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" Het dagelijks werk van de wetenschap bestaat voor het grootste deel uit het 

doen van waarnemingen en experimenten die erop zijn gericht om uit te zoeken 

of de denkbeeldige wereld van onze hypothesen overeenkomt met de werkelijk

heid. En zo ligt aan iedere vooruitgang in onze kennis van de natuur een daad 

van verbeeldingskracht, een speculatief avontuur, ten grondslag. Het was geen 

wetenschapper of filosoof die als eerste deze geestesinspanning wist thuis te 

brengen en er de juiste term voor vond maar een dichter.... " 

" .... (Poëzie) is middelpunt en omtrek van kennis tevens; ze is dat wat alle 

wetenschap in zich vat, en dat waaraan alle wetenschap moet beproefd worden. 

Ze is tegelijk de wortel en de bloesem van alle stelsels van denkingen, dat 

waaraan alle ontspringen en dat alle bekoorlijk maakt . " 

P.B. Medawar (1984). The Limits of Science, (vertaling J. Klerkx) 

P.B. Shelley (1821). A Defence of Poetry, (vertaling A. Verweij) 
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VOORWOORD 

Dat dit proefschrift door een persoon wordt verdedigd, houdt niet in dat het 

ook de prestatie van een persoon is. De verantwoordelijkheid ligt bij mij, maar 

de verdiensten bij vele anderen. Het proefschrift is het resultaat van een lang 

maatschappelijk en wetenschappelijk proces, dat zo intens is dat het tot een 

onomkeerbaar engagement leidt. Het is daarom goed vooraf verantwoording af te 

leggen van de voornaamste determinanten in dit proces. 

Allereerst zijn dat mijn ouders, die, tegen de feiten in, zicht hebben ge

houden op de potenties in mij en me in staat hebben gesteld "tweede kans on

derwijs" te volgen, lang voordat die term was uitgevonden. Ten tweede is dat 

Madeleine. De kiem van dit proefschrift is gelegen in haar voortvarendheid in 

het exploreren van nieuwe perspectieven. De confrontaties die hieruit voort

kwamen, hebben een belangrijke verbreding opgeleverd van menselijke en weten

schappelijke inzichten. Wat wezenlijk is aan wetenschap, de ethiek maar vooral 

de esthetiek, is mij bijgebracht door Victor West hoff. Het plezier in de uit

daging om problemen tot de kern te analyseren, komt voort uit het enthousiaste 

voorbeeld van John Harper. Zij beiden zijn de ware "bevorderaars" van deze 

studie. 

Bij het bewerken van dit proefschrift is gebleken dat een goed platform voor 

wetenschappelijke discussie een onontbeerlijke stimulans is. De verantwoorde

lijkheid hiervoor lag bij Peter van der Aart, die in die zin de grenzen en de 

richting van het onderzoek heeft bepaald. Voor de dagelijkse begeleiding van 

het onderzoek kon ik te allen tijde een beroep doen op Kees Blom. Zijn goede 

raad zit verweven in de verschillende experimenten die zijn uitgevoerd, samen 

met de praktische adviezen van Joop van Heeswijk. Meer in het algemeen geldt 

dat de collegiale sfeer en de onderlinge vriendschap op "Weevers' Duin" een 

belangrijke rol hebben gespeeld bij het plezier in het werk, waarvan dit proef

schrift een neerslag is. 

Belangrijke verbeteringen van de inzichten die uit dit onderzoekvoortvloeien 

zijn te danken aan de diepgaande discussies met Jos van Damme en Alt Smit. 

Vooral het nuchtere commentaar van Jos heeft bijtijds een eind gemaakt aan alte 

wilde speculaties. Verschillende studenten en stagiaires hebben meegewerkt in 

het onderzoek. Veel van hun werk is niet meer afzonderlijk aan te wijzen in de 

tekst maar hun bijdragen aan het denkproces kon ikzelf nog zeer goed herkennen 

bij het schrijven. Zij zijn in alfabetische volgorde: Bertie Joan van Heuven, 
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Eugène van Hove, Katrien Jansen, Trudy Piet, Philip Raaymakers, Pieter Reij-

broek, Jeannet Vermuë en Cora van de Water. 

Bij het statistisch en rekenkundig verwerken van de grote hoeveelheid ge

gevens is de hulp van Peter van Ewijk en Pieter Slim onontbeerlijk gebleken. 

Tijdens het verwerken van de gegevens en tijdens het schrijven hebben Siny ter 

Borg en Aad van Ast stilzwijgend en als vanzelfsprekend de gaten opgevuld die 

ontstonden door mijn preoccupatie met het proefschrift, inclusief een periode 

van drie maanden, die ik elders met toestemming van Piet Zonderwijk heb door

gebracht. Voor deze vriendendienst ben ik hen zeer dankbaar. Gedurende die drie 

maanden is mij door Jan Woldendorp gastvrijheid verleend op het Instituut voor 

Oecologisch Onderzoek te Heteren. 

In diverse stadia van bewerking is door een aantal personen de tekst van 

kritisch commentaar voorzien. Dit heeft in een aantal gevallen tot aanzienlijke 

verbeteringen geleid en soms fouten voorkomen. Daarvoor bedank ik Kees Blom, 

Siny ter Borg, Jos van Damme, Wouter Joenje, Hans de Kroon, Richard Law, Bert 

Lotz, Jaap Mook, Rob Soekarjo, Peter van Tienderen, Jan van der Toorn en Jim 

White. Degenen, die het manuscript hebben gezien, weten met hoeveel inzet en 

nauwkeurigheid Ali Ormel orde in de tekst heeft aangebracht, waarbij de figuren 

zijn gemaakt door Herman Klees. Jan Klerkx heeft bij een aantal hoofdstukken 

suggesties gedaan om de engelse tekst te verbeteren. 

Dit proefschrift is begonnen in een tijd van toereikende financiering van 

onderzoek. Vele jonge onderzoekers moeten zich nu vaak grote inspanningen ge

troosten tegen geringe vergoeding en met nog geringer perspectief. Van hun 

inzet hangt voor een belangrijk deel de toekomst af van dit vak. Aan hen wordt 

daarom dit proefschrift opgedragen. 
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"Verklaring" noemen wij het maar "beschrijving" is het, waardoor wij ons 

gunstig onderscheiden van oudere trappen van inzicht en wetenschap. Wij 

beschrijven beter - we verklaren net zo min als allen die voor ons kwamen. 

F. Nietzsche 

Het onderzoek waarop dit proefschrift is gebaseerd, is uitgevoerd op het In

stituut voor Oecologisch Onderzoek, Afdeling Duinonder zoek "Weevers' Duin" te 

Oostvoorne. Het onderzoek werd gefinancierd door BION-ZWO in het kader van het 

zwaartepunt-project "Vergelijkend onderzoek naar demografische, fysiologische 

en genetische eigenschappen van plantesoorten in relatie tot hun standplaats in 

graslanden". 

Grassland Species Research Group Publication No. 100. 
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chapter 1 

GENERAL INTRODUCTION 
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GENERAL INTRODUCTION 

The basic phenomenon that is at the heart of this thesis is the fact that, 

although species may differ in many ways, they can yet show a remarkable likL-

ness in the ways in which they are adapted to their environment. There seem to 

be many more species than there are major ecological factors to which they 

must adapt. This basic observation is already very old and can be traced back 

at least to Von Humboldt (1806, see Werger, 1980). This phenomenon offers the 

possibility of generalization and therefore an opportunity for theory building. 

Many systems and their theoretical foundations have been presented, each system 

stressing its own ordering principle. The first one to use traits related to 

the life history of species as a criterium, was that of Warming (1895; 1909), 

whose system of life forms was based on the longevity of species. Another such 

criterium was that of Raunkiaer (1904) based on the position of dormant buds 

in relation to survival in the adverse season. Common to all these systems is 

the notion of adaptation to a specific environmental factor Lately the term 

strategy or tactic has come into use to describe more complex adaptations 

which occur in species in response to more complex environmental factors (Grime, 

1979; Stearns, 1976), ignoring the useful distinction between these two con

cepts made by Harper (1967). 

A rather ornate branch on the tree of theories that seek to explain the 

various patterns of convergence in the ecology of species, is the theory that 

tries to find an explanation for the similarities in pattern of life histories 

between species. In a widely cited review of this life history theory, Stearns 

(1976) describes this pattern as a life history tactic. A tactic in his defi

nition is 'a set of co-adapted traits designed, by natural selection, to solve 

particular ecological problems. A complex adaptation'. Apart from the teleo

logica! aspects, such a tactic in the context of the life history theory re

fers to a combination of co-adapted life history traits such as age- and size-

dependent fecundity and mortality, number and individual size of offspring, 

time to first reproduction and frequency of reproduction, longevity and se

nescence. The basic justification for the existence of pattern in life history 

traits is rooted in the allocation principle which states that organisms have a 

limited amount of resources which they can allocate to reproduction, survival and 

competition, resulting in particular trade-offs (Skutch, 1949, Cody, 1966). There 

are many studies whicn demonstrate this principle, and a large body of theoretical 
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models has been developed, based on the optimalization of allocation.Recently 

the notion of trade-offs has been called into question as far as plants are 

concerned, because of the relative autonomy of various plant parts,at least 

with respect to allocation of carbon (Watson, 1984; Watson & Casper, 1984). If 

such autonomy exists, then the way various plant parts develop and are alloca

ted to various functions becomes very important. In that case the optimaliza

tion of allocation of resources should be complemented by the optimalization 

of design (Smith, 1984). 

The kind of environmental characteristics which determine a life history 

tactic are usually defined loosely in terms of density dependence in the regu

lation of the size of a population or in terms like predictability or "grain" 

of the environment. It is this ambiguity which hampers the development of a 

unifying theory (Boyce, 1984) so that a broad complex of theories of lower 

order exists,which lead to statements with regard to one life history trait or 

a combination of various life history•traits (Stearns, 1976; 1977). The 

question remains what makes life history theory so exciting that such a large, 

mathematically often elaborate body of theory has developed, making predictions 

on life history traits faster than tests of the hypotheses can be produced? 

The answer lies in the fact that in life history tactics there is a point of 

common interest between population ecologists and population geneticists 

(Barbault, 1984; Loeschcke & Wöhrmann, 1984). This interest is based on the 

fact that life history traits define the fitness of an individual. It is 

through differential survival and reproduction that some organisms show a 

larger increase in abundance than others, causing changes in the frequencies 

of the genes they carry with them. Or, quoting Stearns (1984) ' Life history 

traits are the phenotypic components of fitness'. Any evolved and co-adapted 

pattern in life history traits could therefore improve our understanding of 

the process of evolution. 

In this thesis the evolution of life histories is studied following a scheire 

which has been successfully applied in genecology. In this field of research, 

where ecology and genetics have long since met one another (Heslop-Harrison, 

1964; Langlel, 1971), the following propositions are made, (from Heslop-

Harrison, 1964) : 

1. Wide-ranging species show spatial variation in morphological, 

physiological and in this case life history traits. 

2. Much of this variability can be correlated to habitat differences. 

For life history traits this point is reviewed in Stearns (1976,1977). 
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3. Much ol this variability has a genetical basis. 

4. That part of the variability which is correlated with the habitat 

and has a genetical basis, is the result of natural selection. 

The first point of this scheme restricts the study of evolution of life his

tory tactics to intraspecific comparisons. In contrast to his earlier opinion 

(Stearns, 1976), Stearns (1980) argues that complex co-adaptations in life 

history traits will probably be rigid like the trait complexes which define the 

morphology of species, and are therefore best studied at higher taxonomical 

levels, using broad surveys, instead of at the level of intraspecific variation 

However, there is no a priori reason why complex adaptations should be rigid. 

In the case of morphological traits which define a species, there is a clear 

advantage in rigidity, because reproduction may depend on it. On the other hand, 

as argued by Harper (1982), there seems to be no reason for rigidity in traits 

that are geared toward maintaining individuals in more or less variable environ

mental conditions. Therefore, intraspecific variation in life history traits 

might still offer the best opportunity for studying the evolution of life his

tories (Etges, 1982; Barbault, 1984). 

The third point of the scheme has to be amended to include genetic covaria

tion between life history traits, as required by the definition. Relatively 

few studies demonstrating this genetic covariation have been published so far. 

Most of these studies were carried out by breeders, who tried to maximize cer

tain aspects in plants or animals related to reproductive output and found 

their efforts restricted by correlation with other traits (Etges, 1982; 

van Dijk, 1985). Some evidence for genetic covariation in traits regulating 

seed yield in Plantago lanceolata is presented by Primack 4 Antonovics (1981). 

The last point of the scheme is a conclusion based on reasoning after the 

fact and on analogy. Proof by analogy is not rated high in scientific theory, 

but it is still open to debate whether evolutionary hypotheses can be proven in 

a strict scientific sense (van der Steen, 1983a; Thompson, 1983). Somewhere in 

between strict proof and pure analogy is the hypothesis that the observed dif

ferences in life history traits must result in differences in fitness between 

individuals, thus making the evolutionary process more plausible. This hypo

thesis will be approached in two ways, in a direct test and in an indirect way, 

using model simulations. 

A direct test on differences in fitness can be performed by reciprocal 

transplant experiments as advocated by Antonovics (1976). Although transplant 

experiments are not new (Bonnier,1890; for a historical review see Briggs & 
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Walters, 1984) the reciprocality provides many additional advantages. It allows 

testing not only of the genetical aspects (Antonovics & Priraack, 19Э2) but also 

of the plastic response, especially if cloned material is used in the trans

planting. This important aspect of a plant's capacity to maintain itself in a 

variable environment (Bradshaw, 1965) has been considered a nuisance in evolu

tionary ecology, although recently plasticity has received renewed attention 

(Caswell, 1983; Stearns, 1984; Kuiper, 1984). 

The indirect test uses a matrix projection model (Lewis, 1942; Leslie, 1945), 

with which the dynamics of a population of a species can be simulated. The 

model's parameters are life history traits such as fecundity and survival, and 

these are estimated from field observations. The most important simulation 

result is an estimate of the population growth rate. The usefulness of this 

type of model in an evolutionary context has increased considerably since 

Caswell (1978) developed a general sensitivity analysis for these models.The 

reason is that the sensitivity analysis shows which parameter has the greatest 

impact on the population growth rate and therefore on the fitness of the indi

viduals in the population, using Fisher's theorem (Fisher, 1958). Sensitivity 

analysis therefore predicts where to expect the highest selection pressure in 

the life history of an organism and this in turn can be translated into quanti

tative genetic hypotheses about the levels of additive genetic variance to be 

expected. (For an early example of the use of sensitivity analysis in an evolu

tionary context, though based on a different type of model, see Lewontin, 1965). 

It should be kept in mind, however, that this is an indirect test and that it 

relies heavily on the population growth rate being an appropriate measure of 

fitness. This certainly is open to debate (Cooper, 1984). 

The points raised in this introduction are explored using Plantago lanceolata. 

Plantage lanceolata has been chosen as the species to use in this study for 

several reasons. This species occurs widely in a variety of mainly grassland 

habitats. It is reported to form ecotypes quite readily (Böcher, 1943; Primack, 

1976), and the species of Plantago, that are found naturally in The Netherlands, 

had been selected for a large scale, interdisciplinary investigation of their 

demographical, physiological and genetical characteristics in relation to their 

occurrence in grassland habitats (Van der Aart, 1979). 

The subsequent chapters of this thesis deal with the following aspects. 

Chapter 2 explores the way in which a rosette of Plantago lanceolata develops, 

based on how different meristems are assigned to different functions. This may 
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affect the allocation pattern, which is the fundament of any life history 

tactic. In chapter 3, the different life histories of two ecotypes of Plantago 

lanceolata are described in relation to habitat characteristics. Special atten

tion is given to reproductive effort, this being the most important aspect of 

the allocation pattern. In chapter 4, the demographic data collected in the 

field are transformed into matrix model parameters. After testing, a sensitivity 

analysis is applied to these models and several new hypotheses are formulated. 

Chapter 5 dicusses .the differences in fitness that are the result of differen

ces in life history traits in a series of three reciprocal transplant experi

ments, each experiment testing a different phase of the life history. One of 

the tests was done using cloned material and can therefore be used to discuss 

the effects of plasticity. The last chapter provides a kind of synthesis in 

which the model's predictions will be compared with the results of the trans

plant experiments. 
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chapter 2 

TERATOLOGY 

AND METAMER 1С PLANT CONSTRUCTION 

SUMMARY 

The growth of Plantago lanaeolata L. has been described using metamers as con

struction units. The growth of each unit has been broken down into a sequence 

of four simple building instructions, two of which incorporate two or three 

alternatives. The resulting conceptual model has been tested against a variety 

of teratologies known to exist in Plantago lanaeolata. All of these malforma

tions could be explained in terms of either wrong steps, or wrong sequences, 

or both. There seems to be a certain hierarchy of control such that more mal

formations tend to occur at tertiary meristems than at primary meristems. For 

at least some of the teratologies, the nature of the control seems genetic. 
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INTRODUCTION 

In plant ecology growth phenomena have been studied from different points of 

view. A first approach emphasizes growth as a process of capturing resources, 

studying its efficiency, allocation and evolutionary basis (e.g. De Wit, I960; 

Brouwer & De Wit, 1968; Grime & Hunt, 1975; Hunt, 1978; Abul-Fatih, Bazzaz & 

Hunt, 1979). This approach has its roots mainly in agronomy. 

Another line of thinking, one that will be adopted here, considers growth 

as the rhythmic and iterative development of a plant, studying the functional 

and adaptive characteristics of shape, either as a whole (e.g. Hallé & Oldeman, 

1970; Tomlinson, 1982) or as a result of the dynamics of plant parts (e.g. 

Harper 4 White, 1974; Harper 4 Bell, 1979; Caloin, Malonga 4 Tricart, 1983). 

It has its roots in plant morphology (White, 1979; Cusset, 1982). 

A common objective for morphologists and plant ecologists is the under

standing of the rules of development, the controls involved (genetic or envi

ronmental) and their evolutionary basis. The objective has been pursued at 

different levels of organization. In this respect the modelling of plant shape 

has been used heuristically to find rules at the cellular level (Lindenmayer, 

1975) and at the metamerie level (Bell, 1976). One type of model which has 

been used to construct multicellular arrays can with some slight modifications 

be used to construct models of whole plants (Frijters & I.indenmayer, 1974). A 

second approach models the shape of a plant directly using a basic unit of 

plant construction or metamer (White, 1979). This type of model has been used 

to simulate the development of ramets as well (Bell, 1979, 1984). 

It is the aim of this paper not only to show that a model using the metamer 

approach is capable of summarizing gross developmental processes in another 

genus (Plantago), but also that without difficulty the same model can be ex

tended and used to construct and predict a wide range of teratological mal

formations that have been found in Plantains, a genus long known to be noto

rious in this respect (e.g. Penzig, 1894). It is argued that the study of te

ratological malformations, using metamerie plant construction, can suggest as

pects of plant development where regulatory processes can easiest be disturbed. 

This could help the understanding of plant morphogenesis (Sachs, 1982). 
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MATERIAL 

During the summer of 1980 about 40 teratological individuals of Plantago lan

ceolata L. were collected in an abandoned meadow near Eben-Emael in Eastern 

Belgium. The collection included examples of a variety of abnormalities that 

occurred with unusually high frequency of about 1% of the flowering individuals 

in that meadow. The material was photographed, dried and when necessary studied 

under a binocular microscope. Teratological material of other plantains (Plan

tago major L., Plantago aoronopus L.) was made available by J. van Damme (State 

University of Groningen). Also, information from the literature has been used 

(Penzig, 1894; Blaringhem, 1923, Anonymous, 1926; Troll, 1943; Garjeanne, 

1951). Seeds were collected from some of the teratological individuals, sown 

in the greenhouse in the spring of 1983 and grown to maturity to find if there 

were any teratologies in the progeny (see also Blaringhem, 1923). 

THE MODEL 

The model that will be used in this paper is conceptual rather than mathema

tical and uses as its basic unit of construction, a me tamer: i.e. an internode, 

a node and the leaf attached to it with its axillary meristem. The construction 

of the metamer has been broken down into four simple 'building instructions to 

a meristem': 1, form an internode and suppress its elongation or la, form an 

internode, that will elongate; 2, form a node and a normal leaf at position χ 

(degrees) or 2a, form a scale-like leaf (bract) or 2b, form floral initials; 

3, form an axillary meristem at position X (degrees); 4, rotate π degrees. 

By iterating 1 to 4 a description of a normal vegetative rosette of a plan

tain is given. This includes a population of axillary meristems (or second 

order meristems). These axillary meristems may remain dormant or they may be 

stimulated into growth following one or other of two possible sequences: an 

iteration of 1, 2, 3, 4 will describe the formation of side rosettes, while the 

instruction la, 2a, 3 and 4 followed by an iteration of 1, 2a, 3 and 4 will 

describe the formation of a flowering stem and spike. The third order meri

stems in the side rosettes are equivalent to the second order meristems of the 

main rosette and by following 1, 2, 3, 4 cause a rapid proliferation of po

tential branching points. To model the formation of the flowers the third order 

meristems follow the sequence 1, 2b which in this model is final. Floral or-
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gans are thought to be modified leaves, and in a more detailed model the for

mation of sepals, petals, stamens, pistil and ovary might be achieved by vari

ants of the main sequence of 'building instructions' outlined above For our 

present goal, these details can conveniently be summarized in one step, 2b. 

The description which this model provides of the development of a normal ro

sette of Plantago, with several flowering stems and spikes, is summed up in 

Fig. 1, though without using the stopping rules that will be discussed later 

on. The description resembles in form the model of Rauh, as described by 

Jeannoda-Robinson (1977). It applies to all species with a basic architecture 

similar to that of Plantago. 

* 

Figure 1. Construction pattern for a single, flowering rosette of Plartago, 
using metamers. Numbers refer to construction steps (see text) 
Key # Moment of germination, ^^m Developmental path in first 
order meristem, — ^ Developmental path in second order meristem, 

Developmental path in third order meristem, Ш compulsory 

step, [S optional step. 

TFST OF THE MODEL 

The model has been tested against various malformations which have been ob

served in Plantago lanceolata L (Fig 2). 

The first set of malformations (A to H) can be attributed to 'wrong steps', 

A to С by an error at step 1, D to F by an error at step 2 and G to H by an 

error at step 4 None of these errors involves step 3. However, whether step 3 

is executed or not is sometimes difficult to notice. Only when an axillary 
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L M N O Ρ Q 

Figure 2. Teratologies in Plantago lanceolata. I, wrong steps; II, wrong 
orders; III, combination of I and II (for further explanation 
see text). 
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merïstem must develop into something, as for instance by the obligatory for

mation of a flower by a third order meristem, can abnormal development be 

identified. Malformations A to С involve an error in step 1. Step 1 is ex

pected; if step la is executed instead, then A results; if step la is executed 

repeatedly В results; if step la occurs at a third order rather than at a se

cond order meristem С results, but always in combination with a fault in step 

2. Errors in 1 at a first order meristem have not been observed. Step 2 can be 

executed instead of step 2a in second order meristems, forming leaf like 

bracts, once (D), a few times (E) or all the time (F). Note the flowers in the 

axils with F, which makes it distinct from J (see below). Leafy spikes are also 

known for Plantago major, where it is a hereditary feature known as the (fer

tile) var. rosarius. Whatever mistakes can occur in the third order meristem 

are hidden in the general step 2b, but errors such as wrong numbers of sepals, 

leaf-like stamens (one of the forms of male sterility, see Van Damme & Van 

Delden, 1982), are known to be of common occurrence. Whether mistakes are com

mon in step 4 is difficult to tell without measuring the actual parastichies 

of the rosette or the spike, except for one case, the rather common, simple or 

multiple, distortion of the flowering stem (G, H). It appears that 'wrong 

steps' are more common in second and third order meristems than in the main 

meristem. 

The second set of malformations (I to Q) are ascribed to 'wrong orders', 

that is, sequences otherwise correct are executed at the wrong moment in the 

model. For instance, when a rosette is found with a central flowering spike 

produced by the first order meristem, this is described by the model in terms 

of a first order meristem acting like a second order meristem. The situation 

where the main meristem forms a flowering spike has only been observed in 

Plantago ooronopus (J. van Damme, personal communication). Second order meri

stems may execute first order programs to result in side rosettes which are 

found in nature. When the first order program is executed after step la, this 

should result according to the model in stalked rosettes, like the ones found 

and drawn as I and J. If the second order meristem reverts to a first order 

sequence, when the flowering spike is already nearly completed, then the model 

describes a situation like the one under K. This malformation has sometimes 

wrongly been described as vivipary. The absence of flowers in the leaf axils 

indicates that only a wrong step is insufficient to model this teratology; a 

complete first order program is necessary (compare F and J). Teratologies like 

L and M can be expressed in terms of the model as a third order meristem exe-

24 



cuting once a second order program at a few positions (L) or at all positions 

(M). The same is true for teratologies N, 0 and P. Here the second order pro

gram is executed once excluding step la, at one place (N), at a few places (0) 

or at all places (P). When in the model a third order meristem follows a second 

order sequence repeatedly, that is at each time when a flower bud is formed, 

this results in a spike of bracts like the one drawn in Q. This teratology is 

also recorded for Plantago major, resulting in a beautiful, finely divided 

green 'inflorescence' (Anonymous, 1926). There appears to be a certain hierar

chy whereby a first order meristem only very rarely acts like a second order 

meristem which in turn has not been reported to act like a third order meristem 

and produce flowers. However, the reverse is quite common. In most cases when 

a second order meristem executes a first order program this is non-teratological 

(formation of side rosettes). When a third order meristem executes a second 

order sequence in the model, this results in forms like the common teratolo

gies L to Q. 

