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Approximate spectral functions in thermal field theory
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Causality requires that th@nt)commutator of two interacting field operators vanishes for spacelike coor-
dinate differences. This implies that the Fourier transform of the spectral function of this quantum field should
vanish in the spacelike domain. We find that this requirement imposes some constraints on the use of re-
summed propagators in high temperature gauge thés6656-282196)02418-9
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. INTRODUCTION [H(1,%),d,h(t,y)]=13(x—Y),

In the past decade the interest in quantum field theory at + _ B
nonzero temperature has grown considerdtily3]. In part {(t,%), 9" (ty)}=8%(x~y), (1)

this is due to experimental and theoretical efforts to underzgqjire that the spectral functionisrmalized Although the
stand various hot quantum systems, such as, e.g., ultrarelgg majization may be difficult to achieve numerically, we do
tivistic heavy-ion collisions or the early Universe. not consider this a serious principal problem.

A particularly interesting problem when investigating e gecond important feature of the spectral function is
such systems is the question of their single-particle spectruny 4 jts four-dimensional Fourier transform into coordinate
Although for an interacting quantum field this spectrum inspace must vanish for spacelike arguments. This is equiva-
general has a very rich structure, we may also count calCygp 1 the Wightman axiom dbocality; i.e., field operators
lations of particle masses and spectral width parameiters st (antjcommute for spacelike separations in Minkowski
damping ratesin this category. Consequently we find that aspace[4].
large number of research papers is dealing with the question |, 4, interacting many-body system, we may very well

of the single-particle spectrum on an approximate level. oy nect nonlocality in a causal sense: Wiggling the system at
With the present paper we address the question Obne gige will certainly influence the other side after some
whether the approximations used in many of these papers afgne The |ocality axiom ensures that this influence does not
consistent with basic requirements of quantum field theoryq,...r over spacelike separations, i.e., faster than a physical
To this end we investigate some common approximation§igna| can propagate. Thus, to distinguish betweerdusal
made to the quantity which summarizes the spectral propetion|ocality and the violation of the locality axiom, we will
ties of a quantum field, i.e., ispectral functionA(E,p). Up - penceforth denote the latter a violation azfusality
to a factor this function is the imaginary part of the full |, he following we will furthermore distinguish fermi-
retarded two-point function, propagating an excitation withynic and hosonic quantities by a lower index. For two field
energyE and momentunp. We find indeed that some ap- operators the locality axiom then amounts to the require-

proximations to the spectral functions require great care ir?nent, that the(anti) commutator function of two field op-

their usage. , , _erators and also its expectation value satisfies
The paper is organized as follows. First we present a brief

introduction dealing with free boson and fermion quantum t
fields. We then investigate the properties of simple approxi-
mate spectral functions for interacting boson and fermion
fields, and finally we turn to the physical problem of gauge
theory at finite temperature.

5 .. .
region of nonzero C(t,x) !cuts in fig. 3

Il. SIMPLE SPECTRAL FUNCTIONS AND
COMMUTATORS

The spectral function has two features which are inti-
mately related to fundamental requirements of quantum field
theory. To begin with, the quantization rules for boson and
fermion fields(which we will use in the free as well as in the
interacting casg

FIG. 1. Domain of support of a physic@nti)commutator func-
*Electronic address: P.Henning@gsi.de tion in coordinate spac@nphysical region= shaded arga
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Ce(x.y)=([(x),b(¥)])

CF(X,y)=({¢(X),t//T(y)}) =0 if(x—y) spacelike. 2
In terms of the spectral function, these expectation values are
dEd®p ,
Cor(x=y)= [ G5 X~ iTEGOYo px—) T As £(ExD) @

We first consider the case of free quantum fields, for completeness we quote the free spectral functions found in any textbook
on field theory:

AB(E.k)= sgr(E) 8(E?—k?*—~m3)
Ag(Eyp):(EYO—I—p'y-i-mF) Sgr(E)5(E2—p2—m'2:)_ “

For these spectral functions one obtains as {lamti-) commutator expectation valuéig(x,y)zco(x—y) and
CR(x.y)=(iy*d, + mg) Co(x—y), where

- Mg F
T | F06X) = O0G—X) == i \ X6—X7) | sGTTX0)- 5
0

Co(x)=

Clearly this is zero for spacelike arguments, i.e., forscribed by particles with a sharp dispersion law, only nonin-
X=|x|>|xq|. This free commutator function has support teracting “hot” systems may have &like spectral function.
only in the unshaded area of Fig. 1, and it is singular at itdgnoring this mathematical fact one finds as an echo serious
boundariegbut zero outside infrared divergences in high temperature perturbative quan-
We now turn to nontrivial spectral functions, which are tum chromodynamic$¢QCD). Consequently, these unphysi-
more appropriate for a thermal system. The physical reasocal singularities are naturally removed within an approach of
is that at finite temperature particles are subject to collisiondfjnite temperature field theory with continuous mass spec-
hence their state of motion will change after a certain timetrum [6,7].
In a hot quantum system therefore tbi-shell propagation Thus, for a mathematical as well as a physical reason,
of particles plays an important role. This off-shellness is con{inite temperature spectral functions are more complicated
tained in a continuous spectral function, which must not havehan those given in Eq4). The question then arises, how
an isolateds-function-like pole. In principle this means that much more complicated they have to be in order to be con-
at nonzero temperaturevery quantum system must be de- sistent with the requirements we have discussed above: Fully
scribed on the same footing as a gas of resonances. Howevegelf-consistent calculations of the corresponding spectral
this does not imply that thermal particles may decay, they aréunctions are very rare due to the numerical difficulties in-
merely scattered thermally by the other components of theolved[7—-9]. More often one uses an ansatz for such a func-
system. tion which involves only a small number of parameters
Apart from this physically motivated use of continuous which are then determined in a more or less “self’-
spectral functions at finite temperature, one may also adopt eonsistent scheme.
mathematically rigorous stance. We do not elaborate on this, As an example we consider two seemingly simplistic gen-
but rather quote the Narnhofer-Thirring theorgbh It states  eralizations of the spectral functions in E@), which in-
that interacting systems at finite temperatoemnotbe de-  volve only one additional parameter:

AL(E k)= °F e
ST (EP -k mg— )+ 4B yg
PP (E?-w(p)?-y8)?+4E%y;E Amio(P) | E-w(p)— iy Et+to(—i7

o(P) Y’ +py+m  —o(p)y’+py+m

TE—w@+ iy | Etelmt e ©)
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wherew(p)?=p?+ mﬁ These relativistic Breit-Wigner func- —p<E<p. Each of these pieces contributes to the Fourier
tions are somewhat oversimplified as compared with the redransform as may be seen from the top panel of Fig. 2.
world: They attribute the same spectral width to very fast The four-dimensional Fourier transform is a linear func-
and very slow particles. Indeed, even whapproximatinga  tional of the imaginary part of the propagator. Thus, each
more sophisticated calculation of a spectral function bycontribution to the spectral function may be transformed
simple poles in the complex energy plane, one obtains aeparately, and their sum then constitutes the total Fourier
strongly momentum dependent spectral width parameter transform.
(see[7], p. 350 for an exampje It is a priori clear that this total Fourier transform must be

