂  

"Dl,2
 =
 " ^ c V

5 r
CH

 [ 1
 "

 3 ( A sin
t

±
*

6
>

 + B
 cos{±i6})

2
] (4.7) 

with A = sine (cosa совβ αοε{φ+γ} - sina είη{φ+γ}) + cose cosa sinß 

and В = -sin© sinß οοβίφ+γ} + cose cosß 

Ζ 

Fig. 4.5 Local axis system (LOC) in 

the CH2O2 unit. The O-C-0 plane is 

chosen as the yz plane, and the H-C-H 

plane as the xz plane. The helix axis 

(-·-) makes an angle of 55° with the 

H-C-H plane. 

fei 

/ ¡At--
0 
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Before we can calculate the 2D powder pattern from these resonance 

frequencies using eq. (4.2), there is still one point to consider, namely the 

line shape for each resonance. As was discussed in chapter 2 this depends on 

the type of modulation and how the data are Fourier transformed. In this case 

we have to do with phase modulation, i.e. the phase of the signal detected 

during t2 is a linear function of length of the evolution period t^. 

Successive complex Fourier transforms with respect to t2 and t^ gives the 

following line shape of mixed absorption and dispersion signals. 

3(0^,ω
2
) " [Α

1
(ω

1
)Α

2
(ω

2
) - D ^ U Ì ^ D ^ Ù ^ ) 

(4.8) 
+ ί{Α
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1
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2
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2
) + 0

1
(ω

1
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2
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2
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2 

Τ
2
 Τ

2
 (UK-ω) 

with A (ω ) = —-ι "2 -^ W
 =

 , ,
φ
2 , Гг 

1 + Τ (ω.-ω) 1 + Τ (ω.-ω) 

Generally an absolute value calculation is performed on such a signal, i.e. 

the square root of the sum of the squares of the real and the imaginary 

signal is calculated. 

The presence of dispersion mode signals lowers the resolution of a 

spectrum, and can even lead to the disappearance of certain ridges in a 2D 

powder pattern. Pure absorption mode spectra can be achieved by performing a 

second experiment for each t^ value with an additional
 1 3
C a pulse at the end 

of the evolution period and coaddition the thus obtained FID with the FID of 

the original experiment [BA77]. The limited numbers of lines in a pulse 

program on a Bruker CXP-300 with Z70 pulse programmer, however, does not 

allow this in a straightforward way. Thus we have to calculate the effect of 

dispersion mode signals in our spectrum. This is legitimate because the 

experimental spectrum in fig. 4.4a shows, despite of dispersive signals, 

characteristic features which should allow the recovery of the orientation of 

the chemical shift tensor. 

The 2D spectra were calculated in a rectangular grid of 100 χ 100 

frequency values (ω^,α^). Generally 90000 sampling points were evaluated over 

a whole sphere. The spectrum thus calculated is subsequently convoluted with 

the line shape function described in eq. 4.8, followed by an absolute value 

calculation, resulting in a spectrum that can be compared to the experimental 

one. 

90 



4.5 Orientation of the chemical shift tensor in TOM 

Looking at the structure of poly-(oxymethylene), one expects the 

orientation of the chemical shielding tensor to be determined either by the 

local tetrahedral synmetry of the CH2O2 unit or by the overall symmetry of 

the helix (or even by both). Simulation of these possibilities gives very 

different 2D powder patterns, and the right solution is easily determined. 

Fig. 4.4b shows the calculated spectrum for α = 180°, β = 90°, γ = 90° which 

agrees very well with the experimental spectrum of fig. 4.4a. This means that 

the orientation of the chemical shielding tensor is determined by the local 

tetrahedral synmetry of the CH2O2 unit, which seems very reasonable, as the 

helix formation has hardly affected the local tetrahedron. The Ζ axis is 

oriented perpendicular to the O-C-0 plane, the У axis is located within the 

O-C-0 plane and bisects the O-C-0 angle. The X axis is of course 

perpendicular to the Y and Ζ axis (fig. 4.6). 

Fig. 4.6 Projection of the local 

CH2O2 unit in POM showing the 

orientation of the chemical shift 

tensor in the molecule, obtained by 

transforming the axis system in fig. 

4.5 over the Euler angles 180, 90, 

90. The Y axis points perpendicular 

to the plane of the drawing. 

By varying the angles α,β,γ in little steps we were able to determine 

the accuracy of this experiment. If one of the angles is changed by more than 

5° the resulting spectrum diverts clearly from the experimental spectrum. 

This means, taking eventual experimental variations into account, that the 

accuracy must be at least 10°. 
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CHAPTER 5 

TWO-DIMENSIONAL EXCHANGE NMR 

5.1 Introduction 

In 1979, Jeener et al.[JE79] proposed a three-pulse sequence to study 

rate processes like spin relaxation, spin diffusion and chemical exchange. In 

high resolution NMR the NOESY variant of this experiment has proven to be a 

powerful tool for elucidating the 3-dimensional structure of large 

biochemical molecules in solution. In solid state NMR the 2D exchange 

experiment can also play an important role in the determination of very slow 

molecular motions, chemical exchange and spin diffusion. 

Szeverenyi et al.[SZ82] were the first to transfer the Jeener experiment 

to the solid state. They showed that the experiment could be used in solids, 

under fast MAS conditions, in the same way as in liquids to study chemical 

exchange and spin diffusion between nuclei in different chemical 

environments. Furthermore, they demonstrated the effect of 4N relaxation on 

the coupled 13C spin and determined the 13C NMR line shape for different 

linebroadening mechanisms. In a subsequent paper [SZ83] proton exchange rates 

in solid tropolone were thoroughly studied. Harbison et al.[HA85] combined 

the 2D exchange experiment with chemical shift scaling to investigate 

exchange between chemically different sites in the slow spinning regime. 
14N spectral spin diffusion among the four non-equivalent NH4+ ions in a 

single crystal of antnonium sulfate has been studied extensively by Suter and 

Ernst [SU82]. Edzes and Bernards [ED84] proposed to apply the 2D exchange NMR 

experiment to static powdered solids, where the full chemical shielding 

anisotropy is preserved. This experiment can detect changes in the 

orientation of the chemical shielding tensor of a particular spin due to 

molecular motion and/or spin diffusion. However, it cannot discriminate 

between the two processes and has the further disadvantage that the signal is 

distributed over a broad 2D powder pattern which implies time consuming 

experiments and limits its application to systems with one or at most a few 

non-overlapping NMR powder lines. In this way Edzes and Bernards detected 

spin diffusion between differently oriented chains in polyethylene. Henrichs 

and Linder [HE84] did so for ^C-enriched zinc acetate dihydrate. Bronniman 

et al.[BR83] used the experiment to measure spin diffusion in adamantane. 
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This work was extended by Takegoshi and McDowell [TA86] who investigated spin 

diffusion within the J-multiplets. 

The fact that a three-pulse sequence can be used to study slow molecular 

motions with correlation times even longer than T2 / the effective transverse 

relaxation time (which is the limit for relaxation measurements), has been 

exploited by Spiess [SP85 and references therein]. Spiess applied the 

Jeener-Broekaert sequence [JE67] to deuterone, using the (anisotropic) 

interaction of the electric quadrupole moment with the electric field 

gradient as a mechanism to detect motions. This method is very elucidating 

when a full 2D powder pattern is recorded [SC86]. The disadvantage is of 

course that samples have to be deuterated. 

In this chapter it will be shown how the 2D exchange experiment is used 

to demonstrate (the absence of) molecular diffusion in carbon black-filled 

natural rubber, after the linebroadening mechanism is established [KE87]. 

Furthermore, a detailed theoretical and experimental description of how this 

technique can be used to investigate slow molecular motions via natural 

abundance ^C NMR, using slow magic angle spinning to combine the advantages 

of a MAS experiment with the information one can get from static powder 

spectra [J084, KE85]. 

5.2 Simple description of the experiment 

The pulse sequence for the " C CP-MAS analogue of the Jeener experiment 

is depicted in fig. 5.1. The preparation period of the experiment involves 

the creation of transverse magnetization. This can be done either by a ττ/2 

pulse or, as is shown in fig. 5.1, by cross polarization. In the latter case 

transverse ^ C magnetization will build up along the ^ C
 r
f field. In the 

subsequent evolution period the
 1 3

C spins undergo a particular interaction, 

generally the Zeeman interaction. This is achieved by eliminating ^H-
1 3
C 

dipolar interactions through high-power proton decoupling. Thus during the 

evolution period the *
3
C spins are allowed to precess freely, only subject to 

the Zeeman interaction. At time t^ a π/2 pulse is applied to the system, 

therewith creating for each spin isochromat a magnetization vector along the 

ζ axis whose magnitude depends on the angle θ the spin isochromat has passed 

through, in the rotating frame, during evolution. (In case of a static sample 

or a fast spinning sample this angle is equal to ωΐ^, where ω is the 

resonance frequency of the particular spin. In case of slow MAS a difficulty 

arises, because then the resonance frequency is no longer constant during the 
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evolution period. This special case will be treated separately in paragraph 

5.4.) The remaining transverse magnetization déphasés quickly because proton 

decoupling is turned off during the mixing time xm. So during the mixing 

period the magnetization vector of each spin isochromat is aligned along the 

ζ axis, with an amplitude determined by the resonance frequency during the 

evolution period. It is in this time interval (which can be as long as the 

spin-lattice relaxation time T^) that the exchange process can take place. 

The simplest process to envisage is chemical exchange were certain spins move 

to a chemically different environment and thus change their resonance 

frequency during the mixing period. At the end of the mixing period a π/2 is 

applied to reestablish observable
 1 3

C magnetization. During the detection 

period, the system undergoes the same interaction as in the evolution period, 

and the resonance frequency of each spin isochromat is monitored (by 

collecting a FID). 

Fig. 5.1 Pulse sequence for the 2D exchange experiment in solids, 

with cross polarization (CP) and high-power dipolar decoupling 

(DD). 90° pulses are black. In the case of slow magic angle 

spinning a synchronous mixing time is obtained with the Synchro-

Spin (SS). With an optical signal from the spinner, the Synchro-

Spin holds the pulse programmer at point Η and lets it continue 

after N spinner rotations at point C. The evolution of a spin 

packet during the experiment is shown below. 
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If there is no exchange mechanism present during the mixing period, each 

spin will have the same resonance frequency during the evolution and the 

detection period, meaning that the signal of each isochromat collected during 

t2 will be amplitude-modulated by a sine or cosine (depending on the phase of 

the rt/2 pulses) function with that very same resonance frequency. The 

resulting two-dimensional spectrum will only have signals on the diagonal. 

This spectrum on the diagonal will be identical to the ordinary one-

dimensional CP-MAS spectrum, when we assume that no intensity has been lost 

through spin-lattice relaxation. If, however, some spins have (ex)changed 

their frequency during mixing this will show up by the presence of 

off-diagonal peaks, whose positions are determined by the resonance 

frequencies during t^ and t2· The intensity of these cross peaks will be 

determined by the rate of the exchange process. A more detailed theoretical 

account is given by Jeener et al.[JE79], whereas the special case of slow 

magic angle spinning will be treated in paragraph 5.4. 

5.3 Application to natural rubber 

In chapter 3 it was seen that there are extensive molecular motions in 

carbon black-filled natural rubber. Taking 1 3C NMR spectra of the rubber 

under various conditions, and comparing them to adamantane spectra, led us to 

the conclusion that the heteronuclear carbon-proton as well as the 

homonuclear proton-proton dipolar interactions are averaged to a great 

extent. The fact that intra-chain dipolar interactions (which are of the 

order of tens of kHz) are averaged shows that there must be fast motions 

using different degrees of freedom of the chain segments. 

The fact that dipolar interactions between different chain segments are 

also very small is surprising. As mentioned in chapter 3, inter-molecular 

dipolar interactions in adamantane are rather big (= 9 KHz). In the rubber 

sample discussed here and elsewhere [SC72, SH72, DY75] the average ^H-^H 

dipolar interaction for protons located on neighboring chains or chain 

segments is at least 50 times smaller than in adamantane. This in spite of 

the fact that there are filler particles, cross-links and entanglements 

holding different chains together. It means that either the inter-chain 

distance is very large or that there is, in addition to chain rotations, 

enough diffusion in the natural rubber to average this interaction. With 

diffusion large scale lateral movements of chains with respect to each other 
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are meant. It would implicate that large parts of the polymer network have to 

reorient. 

To investigate if such a molecular diffusion exists we make use of the 

fact that the rubber
 1 3

C lines in the absence of MAS but with proton 

decoupling are inhomogeneously broadened, presumably by susceptibility 

effects due to the presence of the filler. In this picture it is believed 

that different sites relative to a filler particle have different 

susceptibility and therefore different resonance frequencies. We performed a 

Jeener-type 2D exchange experiment with high-power proton decoupling during 

the detection and evolution period on a non-spinning rubber sample. As T^ 

values are of the order of 80 msec (except for the quaternary carbon which 

has a much longer T^) a mixing time of 40 msec was chosen. The result of this 

experiment is shown in fig. 5.2. The fact that the lines are extended along 

the diagonal shows that they are inhomogeneously broadened [SZ82], because in 

an inhomogeneously broadened line each spin isochromat has a fixed resonance 

frequency, and thus it will resonate exactly along the diagonal in a 2D 

exchange spectrum. In a homogeneously broadened line, however, the resonance 

frequency of a certain spin is modulated constantly and will, generally, not 

have exactly the same resonance frequency during evolution and detection 

period. This results in a line shape that is broadened in both dimensions of 

the 2D spectrum. 

юррт 

Fig. 5.2 Contour plot of a 2D exchange spectrum (x
m
 = 40 ms) of a 

non-spinning rubber sample with high power proton decoupling during 

evolution and detection period. For the assignment of the lines see 

chapter 3. The line denoted X is from an antidegradant. 

97 



From these line shapes it can further be concluded that the polymer 

chains do not diffuse through great volumes in the sample and thereby 

allowing each
 1 3

C spin to sample different values of the inhomogeneous 

magnetic field on a time scale of 40 msec. If this were so than the lines 

would, as in the case of a homogeneously broadened line, spread out in the 

direction perpendicular to the diagonal. A spin which has diffused to another 

location in the sample experiencing a different field during the detection 

period than it did during the evolution period will not resonate on the 

diagonal. Thus with this 2D experiment no molecular diffusion can be 

detected. The negative result may point to the absence of diffusion on a time 

scale of 40 msec in which case the relatively small inter-chain dipolar 

interactions must be due to a large distance between different segments. An 

alternative explanation can be, however, that reorientations are limited to 

small regions, i.e. in voids between filler particles, where the magnetic 

field is rather constant. 

