
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/113138

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/113138


CLUSTER EMBEDDING AND 
PSEUDOPOTENTIALS IN THE 

HARTREE-FOCK-SLATER-LCAO 
METHOD 

W. RAVENEK 





CLUSTER EMBEDDING AND 
PSEUDOPOTENTIALS IN THE 

HARTREE-FOCK-SLATER-LCAO 
METHOD 

ISBN 90-9000784-9 



Promotores: Prof.Dr.Ir. A. van der Avoird 

Prof.Dr. E.J. Baerends 



CLUSTER EMBEDDING AND 
PSEUDOPOTENTIALS IN THE 

HARTREE-FOCK-SLATER-LCAO 
METHOD 

PROEFSCHRIFT 

ter verkrijging van de graad van doctor in de wiskunde 
en natuurwetenschappen aan de Katholieke Universiteit 
te Nijmegen, op gezag van de Rector Magnificus Prof. Dr. 
J.H.G.I. Giesbers, volgens besluit van het College van 
Dekanen in het openbaar te verdedigen op donderdag 
22 november 1984, des namiddags te 2.00 uur precies 

door 

Walter Ravenek 

geboren te Pijnacker 

1984 
Offsetdrukkerij Kanters B.V., 

Alblasserdam 



Hierbij wil ik eenieder bedanken die bijgedragen heeft aan het tot­

standkomen van dit proefschrift. Met name wil ik noemen: 

- de mede-auteurs van de artikelen in hoofdstukken II - IV, in het bij­

zonder Perdie Geurts, die ook een belangrijke bijdrage geleverd heeft 

aan het in hoofdstuk VI beschreven werk, voor de prettige samenwerking; 

- de (ex-)leden van de afdeling Theoretische Chemie van de Katholieke 

Universiteit te Nijmegen, in het bijzonder Poppe Visser, voor plezie­

rige kontakten; 

- de (ex-)leden van de afdeling Theoretische Chemie van de Vrije Univer­

siteit te Amsterdam voor gastvrijheid gedurende enkele maanden in 1982; 

- Monique Bongers - de Bie en Maria Straatman voor het verzorgen van het 

manuskript; 

- de North-Holland Publishing Company, in het bijzonder dhr. J. Hanraads, 

voor het beschikbaar stellen van een kopie van het artikel in hoofdstuk 

IV v66r publikatie in Chemical Physics. 

Dit onderzoek werd gedeeltelijk gesteund door de Stichting Scheikundig 

Onderzoek in Nederland (S.O.N.) met een subsidie van de Nederlandse Organi­

satie voor Zuiver-Wetenschappelijk Onderzoek (2.W.O.). 



aan mijn ouders 

aan Ida 



C O N T E N T S 

CHAPTER I Introduction 

CHAPTER II Hartree-Fock-Slater-LCAO calculation of the Mossbauer 

parameters of some antimony compounds 

(W. Ravenek, J.W.M. Jacobs, A. van der Avoird, 

Chem. Phys. 78 (1983) 391) 

CHAPTER III The calculation of interaction energies using the 

pseudopotential Hartree-Fock-Slater-LCAO method 

(W. Ravenek, E.J. Baerends, 

J. Chem. Phys. jh (1984) 865) 

CHAPTER IV The calculation of one-electron properties using 

the pseudopotential Hartree-Fock-Slater-LCAO 

method 

(W. Ravenek, F.M.M. Geurts, 

Chem. Phys. 90 (1984) 73) 

CHAPTER y On the use of perturbation theory in the pseudo-

potential Hartree-Fock-Slater-LCAO method 

CHAPTER VI Implementation of the moderately-large-embedded-

cluster scheme in the pseudopotential Hartree-Fock-

Slater-LCAO method; calculations for hydrogen on 

lithium (100) 



SUMMARY 112 

SAMENVATTING (Dutch summary) 114 

CURRICULUM VITAE 11 6 





C H A P T E R I 

INTRODUCTION 

This thesis deals with a number of quantum chemical methods for computa­

tional studies of molecular systems that can be qualified as large on an 

atomic scale. As starting point serves the nonempirical Hartree-Fock-

Slater(HFS)-LCAO method, which has been demonstrated to yield a physical­

ly realistic description of molecular systems in relatively little compu­

tational time, in comparison with the more common ab initio methods. The 

methods developed here may be considered as building blocks for an embed­

ding pseudopotential HFS-LCAO scheme applicable to chemisorption calculations 

and capable of yielding electron densities, interaction energies and one-

electron properties. 

In recent years numerous chemisorption studies have been performed in 

which the substrate is represented by a (relatively small) cluster of atoms. 

The most obvious defect of these calculations is formed by the incorrect 

boundary conditions of the clusters, which can lead to serious artefacts 

in computed quantities such as the charge distribution and the chemisorption 

energy. Embedding methods are meant to remedy this defect by ensuring the 

proper connection of the cluster with the rest of the (unperturbed) sub­

strate. Apart from being more satisfactory from a theoretical point of 

view, it is also expected that embedded cluster calculations show a better 

convergence behaviour with respect to cluster size than bare cluster calcula­

tions. The embedding method dealt with in this thesis is the so-called mo­

derately-large-embedded-cluster scheme of Pisani, in which the effect of 

the substrate is represented by an embedding (Coulomb and exchange) poten­

tial and an energy dependent coupling matrix. In its application to transi-
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tion metal surfaces, which we intend to study because of their technological 

importance,especially the pseudopotential version of the HFS-LCAO method is 

attractive, since it can handle systems with relatively many core electrons 

in an efficient manner. Although the pseudopotential HFS-LCAO method has been 

used previously, we found it amenable to improvement. We have generalized it 

for the calculation of interaction energies and studied its behaviour for 

one-electron properties. 

In chapter II we describe the calculation of the Mössbauer parameters for 

a series of thirteen antimony compounds. This study was initiated because of 

the unsatisfactory results for the quadrupole splittings in these compounds 

given by Extended Hiickel calculations. The procedure to obtain electric field 

gradients in all-electron and frozen-core HFS-LCAO calculations is investigated 

for the HCl molecule. This chapter is somewhat isolated from the rest of this 

thesis in its physical contents; however, it involves the same method of 

calculating one-electron properties as used in chapter IV. 

In chapters III - V we deal with the pseudopotential HFS-LCAO method as 

such. In chapter III we develop and test a scheme for the calculation of inter­

action energies. Our method involves the use of a new,self-consistent pertur-

bational scheme for the calculation of the pseudo-orbitals. The calculation 

of one-electron properties is treated in chapter IV; the scheme used in 

chapter II is extended in order to include the use of core orthogonalized and 

perturbed pseudo-orbitals. We conclude our investigation of the pseudopotential 

method in chapter V with a discussion of the application of perturbation 

theory to correct for the use of averaged pseudopotentials. 

In chapter VI we describe the moderately-large-erabedded-cluster scheme 

for chemisorption calculations and its implementation in the pseudopotential 

HFS-LCAO method. The scheme is formulated for a finite representation of 

the substrate, viz. a cluster which is large compared to the original chemi­

sorption cluster. We present some test calculations for the on-top adsorption 
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of hydrogen on the unreconstructed lithium (100) surface. 

Quantum chemistry hinges heavily on the use of computers for its calcula­

tions. The development of computational methods consists to a large extent of 

writing and modifying computer programs of considerable size. The present work 

forms no exception to this rule. In the following scheme we have indicated 

the programs that play a rôle in this thesis : 

HFS-LCAO 

SCPT 

The central program is, of course, the HFS-LCAO program, used for the 

self-consistent calculation of the molecular orbitala in the HFS model. In 

order to obtain the interaction energy between certain fragments upon combi­

nation to an overall molecule, the additional programs FRAGMEN and ETS are 

used. First, one performs HFS calculations for the separate fragments and 

combines the resulting data with FRAGMEN, then performs an overall molecule 

HFS calculation and finally calculates the interaction energy with ETS. The 

program ETS also performs a population analysis of the overall molecule in 

terms of fragment orbitale. 



One-electron properties may be calculated from the molecular orbitals 

obtained with HFS-LCAO, by use of the standard properties program PROPERTY. 

An interface, INTER, is needed to expand Slater type basis functions in 

Gaussian type basis functions. In pseudopotential calculations the orbitals 

may also be orthogonalized to the cores. 

Program SCPT is a self-consistent perturbational program, optionally 

used to correct the pseudo-orbitals calculated with averaged pseudopotentials. 

The perturbed pseudo-orbitals can be used to obtain perturbation corrected 

interaction energies and one-electron properties. 

Cluster embedding calculations require three steps, two of which are 

performed by the HFS-LCAO program, which is extended for this purpose, viz. 

the self-consistent calculation on the substrate cluster and the actual em­

bedded cluster calculation. Program PISANI is used to select a cluster from 

the substrate and to condense the substrate electronic structure into the 

form of an embedding potential and an energy dependent coupling matrix. 
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C H A P T E R I I 

HARTREE-FOCK-SLATER LCAO CALCULATION OF THE MOSSBAUER PARAMETERS 
OF SOME ANTIMONY COMPOUNDS 

Walter RAVFNEK, Jan W M JACOBS " and Ad VAN DER AVOIRD 

Inslilute of Theoretical Chemistry University of Nijmegen Toernooiveld. Vijmegen The Netherlands 

Received 21 January 1983 

This paper describen a (non empirica]) Hartree Fock Slater (Χα) LCAO study of the Mössbauer parameters in a senes of 
thirteen Sb compounds S b X j ( X - F CI Br I) 5Ь(СН,)лС1з „ ( N - 1 2 3 ) S b X , ( X - F CI) and Sb(CH,)jX¡ (X - F Cl 
Br I) in relation with the chemical bonding in these compounds The calculated isomer shifts agree very well with the 
experimental data correlation coefficient 0 99 4 Я / Я - - 1 0 8 x 1 0 J The quadrupole splitting for the Sb(lll) compounds is 
consistently (correlation coefficient 0 97) too small by a factor of 2 7 for the Sb(V) compounds the results are more scattered 
and even smaller The proportionality factor could be partly due to the uncertainty in the >2iSb nuclear quadrupole moment 
and partly to the neglect of core polarization effects ш the (frozen core) HFS 1 CAO calculations Test calculations on HCl 
which are also reported in this paper show that the HFS LCAO method can yield accurate core polarization corrections to the 
quadrupole splitting (Sternheimer factors) but only at the cost of an expensive numerical integration scheme The results 
suggest further that the structures of some of the Sb compounds might be different from what has previously been proposed 

1 Introduction 

Since 1960 a large number of Mossbauer spec-
Ira have been measured and there has been consid­
erable theoretical effort to calculate the electronic 
parameter:» related to these spectra the electron 
density and the electric-field gradient (EFG) at the 
nucleus of the Mossbauer-aclive atom Most at­
tempts to rationalize Mossbauer data with quan­
tum chemical methods have made use of semi em­
pirical techniques such as the extended Huckel 
and the CNDO method More recently the 
scattered-wave Χα method has been applied, 
mainly to compounds contaimng Fe [1] Moreover, 
there exist also a few (ab initio) Hartree-Fock 
LCAO treatments of Fe complexes [2] where the 
Mossbauer parameters are obtained without intro­
ducing any empirical data 

As an alternative non-empincal method which 
yields rather accurate molecular properties and is 

* Present address Philips Research Laboratories Eindhoven 
The Netherlands 

cost-effective, so that it can be applied to larger 
molecules, we consider the Harlree-Fock-Slaler 
LCAO method [3) It has been used by Geurts et 
al [4] to calculate the quadrupole splitting for the 
complexes [Fe4S4(SH)4]

0 2 " 3", which model the 
4-Fe active site in high-potential iron-protcm and 
ferredoxin, Guenzburger and Ellis [5] applied the 
closely related HFS discrete variational method 
(DVM) to calculate the quadrupole splitting and 
the isomer shift for some linear Au(I) compounds 

The procedure applied by Guenzburger and 
Ellis [5] differs from the standard HFS DVM 
method in the numerical integration They derived 
a new integration scheme that makes optimum use 
of the axial symmetry of their compounds and 
particularly emphasizes the core region They 
calculate the EFG by using an analytical proce­
dure for the one-centre terms and a numerical 
procedure for the two- and three-centre terms 

Geurts et al [4] employ the standard HFS 
LCAO method they calculate the EFG using a 
STO GTO expansion and a standard molecular 
properties program, that also calculates the multi­
centre contributions to the EFG analytically 



In this paper we apply the method of Geurts et 
al to a group of thirteen antimony compounds, 
viz SbXj (X - F, CI, Br, I), S b i C F ^ ^ C l j . * (Ν 
= 0, 1, 2, 3), SbX5(X = F, Cl) and 8Ь(СНз),Х2 

(Χ — F, Cl, Br, I) Moreover, the calculational 
procedure was subjected to a more detailed inves­
tigation and test on the HCl molecule Our interest 
in the Sb compounds was aroused by Stevens and 
Keijzers [6], who noted a fundamental discrepancy 
between extended Huckel results for Sb(III) and 
Sb(V) compounds and the expenmental Móss-
bauer data 

2. Calculational procedures 

21 The H FS LCAO method 

The Hartree-Fock-Slater (HFS) or Xo method 
[7] is characterized by the following one-electron 
equation 

( - І Г 2 ( 1 ) + І ( - 2 д Л А 1 ) + е К , >(2)<1г2 

V A 

- М З А ) , / 3 [ Р ( І ) ] , / 3 ) * І 1 ( І ) = ' Л ( 1 ) . (О 

with the electron density given by 

ρ(1) = Σ«Λ*(1)Φμ(1) (2) 

(we use atomic units unless specified otherwise) In 
the HFS LCAO method, developed by Bacrends et 
al [3], eq (1) is replaced by a secular problem and 
the matrix elements are (partly) calculated by 
numerical integration In several respects, it is 
similar to the discrete variational method (DVM) 
introduced by Ellis and Painter [8] For the further 
discussion we mention that the point distribution 
in the numerical integration is given by a super­
position of Fermi distributions 

F i r M l + e x p f / M r - r J ] ) - , (3) 

centered at the nuclei A, where /?A and rA are 
parameters to be specified, the relative weights of 
the distributions are given by the fractions ]\ of 
the total number of integration points (N), that 
are assigned to the nuclei A 

Furthermore, the HFS LCAO method makes 
use of fit functions for representing the electron 
density 

Ρ ( 1 ) ~ Σ " , / ( 1 ) . (4) 

in order to reduce the number of integrals in the 
calculation of the Coulomb potential 

Vc(\) = Z°.KM2)à4 (5) 
I 

The coefficients a, are determined by a least-
squares fitting procedure to the "exact" density (2) 
in any cycle of the iterative (SCF) scheme to solve 
eq (1) It is this "exact" density which will be 
used, after convergence, to calculate the Möss-
bauer parameters 

We note here that, starting from the Χα local 
exchange approximation, the HFS LCAO method 
is not subject to any further assumptions with 
respect to the form of the potential In particular, 
one does not use the (rather crude) muffin-tin 
approximation employed in the multiple-scattering 
Χα method [9] It has been demonstrated [10] that 
it is a very useful tool for rather accurate calcula­
tions of various molecular properties 

2 2 Mossbauer parameiers 

The two parameters describing Mossbauer spec­
tra are the isomer shift (IS) and the quadrupole 
splitting (QS) These quantities are directly related 
to the electron distribution in the molecular sys­
tem, the IS to the electron density, the QS to the 
EFG, both at the nucleus of the Môssbauer-active 
atom [11,12] 

The IS В is given by the following first-order 
perturbation expression 

«-f*ZÄ 2 (dA/Ä)S ' (S) [p A (0) -p s (0) ] , (6) 

where Ζ is the nuclear charge, R the nuclear 
radius, 4Ä its increase upon excitation and 5'(Z) 
a dimensionless quantity correcting for relativistic 
effects (eg, for Sb with Ζ - 5 1 , S ' - 2 38 [12]), 
the subscripts S and A refer to source and ab­
sorber, respectively In an LCAO calculation the 
density (2) at the nucleus follows from 

ρ(ο)=Σ''μΣς;σ,ί1χΐ(ο)χ,(ο), (ν) 
С Ρ я 
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where (χ^) denotes the set of AOs and the C^ are 
expansion coefficients. In semi-empirical calcula­
tions one calculates the contribution from the va­
lence orbitais as 

л..(о)-лг..,.(і-*)|х..,..(о)|2. (8) 
where Nvtí, is the (Mulliken) net atomic popula­
tion ( Е ^ С Д ) of the s-lype valence orbital and 
(1 — β) is a screening factor [13] 

The electrostatic quadrupole interaction be­
tween the asymmetric nuclear charge distribution, 
described by the nuclear quadrupole moment Q, 
and an inhomogeneous electric field, described by 
the EFG tensor V, gives rise to a splitting of the 
nuclear energy levels [11]. 

£ „ = [Η„β/4/(2/- l ) ] [ 3 m î - / ( / + 1)] 

X ( l + V ) ' / 2 , (9) 

where I is the nuclear spin (> ί), m; its ζ compo­
nent, K„ the dominant element of the diagonahzed 
EFG tensor and η = К ^ - У,у)/ „\ the asymme­
try parameter 

The elements of the EFG tensor are calculated 
as a sum of nuclear and electronic contributions: 

Κ Γ - Σ Ζ Β ^ Λ Β , Λ Β , - Μ 2 . ) / * 5 . , 
в 

rç1- - < · | Σ 4 ( 3 ' * Λ , - ν * ) Λ ΐ Ι * > · (io) 

In a LCAO calculation the electronic contribution 
to the EFG can be separated into one-, two- and 
three-centre terms. Denoting the Móssbauer-aclive 
nucleus as A (all coordinates Д в and rh are mea­
sured with respect to this nucleus), the other nuclei 
as В, C, one obtains: 

yc\ _ i/el 1 . prel 2 , yt\ 3 
'J 4 4 'J ' 

Κι-Σ"μΣ <?£., 
μ a ,a" 

x<x.|(3r,';-í1/2)/'' í |x. >· 

μ а В(-А) Ь 

в 

+ ΣΠμΣ Σ C'cQ μ 
μ Β * ' . * " 

х<х»|(зг1о- 2)/''|х*>· 

КГ-Σ^Σ Σ Σ Σ а с , 
μ Β<-Α) * С(»А. В) с 

х<х1,|(3'-,о- 2)А5|хс>· (») 

In practice one often neglects the three-centre 
terms and assumes that the two-centre terms cancel 
the nuclear contribution, thus retaining the one-
centre electronic terms only [14]. 

In semi-empmcal calculations on systems with 
p-type valence shells one uses the Townes-Dailey 
equation [IS], which reads 

K, - <r-3)r{Nri - \ΝψΜ - ItfJO - R). (12) 

Here (''"3)p is the expectation value over the ρ 
valence orbital in the free atom, the A's are net 
atomic orbital populations and (\ - R) is the 
Sternheimer correction discussed in section 2.3. 

2.3 Frozen-core calculations, the Sternheimer effect 

In molecular calculations one often uses the 
frozen-core approximation, assuming that the cores 
of the atoms in a molecular system are unaffected 
by the chemical bonding. Since in such a treat­
ment the cores slay spherically symmetric, the core 
of the Mússbauer-active atom gives a constant 
contribution to the density at the nucleus p(0) and 
a zero contribution to the EFG. 

This approximation seems to work reasonably 
well for p(0), differences in p(0) for inner core 
orbitals are shown to be very small for free atoms 
in different oxidation states [2,16]. For outer core 
orbitals the situation is somewhat less clear-cut 
[2,16] For the EFG, however, the approximation 
breaks down: the core electrons are polarized by 
the distorted valence-electron distribution and the 
field due to the nuclei and the cores of the other 
atoms in the system. The distortion is small, but it 
is amplified by the large values for (r~3) in the 
calculation of the EFG tensor. This core pdanza-
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lion or Sternheimer shielding [17] is allowed for m 
frozen-core calculations by the use of the 
Sternheimer factor R 

yob*.,** = (, _ д ^ .І.псс (^) 

More correctly one uses a Sternheimer factor A"' 
for every orbital pair (a, b) It is to be noted, 
however, that the use of Sternheimer factors cor­
rects for approximations in the MO calculation In 
an all-electron calculation the core polarization is 
taken into account in a self-consistent manner and 
there is no need to use Sternheimer factors to 
correlate the results with experiment 

One has tried to calculate Sternheimer factors 
from atomic models [17,18] The use of such cor­
rection factors m molecular calculations should, 
for vanous reasons, be regarded with scepticism 

2 4 Computational procedure 

We have used the HFS LCAO program of 
Baerends et al [19], adapted to IBM In all our 
calculations we have taken the exchange parameter 
α fixed at 0 7 [3] For fitting the electron density 
(4) we look a subset of all products of the STO 
basis functions on the atomic centres 

The density al the nucleus of the Mossbauer-ac-
Uve centre may easily be obtained from the con­
verged charge-and-bond-order matrix of the SCF 
calculation 

The EFG was calculated using the one-electron 
properties package of the POLY ATOM program 
[20], which is based on GTOs This properties 
package calculates all multicentre terms, so that 
we could check approximations made with respect 
lo two- and three-centre terms 

Further we have used an interface program that 
reads ihe converged SCF data from the HFS 
LCAO program, expands the STOs in GTOs and 
prepares the input for the properties package The 
STO GTO expansion is performed according to 
the method of maximum overlap fits of Stewart 
[21] Each (л, /) STO is expanded in a number of 
(/+1, /) GTOs, ie s-type STOs in Is GTOs, 
p-type STOs in 2p GTOs, etc The number of 
GTOs may vary between 1 and 6 

3. Tesi calculations on H O 

We have chosen the HCl molecule to perform 
some test calculations because it is sufficiently 
small to investigate the influence of all relevant 
parameters and there are extensive data available 
in the literature allowing us to check our results 
All our calculations were performed for HCl at the 
equilibrium geometry (Л « 2 4086 bohr), which 
has an experimental EFG at the chlorine nucleus 
^„p = - 3 641 au (calculated from e^Q = 67 0 ± 
0 6 MHz and Q= -0.0782 barn [22]), hence the 
electronic contribution ql\ - - 3 498 au 

The nine occupied MOs in HCl can be subdi­
vided into two sets on the one hand, Ισ, 2σ, 3σ, 
\ітж and Iw which have mainly CI core character 
and on the other hand, the occupied combinations 
of 3sc', Зр^' and lsH 4σ and 5σ, and the non-
bonding 2vx and 2π,, (the molecule is taken along 
the ζ axis) In the calculation of the EFG we make 

Table 1 
STO buis »15 used For HCl 

Exponent 

Cade-Huo 
(23) l ike" 

18 673 
16 428 

5 794 
10 116 

2 792 
1 715 

14021 
8 325 
5 267 
2514 
1 389 

240 
1 508 
2 568 
2 270 
1763 

HFS 

13 95 

5 65 

3 30 
230 
160 
6 70 

2 85 
2 05 
120 
240 

The 3d polarization function for H has been omitted unlike 
Cade and Huo we take the same exponents for the о and IT 
basis 



Table 2 
EFG and ρ(Ό) (m au) for HCl 

9 

loV(O) 

HFSLCAO alleleclron" 

\-eoo 
N-2Ì00 
N-SOOO 
N' 10000 
N- 15000 
N- 20000 
\ - 2 5 0 0 0 
N - 30000 

HFSLCAO, frozen core1" 
rci « 2 0, ft , - 1 0 
/•c, - 1 44. Д., - 1 2 
r c i - 1 0 . A - , - 1 2 
r c i - 1 44, i c l - 1 5 

Petkc and Whitien (25) 
Scrocco and Tornasi [26] 
Moccia c ) 

McLean and Yoshimme [22] 
Cade and Huo [23] 
Grabensieiler and Whuebead [27J 

-3 481 

1070 

0 148 

0088 

-0079 

-0046 

-0181 

-0 156 

-0 221 

-0 642 

-0 886 

-0451 

-0518 

-0 539 

-3 577 

-3 150 

-3 090 

-3 055 

-3 058 

-3 072 

-3 092 

-3 082 

-3 687 

-3 147 

-2 846 

-2 952 

-2 959 

-2 955 

-7 038 

-2 080 

-2 942 

-2967 

-3 136 

-3118 

-3 273 

-3 238 

-2 763 

-2 755 

-2 769 

-2718 

-3 898 

-3 769 

-3 733 

-3 403 

-3 478 

-3 494 

Э 1096 

3 1654 

32134 

3 2028 

3 1962 

3 1974 

3 1978 

3 1978 

- 3 498 experiment [2] 

•' Using the Cade-Huo like basis of table 1 Other integration parameters fixed at /C1 - 0 8 r r ) - 1 449 ßcx = 1 389 / H -= 0 2, 
r„ - 0 507 ß„ - I 508 

^ Using the HFS TZ basis of table 1 Olher integration parameters fixed at N - 1000 /C1 - 0 8, / H - 0 2, rH - 0 564, ßH - 1 508 See 
also text 

^ Calculated by Grabensletter and Whitehead [27] from the MOs given by Moccia [28] 

the corresponding separation 

q'^q""' + q"' (14) 

In the HFS calculations the Tractions of the 
integration points per centre were taken as / t , = 
4/5, /H = 1/5 throughout Convergence of the SCF 
procedure was achieved to 3 x 10 ' for the mean 
change in the diagonal elements of the charge-
and-bond-order matrix For the calculation of the 
EFG we used an expansion of all STOs in six 
GTOs [4] 

In the first place we performed all-electron 
calculations with a basis set denved from the one 
used by Cade and Huo [23], see table 1 We used a 
density fit set containing 9 s, 7 ρ and 5 d functions 
on CI and 3 s and 1 ρ functions on H Inclusion of 
some additional f- and g-type fit functions had no 
effect on the calculated EFG Varying the integra­
tion parameters rA and βΑ (3) for the usual num­

bers of integration points (N=1000-2500) we 
found the EFG to be extremely sensitive, much 
more so than the one-electron eigenvalues This is 
not surprising since ihe HFS LCAO method has 
been developed for valence-electron properties, 
which is reflected in the use of the Fermi distribu­
tion that emphasizes the valence region For the 
bFG the core region should also be very accu­
rately described (due to the (r" 3 ) weighting) 

This sensitivity with respect to the integration 
parameters has led us to examine the influence of 
increasing the number of integration points be­
yond the limits normally used From table 2 one 
can clearly see that the instability in the EFG is 
mainly due to the core contribution, which is not 
quite stable yet at N = 15000 It can also be seen 
from table 2 that the density at the nucleus is 
much more well-behaved 

Comparing with the EFG calculations from the 

file:///-800
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Tabic 3 
Comparison of some properties (in au) of HCl between the 

present HFS calculation and the literature 

Properly" McLean and HI-bLCAO1" Difference 
Yoshiminc (%) 

(HF LCAO) [22] 

<'.-> 
Ci-) 
<*,) 
<«?> 
<-, ! ^, 2 > 
(r?) 
Osr') 
<*2'2-'> 

((iii-rf)^') 
<0'1-'І)'Г') 

64 822 

8 001 

1 931 

13 389 

20 871 

34 260 

0 168 

-2 939 

-3419 

2 153 

64 380 

7 987 

1 881 

13 384 

20 861 

34 245 

0 139 

-2911 

-3 238 

2115 

B > Indices I and 2 refer to CI and H as origins respectively 
b ) All-electron HFS LCAO calculation with N - 30000 (see 

table 2) 

literature it is observed that the core contribution 
is the more variable one also in general The 
difference between the various results can be 
largely ascribed to this contribution We note that 
there is reasonable agreement between the HFS 
LCAO calculation and other (ab initio HF LCAO) 
calculations 

