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MULTIPLE-INSTRUMENT POLYPHONIC MUSIC TRANSCRIPTION
USING A CONVOLUTIVE PROBABILISTIC MODEL

Emmanouil Benetos and Simon Dixon
Centre for Digital Music, Queen Mary University of London, London E1 4NS, UK

{emmanouilb, simond}@eecs.qmul.ac.uk

ABSTRACT

In this paper, a method for automatic transcription of mu-
sic signals using a convolutive probabilistic model is pro-
posed, by extending the shift-invariant Probabilistic La-
tent Component Analysis method. Several note templates
from multiple orchestral instruments are extracted from
monophonic recordings and are used for training the tran-
scription system. By incorporating shift-invariance into
the model along with the constant-Q transform as a time-
frequency representation, tuning changes and frequency
modulations such as vibrato can be better supported. For
postprocessing, Hidden Markov Models trained on MIDI
data are employed, in order to favour temporal continu-
ity. The system was tested on classical and jazz recordings
from the RWC database, on recordings from a Disklavier
piano, and a woodwind quintet recording. The proposed
method, which can also be used for pitch content visual-
ization, outperforms several state-of-the-art approaches for
transcription, using a variety of error metrics.

1. INTRODUCTION

The goal of an automatic music transcription system is to
convert an audio recording into a symbolic representation,
such as a piano-roll, a MIDI file or a music sheet. The
creation of a system able to transcribe music produced by
multiple instruments with a high level of polyphony con-
tinues to be an open problem in the research community,
although monophonic pitch transcription is largely consid-
ered solved. For a comprehensive overview on transcrip-
tion approaches the reader is referred to [1].

Transcription or pitch tracking methods that employ prob-
abilistic models related to the ones used in this work are
detailed in Section 2. Other approaches related to this pa-
per include the work by Poliner and Ellis [2], where piano
note classification was performed using support vector ma-
chines (SVMs). In order to improve transcription perfor-
mance, the classification output of the SVMs was fed as
input to a hidden Markov model (HMM) [3] for postpro-
cessing. The same note smoothing technique was also used
in [4], where the main transcription algorithm consists of a
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spectral distance measure modeling polyphonic sounds as
a weighted sum of Gaussian spectral models.

A signal processing-based multiple-F0 estimation was pro-
posed by Saito et al. in [5], which uses the inverse Fourier
transform of the linear power spectrum with log-scale fre-
quency, called specmurt(an anagram of cepstrum). The in-
put log-frequency spectrum is considered to be generated
by a convolution of a single pitch template with a pitch
indicator function. The deconvolution of the spectrum by
the pitch template results in the estimated pitch indicator
function. Previous work by the authors which is used for
comparative purposes includes a signal processing-based
polyphonic transcription system [6] which is based on joint
multiple-F0 estimation using a feature-based score func-
tion and note onset and offset detection.

In this work, a system for automatic transcription of poly-
phonic music is introduced, which is based on a proposed
extension of the shift-invariant probabilistic latent compo-
nent analysis (PLCA) [7] model. Contrary to the mod-
els in [7, 8], which use a single spectral template for all
pitches from the same instrument source, this model is able
to support the use of multiple pitch templates extracted
from multiple sources. Using a log-frequency representa-
tion and frequency shifting, detection of notes that are non-
ideally tuned, or that are produced by instruments that ex-
hibit frequency modulations is made possible. Sparsity is
also enforced in the model, in order to further constrain the
transcription result and the instrument contribution in the
production of pitches. Also, an intermediate result of the
proposed model is a time-pitch representation which can
be used for pitch content visualization of polyphonic mu-
sic. Finally, a hidden Markov model-based note tracking
method is employed in order to provide a smooth piano-
roll transcription. The system was tested on recordings
from the RWC database [9], the Disklavier dataset in [2],
as well as the MIREX multi-F0 woodwind quintet [10].
A comparison was performed with various transcription
methods using error metrics found in the literature. It is
shown that the proposed system outperforms several state-
of-the-art approaches for the same experiment. Also, it is
indicated that a shift-invariant model can improve the de-
tection of non-ideally tuned notes.

