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Abstract

During the last decade text mining has become a widely used discipline utilizing sta-
tistical and machine learning methods. We present the tm package which provides a
framework for text mining applications within R. We give a survey on text mining facili-
ties in R and explain how typical application tasks can be carried out using our framework.
We present techniques for count-based analysis methods, text clustering, text classification
and string kernels.

Keywords: text mining, R, count-based evaluation, text clustering, text classification, string
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1. Introduction

Text mining encompasses a vast field of theoretical approaches and methods with one thing in
common: text as input information. This allows various definitions, ranging from an extension
of classical data mining to texts to more sophisticated formulations like “the use of large on-
line text collections to discover new facts and trends about the world itself” (Hearst 1999). In
general, text mining is an interdisciplinary field of activity amongst data mining, linguistics,
computational statistics, and computer science. Standard techniques are text classification,
text clustering, ontology and taxonomy creation, document summarization and latent corpus
analysis. In addition a lot of techniques from related fields like information retrieval are
commonly used.

Classical applications in text mining (Weiss et al. 2004) come from the data mining commu-
nity, like document clustering (Zhao and Karypis 2005b,a; Boley 1998; Boley et al. 1999) and
document classification (Sebastiani 2002). For both the idea is to transform the text into a
structured format based on term frequencies and subsequently apply standard data mining
techniques. Typical applications in document clustering include grouping news articles or in-
formation service documents (Steinbach et al. 2000), whereas text categorization methods are
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2 Text Mining Infrastructure in R

used in, e.g., e-mail filters and automatic labeling of documents in business libraries (Miller
2005). Especially in the context of clustering, specific distance measures (Zhao and Karypis
2004; Strehl et al. 2000), like the Cosine, play an important role. With the advent of the
World Wide Web, support for information retrieval tasks (carried out by, e.g., search engines
and web robots) has quickly become an issue. Here, a possibly unstructured user query is
first transformed into a structured format, which is then matched against texts coming from
a data base. To build the latter, again, the challenge is to normalize unstructured input
data to fulfill the repositories’ requirements on information quality and structure, which often
involves grammatical parsing.

During the last years, more innovative text mining methods have been used for analyses
in various fields, e.g., in linguistic stylometry (Girón et al. 2005; Nilo and Binongo 2003;
Holmes and Kardos 2003), where the probability that a specific author wrote a specific text is
calculated by analyzing the author’s writing style, or in search engines for learning rankings
of documents from search engine logs of user behavior (Radlinski and Joachims 2007).

Latest developments in document exchange have brought up valuable concepts for automatic
handling of texts. The semantic web (Berners-Lee et al. 2001) propagates standardized for-
mats for document exchange to enable agents to perform semantic operations on them. This
is implemented by providing metadata and by annotating the text with tags. One key format
is RDF (Manola and Miller 2004) where efforts to handle this format have already been made
in R (R Development Core Team 2007) with the Bioconductor project (Gentleman et al. 2004,
2005). This development offers great flexibility in document exchange. But with the growing
popularity of XML based formats (e.g., RDF/XML as a common representation for RDF)
tools need to be able to handle XML documents and metadata.

The benefit of text mining comes with the large amount of valuable information latent in
texts which is not available in classical structured data formats for various reasons: text has
always been the default way of storing information for hundreds of years, and mainly time,
personal and cost contraints prohibit us from bringing texts into well structured formats (like
data frames or tables).

Statistical contexts for text mining applications in research and business intelligence include
latent semantic analysis techniques in bioinformatics (Dong et al. 2006), the usage of statistical
methods for automatically investigating jurisdictions (Feinerer and Hornik 2007), plagiarism
detection in universities and publishing houses, computer assisted cross-language information
retrieval (Li and Shawe-Taylor 2007) or adaptive spam filters learning via statistical inference.
Further common scenarios are help desk inquiries (Sakurai and Suyama 2005), measuring
customer preferences by analyzing qualitative interviews (Feinerer and Wild 2007), automatic
grading (Wu and Chen 2005), fraud detection by investigating notification of claims, or parsing
social network sites for specific patterns such as ideas for new products.

Nowadays almost every major statistical computing product offers text mining capabilities,
and many well-known data mining products provide solutions for text mining tasks. According
to a recent review on text mining products in statistics (Davi et al. 2005) these capabilites
and features include:

Preprocess: data preparation, importing, cleaning and general preprocessing,

Associate: association analysis, that is finding associations for a given term based on count-
ing co-occurrence frequencies,
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Product Preprocess Associate Cluster Summarize Categorize API
Commercial

Clearforest X X X X
Copernic Summarizer X X
dtSearch X X X
Insightful Infact X X X X X X
Inxight X X X X X X
SPSS Clementine X X X X X
SAS Text Miner X X X X X
TEMIS X X X X X
WordStat X X X X X

Open Source
GATE X X X X X X
RapidMiner X X X X X X
Weka/KEA X X X X X X
R/tm X X X X X X

Table 1: Overview of text mining products and available features. A feature is marked as
implemented (denoted as X) if the official feature description of each product explicitly lists
it.

Cluster: clustering of similar documents into the same groups,

Summarize: summarization of important concepts in a text. Typically these are high-
frequency terms,

Categorize: classification of texts into predefined categories, and

API: availability of application programming interfaces to extend the program with plug-ins.

Table 1 gives an overview over the most-used commercial text mining products (Piatetsky-
Shapiro 2005), selected open source text mining tool kits, and features. Commercial prod-
ucts include Clearforest, a text-driven business intelligence solution, Copernic Summarizer, a
summarizing software extracting key concepts and relevant sentences, dtSearch, a document
search tool, Insightful Infact, a search and analysis text mining tool, Inxight, an integrated
suite of tools for search, extraction, and analysis of text, SPSS Clementine, a data and text
mining workbench, SAS Text Miner, a suite of tools for knowledge discovery and knowledge
extraction in texts, TEMIS, a tool set for text extraction, text clustering, and text catego-
rization, and WordStat, a product for computer assisted text analysis.

From Table 1 we see that most commercial tools lack easy-to-use API integration and provide
a relatively monolithic structure regarding extensibility since their source code is not freely
available.

Among well known open source data mining tools offering text mining functionality is the
Weka (Witten and Frank 2005) suite, a collection of machine learning algorithms for data
mining tasks also offering classification and clustering techniques with extension projects
for text mining, like KEA (Witten et al. 2005) for keyword extraction. It provides good
API support and has a wide user base. Then there is GATE (Cunningham et al. 2002),
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an established text mining framework with architecture for language processing, information
extraction, ontology management and machine learning algorithms. It is fully written in
Java. Another tools are RapidMiner (formerly Yale (Mierswa et al. 2006)), a system for
knowledge discovery and data mining, and Pimiento (Adeva and Calvo 2006), a basic Java
framework for text mining. However, many existing open-source products tend to offer rather
specialized solutions in the text mining context, such as Shogun (Sonnenburg et al. 2006),
a toolbox for string kernels, or the Bow toolkit (McCallum 1996), a C library useful for
statistical text analysis, language modeling and information retrieval. In R the extension
package ttda (Mueller 2006) provides some methods for textual data analysis.

We present a text mining framework for the open source statistical computing environment R
centered around the new extension package tm (Feinerer 2007b). This open source package,
with a focus on extensibility based on generic functions and object-oriented inheritance, pro-
vides the basic infrastructure necessary to organize, transform, and analyze textual data. R
has proven over the years to be one of the most versatile statistical computing environments
available, and offers a battery of both standard and state-of-the-art methodology. However,
the scope of these methods was often limited to “classical”, structured input data formats
(such as data frames in R). The tm package provides a framework that allows researchers
and practitioners to apply a multitude of existing methods to text data structures as well.
In addition, advanced text mining methods beyond the scope of most today’s commercial
products, like string kernels or latent semantic analysis, can be made available via exten-
sion packages, such as kernlab (Karatzoglou et al. 2004, 2006) or lsa (Wild 2005), or via
interfaces to established open source toolkits from the data/text mining field like Weka or
OpenNLP (Bierner et al. 2007) from the natural languange processing community. So tm
provides a framework for flexible integration of premier statistical methods from R, interfaces
to well known open source text mining infrastructure and methods, and has a sophisticated
modularized extension mechanism for text mining purposes.

This paper is organized as follows. Section 2 elaborates, on a conceptual level, important ideas
and tasks a text mining framework should be able to deal with. Section 3 presents the main
structure of our framework, its algorithms, and ways to extend the text mining framework for
custom demands. Section 4 describes preprocessing mechanisms, like data import, stemming,
stopword removal and synonym detection. Section 5 shows how to conduct typical text
mining tasks within our framework, like count-based evaluation methods, text clustering with
term-document matrices, text classification, and text clustering with string kernels. Section 6
presents an application of tm by analyzing the R-devel 2006 mailing list. Section 7 concludes.
Finally Appendix A gives a very detailed and technical description of tm data structures.

2. Conceptual process and framework

A text mining analysis involves several challenging process steps mainly influenced by the
fact that texts, from a computer perspective, are rather unstructured collections of words.
A text mining analyst typically starts with a set of highly heterogeneous input texts. So
the first step is to import these texts into one’s favorite computing environment, in our case
R. Simultaneously it is important to organize and structure the texts to be able to access
them in a uniform manner. Once the texts are organized in a repository, the second step
is tidying up the texts, including preprocessing the texts to obtain a convenient representa-
tion for later analysis. This step might involve text reformatting (e.g., whitespace removal),
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stopword removal, or stemming procedures. Third, the analyst must be able to transform
the preprocessed texts into structured formats to be actually computed with. For “classical”
text mining tasks, this normally implies the creation of a so-called term-document matrix,
probably the most common format to represent texts for computation. Now the analyst can
work and compute on texts with standard techniques from statistics and data mining, like
clustering or classification methods.

This rather typical process model highlights important steps that call for support by a text
mining infrastructure: A text mining framework must offer functionality for managing text
documents, should abstract the process of document manipulation and ease the usage of
heterogeneous text formats. Thus there is a need for a conceptual entity similar to a database
holding and managing text documents in a generic way: we call this entity a text document
collection or corpus.

Since text documents are present in different file formats and in different locations, like a com-
pressed file on the Internet or a locally stored text file with additional annotations, there has
to be an encapsulating mechanism providing standardized interfaces to access the document
data. We subsume this functionality in so-called sources.

Besides the actual textual data many modern file formats provide features to annotate text
documents (e.g., XML with special tags), i.e., there is metadata available which further de-
scribes and enriches the textual content and might offer valuable insights into the document
structure or additional concepts. Also, additional metadata is likely to be created during an
analysis. Therefore the framework must be able to alleviate metadata usage in a convenient
way, both on a document level (e.g., short summaries or descriptions of selected documents)
and on a collection level (e.g., collection-wide classification tags).

Alongside the data infrastructure for text documents the framework must provide tools and
algorithms to efficiently work with the documents. That means the framework has to have
functionality to perform common tasks, like whitespace removal, stemming or stopword dele-
tion. We denote such functions operating on text document collections as transformations.
Another important concept is filtering which basically involves applying predicate functions
on collections to extract patterns of interest. A surprisingly challenging operation is the one of
joining text document collections. Merging sets of documents is straightforward, but merging
metadata intelligently needs a more sophisticated handling, since storing metadata from dif-
ferent sources in successive steps necessarily results in a hierarchical, tree-like structure. The
challenge is to keep these joins and subsequent look-up operations efficient for large document
collections.