In table 3 we compare some other properties of 
HCl with McLean and Yoshimine's HF LCAO 
results [22] (obtained with Cade and Huo's basis 
[23] extended with another 12 STOs) For the 
positive moments of the electron density the agree­
ment is quite good, whereas for the negative mo­
ments it is only satisfactory Again, this reflects 
the valence electron directed character of the HFS 
LCAO method 

Just as Guenzburger and Ellis [5] we tried to 
increase the stability of the all-electron calculation 
by changing the point distribution in the numen-
cal integration, especially to improve the core de­
scription Guenzburger and Ellis performed the 
angular integration by imposing the axial symme­
try of their molecules on the electron density In 
their calculations they still needed 29000 integra­
tion points to obtain core contributions stable to 
six decimal figures Since the antimony com­
pounds we are interested in are non-linear, we 
tried a different approach First we followed a 
suggestion of Ellis [24] to use a superposition of 
two Fermi distributions centered at the CI nucleus, 

secondly we changed the Fermi distribution into 
an exponential distribution It turned out that for 
equal numbers of integration poi η Is, no substan­
tial improvement over the usual procedure was 
obtained This indicates that the essential feature 
of the method employed by Guenzburger and Ellis 
is the full use of the Cxv or D^,, symmetry 

Beside the all-electron calculations we also per­
formed frozen-core calculations with the Is, 2s and 
2p orbitals as CI core We used the HFS TZ basis 
[29], listed in table 1, for CI and a Cade-Huo like 
basis set for H As expected from the preceding 
results, the calculated EFG appeared to be much 
more stable with respect to variations in the in­
tegration parameters than for the all-electron case 
(see table 2, the variation in q'1 over the same 
range of integration parameters amounts to as 
much as 2 7 au in the all-electron calculations) 
Because the core is frozen now, we neglect the core 
polarization, the overall Sternheimer factor is 
found to be 1 - R ·= 1 18 for HCl 

Finally, we vaned the size of the CI core It 
turned out that instabilities in the EFG arose as 
soon as the CI 2p orbital was included in ΐΊε 
valence set 

We conclude that it is possible to obtain stable 
EFGs within the HFS LCAO method either by 
performing all-electron calculations with very large 
numbers of integration points or by perfc rrmng 
frozen-core calculations with a standard choice of 
integration parameters Calculations of the first 
kind are rather expensive and, so, they are not 
very advantageous with respect to ab initio quan­
tum-chemical methods For many problems of 
chemical interest the first option may be impracti­
cal, however If one is interested in relative changes 
of Móssbauer parameters among senes of similar 
compounds (where the Sternheimer factor may be 
assumed constant) the HFS LCAO frozen-core 
method forms a more reliable alternative for the 
often used semi-empirical methods 

4. Calculations on antimony compounds 

4 1 Available Móssbauer data 

Mossbauer data are known on many antimony 
compounds, a thorough theoretical explanation of 



11 

Table 4 
Expenmenial Móssbauer parameters ** 

Molecule 

SbFj 

SbCl) 

SbBr, 

Sbl, 

SbFj 

SbCls 

SbMeO; 

SbMejCl 

SbMe, 

SbMejClj 

SbMejBrj 

SbMc,l2 

i f m m s " 1 ) 
(relative to InSb) 

- 5 97 
- 6 0 
- 6 0 4 " 
- 6 2 9 c l 

- 5 24 b l 

- 5 7 7 " 
- 5 8 7 " 
- 5 9 
- 5 9 
- 6 9 4 "І 
- 5 B 7 d > 
- 5 9 
- 5 9 
-S92c> 

- 6 94'» 
- 7 2 4 ' » 
- 7 3 4 " 
- 7 6 7 d l 

- 7 7 
- 7 7 4 b | 

- 7 9 4 ' » 
102 
10 3 
10 79 1 " 
SOé"1 

52 
544 b | 

- 4 2 
- 4 37 
- 2 5 
- 2 6 
- 3 0 7 "l 

ooo") 
- 0 22 

2 42-1 

2 49 
2 86b) 

гп"» 
2 20 
2 38°' 
2 3 8 " 
2 56» 
2 16 

e 1^ö(mms ') 

19 7 
19 6 
196 
19 1 
122 
12 2 
12 25 
132 
139 

116 
116 
107 
116 

56 

87 
87 

- 5 7 
- 4 4 
310 
3O0 
317 
30 0 

- 2 6 0 
152 
163 

- 2 4 0 
- 2 4 0 
- 2 4 
- 2 2 1 
- 2 2 1 
+ 2143 
+ 20 9 
- 2 2 
- 1 9 28 

0 19 
0 187 
02 

01 

0 3 
0 39 

0 35 

0 77 
0 82 
0 9 

[38) 
|39| 
[40] 

HU 
[40] 
[42] 
[44] 
[43] 
[45] 
[46] 
[42] 
145] 
[43] 
[44] 
[46] 
[47] 
[40] 
[42] 
[43] 
[47] 
[46] 
[53] 
(54| 
[40] 
[55,56] 
[53,54] 
[40] 
[31] 
[42] 
[31] 
[31] 
[42] 
[42] 
(48) 
[49 50] 

[51] 
[50] 
[49,50] 

(511 
(52] 
[52] 
[51] 
[51] 

*) Experimental data of SbMcjFj unknown 
b ) Measured with Sn02 as source 
c ) Measured with BaSnOj as source 
d> Measured with CaSnOj as source 
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the parameters in terms of electronic quantities is 
still lacking, however The discussions of Sb com­
pounds are either based on simple qualitative 
models [30,31] or on serm-empmcal calculations 
[13,32-34] Usually one treats a series of related 
compounds, in order to study the effect of sub­
stitution of one or more organic by inorganic 
ligands One such senes is Sl^CHj)^ Cl.,.,, (N = 
0, 1, 2, 3) for which Stevens et al [31] gave a 
qualitative explanation of the IS and the QS as a 
function of V̂ Stevens el al also performed ex­
tended Huckel calculations and they found the 
size of the QS to agree reasonably well with ex­
periment For some Sb(V) compounds, however, 
the method failed the calculated QS was a factor 
of 10 too small compared with experiment [6] 

Here we consider four senes of antimony com­
pounds two containing Sb(IH), viz SbXj (X = F, 
CI, Br, I) and SbiCHj)^ CI,.,, (N = 0, 1, 2, 3) 
and two containing Sb(V), viz SbX5 (X = F, CI) 
and 8Ь(СНз)з X 2 (X = F, CI, Br, I) In table 4 we 
present a survey of the expenmental Mossbauer 
data on these molecules In order to facilitate 
comparison of the numbers, we have shifted all 
isomer-shifl data relative to InSb We used the 
following isomer shifts for InSb with respect to 

various sources S = - 8 53 mm s ' for CaSnO, 
[35], S = - 8 5 mm s ' for BaSnOj [36] and δ = 

- 8 56 m m s " 1 for S n 0 2 [37] 

Regarding the QS, we wish to make a special 

comment on the sign The fit procedure used to 

determine the Mossbauer parameters from experi­

mental spectra is sensitive to the magnitude of the 

QS, but not very sensitive to Us sign For ЗЬМезВгз 
we found contradictory data, looking at the other 
two compounds from the series ЗЬМезХз we think 
it likely that the sign should be negative (which is 
confirmed by our calculations, see below) For 
SbMejCl both the available references give a nega­
tive sign for the QS Still we think it probable that 
the sign is positive since it is unlikely that in the 
series SbMeCl2-SbMejCl-SbMe, the QS will 
change sign twice upon substitution Again, this 
will be confirmed by our calculations 

4 2 Calculations 

Table 5 lists the geometnes of the molecules 
used in our calculations We have assumed Cj, 
point group symmetry for all molecules except 
5Ь(СНз)2С1 and Sb(CHj)Cl2, for which we 
adopted Cs point group symmetry By conse-

Table 5 
Geometnes used for the antimony compoundsΆ) 

Molecule 

SbFj 
SbCI, 
SbBr, 
SbljA 
SbljB 

SbMeClj 
SbMe2Cl 
SbMej 
SbF, 

SbCI, 

SbMe,F¡ 
SbMejClj 
SbMejBr, 
SbMcjIj 

Ref 

[311 
1571 
[58] 
[59] 
[31] 
[31] 
[31] 
[311 
[131 

[60] 

[61] 
[62 63] 
[62] 
[62] 

Distances (A) 

Sb-X 

200 
2 360 
251 
2 67 
2 87 
2 355 
2 355 

-
eq 200 
ax 2 13 
eq 2 29 
ax 234 
2091 
2 355 
2 471 
2609 

Sb-C 

-
-
-
-
-
2 132 
2 132 
2 132 

-
-
-
-
1997 
2 132 
2 143 
2 164 

Angles (deg) 

X-Sb-X 

81 9 
95 2 
97 
99 
95 8 
95 2 

-
-

180 
and 120 
180 
and 120 
180 
ISO 
180 
180 

X-Sb-C 

_ 
-
-
-
-

97 
97 

-
-
-
-
-

90 
90 
90 
90 

C-Sb-C 

_ 
-
-
-
-
-

105 
98 

-
-
-
-

120 
120 
120 
120 

1 C-H - 1 091 A and ¿H-C-H - 95 2° throughout 
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Table 6 
Exponents of STO basis sets used in the calculations (in au) [29] 

Is 

2s 

2p 

3s 

эр 

3d 
4s 

4p 

4d 

5s 

5p 

H 

1383 

0 781 

С 

540 

198 

124 

2 20 

09« 

F 

8 33 

3 32 

192 

3 52 

148 

Cl 

14 55 

560 

6 65 

290 

175 

2 45 

1 30 

Br 

23 90 

13 75 

14 50 

7 05 

7 35 

534 
3 25 

1 95 

2 65 

140 

I 

36 40 

1940 

24 85 

Il 95 

10 50 

Il 60 

690 

7 10 

4 69 

3 20 

1 95 

2 65 

145 

Sb 

36 65 

18 20 

24 75 

1145 

8 95 

10 94 

6 55 

7 10 

5 45 

3 05 

2 85 

1 70 

2 25 

120 

quence, the asymmetry parameter η can be non­
zero for the latter two molecules only In establish­
ing the geometries we made use of X-ray dala as 
much as possible 

For the senes SbX, we took the angles and 
distances mentioned by Bowen et al [37], for Sblj 
we also used the geometry proposed by Wells [59] 
(structure A) The angles in the senes 5Ь(СН1)Л 

Сіз.д, are those suggested by Stevens et al [31], 
the distances were estimated The structures of 
SbFs and SbCl5 are rather uncertain [37], one has 
assumed a pure trigonal bipyraimd, but also a 
deformed octaeder has been proposed For SbF5 
we used Kolhekar's geometry [13], for SbCl 5 Poly-
nova's [60] which also has been adopted by Bal-
tranas et al [34] We also tried to find structural 
data on SbBr5 and Sbl5, since we did not succeed, 
we omitted them from our calculations The series 
5Ь(СНз)зХ2, finally, has a trigonal bipyramidal 
structure with the methyl groups in the equatorial 
positions [62] For X = F the X-ray data are known 
[61] The Sb-Cl distance was taken as in 
[8Ь(СНз)2С1з]2 [63] The Sb-Br distance used is 
an average of some distances known from X-ray 
diffraction, the Sb-I distance was estimated 

We performed frozen-core HFS LCAO calcula­
tions with the exchange parameter a = 0 7 
throughout [3] The cores taken are Is for С and F, 
ls-2p for CI, Is-3d for Br, Is 4d for I and ls-4p 
for Sb, so for Sb the 4d was included in the 
valence set The basis sets employed [29] are listed 
in table 6 They are of double-zeta type for the 
valence Orbitals, supplemented with single-zeta 
core functions to allow for core orthogonahzation 
In the density-fit procedure we gave special atten­
tion to the Sb atom, for Sb we used a fit set 
consisting of 12 s, 7 p, 6 d, 3 f and 2 g Slater-type 
functions The number of integration points used 
was 2000 for Sb, 600 for halogens, 400 for С and 
200 for H Convergence in the SCF procedure was 
obtained to 3 x 10 5 for the mean change in the 
diagonal elements of the charge-and-bond-order 
matrix 

In the calculation of the EFG the STOs centered 
on Sb were expanded in five GTOs and those on 
other atoms in four GTOs, which gives an error of 
less than 0 01 au in the calculated EFG due to the 
STO GTO expansion 

We have checked that the Sb core was suffi­
ciently large for the EFG to be stable with respect 
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to variations in the integration parameters used in 
the HFS calculation (cf section 3) It turned out 
that Ihe core taken constitutes the "minimum 
choice", ι e inclusion of the 4p orbilals in the 
valence set causes instabilities under normal in­
tegration conditions 

4 3 Results and discussion 

Tables 7 and 8 and fig 1 summarize our results 
Table 7 contains the Mulliken gross and net popu­
lations of the valence orbilals on Sb First we note 
that the gross populations of the 4d orbilals sta) 
practically constant at the value 10 for all com­
pounds considered, hence the 4d orbitale play no 
role of importance in the chemical bonding of 
antimony Further we see that in all three series 
SbX 3 , SbXs and 5Ь(СНз)зХ 2 the 5s and 5p popu­
lations decrease if we go towards the more electro­
negative substituent Comparing our gross 5s 
populations with the values calculated by Kothe-
kar [13], using the C N D O / 2 method, we find 
somewhat larger values, the difference being in the 
range 0 08-0 21 for $ЪХЪ and SbCl 5 and 0 42 for 
SbFj The qualitative behaviour is the same, 
however 

In the series 5Ь(СНз) С1з_ we observe a 
fundamentally different behaviour going towards 
more electronegative substituents (i e towards 
lower N) we notice a decrease in the 5p popula­
tion but an increase in the 5s population This 
increase is compatible with the trend in the experi­
mental IS The decreasing 5p, population corrobo­
rates Steven's hypothesis (31], made to rationalize 
the experimental Mossbauer parameters 

We can use the net orbital populations from 
table 7 to check the applicability of the 
Townes Dailey equation (12) According to this 
equation one would expect the QS to be propor­
tional to the quantity Л = Nir^- j¿V,p_ - j N ; f , , 
which we have listed in the last column The 
agreement appears to be poor, there is only a 
slight correlation between the Δ \alues and the 
experimental QS (correlation coefficient 0 67) 

Table 8 contains the calculated EFG The 
penultimate column contains the quantitv χ = 
К ? _ Ч'")/я\ which can be considered as a 
numerical measure for the validity of the assump­
tion that the sum of the two- and three-centre 
electronic contributions cancels the nuclear contri­
bution This approximation appears to work quite 
well 

Table 7 
Mulliken gross and net populations of valence Orbitals on Sb 

Molecule" 

SbFj 
SbClj 
SbBrj 
SbI,(A) 
8Ыз(В) 
SbMeClj 
SbMe2Cl 
SbMe, 
SbF, 
SbCl, 
SbMe,Fj 
SbMejCl; 
SbMcjBr, 
SbMejIj 

Gross populations 

4d 5s 

999 
9 99 
9 98 
9 97 
9 98 
9 98 
9 98 
9 97 

10 02 
10 03 
10 01 
10 00 
1000 
9 98 

174 
185 
1 88 
194 
194 
1 79 
169 
158 
1 18 
141 
105 
130 
135 
141 

5R, 
0 47 
0 59 
0 66 
0 74 
0 74 
051 
046 
0 54 
0 50 
0 78 
0 63 
0 67 
0 68 
0 67 

5P, 
0 47 
0 59 
0 66 
0 74 
0 74 
064 
060 
0 54 
0 50 
0 78 
0 63 
0 67 
0 68 
0 67 

5p, 

0 69 
0 88 
0 94 
0 96 
105 
0 95 
100 
1 13 
0 52 
0 80 
0 39 
060 
0 65 
0 75 

Net populations 

4d 

1126 
II 24 
11 24 
1122 
1123 
1123 
1123 
1122 
11 29 
11 28 
II 28 
1126 
1125 
11 24 

5s 

2 10 
2 34 
2 37 
2 34 
244 
2 22 
209 
182 
1 23 
147 
0 93 
1 19 
127 
133 

5p, 

0 32 
0 38 
044 
0 53 
051 
0 32 
0 29 
0 30 
0 33 
051 
0 37 
0 38 
0 39 
0 38 

5P, 
0 32 
0 38 
044 
0 53 
051 
0 38 
0 32 
0 30 
0 33 
051 
0 37 
0 38 
0 39 
0 38 

5P, 
053 
0 69 
0 77 
0 80 
0 91 
0 79 
0 87 
105 
0 34 
0 52 
0 27 
0 39 
046 
0 59 

7 b» 
¿Sb 

163 
1 10 
0 88 
0 67 
0 58 
1 13 
1 27 
1 23 
2 27 
1 21 
2 29 
1 76 
1 63 
151 

Лс> 

021 
031 
0 33 
0 27 
040 
044 
0 56 
0 75 
001 

ooo 
- 0 10 

000 
0 07 
0 21 

*' Molecules are placed so that the ζ axis is the lone pair axis 
b } Atomic charge of Sb from gross populations 
c> Δ - N(5p,)- \N(5px)- іМ&Ру), where the N are nel populaiions see also іежі 

file:///alues
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q" χ " Í""C í " t'qQ" Average 
experimenta] QS 

SbF, 
SbClj 
SbBr, 
SbI,(A) 
SbI,(B) 
SbMeClj 
SbMe¡CI 
SbMe, 
SbFs 

SbClj 
SbMejF^ 
SbMejClj 
SbMejBr¡ 
SbMejlj 

- 3 608 
- 2 726 
- 2 252 
- 1 3 2 0 
- 1 921 
- 4 407 
- 4 576 
- 3 300 

0 330 
- 0 787 

2 529 
1 518 
1026 
1386 

- 0 0 9 1 
0 072 
0066 
0 030 
0 056 
0 027 
0 049 
0 047 

- 0 034 
- 0 066 
- 0 234 
- 0 074 
- 0 026 

0012 

0006 
0004 
0004 
0 003 
0004 

-ООП 
0000 
0013 
0 003 
0 008 
0056 
0 052 
0 049 
0041 

- 3 693 
- 2 6 4 9 
- 2 183 
- 1 2 8 8 
- 1 8 6 2 
- 4 391 
- 4 526 
- 3 240 
- 0 362 
- 0 845 

2 351 
1496 
1049 
1439 

0 0069 
00125 
0 0097 
00044 
0 0043 
0 0049 
0 0025 
00015 
0 0280 
0 0088 
0 0373 
0 0399 
00518 
0 0034 

ОНО 
- 0 0 4 3 
- 0 048 
- 0 027 
-0051 
- 0 037 
- 0 038 
- 0 065 

0040 
0 065 
0 276 
0 086 
0 033 

- 0 048 

- 3 58 
- 2 6 9 
- 2 23 
- 1 3 1 
- 1 9 1 
- 4 4 3 
- 4 5 6 
- 3 3 0 
- 0 32 
- 0 78 

2 63 
158 
108 
139 

7 88 
5 92 
491 
2 89 
421 
9 74 

1004 
7 27 
071 
1 72 

- 5 78 
- 3 4 8 
- 2 3 8 
- 3 0 6 

19 5 
12 8 
114 
56 
56 

305 
29 2 
15 8 
87 

- 5 1 

-
- 2 4 0 
- 2 1 7 
- 1 9 3 

Using the frozen core approximation no Sternheimer correction applied b > x = Kg - q*ll)/q\ see also text 
Calculated asymmetry parameters (in parentheses the expérimental value) 0 45 (0 35) for SbMcCI, 0 93 (0 83) for 5ЬМегС1 
Conversion factor 1 au - 2 2 mm s ' calculated from Q - - 0 2 8 ± 0 0 6 bam [66] 

Table 8 
Field gradients"' (in au) and quadrupolc splittings (in mm s ') 

In order to calculate the QS we used Steven's 
value for the nuclear quadrupole moment of l2'Sb, 
Q= - 0 28 ± 0 06 barn [66] We note, however, 
that the value of the nuclear quadrupole moment 
is actually very uncertain * Values ranging from 
- 0 20 to - 0 54 barn are found in the literature 
[39,67,68] 

We now compare the calculated QS (with Q = 
- 0 28 barn) with experiment For the senes SbX, 
the expérimental values are accurately reproduced 
(correlalion coefficient 0 99), apart from a con­
stant factor of 2 3 Further we note that structure 
A for Sblj fits better in the trend than structure В 
For the senes SbMe^Cl,.,, the situation is similar 
(correlalion coefficient 0 98), the factor now is 2 8 
Taking the two senes together one obtains a factor 
2 7 (correlation coefficient 0 97) For SbMe3X2 the 
agreement is much worse (a factor of 7 6, correla­
tion coefficient 0 37) although the discrepancy be­
tween Sb(HI) and Sb(V) compounds is still not as 
drastic as in the extended Huckel calculations (6] 
The molecules SbF5 and SbClj show a very irregu-

t This uncertainty anses because the quantity amenable to 
measurement is the product of Q and the EFG at the 
nucleus accurate calculations or independent measurements 
of the EFG in Sb compounds are not available 

lar behaviour, one is led to the conclusion that the 
geometnes used are not correct, a conclusion that 
is supported by the IS calculations (see below), 
and by Kothekar's QS results [13] 

Let us now briefly analyse the possible sources 
of the discrepancy between the calculated and the 
expenmental QS the HFS LCAO model, АО 
basis set deficiency, neglect of relatmstic effects, 
neglect of lattice contributions, neglect of core 
polarization and finally the uncertainty of the 
nuclear quadrupole moment With respect to the 
method and АО basis used we recall that our 
calculations on HCl and Guenzburger and Ellis's 
calculations on linear Au compounds have shown 
that the HFS LCAO method may yield good QSs 
with АО bases of similar size as used here In 
order to check the influence of the lattice contribu­
tions to the EFG we performed a test calculation 
for SbClj, which has an orthorhombic umt cell 
with lattice parameters a = 6 37 A, i = 8 12 A, 
с = 9 47 A and as space group Pbnm [57] We used 
a point charge model with the Mulhken charges 
from the HFS LCAO calculation It took thirty 
shells of equivalent cells to obtain a result stable to 
two decimal places The result is a lattice contribu­
tion q= — 43 X 10~3 au, which means that even 
with a Sternheimer factor 1 - γ„ * 10 the lattice 
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contribution is negligible compared to the contri­
bution of the central SbCI, molecule itself 

The Slernheimer corrections for the neglect of 
core polarization customarily used for Sb are not 
much greater than unity (1 115 [64]. 1 2 [13), 1 23 
[6]) The uncertainty in Q may be the key factor 
taking Q - - 0 54 [68] instead of Q = - 0 28 would 
yield (together with a Slernheimer factor of 1 4) 
the factor 2 7 which would lead to very good 
agreement of the calculated QS with the experi­
mental data for the Sb(III) compounds At the 
same lime U would reduce the error for the series 
SbMe3X2 to a factor of 3 It is also possible that Q 
is still larger, however, or that the core polariza­
tion effects are more important (actually the ls-4d 
Sb core is considerably larger than the ls-2p core 
in CI, where we have calculated a Slernheimer 
factor of 1 18), while we cannot exclude that rela-
tmstic effects might be important, too 

Finally we compare the calculated asymmetry 
parameters m the two cases where it does not 
vanish on symmetry grounds SbMe2Cl and 
SbMeClj As can be seen from table 8 the agree­
ment with experiment is satisfactory 

Fig 1 shows a plot of the calculated values for 
the valence-electron density al the Sb nucleus 
versus the (averaged) experimental isomer shifts 
(with respect to InSb as source) One observes a 
very nearly linear behaviour as expected theoreti­
cally The only molecules falling aside are SbF, 

PlO)„i 

1.6 

» 

12 

to 

38 

К 

U 

г 

-

» 
-

-

-

-
. 
L 

e 6 -ι -2 о г ι 6 s « іг 
β [ mm s 1 ] 

Fig 1 Relation between the calculated valence-electron density 
p(0) on the Sb nucleus (in IO - 3 c!ectrons/a¿) and the mea­
sured Mussbauer isomer shifts of vanous Sb compounds 

and SbCls, the deviation is loo large for being 
explicable in terms of a possible core contribution 
to Ap(0) Hence we feel strengthened in our opin­
ion that the trigonal bipyramidal geometry used is 
not correct for these molecules Further we note 
that also the isomer-shifl data indicate a prefer­
ence of structure A over structure В for Sbl, 

Making a least-squares fit of all points, except 
SbF5, SbCl, and SbI3(B), and using the value 
firZ«2 S'(Z)= 1 303X 1 0 _ " cm s - ' [13], we 
calculate 4R/R = - 1 08 x 10"' (correlation coef­
ficient 0 99), which agrees very well with the values 
quoted in the literature, ranging from - 1 44 X 
КГ3 to - 0 85 X КГ1 [13,34,39,46,65] 

Finally we also checked the linear dependency 
of the experimental IS on the Sb 5s net popula­
tion, which has been used in semi-empirical calcu­
lations (see section 2 1) Again it is possible to 
obtain a reasonable linear fit of the data, the only 
two compounds falling aside are SbF, and SbClj 

5. Conclusions 

In this paper we have investigated the calcula­
tion of Mossbauer parameters by means of the 
Hartree-Fock-Slater LCAO method Test calcula­
tions on HCl have shown that it is possible to 
obtain results in good agreement with ab initio 
calculations and experiments The HFS LCAO 
all-electron calculations require exceedingly large 
numbers of numerical integration points, however, 
which makes the method impractical for larger 
systems Frozen-core calculations, on the other 
hand, yield stable and accurate results (compared 
with ab initio results) at a standard choice of 
integration parameters The price one has to pay is 
the neglect of core polarization effects, which could 
be corrected for by use of Slernheimer factors for 
the quadrupole splitting Such factors are not ac­
curately known, however, but the frozen-core 
method can still be useful for looking at relative 
properties in series of related compounds 

We have applied this method of calculation to â 
group of thirteen antimony compounds The 
calculated quadrupole spbltings are consistently 
too small by a factor of 2 7 (correlation coefficient 
0 97) for Sb(III) compounds and a factor of 7 6 for 
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the Sb(V) compounds 8Ь(СНз)3Х2 (correlation 
coefficient 0 37) These factors may be partly due 
to core polarization, to the uncertainty in the 
nuclear quadrupole moment, and, possibly, relativ-
islic effects The qualitative features of the experi­
mental data are very well reproduced, however, 
especially for the Sb(III) compounds It is striking 
that also the extended Huckel and CNDO/2 re­
sults for Sb(V) compounds show the same type of 
discrepancy (with a factor that is even larger) 

For the isomer shift the agreement between the 
calculated and experimental data is very good, not 
only qualitatively, but also quantitatively A linear 
relation between the valence-electron density at 
the Sb nucleus and the experimental isomer shift is 
satisfied for all compounds except SbF, and SbCI, 
From this relation we derive a value Δ R/R = 
- 1 08 x 10"' for the Sb nucleus, in agreement 
with other values given in the literature 

Our results support Stevens' hypothesis that in 
the series StyCH,)^!-, . , , the 5s character of the 
bonding increases, while the 5p character de­
creases for decreasing N In the series SbXj and 
SbX5 we find decreasing Ss and Sp character with 
the more electronegative X 