The outline of the paper is as follows. In Section 2, the
PLCA and shift-invariant PLCA methods are presented,
along with their applications in music transcription and rel-
ative pitch tracking. The proposed polyphonic music tran-
scription system is introduced in Section 3. Finally, the
employed dataset, metrics and transcription experiments
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performed are described in Section 4, while conclusions
are drawn in Section 5.

2. LATENT VARIABLE METHODS

2.1 PLCA

Probabilistic latent component analysis (PLCA) is a model
for acoustic analysis developed by Smaragdis et al. [11].
It provides a probabilistic framework that is extensible as
well as easy to interpret. Considering the spectrogram as
a probability distribution P (ω, t), the asymmetric PLCA
model can be formulated as:

P (ω, t) = P (t)
∑

z

P (ω|z)P (z|t) (1)

where P (ω|z) are the spectral templates corresponding to
component z, P (z|t) are the component activations through
time, and P (t) is the energy distribution of the spectro-
gram. For estimating P (ω|z) and P (z|t), iterative update
rules are employed, which are based on the Expectation-
Maximization (EM) algorithm.

In [12], an extension of the PLCA model was proposed
for polyphonic music transcription, supporting multiple spec-
tral templates for each pitch and multiple instruments. The
concept of eigeninstrumentswas introduced, which mod-
els instruments as mixtures of basic models. Sparsity was
enforced on the transcription matrix and the source contri-
bution matrix of the model by a tempering-based approach.
For experiments, stored pitch templates from various syn-
thesized instrument sounds were used. Experiments were
performed on instrument pairs taken from the multi-track
woodwind recording used in the MIREX multi-F0 devel-
opment set [10], as well as on three J.S. Bach duets.

2.2 Shift-invariant PLCA

An extension of the basic PLCA algorithm was proposed
in [7], in order to extract shifted structures in non-negative
data. The shift-invariant PLCA method can be used in con-
junction with log-frequency spectrograms (e.g. the constant-
Q transform) in order to extract pitch. This is feasible
since in log-frequency spectra the inter-harmonic spacings
are the same for any periodic sounds. The shift-invariant
PLCA model is defined as:

P (ω, t) =
∑

z

P (z)P (ω|z) ∗ω P (f, t|z)

=
∑

z

P (z)
∑

f

P (ω − f |z)P (f, t|z) (2)

where the spectral template P (ω|z) corresponding to com-
ponent z is convolved with the pitch impulse distribution
P (f, t|z). P (z) is the prior distribution of the components.
Again, in order to estimate P (z), P (ω|z), and P (f, t|z),
the EM algorithm can be utilized.

The shift-invariant PLCA model was used in [8] for multiple-
instrument relative pitch tracking, where one pitch tem-
plate is attributed to each instrument source and is shifted
across log-frequency. The constant-Q transform (CQT)
was used as a time/frequency representation. Since the

CQT
TRANSCRIPTION

MODEL

HMM

POSTPROCESSING

AUDIO PIANO-ROLL

PITCH TEMPLATES

Figure 1. Diagram for the proposed polyphonic transcrip-
tion system.

problem was unsupervised, additional constraints were im-
posed on eq. (2). Firstly, a sliding Gaussian Dirichlet prior
distribution was used in the computation of P (f, t|z) in
order to eliminate any octave errors. In addition, in or-
der to enforce temporal continuity, a Kalman filter type
smoothing is applied to P (f, t|z) at each iteration step.
The method was tested on the MIREX [10] woodwind quin-
tet using mixtures of two instruments at a time.

3. PROPOSED METHOD

The goal of the proposed transcription system is to provide
a framework that supports multiple templates per pitch, in
contrast to the relative pitch tracking method in [8], as well
as multiple templates per musical instrument. In addition,
the contribution of each instrument source is not constant
for the whole recording as in [8], but is time-dependent.
Also, its goal is to exploit the benefits given by a shift-
invariant model coupled with a log-frequency representa-
tion, in contrast to the transcription method in [12], for de-
tecting notes that exhibit frequency modulations and tun-
ing changes.

