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CHAPTER I

INTRODUCTION

This thesis deals with a number of quantum chemical methods for computa-
tional studies of molecular systems that can be qualified as large on an
atomic scale. As starting point serves the nonempirical Hartree-Fock-

Slater (HFS)-LCAO method, which has been demonstrated to yield a physical-

ly realistic description of molecular systems in relatively little compu-
tational time, in comparison with the more common ab initio methods. The
methods developed here may be considered as building blocks for an embed-
ding pseudopotential HFS-LCAO scheme applicable to chemisorption calculations
and capable of yielding electron densities, interaction energies and one-
electron properties.

In recent years numerous chemisorption studies have been performed in
which the substrate is represented by a (relatively small) cluster of atoms.
The most obvious defect of these calculations is formed by the incorrect
boundary conditions of the clusters, which can lead to serious artefacts
in computed quantities such as the charge distribution and the chemisorption
energy. Embedding methods are meant to remedy this defect by ensuring the
proper connection of the cluster with the rest of the (unperturbed) sub-
strate, Apart from being more satisfactory from a theoretical point of
view, it is also expected that embedded cluster calculations show a better
convergence behaviour with respect to cluster size than bare cluster calcula-
tions. The embedding method dealt with in this thesis is the so-called mo-
derately-large-embedded-cluster scheme of Pisani, in which the effect of
the substrate is represented by an embedding (Coulomb and exchange) poten-

tial and an energy dependent coupling matrix., In its application to transi-



tion metal surfaces, which we intend to study because of their technological
importance,especially the pseudopotential version of the HFS-LCAO method is
attractive, since it can handle systems with relatively many core electrons
in an efficient manner. Although the pseudopotential HFS-LCAO method has been
used previously, we found it amenable to improvement. We have generalized it
for the calculation of interaction energies and studied its behaviour for
one-electron properties.

In chapter II we describe the calculation of the M8ssbauer parameters for
a series of thirteen antimony compounds. This study was initiated because of
the unsatisfactory results for the quadrupole splittings in these compounds
given by Extended Hiickel calculations. The procedure to obtain electric field
gradients in all-electron and frozen-core HFS-LCAO calculations is investigated
for the HCl molecule. This chapter is somewhat isolated from the rest of this
thesis in its physical contents; however, it involves the same method of
calculating one-electron properties as used in chapter IV.

In chapters III - V we deal with the pseudopotential HFS-LCAO method as
such, In chapter III we develop and test a scheme for the calculation of inter-—
action energies. Our method involves the use of a new,self-consistent pertur-
bational scheme for the calculation of the pseudo-orbitals. The calculation
of one-electron properties is treated in chapter IV; the scheme used in
chapter II is extended in order to include the use of core orthogonalized and
perturbed pseudo-orbitals. We conclude our investigation of the pseudopotential
method in chapter V with a discussion of the application of perturbation
theory to correct for the use of averaged pseudopotentials.

In chapter VI we describe the moderately-large—embedded-cluster scheme
for chemisorption calculations and its implementation in the pseudopotential
HFS-LCAO method. The scheme is formulated for a finite representation of
the substrate, viz. a cluster which is large compared to the original chemi-

sorption cluster. We present some test calculations for the on-top adsorption



of hydrogen on the unreconstructed lithium (100) surface.

Quantum chemistry hinges heavily on the use of computers for its calcula-
tions. The development of computational methods consists to a large extent of
writing and modifying computer programs of considerable size. The present work
forms no exception to this rule. In the following scheme we have indicated

the programs that play a rdle in this thesis:

FRAGMEN PISANI

HFS-LCAO

ETS —l SCPT ———— INTER

PROPERTY

The central program is, of course, the HFS-LCAO program, used for the
self-consistent calculation of the molecular orbitals in the HFS model. In
order to obtain the interaction energy between certain fragments upon combi-
nation to an overall molecule, the additionmal programs FRAGMEN and ETS are
used. First, cne performs HFS calculations for the separate fragments and
combines the resulting data with FRAGMEN, then performs an overall molecule
HFS calculation and finally calculates the interaction energy with ETS. The
program ETS also performs a population analysis of the overall molecule in

terms of fragment orbitals.



One-electron properties may be calculated from the molecular orbitals
obtained with HFS-LCAO, by use of the standard properties program PROPERTY.
An interface, INTER, is needed to expand Slater type basis functions in
Gaussian type basis functions. In pseudopotential calculations the orbitals
may also be orthogonalized to the cores.

Program SCPT is a self-consistent perturbational program, optionally
used to correct the pseudo-orbitals calculated with averaged pseudopotentials.
The perturbed pseudo-orbitals can be used to obtain perturbation corrected
interaction energies and one-electron properties.

Cluster embedding calculations require three steps, two of which are
performed by the HFS-LCAO program, which is extended for this purpose, viz.
the self-consistent calculation on the substrate cluster and the actual em-
bedded cluster calculation. Program PISANI is used to select a cluster from
the substrate and to condense the substrate electronic structure into the

form of an embedding potential and an energy dependent coupling matrix.



CHAPTER II

HARTREE-FOCK-SLATER LCAO CALCULATION OF THE MOSSBAUER PARAMETERS
OF SOME ANTIMONY COMPOUNDS

Walter RAVFNEK, Jan WM JACOBS * and Ad VAN DER AVOIRD

Instuute of Theoretical Chemustry Umwversity of Nymegen Toernooiveld Nymegen The Netherlands

Received 21 January 1983

Thus paper descnbes a (non empincal) Hartree Fock Slater (Xa) LCAO study of the Mossbauer parameters in a senes of
thirteen Sb compounds SbX, (X =F Cl Br 1) S){CH,), Cl; 5 (N=123) SbX,(X - F Cl)and S{CH;),X,(X=F Cl
Br I) n rel with the ch | bonding in these compounds The calculated 1somer shafts agree very well wath the
experimental data correlation coefficient 099 AR /R = -1 08x 10 * The quadrupole sphtting for the Sb(11I) compounds 1s
conststently (correlation coefficient 0 97) too small by a factor of 27 for the Sb(V) compounds the results are more scattered
and even smaller The proporuonality factor could be partly due to the uncertainty n the '2'Sb nuclear quadrupole moment
and parlly to the neglect of core polanzauon effects in the (frozen core) HFS 1 CAO calculauons Test calculanions on HCl1
which are also reported in this paper show that the HFS LCAO method can yield accurate core polanzation corrections to the
quadrupole splitting (Sternheimer factors) but only at the cost of an expensive numerical integration scheme The results
suggest further thal the structures of some of the Sb compounds mught be different from what has previously been proposed

1 Introduction

Since 1960 a large number of Mossbauer spec-
tra have been measured and there has been consid-
erable theoretical effort to calculate the electronic
parameters related to these spectra the electron
density and the electric-field gradient (EFG) at the
nucleus of the Mossbauer-active atom Most at-
tempts to rationalize Mossbauner data with quan-
tum chemical methods have made use of sem em-
pirical techniques such as the extended Huckel
and the CNDO method More recently the
scattered-wave Xa method has been apphed,
mainly to compounds contaiung Fe [1] Moreover,
there exist also a few (ab initio) Hartree-Fock
LCAO treatments of Fe complexes [2] where the
Mdssbauer parameters are obtained without intro-
ducing any empirical data

As an alternative non-empincal method which
yields rather accurate molecular properties and 1s

* Present address Philips Research Laboratories Eindhoven
The Netherlands

cost-effective, so that 1t can be appled to larger
molecules, we consider the Hartree—Fock-Slater
LCAO method [3] It has been used by Geurts et
al [4] to calculate the quadrupole sphtting for the
complexes [Fe,S,(SH),]°27 3", which model the
4-Fe active site in hugh-potential iron-protein and
ferredoxin, Guenzburger and Ellis [5] appled the
closely related HFS discrete variational method
(DVM) to calculate the quadrupole sphtting and
the 1somer shift for some hnear Au(I) compounds
The procedure apphed by Guenzburger and
Elhs [5] differs from the standard HFS DVM
method in the numerical integration They denved
a new integration scheme that makes optimum use
of the axial symmetry of their compounds and
particularly emphasizes the core region They
calculate the EFG by using an analytical proce-
dure for the one-centre terms and a numerical
procedure for the two- and three-centre terms
Geurts et al [4] employ the standard HFS
LCAO method they calculate the EFG using a
STO GTO expansion and a standard molecular
properties program, that also calculates the mulu-
centre contributions to the EFG analytically



In this paper we apply the method of Geurts et
al to a group of thirteen antimony compounds,
viz SbX, (X =F, Cl, Br, I), Sb(CH,),Cl,_, (N
=0, 1, 2, 3), SbX,(X =F, Cl) and Sb(CH,),X,
(X=F, Cl, Br, I) Moreover, the calculational
procedure was subjected to a more detailed inves-
tigation and test on the HCl molecule Our interest
1n the Sb compounds was aroused by Stevens and
Keyzers [6], who noted a fundamental discrepancy
between extended Huckel results for Sb(IIl) and
Sb(V) compounds and the experimental Moss-
bauer data

2. Calculational procedures
21 The HFS LCAO method

The Hartree- Fock-Slater (HFS) or Xa method
[7] 1s charactenzed by the following one-electron
equation

(-7 W+ E(-zu/m)+ 1irile @) dr
A

~3a(3/m)'" (o] )a, (D)= 6,0, (1)
with the electron density given by

p(1) =YL ne*()e,(1) ()

(we use atomuc units unless specified otherwise) In
the HFS LCAO method, developed by Bacrends et
al [3], eq (1) 1s replaced by a secular problem and
the matrix elements are (partly) calculated by
numencal ntegration In several respects, 1t is
similar to the discrete vanational method (DVM)
introduced by Ellis and Painter [8] For the further
discussion we mention that the point distnbution
in the numencal integration 1s given by a super-
position of Fermu distnbutions

F(r)={1+exp[Bu(r—r)]) ™", 3)

centered at the nucler A, where B, and r, are
parameters to be specified, the relative weights of
the distnbutions are given by the fracuons f, of
the total number of integraton points (), that
are assigned to the nucle1 A

Furthermore, the HFS LCAO method makes
use of fit functions for representing the electron
density

p()=Ya,f(1), (4)

'
in order to reduce the number of integrals in the
calculation of the Coulomb potential

Ve() =L a,jr'£,(2) dmy &)

The coefficients a, are determined by a least-
squares fitting procedure to the “exact” density (2)
in any cycle of the iterative (SCF) scheme to solve
eq (1) It 1s this “exact” density which will be
used, after convergence, to calculate the Moss-
bauer parameters

We note here that, starting from the Xa local
exchange approxumation, the HFS LCAO method
15 not subject to any further assumptions with
respect to the form of the potential In particular,
one does not use the (rather crude) muffin-tin
approximation employed 1n the multiple-scattenng
Xa method [3] It has been demonstrated [10] that
1t 15 a very useful tool for rather accurate calcula-
tions of various molecular properties

22 Mossbauer parameters

The two parameters descnbing Mossbauer spec-
tra are the 1somer shift (IS) and the quadrupole
sphitung (QS) These quantities are directly related
to the electron distribution in the molecular sys-
tem, the IS to the electron density, the QS to the
EFG, both at the nucleus of the Mdssbauer-active
atom [11,12]

The IS 8§ 1s given by the following first-order
perturbation expression

8 =47ZR*(AR/R)S'(S)[pa(0) —p5(0)].  (8)

where Z 1s the nuclear charge, R the nuclear
radius, AR 1ts increase upon excitation and $'(Z)
a dimensionless quantity correcting for relativistic
effects (eg, for Sb with Z =51, §' =238 [12)),
the subscripts S and A refer to source and ab-
sorber, respectively In an LCAO calculauon the
density (2) at the nucleus follows from

p(0) =X n, ¥ CLCLx3(0)x,(0), (n

s prq



where (x,) denotes the set of AOs and the C,, are
expansion coefficients. In semi-empirical calcula-
tions one calculates the contnbution from the va-
lence orbutals as

Peat(0) = Nyt (1 = B) X uar (O (8)

where N,,,, 1s the (Mulliken) net atomic popula-
tion (E‘,n"C;‘,) of the s-type valence orbital and
(1 — B) 15 a screening factor [13]

The electrostatic quadrupole interaction be-
tween the asymmetric nuclear charge distribution,
described by the nuclear quadrupole moment Q,
and an inhomogeneous electric field, described by
the EFG tensor V, gives rise to a splitting of the
nuclear energy levels [11].

Eq=[V,,0/41(21 - D][3m} - I(1+1)]
x (1+14n2)"%, (9

where I 15 the nuclear spin (> 1), m, its z compo-
nent, V,, the dominant element of the diagonalized
EFG tensor and 5 =|V,, — V,,)/V,,| the asymme-
try parameter

The elements of the EFG (ensor are calculated
as a sum of nuclear and electronic contnbutions:

nu 1
V, =V + V5, ni={xyz)
Ve =L Zs(3Ro, Ry, — 8,R3) /R,
B

Vel m = (DI, (3r,m, — 8,72) /7810 (10)

In a LCAO calculation the electronic contribution
to the EFG can be separated into one-, two- and
three-centre terms. Denoting the Mossbauer-active
nucleus as A (all coordinates Ry and r, are mea-
sured with respect to this nucleus), the other nucler
as B, C, one obtains:

p:jl: V;;“+V,312+ Vljll’

A
Prll : “Z"u Z"C;»Cn »
» a.,a

X (xq|(3r5, = 8,7) /rxa )

A B
viit=2LnY ¥ LCiG,
»

a B(=A) b

x(xn|(3r,rj—6,}r1)/r’|x,,)
B
+ Z"‘AE Z Cb.ucb m
5 B &b
X (x|(3r7,= 8,72)/r|xs )
B c
vit=En, ¥ ¥ ¥ TG,
» B(=A) b C(»A.,B) ¢

X (x,,'(Jr,rl - B,Irz)/rs

X (1

In practice one often neglects the three-centre
terms and assumes that the two-centre terms cancel
the nuclear contnbution, thus retaining the one-
centre electronic terms only [14].

In semi-empincal calculations on systems with
p-type valence shells one uses the Townes—Dailey
equation [15), which reads
V= (r 2y, (N, — 4N, —4N, J0-R).  (12)
Here (r")P 1s the expectauion value over the p
valence orbital in the free atom, the Ns are net
atomuc orbital populations and (1 —R) 1s the
Sternheimer correction discussed 1n section 2.3.

2.3 Frozen-core calculations. the Sternheimer effect

In molecular calculations one often uses the
frozen-core approximation, assumng that the cores
of the aloms 1n a molecular system are unaffected
by the chemical bonding. Since in such a treat-
ment the cores stay sphencally symmetnc, the core
of the Mdssbauer-active atom gives a constant
contribution to the density al the nucleus p(0) and
a zero contribution to the EFG.

This approxumation seems to work reasonably
well for p(0), differences in p(0) for inner core
orbitals are shown to be very small for [ree atoms
in different oxidation states [2,16]). For outer core
orbitals the situation 1s somewhat less clear-cut
[2,16] For the EFG, however, the approximation
breaks down: the core electrons are polanized by
the distorted valence-electron distnbution and the
field due to the nucler and the cores of the other
atoms 1n the system. The distortion 1s small, but 1t
1s amplified by the large values for (r7?) in the
calculation of the EFG tensor. This core polanza-



uon or Sternheimer shielding [17] 1s allowed for 1n
frozen-core calculations by the use of the
Sternheimer factor R

V‘o’bs"ved —= (1 - R)V'\'/.I:ncc (13)

More correcily one uses a Sternheimer factor R®?
for every orbital pair (a, b) It 1s to be noted,
however, that the use of Sternheimer factors cor-
rects for approximations 1n the MO calculauon In
an all-electron calculation the core polarization 1s
taken into account 1n a self-consistent manner and
there 15 no need to use Sternheimer factors to
correlate the results with expenment

One has tned to calculate Stemheimer factors
from atomic models [17,18) The use of such cor-
rection factors in molecular calculations should,
for vanous reasons, be regarded with scepticism

2 4 Computational procedure

We have used the HFS LCAO program of
Baerends et al [19], adapted to IBM In all our
calculations we have taken the exchange parameter
a fixed at 07 [3] For fiting the electron density
(4) we took a subset of all products of the STO
basis functions on the atomc centres

The density at the nucleus of the Mossbauer-ac-
uve centre may easily be obtained from the con-
verged charge-and-bond-order matrix of the SCF
calculation

The EFG was calculated using the one-eleciron
properties package of the POLYATOM program
[20], which 1s based on GTOs Ths properties
package calculates all multicentre terms, so that
we could check approximations made with respect
to two- and three-centre terms

Further we have used an interface program that
reads the converged SCF data from the HFS
LCAO program, expands the STOs m GTOs and
prepares the input for the properties package The
STO GTO expansion 1s performed according to
the method of maximum overlap fits of Stewart
[21] Each (n, I) STO 15 expanded 1n a number of
(I+1, 1) GTOs, 1e s-type STOs n Is GTOs,
p-type STOs 1n 2p GTOs, elc The number of
GTOs may vary between 1 and 6

3. Test calculations on HCl

We have chosen the HCl molecule to perform
some test calculations because 1t 1s sufficiently
small to investigate the influence of all relevant
parameters and there are extensive data available
in the literature allowing us to check our results
All our calculations were performed for HCI at the
equilibrium geometry (R =2 4086 bohr), which
has an expenmental EFG at the chlorine nucleus
Genp = —3 641 au (calculated from e2gQ =670 %
06 MHz and Q = —0.0782 barn [22}), hence the
electronic contnbution gf}, = —3 498 au

The nine occupied MOs 1n HCI can be subdi-
vided 1nto two sets on the one hand, lo, 20, 30,
17, and 17, which have mamly Cl core character
and on the other hand, the occupied combinations
of 3s¢', 3pt! and 1s" 4o and Se, and the non-
bonding 27, and 27, (the molecule 1s taken along
the z axis) In the calculation of the EFG we make

Table |
STO basis sets used for HCl

Orbual Exponent
Cade-Huo HFS TZ (29)
[23) like *?
Cl s 18 673 1395
2 16 428 565
5794
3 10116 330
2792 230
1ns 160
2p 14021 670
8325
5267
3p 2514 285
1389 205
120
d 240 240
H 1s 1508
2568
2 2270
2p 1763

*) The 3d polanzation function for H has been omitted unlike
Cade and Huo we take the same exponents for the o and 7
basis



Table 2
EFG and p(0) (in au) for HC1
P P P 10%(0)

HFS LCAO all electron ®’
N =800 -1481 -3577 -7038 310%
N = 2500 1070 -3150 -2080 31654
N = 5000 0148 -309% -2942 3214
N =10000 0088 —-3055 -29%67 32028
N = 15000 -0079 —3058 -313% 31962
N = 20000 -0046 -3072 =318 31974
N = 25000 -018I -3092 -3m 31978
N = 30000 -0156 -3082 -3238 31978

HFS LCAO, frozen core ™
rey=20,8,=10 -2763
o144, B =12 -2755
re=10,8c, =12 ~2769
rei=144, 8 =15 -2718

Petke and Whatten [25) -0221 -3687 -3898

Scrocco and Tomasi (26) -0642 -3147 -3789

Moccia © ~0 886 —2846 -3733

McLean and Yoshimine j22] -0451 -2952 -3403

Cade and Huo (23] -0518 -2959 -3478

Grabensietier and Whitehead [27) -0539 —2955 -3494

expenment (2] -3498

*) Using the Cade-Huo like basis of table 1 Other integration paramelers fixed at fo, =08 rcy=1449 8- =1389 f, =02,

ry=0507 By =1508

® Using the HFS TZ basis of table 1 Other integration parameters fixed at N = 1000 fe, = 08, f, = 02, ry = 0564, 8, =1508 See

also text

©) Calculated by Grab

the correspondmg separation
q:| = qcore + qval (14)

In the HFS calculations the fractions of the
integration points per centre were taken as f(, =
4/5, fy = 1/5 throughout Convergence of the SCF
procedure was achieved to 3 x 10 ¢ for the mean
change in the diagonal elements of the charge-
and-bond-order matnx For the calculation of the
EFG we used an expansion of all STOs in six
GTOs [4]

In the first place we performed all-electron
calculations with a basis set denved from the one
used by Cade and Huo [23), see table 1 We used a
density fit set containing 9 s, 7 p and 5 d funcuons
on Cland 3 sand | p functions on H Inclusion of
some additional f- and g-type fit functions had no
effect on the calculated EFG Varying the integra-
tion parameters 7, and B, (3) for the usual num-

ter and Whitehead [27) from the MOs given by Moccia [28]

bers of integration points (N = 1000-2500) we
found the EFG to be extremely sensitive, much
more so than the one-electron eigenvalues This 1s
not surpnsing since the HFS LCAO method has
been developed for valence-electron properties,
which s reflected 1n the use of the Fermt distribu-
tion that emphasizes the valence region For the
EFG the core region should also be very accu-
rately described (due to the (r~*) weighting)

This sensitivity with respect to the integration
parameters has led us to examine the influence of
increasing the number of integration points be-
yond the himuts normally used From table 2 one
can clearly see that the instability in the EFG 1s
matnly due to the core coninbution, which 1s not
quite stable yet at N = 15000 It can also be seen
from table 2 that the density at the nucleus 1s
much more well-behaved

Comparing with the EFG calculations from the


file:///-800
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Table 3
Companson of some properties (in au) of HCI between the
present HFS calcul and the | e
Property * McLeanand ~ HES LCAG™ Difference
Yoshimine (%)
(HF LCAO) [22]
rih 64822 64 380 07
(" 8001 7987 02
(z) 1931 1881 26
(z2) 13389 13384 003
(xf + 8y 20871 20861 005
rdy 34260 34245 004
(2,77 0168 0139 211
(22r7) -2939 -2911 10
Bzl-rlyr3y -3419 -3238 56
Bz —rHyry®y 2153 2115 18

*) Indices ] and 2 refer to Cl and H as ongins respectively
% All-electron HFS LCAO calculation with N = 30000 (see
table 2)

literature 1t 1s observed that the core contribution
is the more vanable one also in general The
difference between the various results can be
largely ascribed to this contnibution We note that
there 1s reasonable agreement between the HFS
LCAO calculation and other (ab imtio HF LCAO)
calculations

In 1able 3 we compare some other properties of
HCl with McLean and Yoshimine’s HF LCAO
results [22] (obtained with Cade and Huo's basis
[23] extended with another 12 STOs) For the
positive moments of the electron density the agree-
ment 1s quite good, whereas for the negative mo-
ments 1t 1s only satisfactory Again, this reflects
the valence electron directed character of the HFS
LCAO method

Just as Guenzburger and Ellis [5] we tned to
increase the stability of the all-electron calculation
by changing the point distnbution in the numen-
cal integration, especially (o improve the core de-
scnption Guenzburger and Ellis performed the
angular integration by imposing the axial symme-
try of their molecules on the electron density In
their calculations they still needed 29000 integra-
tion points to obtain core contnibutions stable to
six decimal figures Since the antimony com-
pounds we are interesied 1n are non-linear, we
trnied a different approach First we followed a
suggestion of Ells [24] to use a superposition of
two Fermu distnbutions centered at the Cl nucleus,

secondly we changed the Fermu distnibution into
an exponential distnibution It turned out that for
equal numbers of integration points, no substan-
tial improvement over the usual procedure was
obtained Thus indicates that the essential feature
of the method employed by Guenzburger and Ells
1s the full use of the C, or D, symmetry