Finally, we note that the comparison of our QS 
and IS results with the experimental data leads to 
some suggestions about the structures of some of 
the molecules We think that the trigonal bipyr 
armdal structures for SbF5 and SbCl, which have 
been proposed (but not yet confirmed by X-ray 
diffraction) need reconsideration Among the two 
structures proposed for ЗЬІз, we prefer the struc­
ture (A) with the larger I-Sb-I angle 
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This paper describes an extension of Zicgler's transition state formalism for the calculation of 
interaction energies in order to include the pseudopotential Hartree-Fock-Slater-LCAO method 
developed by Snijders and Baerends Perturbation corrections to the expressions based on 
averaged pseudopotentlals are obtained within a new, self-consistent scheme Test calculations on 
a variety of systems are reported It is found that the pseudopotential method reproduces results 
obtained with the frozen-core HFS-LCAO method quite well For first and second row diatom ics 
equilibrium distances agree within 0 02 Â, dissociation energies within 0 2 eV, and vibration 
frequencies within 20 cm" ' The spectroscopic constants are also in fair agreement with 
experiment For systems containing the transition metal Cu, where the binding energy curves 
have rather shallow wells, dissociation energies are equally accurate, and deviations in 
equilibrium distances and vibration frequencies are larger 

I. INTRODUCTION 

The calculation of chemical interaction energies is a 
longstanding problem in quantum chemistry For small sys­
tems accurate ab initio methods are available For larger sys­
tems, however, these methods become impractical and one 
has to resort to more approximate methods One of these is 
the Hartree-Fock-SIater (HFS)-LCAO method ' Due to the 
numerical integration scheme involved in this method, it is 
impossible to obtain interaction energies as differences of 
total energies of final and initial states without using exces­
sively large numbers of integration points To circumvent 
this difficulty, Ziegler and Rauk2 have developed a method 
to calculate interaction energies, which essentially uses a 
generalization of Slater's transition state conceptJ This 
method has been implemented for the HFS-LCAO method 
in its frozen-core formulation, it has been shown to yield 
numencally stable and physically meaningful interaction en­
ergies 

If the frozen-core HFS-LCAO method is applied to sys­
tems containing atoms with large cores, e g, transition met­
als, the number of functions needed for the core orthogonali-
zation raises the computation time significantly To 
overcome this problem. Snijders and Baerends4 introduced a 
pseudopotential version of the HFS-LCAO method The 
method is of the Phillips-Kleinman variety5 core collapse is 
prevented by adding a projection operator to the Fock opera­
tor Using the pseudopotential HFS-LCAO method, core 
functions are completely eliminated from the SCF proce­
dure Also this method is capable of giving reliable and phy­
sically meaningful results,4 6 but, up to now, it could not be 
applied lo the calculation of interaction energies 

In this paper we extend Ziegler's transition state for­
malism for the calculation of interaction energies to include 
the pseudopotential HFS-LCAO method In order to do so 

we found it necessary to develop a new, self-consistent per-
turbational scheme which corrects for the use of averaged 
pseudopotential« This scheme is related to the one used for 
relativistic HFS-LCAO calculations 7 B Section II contains 
the formulation of our method First we mention the salient 
aspects of the frozen-core and pseudopotential HFS-LCAO 
methods, next we develop the perturbational scheme men­
tioned above, finally we obtain a numencally feasible expres­
sion for the calculation of interaction energies 

With the self-consistent perturbational scheme devel­
oped and used here we effectively apply the full Phillips-
Klemman operator, without replacement of this operator by 
a (local) effective potential Thus we obviate the need for 
fitting or parameter adjustment The results of the test calcu­
lations, both on some first and second row systems and on 
systems containing transition metal atoms are given in Sec 
III 

II. FORMALISM 
A. The frozen-core HFS-LCAO method 

The HFS method is characterized by the one-electron 
equation 

/ m ( l ) = *,U(l). da) 
where 

F[l) = Τ{1) + VN{\) + Vc[p[\)] + л[р\\)] (lb) 

7*11 ) is the kinetic energy operator, VN ( I ) the nuclear poten­
tial, Kc [ p{ 1 )] = ƒ г, 2 ' p{2)dT2 the electronic Coulomb po­
tential, and VApM) = -За[(3/віг >(1)]'/3 the electronic 
exchange potential (atomic units are used throughout this 
paper) As usual the electron density is given by 
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Equation (1) follows from the minimization of the HFS ener­
gy functional 

with VM„ the nucleus-nucleus interaction term 

depending on the core orbitals only 
Using a LCAO expansion ф1 = Σ„ χμ Cm, for the va­

lence orbitals Eq (4) may be rewritten in terms of matnx 
elements in the basis χ and the change-and-bond-order ma­
trix P, which is defined by 

such that 

p-iin-S^^dtridi m 
μν 

Differentiation of the energy functional with respect (о a 
general element of Ρ yields 

As Ziegler and Rauk2 noted, Eq (8) is a generalization of 
Slater's3 well-known result 

B. The pseudopotentlal HFS-LCAO method 

In frozen-core calculations one prevents variational 
collapse of valence orbitals into the space spanned by the 
core orbitals (core collapse) by explicitly orthogonalizing the 
valence space to the core space Because it is possible to 
achieve core-valence orthogonality with fewer basis func­
tions in the core region than needed to accurately describe 
the core orbitals themselves, the basis set can be smaller than 
in the corresponding all-electron calculation Still, for sys-

In molecular calculations one ofìen uses the frozen-core 
approximation it is assumed that the molecular orbitals can 
be partitioned into valence and core orbitals, while the latter 
are laken unchanged from the atoms that constitute the mol­
ecule Using this partitioning the electron density can be 
written as 

¿>Ш = л™(И+/>™![1) (3) 

and the energy functional (2), now to be optimized with re­
spect to the valence density only, as 

I 
terns containing atoms with large cores, the total number of 
basis functions may become a prohibitive factor even in fro­
zen-core calculations One would like to completely elimi­
nate the core basis functions from the formalism 

Phillips and Kleinman1 have shown that an orthogona­
lity constraint in an eigenvalue problem can be replaced by 
adding a nonlocal pseudopotentlal to the Hamiltoniân A 
large number of atomic pseudopotentials and effective core 
potentials have been proposed since * ,2 Phillips and Klein-
man introduced a shift operator (or pseudopotentlal) 

^ , = Ç i « > - f c * ) l ^ * ) < ^ * l (»о» 

In the eigenvalue problem of the pseudo-Fock operator 

F^^F+V^i (11) 

the core orbitals 4>ζ k are shifted from their all-electron orbi­
tal energy fc 4 to the valence energy f,, which thereby be­
comes degenerate The valence orbital obtains an arbitrary 
admixture of core orbitals, thereby changing into a pseudo-
orbital One has a certain freedom in defining the pseudo-
orbitals, e.g , by requiring them to be nodeless in the core 
region 

Snijders and Baerends4 have developed a nonparame-
tnzed pseudopotentlal version of the HFS-LCAO method in 
which the pseudopotentlal used is 

^ = £(?-*, .) !&.m J. d2) 

with ? an averaged valence energy More precisely, there is 
one such € for each irreducible representation of the molecu­
lar point group, for simplicity of presentation we will ignore 
this complication The averaging involved in Eq (12) was 

J 

= E~, + f n . m f l*> - γ ƒƒ '·.» '/»».d^PlrfT.rfr, 

+ ^PmWy.{p{\)VTl—j^p^mV.[p{\)]dTt + Vm, (4) 

with 

£-. = Σ^<*Ι7'+ ''»W+^JJr.l'ft-.dfc^PlA·,*·., (5) 
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corrected for by using perturbation theory, we will return to 
this point shortly 

In this method the pseudo-orbitals are fixed by choos­
ing all coefficients of core basis functions in the pseudo-orbi­
tals to be zero In general, ι e , if the number of core basis 
functions in the corresponding all-electron calculation is 
larger than the number of core orbitals, this choice involves 
an approximation Using the pseudo-orbitals thus defined a 
pseudodensity 

/νΐη-Σ^Λ1^1) ( 1 3 i 
¡ 

is constructed, nJ being the valence orbital occupation 
numbers Furthermore, a difference density 

4»(l)=/>«i(l)-/V.m (14) 
is defined In the actual construction of the Coulomb and 
exchange terms in the Fock operator the pseudodensity is 
always corrected with άρ, so that the important property of 
the pseudo-Fock operator [Eq (11)] of having exactly the 
same valence eigenvalue spectrum as the original Fock oper­
ator is retained It is assumed, however, that molecular Δρ 
terms may be obtained as a sum of corresponding atomic 
terms 

4!>~.(І) = £ 4 Л » . І І ) <15) 

It has been shown4 that with this scheme reasonably accu­
rate one-electron energies and valence orbitals (after annihi­
lating the core part of the pseudo-orbitals) may be found 

Although the perturbâtlonal procedure implemented 
by Snijders and Baerends has yielded satisfactory results, its 
Bnllouin-Wigner-hke form precludes the straightforward 
use of the transition state scheme for the calculation of inter­
action energies3 as developed for the frozen-core HFS-
LCAO method More specifically, it is impossible to find an 
expression analogous to Eq (8) for the den vat ι ve of the pseu-
dopotenlial total energy functional with respect to a general 
element of the pseudo charge-and-bond-order matrix We 
find that a self-consistent perturbât tonal approach,13 also 
used in the relativistic HFS-LCAO method,7 β provides a 
useful alternative 

C. Self-consistent perturbations! approach for the 
pseudopotentlal HFS-LCAO method 

The perturbations we are concerned with are the differ­
ences between the exact and the averaged pseudopotent tais 
for each pseudo-orbital 0^, 

= С(е,-гм »><*,, | (Ito) 

or 

where Pe is the projector on the space spanned by the core 
orbitals, these perturbations differ for each pseudo-orbital 
The self-consistent problem we want to solve is 

where [cf Eq (11)] 

Fm.l=F+Vf.+íá1 (18) 

As zeroth order problem we take the SCF problem of the 
averaged pseudo-Fock operator, ι e, 

O K , = «i°VK/. <C/li<E»> = V I"» 
where 

F™ = Я"» + Vc [ />«) + V. [ //•>]. (20) 

Нт = Т+ „ + Ус[рт+Лр\ + Гг,. (21) 

/ '¡: І(І)=2" ;(СИ І)С*( І). i") 

/>ГОШ=Л«.Ш + 4>(1І+/СШ CT 
We now expand the pseudo-orbitals and the orbital energies 
in Eq (17) as 

Ф», =ЛГ,ИХ<, -МДО, -M УД', + · ), (24) 

г ^ ^ + Л ^ + Д / Ч · (25) 

With the intermediate normalization condition 

< C I C > = 0 . * = 1 . 2 . (26) 

the normalization constant becomes 

лгт=і-цг<(Сі<С/> + ··· I27» 
Substituting Eq (27) into Eq (24) we obtain the following 
power senes in λ for the pseudoelectron density matnx 

=¿(i, Π+/i^(i, г) + /1да.1'1 + - ·. 
128«) 

where 

р™(1,Г) = 2л ; <' / (1< 1 ' «(Г), 

(28b) 

rtWi. i') = Σ"- [«,ΟΟ'Ί + СМ'ЮП]. 
(28c) 

dïd. i') = Σ "/ [ О Ч О П + C O h O n 

+ ^Мі)«Г(і') 
-WMC/XM')«:!!')],·-· |28d) 

Using Eq (25) we note that the (one-electron) perturba­
tions actually are senes in λ 

Л4, =ЛЯ;" + /!г//;" + · · · , (29а) 

Я)" = (б^ - fV,, І29Ь) 

# « ' = «<''/>„ (29с) 

From Eqs (lb) and (28) it follows, moreover, that the pseu­
do-Fock operators F^ j will also contain perturbation cor­
rections through the corrections to ¿>™( 1 ), the so-called indi­
rect perturbation corrections, ι e , we have 

FrÈ,=F»! + lF,»J+i*FHl+--; (30a) 
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Fu', - Я)" + Г;1 + *\ к = I, 2, (30b) 

K^ ' and К'/ ' are the к th order corrections to the electronic 
Coulomb and exchange operators, respectively It may be 
denved that 

•"Î 'dl-J '-.-î ' /oïW^, *=1.2, (31) 

(34a) 

(34Ь) 

(34c| 

and 

l з Ιρ'ηΐ) J 9 Ιρ'ηΐ) J J 'ÍP ' " 

1 / ¿да _ ^ о , 

As usual m self-consistent perturbation theory, the first or­
der corrections to the Orbitals are given implicitly, they can 
be solved using a self-consistent procedure The second or­
der equation (33c) yields 

V4W 
(32b) 

with μ"" defined in Eq (23) 
Substituting the senes expansions obtained so far into 

the self-consistent problem [Eq (17)] and collecting like 
powers of Á we obtain the coupled-HFS equations 

n m + П'.1,«, = <?WJ + <}"«,. (33b) 

= ^ , + ¿ /4^+44° ' , . (33c) 

(35a| 

(35b| 

(35c) 

The zeroth order equation (33a) is satisfied by assumption 
The first order equation (33b) yields 

J 
Combining Eq (36) with Eqs (4) and (14), we obtain after some manipulations 

FpsHFs [ ρ] = \Ε^ + χ n, (f^j ІЯ"" + ΛΔ1 \φ„ ) 

+ jjj '¿'PrVÌPjWr^^ + j jpW.lpWìdr, + v„„} 

- γ ƒ ƒ r¿ 'ApiDäpWr, dr, - $Δρ(1)\ Vc \ ρ,,ΙΙ)] + ^ [ />(!)] \άτ, 

a, ! l = <ff . I ^ 1 ; - «¡"1 tf j ) + < g > IF«, ю, > 

Again, this set of equations can be solved self-consistently 
Unlike in conventional Rayleigh-Schrodinger perturbation 
theory it is not possible to obtain the second order correc­
tions to the orbital energies from the first corrections to the 
orbitals alone 

Having formally solved the self-consistent problem 
[Eq ( 17)] we now tum towards the total energy functional in 
the pseudopotential framework As basic relation we use the 
identity of valence orbital energies in all-electron and (exact) 
pseudopotential schemes 

(36) 

(37) 

It may be noted that we do not have to make the usual approximation of neglecting the noncommutativity ofthe two-electron 
operator with the core projector (i e , of using ¿j,, instead of/jvll in the two-electron part ofthe energy), since we explicitly 
retain Áp in our expressions 

Using the perturbation expression denved previously, we now wnte 

5 [/>]=.Е | 0 ' + Л£' | , | -М 2 £' 2 | + 

The zeroth order terra reads 

Em = Ecm + J #"1(1^(1, l')</r, +lJJr,-2'/>2'(l^(2)</r1</rI + A | / ? « ( 1 , ^ [ / , l o . ( 1 | ] ( , T i 

+ P«, + у ƒƒ rn 'ápmápWn dT2 - ƒ 4е<1)1 Ус [ пЩ + У. I Pmm\ \drt 

(38) 

(39) 

Using the identity 

+ J"/'ül(!|^[/>m(l)]rfr,=0> 

which follows from the intermediate normalization condi­
tion [Eq (26)], we obtain for the first order term 

E", = Z«j<<e!.,W"№j> 

(40) 
•JMDlviW + v'ìm]*, (4i) 

file:///Fjlj
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Further, using an identity analogous to Eq (40) and the first 
order perturbation equation (33b), we obtain 

4p(i)[»'?'iii + '"."m]<'T, (42) 

We note the occurrence of J/?-dependent terms in all 
energy expressions [Eqs (39), (41), and (42)] These originate 
from the use о{р лі instead οΐρρί in the two-electron part of 
the total energy There is another important difference 
between our scheme and current pseudopotent ml meth­
ods* l 2 since we use the full Philhps-Kleinman operator As 
Christiansen et al ' г have shown, the mixing of core orbi tais 
into pseudo-orbitals transfers electron density from the va­
lence region to the core Therefore these pseudo-orbitals 
alone cannot be used to construct an effective potential U F P 

in the Goddard-Kahn manner.9 yielding long negative tails 
in £/EP To solve this problem Christiansen et al require 
their atomic pseudo-orbitals to match the all-electron va­
lence orbitale beyond a certain radius (cf the Durand-
Barthelat pseudo-orbitals") In the pseudopotential HFS-
LCAO method this problem does not anse, due to the use of 
the full Phillips-Kleinman operator ш conjunction with the 
άρ term [Eq (14)] 

D. The calculation of Interaction energies 

In this section we derive an expression for the calcula­
tion of interaction energies within the pseudopotential 
framework First we obtain the zeroih order contribution, 
following the methodology of Ziegler and Rauk2, next we 
consider the perturbation corrections 

Consider a molecular system and assume it to be a 
buildup of certain subsystems (A, B, ) which we сь\\ frag­
ments We label the overall system after convergence by ΣΑ 
The interaction energy is given by the quantity 

ΔΕ = £ „ „ „ [ I A ] -^EpsHFslAl (43) 
A 

Using the perturbation series [Eq (38)], we rewnte Eq (43) 

4 £ = Л£ ( 0 |+ЛЛ£1 1 , + /1 ,4£ | 2 , + · *, (44a) 

áElk' = Eiki\ ΣΑ] -^E]h)[\\, k = 0. 1,2, 

(44b) 
Due to numerical difficulties the zeroth order contribution 
(.annoi be obtained simply as a difference of total energies 
Following Ziegler and Rauk2 we calculate J£ 1 0 1 in two steps, 
using an intermediate "stale" ΣΑ 

ЛЕ^=(Еі0і[ ÌA]-Em[ZA]) 

+ ( Ε , Ο Ι Ι Σ Λ ] - Σ £ < 0 Ι [ Α Λ (45) 

£(Ш [ΣΑ] does not correspond to a state of the total system 
(ι e , to a wave function), but it simply is £<01 evaluated with 
the density matrix/>¡,°llA(l, 1') = ΣΑ ^ , А ( 1 , Γ) The (diag­

onal) electron density then is the sum of the densities of the 
fragments in their positions m the overall system 

/уадІАт = £ [^( i rvm+tf 'm] m 
We note that we define V^ as containing the average orbital 
energies e of the converged overall system for reasons to 
become clear, explicitly 

/ IA _ 'T· 1A y ΣΑ _ y 1 (47) 

First we calculate the term ΕΠΣΑ] - ΣΑ£- | 0 Ι[Α] 
Using the zeroth order energy expression [Eq (39)], we ob­
tain 

Етіг\] -^En[A] 

•* pipot ~ ** Δρ ' 
(48) 

"*.. = Σ' Г ^ І Ч І Kw + Ус[ ¿Lin] Wr, 
A В J 

+ τΣ'ΣΣ / ί ' '»' ζ . ζ »· i49' 
¿ A B a Ь 

AE,^ = }2>""*<1>(»'.[£/'",|,(1)] - yA^W\\dr,. 
(50) 

¿E™, =Σ\ [y^\)-yt.W\f^W.y\ir,. (51) 
A J\ - 1 

and 

ΔΕ™, = 

-Xj^(i>[^[£/> , 0 , em] 

- ^ t p l 0 | A ( i ) ] U , (52) 

We note that Σ; B ƒ ApA[\)Vc [ ρ™*{\)]ατχ m άΕ% and 
ΛΕίΧ havccancelled The terms ΔΕκ{ andil£e,ch have exact­
ly the same functional form as in the frozen-core formalism, 
except that in úEtl the pseudodensity replaces the valence 
density ЛЕ^рм has no analog, it is due to the inequality of 
the pseudopotential in initial and final states ΔΕ^, contains 
correction terms involving Δρ to J £ d and áEexch We ex­
pect it to be small, since Δρ integrates to zero and the magni­
tude οΐΔρ is quite small in the valence region, where pseudo-
and valence density do not differ much 

Secondly we calculate the energy difference 
£ 1 0 , [ ΣΑ] - £ ι 0 | [ Σ Α ] Let¿£A be given in the basis of the 
fragment pseudo-orbitals, ι e , 

then we can expressp*A as 

(53) 

(54) 
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Following Zicgler we define a transition state, labeled TS, 

1 
Ρ* -\PÏ+P?) (55) 

(56) 

Using a Taylor expansion of the zeroth order energy functional one may denve2 

ΔΕ„ = £ Ι 0 Ι [ Σ Α ] - £ " , | [ Σ Α ] 

= y I I dEm I 2 dEm I 1 ЭЕ{т 

t ? l б ас,, |IA 3 ¿ρ, L б ге„ i l A i 
which is correct to fourth order in the ΔΡ ¡J ^ Equation ( 56) is independent of the actual form of the energy functional For the 
zeroth order energy functional [Eq (39)], the denvative with respect to a general element of the (pseudo) charge-and-bond-
ofder matrix is given by 

<3£"" 

apt 

•^\(-VcM-\fvAf\)\>). (57) 

which differs from the analogous result in the frozen-core formalism [Eq (8)] in some ¿p-dependent terms 

Combining Eqs (56) and (57) we arrive at 

Л£„ = ЩСЛ Ρ™), 

where С is the matni representation of the operator 

C = Г + VH + с[р™-Лр] + V? 

TABLE I Eiponents of STO buis sets used *b 

(58) НО-ТА)"·1'"1 (59) 

It is our specific choice of the intermediate state ΣΑ, viz Eq 
(47), thai allows us to treat the (average) pseudopotential in 
the transition state term in a simple manner, that corre­
sponds close!) to existing programs for the frozen-core HFS-
LCAO method 

As we will illustrate in the next section, the perturba­
tion corrections to the zeroth order interaction energy do not 

l i 

1> 

J j 

4> 

H-dz 

128 
0 76 

Н и 

138 
0 92 
0 69 

Си 

(5 «31 

4 6 0 
2 IO 
128 

О-и 

17 361 

7 58 
2 88 
172 

F H 

| 8 H | 

3 2< 
194 
0 74 

Cl и 

113 951 

15 651 

330 
2 3 0 
160 

Сч-dz 

124 451 

18 351 

[6 60| 

190 
100 

Cu и 

[14 301 

(12 801 

15 30] 

2 45 
140 
0 85 

2р 

V 

2 9 4 
148 
0 82 

20О 

4 08 
208 
1 12 

2 0 0 

4 5 4 
2 3 0 
124 

1 54 

(6 70] 

2 85 
2 05 
120 

108 

| | | 71) 

|4 53] 

143 

5 10 
165 

(11711 

(4 531 

2 00 
100 

6 9 0 
3 10 
128 

* Numben in brackets denote STO's used for core orthogonalizaiion m frozen-core calculations 
* Reference 14 
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present instability problems, they can simply be obtained as 
differences of the corresponding overall system and frag­
ment perturbation corrections FromEqs (41)and(42)itcan 
be seen that they may be considered as corrections to 
ΔΕ^ΜάΔΕΖ 

In summary, using the pseudopotential HFS-LCAO 
formalism, we have obtained the interaction energy of an 
overall system, thought to be composed of fragments, as a 
perturbation senes The zeroth order term reads 

ΔΕ»' = J £ d + J £ „ c , + ΔΕ^ο, + ΔΕΖ + ΔΕ„ (60) 

The first and second order corrections are defined through 
Eqs (41), (42), and (44) 

111. CALCULATIONS AND DISCUSSION 

In all our calculations we have taken the exchange pa­
rameter a fixed at 0 7 ' The basis sets used are listed in Table 
I, they were obtained by a least squares fit to numerical HFS 
orbitale l 4 

We have implemented the computational scheme de­
veloped in Sec II In particular we have implemented the 
self-consistent perturbational scheme up to second order in a 
computer program that can be used in conjuction with the 
HFS-LCAO program The Fock matrices are constructed 
using the numerical scheme of the pseudopotential HFS-
LCAO method, however, with the option of using fewer in­
tegration points We find convergence of the calculations to 
be quite rapid, using a standard damping procedure in the 
self-consistent calculation of the fint and second order pseu­
doelectron densities 

In Tables II and III we list the converged orbital ener­
gies for Cu and F 2 at different levels of approximation We 
note that even for the pathological case of the copper atom 
with the 3s and 3/> orbitals included in the valence set, the 
convergence of the perturbation senes in quite rapid The 
average deviation of the orbital energies from the frozen-
core calculations for the "real" valence orbitals Ъа and 4s is 
0 0297, 0 0037, and 0 0035 a u for zeroth, first, and second 
order, respectively The spread m the orbital energies within 
one irreducible representation for F2, approximately 18 eV, 
is more typical for the molecules we intend to use the pseudo-
potential method for From these and other calculations it 
appears that for most practical purposes first order perturba­
tion theory suffices Further we conclude that the valence 
orbital energies are accurate to about 0007 au or 02 eV, 

TABLE II Orbit*] energies (in • u ) for Cu with Э^З/З*/ "Чі1 valence in 
restricted deenptjon using * double zeU Ьазім. 

Pseudopotentul 

Ì I 

*s 
)p 
Id 

dev· 

Zenrih 
order 

- 3 8894 
- 0 2 0 6 6 
- 2 7766 
- 0 1977 

00646 

Fint 
order 

- 4 1433 
- 0 1550 
- 2 8058 
- 0 2293 

0 0141 

Second 
order 

- 4 1972 
- 0 1727 

- 2 8022 
- 0 2240 

00090 

Frozen 
core 

- 4 2546 
- 0 1772 
- 2 8 0 5 0 
- 0 2274 

' Avenge devuUon dev » — V ц, |*р — t^c\ 

TABLE HI Orbital energies (m a u } for F 7 at R = 2 70 a u 

Pseudopotential 

2o, 

5 " . 
2<7. 