Realistic scenarios in text mining use at least several hundred text documents ranging up to
several hundred thousands of documents. This means a compact storage of the documents in a
document collection is relevant for appropriate RAM usage — a simple approach would hold
all documents in memory once read in and bring down even fully RAM equipped systems
shortly with document collections of several thousands text documents. However, simple
database orientated mechanisms can already circumvent this situation, e.g., by holding only
pointers or hashtables in memory instead of full documents.

Text mining typically involves doing computations on texts to gain interesting information.
The most common approach is to create a so-called term-document matrix holding frequences
of distinct terms for each document. Another approach is to compute directly on character
sequences as is done by string kernel methods. Thus the framework must allow export mech-
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Figure 1: Conceptual layers and packages.

anisms for term-document matrices and provide interfaces to access the document corpora as
plain character sequences.

Basically, the framework and infrastructure supplied by tm aims at implementing the con-
ceptual framework presented above. The next section will introduce the data structures and
algorithms provided.

3. Data structures and algorithms

In this section we explain both the data structures underlying our text mining framework and
the algorithmic background for working with these data structures. We motivate the general
structure and show how to extend the framework for custom purposes.

Commercial text mining products (Davi et al. 2005) are typically built in monolithic structures
regarding extensibility. This is inherent as their source code is normally not available. Also,
quite often interfaces are not disclosed and open standards hardly supported. The result is
that the set of predefined operations is limited, and it is hard (or expensive) to write plug-ins.

Therefore we decided to tackle this problem by implementing a framework for accessing text
data structures in R. We concentrated on a middle ware consisting of several text mining
classes that provide access to various texts. On top of this basic layer we have a virtual
application layer, where methods operate without explicitly knowing the details of internal
text data structures. The text mining classes are written as abstract and generic as possible,
so it is easy to add new methods on the application layer level. The framework uses the
S4 (Chambers 1998) class system to capture an object oriented design. This design seems
best capable of encapsulating several classes with internal data structures and offers typed
methods to the application layer.

This modular structure enables tm to integrate existing functionality from other text mining
tool kits. E.g., we interface with the Weka and OpenNLP tool kits, via RWeka (Hornik et al.
2007)—and Snowball (Hornik 2007b) for its stemmers—and openNLP (Feinerer 2007a), re-
spectively. In detail Weka gives us stemming and tokenization methods, whereas OpenNLP
offers amongst others tokenization, sentence detection, and part of speech tagging (Bill 1995).
We can plug in this functionality at various points in tm’s infrastructure, e.g., for preprocess-
ing via transformation methods (see Section 4), for generating term-document matrices (see
Paragraph 3.1.4), or for custom functions when extending tm’s methods (see Section 3.3).

Figure 1 shows both the conceptual layers of our text mining infrastructure and typical pack-
ages arranged in them. The system environment is made up of the R core and the XML (Tem-
ple Lang 2006) package for handling XML documents internally, the text mining framework
consists of our new tm package with some help of Rstem (Temple Lang 2004) or Snowball for
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TermDocMatrix
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Figure 2: UML class diagram of the tm package.

stemming, whereas some packages provide both infrastructure and applications, like word-
net (Feinerer 2007c), kernlab with its string kernels, or the RWeka and openNLP interfaces. A
typical application might be lsa which can use our middleware: the key data structure for la-
tent semantic analysis (LSA Landauer et al. 1998; Deerwester et al. 1990) is a term-document
matrix which can be easily exported from our tm framework. As default lsa provides its own
(rather simple) routines for generating term-document matrices, so one can either use lsa
natively or enhance it with tm for handling complex input formats, preprocessing, and text
manipulations, e.g., as used by Feinerer and Wild (2007).

3.1. Data structures

We start by explaining the data structures: The basic framework classes and their interac-
tions are depicted in Figure 2 as a UML class diagram (Fowler 2003) with implementation
independent UML datatypes. In this section we give an overview how the classes interoperate
and work whereas an in-depth description is found in the Appendix A to be used as detailed
reference.

Text document collections

The main structure for managing documents in tm is a so-called text document collection,
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also denoted as corpus in linguistics (Corpus). It represents a collection of text documents
and can be interpreted as a database for texts. Its elements are TextDocuments holding the
actual text corpora and local metadata. The text document collection has two slots for storing
global metadata and one slot for database support.

We can distinguish two types of metadata, namely Document Metadata and Collection Meta-
data. Document metadata (DMetaData) is for information specific to text documents but
with an own entity, like classification results (it holds both the classifications for each docu-
ments but in addition global information like the number of classification levels). Collection
metadata (CMetaData) is for global metadata on the collection level not necessarily related
to single text documents, like the creation date of the collection (which is independent from
the documents within the collection).

The database slot (DBControl) controls whether the collection uses a database backend for
storing its information, i.e., the documents and the metadata. If activated, package tm tries
to hold as few bits in memory as possible. The main advantage is to be able to work with very
large text collections, a shortcoming might be slower access performance (since we need to load
information from the disk on demand). Also note that activated database support introduces
persistent object semantics since changes are written to the disk which other objects (pointers)
might be using.

Objects of class Corpus can be manually created by

R> new("Corpus", .Data = ..., DMetaData = ..., CMetaData = ...,

+ DBControl = ...)

where .Data has to be the list of text documents, and the other arguments have to be
the document metadata, collection metadata and database control parameters. Typically,
however, we use the Corpus constructor to generate the right parameters given following
arguments:

object : a Source object which abstracts the input location.

readerControl : a list with the three components reader, language, and load, giving a
reader capable of reading in elements delivered from the document source, a string
giving the ISO language code (typically in ISO 639 or ISO 3166 format, e.g., en_US
for American English), and a Boolean flag indicating whether the user wants to load
documents immediately into memory or only when actually accessed (we denote this
feature as load on demand).

The tm package ships with several readers (use getReaders() to list available readers)
described in Table 2.

dbControl : a list with the three components useDb, dbName and dbType setting the respec-
tive DBControl values (whether database support should be activated, the file name to
the database, and the database type).

An example of a constructor call might be

R> Corpus(object = ...,

+ readerControl = list(reader = object@DefaultReader,
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Reader Description
readPlain() Read in files as plain text ignoring metadata
readRCV1() Read in files in Reuters Corpus Volume 1 XML format
readReut21578XML() Read in files in Reuters-21578 XML format
readGmane() Read in Gmane RSS feeds
readNewsgroup() Read in newsgroup posting (e-mails) in UCI KDD archive format
readPDF() Read in PDF documents
readDOC() Read in MS Word documents
readHTML() Read in simply structured HTML documents

Table 2: Available readers in the tm package.

+ language = "en_US",

+ load = FALSE),

+ dbControl = list(useDb = TRUE,

+ dbName = "texts.db",

+ dbType = "DB1"))

where object denotes a valid instance of class Source. We will cover sources in more detail
later.

Text documents

The next core class is a text document (TextDocument), the basic unit managed by a text
document collection. It is an abstract class, i.e., we must derive specific document classes to
obtain document types we actually use in daily text mining. Basic slots are Author holding
the text creators, DateTimeStamp for the creation date, Description for short explanations
or comments, ID for a unique identification string, Origin denoting the document source (like
the news agency or publisher), Heading for the document title, Language for the document
language, and LocalMetaData for any additional metadata.

The main rationale is to extend this class as needed for specific purposes. This offers great
flexibility as we can handle any input format internally but provide a generic interface to
other classes. The following four classes are derived classes implementing documents for
common file formats and come with the package: XMLTextDocument for XML documents,
PlainTextDocument for simple texts, NewsgroupDocument for newsgroup postings and e-
mails, and StructuredTextDocument for more structured documents (e.g., with explicitly
marked paragraphs, etc.).

Text documents can be created manually, e.g., via

R> new("PlainTextDocument", .Data = "Some text.", URI = uri, Cached = TRUE,

+ Author = "Mr. Nobody", DateTimeStamp = Sys.time(),

+ Description = "Example", ID = "ID1", Origin = "Custom",

+ Heading = "Ex. 1", Language = "en_US")

setting all arguments for initializing the class (uri is a shortcut for a reference to the input,
e.g., a call to a file on disk). In most cases text documents are returned by reader functions,
so there is no need for manual construction.
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Text repositories

The next class from our framework is a so-called text repository which can be used to keep
track of text document collections. The class TextRepository is conceptualized for storing
representations of the same text document collection. This allows to backtrack transfor-
mations on text documents and access the original input data if desired or necessary. The
dynamic slot RepoMetaData can help to save the history of a text document collection, e.g.,
all transformations with a time stamp in form of tag-value pair metadata.
We construct a text repository by calling

R> new("TextRepository",

+ .Data = list(Col1, Col2), RepoMetaData = list(created = "now"))

where Col1 and Col2 are text document collections.

Term-document matrices

Finally we have a class for term-document matrices (Berry 2003; Shawe-Taylor and Cristianini
2004), probably the most common way of representing texts for further computation. It can
be exported from a Corpus and is used as a bag-of-words mechanism which means that the
order of tokens is irrelevant. This approach results in a matrix with document IDs as rows
and terms as columns. The matrix elements are term frequencies.
For example, consider the two documents with IDs 1 and 2 and their contents text mining is
fun and a text is a sequence of words, respectively. Then the term-document matrix is

a fun is mining of sequence text words
1 0 1 1 1 0 0 1 0
2 2 0 1 0 1 1 1 1

TermDocMatrix provides such a term-document matrix for a given Corpus element. It has
the slot Data of the formal class Matrix from package Matrix (Bates and Maechler 2007) to
hold the frequencies in compressed sparse matrix format.
Instead of using the term frequency (weightTf) directly, one can use different weightings. The
slot Weighting of a TermDocMatrix provides this facility by calling a weighting function on
the matrix elements. Available weighting schemes include the binary frequency (weightBin)
method which eliminates multiple entries, or the inverse document frequency (weightTfIdf)
weighting giving more importance to discriminative compared to irrelevant terms. Users can
apply their own weighting schemes by passing over custom weighting functions to Weighting.
Again, we can manually construct a term-document matrix, e.g., via

R> new("TermDocMatrix", Data = tdm, Weighting = weightTf)

where tdm denotes a sparse Matrix.
Typically, we will use the TermDocMatrix constructor instead for creating a term-document
matrix from a text document collection. The constructor provides a sophisticated modular
structure for generating such a matrix from documents: you can plug in modules for each
processing step specified via a control argument. E.g., we could use an n-gram tokenizer
(NGramTokenizer) from the Weka toolkit (via RWeka) to tokenize into phrases instead of
single words
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Source

getElem() : Element
stepNext() : void
eoi() : Boolean

LoDSupport : Boolean
Position : Integer
DefaultReader : function
Encoding : String

DirSource

FileList : String
Load : Boolean

CSVSource

URI : Call
Content : String

ReutersSource

URI : Call
Content : XMLDocument

GmaneSource

URI : Call
Content : XMLDocument

Figure 3: UML class diagram for Sources.