However, for some physical effects the influence of fastin agreement with the locality axiom. This follows from the
particles is reduced by Bose-Einstein or Fermi-Dirac distri-fact thatS is holomorphic in the forward tube, i.e., for time-
bution functions, such that one may use these simple spectriike imaginary part of the four vector§,p). However, only
functions. Their constant spectral width parametgrthen  the sum of all contributions vanishes in the spacelike region,
may be considered as a parametrization of the dominant lowand therefore locality and causality are only guaranteed if
energy phenomena. A good example for such a physical ebpacelikeand timelike four-momenta are taken into account
fect is the radiation of soft photons from a hot plasma, i.e.jn the propagator(8). A restriction in the fashionE|<p
the “glow” of the plasma, where the ansatz of a constantleads to a violation of causality.
spectral width parameter gives results comparable to the It was already mentioned that there exists a difference
classical Landau-Pomeranchuk-Migdal effgbd]. between the hard thermal loop resummatibiTL) scheme

It is a matter of a few lines to show that ti@nti-) com-  and high temperature QEr QCD). In the HTL method,
mutator functions for the quantum fields defined by thesdhe “dressed” propagators are used only for soft momenta

spectral functions are which are smaller than/8Mp, for high momenta one is
required to use free propagators. The region of intermediate
Ci(x,y)= e ~v&lxo~Yol Cy(x—y), momenta is usually ignored in this method.
The locality axiom provides a convenient method to
Ci(x,y) = e~ |x ¥l ( iy“d, + mg) Co(x—y). check for the validity of this approximation. To this end, we
7) “patch” the free and resummed propagator together at the

separation scalp=8Mp .
These simple generalizations of the free spectral function In the bottom panel of Fig. 2 we show the anticommutator
therefore have the important property to preserve causalitfunction of two fermion fields using this prescription.
Their Fourier transform vanishes for spacelike argu-Clearly, even the sum of all contributions does not vanish
ments. Consequently, if these spectral functions are used futside the physical region. We therefore conclude at this
construct a generalized free field thed8y7], it will be local. point, that no local quantum field theory can be constructed
Let us note at this point that the most general form of awhich conforms to the “patching” rule for the propagators.
spectral function which conforms with this requirement hasConsequently, one may not ignore the intermediate momen-
been given in11]. We are not, however, interested in the tum region in hot gauge theory.
most general spectral function, but in those which are only In the next step, we consider the gauge boson propaga-
slightly more complicated than the free case. tors, which for transverse and longitudinal degrees of free-

dom are
E+p -t
n
p E-p
E [E+p]]] "
ture obtained in high temperature QED. Up to a single dif- 2p P
ference this exactly comprises the fermion gauge boson ©)

spectral functions obtained in the hard thermal loop resumg is the bosonic Debye screening “mass,” which is pro-

mation scheme of QCEL3]. Let us first study the fermion of portional to the plasma frequency; it sets the only scale in-
this model, which has a propagafd] herent to these propagators.

Ill. HOT GAUGE THEORY
E? E(p°—E?)

2p? 4p3

To this end, we turn to study hot gauge theory, as dis-
cussed in the current literatufg&2—15. Naturally we cannot
possibly check all the existing calculations of spectral func- ( Y4 ){

At<E.p>=[ E2-p?—q}

V4

p

tions, and therefore restrict ourselves to the most basic pic- A(E,p)= +q2D

E*-p?

|\/|2D E+p Both of them have a continuous imaginary pett spec-
0 . . . — .
SEp)=|Ey° 1— _ZEEm Ep tral function in the regime|E|<p, as well as a5-function

pole at some energy p. The analytical structure of these
M2 -1 propagators is quite complicated, but similar to the fermionic
—py{ 1+ ;D ]) (8) case it may be shown that they are holomorphic functions in
p the forward tube, and therefore their total Fourier transform
o is zero outside the physical region.
Here,p=|p|, andM, is the Debye screening “mass,” pro- However, a restriction to spacelike momenta, i.e., to
portional to the temperature. The spectral function of thisE|<p, leads to a violation of causality. A similar statement
propagator has a rather complicated structure, described olds if these propagators are used only for timelike mo-
detail in [14]: Four discrete poles at energiesE, and menta, and consequently one should not consider plasmon
*Ey, with E,,E,>p on the real axis; and a continuum for propagation separately from “collective” effects.
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The full gauge boson propagator is a linear combination

