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ABSTRACT  

 

Ischaemic heart disease (IHD) is the leading cause of death worldwide and according to the 

World Health Organisation the number of patients with IHD will reach 19 million by 2020 if 

current trends continue.  While coronary artery bypass graft (CABG) surgery remains the 

treatment of choice for the severest form of the disease, the detrimental effects of peri-

operative myocardial injury particularly in the form of myocardial ischaemia-reperfusion injury 

(IRI) accounts for significant levels of morbidity and mortality particularly in high-risk patients. 

The past four decades have seen advances in cardioprotective strategies especially within the 

disciplines of cardioplegia and anaesthesia.  Despite this, improvements in patient survival have 

been limited.  Researchers and clinicians alike have called for novel ways of protecting the 

heart, directing their attention to cellular and mitochondrial pathways which may hold the key 

to improving survival.  

This thesis covers a fascinating exploration into the cardioprotective effects brought about by 

the inhibition of the mitochondrial permeability transition pore (mPTP) using cyclosporin A 

(CsA), as well as the role of remote ischaemic preconditioning (RIPC) in limiting the extent of 

myocardial injury in the setting of complex cardiac bypass surgery. 

In summary, this thesis examines both pharmacological and non-pharmacological strategies for 

protecting the heart in the setting of cardiac surgery.  Despite decades of advancement in 

research within this field, the consequences of ischaemia-reperfusion injury remain ever-

present.  As a result, it is hoped that the research in this thesis will make a positive contribution 

to the body of evidence currently available for the benefit of patients with IHD. 
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CHAPTER 1 

1. The Evolution of Cardiac Surgery in the Management of Coronary and Valvular Heart 

Disease 

1.1. Introduction 

1.1.1. A global perspective of ischaemic and valvular heart disease 

 

Ischaemic heart disease (IHD) is the leading cause of death in most industrialised countries.  In 

the UK, it alone accounts for 22% of all deaths in men and 17% of all deaths in women1.  

Although much of the Western World has seen a decrease in IHD rates over the last three 

decades- largely due to the modification of secondary preventative measures, the World Health 

Organisation (WHO) has predicted an increase in the number of sufferers from 9 million to 19 

million by 20202;3.  Coronary artery bypass graft (CABG) surgery has remained the treatment of 

choice particularly for the severest form of the disease, with more than 30,000 patients 

operated upon across thirty-eight units within the UK each year4.  

In addition to this, the EuroHeart survey suggests that valvular heart disease represents a 

substantial burden to the public health of nations within Europe5.  The impact of this burden is 

linked with the increase in prevalence of the degenerative form of the disease, an elderly 

population and an increase in life expectancy6. 

Due to the demographic changes in life expectancy and the benefits of performing more than 

one procedure at the same sitting, the number of coronary artery bypass grafts with 

concomitant valve operations is set to rise.   
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With this in mind, protecting the heart during cardiac bypass surgery is likely to have an even 

bigger impact on both the short term and long term survival for prospective patients. 

1.1.2. A historical perspective of cardiac surgery and the drive for cardioprotection 

Since John Gibbon paved the way for cardiac surgery in 1953 after performing the first atrial 

septal defect (ASD) closure, the specialty has seen great advances in the surgical technique and 

myocardial preservation7.  Cardiac surgeons in that era were faced with a number of obstacles 

that impeded operative success.  They soon established that the main challenges were the 

occurrence of air embolisation compounded with having to perform complex operations in a 

blood-filled operative field.  It was thought that these obstacles would be best addressed by 

arresting the heart and stopping the circulation to the myocardium.  Clamping the aorta during 

intra-cardiac repair proved a significant step, but as patient mortality continued to rise, focus 

was directed towards the need for myocardial protection(reviewed by Cordell8).  The 

introduction of ‘practical heat exchangers’ allowed for the rapid induction of hypothermia in an 

effort to protect the myocardium9;10.  Melrose and co-workers realized the potential of 

potassium-containing solutions in arresting and restarting the heart11.  At that time however, 

the occurrence of myocardial necrosis limited the popularity of this method.  By the 1970s 

intermittent cross-clamping fibrillation (ICCF) was established as a safer alternative for 

cardioprotection in the US, while the use of potassium-containing cardioplegic formulations 

grew in prominence in Europe12. 