I F , 

1 ' . 

dev· 

Zeroth 
order 

- 1 1755 
- 0 5443 
- 0 9662 
- 0 3238 
- 0 4 4 4 0 

0 0091 

Firn 
order 

- 1 195! 
0 5420 

- 0 9652 
- 0 3231 
- 0 4 4 4 0 

0 0069 

Second 
order 

- 1 1973 
- 0 5419 
- 0 9651 
- 0 3231 
- 0 4 4 4 0 

00067 

Frozen 
core 

1 2051 
- 0 5494 

0 9776 
0 3283 

- 0 4484 

• Average deviation dev = — V η l e " — f*11 

which is slightly better than the value 0 01 a u given pre­
viously by Snijders and Baerends 4 

In Table IV we illustrate the convergence of the pertur­
bation corrections with the number of integration points for 
another typical molecule (CO) at its equilibnum geometry It 
can be seen that already for small numbers of integration 
points the results are close to their converged value This 
pleasing property enables us to obtain self-consistent pertur­
bation corrections in relatively little computing time (typi­
cally a few iterations of the zeroth order calculation) The 
rapid convergence can be explained by two observations In 
the first place, the higher order pseudoelectron densities, 
Eqs (28c) and (28d), exactly integrate to zero and are rela 
lively smooth in space, which makes it easy to integrate them 
with a small number of integration points In the second 
place, the dominant contributions to the corrections come 
from the direct perturbations # ' * ' [Eq (29)], which depend 
on lower order terms only 

The numerical stability of the perturbation corrections 
to the total energy provides the justification for the calcula­
tion of the corrections to the zeroth order interaction energy 
as differences of these terms [Eq (44)] 

Having investigated the charactenstics of the self-con­
sistent perturbational approach as such, we now turn to the 
calculation of interaction energies We reiterate that the 
pseudopotential method is meant to reproduce the results 
obtained with the frozen-core method Therefore our mam 
objective is the companson of both methods, where possible, 

TABLE IV Convergence ofcorrection terms (in a u | with number of inte 
gration pants JV for CO at R = 2 132 a u 

JV 

«ïï 
«ïi 
«ΰ 
«ϊί 
« 
«¡S 
<£ 
f1,': 

ε1" 
ε'" 

250 

- 0 026 98 

- 0 0 0 1 60 

+ 0 004 12 

- 0 005 29 

- 0 0 0 2 05 

f 0 0 0 0 52 

- 0 000 07 

+ 0 0 0 0 32 

- 0 02015 
- 0 005 33 

500 

- 0 027 36 

- 0 001 69 

+ 0 004 05 

- 0 005 05 

- 0 0 0 2 05 

+ 0000 50 

— 0 000 07 

+ 0 000 32 

- 0 0 2 0 17 

- 0 X 5 36 

1000 

- 0 0 2 7 25 

- 0 0 0 1 6 5 

+ 0004 14 

- 0 0 0 5 16 

- 0 002 05 

+ 0 000 49 

- 0 0 0 0 0 7 

+ 0000 32 

- 0 0 2 0 14 

- 0 X 5 35 

2500 

- 0 027 24 

- 0 X 1 6 1 

+ 0 0 0 4 1 5 

- 0 X 5 14 

- 0 X 2 06 

+ 0 0 X 4 9 

0 0 X 0 7 

+ 0 0 X 3 2 

- 0 020 14 

- 0 X 5 35 
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TABLE V Energy differences ΔΕ (resincied -unresineied)iin a u )for some atoms 

Alom 

Η 

С 
О 
F 

σ 
Cu 

Viücnce 

IJ' 

ZÎ 'V 

2Ηψ· 
Vif 
-ifip1 

M 'Чі' 

Buis' 

dl 

a 
12 
tz 

a 
η 
di 
tz 

Pscudopolcnlial 

0 0586 

- 0 0678 
- 0 0 1 7 4 

- 0 0105 

- 0 0 1 2 9 
00142 

Frozen-core 

- 0 0607 

- 0 0 6 1 0 
- 0 0 6 2 0 

0 0704 

00185 
- 0 0 I X 

- 0 0 1 1 8 
- 0 0 1 3 7 

Difference 

+ 0 0033 
+ 00026 
+ O00O6 

- 0 0005 
-OOOM 

- 0 0 0 O 6 

however, we will compare our results with experiment 
In Table V we list the energy differences connected with 

the change from a spin-rest net cd to an unrestricted descrip­
tion for some atoms It can be seen that the numbers ob­
tained with the pseudopotential and frozen-core methods 
agree well, differences ranging from a few hundredths to a 
tenth of an eV Both restncled and unrestricted calculations 
are performed using fractional occupation numbers» hence 
they desenbe (different) averages over pure spin states The 
pseudopotent tais used are the ones generated for the restncl­
ed atoms 4 Therefore the differences in ΔΕ reflect the ability 
of a single atomic pseudopotential to describe different pure 
spin states 

In Tables Viand VII we give the interaction energy for 
CO and Cu; as a function of intemuclear separation We 
note that the interaction energy is calculated with respect to 
unrestricted atoms at infinite separation using the identity 

Л£(АВ) = £Я(АВ) - Ευ{\) - Ev№ 

= [£Я(АВ)-£:Я(А) -£ Λ (Β)] 
- [ ^ ( Α Ι - ^ Α ) ] - (£„(Β>-£ Α (Β)] ( (61) 

where the subsenpts R and U denote restricted and unres-
tncted calculations, respectively For both molecules there is 
just one irreducible representation of the molecular point 
group with more than one occupied valence orbital The 
spread in the valence orbital energies within this irreducible 
representation is quite different, however for CO at 
Л = 2 132 au it is 15 eV, for Cu, at Я = 4 00 au it is only 2 
eV This obviously influences the effect of averaging and the 
magnitude of the perturbation corrections, the second order 
corrections for CO are found to be larger than the first order 
corrections for Cu2 

From the two cases shown a general feature of our cal­
culations emerges The pseudopotential method reproduces 
the interaction energies obtained with the frozen-core meth­
od accurately for large values of Λ For small values of R, 
however, it gives increasingly too negative interaction ener 
gies Of course for small R both methods eventually break 
down It may very well be that the pseudopotential method 
breaks down more quickly, because its assumptions are more 
severe Both frozen-core and pseudopotential methods re­
quire the core orbitals to have their atomicybrm, in addition 
to this the pseudopotential method also requires them to 
have their atomic orbital energy The phenomenon of core-
level binding-energy shifts, m which initial state effects are 
known to be important, contradicts the validity of the last 
assumption The consequences of this shift for pseudopoten­
tial calculations are unknown, however Apart from these 
assumptions our pseudopotential method also approximates 
Δρ by a sum of atomic terms [cf Eq (15)] For molecules 
with convalent bonding we expect the effect of this approxi­
mation to be small 

From the data in Tables VI and VII and similar data for 
some other diatomics we have calculated the spectroscopic 
constants listed in Table VIII Comparing the results ob­
tained with pseudopotential and frozen-core methods for 
CO, Рг, and Cl2 we find a good agreement, differences 
amount to 0 01-002 Ä in Ä f ,0 1 -0 2 eV in Dt, and 10-20 
cm - ' in ω€ For Cu2 and CuH the results are somewhat less 
satisfactory Agreement in Dc is the same as for the first and 
second row systems, but due to the very shallow wells in the 
potential curves (the binding energy only slowly varying 
with R ), Rf and ω, are very sensitive to small inaccuracies in 
the binding energy This is illustrated by the effect of a 

TABLE VI Interaction energy (in a u ] for CO with respect to atoms in unrestricted description 

R 

1832 
1932 
2 032 
2 132 
2 232 
2 332 
2 432 
2 532 
2 632 

Zerolh 
order 

- 0 3296 
- 0 3793 
- 0 4047 
- 0 4 1 2 8 
- 0 4 0 8 7 

- 0 3962 
- 0 3781 

0 3566 
- 0 3329 

Pseudopotential 

First 
order 

- 0 3607 
- 0 4057 
- 0 4276 
- 0 433O 
- 0 4 2 6 8 
- 0 4129 
- 0 3939 
- 0 37IB 
- 0 3479 

Second 
order 

- 0 3689 
- 0 4 1 2 8 
- 0 4 3 3 7 
- 0 4 3 8 3 
- 0 4 3 1 5 

04171 
- 0 3977 
- 0 3752 
- 0 3510 

Frozen 
core 

- 0 3455 
- 0 3970 
- 0 4 2 2 9 
- 0 4307 
- 0 4261 
- 0 4 1 3 0 

- 0 3943 
-OJ722 
- 0 3491 
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TADLE VU ІпІетвсСюп energies (ιπ ι и ) Гот Cuj with respect lo atoms in unrotncled dcscnption using a 

double zela buis set 

я 
350 
3 75 
400 
4 25 
4 5 0 
4 75 
500 

Zenxh 

-OOÍ75 

- ο ι ο ω 
- 0 1 1 1 2 
- 0 1063 
- 0 0 9 6 9 

0 0861 
- 0 0 7 5 1 

Pseudopolenlul 

Firal 
order 

- 0 0Í69 
- 0 1059 
- 0 1102 
- 0 1053 
- 0 0959 
- 0 0850 
- 0 0740 

Saumá 
order 

- 0 0875 
- 0 1064 
- 0 1105 
- 0 1055 
- 0 0961 
- 0 0 8 5 1 
- 0 0 7 4 0 

Frozen 
core 

- 0 0594 
- 0 0932 
- 0 1055 
- 0 1048 
- 0 0974 
- 0 0870 
- 0 0756 

change of basis set in the Cu2 calculations In the tnple zeta 
basis the curve is more shallow than in the double zeta basis, 
deviations are consistently larger as well 

The perturbation corrections can be seen to influence 
Dr most (cf F2), Re and ω, being rather insensitive This can 
be attributed to the fact that the perturbation correction to 
the interaction energy vanes relatively slowly with distance 
Generally the corrected spectroscopic constants are in better 
agreement with the ones calculated with the frozen-core 
method The only exception is Clj, although differences are 
still quite small 

It is interesting to compare the results for Fj and CI2 
with results obtained with other pseudopotential methods 
Kahn et al9 ñnd the following deviations from all-electron 
results ЛА,(Р2) = 4 9%. AD,{fi\ = *ì%. ^R,(Cl2) 
= 6 9%, and dß.lClj) = 69% The corresponding results 

obtained by Hay et al ' are 0 7%, 8 8%, 2 5%, and 8 9% 

The best results are obtained by Chnstiansen et al'2 0 7%, 
1 4%, <0 2%, and 4 8% Our senes of deviations reads 
0 7%, 2 7%, 0 5%, and 6 5% Hence our results for the 
spectroscopic constants are only slightly less accurate than 
Christiansen's, however, for small R deviations in the ener­
gies are larger 

Although we did not optimize our basis sets, our pn-
mary goal being the companson of pseudopotential and fro­
zen-core methods, it appears that our results are fairly close 
to the Hartree-Fock-Slater limits obtained with Becke's nu-
mencal method "(cf alsoRefs 17-19foraccurateHFScal-
culations on diatomics) Becke found for CO R, = 1 12 À, 
D, = 12 0 eV, ω, = 2170 cm"', and for F2 R, = 1 38 Â, 
D, =32eV,u)r = 1060cm ' 

We note that the agreement of the HFS results with 
expenment is quite good, the only exception being £>, and ω, 
for F2 However, F2 is a notoriously difficult molecule, Har-

TABLEVIII Spectroscopic conitanu for some diatomics 

R.{k) Z>,(eV) ω, (ci 

Cuj-df 

PS, 
PS, 
FC 
E«p 

PS„ 
PS, 
FC 
Exp 

PSo 
PS, 
FC 
Exp 

PS. 
PS, 
FC 

r% 
PS, 
FC 
Exp 
PS» 
PS, 
FC 
Exp 

1 14 
1 12 
1 12 
1 14 
1 13 

142 
142 
141 
141 

2 0 8 
2 0 9 
208 
199 

2 10 
2 10 
2 17 
2 0 7 
208 
220 
2 22 

147 
147 
150 
146 

order 

112 
IIS 
119 
117 
11 1 

2 12 
3 03 
2 95 
160 

2 4 0 
2 62 
246 
148 

301 
2.98 
190 
131 
130 
110 
203 

1 6 
2 5 
2 5 
2 7 

pseudopotentul cakulilions, 

2110 
2120 
2130 
2140 
2170 

1060 
1050 
1050 
917 

537 
516 
532 
560 

338 
358 
364 
315 
316 
275 
265 

1930 
1950 
2520 
1940 

rapcctivdy FC de-
nota 1 Гпдал-отге oJcuUlion 

"See Table I 
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TABLE IX Buiding energia (in eV) for some polyatomic molecules m ihm (expenmen tal) equilibrium geome­

try· 

co, 
с.н, 
е л 
Cucxr 
Cu," 

ZeiTKh 
order 

1S3 
163 
217 

0 13 
7 32 

PscudopotcntitJ 

Firal 
ord«r 

189 
166 
22 0 

064 
7 28 

Second 
order 

19 I 
167 
22 I 

0 87 

Frozen-
core 

186 
167 
22 2 

064 
7 16 

F , p ' 

16 3 
168 
23 1 

' Basis sets used double zeta for Cu, tnple zeta for H С and О, see Table I 
* Reference 22 
c Л (Cu-C) = 3 75 a u , Л |C-0) = 2 20 a u , energy relative to Cu and free CO 
dCu,(9,0) cluster with bulk Cu-Cu dutances (4 82 a u ) 

tree-Fock docs not even predict bonding We also note that 
the HFS Cuj results are comparable to recent effective po­
tential20 and all-electron21 ab initio calculations only after 
inclusion of CI in the latter 

In Table IX we list the binding energies for some polya­
tomic molecules The results indicate that the pseudopoten­
tial method reproduces frozen-core results equally well for 
larger systems The differences found are in the order of a 
few tenth of an eV, except for C02 where is is 0 5 eV (which 
amounts to 2 7%) 

IV. CONCLUSIONS 

In this paper we have developed a computationally fea­
sible scheme for the calculation of interaction energies using 
the pseudopotential Hartree-Fock-Slater-LCАО method 
The scheme is based on a pseudopotential energy functional 
which we denved using the formal identity of orbital ener­
gies in all-electron and pseudopotential methods, and on a 
self-consistent perturbational scheme to correct for the use 
of averaged pseudopotentials We wish to emphasize that the 
generation of pseudopotentials, and the subsequent SCF and 
total energy calculation, are completely straightforward, 
without any need for parameterization or fitting of effective 
potentials 

It is found that the perturbation senes converges rapid­
ly, for most practical purposes the first order result being 
sufficient The results of the perturbation calculations are 
found to be numerically stable, enabling the use of a relative­
ly cheap numerical integration scheme The orbital energies 
on the average differ by less than 0 2 eV from the corre­
sponding frozen-core values 

Test calculations on a number of molecules show good 
agreement between the pseudopotential and the frozen-core 
HFS-LCAO results General tendency is that the pseudopo­
tential binding energies are slightly too large, which becomes 
more prominent for short mtemuclear separations For sys­
tems of first and second row atoms the spectroscopic con­
stants calculated with the two methods differ by 0 01 -0 02 À 
in Ä,, 0 1-0 2 eV in />,, and up to 20 cm ' in the more 
sensitive ω< These results are comparable to the ones ob­
tained with best pseudopotential and effective core potential 
methods currently available 

For systems containing the transition metal Cu the re­

sults are comparable except that due to the shallow well m 
the binding energy curve Rt and tu, are less accurate Calcu­
lations on polyatomic systems show that the performance of 
the pseudopotential method does not depend on the size of 
the system 

In conclusion, we find that the general agreement 
between pseudopotential and frozen-core HFS-LCAO 
methods is good Moreover, agreement with expenment is 
satisfactory as well Therefore the pseudopotential method 
seems accurate enough to investigate physical effects, such 
as the influence of cluster size in chemisorption calculations 
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Using the pseudopotenbal and frozen core Hartrec-Fock-Slaler LCAO mclhods we have calculated electnc mulupole 
moments the diamagnetic susceptibility potcnual electnc field electnc field gradient and diamagnetic shielding for the 
molecules HF HQ LiH LiF LiCl CO CO-> C 2 H 2 and С гН4 The pseudopoiential method is found to reproduce 
frozen core results very well if the pseudo-orbitals are core orthogonahzed The calculated dipole and quadrupole moments 
agree well with the available Hartree-Fock and experunental values 

1. Introduction 

In the past decade numerous pseudopotential 
and effective core potential methods [1-23] 
(hereafter collectively referred to as pseudopoien­
tial methods) have been developed that accurately 
reproduce all-electron (or frozen-core [22,23]) re­
sults in electronic structure calculations For in­
stance, Christiansen et al [18] have calculated 
potential curves for F2 and Cl 2 that differ by only 
0 02 bohr m the equilibrium separation and by less 
than 0 1 eV in the bmding energy In the evalua­
tion of these methods most attention has been 
directed towards the calculation of energetic quan­
tities such as ionization potentials and spectro­
scopic constants that can be obtained from poten­
tial curves 

In a number of cases also one-electron proper­
ties have been calculated [1-3,10,14,19-21], mostly 
the electnc dipole moment These properties are 
commonly evaluated from the pseudo-orbitals as 
such without core onhogonahzation, although it is 
realized that this involves an approximation The 
agreement between pseudopoiential and all-elec­
tron values for the dipole moment is generally 
good, differences being 0 1 debye or less Excep­
tions to this rule form the differences found by 
Dixon and Hugo [10] for NaCl (0 35 debye) and 
by Preuss et al [20] for HCl (0 3 debye) We note 

that m the majority of cases hydndes were studied, 
which constitute a relatively mild test for pseudo-
potentials 

Other properties have only been considered 
sporadically Kahn and Goddard [1] calculated the 
quadrupole moment, the potential and the electnc 
field gradient at the nucleus for LiH and Li2 

Mebus et al [2] did the same for some excited 
states of LiH The potential at the nucleus has also 
been calculated for HF and HBr by Kahn et al 
[3] We will return to these calculations m the 
discussion of our results (section 4) 

Pseudopotential methods aim at a similarity in 
the valence region beteen pseudo-orbitals and va­
lence orbitals obtained from all-electron calcula­
tions Proper valence orbitals may be obtained by 
orthogonalizmg the pseudo-orbitals to the core (cf 
section 2) Dixon and Hugo [10] explicitly assume 
that, due to the spherical character of the cores, 
this will only have a small influence on the dipole 
moment Qualitatively it is clear that this will hold 
for all properties that mainly sample the valence 
region, such as electnc mulüpole moments and the 
diamagnetic susceptibility In this paper we will 
pursue this matter quantitatively by actually 
evaluating one-electron properties before and after 
core orthogonalizauon of the pseudo-orbitals for a 
variety of molecules We will also consider proper­
ties that mainly sample the core region, viz the 

file:///ijmegen
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potential, the electric field, the electric field gradi­
ent and the diamagnctic shielding at the nuclei 

In our calculations we use the Hartree- Fock-
Slater (HFS) LCAO method of Baerends et al 
[24,25] in the pseudopotential version of Snijders 
and Baerends [22] In section 2 we will outline its 
essential features Since the computational scheme 
of the HFS LCAO method concentrates on the 
valence electrons, we will compare our pseudo-
potential calculations with the corresponding 
frozen-core calculations 

The HFS LCAO method is known to yield 
good agreement with expenmenl for a variety of 
properties [26] eqinlibnum geometries, bmding 
energies, stretching frequencies, electronic transi­
tion energies, dipole moments and dipole moment 
derivatives Recently Snijders et al [27] have 
calculated electric field gradients for H2 and CH4 

using the fitted one-electron density 

μ w t 

with very satisfactory results In the present paper 
we have used the "exact" density, calculated from 
the MOs, rather than the fitted density After a 
STO ОТО expansion [30] of the STO basis func­
tions xf we can use a standard one-electron prop­
erties program [31] for gaussian-type Orbitals 
(GTOs) 

2 The pseudopotential HFS LCAO method 

In the pseudopotential HFS LCAO method 
[22,23] core collapse is prevented by adding to the 
Fock operator a pseudopotential 

^,-Е(<,-<1)к с*><-«|. (2i) 
к 

which shifts the core orbitale ψ£ from their all-
electron orbital energies ej to the valence energy 
< This valence level thereby becomes degenerate 
The solution of the SCF problem then gives a 
pseudo-orbital of the form 

ψ/'-Ψί+Σψ;**,. (2 2) 
к 

with arbitrary coefficients akj 

In order to determine the coefficients akJ ш eq 

(2 2) one usually requires the pseudo-orbitals to be 
nodeless and to have maximum similarity with the 
corresponding valence orbnals ψ" m some sense 
For instance, one may require ψ"" and ψ) to have 
maximum overlap [3], to be identical beyond a 
certain radius [7-9,19] or to have the same first 
moment (r) after core orthogonalizalion [10] A 
notable exception is formed by the method of 
Huzmaga [5,6] in which the valence orbnals keep 
their full nodal structure, the pnce to be paid for 
the latter is that the basis sets needed are larger 
than ш other methods 

In the pseudopotential HFS LCAO method one 
uses another common device, viz. one truncates 
the basis by deleting all core basis functions Since 
one has a number of akj (for given _/) equal to the 
number of core orbnals only, this involves an 
approximation 

Due to the local exchange approximation and 
the computational scheme used, the HFS LCAO 
method allows a straightforward inclusion of the 
core contributions to the electronic Coulomb and 
exchange potentials, no parameterized effective 
core potential is required Further, one does not 
use the pseudo-orbitals as such to calculate the 
valence potential, instead one uses the less severe 
assumption 

Δρ^^αί-ΣΔρ.,ο.,ω. (2 3) 

where 

Μυ-Σ^ωψ^υ-ΨΓ^ΨΓ"0)]·^4) 
j 

with the л, occupation numbers We note that this 
assumption is equivalent to the one employed by 
Dixon et al [11], viz 

(G v-С1"),™,«^« Σ (G v-G' , t).,„,, (2 5) 

where Gs is the sum of Coulomb and exchange 
potentials summed over the set χ 

G*-t(lJ,-K,) (2 6) 

The problem which valence level t, to shift the 
core orbitals to, is solved by usmg an average 
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pseudopolenlial 

i)l*î><*ïl (2 7) 

Tabic 1 
Exponenu of STO basis sets used " (33] 

for each irreducible representation Γ (with average 
valence energy < r) of the molecular point group 
For each particular valence level the averaging is 
corrected for by the use of perturbation theory 
Recently [23] we have developed a self-consistent 
perturbation scheme that allows incorporation of 
the pseudopotential version of the HFS LCAO 
method in Ziegler's [32] transition-state scheme for 
calculating chemical interaction energies 

Given the pseudo-orbitals (2 2) calculated with 
the pseudopotential HFS LCAO method, or with 
any other pseudopotential scheme, one may re­
cover the valence orbitals by orthogonahzing to 
the cores 

ψ;-(ι-Λ)ΨΓ. (28) 

with 

к 

the projector on the space spanned by the core 
orbitals 

3. Computational procedure 

The scheme used for calculating one-electron 
properties is similar to the one used previously for 
the calculation of electric field gradients of some 
antimony compounds [29] The Hartree-Fock-
Slaler calculations were performed with the HFS 
LCAO program of Baerends el al [24,25] in its 
pseudopotential version [22], adapted to IBM This 
program is based on STOs Self-consistenl per­
turbation calculations for the pseudo-orbitals were 
performed using a recently developed program 
[23] The actual calculation of the properties was 
performed using the one-electron properties pro­
gram of the POLY ATOM package, which is based 
on GTOs 

Further we used an interface program which 
reads the converged SCF data from the HFS 
LCAO program or the perturbational program, 
expands the STOs in GTOs and prepares the mput 

Η Li CI 

Is 158 (246) (540) (7 36) (8 33) (1395) 

0 92 

0 69 

2s 2 36 4 60 7 58 3 24 (5 65) 

0 68 210 2 88 1 94 

0 46 1 28 1 72 0 74 

3s 3 30 

230 

160 

2p 100 2 36 2 94 4 08 4 54 (6 70) 

0 68 148 2 08 2 30 

0 46 0 82 112 124 

3p 2 85 

2 05 

120 

3d 200 200 154 108 

a> Numbers in parenthèses denote STOs used for core ortbo-
gonahzation m frozen-core calculations 

for the properties program The STO GTO expan­
sion performed according to the method of maxi­
mum overlap fits of Stewart [30), each (n, I) STO 
is expanded m l to 6 (/+ 1, /) GTOs Compared 
with its previous version we have added the option 
of orthogonahzing the pseudo-orbitals to the cores 
(cf eq (2 8)) The orbitals are renormalized after 
the orthogonahzation 

In all our calculations we have taken the ex­
change parameter α fixed at 0 7 [25] The STO 
basis sets used [33] are Usted ш table 1 They are 
of tnple-zeta quality, supplemented with polariza­
tion functions For the calculation of chemical 
interaction energies these basis sets are known to 
be close to the HFS limit 

4. Results and discussion 

One-electron properties have been calculated 
for a number of molecules at their experimenta] 
equilibrium geometnes HF (R - 1 733), HCl (R 
= 2 409), LiH (R - 3 015), LiF (Л - 2 995), LiCl 
(R = 3 819), CO (A - 2 132), COj ( A c o - 2 194), 
CjHj ( Л с с - 2 274, Д с н = 2 004) and С 2 Н 4 

<*c • 2 530, Rr • 2 050, ¿HCH = 117 80) All 
distances are m atomic umts The linear molecules 
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were placed along the г axis, СгН., in the xz plane 
with the carbon nuclei on the ζ axis We divide the 
properties considered in two groups 

(I) Properties that mainly sample the valence 
region (characterized by a positive power of r in 
the corresponding quantum-mechanical operators), 
viz the electric multipole moments up to / =•= 3 and 
the diamagnetic susceptibility 

(II) Properties that mainly sample the core re­
gion (characterized by a negative power of r in the 
corresponding operators) viz the potential, the 
electric field, the electric field gradient and the 
diamagnetic shielding 

The core contributions to the properties have 
been calculated in the frozen-core approximation 
The effect of cores other than that of the center at 
which a property is evaluated is taken into account 
by the use of effective nuclear charges The contri­
bution of the core of the nucleus at which a 
property is evaluated is zero due to the spherical 
symmetry, except for the potential and the dia­
magnetic shielding, where it is a non-zero con­
stant Keeping the cores frozen we obviously ne­
glect core polarization effects and a pnon no 
agreement with expenment may be expected for 
the group II properties For these properties we 
consider our calculations as a methodological test 
of the pseudopotential method 

The results are presented m tables 2-9 We give 
core-orthogonalized pseudopotential results up to 
first order in the perturbation treatment For the 
zeroth-order results we have included non-core-
orthogonalized results in parentheses We compare 
these results with frozen-core values and, in a 
number of cases, also with Hartree-Fock (HF) 
and expenmental values 

4 J Valence region directed properties 

We give the dipole, quadrupole and octupole 
moments in their tesserai harmonic form [34,35] 
for a molecule with nuclei at positions r, = 
(r(, θ^ φ() and with charges Zl and one-electron 
density p(r) we have in atomic umts 

- / p ( r ) r ' 5 ; m ( e , < F ) d r j (4 1) 

The S/m are the normalized tesserai harmonics As 
the ongin of the coordinate system we have taken 
the molecule's center of mass In particular 

2ΙΟ = Σ Ζ , * , - / Ρ ( Γ ) « Ι Γ , (4 1a) 

- i / p ( r ) ( 3 r 2 - r 2 ) d r (4 1b) 

and 

- i / p ( i - ) ( 5 r 3 - 3 2 r 2 ) d r (4 1c) 

We note that for a linear closed-shell molecule 
along the г axis only the Qlm with m = 0 are 
non-zero 

The elements of the diamagnetic susceptibility 
tensor are given by 

where μ and ν take the values χ, ν and ζ We 
only list the average diamagnetic susceptibility 

Xd.. = Hxd„ + xí. + x ; . . ) - - i / p ( ' ) ' 2 d ' (43) 

For the linear molecules the diamagnetic suscep­
tibility amsotropy, Δχ* = χ?, — χ ^ is directly re­
lated to the electronic contnbution to the 
quadrupole moment 

In discussing our results we first consider the 
dipole moment (cf table 2) In their review paper 
Baerends and Ros [26] list the values Qi0(iiF)=* 
171 D, e 1 0 ( L i H ) - 5 46 D, e i 0 ( L i F ) - 5 87 D 
and 2 i 0 (CO)— —0 25 D, the average discrepancy 
between our frozen-core results and theirs is 0 27 
D Our calculations differ from theirs m the inter-
nuclear separations and in the basts sets used We 
evaluated the dipole moment at the expenmental 
equilibnum geometry, whereas Baerends and Ros 
used the calculated equilibnum geometry Using 
their values for the dipole-moment denvatives [26] 
it can be seen that the difference in geometry has 
only a minor effect on the (average) discrepancy 
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Table 2 
Dipole moment (?1 0 " (in debye ID - 3 336 X IO" 3 0 С m) 

Molecule 

HF 

на 
LiH" 
LiF 
L i a 

со 

Pseudopolenna) 

zeroth 
order w 

1 76 (1 74) 
119 (126) 
5 51 (5 38) 
6 Ol (5 78) 
6 80 (6 66) 

