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Causality requires that the~anti!commutator of two interacting field operators vanishes for spacelike coor-
dinate differences. This implies that the Fourier transform of the spectral function of this quantum field should
vanish in the spacelike domain. We find that this requirement imposes some constraints on the use of re
summed propagators in high temperature gauge theory.@S0556-2821~96!02418-6#
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I. INTRODUCTION

In the past decade the interest in quantum field theory
nonzero temperature has grown considerably@1–3#. In part
this is due to experimental and theoretical efforts to und
stand various hot quantum systems, such as, e.g., ultrar
tivistic heavy-ion collisions or the early Universe.

A particularly interesting problem when investigatin
such systems is the question of their single-particle spectru
Although for an interacting quantum field this spectrum
general has a very rich structure, we may also count cal
lations of particle masses and spectral width parameters~i.e.,
damping rates! in this category. Consequently we find that
large number of research papers is dealing with the ques
of the single-particle spectrum on an approximate level.

With the present paper we address the question
whether the approximations used in many of these papers
consistent with basic requirements of quantum field theo
To this end we investigate some common approximatio
made to the quantity which summarizes the spectral prop
ties of a quantum field, i.e., itsspectral functionA(E,p). Up
to a factor this function is the imaginary part of the fu
retarded two-point function, propagating an excitation wi
energyE and momentump. We find indeed that some ap
proximations to the spectral functions require great care
their usage.

The paper is organized as follows. First we present a br
introduction dealing with free boson and fermion quantu
fields. We then investigate the properties of simple appro
mate spectral functions for interacting boson and fermi
fields, and finally we turn to the physical problem of gaug
theory at finite temperature.

II. SIMPLE SPECTRAL FUNCTIONS AND
COMMUTATORS

The spectral function has two features which are in
mately related to fundamental requirements of quantum fi
theory. To begin with, the quantization rules for boson a
fermion fields~which we will use in the free as well as in the
interacting case!,
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@f~ t,x!,] tf~ t,y!#5 id3~x2y!,

$c~ t,x!,c†~ t,y!%5d3~x2y!, ~1!

require that the spectral function isnormalized. Although the
normalization may be difficult to achieve numerically, we d
not consider this a serious principal problem.

The second important feature of the spectral function
that its four-dimensional Fourier transform into coordinat
space must vanish for spacelike arguments. This is equi
lent to the Wightman axiom oflocality; i.e., field operators
must ~anti!commute for spacelike separations in Minkowsk
space@4#.

In an interacting many-body system, we may very we
expect nonlocality in a causal sense: Wiggling the system
one side will certainly influence the other side after som
time. The locality axiom ensures that this influence does n
occur over spacelike separations, i.e., faster than a phys
signal can propagate. Thus, to distinguish between thecausal
nonlocality and the violation of the locality axiom, we will
henceforth denote the latter a violation ofcausality.

In the following we will furthermore distinguish fermi-
onic and bosonic quantities by a lower index. For two fie
operators the locality axiom then amounts to the requir
ment, that the~anti-! commutator function of two field op-
erators and also its expectation value satisfi

FIG. 1. Domain of support of a physical~anti!commutator func-
tion in coordinate space~unphysical region5 shaded area!.
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CB~x,y!5^@f~x!,f~y!#&
CF~x,y!5^$c~x!,c†~y!%&J 50 if~x2y! spacelike. ~2!

In terms of the spectral function, these expectation values are

CB,F~x2y!5E dEd3p

~2p!3
exp$2 i @E~x02y0!- p~x2y!#%AB,F~E,p!. ~3!

We first consider the case of free quantum fields, for completeness we quote the free spectral functions found in any t
on field theory:

AB
0~E,k!5 sgn~E!d~E22k22mB

2 !

AF
0~E,p!5~Eg01pg1mF! sgn~E!d~E22p22mF

2 !. ~4!