In subsection 3.1, the extraction of pitch templates for
various instruments is presented. The main transcription
model is presented in subsection 3.2, while the HMM post-
processing step is described in subsection 3.3. A diagram
of the proposed transcription system is depicted in Fig. 1.

3.1 Extracting Pitch Templates

Firstly, spectral templates are extracted for various instru-
ments, for each note, using their whole note range. Iso-
lated note samples from three different piano types were
extracted from the MAPS dataset [13] and templates from
other orchestral instruments were extracted from mono-
phonic recordings from the RWC database [9]. For extract-
ing the note templates, the constant-Q transform (CQT)
was computed [14] with spectral resolution of 120 bins
per octave. Afterwards, the PLCA model of eq. (1) using
only one component z was employed in order to extract
the spectral template P (ω|z). In Table 1, the pitch range
of each instrument used for template extraction is shown.

3.2 Transcription Model

Utilizing the extracted instrument templates and by extend-
ing the shift-invariant PLCA algorithm, a model is pro-
posed which supports the use of multiple pitch and instru-
ment templates in a convolutive framework, thus support-
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Instrument Lowest note Highest note
Cello 26 81

Clarinet 50 89
Flute 60 96
Guitar 40 76

Harpsichord 28 88
Oboe 58 91
Organ 36 91
Piano 21 108
Violin 55 100

Table 1. MIDI note range of the instrument templates used
in the proposed transcription system.

ing tuning changes and frequency modulations. By consid-
ering the input CQT spectrum as a probability distribution
P (ω, t), the proposed model can be formulated as:

P (ω, t) = P (t)
∑

p,s

P (ω|s, p)∗ωP (f |p, t)P (s|p, t)P (p|t)

(3)
where P (ω|s, p) is the spectral template that belongs to in-
strument s and MIDI pitch p = 21, . . . , 108, P (f |p, t) is
the time-dependent impulse distribution that corresponds
to pitch p, P (s|p, t) is the instrument contribution for each
pitch in a specific time frame, and P (p|t) is the pitch prob-
ability distribution for each time frame.

By removing the convolution operator, the model of (3)
can be expressed as:

P (ω, t) = P (t)
∑

p,f,s

P (ω−f |s, p)P (f |p, t)P (s|p, t)P (p|t)

(4)
In order to only utilize each template P (ω|s, p) for detect-
ing the specific pitch p, the convolution of P (ω|s, p) ∗ω
P (f |p, t) takes place using an area spanning one semitone
around the ideal position of p. Since 120 bins per octave
are used in the CQT spectrogram, f has a length of 10.

The various parameters in (3) can be estimated using iter-
ative update rules derived from the EM algorithm. For the
expectation step the update rule is:

P (p, f, s|ω, t) =

P (ω − f |s, p)P (f |p, t)P (s|p, t)P (p|t)
∑

p,f,s P (ω − f |s, p)P (f |p, t)P (s|p, t)P (p|t)
(5)

For the maximization step, the update equations for the
proposed model are:

P (ω|s, p) =

∑

f,t P (p, f, s|ω + f, t)P (ω + f, t)
∑

ω,t,f P (p, f, s|ω + f, t)P (ω + f, t)
(6)

P (f |p, t) =

∑

ω,s P (p, f, s|ω, t)P (ω, t)
∑

f,ω,s P (p, f, s|ω, t)P (ω, t)
(7)

P (s|p, t) =

∑

ω,f P (p, f, s|ω, t)P (ω, t)
∑

s,ω,f P (p, f, s|ω, t)P (ω, t)
(8)

P (p|t) =

∑

ω,f,s P (p, f, s|ω, t)P (ω, t)
∑

p,ω,f,s P (p, f, s|ω, t)P (ω, t)
(9)
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Figure 2. (a) The transcription matrix P (p, t) of the first
10s of the MIREX woodwind quintet. (b) The pitch ground
truth of the same recording. The abscissa corresponds to
10ms.

