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CHAPTER 1 

GENERAL INTRODUCTION 





GENERAL INTRODUCTION 

Molecular Biology of the Intermediate Filaments: an 

Overview. 

The Discovery of Intermediate Filaments 

The detailed view of the electron microscope has 

enabled the identification of a number of filamen­

tous structures in the eucaryotic cell. Differences 

in general morphology and diameter in addition to 

the susceptibility to certain drugs have been used 

to classify the observed cytoskeletal filaments. 

Actin filaments (6 nm in diameter) and microtubules 

(25 nm) in nonmuscle cells and myosin filaments (15 

nm) in muscle cells were readily characterized. 

However, the filaments with a diameter of 9-10 nm 

(intermediate between the diameter of actln-

containlng microfilaments and those of myosin con­

taining thick filaments and microtubules) were, in 

the beginning, not regarded as a different class of 

fibers. 

A first step towards the appreciation of these 

filaments as a different type, was the observation, 

that intermediate filaments (or 10 nm filaments) do 

not stain with heavy meromyosln (in contrast to 

actin-filaments) and that they are persistent to a 

treatment with colchicine (Ishikawa et al.,1968). 

This drug, which dissociates microtubules into its 

subunits caused the Intermediate filaments to col­

lapse into a perinuclear organization, but did not 

desintégrate the individual filaments. From these 

observations it was anticipated that Intermediate 

filaments (IF) form a distinct cytoskeletal struc­

ture, which Interacts with microtubules (lahikawa 

et al.,1968). Despite the clear distinction to 

other cytoskeletal fibers progress in the biochemi­

cal characterization of IF was slow, mainly because 

of the insolubility of the filaments and the 

resulting difficulties in the isolation of their 

subunits (Shelanskl et al.,1971; Eng et al.,1971; 

Skerrow et al.,1973; Hoffman & Lasek,1975). More­

over, it was puzzling that number and sizes of 

subunits isolated from diverse sources as nerve 

cells, smooth muscle cells, epithella, and astro­

cytes were very different, although the 10 nm fila­

ments from different tissues showed a similar mor­

phology in electron microscopy studies (Hoffman & 

Lasek,1975; Steinert & Idler,1975; Small and So-

Ьіезгек,1977). The full understanding of the 

diversity and wide distribution of 10 nm filaments 

was only achieved when suitable antibodies directed 

to the different subunits were used in immuno­

fluorescence studies (Bignami et al.,1972; La-

zarides & Huberd,1976; Liem et al.,1978; Hynes & 

Destree,1978; Franke et al.,1973a,b; Sun & 

Green,1978). In the Immunofluorescence microscope 

bright filamentous structures were observed after 

treatment of permeabilized cells with antibodies 

directed against IF proteins. The localization of 

these fluorescent fibers and the collapse into a 

perinuclear cap upon treatment with colchicine were 

the main arguments to link the brightly fluorescent 

network with the electron microscopic observations 

of 10 nm filaments (Osborn et al.,1977; Hynes i 

Destree,1978). With the aid of different antibo­

dies it was now rapidly understood that Intermedi­

ate filaments showed tissue-specificity: for in­

stance antibodies raised against IF from epithelial 

cells were able to decorate filaments in all types 

of epithelial cells, but not In muscle cells or 

nerve cells (Franke et al,1978a; Lazarides & Hub­

bard, 1976; Bennet et al.,1978). 

During the last 5 years enormous progress has 

been made in the inventarizatlon and characteriza­

tion of different IF subunits thanks to the appli­

cation of new techniques as high resolution two-

dimensional gel-electrophoresis, production of 

monoclonal antibodies, immunoblottlng and recently 

DNA cloning. 

The diversity of IF subunits 

Isolation procedures for IF-subunlts merely 

depended on a common chemical property of 10 nm fi­

laments, namely their insolubility in buffers con­

taining Triton X-100 (1Í) and high or low salt con­

centrations (for references see Franke et 

al.,1982). Solubilization of IF-proteins is only 

achieved under denaturing conditions, e.g. 6 M 

urea. Surprisingly It was found that after removal 

of urea, purified proteins reassembled to form au­

thentic 10 nm filaments in vitro (Steinert et 

al.,1976). This shows that the polymerization of 

IF-subunlts to filaments Is a reversible process 

that takes place spontaneously without the need of 

energy or accessory-proteins. By carrying out sub­

sequent disassembly/reassoclation steps some people 

used this phenomenon to develop a procedure to 

purify IF proteins (for references see Steinert et 

al.,1982). On the other hand SDS-polyacrylamlde 

gel electrophoresis of the Triton X-100 insoluble 

fraction was in most cases sufficient to obtain a 

pure antigen for the production of antibodies. An­

tisera obtained in this way have been used to clas­

sify the different IF proteins. In the past few 
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CELL TYPE SUBUNITS # MOLECULAR WEIGHT SEQUENCE REFERENCE 

MUSCLE 

OLIAL 

NEURONAL 

EPHITHRLIAL 

DESMIN 1 52 KD 

51 KD 

MESENCHYMAL VIMENTIN 1 53.5 KD 

GFAP 1 50 KD 

NEURO- 3 68 KD* 

FILAMENTS 

160 KD* 

200 KD* 

KERATINS MANY* 

MAN: BASIC 8 52.5-68 KD 

ACIDIC 11 40-61 KD 

COW: BAS: 

AC: 

15 

І 11 43-57 KD 

MOUSE: BAS: ± 1 1 

AC: i 12 

XENOPUS: BAS: >3 

AC: >3 

51-70 KD 

15-58 KD 

63-65 KD 

49-53 KD 

CHICKEN (100 %) 

CHICKEN (COOH 20Ï) 

HAMSTER (COOH 70 Í) 

HAMSTER (100 %) 

HAMSTER (COOH 95 %) 

HAMSTER (100 Ï) 

PIG (COOH 30 Í) 

PIG (NH2 + COOH 30 *) 

MOUSE (COOH 90 І) 

PIG (50 $) 

MOUSE (COOH 60 t) 

PIG (NH2 301) 

PIG (30 Í ) 

GEISLER & WEBER, 1982 

CAPETANAKI ET AL., 1984 

QUAX ET AL, 1981 

QUAX ET AL., 1985 

QUAX-JEUKEN ET AL., 1983 

QUAX ET AL., 1983 

GEISLER & WEBER, 1981 

GEISLER & WEBER, 1983 

LEWIS ET AL., 1984 

GEISLER ET AL., 1983 

LEWIS & COWAN., 1985 

GEISLER ET AL., 1984 

GEISLER ET AL., 1983, 1985 

HUMAN 56 KD (COOH 60Í) HANUKOGLU & FUCHS, 1983 

HUMAN 50 KD (COOH 85 Í) HANUKOGLU & FUCHS, 1982 

HUMAN 50 KD (100 %) 

COW IA (COOH 30%) 
COW IB (COOH 30Í) 

COW VIB (COOH 40$) 

COW VII (COOH 20Í) 

MOUSE 59 KD (100 %) 

MOUSE 69 KD (100 í) 

MARCHUK ET AL., 1984 

JORCANO ET AL.,1984C 
JORCANO ET AL.,1984C 

JORCANO ET AL.,1984B 

JORCANO ET AL.,1984B 

STEINERT ET AL., 1983 

STEINERT ET AL., 1981 

XEN 51 KD (COOH 25 %) HOFFMANN & FRANZ, 1981 

Table 1 

An overview of the various Intermediate fllanent subunits as they have been 

Identified by Immunological and biochemical techniques. The first column (Cell 

Type) refers to the tissue in which the corresponding subunlt (column 2) Is ex­

pressed. Column 3 (#) represents the number of primary gene products and column 

1 the molecular welgth Identified for that subunlt type. Column 5 (Sequence) 

summarizes the elucidation of primary structures of various IF proteins as they 

have been performed by direct amino acid sequencing or by prediction from the 

corresponding DNA sequence. 

+) There Is an enormous discrepancy between the molecular weight estimations 

performed on SDS-PAGE gels and those determined by other methods (Kaufmann et 

al.,1984). 

*) For the number and Iso-electric point of the human cytokeratlns see the human 

keratin catalogue (Moll et al.,1982); for other species see Franke et al.(1982). 
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years this classification has been confirmed and 

refined by data on the primary structure of the 

different proteins. Part of these data were ob­

tained by direct amino acid sequencing of the puri­

fied proteins (Geisler & Weber,1981,1982,1983; 

Gelsler et al.,1983,1981). Host of the data, how­

ever, were obtained by analysing the DNA Informa­

tion encoding the IF subunlts (Hanukoglu and 

Fuchs,1982,1983ί Steinert et al., 1983,1981; Quax-

Jeuken et al.,1983; Quax et al. ,1983,198Ua,b; Hof­

mann & Franz, 1984; Lewis et al.,1981; Jorcano et 

al., 1981b). Based on sequence data and immunologi­

cal observations we have summarized the classifica­

tion of IF In table 1. 

As it will become clear from table 1 the expres­

sion pattern of the different IF shows close paral­

lels to established patterns of embryological dif­

ferentiation: In muscle cells we find desmln, in 

neurones neurofilaments, in cells of glial origin 

(astrocytes) glial filaments. In cells of mesenchy­

mal origin vtmentln and in epithelial tissue kera­

tins. This tissue-specificity is one of the main 

causes for the growing interest In these proteins, 

because this renders them to very specific dif­

ferentiation markers useful in developmental biolo­

gy and tumor diagnosis (Osborn & Weber,1982; 

Ramaekers et al.,1982). In contrast to the non-

epithelial IF-subunits, the keratins form a large 

group of related proteins encoded by a family of 

related genes. Subdivision of keratins has been 

performed on the basis of Isoelectric point and mu­

tual homology. This has resulted in the definition 

of a subclass of acidic (Type I) and basic (Type 

II) proteins. Within one group the keratins show 

about 60-70? homology («identical amino acids at 

corresponding positions). Keratins of different 

groups are only about 30Ϊ homologous. The homology 

in primary structure between the keratins on the 

one hand and the non-epithelial IF subunits on the 

other hand Is low, but significant (+/- 30% homolo­

gy). The mutual homology of non-epithelial IF pro­

teins Is higher (> 50%) with vimentin, desmln and 

GFAP being the most related О 65%). Although the 

divergence In primary structure of intermediate fi­

lament proteins suggests rather dramatic differ­

ences between the subunits, the secondary structure 

(as It can be predicted from the primary structure) 

and the physical properties of the proteins show 

striking similarities. It appears that all IF 

molecules have a central polypeptide domain of 

about 310 residues that is mainly in α-helical con­

formation (as was first observed from circular dl-

chrolsm measurements). Within this α-helical region 

there is a regular heptade distribution of hydro­

phobic amino acids which Is typical for α-helices 

that can Interact to form coiled coils. An identi­

cal heptade distribution has thus far been found in 

all IF molecules suggesting the same lengths and 

Interruptions for the colled colls. These findings 

have resulted in the prediction of a general model 

for IF proteins. In figure 1 the model is outlined 

on the basis of the vlmentln sequence (Quax-Jeuken 

et al.,1983). The central α-helical domain can be 

considered as the constant domain of IF, since all 

subunits show a nearly Identical secondary struc­

ture in this region. Consequently this Is also the 

region of highest homology In primary structure 

between the various IF sequences. The non-helical 

NH and COOH part account for the diversity of IF. 
2 

Homologous sequences In these domains are only 

found between very closely related members, - e.g. 

vlmentln Is about 15Í Identical to desmln and GFAP 

In the COOH domain, but homology with neurofila­

ments or keratins Is completely absent in this re­

gion. The length of the NH terminal domain varies 
2 

among different IF molecules from short In GFAP (15 

residues) to long in the 57 kD mouse keratin (125 

residues). The COOH tall piece Is extremely vari­

able in length: from 15 In human keratin 50 kd to 

probably more than 700 amino acids In the highest 

molecular weight neurofilament subunlt (Geisler et 

al.,1981; Kaufmann et al.,1981). The extreme long 

extensions of the two high-molecular weight neuro­

filament subunits (NF-M and NF-Η) are probably not 

involved In filament formation. Amino acid composi­

tion data indicate that these tailpieces are ex­

tremely rich In charged residues, particularly glu­

tamic acid and lysine (Gelsler et al. ,1983,1981). 

These charged residues are located surface-exposed 

at the outside of neurofilaments. Whether these 

charged polypeptide chains are Involved in nerve 

conduction Is unknown. 

As already mentioned isolated IF subunits can 

polymerize in vitro. However, only the non-

epithelial members are able to form homopolymer fi­

laments constituted of a single subunlt (Small & 

Sobleszek,1977; Geisler & Weber,1980). The keratins 

always form a heteropolymer, built up from at least 

one type I and one type II subunit (Franke et 

al.,1983; Quinlan et al.,1981). Purified monomers 

of one type do not form filaments in vitro 

(Steinert et al., 1982). In the case of the non-

eplthellal IF homopolymer filaments represent the 

common situation. However in cell types, which con-

13 



tain more than one subunlt heteropolymers can also 

form (Qulnlan et al. ,1982,1983)· This concerns 

mostly cultured cells, since cultered cells аз a 

rule start synthesizing vlmentln In addition to the 

original IF subunlt (for references see Franke et 

al., 1982). Polymerization of keratins and vlmentln 

Into the same filaments has never been observed. 

The knowledge and abundance of data on the 

structure of IF subunlts Is In sharp contrast to 

the lack of understanding of the polymerization 

process by which Individual subunlts assemble into 

10 nm filaments. It is now generally accepted that 

the first polymerization step is the formation of a 

dimer through a coiled coll interaction and the 

subsequent alignment of two dimers to form a tetra-

mer. The number and the arrangment of these tetra­

mere within 10 nm filaments are however still sub­

ject of speculation (Ip et al.,1984). 

The genes encoding intermediate filaments 

The Introduction of recombinant DNA technology 

has also put it's mark on intermediate filament 

research. cDNA clones have not only allowed to 

derive the primary structure of many subunlts from 

the nucleotide sequence, but they have also allowed 

to study the chromosomal Information and gene ex­

pression of IF. Keratin cDNAs, which were the first 

to be constructed (Fuchs et al.,1981) enabled the 

distinction of two different keratin subclasses on 

the basis of hybridization experiments. On genomic 

DMA each cDNA hybridized with multiple restriction 

fragments indicating that there are many closely 

related genes encoding keratins: a multtgene fami­

ly. Vlmentln cDNA, which was isolated next 

(Dodemont et al.,1982¡ Quax et al.,1982) hybridized 

only with a single chromosomal locus. Hence, vlmen­

tln represented the first cytoskeletal protein that 

was proven to be encoded by a single copy gene. Re­

cently it was shown that also GFAP (Lewis et 

al.,1984) and desmin (Quax et al.,1984a) are encod­

ed by single copy genes. More detailed studies of 

keratin cDNA (Jorcano et al.1984a; Lehnert et 

al.,1984) showed that keratin genes behave like 

single copy genes if one applies highly stringent 

hybridization conditions. This would mean that each 

intermediate filament protein, that can be visual­

ized in a specific position on a two-dimensional 

gel, is encoded by a single gene detectable on 

genomic blots. These findings distinguish the in­

termediate filament proteins from actins and tubu­

lins, the other cytoskeletal proteins. The latter 

proteins are encoded by multiple very closely re­

lated genes (e.g. >20 actln genes in man, Soriano 

et al.,1982; Quax et al.,1982) that encode identi­

cal or nearly identical proteins with nearly equal 

migration behavior In 2-dimensional gel electro­

phoresis. 

Despite the diversity of IF proteins, the homol­

ogy at the DNA- and protein level favors the Idea 

that IF emerged from a common ancestral gene. In 

search for the. evolutionary origin of Intermediate 

filament genes, cDNA probes have been used to 

detect homologous sequences in the genomic DNA of 

vertebrate and invertebrate species. In all ver­

tebrates tested vlmentln cDNA (Quax et al.,1982; 

Quax et al.,1984a), keratin cDNA (Fuchs & Mar-

chuk,1983) and desmin cDNA (Quax et al.,1984a) were 

able to detect hybridizing fragments under normal 

stringent conditions. (50Í formamide, 0.6 M NaCl, 
о 

42 С). However, detection of positive hybridizing 

fragments in Invertebrates was not possible under 

the same conditions. This implies that the coding 

Information for IF is evolutionary lesser conserved 

than the genes for actin and tubulin, a finding 

that could be anticipated because of the diversity 

of IF proteins. 

As far as the structure of IF genes Is concerned 

data are only recently available (Quax et 

al. ,1983,this thesis chapter 3; this thesis chapter 

5; Lehnert et al.,1984; Johnson et al.,1984). The 

hamster vlmentln gene was the first IF gene whose 

structure was unraveled (this thesis chapter 3). 

Nine exons, which are spread over +/- 9 kb of DNA , 

are carrying the coding capacity for vimentin mRNA 

(1848 bases). Relating the intron positions to the 

general model of IF (figure 1) it becomes clear 

that some introns match with a protein domain bord­

er (intron 3 and 6), but most do not. This correla­

tion of gene and protein structure, which Is found 

in many genes, Is thought to be a remainder of 

processes of exon shuffling and ¿ene duplication 

during evolution (Gilbert,1978; Blake,1978). From 

the structure of the vimentin gene one could anti­

cipate that those intron positions that do not map 

at domain borders of the IF model are unique for 

the vlmentln gene and therefore not evolutionary 

conserved. Surprisingly, however, precisely the 

same borders are also found in the hamster desmin 

gene (this thesis chapter 5) showing that the in­

tron positions of these two genes have been con­

served everslnce the divergence of these two genes. 

The moment of divergence of these two IF genes is 

thought to have taken place amply before the evolu­

tion of vertebrate species (Quax et al.,1984a). 
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Figure 1 

The General IF-Model and Intron Positions. 

The complete primary structure of vimentin as it has been deduced from the nucleo­

tide sequence of the gene (Quax et al.,1983) has been arranged in a periodic dis­

tribution with a regularity of seven. Nonpolar amino acids [alanine (A), valine 

(V), methionine (M), isoleuclne (I), leucine (L), tyrosine (Y), phenylalanine (F), 

and tryptophan (W)] are encircled. Shaded regions show a heptade distribution of 

hydrophobic residues and are therefore thought to be in α-helical conformation 

(Quax-Jeuken et al.,1983). It can be seen that the arrows, representing the intron 

positions in the vimentin gene, do not match with protein domain borders apart 

from Intron 3 and 6. These latter two intervening sequences are the only ones that 

comply with the terms of the Gilbert hypothesis (Gilber,1978). 



Recently some data on the exon/lntron pattern of 

keratin genes have been reported. ft-looplng 

analysis of four bovine keratin genes suggests that 

the number of introna In the keratin genes is the 

same (8) or one less (7) as in the vlmentln and 

desmln genes (Lehnert et al.,1984). Although It 

seems that not all Intron positions are equal to 

the vlmentln gene, some of them are. One of the 

exon/lntron borders was sequenced (AKBIa, Lehnert 

et al.,1984) and this correlates exactly with 

vlmentln and desmln Intron 6: the Intron that in­

terrupts the gene precisely behind the Information 

for the coiled-coll a-hellcal domain. Another prel­

iminary report (Johnson et al.,1981) states that 

the gene for mouse keratin 67 kD Is also interrupt­

ed precisely behind the information encoding the 

colled coil. The most extensive information on 

keratin gene structure has recently become avail­

able for the human gene encoding the 50 kD keratin 

(Marchuk et al.,1981). A very remarkable conserva­

tion of intron positions among IF genes was re­

vealed by this study. Five out of seven Introns of 

the human keratin gene are located at positions 

that fully correspond to Intron positions of the 

vlmentln gene. This evidences once more that IF 

genes emerged from a common ancestral gene. 

The expression of IF genes seems to be regulated 

at the transcriptional level. mRNA quantities have 

been found to correlate correctly with the presence 

of proteins. The mRNA expression of the vlmentln 

gene was puzzling in chicken cells, because two 

mRNA size bands could be detected In northern 

blots, although only one gene was found (Dodemont 

et al.,1982; Zehner & Paterson,1983; Capetanakl et 

al.,1983). A comparison of the structure of the 3' 

part of the chicken vlmentln gene and the vlmentln 

cDNA showed that multiple mRNAs originated from the 

alternative use of more polyadenylation sites at 

the 3' end of the gene (Zehner к Paterson,1983). 

One of the most revolutionary Impacts of the 

availability of cloned IF genes is the possibility 

to transfer and express genes into heterologous 

cells. This enables one to study the behavior of 

newly synthesized IF proteins of a certain type In 

cells In which the corresponding gene is normally 

inactive (this thesis, chapter 5). Furthermore 

genetic engineering of the cloned genes would allow 

one to alter the primary structure of IF proteins 

and to investigate the effect of such alterations 

on the ability of IF subunits to assemble Into fi­

laments. This may lead to a better understanding 

of the function of the different IF protein domains 

16 

In filament formation. 

The cloned IF genes In combination with suitable 

expression systems form also the obvious way to 

study the molecular mechanism that Is at the basis 

of the tissue-specific transcription of Intermedi­

ate filaments. Promoter regions, "activators" or 

"enhancers" which might be responsible for the on­

set or shut-off of gene expression can be charac­

terized by testing parts of the cloned gene Insert­

ed into suitable eucaryotic vectors in different 

cell lines. The genes as they are described In 

this thesis are a good starting material for those 

future experiments. 
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Recombinant plasmids were made containing cDNAs synthe­
sized on hamster mRNAs coding for cytoskeletal (β- or 7-) 
actins and for vimentin. Hybridization of the actin probe on 
restriction digests of one avian and five mammalian DNAs 
yielded multiple bands; the vimentin probe revealed only one 
band (accompanied by 2 — 3 faint bands in some DMAs). The 
results obtained with the vimentin probe indicate that the cor­
responding coding sequences: (a) are highly conserved in 
warm-blooded vertebrates like the actin sequences; (b) have 
strongly diverged from those coding for other intermediate 
filament proteins, since hybridization of the vimentin probe 
does not lead to a diagnostic multiband pattern; and (c) most 
likely contribute a single gene, in contrast to the sequences 
coding for other cytoskeletal proteins. Hybridization of the 
probes on mRNAs from the different sources used showed 
thai the non-coding sequences of both vimentin and actin 
genes are conserved in length. 
Key words: cytoskeleton/recombinant DNA/multigene fami­
lies 

Introduction 
Intermediate-sized filaments (IF), microfilaments and 

microtubules are essential structural constituents of the 
cytoskeleton of eukaryotic cells (Lazarides, 1980). IF can be 
visualized by electron microscopy as 7 — 11 nm thick fibrils 
(Lazarides, 1981). Gel dectrophoresis and immunofluor­
escence studies can distinguish between different types of IF, 
and five major classes have thus been defined: (1) vimentin 
filaments, found in a variety of cells of mesenchymal origin 
or in cultured cells of any origin; (2) keratin filaments, found 
in cells of epithelial origin; (3) desmin filaments, found essen­
tially in muscle cells; (4) neurofilaments, found in neurones; 
and (5) glial filaments, which are specific to astroglia. 

Protein sequences and immunological cross-reactivities 
have shown that actins and tubulins, the major constituents 
of microfilaments and microtubules, respectively, and, to a 
lesser extent, IF proteins, are conserved throughout evolution 
(Lazarides, 1980; Lazarides, 1981; Vandekerckhove and 
Weber, 1979; Franke et al., 1979; Geisler and Weber, 1981). 
The Organization of the genes coding for actins and tubulins 
has been mainly investigated using plasmids carrying specific 
cDNAs (for review, see Firtel, 1981); such studies have shown 
that these proteins are encoded by multigene families, that 
their biosynthesis is developmentally regulated (McKeown 
and Firtel, 1981), and that the corresponding genes are con-
T o whom reprint requests should be sent. 

served in sequence in different species (Cleveland et al., 1980). 
In mammals, two-dimensional gel analysis and direct protein 
sequencing have revealed three different forms of actin; α-
actin, found in skeletal and cardiac muscle cells, and encoded 
by at least four genes, and β- and γ-actin, found in micro­
filaments of non-muscle cells (Vandekerckhove and Weber, 
1979). It has been assumed that there are two |3-actin genes 
per haploid human genome (Vandekerckhove et al., 1980), 
and at least four human /3-actin genes have been found by 
Kedes (personal communication). Similarly, both a- and ß-
tubulin are encoded by multiple genes (Cleveland et al., 
1981). No results on these points have yet been reported in the 
case of IF proteins. Protein sequences have shown, however, 
considerable homology between desmin, vimentin and, to a 
certain extent, wool keratin and tropomyosin; this suggests 
that IF proteins arc encoded by a multigene family (Geisler 
and Weber, 1981). |In this connection, it is of interest that in­
termediate filaments of BHK cells and bovine epidermal 
keratinocytes appear to fit with a general model composed of 
a similar three-chain unit which contains regions of coiled «-
helix interspersed with regions of non-a-helix, the former 
having the same size, the latter different sizes (Steinen et al., 
1980). 

We have constructed plasmids containing cDNAs synthe­
sized on hamster mRNAs coding for vimentin and /3- or 7-
actin. Hybridization of our actin probe on restriction digests 
of hamster, mouse, rat, human, calf, and chicken DNAs 
yielded multiple bands in accord with previous results 
(Cleveland et al., 1980). However, the vimentin probe yielded 
only a single major band with most DNA sources and addi­
tional faint bands with some species. These results have 
several interesting implications: first, the sequences coding 
for vimentin are highly conserved in warm-blooded verte­
brates, resembling those sequences coding for actins, which 
are also highly conserved in evolution; second, the sequences 
coding for other IF proteins have diverged considerably from 
those coding for vimentin, as shown by the absence of the 
typical multiband hybridization patterns, like that obtained 
with the actin probe; third, the sequences coding for vimentin 
very likely correspond to a single gene. It has aLso been shown 
that the non-coding sequences of both vimentin and actin 
mRNAs are conserved in length. 