- 0 1 2 ( - 0 П ) 

first 
order 

171 
0 95 
5 51 
6 0S 
6 79 

- O i l 

Frozen 
core 

176 
106 
5 49 
6 05 
6 71 

- 0 20 

H F 4 

192 
122 
600 
630 
7 22 
0 26 

Exp"' 

180 
109 
5 88 
6 28 
709 

- 0 1 2 
л) A positive value denotes a + - polarity for the molecule as 

written 
b ) Numbers m parentheses are obtained without core ortho-

gonalizing the pscudo-orbitals 
c ) Harlree-Fock values HF [36], HCl [3η, UH [38 39], LiF 

[40] LiCl [41] CO [36] 
ύ) Expenmental values HF [42] HCl [43], UH [44] UF [45] 

LiCl [45] CO [46] 
e> Since no averaging is involved in the pscudopotential in this 

case, perturbation corrections are identically zero 

Table 3 
Quadrupole moment Qx with respect to center of mass (in 
atomic units, 1 au - 4 4 8 7 x 1 0 " * С m2) 

Molecule PseudopotenUal 

zeroth 
order 

First 
order 

Frozen- HF" 
core 

E x p " 

HF 1 87 (1 88) 1 88 1 89 173 1 64 
HO 311 (3 19) 3 00 2 94 2 78 2 62 
Ь Н - 2 3 7 ( - 2 1 β ) - 2 3 7 - 2 3 5 
LiF 4 55 (4 57) 4 50 4 47 
U a 10 3 (10 2) 10 2 10 2 
CO - 1 3 4 ( - 1 2 6 ) - 1 3 8 - 1 3 8 - 1 5 3 - 1 4 4 
COj - 2 8 5 ( - 2 5 9 ) - 2 8 4 - 2 8 5 - 3 8 4 - 3 3 4 
CjHj 4 83 (4 99) 4 83 4 87 5 46 6 2 
СгН^» 133 (139) 131 132 150 147 

·> Hartret-Fock values HF [47], HCl [37), CO (47], COj [48), 
C J H ¡ [49] ,C Í H 4 [49] 

b) Experimental values HF [50], HO [50], CO [51], C0 2 [52], 
С 3 Н, [49] CjH, [53] 

c ) See also text 

Therefore the differences must be attributed to the 
basis sets used Baerends and Ros used Clementi's 
basis sets, obtained by total energy optimization, 
which is to a large extent a core properly Here we 
use basis sets obtained by a least-squares fit to 
numerical HFS valence Orbitals [33] These basis 
sets give dipole moments thai are uniformly closer 
to the experimental values 

Agreement of the HFS LCAO dipole moments 
with expenment is good, it is equally good as for 
the near-HF-hmit dipole moments Note however, 
that HFS predicts the correct sign for CO, whereas 
HF does not 

Also the quadrupole moments (cf table 3) agree 
well with expenment, although differences are de­
cidedly larger than for the dipole moments Two 
reasons may be suggested to explain this phenom­
enon First, the expenmental quadrupoles are not 
as accurately known as the expenmental dipoles, 
the errors given for the values quoted [50-53] 
range from 0 03 au for CO to 0 11 au for C 0 2 

Secondly, it has been estabhshed by McCuUough 
[47] that quadrupole moments are quite sensitive 
to basis-set errors Comparing HF LCAO calcu­
lations with his numerica] HF calculations Mc­
CuUough found that even with moderately large 

basis sets and some exponent optimization, 
quadrupole moment basis-set errors ш the range 
0 05-0 1 au can be expected Since we used stan­
dard basis sets which only one set of polarization 
functions per atom (except for Li) and no expo­
nent optimization, we consider the agreement with 
HF and with expenment as satisfactory 

The C 2 H 4 molecule ments a separate discus­
sion The recent expenmental quadrupole moment 
of Gray et al [53], obtained from collision-induced 
adsorption measurements, differs rather drastically 
from earlier values, but agrees well with our results 
(and with ab initio results [49]) Our frozen-core 
values are ß „ -= 1 40 au and ß w — - 2 72 au, the 
expenmental values ß „ = 1 50 au and Qyy — 
- 2 97 au, the pseudopotential results are again 
very similar In tesserai harmonic form (eq (4 1)) 
the two non-zero moments are Qx and Q^ — 

3-1/2(G„-e,v) 
We now compare pseudopotential and 

frozen-core methods for the group I properties As 
we have stated m section 1 typical differences 
between pseudopotential and all-electron dipole 
moments are 0 1 D (without core orthogonaliza-
tion), but much larger values are also reported 
Our calculations yield a maximum difference of 
0 11 D and an average difference of 0 02 D For 
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Table Λ 
Oclupole momenl Qy, wttb respect lo center of massk> (in 
atomic unils 1 au - 2.374 χ JO"10 С a?) 

Molecule Pseudopotentia] Frozen^ore 

zcroth order first order 

HF 2 85 (2 85) Γϊϊ 288 
HO 5 40 (5 20) 5 20 5 00 
UH 3 58 (319) 3 58 3 48 
LiF 104 (104) 106 105 
LiO 32 3 (32 0) 32 6 32 6 
CO - 3 3 1 ( - 3 2 5 ) - 3 3 7 - 3 3 8 
a> Sign corresponds lo that of the dtpole momenl (cf table 2) 

the quadrupole moment few comparisons between 
pseudopotential and all-electron methods exist 
Using the Gl method Kahn and Goddard [1] 
found differences of 0 0 3 and OSS au for the 
ground states of LiH and Li2, respectively Using 
the same method Melius et al [2] found dif­
ferences up to 1 3 au for some excited states of 
LiH These rather disappointing results were ob­
tained without core orthogonahzation 

As can be seen from tables 2-S the pseudo-
potenual and frozen-core HFS LCAO results agree 
very well In table 10 we hst the average absolute 
deviations, they are very small indeed The relative 
error of 9 6% for the dipole moment is mainly 
caused by the small absolute value for CO (exclud­
ing CO lowers the difference to 2 9%) It can be 
seen thai differences m the behaviour of the four 
properties are small for the molecules considered 
It is also clear that the effect of the perturbation 

Table 5 
Average diamagneuc suscspubility with respect to «nier of 
mass (in atomic uiuu 1 au - 7 891 ХІ0"2* J Τ : mole ') 

Molecule Pseudopoienual Frozen-core 

HF 

на 
U H 
U F 

ua 
CO 

co2 C.H, 
CjH, 

zeroth order 

- 2 4 3 ( - 2 4 1 ) 
- 5 4 1 ( - 5 2 0 ) 
- 3 75 ( - 3 70) 
- 5 18 ( - 5 16) 

- 1 0 3 ( - 1 0 1 ) 
- 6 6 0 ( - 6 5 4 ) 

- 1 8 8 ( - 1 8 7) 
- 1 0 1 ( - 1 0 1 ) 
- 1 3 8 ( - 1 3 7) 

first order 

- 2 4 3 
- 5 4 4 

- 3 75 
- 5 23 

- 1 0 3 
- 6 61 

- 1 8 8 
- 1 0 ) 
- 1 3 8 

- 2 4 1 
- 5 50 
- 3 75 
-5.22 

- 1 0 4 
- 6 63 

- 1 8 8 
- 1 0 2 
- 1 3 8 

corrections to the pseudo-orbitals on the proper­
ties is small, although overall agreement with 
frozen-core results definitely improves 

The influence of core orthogonahzation is also 
small To obtain quantitative agreement with the 
frozen-core results, however, u is necessary to use 
core-orthogonalized pseudo-orbitals In the cases 
investigated core orthogonalization has a larger 
effect than the perturbation corrections 

4 2 Core region directed properties 

The properties considered that mainly sample 
the core region are the potential 

<e=Ez,'.-1-/p('-)<--1<i.·, (4 4) 

the electric field 

5.-LZ,V,-J -jp{r)V-
 5dr, (4 5) 

the electric field gradient 

>;»=Σζ,(3ν · . ,-ν · . 2 )τ 5 

-¡р(г)(Зг^г,-6иУ)г-}аг ( 4 6 ) 

and the diamagneuc shielding 

« ¿ - Í / P W Í V . - V - 2 ) ' · - * ' · (4 7) 

Since the average diamagneuc shielding is propor­
tional to the electronic contribution to the poten­
tial, we only hst the diamagneuc shielding aniso-
tropy for the linear molecules, 

Д о - ^ о ^ - о і (4 8) 

As described earlier m this section the core contri­
butions are obtained using the frozen-core as­
sumption In valence-electron-only calculations of 
the electric field gradient core polarization is usu­
ally corrected for by the use of Stemheuner fac­
tors Since we are principally interested ш compar­
ing pseudopotential and frozen-core methods.we 
will not consider such correcuons 

The results of our calculations are presented m 
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tables 6-9 In table 10 we have again summarized 
these results by hstmg average differences, we 
have considered hydrogen and other atoms sep­
arately. 

The potential at the nucleus has been investi­
gated by Kahn and Goddard [1] for LiH and Li2, 
by Melius et al [2] for some excited states of LiH 
and by Kahn et al [3] for HF and HBr, in all 
cases non-core-orthogonalized pseudo-orbitals 
were used It was found that the potential at the 
hydrogen nucleus was almost identical in pseudo-
potential and all-electron calculations, whereas 
larger differences were found for the potential at 
other nuclei In the hydndes of Li, F and Br the 
differences were 0.015, = 0 3 and » 0 3 au respec­
tively Due to the large core contribution the rela­
tive errors were still quite small (1 3% for F, 0.2% 
for Br) 

The orthogonalization of the pseudo-orbitals to 
the core transfers electron density from the core to 
the valence region The effect is to lower the 
potential at the nucleus, as can be clearly seen in 
table 6 Thus, the agreement between pseudo-

Table 7 
j component of electric field at the nucleus k> (in atomic units 
1 a u - 5 142X10" V m" 1 ) 

Molecule 

HF 

на 

UH 

UF 

u à 

co 

co2 
C 2H 2 

C2H4 

average ь ) 

Nucleus 

H 
F 
H 

а 
и 
H 
U 
F 
Li 

а 
с 
о 
О 

с 
H 

с 
H 

Pseudopotenual 

zeroth order 

0 090 (0 086) 
- 0 1 2 5 < - 0 405) 

0 046 (0 033) 
- 0 0 8 7 ( - 0 1 2 4 ) 
- 0 0 3 7 ( - 0 0 9 6 ) 
- 0 0 0 6 ( - 0 0 0 0 ) 
- 0 0 4 3 ( - 0 1 3 6 ) 
-0O42(-0127) 
- 0 0 2 6 ( - 0 0 9 1 ) 
-O019(-0039) 

0 066 (0169) 
- 0 077(-0 265) 

0 087 (0 394) 
- 0 0 0 3 ( - 0 0 6 6 ) 

0 045 (0 041) 
-ΟΟΙΙ(-ΟΟΙβ) 

0 006 (0 004) 
0 048 (0123) 

fust order 

0 087 
- 0 1 1 6 

0044 

- 0 0 6 5 
- 0 037 
- 0 0 0 6 
- 0 0 4 3 
-0O44 
- 0 027 
- 0 0 1 4 

0060 
- 0 076 

0 085 
- 0 0 0 4 

0044 
- 0 0 1 0 

0 007 
0 045 

Frozen-

core 

0 083 
- 0 1 3 1 

0 059 
- 0 081 
- 0 035 
- 0 0 0 4 
- 0 042 
- 0 049 
- 0 025 
- 0 022 

0 065 
- 0 070 

0 084 

- 0 003 
0 047 

- 0 0 0 5 
0009 
0 048 

"* Molecules AB are placed wiih A towards the posi uve ζ axis, 
for C0 3 , C^Hj and C2HA the atoms referred to are the ones 
with the larger ζ coordinate 

b ) Defined ш terms of absolute values 

Table 6 
Potential at the nucleus a 

(in atomic units, 1 au - 27 21 V) 

Molecule 

HF 

на 

LiH 

U F 

ua 

CO 

co2 

C 2 H 2 

с.н, 

Nucleus 

H 
F 
H 

a 
и 
H 

u 
F 
Li 

a 
с 
о 
с 
о 
с 
н 
с 
H 

Pseudopotenual 

zeroth order 

- 0 881(-0 882) 
- 9 3 2 ( - 9 0 2 ) 
- 0 8 9 4 ( - 0 8 8 5 ) 
- 5 6 4 ( - 5 1 2 ) 
- 0 380(-0 353) 
- 1 1 8 ( - 1 1 7 ) 
- 0 4 2 2 ( - 0 4 0 1 ) 
- 9 5 0 ( - 9 1 7 ) 
- 0 352(-0 334) 
- 5 71 ( - 5 18) 
- 3 4 0 ( - 3 2 1 ) 
- 6 9 7 ( - 6 6 9 ) 
- 3 32 ( - 3 18) 
- 7 0 0 ( - 6 7 2 ) 
- 3 4 6 ( - 3 3 2 ) 
- 1 0 1 ( - 1 0 1 ) 
- 3 4 9 ( - 3 3 5 ) 
- 1 0 9 ( - 1 0 9 ) 

first order 

- 0 884 
- 9 3 3 
- 0 914 
- 5 6 4 
- 0 380 
- 1 18 
- 0 397 
- 9 4 9 
- 0 334 
- 5 71 
- 3 38 
- 7 0 0 
- 3 3 3 
- 7 0 0 
- 3 47 
- 1 0 1 
- 3 4 9 
- 1 0 9 

Frozen-

core 

- 0 8 8 0 
- 9 3 8 
-0905 
- 5 56 
- 0 392 
- 1 18 
- 0 403 
- 9 56 
- 0 351 
- 5 6 6 
- 3 4 1 
- 7 0 1 
- 3 33 
- 7 0 4 
- 3 4 9 
- 1 0 1 
- 3 5 2 
- 1 0 9 

B> Apart from a constant core conlnbuuon, which is — 5 290 au 
for Li, - 1 1 224 au for C, - 1 5 1 8 1 au for О, - 1 7 162 au for 
F and - 58 784 au for Cl 

Table 8 
Electnc field gradient at the nucleus (m atomic units, 1 au -
9717X10 2 1 V m" 2 ) 

Molecule Nucleus Pseudopotenual Frozen-

zeroth order first order 

H 
F 
H 
а 
и 
н 
ь 
F 
Ь 
а 
с 
о 
с 
о 
с 
н 
с 
H 

с,н, 

С 2 Н 4 

0 645( 
253 ( 
0340( 
232 ( 
0 038 
0065( 
0043 
0118(· 
0 023 
0 489 
0 947 
0 724 
0 367 
0 782( 
0 290 
0 370(· 
0185 
0314( 

- 0 635) 
- 2 51) 
- 0 314) 
- 0 241) 

(0 044) 
-0059) 

(0 066) 
-0176) 

(0 034) 
(0 003) 
(0 962) 
(0 707) 
(0 484) 

- 0 848) 
(0 368) 

- 0 361) 
(0 202) 

- 0 306) 

- 0 6 4 3 
- 2 53 
- 0 3 4 3 
- 2 92 

0 038 
- 0 0 6 5 

0 048 
0 302 
0 026 

- 0 216 
0 955 
0 702 
0 343 

- 0 7 1 0 
0 287 

- 0 370 
0186 

- 0 3 1 5 

- 0 636 
- 2 50 
- 0 366 
- 2 74 

0040 
- 0 0 6 2 

0 050 
0 254 
0 026 

- 0 1 5 6 
0964 
0 746 
0348 

- 0 6 6 4 
0 278 

- 0 375 
0173 

- 0 319 
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Tabic 9 
Diamagncuc shielding ajusoiropv ai the nucleus (in atomic 
units 1 au — 26 61 ppm) 

Molecule Nucleus Pseud орюіепііаі Frozen 

HF 

HCl 

UH 

UF 

UC1 

CO 

CO, 

C,H, 

H 
F 
Γ 

α 
ь 
Η 
Li 

F 
Li 

α 
с 
О 

с 
О 

с 
н 

zeroth order 

- 1 8 0 ( - 1 81) 
- 0 0 0 é ( - 0 0 0 5 ) 
- 2 7 8 ( - 2 8 2 ) 
- 0 0 4 4 ( - 0 0 4 β ) 
- 0 1 6 8 ( - 0 1 6 é ) 
-0ЭЭЭ(-ОЭЭ7) 
- 1 4 0 ( - 1 4 0 ) 
-ОЭ55(-ОЭ51) 
- 2 0 « ( - 2 0 7 ) 
- 0 280(-0 278) 
- 1 5 2 ( - 1 5 2 ) 
- 0 9 7 6 ( - 0 9 в 1 ) 
- 2 8 8 (-28В) 
- 1 74 ( - 1 75) 
-1.20 ( - 1 2 1 ) 
- 1 W ( - 1 6 7 ) 

first order 

- 1 80 
- 0 0 0 6 
- 2 7 8 
- 0 039 
- 0 1 6 8 
- 0 333 
- 1 4 0 
- 0 361 
- 2 0 6 
- 0 274 
- 1 5 2 
- 0 975 
- 2 8 8 
- 1 7 5 
- 1 2 0 
- 1 6 6 

core 

- 1 80 
- 0 0 0 6 
- 2 77 
- 0 0 4 1 
- 0 1 6 7 
- 0 3 3 4 
- 1 4 0 
- 0 360 
- 2 0 5 
- 0 277 
- 1 5 2 
- 0 979 
- 2 88 
- 1 7 5 
- 1 2 0 
- 1 6 6 

potential and all-electron results could also be 
improved in the calculations on LiH, Lij. HF and 
HBr, quoted above 

We note that the electnc field at the nucleus (cf 
table 7) is almost zero due to the near cancellation 

Table 10 
Average effect of core ortbogonalizauon and average differences 

Property Core ortbogonalizauon 

ßto 

e» 
Qy, 

хІ. 
ψ 

E, 

V„ 

Δσ" 

all atoms 
only Η 
except Η 
all atoms 
only Η 
except Η 
all atoms 
only Η 
except Η 
all atoms 
only Η 
except Η 

0 039 (3 8») 
0102 (3 8%) 
0154 (3 0%) 
0 089 (12%) 
0163 (3 9%) 
0 0O6 (0 6%) 
0 224 (5 2%) 
0079 
0006 
0109 
0 182(36%) 
0010 (4 8%) 
0 248(49%) 
0 006 (18%) 
0 014 (0 9%) 
0 003 (2 0%) 

of electromc and nuclear contributions as re­

quired by the Hellmann-Feynman theorem (which 

also holds in the HFS method [54]) for the equi­

librium geomelr) We have included average abso­

lute differences from zero in table 7 It can be seen 

that frozen-core and pseudopotential calculations 

behave equally well core orlhogonahzation is es­

sential, however 

Regarding the electnc field gradients (cf table 

8) we note that the present value for the electnc 

field gradient at C) in HCl, —2 74 au, agrees well 

with our previous work [29] In these calculations 

we obtained a number of values in the range 

- 2 72 to - 2 77 au by vanation of the integration 

parameters Companng the frozen-core calcu­

lations with an extensive all-electron HFS LCAO 

calculation for HCl, we amved at an overall 

Stemheimer factor 1 — R = 118 

For the group II properties we again compare 

the performance of pseudopotential and frozen-

core methods Bearing in mind the occurrence of 

negative powers of r in the quantum-mechanical 

operators, the overall agreement is surpnsingly 

good For the potential and the diamagnetic 

shielding (amsotropy) the agreement is m fact just 

as good as for the electnc mullipole moments and 

the (average) diamagnetic susceptibility (cf table 

pseudopotenual and frozen-core resultsa) (in au and %) 

Pseudopotential versus 

zeroth order 

0 023 (91%) 
0 054 (1 7%) 
0181 (2 7%) 
0 040 (0 6%) 
0 026 (1 0%) 
0 004 (0 4%) 
0 034 (12%) 
0004 
0 005 
0004 
0 083(32%) 
0 009 (3 4%) 
0 111(42%) 
0 004 (1 4« ) 
0006 (0 4%) 
0 003 (18%) 

frozen-core 

first order 

0 023(9 6%) 
0 026(0 7%) 
0 073(14%) 
0 031(0 5% 
0 023(0 9%) 
0 005(0 5%) 
0 030(10%) 
0006 
0 005 
0006 
0 027(6 6%) 
0 008(3 6%) 
0 034(7 8%) 
0 003(13%) 
0 006(0 4%) 
0 002(1 6%) 

Defined m terms of absolute values of differences 
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9) For the electric field gradient the agreement is 
still quite reasonable, the pseudopolential values 
could be combined with Stemheimer factors to 
yield results that are equally reliable as those that 
use frozen-core values We did not include relative 
errors for the electric field ш table 10, since they 
are meaningless in this case 

Also for the properties that mainly sample the 
core region the role of the pseudopolential per­
turbation corrections is a small but positive one 
The influence of core orthogonalization is more 
importan! now than for the electric multipole mo­
ments and the diamagnetic susceptibility 

5. Conclusions 

The main conclusions of this paper may be 
summarized as follows 

(i) The agreement between properties calculated 
with the pseudopotential and frozen-core 
Hartree-Fock-Slater methods is very good, also 
for nearly ionic compounds Electric multipole 
moments, the diamagnetic susceptibility, the 
potential and the diamagnetic shielding all yield 
differences m the order of 1-2% The electric field 
gradient is still sufficiently accurate to be used m 
combination with Stemheimer factors According 
to the Hellmann-Feynman theorem the electric 
field at the nuclei must be zero for the equilibnum 
geometry Pseudopolential and frozen-core calcu­
lations satisfy this cntenon equally well 

(u) Although generally good qualitative agree­
ment can be obtamed by using pseudo-orbitals, 
quantitative agreement can only be obtamed by 
using core-orthogonahzed pseudo-orbitals 

(ui) In comparing the calculated dipole and 
quadrupole moments with experiment we find good 
agreement, ш particular, the HFS LCAO method 
predicts the correct sign for the dipole moment of 
CO and a recent measurement of the quadrupole 
moment of C 2 H 4 is confirmed 
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C H A P T E R V 

ON THE USE OF PERTURBATION THEORY IN THE 

PSEUDOPOTENTIAL HARTREE-FOCK-SLATER-LCAO METHOD 

In order to deal with core electrons in large molecular systems by means 

of the Hartree-Fock-Slater(HFS)-LCAO method [l] two pseudopotential schemes 

have been proposed [2,3]. Both schemes start with an averaged pseudopotential 

for all valence electrons and employ perturbation theory to correct for 

the deviations of the valence level energies from the averaged value used in 

the pseudopotential. In the original formulation [2] a Brillouin-Wigner type 

perturbation theory is used; recently [3] a self-consistent perturbational 

approach has been formulated that allows for the calculation of chemical 

interaction energies. In this chapter we will show how the pseudopotential 

HFS-LCAO method may be simplified to yield a computational scheme that avoids 

the use of perturbation theory in the calculation of the pseudo-orbitals. The 

present formulation does not allow for the calculation of interaction energies 

with Ziegler's transition state method [4], however. 

The pseudo-orbitals ψ . satisfy the set of equations 
ps.J 

F . ψ . = ψ . ε., (1) 
ps.J

 T
ps,j ps.J J 

<ψ .|ψ .> = 1. (2) 
PS,!

1
 ps,j 

The pseudo-Fock operator F . is given by 
ps,j 

F . = F + V (3) 
ps.j ps.j 
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with F the Fock operator and 

V . - Ι (ε. - ε . )Ι ψ , ><ψ , | (4) 
ps.j . j c.k

 lr
c,k ^с.к' 

the Phillips-Kleinman [5] pseudopotential. V . shifts the core orbitals 

P
s
> J 

ψ . from their all-electron orbital energies ε , to the valence energy ε.. 
С ) К С у К J 

In the previous formulations of the pseudopotential HFS-LCAO method [2,3] the 

problem which valence level to shift the core orbitals to, was solved by use 

of an averaged pseudopotential 

7ps-£ ̂ -^.k^ck^cJ (5) 

for each irreducible representation of the molecular point group and by 

application of perturbation theory afterwards. Although this approach gives 

perfectly satisfactory results, it is computationally somewhat involved. 

We rewrite the pseudopotential (A) as 

V . = E.P
C + PE, (6) 

ps,J J 

where 

^ - ^ c . k ^ c . k l ' (7) 

^-^-ск^сЛ.кІ·
 (8) 

Ρ is the projector onto the space spanned by the core orbitals. Eq. (1) can 

now be written as 
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(F + Ρ
Ε
)ψ . - (1 - Р

С
)ф .е.. (9) 

ps.J ps.j j 

Expanding the pseudo-orbitals in a basis χ with overlap matrix S, 

ψ . - Σ χ С ., (10) 

PS.J
 μ

 Λ
υ ps.yj' 

we obtain 

F С = S С ε, (11) 
ps ps 

where F is the matrix representation of (F + Ρ ) and S the matrix re­

presentation of (1 - P
c
). Thus, the pseudo-orbitals may be solved from the 

generalized eigenvalue problem (11). Since standard procedures yield 

solutions С in the normalization 
ps 

С S C = 1 , (12) 

ps ps ' 

the pseudo-orbitals must be renormalized as 

С = С Ν, (13) 
ps ps 

where 

N.. = &.. [C„
a
 S C ] .. . (14) 

iJ 1J P
s
 ps jj 

The pseudo-density matrix may be obtained from 
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Ρ = Ε η . С . С* (15) 
ps.uv . j ps.yj ps.vj 

the n. being the valence orbital occupation numbers. 

Although the present formulation obviates the need for perturbation 

theory in the calculation of the pseudo-orbitals, it does not seem to be 

suitable for the calculation of interaction energies in the manner of Ref. 3. 

Use of the basic relation 

<ψ. Μψ.> = <ψ . IF + ν . |ψ .> (16) 

[Eq. (36) of Ref. 3] leads to a term 

Σ Ρ F (17) 
μν νμ 

μν 

in the total energy functional, with Ρ defined in terms of С : 

Ρ - Σ п. С .С .. (18) 
ρβ,μν . j ps^j ps.Vj 

In Ziegler's transition state method [4] one needs the derivative of the 

total energy functional with respect to a general element Ρ of the pseudo 

density matrix. However, Ρ and Ρ are related in a nontrivial manner, and 

the present approach seems to end in a deadlock. 
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C H A P T E R V I 

IMPLEMENTATION OF THE MODERATELY-LARGE-EMBEDDED-CLUSTER SCHEME 

IN THE PSEUDOPOTENTIAL HARTREE-FOCK-SLATER-LCAO METHOD; 

CALCULATIONS FOR HYDROGEN ON LITHIUM (100) 

1. Introduction 

In recent years numerous cluster calculations for chemisorption on metal 

surfaces have been performed [e.g. Refs. 1-4]. The cluster approach is usually 

justified by assuming that chemisorption is a local phenomenon, i.e., that 

the perturbation of the substrate electronic structure, caused by the adsórbate, 

is localized in a small region. It is certainly true that some aspects of the 

adsorbate-substrate bonding may be considered local. For instance, the height 

of carbon monoxide above a metal surface is largely determined by the exchange 

repulsion with the core and low-lying valence levels of the nearest atoms [3]. 

The cluster model of chemisorption suffers from a serious defect, however: 

the cluster's finiteness introduces unwanted boundary effects into the calcula­

tion. These effects can have a strong influence on the charge distribution in 

the cluster and on the adsorption energy. The poor convergence of the adsorp­

tion energy with cluster size has been related [3] to the polarizability of 

the cluster, which changes significantly with the addition of each new sub­

strate atom. 