R> TermDocMatrix(col, control = list(tokenize = NGramTokenizer))

or a tokenizer from the OpenNLP toolkit (via openNLP’s tokenize function)

R> TermDocMatrix(col, control = list(tokenize = tokenize))

where col denotes a text collection. Instead of using a classical tokenizer we could be inter-
ested in phrases or whole sentences, so we take advantage of the sentence detection algorithms
offered by openNLP.

R> TermDocMatrix(col, control = list(tokenize = sentDetect))

Similarly, we can use external modules for all other processing steps (mainly via internal
calls to termFreq which generates a term frequency vector from a text document and gives
an extensive list of available control options), like stemming (e.g., the Weka stemmers via
the Snowball package), stopword removal (e.g., via custom stopword lists), or user supplied
dictionaries (a method to restrict the generated terms in the term-document matrix).

This modularization allows synergy gains between available established toolkits (like Weka or
OpenNLP) and allows tm to utilize available functionality.

Sources

The tm package uses the concept of a so-called source to encapsulate and abstract the doc-
ument input process. This allows to work with standardized interfaces within the package
without knowing the internal structures of input document formats. It is easy to add support
for new file formats by inheriting from the Source base class and implementing the interface
methods.

Figure 3 shows a UML diagram with implementation independent UML data types for the
Source base class and existing inherited classes.

A source is a VIRTUAL class (i.e., it cannot be instantiated, only classes may be derived from
it) and abstracts the input location and serves as the base class for creating inherited classes
for specialized file formats. It has four slots, namely LoDSupport indicating load on demand
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support, Position holding status information for internal navigation, DefaultReader for a
default reader function, and Encoding for the encoding to be used by internal R routines for
accessing texts via the source (defaults to UTF-8 for all sources).

The following classes are specific source implementations for common purposes: DirSource for
directories with text documents, CSVSource for documents stored in CSV files, ReutersSource
for special Reuters file formats, and GmaneSource for so-called RSS feeds as delivered by
Gmane (Ingebrigtsen 2007).

A directory source can manually be created by calling

R> new("DirSource", LoDSupport = TRUE, FileList = dir(), Position = 0,

+ DefaultReader = readPlain, Encoding = "latin1")

where readPlain() is a predefined reader function in tm. Again, we provide wrapper func-
tions for the various sources.

3.2. Algorithms

Next, we present the algorithmic side of our framework. We start with the creation of a
text document collection holding some plain texts in Latin language from Ovid’s ars amato-
ria (Naso 2007). Since the documents reside in a separate directory we use the DirSource
and ask for immediate loading into memory. The elements in the collection are of class
PlainTextDocument since we use the default reader which reads in the documents as plain
text:

R> txt <- system.file("texts", "txt", package = "tm")

R> (ovid <- Corpus(DirSource(txt),

+ readerControl = list(reader = readPlain,

+ language = "la",

+ load = TRUE)))

A text document collection with 5 text documents

Alternatively we could activate database support such that only relevant information is kept
in memory:

R> Corpus(DirSource(txt),

+ readerControl = list(reader = readPlain,

+ language = "la", load = TRUE),

+ dbControl = list(useDb = TRUE,

+ dbName = "/home/user/oviddb",

+ dbType = "DB1"))

The loading and unloading of text documents and metadata of the text document collection
is transparent to the user, i.e., fully automatic. Manipulations affecting R text document
collections are written out to the database, i.e., we obtain persistent object semantics in
contrast to R’s common semantics.

We have implemented both accessor and set functions for the slots in our classes such that
slot information can easily be accessed and modified, e.g.,
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R> ID(ovid[[1]])

[1] "1"

gives the ID slot attribute of the first ovid document. With e.g.,

R> Author(ovid[[1]]) <- "Publius Ovidius Naso"

we modify the Author slot information.

To see all available metadata for a text document, use meta(), e.g.,

R> meta(ovid[[1]])

Available meta data pairs are:
Author : Publius Ovidius Naso
Cached : TRUE
DateTimeStamp: 2008-03-16 14:49:58
Description :
ID : 1
Heading :
Language : la
Origin :
URI : file /home/feinerer/lib/R/library/tm/texts/txt/ovid_1.txt

UTF-8
Dynamic local meta data pairs are:
list()

Further we have implemented following operators and functions for text document collections:

[ The subset operator allows to specify a range of text documents and automatically en-
sures that a valid text collection is returned. Further the DMetaData data frame is
automatically subsetted to the specific range of documents.

R> ovid[1:3]

A text document collection with 3 text documents

[[ accesses a single text document in the collection. A special show() method for plain text
documents pretty prints the output.

R> ovid[[1]]

[1] " Si quis in hoc artem populo non novit amandi,"
[2] " hoc legat et lecto carmine doctus amet."
[3] " arte citae veloque rates remoque moventur,"
[4] " arte leves currus: arte regendus amor."
[5] ""
[6] " curribus Automedon lentisque erat aptus habenis,"
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[7] " Tiphys in Haemonia puppe magister erat:"
[8] " me Venus artificem tenero praefecit Amori;"
[9] " Tiphys et Automedon dicar Amoris ego."
[10] " ille quidem ferus est et qui mihi saepe repugnet:"
[11] ""
[12] " sed puer est, aetas mollis et apta regi."
[13] " Phillyrides puerum cithara perfecit Achillem,"
[14] " atque animos placida contudit arte feros."
[15] " qui totiens socios, totiens exterruit hostes,"
[16] " creditur annosum pertimuisse senem."

c() Concatenates several text collections to a single one.

R> c(ovid[1:2], ovid[3:4])

A text document collection with 4 text documents

The metadata of both text document collections is merged, i.e., a new root node is
created in the CMetaData tree holding the concatenated collections as children, and
the DMetaData data frames are merged. Column names existing in one frame but not
the other are filled up with NA values. The whole process of joining the metadata
is depicted in Figure 4. Note that concatenation of text document collections with
activated database backends is not supported since it might involve the generation of a
new database (as a collection has to have exactly one database) and massive copying of
database values.

length() Returns the number of text documents in the collection.

R> length(ovid)

[1] 5

c()

CMeta DMeta

1

CMeta DMeta

2

CMeta DMeta

0

21
A�

Figure 4: Concatenation of two text document collections with c().
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show() A custom print method. Instead of printing all text documents (consider a text
collection could consist of several thousand documents, similar to a database), only a
short summarizing message is printed.

summary() A more detailed message, summarizing the text document collection. Available
metadata is listed.

R> summary(ovid)

A text document collection with 5 text documents

The metadata consists of 2 tag-value pairs and a data frame
Available tags are:
create_date creator

Available variables in the data frame are:
MetaID

inspect() This function allows to actually see the structure which is hidden by show() and
summary() methods. Thus all documents and metadata are printed, e.g.,
inspect(ovid).

tmUpdate() takes as argument a text document collection, a source with load on demand
support and a readerControl as found in the Corpus constructor. The source is checked
for new files which do not already exist in the document collection. Identified new files
are parsed and added to the existing document collection, i.e., the collection is updated,
and loaded into memory if demanded.

R> tmUpdate(ovid, DirSource(txt))

A text document collection with 5 text documents

Text documents and metadata can be added to text document collections with appendElem()
and appendMeta(), respectively. As already described earlier the text document collection
has two types of metadata: one is the metadata on the document collection level (cmeta), the
other is the metadata related to the individual documents (e.g., clusterings) (dmeta) with an
own entity in form of a data frame.

R> ovid <- appendMeta(ovid,

+ cmeta = list(test = c(1,2,3)),

+ dmeta = list(clust = c(1,1,2,2,2)))

R> summary(ovid)

A text document collection with 5 text documents

The metadata consists of 3 tag-value pairs and a data frame
Available tags are:
create_date creator test

Available variables in the data frame are:
MetaID clust
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R> CMetaData(ovid)

An object of class "MetaDataNode"
Slot "NodeID":
[1] 0

Slot "MetaData":
$create_date
[1] "2008-03-16 14:49:58 CET"

$creator
LOGNAME

"feinerer"

$test
[1] 1 2 3

Slot "children":
list()

R> DMetaData(ovid)

MetaID clust
1 0 1
2 0 1
3 0 2
4 0 2
5 0 2

For the method appendElem(), which adds the data object of class TextDocument to the
data segment of the text document collection ovid, it is possible to give a column of values
in the data frame for the added data element.

R> (ovid <- appendElem(ovid, data = ovid[[1]], list(clust = 1)))

A text document collection with 6 text documents

The methods appendElem(), appendMeta() and removeMeta() also exist for the class
TextRepository, which is typically constructed by passing a initial text document collection,
e.g.,

R> (repo <- TextRepository(ovid))

A text repository with 1 text document collection
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The argument syntax for adding data and metadata is identical to the arguments used for
text collections (since the functions are generic) but now we add data (i.e., in this case whole
text document collections) and metadata to a text repository. Since text repositories’ meta-
data only may contain repository specific metadata, the argument dmeta of appendMeta() is
ignored and cmeta must be used to pass over repository metadata.

R> repo <- appendElem(repo, ovid, list(modified = date()))

R> repo <- appendMeta(repo, list(moremeta = 5:10))

R> summary(repo)

A text repository with 2 text document collections

The repository metadata consists of 3 tag-value pairs
Available tags are:
created modified moremeta

R> RepoMetaData(repo)

$created
[1] "2008-03-16 14:49:58 CET"

$modified
[1] "Sun Mar 16 14:49:58 2008"

$moremeta
[1] 5 6 7 8 9 10

The method removeMeta() is implemented both for text document collections and text repos-
itories. In the first case it can be used to delete metadata from the CMetaData and DMetaData
slots, in the second case it removes metadata from RepoMetaData. The function has the same
signature as appendMeta().

In addition there is the method meta() as a simplified uniform mechanism to access metadata.
It provides accessor and set methods for text collections, text repositories and text documents
(as already shown for a document from the ovid corpus at the beginning of this section).
Especially for text collections it is a simplification since it provides a uniform way to edit
DMetaData and CMetaData (type corpus), e.g.,

R> meta(ovid, type = "corpus", "foo") <- "bar"

R> meta(ovid, type = "corpus")

An object of class "MetaDataNode"
Slot "NodeID":
[1] 0

Slot "MetaData":
$create_date
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[1] "2008-03-16 14:49:58 CET"

$creator
LOGNAME

"feinerer"

$test
[1] 1 2 3

$foo
[1] "bar"

Slot "children":
list()

R> meta(ovid, "someTag") <- 6:11

R> meta(ovid)

MetaID clust someTag
1 0 1 6
2 0 1 7
3 0 2 8
4 0 2 9
5 0 2 10
6 0 1 11

In addition we provide a generic interface to operate on text document collections, i.e., trans-
form and filter operations. This is of great importance in order to provide a high-level concept
for often used operations on text document collections. The abstraction avoids the user to
take care of internal representations but offers clearly defined, implementation independent,
operations.