Î M L H ^ 

v^J 
- - < - < p 

?<• 

NKLM " 

Figure 3. Comprehensive model for the growth of Plantago lanceolata, in
cluding all the known teratologies (broken lines). For legend 
see Fig. I. Letters refer to teratologies of Fig. 2. Ζ indi
cates the formation of side rosettes. 
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More complex combinations of wrong steps and wrong sequences in the col

lected material are listed under III in Fig. 2. The combinations are R:E+N; 

S:E+L; T:A+E; U:A+E+L; V:E+I; W:A+E+I and X:A+E+I+L. 

From these examples, it is clear that the simple growth model presented in 

Fig. 1 can describe the more complex teratologies known for Plantago lanceo

lata. For convenience all the possibilities are summarized in Fig. 3. 

The phenotype of progeny of aberrant parents 

Seeds from the collected material of type 0, P, U and X were sown in the green

house, grown to maturity and checked for teratologies. The results are pre

sented in Table 1. Not all original aberrations presented in Fig. 2 could be 

tested this way, because not all individuals contained ripe seeds and some 

(Q) were sterile. The results show that type 0 and Ρ recur in progenies de

rived from 0 and Ρ parents; while types U and X do not. A more comprehensive 

study was reported by Blaringhem (1923) who obtained 80% of teratological 

spikes of type L-Q, in progenies after three generations of backcrosses be

tween male sterile seed plants and pollen from aberrant types. 

Table I. Tests on the progeny, grown from seeds from open-pollinated tera

tological parental plants (letters refer to Fig. 2). 

Plant number Phenotype 

0 

0+P 

0+P 

0+P 

Ρ 

Ρ 

и 
χ 

Number 

seedl ings 

25 

25 

25 

25 

25 

12 

25 

12 

of 

raised 

Number of 

teratomas 

2 

1 

0 

3 

2 

1 

0 

0 

Phenotype 

0 

0 

-

0+P 

Ρ 

Ρ 

-
-
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DISCUSSION 

Ideally, the model that conveys most understanding of the processes that regu

late growth and gross morphology of a plant individual should be a mechanis

tic one and ultimately be based on the phyllotaxis of plants as argued by Jean 

(1983) in a stimulating review. All of these processes are of interest 

to a plant ecologist, because vital functions of a plant depend on orderly, 

sequential development of tissues and organs and these developments in the end 

are under direct or indirect environmental control (Sattler, 1982; White, 

1984). In an ecological context such detailed models are only seldom used be

cause of the detail and the complex relationship with environmental determi

nants through the cell physiological level. It is therefore not surprising, 

that the model used most by Geologists is more empirical and takes a more prac

tical approach towards the phenomenon of growth, considering the whole plant 

or large parts of it like root, shoot, generative parts etc. and measuring its 

reaction to environmental conditions in terms of dry weight or rates of change 

in dry weight or any other appropriate unit. 

The model presented here, like other models based on metamers, is essen

tially mechanistic. It is capable of accounting for all observed teratomas in 

Plantage in terms of errors in a set of 4 repetitive construction steps. This 

way the usefulness of the model is confirmed. For future use the model could 

be improved by including the appropriate plastrochon times and growth rates 

for plant parts (Hunt, 1978; Hunt & Bazzaz, 1980; Gounot, Yu & N'Kandza, 1982). 

By putting construction costs to the architecture, a set of stopping rules 

could be provided and the various options a plant has to use its potential of 

meristems (Maillette, 1982; Porter, 1983) could be tested more extensively. 

However, if the metamerie plant construction model is to be anything more 

than a tool to mimic reality under different sets of rules, it must be capable 

of working heuristically and hint at the very nature of these rules. As poin

ted out by Sachs (1982) different levels of control should exist which must 

act upon the processes of development and be conservative in early stages. How 

such a hierarchy of controls could work is demonstrated by the work of De 

Vries, Springer & Wessels (1982, 1983). In developing pea seedlings there was 

no difference in abundant and polysomal m-RNA content in different organs, 

like roots, shoot, epicotyl and cotyledons, suggesting and epigenetic control 

of morphogenesis in this phase. In adult tobacco plants up to 70% of at least 

the polysomal m-RNA's is organized in an organ-specific manner (Kamalay & 
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Goldberg, 1980). This suggests a shifting balance between epigenetic and direct 

genetic control in the process of morphogenesis, shielding the young plant with 

a relatively unexpressed genotype from direct selective action from its envi

ronment, providing a hierarchy of control. 

Whatever the nature of the control, its hierarchy seems obvious. In the case 

of Plantago lanceolata for example, it seems that a first order meristem has no 

other option than to maintain and preserve the vegetative rosette. No terato

logies are known in the main rosette of Plantago lanceolata and control here 

is tight and conservative. The second order meristem can produce either flowe

ring stems and spikes or it can produce side rosettes which resemble the ro

sette, but second order meristems have not been observed to produce individual 

flowers. Teratologies are well known for this level (see Fig. 2, A to K) but 

seem to be environmentally determined, rather than by a change in the genotype 

(Table 1, U and X). The third order meristem can produce new spikes like the 

second order meristem, but unlike second order meristems it seems that these 

do not produce side rosettes. Although the formation of spikes within a spike 

is comparable with the formation of side rosettes in a main rosette, such 

forms (L to P) are considered teratological. These malformations and mistakes 

in flower construction are by far the more common teratologies, a fact also 

recognized by Blaringhem (1923), and clearly have a genetical basis. Generally 

speaking there is a decreasing level of control as growth advances as postu

lated by Sachs (1982). But when things go wrong further away from the main me

ristem, they go wrong in a well organized, patterned manner even to the point 

of being heritable. Many malformations possible from the model have not been 

observed and those that have seem to arise in an opportunist fashion, several 

together, usually under peculiar circumstances, as a reaction on disturbances 

in the habitat. Blaringhem mentions mowing too early or the application of or

ganic manure in the middle of the growing season as causing teratologies. The 

material used for this paper came from an abandoned meadow, where a road was 

under construction. Spraying against mildew in the greenhouse with Dinocap, a 

dinitro compound that stimulates metabolism, appears to trigger teratologies 

like D and E (personal observation). The moth Tortrïx paleana is reported to 

cause teratologies like N and 0 by depositing her eggs in the spikes of Plan

tago lanceolata (Darlington, 1968). 

It is the capacity of the metamerie plant construction model to simulate 

plant development and also to hint at the nature and level of control that re

gulates plant morphogenesis. Tn this respect teratological forms can be a valu

able tool in understanding growth and how it is controlled. 
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chapter 3 

LIFE HISTORY CHARACTERISTICS OF 

TWO ECOTYPES OF PLANTAGO LANCEOLATA L. 

SUMMARY 

The life history of two populations of Plantago lanceolata L. from contrasting 

habitats is described, using standard demographical techniques. One habitat is 

an open dune grassland on poor sandy substratum, grazed as a commonage f or cen

turies. The vegetation occasionally suffers from drought. The other habitat is 

a closed hay meadow on organic substratum that is permanently waterlogged, mown 

once a year in July. The plantains in the dry site form small flat rosettes 

with many leaves and side rosettes. Small seeds are produced from many globular 

inflorescences on short ascending stalks, late in the season (subvar. sphae-

rostachya f. minor). The plantains in the wet site form few tall erect leaves 

and no side rosettes. Big seeds are produced from few long inflorescences on 

long stalks early in the season (subvar. latifolia). Seeds from the dry popu

lation show innate dormancy, that shifts the main germination period towards 

spring. The seeds require light and high temperatures for germination and form 

an appreciable seedbank. Seeds from the wet population show little dormancy 

and germinate readily in autumn at low temperatures and light intensities, 

without forming a seedbank. Juveniles and adults share more or less equal risks 

in the dry site. Rosettes are short-lived and can flower in the second season 

even at small sizes. Seeds are produced at considerable costs. Juveniles are 

clearly more at risk in the wet site, where it takes several years to first 

flowering. Adults are long-lived and flower repeatedly, producing seeds at low 

costs. The results are discussed in connection with theoretical predictions 

from life history theory. 
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INTRODUCTION 

Since Turesson's important work on intraspecific variation in plants in rela

tion to habitat characteristics (e.g. Turesson, 1922a,b, 1925) and stimulated 

by the important evolutionary conclusions that can be drawn from such studies, 

a whole field of research has developed, which is nowadays usually referred to 

as genecology (Heslop-Harrison, 1964), but which has its roots much earlier, 

going back to the seventeenth and eighteenth century (Briggs & Walters, 1984; 

Langlet, 1971). 

It is not surprising that such a successful approach has also been advoca

ted in a related but much younger field of evolutionary ecology: The evolution 

of life history tactics (Stearns, 1976; Etges, 1982; Barbault, 1984; but see 

Stearns, 1980, 1984). A tactic has been defined as a complex adaptation, as a 

set of co-adapted traits designed, by natural selection, to solve particular 

ecological problems (Stearns, 1976). In the case of life history tactics, life 

history traits are involved, e.g. age- and size-dependent survival, reproduc

tion, longevity and time to first reproduction. The emphasis on life history 

traits stems from the fact that it is through differential reproduction and 

survival that evolution takes place. The knowledge of any co-adapted pattern 

in life history traits would therefore improve our understanding of evolution. 

This interest has yielded a wealth of theory, that has grown and is still grow

ing without much empirical testing. According to Stearns (1976), a set of data 

to test the theory with should fulfil three criteria. The data should describe 

the life history in demographical terms with special attention given to re

productive effort, as this is a central concept in the theory. The tests on 

differences in life history tactics should preferably be performed using eco-

types of the same species and, lastly, the ecotypes must be subjected to dif

ferences in density-dependent regulation in the field, as this is another cen

tral concept in the theory. 

Notwithstanding the fact that some of the best studies of life history tac

tics have used intraspecific variation in plants (Böcher, 1949; references in 

Stearns, 1977; Law et al., 1977; Caswell & Werner, 1978; Van der Vegte, 1978; 

Watkinson & Harper, 1978; Antonovics & Primack, 1982; Blom, 1983), these stu

dies remain comparatively few. The reason could be that in using plants, some 

modifications have to be applied to Stearns' original scheme. It is not until 

recently (Harper, 1977) that population biology of plants has grown to full 

maturity. This is, among other reasons, due to problems in defining a plant 
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individual. Vegetative spread is quite common and this complicates demographic 

counting of individuals. By recognizing the plant as a modular unit (Harper & 

White, 1974; White, 1979) this problem can be solved, but it is this same mo

dular construction that poses great problems in defining reproductive effort 

(Watson, 1984; Watson & Casper, 1984). Another problem is that, due to the 

diffuse interactions between plants, it is difficult to define density depend

ence. It is therefore usually equated with competitive ability, regardless of 

the nature of the competitors, but, as was pointed out by Boyce (1984), these 

two need not be identical and this could affect the comparison between theory 

and empirical data. Nevertheless, it is the purpose of this paper to provide 

empirical information with which at least some of the predictions of life his

tory theory can be tested. For this purpose, two ecotypes of Plantago lanceo

lata from two contrasting habitats have been studied over a three year period, 

using demographic techniques. Further tests of the theory, based on these data, 

are presented elsewhere (Van Groenendael, 1985b,с). 

MATERIAL AND METHODS 

Plant material 

Plantago lanceolata is a short-lived perennial herb, forming a rosette and pro

ducing long stalked inflorescences from axillary meristems that can also give 

rise to side rosettes (Sagar & Harper, 1964; Cavers et al., 1980). The flowers 

are born in spikes, they are self-incompatible (Ross, 1973) and each flower 

contains two ovules. It produces relatively large, smooth, oblong seeds about 

3 mm in size, weighing about 2 mg each, with a mucilaginous testa. The seeds 

are reported to germinate readily in light and in the dark at temperatures 

ranging from 10 С to 30 C, with an optimum around 23 С and to be stimulated 

by fluctuating temperatures (Steinbauer & Grigsby, 1957; Blom, 1978; Grime et 

al., 1981). Silvertown (1980) reports inhibition of germination under leaf ca

nopies, but this is not confirmed in experiments by Gorski et al. (1977) and 

by Pons (unpubl. data) using an artificial red/far-red gradient. Light sensi

tivity can be induced by burial (Wesson & Wareing, 1969) and germination is 

inhibited completely by far-red light in the seeds remaining after burial 

(Pons, unpubl. data). Povilaitis (1956) and Mortimer (1974) mention primary or 

innate dormancy and Stcinbauer & Grigsby (1957) describe a reduced germination 
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in the dark that can be relieved by 0.2% potassium nitrate solution but the 

reverse, stimulation of germination in the dark, is reported by Sagar & Harper 

(I960) and Blom (1978). 

After germination Plantago lanceolata forms two linear cotyledons, the 

shape of which seems to be genetically controlled (Antonovics & Primack, 1982; 

Slim & Van der Toorn, 1983). Growth rate can be quite high (Milton, 1943) but 

usually is found to be moderate (Grime, 1979). Although plants may flower 

within 6 weeks after sowing in the greenhouse or experimental garden, it usu

ally takes individuals more than one season to flower in the field. Flowering 

is induced by long day conditions (Snyder, 1948). During growth a variable 

number of side rosettes are formed, which increases the number of axillary me-

ristems from which inflorescences may originate (Soekarjo, 1980; Van Groenen

dael, 1985a), thereby increasing the reproductive output. 

The genus Plantago is considered conservative in an evolutionary sense 

(Stebbins & Day, 1967), notwithstanding the worldwide distribution of some of 

its members as successful weeds. Plantago lanceolata itself grows in the 

Netherlands in a variety of mainly grassland habitats (Westhoff & Den Held, 

1969; Haeck et al., 1981), tolerating a wide range of microclimatological 

(Stoutjesdijk, 1981) and edaphic (Troelstra et al., 1981) conditions. It is 

known to adapt to all these different circumstances partly by phenotypic plas

ticity (Antonovics S Primack, 1982; Van Groenendael, 1985b) and partly by 

forming distinct ecotypes (Böcher, 1943; Primack, 1976; Teraraura, 1978; 

Warwick & Briggs, 1979; Slim & Van der Toorn, 1983) even at very short dis

tances (Fowler 4 Antonovics, 1981). 

Site description 

Two habitats were selected which were sufficiently contrasting to allow 

straight-forward interpretation of differences in life cycle characteristics 

afterwards. The choice was confirmed by an ordination of all habitats of Plan

tago lanceolata (Haeck et al., 1982) based on the species assembly growing 

with Plantago lanceolata as the best overall indication of biotic and abiotic 

conditions (Westhoff & Van der Maarel, 1978). The first study site was located 

in a dry dune grassland which had been in use as a commonage and grazed by 

cattle and horses for at least three centuries (Noë & Blom, 1982). This more 

or less guaranteed fairly constant selective pressures. The grassland consists 

of a complex of dry dunes and wet dune slacks, with Plantago lanceolata more 
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or less abundant in an intermediate situation. When comparing the vegetation 

of the dry site with the standard classification of all Dutch vegetation types 

(Westhoff & Den Held, 1969), this vegetation belongs to the class of the dry 

grasslands, and is intermediate between two alliances, Thero-Airion and Galio-

Koelerion, as a result of the gradient on the slopes of the dunes (Blom, 

Husson & Westhoff, 1979). It is an open grass sward of low productivity on 

leached, formerly calcareous sandy substratum, which dries out easily. Conse

quently the vegetation suffers from periodic, but unpredictable and sometimes 

catastrophic summer droughts. Winter annuals and deep rooting forbs are domi

nant. Many ruderale in low densities indicate the impact of trampling and other 

types of disturbances associated with grazing. Rosettes of Plantago lanceolata 

in this vegetation are small and prostrate and show many leaves and ascending 

inflorescences with anali roundish spikes, a form described in the literature 

as subvar. sphaerostachya Mert. et Koch ƒ. minor (see Pilger, 1937). They 

form more or less clearly-defined patches, partly because of the many side 

rosettes formed in this population and partly because of limited seed disper

sal. The plants flower late in the season, from July to September. 

The second study site is a wet hayfield, which is mown once a year in the 

beginning of July. By that time all plants have set seed; plants flower in May 

and June. This meadow has been used for hay-making for a long period of time. 

It is situated in an old medieval river bed, now completely filled in. The 

vegetation in which Plantago lanceolata is found belongs to the class of wet 

grasslands and more specifically to the alliance Calthion palustris. This type 

of vegetation forms a closed, tall turf of intermediate productivity on com

pletely organic substratum, with the watertable constantly at or at most a few 

centimeters below the surface. The vegetation is rich in species, dominated by 

sedges and grasses and with many forbs. The rosettes of plantain have long 

erect leaves and erect inflorescences with elongated spikes on long scapes. 

This form is described in the literature as subvar. latifolia Wimm. et Grab. 

(see Pilger, 1937). Side rosettes are formed only rarely and the plants are 

distributed more or less randomly over a wide zone of the marsh. 

Demography 

2 
In both sites a series of 3 quadrats was set out, each of 0.125 m and marked 

with fixed cornerpoles over which a transparant drawing table could be fitted. 

The quadrats were placed close to each other in the centre of the same popu-
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lation, where the density of plantains was greatest. Apart from winter time, 

all rosettes were recorded onto plastic sheets every 6 weeks. Each rosette was 

given a fixed number and its fate was followed over 3 seasons, 1979, 1980 and 

1981. The following data were recorded: Number of leaves, length of longest 

leaf, number of ears, length of longest scape, the length of the spike attach

ed to the longest scape,its phase of flowering and herbivore damage to leaves 

and spikes. Lastly, mode of birth of the rosette was registered, either as a 

side rosette - and from which parent rosette - or as a seedling. In the case 

of seedlings the length of the cotyledon was measured as well. 

Four times, at three-monthly intervals during 1979, 50 soil cores of 10 cm 

length and 3 cm diameter were taken randomly from a 10 cm grid with 200 po

sitions, overlying the same population which was recorded demographically. The 

cores were divided into 4 layers: 0-1 cm; 1-4 cm; 4-7 cm and 7-10 cm. These 

were spread onto wet sterile sand in the greenhouse and plantain seedlings 

which emerged were counted and removed. Because only few seedlings emerged 

from the 3 deeper layers, these were taken together in the analysis. After 3 

ironlhs the soil was sieved to retrieve any remaining seeds. These were tested 

for viability using vital staining with 0.\% tetrazoliumchloride solution. In 

this way information was obtained on size and seasonality of the seedbank. 

Given the contrasting information in the literature on the requirements 

for germination, germination tests were conducted during the winter of 1980. 

Three petri dishes were used per treatment, each containing 50 seeds on wet 

filter-paper. Seeds were collected in bulk in both habitats during 1979 and 

stored dry at 4 C, till they were used. The petri dishes were placed in incu

bators and the germinated seeds were removed at regular intervals. When no 

further germination was observed, the remaining seeds were tested for viabi

lity, using vital staining as before. Germination is expressed as a percentage 

of the vital seeds. The following factors were tested: Constant temperatures 

(6
0
C, 12

0
C, 18

0
C, 24

0
C and 30

O
C) in light 16 hrs per day, and in darkness; age 

in weeks (6 and 12 weeks respectively) at 24 С in light and finally seed size, 

distributing the seeds by hand over 5 size categories, each category with a-

bout equal numbers, again at 24 С in light. Petri dishes used for the dark 

treatment were filled with seeds in safe green light, wetted, and immediately 

wrapped in aluminium foil. Twelve replicates were used in this case, so that 

germination could be followed over 4 time intervals of 10 days each. 

Because of the relatively long interval of 6 weeks between the recordings 

in the permanent quadrats, more precise data were collected during the f lower-
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Figure 1. Number of seeds in the soil for Plantago lanceolata in a dry dune 

grassland (DG) and a wet meadow (WM) at 4 moments in the year, based 

on 50 soil samples each. The clustering of seeds in the samples is 

indicated by the variance over mean ratio. The number of seeds pre

sent in the top layer (0-1 cm) is indicated by shading. The remain

ing seeds were found between 1 and 10 cm. 

ing season. About 30 adult rosettes were selected just outside the quadrats. 

The leaves and ears in these rosettes were marked with paint, using the tech

nique described by Blom & Van Heeswijk (1984). The fate of leaves and ears was 

recorded at weekly intervals during the flowering season in 1980. Thus, turn

over rates were obtained for leaves and ears with which the demographic data 

could be complemented. 

RESULTS 

Seedbank and germination 

The l i f e of an independent i n d i v i d u a l of Plantago lanceolata i s taken t o s tar t 

as a seed i n t h e s o i l o r on the s o i l s u r f a c e , which t o g e t h e r form a seedbank. 

50-

von/meon 

1/11 1/6 1/9 1/11 

'79 '80 

2.5 2.9 1.5 3.0 
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Figure 2. Percentage germination after six weeks,of vital, one year old seeds 
of two populations of Plantago lanceolata as a function of seed-
weight, tested at 21 С (a) or as a function of temperature (b). The 
population from the dry dune grassland is represented by squares, the 
population from the wet meadow by circles. Open symbols refer to 
tests conducted in light, closed symbols to tests in dark. Bars 
indicate the standard error. 

In the dry dunes this seedbank is larger, more concentrated in the top layerof 

the hard sandy soil and also more variable in time, but even at its smallest 

size it still contains twice the number of seeds that are found in the marshy 

soil of the meadow (Fig. 1). Here seeds are buried deeper in the soft sub

strate and show a less prorounced pattern in time and in space, as indicated by 

the variance over mean ratio (values closer to unity). In the dry dunes the 

spatial distribution is much more clustered as one would expect with a cluster

ed distribution of adult plants and a limited seed dispersal. 

The differences in the extent and persistance of the seedbank can be re

lated to differences in germination requirements as observed in laboratory 

tests. In general seeds from the dry site germinated less easily and showed a 

higher light requirement for germination than seeds from the wet meadow popula

tion. The capacity to germinate decreases with decreasing seed size in the dry 

dunes whereas there is no such effect in the bigger seeds from the wet meadow 
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(Fig. 2a). The response to temperature i s also clear ly di f ferent . Seeds from 

the meadow population germinate at lower temperatures than seeds from the dune 

population, but are also more clearly inhibited by high temperatures (Fig. 2b). 

Age has a more prorounced effect in the dry population. Six week old seeds 

from th is population show a stronger innate dormancy than six week old seeds 

from the wet population (percentage germination 30 + 10 and 54 + 7 for dry and 

wet population, respect ively) . After twelve weeks th is innate dormancy is r e 

lieved (percentage germination 74+8 for dry and wet population, respect ively) . 

Field observations support the germination charac te r i s t ics found in the 

laboratory. In the wet meadow conditions are always cooler with l i t t l e l ight 

penetrating to the soil surface (Stoutjesdijk, 1981), so that germination must 

be possible at low temperatures and under low l ight i n t e n s i t i e s . There is 

l i t t l e innate dormancy so that germination can take place in autumn or early 

in spring when the vegetation is re la t ive ly open. This i s in agreement with the 

actual pattern in the f ield (see below). There i s also very l i t t l e enforced 

dormancy and this r e su l t s in low numbers of seeds in the seedbank. The large 

number of seeds in the seedbank in the dry dune grassland i s the resu l t of the 

opposite conditions: There i s innate dormancy, shifting the main germination 

towards the spring and enforced dormancy occurs as a resu l t of l ight and tem

perature requirements, producing a considerable seedbank. 

Population dynamics 

The overall ppu l a t i on dynamics of both ecotypes, presented as the to ta l number 

of individuals over time, together with the cumulative to t a l number of b i r ths 

and deaths, is given in Fig. 3. Fluctuations in numbers are stronger in the dry 

dune grassland. The greatest mortal i ty i s found in summer as a resu l t of cata

strophic droughts, whereas in the wet meadow mortality i s greatest in winter. 

In both s i t e s there are two germination flushes, but the main period of germi

nation i s spring in the dry s i t e and autumn in the wet s i t e . 

More insight in the dynamics can be obtained by studying the age dependence 

of b i r th and death processes. The fate of various age categories i s drawn as 

cohort survivorship curves in Fig. 4. Juveniles carry the greatest r i sk in the 

wet meadow with greatest mortali ty over winter, especially for those plants 

that have germinated in autumn. Their ha l f - l i fe i s about four ironths. For the 

spring cohort of seedlings th i s i s about six months, whereas adults have an 

estimated ha l f - l i fe of about 49 months. In a l l , th is i s a Deevey type I I I sur-
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Figure 3. Total number of rose t tes of Plantago lanceolata over time present in 
0.375 m in a dry dune grassland (DG) and in a wet meadow (WM). Cu
mulative numbers of rose t tes tha t were born (+) and that died (-) 
are presented as well . 

vivorship curve. After about two years the plants reach a very stable survivor

ship, but i t takes at least three years before they can flower. How age af

fects the reproductive output will be discussed below in a separate chapter. 

At the dry s i t e juveniles and adults share the r i sks more or less equally. 

Estimated ha l f - l i f e for adults is between 19 and 21 months, excluding the ef-

42 



DG WM 

100: 

1 

1 

«и 

Ι τ - ρ —ι—г 
79 •во •81 

year 

100^ 

7 9 80 •81 
year 

Figure 4. Survivorship curves for various cohorts of Plantago lanceolata from 
a dry dune grassland (DG) or from a wet meadow (WM). Symbols are as 
follows: A spring cohort of seedlings 1979; · autumn cohort of 
seedlings 1979; » spring cohort of side rosettes 1979; Φ autumn 

cohort of side rosettes 1979; • rosettes present in spring 1979; 

χ genets present in spring 1979; spring cohort of seedlings 1980; 

m autumn cohort of seedlings 1980; * spring cohort of side rosettes 

1980. 

feet of the catastrophic drought. For juveniles half-life is about 18 months 

but the extremes are more pronounced, ranging from 12 to 24 months. After about 

six months juveniles reach a stable survivorship and the whole survivorship 

curve is much more that of a Deevey type II. Plants can flower the second 

season after germination. The cohort carrying the greatest risks is that of 

side rosettes, but nevertheless they have a profound effect on genet survival. 