Embedding methods [5-14] aim to remove the artefacts of the cluster model 

by supplying the proper connection of the cluster with the underlying (unper­

turbed) substrate. Many of these methods [5,9-12] are based in essence on 

the Koster-Slater method [15,16] for treating impurities in solids by con­

sidering the effect of a local perturbation in a Green's function formalism. 
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In this work we aim to develop an embedding scheme which is convenient 

for self-consistent calculations by means of the Hartree-Fock-Slater(HFS)-LCAO 

method [17,18]. We have chosen the moderately-large-embedded-cluster (MLEC) 

method of Pisani [7,8] because it resolves some of the computational problems 

of other methods and because of its compatibility with standard quantum chem­

ical methods. 

We use the pseudopotential [19-21] version of the HFS-LCAO method. Com­

parison of interaction energies [20] and one-electron properties [21] has 

shown that the pseudopotential method reproduces results of the (less approximate) 

frozen-core method fairly accurately. The first reason for using the pseudopoten­

tial method is that we want to be able, eventually,to treat transition metal 

clusters of considerable size without excessive computational effort. The second 

reason is that it is advantageous in the Green's matrix method [13] to use the 

same (symmetry adapted) basis functions in the description of the substrate and 

in the description of the embedded cluster. In the pseudopotential method with 

a nonorthogonal basis this is straightforward. In the frozen-core method com­

plications arise due to the valence-core orthogonality requirement. Although 

still valid, this second reason is somewhat obscured by the technical necessity 

to use a semi-orthogonal basis [cf. Sec. 2H]. 

In order to test the effect of embedding as such it is preferable to use 

the same quantum chemical method both for the cluster and the substrate into 

which the cluster is to be embedded. In our present approach this condition is 

met by use of a finite representation for the substrate, treated with the same 

pseudopotential HFS-LCAO method. In principle, the use of a two-dimensional 

band structure program would be preferable,but such a program was not available 

at the HFS-LCAO level. In this respect, our approach is similar to that of 

Whitten and Pakkanen [14], who also use a cluster for the characterization 

of the substrate. 
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Although the finiteness of the substrate gives rise, in principle, to 

the same boundary effects we want to avoid, their influence can be reduced 

by use of a sufficiently large cluster for the substrate. Thus, in practical 

calculations the profit will be found in computation time; investigation of 

different adsorbates and different geometries requires the treatment of the 

substrate cluster only once, while the quality of the embedded cluster calcu­

lations is expected to be close to the "full" adsorbate-substrate calculations. 

Incidentally, our approach also gives access to another application of embed­

ding, viz., the embedding of different functional groups as substituents in 

a large molecule. 
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2. Formalism 

In this section we give a detailed derivation of the moderately-large-

embedded-cluster (MLEC) method of Pisani [7,8] The presentation is directed 

towards the implementation of the formalism in the Hartree-Fock-Slater-LCAO 

method (introduction of a semi-orthogonal basis, symmetry adaptation). 

Our treatment is specific on a number of points. First of all, we treat 

the embedding of a cluster in a finite representation of the solid surface. 

Secondly, we only consider the chemisorption case, thus disregarding the vacancy 

and substitutional impurity problems (which could be treated along similar lines, 

however). Thirdly, we incorporate the correct matrix representations of the 

quantities involved from the start; Pisani [8] has indicated the steps to be 

taken in an orthogonal basis, we consider the nonorthogonal case throughout. 

Finally, for simplicity of notation we use a spin-restricted formalism; the 

generalization to an unrestricted formalism is straightforward. 

A. Descrigtion of_the chemisor£tion_s^stem 

The chemisorption system is indicated schematically in figure 1 ; it re­

presents the adsorption of a molecule on a solid surface (the substrate). The 

adsórbate is denoted by A, the solid by S =B U D. Note that we use a finite re­

presentation of the solid. Hence boundary effects are present, but D will be 

made sufficiently large for their effect on the adsórbate to be small. The 

chemisorption cluster is denoted by С =A U B. D, finally, is called the defec­

tive or indented solid. 

Quantum mechanical operators will be represented in a finite basis of 

localized functions χ = {χ ). Overcompleteness problems [6] are absent in this 

basis. However, if the number of basis functions per atom increases, near-linear-

dependency problems may arise. The basis set χ is partitioned into subsets of 
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r^_ 

Figure 1. Schematic representation of the chemisorption system 

functions localized in different parts of the chemisorption system: 

X " X
A
 U χ

Β
 U x

D
. (2.1) 

All matrices are partitioned accordingly, e.g., for the overlap matrix we 

write 

AA 

BA 

DA 

AB 

BB 

DB 

AD 

BD 

DD 

(2.2) 

At present we consider the description of the chemisorption system by a 

general one-electron Hamiltonian F, with matrix representation F; in our 

applications we will use the Hartree-Fock-Slater model. Our task is the 

solution of the self-consistent problem 

F = F(P), (2.3) 
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FC - SCE, E
k l
 = 6

k l
e

k )
 (2.4) 

C
+
SC - 1, (2.5) 

Ρ CNC
+
, N

k l
 - 6

kl
n

k
. (2.6) 

Given a density matrix Ρ, the Fock matrix F is constructed [Eq. (2.3)], the 

generalized eigenvalue problem [Eqs. (2.4) and (2.5)] is solved and the density 

matrix is recalculated according to Eq. (2.6). This process is repeated until 

self-conistency is reached. We assume that the self-consistent solution of Eqs. 

(2.3)-(2.6) is obtained by applying the Aufbau principle. Thus,the occupation 

numbers TL in Eq. (2.6) can assume fractional values at the Fermi energy ε 

only. 

The self-consistent problem may be equivalently formulated in terms of the 

Green's matrix [cf. Appendix A]: 

F = F(P), (2.7) 

(CS - F)G(ç) = 1 , ζ - e+ίη, (2.8) 

e
F 

Ρ - - - lim Im f d
E
 0(ε+ίη). (2.9) 

Given a density matrix P, the Fock matrix F is calculated, the matiix 

(ζ5 - F) is inverted to yield the Green's matrix G(c) and the density 

matrix is recalculated according to Eq. (2.9). Again the process is 

repeated until self-consistency is reached. In the following we will use the 

notation 
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Q(0 ζ5 - F. (2.10) 

В. Th£_general_embedding еаНас
і°

п
2 

Chemisorption is considered to be a local phenomenon, i.e., it is assumed 

that the perturbation induced by an adsórbate is local. We will investigate the 

consequences of the local perturbation assumption in the Green's matrix forma­

lism. As a first step we will extend the description of the unperturbed solid 

to the full basis χ, next we will derive the general embedding equations. 

Consider the unperturbed or "free" solid, i.e., the solid in the absence of 

an adsórbate. We suppose that the self-consistent problem [Eqs. (2.7)-(2.9] has 

been solved in its natural basis χ U χ_. Suppressing the variable ζ we have 
В 1' 

f f 
Q
ss

 G
ss 'ss' 

(2.11a) 

or.equivalently, 

4
BB 

„f 
Q
DB 

Q f 

XBD 

QDD 

-

4 
i, 

4 
i». 

_ 

'BB 

> 

-

0BD 

<№_ 

(2.lib) 

We use the index f to refer to the free solid. 

Our first problem is to extend the solution for the free solid to the full 

basis χ = χ, U χ. without modifying the unperturbed density. This extension is a 

prerequisite for matrix operations in the following to be meaningful. We define 

a Green's matrix 0(ζ) in the full basis χ as the inverse of the matrix 

Q(C) 

(Ç-e)S 
AA 

SA 

AS (2.12) 
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Note that the AA-block of the Fock matrix F has been defined as F., = e S... 
AA AA 

where e is an energy above the Fermi energy. The Green's matrix G(c ) is easily 

seen to be 

G(ç) 

ς=ϊ ( W
1 0

AS 

SA 
G
ss^· 

(2.13) 

Since e > e the AA-block of G(ç) gives a zero contribution to the density 

matrix: 

PAA = - Τ ̂  Ira J dE G
A A

( E + i n ) 

η-KJ —
ш 

f 

- J de 6(e-e)(S
AA
) 

=
 0
ΑΑ· 

(2.14) 

Hence 

0 0 
AA AS 

0 F
f 

.SA SS 

(2.15) 

i.e., the density associated with Ρ is the one of the free solid. 

The procedure followed above is referred to by Williams, Feibelman and 

Lang [ 13] as the adspace idea. As long as F . is such that the unperturbed density 

remains unchanged, its explicit form is immaterial. It will cancel when consider­

ing the embedding equations, as will become clear in the sequel. We note that 

the ease with which it is possible to include extra basis functions in the forma­

lism constitutes one of the advantages of the Green's matrix method over the 
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Green's function method. E.g., compare the complications that arise in the 

cluster-extended Green's function method of Baraff.Schlüter and Allan [12]. 

We now consider the self-consistent problem for the full interacting system 

A U В U D. The perturbation V to the modified free solid problem is 

V Ξ F 

= Q - Q 

Q
AA^AA -

Q
AB 

-Q, BA 

D̂A 

4
AD 

в̂в в̂в ^BD'^BD 

Q
DB"

Q
DB ^DD'^DD 

(2.16) 

The local perturbation assumption, characteristic for chemisorption theory, 

reads explicitly 

Q
AD -

 0
AD· 

(2.17a) 

Q
BD

 = %τ>' 1^e^^ F
B D

 = F
BD' 

(2.17b) 

Q
DD "

 Q
DD*

 І
-

е
··

 F
DD "

 F
DD· 

(2.17c) 

We note that it is not only necessary to assume F 
AD 

Cl·, but also S
1T
, » 0.„. 

AD' AD AD 

However, since F and S are intimately related, this is perfectly reasonable. The 

interaction between the adsórbate and the indented solid can show up in F, in 

S, or in both. Using Eq. (2.17) we may write 

V 0 
CC CD 

0DC % 

(2.18) 
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The implications of the local perturbation assumption can be found as 

follows. Write Eq. (2.8) for the full problem as 

Sc SD 

Sc SD 

Sc SD 

Sc SD 

^С CD 

Sc
 1
DD 

(2.19) 

and solve Grr by performing the inversion [cf. Appendix B]: 

Sc • tSc - W V 1 Sc1"1 (2.20) 

The corresponding relation for the free solid in the full basis χ is 

Sc - [Sc - S D V 1 Sc3"' (2 .21) 

Combining Eqs. ( 2 . 1 6 ) , ( 2 . 1 8 ) , ( 2 . 2 0 ) , and ( 2 . 2 1 ) we obtain 

(Sc)'1 - ^ - 1 - Sc (2.22) 

From Eq. (2 .13) i t fo l lows that 

( G c c ) -
S A 0AB 

SA <)'[ 
(2.23) 

hence 

GAA GAB 

SA SB 

ν - (W 
-(-SA) 

-(-ν T l 

φ- 'WW 
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Ч
АА 

Ч
АВ 

в̂в)"1 - (<4-
(2.24) 

Again we use the inverse of a partitioned matrix [Appendix B]: 

3
BB=

 Q
B B "

Q
B D

( (
4

r 1 I'. (2.25) 

and obtain 

G
AA

 G
AB 

G G 
BA BB 

Ч
АА 

Ч
АВ 

Q
BA

 Q
BB -

 Q
B D

( (
4

r 1 ÍBJ 

(2.26) 

Due to the cancellation of Q in Eq. (2.24), the final result [Eq. (2.26)] is 

independent of our particular choice for F in Eq. (2.12). 

The consequence of the local perturbation assumption [Eq. (2.17)] is that 

the self-consistent problem to be solved is confined to the chemisorption cluster 

C, once the solution of the free solid is knovm. In realistic chemisorption cal­

culations, however, Eq. (2.26) is rather cumbersome to apply [8]. In each ite­

ration of the self-consistent procedure the Green's matrix [Eq. (2.26)] must be 

integrated to yield the density matrix: 

1 Г 
PCC = - π U ™ +

 I m J d e GCCU+iT]) ' 
η - Κ ) - " > 

(2.27) 

where ζ is the Fermi energy for the free solid. The (numerical) integration 
г 

implied by Eq. (2.27) necessitates the inversion of relatively large matrices 

at a large number of energy points. 
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c· ïhË_iii:Ii_mÊt:?î0Ë 

Pisani [ 7, 8] has proposed an embedding scheme that overcomes the diffi­

culties in applying Eq. (2.26), however, at the cost of another approximation. 

We will introduce this approximation and derive its consequences. 

The additional assumption can be formally stated as 

J C C ( E ) V C C VCC ' 
(2.28) 

where the auxiliary matrix J is defined by 

J c c ( e ) Ξ \αω г
сс

(Е) 

AA "AB 

0 Q
f
 (ε) G

f
 (ε) 

ΒΑ
 Ч

ВВ ' BB '. 

(2.29) 

Eq. (2.28) corresponds to the requirement that the cluster В comprises a border 

region, where the connection of the cluster with the defective solid is es­

tablished, but where the perturbing potential is already very small. Thus, the 

size of the cluster for which the self-consistent calculation is performed needs 

to be larger than required by the local perturbation assumption alone. Therefore 

the embedding scheme may be characterized as a moderately-large-embedded-cluster 

(MLEC) method. We refer to assumption (2.28) as the MLEC assumption; we will 

return to its nature after we have derived an explicit expression for the matrix 

J
cc· 

In order to proceed we assume the validity of Eq. (2.28) and use it to sim­

plify the general embedding equations. Combining Eqs. (2.22) and (2.28) we obtain 
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G c c = [ ( S c c r 1 - с с Г І 

[ J c c ( ? c c r 1 - Jcc с с Г І Jcc 

[Qcc ^ c 1 Jcc 

( ( 'cc ) Jcc· (2.30) 

The matrix (Qp-) corresponds to the Green's matrix obtained from the generalized 

eigenvalue problem of the full Fock operator (i.e., including the potential of the 

frozen indented solid), confined to the chemisorption cluster C. We introduce the 

notation 

(
V"

1 Ξ 'GCC (2.31) 

and use Eq. (2.29) to rewrite Eq. (2.30) as 

G
AA

 G
AB 

.
G
BA

 G
BBJ 

С G J 
AA AB BB 

.
G
BA

 G
BB

J
BB 

(2.32) 

Again, the density matrix Ρ may be evaluated from G [Eq. (2.27)]. The 

advantage of Eq. (2.32) over Eq. (2.26) lies in the relative ease with which 

the density matrix can be obtained. We will return to the evaluation of Ρ 

after we have derived an explicit expression for J--,. 

CC 

D. The_matrix_J and the nature_of_the_MLEC_assum£tion 

We now derive an explicit expression for the auxiliary matrix J
r r
> defined 

in Eq. (2.29). Using the Green's matrix G (ζ) in terms of the solution of the 

generalized eigenvalue problem for the free solid [cf. Appendix A], 
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f f* 
„f - . . _ CBtCvt 
G 0 v ( e + l r i ) = Σ ,_ Λ 

i (е-е
я
)+іл 

(2.33) 

we obtain after some manipulations 

B
 f f 

В 
Σ Σ S С ^ C

f
* 

οβ su г 

e
f
 S - F

f 

f f* 
С С 
0£ VU 

В 

+ Ρ Σ Σ 
Β Ι 

Ό 

- ітг Σ Σ (cS
 0
 - F

f

0
) cf„C

f
* 6(е-еЬ. 4

 α0 α0 0£ vt ί. 
(2.34) 

In the derivation of Eq. (2.34) we have used 

lim 
П-Ю χ +η 

_ϊ -pi 
2.2 χ 

(2.35) 

where Ρ stands for principal part, and 

lim —~—^ = τ δ (χ) , 

η-Ю* χ +η 

(2.36) 

with 6 the Dirac delta function. 

In order to write Eq. (2.34) in a more compact form, we introduce the 

matrices 

D Ξ
 WWBB' 

(2.37) 

and 
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x Ξ S
BB

 с
в
 Ef
 - 4

 с
в ·

 (2
·

38) 

where С contains the coefficients of χ in the eigenvectors С of the free solid 
В Б 

problem. After some algebra we arrive at 

f* 

x с 
J (e) = D + Ρ Σ

 αί
 ^ - ίπ Σ Χ „ C

f
* 6(с-еЬ. (2.39) 

αν αν . f . ai vi i І с-е̂  i 

At this point we again consider the MLEC assumption [Eq. (2.28)]. Suppose 

that the basis χ can be partitioned into a subset of central functions and a 
о 

subset of border functions, such that if either α or ν in J belongs to the 
αν 

central region, the sums over В in Eq. (2.34) can be extended to the set B U D 

without appreciable consequences. This would result in D = 6 and X = 0 
αν αν αν 

for either α or ν in the central region, hence the structure of J would be 

[cf. Eq. (2.29)] 

J
c c

( e ) 

1 0 

ο ζ 
(2.40) 

with Ζ pertaining to the border region only. To obtain Eq. (2.28) it is now 

sufficient to assume that V is different from zero in the central region only. 

Hence the MLEC assumption corresponds to the requirement that the cluster В 

comprises a border region, where the connection of the cluster with the defec­

tive solid is established, but where the perturbing potential is already very 

small. 

E. The_densit2_matrix_in_the_MLEC_method 

We complete the derivation of the embedding equations in the MLEC method 

by the calculation of the density matrix P
r r
 from the Green's matrix Eq. (2.32) 

according to Eq. (2.27). 
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As noted in the discussion following Eq. (2.30) the auxiliary Green's 

matrix G is obtained from the generalized eigenvalue problem of the Fock 

matrix for the full problem, confined to the chemisorption cluster. Explicit­

ly: 

F
c c
 С = S

c c
 С Ε , (2.41) 

C
+
 S

c c
 С = 1 , (2.42) 

and 

-* 

g = Σ
 С р к C a k

 . (2.43) 

μ α
 к (е-і

к
)+іп 

Using Eqs. (2.27) and (2.32) we obtain for μ €. С, ν e A: 

e F 
Ρ = l im lm f de G (e+ιη) 

μν π . + J μν 

Ι емк С ο ( ν ν · ( 2 · 4 4 ) 

where Θ(χ) denotes the unit step function: 

0(x) = 0 for χ < 0 

= 1 for χ > 0, (2.45) 

and ε is the Fermi energy of the free solid. For μ S C, ν € В we obtain 
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F в -
Ρ » l im, lm f de Σ G (ε+ΐη) J ( ε + i n ) 

μν π _+ J μα αν 
η-Ю -« α 

Β 
Σ Σ С..,. С:,. Θ ζ ε , , - Ο 
α к 

μΚ ak F к 
D + Σ 

αν 

f* 
x „ с „ 

α£ Я 
к J. 

+ ; Σ % ^ ;xx>F4>· 
а к e „-e, Я 'І. к 

We w r i t e Eq. (2 .46) as 

( 2 . 4 6 ) 

μν 

В 
Σ Σ С 
к а 

, С . M ( е . ) , 
μk ак а к 

(2.47) 

with the energy dependent c o u p l i n g m a t r i x M(e) def ined by 

,f* 

M (e) Ξ D 
αν αν 

X . C . 
ν al v i А , f ν 
Σ —-f 0 ( ε £ - ε ) , 
l е г е 

X c f * 
„ / ч _ ν αϊ, Я _ , f4 

М а ( е ) = \ — < · 
£ е г - е 

е < E F ' 

e > e F . 

( 2 . 4 8 a ) 

(2 .48b) 

The coupling matrix M(e) plays a central rôle in the MLEC method. Since it 

depends only on the electronic structure of the free solid and on the choice 

of the cluster В <= S, and not on the adsórbate, it can be said to summarize the 

adsorptive properties of the substrate. In Sec. 4 we will give some examples of 

the energy dependence of the coupling matrix. 

F. I;Í5Ícing_conditions 

An important characteristic of the MLEC method is that it yields correct 

results in the limiting cases where either of the sets A or D is empty. Since 

the algebra involved is straightforward, we merely give the results. 

If the cluster В coincides with the representation of the substrate, i.e., 

if D • 0, the embedded cluster calculation should be identical with the corre-
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spending nonembedded cluster calculation. Indeed, we find 

M (e) - 6 θ(ε -e) , (2.49) 
αν otv г 

and hence 

Ρ
πν • I V E

vk ̂  ' .̂ ес (2.50) 

In the absence of an adsórbate,i.e., if A = 0, the embedded cluster calcula 

tion should reproduce the results obtained for the free solid. Calculating the 

density matrix with the matrix С that satisfies 

4 'c ' S
BB ~c *' (2

·
51) 

C
+
 S

B B
 С - 1, (2.52) 

we find the correct result 

р
вв - 4 ·

 ( 2
·

5 3 ) 

G. The itérâtive_£rocedure¿_summar2 of main formulas 

The procedure to be followed when actually performing embedded cluster 

calculations with the MLEC method is as follows: 

i) Obtain an initial guess for Ρ,-,ρ· (A good choice seems the direct sum of the 

adsórbate density matrix and Ρ from the free solid calculation.) 
ÜB 

ii) Calculate the Fock matrix originating from the full one-electron Hamil-

tonian (including the frozen indented solid), restricted to the embedded 

cluster. 
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iii) Solve the generalized eigenvalue problem for the embedded cluster C: 

F
cc

 c
 •

 s
cc

 c Ε
·

 ( 2
·

5 4 ) 

C
+
 S

c c
 С = 1. (2.55) 

iv) Construct the new density matrix Ρ_„ as follows: 

Ρ - Σ С . С*. Θ ( ε - Ι ) , yÉC, ν€Α, (2.56a) 

μν , yk vk F к 

в
 - -* 

Ρ = Σ Σ С . С . M (е.), уес, vEB, (2.56b) 

μν , yk ak αν к 

where 

f* 

M
a v

( e )
 "

 D
av -

 ΐ
 -Ч-̂  ^ ^ ^

 е < E
F'

 ( 2
-

5 7 а ) 

Í е^е 
f* 

M

a
v

( e )
 - і : -

2
! - ^ e(

E
-eJ), е >

Е
 (2.57b) 

i е
Г
е 

The matrices D and X, occurring in the coupling matrix Mie), are given by 

D
 * S B B ( S ¡ S V ( 2 · 5 8 ) 

x = SBB с
в
 Ef

 - 4
 с
в
; ( 2

·
5 9 ) 

they are obtained from the free solid calculation. 

Steps ii), iii), and iv) constitute the iterative steps of the procedure. 

They must be repeated until self-consistency is reached. 
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H. Reformulation_of the_MLEC niethod_in_a_semi-orthogonal_basis 

Our calculations have shown that in a nonorthogonal basis the elements of the 

2 3 

coupling matrix M may become quite large (elements of order 10 or 10 are not ex­

ceptional). In the calculation of the density matrix [Eq. (2.56)] this leads to 

numerical problems in the Hartree-Fock-Slater-LCAO method, as will be shown in 

Sec. 4. Therefore we propose to perform a basis transformation which reduces 

these problems. 

We transform the basis χ as follows: 

X' = XW, W 

'AA
 0

AB 

BA BB 

0
DA

 0
DB 

AD 

-Y 

1 
DD 

(2.60a) 

where 

γ - s ¡ ; SBD· (2.60b) 

This amounts to an orthogonalization of D to B. We refer to X' as the semi-ortho­

gonal basis. The inverse transformation is easily found to be [cf. Appendix в] 

X = x' w"
1
, w"

1
 = 

The matrix Q, defined in Eq. (2.10), transforms to 

1
AA 

0
BA 

0
DA 

0
AB 

'вв 
0
DB 

0
AD 

Y 

1
DD 

Q' = W Q W 

(2.61) 

ÂA 

4
BA 

''DA Y
+
Q. 

BA 

ЧШ 

Ч
ВВ 

D̂B Л BB D̂D 

Q A D - Q A B Y 

% Ü - Q B B Y 

QDB Y - Y + Q B D + Y t Q BB 

(2.62) 
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Note that, although we transform the basis χ, the density remains unchanged, and 

hence S, F.and Q transform in the same way. For the overlap matrix S we obtain 

from Eqs. (2.60) and (2.62) 

S' = 

AA 

BA 

S
DA

 S
DB

S
BB

 S
BA 

S
AB

 S
AD "

 S
AB

 S
BB

 S
BD 

BB BD 

η ς - ς S S 
DB DD DB BB BD 

(2.63) 

Therefore in the new basis χ' the matrix D [Eq. (2.58)], which occurs in the 

coupling matrix M, becomes 

D* = 1 
BB

- (2.64) 

Of course, Eq. (2.64) is the rationale of the transformation Eq. (2.60). 

The derivations in sections 2B - 2E may now be repeated in the new basis. 

In particular, we obtain for the perturbation to the modified free solid 

problem 

V' = Q' - Q' 

ЧАА ЧАА 

ΛΑ 

ΛΑ 

Λ Β 

%Β - Чв 

5 ¿ B - Q¿B 

Λο 
S¿D - %V 
0' - 0' 4DD 4DD 

(2.65) 

The loca l perturbation assumption, which leads to the general embedding equa­

t ions in the semi-orthogonal b a s i s , reads 

Ο'ω = V (2.66a) 
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F' 
BD 'BD' 

(2.66b) 

C
DD С (2.66c) 

As stated above F transforms exactly as Q [Eq. (2.62)], hence Eqs. (2.66b) and 

(2.66c) are equivalent to the corresponding relations Eqs. (2.17b) and (2.17c) 

in the nonorthogonal basis. However, Eqs. (2.66a) and (2.17a) are not equivalent. 

To obtain Eq. (2.66a) from Eq. (2.17a) we have to make the additional assumption 

Q
AB

 S
BB

 S
BD

 - 0
AD· 

(2.67) 

It may be noted that this assumption is similar to assumption (b) in Fisani's 

first paper on the MLEC method [7], viz., the neglect of compound quantities with 

both indices A and D occurring. Therefore we feel that in the MLEC method assump­

tions (2.66a) and (2.17a) will yield comparable results. 

Assuming the validity of Eq. (2.66) we may again go through the algebra 

as before and arrive at 

^¿c)"1 - Ч с ^ - V¿C 
(2.67) 

[cf. Eq. (2.22)]. Invoking the MLEC assumption 

J' V1 = V' 
СС СС СС' 

(2.68) 

where 

J¿C 
AA 

BA 

AB 
f' f' 

0 G Ч
ВВ BB 

(2.69) 

we obtain the analogue of Eq. (2.32) in the semi-orthogonal basis: 
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G
cc "

 G
cc

 J
cc· 

(2.70) 

This leads to equations for the calculation of P' analogous to Eqs. (2.56) -

(2.59). 

Finally, we may obtain the density matrix in the nonorthogonal basis χ by 

transforming P': 

Ρ = W P' W
+ 

P' r
AA 

P¿A 
0DA Ρ' F

DB 

P
» 

р
вв 

- P¿D Y+ 

0AD 

P¿D - Y P¿D 
P¿D 

(2.71a) 

where we have used P' = 0,„ and P', = (L.; further, 
AD AD DA DA * 

+ + 
Ρ = P ' - Y P ' - Ρ ' Y + Y P ' Y . 
BB BB DB BD

 r
DD 

(2.71b) 

f · 
A similar relation holds for Ρ . Therefore 

f f' 
Ρ = Ρ' + (Ρ - Ρ ) 
BB BB

 V
 ΒΒ ΒΒ^ 

P ¿ B
 + R' (2.72) 

which is the transformation formula employed in our calculations with the semi-

orthogonal basis. 

*· !ЕІП5£2E5êii2n_EE02ËEÏiËS S2a_2Z55E£Ei_5E5EEä£i22 

In this subsection we will show that the MLEC method may be adapted to the 

geometrical symmetry of the chemisorption system without serious complications. 
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We note from the outset that the only synmetry available to us will be that of the 

point group С . Still, exploiting this symmetry can yield a substantial reduction 

of the computational effort. 