Beside the all-electron calculations we also per-
formed frozen-core calculations with the Is, 2s and
2p orbitals as Cl core We used the HFS TZ basis
[29], listed 1n table 1, for Cl and a Cade-Huo like
basis set for H As expected from the preceding
results, the calculated EFG appeared to be much
more stable with respect to variations in the in-
tegration parameters than for the all-electron case
(see table 2, the vanation 1n g°' over the same
range of integration parameters amounts to as
much as 27 au 1n the all-electron calculations)
Because the core is frozen now, we neglect the core
polanization, the overall Sternheimer factor 1s
found to be 1 — R =118 for HCI

Finally, we vaned the size of the Cl core It
turned out that instabilities 1n the EFG arose as
soon as the Cl 2p orbital was ncluded 1in the
valence set

We conclude that 1t 1s possible to obtain stable
EFGs within the HFS LCAO method either by
performung all-electron calculations with very large
numbers of integration points or by perfcrmng
frozen-core calculations with a standard choice of
integration parameters Calculations of the first
kind are rather expensive and, so, they are not
very advantageous with respect to ab imtio quan-
tum-chermical methods For many problems of
chemucal 1nterest the first option may be impracti-
cal, however If one s interested 1n relative changes
of Mossbauer parameters among senies of simlar
compounds (where the Sternheimer [actor may be
assumed constant) the HFS LCAO [rozen-core
method forms a more rehable alternative for the
often used semmu-empirical methods

4. Calculations on antimony compounds
41 Available Mossbauer data

Mossbauer data are known on many antimony
compounds, a thorough theoretical explanation of
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Table 4
Expenmental Mossbauer parameters *!
Molecule 8§(mms™!) z’qQ (mms ') 1 Ref
(relative to InSb)
SbF, -597 197 [38)
-60 196 139
-604% 196 [40)
-629¢9) 191 141]
SbCl, -524™ 122 140)
~5779 122 019 [42)
-5879 1225 0187 [44]
-59 132 02 [43]
-59 139 [45]
-694® [46}
SbBr, -587% 1ne 01 [42)
-59 18 145}
-59 107 03 [43)
-592¢ 16 03 [44)
-694% [46]
—724™ (47)
sbl, -734® [40]
-767% 56 [42]
-77 [43]
-774™ 471
-794® [46)
SbF, 102 87 (53]
103 87 (54]
1079 [40)
SbCl 506" [55.56]
52 -57 [53,54]
544 -44 [40)
SbMeCl, -42 30 035 131
-437 300 [42)
SbMe,Cl -25 37 077 31
-26 300 082 [31)
-30719 -260 09 [42)
SbMe, o000 152 {42)
-022 163 (48]
SbMe;Cl, 2429 -240 {49 50]
249 -240 51
286" -2 [50]
SbMe, Br, 2139 -221 [49,50]
220 -221 (s1]
238 +2143 {52
2389 +209 [52)
256 -2 151
SbMe;l, 216 -1928 51

*) Expenmental data of SbMe;F; unknown
) Measured with SnO, as source

©) Measured with BaSnO, as source

9 Measured with CaSnO, as source
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the parameters 1n terms of electronic quantilies 1s
still lacking, however The discussions of Sb com-
pounds are either based on simple qualitative
models [30,31] or on serm-empincal calculations
[13,32-34] Usually one treats a series of related
compounds, 1 order to study the effect of sub-
stitution of one or more organic by inorganic
higands One such senes 1s Sb(CH;), Cl,_, (N=
0, 1, 2, 3) for which Stevens et al [31] gave a
qualitative explanation of the IS and the QS as a
function of N Stevens et al also performed ex-
tended Huckel calculations and they found the
size of the QS 1o agree reasonably well with ex-
penment For some Sb(V) compounds, however,
the method failed the calculated QS was a [actor
of 10 too small compared with experiment {6]
Here we consider four senes of animony com-
pounds two contaimng Sb(III), viz SbX,; (X =F,
Cl, Br, I) and Sb(CH,), Cl,_, (N=0, 1, 2, 3)
and two containing Sb(V), viz SbX (X=F, Cl)
and Sb(CH,), X, (X=F, Cl, Br, I) In table 4 we
present a survey of the expenmental Mossbauer
data on these molecules In order to facilitate
comparison of the numbers, we have shifted all
1somer-shift data relative to InSb We used the
following 1somer shifts for InSb with respect to

various sources 8= —853 mm s ' for CaSnO,
[35], 8= —85 mm s ' for BaSnO, [36] and § =
—856 mm s~ for SnO, [37)

Regarding the QS, we wish to make a special
comment on the sign The fit procedure used Lo
deterrmune the Mossbauer parameters from experi-
mental spectra 1s sensitive to the magnitude of the
QS, but not very sensitive to 1ts sign For SbMe, Br,
we found contradiclory data, looking at the other
two compounds from the series SbMe; X, we thunk
1t likely that the sign should be negative (which 1s
confirmed by our calculations, see below) For
SbMe,Cl both the available references give a nega-
tive sign for the QS Still we think 1t probable that
the sign 1s positive since 1t 1s unlikely that in the
series  SbMeCl,—SbMe,Cl-SbMe,; the QS will
change sign twice upon substitution Again, thus
will be confirmed by our calculations

42 Calculations

Table 5 hsts the geometnies of the molecules
used 1n our calculations We have assumed C,,
point group symmetry for all molecules except
Sb(CH,),Cl and Sb(CH,)Cl,, for which we
adopted C, point group symmetry By conse-

Table 5
Geometnes used for the antimony compounds *’
Molecule Ref Distances (A) Angles (deg)

Sb-X Sb-C X-Sb-X X-Sb-C C-Sb-C
SbF, 31] 200 - 819 - -
S$bCl, 157] 2360 - 952 - -
SbBr, 58] 251 - 97 - -
Sbl, A [59] 267 - 99 - -
SbI, B [31] 287 - 958 - -
SbMeCl, (31) 2355 2132 952 97 -
SbMe,Cl [31) 2355 2132 - 97 105
SbMe, [31) - 2132 - - 98
SbF, [13) eq 200 - 180 - -

ax 213 - and 120 - -
SbCl, [60] eq 229 - 180 - -

ax 234 - and 120 - -
SbMe, F, [61) 2091 1997 180 90 120
SbMe,Cl, [62 63} 2355 213 180 90 120
SbMe, Br, 62) 24N 2143 180 90 120
SbMe, 1, [62) 2609 2164 180 90 120

*) C-H=1091 A and ZH-C-H = 95 2° throughout
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Table 6
Exponents of STO basis sets used in the calculations (in au) (29)
H C F Cl Br 1 Sb
Is 1383 540 833 1455 2390 3640 36 65
0783
2 198 kR 560 1375 1940 1820
124 192
2p 220 352 665 14 50 2485 2475
096 148
3s 290 708 1195 1145
175
p 245 735 10 50 895
130
ad 534 1160 1094
4s 325 690 655
195
4p 265 710 710
140
4d 469 545
308
5s 320 285
195 170
Sp 265 225
145 120

quence, the asymmetry parameter 7 can be non-
zero for the latter two molecules only In establish-
ing the geometries we made use of X-ray data as
much as possible

For the senes SbX, we took the angles and
distances mentioned by Bowen et al [37], for Sbl,
we also used the geometry proposed by Wells [59]
(structure A) The angles in the senies Sb(CH,),
Cl,_y are those suggested by Stevens et al [31),
the distances were estimated The structures of
SbF; and SbCl; are rather uncertain [37], one has
assumed a pure tngonal bipyramud, but also a
deformed octaeder has been proposed For SbF
we used Kothekar's geometry [13], for SbCI; Poly-
nova’s [60] which also has been adopted by Bal-
tranas et al [34] We also tnied to find structural
data on SbBr, and Sbl, since we did not succeed,
we omitted them from our calculauons The series
Sb(CH;),X,, finally, has a trigonal bipyramidal
structure with the methyl groups in the equatorial
positions (62] For X = F the X-ray data are known
[61) The Sb-Cl distance was taken as In
[Sb(CH,),Cl,], {63] The Sb—Br distance used 1s
an average of some distances known [rom X-ray
diffraction, the Sb-1 distance was estimated

We performed frozen-core HFS LCAO calcula-
tions with the exchange parameter a =07
throughout {3) The cores taken are 1s for C and F,
1s-2p for Cl, 1s-3d for Br, 1s 4d for I and 1s-4p
for Sb, so for Sb the 4d was included n the
valence set The basis sets employed [29] are histed
in table 6 They are of double-zeta type for the
valence orbitals, supplemented with single-zeta
core functions to allow for core orthogonalization
In the density-fit procedure we gave special atten-
tion to the Sh atom, for Sb we used a fit set
consisting of 125, 7 p, 6 d, 3 f and 2 g Slater-type
functions The number of integration points used
was 2000 for Sb, 600 for halogens, 400 for C and
200 for H Convergence in the SCF procedure was
obtained to 3 x 10 * for the mean change in the
diagonal elements of the charge-and-bond-order
matrix

In the calculation of the EFG the STOs centered
on Sb were expanded 1n five GTOs and those on
other atoms 1n four GTOs, which gives an error of
less than 0 01 au 1n the calculated EFG due to the
STO GTO expansion

We have checked that the Sb core was suffi-
ciently large for the EFG (o be stable with respect
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to vanations in the integration parameters used in
the HFS calculation (cf section 3) It turned out
that the core taken constitutes the “mimimum
choice”, 1e inclusion of the 4p orbitals n the
valence set causes stabililies under normal in-
tegration conditions

4 3 Results and discussion

Tables 7 and 8 and fig 1 summarize our results
Table 7 contains the Mulliken gross and net popu-
lations of the valence orbitals on Sb First we note
that the gross populations of the 4d orbitals stay
praclically constant at the value 10 for all com-
pounds considered, hence the 4d orbitals play no
role of importance in the chemical bonding of
antimony Further we see that in all three series
SbX,, SbX and Sb(CH,), X, the Ss and 5p popu-
lations decrease 1f we go towards the more electro-
negative substituent Companng our gross Ss
populations with the values calculated by Kothe-
kar [13]), using the CNDO/2 method, we find
somewhat larger values, the difference being 1n the
range 0 08—0 21 for SbX, and SbCl; and 0 42 for

In the series Sb(CH,), Cl;_, we observe a
fundamentally different behaviour going towards
more electronegative substituents (1€ lowards
lower N) we notice a decrease m the 5p popula-
tion but an increase 1n the 5s population This
ncrease 1s compatible with the lrend n the expern-
mental IS The decreasing Sp, population corrobo-
rates Steven’s hypothes:s [31], made to rationalize
the experimental Mossbauer parameters

We can use the net orbital populations from
table 7 to check the applicabiity of the
Townes Dailey equation (12) According to this
equation one would expect the QS to be propor-
uonal to the quanuty 4=N,, —3iN;, —{Ns,,
which we have listed in the last column The
agreement appears to be poor, there 1s only a
shight correlation between the A values and the
experimental QS (correlation coefficient 0 67)

Table 8 contains the calculated EFG The
penultimate column contains the quantity x =
Kg—q%'')/q| which can be considered as a
numerical measure for the validity of the assump-
tion that the sum of the two- and three-centre
electronic contributions cancels the nuclear contri-

SbF, The qualitative behaviour 1s the same, bution This approximauon appears to work quite
however well
Table 7
Mulliken gross and net populations of valence orbitals on Sb
Molecule ™) Gross populations Net populations Z, b) a4
4d 5s 5p, 5p, 5p, 4d 5s 5p, 5p, Sp,
SbF; 999 174 047 047 069 1126 210 032 032 053 163 02t
S§bCl, 999 185 as59 059 088 1124 234 0138 038 a69 110 031
SbBr, 998 188 066 066 094 1124 237 044 044 077 088 033
SbI; (A) 997 194 074 074 096 1122 234 053 053 080 067 027
Sbl,(B) 998 194 074 074 105 1123 244 051 051 091 058 040
SbMeCl, 998 179 051 064 095 1123 222 032 038 079 113 044
SbMe,Cl 998 169 046 060 100 1123 209 029 032 087 127 056
SbMe, 997 158 054 054 113 1122 182 030 030 105 123 0175
SbF; 1002 118 050 050 052 1129 123 033 033 034 227 001
SbCl, 1003 141 078 078 080 1128 147 051 051 052 121 000
SbMe, F, 1001 105 063 063 039 128 093 037 037 027 229 -010
SbMe,Cl, 1000 130 067 067 060 1126 119 038 038 039 176 000
SbMe,Br, 1000 135 068 068 065 125 127 039 039 046 163 007
SbMe, I, 998 141 067 067 075 1124 133 038 038 059 151 021

*) Molecules are placed so that the z axs 1s the lone pair axis
% Atomuc charge of Sb from gross populations

> 4 = N(5p,)— yN(5p,)— ; N(5p,), where the N are net populations see also text
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Table 8
Field gradients * (in au) and quadrupole sphttings in mm s ')

puE PrE 7 P x> PE 79 el ® Average

experimental QS

SbF, -3608 -0091 0006 -1693 00069 o110 -358 788 195
SbCl, -2726 0072 0004 —2649 00125 -0043 -269 592 128
SbBr, -21252 0066 0004 -2183 00097 —0048 -223 491 114
Sbl, (A) -1320 0030 0003 —1288 00044 ~0027 -1 289 56
Sbl, (B) ~1921 0056 0004 - 1862 00043 -0051 -191 421 56
SbMeCl, -4 407 0027 -0011 —4391 00049 -0037 -443 974 305
SbMe,Cl -4576 0049 0000 —4526 0 0025 -0038 -456 1004 292
SbMe, -3300 Q047 0013 -3240 00015 -0065 -330 127 158
SbF; 0330 -0034 0003 -0362 00280 0040 -032 (1] 87
SbClg -0787 -0 066 0008 — 0845 00088 0065 -078 172 -51
SbMe, F, 2529 —-0234 0056 2351 00373 0276 263 —-578 -
S$bMe,Cl, 1518 -0074 0052 1496 00399 0086 158 -348 -240
SbMe; Br, 1026 -0026 0049 1049 00518 0033 108 -238 -2117
SbMe,l, 1386 0012 0041 1439 00034 -0048 139 -306 -193

*) Using the frozen corc appr n no Sternh
) Calculated asymmetry parameters (1n par

correction applied

the exper

Y x =Kq-q%')/q| sce also text

I value) 045 (0 35) for SbMeCl, 093 (0 83) for SbMe,Cl

4) Conversion factor 1 au=22mms ' calculated from Q = —028+0 06 barn [66]

In order to calculate the QS we used Steven’s
value for the nuclear quadrupole moment of '*!Sb,
Q= -028+006 barn [66] We note, however,
that the value of the nuclear quadrupole moment
1s actually very uncertain ¥ Values ranging from
—~020 to —054 barn are found 1n the hterature
[39,67,68]

We now compare the calculated QS (with Q =
—0 28 barn) with expeniment For the senes SbX,
the expenimental values are accurately reproduced
(correlation coefficient 099), apart from a con-
stant factor of 23 Further we note that structure
A for Sbl, fits better 1n the trend than structure B
For the senes SbMe,, Cl, _, the situation 1s simular
(correlation coefficient O 98), the factor now1s 2 8
Taking the two senes together one obtans a factor
2 7 (correlation coefficient 0 97) For SbMe, X, the
agreement 18 much worse (a factor of 7 6, correla-
uon coefficient 0 37) although the discrepancy be-
tween Sb(III) and Sb(V) compounds 1s still not as
drastic as n the extended Huckel calculations (6]
The molecules SbF; and SbCl, show a very irregu-

* This uncertamnty anses b the q y ble to
measurement 15 the product of @ and the EFG at the
nucleus accurate calculations or independent measurements
of the EFG n Sb compounds are not available

lar behaviour, one 1s led to the conclusion that the
geometnes used are not correct, a conclusion that
1s supported by the IS calculations (see below),
and by Kothekar's QS results [13]

Let us now bnefly analyse the possible sources
of the discrepancy between the calculated and the
expenmental QS the HFS LCAO model, AO
basis set deficiency, neglect of relativistic effects,
neglect of lattice contnbutions, neglect of core
polanzation and finally the uncertainty of the
nuclear quadrupole moment With respect to the
method and AO basis used we recall that our
calculations on HC] and Guenzburger and Ellis’s
calculations on linear Au compounds have shown
that the HFS LCAO method may yield good QSs
with AO bases of sumilar size as used here In
order to check the influence of the lattice contribu-
tions to the EFG we performed a test calculation
for SbCl,, which has an orthorhombic umt cell
with lattice parameters g =6 37 A b=812 A,
c=947 A and as space group Pbnm [57) We used
a point charge model with the Mulliken charges
from the HFS LCAO calculation It took thurty
shells of equivalent cells to obtain a result stable to
two decimal places The result 1s a lattice contnibu-
tion g= —43IX% 10-3 au, which means that even
with a Sternheimer factor 1 —y,, = 10 the lattice
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contribution 1s neghgible compared to the contri-
bution of the central SbCl, molecule 1tself

The Sternheimer corrections for the neglect of
core polanization customarily used for Sb are not
much greater than umty (1 115 [64], 12 (13}, 123
[6]) The uncertainty 1n Q may be the key factor
taking Q = — 0 54 {68] instead of @ = —0 28 would
yield (together with a Sternheimer faclor of 14)
the factor 27 which would lead to very good
agreement of the calculated QS with the expern-
mental data for the Sb(III) compounds At the
same time 11 would reduce the error for the senes
SbMe, X, to a factor of 3 It s also possible that Q
1s still larger, however, or that the core polanza-
tion effectls are more important (actually the 1s-4d
Sb core 1s considerably larger than the 1s-2p core
in Cl, where we have calculated a Sternheimer
factor of 1 18), while we cannot exclude that rela-
tivistic effects mught be important, too

Finally we compare the calculated asymmetry
parameters 1n the two cases where 1t does not
vanish on symmetry grounds SbMe,Cl and
SbMeCl, As can be seen from table 8 the agree-
ment with expenment 1s satisfactory

Fig 1 shows a plot of the calculated values for
the valence-electron density at the Sb nucleus
versus the (averaged) expenmental 1somer shifts
(with respect to InSb as source) One observes a
very nearly linear behaviour as expected theoreti-
cally The only molecules falling aside are SbF;
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Fig 1 Relation between the calculated valence-electron density
p(0) on the Sb nucleus (1n 1072 clectrons/aj) and the mea-
sured Mossbauer 1somer shufts of vanous Sb compounds

and SbCl,, the deviation 1s (oo large for beng
explicable 1n terms of a possible core contribution
to Ap(0) Hence we feel strengthened 1n our opin-
10n that the trigonal bipyramidal geometry used 1s
not correct for these molecules Further we note
that also the isomer-shift data indicate a prefer-
ence of structure A over structure B for Sbl,

Making a least-squares fit of all points, except
SbF;, SbCl, and Sbl,(B), and using the value
$7ZR? S$(Z)=1303x10"2 em s™' [13], we
calculate AR/R = — 108 X 10~ 3 (correlation coef-
ficient 0 99), which agrees very well with the values
quoted in the hterature, ranging from —144 x
1073 1o — 085 x 1077 [13,34,39,46,65]

Finally we also checked the linear dependency
of the experimental IS on the Sb 5s net popula-
tion, which has been used 1n semi-empirical calcu-
lations (see section 2 1) Again 1t 1s possible to
obtain a reasonable linear fit of the data, the only
two compounds falling aside are SbF; and SbCl;

5. Conclusions

In this paper we have invesuigated the calcula-
tion of Mossbauer parameters by means of the
Hartree-Fock-Slater LCAO method Test calcula-
tions on HCl have shown that 1t 1s possible to
obtain results in good agreement with ab initio
calculations and expeniments The HFS LCAO
all-electron calculations require exceedingly large
numbers of numerical integration points, however,
which makes the method impractical for larger
systems Frozen-core calculations, on the other
hand, yield stable and accurate results (compared
with ab o results) at a standard choice of
integration parameters The price one has to pay 1s
the neglect of core polanzation effects, which could
be corrected for by use of Sternheimer factors for
the quadrupole splitting Such factors are not ac-
curately known, however, but the frozen-core
method can still be useful for looking at relative
properties 1n series of related compounds

We have applied this method of calculation to 4
group of thirteen antmony compounds The
calculated quadrupole sphttings are consistently
too small by a factor of 2 7 (correlation coefficient
0 97) for Sb(111) compounds and a factor of 7 6 for



the Sb(V) compounds Sb(CH,),X, (correlation
coefficient 0 37) These faclors may be partly due
to core polanization, to the uncertamnty in the
nuclear quadrupole moment, and, possibly, relativ-
1stic effects The qualitatve features of the expen-
mental data are very well reproduced, however,
especially for the Sb(IlI) compounds It 1s striking
that also the extended Huckel and CNDO/2 re-
sults for Sb(V) compounds show the same type of
discrepancy (with a factor that 1s even larger)

For the 1somer shift the agreement between the
calculated and expenmental data 1s very good, not
only quahtatively, but also quantitatively A hnear
relation between the valence-electron density at
the Sb nucleus and the experimental 1somer shuft 1s
satisfted for all compounds except SbF; and SbCl
From thus relation we derive a value AR/R =
~108 x 1077 for the Sb nucleus, 1n agreement
with other values given n the hterature

Our results support Stevens’ hypothesis that 1n
the series Sb(CH,), Cl,_, the 5s character of the
bonding increases, while the 5p character de-
creases for decreasing N In the senes SbX; and
SbX we find decreasing Ss and Sp character with
the more electronegative X

Finally, we note that the companson of our QS
and IS results with the experimental data leads to
some suggestions about the structures of some of
the molecules We think that the trigonal bipyr
amudal structures for SbF; and SbCl; which have
been proposed (but not yet confirmed by X-ray
diffraction) need reconsideration Among the two
structures proposed for Sbl,, we prefer the struc-
ture (A) with the larger I-Sb-I angle
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This paper describes an extension of Zicgler’s transition state formalism for the calculation of
interaction energies 1n order to include the pseudopotential Hartree-Fock-Slater-LCAO method
developed by Snyders and Baerends Perturbation corrections to the expressions based on
averaged pseudopotentials are obtamed within a new, self-consistent scheme Test calculations on
a variety of systems are reported It s found that the pseudopotential method reproduces results
obtained with the [rozen-core HFS-LCA© method quite well For first and second row diatomics
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equilibnum distances agree within 0 02 A, dissociauion energies within 0 2 eV, and vibration
frequencies within 20 cm ™' The spectroscopic constants are also mn fair agreement with
expenment For systems contaimng the transition metal Cu, where the binding energy curves
have rather shallow wells, dissociation energies are equally accurate, and deviations in
equiibnium distances and vibration frequencies are larger

I. INTRODUCTION

The calculation of chemical interaction energies 1s a
longstanding problem 1n quantum chemistry For small sys-
tems accuratc ab ihitio methods are available Forlarger sys-
tems, however, these methods become impractical and one
has (o resort to more approximate methods One of these 1s
the Hartree—Fock-Slater (HFS)-LCAO method ' Due to the
numencal integration scheme involved 1n this method, 1t 1s
impossible to obtain interaction energies as differences of
total energies of final and 1nstial states without using exces-
sively large numbers of integration points To circumvent
this difficulty, Ziegler and Rauk? have developed a method
to calculate interaction energies, which essentially uses a
generahization of Slater’s transition state concept’ This
method has been implemented for the HFS-LCAQ method
in 1ts frozen-core formulation, 1t has been shown to yield
numencally stable and physically meaningful interaction en-
ergies