Half-life of genets is about 31 months, which is much better than the ramet 

half-life of 20 months. Given the catastrophic drought, the effect of age on 

reproductive effort cannot be established. 

Although it is clear that there are important differences in age-dependent 

survival and time to adulthood, these differences have their greatest effect 

early in life. Therefore, size is a relatively more important criterium in the 

demography of these plants as has been stressed by Werner & Caswell (1977). 
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Table 1. Size dependent life history traits for a population of Plantago lan
ceolata from a dry dune grassland measured in the season of 1979. Size 

is based on number of leaves χ length of longest leaf in mm and divid

ed in five categories of increasing magnitude (50, 100, 200, 400 and 

> 400). Symbols are as follows: nr number of main rosettes; fг 
flowering rosettes; ne/r number of ears per rosette; ns/e number of 
seeds per ear; ns/r number of seeds per rosette; de damaged ears; 
dr damaged rosettes; su rosettes surviving until the next summer; 
rz rosettes with side rosettes; nz/r number of side rosettes per 
rosette; nz number of side rosettes that survived until the flower
ing period; fζ flowering side rosettes. 

nr 

67 

70 

84 

44 

2 

%fr 

0 

3 

21 

55 

(100) 

17 

ne/r 

0 

1.5 

1.8 

3.2 

3.0 

2.7 

ns/e 

-

13 

16 

20 

26 

19 

ns/r 

-

20 

29 

62 

77 

42 

%de 

-

0 

12 

19 

18 

18 

%dr 

0 

14 

19 

23 

50 

14 

%su 

0 

1 

8 

11 

0 

5 

%rz 

5 

6 

8 

43 

0 

12 

nz/r 

2.7 

3.3 

3.1 

4.0 

0 

3.6 

nz 

4 

8 

14 

17 

1 

%fz 

0 

25 

43 

65 

(100) 

46 

The effect of size on reproductive effort, survival, side rosette formation 

and herbivore damage is also apparent from a comparison between the two eco-

types (Table 1 and 2). Reproduction starts at smaller sizes in the dry popula

tion, more plants per category do flower and there is a stronger correlation 

between size and reproductive output. Once committed to flowering, plants in 

the wet site produce a rather constant number of ears. The reproductive output 

is not so clearly dependent on size. Side rosettes, formed in the dry site, 

also show a clear size dependence. Those that survive until the summer have 

a greater chance of flowering than normal rosettes, and produce as many seeds. 

Thereby they enlarge the reproductive output of the genet. Size-dependent sur

vival of rosettes shows the same tendency as age-dependent survival: The small 

rosettes carry the risks in the wet site but in the dry site these risks are 

equally shared between small and big plants. Herbivore damage is concentrated 

in the smallest category in the wet meadow and in the larger categories in the 

dune grassland. This is the result of the difference in the most important her

bivores in both sites: Slugs in themarsh and rabbits and large grazers in the 

dune grassland. The prostrate ears are relatively well protected in the dunes 
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Table 2. Size dependent life history traits for a population of Plantago lan
ceolata from a wet hay meadow measured in the season of 1979. Size is 

based on number of leaves χ length of longest leaf in mm and divided 

in five categories of increasing magnitude (150, 300, 600, 1200 and 

> 1200). Symbols as in Table 1. 

size 

1 

2 

3 

4 

5 

nr 

65 

69 

35 

47 

27 

%fr 

0 

0 

11 

32 

82 

ne/r 

0 

0 

1.8 

1.7 

1.9 

ns/e 

-

-

35 

36 

51 

ns/r 

-

-

62 

56 

94 

Zde 

-

-

0 

52 

36 

%dr 

3 

2 

2 

0 

0 

%su 

22 

25 

57 

83 

93 

17 1.7 44 76 38 2 53 

but there is a surprisingly high prédation on the tall inflorescences in the 

hay meadow, which are eaten mainly by birds such as wood pigeons, ducks and 

pheasants. 

Reproductive effort 

The differences between both ecotypes are most pronounced in the way offspring 

is produced. Not only are there differences in the time to adulthood and the 

number of times the plant can be expected to flower, but also in the percentage 

of adults flowering and the amount and partitioning of the energy invested in 

the offspring. The morphological aspects of seed production are summarized in 

Table 3. At the dry site rosettes produce few, small and highly variable seeds 

per ear, but onraany ears, also in side rosettes, and over a prolonged period 

of time. In all, about 120 seeds are produced as an average per genet. In the 

wet meadow this is about 108 seeds, produced by a few big spikes in late spring 

Taking the lifespan of individuals into account, however, more seeds are pro

duced in the wet site per adult. This can compensate for the greater risks for 

seeds and seedlings in the marsh. Such risks are much smaller at the dry site, 

where adults share the risks more or less equally with the young plants. These 

findings support the theoretical conditions formulated by Charnov & Schaffer 

(1973) for iterocarpy, which state that the most pronounced iterocarpy should 
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Table 3. Morphological aspects of seed production measured in flowering roset

tes of two populations of Plantago lanceolata, from a dry grassland 

and a wet meadow respectively. 

dry grassland 

η mean CV% 

wet meadow 

η mean CVZ 

Number of leaves 

Length of longest leaf cm 

Number of ears/rosette 

Number of ears/genet 

Length of scape cm 

Length of spike mm 

Flowers/spike 

Seeds/spike 

Seeds/mm of spike 

Weight/seed mg 

53 

53 

53 

32 

53 

53 

30 

30 

30 

30 

8.0 

34 

3.8 

9.2 

5.4 

7.3 

15 

16 

1.7 

0.7 

27 

24 

45 

69 

61 

31 

53 

75 

69 

75 

35 

35 

35 

35 

35 

35 

30 

30 

30 

30 

5.7 

203 

1 .8 

1.7 

38.0 

17.1 

63 

57 

2.5 

1 .9 

25 

24 

47 

47 

29 

34 

64 

53 

29 

39 

be found when juvenile mortality is high compared with the risk of dying for 

adults. 

There are indications that more costs are involved in producing offspring 

at the dry site than at the wet site. Not only are the seeds smaller and more 

variable but there is also a significant negative correlation between the mean 

seed-weight in an ear and the number of seeds that can be filled per length of 

ear (Table 4). The relationship between the number of offspring and the costs 

to produce them has also been used to predict the number of times an organism 

should reproduce (Gadgil & Bossert, 1970). This relationship can be approxi

mated in this case by using the number of seeds as an equivalent for number of 

2 
offspring and seed-weight per cm of leaf area as reproductive effort (Fig. 5). 

The pros and cons of measuring reproductive effort as a ratio between plant 

parts are worked out by several authors(Thompson & Stewart, 1 981 ; Watson & Casper, 

1984). Nevertheless, this measure of reproductive effort is adopted here, on 

the basis of the findings of Primack (1979), who found a satisfactory relation

ship between this way of expressing reproductive effort and iterocarpy in the 

genus Plantago. The relationship between number of seeds and reproductive ef

fort shows that in the wet meadow more seeds are produced at considerably 
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Figure 5. Estimated number of seeds per rosette of Plantago lanceolata from a 
dry dune grassland (+) or from a wet meadow (·) as a function of_ 
reproductive effort, expressed as mg seed weight produced per cm 
of leaf area. 

lower costs than in the dry grassland. This is in agreement with theoretical 

predictions and with the findings of Primack (1979). Moreover, these costs are 

significantly correlated to the number of seeds produced in the dry dunes, and 

this is a necessary condition for selection in the direction of monocarpy. At 

the wet site this correlation is not significant (Table 4). This is not to say 

that there is no price to pay. This becomes evident when the biomass allocated 

to seed production is compared with the biomass allocated to growth over the 

flowering period. There is a clear negative correlation between RGR and re

productive effort in both habitats (Table 4). 

The other relationship used by Gadgil & Bessert (1970) to predict whether 

an organism should bemonorarpic or iterocarpic, is the relationship between 
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53 

53 

53 

30 

30 

18 

0.395 

0.602 

0.514 

0.716 

-0.449 

-0.561 

< 0.01 

< 0.001 

< 0.001 

< 0.001 

< 0.01 

< 0.05 

35 

35 

35 

30 

30 

46 

0.330 

0.330 

0.095 

0.903 

-0.214 

-0.489 

< 

< 

< 

< 

0.05 

0.01 

ns 

0.001 

ns 

0.001 

Table 4. Correlation coefficients between various traits related to seed pro

duction in two populations of Plantago lanceolata for a dry dune 

grassland and a wet meadow respectivels. Reproductive effort is calcu

lated as mg geed-weight produced per cm of leaf area. Growth is calcu

lated between the census directly preceding'the onset of flowering and 

the moment when most seeds were ripe and based on non-destructive es

timates of biomass (number of leaves χ length of longest leaf). 

dry grassland wet meadow 

η r ρ η r ρ 

Number of leaves χ number of ears 

Seed-weight χ leaf area 

Seed-weight χ reproductive effort 

Length of spike χ seeds/spike 

Seed-weight χ seeds/iran spike 

Growth χ reproductive effort 

reproductive effort and the residual reproductive value. It states that high 

reproductive effort should be associated with a reduced reproductive success in 

the future. This can be checked in the wet meadow, where the adults remained 

alive during the three years of field work. Out of 43 flowering rosettes in the 

first season, 5 died, 24 skipped flowering and 14 flowered again in the next 

season. The reproductive effort was highest in the group that died and lowest 

in the group that flowered again (Table 5). Out of the 15 that flowered in the 

second season 9 did flower for the third time in the third season and this is 

significantly better than expected from the proportion of individuals that 

2 
flowered twice (χ = 5.24; DF = 1; ρ < 0.05). This again is in agreement with 

the predictions and field evidence for instance for ecotypes of Poa annua 

(Law, 1979). However, without information on the genetics of reproductive ef

fort, it is dangerous to interpret the field experience with two ecotypes of 

Plantago lanceolata in an evolutionary context as selection for reduced itero-

carpy. 
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Table 5. The relation between estimated biomass (EB) and reproductive effort 
(RE) measured in 43 rosettes of Plantago lanceolata from a wet meadow 
that flowered in the first season,and future reproductive success. 
Rosettes are categorized according to their subsequent fate: 
• flowering; о non-flowering and + dead. 

·+ ·ο+ ·οο ·ο· м о ··· 

5 4 14 6 5 9 

1st year ЕВ 78 + 72 76 + 66 161 + 151 203 jf 58 137 + 67 286 +_ 260 

RE 3.7^3.0 2.9+2.3 2.9+2.0 2.1+1.3 2.6+2.2 2.1+1.2 

2nd year ЕВ + 246 +_ 1 18 173 + 88 345 + 198 274 +_ 148 394 + 482 

RE + - - - 1 . 0 + 0.8 1.9 + 1 .2 

3rd year ЕВ + + 148 + 69 113 + 50 146 + 81 156 + 102 

RE + + - 6.7+2.8 - 3.3+1.7 

CONCLUSIONS 

The complete demographic profile for the two populations of Plantago lanceolata 

presented in this paper shows clear contrasts that seem to be related to the 

environmental conditions where they are found. 

The population in the dry dune grassland is under strong abiotic control. The 

soil is poor in nutrients and there is frequently a shortage of water, which 

sometimes takes the shape of catastrophic droughts. An important biotic factor is 

grazing by cattle. The population is short-lived with a more or less Deevey 

type II survivorship curve, indicating that juveniles and adults carry about 

equal risks of dying. There is only a short juvenile period and plants flower 

the second season. Seed production itself shows a clear size dependence and is 

found in small as well as in big rosettes. Many side rosettes are formed, which 

have a high probability of dying, but which, when successful, can flower in the 

same season as they were born. Seeds are produced from many short inflores

cences which arise from the axillary meristems in the many short leaves that 

constitute a rosette in this habitat. Seeds are produced at great costs. Within 

one spike a limited amount of resources are distributed over the embryos pre

sent, resulting in small seeds. The seeds have a short period of innate dor

mancy and to some extent require light and relatively high temperatures for 
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germination. These germination requirements are consistent with the presence of 

a substantial seedbank as well as with the observation that the main germina

tion takes place in spring. All of which combines into a picture of a short

lived ruderal with a tendency towards monocarpic production of many small seeds 

which form a seedbank to tide the population over periods of unpredictable 

droughts. 

The population from the wet meadow forms a strong contrast with the popula

tion from the dry dunes. The soil in the wet meadow is completely organic and 

relatively well supplied with nutrients. The watertable is always at or shortly 

below the soil surface. The population is probably under strong biotic control 

as a result of vigorous competition by its neighbours, mainly for light. Short

age of light penetrating through the canopy to the soil surface is the main 

reason why so many seedlings and juveniles die in this habitat, whereas the 

adults, once they have penetrated into the canopy, live for long periods. This 

results in distinctly hollow Deevey type III survivorship curves. Plants remain 

vegetative for at least three seasons. Only a relatively low percentage of all 

adults do flower. When flowering, rosettes produce one or two tall inflores

cences from the axils of the few leaves that form one rosette. Λ large number 

of big seeds can be filled on one spike at relatively low costs. The costs are 

paid in terms of reduced growth for the rosette over the period of seed pro

duction, but there is no clear relation between reproductive effort and number 

of seed produced. The reproductive effort affects to some extent the repro

ductive success in the future. These two observations are consistent with con

ditions that in theory favour iterocarpy. The seeds have only a very reduced 

innate dormancy. There is no requirement for light and germination proceeds at 

low temperatures resulting in direct germination in autumn and the presence of 

only a transient seedbank. This combines into a picture of a competitive, long-

lived, iterocarpic perennial adapted to live in stable environments. 

The relations between the demographic features of the two populations of 

Vlantago lanceolata and the habitat characteristics strongly suggest that there 

is local adaptation and that both populations have undergone natural select

ion towards the different life histories demonstrated in this paper. However, 

the intuitive fit between habitat and life history constitutes insufficient 

grounds for such a conclusion. Independent proof is necessary to establish the 

adaptive significance of the differences observed in the two plantain popula

tions (Van Groenendael, 1985b,с). 
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chapter 4 

THE CONTRASTING DYNAMICS OF 

TWO POPULATIONS OF PLANTAGO LANCEOLATA L., 

CLASSIFIED BY AGE AND SIZE 

SUMMARY 

The dynamics of the two populations of Plantage lanceolata L. are simulated 

with the use of matrix projection models. The fecundity and survival parame

ters that together form the matrix, are based on demographic fieldwork and 

evaluated for both size and age categories at the same time, using the formu

lation originally proposed by Goodman. The output of the model is verified 

against field data and this proved to be satisfactory. After verification sen

sitivity analysis is applied to the model to find the life history traits that 

are most important in defining the population growth rate. Both absolute and 

relative perturbations are used in this analysis and their biological impli

cations are discussed. The results from the analysis are in general agreement 

with expectations based on field experience: new recruitment is most important 

in the population from an unpredictable environment, whereas adult survival is 

most important in the population from a stable environment. In an evolutionary 

context, on the basis of Fisher's theorem, the calculated sensitivities can be 

used to predict selective pressures on life history traits. Some pitfalls in 

this approach are discussed. The particular form of the matrix projection model 

in this paper is time-invariant. However, fecundity and survival rarily are 

constant over time. Therefore random sequences of good, normal and bad years 

are generated and incorporated in the model. The impact of various proportions 

of good, normal and bad years on the model is evaluated, using time to ex

tinction as a measure. In a final section the use of matrix projection models 

for purposes of description and prediction are listed and discussed. 
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INTRODUCTION 

Since their first formulation by Lewis (1942) and Leslie (1945) matrix projec

tion models have been given much attention in population biology. Useful demo

graphic properties can be obtained from solving the characteristic equation, 

either analytically or numerically. Many extensions have been proposed to the 

original model, according to the specific needs of the user (Usher, 1972). In 

the original form matrix elements describe survivorship and fertility sche

dules, based on age categories, but other categories can be used as well 

(Lefkovitch, 1965) or even combinations of categories (Goodman, 1969; Law, 

1983). Matrix models can be made stochastic (Pollard, 1966; Boyce, 1977; 

Tuljapurkar, 1982) or functions of harvesting or densitiy (Usher, 1972) and 

arranged in ways so that even quite complex life histories can be modelled 

(Caswell, 1982). This all shows the wide applicability of the matrix formula

tion for modelling populations and simulating the various effects of changes 

in the parameters of the model. 

Apart from its use in a demographical sense, the model is also used in life 

history theory. This stems from the fact that the population growth rate can 

be used as a measure of fitness (Fisher, 1958; Emlen, 1973). Especially since 

Caswell (1978) developed a general formula for the simultaneous calculation of 

the effect of small changes in each parameter of the model on this growth rate, 

it has become possible to compare directly the relative effects on fitness of 

various life history traits, even in non stable or variable environments 

(Templeton, 1980; Tuljapurkar, 1982). This in turn can lead to hypotheses con

cerning the heritability of those traits along lines suggested by Stearns 

(1977, 1980) and recently by Schmidt S Lawlor (1983). 

It is the aim of this paper to apply the matrix formulation to describe the 

complex life history of two ecotypes of Plantago lanceolata from contrasting 

habitats, incorporating seedbank, vegetative ramification, seasonality and 

senescence, based on demographic data (Van Groenendael, 1985b). After verifi

cation of the model against the field data, it will be evaluated by means of 

sensitivity analysis and used in simulating the effects of variation in envi

ronmental conditions like stochastic disastrous droughts, known to be impor

tant in the field. By using two ecotypes that are proven to be genetically 

different for various life history traits, it must be possible to confront the 

evolutionary predictions of the model with experience from the field. Further 

experimental tests are presented elsewhere (Van Groenendael, 1985b,с). 
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MATERIAL AND METHODS 

The populations 

The first of the two ecotypes is found in a dry dune grassland (DG), grazed as 

a commonape f or over three centuries by cattle and horses. The soil is sandy and low 

in nutrients (Troelstra, 1978), sometimes experiencing unpredictable and ca

tastrophic droughts. The individuals are small, short lived, with many pros

trate leaves and inflorescences, bearing short ears on short scapes. Flowering 

and setting of seed takes place between June and September. The seeds are small 

and form a substantial seedbank. Main germination is in spring and plants grow 

quickly, so that they can flower in the next season. Formation of side rosettes 

is abundant. 

The other population is found in a wet hay meadow (WM), situated in an old 

filled-in riverbed, mown once a year in mid-July. The soil is a completely 

organic peat, that is permanently waterlogged and rather productive. The indi

viduals of Plantago lanceolata that grow here are tall with few tall erect 

leaves and inflorescences, bearing long spikes on long scapes. They flower in 

May and produce big seeds in June and July that form no seedbank to speak of. 

Main germination is in autumn and plants grow very slowly. It takes at least 

three years before they flower. Only very seldomly side rosettes are formed in 

the field, and individuals are rather long lived. The main demographic features 

of both populations based on field observations over the period of 1979-1981 

arc summarized in Table 1. 

The model 

In building a matrix projection model much depends on the initial choice of 

categories and time steps, for which the transition probabilities and fecun

dity will be evaluated. Although Werner & Caswell (1977) quite convincingly 

argue that a stage projection matrix is superior to a matrix based on age this 

might be less true for a definitely iterocarpic perennial with age depen

dent fecundity, age dependent seed decay in a seedbank and senescence in old 

age. Therefore the model, proposed by Law (1983) was preferred, because it 

uses age and size categories simultaneously. Considerable modifications were 

necessary, however, to accomodate the complex life histories of the two Plan

tario populations (Van Groenendael, 1985b). 
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Table 1. Characteristic differences between two populations of Plantago lan
ceolata from a dry dune grassland (DG) and a wet meadow (WM),, 
respectively. 

dry grassland (DG) 

mean CV% 

wet meadow (WM) 

mean CV% 

No. of leaves 

Length of longest leaf mm 

No. of ears 

Length of scape mm 

Length of ear mm 

No. of seeds/ear 

Seed-weight mg 

No. of side rosettes 

% adults flowering 

% rosettes with side rosettes 
2 

No. of seeds in the soil per m 
2 

No. of seedlings per m 1979 

1980 

% germination in spring 1979 

1980 

% seedlings surviving 1979 •* 1980 

1980 ->- 1981 

Half-life adults in months 

6. 

34 

9. 

54 

7. 

15. 

0. 

3. 

31 

12 

700 

779 

486 

68 

75 

59 

45 

20 

.6 

.2 

.3 

74 

.73 

6 

27 

24 

69 

61 

31 

75 

75 

3.8 

203 

1.7 

380 

17.1 

57.21 

1.91 

0 

20 

0 

500 

1158 

465 

44 

46 

26 

28 

46 

25 

24 

47 

29 

34 

53 

39 

The individuals in a Goodman matrix (Law, 1983) are categorized by age, be

fore they are placed in a size category. This results in small size matrices as 

elements of a larger age matrix. Time is divided in years and size is based 

on a non-destructive estimate for biomass. This estimate is based on the number 

of leaves, times length of longest leaf in cm and has a good correlation with 

biomass (Noë & Blom, 1981). Five equal size categories have been created after 

a log transformation to the basis of two. This results in a roughly even dis

tribution of individuals over size categories, necessary to avoid distortion in the 

estimation of the transition probabilities between size categories. It intro

duces, however, an increasing robustness in the larger size classes for any 
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Figure 1. A 12 χ 12 Goodman matrix for a population of Vlantago lanceolata from 

a dry dune grassland and the 1 χ 12 stage vector belonging to it. 

Elements are arranged in six age categories and each element con

tains five size classes, as a 5 χ 1 (Β, Ζ) 1 χ 5 (Ν) or 5 χ 5 (Ρ) 

matrix, not shown. В - number of seedlings produced per age class. 
Ζ = number of side rosettes produced per age class. Ρ = transition 

probabilities between age classes. N = number of individuals per age 

class, a = autumn cohort, s = spring cohort, ζ = cohort of side 

rosettes, (for further explanation see text). 

parameter, that has a more or less linear relationship with size (seed pro

duction for instance). 

Sorting procedures on the demographical data collected over three years pro

vided the numbers in each category from which the transition probabilities 

could be calculated from year to year, using the first of July as the census 

date. This is the moment after which the seeds are released from the parent 

rosette. The parameter values differ from year to year, but for the model the 

maximum values have been chosen, in order to arrive at the most 'optimistic' 

life history. For simulation of the effects of changes in parameter values, 

the range over time has been taken into account. 

The following basic assumptions have been made in constructing the model: 
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Figure 2. A 18 χ 18 Goodman matrix for a population of Plantago lanceolata from 

a wet hay meadow and the 1 x 1 8 stage vector belonging to it. Ele

ments are arranged in 12 age categories. Symbols as in Fig. 1. (for 

further explanation see text). 

- Individuals do not become older than 3 χ t,. This defines the number of age 

classes in the matrix. This is preferred above a terminal category with a 

constant decay rate in the lower right hand corner of the matrix (Fig. 1 and 

2), because that is equivalent with more or less infinite longevity and no 

senescence. 

- Because time steps in the model are taken as one year, it is necessary to 

accomodate the initial differences in survival between autumn and spring co

horts of seedlings separately in the model by separate transition probabili-
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ties. The same holds for cohorts of side rosettes. During the course of time 

these initial differences disappear and the cohorts are merged by putting 

the relevant transition matrices next to each other on the same row (Fig. 1 

and 2). 

- Autumn and spring cohorts of seedlings are recruited separately into the 

population according to their relative proportion, using two separate rows 

of matrices. Together they represent the total seed production. Recruitment 

via side rosettes, if occurring, forms a third row. Because side rosettes 

are mainly formed in spring there is no seasonal difference there. 

- The fecundity matrices summarize a series of sequential steps, starting with 

the proportion of individuals that flower in each age/size category, the 

mean production of seeds per flowering individual in that category, seed 

prédation per category and the proportion of seeds that germinate. The es

tablishment of seedlings is incorporated in the first transition matrix to 

avoid further cumulation· This is in contrast to Law (1983) who included this 

survival to the next census date in the fecundity element. 

- The seedbank in the dry population is represented by two matrices on the di

agonal in the upper left hand corner (Fig. 1). This is as much as defining 

the capacity of seedlings to produce seedlings the next census. This is 

equivalent with saying that each seed crop produces a certain percentage of 

its seedlings one census later. These again produce seedlings yet another 

census later and by the same percentage, modelling this way the effect of a 

seedbank with a constant decay rate. Because seedlings are all in the same 

age and size category, these two matrices consist of one single figure, be

ing this decay rate. 

- The demographic information has been gathered over a three year period. By 

carefully partitioning the initial population in three sections - seedlings, 

non flowering juveniles and flowering adults - and following these over 

time, it is possible to estimate the fate of the population over a longer 

period by assuming that these three cohorts are sequential rather than co-

occurring, combining static and dynamic life table data. As far as different 

cohorts are assembled this approach works under the assumption of stable 

age/size distribution. 