Transformations operate on each text document in a text document collection by applying a
function to them. Thus we obtain another representation of the whole text document collec-
tion. Filter operations instead allow to identify subsets of the text document collection. Such
a subset is defined by a function applied to each text document resulting in a Boolean answer.
Hence formally the filter function is just a predicate function. This way we can easily identify
documents with common characteristics. Figure 5 visualizes this process of transformations
and filters. It shows a text document collection with text documents d1, d2, . . . , dn consisting
of corpus data (Data) and the document specific metadata data frame (Meta).

Transformations are done via the tmMap() function which applies a function FUN to all el-
ements of the collection. Basically, all transformations work on single text documents and
tmMap() just applies them to all documents in a document collection. E.g.,

R> tmMap(ovid, FUN = tmTolower)

A text document collection with 6 text documents
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d1 d2 dn

?
filter (tmFilter, tmIndex)

Data

Meta

transform (tmMap)-

Figure 5: Generic transform and filter operations on a text document collection.

Transformation Description
asPlain() Converts the document to a plain text document
loadDoc() Triggers load on demand
removeCitation() Removes citations from e-mails
removeMultipart() Removes non-text from multipart e-mails
removeNumbers() Removes numbers
removePunctuation() Removes punctuation marks
removeSignature() Removes signatures from e-mails
removeWords() Removes stopwords
replaceWords() Replaces a set of words with a given phrase
stemDoc() Stems the text document
stripWhitespace() Removes extra whitespace
tmTolower() Conversion to lower case letters

Table 3: Transformations shipped with tm.

applies tmTolower() to each text document in the ovid collection and returns the modified
collection. Optional parameters ... are passed directly to the function FUN if given to tmMap()
allowing detailed arguments for more complex transformations. Further the document specific
metadata data frame is passed to the function as argument DMetaData to enable transfor-
mations based on information gained by metadata investigation. Table 3 gives an overview
over available transformations (use getTransformations() to list available transformations)
shipped with tm.

Filters (use getFilters() to list available filters) are performed via the tmIndex() and
tmFilter() functions. Both function have the same internal behavior except that tmIndex()
returns Boolean values whereas tmFilter() returns the corresponding documents in a new
Corpus. Both functions take as input a text document collection, a function FUN, a flag
doclevel indicating whether FUN is applied to the collection itself (default) or to each doc-
ument separately, and optional parameters ... to be passed to FUN. As in the case with
transformations the document specific metadata data frame is passed to FUN as argument
DMetaData. E.g., there is a full text search filter searchFullText() available which accepts
regular expressions and is applied on the document level:

R> tmFilter(ovid, FUN = searchFullText, "Venus", doclevel = TRUE)
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A text document collection with 2 text documents

Any valid predicate function can be used as custom filter function but for most cases the
default filter sFilter() does its job: it integrates a minimal query language to filter meta-
data. Statements in this query language are statements as used for subsetting data frames,
i.e, a statement s is of format "tag1 == ’expr1’ & tag2 == ’expr2’ & ...". Tags in s
represent data frame metadata variables. Variables only available at the document level are
shifted up to the data frame if necessary. Note that the metadata tags for the slots Author,
DateTimeStamp, Description, ID, Origin, Language and Heading of a text document are
author, datetimestamp, description, identifier, origin, language and heading, re-
spectively, to avoid name conflicts. For example, the following statement filters out those
documents having an ID equal to 2:

R> tmIndex(ovid, "identifier == '2'")

[1] FALSE TRUE FALSE FALSE FALSE FALSE

As you see the query is applied to the metadata data frame (the document local ID metadata
is shifted up to the metadata data frame automatically since it appears in the statement)
thus an investigation on document level is not necessary.

3.3. Extensions

The presented framework classes already build the foundation for typical text mining tasks
but we emphasize available extensibility mechanisms. This allows the user to customize classes
for specific demands. In the following, we sketch an example (only showing the main elements
and function signatures).
Suppose we want to work with an RSS newsgroup feed as delivered by Gmane (Ingebrigtsen
2007) and analyze it in R. Since we already have a class for handling newsgroup mails as
found in the Newsgroup data set from the UCI KDD archive (Hettich and Bay 1999) we will
reuse it as it provides everything we need for this example. At first, we derive a new source
class for our RSS feeds:

R> setClass("GmaneSource",

+ representation(URI = "ANY", Content = "list"),

+ contains = c("Source"))

which inherits from the Source class and provides slots as for the existing ReutersSource
class, i.e., URI for holding a reference to the input (e.g., a call to a file on disk) and Content
to hold the XML tree of the RSS feed.
Next we can set up the constructor for the class GmaneSource:

R> setMethod("GmaneSource",

+ signature(object = "ANY"),

+ function(object, encoding = "UTF-8") {

+ ## ---code chunk---

+ new("GmaneSource", LoDSupport = FALSE, URI = object,

+ Content = content, Position = 0, Encoding = encoding)

+ })
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where --code chunk-- is a symbolic anonymous shorthand for reading in the RSS file, parsing
it, e.g., with methods provided in the XML package, and filling the content variable with it.

Next we need to implement the three interface methods a source must provide:

R> setMethod("stepNext",

+ signature(object = "GmaneSource"),

+ function(object) {

+ object@Position <- object@Position + 1

+ object

+ })

simply updates the position counter for using the next item in the XML tree,

R> setMethod("getElem",

+ signature(object = "GmaneSource"),

+ function(object) {

+ ## ---code chunk---

+ list(content = content, uri = object@URI)

+ })

returns a list with the element’s content at the active position (which is extracted in --code
chunk--) and the corresponding unique resource identifier, and

R> setMethod("eoi",

+ signature(object = "GmaneSource"),

+ function(object) {

+ length(object@Content) <= object@Position

+ })

indicates the end of the XML tree.

Finally we write a custom reader function which extracts the relevant information out of RSS
feeds:

R> readGmane <- FunctionGenerator(function(...) {

+ function(elem, load, language, id) {

+ ## ---code chunk---

+ new("NewsgroupDocument", .Data = content, URI = elem$uri,

+ Cached = TRUE, Author = author, DateTimeStamp = datetimestamp,

+ Description = "", ID = id, Origin = origin, Heading = heading,

+ Language = language, Newsgroup = newsgroup)

+ }

+ })

The function shows how a custom FunctionGenerator can be implemented which returns the
reader as return value. The reader itself extracts relevant information via XPath expressions
in the function body’s --code chunk-- and returns a NewsgroupDocument as desired.

The full implementation comes with the tm package such that we can use the source and
reader to access Gmane RSS feeds:
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R> rss <- system.file("texts", "gmane.comp.lang.r.gr.rdf", package = "tm")

R> Corpus(GmaneSource(rss), readerControl = list(reader = readGmane,

+ language = "en_US", load = TRUE))

A text document collection with 21 text documents

Since we now have a grasp about necessary steps to extend the framework we want to show
how easy it is to produce realistic readers by giving an actual implementation for a highly
desired feature in the R community: a PDF reader. The reader expects the two command line
tools pdftotext and pdfinfo installed to work properly (both programs are freely available
for common operating systems, e.g., via the poppler or xpdf tool suites).

R> readPDF <- FunctionGenerator(function(...) {

+ function(elem, load, language, id) {

+ ## get metadata

+ meta <- system(paste("pdfinfo", as.character(elem$uri[2])),

+ intern = TRUE)

+

+ ## extract and store main information, e.g.:

+ heading <- gsub("Title:[[:space:]]*", "",

+ grep("Title:", meta, value = TRUE))

+

+ ## [... similar for other metadata ...]

+

+ ## extract text from PDF using the external pdftotext utility:

+ corpus <- paste(system(paste("pdftotext", as.character(elem$uri[2]), "-"),

+ intern = TRUE),

+ sep = "\n", collapse = "")

+

+ ## create new text document object:

+ new("PlainTextDocument", .Data = corpus, URI = elem$uri, Cached = TRUE,

+ Author = author, DateTimeStamp = datetimestamp,

+ Description = description, ID = id, Origin = origin,

+ Heading = heading, Language = language)

+ }

+ })

Basically we use pdfinfo to extract the metadata, search the relevant tags for filling metadata
slots, and use pdftotext for acquiring the text corpus.
We have seen extensions for classes, sources and readers. But we can also write custom
transformation and filter functions. E.g., a custom generic transform function could look like

R> setGeneric("myTransform", function(object, ...) standardGeneric("myTransform"))

R> setMethod("myTransform", signature(object = "PlainTextDocument"),

+ function(object, ..., DMetaData) {

+ Content(object) <- doSomeThing(object, DMetaData)

+ return(object)

+ })
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where we change the text corpus (i.e., the actual text) based on doSomeThing’s result and
return the document again. In case of a filter function we would return a Boolean value.

Summarizing, this section showed that own fully functional classes, sources, readers, trans-
formations and filters can be contributed simply by giving implementations for interface def-
initions.

Based on the presented framework and its algorithms the following sections will show how to
use tm to ease text mining tasks in R.

4. Preprocessing

Input texts in their native raw format can be an issue when analyzing these with text mining
methods since they might contain many unimportant stopwords (like and or the) or might be
formatted inconveniently. Therefore preprocessing, i.e., applying methods for cleaning up and
structuring the input text for further analysis, is a core component in practical text mining
studies. In this section we will discuss how to perform typical preprocessing steps in the tm
package.

4.1. Data import

One very popular data set in text mining research is the Reuters-21578 data set (Lewis 1997).
It now contains over 20000 stories (the original version contained 21578 documents) from the
Reuters news agency with metadata on topics, authors and locations. It was compiled by
David Lewis in 1987, is publicly available and is still one of the most widely used data sets
in recent text mining articles (see, e.g., Lodhi et al. 2002).

The original Reuters-21578 XML data set consists of a set of XML files with about 1000 articles
per XML file. In order to enable load on demand the method preprocessReut21578XML()
can be used to split the articles into separate files such that each article is stored in its own
XML file. Reuters examples in the tm package and Reuters data sets used in this paper have
already been preprocessed with this function.

Documents in the Reuters XML format can easily be read in with existing parsing functions

R> reut21578XMLgz <- system.file("texts", "reut21578.xml.gz", package = "tm")

R> (Reuters <- Corpus(ReutersSource(gzfile(reut21578XMLgz)),

+ readerControl = list(reader = readReut21578XML,

+ language = "en_US",

+ load = TRUE)))

A text document collection with 10 text documents

Note that connections can be passed over to ReutersSource, e.g., we can compress our files
on disk to save space without losing functionality. The package further supports Reuters
Corpus Volume 1 (Lewis et al. 2004)—the successor of the Reuters-21578 data set—which
can be similarly accessed via predefined readers (readRCV1()).

The default encoding used by sources is always assumed to be UTF-8. Anyway, one can man-
ually set the encoding via the encoding parameter (e.g., DirSource("texts/", encoding =
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"latin1")) or by creating a connection with an alternative encoding which is passed over to
the source.

Since the documents are in XML format and we prefer to get rid of the XML tree and use
the plain text instead we transform our collection with the predefined generic asPlain():

R> tmMap(Reuters, asPlain)

A text document collection with 10 text documents

We then extract two subsets of the full Reuters-21578 data set by filtering out those with topics
acq and crude. Since the Topics are stored in the LocalMetaData slot by
readReut21578XML() the filtering can be easily accomplished e.g., via

R> tmFilter(crude, "Topics == 'crude'")

resulting in 50 articles of topic acq and 20 articles of topic crude. For further use as simple
examples we provide these subsets in the package as separate data sets:

R> data("acq")

R> data("crude")

4.2. Stemming

Stemming is the process of erasing word suffixes to retrieve their radicals. It is a common
technique used in text mining research, as it reduces complexity without any severe loss of
information for typical applications (especially for bag-of-words).