It should be noted that since the instrument-pitch tem-
plates have been extracted during the training stage, the
update rule for the templates (6) is not used, but is in-
cluded for the sake of completeness. Using these constant
templates, convergence is quite fast, usually requiring 10-
20 iterations. The resulting piano-roll transcription matrix
and pitch matrix are respectively given by:

P (p, t) = P (t)P (p|t)

P (f, p, t) = P (t)P (p|t)P (f |p, t) (10)

By stacking together slices of the pitch matrix P (f, p, t)
for all pitch values: P (f, t) = [P (f, 21, t) · · ·P (f, 108, t)]
we can create a time-pitch representation which can be
used for visualization purposes. In P (f, t), f has a length
of 88× 10 = 880, thus representing pitch in a 10 cent res-
olution. In Fig. 2, the transcription matrix P (p, t) for an
excerpt of the MIREX multi-F0 woodwind quintet record-
ing can be seen, along with the corresponding pitch ground
truth. Also, in Fig. 3, the time-pitch representation of an
excerpt of the ‘RWC MDB-C-2001 No. 12’ (string quartet)
recording can be seen, where the frequency modulations
caused by vibrato are visible.

In order for the algorithm to provide as meaningful so-
lutions as possible, sparsity is encouraged on transcription
matrix P (p|t), expecting that only few notes are present at
a given time frame. In addition, sparsity can be enforced
to matrix P (s|p, t), meaning that for each pitch at a given
time frame, only a few instrument sources contributes to
its production. The same technique used in [12] was em-
ployed for controlling sparsity, by modifying the update
equations (8) and (9):

P (s|p, t) =

(

∑

ω,f P (p, f, s|ω, t)P (ω, t)
)α

∑

s

(

∑

ω,f P (p, f, s|ω, t)P (ω, t)
)α (11)
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Figure 3. The time-pitch representation P (f, t) of the first
23s of ‘RWC MDB-C-2001 No. 12’ (string quartet) in a
10 ms time scale.

P (p|t) =

(

∑

ω,f,s P (p, f, s|ω, t)P (ω, t)
)β

∑

p

(

∑

ω,f,s P (p, f, s|ω, t)P (ω, t)
)β

(12)

By setting α, β > 1, the entropy in matrices P (s|p, t) and
P (p|t) is lowered and sparsity is enforced.

3.3 Postprocessing

Instead of simply thresholding P (p, t) for extracting the
piano-roll transcription as in [12], additional postprocess-
ing is applied in order to perform note smoothing and track-
ing. Hidden Markov models (HMMs) [3] have been used
in the past for note smoothing in signal processing-based
transcription approaches (e.g. [2, 6]). Here, a similar ap-
proach to the HMM smoothing procedure employed in [2]
is used, but modified for the probabilistic framework of the
proposed transcription system.

Each pitch p is modeled by a two-state HMM, denot-
ing pitch activity/inactivity. The hidden state sequence for
each pitch is given by Qp = {qp[t]}. MIDI files from
the RWC database [9] from the classic and jazz subgen-
res were employed in order to estimate the state priors
P (qp[1]) and the state transition matrix P (qp[t]|qp[t − 1])
for each pitch p. For each pitch, the most likely state se-
quence is given by:

Q̂p = argmax
qp[t]

∏

t

P (qp[t]|qp[t− 1])P (op[t]|qp[t]) (13)

which can be computed using the Viterbi algorithm [3].
For estimating the observation probability for each active
pitch P (op[t]|qp[t] = 1), we use a sigmoid curve which
has as input the transcription piano-roll P (p, t) from the
output of the transcription model:

P (op[t]|qp[t] = 1) =
1

1 + e−P (p,t)
(14)

The result of the HMM postprocessing step is a binary
piano-roll transcription which can be used for evaluation.
An example of the HMM postprocessing step is given in
Fig. 4, where the transcription matrix P (p, t) of a piano
recording from [2] is seen along with the output of the
HMM smoothing.
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Figure 4. (a) The transcription matrix P (p, t) of the
first 40s of the J. Haydn Piano Sonata No.54 from the
Disklavier dataset of [2] (b) The output of the HMM post-
processing step (the abscissa corresponds to 10 ms).