The numerical values given to all parameters in the model are presented 

in an appendix. 
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RESULTS 

Limit properties 

The resulting matrices have been solved numerically by iterative multiplica

tion of the projection matrix with a stage vector, until the difference be

tween subsequent values of λ being the dominant eigenvalue was smaller than-

10 . The solution is more or less independent of the values in the stage vec

tor, as long as there is a greater than zero expectation for reproduction 

(Law, 1983). In practice the stage vector contained values for autumn and 

spring cohorts of seedlings only (N, and N. ) all placed in the smallest size 

la Is 

30 

20-

DG 

structure 

30· 

20-

WM 

structure 

4 0 

30-

20 

reproductive 
value 

ag« 
1 2 3 4 5 

V, 

*o-

30-

20-

Ю 

reproductive 
value 

2 3 « 5 6 
AS AS AS AS AS 

7 β 9 10 11 12 
age 

1 2 3 4 5 
size 

V.W = 791 λ= 19310 V,W=495 λ = 10353 

Figure 3. Limit properties of the Goodman matrices for two populations of 

Plantago lanceolata from a dry dune grassland (DG) and a wet hay 

meadow (WM) respectively. Stable age and size structures from the 

right eigenvector V are drawn and the stable age and size distri

butions of reproductive values from the left eigenvector W. The 

scalar product of the eigenvectors, indicating the mean length of 

generation and the dominant eigenvalue, representing the population 

growth rate λ, are presented as well. 
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category. By arranging the stage vector as a column vector and premultiplying 

this with the projection matrix one obtains after iteration the right eigen

vector V representing the stable age/size distribution. By arranging the stage 

vector as a row vector and postmultiplying this vector with the projection ma

trix, one obtains the left eigenvector W, representing the reproductive values 

given age and size. The scalar product of both eigenvectors < V, W > is a 

measure for the mean length of generation (Leslie, 1966). The year to year in

crease in numbers of individuals is the population growth rate λ, equivalent 

to the dominant or maximum eigenvalue. The dry population (DG) is stable after 

22 iterations at λ - 1.9310 and the wet population (WM) is stable after 79 

iterations at λ • 1.0353. These limit properties, standardized and expressed 

as percentages are presented in Fig. 3.Note the unexpectedly low mean length 

of generation for the wet meadow population, in which the adults are long-lived 

but seeds and seedlings very much at risk, resulting in this low value. 

Verification and interpretation of the model 

The actual age and size distributions and survivorship curves for various co

horts of seedlings and side rosettes are compared with those calculated in the 

model. Fig. 4 shows the survivorship curves for the dry (DG) and the wet (WM) 

population, respectively. The actual data are given in Van Groenendael (1985b). 

The calculated survivorship curves are arrived at by setting all В and Ζ ele

ments equal to zero and filling Ν , N or N with 1000 individuals each and 

recording their fate over time using the same iterative multiplication as out

lined above. Because the dry population (DG) suffered from a catastrophic drought 

in the second year, only survivorship over one year of the various cohorts in 

the field is available. These show almost equal slopes between seedling cohorts 

and adult cohort suggesting straight Deevey type II depletion, except for the 

side rosettes that suffer greater inital mortality. The calculated lines have 

almost exactly the same slopes, although slightly less steep. In the wet popu

lation the spring and autumn cohorts of seedlings follow closely the calculated 

survivorship curve, which is distinctly hollow (Deevey type III). The calcula

ted autumn cohort reaches a steady slope after six years, the spring cohort 

after 5 years, both having more or less the same slope, which is equal to the 

decline of adults in the field. 

Comparison between real and calculated size and age distributions gave a 

satisfactory fit between calculated stable age and size distributions and 
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Figure 4. Real and calculated (open symbols) survivorship curves for various 

cohorts of Plantago lanceolata from a dry grassland (DG) and a wet 

meadow (WM). · о spring cohort of seedlings; • oautumn cohort of 
seedlings; •<> cohort of side rosettes; A adults. 

field observations (Fig. 5). Size distributions give a somewhat less satis

factory fit than age distributions, understandable from the more variable 

nature of size and the dry population shows less similarity than the wet 
2 

population, but the differences are not significant in a χ -analysis. 

After having established the trustworthiness of the created models, it is 

possible to discuss with more confidence the biological implications of the 

limit properties of these matrix models. Given the fact that all parameters 

have been chosen optimally, it is clear that the dry population can grow much 

faster and reaches model stability much faster (has a greater resilience) 

than the wet population, which is in agreement with the more unpredictable ha

zardous conditions in the dry dune grassland, when compared with the more sta

ble conditions in the wet hay meadow. Juveniles and adults are equally at risk 

in the dry population, whereas young plants suffer greater mortality in the wet 

site. This latter condition should favour iterocarpy according to Charnov & 
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Figure 5. Observed (A, C) and calculated (Б, D) size and age distributions 
(top row and bottom row respectively) for two populations of Plan-
tago lanceolata from a dry grassland (DG) and a wet meadow (WM). 
Autumn (a) and spring (s) cohorts as well.as side rosettes (hatched) 
are indicated in the age distributions, χ -values for the compa
rison between observed and calculated frequencies were all not sig

nificant. A - В : 6,84 and 1,81; С - D : 2,67 and 0,18 for DG and 
WM. 

Schaffer (1973) and this is confirmed in this сазе. The size hierarchy in the 

wet site is more skewed to the left, indicating stronger competitive effects 

(Harper, 1967, 1977), which again is quite likely, given the more productive 

and dense vegetation in the wet meadow. Reproductive values reach their max

imum in the third year in the dry site, but the side rosettes have very high 

reproductive values right from the beginning. They are an essential part in the 

life history of this population. The population from the hay meadow has a 

less marked peak in reproductive value at the fourth year. As expected, size 

has a pronounced effect on reproductive value, but there is more reward for 

growing big in the wet site than there is in the dry site. 

Sensitivity analysis 

A further use of the model can be made by testing the sensitivity of the popu

lation growth rate for small changes in model parameters (Caswell, 1978). For 
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all parameters this can be achieved by multiplying left and right eigenvector, 

which results in a matrix in the form of the original matrix, but with all non 

zero matrix elements replaced by their sensitivity. The formula of Caswell's 

V W. 
sensitivity measure reads: dX _ i j 

da.. <V,W> 
1J 

Apart from the comprehensive insight in the functioning of the model, a sensi

tivity analysis is less dependent on the exact values of the model parameters, 

as long as their relative proportions are more or less accurate. It can there

fore be applied, even when the model itself is not very precise, to get an 

idea what the important moments are in the life history of a population. 

In both populations the establishment of new rosettes from seed or as side 

rosettes is the most important phase in their survival, as indicated by the 

summed sensitivities of all P. elements in Figs. 6 and 7. Establishment, how-
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Figure 6. Sensitivities χ 100 of the population growth rate for small absolute 

and relative perturbations (between brackets) in the matrix elements 

of a population of Plantago lanceolata from a dry dune grassland. 
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ever, is more important in the wet meadow especially from seedlings that have 

germinated in the autumn. After establishment survival of juveniles (P. elements) 

and of adults (remaining Ρ elements) remains more important in the wet hay meadow. 

Fecundity on the other hand, is more important in the dry dune grassland (B ele-
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ments), mainly in three and four year old rosettes. Side rosettes have an im

portant function especially when formed in relatively young parent rosettes 

(Z, and Z.). Their importance is that they enlarge the capacity of a rosette to 

produce seeds. This is reflected in the relatively high sensitivities for seed 

production in young side rosettes (B„ ). Not shown in Figs. 6 and 7 are the ef

fects of size, but the fastest growing seedlings are important for establish

ment (P,) and juvenile survival (P.). Fecundity depends on small plants in the 

beginning, but this shifts to larger plants later on. 

In inspecting the results of the sensitivity analysis, one of the first 

points that attracts the attention, is the relative unimportance of seed pro

duction, a fact also noted by others (Caswell, 1978; Caswell & Werner, 1978). 

In the two cases at hand this applies to all В and Ζ elements, that is all 

elements not expressed as a (small) chance but as a (large) number. Apparently 

small but absolute perturbations have a large impact when the transition pro

babilities are small and only a weak effect on the much larger fecundity ele

ments. By calculating the effect of small relative perturbations by multiply

ing the right hand side of the sensitivity equation with the actual parameter 

values a.., this ran be avoided (De Kroon et al., submitted). Subsequent stand

ardization for the different population growth rates makes the relative sensi

tivities directly comparable between the two populations (Figs. 6 and 7). The 

absolute sensitivity measures the effect of absolute shifts in life history 

parameters, whereas the relative sensitivity takes into account the actual life 

history realized in the field. This can be demonstrated by looking at recruit

ment. In an absolute sense the summed sensitivities of recruitment, excluding 

the seedbank (B ) show that both populations are most sensitive to recruitment 

into the 'wrong' cohort, that is, the cohort that is least important in the 

field. Although both results seem puzzling at first sight, there are biological 

explanations. In the wet meadow the fewer spring seedlings have better chances 

than autumn seedlings, but the loss of seed over winter is greater that the 

loss of seedlings over winter. Only 20% of the seeds germinate, whereas about 

33% of the seedlings survive to the next census, so that it might be better 

to face the risk of dying in winter time as a seedling rather than as a seed. 

Mortality over winter is very low in the dry site, so that there is no appa

rent advantage in postponing germination, but here the major factor could be 

that there are good reasons to produce seeds later in the season, as is the 

case, after the spring and early summer droughts. Seeds have a clear pattern 

of dormancy necessary to form a seedbank but also preventing autumn gennina-
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tion and this results in a great spring flush of seedlings. These biological 

constraints are implicit in the relative sensitivities and these do show the 

correct pattern of recruitment, as well as less extreme contrasts between 

survival and fecundity elements. 

Simulations 

Instead of calculating from a sensitivity matrix the effect of complex changes 

in the life history by adding the appropriate sensitivities, it might be easier 

to simulate such changes. This is especially true, when matrix elements are 

added or removed or when the dimensions of the matrix are changed. A series of 

such simulations have been executed, based on biologically interesting 'what, 

if ...' questions (Table 2). Direct comparison between various changes in the 

Table 2. Simulated population growth rates, expressed as a proportion of the 
original growth rate for various complex changes in the life histo
ries of two populations of Plantago lanceolata from a dry grassland 
(DG) and a wet meadow (Ш) respectively. 

DG WM 

Germination mainly in spring 

Germination mainly in autumn 

All germination in spring 

All germination in autumn 

Seed production independent from age 

Seed production one year earlier 

Seed production one year later 

Life one year shorter 

Seed production without seed prédation 

Seed production with double seed prédation 

No seedbank 

Half-life of seedbank χ 2 

Recruitment only via side rosettes 

Recruitment only via seeds 

All recruitment χ 0.5 

All survival probabilities χ 0.5 

1.0000 

1.0125 

0.9880 

1.0254 

I.2234 

0.9839 

0.9830 

1.0260 

0.9713 

0.9890 

1.0115 

0.7695 

0.9145 

0.8306 

0.6156 

1.0340 

1.0000 

1.0486 

0.9791 

I.0114 

1.0146 

0.9833 

0.9892 

1.0402 

0.9447 

0.9161 

0.5482 



life histories of the two ecotypes now becomes much easier. Postponing repro

duction one year or shortening life with one year reduces the population growth 

rate about equal amounts in both populations, notwithstanding the different 

generation times. This is the result of the much steeper rise and fall in re

productive value over time in the dry site that in the wet site, also apparent 

when seed production is made independent from age. In general new recruitment 

is much more important in the dry site, whereas survival is more important in 

the wet site. When recruitment in the dry site is splitted over the various 

ways new recruits can be produced, direct germination is the most important 

source. Seedbank has a relatively low impact. Loss through seed prédation is 

more important in the ungrazed wet meadow than in the grazed dry grassland. A 

flowering rosette in the wet meadow contains only one or two long stalked in

florescences. The main seed prédation is by birds taking complete ears, re

ducing seed production very severely. Apparently the necessity for partitioning 

the reproductive effort in few 'high investment' inflorescences must be more 

important that the unpredictable risk of seed prédation. This risk is avoided 

in the dry site with its many short ears on short stalks, and its long history 

of grazing. 

-Effect of stochastic fluctuations 

The model might produce realistic survivorship curves and age/size distri

butions, it is still quite unrealistic in exhibiting exponential growth and 

having constant (optimal) values for the model parameters. These values will 

differ locally and in time. The resulting variability has a pronounced effect 

on the population growth rate (Boyce, 1977; Tuljapurkar, 1982). According to 

Tuljapurkar (1982) the effect of a rertain variance in a parameter is propor

tional to its sensitivity squared, the sensitivity calculated according to 

Caswell (1978). The result could be that an otherwise less important parameter 

in a static model because of a large variance could have a greater effect on 

λ in a probabilistic model than a parameter with a greater sensitivity in such 

a static model. This risk is most pronounced when the overall level of the 

sensitivities is low (Tuljapurkar, 1982) as is the case in the population from 

the wet meadow. This predicts a much lower resilience for this stable popula

tion than for the less stable population from the dry dune grassland. The con

sequence from an evolutionary point of view could be that not only the level 

of a trait that has a great effect on λ will be under selective pressure but 
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also the variability when such a variability happens to have an important 

effect on λ. The first could result in low levels of genetic variability, the 

second in low levels of plasticity (Van Groenendael, 1985b). 

A fully stochastic model, although quite feasible mathematically is hardly 

possible on the basis of the field data. However, because field data have been 

gathered over a three year period, there is at least some information on the 

variability over time. To get some idea of the effects of this variability 

the following numerical procedure has been adopted: The year with lowest 

parameter values over the three year period has been chosen to represent a bad 

year. A good year has the actual values in the model. The remaining year re

presents a normal year. By applying a reduction factor on the actual matrix 

elements these three environmental stares are created. Although this factor 

could work on specific entries in the matrix, simulating specific effects of 

bad years, in this case a more robust approach is chosen. The factor affects 

all В + Ζ elements and/or all Ρ elements. In the dry dune grassland a bad year 

influences survival as well as seed production. Recause a bad year means a 

period of summer drought some seed production is supposed to have taken place, 

so that there is a lesser reduction for seed production than for survival. In 

the wet meadow bad years only affect seed production. There is hardly any ef

fect on survival. The actual factor values are listed in Table 3. 

Table 3. Reduction factors on various matrix elements, representing good, bad 

and normal years in both populations. Factor values are based on 

field observations. 

Β + Ζ elements 

Ρ elements 

bad 

0.30 

0.05 

DG 

normal 

0.75 

0.75 

good 

1.00 

1.00 

bad 

0.30 

1.00 

WM 

normal 

0.60 

1.00 

good 

1.00 

1.00 

A random sequence of good, bad and normal years is generated in proportions 

fixed beforehand. To evaluate the impact of a certain set of conditions, the 

population growth rate is no longer a useful measure. It is replaced by time 

to extinction, which is considered equivalent with or even superior to the 

73 



population growth rate as a measure of fitness (Cooper, 1984). The model is run 

using the stable age/size distributionas the initial stage vector and an arbitra

ry but low extinction threshold after which the run stops. This was repeated 

several times (30) to get an estimate of the number of years in which the po

pulation goes extinct given a particular proportion of good, bad and normal 

years with a given set of reduction factors. 

In order to get extinction, the proportion of bad years always had to exceed 

the good years resulting in crude but definitely skew distributions of para-
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Figure 8. Frequency distributions for time to extinction based on 30 simula

tion runs, given stochastic combinations of bad, normal and good 

years in various fixed proportions (a - f), affecting the survival 

(P) and/or the fecundity (B) elements in a matrix projection model 

of a population of Plantago lanceolata from a dry dune grassland. 

The strength of the reduction factors is given in Table 3. 
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(B) elements in a matrix projection model of a population of Plan
tage lanceolata from a wet meadow. The strength of the reduction 

factors is given in Table 3. 

meter values. Biologically this makes sense as there are fewer chances for a 

good year to occur because all circumstances that influence survival and/or 

seed production have to be optimal. The chance for a bad year to occur is much 

greater, because it can be achieved in various ways resulting in skew distri

butions. This distribution has a profound influence on the time to extinction 

as shown in Figs. 8 and 9. Time to extinction first of all depends on the le

vel of the parameter values, represented by the population growth rate. When 

the population growth rate is high, strong effects are necessary to cause ex

tinction (Fig. 8) and there is a strong skewing in extinction times. It also 

depends on the variance and the skewing in the parameter values. The general 

picture of these simulations is that the population from the stable wet meadow 

has a narrow and more or less normal distribution of extinction times and the

refore very little possibility to escape extinction through chance. The popu

lation from the dry dune grassland has a much better chance to survive the 

hazards of life. 
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GENERAL DISCUSSION 

There is no doubt about the general usefulness of matrix models in describing 

the dynamics of populations of (plant) species, even with quite complex life 

histories. Large data sets can be condensed and evaluated by means of few de

mographic key parameters that are easily calculated from the model. In the 

population from the wet site, juveniles carry a greater risk than adults when 

compared with the population from the dry site, maturation is delayed, itero-

carpy is more pronounced, there is a lower reproductive effort and larger 

seeds, the population is more or less in a steady state in this habitat, that 

is stable and predictable except for the risk of prédation. All these charac

teristics are reversed in the dry site, presenting an almost ideal contrast, 

but all these observations could have been done without the help of a model. 

Strictly speaking this is not true for the estimated growth rates, stable age/ 

size distributions and the distribution of reproductive values, but these more 

complicated descriptions still are in accordance with field observations and 

this constitutes a kind of verification of the model. 

The analysis is taken one step further, when an importance value is attached 

to the various parameters, related to their effect on the population growth 

rate. Sensitivity analysis, developed initially by Caswell is very useful in 

this respect. It allows a quick appreciation of a data set and opens the pos

sibility of focussing data collection in the most critical parts of a life 

history. A much finer picture can now be drawn. First year's survival is most 

important in both populations but more so in the wet site, seed production is 

more important in the dry site. The formation of side rosettes is not so much 

a mode of (vegetative) reproduction, as a method to increase the current year's 

seed production. It is important in the dry site, but only in the year of for

mation. Timing of germination has a great impact but seedbank has not. Préda

tion is important especially in the ungrazed situation. Size effects are more 

pronounced in the wet site, as it should, than in the dry site. All such com

parisons are possible only when a model is used. 

The ultimate step in the use of the model is the use of population growth 

rate as a fitness measure and substituting importance value by selective pres

sure. The line of reasoning runs as follows: When a trait is important for the 

fitness of a population, it will be under great selective pressure, resulting 

in low levels of additive genetic variance. Lewontin (1965) for instance pre

dicted low genetic variability in age at first of reproduction in colonizing 
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species on the basis of his model. Along same lines, the following predictions 

can be made for the two populations under study: Seed production standardized 

by size (reproductive effort) should show less additive genetic variability in 

the population from the dry site than from the wet site. The same can be said 

for the formation of side rosettes, survival of seeds in the soil and the num

ber of leaves and scapes to minimize the loss through grazing. Size characte

ristics like length and width of leaves, length of scapes, size of a seed and 

relative growth rates are more important and therefore less variable in the wet 

site. Some of these predictions will be evaluated elsewhere (Van Groenendael, 

19B5c). 

Regardless of the functioning of this model, caution is called for when far 

ranging evolutionary predictions are based on a simple deterministic model, 

that lacks diploid genetics (and therefore the possibility of selection), 

density feed-backs and spatial and/or temporal variability, random or other

wise. Much theoretical effort is put into improving the basic model (Smouse & 

Weiss, 1975; Tuljapurkar & Orzack, 1980; Tuljapurkar, 1982; Caswell, 1983) but 

a data set to match these complex models is very hard to come by, making an 

empirical test nearly impossible. This leaves deduction as the only logical 

alternative as a way to test these models, but predictions, from a model, that 

is not rigidly confined to empirical boundaries, become dependent on the boun

daries chosen by the modeller and run the risk of producing unfalsifiable hypo

theses. The following considerations could be of some importance: 

- The model contains several complex parameters, that is parameters in which 

several traits are summarized. Especially when there are negative internal 

correlations the importance of a parameter can be seriously underestimated. 

- Matrix projection models work under the Markovian assumption. This condition 

forbids any historical effects. The present state of the model may depend 

only on the state directly preceding the present state. Biologically this is 

unrealistic. There is, for instance, in the matrices a decreasing survival 

probability for the transition of size category 1 to size category 1 (small 

plants remaining small) and an increasing one for the transition of size category 

5 to size category 5 (big plants remaining big). Both tendencies are distinct 

historal effects. To what extent this invalidates the results, obtained from 

the model, is unclear. 

- Sensitivity analysis according to Caswell (1978), assesses the effect of 

small but absolute changes in the model's parameters. Biologically this is not 

always realistic. One more seed produced is not equivalent with one more ro-
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sette surviving, so that an appropriate biological standardization is called 

for. Apparent contradictions like the importance of germination in the wrong 

season as in the present case can then be solved. 

- There are biological indications that variability in time and space results 

in asymetrically distributed life history traits. Examples are fruit masting 

for variability in time in a trait like seed production and skew size hierar

chies as a result of local effects. Such skewness has a clear effect on fit

ness expressed as time to extinction. 

- The variability in a trait could have an even greater impact on the fitness 

of a population than its mean value as shown by Tuljapurkar (1982) on theo

retical grounds, especially in fluctuating environments. The model could be 

used now to build more rigorous hypotheses about the effects of variability in 

traits and this would allow some further testing of the consequences of plas

ticity (Caswell, 1983; Van Groenendael, 1985b). 
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APPENDIX 1 

Numerical values of the matrix elements describing the dynamics of a population 

of Plantago lanceolata from a dry dune grassland (see Fig. 1). Values are ar

ranged in 5 χ 5 size matrices, except for В and Ζ elements. These consist of 
one single row each. 

f i r e t row 
Bl 0.100 
B2a 
B2s 
B2z 
B3 
B3z 
Bl 
B4z . 
B5 
B6 

second row 
В1 0.100 
B2a 
B2a 
B2z 
B3 
ВЭ: 
B4 
Biz 
B5 
B6 

third row 
Z2 
Z3 
24 
Z5 
Z6 

0.206 

0.413 

0.060 
0.625 
0.62S 
0.625 
0.625 

0.639 
0.924 
1.848 
1.848 
2.310 
2.310 
2.310 

K277 
1.848 
3.696 
3.696 
4.620 
4.620 
4.620 

0.334 
1.650 
1.650 
1.650 
1.650 

3.094 
0.314 
1.502 
2.706 
3.B20 
3.820 
4.785 
4.785 
4.785 

б!і88 
0.627 
3.003 
5.412 
7.650 
7.650 
9.570 
9.570 
9.570 

0.625 
2.888 
2.888 
2.888 
2.888 

3.960 
5.280 
8.333 
8.333 
8.333 
8.333 
8.333 

7.920 
10.56 
16.67 
16.67 
16.67 
16.67 
16.67 

0.000 
0.000 
0.000 
0.000 
0.000 

fourth row 
P U 0.101 

0.353 
0.118 
0.078 

¿ L ï t n COW 

rie 
0.258 
0.253 
0.062 

flixth row 
Plz 0.034 

0.068 

0.145 
0.009 

seventh row 
P2a 

P2s 

0.154 
0.077 

0.167 
0.088 

0.107 
0.324 
0.286 
0.107 

0.097 
0.323 
0.097 

0 
0 
0 

0 
0 

105 
368 0 
368 0 

133 
433 0 

167 
750 

333 
0.064 0.333 0.667 

eighth row 
P2z 0.250 

0.125 . 
0.125 0.214 0.059 

0.571 0.824 
0.071 0.118 1 

0.013 0.095 . 
0.013 0.191 0.040 

0.23Θ 0.520 0.227 
0.320 0.682 

0.091 

tenth row 
P3z 0.250 

0.125 . 
0.125 0.194 0.040 

0.521 0.680 0 
0.061 0.080 0 

eleventh row 
P4 0.100 0.167 . 

0.067 . 
0.167 0.200 0.050 

0.450 0.700 0 
0.100 0 

P4z 0.100 0.167 . 
0.067 . 

0.167 0.200 0.050 
0.400 0.650 0 

0.077 0 

twelfth row 
P5 0.100 0.167 . 

0.067 . 
0.167 0.200 0.050 

0.400 0.650 0 
0.077 0 
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APPENDIX 2 

Numerical values of the matrix elements describing the dynamics of a population 

of Plantago larcpolata from a wet hay meadow (see Fig. 2) Values are arranged 

in 5 χ 5 si7e matrices, except for В elements. These consist of one single row 
each. 

first row fifth row twelfth row 
B4a 0 240 0 735 1 000 P2a 0 143 0 059 P5s 
Н4ч 0 240 0 735 3 000 0 214 0 235 0 200 0 133 
B5a CI 760 2 905 9 440 0 214 0 059 1 000 0 400 0 067 0 100 
В5Ч 0 760 2 905 9 440 1 000 0 267 0 j67 0 333 
B6n 0 760 2 905 9 440 1 000 0 133 0 200 0 500 

Вбч 0 760 2 905 9 440 „ , . . . . . 