One of the best known stemming algorithm goes back to Porter (1997) describing an al-
gorithm that removes common morphological and inflectional endings from English words.
The R Rstem and Snowball (encapsulating stemmers provided by Weka) packages implement
such stemming capabilities and can be used in combination with our tm infrastructure. The
main stemming function is wordStem(), which internally calls the Porter stemming algo-
rithm, and can be used with several languages, like English, German or Russian (see e.g.,
Rstem’s getStemLanguages() for installed language extensions). A small wrapper in form
of a transformation function handles internally the character vector conversions so that it
can be directly applied to a text document. For example, given the corpus of the 10th acq
document:

R> acq[[10]]

[1] "Gulf Applied Technologies Inc said it sold its subsidiaries engaged in"
[2] "pipeline and terminal operations for 12.2 mln dlrs. The company said"
[3] "the sale is subject to certain post closing adjustments, which it did"
[4] "not explain. Reuter"

the same corpus after applying the stemming transformation reads:

R> stemDoc(acq[[10]])
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[1] "Gulf Appli Technolog Inc said it sold it subsidiari engag in pipelin"
[2] "and termin oper for 12.2 mln dlrs. The compani said the sale is"
[3] "subject to certain post close adjustments, which it did not explain."
[4] "Reuter"

The result is the document where for each word the Porter stemming algorithm has been
applied, that is we receive each word’s stem with its suffixes removed.

This stemming feature transformation in tm is typically activated when creating a term-
document matrix, but is also often used directly on the text documents before exporting
them, e.g.,

R> tmMap(acq, stemDoc)

A text document collection with 50 text documents

4.3. Whitespace elimination and lower case conversion

Another two common preprocessing steps are the removal of white space and the conversion to
lower case. For both tasks tm provides transformations (and thus can be used with tmMap())

R> stripWhitespace(acq[[10]])

[1] "Gulf Applied Technologies Inc said it sold its subsidiaries engaged in"
[2] "pipeline and terminal operations for 12.2 mln dlrs. The company said"
[3] "the sale is subject to certain post closing adjustments, which it did"
[4] "not explain. Reuter"

R> tmTolower(acq[[10]])

[1] "gulf applied technologies inc said it sold its subsidiaries engaged in"
[2] "pipeline and terminal operations for 12.2 mln dlrs. the company said"
[3] "the sale is subject to certain post closing adjustments, which it did"
[4] "not explain. reuter"

which are wrappers for simple gsub and tolower statements.

4.4. Stopword removal

A further preprocessing technique is the removal of stopwords.

Stopwords are words that are so common in a language that their information value is almost
zero, in other words their entropy is very low. Therefore it is usual to remove them before
further analysis. At first we set up a tiny list of stopwords:

R> mystopwords <- c("and", "for", "in", "is", "it", "not", "the", "to")

Stopword removal has also been wrapped as a transformation for convenience:
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R> removeWords(acq[[10]], mystopwords)

[1] "Gulf Applied Technologies Inc said sold its subsidiaries engaged"
[2] "pipeline terminal operations 12.2 mln dlrs. The company said sale"
[3] "subject certain post closing adjustments, which did explain. Reuter"

A whole collection can be transformed by using:

R> tmMap(acq, removeWords, mystopwords)

For real application one would typically use a purpose tailored a language specific stopword
list. The package tm ships with a list of Danish, Dutch, English, Finnish, French, German,
Hungarian, Italian, Norwegian, Portuguese, Russian, Spanish, and Swedish stopwords, avail-
able via

R> stopwords(language = ...)

For stopword selection one can either provide the full language name in lower case (e.g.,
german) or its ISO 639 code (e.g., de or even de_AT) to the argument language. Further,
automatic stopword removal is available for creating term-document matrices, given a list of
stopwords.

4.5. Synonyms

In many cases it is of advantage to know synonyms for a given term, as one might identify
distinct words with the same meaning. This can be seen as a kind of semantic analysis on a
very low level.

The well known WordNet database (Fellbaum 1998), a lexical reference system, is used for
many purposes in linguistics. It is a database that holds definitions and semantic relations be-
tween words for over 100,000 English terms. It distinguishes between nouns, verbs, adjectives
and adverbs and relates concepts in so-called synonym sets. Those sets describe relations, like
hypernyms, hyponyms, holonyms, meronyms, troponyms and synonyms. A word may occur
in several synsets which means that it has several meanings. Polysemy counts relate synsets
with the word’s commonness in language use so that specific meanings can be identified.

One feature we actually use is that given a word, WordNet returns all synonyms in its database
for it. For example we could ask the WordNet database via the wordnet package for all
synonyms of the word company. At first we have to load the package and get a handle to the
WordNet database, called dictionary:

R> library("wordnet")

If the package has found a working WordNet installation we can proceed with

R> synonyms("company")

[1] "caller" "companionship" "company" "fellowship"
[5] "party" "ship's company" "society" "troupe"
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giving us the synonyms.

Once we have the synonyms for a word a common approach is to replace all synonyms by a
single word. This can be done via the replaceWords() transformation

R> replaceWords(acq[[10]], synonyms(dict, "company"), by = "company")

and for the whole collection, using tmMap():

R> tmMap(acq, replaceWords, synonyms(dict, "company"), by = "company")

4.6. Part of speech tagging

In computational linguistics a common task is tagging words with their part of speech for
further analysis. Via an interface with the openNLP package to the OpenNLP tool kit tm
integrates part of speech tagging functionality based on maximum entropy machine learned
models. openNLP ships transformations wrapping OpenNLP’s internal Java system calls for
our convenience, e.g.,

R> library("openNLP")

R> tagPOS(acq[[10]])

[1] "Gulf/NNP Applied/NNP Technologies/NNPS Inc/NNP said/VBD it/PRP sold/VBD"
[2] "its/PRP$ subsidiaries/NNS engaged/VBN in/IN pipeline/NN and/CC"
[3] "terminal/NN operations/NNS for/IN 12.2/CD mln/NN dlrs./, The/DT"
[4] "company/NN said/VBD the/DT sale/NN is/VBZ subject/JJ to/TO certain/JJ"
[5] "post/NN closing/NN adjustments,/NN which/WDT it/PRP did/VBD not/RB"
[6] "explain./NN Reuter/NNP"

shows the tagged words using a set of predefined tags identifying nouns, verbs, adjectives,
adverbs, et cetera depending on their context in the text. The tags are Penn Treebank
tags (Mitchell et al. 1993), so e.g., NNP stands for proper noun, singular, or e.g., VBD stands
for verb, past tense.

5. Applications

Here we present some typical applications on texts, that is analysis based on counting fre-
quencies, clustering and classification of texts.

5.1. Count-based evaluation

One of the simplest analysis methods in text mining is based on count-based evaluation. This
means that those terms with the highest occurrence frequencies in a text are rated important.
In spite of its simplicity this approach is widely used in text mining (Davi et al. 2005) as it
can be interpreted nicely and is computationally inexpensive.

At first we create a term-document matrix for the crude data set, where rows correspond to
documents IDs and columns to terms. A matrix element contains the frequency of a specific
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term in a document. English stopwords are removed from the matrix (it suffices to pass over
TRUE to stopwords since the function looks up the language in each text document and loads
the right stopwords automagically)

R> crudeTDM <- TermDocMatrix(crude, control = list(stopwords = TRUE))

Then we use a function on term-document matrices that returns terms that occur at least
freq times. For example we might choose those terms from our crude term-document matrix
which occur at least 10 times

R> (crudeTDMHighFreq <- findFreqTerms(crudeTDM, 10, Inf))

[1] "oil" "opec" "kuwait"

Conceptually, we interpret a term as important according to a simple counting of frequencies.
As we see the results can be interpreted directly and seem to be reasonable in the context of
texts on crude oil (like opec or kuwait). We can also apply this function to see an excerpt
(here the first 10 rows) of the whole (sparse compressed) term-document matrix, i.e., we also
get the frequencies of the high occurrence terms for each document:

R> Data(crudeTDM)[1:10, crudeTDMHighFreq]

10 x 3 sparse Matrix of class "dgCMatrix"
oil opec kuwait

127 5 . .
144 12 15 .
191 2 . .
194 1 . .
211 1 . .
236 7 8 10
237 4 1 .
242 3 2 1
246 5 2 .
248 9 6 3

Another approach available in common text mining tools is finding associations for a given
term, which is a further form of count-based evaluation methods. This is especially interesting
when analyzing a text for a specific purpose, e.g., a business person could extract associations
of the term “oil” from the Reuters articles.

Technically we can realize this in R by computing correlations between terms. We have
prepared a function findAssocs() which computes all associations for a given term and
corlimit, that is the minimal correlation for being identified as valid associations. The
example finds all associations for the term “oil” with at least 0.85 correlation in the term-
document matrix:

R> findAssocs(crudeTDM, "oil", 0.85)
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Figure 6: Visualization of the correlations within a term-document matrix.
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Internally we compute the correlations between all terms in the term-document matrix and
filter those out higher than the correlation threshold.
Figure 6 shows a plot of the term-document matrix crudeTDM which visualizes the correlations
over 0.5 between frequent (co-occurring at least 6 times) terms.
Conceptually, those terms with high correlation to the given term oil can be interpreted as
its valid associations. From the example we can see that oil is highly associated with opec,
which is quite reasonable. As associations are based on the concept of similarities between
objects, other similarity measures could be used. We use correlations between terms, but
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theoretically we could use any well defined similarity function (confer to the discussion on the
dissimilarity() function in the next section) for comparing terms and identifying similar
ones. Thus the similarity measures may change but the idea of interpreting similar objects
as associations is general.

5.2. Simple text clustering

In this section we will discuss classical clustering algorithms applied to text documents. For
this we combine our known acq and crude data sets to a single working set ws in order to
use it as input for several simple clustering methods

R> ws <- c(acq, crude)

R> summary(ws)

A text document collection with 70 text documents

The metadata consists of 2 tag-value pairs and a data frame
Available tags are:
merge_date merger

Available variables in the data frame are:
MetaID

Hierarchical clustering

Here we show hierarchical clustering (Johnson 1967; Hartigan 1975; Anderberg 1973; Har-
tigan 1972) with text documents. Clearly, the choice of the distance measure significantly
influences the outcome of hierarchical clustering algorithms. Common similarity measures in
text mining are Metric Distances, Cosine Measure, Pearson Correlation and Extended Jaccard
Similarity (Strehl et al. 2000). We use the similarity measures offered by dist from package
proxy (Meyer and Buchta 2007) in our tm package with a generic custom distance function
dissimilarity() for term-document matrices. So we could easily use as distance measure
the Cosine for our crude term-document matrix

R> dissimilarity(crudeTDM, method = "cosine")

Our dissimilarity function for text documents takes as input two text documents. Internally
this is done by a reduction to two rows in a term-document matrix and applying our custom
distance function. For example we could compute the Cosine dissimilarity between the first
and the second document from our crude collection

R> dissimilarity(crude[[1]], crude[[2]], "cosine")

127
144 0.4425716

In the following example we create a term-document matrix from our working set of 70 news
articles (Data() accesses the slot holding the actual sparse matrix)
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Figure 7: Dendrogram for hierarchical clustering. The labels show the original group names.