We start by considering a basis transformation Τ of the form 

χ Τ, Τ = 

Τ 0 
AA AB 

0
BA

 T
BB 

0
DA

 0
DB 

AD 

BD 

DD 

(2.73) 

i.e., we restrict ourselves to transformations of the subsets χ„ (R = A,B,D) 

among themselves. The necessity of this restriction is, of course, that without 

it the localization in parts A, B, and D of the chemisorption system would be 

lost. Such a transformation corresponds to the natural symmetry of the chemi­

sorption system, however, 

We now obtain the transformation properties of various quantities occurring 

in our embedding formalism. In the new basis the (unchanged!) eigenvectors of the 

free solid problem can be expressed as 

*f 
*Ъ C

B
 +
 "D C¿ 

f f 
XB В

 + X
D S' (2.74) 

hence 

Í - T ¡ i C R <R=B.D>· (2.75) 

For the eigenvectors of the embedded cluster problem we have 

C R - T ä 6
R »-¿.Bi. (2.76) 
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Due to the block diagonal character of the transformation matrix Τ it follows for 

the overlap matrix that 

?
RQ * T Î K SRQ TQQ <*.Q-A,B.D). (2.77) 

A similar result holds for the Fock matrix. 

The transformation properties of the coupling matrix M may most easily be 

studied by considering the matrix D. From Eq. (2.77) it follows that 

( 4 Î > B B • T¡Í < S¡Í>BB ( T¡Í > +·
 (2·78> 

hence 

D = 5BB ^ В В 

TÎBD О"
1
·

 ( 2
·

7 9
> 

Therefore also 

Ϊί = Tj
B
 M (Тд

В
)
 1
. (2.80) 

For completeness we mention that the matrix X transforms as 

X = T
B B
 X, (2.81) 

which follows easily by use of Eqs. (2.75) and (2.77). 

To check our results we calculate the density matrix Ρ „ using the quanti­

ties in the transformed basis. From Eqs. (2.56), (2.76) and (2.80) we obtain 
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?вв • T ¡ ; рвв ( тм ) +· ( 2-8 2 a> 

Similarly 

?AB = TM W O ' · ( 2 - 8 2 Ъ ) 

Combined with the trivial results 

?
AA " T¡i PAA(TLl) + · (2-82c) 

PBA • T M Ρ
ΒΑ

( Τ
ΐΙ

) +
 ·
 (2

-
82d) 

we finally obtain 

?
cc *

 Tcc pcc(T¡Í)+· (2-82e) 

as required. 

Our next step is the symmetry adaptation of the basis χ. Let Τ be of the 

form (2.73) and such that the elements of χ transform as basis functions for 

irreducible representations of the symmetry group. We will denote a general 

element of Τ by Τ „, , where μ labels a function of the original basis χ, Γ 
μ, ι к 

labels an irreducible representation, and k is a multiplicity label. The matrix 

С with eigenvectors of the embedded cluster problem will have the structure 
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гк 

- А 

- В 

where only shaded elements can be nonzero. Thus, 

с
гк,дг *

 6
гд Sa* 

(2.83) 

Similarly, 

Г £ = A rfr 

Гк.йг ΓΔ кЯ' 
(2.84) 

In the symmetry adapted basis χ the coupling matrix M is also symmetry 

blocked, as we will show now. Again it is simplest to consider the matrix D: 

ñ = ΐ ч" ( чГ 1 
Гк.ДЛ . Гк.Олі SS'Om.Ar 

um 
(2.85) 

The unit operator is totally symmetric, so 

S
rk,0m

 6
Г
 5

Гк,Гт "
 ι5
ΓΘ ^ т ' (2.86) 
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and 

V SS;0m,ûi ΘΔ SS т. Л 

а
э

й
 ^is U - (

2
·

87
) 

Substituting Eqs. (2.86) and (2.87) into Eq. (2.85) we find 

"гк.ДЯ
 = {

ΓΔ
 Σ S

km ^SS ^ Л 
m 

δ
ΓΔ í f (2-88) 

Therefore also 

ЙГк,ДА(е) ' 5 Л і М · ( 2 · 8 9 > 

Finally we look at the construction of the density matrix for Гк ξ. С, 

ài e В: 

в αβ ςζ* 

?Тк,Ы 5_
 η

Σ С
Гк,Пп

 С
 т,Пп " т.Лг^Пп' 

т Ωη 

0
 2Τ 4" ~Γ -

«„, Σ Σ С, С Μ „(e,, ) 
ΓΔ kn ran mi Γη 

m η 

5
ΓΔ Κν ( 2

·
9 0 ) 

where we have used Eqs. (2.83) and (2.89). 

We conclude that it is indeed possible to treat the embedding problem in 

a symmetry adapted manner. The density matrix in the original basis may be 

recovered from 
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pcc * Tcc ?cc T î c · ( 2 · 9 1 ) 

Ρ = Ζ Τ Ρ τ 
μ ν гк.дг ' Г к г к ' л 1 ν > Δ ) 1 

i.е.,as a sum over irreducible representations of the symmetry group. 
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3. Implementation 

The present embedding approach to the chemisorption problem leads to a 

computational scheme that essentially consists of three steps. Implicit in the 

procedure ia the choice of a one-electron model to describe the chemisorption 

phenomenon. We reiterate that capitals A,B,... are used to indicate both 

localized regions in space and the basis sets centered in these regions. The 

three steps involved are: 

I. Choose a description S of the solid surface, to be used as substrate, and 

perform a self-consistent cluster calculation. 

II. Define a cluster В с S to be used in the chemisorption cluster, at the same 

time defining the representation of the defective solid, D = S \ B . The elec­

tronic structure of S is reflected in the matrices D, X, С ,Ε , which occur 
D 

in the coupling matrix M, and the additional terras due to the defective 

solid in the Fock matrix for the chemisorption cluster. 

III. Perform a self-consistent embedded cluster calculation for the adsórbate A, 

chemisorbed on B. The iterative procedure to be followed is described in 

Sec. 2G. 

As one-electron model we use the Hartree-Fock-Slater (HFS) model. We have 

implemented the embedding scheme in the pseudopotential HFS-LCAO program of 

Baerends et. al. [17-19]. The major characteristics of our chain of programs are 

(i) full use of symmetry, (ii) optional use of nonorthogonal or semi-orthogonal 

basis sets [cf. Sec. 2H], and (iii) analytic evaluation of the coupling matrices 

at the relevant energies. At present we have only implemented the spin-restricted 

formalism. 

Steps I and III of the computational procedure involve the use of the 

extended HFS-LCAO program, step II involves the use of an auxiliary program, 

which we named PISANI. In the following we will discuss some features of both 

programs. In AppendixC we describe the structure of the embedding HFS-LCAO program. 
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A. Additional_terms_in_the_Fock matrix 

For a system of interacting atoms a the Fock operator in the pseudo-

potential HFS model reads 

F(1) = T O ) + V
N
(1) + V

r
[p<1)] + V [p(1)] + V (1), (3.1) 

Γι \J x ps 

where Τ is the kinetic energy operator, V the nuclear potential, V the elec­

tronic Coulomb potential, V the electronic exchange potential and V the 

pseudopotential shift operator. In atomic units: 

T(1) = --| V(1)
2
, (3.2) 

V
M
(1) = - Σ Ζ ff! , (3.3) 
Ν a al 

a 

V
c
[p(1)] = ƒ r~2 p(2)dT

2
, (3.4) 

ν
χ
[ρ(1)] = - 3a[¿p(1)] 1 / 3, (3.5) 

and 

V (1) = Σ (ε - ε .) |ψ .(1)><ψ .(1)|. (3.6) ρε . core.i 'core,ι
 т

соге,і ' 
a, ι 

We note that V shifts the core orbitals ψ . from their one-electron energies 
ps core,i 

e . to the average valence energy ε. The one-electron density occurring in 

Eqs. (3.4) and (3.5) is written as 

p(1) = Σ Γρ' (1) + ñpa(l)l + p i l ) , (3.7) 
L core J ps 

where the atomic difference density Δρ (1) is defined as 
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Δρ
3
(1) Ξ Ρ* (1) - ρ' (1), (3.8) 

valence ps 

and ρ (1) is the pseudo density. See Refs. [20] and [21 ] for a more extensive 
ps 

discussion of the Fock operator and its inherent assumptions. 

In the HFS-LCAO method of Baerends et. al. the matrix elements of the Fock 

operator are evaluated with a numerical integration scheme. Defining 

F = Τ + V
N
 + V

c
 + ν

χ
, (3.9) 

one approximates 

v - % I F I V 

•£»< хЛ>*<гь>хЛ>. ( 3 · 1 0 ) 

with W(r, ) the weight of integration point r, . The matrix representation of the 

pseudopotential operator (3.6), which essentially involves overlap integrals 

only, is treated analytically. At each cycle of the iterative procedure it is 

constructed from the two matrices 

P
C
 - <x|[ Σ |ψ

3
 .><ψ

β
 .|]|x>, (3.11) 

1
 . ' core.i

 T
core,i

l | л
 ' 

a,i 

and 

P
E
 = <

x
|[ Σ ε

3
 .|ψ

α
 .><ψ

β
 .|]|x>. (3.12) 1

 . core,i
lr
core,i 'core.i' ' 

a,i 

The Fock matrix entering the embedded cluster calculation is the Fock matrix 

of the full chemisorption system (ABD), confined to the embedded cluster. In 

comparison with a nonembedded cluster calculation a number of additional terms 
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occur, all pertaining to the indented solid. The computational scheme of the 

HFS-LCAO method allows these terms to be included in a natural way. 

Inclusion of the potential due to the indented solid requires the calcula­

tion at each integration point of 

- the nuclear potential 

D
 -, 
Σ Ζ R , (3.13) 

a a ι 
a 

- the density 

Σ [p"
ore
(1)

 +
 Δρ

3
(1)] + [p

f
(1) - pJ

B
(1)], (3.14) 

a 

to be used in the evaluation of the exchange potential (3.5). p__ denotes the 

density that corresponds to the density matrix Р„
0
. 

Bo 

- the Coulomb potential due to the density (3.14). 

Since all these contributions remain constant during the iterative calculation 

on the embedded cluster, they can conveniently be added to the corresponding 

constant terms occurring in the nonembedded cluster calculation, viz., to 

- the nuclear potential 

Z Z
a
R ^ , (3.15) 

a 

- the density 

С 
ΐ [p

a
 (1) + Др

а
(1)], (3.16) 

core 
a 

the Coulomb potential due to the density (3.16). 

Inclusion of the indented solid in V requires the calculation of the 

ps 
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С E 
matrices Ρ and Ρ pertaining to D, in the basis χ U χ̂ , and adding them to 

the corresponding matrices calculated for the nonembedded cluster. 

We note that, once the additional terms are evaluated, the construction of 

the Fock matrix in the embedded cluster calculation proceeds in the same way as 

in the nonembedded cluster calculation, i.e., there are no extra storage or 

computation time requirements. The evaluation of the additional terms can be 

quite time consuming, however. In fact, it is one of the major steps in the cal­

culation. 

B. Cons true tion_of_the_dens it j_Mtrix_in_embedded_c lus ter_calcul at ions 

In the embedded cluster calculations the density matrix is evaluated 

according to Eq. (2.56). The coupling matrices involved in this expression are 

evaluated analytically at the appropriate energy points. The calculation of the 

3 . 4 . 

density matrix is essentially a η operation (and not a η operation, as stated 

by Pisani [7]). Furthermore, the symmetry blocking reduces the dimensions of 

the matrices involved. This analytic procedure is computationally quite cheap, 

so we do not need interpolation or fitting procedures in our calculations. The 
matrices D, X, С and E , needed in the calculation, are read from a file created 

о 

by program PISANI. 

In order to reduce storage requirements, the HFS-LCAO program uses only the 

lower triangle of the density matrix P. In our implementation we calculate the 

density matrix for each irreducible representation, synmetrize as -̂-(P + Ρ ) and 

transform the resulting lower triangle to the basis χ U χ . Note that the 

symmetrization does not affect the one-electron density. 

In calculations employing the semi-orthogonal basis the constant part R 

[cf. Eq. (2.72)] of the density matrix is read from the file containing D, X, C_ 

ΰ 
and E

f
. 

http://fact.it
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С. Miscellaneous features 

In the limit of very large substrate clusters the number of electrons 

introduced into the system by the adsórbate is vanishingly small. Therefore 

we take the Fermi level fixed in our calculations. The embedding HFS-LCAO 

program requires the specification of the Fermi level for each irreducible 

representation and checks the formal conditions 

ε
£ < e . < c

f
 (3.17) 

homo Fermi lumo 

where cl and εί are determined by the free solid calculation. The average 
homo lumo 

orbital energies e (one for each irreducible representation) in the pseudo-

potential operator (3.6) are treated in the same spirit, i.e., they are frozen 

at their free solid value. 

In the HFS-LCAO program a standard damping procedure is employed in the 

iterative calculation of the density matrix. Let P!. be the density matrix 

used in cycle (i-1) and P. the density matrix constructed from the eigenvectors 

of cycle i. Instead of using P. as input for cycle (i+1) one uses 

P! = aP. + (1-a)P[_
1
 (0 < a й 1). (3.18) 

The risk of divergencies (or oscillatory behaviour) in embedded cluster cal­

culations is enhanced by the fact that the charge in the embedded cluster 

is not conserved: the number of electrons in the cluster is determined 

by the position of the Fermi level. Indeed, in our test calculations the 

damping procedure (3.18) was generally not sufficient to obtain convergence. 

Therefore we have used the following charge renormalization in the initial 

stage of the iterative procedure. 

Let the matrix P. correspond to N. electrons (i Й 1), and let NQ be the 



ti¿ 

number of electrons corresponding to Ρ plus the number of (valence) electrons 
Bo 

of the adsórbate (Ν.): 
A 

N
0 "

 T r ( P
B B V

 + Ν
Α·

 ( 3
·

1 9 ) 

Instead of Eq. (3.18) we use 

P! = C.[ctP. + (l-oOP!^], (3.20) 

where 

И «.' С. = 1 + l^r-Ч f,; (3.21) 

f. is a switching function with limiting properties f = 1 and lim f. = 0. 

І-к» 

We obtained satisfactory results with the Fermi function 

(3.22) Ί - [• · .""•T' . 

with typical choices β = 0.3, i- = 10. 

Program PISANI performs step II of the computational procedure as outlined 

in the introduction of this section, i.e., it serves as a bridge between the free 

solid and the embedded cluster calculations. Its main functions are: 

- definition of the cluster В с S in terms of atoms, basis sets, density fit 

sets and core orbitals, including validity checks of the atoms selected with 

the symmetry group chosen. 

- calculation of the matrices D and X, needed in the evaluation of the coupling 
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matrices M; in the case of a semi-orthogonal basis also the matrix R is 

calculated. 

fit of the density (p - P-,,), which corresponds to the matrix 
DD 

BB 

f 
DB 

BD 

'к (3.23) 

[cf. Eq. (3.14)].This density fit is used in the pointwise calculation of the 

density and the Coulomb potential due to the indented solid. 

Apart from these essential functions program PISANI has a number of use­

ful additional functions. We mention the possibility to check the case where 

the adsórbate is absent, the calculation of the coupling matrices at energy 

points to be specified and a population analysis of the free solid density in 

terms of В and D. 

We note that the computation times needed by the program are very modest. 

E.g., for the case Li,
Q
 с Li,, in a double-zeta-plus-polarization-function 

lo /У 

basis the execution time is 20 seconds on the AS9040, which is to be compared 

with the execution time of approximately one hour for the embedded cluster 

calculation. 
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4. Results and discussion 

Due to the small number of basis functions needed to describe lithium 

atoms, lithium is a convenient testing ground for methods dealing with metals. 

We performed test calculations with the MLEC method for the on-top adsorption 

of hydrogen on the lithium (100) surface. In all calculations we used the 

spin-restricted formalism. 

A. Ihe_substrate^_Li
7(
, 

As a representation of the substrate in our embedding calculations we used 

a Li
7
q(21,16,21,12,9) cluster, i.e., with 21 atoms in the first layer, 16 in 

the second, etc. The cluster is supposed to represent the unreconstructed (100) 

surface of the body-centered-cubic lattice (with bulk lattice constant 6.60 

a.u. [22]). In table 1 we summarize the geometric data for the cluster. For 

future reference we note that atoms of type I, III, X, and XIV lie in the sur­

face plane. 

The double-zeta s, single-zeta ρ STO basis set [23] and the integration 

parameters used in the calculations are listed in table 2. It was shown by 

Post [24] that for the ЪЦ-СО interaction this basis set satisfactorily 

reproduces the details of the interaction energy vs. distance curve calculated 

with a triple zeta basis. We note that the basis set of table 2 was used for 

all atoms in the Li
7
q cluster, i.e., the basis consisted of 395 STOs. 

In the Li
7(
, calculation as well as in all other calculations we used the 

C, point group symmetry. To obtain the electronic configuration we did not 

optimize the cohesive energy, but simply followed the Aufbau principle. It 

appears, however, that for lithium clusters both schemes yield the same result 

[1,25]. Due to near-degeneracies in the orbital energies the LÌ 7Q calculation 



Table 1 

Geometrie data for the Li
7 0
 cluster (a 

distance to 

atom type coordinate Li(I) . a 

I 

II 

III 

IV 

V 

VI 

VII 

VIII 

IX 

X 

XI 

XII 

XIII 

XIV 

XV 

XVI 

XVII 

XVIII 

( 0, 0, 0) 

Ι 2' 2' г> 

( a, 0, 0) 

( 0, 0,- a) 

( a, a, 0) 

( a, 0,- a) 

*• 2 ' 2' Г 
, a a За.. 
^ 2' 2'~ 2

; 

( a, a,- a) 

(2a, 0, 0) 

( 0, 0,-2a) 

,3а За ач 

^2 ' 2 '" 2' 
-За a За. 

ι
 2
 ,

 2
,

 2
 ; 

(2а, а, 0) 

(2а, 0,- а) 

( а, 0,-2а) 

(2а, а,- а) 

( а, а,-2а) 

0.000 

0.866 

1.000 

1.000 

1.414 

1.414 

1.658 

1.658 

1.732 

2.000 

2.000 

2.179 

2.179 

2.236 

2.236 

2.236 

2.449 

2.449 

6.60 а.и.) 

cumulative 

multiplicity cluster 

1 

4 

4 

1 

4 

4 

8 

4 

4 

4 

1 

4 

8 

8 

4 

4 

8 

4 

Li, ( 1, 

Li
5
 ( 1, 

Li
9
 ( 5, 

Li
1 0
( 5, 

Li
1 4
( 9, 

Li
1 8
( 9, 

Li
2 6
( 9, 

LÌ30( 9, 

L i34 ( 9 

Li38(13· 

Li39(l3, 

Li43(13 

Li51(l3, 

Li59(21, 

L i63 ( 2 1' 

Li67(21 

Li75(21 

Li79(21 

0, 

4, 

^ 

A, 

A, 

A, 

12, 

12, 

12, 

12, 

12, 

16, 

16, 

16, 

16, 

16, 

16, 

16, 

o, 

o, 

o, 

1, 

1, 

5, 

5, 

5, 

9, 

9, 

9, 

9, 

9, 

9, 

13, 

13, 

21, 

21, 

0,0) 

0,0) 

0,0) 

0,0) 

0,0) 

0,0) 

0,0) 

4,0) 

4,0) 

4,0) 

4,1) 

4,1) 

12,1) 

12,1) 

12,1) 

12,5) 

12,5) 

12,9) 
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Table 2 

Basis sets and integration parameters 

. · a) basis 

Is 

2s 

2p 

intégrât 

r0 
a0 

. b) 
ion 

H 

0.76 

1.28 

1.00 

2.00 

0.50 

Li 

1.16 

0.60 

0.60 

2.00 

0.50 

a) 
Ref.23 

Parameters in Fermi-like distribution [1 + exp(an(r-rn))] 

Table 3 

Deviations from the exact value, caused by a perturbation in the Fock matrix, 

for net cluster populations of Li., embedded in Li-. 

A. representation 
1 

nonorth semi-orth 

E representation 

nonorth semi-orth 

total 

nonorth semi-orth 

10 

10" 

10" 

10" 

10" 

10" 

10 -2 

.000 000 

-.000 007 

-.000 077 

-.000 773 

-.007 398 

-.047 501 

+2.616 654 

.000 000 

.000 000 

-.000 001 

-.000 012 

-.000 120 

-.000 501 

+0.69 901 

.000 000 

-.000 001 

-.000 013 

-.000 125 

-.001 041 

+.004 908 

+2.492 540 

.000 000 

-.000 001 

-.000 008 

-.000 076 

-.000 753 

-.006 613 

+.082 439 

.000 000 

-.000 012 

-.000 130 

-.001 311 

-.012 370 

-.065 747 

+.455 967 

.000 000 

-.000 002 

-.000 039 

-.000 400 

-.003 984 

-.036 316 

+.098 174 
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converged very slowly: it took 200 iterations to converge to a mean change 

of 2x10 in the diagonal of the density matrix. 

В. The_cou|>ling_matrices 

Having performed the free solid calculation, we can define subclusters 

for use in embedded cluster calculations. In figures 2 and 3 we show the energy 

dependence for some elements of the coupling matrices M in clusters of in­

creasing size. The elements pertain to symmetry adapted linear combinations of 

basis functions located in the central part of the LÌ 7Q cluster. Except for a 

discontinuity at the Fermi energy the energy dependence is quite smooth. 

In figure 2 we show some representative elements in the nonorthogonal 

basis. We see that the behaviour is not at all close to the step function 

2 3 
(е_ - e). The elements can assume values up to 10 -10 ; furthermore, the variation 
г 

with energy is quite large. This behaviour causes severe numerical problems, 

as can be understood qualitatively from the following argument. The elements 

of the eigenvectors С and the density matrix Ρ are of the same order. Thus, in 

the calculation of the density matrix, cancellation of relatively large terms 

С ,C , M (e, ) [Eq. (2.56b)] has to occur to produce the correct Ρ . This 
μκ ak av к

 c
 μν 

cancellation leads to severe demands to be imposed on the numerical integration 

scheme in the HFS-LCAO embedded cluster calculation. In fact, the demands are 

so severe that the effort involved in the numerical integration becomes prohi­

bitively large. This problem led us to introduce the semi-orthogonal basis in 

Sec. 2H. 



86 

ί. 

? 

0 

2 

ί, 

6 

Й 

'— 

/ 
5 

-

-

-

18 

% >Г>/ 
_ Ζ _ — - ^ 

iiu/ 

/ 

Α1 
a. Μ 2 2 

-2.0 -1.5 -1.0 -0.5 |0.0 0.5 1.0 1.5 2.0 
ερ Energy [a.u.l 

160 

120 

ВО 

ί,Ο 

0 

-ί,Ο 
2 

-

-

-

-

-

-

0 
ι 

-1.5 

5 

Ν/ 

10 \ 

34 \ \ 

/ \ 

18 
ι ι 

-1.0 -0.5 

b. 
"55 

ι ι ι ι ι 

0.0 0.5 1.0 1.5 20 
ερ Energy [а.υ ] 

Figure 2. Coupling matrix elements in nonorthogonal basis for different 

clusters В с Li?g 
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34 
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Figure 3. Coupling matrix elements in semi-orthogonal basis for different 

clusters В с Li-Q 
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In figure 3 we display some elements of the coupling matrices for the 

semi-orthogonal basis. It is clear that the coupling matrices are much more 

well-behaved, now. With increasing cluster size the elements pertaining to 

the central region rapidly approach the step function eie - e). The elements 

F 

belonging to the border region, where the connection with the free solid is 

made, show a more complex behaviour. Off-diagonal elements are generally an 

order of magnitude smaller than diagonal ones. This behaviour is much the same 

as found by Pisani [7]. 

In order to illustrate the instability caused by an inaccurate integration 

scheme we consider the embedding of Li,о in Li
7
q, in the absence of an adsórbate. 

In that case, the results of Li7(, should be reproduced exactly: after solving 

the generalized eigenvalue problem of F and constructing the density matrix 
Do 

we should obtain ?__, both for nonorthogonal and semi-orthogonal bases 
DD 

[Sec. 2F]. This serves as an important check of the programs used. We now 

simulate the effect of inaccuracies in the Fock matrix caused by the numerical 

integration with a small perturbation: 

4+ λΔ' ί * · 0 

where 

Δ«. = (-1)
1+J
. (4.2) 

ij 

_Q 

In table 3 we list the effect of increasing λ from 10 , with factors of 10, 

on the number of electrons corresponding to the resulting density matrix, the 

net cluster population 

»cc-^ccV-
 ( 4

·
3 ) 
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It can clearly be seen that the perturbation has a more pronounced effect in 

the nonorthogonal case. We note that integrated quantities, such as the net 

cluster population, are the more stable ones in our embedding HFS-LCAO scheme, 

as will become clear in the sequel. 

C. The numerical integration 

The numerical integration scheme employed in the HFS-LCAO program [cf. Sec. 

ЗА] is the discrete variational method, introduced by Ellis and Painter [26,27]. 

The density of integration points is taken as a superposition of Fermi-like 

distributions, centered at the atoms in the system. We note that the HFS-LCAO 

program directly calculates matrix elements over syiranetry adapted linear combi­

nations of basis functions, thus obviating the need for storage of large numbers 

of integrals over primitive basis functions. 

The influence of the integration scheme on the embedded cluster calculations 

was investigated for Li
i n
 and Li „H embedded in Li

7(
.. In tables 4 and 5 we list 

some details of the electronic structure obtained with various schemes. The 

parameters entering the numerical integration are those of the Fermi-like 

distributions and the number of points in each atomic distribution. We have only 

varied the latter. 

The first columns of tables 4 and 5 refer to calculations with 500 points 

per atom for all atoms in the embedded cluster C, which gives stable results in 

the usual nonembedded cluster calculations. The last columns give the results 

obtained when using the complete Li
7 q
 integration grid, with an extra 500 points 

on H in the lii.nH calculations. The interjacent columns refer to calculations 

with increasing numbers of points (N ) in С and to calculations with (N ) ad­

ditional points in the indented solid. 