If the frozen-core HFS-LCAO method 1s applied to sys-
tems containing atoms with large cores, e g , transition met-
als, the number of functions needed for the core orthogonali-
zation raises the computation time sigmificantly To
overcome this problem, Snyders and Baerends* introduced a
pseudopotential version of the HFS-LCAO method The
method 1s of the Phillips—Kleinman vanety® core collapse 1s
prevented by adding a projection operator to the Fock opera-
tor Using the pseudopotentia] HFS-LCAO method, core
functions are completely eliminated from the SCF proce-
dure Also this method s capable of giving rehiable and phy-
sically meaningful results,” © but, up to now, 1t could not be
applied (o the calculation of interaction energies

In this paper we extend Ziegler's transition state for-
malism for the calculation of interaction energies to include
the pseudopotential HFS-LCAO method In order to do so

we found 1t necessary to develop a new, self-consistent per-
turbational scheme which corrects for the use of averaged
pseudopotentials This scheme 1s related to the one used for
relativistic HFS-LCAO calculations 7 ® Section II contains
the formulation of our method First we mention the salient
aspects of the frozen-core and pseudopotenttal HFS-LCAO
methods, next we develop the perturbational scheme men-
tioned above, finally we obtain a numencally feasible expres-
sion for the calculation of interaction energies

With the self-consistent perturbational scheme devel-
oped and used here we effectively apply the full Phillips—
Kleinman operator, without replacement of this operator by
a (local) effective potential Thus we obwviate the need for
fitting or parameter adjustment The results of the test calcu-
lations, both on some first and second row systems and on
systems containing transition metal atoms are given 1n Sec
III

Il. FORAMALISM
A. The frozen-core HFS-LCAO method

The HFS method 1s charactenzed by the one-electron
equation

F(, (1) =€9,01), (1a)
where

FMy=T()+ ¥Vy{(1)+ Vclpll)] + V. [ p(1)] (1b)
T (1)1s the kunetic energy operator, ¥y (1) the nuclear poten-
tial, Vc[p(1)] = S 7\, p(2)dr; the electronic Coulomb po-
tential, and ¥, [p(1)] = — 3a[(3/8mjp(1)]"/? the electronic

ge P { umts are used throughout thus
paper) As usual the electron density 1s given by

o) =3 g, (gl

i
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Equation (1) follows from the minimization of the HFS ener-
gy functional

Eusslpl = E"/(V’,IT‘*' VNM,)
7
+ %J'J‘ ra ' p(lo(2)dr, dr,

+%fpm1’.lpundr. Ve Q)

with V,,, the nucleus-nucleus interaction term
J

val
Eues (] =Eoe + I 0, (0IT+ Vi + Ve[ P 11¥))

In molecular calculations one ofien uses the frozen-core
approximation 11§ d that the molecular orbitals can
be partitioned 1nto valence and core orbitals, while the latter
are taken unchanged from the atoms that constitute the mol-
ccule Using this partitioning the electron density can be
written as

A =peore () +poull) 3)

and the energy lunctional (2), now to be optimized with re-
spect to the valence density only, as

+%J’J”n *praslposl2iry dry + 2 [ AUV, Lp{111dr, + Vi

£ al 1 .
= Loore +;n,(¢1|F|$/) —TJ-J-"H Pulllp..(2)dr, dry

+ 3 [ punttIV. pti1lar, —}fp..,uw.[pundr, + Vi @

with

Ear =S AT+ Valt) + 5 [ [ 13 ettt dr, 5

depending on the core orbitals only

Using a LCAO expansion ¢, = X, x,, C,,, for the va-
lence orbitals Eq (4) may be rewnitten in terms of matnx
clements 1n the basis y and the change-and-bond-order ma-
trix P, which 1s defined by

val
Fﬂ' =2"/ch»°1’ ‘6)
]
such that
Pulll=3 Pox.(liy2(l) M
T

Dafferentiatsion of the energy functional with respect to a
general element of P yields

OE s

op,,
As Ziegler and Rauk? noted, Eq (8) 1s a generalization of
Slater’s’® well-known result

=F, (8)

aEHFs
Lonrs 9
an, & &

B. The pseudopotential HFS-LCAO method

In frozen-core calculations one prevents vanational
collapse of valence orbitals into the space spanned by the
core orbutals (core collapse) by explicitly orthogonalizing the
valence space to the core space Because it 1s possible to
achieve core-valence orthogonality with fewer basis func-
tions 1n the core region than needed to accurately descnibe
the core orbitals themselves, the basis set can be smaller than
i the corresponding all-clectron calculation Still, for sys-

I
tems containing atoms with large cores, the total number of
basis functions may become a prohibitive factor even in fro-
zen-core calculations One would like to completely elimi-
nate the core basis functions from the formalism

Phillips and Kleinman® have shown that an orthogona-
ity constraint 1n an cigenvalue problem can be replaced by
adding a nonlocal pseudopotenual to the Hamiltoman A
large number of atomic pseudopotentials and effective core
potentials have been proposed since * '? Phillips and Klein-
man introduced a shift operator {or pseudopotential}

V,,,=;(€,—€u.)|l/'“)('/@kl (10)
In the eigenvalue problem of the pseudo-Fock operator
F,,=F+V,, (1

the core orbutals ¢ , are shifted from their all-electron orbi-
tal energy €,  to the valence energy ¢;, which thereby be-
comes degenerate The valence orbital obtans an arbitrary
admixture of core orbitals, thereby changing into a pseudo-
orbital One has a certain (reedom 1n defining the pseudo-
orbitals, e.g , by requining them to be nodeless in the core
region

Snyders and Baerends* have developed a nonparame-
tnzed pseudopotential version of the HFS-LCAO method 1n
which the pseudopotential used 1s

V.= 2:(?— AN (12)

with € an averaged valence energy More precisely, there 18
one such € for each irreducible representation of the molecu-
lar point group, for simplicity of presentation we will ignore
this complication The averaging involved 1n Eq (12) was



corrected for by using perturbation theory, we will return to
thus point shortly

In this method the pseudo-orbitals are fixed by choos-
ing all coefficients of core basis functions in the pseudo-orbi-
tals to be zero In general, 1¢, if the number of core basts
Sfunctions 1n the corresponding all-electron calculation 1s
larger than the number of core orbitals, this choice mnvolves
an approximation Using the pseudo-orbitals thus defined a
pseudodensity

Pl =3 n (12 (1) (13

18 constructed, n, being the valence orbital occupation
numbers Furthermore, a difference density

4pll)=pull) —pn(1) (14)
18 defined In the actual construction of the Coulomb and
exchange terms n the Fock operator the pseudodensity 1s
always corrected with 4p, so that the important property of
the pseudo-Fock operator [Eq (11)] of having exactly the
same valence cigenvalue spectrum as the onginal Fock oper-
ator 13 retained It 1s assurned, however, that molecular dp
terms may be obtained as a sum of corresponding atomic
terms

Bpa(l) = 3 Bppeml) (15)

It has been shown* that with this scheme reasonably accu-
rate one-electron energies and valence orbutals (after annihi-
lating the core part of the pseudo-orbitals) may be found

Although the perturbational procedure implemented
by Sniyders and Baerends has yielded satisfactory results, its
Brillouin-Wigner-like form precludes the straightforward
use of the transition state scheme for the calculation of inter-
action energies’ as developed for the frozen-core HFS-
LCAO method More specifically, 1t 1s impossible to find an
expression analogous to Eq (8) for the denvative of the pseu-
dopotenual total energy functional with respect to a general
element of the pseudo charge-and-bond-order matnx We
find that a self-consistent perturbational approach,'’ also
used 1n the relativisuic HFS-LCAO method,”® provides a
useful alternative

C. Selt-consistent perturbational approach for the
pseudopotential HFS-LCAO method

The perturbations we are concerned wath are the differ-
ences between the exact and the averaged pscudopotentials
for each pseudo-orbital ¢, ,

4,=V,, _T,F

=;(e,—a|¢..><w..| (16a)

or

A/=(€/'_)Pn P:=z|¢c k)(ll’ek'n {16b)

where P, 1s the projector on the space spanned by the core
orbitals, these perturbations differ for each pscudo-orbital
The sell-consistent problem we want to solve 1

nl‘l’n} =€J¢P’l' <v’ﬁ/|d’1ﬂ/) =1 (17
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where [cf Eq (11)]
F,.,=F+V,+A4, (18)

As zeroth order problem we take the SCF problem of the
averaged pscudo-Fock operator,1¢,

Fove, =i R 1900) = by, (19)
where

FR=HO+Vc[g2) + V. [p7), (20)

HO=T+Vy + Ve[ Poure +8p] + ¥, 2n

Pt = Zn,vfﬂ,(l)#;'.’ﬂl). (22)

‘°‘(l)—pm(l)+4ptll +ppl) 23)

We now expand the pseudo-orbitals and the orbital energies
mEq (17)as

Yoy = NANE, + A0, + A0, + ) (29

g =e"+Ae" +A%P+ - (25)
With the intermediate normahization condition
W2, 108) =0, k=12, 26)
the normahization constant becomes
N =1-W, )+ 27)

Substituting Eq (27) into Eq (24) we obtain the following
power senes in A for the pseudoelectron density matnx

Pl 1) = Z ¥, (15 (1)
= '°’(1 1)+ Ap0L V) + A %30, 1) 4+«

(28a)
where
PRI 1) = 3 n ] (WIS
(28b)
o, |l—zn ¥ (M) + o (RS (1)].
(28¢)

o, 1)—2'1 [V + v (D51

+'I/,’,',(|N",f2 (1)
= IV U (s (1)), - -+ (28d)

Using Eq (25) we niote that the {(one-electron) perturba-
tions actually are series in 4

AD, =AH" + APHP + - -, (292}
Hlll (GM —ar,, 29b)
H;ﬂ:f}"}’“ {29¢)

From Egs (1b} and (28) 1t follows, moreover, that the pseu-
do-Fock operators F,, ; will also contain perturbation cor-
rections through the corrections to p(9(1), the so-called indi-
rect perturbation corrections, 1 ¢ , we have

Fo,=FQ4AFQ), +AFQ, +--, (30a)
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FO _HM 4 VvE+vE, k=12, {30b)

V' and F'*'are the k th order corrections to the electronic
Coulomb and exchange operators, respectively It may be
denved that

Ve = [ v o, k=12 B1)
and
o EL[Pil’“)
Vi = 5 25 V.Ml 32a)
— l[p‘,’,’(l) __1_[p£',’(l) ]’] o
v [3 om ] 7 Loy | [ 71200
(32b)

with o' defined n Eq (23)

Substituting the senes expansions obtained so far into
the self-consistent problem [Eq (17)] and collecting like
powers of A we obtain the coupled-HFS equations

P2, = e, 3l
Fo, + oo, =28, + 45, (33b)
FLO” Pl;)l + FL!“I Pyl + F(Pl:'l Pgl/

=&Y, + 6", +¢” e {33c)

The zeroth order equation (33a) s satisfied by assumption
The first order equation (33b) yields

J

6" = 1FL L g ) (34a)
F"'/ = Z ;[/:;’,‘a',,',', (34b}
alll = ( Pnllk F(pltlll Pul]l)_ [34‘:]

k= dw _ d:n
As usual tn self-consistent perturbation theory, the first or-
der corrections to the orbitals are given implicitly, they can
be solved using a self-consistent procedure The second or-
der equation {33c) yields

dln = W";g';l""p'x'n P,-"l) + (wl;'/ngs]-/' PD’II)' (353)
Ui, =3 Yl (35b)
o SR = ) S RER )

6}“' _ ‘.1,'01

Again, this set of equations can be solved self-consistently
Unlike 1n conventional Rayleigh-Schrodinger perturbation
theory 1t 1s not possible to obtain the second order correc-
tions to the orbital energies from the first corrections to the
orbitals alone

Having formally solved the self-consistent problem
[Eq (17)] we now turn towards the total energy functional in
the pseudopotential framework As basic relation we use the
1dentity of valence orbital energies in all-electron and (exact)
pseudopotential schemes

WIF|¥) = W, |F+ V,,,10,) (36)

Combining Eq (36) with Eqs {4) and {14), we obtain after some mamipulations

Evourslp] = [Em + S, s IH+ 3410

+ 3] ratpaltionttr, ar,+ 3 [ sti¥. 1 ptttar, + Vo

— 2 | [ ra sptsaptziin, dr, — [ ap(¥e L o,0) + ¥, L1}, @)

It may be noted that we do not have to make the usual approximation of neglecting the noncommutativity of the two-electron
operator with the core projector 1 ¢, of using p,, instead of p,,, 1 the two-electron part of the energy), since we exphicitly

retain Ap 10 OUT €Xpressions

Using the perturbation expression denived previously, we now wnite

Epsys [PV =E® + AEM + A’E® (38)
The zeroth order term reads
EO=E_. +J- H1p20, U'dr, + %J’J‘ ra ' ANPSRWr, dry + %fp'“'(l)i’, [ p™(1))dr,
=1
+Vun + % ff ri2 'Ap(1)4p{2)dr, dr, — J.Ap(l)[ Ve[ A200] + V. [ p*(1)])dr, (39)

Using the identity
[ o va, + [ [ iz o2eiain, ar,
1 =1

+ [ o, Lpan, =0,
(40)

r

which follows from the intermediate normalization condi-
tion [Eq (26)], we obtain for the first order term

E‘”=Zn, W2 1H 1))
7

- [ so v+ vimyan, 1)
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Further, using an 1dentity analogous to Eq (40) and the first
order perturbation equation (33b), we obtain

=30, (5, IHTWR)
2 LGOI + (0 H DI ]

—J-Ap(l)[l"}’(l)+ v)]dr, (42)

We note the occurrence of Ap-dependent terms 1n all
energy expressions [Egs (39), (41), and (42)] These originate
from the use of p,,, tnstead of p,, 1n the two-electron part of
the total energy There 1s another important difference
between our scheme and current pseudopotential meth-
ods® '? since we use the full Phillips—Kleinman operator As
Chnstiansen ef al '* have shown, the mixing of core orbitals
nto pseudo-orbitals transfers electron density from the va-
lence region to the core Therefore these pseudo-orbitals
alone cannot be used to construct an effective potential U 7
in the Goddard-Kahn manner.’ yielding long negative tails
n U To solve this problem Chnstiansen et al require
their atomic pscudo-orbitals to match the all-electron va-
lence orbitals beyond a certain radwus (cf the Durand-
Barthelat pseudo-orbitals'') In the pseudopotential HFS-
LCAO method this problem does not anse, due to the use of
the full Phullips-Kleinman operator tn conjunction with the
4p term [Eq (14))

D. The calculation of interaction energies

In this section we denve an expressian for the calcula-
tion of interacion energies within the pscudopotential
framework First we obtain the zeroth order contribution,
following the methodology of Ziegler and Rauk?, next we
consider the perturbation corrections

Consider a molecular system and assume 1t to be a
buildup of certain subsystems (A, B, ) which we call frag-
ments We label the overall system after convergenceby TA
The interaction energy is given by the quantity

AE=EPsm-s[ ZA] —ZEPSHFS[A] (43)
A

Using the perturbation sertes [Eq (38)], we rewnte Eq (43)
as

BE=4E" + JAE" + L’ AEP +

ZEIH[AL

(44a)

AE™ =E™'[ ZA] - k=012,
(44b)
Due to numerical difficulties the zeroth order contribution
cannot be obtained simply as a difference of total energies
Following Ziegler and Rauk? we calculate AE'™ intwossteps,

using an intermediate “'state” LA
Em_(E(m[ ]—EID‘[ZA])
+(E'°'[ZA ] _ZEIOIIA]) Ms)
A

E'™[ZA] does not correspond to a state of the total system
{1, to a wave function), but 1t simply 1s E'® evaluated with
the density matnx p'“n LY =2, pf,"(l 1) The (dhag-
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onal) electron density then is the sum of the densities of the
fragments 1n their positions 1n the overall system

Pa m—; [ Pan (4o +p2"(1)] (46)

We note that we define V,f,‘ as containing the average orbital
energies € of the converged overall system for reasons to
become clear, exphcitly

v 71
Pia_ P (@7)
First we calculate the term E®{3A] — 2, E™[A]

Using the zeroth order energy expression [Eq (39)), we ob-
tan
E®[3A) - T E”(A]
A

=4E, + AE.,, + AEV + E,, (48)

where

4K~ 3 fp‘““un VE(1)+ Ve [ o (U] dr,

+ AZJI ra ' PP 2Mdr, dr

+%;'$$R;'Z¢Z,, (49)
AE,,, = % ;p'""m[;/, [gp"’"ml Al p‘°"m]]dr..
{50)

E“.z,.,.—zj' [7 281 - 7AM)] 2200, Uidr, (51)

and

AES, = - — EJ f riz | dp(1)ap®2idr, dr,

- ;fdp‘mlv,[;p'“"m]
V.l Jar, (52

We note that =5 o § Ap*()Vc [ p27(1)]dr, n AE'S, and
AE,, havecancelled The terms 4E, and AE,,, have exact-
ly the same functional form as 1n the frozen-core formalism,
except that in AE,, the pseudodensity replaces Lhe valence
density AEY, has no analog, 1t 1s due to the inequality of
the pseudopotenual nnial and final states AE'Yy, contains
correction terms involving 4p to 4E,, and AE,,., We ex-
pect 1t to be small, since Ap integrates to zero and the magm-
tude of 4p 1s quite small in the valence region, where pseudo-
and valence density do not differ much

Secondly we calculate the energy difference
E®[ ZA] — E™[3A) LetpL* be given in the basis of the
{ragment pseudo-orbitals, 1 e,

=3 PD, 405 53
J
then we can express p:,i as

A =ppt + EAPi?l.,«ﬁ ér (54)
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Following Ziegler we define a transition state, labeled TS, =pir + % S 4P% 447
1y

P y¥e

PR =—(pE+p5 =Y 0,4 (55)

1
2
]

Using a Taylor expansion of the zeroth order energy functional one may denve?
AE, =E"[ TA] - E®[ZA]
_ 1 9E"™ 2 9E® +l JE™
716402 |l 390, | 6 30
which s correct to fourth order inthe AP'% , Equation (56) 1s independent of the actual form of the energy functional For the
zeroth order energy functional [Eq (39)), the denvative with respect to a general element of the (pseudo) charge-and-bond-
order matnx 18 given by
JE™@
arg,

]APﬂw (56)
ia

’

=Ff,’,‘+(¢, (—Vc[Apl—%% V.[p""l)id.). (57)

which differs from the analogous result in the frozen-core formalism [Eq (8)] in some 4p-dependent terms

Comblmng_Eqs {56) and (57) we armnive at + 1 (l _ 1 4 )Vx (o] (59)
4E, =tr(G4 PY), (58) 6 3 ptr
where G 15 the matnix representation of the operator It1s our specific choice of the intermediate state A, viz Eq
G=T+Vy+ Vel p™—dpl + T/’I'A (47), that allows us to treat the (average) pseudopotential in
\ 1 4 the transiuon state term 1n a ssmple manner, that corre-
+ —( - T,:\ )V, [ ™) sponds closely to existing programs for the frozen-core HFS-
6 3p LCAO method
+ 2 1 - L_A_E)V' [ p“] As we will illustrate in the next section, the perturba-
3 3 p™ tion corrections Lo the zeroth order interaction energy do not

TABLE | Enponents of STO basis sets used **

H-dz Hi Cu O-1z Frz Clu Cu-dz Cu 1z
1s 128 138 {5 40} 17 36) 833 (13 95) (24 45) (1430
076 092
069
2 460 758 324 15 63) {8 35) (12 80)
210 288 194
128 1712 074
» 330 (660) (5 30)
2%
160
45 190 245
100 140
085
2p 100 100 294 408 454 (6 70} mm (17
148 208 230
082 12 124
» 283 453 453)
208
120
L] 148 200
100
M 200 200 154 108 510 690
165 310
128
* Numbers n brackets denote STO's used for core orth 1] n fi

* Reference 14



present instabihity problems, they can simply be obtained as
differences of the corresponding overall system and frag-
ment perturbation corrections From Eqs (41)and (42)1t can
be seen that they may be considered as corrections to
AE®,, and AEY),

In summary, using the pseudopotential HFS-LCAO
formalism, we have obtained the interaction energy of an
overall system, thought to be composed of {fragments, as a
perturbation series The zeroth order term reads

4E" =AE, + AE,,, +dED,, + AE), + AE,  (60)

The first and second order corrections are defined through
Eqs (41), (42), and (44)

1. CALCULATIONS AND DISCUSSION

In all our calculations we have taken the exchange pa-
rameter  fixed at 0 7 ' The basis sets used are listed in Table
1, they were obtained by a least squares fit to numenical HFS
orbitals **

We have implemented the computational scheme de-
veloped in Sec 11 In particular we have implemented the
self-consistent perturbational scheme up to second order ina
computes program that can be used in conjuction with the
HFS-LCAO program The Fock matnces are constructed
using the numencal scheme of the pseudopotential HFS-
LCAO method, however, with the option of using fewer in-
tegration points We find convergence of the calculations to
be quite rapid, using a standard damping procedure in the
self-consistent calculation of the first and second order pseu-
doelectron densities

In Tables IT and I1I we hst the converged orbital ener-
gies for Cu and F, at different levels of approximation We
note that even for the pathological case of the copper atom
with the 3s and 3p orbitals included in the valence set, the
convergence of the perturbation senes in quite rapid The
average deviation of the orbital energies from the frozen-
core calculations for the “‘real” valence orbitals 3d and 4s1s
00297, 00037, and 0 0035 a u for zeroth, first, and second
order, respectively The spread in the orbital energies within
one irreducible representation for F,, approximately 18 eV,
1s more typical (or the molecules we intend to use the pseudo-
potential method for From these and other calculations 1t
appears that for most practical purposes first order perturba-
tion theory suffices Further we conclude that the valence
orbital energies are accurate to about 0007 au or 02 eV,

TABLE II Orbatal energies (in a u ) for Cu with 353p%34 '%4s' valence in
restncied descniption using a double 2cta basws.