Results 
Construction and characterization of actin and vimentin 
cDNA plasmids 

As a convenient source of mRNAs coding for cytoskeletal 
proteins, we chose an SV404ransformed epithelial cell line 
from hamster lens that grows in suspension; amongst the ma­
jor proteins synthesized by these cells are vimentin and the 
cytoskeletal actins; lens crystallins are not synthesized in 
detectable amounts (Bloemendal et al., 1980). Poly A + 

cytoplasmic RNA was denatured with 10 mM methylmercury 
hydroxide and fractionated on an isokinetic sucrose density 
gradient (Figure 1A). Aliquots from gradient fractions were 
directly assayed by in vitro protein synthesis, and the transla­
tion products were analyzed by SDS-polyacrylamide gel elec-

21 



1 2 3 4 

Α2βΟ 

0.75-

0.50 

0 ^ 5 

20 25 

# 

г π Π -
- ν 

Α 

- ι — ι — ι — г 

S 10 15 20 25 15 20 
Froction number 

25 

1 
— I E P « — l E F 

SDS SDS 

m # 
— lEF 

SDS 

i 

Fig. 1. Fractionation of poly A+ RNA from a hamster lens epithelial cell 
line. Poly A + RNA (160 fig) was denatured with 10 mM methylmercury 
hydroxide, centrifuged on a sucrose density gradient, and collected in 0.4 
ml fractions. (A) Absorption profile at 260 run. The positions of rabbit 
globin mRNA (a), and of rat 18S rRNA (b) run on parallel gradients are 
indicated; 1 /J aliquots from fractions 8-25 were directly assayed for In 
vitro translation and products were run on a 13% SDS-polyacrylamide gel. 
(B) Euorogram of the gel. Actin (A) and vimentin (V) are indicated. Pool­
ed fractions 20-25, enriched in actin and vimentin mRNAs, were used as 
templates for cDNA synthesis. 

trophoresis (Figure IB). mRNAs directing the synthesis of 
polypeptides having the same molecular weight as actin and 
vimentin were present in fractions 20 — 25; these were pooled 
and used as templates for cDNA synthesis. Recombinant 
cDNA plasmids were constructed as described in Materials 
and methods. 

cDNA plasmids were screened for those containing actin 
and vimentin specific sequences using two different methods. 
Since in vitro translation of mRNA preparations from the 
hamster cells had shown that actin and vimentin were major 
products (Bloemendal el al., 1980), it was conceivable that the 
corresponding mRNAs were highly represented in the total 
mRNA population. Therefore, a preliminary colony 
hybridization with a 32P-labeled single-stranded cDNA probe 
made from the original mRNAs (fractions 20-25) was per­
formed to select for cDNA clones corresponding to abundant 
mRNA transcripts. Forty clones giving strong colony 
hybridization signals were selected and mRNAs hybridizing 
to each one of these plasmids were translated in vitro. Among 
these, the mRNAs species hybridizing to one plasmid, pAct-1, 
directed the synthesis of a protein comigrating with actin 
(Figure 2A, lane 3), whereas mRNAs hybridizing to other 
plasmids directed the synthesis of relatively abundant pro­
teins, but not of vimentin. In particular, eight plasmids 
specific for a 45-kd protein, one of the major translation pro­
ducts, were detected. 

Vimentin-specific plasmids were isolated by hybridizing 
mRNAs to 288 plasmids distributed in 24 groups of 12 clones 
each; mRNAs hybridizing to two groups directed the syn­
thesis of a product comigrating with vimentin. The two plas­
mids responsible for this hybridization, pVim-1 (Figure 2A, 
lane 4) and pVim-2 (not shown), were then isolated. 

The identity of the polypeptides synthesized by mRNAs 
hybridizing to pAct-1 and pVim-1 was established by two-
dimensional gel dectrophoresis (Figure 2B, C, D). The 
translation products of the mRNA selected by pAct-I co-
migrated with both unlabeled β- and γ-actin run on the same 
gel, suggesting that this plasmid is able to hybridize to both 
corresponding mRNAs. The major translation product ob-

Fig. 2. Identification of in vitro translation products of mRNAs hybridiz­
ing to recombinant plasmids. Plasmid DNAs from individual clones were 
subjected to positive hybridization-translation assays as detailed in 
Materials and methods. (A) In vitro translation products: from the initial 
size-fractionated mRNAs (lane 1); from mRNA hybridized to pBR322 
Oane 2); from mRNA hybridized to pAct-1 (lane 3); from mRNA hybridiz­
ed to pVim-1 (lane 4) (this includes characteristic proteolytic cleavage pro­
ducts of vimentin). Actin (A) and vimentin (V) are indicated. The common 
band present in the four lanes is endogenous to the reticulocyte lysate; dif­
ferences in its intensity are due to differences in loads. (B) and (C) corres­
pond to Coomassie Blue staining of unlabeled bovine brain actin (В) and 
fluorography of translation products synthesized by mRNAs hybridizing to 
pAct-1 (C), run on the same gel. (D) Autoradiograph of translation pro­
ducts derived from mRNA hybridizing to pVim-1. Vimentin was identified 
by comigration on the same gel with unlabeled vimentin extracted from 
hamster lens "epithelial" cells, and is indicated here by an arrowhead; a 
ladder of specific breakdown products can be seen. The spot marked with 
an asterisk is endogenous to the reticulocyte lysate. 1EF and SDS indicate 
the direction of electrophoretic migration under isoelectrofocusing and in 
the presence of SDS, respectively. 
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Flg. 3. Restriction maps of pAct-1 and pVim-1 inserts. Regions coding 
for the C-terminal sections of actin and vimentin were identified on the 
basis of the correspondence between restriction sites and amino acid se­
quences (see text); they are indicated by thick lines. The 3 ' non-coding 
regions are indicated by thin lines. The £coRI site of pBR322 is located 
750 bp to the left of the left end of the map. 

tained from pVim-1 comigrates with unlabeled vimentin run 
on the same gel. In addition, there is a ladder of specific 
breakdown products similar to that found in Triton-KCl ex­
tracts of chicken myoblasts (Gard and Lazarides, 1980). 

From the length of the actin polypeptide chain, 375 amino 
acids (Vandekerckhove and Weber, 1979), and the molecular 
weight (mol. wt.) of vimentin 57 000 (Franke et al., 1979), the 
lengths of the coding regions in the corresponding mRNAs 
can be calculated as -1100 and 1450 bases, respectively; 

22 



4 5 I 2 3 4 5 6 

к » 

% 

I 8 S -

- I 6 S -

Α В 
Fig. 4. RNA blot hybridization with the actin and vimentin probes. 
Polyribosomal poly A + RNA (20 /ig) from calf lenses (1), the hamster cell 
line (2), rat (3), duck (4), and chicken (5) lenses, were fractionated by elec­
trophoresis on a 1.5% agarose gel in the presence of 10 mM methylmer-
cury hydroxide, transferred to nitrocellulose filters, and hybridized with the 
probes. (A) Hybridization with the pAct-1 probe. (B) Hybridization with 
the pVim-1 probe. Markers run on the gel were rat 28S rRNA (5000 
bases), E. coli 23S rRNA (2940 bases), rat 18S rRNA (1940 bases), E. coli 
16S rRNA (1570 bases) (McMaster and Carmichael, 1977). 

since both mRNAs are -2100 bases long in hamster cells (see 
below), non-coding regions, including the poly A tract, must 
be 1000 bases and 600 bases long, for actin and vimentin 
mRNAs, respectively. The cDNA inserts in pAct-1 (1250 bp) 
and pVim-1 (1700 bp) contain, therefore, a substantial por­
tion of the coding sequence of actin and most of that of 
vimentin. In fact, a comparison of the restriction maps of the 
cDNA inserts of pAct-1 and pVim-1 with predictions based 
on the protein sequences established for bovine β- and γ-actin 
(Vandekerckhove and Weber, 1979) and for the 141 amino 
acids from the C-terminal section of porcine vimentin (Geisler 
and Weber, 1981) allow us tentatively to locate the coding 
and non-coding regions present in the inserts (Figure 3). The 
comparison was made using a computer program (Roizès and 
Pelaquier, 1980) and was possible because of the conserved 
amino acid sequence of these proteins in mammals. This 
analysis also suggests that the cDNA inserts correspond to the 
region coding for the C-terminal section of the proteins and 
to the 3 ' non-coding regions. Finally, it should be mentioned 
that the restriction map of pVim-2 (whose insert length was 
1200 bp) overlapped with that of pVim-1 (data not shown). 

Size determination of actin and vimentin mRNAs 

Nick-translated, 32P-labeled pAct-1 and pVim-1 were 
hybridized to poly A + RNA from the hamster lens epithelial 
cell line and from rat, calf, chicken, and duck lenses. Both 
probes cross-hybridized to the RNAs from these five different 
sources. Hybridization of pAct-1 to mRNAs from three 
mammals revealed a band, corresponding to 2100 bases; in 
the case of calf, a distinct additional band of 2000 bases could 
be detected (Figure 4A). Since our probe hybridizes to both /3-
and γ-actin mRNAs (Figure 2C), this result suggests that both 
mRNAs have virtually the same size in hamster and rat, but 
not in calf. With the vimentin probe, an mRNA species 2070 
bases long could be revealed in all cases; in addition, the two 
avian mRNAs showed a strongly hybridizing band correspon-
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fîg. S. DNA blot hybridization with the actin and vimentin probes. DNA 
from chicken erythrocytes (I), hamster liver (2), mouse liver (3), rat liver 
(4), calf thymus (5), and human liver (6), were degraded by EcoRI, frac­
tionated on 0.6% agarose gels, transferred to nitrocellulose filters, and 
hybridized with (A) pAct-1, and (B) pVim-1. Loads were 8 ^g of DNA in 
all cases, except for chicken where load was only 4 μ&. Hindlll digests of λ 
DNA were used as mol. wt. markers. 

ding to 2400 bases and several weaker bands of lower mol. 
wts. (Figure 4B). 

Detection of actin and vimentin sequences in genomic DNAs 

£coRI restriction digests of human, calf, rat, hamster, 
mouse, and chicken DNAs were hybridized with nick-
translated 32P-labeled actin and vimentin plasmids. With the 
actin probe, all DNAs displayed multiple bands of widely dif­
ferent intensities (Figure 5A). Calf and chicken DNAs exhibit 
simpler multiband patterns of lower intensity than the other 
DNAs; hamster DNA displayed a rather simple pattern with 
strong bands. The vimentin probe, by contrast, hybridized to 
only one strong band in chicken, rat, calf, and human DNAs 
or to two strong bands in hamster and mouse DNAs; one or 
two additional faint bands appeared in rat, calf, and human 
DNAs, but not in chicken, hamster, or mouse DNAs (Figure 
5B). One or two strong hybridization bands were also obtain­
ed with restriction digests of mouse, human, rat, calf, and 
hamster DNAs produced with BamHl, Hindlll, Xhol, Sail, 
and Clal (data not shown). Interestingly, only one strong 
hybridization band was found in the BamHl digest of 
hamster DNA, and in the Xhol digest of mouse DNA. 
Therefore, all six DNAs showed a single hybridization band 
with at least one restriction digest. 

Discussion 

This work provides information mainly bearing on the 
mRNAs for cytoskeletal actins and for vimentin, and on the 
corresponding genes in some warm-blooded vertebrates. 

Hybridization of the actin probe pAct-1 with mRNAs from 
hamster, rat, and calf revealed an actin mRNA species 2100 
bases long, in agreement with results previously reported for 
both mammals and birds (Cleveland et al., 1980; Hunter and 
Garrels, 1977; Katcoff ei α/., 1980; Minty et al., 1981). Only 
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in the case of calf, two distinct mRNA species, differing in 
length by 100 bases, were found; these presumably corres­
pond to 0- and 7-actin mRNAs. 

Hybridization of the vimentin probe pVim-1 to mRNAs 
from hamster, rat, calf, chicken, and duck revealed a vimen-
tin mRNA species 2070 bases long. This was accompanied, in 
the case of the two avian RN As, by several additional mRNA 
species. Some of these species were of lower mol. wt. and 
could represent specific degradation products, but one had a 
higher mol. wt. (2400 bases). This species might correspond 
to a nuclear precursor, to a polyribosomal precursor, to the 
product of another vimentin gene, or to a product arising by 
different processing of a single primary transcript. A nuclear 
precursor is, however, unlikely to contaminate the poly­
ribosomal RNA preparation; a polyribosomal precursor is 
purely hypothetical and thus not known for any eukaryotic 
gene; a second vimentin gene is unlikely to exist (see below). 
The most plausible explanation, therefore, remains that the 
2400-base mRNA species is the result of different processing 
of the same primary transcript. There is a precedent in the a-
amylase mRNAs, although in this case different processing 
pathways are found in different organs (Young et al., 1981). 

The lengths of the mRNAs coding for cytoskeletal actins 
and vimentin are essentially the same in all mammals tested. 
Since the coding regions are conserved in length (Vandeker-
ckhove and Weber, 1979; Franke et al., 1979), this implies 
that the lengths of the non-coding regions, 1000 and 600 
bases, respectively, are also conserved. In addition, the 5' 
and 3 ' non-coding regions should be individually conserved 
in length, unless differences in the two regions compensate 
each other. This length conservation, while not precluding a 
sequence divergence, which was in fact observed (Shani et al., 
1981), is an unexpected finding which may suggest a "struc­
tural" role for the non-coding regions. 

The hybridization results obtained with the pAct-1 and 
pVim-1 probes on DNAs from warm-blooded vertebrates in­
dicate a conservation of the sequences of the corresponding 
actin and vimentin genes. Such a conservation has been found 
for the genes of other structural proteins (Cleveland et al., 
1980) and is not necessarily limited to warm-blooded verte­
brates. In fact, both our probes hybridize to other eukaryotic 
DNAs, but less strongly (data not shown). It should be 
pointed out, however, that the hybridization bands obtained 
with pAcl-1 are much stronger with rodent DNAs than with 
DNAs of the other species, whereas those obtained with 
pVim-1 are much closer in intensity with all the different 
DNAs. This suggests greater sequence conservation of the 
vimentin gene than the actin genes. 

As far as the gene copy number is concerned, the situation 
appears to be different for actin and for vimentin. With the 
actin probe, all DNAs display multiple bands, indicating that 
the actin genes form a multigene family (which includes, in 
fact, the muscle a-actin genes as well), in agreement with 
previous reports (Firtel, 1981; Cleveland etal., 1980; Engel et 
al., 1981). Rather surprisingly, the hamster probe revealed 
many more hybridization bands in mouse and rat than in 
hamster DNA, suggesting that the copy number of actin is 
different in these different rodents. A high number of 
hybridization bands was also found in human DNA, whereas 
this number was smaller in chicken and calf. In this case, 
however, the sequence divergence might be responsible for 
the difference seen. 

Hybridization of the vimentin probe shows a pattern quite 
different from that obtained with the actin probe since, in all 

six genomes examined, only single, strong hybridization 
bands, 3 - 12 kb in size, were found, in at least one restriction 
digest. These findings suggest that vimentin is encoded by 
either a single gene or by a tight cluster of genes. In calf DNA 
the band size, 3 kb, precludes the existence of more than one 
vimentin gene, since the corresponding mRNA is already 2.1 
kb in size (1.7 kb of which are represented in the probe). This 
being the case, it is highly unlikely that the vimentin gene is 
present in multiple tightly clustered copies in the other 
genomes examinai. A detailed analysis of genomic clones is, 
however, needed to provide a final confirmation of such a 
general conclusion. 

As far as the faint hybridization bands are concerned, they 
may be due to small gene fragments split off the main gene 
segment by restriction enzyme cut(s) in one or more introns, 
and/or to other genes of the IF multigene family. The first ex­
planation appears to be more likely since the second one is 
difficult to reconcile with the absence of such bands in restric­
tion digests from chicken, mouse, and hamster DNAs. The 
latter case is particularly striking since a hamster probe was 
used and this should have more homology with the other IF 
genes of hamster than with those of other species. 

An implication of this interpretation is that genes from the 
IF multigene family have diverged enough so as not to give 
any evident hybridization with pVim-1, at least under the 
rather stringent conditions used in this work. It should be 
noted that the large sequence divergence of the genes of the IF 
family is accompanied by a high sequence conservation in the 
corresponding proteins, as vimentin shares a 64% homology 
over the last 141 C-terminal amino acids with another IF pro­
tein, desmin; in particular, a stretch of 37 amino acids in this 
region is common to the two proteins with only one amino 
acid change (Geisler and Weber, 1981). Such a situation is not 
a new one, since it has already been found in the case of other 
structural proteins. 

Our conclusion that, in all likelihood, there is just one 
vimentin gene in the species examined is at variance with in­
dications to the contrary based on preliminary characteriza­
tion of the chicken vimentin gene (Zehner and Paterson, 
1981). However, after the work described here was com­
pleted, a report appeared (Zehner etal., 1981) confirming our 
finding of only one vimentin gene and two vimentin mRNA 
species in chicken. 

Materials and methods 

Isolation and iranslalion of mRNA 

Polyribosomes from an SV40-lransformed hamster lens epithelial cell line 
(Bloemendal el at., 1980) and from whole lenses from rat, chicken, and duck, 
were prepared according to Palmiter (1974), polyribosomes from calf lenses 
were prepared according to Bloemendal et al (1966). Poly A + RNA was 
purified by oligo(dT)-cellulose chromatography, and fractionated in sucrose 
gradients after disaggregation in 10 mM mcthylmercury hydroxide (Dode-
mont et al, 1981); this denaluring agent, used to date only in gel electro­
phoresis, wa;. found to produce much better separalions than formamide or 
dimethyl sulfoxide Fractions containing actin and vimentin mRNAs were 
idem ι fied by assaying Ι μ\ aliquota directly in a nucleasc-treated rabbit 
reticulocyte lysate (Pclham and Jackson, 1976). Translation products were 
analyzed by one- and two-dimensional electrophoresis (Laemmli, 1970; 
O'Farrell, 1975), and revealed by fluorography (Bonner and Laskey, 1974). 

Construction of recombinant ptasmids 

Double-stranded cDNAs were synthesized using a one-step procedure 
denved from Wickeas et al (1978) Reaction mixtures for first strand syn­
thesis (20 μΐ) consisted of 50 mM Tris, pH 8.3, 8 mM MgCl^ 10 mM dithio-
threitol (DTT), 1 mM of each dNTP (including trace [^PldCTP; Radio­
chemical Center Amersham, UK), 100 /ig/ml oligo(dT)|2_ 1β (Collaborative 
Research, Waltham, MA), 50 /ig/ml mRNA and 1000 units/ml reverse 
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transcriptase (a generous gift of J Beard) After incubation at 420C for 15 
mm, reaction mixtures were placed in a boiling water bath for 3 mm, quickly 
chilled in ice, and supplemented with an equal volume of the reaction mixture 
for second strand synthesis, this contained 200 mM Hepes pH 6.9, 12 mM 
MgCl2, 10 mM DTT, I mM each dNTP, and 200 units/ml of the large frag­
ment of Escherichia coli DNA polymerase I (Boehnngcr, Mannheim, FRG). 
Reaction mixtures were incubated at 15°C for 90 mm, heat-inactivated, and 
filtered on Sephadex G50 cDNAs were precipitated with ethanol in the 
presence of £ colt tRNA carrier, treated with SI nuclease (BRL, 
Gaithersburg, MD), and fractionated on I.S07« agarose gels Fragments 
1200-2600 bp long were eluted electrophoretically, extracted with phenol, 
did)y/ed against water, and lyophilized. cDNAs and Psil-clcavcd pBR322 
were tailed with dCTP and dGIP, respectively, using terminal transferase 
(P L Biochemicals, Milwaukee, Wl), hybrid molecules were constructed by 
annealing and used to transform competent E. coli HB101 as described (Ther-
wath el al, 1980). Colony hybridization was performed according to Grüns­
tem and Hogness (1975) Plasmid DNAs were extracted according to Bim-
boim and Uoly (1979), or purified by CsCl deasity gradients in the presence of 
ethidium bromide All experiments were performed under the containment 
conditions recommended by the French Committee on Recombinant DNA 

Positive hybridization-translation assays 

2 μ% of vector and recombinant plasmid DNAs (in 10 mM Tns, pH 7.5, 
1 mM EDTA) were heated at 100°C for 5 mm, chilled in ice, brought to a 
final concentration of 6 χ SSC (standard saline citrate; 0.15 M NaCl, 0 015 M 
trisodium curate), and spotted on nitrocellulose fillers (BA85, Schleicher and 
Schuil, Dassel, FRG) previously treated with 6 χ SSC Filters were nnscd in 6 χ 
SSC, dried, and heated at 80oC for 2 h m vacuo Prehybndization was per­
formed at 50°C for 2 h in SÔ o formamide, 10 mM Pipes, pH 6.4, 0 4 M 
NaCl, 4 mM EDTA, and 100 ^g/ml poly (rA) Hybridization was carried out 
in the same buffer with poly (rA) substituted by 50- 100 ^g/ml mRNA, with 
the temperature gradually lowered from 550C to 450C over a period of 3 h 
Filters were washed with the hybridization solution for 30 mm at 450C, 
followed by five washings, each for 1 mm, in 1 χ SSC, 0 5% SDS at room 
temperature, five washings in 0 1 χ SSC, 0.1% SDS, at 550C, and two 
washings in 10 mM Tns, pH 7.5, I mM EDTA, at 55°C Hybridized mRNAs 
were extracted by boiling the filters in 100/il of water for 60s, and precipitated 
with ethanol in the presence of Ι μ% of E coli tRNA earner. The precipitates 
were collected, washed with 75% ethanol, dned, dissolved in 2 μΐ of water, 
and assayed for in vitro translation (see above) 

Electrophoresis of RNA and DNA and Ыоі-hybridization 

Electrophoresis of RNA was performed on 1 5% agarose gels containing 10 
mM methylmercury hydroxide (Bailey and Davidson, 1976) DNA prepara­
tion, digestion with restriction cndonucleascs, and electrophoresis in honzon-
tal agarose gels were as described (Van der Putten et al, 1979). Transfer of 
RNA and DNA lo nitrocellulose filters was performed according to Thomas 
(1980), and Southern (1975), respectively. Prehybndization and hybndization 
conditions with mck-lranslaled plasmid probe (1-5 IO8 с p.m./Mg) was per­
formed as described by Wahl el al (1979), except that dextran sulfate was 
omitted from the hybridization solution After hybridization, filters were 
washed twice with the hybridization solution at 420C for 1 h, once with 2 χ 
SSC, 0 1 % SDS at 55-60oC for 15 mm and twice with 0.1 xSSC.O 1%SDS 
at 55 - 60"C. Autoradiography was for 1 - 5 days at - 70°C with Kodak XRI 
film, using intensifying screens 
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Summary 

The structure of the chromosomal gene encoding 
the intermediate filament protein vimentin is de­
scribed. This gene, which is present as a single copy 
in the hamster genome, comprises about 10 kb of 
DNA and contains more than 8 0 % of intron se­
quences. S I mapping and sequence analysis reveal 
nine exons with a total length of 1848 nucleotides. 
For the complete primary structure of hamster vi­
mentin, 464 amino acids are predicted, giving a 
molecular weight of 53,500 daltons. The intron po­
sitions are at codons 186, 206/207, 238/239, 292/ 
293, 334/335, 408, 423, and 451/452. The overall 
homology with chicken desmin is 6 0 % and is even 
higher in the central (α-helical) regions of both mol­
ecules. Cross-hybridization at the DNA level, how­
ever, is low. Comparison of the amino acid sequence 
of vimentin with prekeratin sequences shows that 
there is lesser homology of primary structure, but 
both the position and size of α-helical regions are 
strongly conserved. At the 5' end of the gene there 
is a consensus promoter sequence. The first AUG 
start codon is found 132 nucleotides downstream of 
the estimated cap site. The 3' nontranslated se­
quence shows homologies with the chicken vimentin 
gene. An interesting feature of the vimentin gene is 
a stretch of 44 nucleotides of alternating dC and dA 
within intron 2 that may form left-handed Z-DNA. 

Introduction 

Intermediate filaments (IF) represent major elements of the 
cytoskeleton of most eucaryotic cells From the morpho­
logical viewpoint these filaments in a variety of cell types 
such as epithelium, muscle, or nerve cells are virtually 
identical Nevertheless, immunofluoresence has revealed 
that the composite proteins are quite different (reviewed 
byLazandes, 1980) Both biochemical and immunological 
data have allowed the distinction of five different classes 
of intermediate filament subumts whose expression paral­
lels embryological differentiation (Franke et a l , 1981, for 
review see Osborn and Weber, 1982) From sequence 
studies on prekeratin, desmin, and vimentin, it can be 
concluded that long «-helical regions are important struc­
tural characteristics shared by at least three classes of 
intermediate filaments (Hanukoglu and Fuchs, 1982, Geis­
ler and Weber, 1982, Stemert et a l , 1983, Quax-Jeuken et 
al , 1983) The role ol the helices in the formation of the 

10 nm filaments, however, is still poorly understood The 
reason why tissues from different embryological origins 
have different IF subumts is even less clear The control of 
expression seems to be affected when cells are brought 
under in vitro conditions, since most cell cultures express 
vimentin in addition to their original subumt type (Franke et 
al, 1979) 

As an approach to resolve the regulation mechanism of 
the tissue specific IF expression, we report the isolation 
and characterization of the vimentin gene This is the first 
description of the complete structure of an IF gene 

Results 

Isolation of the Vimentin Gene 
Southern blot hybridization studies of total genomic ham­
ster DNA have suggested that there is only one vimontm 
gene per haploid genome (Quax et a l , 1982) In total 
genomic DNA only one Bam HI restriction fragment, 15 kb 
in length, was detected by the vimentin cDNA clone, pVim-
1 This led us to construct a charon 28 gene library carrying 
hamster Bam HI restriction fragments ranging from 13 to 
18 kb From this library 15 phages with vimentin sequences 
could be isolated All these phages showed an identical 
restriction pattern and therefore originated from a single 
chromosomal locus One of these, λ-havim, was studied 
in detail The insert, 15 kb in length, was isolated and 
subjected to restriction enzyme and blotting analysis Fig­
ure 1 shows that all of the vimentin hybridization bands 
that can be found in total hamster DNA are also present 
in λ-havim, providing additional evidence for a single chro­
mosomal locus for the vimentin gene To determine the 
position and transcriptional orientation of the gene we 
isolated the outermost Hmf I restriction fragments from 
pVim-2 and pVim-1 (Quax-Jeuken et al, 1983) to serve as 
5' and 3' specific probes, respectively. The two probes 
hybridized at positions that were more than 9 kb apart 
(see Figure 3a) and this made us conclude that the 
vimentin mRNA, which is about 2000 nucleotides long 
(Dodemont et a l , 1982), is encoded by a gene that 
contains more than 80% of intron sequences 

Detection of Vimentin Exons 
SI mapping experiment combined with sequence analysis 
have shown that the vimentin gene consists of nine exons. 
The S1 nuclease digestion was carried out on hybrids 
formed between λ-havim DNA and hamster lens mRNA 
The samples were hydrolyzed with alkaline and analyzed 
by blotting hybridization Seven exon bands with approxi­
mate sizes of 700, 365, 225, 165, 125, 100, and 85 
nucleotides could be detected (Figure 2). The two addi­
tional smaller exons were revealed only by sequence 
analysis (see Figure 4) The blotting procedure enabled us 
to distinguish the 5' and 3' terminal exons by hybridizing 
with the 5' and 3' specific probes In this way we found 
that the 700 bp exon is the proximate 5' and the 365 exon 
is the proximate 3' exon 
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Figure 1. Comparison of λ-Havim and Total Hamster DNA 

Total hamster DNA (left panel) and the λ-havim insert (right panel) were 

digested and double digested by the indicated enzymes Southern blots 

were hybridized with ^P-labeled pVim-1. Hind III digested λ DNA was the 

marker 

Nucleotide Sequence and Complete Structure of 
the Vimentin Gene 
To elucidate the detailed exon-intron structure and to 
unravel the complete coding information of the vimentm 
gene, we determined the nucleotide sequence of all exons 
and parts of their flanking Introns. With this aim in mind we 
constructed recombinants between M13 vectors and λ-
havim restriction fragments. Those phages that contained 
exon sequences were selected by hybridization with the 
cDNA plasmid, pVim-1, and subsequently subjected to 
dideoxy sequencing reactions (Sanger et al., 1980; Mess­
ing et al., 1981). To ensure a maximum of accuracy, 
sequencing was performed at least twice and for more 
than 90% on both strands. Figure 3b shows the position 
of the sequenced regions relative to the physical map and 
Figure 4 depicts the sequences. The nine exons making 
up the mature mRNA sequence and the eight introns are 
indicated. The amino acids encoded by the exons are 
shown above their triplet. The precise lengths of the exons 
in transcriptional 5'-3' direction are: exon I: 690; II: 61; III: 
96; IV: 162, V: 126; VI: 221; VII: 44; Vili: 86, and IX: 362 
base pairs. This is in agreement with the results of the SI 
mapping (Figure 2). The sequences of introns 3 and 6 are 
also shown, with sizes of 91 and 416 nucleotides, respec-
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Figure 2 SI Mapping of the Exons for the Vimentm Gene 