5.4 2D exchange NMR in slowly rotating solids 

As we have seen the 2D exchange experiment relies on the fact that, in 

the absence of exchange, the resonance frequency of a certain spin is the 

same in evolution and detection period, and in the resulting 2D spectrum NMR 

intensity is found at the diagonal only. In the presence of exchange NMR 

lines occur outside the diagonal. If we apply this principle to a solid state 

NMR experiment the resulting 2D spectrum depends on the experimental 

situation. If we exclude for a moment the possibility of (chemical or spin) 

exchange then for a static sample each spin has a fixed resonance frequency, 

depending on the orientation of the chemical shift tensor with respect to the 

external magnetic field BQ. The 2D spectrum has diagonal lines only, unless 

in the case of molecular motion which changes the orientation of the chemical 

shift tensor. For a sample where fast magic angle spinning averages the 

chemical shift tensor, the 2D spectrum is diagonal again in the absence of 

exchange. In this case molecular reorientations, between chemically identical 

sites, cannot give any off-diagonal intensity in the 2D spectrum. 

In the case of slow magic angle spinning, slow relative to the chemical 

shift anisotropy, the situation is different. Now the resonance frequency of 

a certain spin is no longer constant, but modulated by the spinning. In a ID 

experiment this manifests itself as the presence of a pattern of spinning 

sidebands [MA79, НЕ 0]. In a 2D exchange experiment this results in a 2D 
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spinning sideband pattern with diagonal as well as off-diagonal peaks, 

whether there is exchange (which includes motions) or not. This is not a 

desirable situation when one wants to detect any kind of exchange. The 

question of course arises why it could be of interest to work under slow MAS 

conditions. Fast MAS (i.e. total averaging of the chemical shift anisotropy) 

is preferred if we like to determine the rate of exchange between chemically 

different sites. However, if we would like to determine the relative 

orientations of the chemical shift tensors related by the exchange process or 

if we want to study exchange (including molecular motions) between chemically 

equivalent but orientationally different sites, then we need information 

about the chemical shielding tensors involved. Of course, a static sample 

will yield this information but this has the disadvantage that we "smear out" 

the intensity over a whole 2D powder pattern, moreover with several 

overlapping lines present the problem may easily become insoluble. With slow 

MAS these sensitivity and resolution problems are circumvented, overlapping 

powder patterns are resolved and the total intensity is confined to a 

restricted number of sidebands. These sidebands, however, do contain all the 

information about the chemical shielding tensor [MA79, HE80]. In the next 

section we will show that it is possible to derive a condition for the mixing 

period x
m
 for which the off-diagonal spinning sidebands disappear when there 

is no exchange. 

5.4.1 Theory of 2D exchange under slow MAS conditions 

In order to derive a formula to describe the intensity of each sideband 

in a 2D spectrum, we follow the classical approach of Herzfeld and Berger 

[HE80], who calculated sideband intensities as a function of CSA tensor 

values and spinning speed in a ID spectrum (see also chapter 1). First we 

have to evaluate the Hamiltonian during the evolution period, expressed in 

spherical tensor operators this is [HA76, MA79]: 

1 
H ^ = Ε Σ (-I)™ R

n
 Τ, (5Л) 

C S
 1=0,2 m=-l

 1
'"

Ш 1
'

m 

After truncation we have two terms left : 

H
CS - *

 ( R
0,0

T
0,0

 + R
2,0

T
2,0> <

5
·

2 ) 
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with the spin dependent terms Τ
0 0
 = Ι

Ζ
Β

0
 and T2 Q

 =
 V(2/3) I

Z
BQ. RQ Q

 i s a 

scalar equal to the isotropic chemical shift a, which is the same in every 

axis system. So we have to evaluate the term R2 Q which expresses the spatial 

dependence of the Hamiltonian. To do so we start in the principal axis system 

(PAS) of the shielding tensor were R is known (R=p with ρ
0
 g=a, P2 Q=V(3/2)6 

and P2
 ±
2

=
^

T
l/2, where б = σ

ζ ζ
 - σ and 6η = Ощ^ - σγγ), followed by a 

transformation to a coordinate system fixed in the rotor (RAS, the rotation 

axis is chosen as the z-axis). In this (rotating) coordinate system, the 

static magnetic field vector BQ appears to be precessing around the z-axis at 

the magic angle Θ,,, (see fig. 5.3). Consequently, the next step is to 

transform from the rotor system to the laboratory frame (LAB) over the Euler 

angles u)
r
t, ^, 0. 

α.β,Ύ 
PAS -> RAS 

ω t,e ,0 
r m 

-> LAB 

(5.3) 

2 2 PÄS 
«2,0= Vm-.O« 1^'^' 0) ?

1

1)
т",т'<

а
'

Р
'*> "г.т·· 

RAS 

Fig. 5.3 Principal axes system of the 

shielding tensor (PAS) and the 

external field BQ as viewed from a 

coordinate system defined in the 

rotor (RAS). 

Evaluating eq. (5.3) (appendix I) and substitution in eq. (5.2) then gives us 

the Hamiltonian during t^: 

H
cs
= -γΛΒ

0
Ι

ζ
[σ

1
+ з(А

1
соз(2ш^+2у) + B

1
sin(2(i»

r
t+2Y) ) 

+ ^(CjCoeícüj.t+Y) + D1(sin(u)rt+Y))] 
(5.4) 
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with A,=
 5
 б ( η(3 + cos2ß) cos2a + 3 ( 1 - cos2ß) ) 

1 о 

В = -τ 6η cosß sin2a 

С = - 6 sin2ß (ncos2a - 3) 

D = -= δη sinß sin2a 

from which the resonance frequency of each spin, as given by Herzfeld and 

Berger [HE80], follows directly. In chapter 1 we already mentioned that the 

intensities of spinning sidebands in a ID spectrum can be calculated from 

these modulated resonance frequencies of the individual spins. 

When any molecular motion or in general any spin exchange has occurred 

during xm, the orientation of the chemical shielding tensor may be different 

in tĵ  and t2. So we have to evaluate the Hamiltonian during the detection 

period after exchange has taken place. Now our starting point to calculate 

1*2 о i n e
4- (5.2) is the principal axis system of the CSA tensor after 

exchange has occurred. From this coordinate system we transform to the CSA 

principal axis system before exchange, followed by a transformation to the 

rotor coordinate system, and finally to the laboratory frame. 

λ,μ,ν α,β,γ ω t,e ,0 
PAS. > PAS. > RAS —> LAB 

2
 t

l 
(5.5) 

2 2 2 PAS 
R
2,0

=
 * > ,Ο^'^'

0
^,

0
»· • ,»· <

α
'Ρ'

Ύ)
 J . V · · ,m· · <

λ
·

μ
'

ν) p
2,m· · · 

Some algebra will eventually yield a Hamiltonian with the same general 

appearance as eq. (5.4): 

H
cs
= -YhB

0
I

z
[a

2
+ :j(A2cos(2(ürt+2Y) + B2sin(2u)rt+2Y) ) 

2 (5-6) 

+ 2"/2(С
2
сов(^П) + D

2
sin(u)

r
t+Y))] 

A
2
= -6 [j(3+cos2ß) {((1-οο82μ) (3-ησο82λ) + 4η СОБ2Л) cos(2a+2v) 

-4η созц sin2A sin(2a+2v)} 

+ sin2ß {зіп2ц (3-ησοΒ2λ) cos(a+v) + 2η βίημ είη2λ sin(a+v)} 

+ |(l-cos2ß) (4 - (1-со82ц) (3-ησο82λ))] 
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В = гб [cosß {-2η οοεμ sin2X cos(2a+2v) 

-=((1-οο52μ) (3-ηοθ62λ) + 4r|COs2X) sin(2a+2v)} 

+sinß {2η εϊημ είη2λ cos(o+v) - 8ΐη2μ (3-ηοθ82λ) sin(a+v)}] 

C_= -6 [sin2ß {=((1-οο82μ) (3-ηοθ82λ) + 4ησοε2λ) cos(2a+2v) 
2 ο Ζ 

-2η σοβμ sin2X sin(2a+2v)} 

-2cos2ß {είη2μ (3-ηαοε2λ) cos(a+v) + 2η εϊημ sin2X sin(a+v)} 

-|sin2ß (4 - (1-σο82μ) (3-ηοο82λ))] 

D = гб [sinß {-2η οοβμ sin2X cos(2a+2v) 

-5((1-οο82μ) (3-ncos2X) + 4ηοο82λ) sin(2a+2v)} 

-cosß {2η είημ sin2X cos(a+v) + εϊη2μ (3-ηοθ62λ) sin(o+v)}] 

Having defined our system we now turn to the calculation of the sideband 

intensities. As was explained in paragraph 5.2 the signal detected during t2 

is modulated in amplitude by the cosine (or sine) of the angle ^ a certain 

spin packet has passed through during t̂ . Neglecting relaxation effects, the 

FID of one ερΐη is given by 

g(t
1
,t

2
) = cos(ei(a,ß,T,t1)) βχρ(ίθ2

(α,β,γΛ,μ»νΛ
2
)) (5.7) 

The angles ^ and 2 the spins have passed through in the rotating frame are 

no longer simply the product of the resonance frequency ω and the evolved 

time t. Since the resonance frequency of each spin is now time dependent 

(frequency modulation) we have to evaluate the integral of ω over t 

t
l
 t

l
+
X

t
2 

θ
1

=
 J ̂ («»ß'T't) dt and θ

2
=
 Γ ω

2
(α,β,γ,λ,μ,ν,ΐ) dt (5.8) 

O t,+x 
1 m 

ш^ and Ш2 are determined by eq. (5.4) and (5.6) and represent the resonance 

frequency in re8pectivelY evolution and detection period. In саге of pure 

amplitude modulation, the FID can be split in a term with negative and a term 

with positive modulation frequency, generally referred to as the echo and the 

anti-echo [ВА 2 and references therein]. The spectra resulting from these 
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terms are, except for line shape effects, normally each others mirror image. 

In the case of slow spinning, as we shall see in the following, this will no 

longer be true. For the time being we concentrate on the anti-echo component. 

The anti-echo for the whole sample is 

2rt α 2n t t +x +t 

9
ae

( t
l'

t
2

) =
 ƒ ƒ /

e x p ( i
J

 w
i<

t
>

d t
>

 е х
Р ^ / ^

2
(t)dt) da sinßdß ày (5.9) 

0 0 0 0 t,+i 
1 m 

where the integration over α, β, γ represent a powder average over all 

orientations on a sphere. Evaluation of eq. (5.Θ) in Bessel functions using 

the property 

exp(iA sinip) = Σ ехр(ікф) J. (A) (5.10) 

k = —
 K 

gives the following contribution of one spin to the anti-echo 

5 Ε Σ Σ Σ F (Ν ) F*(N:) F (Ν ) F*(N¿) 
2 N IIN' Ν· 1 a 1 a 2 Ь 2 b 

а Ъ a b (5.11) 

.expi{-YB0o1t1+a>r(Nb-N¿+Na)t1- YBoO^+cu^t^ty-l^-N;-^)} 

F (Η)» Σ Σ Σ J (Ä^) J (Bj) ̂ ( 5 ^ JN.2j.2k.m(C ) exp-ift^m) 
3 к m J J 

F
2
(N)= Σ Σ Σ J(Ä 2) J (B2) Js(C2) JN.2p.2q.s(C2) exp-i¡(g+e) 

ρ q S 
expiN

Wr
x

m 

„here А ^ -^û
 Д і ( c / f

 ^.В^) and С^ -^2^2 ^ (c/f ^.й^) 

A two-dimensional Fourier transform of this anti-echo signal thus consists of 

a whole pattern of diagonal as well as off-diagonal spinning sidebands. Eq. 

(5.11) and eq. (5.9) now give us for the intensity of the sideband at 

position -YBQOJ+N^ÜJJ., -γΒοσ
2
+Ν

2
ω

Γ 

2π. к 

Ι ( Ν
1 '

Ν
2

) = Ш ƒ ƒ Е F
l

( N
l"

N
2

+ N
b

) FÎ ( N1 ) F2 ( N2 ) F2 ( Nb ) 8 Í nP dP d a <
5 Л 2

) 
0 0 % 

note that the integral over Ύ has already been carried out and gave the 

contribution 2n ôiNj-Ng'). Using the relationship 
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2π. 

J (A) = γ- [ exp(iAsine - іп ) de (5.13) 

and Ζ exp(-iNx) = 2α 6(x) (5.14) 
N=— 

we eventually get the intensity of sideband N
1
,N2 

2n π 2π 

I(N
1
,N

2
)= ƒ | ƒ ̂

1
( ) /*(8+ы

г
Х

т
) expKÍ^-N^e+N^^Jde 

0 0 0 
2R 2α 

[ /'(-θ') expí-iN^^de' J /
2
(φ) βχρ{-ϊΝ

2
φ}αφ sinßdßdo 

with ƒ (θ)=^- expi(Ä sin28-B cos28+C sine-D cos8) 

emd /_(φ)==— ехрі(А_8Іп2ф-В_со82ф+С совф-О-віпф) 

This expression shows that there will be signal intensity at all cross-points 

of the 2D spinning sideband spectrum. Even if there is no exchange, in which 

case /2(θ)=/^(θ), there will be diagonal (N^=N2) as well as off-diagonal 

(НдУ^) peaks present. However, when we take the mixing time as an integer 

number of spinner rotations, ω
ι:
χ
Π1
 becomes an integer multiple of 2a and 

vanishes from eq. (5.15), and when there is no exchange, the off-diagonal 

peaks vanish along with it. Then 

2a a 2a 

I(N
1
,N

2
)=| ƒ ƒ ^(θ) /

2
(θ) exp{i(N

2
-N

1
)e}de 

0 0 0 

2a 2a
 v 

Г /Л- ') exp{-iN θ'^θ' Γ /
2
(φ) ехр{-іМ

2
ф}аф sinßdßda 

0 

2a 

with ̂ ( θ ^ ί θ ) and ƒ |/
1
(e)|

2
exp{i(N

2
-N

1
)e}de = ̂  б ^ " ^ ) 

0 

2α α 2α 

gives Ι(Ν,Ν) = gì Γ [ I f ^^(φ) βχρ{-ίΝφ}άφ
 2 sinßdßda (5.17) 

0 0 0 
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This equation is equivalent to that given by Herzfeld and Berger [HE80] for 

the intensities of the spinning sidebands in a ID spectrum. So when there is 

no exchange and the mixing time is chosen as an integer number of rotor 

periods, the conventional ID spinning sideband pattern will appear at the 

anti-echo component of the resulting 2D spectrum. 