Pseudopotential

Zeroth First Second Frozen

order order order core
3s —388%4 — 41433 —41972 — 42546
4s — 02066 — 01350 —-01727 —017172
3p -27766 — 28058 —28022 — 28050
3d -01977 —02293 — 02240 —0274

dev* 00646 00141 00050

. 1
Average deviation dev = W;":I‘P—chl
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TABLE III Orbital energies inaujfor F,at R=270au

Pseudopotential

Zeroth Fist Second Frozen

order order order core
20, - 11755 — 11958 —11973 12051
3o, —0544) 05420 — 05419 — 05494
20, — 09662 — 09652 — 09651 09776
17, - 013238 —013231 -03231 03283
ir, — 04440 — 04440 — 04440 — 04484

dev® 00091 00069 00067

* Average deviation dev = _’lv z n e — <)

which 1s shightly better than the value 001 au given pre-
viously by Sniyders and Baerends *

In Table IV we illustrate the convergence of the pertur-
bation corrections with the number of integration points for
another typical molecule (CO)at its equilibnum geometry It
can be seen that already for small numbers of integration
points the results are close 1o their converged value This
pleasing property enables us to obtain self-consistent pertur-
bation corrections in relatively little computing ttme (typi-
cally a few iterations of the zeroth order calculation) The
rapid convergence can be explained by two observations In
the first place, the higher order pseudoelectron densities,
Egs (28c¢) and (28d), exactly integrate to zero and are rela
tively smooth in space, which makes it easy to integrate them
with a small number of integration points In the second
place, the dominant contrbutions to the corrections come
from the direct perturbations H ' [Eq {29)}, which depend
on lower order terms only

The numerical stability of the perturbation corrections
to the total energy provides the justification for the calcula-
tron of the corrections to the zeroth order interaction energy
as differences of these terms [Eq (44})]

Having investigated the charactenstics of the self-con-
sistent perturbational approach as such, we now turn to the
calculation of interaction energies We reterate that the
pseudopotential method is meant to reproduce the results
obtained with the frozen-core method Therefore our main
objective 1s the companson of both methods, where possible,

TABLE 1V Convergence of correction terms {in a u | with number of inte
gration points N for COat R =2 132au

N 250 500 1000 2500

€l —002698  —00273  —002725 —002724
€l - 0001 60 — 000169 — 000l 65 — 0001 61
€l +0004 12 + 0004 05 +0004 14 + 000415
el —000529 —000505 —000S16 —0005I4
e —000205 —000205 —000205 — 000206
4 + 0000 52 + 0000 50 +0000 49 + 0000 49
& —000007 —000007 —0Q00007 000007
. +000032  +000032 4000032  +000032
E™ —-002015 -002017 —-002014 —002014
E™ -000533 —000536 —000535  —000523S
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TABLE V Energy differences AE (restnicted ~unrestncted) in a u ) for some atoms

Atom Valence  Basis® Pscudor | F. Difference
H 15 dz ~ 00607
iz ~ 00610
C 25727 ” 00386 - 00620 +00033
0 272" z - 00678 00704 + 00026
F w2t z -00179 00185 + 00006
cl is'3p* iz - 00105 ~ 00100 — 000035
Cu 3d 45! dz - 00129 ~ 0008 - 0001
iz 00142 ~ 00137 — 00006
*See Table 1

however, we will compare our results with experiment

In Table V we list the energy differences connected with
the change from a spin-restricted to an unrestricted descrip-
tion for some atoms It can be seen that the numbers ob-
tained with the pseudopotential and frozen-core methods
agree well, differences ranging from a few hundredths to a
tenth of an eV Both restnicted and unrestnicted calculations
are performed using fractional occupation numbers, hence
they descnibe {different) averages over pure spin states The
pseudopotentials used are the ones generated for the restrict-
ed atoms * Therefore the differences in AE reflect the ability
of a single atomic pseudopotential to describe different pure
spin states

In Tables VI and VII we give the interaction energy for
CO and Cu, as a function of internuclear separation We
note that the interaction energy s calculated with respect to
unrestnicted atoms at infinite separation ustng the idenuty
AE{AB) = E4(AB) - E,(A)- E (B)

= [Ex(AB) — Eq(A) - Ex(B)]

— [Eu(A) — Eg{A)] — [Ey(B) — Ep(B)], (61}
where the subscnpts R and U denote restricted and unres-
tncted calculations, respectively For both molecules there1s
Just one 1rreducible representation of the molecular point
group with more than one occupied valence orbital The
spread 1n the valence orbital energies within this irreducible
representation 1s quite different, however for CO at
R=2132au ntis15eV,forCu,atR =400au 1tisonly2
eV This obviously influences the effect of averaging and the
magnitude of the perturbation corrections, the second order
corrections for CO are found to be larger than the first order
corrections for Cu,

From the two cases shown a general feature of our cal-
culations emerges The pseudopotential method reproduces
the interaction energies obtained with the frozen-core meth-
od accurately for large values of R For small values of R,
however, it gives increasingly too negative interaction ener
gies Of course for small R both methods eventually break
down It may very well be that the pseudopotential method
breaks down more quickly, because its assumptions are more
severe Both frozen-core and pseudopotential methods re-
quire the core orbutals to have their atomic form, 1n addition
to this the pseudopotential method also requires them to
have their atomic orbiral energy The phenomenon of core-
level binding-energy shifts, in which nitial state effects are
known to be important, contradicts the validity of the last

ption The conseq of this shift for pseudopoten-
tial calculations are unknown, however Apart (rom these
assumptions our pseudopotential method also approximates
4p by a sum of atomic terms [cf Eq (15)] For molecules
with convalent bonding we expect the effect of this approxi-
malion to be small

From the data in Tables VI and VII and similar data for
some other diatomics we have calculated the spectroscopic
constants listed 1n Table VIII Comparing the results ob-
tained with pseudopotential and frozen-core methods for
CO, F,, and Cl, we find a good agreement, differences
amount t0001-002 Amm R,,01-02 eV n D,, and 10-20
cm™'mmw, For Cu,and CuH the results are somewhat less
satisfactory Agreement in D, 1s the same as for the first and
second row systems, but due to the very shallow wells in the
potential curves (the binding energy only slowly varying
withR ), R, and w, are very sensitive to small inaccuracies in
the binding energy This 1s illustrated by the effect of a

TABLE VI Interaction energy (in a u ) for CO with respect to atoms in unrestncted description

Pscudopotential

Zeroth Furst Second Frozen

R order order order core
1832 — 023296 — 03607 — 03689 — 03455
1932 —0179) — 04057 - 04128 — 01970
2032 — 04047 — 04276 - 04337 - 04229
2132 -04128 - 04330 — 04383 - 04307
2232 — 04087 — 04268 — 04315 — 04261
232 - 01962 — 04129 04171 -04130
2402 -03781 -013939 - 03977 - 013943
252 03566 - 03718 —013752 —013722
2632 —-03329 —-0MP — 03510 —0349
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TABLE VIl Interaction encrgics (in 8 u ) for Cu, with respect (0 atoms 1n unrestncted descnption using a

double zeta basrs set
Pseudopotenial

Zeroth First Second Frozen
R order order order core
330 —00875 — 00869 - 00875 —005%4
31 — 01068 - 01059 — 01064 - 00932
400 01112 -01102 — 01108 — 01058
425 —01063 —0109 — 01085 — 01048
450 — 00969 — 00959 — 00961 - 00974
473 00861 — 00850 — 00851 — 00870
500 - 00751 — 00740 — 00740 — 00756

change of basis set in the Cu, calculations In the tnple zeta
basis the curve 1s more shallow than in the double zeta basis,
deviations are consistently larger as well
The perturbation corrections can be seen to influence
D, most (cf F,), R, and o, being rather insensitive This can
be attnbuted to the fact that the perturbation correction to
the interaction energy vanes relatively slowly with distance
Generally the cortected spectroscopic constants are in better
agreement with the ones calculated with the frozen-core
method The only exception 1s Cl,, although differences are
still quite small
1t 18 1nteresting to compare the results for F, and Cl,
with results obtained with other pseudopotential methods
Kahn et al ° find the following deviations from all-electron
results AR (F,)=49%, A4D,(F,)=43%, AR,(Cl,)
= 69%, and 4D,(Cl,) = 69% The corresponding results
obtaned by Hay ef al® are 0 7%, 8 8%, 2 5%, and 8 9%

The best results are obtained by Chnstiansen et al '> 0 7%,
14%, <02%, and 4 8% Our series of deviations reads
07%, 27%, 05%, and 6 5% Hence our results for the
spectroscopic constants are only slightly less accurate than
Chnistiansen’s, however, for small R deviations in the ener-
ges are larger

Although we did not optimize our basis sets, our pn-
mary goal being the companson of pseudopotential and fro-
zen-core methods, 1t appears that our results are fairly close
to the Hartree—Fock—Slater imits obtained with Becke’s nu-
mencal method'® (cf also Refs 17-19 for accurate HFS cal-
culations on diatomics} Becke found for CO R, =112 A,
D,=120eV,w, =2170cm ", and for F, R, =138 &,
D,=32eV,w, =1060cm '

We note that the agreement of the HFS results with
expenment 1s quite good, the only exception being D, and w,
for F, However, F, 1s a notoriously difficult molecule, Har-

TABLE VIII Sp P for some
R,(A) D,(eV) w,(cm )
co P, 114 12 2110
Ps, 112 18 2120
PS, 112 1ne 21%
FC 114 n7 2140
Exp 113 1t 2170
F, PS, 142 112 1060
Ps, 142 303 1050
FC 14 295 1050
Exp 141 160 917
a, PS, 208 240 537
PS, 209 262 316
FC 208 246 532
Exp 19 248 560
Cu,ds* PS, 210 301 358
s, 210 298 358
FC m 290 364
a PS, 207 231 315
PS, 208 230 316
FC 220 210 275
Exp 2 203 265
CuH dr PSy 147 26 1930
PS, 147 25 1950
FC 150 23 2520
Exp 146 27 1940

*PSo. PS,, and PS, denole zeroth, first, and second order

notes a frozen-core calculation
®See Table I

y FCde-



28

TABLE IX Binding energies (in eV} for some polyatomic molecules in thew () equil geome-
y®
Pseudopotential

Zeroth First Second Frozen-

order order order core Fxp®
CcO, 183 189 191 186 165
C;H, 163 166 167 167 168
CH, 217 no 221 222 231
CuCor 013 064 08?7 06
Cuy? 732 728 716

* Basis sets used double zeta for Cu, triple zeta for H C and O, see Table |

* Reference 22

“R{CuC)=1375au, R(C-O)=220au, energy relatsve to Cu and frec CO

4Cuy{3, 0) cluster with bulk Cu—Cu distances (4 82a u |

tree-Fock does not even predict bonding We also note that
the HFS Cu, results are comparable to recent effective po-
tential®® and all-electron?' ab imifio calculations only after
inclusion of CI in the latter

In Table IX we list the binding energies for some polya-
tomic molecules The results indicate that the pseudopoten-
tial method reproduces frozen-core results equally well for
larger systems The differences found are in the order of a
few tenth of an eV, except for CO, where 15 1s 0 5 eV (which
amounts 10 2 7%)

IV. CONCLUSIONS

In this paper we have developed a computationally fea-
sible scheme for the calculation of interaction energies using
the pseudopotential Hartree—-Fock-Slater-LCAO method
The scheme 15 based on a pseudopotential energy functional
which we denved using the formal idenuty of orbital ener-
gies in all-electron and pseudopotential methods, and on a
self-consistent perturbational scheme to correct for the use
of averaged pseudopotentials We wish to emphasize that the
generation of pseudopotentials, and the subsequent SCF and
total energy calculation, are completely straightforward,
without any need for parametenzation or fitting of effective
potentials

It1s found that the perturbation series converges rapid-
ly, for most practical purposes the first order result being
sufficient The results of the perturbation calculations are

sults are comparable except that due to the shallow well in
the binding energy curve R, and w, are less accurate Calcu-
lations on polyatomic systems show that the performance of
the pseudopotential method does not depend on the size of
the system

In conclusion, we find that the general agreement
between pseudopotential and frozen-core HFS-LCAO
methods 1s good Moreover, agreement with experiment 1s
satisfactory as well Therefore the pseudopotential method
seems accurate enough to investigate physical effects, such

as the influence of cluster size 1n ch rption calculation
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CHAPTER 1V

THE CALCULATION OF ONE-ELECTRON PROPERTIES
USING THE PSEUDOPOTENTIAL HARTREE-FOCK-SLATER LCAO METHOD

W RAVENEK and FM M GEURTS

Insttute of Theorerical Ch y Ul y of Ni

Received 14 May 1984

id, Nymegen, The Netherlands

Using the pscudopotcnual and frozen core Hartree-Fock-Slater LCAO melbods we have calculated electne mulupol

.
the d Y

potental electnc field electne field gradient and diamagnetic shielding for the

molecules HF HCl LnH LiF LlCl CO CO, C,H,; and C,H. The pseudopotenual method 1s found 10 reproduce
frozen core results very well if the pseudo-orbitals are core orthogonalized The calculated dipole and quadrupole moments
agree well with the available Hartree-Fock and expenimental values

1. Introduction

In the past decade numerous pseudopotential
and effecuve core potenual methods [1-23)
(hereafter collecuvely referred to as pseudopoten-
tial methods) have been developed that accurately
reproduce all-electron (or frozen-core [22,23)]) re-
sults 1n electronic structure calculations For in-
stance, Chnstiansen ¢t al [18) have calculated
potenual curves for F, and Cl, that differ by only
0 02 bohr 1n the equibbrium separation and by less
than 01 eV in the binding energy In the evalua-
tion of these methods most attention has been
directed towards the calculauon of energetic quan-
nties such as i1omzation poteptials and spectro-
scopic constants that can be obtained from poten-
ual curves

In a number of cases also one-eleciron proper-
ties have been calculated [1-3,10,14,19-21]), mostly
the electnc dipole moment These properues are
commonly evaluated from the pseudo-orbitals as
such without core orthogonalization, although 1t 1s
realized that this involves an approxumation The
agreement between pseudopotential and all-elec-
tron values for the dipole moment 1s generally
good, differences being 01 debye or less Excep-
uons to thus rule form the differences found by
Dixon and Hugo {10} for NaCl (0 35 debye) and
by Preuss et al [20] for HCl (0 3 debye) We note

that in the majonty of cases hydndes were studied,
which constitute a relatively muld test for pseudo-
potentials

Other properties have only been considered
sporadically Kahn and Goddard [1] calculated the
quadrupole moment, the potenual and the electnc
field gradient at the nucleus for LiH and Li,
Mebhus et al [2] did the same for some excited
states of LIH The potenual at the nucleus has also
been calculated for HF and HBr by Kahn et al
[3] We will return to these calculations in the
discussion of our results (sectuon 4)

Pscudopotential methods aum at a simulanty in
the valence region beteen pseudo-orbitals and va-
Jence orbitals obtained from all-electron calcula-
uons Proper valence orbitals may be obtained by
orthogonalizing the pseudo-orbatals to the core (cf
section 2) Dixon and Hugo [10) explicitly assume
that, due 10 the sphencal character of the cores,
this will only have a small influence on the dipoie
moment Qualitatively 1t 1s clear that this wall hold
for all properties that mainly sample the valence
region, such as electnc multipole moments and the
diamagnetic susceptibility In this paper we will
pursue thus matter quantitatively by actually
evaluating one-electron properties before and after
core orthogonalization of the pseudo-orbitals for a
vanety of molecules We wall also consider proper-
ties that manly sample the core region, viz the


file:///ijmegen

32

potental, the electnc field, the electnc field gradi-
ent and the diamagnetic shuelding at the nucle

In our calculations we use the Hartree—Fock-
Slater (HFS) LCAO method of Baerends et al
[24.25] 1n the pseudopotenual version of Snujders
and Baerends [22] In section 2 we will outhne 1ts
essenuial features Since the computational scheme
of the HFS LCAO method concentrates on the
valence electrons, we will compare our pseudo-
potenuial calculatons with the corresponding
frozen-core calculations

The HFS LCAO method 1s known to yeld
good agreement with expennment for a vanety of
properties [26] equibbnum geometnes, binding
energies, streiching frequencies, electrornuc transi-
tion energies, dipole moments and dipole moment
denvatives Recently Smyders et al [27] have
calculated electnic field gradients for H, and CH,
using the fitted one-clectron density

p(r)=Y P x.(r)x2(r)=Xa,f(r),

with very satisfactory results In the present paper
we have used the “exact” density, calculated from
the MOs, rather than the fitted density After a
STO GTO expansion [30) of the STO basis func-
tions x, we can use a standard one-electron prop-
erues program [31] for gaussian-type orbitals
(GTOs)

2 The pseudopotential HFS LCAO method

In the pseudopotenual HFS LCAO method
[22,23] core collapse 1s prevented by adding to the
Fock operator a pseudopotential

Vo =L (e, — )i ¥il (21)
k

which shifts the core orbitals ¢§ from thewr all-
electron orbital energies € to the valence energy
¢, Ths valence level thereby becomes degenerate
The solution of the SCF problem then gives a

pseudo-orbital of the form
VP =+ T dGa,,, (22)
P

with arbitrary coefhicients a,,
In order to determune the coefficients a,, 1 eq

(2 2) one usually requires the pseudo-orbitals to be
nodeless and to have maxaimum sumlanty wath the
corresponding valence orbitals J; in some sense
For instance, one may require y/* and y; to have
maximum overlap (3], to be 1denucal beyond a
certain radius [7-9,19] or to have the same first
moment (r) after core orthogonalzation [10] A
notable exception 1s formed by the method of
Huzinaga [5,6] 1n which the valence orbitals keep
their full nodal structure, the price to be paid for
the latter 1s that the basis sets needed are larger
than 1n other methods

In the pseudopotential HFS LCAO method one
uses another common device, viz one truncates
the basis by deleung all core basis functions Since
one has a number of g, , (for given ;) equal to the
number of core orbuals only, this involves an
approxumation

Due 1o the local exchange approxumation and
the computational scheme used, the HFS LCAO
method allows a straightforward inclusion of the
core contnbutions to the electromc Coulomb and
exchange potentials, no parametenzed effective
core potential 1s required Further, one does not
use the pseudo-orbitals as such to calculate the
valence potential, instead one uses the less severe
assumption

Apmoluxle(l) ==EAPnum(l)» (2 3)

where

ap(1) =X [ w1 (1)@ -y ()], (24)

with the n, occupation numbers We note that thus
assumption 1s equvalent to the one employed by
Dixon et al [11), viz

(6" - Gw)mm‘Z(Gv_Gp‘)nwv (2 5)

where G* 1s the sum of Coulomb and exchange
potentials summed over the set x

G* =Y (2~ K,) 26)

The problem which valence level ¢, to shift the
core orbials to, 1s solved by using an average



pseudopotenual
Vo r = L (& —€)lwivil @mn
&

for each ureducible representauion I' (with average
valence energy ér) of the molecular pomt group
For each particular valence level the averaging 1s
corrected for by the use of perturbauon theory
Recently {23] we have developed a self-consistent
perturbation scheme that allows incorporation of
the pseudopotential version of the HFS LCAO
method 1n Ziegler's [32] transition-state scheme for
calculating chemucal mnteraction energies

Given the pseudo-orbitals (2 2) calculated with
the pseudopotential HFS LCAO method, or with
any other pseudopotential scheme, one may re-
cover the valence orbitals by orthogonahzing to
the cores

vi=(1-B)yr, (28)

with

Bo=T (sl (29)
k

the projector on the space spanned by the core
orbitals

3. Computational procedure

The scheme used for calculating one-electron
properties 1s stmular 10 the one used previously for
the calculation of electric held gradients of some
antimony compounds [29] The Hartree—Fock-
Slater calculations were performed with the HFS
LCAO program of Baerends et al {24,25] o 1ts
pseudopotential version [22), adapted to IBM Thas
program 15 based on STOs Self-consistent per-
turbation calculations for the pseudo-orbitals were
performed using a recently developed program
[23] The actual calculation of the properues was
performed using the one-electron properties pro-
gram of the POLYATOM package, which 1s based
on GTOs

Further we used an interface program which
reads the converged SCF data from the HFS
LCAO program or the perturbational program,
expands the STOs in GTOs and prepares the mput
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Table 1

Exponents of STO basis sets used * [33)
H L C (o] F @]

1s 158 (246) (540) (736 (833) (1395)
092
069

2s 236 460 758 324 (5 65)

068 210 288 194
046 128 1M 074
3s 330

2p 100 23 294 408 454 (6 70)
068 148 208 230
046 082 112 124

3p 285
205
120
3d 200 200 154 108

*) Numbers 1n parentheses denote STOs used for core ortho-

1 m i 1

for the properties program The STO GTO expan-
sion performed according to the method of maxu-
mum overlap fits of Stewart [30}, each (n, /) STO
15 expanded in 1 10 6 (/+ 1,1) GTOs Compared
wath 1ts previous version we have added the option
of orthogonalizing the pseudo-orbitals to the cores
(cf eq (28)) The orbitals are renormalized after
the orthogonalization

In all our calculauons we have taken the ex-
change parameter a fixed at 07 [25] The STO
basis sets used {33] are Listed 1n table 1 They are
of triple-zeta quality, supplemented with polanza-
ton functions For the calculation of chemucal
interacuon energies these basis sets are known to
be close to the HFS limut

4. Results and discussion

One-electron properties have been calculated
for a number of molecules at thewr expenrnental
equibbnum geometnes HF (R =1733), HCI (R
=2409), LiH (R = 3015), LiF (R = 2995), LiCl
(R=13819), CO (R=2132), CO, (Rco=2199),
C,H; (Rec =2274, Ry =2004) and C,H,
(Rcc=2530, Ry =2050, ZHCH=1178°) All
distances are tn atomuc umts The hnear molecules
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were placed along the z aus, C;H, n the xz plane
with the carbon nucler on the z axus We divide the
properties considered 1n two groups

(I) Properties that mainly sample the valence
region (charactenzed by a posiive power of r 1n
the corresponding quantum-mechanical operators),
viz the electnc mulupole moments up to /= 3 and
the diamagnetic susceptibility

(I1) Properties that mainly sample the core re-
gon (charactenzed by a negative power of r in the
corresponding operators) viz the potential, the
electnc field, the electnc Neld gradient and the
diamagnetic shuelding

The core contnbutions to the properties have
been calculated in the frozen-core approximation
The effect of cores other than that of the center at
which a property 1s evaluated 1s taken into account
by the use of effective nuclear charges The contn-
bution of the core of the nucleus at which a
property 1s evaluated 1s zero due to the sphencal
symmetry, except for the potenual and the dia-
magneuc shielding, where 1t 1s a non-zero con-
stant Keeping the cores frozen we obviously ne-
glect core polanzation effects and a prion no
agreement with expenment may be expected for
the group II properties For these properties we
consider our calculations as a methodological test
of the pseudopotential method

The results are presented 1n tables 2-9 We give
core-orthogonahized pseudopotential results up to
first order 1n the perturbauion treatment For the
zeroth-order results we have included non-core-
orthogonalized results in parentheses We compare
these results with frozen-core values and, in a
number of cases, also with Hartree-Fock (HF)
and expenmental values

41 Valence region directed properties

We give the dipole, quadrupole and octupole
moments 1n their tesseral harmonic form [34,35]
for a molecule with nucler at positions r,=
(r,, 6,, p,) and with charges Z, and one-electron
density p(r) we have 1n atomic unts

4m \1? ;
0n=(3737) (E2r5m(0. )

- [0, 1er) (a1)

The S,,, are the normalized tesseral harmonics As
the ongin of the coordinate system we have taken
the molecule’s center of mass In parucular

Qo=XZz - [p(r)zdr, (41a)
(2P =%ZZ.(3Z,2 - r’z)

-gfp(r)(azz—ﬂ)d, (4 1b)
and
0w =4112(52) - 3:7r2)

- %fp(r)(Sz3 —3zr%)dr (41¢)

We note that for a linear closed-shell molecule
along the z axis only the Q, with m=0 are
non-zero

The elements of the diamagnetic suscepubility
tensor are given by

X% =1 [p(r)(rr,— 8, r%)dr, (42)

where p and » take the values x, v and z We
only list the average diamagnetic susceptibility

xd = xd +xd +x%) = —%fo(r)r’dr (43)

For the hinear molecules the diamagnetic suscep-
ubility arusotropy, Ax?=x9—x9 1s directly re-
lated to the electronic contribution to the
quadrupole moment

In discussing our results we first consider the
dipole moment (cf table 2) In their review paper
Baerends and Ros [26] hist the values Q,o(HF)=
171 D, Q,((LiH)=3546 D, Q,o(LiF)=587 D
and Q,,(CO)= —025 D, the average discrepancy
between our frozen-core results and theirs 1s 0 27
D Our calculations differ from theirs in the inter-
nuclear separations and 1n the basis sets used We
evaluated the dipole moment at the expenimental
equiibrium geometry, whereas Baerends and Ros
used the calculated equibbnium geometry Using
therr values for the dipole-moment denivatives [26)
it can be seen that the difference in geometry has
only a minor effect on the (average) discrepancy



Table 2
Dipole moment @y, (in debye 1D = 3 336x10°* C m)

Molecule  Pseudopotennal Frozen HF® Exp?