R> wsTDM <- Data(TermDocMatrix(ws))

and use the Euclidean distance metric as distance measure for hierarchical clustering with
Ward’s minimum variance method of our 50 acq and 20 crude documents:

R> wsHClust <- hclust(dist(wsTDM), method = "ward")

Figure 7 visualizes the hierarchical clustering in a dendrogram. It shows two bigger conglom-
erations of crude aggregations (one left, one at right side). In the middle we can find a big
acq aggregation.

k-means clustering

We show how to use a classical k-means algorithm (Hartigan and Wong 1979; MacQueen
1967), where we use the term-document matrix representation of our news articles to provide
valid input to existing methods in R. We perform a classical linear k-means clustering with
k = 2 (we know that only two clusters is a reasonable value because we concatenated our
working set of the two topic sets acq and crude)

R> wsKMeans <- kmeans(wsTDM, 2)

and present the results in form of a confusion matrix. We use as input both the clustering
result and the original clustering according to the Reuters topics. As we know the working
set consists of 50 acq and 20 crude documents

R> wsReutersCluster <- c(rep("acq", 50), rep("crude", 20))

Using the function cl_agreement() from package clue (Hornik 2005, 2007a), we can compute
the maximal co-classification rate, i.e., the maximal rate of objects with the same class ids in
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both clusterings—the 2-means clustering and the topic clustering with the Reuters acq and
crude topics—after arbitrarily permuting the ids:

R> cl_agreement(wsKMeans, as.cl_partition(wsReutersCluster), "diag")

Cross-agreements using maximal co-classification rate:
[,1]

[1,] 0.7

which means that the k-means clustering results can recover about 70 percent of the human
clustering.

For a real-world example on text clustering for the tm package with several hundreds of
documents confer to Karatzoglou and Feinerer (2007) who illustrate that text clustering with
a decent amount of documents works reasonably well.

5.3. Simple text classification

In contrast to clustering, where groups are unknown at the beginning, classification tries to
put specific documents into groups known in advance. Nevertheless the same basic means can
be used as in clustering, like bag-of-words representation as a way to formalize unstructured
text. Typical real-world examples are spam classification of e-mails or classifying news articles
into topics. In the following, we give two examples: first, a very simple classifier (k-nearest
neighbor), and then a more advanced method (Support Vector Machines).

k-nearest neighbor classification

Similar to our examples in the previous section we will reuse the term-document matrix
representation, as we can easily access already existing methods for classification. A possible
classification procedure is k-nearest neighbor classification implemented in the class (Venables
and Ripley 2002) package. The following example shows a 1-nearest neighbor classification in
a spam detection scenario. We use the Spambase database from the UCI Machine Learning
Repository (Asuncion and Newman 2007) which consists of 4601 instances representing spam
and nonspam e-mails. Technically this data set is a term-document matrix with a limited set
of terms (in fact 57 terms with their frequency in each e-mail document). Thus we can easily
bring text documents into this format by projecting our term-document matrices onto their
57 terms. We start with a training set with about 75 percent of the spam data set resulting
in about 1360 spam and 2092 nonspam documents

R> train <- rbind(spam[1:1360, ], spam[1814:3905, ])

and tag them as factors according to our know topics (the last column in this data set holds
the type, i.e., spam or nonspam):

R> trainCl <- train[, "type"]

In the same way we take the remaining 25 percent of the data set as fictive test sets

R> test <- rbind(spam[1361:1813, ], spam[3906:4601, ])
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and store their original classification

R> trueCl <- test[, "type"]

Note that the training and test sets were chosen arbitrarily, but fixed for reproducibility.
Finally we start the 1-nearest neighbor classification (deleting the original classification from
column 58, which represents the type):

R> knnCl <- knn(train[, -58], test[, -58], trainCl)

and obtain the following confusion matrix

R> (nnTable <- table("1-NN" = knnCl, Reuters = trueCl))

Reuters
1-NN nonspam spam
nonspam 503 138
spam 193 315

As we see the results are already quite promising—the cross-agreement is

R> sum(diag(nnTable))/nrow(test)

[1] 0.7119234

Support vector machine classification

Another typical, more sophisticated, classification method are support vector machines (Cris-
tianini and Shawe-Taylor 2000).

The following example shows an SVM classification based on methods from the kernlab pack-
age. We used the same training and test documents. Based on the training data and its
classification we train a support vector machine:

R> ksvmTrain <- ksvm(type ~ ., data = train)

Using automatic sigma estimation (sigest) for RBF or laplace kernel

Then we classify the test set based on the created SVM (again, we omit the original classifi-
cation from column 58 which represents the type)

R> svmCl <- predict(ksvmTrain, test[, -58])

which yields the following confusion matrix

R> (svmTable <- table(SVM = svmCl, Reuters = trueCl))
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Reuters
SVM nonspam spam
nonspam 634 79
spam 62 374

with following cross-agreement:

R> sum(diag(svmTable))/nrow(test)

[1] 0.8772846

The results have improved over those in the last section (compare the improved cross-agreement)
and prove the viability of support vector machines for classification.

Though, we use a realisitic data set and gain rather good results, this approach is not com-
petitive with available contemporary spam detection methods. The main reason is that spam
detection nowadays encapsulates techniques far beyond analysing the corpus itself. Methods
encompass mail format detection (e.g., HTML or ASCII text), black- (spam) and whitelists
(ham), known spam IP addresses, distributed learning systems (several mail servers commu-
nicating their classifications), attachment analysis (like type and size), and social network
analysis (web of trust approach).

With the same approach as shown before, it is easy to perform classifications on any other
form of text, like classifying news articles into predefined topics, using any available classifier
as suggested by the task at hand.

5.4. Text clustering with string kernels

This section covers string kernels, which are methods dealing with text directly, and not
anymore with an intermediate representation like term-document matrices.

Kernel-based clustering methods, like kernel k-means, use an implicit mapping of the input
data into a high dimensional feature space defined by a kernel function k

k(x, y) = 〈Φ(x),Φ(y)〉 ,

with the projection Φ: X → H from the input domain X to the feature space H. In other
words this is a function returning the inner product 〈Φ(x),Φ(y)〉 between the images of
two data points x, y in the feature space. All computational tasks can be performed in the
feature space if one can find a formulation so that the data points only appear inside inner
products. This is often referred to as the “kernel trick” (Schölkopf and Smola 2002) and is
computationally much simpler than explicitly projecting x and y into the feature space H.
The main advantage is that the kernel computation is by far less computationally expensive
than operating directly in the feature space. This allows one to work with high-dimensional
spaces, including natural texts, typically consisting of several thousand term dimensions.

String kernels (Lodhi et al. 2002; Shawe-Taylor and Cristianini 2004; Watkins 2000; Herbrich
2002) are defined as a similarity measure between two sequences of characters x and y. The
generic form of string kernels is given by the equation

k(x, y) =
∑

svx,tvy

λsδs,t =
∑
s∈Σ∗

nums(x)nums(y)λs ,
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where Σ∗ represents the set of all strings, nums(x) denotes the number of occurrences of s
in x and λs is a weight or decay factor which can be chosen to be fixed for all substrings
or can be set to a different value for each substring. This generic representation includes a
large number of special cases, e.g., setting λs 6= 0 only for substrings that start and end with
a white space character gives the “bag of words” kernel (Joachims 2002). Special cases are
λs = 0 for all |s| > n, that is comparing all substrings of length less that n, often called full
string kernel. The case λs = 0 for all |s| 6= n is often referred to as string kernel.

A further variation is the string subsequence kernel

kn(s, t) =
∑

u∈Σn

〈φu(s), φu(t)〉

=
∑

u∈Σn

∑
i:u=s[i]

λl(i)
∑

j:u=t[j]

λl(j)

=
∑

u∈Σn

∑
i:u=s[i]

∑
j:u=t[j]

λl(i)+l(j) ,

where kn is the subsequence kernel function for strings up to the length n, s and t denote two
strings from Σn, the set of all finite strings of length n, and |s| denotes the length of s. u is
a subsequence of s, if there exist indices i = (i1, . . . , i|u|), with 1 ≤ i1 < · · · < i|u| ≤ |s|, such
that uj = sij , for j = 1, . . . , |u|, or u = s[i] for short. λ ≤ 1 is a decay factor.

A very nice property is that one can find a recursive formulation of the above kernel

k′0(s, t) = 1, for all s, t,
k′i(s, t) = 0, if min(|s|, |t|) < i,

ki(s, t) = 0, if min(|s|, |t|) < i,

k′i(sx, t) = λk′i(s, t) +
∑

j:tj=x

k′i−1(s, t[1 : (j − 1)])λ|t|−j+2 , with i = 1, . . . , n− 1,

kn(sx, t) = kn(s, t) +
∑

j:tj=x

k′n−1(s, t[1 : (j − 1)])λ2 ,

which can be used for dynamic programming aspects to speed up computation significantly.

Further improvements for string kernel algorithms are specialized formulations using suffix
trees (Vishwanathan and Smola 2004) and suffix arrays (Teo and Vishwanathan 2006).

Several string kernels with above explained optimizations (dynamic programming) have been
implemented in the kernlab package (Karatzoglou et al. 2004, 2006) and been used in Karat-
zoglou and Feinerer (2007). The interaction between tm and kernlab is easy and fully func-
tional, as the string kernel clustering constructors can directly use the base classes from the
tm classes. This proves that the S4 extension mechanism can be used effectively by passing
only necessary information to external methods (i.e., the string kernel clustering constructors
in this context) and still handle detailed meta information internally (i.e., the native text
mining classes).

The following examples show an application of spectral clustering (Ng et al. 2002; Dhillon
et al. 2005), which is a non-linear clustering technique using string kernels. We create a string
kernel for it

R> stringkern <- stringdot(type = "string")
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and perform a spectral clustering with the string kernel on the working set. We specify that
the working set should be clustered into 2 different sets (simulating our two original topics).
One can see the clustering result with the string kernel

R> stringCl <- specc(ws, 2, kernel = stringkern)

String kernel function. Type = string
Hyperparameters : sub-sequence/string length = 4 lambda = 1.1
Normalized

compared to the original Reuters clusters

R> table("String Kernel" = stringCl, Reuters = wsReutersCluster)

Reuters
String Kernel acq crude

1 46 1
2 4 19

This method yields the best results (the cross-agreement is 0.93) as we almost find the identical
clustering as the Reuters employees did manually. This well performing method has been
investigated by Karatzoglou and Feinerer (2007) and seems to be a generally viable method
for text clustering.