Lane a 300 ng of λ-havim insert DNA was hybridized to hamster lens 

culture mRNA (5 μg). treated with SI nuclease, separated on a Polyacryl­

amide ureum gel. blotted to Genesereen and hybridized to labeled λ havim 

DNA The lower part of the autoradiogram was exposed 5 days Lane b: 

The same experiment without addition of mRNA 

lively. The size of the other Introns can be derived from 
Figure 3c, where the precise positions of the exons relative 
to the physical map are presented. Intron 1 is 0.8 kb; intron 
2: 2.6 kb; intron 4: 0.7 kb; intron 5: 0.5 kb; intron 7: 0.8 
kb; and intron 8: 0.7 kb. The first exon is preceded by a 
TTATAAA sequence that is homologous to the consensus 
promoter for RNA transcription in eucaryotic genes (M. 
Goldberg, Ph. D. thesis, Stanford University, Palo Alto, 
California, 1979). At position -95 relative to the presumed 
cap site there is a sequence CCATT that might represent 
an equivalent of the CCAAT box found in many eucaryotic 
genes (Efstratiadis et al., 1980). The first AUG codon is 
found 132 nucleotides downstream of the presumed cap-
site, and a second one is found at position +171. Both 
codons are in the same reading frame and comparing 
them with the consensus translation start codon, 
GXXAUGG (Kozak, 1981), we cannot distinguish which of 
the two is used. Comparison of the sequence with the N-
termmal amino acids of the desmin polypeptide (Geisler 
and Weber, 1982) shows that the homology extends to 
the first AUG codon, suggesting that this one is actually 
used, as is found for most eucaryotic genes (Kozak, 1978). 
The last exon ends with the sequence AATAAA, which is 
considered a signal for poly (A) addition (Proudfoot and 
Brownley, 1976). We found only one such signal in the 
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Figure 3 Physical Map of the Vimenttn Gene 

(a) The siles (or some often used reslnclion enzymes in the λ havm insert 

are shown В = Bam HI E - Eco HI Η = Hind III He = Hinc Ν Ρ = PVU t 

S = Sst I Sm = Sma I X = Xho I 5' and 3' correspond to the positions 

where the 5' and 3' specif с probes derived from the cONA hybridized, 
respectively (b) shaded bars = regions whose sequence is presented in 
Figure Ί (c) The black bars represent the position and size of the vimenlm 

exons They are numbered wilh Roman numerals 

hamster vimentm gene, in contrast to what has been 

reported for the chicken vimentm gene (Zehner and Pater-

son, 1983) In Figure 5 all exon-mtron donor and acceptor 

sites are compared to a proposed consensus sequence 

(Mount, 1982) It can be seen that the bordering intron 

dmucleotides AG and GT are always found However, the 

other nucleotides do not strictly obey the consensus rule 

We have also indicated the positions of the splice points 

relative to the ammo acid number of the protein (Figure 5) 

There are no introns within the 5' and 3' noncodmg region 

of the mRNA 

Complete Primary Structure of Vimentin and Its 

Homology to Other Intermediate Filaments 
The coding capacity of the exons is in agreement with the 

reported sequence of vimentm cDNA (Quax-Jeuken et a l , 

1983) There are only a few differences, three of which 

represent differently predicted ammo acids (marked in 

Figure 4) These differences can be explained either by 

mutation events, because the culture from which the cDNA 

was derived has undergone many cell devisions, or by 

polymorphism, because the gene was isolated from a 

randomly bred hamster 

Because the 5' end of the gene has been sequenced, 

the prediction of the primary structure for the N-termmal 

region of the vimentm polypeptide, which was not possible 

from our cDNA clones (Quax-Jeuken et al, 1983), can 

now be completed Two potential start codons, 132 eind 

171 nucleotides downstream of the presumed cap site, 

are found If we assume that the first ATG codon is used 

(see above) and that the methionine is removed, then the 

first ammo acid present in the vimentm polypeptide would 

be serine Our observation that vimentm is N-termmally 

blocked (unpublished results) presumably by an acetyl 

group (Steiner! et al, 1980) and the data that senne is the 

most frequently found N-a-acetylated ammo acid (H Ones-

sen, Ph D thesis, University of Nijmegen, Nijmegen, The 

Netherlands, 1983) are in concert with this assumption 

The sequence derived from the cDNA starts at the 15th 

codon downstream of the first ATG codon 

Because the complete vimentm sequence is now avail 

able, we can make a comparison with other IF proteins 

This is shown in Figure 6 where the complete chicken 

desmm (Geisler and Weber, 1982), the complete mouse 

epidermal prekeratin (Steinert et a l , 1983), and the almost 

complete .human prekeratin primary structure (Hanukoglu 

and Fuchs, 1982) are aligned to the vimentm sequence 

Identical residues in vimentm, desmm, and prekeratin are 

indicated by a hatched bar, common residues in only 

vimentm and desmm by an open bar We also marked the 

position of a-helix forming sequences in the vimentm 

polypeptide (Quax-Jeuken et a l , 1983) The homology 

between vimentm and prekeratin is obvious within the 

regions of the proposed α-helices, but low or practically 

zero in the NH2 and COOH-termmal regions The homol 

ogy with desmm is much more pronounced and not only 

restricted to the helical regions, although these regions 

show the highest homology Only from ammo acid 20 to 

80 is the homology very low This may mean that most of 

the immunological differences between desmm and vimen 

tin are situated in this region 

Potential Left-handed Z-DNA in an Intron 

In the second mtron, at position -170 to 126 before the 

start of the third exon, there is a striking sequence of 22 

alternating CA copolymers This sequence was detected 

by both the dideoxy and the Maxam-Gilbert procedure 

Therefore a sequence artefact can be excluded It has 

been shown that synthetic poly(CA-GT) can adopt a left 

handed (Z) conformation (Zimmer et a l , 1982, Vorlickova 

et al, 1982) and the presence of these sequences in vivo 

raises' the question of whether left handed DNA fulfils an 

essential role in eucaryotic DNA First this sequence was 

found in an immunoglobulin *. V gene region (Nishioka and 

Leder, 1980) and mtergenic between the S- and /J globm 

genes (Miesveld et a l , 1981), but recently Hamada and 

Kakunaga (1982) reported its presence in an mtron of a 

human actm gene We found a stretch of 44 nucleotides 

in the second mtron of the vimentm gene The orientation 

relative to the transcriptional direction of the gene, how­

ever, is in our case (CA) opposite to the sequence found 

in the actm gene (GT) We used the (CA)22 containing 

M13 recombinant as a probe to search for other CA 

polymers Within λ-havim no other fragment hybridized, 

but total genomic hamster DNA gave rise to a hybridization 

smear, indicating that the CA polymer is repetitive as in 

other species (Meisveld et a l , 1981, Hamada and Kakun 

aga, 1982) A positive hybridization signal could only be 

found when E coli DNA instead of salmon DNA was used 

as a earner This observation confirms that E coli DNA, m 

contrast to salmon DNA, lacks poly (dC-dA, dG-dT) frag 

ments that interfere with the labeled probe (Miesveld et a l , 

1981) 

We also searched for the presence of other repetitive 

sequences within λ havim Therefore, we hybridized re­

striction fragments with labeled total genomic hamster 

DNA, a technique that enables detection of highly repetitive 

DNA (Heilig et a l , 1980) All fragments m λ havim that are 
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"CAT-BOX" "ΓΛΤ*-6ι)Χ" 

A;;CC;C7C?^TCuT0CCCCTCCCGCCTTCCrCACTtCTCTCIO0OTGC£cAT30GTtOOCGCGCCCCGC0GCtABGATOGCAeTO0GA0G0OACCCTCÍTTCCTAACA0Ta¿ÍA7AAA¡ 

10 20 30 40 50 60 70 ¿O M 100 110 120 
AÎ^TJCaCCCTTGaCOGGaTCÊGGiCCTCTOCCACTCTTOCtCCaeOACTCOAOAOACAACAOCACTCCCGCGOTTCeCATCOACCGCOCCCTTGCTCTCCTTTCGGAGCCAGTCCTTOT 

5'-CAP 0 1 
JL· S T R S y S S S S Ï R B H i G G P O I S N R Q S S N P 

AAi^TGCAiCAOCCCAGTCCACCTTCOCTCTCCAAACCiTSTCTACCAOeTCCGTGTCCTCOTCCICTTACCOCAOeATGTTCGOTOOCCCCOOCACCTCOAACCGOCAaAaCTCCAAOa 

S Ï V T T S I R T Y S L O S l R P S T S R S L I S S S P e e A Ï Y T R S S A V R 
GeAaCTATGTGACCACOTCCACCCGCACCTACAGCCTOOGCAOCCÎQCGCCCCAOOACCAOTCGCAOCCtCtATTCCTCATCTCCCÎSOIOOCSCCIATOTOACCCGATCCTCTGOGOTaC 

L R S S H P G Ï R L l Q D S Y O P S l A O A I i T S r l t K t R T K I K V i L Q S 
•:?3CGOA0CAaCATOC0C0G0OTOAGGCTGCÎGCAGGACICOGTe0ACTTCtCQCTGeCCOACGOCATIAACACCeAOTTCAAeAACACCCOCACCAAC0AGAAGGTAOAACT0CAGG 

L N S R P A N Y I D K V R F L ï a Q H K I l l A B l ï Q l K G Q G K S R L O D L 
AGCTGAAiaACOOCrTCeCCAACTACATOGACAAOGTOCOCTTCOIGGAeCAGCAOAACAAAAICCTGCTAOCCGAGCTCGAGCAACTCAAeOOTCAOOGCAAGTCGCOCCTGGGCGACC 

Y E E E H B B l S R Q Ï D Q L T B D K A R Ï Ï V E R D Ü b A E D I M R L R E ^ 
TCTATGAGGAOaAGAIGCGGGAGCIGCGCCGOCAOOTOOATCAGCTCACCAACGACAAGGOACeCOTCGAGGTGGAGCaTGACAACCTeOCTOAOGACAICATOCGGCTOCGAGAAAAGT 

• · ' · · ' ' ι ' * * ' · 

AAGÜCCTGATCCACGCOAOTGGTGGCTGIOGOAOGGAGAGOAGTOCTOOeCOCTGCTCGA— — 1 0 6 5 К Ы — — — — — — — — — — 

l l Q S E X L O R E E 
TOGAOOCTTGeCTGCGATOIGOTTGttGTaTGOCCOCCOCOOCCCCTOGOTTTCCCAOTTICCACITOOCTTOAACOIACTAOTGCIICAí/AtTeCAOOAOOAOATGCTCCAGAGAOAOOA 

ш рДвац • · · • • · · · · 
A E S I L O S Í R O 

AG'-GGAGAGCACCCTeCAGTCCTTCAGACAGGITÎGTAGOCAeCAOCAOCCCCACCOACOOAAACCACTAGCAGTICTAAAAeTTACTTCeCCCAGGATTTAAAAGOTOCAAAACTTCAA 

OTOITCCTOTAAAGCOOCCTGGTGGCAGAAAGTCCACAeATOOAAAAACTCCACTATTTGGATCAATCCTTGCAACATeAAOIITTTCOtTGtTTTimTTimTCCO<<(2.2 K b J 

GATCTGACTGCCTTCTTCTGGCTTICATGGTCACCACACACACAOACACACACACACACACACACACACACACACACAaAaTOCACTTAAAIACOTGCAGOCAAAAIAGCCACATAAAAÏ 

1 ™* * ^ D V D K A S L A R b l l l 
AOAATGAAAAAIAATTAGTATAAATAOATAAGATAAAGAATAaACTTTAalACCGCCAOATOATCTmCTCTCtTTAAAACAiroATGTTGACAATGCCTCTCTGOCACGCCICOACCTT 

г» ', шшц 
E R l C Ï E 3 L < ) E E I A ? l K K b H D E l 

GAAOaTAAAaTGGAATOCTTGCAAeAAGAOATTGCCTTITTeAAeAAACIOCATOATGAifelAAOTeAIOTCATTACTTÏAGIAAOCGAACAAeGCÎAAGCIGCAOCCATATTGICCACA 

щші „, ' ' ¡ ' ' ! ' " 
J E I Q E L Q A Q I Q S Q H V Q I D V D V S K P D b T A A L R 

TCTGACCOCÎCTCTeTCTGCTTTTTCCICACfGAaATCCAaaAaCÎACAeeCCCAOATICAGOAGCAACATOTCCAeATTaACOTOOATGTÎICIAAGCOCeACCTCACTGCTOCCCTGCe 

29г ι ·"•-""«• 
D V R U e Y E S V A A K I I L Q E A E E V T I C S I C 

COATGIOCGCCAOCAeTATGAAAGTGIGOCteCCAAaAAOCTCCAGGAGGOaeAaGAATGGTACAAGICCAAGFGTATGAAiaAaCCCAAeGOAATGATAaOATAGOCIOACIOTCAAACA 

СОТАОСТСААТІСАТОААТАСССОССАаСТСТССТСАвІАвОАвАСТІІІвІТаТІАОАОТаТСОТТаіСАСІСТСвАІОСТТОСТвТАвТАТааСАвАСА — ( 0 5 K b ] — 

I N T O 

OAÎCACTAAGAaAeiGAAAAGTCTTeeACATaAaCAAICIOCCTTTCieATTTCTICCieACAtfTTIOCCGACCTCTCieAAOOTeCCAACCOGAACAATGATGCCCTeCOCCAOGCAAA 
P A D L 3 Í A A N R S N D A L B Q A K 

a E S H E Y R R O V g S L T O E ï O A L K O T I 
GCAOGAOTCAAATGAGTACCGGAGACAeOTOCAGTCACICACOIGCeAAaTeaATOCACTTAAAeeAACroTOAOtACCACCOAOCAOCAAAeeCAOIOAAIOOtGAaCTCAGGOOCTCT 

GGTGACCAOe _ — — [ 0 . 3 K b 1 — — — — — — — — — — — — — — — — — — — — — — 

CATCTCAACAAAACAGACATGGGACICAGCGCCTAATaTTOTCTGTTTeAAaCIAaTAeeCACClaCTATÏAAGAOAACTAGTeCACAleOTTTaTAAATeATTOTGeaOACAACtGeaG 

taai-s.'w 
H E S L E R Q N R E M E E I i r A L E A A K Y g D T I G 

TTGaOAAATCACATCAaAAeCCCTICTCOCTTCCCAOAffAAIGAeTCTCTGeAACGOCAaATeCaïaAaATaeAAaAGAATTITeCCCTTGAAaClaCTAACTACCAaaACACTATTGGC 2 
Il N К E E 

AACATGAAaaAAGAGA 
flrrO/Ίιι ί 

"к 
AGS 

R L Q D E I Q N U K E S N A H H L R E Y Q D I L S V K H A L D I E I A T Ï R I C L 

CGCCTOCAaaAIGAaAÏTCAeAACAieAAaaAAGAGAIOOCICaieACCTTCOTaAAIACCAAGACCtSÇTCAAIGTCAAGAÏGaCTCTIGACATIGAGAITGCCACCTACAGOAAGCIA 

щ г и ш к 6 » « A I I Î P I « " 

L Ε β E E 3 
CTGaAAeGCGAOeAaAGCAabîAGQAAAaGCAaACTTeTGOATeeeAATTAAOTCATOAAOAGTCTCTTCAGGTGCATCÎCATTTAACCTTGAGACIOITTOCAOAAGGTATCTGCCCTT 

TCCATAaATaeGAAACTTAAGGTTaAAAAAOAAIAACIGTCTOTOetCAaAeCTAAITAACAaCAaAOCTaGTOtlOAACCCACTACCAïeCCAAAGICAAIACTTTCCÎCItTOTAATT 

CCTCTGATTCAIOCCCCTGTGAAaAAAAAIGOTTGCAGIATTCAAAATeiACTAATeAeACCAACTeiOGGTAGAtOTTTOTGAAICAaATCICTAATAATCACAeATTTCCIAOTaOAT 

щ ι T S L P L P H P S S I i H L R 

GAAAATTCAAeTOTGIGGACTTaTTTCTTCÏTaTAeAAeTGCTTCAITAAAAAAAIGITTCTTTacmiTTAIACFOAmCTCTeCCTCTTCCCAACTTTTCTTCCOTOAACCTaAaAa 
іытм y ' · ' • ' < · · · · · · 

ÇÏÏTiT [о.б к ы -
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AAGTTAAOTGTO(iATTCA0ATI0CTTCTT5CTA»TGAIGT»T»CAGTGA*CI»CIATCICAOCCT0AOT0AA0eGOOCCTTA00T»CTaTeTCTIC»AACAGATa(iTGCTTTG*AAa*TT 

E Τ H I, E S 
ATOTATGAaTAACATTTAAACAICIOCAAATATAAACTCATAATGCTTTOSACAAAAIOATTOCATTIAAAAATTTTTATTTTTACTTGCTTTmAAMCAtfAAACTAATCTGOAGÏCA АСА. 

:4¡ 

451 
D G Q 

ΙΗΠίΟΝ I 

L P L Ï D T H S K R T L L I K I Ï Î I 
CTCCCICTGGTIGACACCCACTCAAAAAGAAOACICCTOATIAAGACAGTOOAAACCAOOOÂlOOACAlibTTOOIATCTTTIAOACAAAATATGTAAAGGGTAAAAOAAAGOATAATGAA 

TAAATAIAGAOCCATTTCAAAÍATOCCTCOOTCOCCTTTAAA — — [ 0 , 5 К Ь І 

CTOCAGGAOAAGGCCACCTTOCCIATeCCICICCOIATAAOCCTIOCTGTeAAOAeTOAAOCTOCTleATAAAtlATATCTATTtACAGGTGTGTCTCCTTACCTGATTIGACTTATTTC 

іетадм ^, ' "sror-cooàr 
Q H H D D L I I 2 

45! 
V I N E I 

CTTTTTGASCAGGTGATCAATGAAACCICICAOCAICATOATOACCtIOAiCfÂiiAAAtIQCACATACTCTOISCAACAACSCAOTACCAgCAAGAAGAAAAAAAGAAATTCGTATCTTAA 

GGAAACAGCITTCAAGTGCCTMACTOOAOTITITOAOOAOCOCAAOATAGAIttOOGATimAAATAAOOTCTAeTTTCIAACAACTGAOACCCIAAAAGAITTAGAAAAGGTTTACAAC 

'POU A" 

ACAAICTAOTTTACGAAaAAATCTTGTeCIAGAATACIItICAAAOIATTTTTGAATACOATTAAAACTeCMTTTCCC0CAOTAATTACCTOACCAACITGIIACÎGCTTC^ATAAiTC 

IICAGAAAIATTACTTOOATGTGTTATTTIATAATAICTAAACAAAtCTCTTIAATTCTATieOCIAATTTACTGAGATCATACITGOOTTTTAAGITATAGGITCAATTTGTTTATGCT 

TOCAATACAGTTTTTAAOTTAOCCTTTTAAAAOAOAGATC 

Figure 4 S e q u e n c e of the Hamster Vimentin G e n e 

The sequence of all coding regions and adjacent nucleotides are shown with 120 bases per Ime The ritrons are marked by arrows and the amino acid 
sequence encoded by the exons is given in single letter codes above the nucleotide sequence The exons were identified by comparison with the cDNA 
sequence (Quax Jeuken et a l , 1983) Lengths of (ntron) fragments that are not sequenced are in brackets "TATA box" and "CAT box' are transcriptional 
control signals (M Goldberg, Ph D thesis, Standord University, Palo Alto, California, 1979, Efstratiadis, 1980) 5' CAP estimated location of the capped 
nucleotide Poly-A pdyadenylation signal, the arrow 15 bases ahead marks the probable addition site At the splice positions the numbers for the corresponding 
ammo acids of the vimentm polypeptide are shown "ZONA" marks a stretch of potential left handed Z-DNA "Hairpin" position where a perfect hairpin with 
13 nucleotides stem and 4 nucleotides loop can be formed in the resulting RNA Asterisks indicate changes that represent differently predicted ammo acids 
with respect to the cDNA sequence (see Results and Quax-Jeuken et a l , 1983) 

Consensus 

Intron 1 

Intron 2 

Intron 3 

Intron 4 

Intron 5 

Intron 6 

Intron 7 

da 
AAGgt'agt 

136 
iy 

AAAAgtaagg 

206 
Gin 
ACAGgtttgt 

238 
Glu 

TGAAgtaagt 

292 

CAAGgtatga 
334 
Ш 
AACTgtgagt 

408 

GCAGgtagga 

422 
AtgG 
AGAGgtaagc 

nbjb ttttttttttt 
ccccccccccc 

187 
¿Leu 

gtactactgcttcagATTG 

207 
Kip 

ctctctttaaaacagGATG 

239 
Gtu. 

ctgctttttcctcagGAGA 

293 
Phe 

atttcttcctgacagTTTG 

335 
Кіл 

tctcccttcccacagAATG 

409 
glie 

tttgcttttttatagGATT 

423 
tu 

gcttttttaactcagAAAC 

451 452 
Gin Val 

Intron 8 ACAGgttggt ttcctttttgagcagGTGA 

Figure 5 Exon-lntron Junctions of the Vmnentm Gene 

Nucleotides around the splice siles are compared to a consensus donor 

(left) and acceptor (right) sequence (Mount, 1982) Exon sequences are in 

capital letters, the number on top of the ammo acids is the relative number 

in the vimentin polypeptide The "ag" at the beginning and the "gt" at the 

end of an mtron are always present, the other nucleotides frequently differ 

from the consensus 

downstream of the AATAAA poly (A) addition signai also 
appeared to contain highly repetitive sequences (data not 
shown). 

Discussion 

Vimentin Gene Organization 
Our results provide evidence that vimentin is encoded by 
a single copy gene in the hamster genome as has been 
suggested previously (Quax et al., 1982). This gene is 10 
kb in length and shows a complex organization of nine 
exons encoding the 1848 nucleotides that compose the 
unique sequences of the vimentin mRNA. Although there 
is no evidence for a vimentm gene other than the one 
present in λ-havim, a careful examination of Figure 1 shows 
that there are several faint bands visible with total genomic 
DNA that do not originate from the vimentm gene. We 
assume that these bands result from cross-hybridization 
of our cDNA probe with other IF gene sequences. Desmin 
must especially share a reasonable nucleotide sequence 
homology in view of the great homology in primary struc­
ture (Geisler and Weber, 1982; Quax-Jeuken et a l , 1983; 
Geisler and Weber, 1981). 

Whereas actios and tubulins are encoded by multigene 
families (Cleveland et al., 1980; reviewed by Firtel, 1981), 
the situation with vimentin is clearly different. If we regard 
the F genes as a group of evolutionary related genes, we 
must conclude that Individual members of this family have 
diverged much more than actins or tubulins. In this con­
nection one should consider that in mesenchymal tissue 
only one member, the vimentm gene, is expressed, 
whereas in epidermis, an epithelial tissue, a number of 
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10 20 30 10 ЪО 60 70 80 90 100 110 120 

I I I I I I I I I I I I 
Н-Кег CLGGOÏOGCFSSSSSSFOSCFCGGYGOCLGTGLCGGFGCGFAGODGLLl/GSEKVTMQNLNORLASÏLD 
M-Ker 39 SSGGFSGGSFSRGSSnGüCFGCSSGGïGGFOGGGSFGGGÏGOSSFGGGÏGGSSFGGGÏGGSSFGGGSFGOGSFGGGSFGOGGCGGGFGOGOFGGDGGOLLSGNGRVTMRTLNDBLASÏMD 
С-Оез ι SQSÏSSSQRVSSïRRTFGGGTSPVFPRASFGSRGSOSSVTSRVïevSRTSAVPTLSTFRTTRVTPLflTÏGSAïaGAGEUL DFSLADAMNQEFLQTRTNEKVELQELNDRFANYIE 
H-Vim ι STRSVSSSSÏRRMFGGPGTSNRQSSNRSÏVTTSTRTÏSLGSLRPSTSRSLÏSSSPGGAÏVTRSSAVRLRSSMPGVRLLQDSVDFSLADAINTEFKNTRTNEKVELQELNDRFANnDi 

G aznm- - D - D D - D - BD m—ΙΠΠ I W/Л ищш 

ι ι ι ι ι ι ι I I I I I 
KVRALEEANADLEVKIRD WYQRQRPAEIKDÏSPÏFKTIEDLRNKILTATVDNAMVLLQIDNARLAADDFRTKÏETEULRHSVEADINCLRRVLDELTLARADLEMQIESLKEELA 
KVRALEESNYELEGKIKEVVREARQLK-PREPRDÏSKÏÏKTIEDLKGQILTLTTDNANVLLQIDNARLAADDFRLKÏENEVTLflQSVEADtNCLRRVLDELTLSeSVLELQIESLNEELA 
KVRFLEQON ALM—VAEVNRLRGKQPTRVAEMYEEELRELRRQVDALTGQRARVEVERDHLLONLaKLKOKLQEEIQLKOEAENNLAAFRADVDAATLARIDLERRIESLQEEIA 
KVRFLEW5N KIL—LAELEaLKGOGKSRU;DLYEEEMRELRRQVDQLTIIDKARVEVERDNUEDIMRLREKLQEEMLQREEAESTLÍ)SFRQDVDHASLARLDLERKVESLQEElA 230 

г/ш ι -- в-от а ЕППОПИПНИ во D-JIB -СВ α т^ъшш шт 

ι ι ι ι ι ι ι I I I I I 
ÏLKKNHEEEMNALRGOVGODVNVEMDAAPGVDLSRILNEMRDQYERMAEKNRKDAEEWFFTKTEEUREÏATNSELVQSOKSEISELRRmQNLEIELClSQLSMKASLENSLEETKGRYC 
YLKKNLEEEMRDLQNVSTGDVNVEMNAAPGVDLTOLLNNMRNQYEaLAEKNRKDAEEWFNOKSKELTTETDSNIAeMSSHKSEITELRRTVQGLDIELQSOLALKOSLEASLAETVESLL 
FLKKVHEEEIRELQAQLOEQHIQVEMDISKPDLTAALRDIRAQYESIAAKNIAEAEEWYKSKVSDLTQAANKNNDALRQAKaEMLEYRHOIOSYTCEIDALKGTNDSLMRQMREMEERFA 
FLKKLHDEEIQELQAaiaEaHVQIDVDVSKPDLTAALRDVRQQYESVAAKmaEAEEWYKSKFADLSEAANRWHDALRQAKaESIIEYRRQVQSLTCEVDALKGTIlESLERQMREMEEWFA350 

I I I I I I I I I I I I 
HaLAaieEMIGSVEEaLAaLRCEMEaQNaEYKILLDVKTRLEOEIATYRRLLEOEDAHLSSSeFSSGSQSSRDVTSSSRaiRTKVMDVHDGKVVSTHEevLRTKN 
RaLSaiaSaiSALEEeLQQIRAETECaNAEïeaLLDIKTRLENEiaTYRSLLEOEOSSSGGCCGBBGGSGOGSYOOSSOGGSYOGSSOOOGSÏGOSSOGOGSYGGOSSGCGGRGGO 5іэ 
GEAGGYeDTIARLEEEIRHLKDEMARHLREYaDLLNVKHALDVEIATÍRKLLEGEENRISIPMHaTFASALBFRET-SPDeRCSEVHTKKTVMIKTIETRDCEVVSEATaeeHEVL 463 
LEAANYQDTIGRLaPEie«KKEEMARHLREYeDLLNVKMALDIEIATYRKLLEGEESRISLPLPII-FSS-LWLRETNLESLPLVDTHSKRTLLlKTVETRDGavmETSaHHDDLE 4M 

п-пг&т π- rua î̂ feii тшшшю&и D@DÇ D G Lsaznp D D 
Figure 6 Comparison of Vimentin with Other IF Proteins 

H Ker a human prekeratin sequence denved from a cDNA clone (Hanakoglu and Fuchs, 1982) M-Ker a mouse prekeratin sequence denved from a cDNA 
clone (Stemert et al 1983) С Des chicken desmin sequenced directly (Geister and Weber, 1982) H-Vmn the hamster vimentin primary structure denved 
from Figure 4 The sequences are where possible, numbered from the Ntermmal ammo acid Alignment was achieved by the program CHAGON (Staden, 
1982) and as little as possible deletion or insertion events are assumed The partial ammo aad sequences for wool « keratms (Crewther et al 1978 Gough 
et al 1978) showing homology to the helical parts of intermediate Waments (Hanukoglu and Fuchs, 1982; Geister and Weber, 1982) have not been included 
in this figure Open bar identical residues in vimentin and desmin Hatched bar identical residues in vimentm desmm and one or both prekeratms. Dashes: 

residues only identical between vimentin and prekeratin О Ο α helical conformation of vmnentin (Quax-Jeuken et a l , 1983) The open areles mark 

position (a) and (d) of the heptade A position of introns m the corresponding part of the vimentin gene 

members, the prekeratin genes (Fuchs et al., 1981), may 
be responsible for IF formation. How tissue specificity is 
determined by signals at the DNA level (a control at the 
translation level is very unlikely, Kreis et al., 1983) will be 
the subject of future studies in which we will test in vitro 
expression of vimentin sequences. 