2eroth frst O

order ¥ order
HF 176 (174) 17 176 192 180
HC 119 (126) 095 106 122 109
LiH® 551 (538) 551 549 600 588
LiF 601 (578) 605 605 630 628
L 680 (666) 679 671 722 709
co -01%-011) -011 -020 026 -012

*) A posiuve value denotes a + — polanity for the molecule as
wntten

®) Numbers i parentheses are oblaned wathout core ortho-
gonalizing the pseudo-orbitals

< Hartree-Fock values HF (36), HCI [37], LiH {38 39], LiF
[40) LiCl[41) CO [36]

9 Expenmental values HF (42] HCI [43], LiH [44] LiF [45]
LiC1 [45) CO [46)

© Since no averaging 1s involved 1n the pseudopotential in thus
case, perturbation correcuons are idenucally zero

Therefore the differences must be attnbuted to the
basis sets used Baerends and Ros used Clementi’s
basis sets, obtained by total energy optirmzation,
whuch 1s to a large extent a core property Here we
use basis sets obtaned by a least-squares fit to
numencal HFS valence orbitals {33] These basis
sets give dipole moments that are umiformly closer
1o the expernumental values

Agreement of the HFS LCAO dipole moments
with experiment 1s good, 1t 1s equally good as for
the near-HF-hmut dipole moments Note however,
that HFS predicts the correct sign for CO, whereas
HF does not

Also the quadrupole moments (cf table 3) agree
well with expenment, although differences are de-
cidedly larger than for the dipole moments Two
reasons may be suggested to explain this phenom-
enon First, the experimental quadrupoles are not
as accurately known as the experimental dipoles,
the errors given for the values quoted [50-53]
range from 003 au for CO to 011 au for CO,
Secondly, 1t has been established by McCullough
[47] that quadrupole moments are quite sensitive
to basis-set errors Comparing HF LCAO calcu-
lations with his numencal HF calculatons Mc-
Cullough found that even with moderately large
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Table 3
Quadrupole moment Q. with respect 10 center of mass (1n
atormuc units, 1 au = 4487x10-% C m?)

Molecule Pseudopotental Frozen- HF® Exp®

zeroth first core

order order
HF 187 (188) 188 18% 173 164
HCQ 311 (319) 300 254 278 262
LiH —-237(-218) -237 -235
LiF 455 (457 450 447
nLa 103 (102) 102 102
co —-134-126) —-138 -138 -153 -144
COo, -285(-259) ~284 -285 -—-384 -3M
C,H, 483 (499) 483 4387 546 62

133 (139 13 132 150 147

® Hartree-Fock values HF [47], HCI [37), CO {47, CO, [48),
C,H, [49), C;H,[49)

Y Expenimental values HF [50], HCI [50], CO [51], CO, [52),
C;H, [49] C,H,[53]

<) See also text

basis sets and some exponent opumzation,
quadrupole moment basis-set errors 1n the range
005~01 au can be expected Since we used stan-
dard basis sets which only one set of polanizauon
funcuions per atom (except for l1) and no expo-
nent opturuzation, we consider the agreement wath
HF and with expenment as satisfactory

The C,H, molecule ments a separate discus-
sion The recent expenmental quadrupole moment
of Gray et al [53], obtained from colhsion-induced
adsorpuon measurcments, differs rather drastically
from earher values, but agrees well with our results
(and with ab mtio results [49]) Our frozen-core
values are 0, =140 au and @, = —272 au, the
expenmental values Q, =150 au and Q =
—297 au, the pseudopotental results are again
very simular In tesseral harmomic form (eq (4 1))
the two non-zero moments are @, and Q,, =
37VQ,. - 0,,)

We now compare pscudopotential and
frozen-core methods for the group I properties As
we have stated mn section 1 typical differences
between pseudopotential and all-electron dipole
moments are 01 D (without core orthogonahiza-
tion), but much larger values are also reported
Our calculations yield a maxumum difference of
011 D and an average difference of 002 D For
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Table 4
Octupole moment Q,, with respect to center of mass® (in
atomnic umts 1 au = 2.374%10°%° C m’)

Molecule  Pseudopotential Frozen-core
2eroth order first order

HF 285 (28%) 287 288

HCl 540 (520) 520 500

LiH 358 (319) 358 348

LiF 104 (104) 106 105

Lc 323 (320) 326 326

co -331(-325) =337 -338

* Sign corresponds to that of the dipole moment (cf table 2)

the quadrupole moment few compansons between
pseudopotential and all-electron methods exist
Using the G1 method Kahn and Goddard [1]
found differences of 003 and 055 au for the
ground states of LiH and Li,, respectively Using
the same method Mehus et al [2) found dif-
ferences up to 13 au for some excited states of
LiH These rather disappoiwnung results were ob-
tained without core orthogonalization

As can be seen from tables 2-5 the pseudo-
potenual and frozen-core HFS LCAO results agree
very well In table 10 we Lst the average absolute
deviauons, they are very small indeed The relative
error of 96% for the dipole moment 1s mainly
caused by the small absolute value for CO (exclud-
g CO lowers the difference to 29%) It can be
seen that differences mn the behaviour of the four
properues are small for the molecules considered
It 1s also clear that the effect of the perturbation

Table 5
Average diamagnetic suscepubility with respect 1o center of
mass (in atomc units 1 au=7891x10"? JT 2 mole ')

Molecul Pseudop | Frozen-core
zeroth order first order
HF -243 (-24)) -24 -24
HC1 —-541 (~520) -544 -550
LiH =375 (-370) ~375 -375
LiF -518 (—-516) -523 -522
Lc -103 (=101} =103 -104
co —660 (—654) -661 —663
co, -188 (~-187) -188 -188
C,H, -101 (-101) =101 -102
C,H, -138(-137) -138 —-138

corrections to the pseudo-orbitals on the proper-
ties 1s small, although overall agreement with
frozen-core results definitely improves

The influence of core orthogonalization 1s also
small To obtain quantitative agreement with the
frozen-core results, however, 1t 1s necessary to use
core-orthogonalhized pseudo-orbitals In the cases
mvestigated core orthogonalization has a larger
effect than the perturbation corrections

42 Core region direcied properties

The properues considered that mainly sample
the core region are the potential

¢=Ez,r,_l-fp(r)r"dr, (44)
the electnic field
E“uZZ,rmr,_s—fp(r)r,r"dr, (45)

the electnc field gradient

Vﬂ,=22,(3r r, - 5‘""1)"—5
r

e

- fp(r)(3rpr, - 8,,r2)r"dr (4 6)
and the diamagneuc shielding
a:,-%fp(r)(r,r,—&u,rz)r"dr 47)

Since the average diamagnetic shuelding 1s propor-
tional to the electronic contnbution to the poten-
tal, we only Lst the diamagnetic shielding amiso-
tropy for the hnear molecules,

Aod=g—q! (48)

As described carhier 1n this secuon the core contn-
butions are obtained using the frozen-corc as-
sumption In valence-electron-only calculations of
the electnc field gradient core polanzation 1s usu-
ally corrected for by the use of Stermheimer fac-
tors Since we are pnncipally interested 1n compar-
g pseudopotential and frozen-core methods,we
will not consider such corrections

The results of our calculations are presented 1n



tables 6-9 In table 10 we have again summanzed
these results by hsung average differences, we
have considered hydrogen and other atoms sep-
arately,

The polenual at the nucleus has been investi-
gated by Kahn and Goddard (1] for LiH and Li,,
by Melus et al [2] for some excited states of LiH
and by Kahn et al [3]} for HF and HBr, in all
cases non-core-orthogonalized pseudo-orbitals
were used It was found that the potental at the
hydrogen nucleus was almost 1dentical in pseudo-
potential and all-electron calculations, whereas
larger differences were found for the potenual at
other nucler In the hydndes of Li, F and Br the
differences were 0.015, =03 and = 0 3 au respec-
tively Due to the large core contnbution the rela-
tive errors were sull quite small (1 3% for F, 0.2%
for Br)

The orthogonahzation of the pseudo-orbitals to
the core transfers electron density from the core to
the valence region The effect 1s to lower the
potential at the nucleus, as can be clearly seen n
table 6 Thus, the agreement between pseudo-

Table 6
Potential at the nucleus * (in atomic umts, 1 au = 2721 V)

Molecule Nucleus Pseudopotenual Frozen-
zeroth order first order  °°"¢
HF H —0881(—0882) —0884  —0880
F -932(-%902) -933 —-938
HCl H —08%4(—0885) -0914 —-0905
a —564 (—512) -—564 —556
LiH L —0380(—0353) —0380 -0392
H -118 (-117) -118 -118
LiF L —0422(-0401) —-0397  —0403
F —950 (-=917) -949 —9s6
| X o] L —0352(—0334) -0334 -0351
Cl -571 (-518) -571 ~566
Cco C —340 (-321) -338 -34
o —697 (—669) —700 -701
co, c —332(-318) -333 -333
(o] ~700 (-672) ~-700 —-704
CH, C —346 (-332) ~347 —349
H -101 (-101) -101 -101
CH, (o) —349 (—335 -349 -352
H -109 (-109) -109 -109

® Apart from a constant core contribution, which 1s — 5 290 au
for Li, —11 224 au for C, —15 181 au for O, ~17 162 au for
F and -58 784 au for CI
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Table 7
z component of electne field at the nucleus ™ (1n atomuc umts
1au=5142x10" Vm-")

Molecule Nucleus Pseudopotenual Frozen-
zeroth order first order  “°'¢
HF H 0090 (0086) 0087 0083
F ~0125(—-0405) -0116 -01n
HQ H 0046 (0033) 0044 0059
a ~0087(—0124) —-0065 -0081
LiH L ~0037(—-009) -0037 -0035
H ~0006(—0000) —0006 -0004
LiF L ~0043(—-0136) —0043 ~0042
F ~0042(-0127) -0044 —-0049
LiCl L ~0026(—-0091) -0027 ~-0025
Cl ~001%(—-0039) -0014 -0022
co C 0066 (0169) 0060 0065
(o] ~0077(—0265) —0076 -0070
Co, o 0087 (0394) 008S 0084
C,H, C ~0003(—0066) —0004 -0003
H 0045 (0041) 0044 0047
C,H, C ~0011(-0018) -0010 —0005
H 0006 (0004) 0007 0009
average ® 0048 (0123) 0045 0048

* Molecules AB are placed with A towards the posiuve z axis,
for CO,. C,H, and C,H_ the atoms referred to are the ones
with the larger z coordinate

¥ Defined in terms of absolute values

Table 8
Electnic field gradient at the nucleus (in atomuc unts, 1 au =
9717x10% V m~?)

Molecule Nucleus Pseudopotenual Frozen-
zeroth order first order <"
HF H ~0645(—0635) —0643 -0636
F ~253(-251) -253 -250
HCl H ~0340(~0314) —0343 —0366
al ~232(-0241) -292 -274
LH L 0038 (0044) 0038 0040
H ~0065(—0059) —0065 -0062
LiF L 0043 (0066) 0048 0050
F 0118(-0176) 0302 0254
LiCl L 0023 (0034) 0026 0026
o} 0489 (0003) —0216 -0156
co C 0947 (0962) 0955 0964
o 0724 (0707) 0702 0746
CO, C 0367 (0484) 0343 0348
(o] ~0782(—0848) -0710 -0664
C,H; C 0290 (0368) 0287 0278
H ~0370(—-0361) -0370 -0375
C,H, C 0185 (0202) 0186 0173
H ~0314(—0306) —-0315 -0319
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Table $
Diamagneuc shiclding amsotropy at the nucleus (in atomic
units 1 au = 26 61 ppm)

Molecule Nucleus Pseudopotenual Frozen
zeroth order first order "¢
HF H -180 (-181) -—180 -180
F —0006(—0005) —0006 -0006
HCl ¥ -278 (-282) -278 -27
a —0044—-0048) —-0039 —0041
LiH L -0168(-0166) —0168 -0167
H -0333-0337) -0333 -0334
LiF Lt -140 (-140) -140 -140
F —-0355-01351) -0361 —0360
LiCl Li -206 (-207) -206 -205
Cl -0280(-0278) —-0274 -0277
co C -152(-152) -152 -152
o] -0976(—0981) —0975 -0979
co, C —-288 (—-288) -—288 -288
(o] -174(~175) ~175 -175
CH, C -120 (-121) -120 -120
H -166 (-167) -—166 -166

potential and all-electron results could also be
mproved 1n the calculations on LiH, Li,. HF and
HBr, quoted above

We note that the elecinc field at the nucleus (cf
table 7) 1s almost zero due to the near cancellauon

Table 10

of electronuc and nuclear contnbutions as re-
quired by the Hellmann-Feynman theorem (which
also holds 1 the HFS method [54)]) for the equ-
hibnum geometry We have included average abso-
lute differences from zero 1n table 7 It can be seen
that frozen-core and pseudopotenual calculations
behave equally well core orthogonahzation 1s es-
sential, however

Regarding the electric field gradients (cf table
8) we note that the present value for the electnc
field gradient at CJ in HCl, —2 74 au, agrees well
with our previous work {29] In these calculauons
we obtained a number of values in the range
—272to —277 au by vanation of the integration
parameters Companng the frozen-core calcu-
latuons with an extensive all-electron HFS LCAO
calculanon for HCl, we arnved at an overall
Sternheimer factor 1 — R =118

For the group II properties we again compare
the performance of pseudopotential and [rozen-
core methods Bearing in mund the occurrence of
negative powers of r in the quantum-mechanical
operators, the overall agreement 1s surpnsingly
good For the potential and the diamagnetic
shielding (amsotropy) the agreement 1s 1n fact just
as good as for the electnc multipole moments and
the (average) diamagnetic suscepubility (c[ table

Average cffect of core orthogonalizauon and average differences between pseudopotenual and frozen-core results ¥ (10 au and %)

Property Core orthogonahization Pseudopotential versus frozen-core
zeroth order first order
Q10 0039 (38%) 0023 (91%) 002}49 6%)
O 0102 (38%) 0054 (17%) 0026(0 7%)
[42% 0154 (30%) 0181 (27%) 0073(1 4%)
x3, 0089 (12%) 0040 (06%) 0031(0 5%
¢  all aloms 0163 (39%) 0026 (10%) 0023(0 9%)
only H 0006 (06%) 0004 (04%) 00050 5%)
except H 0224 (52%) 0034 (12%) 0030(1 0%)
E, allatoms 0079 0004 0006
only H 0006 0005 0005
except H 0109 0004 0006
V., allaloms 0182(36%) 0083(32%) 0027(6 6%)
only H 0010 (4 8%) 0009 (34%) 0 008(3 6%)
except H 0248(49%) 0111(42%) 00347 8%)
Ac? all atoms 0006 (18%) 0004 (14%) 00031 3%)
only H 0014 (09%) 0006 (04%) 0006(0 4%)
except H 0003 (20%) 0003 (18%) 0002(1 6%)

* Defined 1n terms of absolute values of duff




9) For the electric field gradient the agreement 15
sull quite reasonable, the pseudopotential values
could be combined with Sternheimer factors to
yield results that are equally reliable as those that
use frozen-core values We did not include relative
errors for the electnic field 1n table 10, since they
are meaningless 1n (his case

Also for the properties that mainly sample the
core region the role of the pseudopotenual per-
turbation corrections 1s a small but posiive one
The influence of core orthogonalization 1s more
important now than for the electric multipole mo-
ments and the diamagnetic suscepubility

5. Conclusions

The main conclusions of this paper may be
summanzed as follows

(1) The agreement between properties calculated
with the pseudopotential and frozen-core
Hartree—Fock-Slater methods 1s very good, also
for nearly iomc compounds Electnc mulupole
moments, the diamagneuc suscepubility, the
potential and the diamagnetic shielding all yield
differences 1n the order of 1-2% The electric field
gradient 1s still sufficiently accurate 10 be used n
combination with Sternheimer factors According
to the Hellmann-Feynman theorem the electnc
field at the nucler must be zero for the equlibrium
geometry Pseudopotenual and frozen-core calcu-
lauons sausfy thus criterion equally well

(u) Although generally good qualitative agree-
ment can be obtained by using pseudo-orbitals,
quantitative agreement can only be obtamned by
using core-orthogonalized pseudo-orbitals

(m) In companng the calculated dipole and
quadrupole moments with experument we find good
agreement, in particular, the HFS LCAO method
predicts the correct sign for the dipole moment of
CO and a recent measurement of the quadrupole
moment of C,H, 1s confirmed
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CHAPTER V

ON THE USE OF PERTURBATION THEORY IN THE

PSEUDOPOTENTIAL HARTREE-FOCK-SLATER-LCAO METHOD

In order to deal with core electrons in large molecular systems by means
of the Hartree-Fock-Slater (HFS)-LCAO method [1] two pseudopotential schemes
have been proposed [2,3]. Both schemes start with an averaged pseudopotential
for all valence electrons and employ perturbation theory to correct for
the deviations of the valence level energies from the averaged value used in
the pseudopotential. In the original formulation [2] a Brillouin-Wigner type
perturbation theory is used; recently [3] a self-consistent perturbational
approach has been formulated that allows for the calculation of chemical
interaction energies. In this chapter we will show how the pseudopotential
HFS-LCAO method may be simplified to yield a computational scheme that avoids
the use of perturbation theory in the calculation of the pseudo-orbitals. The
present formulation does not allow for the calculation of interaction energies
with Ziegler's transition state method [4], however.

The pseudo-orbitals Wps f satisfy the set of equations
’

v =y €. (€))

F . . :
PS»J 'PS,] PS,] ]

lv

=1, (2)

< . -d
\PPS'J PS,]

The pseudo-Fock operator Fps 3 is given by
bl

F =F +

. v s 3
Ps,] Ps,»] &2
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with F the Fock operator and
i i (e - Ec,k)lwc,kch,kl (4)

the Phillips-Kleinman [5] pseudopotential. Vps ; shifts the core orbitals

’

wc K from their all-electron orbital energies ¢ to the valence energy c..
?

c,k
In the previous formulations of the pseudopotential HFS-LCAO method [2,3] the
problem which valence level to shift the core orbitals to, was solved by use
of an averaged pseudopotential

Vps - E (e - sc,k)lwc,kch,kI (5)

for each irreducible representation of the molecular point group and by
application of perturbation theory afterwards. Although this approach gives
perfectly satisfactory results, it is computationally somewhat involved.

We rewrite the pseudopotential (4) as

v . =¢.PC+pE ()
PS,] ]

where

C .

P lz(lwc'kch,kl, €

P =1 (e v o ] (8)

" c,k” e,k Te,k

P is the projector onto the space spanned by the core orbitals. Eq. (1) can

now be written as
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E C

F +PY .= (1 -PY .E.. 9

( wPS»J ( WPS:JEJ
Expanding the pseudo-orbitals in a basis y with overlap matrix §,

. = L [ . 10

Yps,j RA"Ie TRI & (0
we obtain

FC o =5C e (1)

where F is the matrix representation of (F + PE) and § the matrix re-
presentation of (1 - P%). Thus, the pseudo-orbitals may be solved from the
generalized eigenvalue problem (11). Since standard procedures yield

solutions 'Eps in the normalization

€ ST =1, 12)

cps = cps N, (13)
where
~t ~ )
N,.=6,.[C__SC 14
ij i [ ps ps]JJ (14)

The pseudo-density matrix may be obtained from
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*
P In,C . C .
PsS,uv j J PS,u] PS,V]

(15)

the nj being the valence orbital occupation numbers.

Although the present formulation obviates the need for perturbation
theory in the calculation of the pseudo-orbitals, it does not seem to be
suitable for the calculation of interaction energies in the manner of Ref. 3.

Use of the basic relation

<y, |Fly,> = < R+ Vv, .> (16
wJ] |wJ wPS-J] PS,JIWPS’J )
[Eq. (36) of Ref. 3) leads to a term
P F (17)
v HV vy
in the total energy functional, with P defined in terms of E;s:
~ ~ ok
= (18)

P In, C . C .
P8, UV j J PS,H] Ps,V]

In Ziegler's transition state method [4] one needs the derivative of the
total energy functional with respect to a general element Puv of the pseudo
density matrix. However, P and P are related in a nontrivial manner, and

the present approach seems to end in a deadlock.
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CHAPTER VI

IMPLEMENTATION OF THE MODERATELY-LARGE-EMBEDDED-CLUSTER SCHEME
IN THE PSEUDOPOTENTIAL HARTREE-FOCK-SLATER-LCAQ METHOD;

CALCULATIONS FOR HYDROGEN ON LITHIUM (100)

1. Introduction

In recent years numerous cluster calculations for chemisorption on metal
surfaces have been performed [e.g. Refs. 1-4]. The cluster approach is usually
justified by assuming that chemisorption is a local phenomenon, i.e., that
the perturbation of the substrate electronic structure, caused by the adsorbate,
is localized in a small region. It is certainly true that some aspects of the
adsorbate-substrate bonding may be considered local. For instance, the height
of carbon monoxide above a metal surface is largely determined by the exchange
repulsion with the core and low-lying valence levels of the nearest atoms [3].

The cluster model of chemisorption suffers from a serious defsct, however:
the cluster's finiteness introduces unwanted boundary effects into the calcula-
tion. These effects can have a strong influence on the charge distribution in
the cluster and on the adsorption energy. The poor convergence of the adsorp-
tion energy with cluster size has been related [3] to the polarizability of
the cluster, which changes significantly with the addition of each new sub-
strate atom.

Embedding methods [5-14) aim to remove the artefacts of the cluster model
by supplying the proper conmection of the cluster with the underlying (unper-
turbed) substrate. Many of these methods [5,9-12] are based in essence on
the Koster-Slater method {15,16] for treating impurities in solids by con-

sidering the effect of a local perturbation in a Green's function formalism.



48

In this work we aim to develop an embedding scheme which is convenient
for self-consistent calculations by means of the Hartree-Fock-Slater (HFS)-LCAO
method [17,18]). We have chosen the moderately-large-embedded-cluster (MLEC)
method of Pisani [7,8] because it resolves some of the computational problems
of other methods and because of its compatibility with standard quantum chem-
ical methods.

We use the pseudopotential [19-21] version of the HFS-LCAO method. Com=-
parison of interaction energies [20] and one-electron properties [21] has
shown that the pseudopotential method reproduces results of the (less approximate)
frozen-core method fairly accurately. The first reason for using the pseudopoten-
tial method is that we want to be able, eventually,to treat transition metal
clusters of considerable size without excessive computational effort. The second
reason is that it is advantageous in the Green's matrix method [13] to use the
same (symmetry adapted) basis functions in the description of the substrate and
in the description of the embedded cluster. In the pseudopotential method with
a nonorthogonal basis this is straightforward. In the frozen-core method com-
plications arise due to the valence-core orthogonality requirement. Although
still valid, this second reason is somewhat obscured by the technical necessity
to use a semi-orthogonal basis [cf. Sec. 2H].