A similar evaluation of the echo component of an experiment with a rotor 

synchronized mixing period gives the sideband intensity 

2к H 2rt 

I(N1,N2)= ƒ ƒ ƒ /^ί-θ) / 2 ( " θ ) е х р и ^ - И ^ И 

О 
2п 2п 

ί/2(φ) exp{-iN2<p}d<p ƒ / ^ θ ' ) expíiN^^de' sinßdßda 

0 0 0 (5.18) 
2n 2n 

which shows that there will be off-diagonal peaks even if there is no 

exchange. So in this experiment the echo and the anti-echo component of the 

spectrum are not each others mirror image. For the detection of exchange it 

is thus desirable to acquire the anti-echo only, which can easily be 

achieved by appropriate phase cycling (table 5.1). 

These mathematical results can be understood by the following physical 

picture. At the beginning of the evolution period, the magnetization vectors 

of every spin packet lie along the same axis (determined by the 13C rf field) 

of the rotating frame. During t̂ , each individual component follows a 

specific path in the xy-plane, with a time-dependent precession frequency 

(see fig. 5.4) determined by eq. (5.4). These magnetization paths are 

periodic with period 211/0̂  (drawings of these paths are given by Olejniczak 

et al.[0L84]). At the end of the evolution period, the components eure brought 

to the z-axis with an amplitude which depends on the whole specific 

precession history of each individual component during t̂ . Now when the 

mixing time tm is synchronized with the rotor, the spinner orientation is 

exactly the same at the end of the evolution period as at the beginning of 

the detection period. When in addition there has been no exchange during xm, 

each spin packet starts at t2=0 with exactly the same precession frequency it 

had at the end of the evolution period and the precession history seems 

uninterrupted. As a result only diagonal peaks will appear in the anti-echo 

spectrum. Even in the case that the total (macroscopic) magnetization of the 

sample has vanished because the individual components have dephased at the 
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end of the evolution, there is still some order and because the labeling 

takes place for each individual spin packet, this label will then be 

recovered for the anti-echo magnetization emerging directly after the last 

pulse. For the echo component, however, pulsed echo formation and rotational 

echo formation (by MAS) interfere, i.e. if they don't coincide they destruct 

each other even if the mixing period is an integral number of rotor periods. 

Thus we will always get a rotational echo pattern, and thus spinning 

sidebands, in both dimensions of the spectrum. 

Table 5.1 Phase cycling for the 2D exchange experiment as shown in 

fig. 5.1, to select the anti-echo and suppress axial peaks. This 

can be further extended with a cyclops sequence. 

I 1 
| CP-phase 

1 Y 

1 Y 

1 Y 

I Y 
1 . _ . J 

f i r s t τι/2 

X 

-γ 

-x 

Y 
L 

second τι/2 

X 

Y 

X 

Y 
L. 

receiver 

χ 

- χ 

- χ 

χ 

Ι 

Ι 

Fig. 5.4 Variation of the resonance frequency of a spin packet 

during sample rotation about the magic angle. 
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5.4.2 Experimental realization 

In the preceding section it was concluded that the mixing period has to 

be synchronized with the rotor in order to be able to detect an exchange 

process by the presence of cross peaks. That this synchronization can not 

simply be reached by making the mixing time in the pulse prograimer an 

integer multiple of rotor periods may become clear by the following example. 

Assume we like to work with a mixing time of 1 second. If the spinner 

frequency has drifted by only 0.1 Hz during that time, the position of the 

rotor at the end of the mixing time will be turned 36° with respect to its 

starting position. This, of course, will give rise to the appearance of 

cross-peaks. To achieve exact synchronization, an optical sensor was used to 

generate short trigger pulses synchronous with the spinner rotation. These 

trigger signals were fed into a specially designed apparatus, the 

"Synchro-spin". Every period of the spinner such a trigger signal resets to 

zero a counter of the Synchro-spin (operating at 10 Mhz). At the end of the 

evolution period, a gate of the pulse programmer stops this counter and the 

Synchro-spin responds by holding the pulse programner (point H in fig. 5.1), 

and storing the value the counter has reached. A separate counter counts N 

trigger pulses (for N spinner revolutions). When the Nth trigger pulse has 

arrived, the 10 Mhz counter starts counting back to zero. When zero is 

reached, the Synchro-spin releases the pulse programmer (point С in fig. 5.1) 

which then continues with the final П./2 pulse. The effect is a mixing time of 

Ν2ιι/ω
Γ
 seconds with a accuracy better than I

o
 in the orientation of the 

spinner at the beginning and end of the mixing period, independent of N. 

Fluctuations in spinner frequency will now only alter the mixing time by a 

negligible amount. 

To demonstrate the effect of a synchronous mixing time experimentally, 

we took spectra of hexamethylbenzene (HMB). The experiments were carried out 

on a Bruker CXP 300, with a carbon frequency of 75.4 MHz. The spinners were 

of the Andrew-Beams type, as they are implemented in standard Bruker CP-MAS 

probes. The aromatic carbons of HMB have a large chemical shielding 

anisotropy. At room temperature, no exchange takes place on the timescale of 

this experiment (msec - sec region). In fig. 5.5a, the anti-echo component of 

the spectrum of the aromatic carbon of HMB is shown as results from a 2D 

exchange experiment with an asynchronous mixing time. A complete 2D spinning 

sideband pattern is found. If the Synchro-spin controls the mixing time, 

however, excellent synchronization is achieved and all off-diagonal peaks 
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disappear, as can be seen in fig. 5.5b. The measured intensities agree well 

with our computer simulations based on eq. (5.17). Manual adjustment of the 

mixing time, without Synchro-spin control, always gave rise to the appearance 

of off-diagonal peaks, even at mixing times as short as 10 msec. 

Fig. 5.5 Absolute mode spectra of the aromatic carbon atoms of 

hexamethyIbenzene. Sine-bell filters were used in both dimensions. 

Numbers indicate the position of the spinning sidebands. 

a) Asynchronous mixing time of 10 ms with ц = 2220 Hz. 

b) Synchronous mixing time of 30 rotor periods with v
R
 = 2980 Hz 

(XJJ. = 10.1 ms). c) Computer simulation of the spectrum shown in b). 
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Another testcase for this experiment forms dimethylsulfone (DMS), which 

exhibits a two-site jump about its twofold symmetry axis. This process has 

been characterized by a powder pattern analysis [S083]. DMS has one ^^C NMR 

line with a moderate anisotropy (ац - ^Т. =
 ^^ PP

111
»
 σ
3 3

 =
 7 ppm relative to 

TMS). The molecule jumps about its C2 axis (fig. 5.6c), so that the two 

methyl groups change place. The principal axis systems of the CSA tensors of 

these methyl groups can be related by a rotation over 108° about the 022 axis 

(perpendicular to the C-S-C plane). At room temperature the exchange rate is 

314 s
- 1
 [S083], which means an average jump time of = 3 msec. Figs. 5.6a and 

5.6b give the results of the 2D exchange experiment, with synchronous mixing 

times of 0 and 6.4 msec, respectively. As expected, fig. 5.5a shows only 

diagonal peaks. In fig. 5.5b the effect of the molecular motion is clearly 

seen in the appearance of cross peaks in the spectrum. 

Fig. 5.6 Absolute mode spectra and molecular structure of 

dimethylsulfone. The experimental spectra (a,b) were obtained at a 

spinner speed of 1250 Hz. Sine-bell filters were used in both 

dimensions. Numbers indicate the positions of the sidebands, a) 

Mixing time of 0 ms. The arrow indicates a small artefact. (128 χ 

96 FIDs). b) Synchronous mixing time of 8 rotor periods 

(x
m
 = 6.4 ms) (128 χ 1100 FIDs). c) Structure of DMS, indicating 

the 180° rotation about the C^ axis, d) Computer simulation of (b). 
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In order to simulate such a spectrum we have to take the change in 

orientation of the CSA tensor into account, and calculate the resulting 

sideband intensities using eq. (5.16). Furthermore, we have to know how many 

methyl groups have changed their position during x
m
, i.e. we have to know the 

conditional probability W(a
1
ja2,i

m
) that the orientation of the CSA tensor is 

02 at the beginning of the detection period, when we know it had orientation 

σ^ at the end of the evolution period. When we assume the jumping to be a 

stationary Markov process, this conditional probability is given by the 

differential equations [AB61] 

dW(o.|o.,t) η 
i d t ^ - Д И <°І! >

 П< <5·19> 
k=l 

where Π is the n-dimensional exchange matrix [AB61]. For the simple case of 

jumps between η equivalent sites with the probability of a jump between any 

two'sites Q, the elements of this exchange matrix are all Q, except for the 

diagonal terms which are -(n-l)Q. The solution of the differential equations 

then gives 

W(a.¡o ,x ) = I [1 + (n-l)exp(-nOxm)] 
ι ι ш η m 

(5.20) 

W(o ¡σ ,χ ) = i [1 - exp(-nQx )] î j 
i ] ro η m 

For DMS, n=2 and the jump frequency Q= 314 Hz. With a mixing time of 6.4 msec 

this would mean that 50% of the methyl groups are in a different position in 

the detection period with respect to their position in the evolution period. 

Fig. 5.6d shows the simulation for DMS with 50% exchange. The result agrees 

very reasonable with the experimental spectrum, except for the central peak. 

The differences in peak heights occur due to extra broadening of the 

sidebands, resulting from (long time) fluctuations in the spinning frequency. 

This affects sidebands (Νω
Γ
 !) stronger when they are further away from the 

central peak. This central peak is not affected by the fluctuations. Long­

time instability of the rotor speed is one of the weak points of the Andrew-

Beams type rotor. A further disadvantage is that it will not allow rotation 

at speeds below - 1200 Hz. 

In conclusion we can say that the results on DMS show that the technique 

works. It appears that this version of the 2D exchange experiment is an 

excellent method to study exchange processes (including molecular motions) in 

systems with a large chemical shielding anisotropy. In the next section this 
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technique will be used to detect and characterize super-slow motions in poly-

(oxymethylene). In general, a study of such motions might be hampered, 

however, by the presence of -L3C-13C spin diffusion. Further investigations 

are needed to establish at which im spin diffusion starts to be effective. 

Edzes and Bernards [ED84] showed the presence of spin diffusion in a static 

sample of polyethylene using a mixing time of 10 seconds. In adamantane such 

effects were already present after 2 s [BR83]. The effect of MAS on spin 

diffusion is not entirely clear. Of course, spinning at very high speeds 

would certainly eliminate 1 3c- 1 3C spin diffusion [VA79]. For adamantane, spin 

diffusion is indeed reduced drastically by MAS [BR83]. In p-dimethoxybenzene, 

cross-peaks due to spin diffusion in the presence of MAS showed up with a 

mixing time of 90 s [SZ82]. 

A prerequisite for the experiment is a spinner design, with an accurate 

angle positioning, that spins constantly over longer periods of time. 

Furthermore it is desirable to have temperature control, in order to study 

the temperature dependence of the exchange process. This might e.g. give a 

clue whether one is dealing with molecular motions or spin diffusion. Modern 

double-bearing spinners, do meet these conditions. 

5.5 Slow molecular motions in crystalline poly-(oxymethylene) 

It needs no further explanation that molecular reorientations of 

macromolecules exert great influence on relevant physical properties of 

polymers. Among the different techniques to study molecular motions, NMR has 

become a very valuable one. In NMR information about molecular motions is 

usually obtained by measurements of relaxation times T1, ^' Tlp' e t c· These 

relaxation times each have a specific range of sensitivity for molecular 

mobility. Spin-lattice relaxation, characterized by T ^ is sensitive for 

motions with frequencies at about the Zeeman frequency, whereas relaxation in 

the rotating frame, T l D, is dominated by molecular motions in the kHz regime 

(the magnitude of the B^ field). Slower motions can be studied via the NMR 

line shape. Characteristic line shapes can be obtained for systems exhibiting 

reorientations with correlation times corresponding to the total (static) 

width of the powder line shape. Still slower motions (xc 1 1 sec) can not be 

studied by this type of measurements. Spiess [SPSS] used the Jeener-

Broeckaert three-pulse technique to investigate such ultra-slow molecular 

reorientations in deuterated samples. As we have seen in the preceding 
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paragraph, the slow spinning 2D exchange experiment offers an excellent 

opportunity to explore these motions via natural abundance ^ C NMR. 

At this moment most information about these slow molecular motions is 

obtained from mechanical and dielectrical relaxation measurements. Such 

experiments are, however, in general not very suitable to give an accurate 

description of the type of motion on a molecular level. The a-relaxation in 

poly-(oxymethylene) (POM) for instance has been studied extensively, and is 

generally attributed to motions within the crystalline regions. Various 

models have been proposed, but no unique answer has emerged. 

5.5.1 Elucidation of super-slow motions in poly-(oxyinethylene) 

Poly-(oxymethylene) is a highly crystalline polymer of formaldehyde. 

The unit cell consists of chains in a helical conformation with nine monomer 

units in 5 turns of the helix [HU45]. This model has been refined by Uchida 

and Tadokoro [UC67] to 29 units in 16 turns, such small refinements, however, 

bear no significance for the present study. Within one crystal all helices 

are parallel and have the same helix form (right or left handed) [UC67,WU73]. 

Preliminary 2D exchange experiments on bulk crystallized POM 

(commercially available Hostaform-C from Hoechst) showed that there are 

indeed slow molecular motions, with a correlation time x
c
 = 1 sec at 50

 0
C, 

present in the crystalline part of the polymer [ΚΕΘ5]. These results were 

obtained with Andrew-Beams type rotors at a spinning speed of 1500 Hz. At 

this speed the sidebands are very small, allowing no exact analysis of the 

pattern. Therefore the experiments were carried out once more in a double-

bearing MAS probe with temperature control. A cylindrical piece of 

Hostaform-C was machined to fit exactly in the double-bearing rotor. Thus 

stable spinning could be achieved over a large interval of spinning 

frequencies and various temperatures. 

It is known that only the crystalline part of POM gives rise to a full 

NMR powder pattern at room temperature. In the amorphous part the chemical 

shielding anisotropy is partly averaged by molecular motions so that it gives 

a relatively narrow line [VE79]. As a result we will with slow magic angle 

spinning only see spinning sidebands from the crystalline part of the 

polymer. In addition, the short
 1 3

C T^ of the amorphous part (amorphous 

1^ - 90 msec; crystalline Tĵ  = 18 sec at room temperature) ensures that when 

the mixing time x
m
 Ï 1 sec, amorphous spins only contribute to axial peaks, 

which are removed by proper phase cycling (see table 5.1). 
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POLY-(OXYMETHYLENE) Ь З І б К Χ = Is 
rtl 

Fig. 5.7
 1 J

C 2D exchange spectrum of poly-ioxymethylene) at 316 

Kelvin with a rotor synchronous ( ц = 700 Hz) mixing time of 1 в. 