The hamster vimentin gene has never been shown to 
express more than one mRNA. In contrast, two mRNA 
species are found for chick vimentin (Dodemont et al.. 
1982; Zehner and Paterson, 1983) that originate from 
multiple poly (A) addition signals at the 3' end of the gene 
(Zehner and Paterson, 1983). We found only one AATAAA 
signal in the hamster gene and the S1 experiment (Figure 
2) suggests that only this is used as a transcription stop 
signal In spite of this difference at the polyadenylation site, 
the remaining nucleotides of hamster display at several 
regions a high degree of homology with the chick non-
translated 3' nucleotides (Figure 7), suggesting that these 
nucleotides have to be conserved for the functioning of 
the vimentin gene. However, the open reading frames that 
have been assumed to play a role in chick vimentin 
expression (Zehner and Paterson, 1983) are not present 
in the hamster nontranslated region 

A computer analysis revealed a striking sequence of 27 
nucleotides capable of forming a strong hairpin with a stem 
of 13 nucleotides and a loop of 4 nucleotides within exon 
VI (Figure 4) This hairpin, with a calculated energy of -19 
kcal, ends up in that part of the mRNA that encodes amino 
acids 385 to 394, which are near the COOH terminal region 
of the protein. In other genes hairpins have been found 
mostly in the 5' nontranslated region where they may play 
a role in ribosome attachment (Shine and Dalgarno, 1975). 
The observation of a hairpin in the protein coding region 
is to our knowledge unprecedented. A possible role In 
mRNA translation and/or processing should be tested. 

IF Protein Domains and Evolution 
For years a model consisting of two nearly equally long a-
helices separated by a nonhelical spacer has been used 
to represent IF protein structure (Steinert et al., 1980). 
Since sequence information has become available (Geisler 
and Weber, 1981; Hanukoglu and Fuchs, 1982; Steinert et 
al., 1983; Quax-Jeuken et al., 1983) it is now possible to 
construct a better and more detailed model. For vimentin 
this model can be completed, and when we apply the 
heptade convention to identify β-helical regions the follow-
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1 I I ? l V 4 ' s i 

Q H H S D L E 
Hamater CACCATCATC A"GACCTTGA І Г А А А А Г Г - CCACA^ACTC ^CTCCAACAA 

·»·*··»· · ···•· · · · І**ф • · · · · ·* 
C h i c k e n CAGCATCACG ATGACTTGGA фАЙАЗСТСА AGTGAACATC CAAACTTAAT CCAGG-AGAA 

61 71 θ ' 91 ΙΟΙ 111 

CGCAGTACCA CCAAGAAGAA AAAAAGAA-A TTCGTATCTT AAGCAAACAG CTTTCAAGTG 
**»*» · · · » » · · » · · · · ι » · · · « · • * • · · * · · · » · « 

ATTCTTACCA GCAACCTTTT AAAAAGTTCA TGTCTTAAAG CAAGAAACAG ГТТТСААСТС 

1?1 131 141 151 161 l"4 

CCTTTACTGC ACTT^nCAC CACCGCAAGA 'AGATTTCGG ATAGAAATAA GCTCTACTTT 

CCTTTCTCCA CTTTTTCCAT CACCGCAAGA TTATTATGCT AGGAAATAGG TCTTACATCT 

I B I "91 201 211 2 2 ' 231 

CTAACAACTG АСАГССТААА AGA'TTAGAA AAGGT^TACA ACACAATCTA CTTACGAAC 
Я Р «» · *я · · · · • a · · · · · « · a · « · · · · · · * « « · 

TGCAAACTGA CTCTCCCTGA AGGATTAGA СТГГАСА ATCCAGTCA GTTTACAAAT 

241 251 261 271 281 291 

A AATCT TGTGCTAGAA "ACTTTTCAA AGTAT^TTTG AATACCATTA AAACTGCT"T 

* · · * » · · « * · · ·« · » » · · · · · · · ·«« · · * · · · * · · « · · * 
AGCAATATCT TGTCCTGCAA "ACTGTTTTT AAGTATCT-C А А Т ' Т Ш ^ З Д А C T G C T T T 

301 311 321 331 341 351 

T7CCCCCACT AATTACCTGA ССААСГГСТТ ACTGCTTOAA ТААМГСТТСА GAAATA?TAC 

* · « * · · · * * · · * « · · · · * «»«l » · * « · • I * · * • · · * 
TTCCAGCACA GTA TCA CCAACCTCTC GCTACTTOAA TAAA ГСТ""С CAAAATCCC" 

t = X p ö L / - A " 
361 З"*! Заі 391 401 411 

TTGCATGTGT TA'TTTATAA TATCTAAACA AATCTCTTTA ATTCTATTGC CTAATTTACT 
* «•••••• · · · · · · · · * « · · · · · · 

CTTCATCTGT TCTAATTTAA CT^CA-GAC? TTCTGGAAAC CCATAAC7TA A'CC^GGAA4· 

Figure 7 3' Nontranslated Regran of Hamster and Chicken Vmentm Gene 

The 3' sequences ol chicken (Zehner and Palerson, 1983) and hamster 

vimentm are aligned Common residues are marked by an astensk From 

the slop codon to the hamster poly (A) addition signal the homology is 

83%, however, many deletions or insertions have taken place In contrast 

to the single pdy (A) addition signal of the hamster gene, the chicken has 

gol tour, of which only two are included in this figure 

mg picture emerges (see Figure 6) The first 84 ammo 
acids are presumably not in α-helix conformation and 
contain many /S-turns Residues 85 to 136 and 148 to 236 
clearly show the distribution of hydrophobic ammo acids 
at the first (a) and fourth (d) position of a heptade, typical 
for a coiled-coil α-helix. Positions 236 to 278, which include 
one proline residue, form an interruption m front of another 
long helical region ranging from positions 278 to 409 This 
latter coiled-coil shows a discontinuity in the hydrophobic 
backbone at position 350. The carboxy terminus is not m 
helical conformation 

These sizes and interruptions of coiled-coil regions are 
found at nearly identical positions m the sequences of 
desmm, mouse prekeratm, and human prekeratm and 
therefore must play an essential role m 10 nm filament 
formation Sequence homology between vimentm and des­
mm on the one hand and prekeratms on the other is 
predominantly found within these coiled-coil regions, albeit 
the homology is concentrated in distinct regons. It can 
also be seen from Figure 6 that not only the hydrophobic 
residues at positions (a) and (d) of the heptade necessary 
for maintenance of a-helix conformation, but also acidic 
and basic residues are often conserved. This might imply 
that the penodic distribution of charged residues (Mc-
Laghlan and Stewart, 1982) is a common feature among 
intermediate filaments that has been conserved throughout 
evolution From ammo acid 236 to 278 there are interrup­
tions of the a-helices, but without a substantial decrease 
of homology, suggesting that the ammo acids surrounding 
these interruptions are also essential for the 10 nm filament 
formation. If we compare only vimentm and desmm we 
see that apart from the C- and N-termmus, a strong 

homology is found m coiled-coil regions as well as m the 
interrupting stretches 

It has been proposed that exons play a role in the 
evolution of different protein domains and that therefore 
the gene exon-mtron pattern might show a relation to 
protein structure (Gilbert, 1978, Blake, 1978). In Figure 6 
the positions of the introns are shown If we look for a 
relation with the indicated regions of coiled-coils, which are 
considered the important domains, we can see that mtron 
6 is positioned at the border of a coiled-coil and the COOH-
termmus At precisely this position (residue 408) the glycine 
serme-nch region of prekeratms starts, suggesting that 
sequences homologous to vimentm exon 7, 8, and 9 are 
not present m prekeratms Moreover mtron 3 can be 
considered to be located between two a-helices However, 
other introns are located within the helical regions at 
positions where homology is very high and can hardly be 
considered to separate different domains Two introns are 
found in the COOH-termmus coding region where domain 
structures of various IF proteins differ Furthermore, the 
first exon (186 ammo acids) encodes a nonhehcal head­
piece as well as a very conserved a-helix Thus a correla­
tion between exon-mtron structure and protein domains is 
not evident It will be necessary to resolve the structure of 
other IF genes before a possible role for exons in IF 
evolution can be fully understood Although the Gilbert 
hypothesis has proved to be correct for some genes 
(Artymiuk et al , 1981, Blake, 1981, Inana et al , 1983) it 
has become clear that genes lacking recent duplications 
or evolutionary highly conserved genes such as actms 
(Nudel et a l , 1982, Fryberg et al , 1981) do not show a 
clear relation between gene structure and protein structure 
Probably IF genes must be reckoned among the latter 
group. 

Z-DNA Conformation In Vivo? 
The existence of a 44 nucleotides long stretch of alternat­
ing dC and dA residues within the second mtron of the 
vimentm gene leads one to ascribe a possible role for this 
sequence m the genome It was shown that in vitro syn­
thetical d(CA/GT) polymers can adopt a left-handed Z-
DNA conformation under certain high salt conditions (Zim­
mer et a l , 1981, Vorlicka et a l , 1981 ) The observation that 
DNA can also adopt the left-handed conformation under 
more physiological conditions (Singleton et al., 1982; 
Nordheim and Rich, 1983) and the finding that antibodies 
against Z-DNA react with Drosophila polytene chromo­
somes (Nordheim et al, 1981) are indications for the 
existence of Z-conformation m native DNA. 

It has been shown that d(GC/CG)n and d(GT/CA)n 
sequences are widely dispersed throughout the genome 
m a number of eucaryotic species (Hamada et al., 1982) 
Moreover there are sequence data on the occurrence of 
d(CA/GT)n sequences within mtergemc and mtromc re­
gions of several genes (Miesveld, 1981, Slightom et a l , 
1980; Hamada and Kakanuga, 1982) As a possible func­
tion of these sequences it has been suggested that they 
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may play a role in gene rearrangement and recombination 
(Slighthom et al., 1980). On the other hand it cannot be 
excluded that Z-DNA is involved in regulation of gene 
expression. Recently it has been speculated that eucar-
yotic Z-DNA may play a role in the organization of chro­
matin domains (Nordheim and Rich, 1903). The formation 
of Z-DNA and its influence on the superhelicity of DNA 
could then be reflected in the change of S1 nuclease and 
DNAase I sensitivity observed in the chromatin regions of 
actively transcribed genes (Wemtraub, 1983) The proteins 
that bind specifically to Z-DNA (Nordheim et a l , 1982) may 
affect the formation and/or stabilization of the secondary 
DNA structures that interact with the chromatin Such a Z-
DNA control element would show similarities with se­
quences that have been described as "enhancer" ele­
ments in viruses (Yamv, 1982) and recently in immuno­
globulin genes (Boss, 1983). Both would be active irre­
spective of their orientation to the gene and both would 
be capable of exerting their influence at a rather large 
distance from the transcription start. A mechanism for 
enhancers has also been proposed where the secondary 
structure of the sequence would influence the chromatin 
structure and the DNA superhelicity (Yamv, 1982), Further 
experimentation is needed to verify these parallels between 
Z-DNA and enhancer sequences. 

Experimental Procedures 

Construction and Screening of the Hamster Gene Library 
Since there is only one Bam HI restriction fragment carrying vimentm 
sequences in the hamster genome (Ouax el a i . 1982) we constructed a 
partial gene library from a Syrian gold hamster Bam HI restriction fragments 
ranging from 13 to 18 kb were isolated by agarose gel electrophoresis and 
declroelution Ligation, in vitro packaging, and plating were pertormed with 
Charon 28 as vector (Rimm et a l , 1980) Screening with pVim-1 was done 
under hybridization conditions as described below Positive plaques were 
purified and DNA isolated Restriction enzyme analysis and blotting hybrid­
ization lo compare the phage DNA with total hamster DMA were done as 
described (Quax et a l , 1982) Hybridization was earned out at ÍS 'C during 
16 h in 50% lormamide. 5X SSC. 1X Denhart's solution, 20 mM sodium 
phosphate (pH 68), 5 mM EDTA, and 100 μg|πì\ smglestranded salmon 
sperm DNA Washings were at 42°C during 3 hr with the hybridization 
solution, at 55°C for 15 mm m 2Χ SSC, 0 5% SOS, and at 55°C for 30 mm 

in 0 IX SSC, 0 1 % SOS The structure of the cDNA plasmids pVim-1 and 

pVim-2 that are used as probes have been described previously (Quax 

Jeuken et a l , 1983) 

S I Nuclease Mapping 

The phage insert (300 ng) was hybridized to hamster lens culture RNA (5 

/ig) al 53°C during 3 hr in 20 μΙ of the following solution 80% lormamide, 

400 mM NaO, 40 mM Pipes (pH 6 4) and 1 mM EDTA Then the hybrids 

were directly diluted into 200 μΙ of SI solution conlammg 2 5 U S1/MI 

(modification of Berk and Sharp, 1977). After 45 mm al 45°C the samples 

were treated with alkali and the remaining DNA was separated on a 7% 

potyacrytamide/6M ureum gel and blotted electrophorelically onto gene-

screen (MEN) with 25 mM sodiumphosphate (pH 6 5) as transfer buffer 

Deteclion with different probes was under hybndizalion conditions as 

mentioned before 

DNA Sequence Analysis 

Initially fragments were end labeled and sequenced by the method of 

Maxam and Gilbert (1980) Later we applied the M13-dideoxy strategy 

Therefore the 15 kb insert of Xhavim was digested with the enzymes Sau 

ЗА, Taq I, and Hpa II, respectrvely Resulting fragments were ligaled into 

the Bam HI or Ace I site of Mp8. translected on JM103. and plaled (Messing 
el al 1981) Raque filter replicas were prepared and hybridized with cDNA 
probes Most coding sequences could be sequenced in both directons in 
this way For some stretches known restriclion fragments were directly 
subcloned into Mp8 and Mp9 Template isolation and dideoxy reactions 
were performed as described (Sanger et a l . 1980) Analysis was on 40 
and 85 cm 6% sequencing gels 

The gel readings were recorded, edited, and compared by the programs 
of Staden (1979) Search for homology and optimal alignment was done 
by the program DI AGON (Staden, 1982) The energy for hairpin structures 
was calculated by Ihe rules ot Tinoco el al (1973) 
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ABSTRACT Recombinant cDNA plasmids for the inter­
mediate filament proteins desmin and vimentin were con­
structed from baby hamster kidney (BHK-21) mRNA. Analy­
sis of four desmin clones gave a sequence of 1574 nucleotides, 
which is 75% of the total mRNA length. The derived amino 
acid sequence for hamster desmin shows 92% overall homol­
ogy with chicken desmin; the homology with hamster vimentin 
is highest in the α-helical middle part (74%). The 3'-noncoding 
region of desmin mRNA is found to be 677 nucleotides long. 
With the aid of 5'- and 3'-specific probes, it has been estab­
lished that there is a single gene for desmin in the hamster 
genome. This gene expresses a single mRNA species of 2.2 
kilobases. Hybridization experiments of a number of DNAs 
with desmin and vimentin probes show that there are distinct 
restriction enzyme fragments carrying vimentin and desmin 
sequences In the genome of representatives of all vertebrate 
classes. 

The intermediate filaments (IF) along with microfilaments 
and microtubules are the major constituents of the cytoskel-
eton of higher eukaryotic cells. Although all IF show a rather 
similar morphology, their subumts have been divided into 
five chemically distinct classes, each characteristic of a 
particular cell type: keratin filaments in epithelial cells, 
neurofilaments in neurons, glial filaments in astrocytes, vi-
mentin filaments in cells of mesenchymal origin, and desmin 
filaments in muscle cells (for review, see ref. 1). In the past 
few years, sequence data have been obtained for some rep­
resentatives of these classes, and it appeared that long a-
helical regions in the middle part of the polypeptide chain are 
common structures shared by all IF (2-4). On the other hand, 
the nonhelical COOH and NH2 parts are identified as the 
variable structures of IF, because they show large variations 
in both sequence and size (5-8). 

The functional significance for the existence of different IF 
proteins in different cell types is still unclear. For studies of 
the molecular basis of this tissue-specific expression, knowl­
edge of the responsible genes is needed. So far, the gene 
organization of only two IF classes has been studied with the 
aid of cDNA probes: the epidermal keratin genes, which 
form a multigene family (9,10), and the single-copy vimentin 
gene, whose structure has been completely elucidated (11). 

To obtain further insight into the organization, evolution, 
and expression of the IF genes, it is desirable to have cDNA 
probes for all five classes. We present here the cloning and 
characterization of desmin cDNA and the detection of the 
corresponding sequences in the genome of all vertebrate 
classes. 

MATERIALS AND METHODS 

Construction of Recombinant Plasmids. Poly(A)+ RNA 
was isolated from baby hamster kidney cells (BHK-21) as 
described (12). Double-stranded cDNAs were synthesized 
on this RNA by a one-step procedure adopted from Wickens 
et al. (13) as described (12). The only change that we intro­
duced for the construction of the BHK cDNA was the 
consecutive use of both reverse transcriptase and Esch­
erichia coli DNA polymerase I (nuclease-free) for the second 
strand synthesis. cDNAs were size-selected on 3.5% Poly­
acrylamide gels, and the fraction above 700 base pairs was 
electroeluted, C-tailed, and annealed into Pjf-cleaved G-
tailed pBR327. E. coli Η В101 cells were transformed by the 
recombinant plasmids and plated on HATF filters as de­
scribed (14). Replica filters were hybridized with the Sau3A 
fragment of pVim-1 that covers amino acids 240-453 (4) 
under the conditions described below, except that 40% for-
mamide was used and the last wash with 2 χ NaCl/Cit/0.5% 
NaDodS04 was at 50oC (1 x NaCl/Cit = 0.15 M NaCl/0.015 
M Na citrate). Isolation of plasmid DNA from positive clones 
was done using standard methods (15). 

Sequence Analysis and Blot Analysis. For sequence analy­
sis, suitable fragments were ligated into M13 mp8 and mp9 
vectors, grown in JM103 (16), and subjected to dideoxy 
reactions as described (17). RNA blots were prepared and 
hybridized essentially as described by Thomas (18). Total 
genomic DNA was isolated from diverse tissues of all species 
described using standard methods (19). Ten-microgram 
amounts were electrophoresed on 0.7% agarose gels, blot­
ted, and hybridized under the following conditions: 50% 
formamide/5x NaCl/Cit/20 mM sodium phosphate, pH 
6.8/5 mM EDTA/0.06% bovine serum albumin/0.06% 
Ficoll/0.06% polyvinylpyrrolidone/lOO μg of herring sperm 
single-stranded DNA per ml/0.1% NaDodSO« at 420C. Wash­
ings were done with hybridization mix and, finally, with 
NaCl/Cit and NaDodSCV The stringency of the last washing 
is described in the figure legends. M13 probes were prepared 
by carrying out a standard T-reaction of dideoxy sequencing 
with ATP of >3000 Ci/mmol (1 Ci = 37 GBq) (17, 20). 

RESULTS 
Isolation of Desmin cDNA Clones. We constructed a cDNA 

library on poly(A)+ RNA isolated from BHK-21 cells. These 
cells, which express both vimentin and desmin (21, 22), are 
derived from a Syrian gold hamster. Lens mRNA from the 
same species has been used for the construction of vimentin 
clones (12). About 5000 colonies were plated and screened 
under conditions of low stringency with a 32P-labeled probe 
denved from pVim-1 (4). This probe covers amino acids 
240-453 of vimentin. Within that region, there is a sequence 

Abbreviations: IF, intermediate filaments; kb, kilobase(s); GFA, 
glial filament acidic protein; NaCl/Cit, 0.15 M NaCl/0.015 M Na 
citrate. . . 
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FIG. 1. Restriction map and sequencing strategy for pDes-1, pDes-2, pDes-3, and pDes-4. Upper lines indicate the length and relative 
positions of the inserts; thick bars represent coding region, and thin bars are the З'-noncoding parts. Open bars at the ends represent the G-
C tails that were introduced during the cloning procedure. Arrows indicate the direction and extent of the dideoxy sequence as it was deter­
mined after subcloning of the corresponding fragments in mp8 or mp9. 

of 35 amino acids that is nearly identical to the corresponding 
stretch in desmin (4, 23). Thirteen more or less positive 
clones were identified, И of which showed a restriction map 
that agreed with the map of pVim-1 (4). The other two 
Plasmids had a different restriction pattern. Partial sequence 
analysis showed that within these clones there is a region 
that encodes a sequence that is identical to the partial por­
cine desmin sequence (23). Rescreening of the library with 
the insert of these two clones yielded two additional desmin 
clones. The restriction map and relative position of the four 
desmin cDNAs are shown in Fig. 1. 

The Sequence of Desmin cDNA. Suitable restriction frag­
ments were isolated from all four recombinant plasmids (Fig. 
1), and their nucleotide sequence was determined by the M13 
dideoxy method (16, 17). For pDes-1 and pDes-4, both 
strands were completely determined; the sequences of pDes-
2 and pDes-3 are completely located within pDes-1 and 
pDes-4. No differences between the corresponding parts of 
the four desmin clones could be found. The combined se­
quence shown in Fig. 2 covers 1599 nucleotides. There is one 
open reading frame of 894 bases, which encodes 298 amino 
acids. The TÄA stop codon is followed by a noncoding 
region of 677 nucleotides. At the 3' end, a stretch of 25 
adenines is found, which is preceded by the consensus A-A-
T-A-A-A polyadenylylation signal (24). This led us to con­
clude that in pOes-4 the complete 3' nontranslated region is 
present. The rather unusual length of this noncoding region 
is consistent with the estimated size of 2200 bases for desmin 
mRNA (see below). This implies that the cDNAs represent 
»75% of the total length of the mRNA. From a comparison 
with the known sequence of chicken desmin (25), we esti­
mate that the information for 160 amino acids is lacking at the 
5' end of pDes-1. 

The Structure of Hamster Desmin Compared with Chicken 
Desmin, Vimentin, and Glial Filament Acidic Protein (GFA). 
It has been shown that intermediate filaments share homol­
ogy predominantly in the helical middle part of the protein. 
Therefore, these regions are called the constant domains and 
the NHz and COOH ends are considered as the variable 
domains. For the regions that span amino acids 1-67 and 
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114-244 of the sequence in Fig. 2, α-helical conformation is 
predicted. This was done by the application of the heptade 
convention, which has been used for secondary structure 
predictions of other IF proteins (2, 4). The open circles in 
Fig. 3 indicate the "a" and " d " positions of the heptade; 
82% of these residues are hydrophobic. To test the variabil­
ity in the COOH domain, we aligned the sequence of hamster 
desmin to chicken desmin (25) and to the two most closely 
related other IF subunits, vimentin (4) and GFA (8). In Fig. 
3, the hamster desmin sequence is shown at the bottom line; 
from the aligned sequences in the upper lines, only the 
deviating residues are drawn. The arrowhead marks the 
border between the helical region and the nonhelical carboxyl 
terminus. The homology of hamster desmin with the other IF 
subunits is highest in the helical part; in this region, the 
homology with vimentin is 74%; with the partial GFA se­
quence, it is 73%. The 52 COOH-terminal residues show 
much less homology: 44% with vimentin and 42% with GFA. 
Between hamster desmin and chicken desmin, there is only 
8% sequence divergence. These differences are, however, 
not predominantly found in the COOH-terminal piece, but 
they are evenly spread over helical and nonhelical regions, 
indicating that all domains are equally well conserved com­
paring one type of IF subunit in different species. 

Size and Specific Expression of Desmin mRNA. The size of 
desmin mRNA was determined by RNA blot analysis. 
Poly(A)+ RNA from BHK-21 cells and from hamster lens 
cells was glyoxylated, electrophoresed, and transferred to a 
nitrocellulose filter (18). Two identical blots were hybridized 
to pDes-1 and pVim-1, respectively (Fig. 4A). Obviously, 
desmin mRNA is only expressed in BHK-21 cells, in contrast 
to vimentin mRNA, which is detected both in BHK-21 and in 
lens cells. This is in concert with the observation that lens 
cells contain only IF of the vimentin type (26) and that IF of 
BHK-21 cells comprise vimentin and desmin (21, 22). This 
latter finding has led to the suggestion that BHK-21 cells are 
probably derived from an embryonal vascular smooth muscle 
cell (27). 

The detection of a single desmin mRNA class shows that 
no alternative polyadenylylation signals are used for tran-
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FIG. 2. Combined nucleotide sequence of pDes-1, pDes-2, pDes-3, and pDes-4. The predicted amino acids (represented by standard 
one-letter abbreviations) are shown above the middle of their triplets. The polyadenylylation signal and the stop codon are indicated. 

scription, as in the case of the chicken vimentin gene (28,29). 
With a length of =2.2 kb, desmin mRNA is 0.3 kb longer than 
vimentin mRNA. This difference is consistent with the long­
er З'-nontranslated region of the desmin cDNA (677 bases; 
Fig. 2) as compared to the vimentin cDNA (320 bases; see 
ref. 11). 