In order to test the effect of embedding as such it is preferable to use
the same quantum chemical method both for the cluster and the substrate into
which the cluster is to be embedded. In our present approach this condition is
met by use of a finite representation for the substrate, treated with the same
pseudopotential HFS-LCAO method. In principle, the use of a two—dimensional
band structure program would be preferable,but such a program was not available
at the HFS-LCAO level. In this respect, our approach is similar to that of
Whitten and Pakkanen [14), who also use a cluster for the characterization

of the substrate.
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Although the finiteness of the substrate gives rise, in principle, to
the same boundary effects we want to avoid, their influence can be reduced
by use of a sufficiently large cluster for the substrate, Thus, in practical
calculations the profit will be found in computation time; investigation of
different adsorbates and different geometries requires the treatment of the
substrate cluster only once, while the quality of the embedded cluster calcu-
lations is expected to be close to the '"full" adsorbate-substrate calculations.
Incidentally, our approach also gives access to another application of embed-
ding, viz., the embedding of different functional groups as substituents in

a large molecule.
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2. Formalism

In this section we give a detailed derivation of the moderately-large-
embedded-cluster (MLEC) method of Pisani [7,8] The presentation is directed
towards the implementation of the formalism in the Hartree-Fock-Slater-LCAO
method (introduction of a semi-orthogonal basis, symmetry adaptation).

Our treatment is specific on a number of points. First of all, we treat
the embedding of a cluster in a finite representation of the solid surface.
Secondly, we only consider the chemisorption case, thus disregarding the vacancy
and substitutional impurity problems (which could be treated along similar lines,
however). Thirdly, we incorporate the correct matrix representations of the
quantities involved from the start; Pisani [8] has indicated the steps to be
taken in an orthogonal basis, we consider the nonorthogonal case throughout.
Finally, for simplicity of notation we use a spin-restricted formalism; the

generalization to an unrestricted formalism is straightforward.

A. Description of the chemisorption system

The chemisorption system is indicated schematically in figure 1; it re-
presents the adsorption of a molecule on a solid surface (the substrate). The
adsorbate is denoted by A, the solid by S =B U D. Note that we use a finite re-
presentation of the solid. Hence boundary effects are present, but D will be
made sufficiently large for their effect on the adsorbate to be small. The
chemisorption cluster is denoted by C =A U B. D, finally, is called the defec-
tive or indented solid.

Quantum mechanical operators will be represented in a finite basis of

localized functions x = {Xu)' Overcompleteness problems [6] are absent in this
basis. However, if the number of basis functions per atom increases, near-linear-

dependency problems may arise. The basis set x is partitioned into subsets of
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Figure 1. Schematic representation of the chemisorption system

functions localized in different parts of the chemisorption system:

X=X YxgVxpe (2.1)

All matrices are partitioned accordingly, e.g., for the overlap matrix we

write
SAA SAB SAD
S = SBA SBB SBD . (2.2)
SDA SDB SDD

At present we consider the description of the chemisorption system by a
general one-electron Hamiltonian F, with matrix representation F; in our
applications we will use the Hartree-Fock-Slater model. Our task is the

solution of the self-consistent problem

F = F(P), (2.3)
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FC = SCE, By = 81900 (2.4)
cfsc =1, (2.5)
P = cne’, Ny = 800, - (2.6)

Given a density matrix P, the Fock matrix F is constructed [Eq. (2.3)], the
generalized eigenvalue problem [Eqs. (2.4) and (2.5)] is solved and the density
matrix is recalculated according to Eq. (2.6). This process is repeated until
self-conistency is reached. We assume that the self-consistent solution of Eqs.
(2.3)-(2.6) is obtained by applying the Aufbau principle. Thus,the occupation
numbers n in Eq. (2.6) can assume fractional values at the Fermi energy €p
only.

The self-consistent problem may be equivalently formulated in terms of the

Green's matrix [cf. Appendix Al:

F = F(P), (2.7

(¢s - F)6(c) = 1, t = etin, (2.8)
1 F

P=-_lin In f de G(e+in). (2.9)
n—fo -—CD

Given a density matrix P, the Fock matrix F is calculated, the matiix

(zS - F) is inverted to yield the Green's matrix G(Z) and the density

matrix is recalculated according to Eq. (2.9). Again the process is

repeated until self-consistency is reached. In the following we will use the

notation
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Q) =1¢s - F. (2.10)

B. The general embedding equations

Chemisorption is considered to be a local phenomenon, i.e., it is assumed
that the perturbation induced by an adsorbate is local. We will investigate the
consequences of the local perturbation assumption in the Green's matrix forma-
lism. As a first step we will extend the description of the unperturbed solid
to the full basis x, next we will derive the general embedding equations.

Consider the unperturbed or "free'" solid, i.e., the solid in the absence of
an adsorbate. We suppose that the self-consistent problem [Eqs. (2.7)-(2.9] has

been solved in its natural basis Xg U Xp- Suppressing the variable r we have

£ £
Qgg Ggg = lsg* (2.11a)

or,equivalently,
f f £ £
QBB QBD GBB GBD 1BB OBD
= . (2.11b)
of £ ef  of 0 1
DB QDD DB DD DB DD

We use the index f to refer to the free solid.

Our first problem is to extend the solution for the free solid to the full
basis x = Xy u Xg without modifying the unperturbed density. This extension is a
prerequisite for matrix operations in the following to be meaningful. We define

a Green's matrix G(z) in the full basis x as the inverse of the matrix

(t-e)s 0
q@) = AA As e > e (2.12)

£
Oga Qg ()
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Note that the AA-block of the Fock matrix F has been defined as ?AA = e SAA’

vhere e is an energy above the Fermi energy. The Green's matrix G(z) is easily

seen to be

G@) = . (2.13)

Since e > €p the AA-block of G(z) gives a zero contribution to the density

matrix:
€
Fo==-=1 1 f de G, (e+
AL - nig+ m J € AA(E in)
€p y
- _J; de 8(c-e) (s,,)
=0,, (2.14)
Hence
0 0
Fe | M 08 , (2.15)
0 P
SA SS

i.e., the density associated with P is the one of the free solid.

The procedure followed above is referred to by Williams, Feibelman and
Lang [ 13]) as the adspace idea. As long as FAA is such that the unperturbed density
remains unchanged, its explicit form is immaterial. It will cancel when consider-
ing the embedding equations, as will become clear in the sequel. We note that

the ease with which it is possible to include extra basis functions in the forma-

lism constitutes one of the advantages of the Green's matrix method over the



55

Green's function method. E.g., compare the complications that arise in the
cluster-extended Green's function method of Baraff,Schliiter and Allan [12].
We now consider the self-consistent problem for the full interacting system

A UB VUD. The perturbation V to the modified free solid problem is

V=F-F
=3-q
Ua%a Qs o
“Qpa Q35 3ﬁD'QBD . (2.16)

~

Uy Up~%p  %p~p

The local perturbation assumption, characteristic for chemisorption theory,

reads explicitly

QAD = OAD’ (2.173)
Q. =1 ie., F._ =Fo (2.17b)
50 ~ UBp’ s Fpp = Fppo .
Q. =7 ie., F. =%l (2.17¢)
po ~ %pp° e Py = Fppe :

We note that it is not only necessary to assume FAD = OAD’ but also SAD = OAD'
However, since F and S are intimately related, this is perfectly reasonable. The
interaction between the adsorbate and the indented solid can show up in F, in

S, or in both. Using Eq. (2.17) we may write

V= . (2.18)
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The implications of the local perturbation assumption can be found as

follows. Write Eq. (2.8) for the full problem as

and solve GCC by performing the inversion [cf. Appendix B]:

-1
Sec = [Qcc = Qp@pp) Q¢

The corresponding relation for the free solid in the full basis x is

~

G -T @GR
Coc = Qe =~ Tp @) Q)

Combining Eqs. (2.16), (2.18), (2.20), and (2.21) we obtain

-1 -1
) e )T - Vg

(GCC C

From Eq. (2.13) it follows that

€)= 1|3 0

cC QAA AB
£ -1
OBA (GBB)
hence
GAA GAB QAA
G, G —(~

BA BB

17

7 - (QgB-QBB)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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-1
QUa Qs
- ) (2.24)

£ -1 £
Qy  (Ggp) -~ (Qpp=Qyp)

Again we use the inverse of a partitioned matrix [Appendix B]:
£ £ ¢, £.-1 £
Gpp = [QBB QGp(Qp B g (2.25)
and obtain

Q

aa Can Qa AB

(2.26)
£ £ =1 f
Sga  Cpa %a  %p ~ GpQp) g

Due to the cancellation of 6AA in Eq. (2.24), the final result [Eq. (2.26)] is
independent of our particular choice for FAA in Eq. (2.12).

The consequence of the local perturbation assumption [Eq. (2.17)] is that
the self-consistent problem to be solved is confined to the chemisorption cluster
C, once the solution of the free solid is known. In realistic chemisorption cal-
culations, however, Eq. (2.26) is rather cumbersome to apply [8]. In each ite-

ration of the self-consistent procedure the Green's matrix [Eq. (2.26)] must be

integrated to yield the density matrix:

€
F
R -
PCC =- 11m+ Im :£ de Gcc(e+1n) , (2.27)

where €p is the Fermi energy for the free solid. The (numerical) integration

implied by Eq. (2.27) necessitates the inversion of relatively large matrices

at a large number of energy points.
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C. The MLEC method

Pisani [ 7, 8] has proposed an embedding scheme that overcomes the diffi-
culties in applying Eq. (2.26), however, at the cost of another approximation.
We will introduce this approximation and derive its consequences.

The additional assumption can be formally stated as

Joc(EWee = Ve » (2.28)
where the auxiliary matrix JCC is defined by
JCC(E) = QCC(E) GCC(E)
1AA QAB
= : (2.29)
f f
Oy  Qpg(e) Gpgle)

Eq. (2.28) corresponds to the requirement that the cluster B comprises a border
region, where the connection of the cluster with the defective solid is es-
tablished, but where the perturbing potential is already very small. Thus, the
size of the cluster for which the self-consistent calculation is performed needs
to be larger than required by the local perturbation assumption alone. Therefore
the embedding scheme may be characterized as a moderately-large-embedded-cluster
(MLEC) method. We refer to assumption (2.28) as the MLEC assumption; we will
return to its nature after we have derived an explicit expression for the matrix

JCC'

In order to proceed we assume the validity of Eq. (2.28) and use it to sim—

plify the general embedding equations. Combining Eqs. (2.22) and (2.28) we obtain
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cc cC cC
@0 ' -0 v.1's
cc'cc cc ‘cc cC
=G -v. 1
cC cc cc
-1
= Q) It (2.30)

The matrix (QCC)-1 corresponds to the Green's matrix obtained from the generalized
eigenvalue problem of the full Fock operator (i.e., including the potential of the
frozen indented solid), confined to the chemisorption cluster C. We introduce the

notation

(QCC) Z Gge (2.31)
and use Eq. (2.29) to rewrite Eq. (2.30) as

®am S| _|%a Can’ss
BA BB Ba  “sp'BB

(2.32)

[]
[}
[l
(2]

Again, the density matrix P, may be evaluated from G [Eq. (2.27)]. The

cc
advantage of Eq. (2.32) over Eq. (2.26) lies in the relative ease with which

the density matrix can be obtained. We will return to the evaluation of PCC

after we have derived an explicit expression for JCC'

D. The matrix J"C and the nature of the MLEC assumption

We now derive an explicit expression for the auxiliary matrix J defined

cc’
in Eq. (2.29). Using the Green's matrix Gf(C) in terms of the solution of the

generalized eigenvalue problem for the free solid [cf. Appendix A),



60

*
cf cf

va(e+in) =z % , (2.33)
[ (e-el)+in

we obtain after some manipulations

B £ £
J (e) =1lim Que(e+1n) GBv(€+1n)

av mot 8
B
f _f*
=rrS C
8 L af BL v
f f
B e, S F %
+PL I L an af Cf Cf
gL v
B2 €-e
£
B £ f f* £
- in g i (t-:SGB - FaB) CBECvE 6(e-el). (2.34)

In the derivation of Eq. (2.34) we have used

lim —*5=P1, (2.35)
n~0 x'#n
where P stands for principal part, and
. n
lim 5 =T §(x), (2.36)
0t x“+n

with 6 the Dirac delta function.
In order to write Eq. (2.34) in a more compact form, we introduce the

matrices

- -1
D = Sns(sss)nn' (2.37)

and
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X=S_ _C E -F_CL, (2.38)

w

where C_ contains the coefficients of Xg in the eigenvectors Cf of the free solid

problem. After some algebra we arrive at

£*
X C
af vi . f£x f
Juv(e) Duv + P i —F - im I Xul Cvl 6(e-el). (2.39)
e-ey |3

At this point we again consider the MLEC assumption [Eq. (2.28)]. Suppose
that the basis Xg can be partitioned into a subset of central functions and a
subset of border functions, such that if either a or v in Jav belongs to the
central region, the sums over B in Eq. (2.34) can be extended to the set B UD
without appreciable consequences., This would result inD =68 andX =0
av av av
for either a or v in the central region, hence the structure of JC would be

C
[ef. Eq. (2.29)]

Jcc(e) = , (2.40)

with Z pertaining to the border region only. To obtain Eq. (2.28) it is now
sufficient to assume that V is different from zero in the central region only.
Hence the MLEC assumption corresponds to the requirement that the cluster B
comprises a border region, where the connection of the cluster with the defec-
tive solid is established, but where the perturbing potential is already very

small,

E. The density matrix in the MLEC method

We complete the derivation of the embedding equations in the MLEC method
by the calculation of the density matrix PCC from the Green's matrix Eq. (2.32)

according to Eq. (2.27).
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As noted in the discussion following Eq. (2.30) the auxiliary Green's

matrix ECC is obtained from the generalized eigenvalue problem of the Fock

matrix for the full problem, confined to the chemisorption cluster. Explicit-

ly:
Foo € =S, CE, (2.41)
tfs ©=1 (2.42)
cc ’ :
and
c. o
G -1 ek (2.43)
u k (e-ek)+in

Using Eqs. (2.27) and (2.32) we obtain for u € C, v € A:

€F
Puv = --:? lim Im f de G \’(eﬂ'_n)
n)oi’ Lo H
C T ole-e) (2.44)
= E Cuk Cvk 0 EF e )s .

where 9(x) denotes the unit step function:

0(x) =0 forx <0

=1 forx >0, (2.45)

and €p is the Fermi energy of the free solid. For ¥ € C, v € B we obtain
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E

F B
1 5. = . .
P =-—1lim, Im de T G (e+in) J_ (e+in)
uv m n+0+ !; o Ha av
£*
B C
= =% - all vl
= - g 2L v
i i Cuk Cuk e(EF ek) Duv * PR _ef
k L
B C.C
*
epp R ok oy ace-eh). (2.46)
k ef-g . al vl F &
@ 2 %k
We write Eq. (2.46) as
B _ _% -
= 2.4
Puv i 2 Cuk Cuk Mav(ek)’ (2.47)

with the energy dependent coupling matrix M(e) defined by

X £*
Mav(e) =D, " L “; vi O(ei—eF), e < Ep (2.48a)
L e -e
£*
- afl v _f
Ma“(e) = i ef_e G(EF el), e > ep. (2.48b)
2

The coupling matrix M(e) plays a central rSle in the MLEC method. Since it
depends only on the electronic structure of the free solid and on the choice
of the cluster B €S, and not on the adsorbate, it can be said to summarize the
adsorptive properties of the substrate. In Sec. 4 we will give some examples of

the energy dependence of the coupling matrix.

F. Limiting conditions

An important characteristic of the MLEC method is that it yields correct
results in the limiting cases where either of the sets A or D is empty. Since
the algebra involved is straightforward, we merely give the results.

If the cluster B coincides with the representation of the substrate, i.e.,

if D = @, the embedded cluster calculation should be identical with the corre-
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sponding nonembedded cluster calculation. Indeed, we find

M (e) = & . Olegme), (2.49)
and hence
£C. C O(c.-e
- = : Cuk Cvk (eF ek), u, vEC (2.50)

In the absence of an adsorbate,i.e., if A = @, the embedded cluster calcula-
tion should reproduce the results obtained for the free solid. Calculating the
density matrix with the matrix C that satisfies

F.. C=8, CE, (2.51)
§.,C=1, (2.52)
we find the correct result

Pip = Prn (2.53)

G. The iterative procedure; summary of main formulas

The procedure to be followed when actually performing embedded cluster
calculations with the MLEC method is as follows:
i) Obtain an initial guess for Poce (A good choice seems the direct sum of the

adsorbate density matrix and Pf

BB from the free solid calculation.)

ii) cCalculate the Fock matrix originating from the full one-electron Hamil-
tonian (including the frozen indented solid), restricted to the embedded

cluster.



65

iii) Solve the generalized eigenvalue problem for the embedded cluster C:

F..C=S§ . CE, (2.54)

Cs..C=1. (2.55)

iv) Construct the new density matrix PCC as follows:

- % -
Puv = i Cuk Cok e(eF—ek), uEC, VEA, (2.56a)
B_ - -
PuV = E ﬁ Cuk Cak Muv(ek)’ u€C, vEB, (2.56b)
where
*
xal Cil f
Mav(e) = Dav - I N e(eE-EF)' e < ep, (2.57a)
L e -e
. 2
xal 52 £
Muv(e) =T R e(EF—el), e >eq (2.57b)
A el—e

The matrices D and X, occurring in the coupling matrix M(e), are given by
SS)BB’ (2.58)

X=58_C E -F_ C; (2.59)
they are obtained from the free solid calculation.

Steps 1ii), iii), and iv) constitute the iterative steps of the procedure.

They must be repeated until self-consistency is reached.
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H. Reformulation of the MLEC method in a semi-orthogonal basis

Our calculations have shown that in a nonorthogonal basis the elements of the
coupling matrix M may become quite large (elements of order 102 or 103 are not ex-
ceptional). In the calculation of the density matrix [Eq. (2.56)] this leads to
numerical problems in the Hartree-Fock~Slater-LCAO method, as will be shown in
Sec., 4. Therefore we propose to perform a basis transformation which reduces
these problems.

We transform the basis % as follows:

1AA OAB 0AD
' o = -
X XW, W oBA 138 Y , (2.60a)
ODA ODB 1DD
where
Y=ss (2.60b)

This amounts to an orthogonalization of D to B. We refer to X' as the semi-ortho-

gonal basis, The inverse transformation is easily found to be [cf. Appendix B]
Xx=Xuw', W' =1]o 1 Yy | . (2.61)
The matrix Q, defined in Eq. (2.10), transforms to

Q' =W QW

Ua Us Qp~ s ¥
Qg4 Qs Qp = Qpp ¥ .
+ +
a~Y Qy Uy~ YQp Qp -~ Qg Y- Qpp+Y¥ Qpp

(2.62)
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Note that, although we transform the basis x, the density remains unchanged, and
hence S, F,and Q transform in the same way. For the overlap matrix S we obtain

from Eqs. (2.60) and (2.62)

-1

Saa Ss8 Sap ~ Sas See Smp
L
] Spa Sps OBD . (2.63)
-1 -1
Spa ~ Sps>BB Spa 58 Spp ~ Spe e Smp

Therefore in the new basis ' the matrix D [Eq. (2.58)], which occurs in the

coupling matrix M, becomes

BB (2.64)

Of course, Eq. (2.64) is the rationale of the transformation Eq. (2.60).
The derivations in sections 2B - 2E may now be repeated in the new basis.
In particular, we obtain for the perturbation to the modified free solid

problem

vl='6I_Ql

@, -, Q) -Qip
= ~Q, 85~ %p Qg - Op . (2.65)
Qs %s " %z 9p " Yp

The local perturbation assumption, which leads to the general embedding equa-

tions in the semi-orthogonal basis, reads

Qp = 0,p (2.66a)
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' £
BD ' BD’ (2.66b)
' £'

Fpp ™ FDD' (2.66c)

As stated above F transforms exactly as Q [Eq. (2.62)], hence Eqs. (2.66b) and
(2.66¢) are equivalent to the corresponding relations Eqs. (2.17b) and (2.17c)
in the nonorthogonal basis. However, Eqs. (2.66a) and (2.17a) are not equivalent.

To obtain Eq. (2.66a) from Eq. (2.17a) we have to make the additional assumption

-1

Qg Spp Spp = Opp* (2.67)

It may be noted that this assumption is similar to assumption (b) in Pisani's
first paper on the MLEC method [7], viz., the neglect of compound quantities with

both indices A and D occurring. Therefore we feel that in the MLEC method assump-

tions (2.66a) and (2.17a) will yield comparable results.

Assuming the validity of Eq. (2.66) we may again go through the algebra
as before and arrive at
-1

@ - (2.67)

L]
(GCC) cC cc

[ef. Eq. (2.22)]. Invoking the MLEC assumption

Jéc Véc = Véc' (2.68)
where
1 0
3o = AA f,“f, , (2.69)
0

BA QBB GBB

we obtain the analogue of Eq. (2.32) in the semi~orthogonal basis:
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t .t v
GCC GCC JCC' (2.70)

This leads to equations for the calculation of PéC analogous to Eqs. (2.56) -

(2.59).

Finally, we may obtain the density matrix in the nonorthogonal basis y by

transforming P':

P=wep W
1 1]
Paa PAB Oap
] [} - )
Pia PBB Pon - Y PO L, (2.71a)
+
1 . 1 1
Opa Fop ~ Ppp ¥ Pop

[ - [ .
where we have used Pp OAD and PDA ODA’ further,
P =Pp' -YPpP' -P Y++YP' Y+ (2.71b)
BB BB DB BD DD - .
f'
A similar relation holds for P~ . Therefore
£ f!
= M -
Ppp = Ppg * (Ppy ~ Pgp)
TP+ R, (2.72)

which is the transformation formula employed in our calculations with the semi-

orthogonal basis.

1. Transformation properties and symmetry adaptation

In this subsection we will show that the MLEC method may be adapted to the

geometrical symmetry of the chemisorption system without serious complications.
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We note from the outset that the only symmetry available to us will be that of the
point group Cnv' Still, exploiting this symmetry can yield a substantial reduction
of the computational effort.

We start by considering a basis transformation T of the form

Taa % %o
X=xT, T= |0y T Op |, (2.73)
0 0 T

i.e., we restrict ourselves to transformations of the subsets Xg (R = A,B,D)
among themselves. The necessity of this restriction is, of course, that without
it the localization in parts A, B, and D of the chemisorption system would be
lost. Such a transformation corresponds to the natural symmetry of the chemi-
sorption system, however.

We now obtain the transformation properties of various quantities occurring
in our embedding formalism. In the new basis the (unchanged!) eigenvectors of the

free solid problem can be expressed as

e oof o~ oof
LA S

f
= Xg G * X Cps (2.74)
hence
~f -1 £ _
Cg = Tgg g R = B,D). (2.75)
For the eigenvectors of the embedded cluster problem we have
. =11 ¢ (R = A,B). (2.76)
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Due to the block diagonal character of the transformation matrix T it follows for

the overlap matrix that

~ + _
RQ " Ter sRQ TQQ (R,Q = A,B,D). 2.77)

w

A similar result holds for the Fock matrix.

The transformation properties of the coupling matrix M may most easily be

studied by considering the matrix D. From Eq. (2.77) it follows that

~1 -1 =1 -1t
Ssedpp = Tap Sss)zaTap) (2.78)
hence
~ 1
D = Syp Ggsdpp
ot t -1
= Tgp D (Tpp) - (2.79)
Therefore also
~ 1 t -1
M= Tpp M (Tpp) . (2.80)

For completeness we mention that the matrix X transforms as

X=1T _ X, (2.81)

vwhich follows easily by use of Eqs. (2.75) and (2.77).