6. Analysis of the R-devel 2006 mailing list

This section shows the application of the tm package to perform an analysis of the R-devel
mailing list (https://stat.ethz.ch/pipermail/r-devel/) newsgroup postings from 2006.
We will both show to utilize metadata and the text corpora themselves. For the first we
analyze author and topic relations whereas for the second we concentrate on investigating the
e-mail contents and discriminative terms (e.g., match the e-mail subjects the actual content).

The mailing list archive provides downloadable versions in gzipped mbox format. We down-
loaded the twelve archives from January until December 2006, unzipped them and concate-
nated them to a single mbox file 2006.txt for convenience. The mbox file holds 4583 postings
with a file size of about 12 Megabyte.

We start by converting the single mbox file to eml format, i.e., every newsgroup posting is
stored in a single file in the directory 2006/.

R> convertMboxEml("2006.txt", "2006/")

Next, we construct a text document collection holding the newsgroup postings, using the de-
fault reader shipped for newsgroups (readNewsgroup()), and setting the language to Ameri-
can English. For the majority of postings this assumption is reasonable but we plan automatic
language detection (Sibun and Reynar 1996) for future releases, e.g., by using n-grams (Cav-
nar and Trenkle 1994). So you can either provide a string (e.g., en_US) or a function returning
a character vector (a function determining the language) to the language parameter. Next,
we want the the postings immediately loaded into memory (load = TRUE)

https://stat.ethz.ch/pipermail/r-devel/
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R> rdevel <- Corpus(DirSource("2006/"),

+ readerControl = list(reader = readNewsgroup,

+ language = "en_US",

+ load = TRUE))

We convert the newsgroup documents to plain text documents since we have no need for
specific slots of class NewsgroupDocument (like the Newsgroup slot, as we only have R-devel
here) in this analysis.

R> rdevel <- tmMap(rdevel, asPlain)

White space is removed and a conversion to lower case is performed.

R> rdevel <- tmMap(rdevel, stripWhitespace)

R> rdevel <- tmMap(rdevel, tmTolower)

After preprocessing we have

R> summary(rdevel)

A text document collection with 4583 text documents

The metadata consists of 2 tag-value pairs and a data frame
Available tags are:
create_date creator

Available variables in the data frame are:
MetaID

We create a term-document matrix, activate stemming and remove stopwords.

R> tdm <- TermDocMatrix(rdevel, list(stemming = TRUE, stopwords = TRUE))

The computation takes about 7 minutes on a 3.4 GHz processor resulting in a 4, 583×29, 265
dimensioned matrix. A dense matrix would require about 4 Gigabyte RAM (4, 583 · 29, 265 ·
32/1, 0243), the sparse compressed S4 matrix instead requires only 6 Megabyte RAM as
reported by object.size(). The reason is the extremely sparse internal structure since most
combinations of documents and terms are zero. Besides using sparse matrices another common
approach for handling the memory problem is to reduce the number of terms dramatically.
This can be done via tabulating against a given dictionary (e.g., by using the dictionary
argument of TermDocMatrix()). In addition a well defined dictionary helps in identifying
discriminative terms tailored for specific analysis contexts.

Let us start finding out the three most active authors. We extract the author information
from the text document collection, and convert it to a correctly sized character vector (since
some author tags may contain more than one line):

R> authors <- lapply(rdevel, Author)

R> authors <- sapply(authors, paste, collapse = " ")
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Thus, the sorted contingency table gives us the author names and the number of their postings
(under the assumption that authors use consistently the same e-mail addresses):

R> sort(table(authors), decreasing = TRUE)[1:3]

authors
ripley at stats.ox.ac.uk (Prof Brian Ripley)

483
murdoch at stats.uwo.ca (Duncan Murdoch)

305
ggrothendieck at gmail.com (Gabor Grothendieck)

190

Next, we identify the three most active threads, i.e., those topics with most postings and
replies. Similarly, we extract the thread name from the text document collection:

R> headings <- lapply(rdevel, Heading)

R> headings <- sapply(headings, paste, collapse = " ")

The sorted contingency table shows the biggest topics’ names and the amount of postings

R> (bigTopicsTable <- sort(table(headings), decreasing = TRUE)[1:3])

R> bigTopics <- names(bigTopicsTable)

headings
[Rd] 'CanMakeUseOf' field

46
[Rd] how to determine if a function's result is invisible

33
[Rd] attributes of environments

24

Since we know the most active threads, we might be interested in cliques communicating in
these three threads. For the first topic “[Rd] ‘CanMakeUseOf’ field” we have

R> topicCol <- rdevel[headings == bigTopics[1]]

R> unique(sapply(topicCol, Author))

[1] "sfalcon at fhcrc.org (Seth Falcon)"
[2] "murdoch at stats.uwo.ca (Duncan Murdoch)"
[3] "pgilbert at bank-banque-canada.ca (Paul Gilbert)"
[4] "friedrich.leisch at stat.uni-muenchen.de (friedrich.leisch at"
[5] "stat.uni-muenchen.de)"
[6] "maechler at stat.math.ethz.ch (Martin Maechler)"
[7] "Kurt.Hornik at wu-wien.ac.at (Kurt Hornik)"

whereas for the second topic “[Rd] how to determine if a function’s result is invisible” we
obtain
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R> topicCol <- rdevel[headings == bigTopics[2]]

R> unique(sapply(topicCol, Author))

[1] "ggrothendieck at gmail.com (Gabor Grothendieck)"
[2] "MSchwartz at mn.rr.com (Marc Schwartz)"
[3] "deepayan.sarkar at gmail.com (Deepayan Sarkar)"
[4] "murdoch at stats.uwo.ca (Duncan Murdoch)"
[5] "phgrosjean at sciviews.org (Philippe Grosjean)"
[6] "bill at insightful.com (Bill Dunlap)"
[7] "jfox at mcmaster.ca (John Fox)"
[8] "luke at stat.uiowa.edu (Luke Tierney)"
[9] "mtmorgan at fhcrc.org (Martin Morgan)"

R-devel describes its focus on proposals of new functionality, pre-testing of new versions, and
bug reports. Let us find out how many postings deal with bug reports in that sense that bug
appears in the message body (but e.g., not debug, note the regular expression).

R> (bugCol <- tmFilter(rdevel,

+ FUN = searchFullText, "[^[:alpha:]]+bug[^[:alpha:]]+",

+ doclevel = TRUE))

A text document collection with 796 text documents

The most active authors in that context are

R> bugColAuthors <- lapply(bugCol, Author)

R> bugColAuthors <- sapply(bugColAuthors, paste, collapse = " ")

R> sort(table(bugColAuthors), decreasing = TRUE)[1:3]

bugColAuthors
ripley at stats.ox.ac.uk (Prof Brian Ripley)

88
murdoch at stats.uwo.ca (Duncan Murdoch)

66
p.dalgaard at biostat.ku.dk (Peter Dalgaard)

48

In the context of this analysis we consider some discriminative terms known a priori, e.g.,
above mentioned term bug, but in general we are interested in a representative set of terms
from our texts. The challenge is to identify such representative terms: one approach is to
consider medium frequent terms, since low frequent terms only occur in a few texts, whereas
highly frequent terms have similar properties as stopwords (since they occur almost every-
where). The frequency range differs for each application but for our example we take values
around 30, since smaller values for this corpus tend to be already negligible due to the large
number of documents. On the other side bigger values tend to be too common in most of
the newsgroup postings. In detail, the function findFreqTerms finds terms in the frequency
range given as parameters (30–31). The grep statement just removes terms with numbers in
it which do not make sense in this context.
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R> f <- findFreqTerms(tdm, 30, 31)

R> sort(f[-grep("[0-9]", f)])

[1] "andrew" "ani" "binomi" "breakpoint" "brob"
[6] "cach" "char" "check" "coil" "const"
[11] "distanc" "document" "env" "error" "famili"
[16] "function" "gcc" "gengc" "giochannel" "gkeyfil"
[21] "glm" "goodrich" "home" "int" "kevin"
[26] "link" "method" "name" "node" "packag"
[31] "param" "pas" "prefix" "probit" "rossb"
[36] "saint" "sctest" "suggest" "thunk" "tobia"
[41] "tripack" "tube" "uuidp" "warn"

Some terms tend to give us hints on the content of our documents, others seem to be rather
alien. Therefore we decide to revise the document corpora in the hope to get better results: at
first we take only the incremental part of each e-mail (i.e., we drop referenced text passages)
to get rid of side effects by referenced documents which we analyze anyway, second we try
to remove authors’ e-mail signatures. For this purpose we create a transformation to remove
citations and signatures.

R> setGeneric("removeCitationSignature",

+ function(object, ...)

+ standardGeneric("removeCitationSignature"))

[1] "removeCitationSignature"

R> setMethod("removeCitationSignature",

+ signature(object = "PlainTextDocument"),

+ function(object, ...) {

+ c <- Content(object)

+ ## Remove citations starting with '>'

+ citations <- grep("^[[:blank:]]*>.*", c)

+ if (length(citations) > 0)

+ c <- c[-citations]

+ ## Remove signatures starting with '-- '

+ signatureStart <- grep("^-- $", c)

+ if (length(signatureStart) > 0)

+ c <- c[-(signatureStart:length(c))]

+

+ Content(object) <- c

+ return(object)

+ })

[1] "removeCitationSignature"

Next, we apply the transformation to our text document collection
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R> rdevelInc <- tmMap(rdevel, removeCitationSignature)

and create a term-document matrix from the collection holding only the incremental parts of
the original newsgroup postings.

R> tdmInc <- TermDocMatrix(rdevelInc, list(stemming = TRUE, stopwords = TRUE))

Now we repeat our attempt to find frequent terms.

R> f <- findFreqTerms(tdmInc, 30, 31)

R> sort(f[-grep("[0-9]", f)])

[1] "ani" "binomi" "breakpoint" "cach" "char"
[6] "check" "coil" "const" "davidb" "dosa"
[11] "download" "duncan" "env" "error" "famili"
[16] "gcc" "gengc" "giochannel" "gkeyfil" "glm"
[21] "home" "int" "link" "node" "param"
[26] "pas" "probit" "saint" "tama" "thunk"
[31] "tube" "uuidp"

We see the output is smaller, especially there are terms removed that have originally occurred
only because they have been referenced several times. Nevertheless, for significant improve-
ments a separation between pure text, program code, signatures and references is necessary,
e.g., by XML metadata tags identifying different constructs.

Another approach for identifying relevant terms are the subject headers of e-mails which are
normally created manually by humans. As a result subject descriptions might not be very
accurate, especially for longer threads. For the R-devel mailing list we can investigate whether
subjects match the contents.

R> subjectCounts <- 0

R> for (r in rdevelInc) {

+ ## Get single characters from subject

+ h <- unlist(strsplit(Heading(r), " "))

+

+ ## Count unique matches of subject strings within document

+ len <- length(unique(unlist(lapply(h, grep, r, fixed = TRUE))))

+

+ ## Update counter

+ subjectCounts <- c(subjectCounts, len)

+ }

R> summary(subjectCounts)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 1.000 3.000 6.053 7.000 515.000

We see, the mean is about 6, i.e., on average terms from the subject occur six (different)
times in the document corpus. The maximum value of 515 can be explained with very short
subjects or single letters (e.g., only R) which are found in abnormally many words.
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Summarizing we see that text mining can be a highly complex task and might need a lot of
manual interaction where a convenient framework like tm is very helpful.