Evidence for a Single-Copy Desmin Gene. To test genomic 
hamster DNA for the presence of desmin sequences, we 
used as hybridization probe M13 recombinant phages, which 

were constructed for sequencing the cDNA. Two identical 
Southern blots of hamster DNA digested with two restriction 
enzymes were hybridized to a 5'-specific and a 3'-specific 
probe, respectively. The 5' probe (covering nucleotides 
315-609 of the cDNA, as presented in Fig. 2) hybridizes 
exclusively to a 7.4-kb EcoRl fragment and to a 3.4-kb 
BamHI/EcoRI fragment (Fig. 45). The 3' probe (covering 
nucleotides 1061-1257) hyridizes exclusively to another 
EcoRI fragment, 8.2 kb long, and to а 5.4-кЬ ВатЯІ/ЕсоШ 
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FIG. 3. Comparison of hamster desmin with chicken desmin (25), hamster vimentin (4), and the partial GFA sequence (8). The residues 
of the aligned sequences are only printed when they differ from hamster desmin. Hamster desmin residues are numbered on the bottom line; 
the other sequences are numbered at the beginning and end. Borders of the partial GFA sequence are marked by asterisks. The information 
that corresponds to the first 164 residues of chicken desmin is not present in our clones. The line under the sequences represents the a-
helical regions; open circles in this line represent the "a" and "d" positions of the heptade convention. Arrow marks the border between the 
helical core part and the nonhelical COOH region. , « 
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FIG. 4. (Л) Size and expression of desmin and vimentin mRNA. 
RNA blots of 10 jiig of BHK-21 poly(A)" RNA (lanes a and c) and 
3 ßg of lens poly(A)+ RNA (lanes b and d) were hybridized with 
nick-translated pDes-1 (lanes a and b) and pVim-1 (lanes с and d). 
Desmin mRNA is only detected in BHK cells; vimentin mRNA is 
in both cell types. Ribosomal 18S and Pvu Il/EcoRI-digested 
pBR322 were run on parallel lanes as markers. (B) Desmin gene 
number in hamster DNA. Ten-microgram amounts of total hamster 
DNA were digested with EcoRI (lanes a and d), BamUl (lanes b and 
e), and £coRI/ßamHI (lanes с and f), run on 0.7% agarose gels, and 
blotted on nitrocellulose filters. Lanes a, b, and с were hybridized 
with a 5'-specific desmin probe; lanes d, e, and f were hybridized 
with a З'-specific probe. Final washing was done with 0.1 x 
NaCI/Cit/0.1% NaDodSOi at 63°C for 30 min. 

fragment. An S.S-kbBamHl band is detected by both probes. 
This implies that there is a single desmin gene that resides (at 
least for the major part) on the 8.5-kb ВатШ fragment; 
within this gene, there is an EcoRI cut that separates the 5' 
and 3' parts of the gene. Since the cDNA does not carry an 
EcoRI site, this cut must lie in an intronic region. 

Detection of Desmin and Vimentin Sequences in the DNA of 
Vertebrates. The use of cloned cDNA probes allows us to 
test different vertebrate genomes for the presence of se­
quences homologous to desmin and vimentin. ¿coRI-di-
gested DNAs from representatives of all vertebrate classes 
were hybridized with the inserts of pDes-1 (Fig. 5A) and 
pVim-1 (Fig. 5B). Representatives of all vertebrate classes, 
including fish, amphibia, reptiles, birds, and rçammals, all 
showed clear bands under the medium stringent conditions 
used. Although as a result of cross-hybridization in some 
DNAs the desmin and the vimentin probe seem to recognize 
a common band under these conditions, it is clear that in all 
species pDes-1 and pVim-1 show the strongest hybridization 
with different fragments. This means that there are different 
genes that code for desmin and vimentin in all vertebrates. A 
precise estimation of the number of genes in all these species 
cannot be made from this experiment. However, the pres­
ence of one or two prominent bands in all lanes suggests that 
the single-copy nature of the vimentin and desmin gene, as it 
is found in the hamster genome, holds true for all species. In 
the same experiment, we also tested DNA from Drosophila 
and yeast from hybridization with pDes-1 and pVim-1, but no 
signal could be detected under these conditions. Comparison 
of Fig. 5A (lane a) (hamster DNA hybridized with pDes-1) 
with Fig. 45 (lane a) shows that under conditions of lower 
stringent washings more bands are detected in addition to the 
already mentioned 7.4-kb EcoRI fragment. The disappear­
ance of the weaker bands upon more stringent washing was 
also observed with the other mammalian DNAs with both the 

FIG. 5. Detection of desmin and vimentin sequences in verte­
brate DNAs. Ten-microgram amounts of DNA were digested with 
ScoRI, run on 0.7% agarose gels, blotted onto nitrocellulose, and 
hybridized with the nick-translated insert of pDes-1 (A) and pVim-
1 (B). The DNAs were extracted from the following species: lane 
a, Syrian gold hamster; lane b, mouse; lane c, man; lane d, chicken; 
lane e. Varan (lizard); lane f, Xenopus laevis; and lane g, Tilapia 
mossambica, a cichlid teleost fish. Hybridization was under con­
ditions described and final washing was at 55°C with 1 χ 
NaCI/Cit/0.2% NaDodSOi for 30 min. 

desmin and the vimentin probe (data not shown). Candidates 
for these additional bands are other IF genes and/or desmin 
pseudogenes. The observation that most weak bands in the 
desmin lane do not show a counterpart in the vimentin lane 
is an argument against the first possibility, because one 
would expect the same comigrating weak bands with both 
probes as they share the same degree of homology with other 
IF genes (7, 8). Therefore, the possibility of pseudogenes 
cannot be excluded. 

DISCUSSION 

The amino acid sequence derived from the nucleotide se­
quences of the four desmin cDNA clones described allows 
the prediction of a secondary structure for hamster desmin 
similar to other IF proteins (2-5). Comparison of the struc­
ture of hamster desmin with both chicken desmin and other 
closely related IF proteins leads to some interesting conclu­
sions: (¡) the interspecies differences (at least between mam­
mals and birds) for one and the same IF protein are much less 
than the differences with other IF proteins, and (ii) the 
COOH-terminal domain that has been recognized to be vari­
able upon comparison of different IF protein sequences (2, 3, 
5, 7, 8) is not variable when we consider corresponding IF 
proteins in different species. 

On the basis of paleontológica! and biochemical data, it is 
assumed that the evolutionary divergence of the ancestors of 
chicken and hamstei took place some 270 million yr ago (30, 
31). Supposing a constant evolution rate for IF sequences in 
the helical domains, we can estimate from the differences 
between hamster desmin and chicken desmin (8%) on the 
one hand and hamster desmin and vimentin (26%) on the 
other hand that the divergence of the precursor desmin and 
vimentin genes took place before the origin of the earliest 
vertebrates (500-600 million yr ago; see ref. 30). Another 
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indication for this statement stems from the observation that 
there is no homology in the nucleotides at silent positions of 
the codons of similar amino acids of hamster desmin and 
vimentin (data not shown) 

More convincing evidence for the presence of distinct 
genes for both IF subunits in all present-day vertebrates 
comes from the experiment described in Fig 5 The probes 
for both IF genes show their most prominent hybridization 
with different bands in all vertebrate DNAs, a finding that 
can only be explained by the presence of different restriction 
fragments carrying desmin and vimentin sequences This 
implies that the gene duplication event, which has most 
likely been at the basis of the evolution of separate genes for 
vimentin and desmin, has taken place before the evolution­
ary divergence of the vertebrate classes The observation 
that both vimentin and desmin are present in Xenopus (32) is 
m concert with this conclusion For the invertebrate species 
Drosophila, it has been reported that there is a protein with 
immunological relations to vimentin and desmin (33, 34) 
However, we were not able with either of the probes to 
detect any signal on Southern blots under the conditions 
used In this context, it is interesting to mention that the 
clones for type I and type II epidermal keratins, which 
recognize different restriction fragments in all vertebrates, 
also do not hybridize with invertebrate DNA under condi­
tions comparable to those we used (35) Screening of a gene 
library of invertebrate species under low stringent conditions 
and characterization of homologous sequences could shed 
more light on the early evolution of IF genes 

The availability of IF cDN A clones is a prerequisite for the 
study at the gene level of the tissue-specific expression of IF 
proteins Desmin cDN A clones in combination with vimentin 
cDNAs open the possibility of investigating RNA expression 
of IF during embryogenesis and, in particular, during myo-
genesis An important conclusion from the results presented 
here is that for desmin there is only a single gene, as has been 
evidenced recently also for vimentin (11) Both IF genes, 
which are strongly related in sequence, show a totally dif­
ferent expression pattern the desmin gene is active in muscle 
tissue, while the vimentin gene is predominantly expressed 
in cells of mesenchymal origin A companson of structure 
and in vitro expression of the cloned genes for these IF can 
help to discover which regulatory elements are responsible 
for this tissue specificity 
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SUWURY 

The structural organization of the gene encoding 

the intermediate filament protein desmin has been 

determined. The gene, 6.5 kb in length, consists of 

nine exons with a total length of 2169 nucleotides. 

The Intervening sequences map at positions that 

fully correspond to those of the vlmentln gene con­

firming the evolutionary relationship of these two 

Intermediate filament genes. The derived complete 

primary structure for hamster desmin (468 amino 

acids; MW. 53250 daltons) reveals striking species 

variations In the NH terminal domain of desmin. A 
2 

Plasmid containing the complete transcription unit 

of the desmin gene was transfected into hamster 

lens cells and into human epithelial (HeLa) cells. 

In both non-muscle cell lines the desmin gene was 

biologically active and the synthesized desmin as­

sembled into authentic intermediate filaments as 

monitored by immunofluorescence using monoclonal 

and polyclonal antibodies to desmin. Double Immu­

nofluorescence staining with these antibodies and 

polyclonal or monoclonal antibodies to vimentin 

showed that the newly formed desmin filaments colo-

callze with the preexisting vimentin filaments. In 

a small subset of positive cells typical clumblike 

aggregates of staining, possibly originating from 

an excess synthesis of desmin, were observed. 

INTHODUCTION 

The Intermediate filaments (IF) have been 

characterized as a unique type of cytoskeletal 

structures, which in different cell types are com­

posed of different, hardly soluble, proteins. Im­

munological, biochemical and recently sequential 

data have allowed the distinction of five different 

classes of intermediate filament subunlts, whose 

expression parallels embryological differentiation 

(for review see Franke et al.,1981; Osborn Ь 

Weber,1982). Epithelial cells contain cytokera-

tlns, which can be subdivided Into acidic (type I) 

and basic (type II) proteins; In neurones neurofi­

laments are found; glial filaments are present in 

astrocytes; vimentin is found in mesenchymally 

derived cells and in most cultured cell lines; fi­

nally desmin filaments are only found In muscle 

cells. Amino acid sequences derived for representa­

tives of all classes (Hanukoglu & Fuchs,1982,1983; 

Geisler & Weber, 1982,1983; Geisler et 

al.,1983b,1984; Quax-Jeuken et al.,1983; Steinert 

et al.,1983) have allowed the definition of common 

structural principles for all IF. A mainly a-

helical domain of about 320 residues capable of 

forming coiled coil Interactions between two dif­

ferent molecules Is flanked by non-helical NH and 
2 

COOH terminal domains, which are variable in length 

and sequence (for a review see Weber & 

Gelsler,198i|). The role of these variable domains 

In filament formation Is hardly understood. In the 

α-helical core domain the non-epithelial IF pro­

teins show a mutual amino acid homology of more 

than 50Í (Gelsler & Weber,1983; Quax et 

al.,1983,1984a; Lewis et al.,1984) while in com­

parison to the cytokeratins the homology Is about 

30Í. Another aspect of distinction between ep­

ithelial and non-eplthellal IF is the capability of 

the latter to form homopolymer filaments, whereas 

the formation of cytokeratin filaments requires at 

least one member of the acidic (type I) and one 

member of the basic (type II) subfamily (Quinlan et 

al.,1984). 

In contrast to the vast Information on protein 

structure, little Is known about the structural or­

ganization of the genes encoding IF. Both the 

vlmentln gene and the desmin gene have been shown 

to be present as a single copy In the hamster 

genome (Quax et al. ,1983,1984a) and probably also 

in the chicken genome (Capetanaki et al.,1984). 

Structural analysis has revealed that the complete 

vlmentln gene consists of nine exons. Two of the 

Intervening sequences of the vlmentln gene map at 

positions that delineate domains of the general IF 

model (Quax et al.,1983,1984b). To investigate the 

relation of the vlmentln gene structure with other 

IF genes we have chosen to unravel the exon/lntron 

pattern of the desmin gene. Furthermore as a first 

approach to resolve the transcription signals im­

portant for the tissue-specific desmin expression 

and with the aim to study the expression and assem­

bly of desmin filaments In non-muscle cells or in 

cells of other species we have decided to use the 

cloned hamster desmin gene for transfer into 

heterologous cells. In addition the development of 

a system that enables the synthesis of desmin from 

the cloned gene is Important In view of future ex­

periments In which the effects of alterations in 

the coding Information of IF genes on filament for­

mation can be studied. 
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RESULTS 

Isolation of the hamster desmin gene 

DNA from an inbred strain of Syrian golden ham­

ster was used to construct a gene library of par­

tial Sau ЗА fragments in the Charon 28 λ-vector 

(Rlram et al.,1980). Upon hybridization with the 

desmin oDNA clones pDes-l and pDes-U (Quax et 

al.,1981a) two positive phages could be isolated 

out of 5x10 recombinants. Restriction enzyme and 

blotting analysis showed that the inserts of these 

two phages are overlapping (figure 1). Specific 5' 

and 3' probes (Quax et al.,ì964a) were used to 

determine the transcriptional direction of the des­

min gene. It was found that λ-HaDesl contains the 

5' half of the desmin gene plus 11 kb of 5'upstream 

sequences. The second phage, A-HaDes2, contains 

the complete desmin gene, about 6.5 kb in length, 

flanked by Î kb 5'upstream and 0.5 kb 3' downstream 

sequences. Since the desmin raRNA is about 2200 

bases long (Quax et al.,198fla), one can conclude 

that about 70% of the 6.5 kb long hamster desmin 

gene consists of intervening sequences. To allow a 

more detailed study of the gene we made subclones 

of the large EcoRI fragment (7.4 kb) and the flank­

ing 3.8 kb EcoRI-Hpal fragment (Hpal cuts in the 

rightmost Charon 28 arm) of A-HaDes2 in pBR322. 

These two subclones were used to investigate the 

transcriptional organization and the detailed 

intron/exon pattern of the desmin gene. 

Nucleotide sequence of the desmin gene 

To define the precise exon-lntron organization 

of the gene and to unravel the structural basis of 

desmin expression we determined the nucleotide se­

quence of the major part of the gene. For this aim 

the above mentioned subclones of the 7.4 EcoRI-

EcoRI and the 3.8 EooRI-Hpal fragments (figure 1) 

were submitted to a more detailed restriction en­

zyme analysis. A 3500 bp stretch of the 7.4 frag­

ment and a 250 bp plus a 1300 base pair region of 

the 3.8 kb fragment (figure 1) were sequenced com­

pletely on both strands using the M13-dideoxy chain 

termination method (Sanger et al.,1980). Figure 2 

depicts the sequences of the three regions. Com­

parison of the gene sequences with the previously 

reported desmin cDNA sequence (Quax et al., 1984a) 

allowed us to assign the different exons. The in­

formation of the mRNA was found to be Interrupted 

by eigth intervening sequences in the genome. The 

precise localization of the exon-lntron borders was 

determined by a detailed comparison of cDNA and 

X-HaDes1~ H—H 
B в 

Ikb 
X-HaDes2 

Шш/шШ^шм 
в s 
Bg'B 

Xb S 

im • 

Вд Вд 

USI К Y v¡ Vil ш к 
Ikb 

Figure 1 

Restriction Map of the Hamster Dessin Gene 

The two overlapping Charon phages carrying desmin gene sequences (X-HaDesl and \-

На0ез2) are shown in the upper two lines. The wavy lines represent Charon 28 se­

quences. The large (7.4 kb) central EcoRI-EcoRI fragment of A-HaDes2 and the 3.8 kb 

fragment ranging from the rigthmost EcoRI site of X-Hades2 to the Hpal site of Charon 

28 were subcloned in pBR322. The thick bar is the region, which was analysed in detail 

with the striated parts representing the sequenced areas. The lowermost line is a 

schematic drawing of the desmin gene: the closed boxes representing the exons and the 

thin lines in between them the introns. Abbreviations of restriction enzyme names are: 

B- BamHI ; Bg- Bgllli E- EcoRI ; H- Hpal; K- Kpnl ; S- Sad; Sal- Sail; Sm- Smal; X- Xho1 ; 

Xb- Xbal. 
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genomic sequences. However, as the oDNA sequence 

lacked the 5' portion of the mRNA, only the 3' 

proximal nucleotides of the first exon were avail­

able. To circumvent this problem we compared the 

Information preceding position 685 of figure 2A 

with the vlmentln gene and with the chicken desmln 

amino acid sequence. This comparison made clear 

that exon I codes for the 180 NH terminal residues 
2 

of desmln. Furthermore Si nuclease mapping of hy-

32 

brids formed between a P-labeled fragment con­

taining the BamHI-BamHI fragment of 0.9 kb (figure 

1 ) and desmin mRNA showed that the first exon is 

about 650 nucleotides In length (data not shown). 
The precise start of exon I (capping site) was 

32 

determined by S mapping of a P-labeled M13 sub­

clone, which covers the first 31H bases of the se­

quence as depicted in figure 2A, and desmln mRNA. 

The size of the protected fragment was 225 nucleo­

tides (data not shown); we therefore marked the 

capping site at position 91 of figure 2A. 

A schematic representation of the sizes of exons 

and introns and of their positions relative to the 

physical map is given in figure 1. The precise 

lengths of the exons in transcriptional 5'-3' 

direction are: I: 656 bp; II: 61 bp; III: 96 bp; 

IV: 162 bp; V: 126 bp; VI: 221 bp; VII: 44 bp; 

VIII: 83 bp and IX: 720 bp. In figure 2 the amino 

acids encoded by the exons are shown above their 

triplets. Exon nine contains the information for 

the 677 nucleotides of the 3' non-coding region of 

desmin mRNA (Quax et al.,198ta,b). As can be 

derived from figure 2 all Introns with exception of 

number 6 and 7 have been sequenced completely. The 

sizes determined for the introns are: intron 1 : 

1179 bp; intron 2: 97 bp, intron 3: 119 bp; intron 
3 

H: 161 bp; intron 5: 11)3 bp; intron 6: 1.7x10 bp; 
3 

intron 7: 1.25x10 bp and intron 8: 159 bp. No in­

trons are located In the non-coding regions of the 

gene. 

At position -36 to -31 upstream the cap site 

there is a sequence "TACAAA" which differs only In 

the third position from the consensus promotor se­

quence for eucaryotlc genes (Breatnach & Cham­

bón, 1981). At position + 82 relative to the cap 

site the first AUG codon Is found, which is the 

translation startcodon actually used by the desmin 

mRNA as can be Judged from a comparison with the 

chicken desmin amino acid sequence (Geisler & 

Weber, 1982). At the 3' end of the gene we have 

found a consensus polyadenylation signal. The arrow 

at 17 nucleotide positions next to this sequence 

marks the position where in the desmln cDNA se­

quence a remnant polyA track is found (Quax et 

al.,198ita) 

Full correspondence of position, but large varla-

tion in size of desmln and vlmentln Introns 

The number of introns in the desmln gene Is the 

same as has been reported for the vlmentln gene 

(Quax et al.,1983). A detailed comparison of the 

exon-Intron borders of these two genes shows that 

all Intervening sequences map at precisely 

corresponding positions of the two proteins. In 

figure 3 the flanking sequences of the splice 

points are compared to each other and to a con­

sensus 5' and 3' splice sequence (Mount,1982). The 

amino acids are shown above or below their 

corresponding exon sequence, respectively; number­

ing is relative to the first residue of the 

predicted complete primary structure (figure 2; 

Quax et al.,1983). As a consequence of the 

corresponding splice sites all exons of vimentin 

and desmin have the same size, apart from the first 

and the last exon, which harbor the non-coding re­

gions, and exon 8, which encodes a single amino 

acid deletion of desmln as compared to vlmentln 

(Quax et al.,19843). A comparison of the splice 

points with the consensus splice border sequences 

shows that the intron bordering dlnucleotides "GT" 

and "AG" are always present. The other nucleotides 

frequently differ from the consensus 5' splice 

site, which is thought to Interact with the 5' end 

of U -snRNPs by basepalring (Kramer et al.,1984). 

In figure 3 the sizes of the vlmentln and desmin 

Introns are also compared. It Is obvious that 

despite the correspondence of position, the sizes 

of the introns are completely different. Moreover a 

DIAGON based computer-search (Staden,1982) for 

homologies of intron sequences between the two 

genes failed to detect any significant sequence re­

lationship. 

The NH terminal domain of desmln is hlgly variable 

in sequence 

From a comparison of a number of different in­

termediate filament protein sequences it has em­

erged that the most pronounced common structural 

similarity of IF is formed by a mainly α-helical 

domain of about 320 residues, which enables coiled 

coil Interactions between two polypeptide chains 

(for review see Weber & Gel3ler,1984). On both 

ends this α-helical domain Is flanked by non-

helical regions, which are called the variable 

domains of the Intermediate filament proteins, be-
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A) TATÄ-6on" S'-CAP 
GGATCCTGCAGCTÜTCAÜQGGAGGGGCTGCGGTG0GGGGTGATGTCAGGAG0GC?ACAÄA5!AGTGCCGACGGCAAAGGGACTGTGTCTC(£jCTCTTC0?ATCCACTCTCCAGCCÜÜCTÜC 
1 , . ι ι ι Г̂  • ι . . ' 1 2 0 

0 / 
Η S Q A Ï S 3 S Q R V S S Y R R T P G Ü A Ρ " 

CTGCCCGCTGCCTCCTCTGTGCGTCTGCCCAOCCTCGTCCACOCCGCCACCÍT5AGTCAGGCCTACTCTTCCAGCCAGCQQGTGTCCTCCTACCGCCGCACCTTCGGTGGTGCCCCÜAGC 
ι . . ι ι . . . . i 240 

P S L G S P L S S P V F P R A Q P G T K Q S S S S V T S R V Y Q Y S R T S G G A 
TTCTCGCTGGGCTCTCCGTTGAGCTCTCCCGTGTTTCCTCGAGCAGGCTTCGGCACCAAOGOCTCCTCGAGCTCAGTGACATCCCGCGTGTACCAUOTGTCGCGCACGTCGGGCÜGGÜCC 

t i t i l l i l i 3 6 0 

G G L G S L R A 3 R L 0 3 T R A P S Ï G A G E L L D F 3 L A D A V . 4 C ) E F L A T 
GGOGGTCTOGGGTCGCTGCGGOCCAOCCGGCTOOGOAGCACCCOCGCGCCATCCTATGGCOCOGOCOAGCTTCTGGACTTCTCOCTOGCCGACGCGGTGAACCAGOAGTTCCTGGCCACG 

ι · ι t . t ι . ι ι 4Θ0 

R T N E K V E L Q E L N D R P A N Ï I E K V R P L E Q Q H A A L A A E V N R L K 
CGCACCAACGAGAAGOTGGAGCTGCAAGAGCTCAATGACCOCTTCOCCAACTACATCOAOAAAGTGCGCTTCTTGOAGCAOCAOAACGCCGCGCTCGCCGCTGAGOTCAACCGCCTCAAG 

ι ι ι I I l . i ι ι ι · 600 

G R E P T R V A E L Y E E E H R E L R R Q V E V L T N Q R A R V D V E R D N L I 
GGCCOCOAGOCGACCCGGOTCGCCOAGCTCTATGAOQAOOAOATGCOCOAGCTGCOaCGCCAaGTOOAOOTGCTCACCAACCAGCGTOCCCGTGTCGACCTOOAGCGCGACAACTTOATC 

ι ι ι ι ι ι ι ι ι ι ι 720 

D D L Q R L K A к___тЩ.1 
GACGACCTCCAOAGOCTCAAGOCCAAbTGAGOGCACOGCOCCTOCTAGATCTTTCCCCTTCOOCCCCTCCCCCCCTOCCCGCAOOGAACAAOGCACCCCCTCCGGOATCCCGTGACCCTC 

ι · ι ι ι ι ι ι ι t t 4 0 

CTCACCCCATGTTTOGAOOTCATTCCCCOGTOTTCCCTAAOAAOAOATOOTCCCCGAATCTTTTTATTOCTCTTTCTOTGTTACACTOGAGTAOTTTTCTTTGGGAOATAGAGAGAAGAA 
ι ι ι ι ι ι ι ι ι ι ι 960 

ACOOGGUACCTTOGOAOttCCTATTOCACOGTGOCCAOOOAOTTOOAAAGOATGCTAATTAAOTTGCTSTAOCOOTGGTOCTOTGATOTGACAGAGOCAGAGCAGAGGGCTAGAGCAaGTC 
t t ι ι ι ι ι • • ι ι 10 0 

AGAOCOTGAAGAGAOGCTOGTOOAOCCTGGAAAACTOOATOCATTOGOAAOTeOAGGAOGAAOGAAACCAAACTGTAACTAACTTTCAGCTCAOCTOTOATGAGGCCCGAGGOAGGUGTa 
ι ι ι I Ι ι ι ι t t t 1 200 

AGOTOGGGAGCTTaOCCCCTTGGCCTAOCTOAaGTGTOCTACTOCACTAGOTAAAAGOATAaOCTTGAGTAAAGGOGSCAGTOOATAAGGCCTGTGGCCCTTTGAGAOCTCAAGAAGACC 

• ι ι ι ι ι t ι ι • ι 1320 

AOCCCATTCCACCATOACCCAATAAGAAAAGOCTOAGTAATTCCOOTCTGOOOOCACACCCCTOTATTCCAOCTCTTOOOAOQACGATTCAOOAGOACTGCTGTGAGTTCTAGGTAAACC 
I I I I 1 I I I I 1 I 1 4 4 0 

TGGGATACAGAOCAAOTACCAAGOCAOCTOOOCCTACATAOCAAGACTTOTTTTAGACAATTAAGGAAAATTAAAOOCAGOAAAAGTTTTGTAOATTCTCGAACCTOTTTCTGTTTACCC 
• • ι ι ι t ι ι ι t ι ( 5 6 0 

TACTGAGCAOAOTTACCTTCTTttTCTCCAAAGTCACAAACATTTATTTAOCCOCTACATGOOTCAOGCTOGOCCTOAGAACATACAAOTOGOTAAAATAAAACACAGTGCCTAACCCCOO 
t I · · t I 1 ι ι ι ι 16 0 

GOAGOTCAATCTATTTaOOACATAGAOTICAAGeOTOCOOCTCAGOOTTOAGACTCAaCCOCTTCCTACCCCOCCCCCCACCCGTGOeCOOGACCTTTGCTATTTTTTTTCTGAOCCTCT 
1 I I I I I I I I I Ι 1 0 0 

iimûN ι 
TGTTTCTACCCAGCAACCAGGACTTGTCCCTeTOTCCTGAOCTeGCTCCOTOATAOOTCCCCAOCCAOTOOITICTATTOATGOCTCTGTAOCTCACCATTTOTCTGICTGTCTÎCCCTG 