л τίη η nnc л ,,
л
 sixth row thirteenth row 

« η ™ 5 Hi \ Τα Ρ2ΓΊΓδ9ο о m m— 
M 0 7 6 0 2 9 0 5

 » "
0
 0 053 0 048 0 286 

0 053 0 095 0 033 

B9 0 760 2 905 9 440 

В'» ViïiTollTâ 0 008 0 0,5 0 286 0 500 S 0 IM 
In 1 Ζ l Ta ! Ш °°°'

 p6s
 0 100 0 605 0 684 

seventh row 

Second row pi-—¡¡-¡Τι-
η ПЯ7 

Β4/1 0 080 0 242 1 000 " ° " °'
 η
 - , 0 333 0 167 0 062 

B4s 0 080 0 242 Ι 000 ' ?, ' " " 0 333 0 463 0 062 

Β5» 5 253 0 968 3 147 >£ 0 167 0 338 0 74Θ 
ΒΊ" 0 251 0 968 3 147 „ ," „ * , t 

Вба 0 253 0 968 3 147
 0 " S 0 5

" fourteenth row 

B6s 0 253 0 96B 3 147 eighth row 
B7 0 253 0 966 3 147 P3s 0 07? 
88 0 253 0 966 3 147 0 300 
89 0 253 0 966 3 147 0 143 0 333 0 600 
BIO 0 253 0 966 3 147 0 100 0 400 
ВІІ 0 253 0 968 3 147 1 000 fifteenth row 

0 033 
0 500 0 230 0 151 
О 100 0 605 0 664 

BI2 0 633 I 383 ! 377 
ninth row 

О 069 0 200 О 133 

О 084 0 400 0 067 0 100 

О 033 
О 500 0 230 0 151 

Ϊ7 0 567' 0 333 О 005 

О 005 0 133 0 200 0 500 sixteenth row 

О 005 .. ^ Р9 

tenth row 
fourth row P4s 0 181 0 087 
Pis 0 821 0 181 0 162 0 023 

0 130 0 162 0 339 
0 043 0 393 0 765 0 457 
0 006 0 235 0 544 seventeenth row 

PIO 
eleventh row 
P5a 

О 333 0 167 О 062 

О 033 
О 500 0 230 0 151 
О 100 0 605 0 684 

О 033 
О 500 0 230 0 151 

О 333 0 463 0 082 0 , 0 0 0 6 0 5 0 6 β 4 

υ 16/ о ЗІ8 о 746 eiRhteenth row 
PM 

O 300 0 091 
О 300 0 546 О 490 

О 182 0 346 
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chapter 5 

THE SIGNIFICANCE OF DIFFERENCES IN 

LIFE HISTORIES BETWEEN POPULATIONS OF 

PLANTAGO LANCEOLATA L. FROM CONTRASTING 

HABITATS USING RECIPROCAL TRANSPLANT 

EXPERIMENTS: THE IMPORTANCE OF PLASTICITY 

SUMMARY 

Two populations of Plantago lanceolata from contrasting habitats and with very 

different life histories have been used in reciprocal transplant experiments 

to test the significance of the observed differences. Three phases in the life 

cycle have been tested this way: The survival of seeds buried in the soil, ger

mination and subsequent establishment of seedlings and lastly, survival of a-

dults. The results show strong site effects but also site χ origin interaction 

in the direction of a better performance at the home site. This points at local 

specialization. After a sufficient period of time for the habitat differences 

to take full effect, it can be concluded that both populations, summed over 

their whole life cycle, are unfit to survive in each others habitat. An attempt 

is made to relate this difference in fitness to specific traits in a number of 

genotypes from each population. In general there were only weak correlations 

between any of the traits measured and the individual fitness of the chosen 

genotypes, except for the number of leaves in a rosette. This is interpreted as 

supporting the importance of architecture for the fitness of a plantain rosetta 

For a small number of traits related to the size of a rosette a measure of 

plasticity could be obtained and related to fitness in the field. The results 

suggest that plastic responses in size characteristics are an advantage in an 

unpredictable environment suffering from droughts and low levels of nutrients, 

whereas such plasticity is a disadvantage in a stable, productive environment, 

with strong competition for light. 
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INTRODUCTION 

Differences between populations of the same species in different habitats have 

long attracted the attention of botanists (for reviews see Heslop-

Harrison, 1964; Langlet, 1971). One of the reasons for this interest is the 

successful interpretation of these differences in an evolutionary context, once 

the genetic basis of such differences has been established. This is why the 

study of ecotypes has been advocated as a means to unravel the evolution of 

life history tactics (Stearns, 1976; Etges, 1982; Barbault, 1984) and this view 

is supported by the results from such studies (Gadgil & Solbrig, 1972; Hickman, 

1975; Law et al., 1977; Antonovics & Primack, 1982). As pointed out by Stearns 

(1977), what is needed are critical tests to show that the genetic differences 

between ecotypes in life history traits, usually established under laboratory 

conditions, confer different fitnesses to the ecotypes in the field. Reciprocal 

transplant experiments between the original habitats have proved to be such a 

critical test (Turkington & Harper, 1979; Grace & Wetzel, 1981; Lovett-Doust, 

1981; Antonovics & Primack, 1982). The interpretation of the transplant experi

ment in an evolutionary context depends on whether seeds, seedlings raised free 

from selection or ramets from adults are used (Lovett-Doust, 1981). However, 

all stages of the life cycle should be tested because of the occurrence of cu

mulative effects (Hickcy & McNcilly, 1975), especially in the case of perennial 

plants. Furthermore, it is important to combine various measures of fitness e.g. 

size, growth, number of offspring produced or survival. Survival, for instance, 

might be more important for fitness in unpredictable environments with density-

independent regulation, whereas size might prove to be a more important measure in 

constant environments that are subjected to density-dependent regulation. 

In considering the differences in life history traits and their effect on 

the fitness, it is becoming more and more clear that the variability in such 

traits could be important as well (Lacey et al., 1983). It has been suggested 

that the advantage of variability consists in the capacity to track spatial 

and/or temporal heterogeneity in the environment and that such variability 

should be plastic rather than genetic when there is unpredictable heterogeneity 

(Levins, 1968). Mathematically it can be shown that variability in life 

history traits in unpredictable environments is disadvantageous (Gillespie, 

1974; Boyce, 1977; Tuljapurkar, 1982). Caswell (1983) discusses this contra

diction and he gives some theoretical examples in which plasticity is advanta

geous. It remains unclear whether such plasticity should be viewed as comple-
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mentary to genetic variation as postulated by l.ewontin (1957) or as a protect

ion against selection, thereby maintaining genetic variability as suggested for 

Plantago lanceolata by Kuiper (1984). Plasticity is organized in a trait-spe

cific and environment-specific way and itself under genetic control (Bradshaw, 

1965). Although plasticity has frequently been demonstrated, it is termed adap

tive rather loosily and used to explain the lack of genetically based local 

specialization (Hickman, 1975; Warwick & Briggs, 1980; Antonovics & Primack, 

1982). A critical test of its eff-ect on fitness, such as a reciprocal trans

plant experiment has not been performed sofar. 

In this paper an attempt will be made to test the differences in traits 

that have been found between two ecotypes of Plantago lanceolata for their 

contribution to fitness in the field, using reciprocal transplant experiments 

in various stages of the life cycle. The genetic basis of the differences in 

traits will be explored but with special attention to the plastic variation in 

these traits. Two ecotypes were selected from habitats that differed in such a 

way that at least there was some a priori idea where to expect plasticity. One 

population was growing in an open, nutrient-poor environment suffering from 

periodic but unpredictable droughts. It was expected to show genetic variabi

lity (Istock, 1983) and/or plasticity (Levins, 1968). The other was under strong 

biotic control growing in a constant and productive environment. It was ex

pected to be genetically more uniform and less plastic (Lewontin, 1965). 

MATERIAL AND METHODS 

Site description 

Plantago lanceolata is a rather short-lived rosette-forming herb, which can 

grow in a wide variety of (grassland) habitats. It produces long, stalked in

florescences from axillary meristems, which can also produce side rosettes as 

an alternative. It forms ecotypes quite readily (Böcher, 1943; Primack, 1976; 

Teramura, 1978), showing substantial genetic differentiation, but it also pos

sesses a high degree of plasticity (Antonovics & Primack, 1982; Kuiper, 1984). 

Two populations were selected from strongly contrasting habitats, each of 

them having been more or less the same for at least a hundred years to ensure 

continuity in selective forces. The first is an open and dry dune grassland, 
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which has been grazed as a commonage by cattle and horses for several hundred 

years (Noë 8 Blom, 1982). Occasionally and unpredictably, the grassland suffers 

from catastrophic droughts in spring and summer. The individuals of Plantago 

lanceolata from this site are short-lived. There is a seedbank, juveniles 

and adults are more or less equally at risk and there is a tendency towards 

monocarpy. The other site is a permanently waterlogged, closed hay field, situ

ated in a former riverbed, now filled with a thick peat layer. The vegetation 

is mown once a year in July. The individuals of ribwort Plantain growing here 

are longer-lived, there is no appreciable seedbank, juveniles carry the great-

Table 1. Characteristic differences between two populations of Plantago lan
ceolata from a dry dune grassland and a wet meadow, respectively. 

dry grassland wet meadow 

mean CV% mean CV% 

No. of leaves/rosette 

Length of longest leaf (mm) 

No. of ears/genet 

Length of scape (mm) 

Length of ear (mm) 

No. of seeds/ear 

Seed weight (mg) 

No. of side rosettes/rosette 

% adults flowering 

% rosettes with side rosettes 
2 

No. of seeds in the soil per m 
2 

No. of seedlings per m 1979 

1980 

% germinating in spring 1979 

1980 

% seedlings surviving 1979 •+ 

1980 •+ 

Half-life adults in months 

Half-life juveniles in months 

1980 

1981 

6. 

34 

9. 

54 

7. 

15. 

0. 

3. 

31 

12 

1700 

779 

486 

68 

75 

59 

45 

20 

18 

.6 

.2 

3 

.74 

.73 

6 

27 

24 

69 

61 

31 

75 

75 

3.8 

203 

1.7 

380 

17.1 

57.21 

1.91 

0 

20 

0 

500 

1158 

465 

44 

46 

26 

28 

46 

5 

25 

24 

47 

29 

34 

53 

39 
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est risk and the adults are definitely iterocarpic, as they should be according 

to the postulates of Charnov & Schaffer (1973). The major demographic differen

ces are listed in Table 1 (for full details see Van Groenendael, 1985b). 

Three reciprocal transplant experiments were started in the autumn of 1979 

and the spring of 1980, testing three phases in the life cycle: Survival of 

seeds in the soil, germination of seeds and their subsequent survival as seed

lings and the growth and survival of young adults. 

Reciprocal burial experiments 

Seeds collected in the summer of 1979 from both populations and stored dry at 

ή С, were buried in each site in nylon mesh tubes, 10 cm long, 2.5 cm diameter 

and 0.2 ram mesh. The tubes were filled with the soil from the site in which 

they were to be buried, from which plantain seeds already present were removed 

by sieving. In each tube ten seeds were placed at 7, at 4 and at 1 cm respecti

vely and the tubes were fitted in holes made with a corer of the same diameter. 

Before burying, seeds from each origin were divided by hand into five size ca

tegories containing approximately the same number. Because of the differences 

in seed weight between the two origins (see Table 1) the largest size category 

of the dry site had about the same size as the smallest category of the wet 

site. Sixteen tubes were prepared for each size category, 160 in all containing 

4800 seeds. In each site 80 tubes were randomly placed in a 12 cm grid pattern 

in the autumn of 1979. Two replicate tubes per size category were retrieved at 

4 three-monthly intervals. The tubes were cut into three parts, sieved and the 

remaining seeds tested for viability in petri dishes placed in an incubator at 

22 C. Those seeds that did not germinate within two weeks were cut in two and 

the embryos tested for viability using tetrazolium staining. The number of sur

viving seeds was then analysed in a split plot analysis of variance, using the 

statistical package of GENSTAT (Alvey et al., 1980). 

Reciprocal sowing experiment 

In the spring of 1980 seeds from the same seed collection^used in the previous 

experiment, were sown in replicate plots in each site. 400 seeds were placed a 

few mm deep in a I cm grid with fixed corner poles in each plot, in order to be 

able to discriminate between spontaneous seedlings and seedlings originating 

from sown seeds. For this purpose two further measures were taken: all seeds 
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were painted bright red on one side with non-toxic paint. In the laboratory 

this paint did not affect the level of germination, although there was a few 

days delay in reaching the maximum level. Similar results were also achieved 

by Blom & Van Heeswijk (1984) using a different type of paint. Furthermore, two 

control plots were followed in each site to obtain an estimate of the amount of 

2 . 

seedlings that germinate spontaneously. A density of 1 seed per cm is compa

rable with the seed rain in the field (Van Groenendael, 1985b). Germination was 

followed over a two year period with gradually longer time intervals. The seed

lings that emerged were mapped on transparancies and their survival and size, 

in terms of number of leaves and length of longest leaf, were recorded. There 

is a reasonable correlation between above-ground dry weight and number of leaves 

times the length of longest leaf (Noë & Blom, 1982). The various parameters are 

analysed by two-way analysis of variance testing the effects of origin, site and 

their interaction. 

Reciprocal transplant experiment 

Late in the summer of 1979 10 flowering adults were taken from each site and 

transferred to the greenhouse where they were allowed to grow freely 

December. Flowering in the field was taken as a measure of success for that 

genotype and all genotypes were collected several meters apart to reduce pos

sible local inbreeding effects. In December all adult leaves were cut from the 

plant at their base and used for vegetative sprouting (Wu & Antonovics, 1976). 

This way it was possible to obtain a fair number of cloned individuals. In the 

early spring of І98П, the young plantlets were measured and planted into plas

tic tubes of 5 cm length and 1.5 cm diameter, half of them containing soil 

from the dune grassland, the other half soil from the wet meadow. After one 

week of hardening the plantlets outdoors they were taken to the field, the 

cores with plantlets taken from the tubes and planted in corresponding holes. 

Each genotype is represented by 20 individuals, 10 in each site, 200 plantlets 

per site. The plantlets were planted in a randomized block design, with 1 in

dividual from each origin per block in all possible combinations of genotypes. 

Survival and size of survivors were recorded at regular intervals over a two-

year period, size once again in terms of number of leaves and length of long

est leaf. Due to many losses in the dry site, a complete analysis of size in 

the randomized block design is restricted to the first period of three months 

after planting. To reduce the effect of size at planting growth over the first 
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three months was chosen as a variable and analysed by analysis of variance, u-

sing the regression technique provided by GENSTAT (Alvey et al., 1980), in or

der to correct for missing values as a result of death of individuals during 

2 

the first three months. Survival was analysed using χ -analysis, for the com

parison of the survival patterns of the 10 genotypes per origin over the two 

sites. For a further analysis of survival a different approach was chosen. To 

estimate survival per origin and per site, 10 random combinations of genotypes 

were made per origin and per site, resulting in 10 estimates of survival. These 

were analysed in a two-way analysis of variance. 

Three vegetative sprouts per genotype were kept as a control in the green

house. Ten traits were measured in each plant to have a characteristic of each 

genotype for comparison with the same genotypes in the field later on. Analysis 

of variance provided an estimate of the degree of genetic determination in a 

trait for each origin by comparing the between-genotype component of variance 

with the within-genotype component of variance. Per origin all possible cor

relations between genotypes were calculated based on the mean trait values as 

well as all correlations between traits based on mean genotype values. Princi

pal components were then extracted from both correlation matrices, using Prin

cipal Component Analysis (PCA) from GENSTAT (Alvey et al., 1980). The first two 

components are used to characterize the genotypes as well as the traits. The 

results can be plotted in the same diagram, because both are derived from the 

same data set. This way the relation between traits and genotypes can be demon

strated. After this. Canonical Variate Analysis (CVA) from the same statistical 

package was applied. This multivariate analysis is based on variance/covariance 

matrices and offers the opportunity to weight each trait for its within-geno

type variability. When this component of variance is high compared with the 

between genotype component, the effect of a trait is weighted down correspon

dingly. The first two canonical variâtes are used to arrange both genotypes and 

traits in this reduced 'genotypic' space, whereas they were arranged by PCA in 

a more 'phenotypic' space. 

RESULTS 

Reciprocal burial experiment 

Ггош field samples laid out in the laboratory for germination, it was clear 

that there were more seeds in the seedbank in the dry site than in the wet site. 
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Table 2. Split plot analysis of variance for survival of seeds from two popu

lations of Plantago lanceolata buried reciprocally in their own and 

the other habitat. Missing values are substituted by estimated values 

calculated according to GENSTAT (Alvey et al., 1980). 

DF 

Replication χ plot stratum 

Replication 

Time 

Site 

Origin 

Size 

Time χ site 

Time χ origin 

Site χ origin 

Time χ size 

Site χ size 

Origin χ size 

Time χ site χ origin 

Time χ site χ size 

Time χ origin χ size 

Site χ origin χ size 

Residual 

1 

3 

1 

1 

h 

3 

3 

1 

12 

4 

4 

12 

12 

3 

4 

84(7) 

0.017 

108.715 

3.501 

0.744 

11.953 

4.176 

2.827 

1.047 

0.655 

2.060 

12.990 

2.221 

0.734 

0.239 

2.899 

ns 

< 0.001 

< 0.1 

ns 

< 0.001 

< 0.01 

< 0.05 

ns 

ns 

< 0.1 

< 0.001 

< 0.025 

ns 

ns 

< 0.05 

Replication χ plot χ depth of stratum 

Depth 

Depth χ time 

Depth X site 

Depth χ origin 

Depth x size 

Depth χ time χ site 

Depth χ time χ origin 

Depth χ site χ origin 

Depth x time χ size 

Depth χ site χ size 

Depth χ origin χ size 

Residual 

2 

6 

2 

2 

8 

6 

6 

2 

24 

8 

8 

32(14) 

85.860 

2.883 

5.989 

6.378 

2.194 

3.244 

1.254 

4.004 

0.972 

0.755 

0.584 

< 

< 

< 

< 

< 

< 

< 

0.001 

0.01 

0.005 

0.005 

0.05 

0.005 

ns 

0.025 

ns 

ns 

ns 
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Figure 1. Survivorship curves of two cohorts of seeds of Plantago lanceolata 
buried reciprocally into a dry grassland (DG) and a wet meadow (WM), 

respectively. Origin of the seeds is indicated by d (dry grassland) 

and w (wet meadow). Bars indicate the range between smallest (lower 

end) and biggest (upper end) seeds (a) or the range between burial 

near the surface at 1 cm (lower end) and burial at 7 cm (upper end) 

(b). 

The question is whether the dry site is more favourable for survival of seeds 

in the soil or whether the seeds of different origins posses different proper

ties, like a stronger dormancy as shown for seeds from the dry site in labora-
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tory germination tests (Van Groenendael, 1985b). 

When each population survives best in its own habitat, this indicates local 

specialization, observable as a site χ origin interaction in the analysis. When 

inspecting the results of the split-plot analysis of variance (Table 2), the 

survival of seeds in the soil is mainly determined by burial time, depth of 

burial and seed size, with the best survival for big seeds, buried deep (Fig. 

la+b). Because size was relative within each population, the great differences 

in absolute seed weight (see Table 1) show up as strong origin χ size interact

ion. The smallest seeds in the absolute sense are the smallest seeds from the 

dry population. These seeds show a lower survival than the smallest seeds from 

the wet population, which happen to be as big as the biggest seeds from the dry 

site. Seed decay is faster in the wet site (time χ site interaction) and faster 

for seeds buried near the surface, probably because of germination of these seeds 

from the surface layer (depthxtime interaction). Therefore mean survival is 

better for seeds buried deep in the dry site (depth χ site interaction) and for 

those originating from the dry population (depth χ origin interaction). 

There is no significant site χ origin interaction indicating local speciali

zation, but local specialization becomes apparent after taking into account the 

size of the seeds (site χ origin χ size interaction) and can be attributed 

mainly to small seeds of the dry population doing relatively badly in the alien 

habitat (see Fig. la). Local specialization is also found after correcting for 

depth of burial (site χ origin χ depth interaction), because of the relatively 

higher survival of seeds from the dry population buried near the surface in 

their own habitat (see Fig. lb). 

The overall picture is that there are indications for local adaptation for 

survival of seeds in the soil. This is best expressed in the dry site, where 

there is no extra risk for the smaller seeds produced in this habitat, whereas 

such small seeds are easily lost in the wet meadow. Seeds from the dry site al

so survive better in the surface layer of the soil. Moreover, as far as survi

val of seed is concerned, it is not a great disadvantage to have small and very 

variable (Table 1) seeds in the dry site. The significance of this is illustra

ted by the fact that seeds are produced in the dry site under unfavourable con

ditions, in which not all seeds can be filled appropriately. There is a signi

ficant negative correlation between the number of seeds per mm of ear and the 

mean weight of seeds in that ear, whereas there is no such correlation in the 

population from the wet site (Van Groenendael, 1985b). The results of this re

ciprocal burial experiment are consistent with the observed differences in 

seedbank in both populations (Table 1). 
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Figure 2. Germination characteristics for two populations of Plantago lanceolata 
sown reciprocally into a dry grassland (DG) and a wet meadow (WM), 
respectively. Origin of the seeds is indicated by d (dry grassland) 
and w (wet meadow). Bars indicate the range between two replicate 
plots (a) . Survivorship curves for the spring cohorts of seedlings 
from the reciprocal sowing experiment are presented as well (b). 
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Table 3. Two-way analysis of variance for various traits of two populations of 

Plantago lanceolata sown in their own and the other habitat, res

pectively. 1 based on two replicate plots per site and per origin (DF 

error - 4). 2 based on 30 seedlings selected at random per site and 

per origin (DF error = 116). 3 based on 20 seedlings selected at 

random per site and per origin (DF error = 76) . 

Total number of 

germinated seeds (1) 

F Ρ 

Survival after I yr 

spring cohort 1979 (1) 

F Ρ 

Origin 

Site 

Origin χ site 

204.38 < 0.001 

19.23 < 0.05 

0.37 ns 

4.55 

15.67 

0.44 

< 0.1 

< 0.05 

ns 

Survival after 2 yrs 

spring cohort 1979 (1) 

F Ρ 

Survival 1st to 2nd yr 

spring cohort 1979 (0 

F Ρ 

Origin 

Site 

Origin χ site 

0.10 ns 

0.10 ns 

5.61 < 0.10 

0.83 ns 

0.05 ns 

11.90 < 0.05 

Length of cotyledon 

spring cohort 1979 (2) 

F Ρ 

Length of longest leaf 

spring cohort 1979 (2) 

F Ρ 

Origin 

Site 

Origin χ site 

12.21 < 0.001 

76.90 < 0.001 

3.23 < 0.1 

54.44 < 0.001 

82.97 < 0.001 

15.36 < 0.001 

Growth between 27-7 

and 29-9-1979 (3) 

F Ρ 

Size at 29-9-1979 (3) 

Origin 

Site 

Origin χ site 

7.02 < 0.01 

20.37 < 0.001 

0.36 ns 

:5.09 

4.10 

1.40 

< 0.001 

< 0.05 

ns 



Reciprocal sowing experiment 

The reciprocal sowing experiment covers two aspects: the germination response 

(Fig. 2a) and subsequent survival of seedlings (Fig. 2b). 

From the survival of seeds in the soil some dormancy was expected for seeds 

from the dry population and this is confirmed by the germination pattern (Fig. 

2a, Table 3). There is a strong effect of origin on the level of germination. 

In the dry site seeds from both sources germinate slightly better in the end. 

Although not tested, the shape of the germination curves shows a remarkable 

resemblance between origins per site. The somewhat retarded start for seeds 

from the dry population in the cooler wet meadow can be explained from a higher 

temperature requirement for germination for seeds in this population (Van 

Groenendael, 1985b). 

Survival of seedlings is a much more complex process and the result may be 

judged only after all relevant risks haven been mastered. In this experiment 

significant site χ origin interaction is achieved only after the first periodic 

drought in the dry dvne grassland, which happened to be in the spring of the 

third year. Local adaptation expressed as a better relative survival in the own 

habitat becomes apparent then, with virtually no members of the alien popula

tion surviving (Fig. 2b; Table 3). 

Several properties of the young seedling might be of interest in its strug

gle for survival, e.g. the length of its linear cotyledon, when it is trying 

to catch some light penetrating through the canopy (Mook et al., 1981). Coty

ledons are longest in the wet site for both populations as a result of etiola

tion in the dense vegetation. They are also longer for the wet population ir

respective of site, because of the larger seeds and the correlation between 

seed size and cotyledon length (r - 0.6920; η = 40; ρ < 0.01 for the wet popu

lation and г = 0.6948; η = 50; ρ < 0.01 for the dry population under laboratory 

conditions). Again irrespective of site, the wet population pushes up a longer 

leaf. In the wet site this elongation is enhanced for both origins but much 

stronger so for seedlings from the own habitat, resulting in a strong inter

action term. Growth rate, based on estimated above ground biomass, is reduced 

in the wet site under light-limited conditions, but whether in shade or in full 

daylight, seedlings from the wet population grow faster. This higher growth 

rate, together with early germination (see previous section), bigger seeds, 

longer cotyledons and first leaf, produces larger plants at the end of the 

first season for the wet population. These larger plants have a better chance 
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for survival under competitive conditions, but this larger size could be a dis

advantage in the dry site. This seems likely, given the survival pattern after 

the first period of drought in the third year. 

Time 

Figure 3. Survivorship curves for juvenile transplants of Plantago lanceolata 
originating from a dry grassland (d) or from a wet meadow (w) and 
transplanted into both habitats labelled DG (dry grassland) and WM 
(wet meadow) respectively. Bars indicate the range between the best 
and the worst surviving genotype. 
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Reciprocal transplant experiment 

As in the previous experiment, survival of adults is best in the wet site and 

each population is surviving best in its own site (Fig. 3). In the beginning 

the site effect is strong, but gradually the effect of origin develops, result

ing in a better survival in the own habitat (Table 4). This contrast is strong-

Table 4 Two-way analysis of variance for survival of young adults of two popu

lations of Plantago lanceolata transplanted reciprocally in their own 

and the other habitat, χ -values for the comparison of survival pat

tern for the ten genotypes per population between both sites are pre

sented аь well. 

Origin 

Site 

Origin χ site 

Residual 

χ dry population 

χ wet population 

DF 

1 

1 

1 

36 

9 

9 

Survival 

3 months 

F 

0.47 

248 < 

0.47 

17.75 < 

0.01 

after 

Ρ 

ns 

0.001 

ns 

0.05 

ns 

Surviva 

1 year 

F 

1.06 

483 

11.65 

14.05 

9.64 

1 after 

Ρ 

ns 

< 0 001 

< 0.01 

ns 

ns 

Survival after 

2 years 

F 

29.3 

399 

42.5 

16.71 

11.33 

Ρ 

< 0.001 

< 0 001 

< 0.001 

< 0 1 

ns 

est for the wet population, with little variation in survival between genoty

pes, whereas the contrast is less extreme for the dry population, where there is 

also more differentiation between genotypes. The genotypes from this population 

with an above-average survival m their own habitat have a below-average sur-
2 

vivai in the alien habitat and vice versa, as indicated by the χ -values 

(Table 4). 