For these spectral functions one obtains as the~anti-! commutator expectation valueCB
0(x,y)5C0(x2y) and

CF
0(x,y)5( igm]m 1 mF) C0(x2y), where

C0~x!5
2 i

2p S d~x0
22 x̄2! 2 Q~x0

22 x̄2!
mB,F

2 A x0
22 x̄2

J1~mB,F A x0
22 x̄2!D sgn~x0!. ~5!
-
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Clearly this is zero for spacelike arguments, i.e., f
x̄5uxu.ux0u. This free commutator function has suppo
only in the unshaded area of Fig. 1, and it is singular at
boundaries~but zero outside!.

We now turn to nontrivial spectral functions, which ar
more appropriate for a thermal system. The physical rea
is that at finite temperature particles are subject to collisio
hence their state of motion will change after a certain tim
In a hot quantum system therefore theoff-shellpropagation
of particles plays an important role. This off-shellness is co
tained in a continuous spectral function, which must not ha
an isolatedd-function-like pole. In principle this means tha
at nonzero temperatureeveryquantum system must be de
scribed on the same footing as a gas of resonances. Howe
this does not imply that thermal particles may decay, they
merely scattered thermally by the other components of
system.

Apart from this physically motivated use of continuou
spectral functions at finite temperature, one may also ado
mathematically rigorous stance. We do not elaborate on th
but rather quote the Narnhofer-Thirring theorem@5#. It states
that interacting systems at finite temperaturecannotbe de-
or
rt
its
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scribed by particles with a sharp dispersion law, only nonin
teracting ‘‘hot’’ systems may have ad-like spectral function.
Ignoring this mathematical fact one finds as an echo seriou
infrared divergences in high temperature perturbative quan
tum chromodynamics~QCD!. Consequently, these unphysi-
cal singularities are naturally removed within an approach o
finite temperature field theory with continuous mass spec
trum @6,7#.

Thus, for a mathematical as well as a physical reason
finite temperature spectral functions are more complicate
than those given in Eq.~4!. The question then arises, how
much more complicated they have to be in order to be con
sistent with the requirements we have discussed above: Fu
self-consistent calculations of the corresponding spectr
functions are very rare due to the numerical difficulties in-
volved@7–9#. More often one uses an ansatz for such a func
tion which involves only a small number of parameters
which are then determined in a more or less ‘‘self’’-
consistent scheme.

As an example we consider two seemingly simplistic gen
eralizations of the spectral functions in Eq.~4!, which in-
volve only one additional parameter:
AB
1~E,k!5

1

p

2EgB

~E22k22mB
22gB

2 !214E2gB
2 ,

AF
1~E,p!5

gF

p

g0~E21v~p!21gF
2 !12Egp12EmF

~E22v~p!22gF
2 !214E2gF

2 5
1

4p iv~p! S v~p!g01pg1m

E2v~p!2 i gF
2

2v~p!g01pg1m

E1v~p!2 i gF

2
v~p!g01pg1m

E2v~p!1 i gF
1

2v~p!g01pg1m

E1v~p!1 i gF
D ~6!
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wherev(p)25p21mF
2 These relativistic Breit-Wigner func-

tions are somewhat oversimplified as compared with the r
world: They attribute the same spectral width to very fa
and very slow particles. Indeed, even whenapproximatinga
more sophisticated calculation of a spectral function
simple poles in the complex energy plane, one obtains
strongly momentum dependent spectral width parameteg
~see@7#, p. 350 for an example!.

However, for some physical effects the influence of fa
particles is reduced by Bose-Einstein or Fermi-Dirac dist
bution functions, such that one may use these simple spec
functions. Their constant spectral width parametersg then
may be considered as a parametrization of the dominant lo
energy phenomena. A good example for such a physical
fect is the radiation of soft photons from a hot plasma, i.
the ‘‘glow’’ of the plasma, where the ansatz of a consta
spectral width parameter gives results comparable to
classical Landau-Pomeranchuk-Migdal effect@10#.