ι ι ι ι ідго 
иг Ш 

-, L Q E E I O L R E E A E K B L A A P R A IWDHW t 
OCTAGGCTACAGaAGOAAATCCAACTGAOAGAAOAAOCAOAOAACAACCTGGCTOCCTTCCGAOCTOTOAOCCTTCTTTOOTCCCCAOCAOTCATCTCTCTTCTCTCTCTTGGOTCCACT 

ι ι ι ι • ι t t ι ι ι 2 0 4 0 

ги 
ІЫТШ t * 1 D T D A A T L A R I D L E R R I E S L N E E I A P L 

TGAACTOTTCCAGACCCTAACATTGTTGTTTC0CC0TACCCA(JOACOTAGATGCAGCCACTCTGGCTCOCATC0ACCTAOAGCeCAGAATCGAATCGCTCAACGÍGGAAATCGCATTCCT 
• ' • · · t • · • · ' 2 1 6 0 

Ui 
К К V H Ε Ε ι — * j n m n } 

GAAGAAAGTOCACGAAOACrGTACCAOOOCCCTTGGOTOATGGTGAAAOOAGCTAOOCAATOOGCTGOCTTTeAAATGGGOGTOTGAAGGTGCTTTGGOAGaGTOTTOAAGGGGACTGATG 
ι ι ι ι ι ι ι ι ι ι ι 22ΘΟ 

244 
ItmOH ¡щ , E I R E L Q A Q L Q E Q Q V Q V E H D M S K P D L T A A L R D I R A 

CCCA0CTUTGTCCTQCA(JGAGATCCGT0A0CTTCAGGCTCAOCTTCAQ0AACAGCA00TCCAOOTGGAOATG0ACATOTCCAAGCCAGACCTCACA0CGGCCCTCAGG0ACATCCGGGCT 
ι ι ι · t ι ι ι ι ι ι 2 4 0 0 

Q Y E T I A A K N I S E A E E W Y K S K ι > ШПОН 4 
CAGTACGAGACCATTOCOOCTAAGAACATCTCTGAAOCTOAGOAOTGGTACAAOTCCAAroTAOOTGGTTTAOCCTGGGOACCCTGGCACCTOTCCTCTATCTCCACOAGATOCTTCCTG 

ι ι ι 1 ι ι ι ι ι ι ι 2 5 2 0 
291 

IHmuN 4 « 1 y 3 D L Τ Q 
TACCTOCATCCATOOAOTAOOTGAOCCIOOOATTTCCACACTOCCTCOCCCACACTOAATOCTOCTTTTCCCCATCTCAGAeTCCCTTTCTCTOCCCTCAtJOTTTCAGACTTGACCCAOG 

ι ι ι ι ι ι ι ι ι ι ι 2 6 4 0 
339 

A A N K H H D A L R Q A K Q E M M E Y R H Q I Q S Y T C E I D A L K O T ι » ШМН 5 
CAGCCAATAAOAACAATGATGCCCTOCGCCAGGCCAAOCAOGAGATGATGGAGTACCOACACCAGATCCAGTCCTACACCTOCGAGATTOATGCCCTCAAGGGCACCGTGAGTCCCTCCC 

• · ' · · • · · ' · · 2 7 6 0 

CATCCCCACGOCTCAOCCTCTTTCTGCCCACAeCTTAOTTCCACACCTTCACTCTGTGACACTTTOAGCCTATTACAOACCCTCTeoOGTCTCCATCTCCTCAAATGTACAGGGAGGTAA 
Ι Ι I I I Ι t I Ι Ι ι 2880 

AOOCAOATTCCTAOTTAOGTACTAAGGAATCOOAGOACTCCTGeOGGTOTCTCCCIATOTAOOOTTOOAOeAOTAGTOTAOATeCTCCTTATTAOOTGGTTTATTGTGAGTGGCCACATA 
• ι · ι ι t ι · t . . 3000 

TGCCTTCTCTAGAGCTCAOOOCTCCATGACTAAOAAAeAAeCACTTOACOATICTTCTACCTGOeCATGACCATOTOOAOTTGCCTCCAACCTCCAACACTGOGTCTCTTTCTACCCCAA 
I I l i l i I I I t I -МЛ 2 0 

МО 
imOH 5·« 1 H D S L M R Q M R E L E D R F A S 

TTCTCTOOCGCCCTCCTTCCTAOATATGCTCTOeOCCtATCCTTGACTTOGeTCCCCTCATCCCCTGCAffAATOACTCCCTGATGAOGCAGATGAOAGAGCTGOAOGATCOCTTTGCCAG 
• · t · · . · ι . . ι 3240 

E A S G Y Q D N I A R L E E E I R H L K D E H A R H L R E Y Q D L L N V K H A L 
CGAGGCCAGTGGCTATCAGGATAACATTaCACGCCTOOAOOAOGAGATCCGGCACCTGAAOGATGAGATOOCCCGCCACCTGCOGGAGTACCAAGACCTGCTCAAIGTOAAGATGGCCÎT 

• 3360 

D V E I A T Y H K L L E G E E 3 Я к IÍ/IMW 6 
GOATOTGGAGATTeCCACCTACCOCAAGCTeCTGGAGOOCQAGOAGAOCCTOTaAGGATTTAGGTATCOQOTAGGOTOCTGOOATC — — 1 5 К Ь — ~ * — " 

. 3 4 4 6 
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В) 
GATCTTGTGCCCCCTTCTGGTGTACAAGCATACATOCAOGCAGAACACTGTACAAAATAAATAAAAATTTTAAAAAATCCTOTTATTTTTTAAAAAGTGTAAACCTCTTTTTAAAAAAAA 
1 . ι ι . ι ι i ι i ' 1 2 0 

4M m 

І ЛгОМ « 4 1 I N L P I Q T F S A L N P R j 
OTGATGGOAGTGATTTCAGGAAGAGTTTTGAGTOTCCTTAACCCTCTGGGGATATGGTCTCTCCCTTTTCAGOATCAACCTTCCCATCCAGACCTTCTCTGCTCTCAACTTCCGAfJGTGA 

ι ι ι · ι ι ι ι ι ι • 240 

-»iVTRON 7 
GTTGTAC _ _ _ _ _ _ IQ «к _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -

247 " 

0 
GTACCATCCTTTGGCTCTTGAAOTCAGCTCTTTAGCAGGACTGGTCCCTGGCTTTACAGAACCATCTOTTGOOTOCTGOGTTCAAGGACCAGGTCTTGAAGAAGGCAGAAnGTTGTCACG 
1 . ι ι ι ι ι ι ι ι ι Ί 20 

Ali 
INTRÛN 7< л Τ S 

AGGAAGGTGGAATTGGATGGTGCATGOGOCAATGCAACCTGGOATGGAGTTCCATCCAAGOTGCAGCTTAGATATOAACCTGCCAGGCTGAGCATOGGGTGTGTCTATTATAGIAAACCAG 
I I 1 . I . I 240 

455 
P E Q R G S E V H T K K T V H I K T I E T R D O E I • І Ш О А І I 

OCCTOAACAAAGGGGTTCTGAAGTCCACACOAAAAAGACGGTOATOATCAAGACCATCOAGACCCGGGATGGAGACIGTGAGTOGTCTGCTGGACCCCGTGTCCTTGGTGGTGOCAATGGT 
ι ι ι ι ι ι ι ι ι ι ι 3 6 0 

4S6 
ітш s •*—ι ν ν 

GTGTCTGCCAGCCCGGTGTCTTTCACCCTGOGTOOGGGTGAGGAOOTCCTOCTGCTOTOOOOTGGAGTAAATOOGOCCGAGGCGCCTCTTAGACTGGATTTCTCCTCATGCTCAabTCGT 
ι ι ι ι ι ι ι ι ι t ι 4QO 

4és r "STOP-сладк­ое ρ 3 
S E A T Q Q Q H E V L 1 

CAGCGAGGCCACACAGCAACAACAOGAGGTGOTOÎASGCCAGACAOTGTCCTGOTOCCCOTGGTCACTGCCTOCTGAAGCCAGCCTCTTCCACTCTCGGATOTCACACCCAGCCACTTTC 
ι ι ι ι ι ι ι ι ι ι ι 6 0 0 

CTTCACTCACAOAATCTGACCCTTCCTOACCGATCACCCCTTTGTGGTCTTCATGCTOCCCAGOAAACACCCCAGCACCTCTOCAGACCTTACCATGAGTCCTGGCTGTCGGCAGTCGCA 
• t t ι ι ι ι ι ι ι ι Y20 

AGCCTGGCTCTTGAGATAGAACCTAGTTCAAGTCATGGCCCTTTCCCTCCCACCTTTGTAACCTCAOGCTCTACGCTTTGGCTTTGGAGATOGTACCAGAGAAGGTGTTGGGATCTGTAG 
ι . ι ι , ι ι t , , θ 4 0 

OGTCAGGACAOAGCTTTATAGACACCCTCACATTCGACCCCCAOCCTGGGTCAOAGACAOAOTOAAOCCTCTCAGCTGAGGTGOOGGAGGGGCTGAAAAAATGTCCTTGCOTCCCCTCTC 
t ι ι ι ι ι ι ι i t ι g6o 

TTTOCCATCCCAGCCCAGGATGOGCTTAGAAAAGCTGOGOCTGTAAGAGGGAACCTOAAGOTGCTGGATGTOGGAGCAGOAGATTCAGAAGGAGAGCGGGTGGGTGAGAAGCTGGAGaOA 
ь ι ι ι ι ι ι l i i l (OSO 

"POLV A" ^ 

AAGAAGAGAGAQGCAGAGAGTOGGCCCAGGCTGGTGGGAGGOCCCCACCTCTCACGCCTGCCCCTCCCACTQCAGGOQCCCTGGACAGAAAgAATAAItGAGCCAAGCACAAACCTACATG 
ι · • ι • ι t • . ι ,

2 0
o 

CCCCTGCTGTCTTGACTGGACCOTOTCATACCAGCCATOACCCTGAGATGOAGGGTGTCACCCTCTTGCCAGGTAGATTGCTCTAAGGCCTCCAGGCTGCAGTCTATGTGCTGCATAGGG 

ι ι ι ι ι ι ι ι ι 1 5 г 0 

GAOGTTGGACAAOOGOCTTCTGTTACAATGCCACAGTGATGCCCCTTTCCTTAAGCTACCTTCAOATC 
• • i l l ^ g e 

Figure 2 

Nucleotide Sequence of the Desmin Gene 

The complete sequence of the hamster desmin gene with exception of in­

tron 6 and 7 is shown with 120 nucleotides per line. The intron borders 

are marked by arrows and the amino acids encoded by the exons are given 

in single letter codes above their codon. Lengths of intron fragments 

that were not sequenced are depicted between dotted lines. The putative 

promotor sequence TACAAA and the polyadenylation sequence are transcrip­

tion signals. The 5'-cap was determined by S analysis of hybrids formed 

between BHK-21 mRNA and an MIS clone carrying the first ЗІ
1
* nucleotides 

of sequence A). The arrow 17 bases next to the "poly A" signal marks the 

last unique nucleotide prior to the poly A track in the desmin cDNA se­

quence (Quax et al. ,19843,b). At the splice points the numbers of the 

corresponding amino acids in the desmin polypeptide are given. The C-

residue at position 985 of C) (the 3' non-coding region) represents the 

only difference between the coding part of the gene and the desmin cDNA 

sequence. 
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С а 
c o n s e n s u s AGgt a g t 

A g 

191 i n t r o n 1 
Ly¿ Αία Ly 

Dea CAAGGCCAAgtgagggcacgg 1 .2КЪ 
Vim GCGAGAAAAgtaaggcctgat О. КЪ 

Алд GZu Ly 
186 

211 i n t r o n 2 
Phe. Алд Ala 

Des TTCCGAGCGgtgagccttctt О.ІКЪ 
Vim TTCAGACAGgtttgtagccag 2.6КЪ 

Phe Алд G¿n 
206 

245 i n t r o n 3 
H¿4 Glu Già 

Des CACGAAGAGgtaccagggccc 0.1 Kb 
Vim CATGATGAAgtaagtgatgtc 0.1Kb 

Hit, A&p Glu. 
23a 

297 i n t r o n 4 
Ly¿ Se* Lyi 

Des AAGTCCAAGgtaggtggttta 0.2Kb 
Vim AAGTCCAAGgtatgaatgagc 0.7Kb 

Lyi Svi Ly¿ 
292 

339 i n t r o n 5 
Lyi Gly Tfoi 

Des AAGGGCACCgtgagtccctcc О.ЗКЪ 
Vim AAAGGAACTgtgagtaccacc O.5Kb 

Lyi Gly Thl· 
334 

413 i n t r o n 6 
СЫЗглАі 

Des GGAGAGCCGgtgaggatttag 1.7Kb 
Vim GGAGAGCAGgtaggaaaggca 0.4Kb 

6£и5елА* 
408 

427 i n t r o n 7 
in Phe. Алд G 

Des ACTTCCGAGgtgagttgtac 1.2КЪ 
Vim ACCTGAGAGgtaagc 0.8Kb 

in Leu Алд G 
422 

455 i n t r o n 8 
Aip Gly Glu 

Des GATGGAGAGgtgagtggtctg 0.2Kb 
Vim GATGGACAGgttggtatcttt 0.7Kb 

Aip Gly Gin 
451 

t t t t t t t t t t t t 
η agG 

c c c c c c c c c c c с 

192 
i Leu Gin Glu 

gtctgccctggctagGCTACAGGAG 
gtactactgcttcagATTGCAGGAG 

i Leu Gin Glu 
187 

212 
Asp Val Aip 

tttccccgtacccagGACGTAGAT 
ctctctttaaaacagGATGTTGAC 

Aip Val Aip 
207 

244 
Glu lie. Aug 

agctgtgtcctgcagGAGATCCGT 
ctgctttttcctcagGAGATCCAG 

Glu Ile Gin 
239 

298 
Val 5ел. Aóp 

tttctctgccctcagGTTTCAGAC 
atttcttcctgacagTTTGCCGAC 

Phe Ala Aip 
293 

340 
АіпАірЗел 

cctcatcccctgcagAATGACTCC 
tctcccttcccacagAATGAGTCT 

AinGùiSeA 
335 

414 
g Tie Ain Leu 

tctctcccttttcagGATCAACCTT 
tttgcttttttatagGATTTCTCTG 

g I£e 5ел Leu 
409 

428 
ІиТИлЗел 

gtgtgtctattatagAAACCAGCC 
gcttttttaactcagAAACTAATC 

¿uTlviAin 
423 

456 
Val Vai Sui 

tctcctcatgctcagGTCGTCAGC 
ttcctttttgagcagGTGATCAAT 

Val lie Ain 
452 

Figure 3 

Ежоп-Intron Junctions of the Deaaln Gene coapared with the Vlmentln Gene. 

The nucleotides surrounding the splice points of the desmln gene (Des) and the vlmentln 

gene (Vim) are compared to a consensus 5' splice point (left) and a consensus 3' splice 

sequence (right), which has been deduced by comparing a great number of intron borders 

(Mount,1982). Exon sequences are in capital letters, the number on top or below the 

amino acids represent the relative number In the deamln polypeptide or the vlmentln po­

lypeptide, respectively. The sizes of the introns are shown In the middle column. 

Apart from the dlnucleotldes "gt" and "ag" the homologies between Intron border se­

quences of the two genes Is low or absent. 
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cause they show little or no sequence homology 

between the different IF-subunits. Comparison of 

one and the same IF subunlt In different species, 

however, showed that the COOH non-helical region 

can be equally well conserved during evolution as 

the helical r-egion. For Instance, the 55 COOH prox­

imal residues of hamster and chicken desmin show 

only 10 % difference in sequence, which Is about 

the same percentage as for the colled coil domains 

(Quax et al.,198Ha). The same phenomenon was ob­

served by comparison of the carboxytermlnal part of 

the bovine cytokeratln VII (Jorcano et al.,1984) 

with its human counterpart, the 50 kd cytokeratln 

(Hanukoglu and Fuchs,1983): number 14 of the human 

keratin catalog (Moll et al.,1982). With the com­

pletion of the hamster desmin sequence it is now 

possible to compare two complete sequences from one 

and the same IF subunit in two different species, 

namely those from hamster and chicken. In this com­

parison we paid special attention to the NH re-
2 

glons of the two desmin sequences. In figure 1 we 

aligned the sequence encoded by exon I to the 

corresponding sequence of chicken desmin (Celsler & 

'rfeber,1982). In the α-helleal region the two 

species show a high degree of homology (95Í), but 

in the NH terminal domain large differences exist. 
2 

The most striking differences are represented by a 

stretch of 24 residues, which do not exhibit any 

homology at all and by a deletion of 9 amino acids 

in the bird protein as compared to the hamster des­

min. These deviating regions of the two proteins 

might very well account for the observed differ­

ences In molecular welgth and antigenic behavior of 

chicken (163 residues) and mammalian (468 residues) 

desmin (Lazarides & Balzer,1978¡ Gelsler i 

Weber, 1980). In fact the comparison of the NH 

termini of desmin and vlmentln (Quax-Jeuken et 

al.,1983) also showed more differences than the 

alignment of the COOH region of these two different 

IF subunlts. Interestingly, from figure 4 it can be 

deduced that despite the difference in primary 

structure, the distribution of charged residues in 

the NH region, mainly arginines, Is very similar 
2 

in bird and hamster desmin, a finding that also 

holds true when desmin is compared with vlmentln 

(Quax-Jeuken et al.,1983). In this context it 

should be mentioned that the head domain sequences 

of vlmentln already showed substantial differences 

even between two mammalian species, namely pig and 

hamster (Ceisler et al.,1983a). 

Structural homologies In the 5/ upstream region of 

the hamster desmin and vlmentln genes 

To determine whether we could detect DNA se­

quences other than the "TATA" box that might play a 

role in the transcription of intermediate filament 

genes, we compared the upstream regions of the des­

min and the vlmentln gene. For this purpose we ex­

tended the sequence of the vimentin gene (Quax et 

al.,1983) and the sequence of figure 3 that far 

that we were able to compare the 200 proximal 5' 

upstream nucleotides. In figure 5 they are aligned 

with the cap site of the desmin gene coinciding 

with the proposed cap site of the vlmentln gene. A 

computer search revealed a number of short sequence 

Identities (6-8 bases). However, one longer 

stretch of homology, 16 base pairs, was also found. 

In the desmin gene the 16 bp (boxed in figure 5) 

are located between the putative promoter "TACAAA" 

and the cap site; in the vlmentln gene It is found 

at position -190 to -170 of the cap site. Another 

similarity in structure is stressed by a dotted 

line in figure 5. The region -70 to -50 from the 

cap is in both genes very rich In С residues. In 

addition positions -140 to -110 of both genes are 

mainly occupied by С residues. A consequence of 

this organization is the ability of both genes to 

form a strong secondary structure by binding of the 

-120 region to the -60 region due to a number of 

short inverted repeats present between these re­

gions. Whether these observed structural similari­

ties fulfill any function has to await future ex­

periments. Especially the construction of suitable 

deletion mutants of this region and the subsequent 

Influence on the expression of the cloned gene can 

give answers. The expression experiments described 

below may form an Ideal model system to monitor the 

effect of different mutations of the 5' upstream 

region. 

Expression of the cloned desmin gene after transfer 

into hamster lens cells 

The availability of a cloned gene not only al­

lows one to determine its structure, but also opens 

the possibility to study the expression of the gene 

and the behavior of synthesized proteins after 

reintroduction of the DNA into living cells. With 

respect to the desmin gene we wondered whether the 

cloned DNA would be biologically active after 

transfection into cultured cells and If so, whether 

it would be possible to generate a desmin IF-

cytoskeleton in cells that normally do not contain 

desmin filaments. We therefore constructed a 
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Figure 1 

Соарагізоп of the Desmin Head Doaaln In Baaater and Chicken 

The amino acids encoded by the first exon of the hamster desmln gene (H) are aligned to 

the corresponding chicken desmln sequence (C). Optimal alignment was achieved with the 

aid of DIAGON (Staden,1982). Asterisks mark Identical residues. The arrow Indicates the 

border of the non-helical head domain and the α-helleal middle domain of the general 

model of IF (Quax-Jeuken et al.,1983). Note that despite the large differences In the 

first 90 amino acids, the excess of arginine (R), serine (S) and threonine (T) residues 

has been maintained In both head domains. 

V caTQTCCAAQAijOTAAOGOOACTnTofcbATCACCAACAOCCTOOAAOAAOSCTCCAOOAAQCCCCCTCIICICCICCCCCICCCOCClICCTCACTTCTCTCTGOOTGCCCATTCSTTa 

D OCAOOCCTGCTTGTCTTCTGTTCTTaTaeOOCAOCATaOOGCACAOGCCTCTTGCAGOGGAeCTGGCCTCCCCflCCCCCICaCliaCliaCCBCUCIIICCTGGCAOOACAOAGGOATCCT 
-200 -190 -180 -170 -160 -150 -140 -ПО -120 -110 -100 -90 

QCaC0CCCC0CG0CTA0QAT0QCA0T000AQgO0ACCCTCTTTCCTAACA0T0lffATAAAh0CTGC0CCCTT0QC0QaaTCC(̂ |rCCTCT8CCACTCTTGCTCeoO0ACTCCAOAOACAA 

QCAGCTGTCAGGGGA0GgyÇTGÇ0GIG0GgGSTGATOTCAO0AGOGClfACAAlrAOTOCCGAC0bCAAAGGGACTOTGT3rCCflCTCTTCQTATCCACTCTCCAGCCGQCTOCCTOCCCG 

Figure 5 

Similarities in the 5' upstream Regions of the Desmln (D) and Vlmentln (V) Genes 

Of both genes the sequences of 200 nucleotides preceding the cap-site were determined, 

aligned and numbered relative to the capped nucleotide (position +1). The putative 

promotor sequences are placed In between brackets. Homologies In the 5' non-coding re­

gion of the two IF mRNAs are stressed by double lines. An homologues 16-mer is emboxed. 

The dotted lines Indicate the -120 region, which Is rich In C-resldues and the -60 re­

gion, which is rich in G-residues. 



Plasmid, which contains the 7.Ί EcoRI-Ecol and the 

3.8 EcoRI-Hpal fragment of X-HaDes2 together with 

the EcoRI-PvuII fragment carrying the origin and 

the amplclllln resistance gene of pBR322 (figure 

6). The complete desmln transcription unit plus 3.5 

kb of 5' upstream sequences are present in this 

construct. A calclumphosphate precipitate contain­

ing this Plasmid was transfected onto a monolayer 

of hamster lens cells, a culture previously shown 

to contain vimentin as their sole IF subunlt 

(Bloemendal et al.,1980). Two days after transfec-

tlon the cells were fixed on the cover slips, which 

were used as substratum, and Incubated with antibo­

dies directed against desmln. After staining with 

an appropriate fluorescein conjugated second anti­

body the monolayers were monitored for desmin posi­

tive cells. About 0.5-2 % of the cells showed the 

filament staining pattern typical for IF (figure 

7). This percentage of positive cells is within 

the normal range for the calclumphosphate technique 

(Sompayrac 4 Danna,1981; Graham & van der Eb,1973). 

In control experiments without DNA or with plasmids 

without desmin sequences desmin positive cells were 

never observed. From the fotographs of figure 7b+c 

It is obvious that the newly synthesized desmln Is 

perfectly able to form filaments. Using double im-

PBR322 

munofluorescence staining with polyclonal or mono­

clonal vlmentin antibodies In combination with a 

monoclonal or polyclonal desmln 

antibody,respectively (figure 7d,e) we observed 

that the newly formed fibrillar desmin staining 

pattern colocallzes with the vimentin filaments, 

which are always present In the lens cells. This 

demonstrates that the newly synthesized desmin is 

fully able to form a heterogenous cytoskeleton with 

vlmentin IF probably also existing of heteropolymer 

filaments as described for BHK-21 cells (Quinlan & 

Franke,1982). Next to the authentically looking 

desmln filaments in most cells, in a small subset 

of cells, however, we observed clumb-like aggre­

gates which were Intensively stained with the des­

mln antibody (figure 7f,g). The origin of these 

aggregates Is unclear, but one could anticipate 

that the synthesis of desmin in those cells occurs 

at such high levels that the Intermediate filament 

proteins precipitate. An indication for this hy­

pothesis comes from the observation that the vlmen­

tin fluorescence of these cells showed exactly the 

same aggregated distribution (figure 7h,i). Furth­

ermore, in some of the cells the aggregate was not 

concentrated in one dumb, but rather distributed 

in a number of dot-like structures (figure 7g). 

H/P, 

Charon 28 

'TATA-BOX' 

Figure 6 

Structure of pHaDes: the Construction used for Gene Transfer 

The 7.4 EcoRI-EcoRI plus the 3.8 EcoRI-Hpal fragment of А-На0ез2 were suboloned into 

pBR322, which was cut with the enzymes EcoRI and PvuII. The hamster genomic fragment, 

represented by the thick bar, carries the complete desmin gene. "TATA-BOX" and "POLY-A" 

are the transcription start and stop signals of the desmln gene. The closed parts of 

the bar represent the exons (numbered I to IX). The pBR322 part of the construct car­

ries the origin of replication and the amplclllln gene allowing the use of Escherichia 

Coll for propagation of the construct. "Charon 28" indicates the fragment of the right­

most arm of the gene cloning vector Charon 28, which was introduced by subclonlng the 

3.8 EcoRI-Hpal fragment of *-На0ез2. The total size of pHaDes is 13.5 Kb. 
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Whether the dots in those cells originate from an 

excess synthesis or from an uncontrolled or Ineffec­

tive filament assembly Is unclear at this moment. 

The fact that desmln positive cells are In many In­

stances found in clusters (figure 7d) In combina­

tion with the observation that occasionally cells 

seemed to go through some stages of mitosis, gives 

a strong Indication that these hamster cells are 

still able to divide and multiply, independent of 

the synthesis and assembly of desmln polypeptides. 

Expression of the hamster desmln gene In human ep­

ithelial (HeLa) cells 

To test whether there is any species specificity 

In the transcription of the desmin gene or in the 

subsequent formation of desmln filaments, we decid­

ed to transfect the plasmld pHaDes Into HeLa cells. 

These epithelial cells express cytokeratlns number 

7, 8, 17 and 18 (Moll et al.,1982) In addition to 

vlmentln, but no desmin. Transfection of pHaDes 

resulted in about 0.5-2% of the cells to react po­

sitively with desmin antibodies after two days 

(figure 8a,b), indicating that there is no species 

barrier for the transcription signals of the ham­

ster gene. The desmln staining reaction shows a 

similar fibrillar pattern as In the hamster lens 

cells (figure 8b). Double Immunofluorescence of the 

same cell with a monoclonal desmin and a polyclonal 

vimentin antibody (figure 8c,d) shows that at least 

the major part of the newly synthesized desmin 

subunlts become completely Integrated in the preex­

isting vlmentln cytoskeleton of HeLa cells. When 

aggregation or precipitation of desmln IF was seen, 

also the vlmentln IF could be shown to occur (part­

ly) In an aggregated form (figure 8e,f), 

strengthening the hypothesis that the aggregates in 

these cells result from precipitation of an 

overwhelming amount of synthesized desmin protein 

forming a copreclpltate with the already present 

vlmentln molecules. 