240 scans were accumulated for 64 t^ values (13 h experiment time). 

Sine-bell filters were applied in both dimensions prior to Fourier 

transformation. 

POLY-(OXYMETHYLENE) ЬЗЗбК tm--i,.Ss 

Fig. 5.8
 1 J

C 2D exchange spectrum of POM at 336 Kelvin with a 

mixing time of 3150 rotor periods at a spinning speed of 700 Hz 

(x
m
 = 4.5 s). 320 FIDs were accumulated for 64 t^ values 

(experiment time 37 h). Sine-bell filters were used in both 

dimensions. 
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Fig. 5.7 shows the result of the 2D exchange experiment, with a mixing 

time of 1 s, applied to POM at a temperature Τ = 316 К, and a spinning speed 

of 700 Hz. Besides the spinning sideband pattern of POM on the diagonal, some 

extremely weak cross-peaks show up indicating exchange between orientatio-

nally different sites. At a temperature of 336 K, the of f-diagonal peaks are 

already very intense for \m = 1 s. Increasing the mixing time (fig. 5.8) or 

the temperature results in a further increase of the off-diagonal intensity. 

This temperature dependence shows that we are dealing with molecular motions 

and not with spin diffusion. 

Analysis of these 2D spinning sideband patterns can yield the relative 

orientation of the CSA tensor of a group of spins in the detection period 

with respect to their orientation in the evolution period. In order to obtain 

information about the type of motion causing the off-diagonal peaks, it is 

essential that we know the orientation of the CSA tensor within the molecule 

and.its principal values. The principal values were recovered from a static 

ID powder pattern giving σχχ = 67 ppm, Oyy = 86 ppm and σ
ζ ζ
 = 111 ppm. The 

orientation of the shielding tensor within the monomer unit was determined by 

correlating the chemical shielding anisotropy to the heteronuclear dipolar 

" C - Η interaction, whose orientation is known. From this 2D dipolar 

correlation spectrum, as was described in chapter 4, it appears that the 

orientation of the CSA tensor is determined by the local tetrahedral synnietry 

of the CH2O2 unit i.e. the Ζ axis is oriented perpendicular to the O-C-0 

plane, and makes an angle of 55° with the helix axis. The Y axis lies within 

the O-C-0 plane and bisects the 0-C-O angle. The X axis is of course 

perpendicular to the Y and Ζ axis. 

From the experimental spectra it is seen that the off-diagonal intensity 

is of considerable magnitude. This suggests that the motion involved can not 

be restricted to the loops of the polymer chains at the surface of the 

crystal lamellae or to crystal defects. As the majority of polymer chains are 

involved in the motion a rotation of the chains, combined with a translation, 

seems the most plausible mechanism. When the helical polymer chains 

(9 monomer units in 5 turns) make a 200° jump, their starting and end 

position will be identical, and thus there is no elevation of the energy. So 

the energy required for this motion to occur, is the energy required to 

overcome the barrier to chain rotation. In a bulk-crystallized polymer, which 

is thought to consist of spherulites with crystalline lamellae connected to 

each other with amorphous material [TA62] (fig. 5.9), the rotation of polymer 

chains in the crystals might be brought about by torsional forces exerted on 
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the chains in the crystalline phase by chains in the highly mobile amorphous 

phase. Another explanation is that lattice defects move through the crystal, 

leaving behind a polymer chain that is rotated over 200°. 

Fig. 5.9 Spherulites of bulk-

crystallized POM consist of 

crystalline lamellae in which the 

helical chains are folded. Drawn are 

the radial lamellae that are 

connected to each other with 

amorphous material. 

lamellae 

In order to simulate the effect of such a rotational motion we have to 

find the Euler angles λ,μ,ν, in the coefficients A2 to D2 of eq. (5.16), that 

relate the orientation of the CSA tensor in the detection period to that in 

the evolution period. This can be accomplished by dividing the process into 

three consecutive steps; We start in the principal axis system of the 

shielding tensor, which is determined by the local tetrahedral symmetry of 

the CH2O2 unit, and transform to an axis system with one axis along the helix 

axis. Then the rotation of 200° (or 400°, 600° etc. when the polymer chain 

has experienced more than one displacement) about the helix axis is brought 

into account, followed by a transformation back to the shielding principal 

axis system. The product of the these three transformation matrices gives the 

final transformation matrix (determined by the Euler angles λ,μ,ν). 

A striking point in the simulations is that, if one calculates a 2D 

spinning pattern for all spins that have rotated over +200° from their 

original position, this does not necessarily give a symmetric pattern around 

the diagonal. The pattern for a -200° rotation, however, is the mirror image 

of the +200° spectrum and as both steps are equally likely to happen, the 

final simulated spectrum will always be symmetric with respect to the 

diagonal. With the orientation of the chemical shift tensor as obtained in 

chapter 4 the resulting simulation are synmetric for every reorientation of 
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the polymer chain. Furthermore reorientations of the left-handed chains 

result in the same spectra as those of the right-handed chains. 

Another important point in the simulation is formed by the statistics 

involved in this type of motion. This is less straightforward than in the 

case of jumps between η equivalent sites. Neglecting effects of chain ends, 

the differential equation that determines the probability W
n
, that a chain is 

displaced η steps from its starting position, is given by 

dW (t) 

H E - - û w n - i ( t ) - 2 a w n ( t ) + Q w n + i ( t ) <5-2 1 ) 

where Q is the average jump frequency. This is the differential equation 

describing a one-dimensional random walk in continuous time, which can be 

solved with the aid of Bessel functions, as can be found in textbooks on 

statistics [FE66, BA70]. 

W (t) = I (Qt) e"a = Ε ¿, , ' ^ . , e (5.22) 
η' n

x

 k
_

0
 к! (n+k)!

 ч 

Hence, 2D spinning sideband intensity patterns were calculated for 

rotations over 0°, ±200°, ±400° etc. and combined according to eq. (5.22) for 

a given Q (which has to be determined in the simulations). These simulations 

were then compared to the peak intensities in the experimental spectra. As 

all spinning sidebands have the same line shape, these intensities were 

simply obtained as peak heights. In the calculated and experimental spectra 

the central peak was scaled to 100 units, in which case the noise was 2-3 

units. It appears that we are able to simulate the experimental spectra very 

well with this model. The simulations are shown in table 5.2. In every 

spectrum, calculated and experimental intensities do not differ more than 3 

units, which is well within experimental error. In some cases 1 line differs 

by 4 or 5 units, but because this occurs for only 1 line out of 36 this not 

is considered significant. The worst fit is obtained for the spectrum 

measured at Τ = 336 К and a mixing time of 1 sec, here the 2 diagonal lines 

next to the central peak show a rather large difference of 5 and 7 units, but 

still the overall agreement of the calculated and experimental spectrum seems 

satisfactory. For the spectrum obtained at 360 К and т
т
 = 1 sec it was no 

longer possible to take the central peak to scale the spectrum. At this 

temperature the T^ of the amorphous part of the polymer has become so long 

that it gives a contribution to central peak of the 2D spectrum (fig. 5.10). 
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As this amorphous signal only affects the intensity of the central line, 

another peak was taken for reference. After simulation, the calculated as 

well as the experimental spectrum were rescaled by the same amount so that 

the intensity of the central peak of the calculated spectrum was again 100 

units. In that case the intensity of the central peak in the experimental 

spectrum has become 120 units, showing the influence of the amorphous signal. 

POLY-(OXYMETHYLENE) T=360 К m 

.3 700H?_2 

Fig. 5.10 Contour plot of the 2D exchange spectrum of POM obtained 

at a temperature of 360 Kelvin and a mixing time of 1 s (700 rotor 

periods). The numbers indicate the position of the sidebands. In 

this case signal of the amorphous part of the polymer overlaps 

with the central line (0,0). 

To summarize, the a-relaxation seems to be governed by chain rotation. 

It is not clear, however, if the chains rotate as rigid rods. For longer 

chains it is also possible that a region with a more tightly wound helix 

arises, which then runs through the polymer chain, as has been proposed for 

117 



the ac-relaxation in polyethylene. Whether such a twist is energetically 

favorable over rigid rod rotation depends on the intermolecular potential 

barrier. It is not obvious what the effect of such a twisted region on the 

spectrum would be. 

In fig. 5.11 log(Q) is plotted against the reciprocal temperature. The 

error intervals in this plot were obtained by varying Q until simulations 

diverted to much from the experimental spectra, and are thus somewhat 

arbitrary. This plot obviously shows an Arrhenius type of behaviour for the 

rotational motion. The activation energy is found to be 20 ± 5 kcal/mole, in 

agreement with values found from mechanical measurements [ST86, MC67], 

although also higher values have been reported [MC67]. 

MOTION IN CRYSTALLINE POLYOXYMETHYLENE 
1 5--

1 -

5-
'S 

è ... 
S» 
-i 

-5-

-1 • 

-1 5-1 1 1 1 1 1 

27 2β 29 3 31 32 

1000/Τ (1/Κ) 

Fig. 5.11 Arrhenius plot of the motion detected in poly-

(oxymethylene). 

5.5.2 Conclusions 

From these observation we can conclude that the α-relaxation in poly-

(oxymethylene) involves chain rotations in the crystalline phase. To our 

knowledge this is the first time that this type of motion is demonstrated by 

a direct measurement on a molecular level. This demonstrates the great 

potential of the 2D exchange experiment to study very slow molecular motions, 
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especially when performed under slow MAS conditions to enhance sensitivity 

and resolution. Experimental times varied from 10 (x
m
 = 1 s) to 40 

(i
ro
 = 4.5 s) hours, making these experiments ideal for overnight or weekend 

runs. An advantage is that no extra sample preparation is required because 

natural abundance
 1 3

C CP-MAS is employed. Computer simulations take 

approximately 250 s on a mainframe computer, which is rather time consuming. 

Therefore it is advantageous if there exist already some ideas about the type 

of motion. Such models can then be tested with these calculations, as it is 

very unlikely to find the right solution just by trial and error. 

The fact that the mixing time can be rather long gives the 2D exchange 

experiments some exciting perspectives for the future. One might, for 

instance, use the mixing time to raise the temperature of a sample with a 

phase transition above the transition temperature and allow the temperature 

to drop below the transition temperature in the recycle delay. In that way it 

should be possible to study the conformational change a nucleus undergoes due 

to the phase transition. Another interesting experiment might be to 

manipulate the sample mechanically during the mixing time so that the 

molecular effects of such a mechanical treatment can be studied. It is 

obvious that one has to work with static samples to manipulate the sample 

mechanically. 

Table 5.2 Calculated and experimental sideband intensities for the 

2D exchange experiment. 

EXPERIMENT 

5 

-

2 

2 

2 

-

Τ = 

-

20 

-

β 

β 

3 

336 к, 

-

-

64 

18 

15 

6 

'
 x
m " 

3 

6 

15 

100 

20 

6 

= 1 s 

3 

7 

15 

21 

82 

-

-

3 

5 

5 

-

13 

CALCULATION 

Ω = 0.90 Hz 

5 

-

1 

3 

2 

1 

-

19 

1 

7 

8 

3 

1 

1 

59 

16 

13 

6 

3 

7 

16 

100 

20 

6 

2 

8 

13 

20 

75 

-

1 

3 

6 

6 

-

15 
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Τ = 336 К, x
m
 = 2 s 

4 - - 3 3 -

18 - 8 10 3 

60 19 17 7 

3 8 21 100 26 7 

3 10 17 24 78 

3 7 6 - 13 

Q = 0.65 Hz 

4 - 1 4 3 1 

18 1 9 10 3 

1 1 59 20 16 7 

4 9 20 100 25 β 

3 10 16 25 74 1 

1 3 7 8 1 14 

Τ = 336 Κ, x
m
 = 3 s 

4 - - 3 3 -

18 - 9 11 4 

58 21 20 6 

5 10 23 100 28 7 

3 11 21 27 77 

8 7 - 11 

Q = 0.55 Hz 

4 - 1 4 3 1 

17 2 10 10 3 

1 2 58 22 18 8 

4 10 22 100 28 8 

3 10 18 28 73 2 

1 3 8 8 2 13 

Τ = 336 Κ, χ,,, = 4.5 s 

4 - - 3 3 

16 - 9 11 6 

58 24 21 7 

4 11 26 100 33 8 

4 10 21 31 75 

- 3 8 8 - 11 

Q = 0.50 Hz 

4 - 1 4 3 1 

16 3 11 11 4 

1 3 57 25 20 8 

4 11 25 100 32 9 

3 11 20 32 72 3 

1 4 8 9 3 13 

Τ = 348 Κ, χ,,, = 1 s 

3 - - 3 3 -

17 - 9 10 4 

60 25 19 7 

4 IO 25 100 30 7 

2 10 20 31 75 

- Э 8 9 - 12 

Q = 1.9 Hz 

4 - 1 4 3 1 

16 2 11 11 4 

1 2 58 24 19 8 

4 11 24 100 30 9 

3 11 19 30 73 2 

1 4 8 9 2 13 
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3 

-

-

3 

2 

. 

Τ = 

-

13 

3 

14 

10 

3 

360 к, 

-

3 

52 

32 

23 

θ 

•
 l
m = 

5 

11 

30 

120 

38 

β 

= 1 s 

4 

12 

23 

40 

70 

4 

-

5 

7 

9 

4 

7 

3 

-

-

5 

3 

1 

-

14 

5 

14 

13 

4 

a = 

-

5 

54 

31 

24 

9 

4.3 Hz 

5 

14 

31 

100 

40 

10 

3 

13 

24 

40 

69 

5 

1 

4 

9 

10 

5 

12 
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CHAPTER 6 

TWO-DIMENSIONAL NOTATION NHR OF HALF-INTEGER NUCLEI 

6.1 Introduction 

The majority of elements in the periodic table have nuclei with 

half-integer quadrupole spins. So it is not surprising that there is an 

increased interest in high resolution NMR spectra of quadrupole nuclei in 

solids. Especially the recent studies of zeolites, clays and ceramics have 

focused the attention on getting structural information from NMR spectra of 

quadrupolar spins. 

In comparison to nuclear spins with spin quantum number 1=1/2, the NMR 

spectra of quadrupolar spins contain two new features: 1) several transitions 

are possible because I>l/2 and 2) the transition frequencies are not only 

determined by the interaction between the magnetic moment of the nucleus and 

the static external field but also by the interaction between the nuclear 

electric quadrupole moment and the electric field gradient at the site of the 

particular nucleus. The chemical information an NMR spectrum of a quadrupolar 

spin offers is therefore not limited to the chemical shift data but in 

addition such a spectrum can provide the parameters that describe the 

quadrupolar interaction. These parameters depend on the local symmetry around 

the nucleus in consideration and thus give direct structural information. 