It is a matter of a few lines to show that the~anti-! com-
mutator functions for the quantum fields defined by the
spectral functions are

CB
1~x,y!5 e 2gB u x02y0u C0~x2y!,

CF
1~x,y! 5 e 2gF u x02y0u ~ igm]m 1 mF! C0~x2y!.

~7!

These simple generalizations of the free spectral funct
therefore have the important property to preserve causal
Their Fourier transform vanishes for spacelike arg
ments. Consequently, if these spectral functions are use
construct a generalized free field theory@6,7#, it will be local.
Let us note at this point that the most general form of
spectral function which conforms with this requirement h
been given in@11#. We are not, however, interested in th
most general spectral function, but in those which are on
slightlymore complicated than the free case.

III. HOT GAUGE THEORY

To this end, we turn to study hot gauge theory, as d
cussed in the current literature@12–15#. Naturally we cannot
possibly check all the existing calculations of spectral fun
tions, and therefore restrict ourselves to the most basic p
ture obtained in high temperature QED. Up to a single d
ference this exactly comprises the fermion gauge bos
spectral functions obtained in the hard thermal loop resu
mation scheme of QCD@13#. Let us first study the fermion of
this model, which has a propagator@14#

S~E,p!5S Eg0F12
MD

2

2Ep̄
lnSE1p̄

E2p̄DG
2pgH 11

MD
2

p̄2
F12

E

2p̄
lnSE1p̄

E2p̄DGJD21

. ~8!

Here, p̄5upu, andMD is the Debye screening ‘‘mass,’’ pro-
portional to the temperature. The spectral function of th
propagator has a rather complicated structure, described
detail in @14#: Four discrete poles at energies6Ep and
6Eh with Ep ,Eh. p̄ on the real axis; and a continuum fo
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2 p̄,E, p̄. Each of these pieces contributes to the Fouri
transform as may be seen from the top panel of Fig. 2.

The four-dimensional Fourier transform is a linear func
tional of the imaginary part of the propagator. Thus, ea
contribution to the spectral function may be transforme
separately, and their sum then constitutes the total Four
transform.

It is a priori clear that this total Fourier transform must b
in agreement with the locality axiom. This follows from the
fact thatS is holomorphic in the forward tube, i.e., for time-
like imaginary part of the four vector (E,p). However, only
the sum of all contributions vanishes in the spacelike regio
and therefore locality and causality are only guaranteed
spacelikeand timelike four-momenta are taken into accoun
in the propagator~8!. A restriction in the fashionuEu, p̄
leads to a violation of causality.

It was already mentioned that there exists a differen
between the hard thermal loop resummation~HTL! scheme
and high temperature QED~or QCD!. In the HTL method,
the ‘‘dressed’’ propagators are used only for soft momen
which are smaller thanA8MD , for high momenta one is
required to use free propagators. The region of intermedi
momenta is usually ignored in this method.

The locality axiom provides a convenient method t
check for the validity of this approximation. To this end, w
‘‘patch’’ the free and resummed propagator together at t
separation scalep̄5A8MD .

In the bottom panel of Fig. 2 we show the anticommutat
function of two fermion fields using this prescription
Clearly, even the sum of all contributions does not vanis
outside the physical region. We therefore conclude at th
point, that no local quantum field theory can be construct
which conforms to the ‘‘patching’’ rule for the propagators
Consequently, one may not ignore the intermediate mome
tum region in hot gauge theory.

In the next step, we consider the gauge boson propa
tors, which for transverse and longitudinal degrees of fre
dom are

D t~E,p!5H E22 p̄22qD
2 F E2

2p̄2
1
E~ p̄22E2!

4p̄3
lnS E1 p̄

E2 p̄D G J 21

D l~E,p!5S p̄2

E22 p̄2
D H p̄21qD

2 F12
E

2p̄
lnS E1 p̄

E2 p̄D G J 21

.

~9!

qD is the bosonic Debye screening ‘‘mass,’’ which is pro
portional to the plasma frequency; it sets the only scale
herent to these propagators.