Since no cell type has been described to express 

both desmln and cytokeratlns so far, we wondered 

how the two types of filaments would Interact in 

the manipulated HeLa cells. Therefore we applied 

the double-label immunofluorescence technique with 

the polyclonal desmln antiserum and the monoclonal 

antibody to eytokeratin 18. As can be seen in fig­

ures 8g-J the desmin fluorescence does not show the 

same overall distribution pattern as the eytokera­

tin fluorescence, although in some regions both 

types of IF seem to occupy the same positions. Due 

to the small size of the cells, however, It Is dlf-

58 

ficult to determine whether it concerns true colo-

callzatlon in these regions. In additional experi­

ments, where we used the monoclonal desmin antibody 

In combination with a polyclonal keratin antiserum, 

the two types of filaments did not seem to be pre­

cisely colocalized either. Finally, also desmln 

producing HeLa cells seem to be able to go through 

mitosis, as can be concluded on the basis of the 

same arguments as for lens cells. 

DISCUSSION 

Organizational similarities of the desmln gene and 

the vlmentln gene 

The most striking conclusion that can be drawn 

from the elucldaton of the desmin gene structure is 

the finding that the Intron positions fully 

correspond to those of the vlmentln gene. This 

similarity In organization between the two genes 

forms strong evidence for previous suppositions 

that both genes arose from divergent evolution of a 

duplicated ancestor gene. It can now be anticipated 

that the ancestor gene at the time of duplication, 

which is thought to have taken place before the 

divergence of vertebrate species (> 500 million 

years ago; Quaχ et al.,1984a), displayed the same 

exon-lntron pattern as the desmln and vlmentln gene 

occuring In the hamster species. Consequently It 

can be concluded that the exon-lntron organization 

of desmln and vlmentln genes In most, if not all, 

vertebrate species will be the same or very closely 

related to the two hamster genes. Moreover, since 

the glial filament acidic protein (GFAP) shows a 

homology to desmln and vlmentln of 60 t, which is 

only sllgthly less than the homology between desmin 

and vlmentln (6510, we expect the exon-lntron pat­

tern of the GFAP gene to be comparable to that of 

the ancestor gene of desmln and vlmentln. In fact 

some recent data on keratin genes point to a con­

servation of at least some intron positions among 

all IF genes. For Instance, the bovine gene for 

keratin la contains 8 introns, one of which was 

precisely mapped by sequencing. This Intron (number 

7) was located exactly at the position that 

corresponds to Intron 6 of the desmin gene (Lehnert 

et al.,1984). In another recent report it was men­

tioned that intron 9 of the gene for human keratin 

67 kD maps at a position comparable to intron 6 of 

the desmln and vlmentln gene (Johnson et al.,1984). 

Moreover In a report which appeared very shortly 

before submission of this paper the human keratin 

gene encoding the 50 kD keratin was shown to be in-



Figure 7 

Expression and assembly Into intermediate filaments of desmin in cultured hamster lens 

Cialis, 45 hours after transfection with the cloned desmin gene. 

a-o) Immunofluorescence microscopy showing synthesis of desmin and assembly Into au­

thentic intermediate filaments, as monitored with the polyclonal desmin antiserum. 

d.e) Double-label Immunofluorescence microscopy with the monoclonal antiserum (RD301;d) 

and the polyclonal antlvlmentln (e) showing complete colocalizatlon of both IF protein 

types. 

f,g) Occasionally, desmin positive Immunofluorescence is observed in large, clumb-llke 

aggregates or in smaller dot-like (g) structures (polyclonal antldesmln). 

h,i) Double-label Immunofluorescence microscopy showing perfect matching of desmin (as 

stained with RD301) and vlraentln (stained with polyVlm) immunofluorescence in inter­

mediate filament aggregates (Indicated by arrowheads in 1). 

Bars: 20 um. 



Figure 8 

Expression and assembly of desmln Into filaments In HeLa cells, 15 hours after 

transfeetlon with pHaDes 

a.b) Single-label Immunofluorescence microscopy of desmln producing HeLa cells, as 

detected by the polyclonal desmln antiserum (polyDes). Note fibrillar organization in 

b). 

o-f) Double-label Immunofluorescence microscopy showing desrain intermediate filaments 

(o.e) and colocalization with vlmentln (d,f) both in network structures (o,d) as well 

as in aggregates (e,f). Antibodies used were raonoDes, RD301 (c,e) and polyVim (d,f). 

g-j) Micrographs demonstrating that no real spatial relationship exists between the 

newly made desmin (g,i; stained with polyDes) and the HeLa cytokeratln filaments (h,J; 

stained with the monoclonal antibody to oytokeratin 18, RGE 53) 

Bars: 20 pm. 



terrupted by 7 introns with five of thera occuring 

at positions that чге fully corresponding to in­

trons of the vimentin gene (Marchuk et al.,1984). 

A conservation of Intron positions over a long 

period during evolution is also found in the globln 

gene family. The active a-globin and ß-globin 

genes, which are thought to have diverged about 500 

million years ago, all posses two Intervening se­

quences at corresponding positions (Efstratiadis et 

al.,1980). On the other hand the intron positions 

of the closely related members of the actln gene 

family show variations among different species and 

among different Isoforms within one species (Ueyama 

et al.,1984; Gallwitz & Sures, 1980¡ Fyrberg et 

al., 1981; Nudel et al., 1982). However, despite the 

close sequence relationship of actins there Is good 

evidence that the different actin genes diverged 

early in evolution and that they have evolved in­

dependently for a long time (for review see Fir-

tel,198l). Therefore the diversity of intron posi­

tions in the actin gene family as compared to 

vimentin and desmin might be just a reflection of 

the longer evolutionary history of actin genes as 

compared to that of the two IF genes. In contrast 

to their positions, the lengths of the Introns and 

the nucleotides comprised within them do not show 

apart from the splice points any relation between 

the two IF genes. This feature has been observed 

for other gene families (for a review see Breatnach 

& Chambón, 1981 ). 

All Intervening sequences of the desmin gene are 

located in the protein coding region. If we look 

for a correlation between gene structure and pro­

tein domain structure (Gilbert,1978; Blake,1978) we 

find only introns 3 and 6 located at putative pro­

tein domain borders, as has been discussed for 

vimentin previously (Quax et al.,1983). Surprising­

ly precisely the same position as intron б is also 

occupied by an intron in a bovine (Lehnert et 

al., 1984), a mouse (Johnson et al.,1984) and a hu­

man cytokeratln gene (Marchuk et al.,1984). 

Apart from the protein coding nucleotides, the 

only sequence similarities of the desmin gene com­

pared with the vimentln gene are located in the 5' 

upstream region with the most pronounced homology 

formed by a 16 bp fragment of which 14 nucleotides 

are identical. Such a conserved sequence element 

might be a good candidate for an enhancer type 

structure, although a comparison of the 16 bp with 

a consensus enhancer "core" sequence (Weiher et 

al.,1983) did not show homology. The similarities 

in the -60 region, which are very G rich, and the 

-120 region, which are very С rich, are noteworthy. 

Especially the capability of these two regions to 

interact with each other to form a strong secondary 

structure on one strand of the DNA could point to a 

mechanism through which this region might be in­

volved In the start of transcription. It should, 

however, be kept in mind that not identities, but 

rather differences in regulation sequences must be 

responsible for the quite different expression pat­

terns exhibited by the two genes. 

The NH domain of one and the same IF type shows 

many interspecies variations 

The comparison of the complete primary structure 

of desmin from two representatives of different 

vertebrate classes (this report,figure 4; Quax et 

al.,1984a; Geisler and Weber, 1982) makes clear 

that the NH non-helical domain shows much more in-
2 

terspecles variation than the rest of the protein, 

including the С00Н non-helical domain. Since the 

same tendency can also be observed when comparing 

hamster vimentln with porcine vimentin (Geisler et 

al.,1983a) or mouse GFAP (Lewis et al.,1984) with 

porcine GFAP (Gelsler and Weber, 1983) one may 

wonder if there are any sequence requirements for 

this NH domain of IF at all. However, a closer 
2 

Inspection of the head pieces of non-epithelial IFs 

shows that all of these proteins contain an excess 

of arginine residues and hydroxyl amino acids in 

combination with a virtual lack of acidic residues. 

Precisely these elements are not changed between 

chicken and hamster desmin. Interestingly filament 

formation of non-epithelial IFs seems to be depen­

dent on the non-helical flanking domains (Geisler & 

Weber,1982) and consequently on the observed abun­

dance of basic residues in the NH sequence of dif-
2 

ferent subunits. For the cytokeratins the sequence 

requirements in the head domain seem to be dif­

ferent (Steinert et al.,1983,1984). This might be 

reflected In the fact that cytokeratins can only 

form heteropolymer filaments In contrast to the 

non-epithelial IF. 

Transfer of cloned IF genes as a novel system to 

manipulate the cytoskeleton 

Several techniques have been developed to study 

the distribution and dynamics of a variety of 

cytoskeletal proteins In the living cell. Microin­

jection of antibodies against cytoskeletal proteins 

and microinjection of fluorescently labeled pro­

teins have been used to manipulate the cytoskeleton 

(Lin & Ferami3co,198l). Purified intermediate fi-
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laments, however, are practically Insoluble In phy­

siological buffers and can therefore not be Intro­

duced into the cell by microinjection. Hence, the 

microinjection of total mRNA was chosen as a dif­

ferent approach to generate IF cytoskeletons In a 

heterologues cell type. It was shown that authen­

tic cytokeratln filaments can arise from epidermal 

mRNA injected into lens cells (Kreis et al.,1983), 

which normally do not express cytokeratlns, and 

Into non-eplderraal epithelial cells (Franke et 

al.,1981). A conclusion from these experiments was 

that the translation of epidermal keratin mRNA 

functions well In non-epidermal cells and that the 

assembly of intermediate fllments is not dependent 

on the cell type once the proteins are formed. 

We think that the experiments described In this 

report form an Important extension to the methods 

to experimentally alter the IF-cytoskeleton. It 

can be concluded from the ability of the formed 

protein to react with both monoclonal and polyclon­

al desmin antibodies. In combination with the ob­

served correct formation of desmin filaments that 

the product formed by the transferred gene Is au-

thenthlc desmin. Furthermore, this conclusion is 

strongly supported by our observations In the 

double-label experiments with viraentin and cytok­

eratln antibodies. In accord with findings by other 

authors (see for example Qulnlan & Franke,1982) we 

have found that the desmin formed In both cell 

types used in this study colocallzes almost com­

pletely with the vlmentin filament network. In the 

HeLa cells, however, It can be stated that in gen­

eral no or to a lesser degree colocallzation of 

cytokeratln and desmin in filaments Is observed. 

Focal alignments or Intermingling of these two 

types of IF systems may occasionally be observed, 

but such an apparent spatial relationship may be 

explained by crowding of filaments of different 

types within a thin rim of cytoplasm as It is often 

observed in the cells used In this study. 

One advantage of the use of a cloned gene Is the 

ability to study the expression and filament forma­

tion of one single subunlt at a time with the pro­

fitable circumstance of not Introducing unknown and 

possibly Interacting proteins, which la the case 

when using an impure mRNA mixture. Therefore we 

conclude that In our experiments the assembly of 

the de novo synthesized desmin molecules into fila­

ments is not dependent on muscle-specif1c accessory 

proteins. Secondly the expression of the cloned 

desmin gene makes clear that there Is no blockade 

on the transcriptional level as well as on the 
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translatlonal level In heterologues cells as well 

as in a heterologues species. This apparent not-

obeyance of a gene to the normally observed 

tissue-specificlty has also been found for other 

genes In a transient expression assay (Gunning et 

al.,1984). Probably the regulation of gene expres­

sion is not functioning absolutely when a great 

number of eplsomal DNA molecules carrying the gene 

are present In the nucleus. 

A third and In the future the most exciting ad­

vantage of using a cloned gene Is the possibility 

to engineer the DNA In vitro prior to transfectlon. 

This will enable the construction of genes that ex­

press altered Intermediate filament proteins and to 

study the effects of these alterations on filament 

formation. Ultimately the sequence requirements 

for the structural domains of IF, which now have 

been deduced merely from comparison of different 

sequences, can be experimentally tested. 

MATERIALS AND METHODS 

Construction and screening of the hamster gene li­

brary 

Total DNA was isolated from the liver of an in­

bred Syrian golden hamster strain, which was ob­

tained from the Animal Center of the University of 

Nijmegen. A partial Sau3A digestion was carried out 

for 5, 10 and 20 minutes and the resulting frag­

ments were run In an agarose gel. A size selection 

from 15 to 20 kb was carried out on all three dig­

ests to ensure a good representation of all parts 

of the genome. The combined DNA was llgated, in vi­

tro packaged and plated with Charon 28 as vector 

(Rlmm et al.,1980). Replica filters were hybridized 
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with P-labeled pDes-1 and рОез-Ч (Quax et 

al.,1984) under conditions of 50Í formamlde, 5xSSC, 

IxDenhardt's solution, 20 mM sodium phosphate (pH 

6.8), 5 mM EDTA, 100 yg/ml single stranded herring 

DNA, 0.1$ SDS at 12 С The resultant positives 

were plaque purified and further analysed by res­

triction enzyme and blotting analysis of the recom­

binant phage DNA. 

Sequence analysis and comparison 

Inserts of the already mentioned subclones 7.t 

EcoRI- EcoR1 and the 3.8 EcoRI- Hpal were digested 

with the enzymes Sau3A, Taql, HpalI, Haelll, Alul 

or Rsal. Resulting fragments were llgated Into a 

suitable restriction site of Mp10 or Mpl1 and 

transfected on JM101 or JM103 (Messing et 

al.,1981). Plaque filters were prepared and hybrl-



dized with the cDNA probes. Most coding sequences 

could be detected In this way. Remaining gaps In 

the sequence were, If necessary, closed by guided 

subclonlng of suitable restriction fragments into 

an M13 vector. Isolation of single stranded DNA and 

dldeoxy chain termination reactions were performed 

as described (Sanger et al., 1980). Analysis was 

done on 10 cm 6% sequencing gels. The gel readings 

were recorded, edited and compared by the use of 

programs of Staden (1979). Search for optimal 

alignment was done by the program DI AGON (Sta­

den,1982). 

DNA transfectlons 

Hamster lens cells (Bloemendal et al.,1980) and 

HeLa cells were grown for two days on coversllps in 

6 well-dishes In DMEM supplemented with 10Í foetal 

calf serum. Coversllps with a cell density of about 

30 to 50$ were exposed to 1 ml of a Ca (PO ) рг -
3 1 2 

clpltate Including the appropriate DNA at a density 

of 10 ug/ml. After 20 minutes of incubation cells 

were supplemented with 5 ml DMEM containing 10Í 

foetal calf serum. Following a 6 hour Incubation 

cells were glycerol shocked (15 % glycerol in HBS 

buffer) during 3 minutes and then allowed to grow 

for 21 to 18 hours. After this period cells had 

mostly grown to subconfluency. Prior to fixation In 

methanol, the dishes were washed 3 times with PBS. 

Antibodies and immunofluorescence 

The following antibody preparations were used in 

this study: 

1). A polyclonal antiserum to chicken gizzard des-

min (polyDes) raised in rabbits (Ramaekers et 

al.,1983a,b) absorbed on keratins. This antibody 

only stains striated- and smooth muscle cells and a 

filamentous network In cultured BHK-cells. Bovine 

lens cells and HeLa cells have been shown to be 

negative. Immunoblottlng assays have demonstrated 

that this antiserum only reacts with desmln and not 

with any of the other IF-protelns. 

2). A mouse monoclonal antibody to chicken gizzard 

desmin, RD301, which showed a staining pattern in 

BHK-cells virtually Identicall to that of the poly­

clonal desmln antiserum. Bovine lens cells, fibrob­

lasts and HeLa cells were negative. In immunoblot­

tlng assays this antibody was shown to react ex­

clusively with the desmln protein band in 

cytoskeletal preparations from BHK-cells, smooth 

muscle and a human leiomyosarcoma. 

3) A polyclonal antiserum to bovine lens vimentin 

(Ramaekers et al.,1981 ,1983c). This antibody does 

not stain striated muscle cells, while in immunob­

lottlng It does not crossreact with desmin. 

1) A mouse monoclonal antibody to bovine lens 

vlmentin, monoVim (Euro-Diagnostics, Apeldoorn, The 

Netherlands), which In immunoblottlng assays only 

reacts with vlmentin and not with desmin. 

5) An affinity purified rabbit antiserum to human 

skin keratins that reacts specifically with most 

epithelial tissues and epithelial cultured cells 

(Ramaekers et al.,1981). 

6) A mouse monoclonal antibody to cytokeratln 18, 

ROE53 (Ramaekers et al.,1983d,1985), which in immu­

noblottlng assays only recognizes cytokeratln 18 

and not vimentln or desmln. 

As second antibodies we have used: 1) Goat-anti-

rabbit IgG conjugated with fluoresceine, FITC 

(Nordic, Tilburg, The Netherlands). 2) Sheep anti-

mouse Ig conjugated with Texas-Red (New England Nu­

clear, Boston, Mass.). 3) Goat anti-mouse IgG con­

jugated with FITC (Nordic). 

Single and double labelling Indirect 

immnunofluorescence assays (Including appropriate 

controls) were performed on fixed cells essentially 

as described before (Ramaekers et al.,1983a,e), 

however with the exception that for double label­

ling experiments primary antibodies were applied 

slmultaniously to the cell preparations for about 1 

hour. 
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ABSTRACT 

He have used somatic cell hybrids of Chinese 

hamster χ man and mouse χ man to localize the genes 

encoding the Intermediate filaments desrain and 

vlmentln in the human genome. Southern blots of 

DNA prepared from each cell line were screened with 

hamster cDNA probes specific for destnln and vlmen­

tln, respectively. The single copy human desmln 

gene is located on chromosome 2 and the single copy 

human vimentin gene is assigned to chromosome 10. 

Partial restriction maps of the two human loci are 

presented. A possible correlation of the desmin 

locus with several reported hereditary myopathies 

is discussed. 

INTRODUCTION 

During the last decade It has been recognized 

that cytoskeletal structures play an important role 

in a number of cell processes. Including mainte­

nance of cell shape, cell motility, mitosis, intra­

cellular transport and support for cell organelles. 

Structural and genetic Information obtained for the 

subunlts of these cytoskeletal structures shows 

that actins, which are the subunlts for microfila­

ments, and tubulins, which constitute the microtu­

bules, are encoded by multigene families that show 

strong sequence conservation during evolution 

(3. 13). Recent studies show that the individual 

members of these multigene families are unlinked 

and dispersed throughout the genome of many 

species, including man (1, 5, 17, 12, 51). 

The genes that encode the third type of 

cytoskeletal structures, the Intermediate fila­

ments, are only lately being characterized. The 

sequence information obtained thus far shows that 

the Intermediate filament genes, although still 

clearly related, have diverged somewhat more than 

those of actins and tubulins during evolution. This 

explains why some members exhibit the nature of a 

single copy gene in DNA hybridization studies,-e.g. 

the vlmentln gene in hamster and chicken 

(1, 35 , 52), the desmln gene in hamster (36) and 

the glial filament acidic protein (GFAP) gene In 

mouse (28). The intermediate filament genes 

display a tissue-specific expression pattern that 

shows close parallels to embryological differentia­

tion (11, 26). To address the question whether the 

expression of Intermediate filament genes is regu­

lated coordlnately it is desirable to gain informa­

tion on the linkage relationship between these 

genes in the genome. Therefore, we investigated the 

chromosomal location of the vimentin and desmin 

genes with the aid of rodent χ human somatic cell 

hybrids. The data presented in this paper Indicate 

that the two intermediate filament genes are not 

linked in the human genome. 

RESULTS 

Characterization of the human genes for vlmentln 

and desmln. 

It has been shown that the haploid hamster 

genome contains a single gene encoding vlmentln 

(VIM) (35). This gene, which has a total length of 

9 kb, conists of nine exons. From recent studies 

it became clear that the gene encoding desmln 

(DES), the muscle-specific intermediate filament, 

also occurs as a single copy in the hamster genome 

(36). Structural analysis of this gene, which 

comprises 6.5 kb of DNA, has revealed that its 

exon-intron pattern Is similar to that of the 

vlmentln gene with the same number and positions of 

intervening sequences (Quax et al., in prepara­

tion). 

In order to determine the copy numbers of these 

two intermediate filament genes In the human genome 

we applied specific hybridization probes to South­

ern blots of human DNA. Probes vimA, vlmB, desA and 

desB were isolated аз МІЗ-зиЬсІопез from the 

corresponding hamster genes (for the content of 

these subclones see figure lb). When we applied a 
о 

final wash of 0.2 χ SSC, 0.2$ SDS at 60 С after 

hybridization, probes vimB and desB both hybridized 

to single restriction fragments of human DNA indi­

cating that human vlmentln and desmin are encoded 

by single copy genes. Under the same conditions 

probe vimA and desA hybridized to one or more weak 

bands additional to a single strong band. As can 

be judged from figure 1A the detection of one weak­

ly hybridizing restriction fragment is a result of 

cross hybridization of vimA with the human desmin 

gene and of desA with the human vlmentln gene, 

respectively (figure 1a; 36, 37). The remaining 

weak bands may result from cross hybridization with 

other Intermediate filament genes. Especially the 

GFAP gene may be recognized with these probes, 

since probe desA contains a region of about 100 

basepairs, which shares 80Í homology with mouse 

GFAP cDNA (28, 35). 

The hybridization patterns that have been found 

with the different probes have allowed us to derive 
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a partial restriction map for the human vimentin 

and the human desnun gene (figure lb). From these 

maps the positions of the probes and the fragments 

to which they hybridize can be derived. 

Chromosome localization of the human vlmentln and 

desmin gene. 

For the assignment of the intermediate filament 

genes we used a panel of 5 mouse χ human and a 

panel of 9 chinese hamster χ human somatic cell hy­

brids. The cryopreserved cell lines, which were 

screened for the human chromosomes and chromosome-

specific markers during previous studies 

(21, 22, 29, 30), were brought back to culture and 

the cell pellets of each hybrid line were divided 

into two portions. One part was used to verify the 

human chromosome content by retesting for 

chromosome-specific enzyme markers. The updated in­

formation is summarized in table 1. The other part 

was used to isolate total DNA. This DNA was digest­

ed with an appropriate restriction enzyme, electro-

phoresed in an agarose gel and transferred to a ni­

trocellulose filter. Filters were hybridized to 

the nick-translated insert of pVlm-1 (38) or to one 

of the above mentioned desmin specific M13 probes, 

respectively. For pVlm-1 it was found that the 

restriction enzyme EcoRI gave a good resolution of 

the mouse and human bands. In the case of the ham­

ster χ human cell hybrids BamHI gave the best 

results (figure 2). The 12.5 kb human EcoRI frag­

ment Is detected in cell lines В and E. The 12.0 

kb human BamHI fragment Is found in lines Η, К and 

N. Comparison of these results with the chromosome 

Information of the hybrids (table 1) and calcula­

tion of a discordance score indicates that the 

vlmentln gene (VIM) is most probably in chromosome 

10. The only discordant is line E, which is nega­

tive for chromosome 10, but positive for vimentin. 

About 10t of discordancy is frequently observed 

among syntenic pairs of loci, especially when they 

happen to be situated wide apart on the chromosome, 

due to an occassional occurrence of chromosomal 

breakage and rearrangement In the interspecific 

somatic cell hybrids (39). However, the use of 

another panel of nine cell hybrid lines (data not 

shown) also favoured the assignment of the vlmentln 

gene to chromosome 10. 

The specific desmin probe, desB, gave the best 

resolution between the human bands and those of 

mouse or hamster with the restriction enzyme 

Hindi!1. The human 3.7 kb Hindi 11 fragment formed a 
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relatively more intense band In cell lines К and M 

than in lines L and Ρ (figure 3). The data in table 

1 exclude every other chromosome but chromosome 2 

for the localization of the desmin gene. In the 

mouse χ man panel no cell line was positive for hu­

man desmin (hence, not included in figure 3), which 

Is consistant with its assignment to chromosome 2. 

The isocitrate dehydrogenase-1 (IDH-1) and malate 

dehydrogenase-1 (MDH-1) were used as chromosome 2 

specific enzyme markers (21) in the present study. 

Both these markers were found to be absent in the 

mouse χ man panel while their pattern of segrega­

tion and relative intensities of their expression 

in the individual hybrids belonging to the hamster 

χ man panel paralleled with that of the human 3.7 

kb Hind 111 band mentioned above. Such a consistent 

dosage relationship between the gene products ex­

pressed In a set of hybrids exhibiting the segrega­

tion of human chromosomes, has been suggested to 

form an additional indication that the concerned 

loci are situated on the same human chromosome 

(18). In order to further confirm the localization 

of the desmin gene on chromosome 2 we hybridized 

the hamster χ human panel to another DNA probe, 

which is known to be located on chromosome 2, name­

ly γ-crystallin (Den Dunnen et al., in prepara­

tion). The crystallln probe hybridized with the 

same lanes and in the same intensities as our des­

min probe (data not shown), strengthening the as-

sigment of the human desmin gene to chromosome 2. 

DISCUSSION 

Our experiments show that in the human genome 

there Is a single gene for vlmentln and a single 

gene for desmin located respectively on chromosome 

10 and 2. Sequence information obtained during the 

last years for all classes of Intermediate filament 

subunlts suggests that all of these genes evolved 

from a common ancestor gene 

(15, 18, 36, 35. 38, 1(3). Closely related genes 

that are thought to have diverged from a common an­

cestral gene may be linked in the genome, e.g. β-, 

Ύ- and i-globin genes (HBB, HBO and HBD) on chromo­

some 11 (7); a-, 6- and Y-fibrlnogen (FGA, FOB and 

FGC) on chromosome 4 (20); the Y-crystallins on 

chromosome 2 (Den Dunnen et al.,In preparation); 

myosin heavy chain adult-1 (MYH1 ), adult-2 (MYH2) 

and embryonic-1 (MYH3) on chromosome 17 (27); two 

human relaxln genes on chromosome 9 (6); the a- and 

ß-lnterferon genes (IFA and IFB) on chromosome 9 

(31. 45). On the other hand different genes of the 



Figure 1 : Characterization of human Visentin and deaaln genes 

a: Human DNA was digested with the following 

set of enzymes: A) Eoo R1, В) Bam HI, C) 

Hindi 11, D) Eco RH- Баю HI, E) Eoo H U 

Hlndlll, F) BamHl* Hindlll. Southern blots 

made from these digested DNAs were hybridized 

with probe vimA (left panel) and desA (right 

panel). The bands that are marked by an as­

terisk were identified as the true vlmentin 

and desrain fragmens, respectively, by using 

specific probes (e.g. vlmB and desB) and by 

applying more stringent washings than the 

0.2x SSC, 60 С used in this experiment. As 

can be judged from a comparison of the 

corresponding lanes of both panels one of the 

weaker bands in each digest of the left panel 

comigrates with the strongest band in the 

right panel and vice versa indicating that 

vlmentin and desmln sequences cross hybridize 

under these conditions. 

b; Partial restriction maps for the human 

vlmentin gene (huvlm) and the human desmin 

gene (hudes) were derived from Southern blot 

analysis of total human DMA digests with the 

aid of a number of specific probes. Enzymes 

used are: E- Eco RI, в- Bam HI, H- Hindi 11, 

S- Saol, Bg- Bglll, Xh- Xho1 and Xb- Xbal. 