The 1980s witnessed a surge in the use of various forms of cardioplegia ranging from: 

hypothermic, normothermic, crystalloid, substrate-enhanced and blood; along with variations 
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in its delivery with the use of the anterograde approach, retrograde approach or a combination 

of both13. This surge was driven mainly by the increase in morbidity seen particularly in high risk 

CABG patients as a result of a condition referred to as ‘low output syndrome’.  Post-operative 

‘low cardiac output syndrome’, now defined as the need for postoperative intra-aortic balloon 

pump (IABP) or inotropic support for over 30 minutes in the intensive care unit14, was thought 

to occur as a result of inadequate myocardial protection.  It directed the attention of 

researchers into reassessing pre-existing methods of protection while looking for the optimal 

cardioplegic temperature, composition and method of delivery. 

Earlier techniques using cold crystalloid solutions allowed good visualisation of the operating 

field but adversely caused the inhibition of enzymatic activity resulting in the delay in cardiac 

recovery15.  This was followed by the use of blood as a cardioplegic agent as it had the 

advantage of being an oxygen carrier16.  It was soon shown to be superior to crystalloid due to 

its ability to facilitate aerobic myocardial metabolism thereby reducing lactate production17;18.  

By the early 1990s, optimal myocardial protection was shown to be achieved with intermittent 

cold- blood cardioplegia as this enabled adequate visualisation of operative field as well as 

allowing early resumption of temperature-dependent mitochondrial enzymatic function with a 

speedy return of aerobic metabolism and ATP production19. 
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1.2. Current strategies for cardioprotection during cardiac surgery 

1.2.1. Cardioplegia   

i)   Cold crystalloid cardioplegia 

Cold crystalloid cardioplegia was introduced into clinical practice in the mid 1960s20;21 and has 

since existed in two forms: 

The intracellular form consists of a low sodium and calcium content (Bretschneider’s solution); 

while the extracellular form consists of high magnesium, sodium and calcium content (St 

Thomas’ Hospital No.2).  Both forms contain about 10-20 mmols of potassium and can be 

manufactured to have increased osmotic activities through the addition of substances such as 

mannitol, lidocaine, procaine as well as buffers such as amino acids and bicarbonate22. 

Cardioprotection is brought about through the induction of hypothermia and the maintenance 

of electrochemical arrest.  In operations where a prolonged aortic cross-clamp time (XCT) is 

anticipated, additional doses of cardioplegic solution may be administered at set intervals.  This 

can however inadvertently contribute substantially to haemodilution during cardiopulmonary 

bypass22. 
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ii)   Blood cardioplegia  

The mid 1990s saw a surge in the use of blood as the preferred cardioplegic agent replacing 

crystalloid in most parts of the western world. 

A recent survey conducted in the UK and Ireland in 2004 showed that 84.3% of surgeons used 

cardioplegia and 15.7% used intermittent cross-clamp fibrillation (ICCF) techniques for on-pump 

CABG.  Of those who opted for cardioplegia, 83.5% used blood and 16.5% used crystalloid23. 

After numerous experimental studies and the retrospective analysis of clinical data, the 

application of this form of cardioplegia has evolved, and can now be divided into: multi-dose 

cold blood cardioplegia, warm blood cardioplegic reperfusion, warm induction, antegrade and 

retrograde delivery, continuous cold blood perfusion and intermittent warm blood 

cardioplegia24. 

The advantages of blood over crystalloid cardioplegia include: its versatility in being able to 

maintain oncotic balance; its buffering properties; its anti-oxidant benefits; its ability to 

augment O2 delivery, and its role in preventing ischaemic injury thereby limiting reperfusion 

damage24. 

The constituents of blood cardioplegia 

Blood cardioplegia constitutes the following properties: 

 Hyperkalaemia- allows the induction and maintenance of cardioplegic arrest. 

 Hypocalcaemia- limits mitochondrial calcium overload preventing apoptosis and 

necrosis of cardiomyocytes. 
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 Tris buffer- prevents tissue acidosis. 

 Hyperosmolarity and hyperglycaemia- prevents myocardial oedema. 