Both of them have a continuous imaginary part~5 spec-
tral function! in the regimeuEu, p̄, as well as ad-function
pole at some energy. p̄. The analytical structure of these
propagators is quite complicated, but similar to the fermion
case it may be shown that they are holomorphic functions
the forward tube, and therefore their total Fourier transfor
is zero outside the physical region.

However, a restriction to spacelike momenta, i.e.,
uEu, p̄, leads to a violation of causality. A similar statemen
holds if these propagators are used only for timelike m
menta, and consequently one should not consider plasm
propagation separately from ‘‘collective’’ effects.
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The full gauge boson propagator is a linear combinati
of transverse and longitudinal piece with certain projectio
factors and a gauge parametera. In particular, the canonical
33-component is

D33~E,p!52S 12
p3p3
p2 DD t~E,p!2

E2p3p3
p2~E22p2!

D l~E,p!

1a
p3p3

~E22p2!2
. ~10!

We therefore have to study the Fourier transform of the
products, and thereby concentrate on the transverse p
since its Fourier transform is numerically easier to obtain

In the two panels of Fig. 2 we show the Fourier transfor
of the continuous part~spacelike momenta! and the plasmon
part ~timelike momenta! of the transverse piece of
Im(D33), i.e., of (p3

2/p221)D t . The plot was made for sev-
eral values ofx̄5uxu as function oft ~See Fig. 1 for the
location of the displayed curves in thex-t plane.! To each
curve in the figure, we have added a thin vertical line sep
rating the regions inside and outside the forward light con

In the ~shaded! region outside the forward cone, the tw
different contributions have the same sign and donot cancel
each other in the total Fourier transform. The question n
remains of whether this is cured by taking into account t
longitudinal piece of the propagatorD33.

Obviously, sinceD t andD l are local by themselves, the
violation of locality we saw above is due to the projectio
factors. Specifically it is due to the factorp3p3 /p

2 which
introduces a branching-point singularity atp50 in the for-
ward tube. However, as is easily noted,

lim
p→0

D t~E,p!5
1

E22~1/3!qD
2 5 lim

p→0
D l~E,p!, ~11!

which implies that the branching point singularities cancel
the sum of transverse and longitudinal piece of Eq.~10!. We
therefore term this violation of the locality axiom a purel
kinematicalone, which is cured by using transverseand lon-
gitudinal propagator on the same footing.

Consequently, the canonical gauge boson propaga
Dmn(E,p) of hot gauge theory are holomorphic functions fo
timelike imaginary part of (E,p), i.e., in their forward tube.
Their Fourier transform vanishes forutu, x̄, and therefore
they obey the locality axiom.

However, as pointed out before, this necessitates the
of the resummed propagator for all momenta. If for ‘‘hard
momenta p̄.A3qD they are replaced by the free boso
propagator, or forcibly set to zero, causality is violated. Fro
a more mathematical viewpoint, the ‘‘patching’’ of propaga
tors breaks the principle of analytical continuation. The vi
lation of locality arises, because the ‘‘patched’’ propagato
are no longer globally holomorphic in the forward tube.

Similarly, causality is violated if the propagators are r
stricted to spacelike or timelike momenta alone, as may
seen from Figs. 2 and 3. Another problem remains even
the resummed propagators are used globally, i.e., for sof
well as for hard momenta: They do not conform with th
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relativistic Kubo-Martin-Schwinger boundary condition,
which requires an exponential falloff in the high-momentum
limit @16#.

IV. CONCLUSION

One may draw three conclusions from the present work
First we find that seemingly simplistic ansatz spectral func
tions as given in Eqs.~6! obey the axiom of locality, i.e.,
they allow only causal nonlocality. This makes them a rea
sonable starting point for any nonperturbative treatment o
matter at high temperature.