4. EVALUATION

4.1 Datasets

For the transcription experiments, we used recordings from
three different sources. Firstly, 12 excerpts from the RWC
database [9] were employed, which have been widely used
for evaluating transcription systems (e.g. [15, 5, 4]). The
dataset contains classical and jazz music produced by pi-
ano, guitar, flute, and bowed strings, with the majority be-
ing piano. Aligned ground-truth MIDI data was created
using the original non-aligned MIDI reference for the first
23 sec of each recording, using Sonic Visualiser 1 .

In addition, the test dataset developed by Poliner and El-
lis [2] was also used for transcription experiments. It con-
tains 10 one-minute classical recordings from a Yamaha
Disklavier grand piano, sampled at 8 kHz along with aligned
MIDI ground truth. Finally, the full woodwind quintet
recording from the MIREX multi-F0 development set [10]
was also used for transcription experiments.

4.2 Evaluation Metrics

Several evaluation metrics are employed for the recordings
used for the transcription experiments. All evaluations take
place by comparing the transcribed output and the ground-
truth MIDI files using a 10 ms scale, as in the MIREX
multiple-F0 estimation task [10]. The first metric that is
used is the overall accuracy (Acc1 ) used in [2]. Also, an
additional set of metrics is employed, namely the alterna-
tive accuracy measure (Acc2 ), the total error (Etot ), the
substitution error (Esubs ), missed detection error (Efn ),
and false alarm error (Efp). Definitions for the aforemen-
tioned set of metrics can be found in [15, 5, 4].

1 http://www.sonicvisualiser.org/
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4.3 Results

Transcription experiments using the 12 excerpts from the
RWC database were performed using only piano templates,
or using the full list of instrument templates shown in Table
1. Results are presented in Table 2, comparing the perfor-
mance of the system with other state-of-the-art methods
[6, 4, 5, 15], while in Table 3 additional metrics are used in
order to compare the performance of the proposed system
with the method in [6]. It can be seen that when using the
piano templates, the proposed method outperforms other
systems with respect to the accuracy measure Acc2 . Also,
most of the errors of the system consist of missed detec-
tions, while relatively few false alarms are detected. Con-
cerning the signal processing-based method in [6], the im-
provement using Acc2 is 0.5%, which rises to 1.0% when
Acc1 is utilized.

When using the proposed system with all instrument tem-
plates, performance is significantly lowered, although it
should be stressed that the majority of the RWC record-
ings are produced by piano. This also indicates that having
a knowledge of the instruments present can significantly
improve the performance of the proposed system. It is no-
table that when RWC recording 10 -a string quartet- is tran-
scribed using the all-instruments model, its Acc2 is 82.7%,
far surpassing all other methods. Concerning sparsity pa-
rameters, after experimentation, no sparsity was added to
the instrument contribution matrix (α = 1) and sparsity
was only enforced on the transcription matrix (β = 1.5).
It is worth mentioning that with β = 1, performance us-
ing the piano templates drops to 58.6% for Acc2 . Also,
in order to evaluate the contribution of the shift-invariant
model, experiments were also performed by disabling con-
volution, resulting in a PLCA-based model similar to the
one in [12]. In terms of Acc2 , performance for the RWC
recordings was 60.1%, which indicates that using a shift-
invariant model for transcription can improve performance
when non-ideally tuned recordings or when frequency mod-
ulations are considered. To the authors’ knowledge, no
statistical significance tests have been made for transcrip-
tion, apart from the piecewise tests in the MIREX task [10].
However, given the fact that transcription evaluations actu-
ally take place using 10 ms frames, even a small accuracy
change can be shown to be statistically significant, using a
method like [16].