Due to the many losses in the dry site an analysis of size characteristics 

is restricted to the first census, three months after planting. The difference 

in growth between all possible pairs of genotypes from both habitats is calcu

lated in both sites and used in an analysis of variance (Table 5). The differ-
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Table 5. Analysis of variance for the differences in growth over the first 
three months between pairs of genotypes from two populations of Plan-
tago lanceolata originating from a dry grassland (d) or from a wet 
meadow (w) and transplanted reciprocally in a randomized block design 
into their own and the other habitat. Growth is based on estimated 
Dj.umass (m). 

ln(m0/m ), - ln(m,/m ) 
¿ Ι α ζ I w 

DF F Ρ 

Site 

Origin d 

Origin w 

Origin d χ site 

Origin w χ site 

Origin d χ origin w 

Residual 

1 

9 

9 

4 

6 

48 

30 

5.03 

0.92 

1.35 

3.87 

2.03 

0.90 

< 0.05 

ns 

ns 

< 0.01 

ns 

ns 

enee was significantly affected by site, being largest in the wet site due to 

lesser growth for the dry genotypes. In the dry site growth was strongly but 

equally reduced for both origins as a result of a spring drought. The differ

ence between the two populations is accentuated by the site χ origin inter

action, which is significant for the dry population. 

DISCUSSION 

Comparison between field and greenhouse 

The measurements in the greenhouse on the same genotypes that were used for the 

adult transplant experiment show that traits in genotypes from the dry site are 

generally more plastic than the same traits in genotypes from the wet site 

(Table 6). The F-values for the between-/within-genotype comparison of compo

nents of variance are a measure for the way a trait is expressed in clonally 

propagated offspring. When high the plants from one genotype resemble each 

other closely with respect to that trait and differ from all other genotypes. 

These F-values are somewhat lower and the variability, calculated as the coef-
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12.93 

12.47 

13.83 

242 

26.3 

1.33 

39.2 

28.0 

52.9 

9.20 

31 

28 

42 

82 

44 

63 

20 

25 

40 

48 

2.87 

4.55 

2.82 

2.07 

1.76 

2.70 

6.88 

9.07 

12.15 

5.86 

< 

< 

< 

< 

< 

< 

< 

< 

< 

0.05 

0.01 

0.05 

0.1 

ns 

0.05 

0.001 

0.001 

0.001 

0.001 

15.03 

20.07 

20.57 

647 

6.3 

2.87 

53.20 

39.83 

92.3 

1.87 

18 

23 

32 

50 

63 

65 

16 

32 

36 

118 

2.06 

11.30 

4.49 

4.26 

11.50 

5.29 

4.46 

6.46 

1.45 

3.82 

< 

< 

< 

< 

< 

< 

< 

< 

< 

0.1 

0.001 

0.01 

0.01 

0.001 

0.001 

0.01 

0.001 

ns 

0.01 

Table 6. Means and coefficients of variation for several morphological traits 

of two populations of Plantago lanceolata measured in clonally propa

gated offspring from 10 genotypes from each origin grown in the green

house. F-values for the comparison of between- and within-genotype 

variability are presented as well. 

dry grassland wet meadow 

mean CV% F 9/20 Ρ mean CV% F 9/20 

No. of leaves 

Length of leaf (cm) 

Width of leaf (mm) 

Estimated biomass 

No. of ears 

Moment of flowering 

Length of scape (cm) 

Length of ear (mm) 

No. of seeds/ear 

No. of side rosettes 

ficient of variation, usually somewhat higher in the population from the dry 

site (Table 6). As far as coefficients of variation are compared, this is done 

under the assumption that there is a linear relationship between mean and stand

ard deviation. Biologically, this seems a reasonable assumption. This is sup

ported by significant positive correlations between mean and standard deviation 

of nine morphological traits in Table 6 calculated for the ten genotypes within 

each origin (11 out of 18 correlations were significant). The performance of the 

genotypes from the wet site seems genetically more fixed. This could explain 

the better overall survival of the genotypes from the dry site in the adult trans

plant experiment (Fig. 3). Note that there is a striking contrast in components 

of seed yield between the two origins, e.g. number of ears (highest F-value in 

the wet and lowest in the dry population) and number of seeds per ear (vice versa). 

As far as the F-value represents an estimate of the heritability, albeit an over

estimate, it seems that there has been strong selection for the number of ears 

in the dry site but not so much on the number of seeds per ear. The reverse is found 

in the wet site. Ecologically, this makes sense, given the long history of grazing 

in the dry site and the difficulty in producing many inflorescences in the wet 

site, so that each ear should be as long as possible. 

1 \j ι 



Table 7. Means and coefficients of variation for four morphological traits of 

two populations of Plantago lanceolata measured in clonally propaga

ted offspring from ten genotypes originating from a dry grassland 

or from a wet meadow transplanted reciprocally into their own and the 

other habitat. F-values for the comparison of between- and within-

genotype variability are presented, whenever their calculation was 

possible. 

wet site after one year 

dry grassland wet meadow 

mean CV% F 9/90 Ρ mean CV% F 9/90 Ρ 

No. of leaves 2.74 33 2.U < 0.05 3.57 29 2.40 < 0.05 

Lengthof leaf (cm) 8.56 43 1.06 ns 13.40 25 1.89 < 0.1 

Width of leaf (mm) 5.69 58 1.43 ns 10.96 40 2.44 < 0.05 

Estimated biomass 19.1 133 1.37 ns 60.8 67 2.41 < 0.05 

dry site after one year 

dry grassland wet meadow 

mean CV% F Ρ mean CV% F 

No. of leaves 3.63 42 - 4.59 48 

Length of leaf (cm) 2.78 36 - - 3.33 33 

Width of leaf (mm) 3.78 54 - - 6.88 62 

Estimated biomass 5.1 126 - - 18.7 119 

Four of the traits measured in the greenhouse could also be obtained from 

plants in the field. In the wet site there were enough survivors to calculate 

a F-value for the comparison between between-genotype and within-genotype com

ponents of variance. Although the significance levels are reduced, they con

firm the contrast between the dry and wet population in traits measured in the 

greenhouse (Table 7). 

The next step is to define the fitness of the various genotypes in the field 

and to try and associate a trait or a combination of traits measured in the 

greenhouse with this measure of fitness, thus establishing its adaptive signi-

fincance. Fitness of various genotypes in this context is defined in two ways. 

The first is the sum of all biomass produced by a genotype in a site, summed over the 

three census dates. It combines in fact growth and survival. The second is the sur-

102 



CVA 

Figure 4. Multivariate characterization of genotypes (dots) by traits and of 
traits (arrows) by genotypes. Ten genotypes, originating from a dry 
grassland (DG) or from a wet meadow (ЫМ) were raised in the greenhouse 
and characterized by ten traits i.e. number of leaves (I); length of 
longest leaf (2); width of longest leaf (3); estimated biomass (4); 
number of ears (5); moment of flowering (6); length of longest scape 
(7); length of longest ear (8); number of seeds per ear (9) and number 
of side rosettes (10). Principal component analysis (PCA) stresses the 
phenotypic relations and canonical variate analysis (CVA) stresses the 
genotypic relations (see text). 
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vivai in each site after two years. These fitness values are then compared with 

various traits measured in the greenhouse. The measurements in the greenhouse 

are summarized in two multivariate analyses (Fig. 4). The advantage of this 

procedure is that the genotypes are defined on the basis of all traits measured 

and given single values on the axes of PCA or CVA. The relation between a 

genotype and a trait follows directly from the projection of the genotype vec

tor onto the various trait vectors. The picture, however, simplifies the vari

ability present. Of the total variance 58% and 59% are accounted for in the 

first two axes of the PCA for the wet and the dry population,respectively. For 

the С Л this is 80% and 72%,respectively. The values of the genotypes on the 

first axes in both multivariate analyses are now correlated with the fitness 

measures defined above (Table 8). 

Table 8. Matrix of correlation coefficients between fitness measures in a re
ciprocal transplant experiment in the field (1 - A), performance in 
the greenhouse (5 - 6) and two measures of plasticity (7 - 8, see also 
Table 9) for ten genotypes originating from two populations of Plantago 
laneeolata (n = 10; significance levels are 0.549, 0.632 and 0.765 for 
ρ < 0.1, ρ < 0.05 and ρ < 0.01, respectively). 

1 2 3 4 5 6 7 8 

wet meadow 

1 Biomass home - 0.290 0.443 -0.129 -0.034 0.045 -0.836 -0.154 

2 Biomass away -0.132 - 0.005 0.189 0.534 0.283 -0.342 0.308 

3 Survival home 0.605 -0.143 - -0.364 -0.732 0.431 -0.588 -0.657 

4 Survival away 0.306 0.564-0.067 - 0.388-0.076 0.156 0.165 

5 First axis of PCA -0.551 0.164 -0.102 -0.271 - -0.611 0.178 0.666 

6 First axis of CVA -0.174 0.666-0.483 0.487 0.373 - 0.077-0.766 

7 CV of means (CVj) 0.163 -0.572 0.056 -0.058 -0.591 -0.743 - 0.158 

8 Mean CV (CV
2
) 0.446 -0.144 -0.020 0.150 -0.853 -0.309 0.571 

dry grassland 

In the dry population there is a significant positive correlation between 

the first axis of the CVA and the biomass produced in the alien habitat. Geno

types 4 and 3 do best in the wet meadow and relatively poorly in their own 
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habitat, given the negative correlations between survival at home and the first 

axis of the CVA. Types 7 and 9 produce little biomass in the wet meadow, but 

genotype 9 is the best in his own site. Clearly the traits measured in the 

greenhouse, when taken together, have some bearing on the fitness of the dry 

genotypes in the field. It is not clear, however, why genotype 4 for instance 

that produces many seeds per ear and flowers late in the season, as indicated 

by trait vectors 6 and 9, should be particularly successful in the hay meadow. 

The critical trait for fitness is apparently not measured, but it should have 

some relation with this aspect of seed production. An association with a large 

number of leaves, as is the case for genotype 9, is more understandable, as a 

large number of leaves forms the basis for the formation of side rosettes and 

the many inflorescences, typical for the dry population (Van Groenendael, 

1985a). 

In the wet population there is a significant negative correlation between 

survival in the home site and the first axis of the PCA. The relationship is 

reversed for biomass produced in the aliensite, although not significantly, indi

cating some degree of specialization in the genotypes. Genotypes 5 and 4 sur

vive best in their own and worst in the alien (dry) site, and they seem to be 

negatively correlated with traits such as number of ears and number of side 

rosettes, associated with the dry population. Genotype 1 is positively asso

ciated with these traits and is together with genotype 10, most successful in 

the dry site. Genotype 10 is characterized by many leaves, which is advanta

geous in the dry site as explained above. 

The importance of plasticity 

As the various genotypes, used in the adult transplant experiment, are repre

sented by a number of individuals in each of three habitats, the greenhouse, 

the wet and the dry site, plasticity can be expressed in two ways. The first is 

the coefficient of variation of a trait within one genotype between habitat 

mean values. The second is a within-habitat coefficient of variation, calcu

lated as a mean of the three coefficients of variation in each habitat. The 

coefficient of variation associated with this mean is an indication how differ

ent the variability is in a trait in various habitats and expected to be low 

when there are comparable plastic responses in the three habitats (Table 9). 

These two measures of plasticity need not be the same. If plasticity is 

defined as the capacity to produce various phenotypes from one genotype, with 
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Table 9. Population mean values of various coefficients of variation for four 
traits, calculated over 10 genotypes of Plantago lanceolata, origi
nating from two contrasting habitats. CV coefficient of variation 
calculated over three mean trait values in three habitats: Green
house, home site and alien site. CV mean coefficient of variation 
averaged over the three within-habitat coefficients of variation. 
CV, coefficient of variation in CV . Per genotype each coefficient of 
variation is averaged over the four traits and the population mean 
values of these averages is presented as total mean. The correlation 
coefficient between CV and CV. is presented as well (r). For levels 
of significance see Table 8. 

dry grassland wet meadow 

Number of leaves 

Length of longest leaf 

Width of longest leaf 

Estimated biomass 

Total mean 

CV, 

71 

61 

66 

116 

65 

cv
2 

28 

25 

34 

61 

37 

cv
3 

49 

52 

55 

51 

52 

r 

0.286 

-0.359 

0.381 

0.652 

0.571 

CV, 

86 

68 

72 

135 

75 

cv
2 

25 

23 

33 

59 

35 

C V
3 

68 

62 

66 

62 

65 

г 

-0.594 

0.417 

0.023 

0.308 

0.158 

a genetically controlled range of possibilities, then a greater range, expres

sed as within-habitat variability could reduce the between-habitat variation, 

so that both proposed measures will be antagonistic instead of expressing the 

same capacity to produce different phenotypes under different conditions. Four 

traits could be measured for all genotypes in all habitats to test this hypo

thesis, using the first census for the field data, in order to have as many 

individuals as possible. There is no consistent positive nor negative corre

lation between within- and between-habitat variability in either population. 

Both measures represent different and apparently unrelated aspects of plasti

city (Table 9). However, the fact that the within-habitat component (CV ) is con

stantly larger in the dry population and the between-habitat component (CV ) con

stantly smaller than in the wet population indicates a trade-off confirming the 

hypothesis. This is also supported by the f act that the within-habitat component is 

more constant over the three habitats in the dry population (CV,), which could 

indicate that the greater extremes between habitats are buffered away. 

Genotypes which are in general more plastic in the four morphological traits 

used above have a reduced fitness in the wet meadow, irrespective of origin. 

This is expressed by negative correlations between plasticity of genotypes, 
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expressed as the coefficient of variationbetween habitat mean values (CV ) and the 

biomass produced in the wet meadow (Table 8). This disadvantage of plasticity 

is most apparent for the local genotypes. Those genotypes that possess the 

highest degree of plasticity, whether from the dry site or from the wet site, 

are also associated with a position in the multivariate analyses, where those 

genotypes are located which do well in the dry dune grassland and not in the 

wet meadow. Those genotypes which possess the lowest degree of plasticity, 

again irrespective of origin, do well in the wet meadow and are associated with 

the opposite positions in the multivariate analysis (Table 8). All this con

firms the frequently stated belief that plasticity enhances fitness in unpre

dictable environments. Such plasticity, which can be advantageous in one and 

disadvantageous in another habitat in the same set of traits, demonstrates that 

the relation between plasticity and fitness cannot be defined outside a speci

fic environment. Adult size characteristics are probably directly influencing 

the fitness of an individual in a competitive environment. Under these condi

tions plasticity is a disadvantage. On the other hand a big size could be a 

disadvantage in the dry site, negatively influencing fitness. Variability in size 

might be the answer for individuals to adapt and survive the variable condi

tions. Under such conditions plasticity could be an advantage. 

CONCLUSIONS 

The two populations of Plantago lanceolata, used in this study, show rather con

trasting life histories. The differences between the two populations have a 

clear genetic basis. This is true for an array of morphological characteris

tics, but also for demographic traits like germination and survival. These dif

ferences result in local specialization when tested in reciprocal transplant 

experiments. Buried seeds survive better in their own habitat. This is most 

apparent in the population from the dry site. The small and variable seeds from 

this site do not survive very well in the wet marshy soil. Survival in their own 

habitat is better, partly because they keep better and partly because dormancy 

prevents an easy germination. This dormancy also influences the germination 

response, being lower for the dry population, but equally so in both habitats. 

Survival of seedlings and of juveniles again shows local adaptation. Each popu

lation survives best in its own habitat. In this phase of the life cycle the 

contrasts are most pronounced for the wet population. The reason is that this 
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population has longer cotyledons and a longer first leaf, which results, in 

combination with a higher relative growth rate, in a sufficient competitive 

ability under light-limiting conditions. In the dry dunes these plants grow to 

such a large size that they cannot withstand any prolonged period of drought, 

which causes them all to die. 

When considering the results of the three reciprocal transplant experiments, 

it seems very unlikely that populations could establish themselves in the wrong 

habitat. This conclusion would not have been equally clear if only one phase 

had been tested and this stresses the importance of studying the entire life 

cycle. Another important point is that monitoring of the experiments should 

continue until all hazards of life have occurred, because only then has full 

reciprocity been achieved. The strength of the reciprocal transplant experi

ments is their capacity to demonstrate unambiguously local specialization. 

Several traits could be identified which are responsible for this speciali

zation e.g. seed size, dormancy, length of cotyledon and first leaf, growth 

rate and adult size. However, the notion of local specialization on the level 

of a population, based on differences in traits, only makes sense if one can 

demonstrate at the same time differences in fitness for the individual, based 

on the same traits. Differences in fitness between individuals of each popula

tion could in general be associated with differences in a set of adult size 

characteristics in a global way, using multivariate analysis. The number of 

leaves was the only trait that could be identified as a single important fit

ness character and this makes sense, given the crucial role of this character 

in the architecture and the allocation pattfern of the plantain rosette. A more 

general characteristic in adult size characteristics, which proved to be asso

ciated with differences in fitness, was plasticity, here defined as the within-

genotype variability, both within and between habitats. Plasticity, as a trait 

in a trait, was more important in the dry than in the wet population, and it 

was also more constantly expressed between habitats in the dry population. 

However, irrespective of origin, plasticity was advantageous in the dry and 

disadvantageous in the wet site. This supports the idea that plasticity is im

portant in unpredictable environments. 
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chapter б 

DIFFERENCES IN LIFE HISTORIES BETWEEN TWO 

ECOTYPES OF PLANTAGO LANCEOLATA L.: 

THE POSSIBLE IMPORTANCE OF ARCHITECTURE 

SUMMARY 

Plantago lanceolata L. is a short lived herb from grassland habitats and re

ported to form ecotypes quite easily. Two populations were selected from con

trasting habitats: a dry, grazed dune grassland and a permanently waterlogged 

hay meadow. Their contrasting life histories have been recorded with standard 

demographic techniques. Matrix projection models have been used to predict the 

long term implications of both life histories and to asses the sensitivity of 

the population growth rate for (small) changes in life history parameters. U-

sing Fisher's theorem, these sensitivities can be used to predict selection 

pressures and therefore low additive genetic variances in the most sensitive 

parameters. 

The models predictions are compared with the results of three reciprocal 

transplant experiments in different phases of the life cycle and with a 

laboratory test, involving cloned individuals from both habitats. Transplant 

experiments showed differences in fitness as a result of the differences in 

life history parameters and the laboratory test revealed differences in gene

tic control in a selected set of traits. Both tests confirmed the predictions 

of the sensitivity analysis. 

Finally, the concept of a life history strategy as a set of co-adapted 

traits, is discussed. Somehow a more general principle open to selection must 

underly such a set of life history traits. The control over meristematic ac

tivity during plant morphogenesis is proposed as a more general regulator. 
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INTRODUCTION 

It has been argued by Harper (1982) that taxonomie categories fail as descrip

tors of ecological entities because of the bias in taxonomy towards stable, 

conservative characters that can be used to define a taxon. Those characters 

that enable a plant to survive in a specific habitat and that are of interest 

to an ecologist are varying as a reaction to the variable conditions in which 

that plant grows. Such a variability could be the result of plasticity of the 

individual as well as of genetic differences between the individuals. Habitat 

related genetic differences between populations have been an object of study 

for a long period of time (Heslop-Harrison, 1964; Langlet, 1971). All sorts 

of characters in plants, including life history traits, have been reported to 

show ecotypic variation; in general, these have resulted from strong and rea

dily identifiable selective forces (Turesson, 1925; Antonovics, Bradshaw & 

Turner, 1971; Gadgil & Solbrig, 1972; Law, Bradshaw & Putwain, 1977; Warwick, 

1980). 

Usually, the genetic variation between ecotypes is established by growing 

them under uniform conditions in the greenhouse or experimental garden and 

testing them in experiments with the selective force as a variable. When dea

ling with complex life history traits like survival or fecundity, it can be 

especially difficult to estimate the genetic variation (Lewontin, 1974; 

Primack & Antonovics, 1981). Furthermore, in an evolutionary context it is not 

sufficient to establish the presence of genetic variation, it is also neces

sary to demonstrate fitness differences as a result of the genetic differences 

in the traits under consideration. A powerful test in this respect, especially 

when working with ecotypes, consists of reciprocal transplanting and measuring 

the actual fitness differences (Antonovics & Primack, 1982). An indirect test 

is based on the assumption that strong selection on important traits must re

sult in relatively low levels of additive genetic variance (Lewontin, 1965; 

Stearns, 1977; Schmidt & Lawlor, 1983). 

An important tool when dealing with life history traits, is the sensitivity 

analysis developed by Caswell (1978). This analysis is applied in matrix pro

jection models describing the growth of a population and was originally deve

loped by Lewis (1942) and Leslie (1945). It calculates the sensitivity of the 

population growth rate λ to small changes in the model parameters. Since this 

population growth rate can be used as a measure of the fitness of a population 

(Fisher, 1958; F.mlen, 1973) and since the model parameters are life history 
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traits, it is possible to make a hypothesis about the relative importance of 

life history traits for the fitness (Schmidt & Lawlor, 1983). The more realis

tic the model is, the more accurate the prediction of the effect of an impor

tant trait on the fitness will be. 

Another point that will be considered here, is the way in which separate li

fe history traits act together to form a recognizable life history tactic 

(Stearns, 1976). In many cases models are used to explore the optimal combi

nation of traits, using one or another measure of fitness. Several authors 

have pointed out that such models are unrealistic, in the sense that traits in 

them are assumed to be continuous and that various allometric constraints, that 

operate during the life of an organism, are not explicitly taken into account 

(Stearns, 1977, 1980; Watson, 1984). Recently it has become sufficiently clear 

that the shoot system of plants consists of discrete construction units or 

modules (Hallé et al., 1978; Harper & Bell, 1979; White, 1979). The conse

quence is that variation in life history traits might be discontinuous as well 

and a result of the use of meristems during the life of a plant (Watson, 1984). 

It is possible to define the optimal design of a plant in terms of the use of 

meristems (Smith, 1984); maybe it ultimately will be possible to define life 

history tactics in plants in terms of variation in the mechanisms that govern 

the formation and subsequent commitment of meristems to various functions. 

In this paper two ecotypes of Plantago lanceolata L. will be used to illu

strate the ideas in this introduction. Three questions will be addressed: 

- What are the differences in life histories between two ecotypes of P. lan

ceolata from contrasting habitats? Hypotheses on the importance of several 

life history traits will be generated using a matrix model and sensitivity 

analysis. 

- Are these differences really important in the field situation? Two tests 

will be used: an indirect test involving the genetics of life history traits 

and a direct one based on reciprocal transplanting. 

- What switches exist in the design of P. lanceolata that control important 

differences in life history traits? 
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THE DIFFERENCES IN LIFE HISTORIES OF ECOTYPES 

Flantago lanceolata is a rather short lived perennial rosette plant, which pro

duces long stalked inflorescences from axillary meristems and can also give 

rise to side rosettes (Van Groenendael, 1985a). The flowers are born in spikes, 

each flower containing two ovules that need cross-fertilization. The plant is 

known to form distinct types in the field (Böcher, 1943; Priraack, 1976; 

Teramura, 1978) and these differences are maintained under uniform conditions 

showing substantial genetic variation (Warwick & Briggs, 1979; Primack & 

Antonovics, 1981, 1982; Slim & Van der Toorn, 1982). 

In the Netherlands Flantago lanceolata is found mainly in grassland habi

tats. Two habitats were selected that were strongly contrasting. Each of them 

has been more or less the same for at least a hundred years; this has proba

bly provided a continuity in selective forces peculiar to each. The choice was 

based on the species composition of the habitats, being the most reliable in

dicator of habitat conditions (Westhoff & Van der Maarel, 1978). Ordination 

of all communities with Flantago lanceolata confirmed this choice and pro

vided an objective measure 'of ecological distance' between the two habitats 

(Haeck et al., 1981). The first site is a dry and open dune grassland, grazed 

as commonage by cattle and horses for several hundred years (Noë & Blom, 1982). 

Occasionally and unpredictably the grassland suffers from catastrophic droughts 

in spring and summer. The second site is a premanently waterlogged, closed hay 

field, situated in a former river bed, now filled with a thick peat layer. The 

vegetation is mown once a year in July. 

The population from the dry site is the shorter-lived of the two. It has a 

seedbank, juveniles and adults share the mortality risks equally and indivi

duals show a tendency towards monocarpy. The other population is longer—lived, 

juveniles carry the greatest mortality risk, there is almost no seedbank and 

individuals are definitely iterocarpic (Table 1). Both life histories seem to 

be a response to the environment, being hazardous and unpredictable in the dry 

site and stable in the wet site. 

Detailed field observations in permanent quadrats with mapped individuals 

over a three year period, provided information on age- and size-dependent mor

tality and fertility schedules. This large set of data has been summarized in 

a comprehensive matrix model (Van Groenendael & Slim, chapter 4). In the case 

of an iterocarpic perennial both size and age are important categories to de

scribe the life cycle and therefore a modified version of the model proposed 
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Table 1. Characteristic differences between two populations of Plantago 
lanceolata from a dry dune grassland and a wet meadow, respectively. 

No. of 

Length 

No. of 

Length 

Length 

No. of 

leaves/rosette 

of longest leaf (mm) 

ears/genet 

of scape (mm) 

of ear (mm) 

seeds/ear 

Seed weight (mg) 

No. of side rosettes/rosette 

Ζ adults flowering 

% rosettes with side rosettes 

No. of 

No. of 

seeds in the soil per m 

seedlings per m 1979 

1980 

Ζ germinating in spring 1979 

Ζ seed] 

Half-li 

1980 

.ings suriving 1979 -»• 

1980 •* 

:fe adults in months 

1980 

1981 

dry grassland 

mean 

6. 