The positions, where the different probes hy­

bridize. are indicated by hatched bars. 

Probe vlmA contains the sequence of amino 

acids Я0-116 of hamster vlmentin; probe vimB 

encodes amino acids 293-334 and vimC encodes 

amino acids ИгТ-Ібі) of hamster vlmentin 

(3b). DesA bears the information for anlno 

acids 7 2 - m and desB the information for 

residues 276-373 of hamster desmin (Quax et 

al., in preparation). 
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Figure 2: Assignment of the vimentin gene. 

DMAs Isolated from somatic cell hybrids 

between mouse and man were digested with Eco 

RI and hybridized with the insert of pVim-1 

(left panel). DNAs of cell hybrids between 

Chinese hamster and man, digested with Bam 

HI, were hybridized with the same probe 

(right panel). The chromosome content of each 

cell line, A-Ε and Η-P (excluding that of 0), 

is depicted in table 1. Control DNAs are Hu= 

human and Mo> Mouse. 

Figure 3: Assignment of the desmin gene. 

DNAs isolated from somatic cell hybrids 

between Chinese hamster and man (Η-P) were 

digested with Hindi 11, eleotrophoresed, blot­

ted and hybridized with the Ml3 probe desB, 

which recognizes a 3.7 Hindi 11 fragment in 

human DNA. Cell hybrids K, L, M, and Ρ were 

judged positive, the others negative for the 

desmin gene. Control DNAs are Ha= Chinese 

hamster and Hu= human. 



same family can also be located on different chro­

mosomes, e.g. the gene for pro-a2(1) collagen 

(C0L1A2) on chromosome 7 and pro-al(l) collagen 

(C0L1A1) on chromosome 17 (23); the actln genes 

dispersed over a number of chromosomes (17, 12) In­

cluding muscle a-actin (ACTA) on chromosome 1, car­

diac actin (ACTO on chromosome 15 (11) and one 

cytoplasmic actin gene (ACT1) on the X and another 

one (ACT2) on the Y chromosome (19); the a- and ß-

tubulin genes dispersed in the Drosophila, chicken 

and human genome (4, 5, ΊΟ); three estrogen induci­

ble chicken genes- ovalbumin, ovomucoid and 

transferrin- on three different chicken chromosomes 

(24). 

It is obvious from our results that the Inter­

mediate filament genes belong to the latter group. 

Remarkably the other genes that encode cytoskeletal 

filaments, the actin and tubulin genes, also belong 

to this group. Although It is certainly not a gen­

eral rule (compare the hlstone genes (2)) It is 

possible that a disperse distribution in the genome 

Is characteristic of structural genes that emerged 

early in evolution. Another contribution to this 

discussion has to await the chromosomal assignment 

of the multiple keratin genes, which should be pos­

sible by now, since cDNA probes have become avail­

able recently (12, 25, 43). The non-linked posi­

tion of intermediate filament genes in the genome 

rules out the possibility that the spatially and 

temporally regulated expression of Intermediate fi­

laments is accomplished by physical linkage of the 

genes on the DNA. 

Although the evolutionarily conserved nature of 

intermediate filaments suggests an Important role 

for these structures, their precise functions 

remain still unknown. Therefore it Is not surpris­

ing that there is at present a dearth of informa­

tion on possible human diseases or aberrant condi­

tions due to an absence or abnormal expression of 

Intermediate filaments. However, the onset of des-

min expression during muscle development and the 

redistribution of desmln from free cytoplasmic fi­

laments to the Z-disk during the formation of myo­

fibrils (14, 16) suggests a role for this gene in 

muscle differentiation. For this reason attention 

should be paid to a possible correlation between 

the expression of the desmln gene and various 

hereditary muscle disorders of unknown etiology. 

Several hereditary myopathies were found to exhibit 

aberrant accumulations of intermediate filaments in 

the myofibrils on electron microscopy as well as on 

immunofluorescence microscopy after staining with 

desmln specific antibodies (9, 10, 34, 44). In a 

case of skeletal muscle myopathy it was suggested 

that the occurrence of sarcomeric bodies, which 

were filled with insoluble filamentous material, 

was due to an excess in synthesis or Incorrect 

turn-over of desmln (9). The desmln accumulation 

observed in muscle cells of a patient suffering 

from a form of congenital cardiomyopathy associated 

with an aberrant organization of intermediate fila­

ments at the Z-dlsk, might account for the observed 

myocardial insufficiency (44). Finally in muscle 

biopsies from four related children suffering from 

a neuromuscular disease, peculiar desmln filaments 

containing inclusions were observed, which showed 

similarities with Mallory bodies (10), the cytok-

eratln containing inclusions typical of alcoholic 

liver disease (8). Most of the cardiomyopathies 

and myopathies are familial and monogenic. A link­

age study between eventual Restriction Fragment 

Length Polymorfisms (RFLP's) in and around the des­

mln locus In chromosome 2 and each of the loci for 

unasslgned myopathies should be rewarding. The 

results of such a study may eventually help detect­

ing the heterozygote carriers and performing prena­

tal diagnosis. 

MATERIALS AND METHODS 

Cell hybrids and genetic analysis 

The methods for production, isolation and propa­

gation of the interspecific somatic cell hybrids 

were reported earlier (33, 47) Previous reports 

described the PG/Me hybrids (29, 49, 50), the a3y 

hybrids (22), the a3G hybrid (30) and the E36 

series of hybrids (21 ) Included in the present 

study. The hybrids were investigated for identify­

ing the individual human chronosoraes with G-

bandlng, Giemsa-11 and/or Q-banding techniques 

(32). A detailed list of 37 different chromosome-

specific enzyme markers employed to screen the 

above hybrids, Including the references of the 

methods used, was reported elsewhere (21). 

DNA preparation and Southern hybridization analysis 

Total DNA of cell lines was prepared as 

described (46). 10 pg amounts of each DNA sample, 

which had been digested with restriction enzymes 

under conditions as recommended by the suppliers, 

were electrophoresed In 0.ΒΪ agarose gels, blotted 

onto nitrocellulose and hybridized under conditions 
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Discordant Ч Desmin 6 7 10 8 8 8 8 8 

Table 1 : Distribution of husan chroaosoaes In cell hybrids 

segregating Visentin and desaln genes. 

Cell line A to E are mouse χ man hybrids 

and lines Η to Ρ are Chinese hamster χ man 

somatic hybrids. Plus (+) indicates the pres­

ence of vimentln sequences, desrain sequences, 

human chromosomes and chromosome specific 

isozyme markers. The lowest discordance for 

vimentin is with chromosome 10 and for desmin 

with chromosome 2. The discordancy of line E 

-vimentin sequences detectable, but no enzyme 

marker present- may result from breakage and 

loss of a part of chromosome 10 in this line. 

Cell line 0 is omitted from this table, since 

the precise chromosome content of this line 

is not known. 



as described (36). The stringency of the final 

washing Is described In the figure legends. 

Plasmid Inserts of pVim-1 (38) were P-labeled by 

nlck-translatlon; MI3- probes were prepared by car­

rying out a standard T-reactlon of dldeoxy sequenc-
32 

Ing with [a P]-dATP of > 3000 Cl/mmole. 
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SintURY 

The cytoplasm of most, if not all, eucaryotic 

cells contains filamentous protein polymers, which 

contribute to the structural organization within 

the cell. This intracellular matrix has been called 

the cytoskeleton. On the basis of the type of pro­

tein, which constitutes the filaments, a distinc­

tion has been made between the microfilaments, 

which are built up by actins, the microtubules, 

which are formed by tubulins, and the intermediate 

filaments (IF) that in different cell types can 

contain different types of subunits. It was found 

that in epithelial cells the keratins represent the 

subunits of IF; in nerve cells the IF are built up 

by the neurofilament proteins; in glial cells (as­

trocytes) the Glial Filament Acidic Protein has 

been identified as the IF subunit; in muscle cells 

desmin Is found as subunit and finally in cells of 

mesenchymal origin vimentln constitutes the IF fi­

laments. 

The investigations of this thesis mainly concen­

trate on two Intermediate filament subunits: vimen­

tln and desmin. With the aid of recombinant DNA 

techniques, the genetic information for both vimen­

tln and desmin has been cloned in the Escherichia 

coli plasmid pBR322. Chapter 2 describes the 

molecular cloning of vimentln cDNA starting from 

hamster lens messenger RNA. Using these clones, 

pVim-1 and pVim-2, it has been ascertained that the 

hamster genome contains only one copy of the gene 

encoding vimentln. Chapter 1 describes how 

messenger RNA from Baby Hamster Kidney cells was 

used as starting material for the construction of 

the desmin cDNA clones pDes-l, -2, -3, and -4. It 

was found that desmin is also encoded by a single 

copy gene. The amino acid sequences of both vimen­

tln and desmin have been derived from the nucleo­

tide sequences of the corresponding cDNAs. The two 

different IF subunits show a strong mutual homology 

(65Í), which forms an Indication for the hypothesis 

that both genes originated from the same common 

ancestor gene. From DNA hybridization experiments 

it could be concluded that the divergence of the 

two IF genes most probably took place before the 

evolution of the vertebrate species (500 million 

years ago). Hybridization analysis of RNA isolated 

from various tissues shows that the transcription 

of RNA and the synthesis of vimentln and/or desmin 

takes place coordinately, which proofs that the re­

gulation of IF expression occurs at the transcrip­

tion level. 

Chapter 3 describes the structure of the hamster 

vimentln gene. The total coding information is con­

stituted in 9 exons which are spread over 9 kilo-

bases of DNA. From the DNA sequence of the gene the 

total primary structure of hamster vimentln could 

be derived. Two of the nine Intervening sequences 

precisely map at the border of two DNA fragments 

that encode different domains of the vimentln po­

lypeptide. Therefore the vimentin gene forms an 

additional example for the hypothesis that exon-

shuffllng played a role in the generation of dif­

ferent domains In proteins. The structure of the 

desmin gene is discussed in chapter 5. Surprising­

ly, the exon-lntron structure of the desmin gene is 

totally comparable to that of the vimentln gene. 

From the comparison of the total primary structure 

of hamster desmin, derived from the DNA sequence of 

the gene, with the chicken desmin sequence it em­

erged that the non-helical amino terminus of desmin 

shows great interspecies variations. On the other 

hand the non-helical carboxy terminal and the cen­

tral α-helical domain of desmin both show an homol­

ogy of more than 90Í upon comparing hamster and 

chicken. 

In chapter 5 it is also described that the 

cloned desmin gene was used for "gene-transfer" and 

subsequent expression of desmin in cells which nor­

mally do not contain desmin filaments. Transfec-

tion of a plasmid containing the transcription unit 

for desmin into lens cells or HeLa cells resulted 

in the expression of desmin and the correct assem­

bly of a desmin IF cytoskeleton in these nonmuscle 

cells. 

Finally chapter 6 deals with those aspects of 

the vimentin and desmin gene, which are of impor­

tance for the human genetics. Apart from the human 

restriction enzyme maps also the chromosomal local­

izations of the vimentln and desmin genes have been 

determined. Human vimentln (chromosome 10) and hu­

man desmin (chromosome 2) are encoded by two non-

linked single copy genes. The possible correlation 

of these two chromosomal loci with hereditary 

determined human diseases is discussed. 
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SAMENVATTING 

Het cytoplasraa van vrijwel alle eukaryotische 

cellen bevat vezelachtige eitwitpolymeren, die 

bijdragen tot de structurele organisatie binnen de 

cel. Deze intracellulaire matrix wordt het 

cytoskelet genoemd. Op grond van het type eiwit-

bouwsteen heeft men onderscheid gemaakt tussen 

microfilamenten, welke opgebouwd zijn uit actines, 

microtubull, die gevormd worden door tubulines en 

de Intermediaire filamenten (IF), die -afhankelijk 

van het celtype- opgebouwd kunnen zijn uit 

verschillende subeenheden. Zo vormen in 

epitheliale cellen de kératines de bouwstenen van 

de IF¡ in zenuwcellen zijn IF opgebouwd uit 

neurofilament-eiwitten; in gliacellen treffen we 

het zure gliafllament-eiwit aan¡ in spiercellen 

is desmine de subeenheid en tenslotte in cellen van 

mesenchymale oorsprong is vimentine de IF-

bouwsteen. 

De studies beschreven in dit proefschrift hebben 

voornamelijk betrekking op twee van deze IF-

subeenheden: vimentine en desmine. Door 

gebruikmaking van recombinant DNA-technieken is de 

genetische informatie voor zowel vimentine als 

desmine gekloneerd in het Escherichia coli Plasmide 

pBR322. Hoofdstuk 2 beschrijft hoe de klonering 

van vimentine complementair-DNA (cDNA) uitgaande 

van hamster-lens messenger RNA gerealiseerd werd. 

Met behulp van deze cDNA klonen, pVim-1 and pVim-2, 

ia vastgesteld, dat er in het genoom slechts een 

copie van het chromosomale gen coderend voor 

vimentine aanwezig is. In hoofdstuk Ί wordt 

beschreven hoe vanuit messenger RNA van baby-

hamster-nlercellen de desmine cDNA klonen pDes-1, 

-2, -3 en -Ч geconstrueerd werden. Ook desmine 

wordt door een "single copy" gen gecodeerd. De 

aminozuur volgordes van vimentine en desmine konden 

uit de nucleotide volgorde van de cDNA's worden 

afgeleid. Deze twee typen IF-subeenheden vertonen 

een sterke onderlinge homologie (65Ï), waaruit kan 

worden afgeleid dat ze van hetzelfde voorouder-gen 

afstammen. Het moment, waarop deze twee genen 

tijdens de evolutie uit elkaar gegaan zijn ligt 

zeer waarschijnlijk voor de divergentie van de 

gewervelde dieren (500 miljoen Jaar geleden), zoals 

kon worden afgeleid uit DNA hybridisatle-

experimenten. Hybridisatle-analyse van FNA 

geïsoleerd uit verschillende weefsels toont, dat de 

transcriptie van RNA en de synthese van vimentine 

en/of desmine met elkaar gecorreleerd zijn, waarmee 

is aangetoond, dat de regulatie van IF genexpressie 

plaatsvindt op transcriptie-niveau. 

Hoofdstuk 3 beschrijft de structuur van het 

hamster vimentine-gen. De totale coderende 

informatie ligt verdeeld over 9 exonen over een 

afstand van 9 kilobaseparen. Vanuit de DNA-

volgorde van het gen kon de volledige aminozuur­

volgorde van hamster-vimentine worden afgeleid. 

Twee van de negen "intervening sequences" liggen 

Juist op de grens tussen twee DNA volgordes, die 

verschillende eiwitdomeinen van de vimentine-

subeenheid coderen. Daarmee vormt het vimentine-gen 

een nieuwe aanwijzing voor de veronderstelling, dat 

"exon-shuffllng" een rol heeft gespeeld bij het 

ontstaan van verschillende domeinen in eiwitten. 

De structuur van het desmine-gen komt aan de orde 

In hoofdstuk 5. Heel verrassend blijkt de exon-

intron structuur van het desmine-gen volledig 

gelijk te zijn aan die van het vimentine-gen. Uit 

de vergelijking van de volledige primaire structuur 

van hamster-desmine, afgeleid van de DNA-volgorde 

van het hamster gen, met de kippe-desmine volgorde 

blijkt, dat de "niet-a-helix" amino-termlnus van 

desmine grote verschillen vertoont tussen 

verschillende diersoorten. Daarentegen vertoont het 

carboxy-terminale domein en het "a-helix" 

middengedeelte van desmine een homologie van meer 

dan 90$ bij vergelijking van hamster en kip. 

In hoofdstuk 5 staat ook beschreven hoe het 

gekloneerde desmine-gen gebruikt Is om door middel 

van "gene transfer" expressie van desmine te 

bewerkstelligen in cellen, die normaliter geen 

desmine-filamenten bevatten. Transfectie van een 

Plasmide, dat de transcriptie-unit voor desmine 

bevat, In lens- en HeLa-cellen resulteerde In de 

expressie van desmine en de correcte assemblage van 

deamine IF-fllamenten in deze niet-spiercellen. 

Tot slot worden in hoofdstuk 6 de voor de humane 

genetica belangrijke aspecten van het vimentine en 

desmine gen behandeld. Naast de restrictie-enzym 

kaarten zijn de chromosomale locallsaties van het 

desmine en vimentine gen bepaald. Vimentine 

(chromosoom 10) en desmine (chromosoom 2) blijken 

door niet met elkaar verbonden "single copy" genen 

gecodeerd te worden. De eventuele relatie van deze 

twee chromosomale loei met erfelijk bepaalde 

ziekten wordt bediscussieerd·. 

85 





LIST OF PUBLICATIONS: 

- Quint, W., Quax, W., van der Putten, H. and Berns, Α. (1981) 
Characterization of AKR Murine Leukemia Virus sequences in AKR 
mouse substrains and structure of integrated recombinant 
genomes in tumor tissues. J. Virol. 39, 1-10. 

- Dodemont, H.J., Soriano, P., Quax, W.J., Ramaekers, F., Lens­
tra, J. Α., Groenen, Μ.Α., Bernardi, G. and Bloemendal, H. 
(1982) The genes coding for the cytoskeletal proteins actin and 
vimentin in warm-blooded vertebrates. EMBO J. 1, 167-171. 

- Quax, W.J., Dodemont, H.J., Lenstra J.Α., Ramaekers, F., Sori­
ano, P., van Workum, M.E.S., Bernardi, G. and Bloemendal, H. 
(1982) Genes coding for vimentin and actin in mammals and 
birds. Adv. Exp. Medicine and Biology 158, 349-357. 

- Quax-Jeuken, Y., Quax, W. and Bloemendal, H. (1983) Primary and 
secondary structure of hamster vimentin predicted from the nu­
cleotide sequence. Proc. Natl. Acad. Sci. USA 80, 35

1
*8-3552. 

- Quax, W., Vree Egberts, W., Hendriks, W., Quax-Jeuken, Y. and 
Bloemendal, H. (1983) The structure of the vimentin gene. Cell 
35, 215-223. 

- Bloemendal, H., Quax, W., Quax-Jeuken, Y., Dodemont, Η. , 
Ramaekers, F., Dunia, I. and Benedetti, L. (1983) Organization 
and expression of the vimentin gene. Mol. Biol. Rep. 9, 115-
118. 

- Quax, W. , van den Heuvel, R. , Vree Egberts, W., Quax-Jeuken, 
Y., & Bloemendal, H. (1984) Intermediate filament cDNAs from 
BHK-21 cells: demonstration of distinct genes for desmin and 
vimentin in all vertebrate classes. Proc. Natl. Acad. Sci. USA 
81, 5970-5974. 

- Quax, W., Quax-Jeuken, Y., van den Heuvel, R., Vree Egberts, 
W., & Bloemendal, H. (1984). Organization and sequence of the 
genes for desmin and vimentin. Cold Spring Harbor Laboratory. 
Molecular Biology of the Cytoskeleton, in press. 

- Quax-Jeuken, Y., Janssen, Ch., Quax, W., van den Heuvel, R. and 
Bloemendal H. (1984). Bovine ß-crystallin complementary DNA 
clones. J. Mol. Biol. 180, 457-472. 

- Bloemendal, H., Quax, W., Quax-Jeuken, Y, van den Heuvel, R., 
Vree Egberts, W. & van den Broek, L. (1985) Vimentin and desmin 
cDNA clones: structural aspects of corresponding proteins and 
genes. Ann. N. Y. Acad. Sci.(1985), in press. 

- Dodemont, H., Quax, W., Schoenmakers, J.G.G., & Bloemendal, H. 
(1985) Evolution of the single copy αΑ-crystallin gene: dif­
ferently sized mRNAs of mammals and birds show homology in 
their 3' non-coding regions. Mol. Biol. Rep., in press. 

87 



- Quax, W., van den Broek, L., Vree Egberts, W., Ramaekers, F., & 
Bloemendal, H. (1985) Characterization of the desmin gene: Ex­
pression and formation of desmin filaments in nonmuscle cells 
after gene transfer, submitted for publication. 

- Quax, W., Quax-Jeuken, Y., Meera Khan, P., & Bloemendal, H. 
(1985) Characterization of the human desmin and vimentin genes: 
Two closely related Intermediate filament genes located on dif­
ferent chromosomes, submitted for publication. 

- van den Heuvel, R., Hendriks, W., Quax, W., & Bloemendal, H. 
(1985) Complete structure of the hamster aA-crystallin gene; 
reflection of an evolutionary history by means of exon shuf­
fling, submitted for publication. 

- Quax-Jeuken, Y., Quax, W., van Rens, G., Meera Khan, P., & 
Bloemendal, H. Complete structure of the aB-crystallin gene: 
Conservation of the exon/intron distribution in the two non-
linked a-crystallin genes, submitted for publication. 

88 



CURRICULUM VITAE 

Wim Quax werd op 1 februari 1956 te Geleen geboren. Hij 

doorliep het Gymnasium 0 aan de scholengemeenschap St. Michiel te 

Geleen, alwaar het einddiploma in 1974 behaald werd. In datzelfde 

jaar begon hij zijn studie biologie aan de Katholieke Universiteit 

te Nijmegen. Het kandidaatsexamen (BM) werd afgelegd in september 

1977. In september 1980 werd het doctoraal examen biologie 

afgelegd (cum laude) met als hoofdvak Biochemie (Dr. A.J.M. Berns 

en Prof. Dr. H. Bloemendal) en als bijvakken Microbiologie (Prof. 

Dr. Ir. G.D. Vogels) en Aquatische Oecologie (Prof. Dr. С Den 

Hartogî gestationeerd te Roscoff, Frankrijk). 

Voor het verrichten van het hier gepresenteerde promotie­

onderzoek was hij van oktober 1980 tot november 1984 werkzaam op 

het Laboratorium voor Biochemie (o.l.v. Prof. Dr. H. Bloemendal) 

in dienst van de Katholieke Universiteit tot april 1981 en daarna 

in dienst van de Nederlandse Organisatie voor Zuiver 

Wetenschappelijk Onderzoek (Stichting S.O.N.). 

Tijdens de promotietijd werd deelgenomen aan de "Eurage Lens 

Group workshop" te Louvain La Neuve (november 1980) en de EMBO-

cursus "Expression of proteins from cloned genes (cDNA's) in 

eucaryotic cells" (EMBL Heidelberg, juni 1984). 

Voordrachten betreffende de inhoud van dit proefschrift werden 

gehouden o.a.: bij de EMBO-workshop "Intermediate Filaments in 

Differentiation and Pathology" te Gunzburg (april 1982); bij de 

door de Commissie voor Biochemie en Biophysica van de Koninklijke 

Akademie georganiseerde bijeenkomst betreffende "Structure and 

Functional Aspects of Cellular Matrices" te Amsterdam (november 

1983); op uitnodiging van Prof. Dr. W. W. Franke op het Deutsche 

Krebsforschungszentrum te Heidelberg (januari 1984); op het "Cold 

Spring Harbor" congres over "Molecular Biology of the 

Cytoskeleton", New York (april 1984). 

Op 15 mei 1981 is hij gehuwd met Yvonne Jeuken. 

Sinds november 1984 is hij werkzaam bij Gist-brocades N.V. te 

Delft. Aldaar is hij als onderzoeks-medewerker verbonden aan de 

afdeling "Bacteriëngenetica". 

89 





Indien U geen gebruik maakt van dit proefschrift, 
wordt het op prijs gesteld wanneer U het terug­
zendt naar het Laboratorium voor Biochemie 
(W.N.F.). K.U. Nijmegen. 

De promovendus 





1 

De hybrldlsatle-experimenten beschreven door Capetanaki et al., 

vormen een onvoldoende basis voor de conclusie van de auteurs, 

dat het kippe-vimentine-gen veel minder homologie met andere 

intermedialre-filament-genen zou vertonen dan het hamater-
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Het artikel van Steinen et al. (1980) bevat zoveel 

onjuistheden dat het eerder ten nadele dan ten voordele із 

geweest bij de opheldering van de structuur van intermediaire 

filament-subeenheden. 

Steinert, P.M., Idler, W.W., & Goldman, R.D. (1980) Proc. Nati. 
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Uit de DNA-volgorde-gegevens van Marchuk et al. blijkt, dat 

Lehnen et al. de intronposities voor kératine genen ten 

onrechte zo nauwkeurig voorspeld hebben aan de hand van hun 
nR-loopingn gegevens. 
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De structuur van het β -crystalline (muis) zoals die voorspeld 

Is vanuit de DNA-volgorde van het gen, is vrijwel gelijk aan 

het вд -crystalline van het kalf met uitzondering van de 15 N-

terminale aminozuren. Het samenvallen van de positie waar 

9 -crystalline begint af te wijken met de plaats van een 

intron in verwante e.Y-crystalllne-genen is op z'n minst 

frappant te noemen. 

Inana, G., Piatigorsky, J., Norman, В., Sllngsby, С , & 

Blundell, T. (1983) Nature 302, 310-315. 
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De tegenstrijdige bevindingen van Lazarides et al. enerzijds en 

Holtzer et al. anderzijds betreffende het wel of niet aanwezig 

zijn van vimentine in volgroeid spierweefsel, kunnen wellicht 

verklaard worden door te veronderstellen, dat vimentine In 

spierweefsel een andere conformatle aanneemt en zodoende een 

ander antigeen karakter bezit. 

Lazarides, E., Granger, B.L., Gard, D.L., O'Connor, СМ., 

Breckler, J., Price, M., & Danto, S.I. (1982) Cold Spring 
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Door te stellen, dat de door hun gebruikte cDNA-kloon pAct-1 

kan coderen voor oe-actine geven Sonano et al. blijk van het 

feit, dat ze zich de bron van hun kloon met goed realiseren. 

Soriano, P., Szabo, P., i Bernardi, G., (1982) EMBO J. 1, 579-

583. 
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In tegenstelling tot hetgeen de naam doet vermoeden, 1з het 

met zozeer de raethaanvormende, maar veeleer de afval-

afbrekende eigenschap die methaanbacterien tot commercieel 

Interessante organismen maakt. 
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De zeer korte "in press" tijd van sommige EMBO Journal 

artikelen zet de wetenschappelijke chronologie vaak op z'n kop. 

Gelsler, N.. & Weber, К. (1982) EMBO J. 1, 1649-1656. 

Lehnert, M.E., Jorcano, J.L., Zentgraf, H., Blessing, M., 

Franz, J.К., & Franke, W.W. (1981) EMBO J. 3, 3279-3287. 
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Gezien de rol, die wetenschappelijke publicaties spelen bij het 

aanvragen van gesubsidieerd onderzoek, is de term 

"advertisement", die door sommige tijdschriften wordt 

toegevoegd aan artikelen, geheel correct. 



10 

Bij het universitaire onderzoek wordt zo langzamerhand meer 

tijd besteed aan het aanvragen van subsidie dan aan het 

schrijven van wetenschappelijke publicaties. 
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Naarmate de mens ouder wordt, wordt zijn speelgoed duurder. 
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De suggestie van minister Deetman, dat de eventueel in te 

voeren "sabbatical" voor wetenschappelijk personeel in dienst 

van de universiteiten wellicht ook voor een zwangerschap 

gebruikt kan worden lijkt met het oog op de leeftijdsopbouw van 

het universitaire corps niet erg realistisch. 
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