From these and similar calculations which we have performed, a number of con­

clusions can be drawn with respect to the accuracy of the integration procedure: 
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Table 4 

Influence of integration scheme in Liin embedded cluster calculation using 

the semi-orthogonal basis 

integration 

Nc 
N„ 

I 

5 000 

0 

II 

10 000 

0 

III 

5 000 

800 

IV 

5 000 

3 850 

va> 
2 500 

17 250 

0.18 

0.54 

0.26 

0.71 

0.23 

0.59 

0.24 

0.45 

0.29 

0.37 

0.33 

0.43 

0.26 

0.34 

0.27 

0.32 

net atomic populations 

Li(I) 0.19 

Li(II) 0.36 

Li(III) 0.12 

Li(IV) 0.85 

atomic overlap populations 

Li(I)-Li(lI) 0.31 0.31 0.29 0.19 0.21 

Li(I)-Li(III) 0.08 0.10 0.11 0.16 0.14 

Li(l)-Li(IV) -0.02 -0.02 0.03 0.14 0.12 

gross atomic charges 

Li(I) 0.15 

Li(II) -0.18 

Li(lll) 0.22 

Li(lV) -0.02 

net populations in Li.-

A1 
A2 

B1 
B2 
E 

total 

0.15 

•0.22 

0.23 

0.07 

0.09 

-0.21 

0.20 

0.17 

0.08 

-0.13 

0.16 

0.02 

0.12 

-0.14 

0.18 

-0.05 

3.18 

0.01 

0.44 

0.28 

3.22 

7.12 

3.08 

0.00 

0.46 

0.28 

3.37 

7.18 

3.07 

0.00 

0.33 

0.27 

3.51 

7.19 

2.89 

-0.00 

0.41 

0.25 

3.66 

7.21 

2.84 

0.00 

0.43 

0.26 

3.66 

7.20 

Integration scheme of free solid (LÌ7Q) calculation 
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Table 5 

Influence of integration scheme in Li.^H embedded cluster calculation 

using the semi-orthogonal basis 

in t egra t ion 

Nc 
N« 

I 

5 500 

0 

I I 

22 000 

0 

I I I 

5 500 

800 

IV 

5 500 

1 600 

V 

5 500 

3 850 

VIa) 

3 000 

17 250 

net atomic populations 

H 0.72 

Li(I) 0.81 

Li(II) 0.27 

Li(III) 0.17 

Li(lV) 0.89 

0.86 

0 .67 

0 .23 

0.11 

0 .16 

0.93 

0.64 

0 .45 

0 .15 

0 .13 

0.91 

0 .65 

0.33 

0 .16 

- 0 . 1 3 

0 .83 

0 .73 

0 .32 

0 .21 

0 .06 

0 .80 

0 .77 

0 .32 

0 .22 

0.04 

atomic overlap populations 

H-Li(I) 0.62 0.64 

H-Li(II) 0.05 0.05 

H-Li(III) -0.02 -0.02 

H-Li(IV) 0.04 0.03 

0.62 

0.04 

•0.01 

0.03 

0.63 

0.05 

- 0 . 0 2 

0.03 

0.66 

0.04 

- 0 . 0 2 

0.03 

0.67 

0 .05 

- 0 . 0 2 

0.03 

gross atomic charges 

H -0.11 

Li(I) -0.01 

Li(II) -0.16 

Li(III) 0.28 

Li(IV) -0.09 

-0.25 -0.30 -0.30 

-0.01 +0.01 -0.00 

-0.18 -0.19 -0.19 

0.31 0.32 0.33 

-0.03 -0.00 +0.01 

•0.23 

•0.06 

•0.16 

0 .29 

•0.06 

- 0 . 2 1 

- 0 . 1 1 

- 0 . 1 3 

0 .28 

- 0 . 0 6 

net populations in Li.^H 

1 
B2 
E 

total 

4 .42 

0 .01 

0 .47 

0 .35 

2 .91 

8 .17 

4 .42 

0 .01 

0 .48 

0 .26 

3 .02 

8 .18 

4 .45 

- 0 . 0 0 

0 .45 

0 .28 

3.03 

8 .20 

4 .37 

0 .02 

0 .39 

0 .27 

3 .13 

8 .18 

4 . 4 2 

0 . 0 0 

0 .41 

0 .26 

3 .15 

8 .24 

4 .42 

0 .01 

0 .43 

0 .26 

3 .12 

8.23 

a) 
Integration scheme of free solid (Li7q) calculation supplemented 

with 500 points on hydrogen 
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- The electronic structure of the embedded cluster is more stable in its 

central region than in the region bordering the indented solid. In figure 

k we illustrate this point by showing the pseudo-density ρ (1) along 

BB 

the principle axis of the cluster in various integration schemes. 

- Increasing the number of integration points in the embedded cluster alone is 

ineffective in improving the accuracy; it is better to include points in the 

region of the indented solid bordering the embedded cluster. 

- Even with quite extensive integration schemes the populations are accurate 

to a few hundredths of an electron only. However, the inaccuracies are 

substantially smaller than the changes induced by the adsórbate. 

- Integrated quantities are more stable than their constituent parts: gross 

atomic populations vs. net atomic populations and overlap populations; the 

net cluster population [Eq. (4.3)] vs. its contributions from various irredu­

cible representations. 

- In agreement with the conclusion of Sec. 4B, we find that the observed 

instabilities with the nonorthogonal basis are much more pronounced than with 

the semi-orthogonal basis. 

The inefficiency of Fermi-like grid point distributions solely localized 

in the embedded cluster, in the integration for the embedded cluster calculation 

may be understood as follows. For isolated molecules the superposition of atomic 

grid point distributions more or less follows the electron density, i.e., regions 

of space with a low density obtain also a small weight. For embedded cluster 

calculations, however, the (total) density does not fall off outside the cluster, 

but stays approximately constant. Therefore, integration points outside the 

cluster are needed to obtain sufficiently accurate values for integrals over 

functions located in the border region of the cluster. 
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Figure 4. Pseudo density p_ in various integration schemes. Numbers indi­

cate number of integration points used. "Li7lj" indicates Li7q 

integration grid 
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D· Convergence with cluster size; effect of embedding 

We studied the convergence of the electronic structure as a function of 

cluster size for the on-top adsorption of hydrogen. The hydrogen-lithium 

distance used was the free LiH distance (3.015 a.u.), which was found to be 

close to the minimum of the interaction energy curve in several cluster 

studies [28,29]. In the embedded cluster calculation we used the semi-orthogonal 

formalism. The integration schemes consisted of the Li7q grid supplemented 

with 500 points on hydrogen in the embedded cluster calculations, and 500 points 

per atom in the nonembedded cluster calculations. 

In table 6 we present the converged values for the atomic populations and 

the net cluster population [Eq. (4.3)] in the embedded cluster calculations, in 

table 7 the adsórbate induced changes in these populations and in table 8 the 

corresponding numbers for the nonembedded cluster calculations. We note that, 

due to the averaging over symmetry equivalent atoms, the populations pertaining 

to Li(ll) and Li(III) are more accurate than those of H, Li(I) and Li(lV). 

Further we recall that the surface atoms in the Liin cluster are Li(l) and 

Li(III). 

From the calculations a number of conclusions may be drawn: 

- Once again it can be seen that integrated quantities show better convergence, 

now with respect to cluster size, than their constituent parts. 

- The gross atomic charges convergence more rapidly in the embedded cluster 

calculations than in the non-embedded calculations. They are converged for the 

Liin cluster. The more detailed populations need somewhat larger clusters; 

still they converge more rapidly in the embedded cluster calculations. 

- The embedded clusters show a more adequate screening of the perturbation 

induced by the adsórbate. The changes in the gross atomic charges seem to be 

localized in the Li- cluster formed by the central lithium atom and its four 

surface neighbours. 
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Table 6 

Atomic populations in Li H embedded cluster calculations using the 

semi-orthogonal basis 

η 

net atomic 

Η 

L i d ) 

Li(II) 

Li(III) 

Li(IV) 

populi 

1 

ations 

0.96 

0.45 

-

-

-

5
a ) 

0.79 

0.42 

-

0.18 

-

10 

0.80 

0.77 

0.32 

0.22 

0.04 

18 

0.84 

0.54 

0.34 

0.26 

0.26 

26 

0.84 

0.45 

0.32 

0.26 

0.31 

atomic overlap populations 

H-Li(I) 

H-Li(II) 

H-Li(lll) 

H-Li(lV) 

Li(l)-Li(II) 

Li(I)-Li(III) 

Li(I)-Li(IV) 

gross atomic charges 

Η 

Li(l) 

Li(II) 

Li(III) 

Li(IV) 

-0.05 

-

-

-

- . 

-

-

0.06 

-0.05 

-

-

-

0.57 

-

-

-

-

0.10 

-

-0.08 

-0.25 

-

0.28 

-

0.67 

0.05 

-0.02 

0.02 

0.04 

0.01 

0.04 

-0.21 

-0.11 

-0.13 

0.28 

-0.06 

0.69 

0.03 

-0.01 

-0.01 

0.10 

0.05 

0.08 

-0.20 

-0.07 

-0.13 

0.25 

-0.06 

0.70 

0.02 

-0.01 

0.00 

0.19 

0.02 

0.04 

-0.20 

-0.08 

-0.12 

0.26 

-0.07 

Li
5
(5,0) cluster 
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Table 7 

Chemisorpt ion induced changes in atomic p o p u l a t i o n s in L i 

c l u s t e r c a l c u l a t i o n s u s i n g semi-or thogona l b a s i s 

1 5 a ) 10 18 26 

net atomic populations 

H -0.04 

Li(I) +0.19 

Li(II) 

Li(III) 

Li(IV) 

atomic overlap populations 

H-Li(I) -0.05 

H-Li(II) 

H-Li(III) 

H-Li(IV) 

Li(I)-Li(lI) 

Li(I)-Li(lII) 

Li(I)-Li(IV) 

gross atomic charges 

H +0.06 

Li(I) -0.17 

Li(II) 

Li(III) 

Li(IV) 

net population in Li H 

+0.108 

-0.20 

+0.52 

-0.01 

-0.05 

-0.28 

-0.16 

+0.28 

+0.00 

-0.01 

-0.06 

-0.16 

+0.19 

-0.02 

-0.01 

-0.00 

+0.67 

+0.05 

-0.02 

+0.02 

-0.17 

-0.12 

-0.09 

+0.69 

+0.03 

-0.01 

-0.01 

-0.11 

-0.09 

-0.04 

+0.70 

+0.02 

-0.01 

+0.00 

-0.02 

-0.12 

-0.09 

-0.21 

-0.22 

+0.00 

+0.10 

-0.01 

-0.20 

-0.19 

+0.01 

+0.07 

-0.01 

-0.20 

-0.20 

+0.01 

+0.07 

-0.01 

+0.038 +0.028 +0.029 +0.019 

Li5(5,0) cluster 
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+0.06 

-0.78 

-
-
-

-0.20 

+0.30 

-
-0.01 

-

-0.31 

+0.52 

+0.05 

-0.07 

+0.02 

-0.14 

+0.12 

+0.03 

-0.03 

+0.03 

-0.15 

+0.29 

+0.01 

-0.02 

-0.01 

Chemisorption induced changes in atomic populations in Li H 

nonembedded cluster calculations 

net atomic populations 

H 

Li(I) 

Li(II) 

Li(III) 

Li(IV) 

5a) 10 18 26 

atomic overlap populations 

H-Li(I) +0.72 +0.91 

H-Li(II) 

H-Li(III) 

H-Li(IV) 

Li(I)-Li(ll) 

Li(I)-Li(lIl) - -0.26 

Li(I)-Li(lV) 

gross atomic charges 

H 

Li(l) 

Li(II) 

Li(IIl) 

Li(IV) 

+0.87 

+0.00 

-0.03 

+0.01 

-0.13 

-0.26 

+0.11 

+0.76 

+0.01 

-0.01 

-0.00 

-0.12 

-0.11 

+0.02 

+0.79 

+0.01 

-0.00 

-0.01 

-0.15 

-0.11 

-0.02 

-0.42 

+0.42 

-
-
-

-0.15 

-0.24 

-
+0.10 

-

-0.07 

-0.23 

-0.03 

+0.10 

+0.04 

-0.24 

-0.09 

-0.01 

+0.07 

-0.04 

-0.23 

-0.16 

+0.03 

+0.06 

-0.01 

Li-CS.O) cluster 
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- The adsórbate induced total charge of the embedded cluster is very small. 

This result agrees with the model calculations by Grimley [ 6 ] . Furthermore, 

it can be seen that the charge approaches zero as the cluster size increases. 

Although in the MLEC formalism with finite substrate clusters the latter 

condition holds exactly for В •+ S, i.e., D •+ 0, we think that the clusters В 

are sufficiently small relative to D for this effect to be physical. 

E. Computation times 

In table 9 we give an indication of the computation times needed in 

various cluster calculations. Obviously the embedded cluster calculations are 

expensive compared to nonembedded cluster calculations. However, compared to 

the full (ABD) chemisorption calculations they are relatively cheap. 

The causes for the increased computation times with respect to nonembedded 

cluster calculations are, in order of decreasing importance: 

i) The large number of iterations needed to reach convergence. Due to the 

increased instability of the calculations severe measures must be taken 

to ensure convergence. In our calculations we used heavy damping (ad­

mixing 5-10% of the new density matrix in each iteration only) and charge 

renormalization in the initial stage of the self-consistent procedure 

[Sec. 3C]. Thus we reached convergence in all cases investigated but 

one: (Li-CLi
7
Q)H, with the Li. cluster consisting of the type I and II 

atoms. 

ii) The extended integration scheme, needed to incorporate the effect of the 

indented solid to sufficient accuracy. At present most time in the em­

bedding HFS-LCAO program is spent in sections that depend linearly on 

the number of integration points. 

iii) The inclusion of the contribution of the indented solid in the constant 

terms for each integration point requires 10-25% of the time in embedded 

cluster calculations. 
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Table 9 

Computation times of some representative cluster calculations on the AS9040 

calculation time 

Li
7
„ ; free solid 20 hours 1.00 

Li H; nonembedded 12 minutes 0.01 

18 

Li.
0
H; embedded, standard integration 1 hour 0.05 

1 о 

Li,
0
H; embedded, extended integration 2 hours 0.10 

lo 

iv) The calculation of the density matrix with the analytically evaluated 

coupling matrices. With standard integration schemes the overhead per 

iteration is somewhat less than 10%, which is quite acceptable. 

In order to accellerate the embedded cluster calculations,further research 

is necessary. From the preceding analysis it becomes clear that the improvement 

of the integration scheme must play a central rôle. A possibility that could 

be investigated is the use of two independent point grids: the "standard" grid 

for the nonembedded cluster and an additional grid for the indented solid. The 

latter grid could be the one used for the free solid calculation. The informa­

tion from the indented solid could then be stored, but it should be made more 

compact. 

Convergence problems seem to be intrinsic; they will depend strongly on 

the system under investigation. Pisani f7] needed relatively few iterations in 

MLEC calculations for the chemisorption of hydrogen on graphite, for instance. 

In our test calculations for the on-top adsorption of fluorine on lithium (100) 

we obtained faster convergence than for the corresponding hydrogen adsorption 

calculations. Still, it would be surprising if convergence behaviour would not 

remain a difficult point in calculations for adsorption on metals. 
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Appendix A 

The Green's matrix 

Given a nonorthogonal, not necessarily complete basis χ = {χ }; the overlap 

matrix is denoted by S. Let Η be any one-electron Hamiltonian and Η its matrix 

representation afforded by χ. The Green's matrix 0(ζ) is defined by 

(ζ5 - Η) G(c) - 1, ζ - e + ΐη. (A1) 

The elements of 0(ζ) may be expressed in terms of the solution of the 

generalized eigenvalue problem 

HC - SCE, Еы - 6k£ek> (A2) 

C+SC - 1. (A3) 

Starting from Eq. (Al) one obtains 

(cV 1 C^CS - ЮСС"1
 G(C) - 1, 

(сЪ
-1
 (CC

+
SC - C

+
HC) C"

1
 G(C) - 1, 

(CI - E) G'(C) = 1, (A4) 

where 

G'(C) = C"
1
 GicMcV

1
. (A5) 

From Eq. (A4) it follows that 
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Ъ<с> = ~- . <"> 

and hence 

G (ζ ) = ÍCG'(K)Cf] 
μν μυ 

С С* 
Ζ -HÍS-Ü* . (Α7) 

F u r t h e r i t fol lows t h a t 

* 
С С 

lim,. G (ε + i n ) = l i n r Ζ -, ^ ^ . 

С С 
Ρ Σ μ ^ - ίπ Σ С , С , « ( e - e , ) , (Α8) 

к ζ-\ к ^^ к 

where Ρ denotes the principal part and δ the Dirac delta function. 

The connection between the Green's matrix and the density matrix is now 

easily established: 

occ A 

Ρ - Σ С ,C , 
μν , pk vk 

- /F d' v i δ ( ε - ν 
—α» r 

1 ϊν 
= l ini Im Γ dB G (e + i n ) . (A9) 

π _+ J μν 
η-Ч) -"· 
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Appendix В 

The inverse of a partitioned matrix 

Consider the nonsingular partitioned matrix 

AA AB 

^ А ^ В . 

Denote i t s inverse by Y, then 

(B1) 

AA 

•(хввГ W A A 

•(XAA) XAB YBB 

BB 

(B2) 

AA 

-YBB V (XAA) 
-1 

-YAA XAB < V 

YBB 

(B3) 

where 

YAA " [XAA XAB ( XBB ) ^ A 1 ' 
(B4) 

Y B B = [ Х В В - Х В А ( Х А А Г І Х А В ] " 1 · 
(B5) 

Eq. (B2) is obtained by performing the matrix multiplication in 

X
AA

 X
AB 

^ А ^ B 

Y Y 

AA AB 
Y Y 
BA BB 

1 0 
AA AB 

0
BA

 1
BB 

(B6) 

and by actually solving the submatrices Y (P,Q = A,В) from the four resulting 
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equations. Eq. (B3) may be found by similarly solving YX • 1 or by the following 

algebra: 

XAB " XAB(XBB) XBA(XAA) XAB * XAB " XAB(XBB) XBA(XAA) ' W 

YAAXMV - (VVBB· (B7) 

and the analogous result obtained by interchanging A and B. 



106 

Appendix С 

Structure of the embedding HFS-LCAO program 

In figure CI we have schematically indicated the structure of the embedding 

HFS-LCAO program. We will discuss the various sections below. 

Section MAIN contains the driver routine of the program and frequently used 

service routines. Most input data for the program is read in IINPUT, viz., run 

type (frozen-core, pseudopotential, embedding, etc.), coordinates, basis and 

density fit sets, core descriptions and integration parameters. In SYMSEC the 

point group symmetry specified is used to generate data for the symmetry adap­

tion of the basis functions; the fit functions are joined to totally symmetric 

linear combinations. 

Section PREPAR is a driver routine for integral evaluation. In CORORT 

overlap integrals between the core orbitals and the basis functions are calcul­

ated. In CORED the overlap integrals between core orbitals of the indented solid 

and the basis functions (of the chemisorption cluster) are dealt with. In 

SYMORB the symmetry adapted linear combinations of basis functions (SALCs) are 

constructed; in frozen-core calculations they are orthogonalized to the core 

orbitals, using the overlaps from CORORT. At this point one can actually cal­

culate the storage requirements of the program; in section FLNGTH these require­

ments are checked against the available storage. Section REORD performs validity 

checks for the substrate cluster В and reorders the SALCs in a computationally 

convenient way. In FITINT the integrals needed in the density fit procedure are 

evaluated. 

In section ORTHON the SALCs are orthogonalized. In embedding calculations 

the transformation matrices from nonorthogonal to orthogonal SALCs are stored. 

С E 
In PSEUDO the matrices Ρ and Ρ [cf. Eqs. (3.11) and (3.12)] are calculated 
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The HFS-LCAO program 
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in the symmetry adapted basis; in embedded cluster calculations the contri­

bution of the indented solid is taken into account, using the overlaps cal­

culated in CORED. 

We now reach the sections in which the numerical integration is 

performed. In GPUNT the integration points are generated and the core density 

and Coulomb potential are evaluated at these points. In section DCONTR the 

constant density due to the indented solid is dealt with [cf. Sec. ЗА]; the 

density and the Coulomb potential are added to the data calculated in GPUNT. 

In FOCKX integrals are evaluated for the calculation of the valence Coulomb 

potential; also the initial Fock matrix is calculated. Section FOCKY is used 

in subsequent iterations for the construction of the Fock matrix. 

In EMERGE the Fock matrix is diagonalized and the density matrix construc­

ted. In embedded cluster calculations this is done using the coupling ma'.rices, 

evaluated at the appropriate energies. Also convergence of the HFS calculation 

is monitored here. In RHOFIT the density fit is performed. 

The iterative steps of the calculation are FOCKY, EMERGE and RHOFIT. After 

termination of the iterative procedure the driver routine OUT is entered. In 

PRNPRO printing and/or punching of the density matrix and the eigenvectors is 

dealt with. In ETSPS pseudopotential energy terms are calculated. In section 

POPAN a population analysis is performed; here also the (converged) SCF data 

is stored. Optionally in DEBYE and QMPOT the dipole moment and the potential 

at the nuclei are evaluated. 
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S U M M A R Y 

This thesis, entitled "Cluster embedding and pseudopotentials in the 

Hartree-Fock-Slater-LCAO method", treats a number of quantum chemical compu­

tational methods based on the nonempirical Hartree-Fock-Slater(HFS)-LCAO 

method of Baerends and Ros. These methods, intended for the study of large 

molecular systems, are building blocks for an embedding formalism for chemi-

sorption calculations. 

In chapter II the Mössbauer parameters of a series antimony compounds 

are studied. The calculated isomer shifts correlate very well with experiment. 

The calculated quadrupole splittings are too small; for the systematic devia­

tion in the results for the Sb(III) compounds some reasons are suggested. 

Furthermore, it is shown that the HFS-LCAO method is capable of yielding accu­

rate core polarization corrections to the quadrupole splitting, albeit at the 

cost of an expensive numerical integration scheme. 

In chapter III a new, self-consistent perturbational formalism for the 

calculation of binding energies with the pseudopotential HFS-LCAO method is 

developed. Test calculations show that the results agree well with those of 

the less approximate frozen-core HFS-LCAO method. Moreover, the calculated 

spectroscopic constants of a number of diatomic molecules agree well with 

experiment. 

In chapter IV the pseudopotential HFS-LCAO method is investigated on 

its capability to yield accurate one-electron properties. It appears that 

results obtained with the frozen-core HFS-LCAO method can be reproduced very 

well if the pseudo-orbitals are core orthogonalized. The calculated electric 

dipole and quadrupole moments are also in good agreement with available ex­

perimental data. 
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In chapter V a simplified method is introduced for the calculation of 

the pseudo-orbitals in the pseudopotential HFS-LCAO formalism. 

In chapter VI a computational scheme for chemisorption studies is 

developed in which the chemisorption cluster is embedded in the rest of the 

substrate. Problems that arise in the implementation in the pseudopotential 

HFS-LCAO method are discussed and solutions are given. Test calculations for 

hydrogen adsorbed on lithium show that the convergence of the electronic 

structure with cluster size is influenced favourably by the embedding. 

However, the numerical integration scheme used still needs improvement. 



114 

S A M E N V A T T I N G 

Dit proefschrift,getiteld "Cluster inbedding en pseudopotentialen in de 

Hartree-Fock-Slater-LCAO methode", behandelt een aantal kwantumchemische 

rekenmethoden die gebaseerd zijn op de niet-empirische Hartree-Fock-Slater 

(HFS)-LCAO methode van Baerends en Ros. Deze methoden, bestemd voor de bestu­

dering van grote molekulaire systemen, zijn bouwstenen voor een inbeddings-

formalisme voor het uitvoeren van chemisorptie-berekeningen. 

In hoofdstuk II worden de Mössbauer parameters van een aantal antimoon-

verbindingen bestudeerd. De berekende isomeer-verschuivingen korreleren zeer 

goed met het experiment. De berekende kwadrupool-splitsingen zijn te klein; 

voor de systematische afwijking in de resultaten voor de Sb(III)-verbindingen 

worden enkele oorzaken gesuggereerd. Verder blijkt dat de HFS-LCAO methode 

nauwkeurige core-polarisatie-korrekties op de kwadrupool-splitsing kan 

leveren, zij het ten koste van een duur numeriek integratieschema. 

In hoofdstuk III wordt een nieuw, zelf-konsistent storingsformai isme ont­

wikkeld voor de berekening van bindingsenergieën met behulp van de pseudopo-

tentiaal HFS-LCAO methode. Testberekeningen wijzen uit dat de resultaten goed 

overeenstemmen met die van de minder benaderde frozen-core HFS-LCAO methode. 

Bovendien stemmen de berekende spektroskopische konstanten van een aantal 

twee-atomige molekulen goed overeen met het experiment. 

In hoofdstuk IV wordt de pseudopotentiaal HFS-LCAO methode onderzocht 

op haar geschiktheid voor het nauwkeurig berekenen van één-elektron eigen­

schappen. Het blijkt dat resultaten verkregen met de frozen-core methode 

zeer goed gereproduceerd kunnen worden, indien de pseudo-orbitals op de cores 

worden georthogonaliseerd. De berekende elektrische dipool- en kwadrupoolmo-

menten stemmen bovendien goed overeen met voorhanden zijnde experimentele ge-

gegevens. 
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In hoofdstuk V wordt een vereenvoudigde methode geïntroduceerd voor de 

berekening van pseudo-orbitals in het pseudopotentiaal HFS-LCAO formalisme. 

In hoofdstuk VI wordt een formalisme voor chemisorptie-berekeningen 

ontwikkeld, waarin het chemisorptie-cluster ingebed wordt in de rest van het 

substraat. Problemen die zich voordoen bij de implementatie in de pseudopoten­

tiaal HFS-LCAO methode worden besproken en oplossingen hiervoor uitgewerkt. 

Testberekeningen voor waterstof geadsorbeerd op lithium tonen aan dat de 

konvergentie van de elektronische struktuur met de clustergrootte gunstig 

beïnvloed wordt door het inbedden. Het numerieke integratieschema dat 

gebruikt wordt behoeft echter nog verbetering. 
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S T E L L I N G E N 

1. De methode van Northrup et al. voor de berekening van de vibratie-

frekwentie van het silicium dimeer is zo onnauwkeurig, dat vergelijking 

van het resultaat met de experimentele waarde zinloos is. 

J.E. Northrup, M.T. Hn, M.L. Cohen, Phys. Rev. A28 (1983) 194S. 

2. De aard van de bindingen in het neon trimeer is zodanig dat een adiaba­

tische scheiding van hoekafhankelijke en radíele vibraties niet gerecht­

vaardigd is. Dit blijkt ook uit de door Frey met deze benadering ver­

kregen resultaten. 

J.G. Frey, Chem. Phys. Lett. 102 (1983) 421. 

3. Het gebruik van de voor zelf-interaktie gekorrigeerde exchange potentiaal 

van Gázquez en Ortiz voor de berekening van de exchange bijdrage aan de 

intermolekulaire potentiaal leidt tot fysisch onjuiste resultaten. 

J.L. Gázquez, E. Ortiz, Chem. Phys. Lett. 77 (1981) 186. 

4. Het is fysisch onjuist om bij de berekening van relaxatie-effekten op 

core-elektron bindingsenergieën in vaste stoffen een gat te kreëren in 

elk van de atomen van het systeem. 

J.R. Smith, F.J. Arlinghaus, J.G. Gray, Phys. Rev. B26 (1982) 1071. 

5. In lokale dichtheidsfunktionaalmethoden wordt het exchange-korrelatiegat 

zeer slecht gepresenteerd. Het introduceren van dichtheidsgradiënt 

korrekties ten opzichte van het referentiepunt kan hierin geen fundamentele 

verbetering brengen. 



6. Het model van Matsushita en Terasaka voor de beschrijving van vibratio-

nele chaos in lineaire molekulen mist enkele fundamentele fysische aspekten. 

T. Matsushita, T. Terasaka, Chem. Phys. Lett. 105 (1984) Sil. 

7. Bij veel beschouwingen over de prestaties van parallelle computers wordt 

de I/O overhead überhaupt over het hoofd gezien. 

Deze stelling is niet met succes te verdedigen. 

9. Het besluit van de Nederlandse regering inzake de kruisraketten valt niet 

bepaald als kernachtig te karakteriseren. 

10. Lange-afstandstourfietsers ontmoeten bij fietshandelaren veel onbegrip. 
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