34 

9. 

54 

7. 

15. 

0. 

3. 

31 

12 

1700 

779 

486 

68 

75 

59 

45 

20 

6 

,2 

.3 

74 

73 

6 

CV% 

27 

24 

69 

61 

31 

75 

75 

wet meadow 

mean 

3.8 

203 

1.7 

380 

17.1 

57.17 

1.91 

0 

20 

0 

500 

1158 

465 

44 

46 

26 

28 

46 

CMZ 

25 

24 

47 

29 

34 

53 

39 

by Law (1983) was used (Figs. 1 and 2). The main structure of the matrix is ba

sed on age, divided in years. The maximal number of years considered is three 

times the half-life of the population. Special categories have been created 

f or autumn and spring cohorts of seedlings and their juvenile survival because 

of strong seasonal influences. Side rosettes are also treated separately, un

til the effects of season or mode of birth have subsided. Each matrix element 

is in itself a small matrix based on five si^e categories. All В elements con

tain mean number of offspring produced per age and per size category. All Ρ 

elements contain survival probabilities per age and size, beginning with the 

probability of surviving from the moment of germination until the first census 

date, taken as the first of July. The numerical values for each element older 
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Figure 1. Goodman transition matrix for a population of Plantago lanceolata in a 

dune grassland. Each matrix element represents an age category and 

is in itself a matrix of size categories, not shown. Figures indi

cate relative sensitivities. Symbols are as follows: В number of 

seeds produced per age category; Ζ number of side rosettes produced 

per age category; Ρ transition probabilities between age categories; 

N number of individuals per age category. Figures in subscript re

fer to years: 1 year of germination; 2 first year; 3 second year, 

etc. Letters in subscript refer to cohorts within years: a autumn 

cohort; s spring cohort; ζ cohort of side rosettes. 
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Figure 2. Goodman transition matrix for a population of Plantago lanceolata in 

a wet meadow. Structure and symbols as in Fig. 3. 
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than three years have been inferred frcti the fate of adult individuals present 

at the beginning of the field observations. The other data come from cohorts 

of seedlings followed over time. 

The matrices were solved numerically. The dominant eigenvalue is the popu

lation growth rate λ, the right eigenvector W gives the stable age/size dis

tribution and the left eigenvector V gives the reproductive value of each age/ 

size category. The scalar product of both vectors < V, W > is a measure for the 

mean length of generation (Leslie, 1966). For the two populations under study 

this demographic information is given in Fig. 3. Comparison between calculated 

and actual age/size distributions in July in the field gave a satisfactory fit 

(Van Groenendael & Slim, chapter 4). There are more small and young individuals 

in the wet site with a greater chance of dying than in the dry site. This re

sults in an unexpectedly low mean length of generation for the population from 

the wet site. Field observations had led to the opposite impression, based on 

the longevity of adults. Judging from the reproductive values (Fig. 3), size is 

more important in the wet site: there is a greater reward for growing into size 

category 5. The same holds for growing old. The spring cohort in the wet site 

becomes gradually more important because of a better survival over time than 

the autumn cohort that faces heavy winter mortality when still small. The au

tumn cohort is more important in the dry site because it survives better the 

summer droughts. In this population side rosettes contribute significantly to 

the reproductive value especially when young. 

A more comprehensive impression is given by the sensitivity analysis. The 

effect of small changes in any of the matrix elements a., on the population 

growth rate can be expressed as follows: 

,. V.W. 
ЭЛ _ ι j 

Эа.. ~ <V,W> '
 a
ij 

ij 

A slightly different normalisation has been used in comparison with the ori

ginal sensitivity measure of Caswell (1978). This brings out better the biolo

gical implications (De Kroon et al., submitted). 

The results for both populations were calculated, summed over the size ma

trices, and are presented in Figs. 1 and 2. The sensitivities for size de

pendent seed production and survival are omitted for the sake of clarity, but 

size category 4 is most important for seed production when plants are young in 

the wet site and most important for all ages in the dry site. Again growing to 

category 5 in the first A years and staying there afterwards is most important 

in the wet site. Growing to category 4 in one year and staying in A is most 
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Figure 3. Limit properties of the Goodman transition matrices for the popula

tion of a dry dune grassland (a) and for the population of a wet 

meadow (b). Stable age and size structure and the reproductive value, 

given age and size, are shown. Letters refer to different cohorts 

within one year, until they are merged (A = autumn cohort, S = spring 

cohort and Ζ = cohort of side rosettes). Mean length of generation 

and population growth rate were 791 and 1,9310 respectively in the 

dry and 495 and 1,0353 for the wet population. 

important in the dry site (for full details see Van Groenendael S Slim, chap

ter Ά) . 

The following hypotheses can now be formulated, based on the model's pro

perties and the sensitivity analysis, using Fisher's theorem: 

Germination and establishment are important phases in both life histories, 

but especially so in the dry site. Staying alive as an adult is relatively 

more important in the wet site. Considering that the greates mortality oc-
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curs in seed and seedling phases in the wet site, there is surprisingly 

small selective pressure in these phases. The death of a few adults seems as 

important as the death of many seedlings (see also Antonovics & Primack, 

1982). 

- The effect of a seedbank in the dry site is rather unimportant, but side ro

settes are an important source of new recruits; their importance is mainly 

limited to the first year. 

- Immediate germination in autumn is most important in the wet site; delayed 

germination in spring is most important in the dry site. This is confirmed 

by the actual germination pattern in the field. It should be noted, however, 

that the other cohorts still have relatively high reproductive values, which 

may account for the existence of the two germination flushes. 

TESTS OF LIFE HISTORY HYPOTHESES 

Two kinds of experiments have been proposed to test the hypotheses given in the 

previous section. Reciprocal transplanting of ecotypes has been strongly ad

vocated (Antonovics & Primack, 1982) because it allows direct comparison of 

different life histories in terms of fitness, by recording fitness parameters 

such as survival. In such transplant experiments, the subsequent phases of 

the life cycle should be investigated as completely as possible. Three phases 

of the life cycle of Plar.tago lanceolata were tested: The survival of seeds in 

the soil, the germination and subsequent survival of seeds and seedlings and the 

growth and survival of young adults. 

The other test used, is the more common one of growing plants from the dif

ferent sites under uniform conditions to establish the genetic basis of the 

differences between various morphological features which may be related to the 

life history traits we are interested in. 

Reciprocal transplant experiments 

The first phase tested by reciprocal transplanting was the fate of seeds in 

the soil. After burying seeds in nylon mesh tubes in the autumn of 1979, sur

vival was tested by retrieving a set of tubes every three months and testing 

the surviving seeds for viability. Apart from site and origin, seed size and 

depth of burial were explicitly taken into account. A total of 4,800 seeds 

122 



were tested this way. Time, depth of burial and relative seed size are major 

determinants of the survival of seeds in the soil, but there were minor but 

significant site effects and effects of origin (Van Groenendael, 1985b). Seeds 

from both populations survive better in the dry site and seeds from the dry 

site do better in both habitats (Fig. 5A). The interaction between site and 

origin, which suggests local adaptation, is significant only after taking into 

account the effects of size or depth of burial. The contrast is mainly a re

sult of high mortalities in the wet site for seeds from the dry site when bu

ried deep or when small. The seeds from the wet site are less affected by the 

contrast in environment. They show a more uniform survival pattern. 

In the second phase germination and establishment were investigated. Marked 

seeds were sown in replicate plots in a cm grid in the spring of 1979. After 

germination seedlings were followed over time. The survivors were measured at 

regular intervals. In total 3,200 seeds were sown. All germination takes place 

in one season in the wet site, whereas there is delayed germination in the dry 

site (Fig. 4). The timing of the germination, represented by the shape of the 

curves, shows a strong environmental control, regardless of origin, except 
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Figure 4. Germination of seeds from dry grassland (d) or wet meadow (w) trans
planted into the dry grassland (DG) or into the wet meadow (WM). 
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Figure 5. Survivorship curves of various experimental cohorts (А, В, C) of two 
populations of Plantago lanceolata originating from a dry grassland 
(d) or from a wet meadow (w) transplanted reciprocally into the dry 
grassland (DG) or into the wet meadow (WM). 
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for a somewhat retarded start in the wet site for seeds from the dry site. This 

can be explained by a greater sensitivity to lower temperatures for germination 

for seeds from this site, found under standard laboratory conditions (unpu

blished results). The total number of seeds that germinate is strongly affec

ted by the origin of the seeds and to a lesser extent by site effects, but 

there is no significant interactipn term in the analysis of variance (Van 

Groenendael, 1985b). This points at a rigid control over the level of germi

nation. After germination the seedlings from the wet site do establish signi

ficantly better than the seedlings from the dry population in both habitats 

(Fig. 5B). There is a weaker, but still significant site effect, due to better 

establishment in the dry site. However, it is not until the first period of 

drought in the spring of the second year that interaction becomes evident, with 

each ecotype performing best in its own habitat and the strongest contrast for 

the young adults from the wet site. 

The last part of the life cycle that was investigated was juvenile and adult 

survivorship, using shoots propagated vegetatively from leaves (Wu&Antonovics, 

1976) collected from flowering individuals in the field. Each site was repre

sented by 10 genotypes and 20 shoots per genotype were used for reciprocal 

transplanting in a randomized block design in the spring of 1979 in both ha

bitats. Survival was recorded at regular intervals over a two year period. 

Strong site effects dominate the first few months, due to an early spring 

drought (Fig. 5C). After the first year interaction became significant, again 

with the strongest contrast in survival for plants from the wet site. Compa-

. . 2 

nson of survival of individual genotypes between sites, using a χ -analysis, 

showed no significant differences between genotypes from the wet site. They all 

reacted very uniformly on the contrast between the sites, indicating genetic 

homogeneity. Between the genotypes from the dry site, however, there were sig

nificant differences in survival pattern between the sites, suggesting stronger 

genetic heterogeneity (Van Groenendael, 1985b). 

When comparing these results with the predictions from the model, one can 

see similarities. When there is strong selective pressure, local specializa

tion is expected and this is reflected in the analyses of variance in strong 

interaction terms in the survival parameters, being the ultimate test for the 

fitness in these experiments. A strong contrast is found for adult survival in 

plants from the wet site, indicating strong selective pressure, also predicted 

in the model. No strong selection was apparent in survival of seeds in the 

soil, confirming the model's prediction. The weak interaction terms, however, 
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point in the direction of a stronger contrast for the seeds from the dry site. 

When the seedbank is considered to be a way to increase the establishment of 

new recruits, this again is in accordance with the model. 

There are, however, two drawbacks in this reciprocal transplant experiment. 

The first is, that only in the long run is the test really reciprocal, after 

all the hazards of life have been encountered. In the short term there might 

be a severe imbalance in the reciprocity. For instance, the big seeds from 

the wet site germinate readily and, without competition, grow fast in the dry 

site. At the same time seedlings from the dry site suffer from shading in the 

wet habitat. Full reciprocity is achieved, only after periods of drought. 

Until then, there is a wrong estimation of local adaptation. The second point 

is, that it is usually not clear how this local adaptation in survival is a-

chieved, whether by genetic canalization or by plasticity and through what 

traits. As an example, the effects of seed size will be discussed. The seeds 

from the dry site are small and very variable (Table 2). They are produced 

Table 2. Variability in two traits under controlled conditions and in the 

field for both populations of Planiago lanceolata. 

greenhouse 

mean CV% 

f i e 

mean 

0.73 

1.91 

13.17 

23.АО 

i ld 

CV7o 

75 

39 

37 

53 

Seed weight DG 

Seed weight WM 

Length of cotyledon DG 

Length of cotyledon WM 

1.32 

1.71 

46 

29 

25.70 32 

42.10 24 

under conditions. When grown in the laboratory, there is a sub

stantial gain in seedweight and a reduction in variability, but with a consi

derable amount of variability still left. In the field there is a significant 

negative correlation between the number of seeds per mm of spike and the weight 

of the seed (r = -0.4490, ρ < 0.01, η = 28). This suggests a trade-off between 

number of seeds and the individual size of a seed. Seed size is far more 

strictly regulated in the wet meadow population, showing the opposite ten

dencies and no significant correlation (r = 0.2135, n.s., η = 30). 
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Seed size in turn, determines the length of the cotyledons, being bigger for 

the wet meadow population. The cotyledons in this population are also more va

riable in the field. This variability is mainly phenotypic and strongly re

duced under laboratory conditions (Table 6). It is easy to see the advantage 

of such variability, because it enables these seedlings to reach the light in 

a dense vegetation. There is a significant positive correlation between the 

length of the cotyledons and the growth in the first three months in the field, 

irrespective of the habitat (r - 0.6368 in the wet site and r = 0.6407 in the 

dry site, ρ < 0.01, η = 20). No such correlation exists for the dry population 

(r = 0.3456, η = 17 and r " 0.0421, η = 19, respectively, both non signifi

cant) . 

The conclusion is, that variability in seed size and relative constancy in 

the seedlings developing from them, permits the dry population to establish 

enough seedlings. In the wet habitat such variability is fatal. Constancy in 

seed size and plasticity in seedlings, on the other hand, gives the seedlings 

from the wet population at least a chance in a competitive environment. In a 

non-competitive environment and in combination with a high and constant growth 

rate, plants grow too big to withstand periods of drought. (The relative growth 

rates after six weeks were 155 and 145 mg/g/day for the wet and dry site popu

lations respectively; the coefficients of variation were 0.28 and 0.51 res

pectively) . 

Laboratory test 

To elaborate the point of selective pressure on the variability of traits some

what further, the following experiment has been done. Three plantlets from the 

clonally propagated genotypes from the last experiment were saved and grown to 

flowering in the greenhouse. Several morphological traits were measured and 

analysed in a nested analysis of variance. This permits not only a comparison 

between origins but also a comparison of the between-genotype component of 

variance with the within-genotype component of variance. The resulting F-value 

is presented in Table 3. As far as these variance ratio's represent an estimate 

of the heritability of the traits measured, albeit an over-estimate, this is 

an indication of the genetic 'control' over a trait. The coefficient of 

variation in combination with the F value indicates how variable a trait is 

under controlled conditions and whether this variability is genetically con

trolled or the result of plasticity. At the population level there are signi-
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ficant differences in all eleven traits measured, which confirms the distinct

ness of the two ecotypes. In general on the genotype level, more traits show 

significant variance ratio's in the wet than in the dry site. 

Looking in more detail and grouping traits into two categories, one rela

ted to the production of offspring and the other related to the size of an 

adult (labels 1 and 2 in Table 3, respectively) it becomes clear that the 

variance ratio's are higher in adult size characteristics than in traits re-

Table 3. Mean, coefficient of variation and F-ratio for between versus within 

genotype variance for several morphological traits of two Plantago 
lanceolata populations, measured in clonally propagated offspring 

from 10 flowering adults from each habitat grown in the greenhouse. 

Superscripts refer to traits related to size (1) and to the production 

of offspring (2). 

dry grassland wet meadow 

mean CV% F ρ mean CV% F 

Length longest leaf cm 

Width longest leaf mm 

Length longest scape cm 

Estimated biomass 
2 
No. of leaves 
2 
No. of spikes 
2 
No. of side rosettes 
2 
Length longest spike mm 
2 
No. of seeds per spike 

lated to reproduction in the population from the productive, closed hay meadow. 

The reverse is true for the population from the dry and open dune grassland: 

Here the variance ratio's are higher in traits related to reproduction and 

lower in traits related to adult size. Also when there is a significant gene

tic control, the variability is relatively lower in size related traits than 

in traits related to reproduction in the wet population and lower in traits 

related to reproduction than in traits related to size, but less markedly 

12.5 

13.8 

39.2 

242 

12.9 

28.3 

9.2 

28.0 

52.9 

28 

42 

20 

82 

31 

44 

48 

25 

40 

4.55 

2.82 

6.88 

2.07 

2.87 

1.76 

5.86 

9.07 

12.15 

0.01 

0.05 

0.001 

0.1 

0.05 

ns 

0.001 

0.001 

0.001 

20.1 

20.6 

53:2 

647 

15.0 

6.3 

1.9 

39.8 

92.3 

23 

32 

16 

50 

18 

63 

118 

32 

36 

11.30 

4.49 

4.46 

4.26 

2.06 

11.50 

3.82 

6.46 

1.45 

0.001 

0.01 

0.01 

0.01 

0.1 

0.001 

0.01 

0.001 

ns 
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so for the dry population. These observations on the total genetic variance 

are not conclusive with respect to the predictions of the model, but they are 

certainly along the lines predicted for the additive genetic variance. Appa

rently traits are under more strict genetic control in the wet site than in 

the dry site and have low variabilities, when traits related to adult size 

are considered. Exactly those traits were expected to be under selective pres

sure according to the model. The variability in traits in the dry site was 

more plastic especially in size related traits. There was a higher genetic 

control in traits related to reproduction and the variability was also some

what lower in these traits, where, according to the model, the higher selec

tive pressure was expected. 

THE IMPORTANCE OF ARCHITECTURE 

The conclusion from the previous section is that the differences between the 

two populations have a genetic basis and that the differences seem to be adap

tive. Most likely they cannot survive in each others habitat. The predictions 

from the model are borne out quite well, confirming the usefulness of such a 

matrix model in an evolutionary context. 

On the basis of the model certain life history traits have been identified 

that could be responsible for these differences in fitness. Adult survival was 

the most important trait for the population from the wet site. In this phase 

the population proved to be most sensitive to a change in the environment be

cause of narrow genetic specialization, directed at maintaining adults in a 

competitive environment. Adults from the population of the dry site proved to 

be more heterogeneous and less affected by the contrast. This heterogeneity 

is necessary to survive in a hazardous environment. Juvenile survival, however, 

was more important for this population, which is geared towards producing e-

nough offspring, regardless of the size of individuals and releasing them slow

ly into the environment. This variability prevents establishment in a compe

titive environment. Seed and seedlings from the wet site proved to be more 

homogeneous and their establishment was hardly affected by the contrast in the 

environments. 

It is clear that the whole of the life history traits determines the fit

ness of a population. Such a combination of life history traits has been de

scribed as a 'life history tactic' (Stearns, 1976) or as a 'plant strategy' 
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(Grime, 1979) and is defined as a set of co-adapted traits, that are inherited 

as such. Although there is some proof for the existence of genetic correlation 

for life history traits (Etges, 1982), it remains difficult to see how such 

correlation has been generated by selection. One solution could be, that there 

exists a more simple and more general underlying structure which regulates a 

set of traits at the same time and on which selection can operate. A possible 

candidate for such a general, underlying regulator is the way the growth of a 

plant is controlled. When growth is expressed not merely in terms of dry 

weight, but in terms of the dynamics of plant parts it becomes possible to 

describe the size as well as the shape of a plant. Plant size and plant form 

can be viewed to be regulated by variation in the number of units, in the size 

per unit and in the use of different orders of meristems (Van Groenendael, 

1985a). 

With regard to the two ecotypes of Plantago lanceolata, used in this study, the 

major differences in life history tactics can now be related to differences in 

modular growth. In the wet site it is important to maintain a large main ro

sette, to be able to compete with other tall grasses and forbs. In terms of 

modular growth this means a slow initiation of new modules (short internode, 

with a leaf attached to it and an axillary meristem) in the main rosette so 

that each unit can grow big enough. It also means a tight control over the use 

of the axillary meristems, so that no side rosettes are formed and only a few 

ears, that again can grow big. In the dry site it is important to produce many 

offspring. This can be achieved by a rapid production of small leaves in the 

main rosette. The axillary meristems associated with the leaves then produce 

side rosettes, causing a rapid proliferation of growing points, and many in-

florescenses in the main as well as in side rosettes. 

A large part of the differences noticed in the life histories of the two 

populations of P. lanceolata from contrasting habitats can be reduced to two 

fundamental controls: control over the speed of initiation of new modules or 

plastrochron time in the main rosette and control over the induction of second 

order meristems. These two controls define the form of the plant and the way 

its resources will be allocated. It offers a way to understanding life history 

tactics not only in terms of co-adaptation of traits but also on a deeper level 

of regulation, affecting several life history traits at once. 

130 



REFERENCES 

Antonovics, J. & Primack, R.B. (1982). Experimental ecological genetics in 

Plantago. VI. The demography of seedling transplants of P. lanceolata. 

Journal of Ecology, 70, 55-75. 

Antonovics, J., Bradshaw, A.D. & Turner, R.G. (1971). Heavy metal toleranre in 

plants. Advances in Ecological Research, 7, 1-85. 

Böcher, T.W. (1943). Studies on variation and biology in Plantago lanceolata 

L. Dansk Botanisk Arkiv, 11, 1-18. 

Caswell, H. (1978). A general formula for the sensitivity of population growth 

rate to changes in life history parameters. Theoretical Population Biology, 

14, 215-230. 

Emlen, J.M. (1973). Ecology: An Evolutionary Approach. Addison-Wesley, 

Reading, Mass., USA. 

Etges, W.J. (1982). 'A new view of life-history evolution'? - A response. 

Oikos, 38, 118-122. 

Fisher, R.A. (1958). The Genetical Theory of Natural Selection. Dover, New 

York, USA. 

Gadgil, M. 4 Solbrig, O.T. (1972). The concept of r- and K-selection: Evidence 

from wild flowers and some theoretical considerations. American Naturalist, 

106, 14-31. 

Grime, J.P. (1979). Plant Strategies and Vegetation Processes. John Wiley & 

Sons, Chichester, England. 

Groenendael, J.M. van (1985a). Teratology and metamerie plant construction. 

New Phytologist, 99, 171-178. 

Groenendael, J.M. van (1985b). Selection for different life histories in 

Plantago lanceolata L. Ph.D. Thesis, Catholic University of Nijmegen, 

Nijmegen, the Netherlands. 

Haeck, J., Aart, P.J.M, van der, Dorenbosch, H., Maarel, E. van der & Tongeren, 

0. van (1981). The occurence of Plantago species. Verhandelingen der Ko

ninklijke Nederlandse Akademie van Wetenschappen, Afdeling Natuurkunde, 

Tweede Reeks, 81, 26-33. 

Halle, F., Oldeman, R.A.Α. & Tomlinson, P.B. (1978). Tropical Trees and Fo

rests: An Architectural Analysis. Springer, Berlin, W-Germany. 

Harper, J.L. (1982). After description. The Plant Community as a Working Me

chanism (Ed. by E.I. Newman), pp. 11-25. Blackwell Scientific Publications, 

Oxford, England. 

131 



Harper, J.L. & Bell, A.D. (1979). The population dynamics of growth form in 

organisms with modular construction. Population Dynamics, 20th Symposium 

British Ecological Society (Ed. by R.M. Anderson, B.D. Turner & L. Taylor), 

pp. 29-53. Blackwell Scientific Publications, Oxford, England. 

Heslop-Harrison, J. (1964). Forty years of genecology. Advances in Ecological 

Research 2 (Ed. by J.B. Cragg), pp. 159-240. Academic Press, London, 

England. 

Kroon, H. de, Plaisier, Α. & Groenendael, J. van (submitted). Relative contri

bution to fitness: An extension to Caswell's growth rate sensitivity ana

lysis, using Teasel. 

Langlet, 0. (1971). Two hundred years of genecology. Taxon, 20, 653-722. 

Law, R. (1983). A model for the dynamics of a plant population containing in

dividuals classified by age and size. Ecology, 64, 224-231. 

Law, R., Bradshaw, A.D. & Putwain, P.D. (1977). Life-history variation in Poa 

annua. Evolution, 31, 233-246. 

Leslie, P.H. (1945). On the use of matrices in certain population mathematics. 

Biometrika, 33, 183-212. 

Leslie, P.H. (1966). The intrinsic rate of increase and the overlap of suc

cessive generations in a population of guillemots {Uña aatge Pont.). Jour

nal of Animal Ecology, 35, 291-301. 

Lewis, E.G. (1942). On the generation and growth of a population. Sankhyá, 

6, 93-96. 

Lewontin, R.C. (1965). Selection for colonizing ability. The Genetics of Co

lonizing Species (Ed. by H.G. Baker & G.L. Stebbins), pp. 77-94. Academic 

Press, New York, USA. 

Lewontin, R.C. (1974). The Genetic Basis of Evolutionary Change. Columbia 

University Press, New York, USA. 

Noë, R. & Blom, С.W.P.M. (1982). Occurrence of three Planiago species in 

coastal dune grasslands in relation to pore-volume and organic matter con

tent of the soil. Journal of Applied Ecology, 19, 177-182. 

Primack, R.B. (1976). The evolutionary basis of population dynamits in the 

genus Plantago. Ph.D. Thesis, Duke University, Durham, North Carolina, USA. 

Primack, R.B. & Antonovics, J. (1981). Experimental ecological genetics in 

Plantago. V. Components of seed yield in the ribwort plantain Plantago 

lanceolata L. Evolution, 35, 1069-1079. 

Primack, R.B. & Antonovics, J. (1982). Experimental ecological genetics in 

Plantago. VII. Reproductive effort in populations of P. lanceolata L. 

132 



Evolution, 36, 742-752. 

Schmidt, K.P. & Lawlor, L.R. (1983). Growth rate projection and life history 

sensitivity for annual plants with a seed bank. American Naturalist, 121, 

525-539. 

Slim, P. & Toorn, J. van der (1982). Variability in morphological characte

ristics of Plantago lanceolata. Verhandelingen der Koninklijke Nederlandse 

Akademie van Wetenschappen, Afdeling Natuurkunde, Tweede Reeks, 81, 36-41. 