To check our results we calculate the density matrix FEC using the quanti-

ties in the transformed basis. From Egqs. (2.56), (2.76) and (2.80) we obtain
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~ -1 -1t
Pss = Ths PBB(TBB)

Similarly

~ -1.4
Pyg = Tan PanTpp

Combined with the trivial results

-1 -1yt
s " Typ PAA(TAA) ,

ol

~ -1 -1+
Ppa ™ Tpp Ppa(Tan’ >

we finally obtain

as required.

(2.82a)

(2.82b)

(2.82¢)

(2.82d)

(2.82¢)

Our next step is the symmetry adaptation of the basis x. Let T be of the

form (2.73) and such that the elements of ; transform as basis functions for

irreducible representations of the symmetry group. We will denote a general

element of T by 'I‘u Tk’ where u labels a function of the original basis x, T
»

labels an irreducible representation, and k is a multiplicity label. The matrix

C with eigenvectors of the embedded cluster problem will have the structure
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i,
i )T

7 7777
K — !
%V o

o 7
! .

AL

Ji

where only shaded elements can be nonzero. Thus,

fad =r

CFk,AL = GFA Chn (2.83)
Similarly,
~f ~fT

., C

Cri,ae = Ora Cke” (2.84)

In the symmetry adapted basis X the coupling matrix M is also symmetry

blocked, as we will show now. Again it is simplest to consider the matrix D:

~

Dri,ae =

1

r (s

om

) (2.85)

St,0m'Sssom, A2°

The unit operator is totally symmetric, so

~

s = _ . T
Srk,om = °ro Sri,rm © %1 Sk (2.86)
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and

1
SS)Om,Al 6G)A (SSS)Om,Ol

~1

-1

= 60 (90, (2.87)
Substituting Eqs. (2.86) and (2.87) into Eq. (2.85) we find
5. -s ¥ @)
Tk,A% TA o km ""SS "mf
=5, Dl (2.88)
~ TA "k&° -
Therefore also
M. . .(e) =6 M () (2.89)
Tk, AL ra Meg(e)- .

Finally we look at the construction of the density matrix for Tk € C,

AL € B:
~ B o ok ~ -
Pri,ae = é; ;; Cr,on Com,an Mom, a2 on’
L =
= Spp DI G Oy Mpglep)
m~n
. aT
=60, Pgs (2.90)

where we have used Eqs. (2.83) and (2.89).
We conclude that it is indeed possible to treat the embedding problem in
a symmetry adapted manner. The density matrix in the original basis may be

recovered from



cc cc PCC TCC’
80

*

P = Tk Frig e Ty,az

W kAL

~ %
r IT P . T N
I kL u,Tk "k& “v,T2

i.e.,as a sum over irreducible representations of the symmetry group.

75

(2.91)

(2.92)



76

3. Implementation

The present embedding approach to the chemisorption problem leads to a
computational scheme that essentially consists of three steps. Implicit in the
procedure is the choice of a one-electron model to describe the chemisorption

phenomenon. We reiterate that capitals A,B,... are used to indicate both

localized regions in space and the basis sets centered in these regions. The

three steps involved are:

I. Choose a description S of the solid surface, to be used as substrate, and
perform a self-consistent cluster calculation.

II. Define aclusterBcS to be used in the chemisorption cluster, at the same
time defining the representation of the defective solid, D=S\B. The elec-

;,Ef,which occur

tronic structure of S is reflected in the matrices D, X, C
in the coupling matrix M, and the additional terms due to the defective
solid in the Fock matrix for the chemisorption cluster.

III. Perform a self-consistent embedded cluster calculation for the adsorbate A,
chemisorbed on B. The iterative procedure to be followed is described in

Sec. 2G.

As one-electron model we use the Hartree-Fock-Slater (HFS) model. We have
implemented the embedding scheme in the pseudopotential HFS-LCAO program of
Baerends et. al. [17-19]. The major characteristics of our chain of programs are
(i) full use of symmetry, (ii) optional use of nonorthogonal or semi-orthogonal
basis sets [cf. Sec. 2H], and (iii) analytic evaluation of the coupling matrices
at the relevant energies. At present we have only implemented the spin-restricted
formalism.

Steps I and III of the computational procedure involve the use of the
extended HFS-LCAO program, step II involves the use of an auxiliary program,
which we named PISANI. In the following we will discuss some features of both

programs. In Appendix C we describe the structure of the embedding HFS-LCAO program.
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A. Additional terms_in_the Fock matrix

For a system of interacting atoms a the Fock operator in the pseudo-

potential HFS model reads
F() = T(1) + v (1) + v [p(D] + v [p(1)] + vps(1), 3.1

where T is the kinetic energy operator, V. the nuclear potential, V., the elec-

N C

tronic Coulomb potential, Vx the electronic exchange potential and Vps the

pseudopotential shift operator. In atomic units:

T(1) = - 3 v, (3.2)
D = - zR (3.3)
Vel = [ 1]} o(2ary, (3.4)
v, Ip(D] = = 3l o (1173, (3.5)

and
- a a a
v 1) = I - . . >< . . .
ps( ) a.i (e Ecore,l)lwcoreﬂ“) ¢C0te,1(1)l (3.6)
’
We note that V__ shifts the core orbitals wa . from their one-electron energies
Ps core,i

a = . . .
€ore. i to the average valence energy €. The one-electron density occurring in

s

Eqs. (3.4) and (3.5) is written as

cor

(1) = 2 [p2e (0 + 22 (1)] 40 (0, 3.7

where the atomic difference density Ap?(1) is defined as
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a - .a _a
ap (1) = pvalence(i) pps(1). (3.8)
and pps(1) is the pseudo density. See Refs. [20] and [21] for a more extensive
discussion of the Fock operator and its inherent assumptions.

In the HFS-LCAO method of Baerends et., al. the matrix elements of the Fock
operator are evaluated with a numerical integration scheme. Defining

~

FET+V_+V,+V,, (3.9)

one approximates

1

w = G IFD
- * o> - -
z i w(rk) xu(rk)F(rk)xv(rk)' (3.10)

with W(;k) the weight of integration point ;k

pseudopotential operator (3.6), which essentially involves overlap integrals

. The matrix representation of the

only, is treated analytically. At each cycle of the iterative procedure it is

constructed from the two matrices

a ><p? e, 3.11)

C
Po- <X|[ z |¢core,i core,i

a,i

and

a

a a
core,i >V (110 (3.12)

E
= < .
P XI[ z. € |wcore,1 core,1l

»
The Fock matrix entering the embedded cluster calculation is the Fock matrix
of the full chemisorption system (ABD), confined to the embedded cluster. In

comparison with a nonembedded cluster calculation a number of additional terms
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occur, all pertaining to the indented solid. The computational scheme of the
HFS-LCAO method allows these terms to be included in a natural way.

Inclusion of the potential due to the indented solid requires the calcula-
tion at each integration point of

- the nuclear potential

Z R, (3.13)

- the density

D
a a f f
); Peore(?) * 807 (D] + [p7(1) - ppa (D], (3.14)
to be used in the evaluation of the exchange potential (3.5). pgn denotes the

density that corresponds to the density matrix P;B.
- the Coulomb potential due to the demsity (3.14).
Since all these contributions remain constant during the iterative calculation
on the embedded cluster, they can conveniently be added to the corresponding
constant terms occurring in the nonembedded cluster calculation, viz., to
- the nuclear potential

-1

-IZ R, (3.15)
a

- the density

[
£ e? () + 8%, (3.16)
a

core

- the Coulomb potential due to the density (3.16).

Inclusion of the indented solid in Vps requires the calculation of the
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matrices PC and PE pertaining to D, in the basis Xy V) X and adding them to
the corresponding matrices calculated for the nonembedded cluster.

We note that, once the additional terms are evaluated, the construction of
the Fock matrix in the embedded cluster calculation proceeds in the same way as
in the nonembedded cluster calculation, i.e., there are no extra storage or
computation time requirements. The evaluation of the additional terms can be
quite time consuming, however. In fact,it is one of the major steps in the cal-

culation.

B. Construction of the density matrix in embedded cluster calculations

In the embedded cluster calculations the density matrix is evaluated
according to Eq. (2.56). The coupling matrices involved in this expression are
evaluated analytically at the appropriate energy points. The calculation of the
density matrix is essentially a n3 operation (and not a n4 operation, as stated
by Pisani [7]). Furthermore, the symmetry blocking reduces the dimensions of
the matrices involved. This analytic procedure is computationally quite cheap,

so we do not need interpolation or fitting procedures in our calculations. The

f
B

by program PISANI.

matrices D, X, C_ and Ef, needed in the calculation, are read from a file created
In order to reduce storage requirements, the HFS-LCAO program uses only the
lower triangle of the density matrix P. In our implementation we calculate the
density matrix for each irreducible representation, symmetrize as %(P + PT) and
transform the resulting lower triangle to the basis X, U X Note that the
symmetrization does not affect the one-electron density.
In calculations employing the semi-orthogonal basis the constant part R
[cf. Eq. (2.72)] of the density matrix is read from the file containing D, X, Cg

and Ef,


http://fact.it
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C. Miscellaneous features

In the limit of very large substrate clusters the number of electrons
introduced into the system by the adsorbate is vanishingly small. Therefore
we take the Fermi level fixed in our calculations. The embedding HFS-LCAO
program requires the specification of the Fermi level for each irreducible

representation and checks the formal conditions

f f
€homo 2 eFermi s €lumo’ (3.17)

vhere ef and ef are determined by the free solid calculation. The average
homo lumo
orbital energies € (one for each irreducible representation) in the pseudo-
potential operator (3.6) are treated in the same spirit, i.e., they are frozen
at their free solid value.
In the HFS-LCAO program a standard damping procedure is employed in the

iterative calculation of the density matrix. Let Pi_ be the density matrix

1
used in cycle (i-1) and Pi the density matrix constructed from the eigenvectors

of cycle i, Instead of using P, as input for cycle (i+1) one uses
i

P/ =aP, + (1-)P;_, 0 <ac. (3.18)

The risk of divergencies (or oscillatory behaviour) in embedded cluster cal-
culations is enhanced by the fact that the charge in the embedded cluster

is not conserved: the number of electrons in the cluster is determined

by the position of the Fermi level. Indeed, in our test calculations the
damping procedure (3.18) was generally not sufficient to obtain convergence.
Therefore we have used the following charge renormalization in the initial
stage of the iterative procedure.

Let the matrix P, correspond to N, electrons (i 2 1), and let Ny be the
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number of electrons corresponding to Pf plus the number of (valence) electronms

BB
of the adsorbate (NA):

f
N, = Tr(PBBSBB) + NA. (3.19)

Instead of Eq. (3,18) we use

| . - ]
p: = C.laP, + (1-0)P; ], (3.20)
where
N.-N.
0 i
C, =1+ [ N ] £ (3.21)
i
£, is a switching function with limiting properties f1 z 1 and lim fi = 0.
irm

We obtained satisfactory results with the Fermi function
. s -1
B(i-ij)
fi = |1 +e , (3.22)

with typical choices B = 0.3, iO = 10,

Program PISANI performs step II of the computatiomal procedure as outlined
in the introduction of this section, i.e., it serves as a bridge between the free
solid and the embedded cluster calculations. Its main functions are:

— definition of the cluster B € S in terms of atoms, basis sets, density fit
sets and core orbitals, including validity checks of the atoms selected with
the symmetry group chosen.

- calculation of the matrices D and X, needed in the evaluation of the coupling



83

matrices M; in the case of a semi-orthogonal basis also the matrix R is

calculated.
- fit of the density (pf - pr), which corresponds to the matrix
£
0 P
B BD (3.23)
S
DB DD

[cf. Eq. (3.14)).This density fit is used in the pointwise calculation of the
density and the Coulomb potential due to the indented solid.

Apart from these essential functions program PISANI has a number of use-
ful additional functions. We mention the possibility to check the case where
the adsorbate is absent, the calculation of the coupling matrices at energy
points to be specified and a population analysis of the free solid density in
terms of B and D.

We note that the computation times needed by the program are very modest,
E.g., for the case Li13 c Li79 in a double-zeta-plus—polarization-function
basis the execution time is 20 seconds on the AS9040, which is to be compared
with the execution time of approximately one hour for the embedded cluster

calculation.
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4. Results and discussion

Due to the small number of basis functions needed to describe lithium
atoms, lithium is a convenient testing ground for methods dealing with metals.
We performed test calculations with the MLEC method for the on-top adsorption
of hydrogen on the lithium (100) surface. In all calculations we used the

spin-restricted formalism.

A. The substrate: Li79

As a representation of the substrate in our embedding calculations we used
a Li79(21,16,21,12,9) cluster, i.e., with 21 atoms in the first layer, 16 in
the second, etc. The cluster is supposed to represent the unreconstructed (100)
surface of the body-centered-cubic lattice (with bulk lattice constant 6.60
a.u. [22]). In table 1 we summarize the geometric data for the cluster. For
future reference we note that atoms of type I, III, X, and XIV lie in the sur-
face plane.

The double-zeta s, single-zeta p STO basis set [23] and the integration
parameters used in the calculations are listed in table 2. It was shown by

Post [24] that for the Li_—CO interaction this basis set satisfactorily

5
reproduces the details of the interaction energy vs. distance curve calculated
with a triple zeta basis. We note that the basis set of table 2 was used for
all atoms in the Li79 cluster, i.e., the basis consisted of 395 STOs.

In the Li79 calculation as well as in all other calculations we used the
C&v point group symmetry. To obtain the electronic configuration we did not
optimize the cohesive energy, but simply followed the Aufbau principle. It

appears, however, that for lithium clusters both schemes yield the same result

[1,25]., Due to near-degeneracies in the orbital energies the Li79 calculation
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Geometric data for the Li

79

cluster (a = 6.60 a.u.)
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distance to cumulative
atom type coordinate Li(1) . a—1 multiplicity cluster
1 (o, 0, 0 0.000 1 Li, (1, 0, 0, 0,0)
1 (3 5~ %) 0.866 4 Lig (1, 4, 0, 0,0
111 (a, 0, 0) 1.000 4 Lig (s, 4, 0, 0,0)
v (0, 0,~ a) 1.000 1 LiIO( 5, 4, 1, 0,0)
v (a,a 0 1.414 4 Li14( 9, 4, 1, 0,0)
\'as ( a, 0,~ a) 1.414 4 Li18( 9, 4, 5, 0,0)
VII (%}, 5= 1.658 8 Li, (9,12, 5, 0,0)
virr (3, 3,33 1.658 4 Ligg( 9,12, 5, 4,0)
X (a, a,~ a) 1.732 4 Li3a( 9,12, 9, 4,0)
X (2a, 0, 0) 2.000 4 Liyg(13,12, 9, 4,0)
X1 ( 0, 0,~2a) 2.000 1 Li39(13,12, 9, 4,1)
XII %;,%;,- %) 2.179 4 Li, (13,16, 9, 4,1)
XIII (%f,-%,-%f) 2.179 8 Lig, (13,16, 9,12,1)
XIv (2a, a, 0) 2.236 8 L159(21,16, 9,12,1)
Xv (2a, 0,- a) 2.236 4 Li63(21,16,13,12,1)
XVI ( a, 0,-2a) 2.236 4 Li,,(21,16,13,12,5)
XVII (2a, a,- a) 2.449 8 Li,(21,16,21,12,5)
XvViir  ( a, a,-2a) 2.449 4 Li,g(21,16,21,12,9)
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Table 2

Basis sets and integration parameters

H Li
basisa)
1s 0.76
1.28
2s 1.16
0.60
2p 1.00 0.60
. . b)
integration
r 2.00 2.00
aq 0.50 0.50
3) Ref.23
b)

Table 3

Parameters in Fermi-like distribution [1 + exp(':!o(r—r:l,)))]—1

Deviations from the exact value, caused by a perturbation in the Fock matrix,

for net cluster populations of Li

18

embedded in Li

79

AI representation E representation total

A nonorth semi-orth nonorth semi-orth nonorth semi-orth
10_8 .000 000 .000 000 .000 000 .000 000 .000 000 .000 000
10_7 -.000 007 .000 000 -.000 001 -,000 001 -.,000 012 -.000 002
10_6 -.000 077 -.000 001 -.000 013 ~,000 008 -.,000 130 -.000 039
10_5 -.000 773 -.000 012 -.000 125 =-,000 076 =-.001 311 -.000 400
10-4 -.007 398 -.000 120 -.001 041 -,000 753 -.012 370 -.003 984
10_3 -.047 501 -.000 501 +.,004 908 -,006 613 -.065 747 -.036 316
10_2 +2.616 654  +0.69 901  +2,492 540 +.082 439  +,455 967 +.098 174
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converged very slowly: it took 200 iterations to converge to a mean change

of 2x10-6 in the diagonal of the density matrix.

B. The coupling matrices

Having performed the free solid calculation, we can define suybclusters
for use in embedded cluster calculations. In figures 2 and 3 we show the energy
dependence for some elements of the coupling matrices M in clusters of in-
creasing size. The elements pertain to symmetry adapted linear combinations of

basis functions located in the central part of the Li,, cluster, Except for a

79
discontinuity at the Fermi energy the energy dependence is quite smooth.

In figure 2 we show some representative elements in the nonorthogonal
basis. We see that the behaviour is not at all close to the step function
O(SF-'e).The elements can assume values up to 102-103;furthermore, the variation
with energy is quite large. This behaviour causes severe numerical problems,
as can be understood qualitatively from the following argument. The elements
of the eigenvectors C and the density matrix P are of the same order. Thus, in
the calculation of the density matrix, cancellation of relatively large terms
EukE:k Mav(gk) [Eq. (2.56b)] has to occur to produce the correct Puv' This
cancellation leads to severe demands to be imposed on the numerical integration
scheme in the HFS-LCAO embedded cluster calculation. In fact, the demands are

so severe that the effort imvolved in the numerical integration becomes prohi-

bitively large. This problem led us to introduce the semi-orthogonal basis in

Sec. 2H.
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In figure 3 we display some elements of the coupling matrices for the
semi-orthogonal basis. It is clear that the coupling matrices are much more
well-behaved, now. With increasing cluster size the elements pertaining to
the central region rapidly approach the step function e(eF - e). The elements
belonging to the border region, where the connection with the free solid is
made, show a more complex behaviour. Off-diagonal elements are generally an
order of magnitude smaller than diagonal ones. This behaviour is much the same
as found by Pisani [7].

In order to illustrate the instability caused by an inaccurate integration
scheme we consider the embedding of Li18 in Li79, in the absence of an adsorbate.
In that case, the results of Li79 should be reproduced exactly: after solving

the generalized eigenvalue problem of Ff and constructing the density matrix

BB

we should obtain Pf both for nonorthogonal and semi-orthogonal bases

BB’
[Sec. 2F]. This serves as an important check of the programs used. We now

simulate the effect of inaccuracies in the Fock matrix caused by the numerical

integration with a small perturbation:

F=F_+ AA, (4.1)

where
By " (-n*ta, (4.2)

In table 3 we list the effect of increasing A from 10-8, with factors of 10,
on the number of electrons corresponding to the resulting density matrix, the

net cluster population

c= Tr(P..S..). (4.3)

¢ cc’ce
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It can clearly be seen that the perturbation has a more pronounced effect in
the nonorthogonal case. We note that integrated quantities, such as the net
cluster population, are the more stable ones in our embedding HFS-LCAO scheme,

as will become clear in the sequel.

C. The numerical integration

The numerical integration scheme employed in the HFS-LCAO program [cf. Sec.
3A] is the discrete variational method, introduced by Ellis and Painter [26,27].
The density of integration points is taken as a superposition of Fermi-like
distributions, centered at the atoms in the system. We note that the HFS-LCAO
program directly calculates matrix elements over symmetry adapted linear combi-
nations of basis functions, thus obviating the need for storage of large numbers
of integrals over primitive basis functions.

The influence of the integration scheme on the embedded cluster calculations
and Li H embedded in Li,,. In tables 4 and 5 we list

10 10 79

some details of the electronic structure obtained with various schemes. The

was investigated for Li

parameters entering the numerical integration are those of the Fermi-like
distributions and the number of points in each atomic distribution. We have only
varied the latter,

The first columns of tables 4 and 5 refer to calculations with 500 points
per atom for all atoms in the embedded cluster C, which gives stable results in
the usual nonembedded cluster calculations. The last columns give the results

obtained when using the complete Li,, integration grid, with an extra 500 points

79
on H in the Li10H calculations. The interjacent columns refer to calculations

with increasing numbers of points (NC) in C and to calculations with (ND) ad-

ditional points in the indented solid.

From these and similar calculations which we have performed, a number of con-

clusions can be drawnwith respect to the accuracy of the integration procedure:
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Table 4

Influence of integration scheme in Li 0 embedded cluster calculation using

1
the semi-orthogonal basis

integration I 11 I1I v Va)
L 5000 10000 5000 5 000 2 500
N, 0 0 800 3 850 17 250
net atomic populations

Li(I) 0.19 0.18 0.23 0.29 0.26
Li(1II) 0.36 0.54 0.59 0.37 0.34
Li(II1I) 0.12 0.26 0.24 0.33 0.27
Li(Iv) 0.85 0.71 0.45 0.43 0.32
atomic overlap populations

Li(I)-Li(II) 0.31 0.31 0.29 0.19 0.21
Li(1)-Li(III) 0.08 0.10 0.11 0.16 0.14
Li(D)-Li(IV) -0.02  -0.02  0.03 0.14 0.12
gross atomic charges

Li(D) 0.15 0.15 0.09 0.08 0.12
Li(I1) -0.18 -0.22 -0.2t -0.13 -0.14
Li(III) 0.22 0.23 0.20 0.16 0.18
Li(Iv) -0.02 0.07 0.17 0.02 -0.05
net populations in Li10

A1 3.18 3.08 3.07 2.89 2.84
Ay 0.01 0.00 0.00 -0.00 0.00
B, 0.44 0.46 0.33 0.41 0.43
B, 0.28 0.28 0.27 0.25 0.26
E 3.22 3.37 3.51 3.66 3.66
total 7.12 7.18 7.19 7.21 7.20
a)

Integration scheme of free solid (Li79) calculation



Table 5

Influence of integration scheme in Li

using the semi-orthogonal basis

10H embedded cluster calculation

integration 1 11 II1 v v v1?)
NC 5 500 22 000 5 500 5 500 5 500 3 000
ND 0 0 800 1 600 3 850 17 250
net atomic populations

H 0.72 0.86 0.93 0.91 0.83 0.80

Li(I) 0.81 0.67 0.64 0.65 0.73 0.77

Li(II) 0.27 0.23 0.45 0.33 0.32 0.32

Li(III) 0.17 0.11 0.15 0.16 0.21 0.22

Li(Iv) 0.89 0.16 0.13 -0.13 0.06 0.04

atomic overlap populations

H-Li(I) 0.62 0.64 0.62 0.63 0.66 0.67

H-Li(IT) 0.05 0.05 0.04 0.05 0.04 0.05

H-Li(III) -0.02 -0.02 -0.01 -0.02 -0.02 -0.02

H-Li(1V) 0.04 0.03 0.03 0.03 0.03 0.03

gross atomic charges

H -0.11 -0.25 -0.30 -0.30 -0.23 -0.21

Li(I) -0.01 -0.01 +0.01 -0.00 -0.06 -0.11

Li(II) -0.16 -0.18 -0.19 -0.19 -0.16 -0.13

Li(III) 0.28 0.31 0.32 0.33 0.29 0.28

Li(IV) -0.09 -0.03 -0.00 +0.01 -0.06 -0.06

net populations in Li1oH

Al 4,42 4.42 4,45 4.37 4,42 4.42

A2 0.01 0.01 -0.00 0.02 0.00 0.01

B1 0.47 0.48 0.45 0.39 0.41 0.43

Bz 0.35 0.26 0.28 0.27 0.26 0.26

E 2.91 3.02 3.03 3.13 3.15 3.12

total 8.17 8.18 8.20 8.18 8.24 8.23

a)

with 500 points on hydrogen

Integration scheme of free solid (Li79) calculation supplemented
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- The electronic structure of the embedded cluster is more stable in its
central region than in the region bordering the indented solid. In figure
4 we illustrate this point by showing the pseudo-density pBB(1) along
the principle axis of the cluster in various integration schemes.