Results using the 10 piano recordings from [2] are shown
in Table 4, compared with results from other approaches
reported in [2] and the method in [6]. For this experiment,
only piano templates were used in the proposed system.
Again, it is shown that the proposed system outperforms all
other methods - compared to the one in [2], improvement is
1.1% with respect to Acc1 . It should be stressed also that
the training set for the method of [2] used data from the
same source as the test set. When compared with [6], the
performance improvement is much larger compared to the
RWC recordings (about 10.6%). This can be attributed to
the much faster tempo of the pieces in [2], since the method
in [6] is more suited to slower tempo due to the onset/offset
detections performed, tending to accumulate transcription
errors in cases of rapidly changing notes. Additional met-

Data Proposed Proposed [6] [4] [5] [15]
(piano) (all)

1 64.3% 58.3% 60.0% 63.5% 59.0% 64.2%
2 70.5% 61.4% 73.6% 72.1% 63.9% 62.2%
3 70.3% 53.8% 62.5% 58.6% 51.3% 63.8%
4 67.0% 63.4% 65.2% 79.4% 68.1% 77.9%
5 66.9% 55.4% 53.4% 55.6% 67.0% 75.2%
6 71.7% 73.3% 76.1% 70.3% 77.5% 81.2%
7 67.0% 55.9% 68.5% 49.3% 57.0% 70.9%
8 67.7% 51.4% 60.1% 64.3% 63.6% 63.2%
9 51.9% 48.8% 50.3% 50.6% 44.9% 43.2%

10 55.3% 82.7% 72.4% 55.9% 48.9% 48.1%
11 57.1% 54.2% 56.2% 51.1% 37.0% 37.6%
12 30.4% 26.8% 36.6% 38.0% 35.8% 27.5%

Mean 61.7% 57.1% 61.2% 59.1% 56.2% 59.6%

Table 2. Transcription results (Acc2 ) for the 12 RWC
recordings compared with other approaches.

Method Acc1 Acc2 Etot Esubs Efn Efp

Proposed (p) 60.8% 61.7% 38.3% 8.9% 19.6% 9.8%
Proposed (a) 54.8% 57.1% 42.9% 11.5% 24.4% 7.0%

[6] 59.8% 61.2% 38.8% 7.3% 24.8% 6.7%

Table 3. Transcription error metrics for the 12 RWC
recordings using piano only (p) or all templates (a), com-
pared with the approach in [6].

rics for the recordings of [2] are included in Table 5.
Finally, results using the proposed system are shown us-

ing the MIREX multi-F0 woodwind quintet [10] in Table 6.
The MIREX recording is available in 5 instrument tracks;
although results using pairs of these tracks have been re-
ported in [8, 12], to the authors’ knowledge no results using
the complete 5-instrument recording have been published.
Using the full instrument templates matrix, performance
of the proposed system is 48.1% using Acc2 , while it is
39.0% using the system in [6]. Again, the reduced per-
formance of [6] can be attributed to the fast tempo of the
recording (a part of which is depicted in Fig. 2).

5. CONCLUSIONS

In this work, a system for automatic music transcription
using a model based on shift-invariant probabilistic latent
component analysis techniques was proposed. The main
contribution of the paper is a transcription model that is
able to support multiple instrument and pitch templates and
is able to detect notes produced without ideal tuning or ex-
hibiting frequency modulations. The system was tested on
recordings from several sources, where it was shown to
outperform other state-of-the-art transcription techniques
using several error metrics. The system architecture makes
it suitable for instrument-specific transcription applications.
Also, a by-product of the system is a time-pitch repre-
sentation that can also be used for pitch content visual-
ization. Selected transcription examples are available on-
line 2 , along with the original excerpts for comparison.

2 http://www.eecs.qmul.ac.uk/~emmanouilb/transcription.html
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Method Proposed [6] [2] [17]
Acc1 57.6% 47.0% 56.5% 41.2%

Table 4. Mean transcription results (Acc1 ) for the piano
recordings in [2] compared with other approaches.

Method Acc1 Acc2 Etot Esubs Efn Efp

Proposed 57.6% 56.7% 43.3% 10.9% 16.9% 15.5%
[6] 47.0% 47.2% 52.8% 10.7% 33.6% 8.5%

Table 5. Transcription error metrics for the piano record-
ings in [2] compared with the approach in [6].

Since it was indicated that system performance can be im-
proved by utilizing knowledge of the instruments present
in the recording, instrument identification techniques will
be incorporated in future versions of the system. Finally,
future research will focus on producing templates for the
attack, transient, sustain, and release states of the produced
notes of each instrument and incorporate such formulation
into the proposed model, in an effort to further reduce the
number of missed detections.
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