7. Conclusion

We introduced a new framework for text mining applications in R via the tm package. It
offers functionality for managing text documents, abstracts the process of document manip-
ulation and eases the usage of heterogeneous text formats in R. The package has integrated
database backend support to minimize memory demands. An advanced metadata manage-
ment is implemented for collections of text documents to alleviate the usage of large and with
metadata enriched document sets. With the package ships native support for handling the
Reuters-21578 data set, the Reuters Corpus Volume 1 data set, Gmane RSS feeds, e-mails,
and several classic file formats (e.g. plain text, CSV text, or PDFs). The data structures
and algorithms can be extended to fit custom demands, since the package is designed in a
modular way to enable easy integration of new file formats, readers, transformations and fil-
ter operations. tm provides easy access to preprocessing and manipulation mechanisms such
as whitespace removal, stemming, or conversion between file formats (e.g., Reuters to plain
text). Further a generic filter architecture is available in order to filter documents for certain
criteria, or perform full text search. The package supports the export from document collec-
tions to term-document matrices which are frequently used in the text mining literature. This
allows the straight-forward integration of existing methods for classification and clustering.

tm already supports and covers a broad range of text mining methods, by using available
technology in R but also by interfacing with other open source tool kits like Weka or openNLP
offering further methods for tokenization, stemming, sentence detection, and part of speech
tagging. Nevertheless there are still many areas open for further improvement, e.g., with
methods rather common in linguistics, like latent semantic analysis. We are thinking of a
better integration of tm with the lsa package. Another key technique to be dealt in the future
will be the efficient handling of very large term-document matrices. In particular, we are
working on memory-efficient clustering techniques in R to handle highly dimensional sparse
matrices as found in larger text mining case studies. With the ongoing research efforts in
analyzing large data sets and by using sparse data structures tm will be among the first to
take advantage of new technology. Finally, we will keep adding reader functions and source
classes for popular data formats.
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A. Framework classes minutiae

Corpus represents a collection of text documents, also denoted as corpus in linguistics, and
can be interpreted as a database for texts. Technically it extends the formal class list
and holds elements of class TextDocument. It contains two slots holding metadata and
one slot for database support:

DMetaData representing Document Metadata is a data frame storing metadata attributes
for the text documents in the collection. Conceptually, DMetaData is designed for
document metadata regarded as an own entity, e.g., clustering or classification re-
sults since they might contain information on the number of available clusters or
the classification technique. Document metadata best suited for single text doc-
uments should be stored directly with the text document (see LocalMetaData of
TextDocument as described later). However, metadata local to text documents
may be copied to the data frame for technical reasons, e.g., better performance
for metadata queries, with the prescindMeta() command. In this case the user
is responsible for holding the metadata consistent between the data frame and the
locally stored text documents’ metadata.
The data frame has a row for each document and possesses at least the column
MetaID which associates each data frame row with its originating document col-
lection, e.g., MetaID is automatically updated if several document collections are
merged via the overloaded c() concatenation function for document collections.
This allows to split away merged collections under full metadata recovery. meta-
data can be added via appendMeta() and deleted via the removeMeta() commands.

CMetaData representing Collection Metadata is of class MetaDataNode modeling a bi-
nary tree holding metadata specific for text document collections. Technically, a
MetaDataNode has the three slots NodeID holding a unique identification number,
MetaData holding the actual metadata itself, and children of class MetaDataNode
building up the binary tree. Typically the root node would hold information like
the creator or the creation date of the collection. The tree is automatically updated
when merging a set of document collections via the c() function. appendMeta()
and removeMeta() can also be used for adding or removing the collection metadata.

DBControl holds information to control database support. We use the package file-
hash (Peng 2006) to source out text documents and the metadata data frame.
Only references (i.e., keys identifying objects in the database) are kept in memory.
On access objects are automatically loaded into memory and unloaded after use.
This allows to keep track of several thousand text documents. Formally, DBControl
holds a list with three components:

useDb of class logical indicates whether the database support should be acti-
vated,

dbName of class character holds the filename holding the database, and
dbType of class character is one of the database types supported by filehash.

The Corpus constructor takes following arguments:

object: a Source object which abstracts the input location.
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readerControl: a list with three components:

reader which constructs a text document from a single element delivered by a
source. A reader must have the argument signature (elem, load, language,
id). The first argument is the element provided from the source, the second
indicates the wish for immediate loading the document into memory (lazy
loading), the third holds the texts’ language, and the fourth is a unique iden-
tification string.

language describing the text documents’ language (typically in ISO 639 or ISO
3166 format, e.g., en_US).

load signalizes whether the user wants to load the documents immediately into
memory. Loading on demand (i.e., lazy loading) is possible if the Source
object supports it. Typically this flag is passed over to the parsing function
to activate the right bits in the reader for load on demand.

...: formally if the passed over reader object is of class FunctionGenerator, it is
assumed to be a function generating a reader. This way custom readers taking
various parameters (specified in ...) can be built, which in fact must produce
a valid reader signature but can access additional parameters via lexical scoping
(i.e., by the including environment).

dbControl: a list with the three components useDb, dbName and dbType setting the
respective DBControl values.

The next core class is a text document, i.e., the basic unit managed by a text document
collection:

TextDocument: The VIRTUAL class TextDocument represents and encapsulates a generic text
document in an abstract way. It serves as the base class for inherited classes and provides
several slots for metadata:

Author of class character can be used to store information on the creator or authors
of the document.

DateTimeStamp of class POSIXct holds the creation date of the document.

Description of class character may contain additional explanations on the text, like
the text history or comments from reviewers, additional authors, et cetera.

ID of class character must be a unique identification string, as it is used as the main
reference mechanism in exported classes, like TermDocMatrix.

Origin of class character provides further notes on its source, like its news agency or
the information broker.

Heading of class character is typically a one-liner describing the main rationale of the
document, often the title of the article, if available.

Language of class character holds the text document’s language.

LocalMetaData of class list is designed to hold a list of metadata in tag-value pair
format. It allows to dynamically store extra information tailored to the application
range. The local metadata is conceived to hold metadata specific to single text
documents besides the existing metadata slots.
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The main rationale is to extend this class as needed for specific purposes. This offers great
flexibility as we can handle any input format internally but provide a generic interface to other
classes. The following four classes are derived classes implementing documents for common
file formats:

XMLTextDocument inherits from TextDocument and XMLDocument (i.e., list), which is im-
plemented in the XML package. It offers all capabilities to work with XML documents,
like operations on the XML tree. It has the two slots, where

URI of class ANY holds a call (we denote it as unique resource identifier) which returns
the document corpus if evaluated. This is necessary to implement load on demand.

Cached of class logical indicates whether the document corpus has already been loaded
into memory.

PlainTextDocument inherits from TextDocument and character. It is the default class if no
special input format is necessary. It provides the two slots URI and Cached with the
same functionality as XMLTextDocument.

NewsgroupDocument inherits from TextDocument and character. It is designed to contain
newsgroup postings, i.e., e-mails. Besides the basic URI and Cached slots it holds the
newsgroup name of each posting in the Newsgroup slot.

StructuredTextDocument: It can be used to hold documents with sections or some structure,
e.g., a list of paragraphs.

Another core class in our framework are term-document matrices.

TermDocMatrix There is a class for term-document matrices (Berry 2003; Shawe-Taylor and
Cristianini 2004), probably the most common way of representing texts for further
computation. It can be exported from a Corpus and is used as a bag-of-words mechanism
which means that the order of tokens is irrelevant. This approach results in a matrix
with document IDs as rows and terms as columns. The matrix elements are term
frequencies.

TermDocMatrix provides such a term-document matrix for a given Corpus element. It
has the slot Data of the formal class Matrix to hold the frequencies in compressed sparse
matrix format.

Instead of using the term frequency directly, one can use different weightings. Weighting
provides this facility by calling a weighting function on the matrix elements. Available
weighting schemes (let ωt,d denote the weighting of term t in document d) for a given
matrix M are:

� Binary Logical weighting (weightLogical) eliminates multiple frequencies and re-
places them by a Boolean value, i.e.,

ωt,d =

{
FALSE if tft,d < γ

TRUE if tft,d ≥ γ ,

where γ denotes a cutoff value, typically γ = 1.
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� Binary Frequency (weightBin) eliminates multiple frequencies in M , hence

ωt,d =

{
0 if tft,d < γ

1 if tft,d ≥ γ ,

where tft,d is the frequency of term t in document d and γ is again a cutoff. In other
words all matrix elements are now dichotomous, reducing the frequency dimension.

� Term Frequency (weightTf) is just the identity function I

ωt,d = I ,

as the matrix elements are term frequencies by construction.

� Term Frequency Inverse Document Frequency weighting (weightTfIdf) reduces
the impact of irrelevant terms and highlights discriminative ones by normalizing
each matrix element under consideration of the number of all documents, hence

ωt,d = tft,d · log2

m

dft
,

where m denotes the number of rows, i.e., the number of documents, tft,d is the
frequency of term t in document d, and dft is the number of documents containing
the term t.

The user can plug in any weighting function capable of handling sparse matrices.

Sources provide a way to abstract the input process:

Source is a VIRTUAL class and abstracts the input location and serves as the base class for
creating inherited classes for specialized file formats. It has three slots,

LoDSupport of class logical indicates whether load on demand is supported, i.e.,
whether the source is capable of loading the text corpus into memory on any
later request,

Position of class numeric stores the current position in the source, e.g., an index (or
pointer address) to the position of the current active file,

DefaultReader of class function holds a default reader function capable of reading in
objects delivered by the source, and

Encoding of class character contains the encoding to be used by internal R routines
for accessing texts via the source (defaults to UTF-8 for all sources).

The following classes are specific source implementations for common purposes:

DirSource is designed to be used with a directory of files and has the slot FileList of class
character to hold the full filenames (including path) for the files in the directory. Load
on demand is supported since the files are assumed to stay in the directory and can be
loaded on request.
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CSVSource is to be used for a single CSV file where each line is interpreted as a text document.
Load on demand is not supported since the whole single file would need to be traversed
when accessing single lines of the file. It has the two slots URI of class ANY for holding
a call and Content of class list to hold the list of character vectors (i.e., lines of the
file).

ReutersSource should be used for handling the various Reuters file formats (e.g., the Reuters-
21578 collection (Lewis 1997)) if stored in a single file (if stored separately simply use
DirSource). Therefore load on demand is not supported. It has the slot URI of class
ANY to hold a call and the Content of class list to hold the parsed XML tree.

GmaneSource can be used to access Gmane (Ingebrigtsen 2007) RSS feeds.

Each source class must implement the following interface methods in order to comply with
the tm package definitions:

getElem() must return the element at the current position and a URI for possible later access
in form of a named list list(content = ..., uri = ...).

stepNext() must update the position such that a subsequent getElem() call returns the
next element in the source.

eoi() must indicate whether further documents can be delivered by the source, e.g., a typical
end of file result if the file end has been reached.

Typically the Position slot of class Source is sufficient for storing relevant house keeping
information to implement the interface methods but the user is free to use any means as long
as the derived source fulfills all interface definitions.
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