Traditionally, quadrupole interaction parameters can be determined by 

NQR, nuclear quadrupole resonance. There, usually, no or a small magnetic 

field is present and the nuclear spin levels are split mainly by the 

quadrupole interaction. The frequencies of the transitions between these 

levels provide the quadrupole parameters. The disadvantages of NQR are its 

low sensitivity when the quadrupole interaction is rather small (0-10 MHz) 

and the wide frequency range one has to search for possible resonances. Both 

of these disadvantages can be overcome in principle, at least for small 

quadrupole interactions, in an NMR experiment. 

The description of the NMR spectra of quadrupolar spins very much 

depends on the spin quantum number I and the relative magnitude of the Zeeman 

and the quadrupole interaction. Here we limit our discussion to half-integer 

spins (1=3/2, 5/2, 7/2, 9/2) and assume the quadrupole interaction to be 

small with respect to the Zeeman interaction. The (anisotropic) contribution 
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of the quadrupole term to the NMR transition frequencies can then be 

calculated by perturbation theory. 

In high magnetic fields all Zeeman transitions пит' shift in first order 

because of the quadrupole interaction except the 1/2,-1/2 transition which 

experiences a (much smaller) second-order shift. As a result of this, typical 

spectra of polycrystalline samples containing quadrupolar spins give 

characteristic powder patterns for the 1/2,-1/2 transition whereas all other 

transitions are usually broadened beyond detection [NA66, BA69]. As the Magic 

Angle has no "magic" properties for the second-order quadrupolar interaction, 

MAS will not average this interaction, but yields powder patterns for the 

1/2,-1/2 transition which are approximately four times narrower than for 

static samples [KU81, BE82, SA82]. 

Although, in principle, it is possible to extract information about the 

electric field gradient from the spectra of static or spinning 

polycrystalline samples, in practice the powder patterns are often blurred by 

a spread in chemical shift and/or by the presence of more than one quadrupole 

interaction. To overcome these problems Samoson and Lippmaa [SA83, SM83] 

introduced a simple two-dimensional experiment which allows one to separate 

the quadrupole interaction from the chemical shift interaction. This 

technique is based on a nutation experiment [YA81] where the evolution of the 

spin system in the presence of a radiofrequency field B^ is studied in the 

rotating frame. This evolution yields a low field (В^ ~ 0.001 B Q ) NMR 

spectrum, the nutation spectrum, with the sensitivity of the high-field 

spectrometer. In this respect it can directly be compared to the zero-field 

NMR technique developed by Pines and coworkers [ZA85] where the sample is 

pneumatically shifted in and out the magnet. The advantage of the nutation 

experiment is that, in contrast to the zero-field technique, there is no 

limitation on the T^ spin-lattice relaxation time. A nutation spectrum 

however is more difficult to analyze than a zero-field spectrum. 

In this chapter we discuss the calculation of these nutation spectra 

using the density matrix formalism, and present a number of simulated spectra 

for all half-integer quadrupole spins (1=3/2 to 1=9/2) which can be used in a 

qualitative way to determine the quadrupole interaction from experimental 

spectra. Moreover, some experimental aspects of the method will be discussed 

[KE87]. It will be shown how ^'д^ nutation NMR can be used to separate the 

signals from
 2 7

A1 with a large quadrupole interaction from signals of
 2 7

A1 

with a small quadrupole interaction in zeolites [GE85]. Finally, we show that 

by comparing an experimental spectrum to the set of simulated spectra one can 
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determine the quadrupole parameters. This will be demonstrated for
 2
'Al in 

spedimene and for "Sc ι
η
 5С2(30

4
)з. 

6.2 Calculation of nutation spectra 

The pulse scheme of the experiment is outlined in fig. 6.1. During the 

evolution period t^ an rf field is present and the system evolves under the 

secular Hamiltonian H^ in the rotating frame, assuming that the sample is 

static (i.e. no MAS): 

H,/ft = (H ..+ Η „+ Hi/fi = (ω -ω)Ι - ω ,1 + ω
Λ
(3Ι -1(1+1)) (6.1) 

1'
 χ

 off rf Q " ' 0 ' ζ rf χ Q* ζ
 v

 "
 v

 ' 

9 
* 2 2 e qO/fi 

with ω. = ω-,(3 cos θ - 1 + η s in θ cos2<p) where ω_ = „-..*!*' . . and ω-*^В-і. 
Q u Q üliZX—11 £1· A 

b F* -projection 

Fig. 6.1 (a) Pulse scheme of the experiment; a free induction decay 

is acquired during t2 as a function of the pulse length t-^. 

Subsequent Fourier transformation of the signals obtained yields a 

typical 2D powder pattern as shown in (d). This spectrum was 

calculated for 1=5/2 with a ratio шл/ш
г
£ = 0.45 and η=0. The F2 

projection of this pattern (c) gives the second order quadrupole 

powder pattern, and the F-^ projection (b) is a characteristic 

nutation spectrum for the ratio Шд/ш^. 
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θ and φ are the polar angles orienting the magnetic field BQ in the principal 

axes system of the field gradient, η represents the asymmetry parameter. Here 

dipolar interactions and the non-secular part of the quadrupole Hamiltonian 

have been neglected. During t2 there is no rf field present and the FID of 

the 1/2,-1/2 transition is acquired (assuming that all other transitions are 

too broad to be detected). The system is now governed by the Hamiltonian H2: 

H
2 •

 H
Z

 +
 »CS

 + H

Q

 ( 6
'

2 ) 

Where H
z
 and Η ^ are the Zeeman and the chemical shift interaction and HQ is 

the quadrupole interaction which only contributes in second-order to the line 

shape of the central 1/2,-1/2 transition [AB61]. With the knowledge of these 

Hamiltonians we can calculate the signal S(t
1
,t2) using the density matrix 

formalism. At time t^=0 we start with the equilibrium density matrix 

σ(θί = o
e
- in the high temperature approximation. As one can see the 

dominating Zeeman interaction H
z
 is not present in H^. So if we irradiate 

close enough to resonance (H
0
ff small) then HQ and H

r
f are the most important 

terms of H¿. This means that the eigenfunctions of H^ depend on the ratio of 

UIQ and u)rf. From the Liouville - von Neumann equation we get at time t^ 

a(t 1 ) = expí- iH^/TU.oíO.expUH^/f i} (6.3) 

Starting in a basis of eigenfunctions of Iz, we get after diagonalization of 

H^, using the orthogonal transformations T: 

a(t ) = T'exp{-iEt /Ii}-f+«a(0)-T«exp{iEt /П}'Т+
 (6.4) 

As there is no explicit mixing period o(t^,0) = o(t
1
). E represents the 

diagonalized matrix of H^ with the eigenvalues 

E. = Ε Σ Τ . Η. Τ . (6.5) 
3
 ρ q

 PD ipq q] 

and eigenfunctions 

¡ j> = E T. .¡I,in.> (6.6) 
. i] 1 
1 J 
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We assume that we only detect the coherence between the 1/2 and the -1/2 

states during t2, so only the element o(t
1
)

1
/2 -1/2 has to be evaluated. The 

signal of the central transition then can be calculated as a function of t^ 

and t-j 

S i W = ̂ « X W V V 0<Ч>1/2,-1/2еХР{-1ш24} 

V^ ( R- i /2a/2>i, j e^ { i u , i : jV e x p {- i ü )2V 
i f 3 

( 6 . 7 ) 

where (¿2 represents the Ъаглюг precession of the spins during t2 and 

<i)¿j=(Ê -Ej)/fi ie the transition frequency in the rotating frame between the 

states ¡i> and ¡j>. The coefficients (R_i/2 і/г̂ іі 

^-l/2tl/2h.ì * Tl/2,iT-l/2,j \ Tk,iTk,jo(0)k,k (6.8) 

represent the contributions of the coherence between ¡i> and ¡j> in the 

rotating frame during t^ to the 1/2,-1/2 coherence detected during t2. 

energy (MHz) 

(K 

25 750 1000 5 75 
fB IkHzl » 

Fig. 6.2 Energy diagram of an isolated spin 1=7/2 in the presence 

of a magnetic field В with quadrupole parameters e2
qQ/h = 1 MHz and 

η=0. On the left is the low-field situation H
z
 < HQ and on the 

right is the situation H
z
 >> HQ, where HQ appears to be negligible. 

To summarize, we have during t^ a system with eigenfunctions and 

eigenvalues which depend on the ratio of UJQ and u>
r
£ (fig. 6.2). The 

coherences between all these levels, with frequency (iijj, develop during ti 
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and give a certain contribution to the 1/2,-1/2 coherence detected during t2. 

Therefore, a two-dimensional Fourier transformation of the acquired signal 

will give a characteristic powder pattern (fig. 6.Id), whose projection on 

the F2 axis (fig. 6.1c) yields the normal (1/2,-1/2) powder line shape due to 

the combined effect of chemical shift anisotropy and quadrupole interaction. 

Projection onto the F^ axis (fig. 6.1b) gives the nutation spectrum which 

depends on the quadrupole parameters e
2
qQ/h and η, the spin quantum number I 

and the rf field strength B^, and is independent of the chemical shift. As we 

shall see later, the nutation spectra show more detail than HAS NMR spectra. 

When the system consists of only one quadrupolar nucleus at a certain site, 

it is sufficient to study the ID nutation spectrum (i.e. the F^ projection). 

If there are several different sites, however, it is advantageous to study 

the whole 2D powder pattern. 

In the extreme cases ¡HQ| « ¡Hrf¡ and ¡HQ¡ » ¡Hrf¡ the nutation 

spectrum consists of a single line. In the first situation HQ may be 

neglected with respect to Hrf and the nutation frequency is simply u>rf. In 

the second situation the rf Zeeman interaction may be considered to be a 

small perturbation to H Q and in first order the eigenstates of H^ are the 

eigenstates of HQ which are characterized by the same magnetic quantum number 

m that characterizes the eigenstates of H2. Therefore the projection of the 

eigenstates of H^ onto the eigenstates of H2 is trivial: the only nutation 

frequency observed in our 2D experiment is the transition frequency between 

the m = ±1/2 states of HQ split by the action of Hrf. From the eigenvalue 

equation for these two states of a spin I 

<l/2¡hü>rfIx¡l/2> - E <l/2¡hü>rfIx¡-l/2> 

<-l/2¡hü>rfIx¡l/2> <-l/2¡hu)rfIx¡-l/2> - E 

E 2 - 1/4( 1+1/2)2ü)rf = 0 (6.9) 

we derive ал energy splitting of ( 1+1/2)hü>rf and thus a nutation frequency of 

(I+l/2)u)rf [AB61]. 

In intermediate cases, ¡HQ! ~ ',Η^
1
,, the spectra are complicated and 

several peaks can occur because many transition frequencies ω^^ in the 

rotating frame exist. This becomes clear when we diagonalize H^. For a spin 

3/2 this can be done analytically (when Raff is negligible). The 
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diagonalization matrix Τ, which has been determined by Wokaun and Ernst 

[W077], allows us to determine the eigenvalues of H^: 

E
1
 =

 U r f
/2 • (9ш*

2
 - Βω'ω^

 +
 ш^2) 

(6.10) 

ι *2 * 2 
Ε., =-ω „/2 + V(9ti)̂  + 3ω

Λ
ω _ + ω _ ) 

2 rf' Q Q rf rf ' 

ι *2 * 2 
Ε, = ω _/2 - (9ш

л
 - 3ω„ω _ + ω _ ) 

3 rf' Q Q rf rf ' 

ι *2 * 2 

4 rf' Q Q rf rf ' 

Note that we use a different ordering of the eigenstates than Wokaun and 

Ernst and that our CÜQ is Шп/З in their paper [W077]. The eigenvalues are 

plotted in fig. 6.3a as a function of UQ /^rf· We easily recognize the 

extreme situations, for U>Q = 0 we find four equidistant eigenvalues with a 

splitting of iDpf· When WQ » inrf two levels are split by 2tAi:f, whereas the 

other two levels are degenerate. Evaluation of the coefficients (R_i/2 1/2)ij 

gives us the amplitude coefficient of the FID of the central 1/2,-1/2 

transition detected during t2'· 

3(^,0) " Α
12
8ΐη{ω

12
ΐ

1
}+Α

23
8ίη{ω

23
ΐ

1
}+Α

34
8ΐη{ω

34
ί

1
}+Α

14
6ΐη{ω

14
ΐ

1
} 

with A = 3 sin2e_ 8Іп2
 +
 + (1 - со 2 _) (1 - СОБ2

 +
) 

А^ = 3 віп2 _ 8Іп2
 +
 + (1 + cos2e_) (1 + сов2

 +
) 

А- = 3 віп2 _ 8Іп2
 +
 - (1 + cos2e_) (1 - οοε2θ ) 

A =-3 8Іп2 _ 8Іп2
 +
 + (1 - cos2e_) (1 + cos2e ) 

7(3) ü)rf/2 7(3) ü)rf/2 
where tan2e = — ^ and tan26 = ^ 

(6.11) 

Зш - ω /2 3ω„ + ω ,/2 

Q rf' Q rf' 

The transitions 13 and 24 do not appear in this expression. To visualize the 

importance of the four terms in eq. 6.11, the transition frequencies ш^л and 

their amplitude factors A^j are plotted in fig. 6.3b and с as a function of 

(jug /<i)
r
f. We see that A^^ is very small over the whole range and the 14 
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transition thus hardly contributes to the nutation spectrum. When Шп is 

small with respect to ti>rf there are contributions of the 12, 23 and 34 

transitions, which all have a transition frequency in the vicinity of urf· 

When 0ÜQ gets bigger (in the positive direction), ω·^ decreases to zero but 

its amplitude factor A^2 also decreases. 0023 increases vary rapidly with 

increasing (DQ but A23 decreases to zero. For large UJQ only A34 (with 

(1)34 = 2(i)
r
f) is of significant magnitude. For negative IÜQ the situation is 

the same but the labels differ (fig. 6.3). To get the nutation spectrum for a 

polycrystalline sample, this analysis has to be repeated for every value of 

IÜQ . Fig. 6.3d shows the angular distribution of <UQ /^rf values for a given 

Шд (0̂ 2 = e
2
qQ/fiei(2I-l)) and η. 

t «• 
3-

2-

ο­

ι I 

X и 

\ 

'*'" л 
\ i 2 

— " 14 

Ι Ι Ι _ Ι Ι 

4t 

Fig. 6.3 Energy diagram (a) and transition frequencies (b) of an 

isolated spin 1=3/2 during the evolution time t^ as a function of 

the ratio ω« /ω
Γ
£. With the amplitude coefficients A¿j (с) and the 

angular distribution of IIIQ /u)
r
f values (d) for a given ÙÎQ/IIÎ^ 

(=0.5) and η (=1/3) one can calculate the nutation spectrum. 
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The diagonalization matrix Τ has only been determined for a spin 3/2, 

thus for a general approach for all possible spins (1=3/2, 5/2, 7/2, 9/2) the 

diagonalization of H^ has to be carried out numerically. This diagonalization 

has to be carried out for every value of θ and <p on a sphere. Fig. 6.4 shows 

a series of calculated nutation spectra for different ratio uu/üi-f, for spins 

1=5/2. In all spectra the asymmetry parameter η and the resonance offset are 

assumed to be 0. The spectra appear to be very characteristic powder patterns 

so for these intermediate cases with iu
r
f known, one can determine ω» ("V, = 

e
2
qQ/ft8I(2I-l)) at least in a qualitative way. Because ως depends on the 

nuclear quadrupole moment Q and the spin quantum number I, and with ω-^ 

limited for experimental reasons, it will depend on the nucleus in question, 

what range of electric field gradients eq can be determined without getting 

in one of the extreme situations with only one nutation frequency left. 