of transverse and longitudinal piece with certain projection 0.2
factors and a gauge parameterin particular, the canonical
33-component is :
0.1 |
£2 g J
Ag(E,p)=— ( 1- %) A(Ep) - ﬁm(am 0 ::::.’.Z.‘.IIZII.'.::T‘:':’"“‘ ~~~~~~~~
P3Ps \
+ a(—Ez_—p272. (10) 0.1 é
E t*qp )
We therefore have to study the Fourier transform of these 0 0.5 1 L5 2
products, and thereby concentrate on the transverse piece '
since its Fourier transform is numerically easier to obtain. 0.04}
In the two panels of Fig. 2 we show the Fourier transform
of the continuous paifspacelike momenjaand the plasmon 0.02

part (timelike momenta of the transverse piece of
Im(A3y), i.e., of (p%/pz— 1)A;. The plot was made for sev-
eral values ofx=|x| as function oft (See Fig. 1 for the
location of the displayed curves in thet plane) To each

curve in the figure, we have added a thin vertical line sepa-
rating the regions inside and outside the forward light cone.

In the (shadedl region outside the forward cone, the two  -0.04
different contributions have the same sign andchdbcancel
each other in the total Fourier transform. The question now
remains of whether this is cured by taking into account the
longitudinal piece of the propagatdrs;.

Obviously, sinceA; and A, are local by themselves, the
violation of locality we saw above is due to the projection
factors. Specifically it is due to the factsps/p? which
introduces a branching-point singularity @& 0 in the for-
ward tube. However, as is easily noted,

-0.02

FIG. 2. Fourier transform of the hot gauge theory fermion spec-
tral function atxM = 1. Top panel: resummed propaga(8y used

for all momenta; bottom panel: E¢8) for momentap< \/§MD,
otherwise free propagator. Vertical lines at discontinuity omitted in
the top panel. Dotted line, “particle” contribution; dashed line,
“hole” contribution, dash-dotted line, continuum contributi¢see
text and[14]). Continuous line, sum of the three pieces, unphysical
contribution shaded.

lIimA(E,p)=
p—0

=limA(E,p), (13
2 |
E°=(13d5 -0 relativistic Kubo-Martin-Schwinger boundary condition,
which requires an exponential falloff in the high-momentum

which implies that the branching point singularities cancel jnlimit [16].

the sum of transverse and longitudinal piece of @). We

therefore term this violation of the locality axiom a purely IV. CONCLUSION

kinematicalone, which is cured by using transveesed lon- One may draw three conclusions from the present work.

gitudinal propagator on the same footing. First we find that seemingly simplistic ansatz spectral func-
Consequently, the canonical gauge boson propagalotgns as given in Eqs(6) obey the axiom of locality, i.e.,

A,.,(E,p) of hot gauge theory are holomorphic functions for yhey, aliow only causal nonlocality. This makes them a rea-

timelike imaginary part of €,p), i.e., in their forward tube.  gonaple starting point for any nonperturbative treatment of
Their Fourier transform vanishes f¢t|<x, and therefore atter at high temperature.

they obey the locality axiom. , _ The second conclusion is associated with the perturbative
However, as pointed out before, this necessitates the Usgsaiment of particles in hot gauge theory. Let us first discuss
of the resummed propagator for all momenta. If for “hard” \yhether a possible violation of locality in this case is of any
momentap>3qp_they are replaced by the free boson relevance for measurable quantities: Followjag] one may
propagator, or forcibly set to zero, causality is violated. Fromgrgue that the gauge field itself has no physical meaning.
a more mathematical viewpoint, the “patching” of propaga- However, the commutator of two magnetic field components
tors breaks the principle of analytical continuation. The vio-j gyr example, where the commutator expectation value of

lation of locality arises, because the “patched” propagatorsyifferent spacelike components is zero, reads
are no longer globally holomorphic in the forward tube.