Smith, B.H. (1984). The optimal design of a herbaceous body. American Natu

ralist, 123, 197-211. 

Stearns, S.C. (1976). Life-history tactics: A review of the ideas. Quarterly 

Review of Biology, 51, 3-47. 

Stearns, S.C. (1977). The evolution of life history traits: A critique of the 

theory and a review of the data. Annual Review of Ecology and Systematics, 

8, 145-171. 

Stearns, S.C. (1980). A new view of life-history evolution. Oikos, 35, 266-281. 

Teramura, A.H. (1978). Localised ecotypic differentiation in three contrasting 

populations of P. lanceolata. Ph.D. Thesis, Duke University, Durham, North 

Carolina, USA. 

Turesson, G. (1925). The plant species in relation to habitat and climate. Con

tribution to the knowledge of genecological units. Hereditas, 6, 147. 

Warwick, S.I. (1980). The genecology of lawn weeds. VII. The response of dif

ferent growth forms of Plantago major L. and Poa annua L. to simulated 

trampling. New Phytologist, 85, 461-469. 

Warwick, S.I. & Briggs, D. (1979). The genecology of lawn weeds. III. Culti

vation experiments with Achillea millefoliim L., Bellis perennis L., Plan

tago lanceolata L., Plantago major L. and Prunella Vulgaris L. collected 

from lawns and contrasting grassland habitats. New Phytologist, 83, 509-536. 

Watson, M.A. (1984). Developmental constraints: Effect on population growth and 

patterns of resource allocation in a clonal plant. American Naturalist, 123, 

411-426. 

Westhoff, V. & Maarel, E. van der (1978). The Braun-Blanquet approach. Classi

fication of Plant Communities (Ed. by R.H. Whittaker), pp. 287-399. Junk, 

The Hague, the Netherlands. 

White, J. (1979). The plant as a metapopulation. Annual Review of Ecology and 

Systematics, 10, 109-145. 

Wu, L. & Antonovics, J. (1975). Experimental ecological genetics in Plantago. 

I. Induction of leaf shoots and roots for large scale vegetative propaga

tion and tolerance testing in P. lanceolata. New Phytologist, 75, 277-282. 

133 



η — . . . 
!' .'Λ 

^¡k "$£? -Λ ' 

з 

134 



SUMMARY 

It has been the aim of this study to demonstrate the validity of certain aspects 

of what is commonly referred to as the 'life history theory'. The central tenet 

of this theory is the existence of sets of co-adapted life history traits, 

which together make up a so-called life history tactic, selected as such as a 

result of particular environmental conditions. The relevance of this theory is 

that evolution is taking place through differences in life history traits such 

as age-and size-dependent reproduction and survival, longevity and time to first 

reproduction. Knowledge of any co-adapted pattern in life history traits would 

therefore improve our understanding of the proces of evolution. 

In order to test the theory, empirical information was collected on the life 

histories of two ecotypes of Plantago lanceolata L. (Ribwort Plantain), mainly 

based on a demographical analysis over a three-year period. Ecotypes from one 

species were chosen because several authors considered ecotypes to provide the 

best opportunity for comparison of differences in life histories. The habitats 

of these ecotypes were selected for their contrast in density-dependent regula

tion, as this is a central concept in the theory. The first habitat was an open 

dry dune grassland on leached, nutrient-poor, sandy substratum, which had been 

in use as a commonage continuously for several centuries. Its vegetation is 

open, with little above-ground interference, and it suffers from occasional 

but unpredictable droughts. The second habitat was an old, productive hay mea

dow on a completely organic, permanently waterlogged substratum, which fills a 

medieval river bed. Its vegetation is dense, with many species, and is mown 

once a year in mid-July. Two distinct ecotypes of Plantago lanceolata are 

found in these habitats, differing in morphology as well as in life history. 

The dry ecotype, described in taxonomie literature as subvar. sphaevostachya 

Mert. et Koch f. minor, has small, flat rosettes with many leaves and many 

globular inflorescenses on short ascending stalks. Frequently, side rosettes 

are formed from axillary meri stems that serve to maintain the genet and enlarge 

its seed output in the current year. Many small seeds are produced which show 

innate dormancy, resulting in a spring flush of seedlings. Light and temperature 

requirements of the germination are such that there exists some enforced dorman

cy resulting in a substantial seedbank. Individuals in this population reprodu

ce early in life, but they are short-lived. Juveniles and adults share about 

equal mortality risks and the population growth rate is high. The wet ecotype, 

described as subvar. latifolia Wimm. et Grab., is a much taller plant, with few 
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tall erect leaves,one or two oblong inflorescenses on long straight stalks and 

no side rosettes. Fewer but bigger seeds are produced in comparison with the 

dry ecotype, and these seeds do not show any dormancy and do not form a sub

stantial seedbank. After germination, individuals of this population show high 

relative growth rates under optimal conditions, but growth is slow in the field 

because of shading, and consequently many seedlings and juveniles die. Adults, 

on the contrary, are long-lived and flower repeatedly. The combination of high 

juvenile mortality and low adult mortality results in a low population growth 

rate. 

The life histories described in this study show a clear pattern, which is in 

accordance with predictions from life history theory. A high population growth 

rate, early reproduction, short life-span, many small seeds, a seedbank, vege

tative spread, reduced iterocarpy, equal mortality risks for juveniles and 

adults, all these have been mentioned by several authors in connection with un

predictable environments with density-independent regulation of population siœ. 

The reverse is true for stable environments, showing density-dependent regula

tion. However, a satisfactory fit between actual life histories and the life 

histories expected on the basis of habitat characteristics, does not constitute 

sufficient proof for the validity of the life history theory. Two further 

points must be established; firstly, that differences in life history traits 

result in differences in fitness and, secondly, that these traits are co-adap

ted, forming together a life history tactic. As to thefirst point, two methods 

have been used to test the adaptive significance of differences in life history 

traits; a direct one using reciprocal transplant experiments, and an indirect 

one using sensitivity analysis in descriptive population models, based on 

matrix projection techniques. 

In the first test individuals of both populations were transplanted recipro

cally into their own and the other habitat, in three distinct phases of the 

life cycle. Survival of seeds buried in the soil was recorded in a reciprocal 

burial experiment. Germination and subsequent establishment was followed in a 

reciprocal sowing experiment, and adult survival was registered using clonally 

propagated offspring from succesful genotypes in the original habitats. In all 

three experiments there were significant site and origin effects, but also sig

nificant site χ origin interactions in the direction of a better performance 

in the home site. This points at local specialization. After a sufficient 

period of time for the habitat differences to take full effect, it can be con

cluded that both populations, summed over their whole life cycle, are unfit to 
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survive in each other's habitat. An attempt was made to relate the differences 

in fitness between the genotypes in the adult transplant experiment to specific 

morphological traits, measured for the same genotypes grown in the greenhouse. 

In general there were only weak correlations between any of the traits measured 

and the individual fitness of the genotypes in both field habitats, except for 

the number of leaves in the main rosette. On the whole there was greater plas

ticity in morphological traits in the genotypes from the dry site than in those 

from the wet site, but, regardless of origins, the most plastic genotypes had 

the lowest fitness when growing in the stable, wet habitat. This suggests that 

plasticity is important in defining an individual's fitness. 

The second test involved the simulation of the population dynamics of both 

populations, based on the demographical data, using matrix projection models. 

The fecundity and survival parameters that together form the matrix elements, 

were evaluated for both size and age categories at the same time, using the 

formulation originally proposed by Goodman. The output of the model was veri

fied against field data and this proved to be satisfactory. After this verifi

cation both absolute and relative perturbations were applied to the matrix 

elements and their effect was registered on the population growth rate, which 

is the dominant eigenvalue of the matrix. From this perturbation or sensitivity 

analysis it could be concluded that the population dynamics in the dry site 

depended most clearly on new recruitment, whereas adult survival was most im

portant in the wet site. There is no doubt about the usefulness of this matrix 

model in summarizing large data sets. Apart from this capacity, sensitivity 

analysis of the model can generate a large array of hypotheses. It was expected 

for instance, that the greater sensitivity of recruitment or adult survival 

would be reflected in a greater selective pressure on these traits or on traits 

directly affecting recruitment or adult survival, resulting in local speciali

zation and low levels of additive genetic variance. Local specialization was 

evident in all three reciprocal transplant experiments, but in-the case of the 

dry population, the contrast in performance between home site and alien site 

was most obvious for the survival of seeds in the soil, while for the wet pop

ulation this contrast was most marked for adult survival in the adult trans

plant experiment. This confirms the expectations from the model. Further sup

port comes from the fact that those morphological traits that are related to 

the production of offspring, e.g. number of inflorescenses, number of seeds pa: 

ear, number of side rosettes, were generally less variable in the dry popula

tion and more strictly controlled. The same is true for the wet population for 
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those traits that are related to competitive ability as the major factor in 

maintaining adult rosettes, e.g. length and width of leaves and biomass. 

As to the second point, whether life history traits are co-adapted to form 

a life history tactic, this has not been tested explicitly. However, in one 

way or another, a more general principle, open to selection, must underlie 

such a set of life history traits. The control over meristematic activity 

during plant morphogenesis could be such a principle. It is suggested that the 

different morphologies of individuals of the two populations of plantains can 

be reduced to two underlying characteristics, one being the control over the 

speed of initiation of new leaves in the main rosette or plastrochron time, 

and the other being the control over the induction of the axillary meristems 

associated with the leaves in the main rosette. These two controlling mecha

nisms determine whether a plant will grow tall with few big leaves and inflor-

escenses or whether it will remain small with many leaves, many small inflor-

escenses, and a rapid proliferation of growing points because of side rosettes 

arising from axillary meristems, which produce inflorescenses as well. In fact 

those two controlling mechanisms determine not only the form of the plantain 

rosette but also the way its resources will be allocated. This offers a way to 

understanding life history tactics not only in terms of co-adaptation of traits 

but also on a deeper level of regulation, affecting several life history traits 

at once. 
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SAMENVATTING 

Het doel van dit proefschrift is de geldigheid te onderzoeken van een aantal 

uitspraken die zijn gebaseerd op de zogenaamde "strategie-theorie". De centrale 

veronderstelling in deze theorie is het bestaan van onderling op elkaar afge

stemde en ook samen geselecteerde kenmerken van een levenscyclus, die samen een 

overlevingsstrategie vormen als reactie op bepaalde factoren in het milieu. Het 

belang van deze theorie is, dat evolutie plaatsvindt juist door verschillen in 

kenmerken van de levenscyclus, zoals voortplanting en overleving, levensduur en 

de tijd nodig om tot voortplanting te komen. Kennis van enig door selectie te

weeggebracht patroon in de levensverrichtingen zou daarom ons inzicht in het 

evolutieproces vergroten. 

Om de theorie te testen, zijn gegevens verzameld over de levenscyclus van 

twee oecotypen van Plantage lanceolata L. (smalle weegbree), voornamelijk geba

seerd op demografisch veldwerk gedurende drie achtereenvolgende jaren vanaf 

1979. Aan oecotypen van één soort is bij de bewijsvoering de voorkeur gegeven, 

omdat deze algemeen worden beschouwd als het beste uitgangsmateriaal om ver

schillen in levenscyclus te onderzoeken. De terreinen waar deze oecotypen voor

komen, zijn uitgekozen op grond van hun verschil in dichtheidafhankelijke re

gulatie van de populatiegrootte, omdat deze afhankelijkheid een centraal begrip 

in de theorie is. Het eerste terrein is een open en droog duingrasland op voed-

selarm, zandig substraat. Het grasland wordt al enkele eeuwen gebruikt als ge

meenschappelijke weide en begraasd met vee. De vegetatie is open, met weinig 

bovengrondse wisselwerking tussen planten, en is onderhevig aan af en toe op

tredende droogteperioden. Het tweede terrein is een hooiweide in een verlande 

rivierarm. De bodem is zuiver organisch en permanent met water verzadigd. De 

vegetatie is hoog, gesloten en soortenrijk en wordt eenmaal per jaar gemaaid, 

en wel half juli. In deze twee terreinen worden twee duidelijk van elkaar ver

schillende oecotypen van de smalle weegbree aangetroffen. 

Het oecotype van droog milieu, dat in de taxonomische literatuur wordt aan

geduid als subvar. sphaerostachya Mert. et Koch f. minor, heeft kleine vlakke 

rozetten met veel blaadjes en ronde bloeiwijzen op korte opstijgende stelen. 

Regelmatig worden zijrozetten gevormd uit okselmeristemen, die bijdragen tot 

een langere levensduur van het individu en tevens tot een hogere zaadproduktie. 

Een groot aantal kleine zaadjes wordt gevormd, die een aangeboren kiemrust ver

tonen, zodat de meeste kieming pas optreedt in de lente. De kieming is geringer 
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in het donker en verloopt pas optimaal bij tamelijk hoge temperaturen, met het 

gevolg dat lang niet alle zaden kiemen en dat er een zaadvoorraad aanwezig is 

in de grond. De rozetten in deze populatie kunnen al in het tweede seizoen 

bloeien, maar in het algemeen is hen maar een kort leven beschoren. Jonge en 

oudere planten dragen ongeveer gelijke risico's en de populatiegroeisnelheid 

is hoog. 

Het oecotype van vochtig milieu, beschreven als subvar. latifotia Wimm. et 

Grab., vormt veel forsere rozetten, met enkele lange en rechtopstaande bladen 

en één of twee cylindervormige bloeiwijzen op lange, rechte stelen. Er zijn 

maar zelden zijrozetten aanwezig. In vergelijking met het "droge" type worden 

er minder maar wel forsere zaden gevormd. Deze zaden vertonen nauwelijks kiem-

rust en kunnen kiemen bij lage temperaturen zonder remming in het donker. Daar

door valt de voornaamste kiemgolf al in het najaar en wordt er in de grond 

nauwelijks een zaadvoorraad gevormd. Na de kieming kunnen rozetten van de smalle 

weegbree uit deze populatie onder optimale condities snel groeien, maar in het 

veld is de groei echter traag als gevolg van overschaduwing. Vele kiemplanten 

en juvenielen sterven dan ook. Zij lopen duidelijk meer risico dan de volwassen 

planten, die lang blijven leven en, als ze eenmaal tot bloei zijn gekomen, 

vaker kunnen bloeien. De combinatie van hoge jeugdsterfte en lage adultsterfte 

van volgroeide planten resulteert in trage populatiegroei. 

De levensstrategieën die in het veld zijn beschreven, zijn in overeenstem

ming met de theorie. Een hoge groeisnelheid van de populatie, een vroege re

productie, een kort leven, veel kleine zaden, het bezit van een zaadvoorraad, 

vegetatieve verbreiding, een beperkt aantal keren voortplanten, gelijke sterf te-

risico's bij jonge en oude rozetten, zijn evenzovele kenmerken van de levens

cyclus die door diverse auteurs in verband zijn gebracht met onvoorspelbare 

milieus, waarin een van de dichtheid onafhankelijke regulatie van de populatie

grootte een belangrijke rol speelt. Het omgekeerde gaat op voor stabiele milieus 

met van de dichtheid afhankelijke regulatie. Een redelijke overeenkomst tussen 

enerzijds de levensloop zoals die zich voltrekt in het veld en anderzijds de 

voorspelde kenmerken van de levensloop, afgeleid uit de theorie op basis van 

bepaalde milieu-kenmerken, vormt echter nog geen voldoende bewijs voor de 

geldigheid van de theorie. Twee punten moeten verder nog worden vastgesteld: 

Allereerst of verschillen in kenmerken van de levenscyclus bepaalde individuen 

bevoordelen ten opzichte van andere, zodat selectie mogelijk is, en ten tweede, 

dat deze kenmerken samen geselecteerd zijn tot een levensstrategie. Ter beant

woording van de eerste vraag zijn twee wegen gevolgd om aan te tonen dat de 
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gevonden verschillen in levensloop ook werkelijk van voordeel zijn bij het over

winnen van de problemen in het eigen milieu. De eerste weg is het rechtstreeks 

in eikaars milieu overplanten van individuen. De tweede weg is indirect en 

maakt gebruik van een gevoeligheidsanalyse van populatiemodellen, die zijn ge

baseerd op matrix-projectietechniek. 

Bij het overplanten van individuen is gebruik gemaakt van drie afzonderlijke 

fasen in de levensloop: De overleving van begraven zaad is geregistreerd; 

kieming en vestiging zijn gevolgd na inzaai en tot slot is de overleving nage

gaan van adulten, die waren verkregen door het klonen van planten die zich ge

vestigd hadden in de oorspronkelijke milieus. In alle drie de experimenten 

bleek zowel het milieu alsook de herkomst van de individuen van grote invloed 

op het succes van de individuen. Er was echter ook sprake van een duidelijke 

interactie tussen herkomst en milieu, hetgeen wil zeggen dat succes vooral op

treedt in het eigen en niet in het vreemde milieu. Dit wijst op lokale specia

lisatie en selectie. Als de resultaten van de drie levensfasen bij elkaar worden 

gevoegd, moet de conclusie zijn, dat geen van de twee populaties in staat moet 

worden geacht te overleven in het andere milieu. Bij een poging verband te leg

gen tussen kenmerken van de levensloop en een aantal morfologische kenmerken, 

is alleen een betekenisvol verband gevonden tussen overleving in het droge 

milieu en het aantal blaadjes in het hoofdrozet. Over het geheel genomen bleek 

wel dat individuen van het droge milieu een grotere plasticiteit bezaten in 

morfologische kenmerken dan die uit het natte milieu, en dat juist die plasti

citeit een nadeel betekende in het natte milieu, ook als die werd aangetroffen 

bij individuen uit dat milieu. Dit duidt op aanpassingswaarde van plasticiteit. 

De tweede test had betrekking op het nabootsen van de populatiegroei van 

beide populaties met behulp van matrix-projectiemodellen. De vruchtbaarheid en 

de overlevingskansen, die samen de projectïe-matrix vormen, zijn daarin inge

vuld, rekening houdend met grootte en ouderdom van de rozetten, gebaseerd op 

de veldgegevens. De resultaten uit het model bleken redelijk overeen te komen 

met de veldresultaten. Na deze verificatie zijn zowel absolute als relatieve 

verstoringen aangebracht in de matrix-elementen. Geregistreerd werd het effect 

daarvan op de groei van de populatie, dat wil zeggen op de dominante eigenwaarde van 

de matrix. Op basis van deze zogenaamde gevoeligheidsanalyse kon geconcludeerd 

worden, dat de groei van de populatie in het droge duingrasland vooral afhangt 

van de jaarlijkse aanvulling met nieuwe rozetten, terwijl deze in de natte 

hooiweide veel meer afhangt van het in leven blijven van volwassen rozetten. 

Het is duidelijk dat dit soort matrixmodellen in staat is grote aantallen ge-
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gevens op zinvolle wijze samen te vatten. Met de gevoeligheidsanalyse kan de 

populatie kritisch worden doorgelicht en kunnen nieuwe hypothesen worden opge

worpen. Zo kan men bijvoorbeeld het volgende verwachten. Als het zwakke punt 

in deze populaties ligt in de mate van aanvulling met nieuwe rozetten, of juist 

in de overleving van volwassen planten, dan zal dat resulteren in een versterkte 

selectiedruk op kenmerken, die van invloed zijn op deze zwakke schakels in de 

levenscyclus. Dit moet dan leiden tot lokale specialisatie. Lokale speciali

satie was reeds aangetoond in de transplantatie-experimenten, maar de sterkste 

specialisatie bij de "droge" populatie werd gevonden voor overleving van zaad 

in de grond, terwijl bij de "natte" populatie het grootste contrast voorkwam 

bij de adult-overleving. Dit bevestigt voornoemde hypothese. Deze wordt verder 

nog ondersteund door het feit dat juist die morfologische kenmerken, die van 

invloed zijn op het voortbrengen van nageslacht (zoals aantal bloeiwijzen, 

aantal zaden per aar, aantal zijrozetten), in de "droge" populatie een lagere 

genetische variabiliteit vertoonden, hetgeen uitgelegd kan worden als een ge

volg van selectiedruk. Iets dergelijks is ook gevonden in de "natte" populatie 

maar dan bij kenmerken die van invloed zijn op het overleven van volgroeide 

rozetten, zoals grootte van de bladen en de hoeveelheid gevormde biomassa. 

Het bewijsmateriaal dat in dit proefschrift is aangevoerd laat geen uit

spraken toe over de vraag of er sprake is van samen geselecteerde kenmerken, 

die een herkenbare levensstrategie vormen. Wel kan men speculeren over het 

mechanisme waarmee een samenhang tussen kenmerken van de levenscyclus tot stand 

komt. Dit zou kunnen, doordat een meer algemeen kenmerk Len grondslag ligt aan 

een aantal kenmerken van de levenscyclus. Er zijn aanwijzingen dat een derge

lijk meer algemeen kenmerk met directe gevolgen voor andere kenmerken van de 

levenscyclus, is gelegen in de controle over aanleg en gebruik van meriste-

matisch weefsel. De sterk verschillende uiterlijke verschijningsvormen van 

beide oecotypen van de smalle weegbree, kunnen uiteindelijk worden herleid tot 

mogelijkerwijs twee basiskenmerken. Het eerste is de snelheid waarmee nieuwe 

bladen worden gevormd in het hoofdrozet en het tweede is de controle over het 

gebruik van de meristemen in de oksels van die bladen. Het eerste kenmerk be

paalt of er weinig maar grote bladen worden gevormd of juist veel, kleine 

bladen. Het tweede bepaalt uit hoeveel bladoksels bloeiwijzen zullen ontstaan 

of ook zijrozetten, die zelf weer bijdragen tot een snelle toename van het aan

tal okselmeristemen. In feite bepalen deze twee kenmerken de manier waarop het 

individu zijn vorm verkrijgt en daarmee ook de manier waarop de diverse (schaar

se) hulpbronnen worden verdeeld over de plant. Indirect worden zo de diverse 

levensverrichtingen in samenhang gereguleerd en dit kan leiden tot een beter 

inzicht in levensstrategieën en tot verbetering van de strategie-theorie. 
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STELLINGEN 

1. Het door Stearns geopperde idee dat een levensstrategie vanwege zijn com

plexe karakter, een evolutionair star kenmerk zou moeten zijn, vergelijkbaar 

met complexe morfologische kenmerken en daarom het beste aantoonbaar op 

hogere taxonomische niveaus, is niet houdbaar. 

StearnSj S.C.(1980). Oikos, ¿5, 266-281. 

2. Het ontbreken van aanwijsbare effecten van genetische verschillen tussen 

populaties van Plantage lanceolata L. in kenmerken van de levenscyclus, 

wanneer deze populaties in eikaars milieu worden overgeplant, verklaren 

Antonovics en Primack door een grote plasticiteit van deze populaties. 

Het alternatief, dat de oorspronkelijke milieus niet genoeg en/of niet lang 

genoeg van elkaar verschilden in relevante kenmerken, is door hen onvoldoen

de onderzocht. 

Antonovics, J.& Primack, R.B. (1982) .Journal of Ecology, ?'0,55-75. 

3. Ten onrechte spreken Warwick en Briggs in hun onderzoek van reciproke trans

plantatie experimenten. De uitgevoerde proeven laten uitspraken toe over 

aanpassing aan proefcondities, niet over aanpassing aan veldomstandigheden. 

Warwick, S.I.& Briggs, D. (1980а,Ъ,с). 

New Phytologist, 85, 275-288,289-000,451-460. 

4. Het feit dat processen met een sterk historisch en uniek karakter zoals 

successie en evolutie, een centrale plaats innemen in de oecologie, zou 

moeten leiden tot een hogere waardering voor vergelijkend en beschrijvend 

onderzoek. 

5. Het ligt niet zonder meer voor de hand vegetaties of zelfs landschappen als 

objecten voor oecologisch onderzoek te beschouwen. De grens tussen object en 

milieu wordt in toenemende mate diffuus en dit belemmert de studie van rela

ties tussen beide. 

6. Door de toenemende druk om te publiceren wordt steeds vaker als criterium 

voor natuurwetenschappelijke betrouwbaarheid gebruik gemaakt van statisti

sche zekerheid in plaats van herhaalbaarheid van de resultaten. Op de lange

re termijn werkt dit contraproductief. 



7. Het systeem van anonieme referenten in het wetenschappelijk bedrijf, is een 

teken van onvolwassenheid. 

8. Voor het idee dat plantesoorten beschermd kunnen worden door een verbod op 

het plukken van bloemen, bestaan nauwelijks populatie-dynamische argumenten. 

Een onschuldig en vooral voor kinderen groot plezier aan planten komt hier

mee ten onrechte in een kwaad daglicht te staan. 

9. Er zijn vele ouders die graag een kind zouden willen adopteren. Er zijn veel 

kinderen voor wie vergeefs een pleeggezin wordt gezocht. Dit contrast hangt 

samen met het vaak vertekende beeld dat volwassenen hebben van kinderen. 

10. Als het in de strategie theorie ontwikkelde idee juist is, dat een hoge in

vestering in het voortbrengen van nageslacht nu, een negatief effect heeft 

op het te verwachten aantal nakomelingen in de toekomst, dan valt te vrezen 

dat de schrijvers van een proefschrift in de toekomst niet al te produktief 

zullen blijken: zij vertegenwoordigen de strategie van de "big-bang"(re)pro-

duktie. 

11. De kleding die wordt gedragen door de protagonisten tijdens de promotie-

plechtigheid getuigt wellicht van gevoel voor traditie maar niet van gevoel 

voor historie: het kan niet de bedoeling zijn weer te geven hoeveel eeuwen 

de promovendus zijn academische opponenten vooruit is. 

Stellingen, behorend bij het proefschrift van Jan van Groenendael, 

Selection for different life histories in Plantage lanceolata. 

Heelsum,16 April 1985. 