1=5/2 , _ω* 

ω* 

ω Γ ί зч, 
Fig. 6.4 Calculated nutation spectra as a function of (DQ/OJ-JT (η=0). 

131 



Fig. 6.5 shows the effect of the change of the asynmetry parameter η for 

a spin 1=5/2 with οϋ^/ω^=0.6. The overall appearance of the powder pattern 

remains the same but the intensity of some of the lines changes drastically. 

So it is also possible to get a good estimate of η from the nutation spectra. 

It must be noted, however, that the changes of the powder pattern with 

changing η are more pronounced when η is small, this means that the accuracy 

of determining η is smaller for large η values. Calculated nutation spectra 

for all spins (1=3/2 to 1=9/2) with asymmetry parameter variation can be 

found in appendix II. The spectra were calculated in the time domain, 

multiplied by an exponential decay function and then Fourier transformed to 

the frequency domain. Generally 10000 crystallite orientations were sampled, 

taking approximately 10 min computer time on a mainframe computer. 

1 = 5/2 

-'=06 

0 <-*» Зи* 

Fig. 6.5 Nutation spectra for a spin 1=5/2 as a function of the 

(ωο/ω
Γ
£ = 0.6). For small η values the asymmetry parameter η 

spectra undergo characteristic changes when η 

Determination of large η values will be less accurate. 
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So far it has been assumed that the sample is static, i.e. no magic 

angle spinning applied. As magic angle spinning narrows the (second-order) 

powder pattern of the central transition by a factor 4, it would be desirable 

in view of the resolution along F2. However, numerical calculation of the 

simulated nutation spectra under MAS conditions becomes very (computer)time 

consuming, because the change of the orientation of the sample during t^ and 

thus of H-L cannot be neglected. Experimentally it has been observed that the 

nutation spectra change with MAS, except for the cases CUQ ~ 0 and UIQ » ω ^ . 

6.3 Experimental aspects of nutation NMR 

To get neat experimental nutation spectra which can be compared to the 

calculated spectra it is important to keep several experimental conditions in 

mind: 

6.3.1 Resonance offset 

When the system is irradiated on-resonance (ω=ω
0
) then the matrix of H^ 

in equation (6.2) becomes symmetrical with respect to both diagonals of the 

matrix. As a result of this 

{*-l/2.1/2h.i = "(Н
-1/2,1/2^Д № 

(6.12) 

• ^ <
R
-l/2.1/2

)
i.j

 = 0 i = j 

Substitution in equation (6.7) shows that the signal then becomes 

S(t
l f
t

2
) = ^ (

А
.

1 / 2 Д / 2
) . .

8
1 П

{
а , . .

Ч
} е х р

{
- 1

Ш 2 Ч
} (6.13) 

The amplitude of the signal detected during t2 is sine modulated which allows 

us to obtain pure absorption spectra [ΒΑΘ2]. The presence of an off-resonance 

term in H^ lowers the symmetry of its matrix and the modulation now becomes a 

phase-modulation, which cannot be changed to amplitude-modulation by 

phase-cycling. Thus there will be dispersive contributions to the line shapes 

which can easily distort powder patterns. 

Another effect of off-resonance irradiation is the appearance of a 

dispersive line at ω^=0. This is due to the magnetization component along the 

B
e
ff field in the rotating frame which does not evolve during t

1
. 
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2Ц Vf ζω, rf 2 и, rf 

Fig. 6.6 MAS spectra of NaN02 together with their nutation spectra 

as a function of the excitation frequency ω. a) Off-resonance 

irradiation; In the nutation spectrum we see a large line at u)]=0. 

b) Irradiation close to the Larmor frequency (outside the powder 

pattern) gives the best nutation spectrum, c) With the carrier 

frequency equal to the average 1/2,-1/2 transition frequency (in 

the middle of the powder pattern) the line at ω^=0 increases again. 

Both effects of off-resonance irradiation can even be observed for spins 

with 1=1/2 for which the signal in such a case can be written as: 

3 ( ^ Л
2
) ~ [A (1 - cos(

Ueff
t

1
) + ІВ 8ίη(ω

β££
ΐ

1
)]βχρ{-ίω

2
ί

2
} (6.14) 

where A = ω
Γ
£Δω/2(ω

Γ
£

2
+Δω

2
) and В = ш

г
£/2,/(іі)

г
£2+Д(і)2). When Δω = ш-шд ¿ 0 then 

А 7
Е
 0 and thus a constant and a cos((i)

e
ffti) term is introduced causing 

respectively the ω^=0 signal and the phase-modulation. To avoid complications 

it is clearly recommendable to irradiate on-resonance, i.e. with the 

excitation frequency ω equal to the Larmor frequency γΒ
0
. That on-resonance 

in this case does not mean equal to the 1/2,-1/2 transition frequency is 

shown by the following magic angle spinning experiment. Here the Larmor 
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frequency lies outside of the quadrupole line shape [KU81, BE82, SA82] and 

fig. 6.6 shows the nutation spectra of NaN02 (e
2
qQ/h=l.l MHz, η=0.1) as a 

function of the excitation frequency. In this case we are in the extreme 

situation ti¡Q » (i>rf and MAS does not influence the nutation spectrum. It is 

clear that the line at ω^=0 increases relative to the line at 2ω
Γ
£. The line 

at bj]=0 is minimal when we irradiate outside the powder pattern near the 

Larmor frequency. An easy method to reduce the line at ii)j=0 is to subtract 

the last (longest t^ value) experiment in the 2D experiment from all the 

previous experiments. When enough t^ experiments are performed, the 

quadrupolar modulation has damped out, and the only signal emerging after a 

long rf pulse is that of the magnetization causing the zero frequency signal 

in the F^ direction. Because the magnetization component along B
e
£f has the 

same magnitude in every experiment (assuming no relaxation), subtraction of 

the last experiment reduces its influence on the spectrum. 

6.3.2 Phasing of the spectra 

As was discussed in chapter 2 it is important to obtain pure absorption 

spectra when one wants to obtain 2D powder patterns which can be analyzed in 

a straightforward way. Because we want no dispersion signals to appear in the 

spectrum it is not possible to perform an absolute value calculation. 

Therefore, the spectra have to be phased manually. As we have seen in the 

preceding paragraph, off-resonance irradiation introduces phase-modulation 

and thus dispersive line shapes are introduced in the spectra. This makes it 

very difficult to phase the spectra properly. This is so difficult because 

when phasing a 2D spectrum one has to set the phase correction on one slice 

(row or column) of the spectrum and it is not possible to inspect the effect 

of such a phase correction on the total spectrum. It would be desirable to 

have a program that shows the phase corrections of the whole spectrum 

directly on the display. As modern NMR spectrometers are equipped with 

minicomputers using array processors it should be possible to do so because 

nutation spectra are generally of small size. 

When one is only interested in the ID nutation spectrum (the F^-

projection) of a sample, there is a way to avoid phasing the whole 2D 

spectrum. In this case we can take the first point of every FID emerging 

directly after the pulse of length t-^. If we arrange these points as a 

function of t-L we have the amplitude modulation of the detected t2 signal as 
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a ID interferogram. A straightforward ID Fourier transform of this 

interferogram will give us the nutation spectrum which can be phased easily. 

6.3.3 Linebroadening 

An important cause for linebroadening in the F^-dimension is the 

inhomogeneity of the rf magnetic field. The effect of rf inhomogeneity cannot 

simply be described with a Lorentzian broadening exp(-t
1
/x

1
) because a spread 

in Uff will also cause a spread in the ratio ωη/ω^, and will thus change the 

whole nutation spectrum. Furthermore the line shapes due to rf inhomogeneity 

will not be Lorentzian but asymmetric [Η0Θ3 fig.3]. Only in the extreme case 

u^f » <i>Q we get a line at nutation frequency Wj.f with a line width directly 

determined by the rf inhomogeneity. In the other extreme case u)
r
f << UQ there 

will be a line at (1+1/2)ω
Γ
£, so the line width will be (1+1/2)γ times the rf 

inhomogeneity. It is therefore important to use a probe with an accurately 

formed rf coil to reduce rf inhomogeneity as much as possible and care should 

be taken that the whole sample is in the coil. 

6.3.4 Recycle delay 

Another important experimental aspect in the nutation experiment is that 

one has to ensure that the recycle delay or relaxation delay is long enough 

for the system to return to equilibrium before the next pulse arrives. If the 

recycle delay is short with respect to Tj then the build up of magnetization 

along the ζ axis is incomplete. This will distort the pure sine 

amplitude-modulation of the FID (equation (6.13)). Fourier transformation of 

a distorted sinujjt wave will give a line at frequency ω^ plus a number of 

harmonics at 2u>̂ , Зи^, .... The number and amplitude of these harmonics 

depend on the distortion of the sine wave, and they can easily be mistaken 

for components with a large quadrupole frequency. Fig. 6.7 shows this effect 

for the Li nutation spectrum of LiCl. Here Li has a very small quadrupole 

interaction, but due to the short repetition rate we do not only see a line 

at ω^=(ϋ
Γ
£ but also at ω^=2ω

Γ
£, З ш ^ and 4ω

Γ
£. In fact this experiment is 

proposed as a method to determine ш ^ in solution, for nuclei with long Tj 

and low natural abundance [WEBS]. 
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Fig. 6.7 2D nutation spectrum of 'Li in LiCl where the recycle 

delay (0.25 s) is short with respect to T-̂ . Li has a small OÌQ in 

LiCl so only one line at ii)rf is expected. Because of the short 

recycle delay, however, there are several harmonics of this 

frequency present. 

6.3.5 Experimental realization 

НаЖ>2 and spodumene spectra were recorded on a Bruker CXP-300 with 

respectively 64 and 128 t¿ increments of 2 цзес. A standard Bruker probe with 

an rf field of 36 kHz was employed. LiCl and 802(504)3 spectra were recorded 

on a Bruker WM-500 (with 256 tĵ  increments of 2 and 1.5 цвес respectively). 

Here a specially constructed probe equipped with a 6 χ 12 inn solenoid B
0
, 

operating with an rf field strength up to 70 kHz, was used. Zeolite ZSM-5 

spectra were taken on the Bruker CXP-300 with an rf field of " 60 kHz (64 t-^ 

increments of 2 цзес). 

6.4 Application of Nutation NMR 

6.4.1 Spodumene 

To demonstrate the effectiveness of the nutation experiment, fig. 6.8a 

displays the NMR spectrum of ^'Al in powdered spodumene recorded on a Bruker 

CXP 300 at 78.2 MHz. The spectrum consists of one featureless line 5 kHz 

wide. It is clear that no accurate quadrupole interaction parameters can be 
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extracted from this spectrum. In addition, MAS does not solve the problem, 

again we see a rather featureless line 1.5 kHz wide. Samoson and Lippmaa 

[SM82] have shown that this MAS spectrvim can be reproduced theoretically 

(using a large linebroadening) with the known quadrupole parameters 

(e
2
qQ/h=2.95 MHz, η=0.94 [PE53]), but it will be clear that it is almost 

impossible to do so without any preknowledge of the quadrupole parameters. 

The result of the 2D nutation experiment however, appears to be a well-

structured pattern (fig. 6.8b). From the Fj-projection of this pattern (fig 

6.8c) we can estimate the magnitude of the quadrupole parameters e
2
qQ and η 

using our set of calculated spectra. It appears that ωο/ω
Γ
£ ~ 1 with an rf 

field strength of 36 kHz, this means that e
2
qQ/h 3 ± 0.5 MHz, furthermore 

it is seen that η must be between 0.8 and 1. More accurate predictions can 

only emerge when a larger rf field is employed. At ως/ω^ = 0.3, for 

instance, intensity is more dispersed over the whole frequency range. 

ι 1 ! — 

о "" ISO 
»-KHi 

Fig. 6.8 a)
 2
'A1 spectrum of the central transition of spodumene 

recorded at 78.2 MHz. b) F
1
 projection of spodumene recorded on a 

Bruker СХР-Э00 (128 tj increments of 2 με and (Uj-f = 36 kHz). 

Simulated spectrum for e
2
qQ/h=2.95 MHz and η=0.94 [PE53] and a 

Lorentzian linebroadening of 2.5 kHz. 
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6.4.2 SC2(S0
4
)3 

Another example is the
 45
Sc (1=7/2) nutation spectrum of Зс2(30

4
)з (fig. 

6.11). The spectrum of the central transition measured at 121.5 MHz is 2.6 

kHz wide and shows no structure, MAS narrows the spectrum to 600 Hz. The MAS 

spectrum recorded at 43.6 MHz does show some structure from which it becomes 

clear that there must be sites with different quadrupole parameters but the 

same chemical shift. The 2D nutation spectrum is well structured (fig. 6.11). 

Comparing its projection to our set of calculated spectra reveals that the 

major constituent has a e
2
qQ/h ~ 2 MHz with a low asymmetry parameter (η 

0.2). P.P. Man recently also showed an intermediate case for Mn in KMn0
4 

[MA86]. 

Fig. 6.9 2D nutation spectrum of "Sc in 802(804)3 recorded on a 

Bruker WM-500, together with its Fj projection (256 tj increments 

of 1.5 μβ with a 70 kHz rf field). 

6.4.3 Zeolite ZSM-5 

We also applied the nutation experiment to the study of ZSM-5 zeolite 

catalysts. It has been reported before that in this zeolite the state of 

hydration affects the local symmetry around the Al nucleus at the Br^nstedt 

sites in the pores of the material [ΚΕΘ3]. For hydrated ZSM-5 the local 
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syrnmetry around Al is high and consequently the quadrupole interaction small 

and the MAS line shape of the 1/2,-1/2 transition relatively narrow. On 

dehydration this line width broadens, as proposed due to a distortion of the 

AlO^
-
 tetrahedra. This distortion depends on the counter ion, present in the 

pores to achieve electric neutrality. For H
+
 the line width seems to double 

at 7Θ.2 MHz (but the results of this investigation will show that the 

situation is more complicated). With Na
+
 as a counter ion, the Al line 

becomes too broad to be detectable when the sample is dehydrated [ΚΕΘ3]. 