Similarly, causality is violated if the propagators are re- ik &2
stricted to spacelike or timelike momenta alone, as may be  {[Bi(X),Bj()])=&"*—— «[AX),Ady)]). (12
seen from Figs. 2 and 3. Another problem remains even if e
the resummed propagators are used globally, i.e., for soft a@bhis implies that in the present example a nonvanishing
well as for hard momenta: They do not conform with the commutator function of the gauge field outside the light cone
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0 that this electric field may be measured already for times
t<x, and therefore it propagates faster than ligftL).

According to our calculation such a violation may happen
when plasmon propagation and collective effects are treated
separately, i.e., when momenta are restricted to the timelike
or spacelike region. Consequently such a separation should
be done very carefully.

However, FTL propagation may also arise with propaga-
tors that are “patched” together: Resummed propagators for
soft momenta, and free propagators for hard momenta. Our
conclusion is that to preserve causality one needs a spectral
function which interpolates in a “smooth analytical way”
between the high-momentum and the soft-momentum region,
i.e., a naive “patching” may lead to unphysical results.

The third conclusion is associated with the separation into
transverse and longitudinal degrees of freedom. From the
standard literature one may get the impression that they may
be treated independently. In several applications of the
propagatorg9), one of the two is replaced by a free propa-
gator. As we have argued, this is an invalid approximation:
In order to preserve causality, longitudinal and transverse
propagator must coincide in the limjjp|=0.

Let us finally discuss a recipe to obtain local spectral
functions. As noted before, the most general such function at
finite temperature has been given[ihl,16, where it was
also shown that in principle an exponential falloff is neces-
sary to obey the relativistic KMS condition. For any nonlocal

FIG. 3. Fourier transform of the transverse piece in B&@).  aPProximation(like, e.g., obtained by “patching” propaga-
Top panel: continuous partspacelike momenja bottom panel: ~ tors together one may proceed as follows. In coordinate
plasmon part(timelike momenta & functions att=x removed. SPace, the nonlocal commutator function is multiplied by
Note the two different vertical scales in the bottom panel. Plotted® (t2—X?), then transformed back into momentum space.
for xqp = 0.5 (continuous, 1.0(dashed}, 1.5(dash-dotteyj and 2.0  Equivalently, one may convolute the old momentum space
(dash-double-dottéd Contributions outside the forward light cone propagator with the Fourier transform of suci®afunction.
are shaded. We are currently exploring how such a prescription would

affect the “patched” spectral functions of hot gauge theory.
Preliminary calculations show that indeed this procedure

generally leads to a nonvanishing commutator function fol€2ds 0 & spectral function which does not differ too much
observable quantities. However, this statement has to be r&©M Ed. (9), but which is nonzero for all values of the real
stricted: The purely kinematical violation of causality we €N€rgy parameter.
observed when not combining transverse and longitudinal
degrees of freedom will be canceled by moving to magnetic
fields. We thank D. Buchholz for alerting us to the possible vio-
If we exclude this case, the violation we are discussindation of locality when using approximate spectral functions.
here would have the physical effect that the magnetic fieldne of us(P.A.H) wishes to express his gratitude to the
could not be “measured” independently at two points with amembers of the Service Physique Theorique in Saclay for
spacelike separation. their kind hospitality. Gratefully acknowledged are stimulat-
Another example is the electric field at space-time cooring discussions of this work with H.A.Weldon, R. Pisarski,
dinate ¢,x) produced by a transversgefunction perturbation L. McLerran, and J.P. Blaizot on occasion of the VIith Max-
x 5%(y) at space-time coordinatg{,y). It is nothing but the  Born Symposium in Karpacz, Poland. Finally, thanks to J.
time derivative of the Fourier transform of, at point Lindner for his comments on the manuscript. The work of
(t,x). Obviously a violation of the locality axiom implies P.A.H. was supported by GSI.
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