- Increasing the number of integration points in the embedded cluster alone is
ineffective in improving the accuracy; it is better to include points in the
region of the indented solid bordering the embedded cluster.

- Even with quite extensive integration schemes the populations are accurate
to a few hundredths of an electron only. However, the inaccuracies are
substantially smaller than the changes induced by the adsorbate.

- Integrated quantities are more stable than their constituent parts: gross
atomic populations vs. net atomic populations and overlap populations; the
net cluster population [Eq. (4.3)] vs. its contributions from various irredu-
cible representations.

- In agreement with the conclusion of Sec. 4B, we find that the observed
instabilities with the nonorthogonal basis are much more pronounced than with
the semi-orthogonal basis.

The inefficiency of Fermi-like grid point distributions solely localized
in the embedded cluster, in the integration for the embedded cluster calculation
may be understood as follows. For isolated molecules the superposition of atomic
grid point distributions more or less follows the electron density, i.e., regions
of space with a low density obtain also a small weight. For embedded cluster
calculations, however, the (total) density does not fall off outside the cluster,
but stays approximately constant. Therefore, integration points outside the
cluster are needed to obtain sufficiently accurate values for integrals over

functions located in the border region of the cluster.
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D. Convergence with cluster size; effect of embedding

We studied the convergence of the electronic structure as a function of
cluster size for the on-top adsorption of hydrogen. The hydrogen-lithium
distance used was the free LiH distance (3.015 a.u.), which was found to be
close to the minimum of the interaction energy curve in several cluster
studies [28,29]., In the embedded cluster calculation we used the semi-orthogonal
formalism. The integration schemes consisted of the Li79 grid supplemented
with 500 points on hydrogen in the embedded cluster calculations, and 500 points
per atom in the nonembedded cluster calculations.

In table 6 we present the converged values for the atomic populations and
the net cluster population [Eq. (4.3)] in the embedded cluster calculations, in
table 7 the adsorbate induced changes in these populations and in table 8 the
corresponding numbers for the nonembedded cluster calculations. We note that,
due to the averaging over symmetry equivalent atoms, the populations pertaining
to Li(II) and Li(III) are more accurate than those of H, Li(I) and Li(IV).
Further we recall that the surface atoms in the L110 cluster are Li(I) and
Li(III),

From the calculations a number of conclusions may be drawn:

- Once again it can be seen that integrated quantities show better convergence,
now with respect to cluster size, than their constituent parts.

- The gross atomic charges convergence more rapidly in the embedded cluster
calculations than in the non-embedded calculations. They are converged for the
Li10 cluster. The more detailed populations need somewhat larger clusters;
still they converge more rapidly in the embedded cluster calculations.

~ The embedded clusters show a more adequate screening of the perturbation
induced by the adsorbate. The changes in the gross atomic charges seem to be
localized in the L15 cluster formed by the central lithium atom and its four

surface neighbours,



Table 6

Atomic populations in LinH embedded cluster calculations using the

semi-orthogonal basis

n 1 53 10 18 26

net atomic populations

H 0.96 0.79 0.80 0.84 0.84
Li(I) 0.45 0.42 0.77 0.54 0.45
Li(II) - - 0.32 0.34 0.32
Li(II1) - 0.18 0.22 0.26 0.26
Li(1Iv) - - 0.04 0.26 0.31
atomic overlap populations

H-Li(I) -0.05 0.57 0.67 0.69 0.70
H-Li(IT) - - 0.05 0.03 0.02
H-Li(III) - - -0.02 -0.01 -0.01
H-Li(1V) - - 0.02 -0.01 0.00
Li(I)-Li(I1) - . - 0.04 0.10 0.19
Li(I)-Li(III) - 0.10 0.01 0.05 0.02
Li(I)-Li(IV) - - 0.04 0.08 0.04
gross atomic charges

H 0.06 -0.08 -0.21 -0.20 -0.20
Li(1) -0.05 -0.25 -0.t11 -0,07 -0.08
Li(II) - - -0.13 -0.13 -0.12
Li(I11) - 0.28 0.28 0.25 0.26
Li(IV) - - -0.06 -0.06 -0.07
a)

Li5(5,0) cluster
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Table 7

Chemisorption induced changes in atomic populations in LinH embedded

cluster calculations using semi-orthogonal basis

a 1 52) 10 18 26
net atomic populations

H -0.04 -0.21 -0.20 -0.16 -0.16
Li(I) +0.19 +0.16 +0.52 +0.28 +0.19
Li(I1) - - -0.01 +0.00 -0.02
Li(1I1) - -0.09 -0.05 -0.01 -0.01
Li(1v) - - -0.28 -0.06 -0.00
atomic overlap populations

H-Li(I) -0.05 +0.57 +0.67 +0.69 +0.70
H-Li(II) - - 40.05 +0.03 +0,02
H-Li(III) - - -0.02 -0.01 -0.01
H-Li(IV) * - - +0.02 -0.01 +0.00
Li(I)-Li(1I1) - - -0.17 -0.1 -0.02
Li(I)-Li(III) - -0.04 -0.12 -0.09 -0.12
Li(I)-Li(1V) - - -0.09 -0.04 -0.09
gross atomic charges

H +0.06 -0.08 -0.21 -0.20 -0.20
Li(I) -0.17 -0.37 -0.22 -0.19 -0.20
Li(I1) - - +0.00 +0.01 +0.01
Li(III) - +0,10 +0.10 +0.07 +0.07
Li(Iv) - - -0.01 -0.01 -0.01

net population in LinH
+0.108 +0.038 +0,028 +0.029 +0.019

a) Li5(5,0) cluster



Table 8

Chemisorption induced changes in atomic populations in LinH

nonembedded cluster calculations

n 1 52) 10 18 26

net atomic populations

H +0.06 -0.20 -0.31 -0.14 =-0.15
Li(1) -0.78 +0.30 +0.52 +0.12 +0.29
Li(II) - - +0.05 +0.03 +0.01
Li(11II) - -0.01 -0.07 -0.03 -0.02
Li(Iv) - - +0.02 +0.03 -0.01
atomic overlap populations

H-Li(I) +0.72 +0.91 +0.87 +0.76 +0.79
H-Li(II) - - +0.,00 +0.01 +0.01
H-L1i(1I11) - - -0.03 -0.01 -0.00
H-Li(IV) - - +0.01 -0.00 -0.01
Li(1)-Li(ID) - - -0.13 -0.12 -0.15
Li(I)-Li(III) - -0.26 -0.26 -0.11 -0.M11
Li(I)-Li(IV) - - +0.11  +0.02 -0.02
gross atomic charges

H -0.42 -0.15 -0.07 -0.24 -0.23
Li(I) +0.42 -0.24 -0.23 -0.09 -0.16
Li(I1) - - -0.03 -0.01 +0.03
Li(I1I) - +0.10 +0.10 +0.07 +0.06
Li(IV) - - +0.04 -0.04 -0.01

a) Li5(5,0) cluster
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- The adsorbate induced total charge of the embedded cluster is very small.
This result agrees with the model calculations by Grimley [ 6 ]. Furthermore,
it can be seen that the charge approaches zero as the cluster size increases.
Although in the MLEC formalism with finite substrate clusters the latter
condition holds exactly for B » S, i.e., D + @, we think that the clusters B

are sufficiently small relative to D for this effect to be physical.

E. Computation times

In table 9 we give an indication of the computation times needed in
various cluster calculations, Obviously the embedded cluster calculations are
expensive compared to nonembedded cluster caleculations. However, compared to
the full (ABD) chemisorption calculations they are relatively cheap.

The causes for the increased computation times with respect to nomembedded
cluster calculations are, in order of decreasing importance:

i) The large number of iterations needed to reach convergence. Due to the
increased instability of the calculations severe measures must be taken
to ensure convergence. In our calculations we used heavy damping (ad-
mixing 5-10% of the new density matrix in each iteration only) and charge
renormalization in the initial stage of the self-consistent procedure
[Sec. 3C]. Thus we reached convergence in all cases investigated but
one: (Li;:Li79)H, with the Li5 cluster consisting of the type I and II
atoms.

ii) The extended integration scheme, needed to incorporate the effect of the
indented solid to sufficient accuracy. At present most time in the em—
bedding HFS-LCAO program is spent in sections that depend linearly on
the number of integration points.

iii) The inclusion of the contribution of the indented solid in the constant
terms for each integration point requires 10-257 of the time in embedded

cluster calculations.
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Table 9

Computation times of some representative cluster calculations on the AS9040

calculation time ratio
Li79 ; free solid 20 hours 1.00
Li18H; nonembedded 12 minutes 0.01
Li1BH; embedded, standard integration 1 hour 0.05
Li1BH; embedded, extended integration 2 hours 0.10

iv) The calculation of the density matrix with the analytically evaluated
coupling\matrices. With standard integration schemes the overhead per
iteration is somewhat less than 107, which is quite acceptable.

In order to accellerate the embedded cluster calculations, further research
is necessary. From the preceding analysis it becomes clear that the improvement
of the integration scheme must play a central rdle. A possibility that could
be investigated is the use of two independent point grids: the "standard" grid
for the nonembedded cluster and an additional grid for the indented solid. The
latter grid could be the one used for the free solid calculation. The informa-
tion from the indented solid could then be stored, but it should be made more
compact.,

Convergence problems seem to be intrinsic; they will depend strongly on
the system under investigation. Pisani [7] needed relatively few iterations in
MLEC calculations for the chemisorption of hydrogen on graphite, for instance.
In our test calculations for the on-top adsorption of fluorine on lithium (100)
we obtained faster convergence than for the corresponding hydrogen adsorption
calculations. Still, it would be surprising if convergence behaviour would not

remain a difficult point in calculations for adsorption on metals.
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Appendix A

The Green's matrix

Given a nonorthogonal, not necessarily complete basis yx = (xu}; the overlap
matrix is denoted by S. Let H be any one-electron Hamiltonian and H its matrix

representation afforded by x. The Green's matrix G(z) is defined by

(zS - H) G(g) = 1, T = ¢+ in. (A1)

The elements of G(z) may be expressed in terms of the solution of the

generalized eigenvalue problem

HC = SCE, Eg ™ Spglir (A2)

c'sc = 1. (A3)
Starting from Eq. (A1) one obtains

«hH™ cfas - mee™ 6@y =1,

«H™ «csc - ctuey ¢ ey =1,

(t1 - E) G'(t) =1, (A8
where

. -1 ty =1

¢'(z) =¢Cc o)) . (A5)

From Eq. (A4) it follows that
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s
' = kL
G (&) = 70e» (A6)
Kk
and hence
G (o) = [ce' (e
uv ")
L]
c . C
=1 _Hk vk . (A7)
"

Further it follows that

*
c.cC
. . . k vk
lim, G (e+1n)=11m E—(_—ur—-
A\ mot k5T T AN
*
c.cC
*
=PI %‘5 mimrc e 8- e, (A8)
k K k

where P denotes the principal part and § the Dirac delta function.
The connection between the Green's matrix and the density matrix is now

easily established:

uv = Kk Cuk vk

€
-j; de € C 8(c -~ o)

€
1 .. F .

- =1lim, 1Im de G (e + in). (49)
"o —J; W
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Appendix B

The inverse of a partitionmed matrix

Consider the nonsingular partitioned matrix

X X
X = AA AB . (B1)

Xsa  *ms

Denote its inverse by Y, then

Y -, ) X, ¥
Y = _1AA AA AB 'BB (32)
'()ﬁan) %oa Yaa Yis
-1
Y =Y., X, (X )
) AA , aa Xan ¥gp , a3)
“Ypp Xpa (Kgp) Ya
where
-1 -1
Yaa = Xy - Xppgp) X1 0 (B4)
_ _ 1 -1
Ypp = [Xpp =~ Xpa(Kp))  Xppl - (85)

Eq. (B2) is obtained by performing the matrix multiplication in

X, X
AA “AB AA "AB _ AA "AB , (86)

XA %88 Yea YBB %4 's8

and by actually solving the submatrices YPQ (P,Q = A,B) from the four resulting
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equations. Eq. (B3) may be found by similarly solving YX = 1 or by the following

algebra:

1 1

_1 - _1 -
Xp ™ AB(XBB) xBA(xAA) X3 = X5 - xAB(xBB) XBA(XAA) X,ps

-1

-1 -1 -1
X pep) (Ygp) " = (Y, ) "(X,,) Xp,

-1 -1
Yy Xy (Kgp) = (X)) XYoo, (87)

and the analogous result obtained by interchanging A and B.
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Appendix C

Structure of the embedding HFS-LCAO program

In figure C1 we have schematically indicated the structure of the embedding
HFS-LCAO program. We will discuss the various sections below.

Section MAIN contains the driver routine of the program and frequently used
service routines. Most input data for the program is read in IINPUT, viz., run
type (frozen-core, pseudopotential, embedding, etc.), coordinates, basis and
density fit sets, core descriptions and integration parameters. In SYMSEC the
point group symmetry specified is used to generate data for the symmetry adap-
tion of the basis functions; the fit functions are joined to totally symmetric
linear combinations.

Section PREPAR is a driver routine for integral evaluation. In CORORT
overlap integrals between the core orbitals and the basis functioms are calcul-
ated. In CORED the overlap integrals between core orbitals of the indented solid
and the basis functions (of the chemisorption cluster) are dealt with. In
SYMORB the symmetry adapted linear combinations of basis functions (SALCs) are
constructed; in frozen-core calculations they are orthogonalized to the core
orbitals, using the overlaps from CORORT. At this point one can actually cal-
culate the storage requirements of the program; in section FLNGTH these require-
ments are checked against the available storage. Section REORD performs validity
checks for the substrate cluster B and reorders the SALCs in a computationally
convenient way. In FITINT the integrals needed in the density fit procedure are
evaluated.

In section ORTHON the SALCs are orthogonalized. In embedding calculations
the transformation matrices from nonorthogonal to orthogonal SALCs are stored.

In PSEUDO the matrices PC and pE [cf. Eqs. (3.11) and (3.12)] are calculated
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in the symmetry adapted basis; in embedded cluster calculations the contri-
bution of the indented solid is taken into account, using the overlaps cal-
culated in CORED.

We now reach the sections in which the numerical integration is
performed. In GPUNT the integration points are generated and the core density
and Coulomb potential are evaluated at these points. In section DCONTR the
constant density due to the indented solid is dealt with [ecf. Sec. 3A]; the
density and the Coulomb potential are added to the data calculated in GPUNT.

In FOCKX integrals are evaluated for the calculation of the valence Coulomb
potential; also the initial Fock matrix is calculated. Section FOCKY is used
in subsequent iterations for the construction of the Fock matrix.

In EMERGE the Fock matrix is diagonalized and the density matrix comstruc-
ted. In embedded cluster calculations this is done using the coupling ma’rices,
evaluated at the appropriate energies. Also convergence of the HFS calculation
is monitored here, In RHOFIT the density fit is performed.

The iterative steps of the calculation are FOCKY, EMERGE and RHOFIT. After
termination of the iterative procedure the driver routine OUT is entered. In
PRNPRO printing and/or punching of the density matrix and the eigenvectors is
dealt with., In ETSPS pseudopotential energy terms are calculated. In section
POPAN a population analysis is performed; here also the (converged) SCF data
is stored. Optionally in DEBYE and QMPOT the dipole moment and the potential

at the nuclei are evaluated.
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SUMMARY

This thesis, entitled '"Cluster embedding and pseudopotentials in the
Hartree-Fock-Slater-LCAQ method”, treats a number of quantum chemical compu-
tational methods based on the nonempirical Hartree-Fock-Slater (HFS)-LCAO
method of Baerends and Ros. These methods, intended for the study of large
molecular systems, are building blocks for an embedding formalism for chemi-
sorption calculations.

In chapter II the Mdssbauer parameters of a series antimony compounds
are studied. The calculated isomer shifts correlate very well with experiment.
The calculated quadrupole splittings are too small; for the systematic devia-
tion in the results for the Sb(III) compounds some reasons are suggested.
Furthermore, it is shown that the HFS-LCAO method is capable of yielding accu-
rate core polarization corrections to the quadrupole splitting, albeit at the
cost of an expensive numerical integration scheme.

In chapter III a new, self-consistent perturbational formalism for the
calculation of binding energies with the pseudopotential HFS-LCAO method is
developed. Test calculations show that the results agree well with those of
the less approximate frozen—-core HFS-LCAO method. Moreover, the calculated
spectroscopic constants of a number of diatomic molecules agree well with
experiment.

In chapter IV the pseudopotential HFS-LCAO method is investigated on
its capability to yield accurate one-electron properties. It appears that
results obtained with the frozen-core HFS-LCAO method can be reproduced very
well if the pseudo-orbitals are core orthogonalized. The calculated electrie
dipole and quadrupole moments are also in good agreement with available ex-

perimental data,



In chapter V a simplified method is introduced for the calculation of
the pseudo-orbitals in the pseudopotential HFS-LCAO formalism.

In chapter VI a computational scheme for chemisorption studies is
developed in which the chemisorption cluster is embedded in the rest of the
substrate. Problems that arise in the implementation in the pseudopotential
HFS-LCAO method are discussed and solutions are given. Test calculations for
hydrogen adsorbed on lithium show that the convergence of the electronic
structure with cluster size is influenced favourably by the embedding.

However, the numerical integration scheme used still needs improvement.



SAMENVATTING

Dit proefschrift,getiteld "Cluster inbedding en pseudopotentialen in de
Hartree-Fock~-Slater-LCAO methode", behandelt een aantal kwantumchemische
rekenmethoden die gebaseerd zijn op de niet-empirische Hartree-Fock-Slater
(HFS)-LCAO methode van Baerends en Ros. Deze methoden, bestemd voor de bestu-
dering van grote molekulaire systemen, zijn bouwstenen voor een inbeddings-
formalisme voor het uitvoeren van chemisorptie-berekeningen.

In hoofdstuk II worden de M&ssbauer parameters van een aantal antimoon-
verbindingen bestudeerd. De berekende jsomeer-verschuivingen korreleren zeer
goed met het experiment. De berekende kwadrupool-splitsingen zijn te klein;
voor de systematische afwijking in de resultaten voor de Sb(III)-verbindingen
worden enkele oorzaken gesuggereerd. Verder blijkt dat de HFS-LCAO methode
nauwkeurige core-polarisatie-korrekties op de kwadrupool-splitsing kan
leveren, zij het ten koste van een duur numeriek integratieschema.

In hoofdstuk III wordt een nieuw, zelf-konsistent storingsformalisme ont-
wikkeld voor de berekening van bindingsenergieé&n met behulp van de pseudopo-
tentiaal HFS-LCAO methode. Testberekeningen wijzen uit dat de resultaten goed
overeenstemmen met die van de minder benaderde frozen-core HFS-LCAO methode.
Bovendien stemmen de berekende spektroskopische konstanten van een aantal
twee-atomige molekulen goed overeen met het experiment.

In hoofdstuk IV wordt de pseudopotentiaal HFS-LCAO methode onderzocht
op haar geschiktheid voor het nauwkeurig berekenen van één-elektron eigen-—
schappen. Het blijkt dat resultaten verkregen met de frozen—core methode
zeer goed gereproduceerd kunnen worden, indien de pseudo-orbitals op de cores
worden georthogonaliseerd. De berekende elektrische dipool- en kwadrupoolmo-
menten stemmen bovendien goed overeen met voorhanden zijnde experimentele ge—

gegevens,



In hoofdstuk V wordt een vereenvoudigde methode gelntroduceerd voor de
berekening van pseudo-orbitals in het pseudopotentiaal HFS-LCAO formalisme.

In hoofdstuk VI wordt een formalisme voor chemisorptie-berekeningen
ontwikkeld, waarin het chemisorptie-cluster ingebed wordt in de rest van het
substraat. Problemen die zich voordoen bij de implementatie in de pseudopoten-
tiaal HFS-LCAO methode worden besproken en oplossingen hiervoor uitgewerkt.
Testberekeningen voor waterstof geadsorbeerd op lithium tonen aan dat de
konvergentie van de elektronische struktuur met de clustergrootte gunstig
beInvloed wordt door het inbedden. Het numerieke integratieschema dat

gebruikt wordt behoeft echter nog verbetering.
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STELLINGEN

De methode van Northrup et al. voor de berekening van de vibratie-
frekwentie van het silicium dimeer is zo onnauwkeurig, dat vergelijking

van het resultaat met de experimentele waarde zinloos is.

J.E, Northrup, M.T. Yin, M.L. Cohen, Phys. Rev. A28 (1983) 1945.

De aard van de bindingen in het neon trimeer is zodanig dat een adiaba-
tische scheiding van hoekafhankelijke en radi&le vibraties niet gerecht-
vaardigd is. Dit blijkt ook uit de door Frey met deze benadering ver-

kregen resultaten.

J.G. Frey, Chem. Phys. Lett. 102 (1983) 421.

Het gebruik van de voor zelf-interaktie gekorrigeerde exchange potentiaal
van Gizquez en Ortiz voor de berekening van de exchange bijdrage aan de

intermolekulaire potentiaal leidt tot fysisch onjuiste resultaten.

J.L. Gdaquez, E. Ortiz, Chem. Phys. Lett. 77 (1981) 186.

Het is fysisch onjuist om bij de berekening van relaxatie-effekten op
core—elektron bindingsenergie&n in vaste stoffen een gat te kreéren in

elk van de atomen van het systeem.

J.R. Smith, F.J. Arlinghaus, J.G. Gray, Phys. Rev. B26 (1982) 1071.

In lokale dichtheidsfunktionaalmethoden wordt het exchange-korrelatiegat
zeer slecht gepresenteerd. Het introduceren van dichtheidsgradiént
korrekties ten opzichte van het referentiepunt kan hierin geen fundamentele

verbetering brengen.



Het model van Matsushita en Terasaka voor de beschrijving van vibratio-

nele chaos in lineaire molekulen mist enkele fundamentele fysische aspekten.

T. Matsushita, T. Terasaka, Chem. Phys. Lett. 105 (1984) 511.

Bij veel beschouwingen over de prestaties van parallelle computers wordt

de I1/0 overhead iiberhaupt over het hoofd gezien.

Deze stelling is niet met succes te verdedigen.

Het besluit van de Nederlandse regering inzake de kruisraketten valt niet

bepaald als kernachtig te karakteriseren.

. Lange-afstandstourfietsers ontmoeten bij fietshandelaren veel onbegrip.

22 november 1984
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