Fig. 6.10 shows the ^'Al nutation spectra for H-ZSM-5; for the chemical 

composition of this sample see table 6.1. We believe that comparison with the 

simulated spectra in fig. 6.4 shows that the experimental nutation spectra 

consist of contributions of at least two spin species with different 

quadrupole interactions. With increasing hydration spectral components at tAj-f 

60 kHz increase, showing that on hydration more and more Al nuclear spins 

find themselves in a relatively synmetric AIO4" tetrahedron. This is 

completely in agreement with earlier MAS experiments [ΚΕΘ3], however, it is 

surprising that the increase of spins with a small quadrupole interaction is 

not accompanied by a decrease of the line at 3(i>
r
f (~ 180 kHz) due to spins 

with a quadrupole interaction large compared to üJrf. In fact this line or 

group of lines hardly changes on hydration. This proofs that in the 

dehydrated zeolite a reservoir of Al nuclear spins exist which have such a 

large quadrupole interaction that their 1/2,-1/2 transition is not observed 

in our (non-spinning) 2D experiment. As mentioned above, when the АІО4" 

tetrahedron is charge compensated by Na
+
, it has been experimentally 

demonstrated that in the dehydrated state the Al resonance is too broad to be 

observable. Table 6.1 shows that in our sample of ZSM-5 25% of all Al sites 

are neutralized by Na
+
 but this percentage is not enough to explain the 

nutation spectra as a function of hydration. Further, more quantitative, work 

is needed to explain the observed phenomena especially because we noted that 

different ZSM-5 samples give different results. For the moment, a preliminary 

conclusion is that in contrast to earlier conclusions also the NMR line of Al 

sites with H
+
 as a counter ion broadens so much on dehydration that they 

become undetectable. This would be in line with results on H-Boralite [SC85], 

a system with the same structure as H-ZSM-5 except that the place of Al in 

the lattice is taken by В in Boralite. The MAS NMR line width of ^ B in 

hydrated H-Boralite is ~ 80 Hz, in the dehydrated sample " 3 kHz. By taking 

into account the difference in quadrupole moment Q, Sternheimer antishielding 

factor, spin I and Larmor precession frequency γΒ
0
 between

 1 1
B and

 2 7
A1 one 
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can calculate that for the same electrical field gradient that causes the 

quadrupole interaction resulting in a 3 kHz line width for И ц in dehydrated 

H-Boralite, should give a 80 χ larger ^'Al line width in dehydrated H-ZSM-5. 

For a static sample this line width is even 4 χ greater. This certainly 

results in an unobservable ^'Al resonance. 

Table 6.1 Chemical composition per unit cell of the H-ZSM-5 sample 

used in the hydration/dehydration study discussed in paragraph 

6.4.3 

Γ 

| Si/Al ratio 

I 
11 

Na/K AIO-, SiO-3 

88 

H-ZSM-5 Si/Al = 11 

27
Al NUTATION NMR 

amplified 

60 180 kHz 

Fig. 6.10 2'Al nutation spectra for H-ZSM-5 as a function of 

rehydration. The lowest spectrum is of the dehydrated material, the 

next spectra are found after 1/2 h, 2 h, 8 h and 156 h of exposing 

the material to water vapour. 
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6.5 Conclusions 

The 2D nutation method appears to be very useful for the determination 

of guadrupole interaction parameters of half integer quadrupole nuclei, 

especially when these parameters cannot be determined from MAS experiments. 

The method combines the sensitivity of high-field measurements with the 

information one gets from experiments at low (zero) field. The spectra can 

easily be simulated with a straightforward density matrix calculation. In 

order to get high sensitivity and maximum resolution in the F2-dimension, 

which is advantageous if nuclei with different chemical shift are present, 

one preferably performs the experiment in the highest available magnetic 

field. Because there is no obvious need for MAS the method will also be very 

suited for high temperature studies (e.g. of zeolites). 
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APPENDIX I 

TRANSFORMATION OF IRREDUCIBLE TENSORS 

We are used to present tensor interactions in their Cartesian form. As 

was explained in paragraph 1.2.6 it is possible to decompose a Cartesian 

tensor into its irreducible components. A detailed treatment of irreducible 

spherical tensors can be found in the books of Rose [R057], Edmonds [ED57] 

and Brink and Satchler [BR79]. The advantage of irreducible tensors is that 

they transform among themselves under rotations. The tensor interactions 

encountered in NMR are symmetric. This means that the Cartesian tensors can 

be decomposed in a scalar (tensor of rank zero), which is invariant under 

rotations, and a second rank tensor, which transforms by definition as 

2
 2 

2»q p
=
_2

 р
'

4 2
'

p 

α,β,γ are the Euler angles of the rotation taking the old, unprimed, axes 

into the new, primed, axes. Thus (1.1) expresses a component ^'2 a with 

respect to the new axes in terms of the components T2 ρ with respect to the 

old axes. D
2
 _ represents the Wigner rotation matrix which is given in table 

1.1. This rotation matrix was obtained using the definitions of Brink and 

Satchler [BR79] which means that a positive rotation is defined by the right 

hand screw sense in the direction of the positive rotation axis. 

As was shown in chapter 1 it is possible to express a spin Hamiltonian 

as a product of an irreducible tensor R^ _
m
, which contains the geometrical 

dependence of the spin interactions, and an irreducible tensor Т^
 ro 

containing the spin variables of the interaction. The internal Hamiltonians 

can thus be written as 

Η = С* Ε Σ (-Ι)
1
^ Τ? (1.2) 

Ύ
 1=0 m=-l Ir-ra L m 

It was further shown in chapter 1 that it is possible to give a general 

relation between the components of the irreducible tensors and the principal 

values of the Cartesian tensor in the principal axis system of the spin 

interaction. 
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P0,0 - 31 T r ( R ) = Ì<RXX+RYY+RZZ> • Riso 

p2;0 = 7(3/2) (Rzz-Riso) = V(3/2) 6 (1.3) 

p2,±2 = І (н
xχ-

R
^πr

, =
 2

 6T1 

where Ηχχ/ Κγγ and R
Z
2 represent the components of the Cartesian tensor in 

the principal axes system. The irreducible tensors are expressed as P]_
 m
 in 

that coordinate frame. To find the appropriate expressions of a truncated 

spin Hamiltonian in the rotating frame we only have to evaluate the component 

R2 0- This is because only the components TQ Q and Τ2 Q (table 1.1) of the 

spin Hamiltonians survive truncation, which means that the general appearance 

of 9 truncated Hamiltonian is 

«x-CC^Ä < ι · 4 ) 

Consequently, the angular dependence of any first order spin interaction is 

found by transforming R2 Q from the principal axes system to the laboratory 

frame. Note that, because of the invariance of the angular part of a spin 

interactions to rotations about the magnetic field, it does not matter if we 

transform to the rotating frame or the laboratory frame. In fact, the 

rotating frame only exists in spin space. When θ and Φ are the polar angles 

orienting the external magnetic field in the principal axes system, the 

transformation to the laboratory frame is given by 

R
2,0 -

 Σ
 Uo«·'

8
'

0
) Pl,m i

1
·

5
) 

m 

= DQ
 0
(φ,θ,0) ,/(3/2) 6 + {Ο^ίφ,θ,Ο) + Ο^^φ,θ,Ο)} η6/2 

= (3/8) 6( Зсов θ - 1 + nsin со82<р ) 

Note that we would have had to multiply three 3x3 matrices to obtain this 

result using Cartesian tensors. 
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When the sample is spinning about the magic angle, the principal axes 

system of a certain spin constantly changes its position with respect to the 

magnetic field. This process is described most easily by defining an axis 

system in the rotor. The correct Hamiltonian is then found by transforming 

from the principal axes system to this rotor axis system followed by a 

transformation to the laboratory frame. This transformation is given in 

equation (1.38) of chapter 1. Using table 1.1 this can easily be converted to 

the expression of equation (1.39). Generally transformation of spin 

Hamiltonians using irreducible tensors reduces the amount of calculation. 
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APPENDIX II 

LIBRARY OF NUTATION SPECTRA 

This appendix contains a complete series of nutation spectra for half-integer 

quadrupolar nuclei 1=3/2, 5/2, 7/2 and 9/2 resulting from density matrix 

calculations discussed in chapter 6. These spectra can be used in a 

qualitative way to determine the quadrupole interactions from experimental 

spectra. For each spin the first figure represents a series of nutation 

spectra as a function of (i)Q/(i)
r
f for η=0. ÜJQ = ê qQ/îi 81(21-1) and ω ^ (=ΎΒ^) 

represents the strength of the radiofrequency B^ field. In the subsequent 

figures η is varied for each ratio Шд/ш^. 

Table II. 1 This table gives the value of e
2
qQ/h (in MHz) for a 

given ratio of iüQ/ü)rf, for ωΓ
£/2τι = 50 kHz. 

Ug/Urf 

0.05 

0.15 

0.30 

0.60 

0.90 

1.20 

3.00 

1=3/2 

0.06 

0.18 

0.36 

0.72 

1.0Θ 

1.44 

3.60 

1=5/2 

0.20 

0.60 

1.20 

2.40 

3.60 

4.80 

12.00 

1=7/2 

0.42 

1.26 

2.52 

5.04 

7.56 

10.08 

25.20 

1=9/2 

0.72 

2.16 

4.32 

8.64 

12.96 

17.28 

43.20 

Table II.2 This table gives the vertical scaling factor, with 

respect to the <IIQ=0 spectra, of every (η=0) spectrum. 

V'rf 

0.05 

0.15 

0.30 

0.60 

0.90 

1.20 

3.00 

1=3/2 

4.7 

15.2 

14.9 

10.2 

7.3 

5.7 

3.0 

1=5/2 

7.4 

8.2 

25.0 

25.1 

19.4 

15.7 

6.9 

1=7/2 

6.7 

16.0 

22.0 

39.6 

32.6 

26.2 

12.7 

1=9/2 

12.1 

25.2 

19.8 

72.0 

61.1 

52.3 

25.7 

149 



1 = 3/2 

J 4 -

3 

1.2 

аэ 

0.6 

0.3 

0.15 

0.05 

Uri 2 C J r f 

150 



£.= 0.05 

- 1 

-ο.β 

-0.6 

-0.4 

-0.2 

2u»r» 

1=3/2 
ω. 

- 1 

-ο.β 

-0.6 

-0.4 

-0.2 

151 



;=о.э 

-0.8 

-0.6 

—0.4 

- 0 . 2 

2ω* 

1=3/2 Η» 
С=0.6 

-0.8 

-0.6 

-0.4 

-0.2 

2cJl·, 

152 



£=0.9 

л. 
л 
А 

2uu 

1=3/2 

Л 
А. 
Л 

А 
А 

-0JB 

-0.6 

-ОА 

-0.2 

3*12 

-0.Θ 

-0.6 

-0.4 

-0.2 

2 ^ 

153 



ωτι 3 ü r f 

154 



^ = 005 

-08 

-06 

-04 

-0 2 

Зи 

-OB 

-06 

-04 

-02 

3;=οΐ5 

155 



!а=о.з 

1 = 5/2 
^ = 0 . 6 

З^-л* 

156 



^^л_ 

^^v. 

-^A_ 

Л 08 

- л „ 
OA 

Λ 
•-fc 3u*, 

Λ 
л 

02 

α 
-ι 

-08 

-06 

-OA 

-02 

О 

3u>,, 

^ = 0 . 9 

1 = 5 / 2 « * . = , 2 

157 



1= 7/2 

CJrf 4G)rf 

158 



£=005 

-о θ 

-Об 

-04 

-02 

^ 

1 = 7/2 £=015 

-О θ 

-06 

-04 

-0 2 

4^.. 

159 



>4_ 3;=о.з 

" ^ ч ^ 

• ^ г - -OB 

-0.6 

-0.4 

-0.2 

«^ 
U7/2 

^ = 0 6 

4«^ 

160 



£ = 0 9 

U7/2 

Λ 
л 

А 

-08 

-06 

-04 

-0 2 

= =12 

4ω* 

161 



1=9/2 

0.05 

Τω ω Γ ί 
rf 

162 



=M>.05 

-08 

-0.6 

-0.4 

-02 

Ъъм 

1 = 9/2 
V0.15 

5u\, 

163 



a=03 

5«^ 

Λ-Λ 
1=9/2 

^ 0 6 

Sw,. 

164 



^ 0 . 9 

W 

1=9/2 
= 1.2 

Sui,» 

165 





SUMMARY 

Nuclear Magnetic Resonance (NMR) has developed to one of the roost 

important analysis tools in chemistry. This is because the spin interactions 

that the nuclear spins experience depend critically on the surroundings of 

the nucleus in a molecule. The technique has become so powerful that it is 

for instance possible to solve the 3-dimensional structure of large proteins 

in solution. The development of solid state NMR has been more painful. This 

is because the nuclei tumble around rapidly in solution and thus narrow 

(averaged) resonance lines are detected. In rigid solids, however, the 

resonance frequency of a spin depends on the orientation with respect to the 

magnetic field. As a result spectra of powdered solids are very broad and 

often featureless. However, several averaging techniques have been developed 

to obtain "liquid-like" spectra of solids. This thesis is dedicated to a new 

class of experiments in solids: two-dimensional NMR of solids. 

Chapter 1 gives an overview of spin interactions that determine the 

resonance frequency of a nucleus. Furthermore it gives an overview of 

averaging techniques, like magic angle spinning and multiple pulse 

techniques, used to average anisotropic interactions in solids, in order to 

obtain "liquid-like" spectra. 

In two-dimensional NMR the resonance signal is measured as a function of 

two time variables. The signal that is detected during a time domain t2 is 

modulated in phase or amplitude by the spin interactions present during a 

previous period t^. This is achieved by applying specific series of 

radiofrequency pulses to the sample. By manipulating the spin system in the 

right way it becomes possible to map out and correlate several spin 

interactions. Another possibility is to detect exchange between several 

states of a nucleus. The principle of 2D NMR is discussed in chapter 2. 