The second conclusion is associated with the perturbativ
treatment of particles in hot gauge theory. Let us first discus
whether a possible violation of locality in this case is of any
relevance for measurable quantities: Following@13# one may
argue that the gauge field itself has no physical meaning
However, the commutator of two magnetic field component
in our example, where the commutator expectation value o
different spacelike components is zero, reads

^@Bi~x!,Bj~y!#&5« i jk
]2

]xi]xj
^@Ak~x!,Ak~y!#&. ~12!

This implies that in the present example a nonvanishin
commutator function of the gauge field outside the light cone

FIG. 2. Fourier transform of the hot gauge theory fermion spec
tral function atx̄MD51. Top panel: resummed propagator~8! used
for all momenta; bottom panel: Eq.~8! for momentap̄,A8MD ,
otherwise free propagator. Vertical lines at discontinuity omitted in
the top panel. Dotted line, ‘‘particle’’ contribution; dashed line,
‘‘hole’’ contribution, dash-dotted line, continuum contribution~see
text and@14#!. Continuous line, sum of the three pieces, unphysica
contribution shaded.
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generally leads to a nonvanishing commutator function f
observable quantities. However, this statement has to be
stricted: The purely kinematical violation of causality w
observed when not combining transverse and longitudi
degrees of freedom will be canceled by moving to magne
fields.

If we exclude this case, the violation we are discussi
here would have the physical effect that the magnetic fie
could not be ‘‘measured’’ independently at two points with
spacelike separation.

Another example is the electric field at space-time coo
dinate (t,x) produced by a transversed-function perturbation
}d4(y) at space-time coordinate (y0,y). It is nothing but the
time derivative of the Fourier transform ofD t at point
(t,x). Obviously a violation of the locality axiom implies

FIG. 3. Fourier transform of the transverse piece in Eq.~10!.
Top panel: continuous part~spacelike momenta!; bottom panel:
plasmon part~timelike momenta!, d functions at t5 x̄ removed.
Note the two different vertical scales in the bottom panel. Plott
for x̄qD 5 0.5 ~continuous!, 1.0~dashed!, 1.5~dash-dotted!, and 2.0
~dash-double-dotted!. Contributions outside the forward light cone
are shaded.
or
re-
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ng
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that this electric field may be measured already for time
t, x̄, and therefore it propagates faster than light~FTL!.

According to our calculation such a violation may happe
when plasmon propagation and collective effects are treat
separately, i.e., when momenta are restricted to the timeli
or spacelike region. Consequently such a separation sho
be done very carefully.

However, FTL propagation may also arise with propaga
tors that are ‘‘patched’’ together: Resummed propagators f
soft momenta, and free propagators for hard momenta. O
conclusion is that to preserve causality one needs a spec
function which interpolates in a ‘‘smooth analytical way’’
between the high-momentum and the soft-momentum regio
i.e., a naive ‘‘patching’’ may lead to unphysical results.

The third conclusion is associated with the separation in
transverse and longitudinal degrees of freedom. From t
standard literature one may get the impression that they m
be treated independently. In several applications of th
propagators~9!, one of the two is replaced by a free propa
gator. As we have argued, this is an invalid approximation
In order to preserve causality, longitudinal and transver
propagator must coincide in the limitupu50.

Let us finally discuss a recipe to obtain local spectra
functions. As noted before, the most general such function
finite temperature has been given in@11,16#, where it was
also shown that in principle an exponential falloff is neces
sary to obey the relativistic KMS condition. For any nonloca
approximation~like, e.g., obtained by ‘‘patching’’ propaga-
tors together! one may proceed as follows. In coordinate
space, the nonlocal commutator function is multiplied b
Q(t22 x̄2), then transformed back into momentum space
Equivalently, one may convolute the old momentum spac
propagator with the Fourier transform of such aQ function.

We are currently exploring how such a prescription woul
affect the ‘‘patched’’ spectral functions of hot gauge theory
Preliminary calculations show that indeed this procedu
leads to a spectral function which does not differ too muc
from Eq. ~9!, but which is nonzero for all values of the real
energy parameter.
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