In Chapter 3 we describe an experiment, using magic angle spinning and 

multiple pulse decoupling, that results in a spectrum that gives isotropic 
13C chemical shifts in one dimension and the corresponding heteronuclear JC_H 

couplings in the other direction. This experiment is, except for the 

averaging techniques, analogous to such an experiment in a liquid. By 

applying this technique to natural rubber it appeared that not much averaging 

was needed to obtain a "liquid like" spectrum, which means that the 

macromolecules in the rubber must be very mobile. 
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At first, solid state NMR spectroscopists always aimed to perform 

experiments analogously to experiments in solution. It appectrs, however, that 

several experiments are possible that explicitly exploit the anisotropic 

behaviour of spin interactions in solids. As 2D NMR offers the possibility to 

map out different interactions it can be used to avoid spectral overlap. Such 

an experiment, that maps out the chemical shift anisotropy against the 

heteronuclear dipolar interaction, is described in chapter 4. This can be 

used to obtain geometrical, orientational and motional information. Poly-

(oxymethylene) (-CH2-0-)n is a polymer whose molecular chains form helices in 

the crystalline solid state. From the experiment described above it appears 

that the orientation of the " c chemical shift tensor is determined by the 

local tetrahedral symmetry of the CH2O2 unit. Consequently, this symmetry is 

not disturbed by the helix formation. 

2D exchange experiments are used to detect some kind of exchange between 

different states of the spin system during a mixing time that separates the 

evolution and the detection periods. In chapter 5 2D exchange experiments are 

used to study super-slow molecular motions in solids. For instance, it was 

established that the very mobile rubber molecules do not travel through large 

distances in the sample within 40 milliseconds. The emphasis in chapter 5 

lies on the description of a variant of the 2D exchange experiment developed 

by us to study super-slow molecular motions in polymers using magic angle 

spinning to increase sensitivity. As the chemical shift anisotropy is used in 

this experiment to detect the molecular motions, the spinning speed is chosen 

to be small so that the chemical shift anisotropy is not totally averaged, 

but so-called spinning sidebands appear. These experiments showed the 

presence of super-slow chain motions in poly-(oxymethylene). Using the 

results obtained in chapter 4 about the orientation of the chemical shift 

tensor, the imitions could be characterized. It appears that the helices, in 

the crystalline part of the polymer, perform a screw like rotation over 

±200°. At a temperature of 60 0C this motions, on the average, only occurs 

once a second for every chain. These kinds of motion are important because 

they are believed to influence the mechanical properties of polymers. 

In chapter 6 the so-called 2D nutation experiment is described. It 

offers the possibility to study nuclei with a quadrupole moment. The 

quadrupole interaction is determined by the electrical interaction of the 

(asymmetric) nucleus and its surrounding charges and can thus yield valuable 

structural information. As the majority of nuclei in the periodic system 

possess a quadrupole moment this experiment should find many applications. 
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The interest on getting structural information from spectra of quadrupolar 

nuclei has been aroused because of the important role such atoms play in 

ceramics, clays and silicates (e.g. zeolites), which гиге important materials 

in material science because of their various applications. Zeolites are 

porous networks of Si0
4
 and AIO4 tetrahedra. A well-known zeolite is ZSM-5 

which can be used as a catalyst to convert methanol into gasoline. The 

catalytic activity occurs at the aluminum nuclei. One application of nutation 

NMR in chapter 6 is a study of structural changes around the aluminum nuclei 

in ZSM-5 upon a change of the water content of the pores. 

It can be concluded that 2D solid state NMR is a useful and important 

extension of the arsenal of analysis tools. For instance, the possibility to 

study molecular motions on a molecular level can lead to new viewpoints about 

the relation of these motions to mechanical properties of the polymer. 

Nutation NMR also offers some interesting possibilities, like the study of 

zeolites at high temperatures where they are catalytically active. 
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SAMENVATTING 

Atoomkernen zijn op te vatten als staafmagneetjes, dit noemt men de 

spin. Als gevolg hiervan zullen de spins een wisselwerking vertonen met een 

uitwendig magneetveld. Kernspin resonantie (Nuclear Magnetic Resonance NMR) 

maakt hier gebruik van; men brengt een stof in een hoog magneetveld, 

vervolgens verstoort men de in het magneetveld uitgerichte spins met een 

radiofrequente puls. Hierdoor gaan de spins met een specifieke frequentie 

trillen. Het is gebleken dat deze resonantie frequenties afhangen van de 

precíese omgeving van de atoomkernen. NMR heeft zich tot een belangrijke 

analyse techniek ontwikkeld in de chemie omdat men aan de hand van de 

resonantie frequenties van de spins informatie kan krijgen omtrent de 

structuur van een stof. Zo is het bijvoorbeeld mogelijk geworden om de 

3-dimensionale structuur van eiwitten in oplossing op te lossen aan de hand 

van NMR experimenten. 

In hoofdstuk 1 van dit proefschrift worden de, resonantie frequentie 

bepalende, interacties van de kernspins met hun omgeving beschreven. In 

vloeistoffen meet men door het snelle tuimelen van de moleculen een 

gemiddelde frequentie. In vaste stoffen hangen de resonantie frequenties af 

van de oriëntatie van een bepaald molecuul t.o.v. het uitwendige magneetveld. 

Dit heeft tot gevolg dat in poeders, waarin de moleculen alle mogelijke 

oriëntaties t.o.v. het magneetveld hebben, zeer brede frequentieverdelingen 

worden gemeten. Toch kan men vaak in vaste stoffen "vloeistof-achtige" 

spectra meten door uitmiddelings technieken toe te passen zoals magic angle 

spinning. Hierbij wordt het sample met zeer hoge snelheid om een as, die een 

hoek van 54.7° (de magische hoek) maakt met het magneetveld, geroteerd. De 

verschillende uitmiddelings technieken worden eveneens in hoofdstuk 1 

besproken. 

Bij twee-dimensionale (2D) NMR meet men een trillingssignaal in een 

tijddomein t2 dat gemoduleerd wordt in fase en/of amplitude door de 

interacties die het spinsysteem gedurende een voorafgaande tijd t¿ beheersen. 

Dit wordt bereikt door het sample aan specifieke volgordes van radiofrequente 

pulsen te onderwerpen. Twee-dimensionale NMR kan men gebruiken om 

verschillende interacties tegen elkaar uit te zetten. Een andere mogelijkheid 

is het meten van uitwisseling (exchange) tussen verschillende toestanden van 

de spin gedurende een mixingtijd tussen t¿ en t2· In hoofdstuk 2 wordt het 

principe van de twee-dimensionale NMR beschreven. 
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In hoofdstuk 3 wordt een 2D vaste stof NMR experiment beschreven dat de 

chemische verschuiving uitzet tegen de J-koppeling. De chemische verschuiving 

is een grootheid die bepaald wordt door de electronenwolken die een kern 

omringen, terwijl de J-koppeling informatie geeft over de chemische bindingen 

met buurkernen. Het sample wordt gedurende dit experiment aan bovengenoemde 

uitmiddelings procedures onderworpen zodat een spectrum wordt verkregen dat 

kan worden vergeleken met dat van vloeistoffen. Uit dit soort experimenten 

met rubber blijkt dat er nauwelijks uitgemiddeld hoeft te worden, wat 

betekent dat de macromoleculen in het rubber zeer beweeglijk zijn. 

In veel 2D experimenten aan vaste stoffen wordt expliciet gebruikt 

gemaakt van het vaste stof karakter van de spin interacties, dus men meet dan 

niet alleen de gemiddelde frequenties. Zo kan het tegen elkaar uitzetten van 

interacties onder andere gebruikt worden voor het bepalen van relatieve 

oriëntaties van tensoren (^mathematische beschrijving van de interacties) 

t.o.v. elkaar om hieruit meer informatie te krijgen omtrent de lokale 

structuur in een materiaal ter plekke van een bepaalde kern. In hoofdstuk 4 

wordt de dipolaire interactie, die de magnetische wisselwerking van een kern 

met zijn buren beschrijft, uitgezet tegen de chemische verschuiving. 

Polyoxymethylene (-CH2-0-)n is een kunststof waarvan de molecuulketens in de 

kristallijne vaste stof helices vormen. Uit de zojuist beschreven metingen 

blijkt dat de oriëntatie van de ^ C chemische verschuivings tensor wordt 

bepaald door de lokale tetraedrische symmetry van de CHjOj eenheid. Deze 

symmetry wordt dus niet verstoord door de helix vorming van de 

polymeerketens. 

2D exchange experimenten worden gebruikt om bijvoorbeeld chemische 

exchange te meten. Dit is een proces waarbij een kernspin heen en weer 

pendelt tussen verschillende posities binnen een molecuul of tussen 

verschillende moleculen. In hoofdstuk 5 worden 2D exchange experimenten 

gebruikt om zeer langzame molecuulbewegingen op te sporen in de vaste stof. 

Dit leidt tot zeer interresante resultaten. Zo kon worden aangetoond dat de 

zeer beweeglijke rubber moleculen geen grote afstanden afleggen binnen het 

sample binnen een tijd van 40 milliseconden. De sterke nadruk in hoofdstuk 5 

ligt op de beschrijving van een door ons ontwikkelde variant van het 2D 

exchange experiment om langzame bewegingen op te sporen in polymeren. Hierbij 

wordt magic angle spinning toegepast om de gevoeligheid te verhogen. De spin 

snelheid wordt echter zo klein gekozen dat de chemische verschuivings 

anisotropie, die hier gebruikt wordt om de beweging op te sporen, niet geheel 

wordt uitgemiddeld (er ontstaan dan zogenaamde spinning-zijbanden). Bij dit 
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soort experimenten aan polyoxymethyleen kwamen zeer langzame ketenbewegingen 

aan het licht. Om de beweging te kunnen beschrijven werd gebruikt gemaakt van 

de resultaten verkregen in hoofdstuk 4 omtrent de ligging van de chemische 

verschuivings tensor. Het blijkt dat de helixvormige macromoleculen 

schroefbewegingen uitvoeren in de kristallijne fase van het polymeer. Deze 

bewegingen treden bij een temperatuur van 60 0C gemiddeld slechts een keer 

per seconde op voor iedere keten. Dit is vooral van belang omdat dit soort 

ketenbewegingen waarschijnlijk de mechanische eigenschappen van polymeren 

beïnvloeden. 

In hoofdstuk 6 wordt het zogenaamde nutatie NMR experiment beschreven 

dat het mogelijk maakt om de quadrupool interactie te bestuderen. De 

quadrupool interactie beschrijft de electrische interactie van asymmetrische 

atoomkernen met de omringende ladingsverdeling, en geeft dus informatie 

omtrent de lokale structuur. Omdat het merendeel van de atoomkernen in het 

periodiek systeem een quadrupool moment heeft is dit experiment van groot 

belang. De belangstelling voor bepaalde quadrupoolkernen is vooral opgewekt 

omdat ze voorkomen in allerlei keramische materialen en zeolieten, die van 

groot belang zijn voor de chemische industrie. Zeolieten zijn materialen met 

daarin porie-netwerken. Een zeer bekend zeoliet is ZSM-5 dat als katalysator 

kan fungeren om methanol om te zetten in benzine. De katalytische werking 

treedt op bij aluminium kernen die in het materiaal ingebouwd zijn. In 

hoofdstuk 6 wordt o.a. de lokale structuur verandering rond aluminium kernen 

in ZSM-5 bestudeerd als functie van het water gehalte van de poriën. 

Uit het voorgaande blijkt dat 2D NMR voor vaste stoffen een belangrijke 

en zinvolle uitbreiding van het arsenaal van analyse methodes biedt. Zo kan 

bijvoorbeeld de mogelijkheid om zeer langzame bewegingen in polymeren op 

moleculair niveau te bestuderen interessante resultaten opleveren wanneer 

bijvoorbeeld de invloed van mechanische bewerkingen op de stof wordt 

bestudeerd. Ook de nutatie NMR biedt belangrijke perspectieven, zo bestaat 

bijvoorbeeld de mogelijkheid om zeolieten bij hoge temperaturen, waarbij ze 

katalytisch werkzaam zijn, te onderzoeken. 
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STELLINGEN 

I 

Het door Reuveni gegeven verband tussen de N-D bindingsafstand en 

de gemeten Deuterium quadrupool parameter e^qQ/h gaat niet op 

voor 2 van de 4 besproken systemen. 

-A. Reuveni, Can. J. Phys. 29^ 79, 1984. 

II 

De door Man gegeven overgangsfrequenties in nutatiespectra kunnen 

niet worden verkregen uit de door hem gegeven Hamiltoniaan. 

-P.P. Man, J. Magn. Res. 67^ 78, 1986. 

Ill 

De afwijzende houding van veel fysici t.o.v. de toepassing van 

patroonherkenning op fysische problemen is niet gefundeerd. 

IV 

Met de opmerking "Surprisingly, the only treatments of half­

integer spins in the literature seem to be some preliminary 

results by us for I = 3/2 and more recent ones by Fenzke et al. 

for I = 5/2." geven Pandey et al. aan niet op de hoogte te zijn 

van de bestaande literatuur op het gebied van de excitatie van 

quadrupool kernen. 

-Lakshman Pandey, S. Towta and D.G. Hughes, J. Chem. Phys. 85, 

6923, 1986. 

V 

Uit het feit dat in NMR boeken steeds een spectrum van ethyl-

alcohol wordt getoond bij de bespreking van het begrip chemische 

verschuiving blijkt dat deze stof nog steeds zeer tot de ver­

beelding spreekt. De vertroebelende werking van alcohol blijkt 

echter uit de grote moeite die men vervolgens heeft met het 

consequent toepassen van de kurketrekker-regel bij het uitvoeren 

van rotaties. 



VI 

Nunome et al. en Shimida et al. interpreteren de toename van het 

product Τ^·Τ2 als functie van de temperatuur, voor radicalen in 

bestraald polyethyleen, ten onrechte als een toename van T2· 

-K. Nunome, H. Muto, К. Toriyama and M. Iwasaki, Chem. Phys. 

Lett. 39J 542, 1986. 

-S. Shimida, Y. Hor i and H. Kashiwabara, Radiât. Phys. Chem. 19, 

33, 1982. 

VII 

De voorspelling van W.S. Veeman, dat de volgende Elfstedentocht 

pas in het jaar 3693 zou plaatsvinden, lijkt, gezien de recente-

lijke ontwikkeling rond de organisatie, eerder een wensdroom dan 

een wetenschappelijk gefundeerde voorspelling. 

-W.S. Veeman, stelling 9 bij het proefschrift "Level anticrossing 

and cross-relaxation in phosphorescent organic crystals", 

november 1972. 

Vili 

Problematisch voor mensen die een afkeer hebben van politiek is 

dat zij geregeerd worden door politici. 

IX 

De voortgang van de automatisering zou zeer zijn gebaat met het 

verschijnen van duidelijke handleidingen bij zowel hard- als 

software. 

Nijmegen, 4 juni 1987 A.P.M. Kentgens 