 Glutamate and aspartate- replenishes deleted amino acids that are essential for Krebs’s 

cycle.  This enhances aerobic respiration particularly during ischaemia24.  

Blood cardioplegia consists of native blood and a commercially available crystalloid solution in a 

ratio of 4:1.  It is delivered via a double-headed roller pump and guided through a special heat 

exchanger before it enters the patient’s heart.  The perfusionist ensures that the delivery 

system and the aortic root remains air-free by a careful de-airing technique, essential to avoid 

coronary artery air embolism24. 

Cardiopulmonary bypass (CPB) for routine cardiac surgery is performed with a linear flow at 2.6 

l/min per m2  while maintaining a perfusion pressure of 60-80mmHg and a systemic blood 

temperature of 35 oC24. 

The delivery of blood cardioplegia 

A number of advance strategies exist for the delivery of blood cardioplegia: 

Warm cardioplegic induction- this aims to actively resuscitate the heart which is by this time 

not only ischaemically-damaged, but also both energy and substrate-depleted.  It maximises 

the kinetics of repair and minimises oxygen demand25.  It contains the Krebs’s cycle 

intermediates glutamate and aspartate, both of which are depleted in compromised hearts.  

This method of delivery tends to be used in patients with acute myocardial infarction, 

cardiogenic shock and a poor ejection fraction24.  
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Controlled reperfusion- is a strategy aimed at reducing reperfusion injury in patients 

undergoing urgent CABG for acute coronary occlusion24.  A study comparing the use of this 

method during CABG with percutaneous trans-luminal coronary angioplasty (PTCA) found that 

overall mortality was reduced from 8.7% to 3.9%26. 

Blood cardioplegic leukocyte filtration- we know that myocardial ischaemia and reperfusion 

cause the activation of neutrophils and the expression of adhesion molecules on the myocardial 

endothelial surface.  In complex cardiac surgery which invariably involves longer cross-clamp 

times, activated leukocytes in the blood cardioplegia can result in severe myocardial damage.  

Clinical studies support the benefit of leukocyte depletion particularly in high risk patients.  It 

has been shown that at least 90% of leukocytes must be removed to attenuate reperfusion 

injury enough to gain clinical benefit27-29.  

Standard techniques of blood cardioplegia 

Standard techniques of blood cardioplegia have been modified to address different clinical 

situations:  

 Continuous warm blood cardioplegia- aims to limit injury through continuous delivery of 

warm cardioplegic blood.  Although a common mode of delivery, there is a potential for 

cardioplegic overdose with this method30. 

 Intermittent antegrade warm blood cardioplegia- first published by Calafiore in 199531, 

this technique aims to improve visualisation of the operating field.  Delivery is limited in 

cases of critical coronary stenosis where cardioplegia is prevented from reaching 

ischaemic regions of the heart, resulting in the induction of warm ischaemic injury31. 
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 Tepid blood cardioplegia- this technique combines the advantages of warm and cold 

cardioplegia. The temperature of the heart is reduced from 37oC to 29oC which helps in 

the reduction of myocardial lactate release32. 

iii)    Anaesthesia 

Since the conception of cardiac surgery, anaesthetic drugs have played a vital role in reducing 

morbidity and promoting survival by not only maintaining haemodynamic stability but also in 

providing pain relief and anaesthesia.  In conjunction with this, good experimental evidence 

now supports a cardioprotective role of some anaesthetic agents and as such, a number of 

possible mechanisms have been proposed.  Some authors have alluded to a preconditioning-

like effect; others have speculated on a role in blocking calcium overload in combination with 

an anti-oxidant effect.  The most promising however, is that of a neutrophils/platelet- 

endothelium interaction.  Incidentally, it is the multiplicity of mechanisms proposed that has 

hampered the adaptation of anaesthesia as cardioprotective agents in their own right. 

Non-volatile anaesthesia  

Fentanyl 

Fentanyl is an opioid that has been linked with an anti-inflammatory action in its role in 

cardioprotection.  It reduces the inflammatory response that occurs as a result of the bypass 

circuit as well as that imposed by ischaemia-reperfusion injury (IRI) during cardiac surgery33.  It 

has been shown to oppose the negative inotropic effects of inflammatory mediators in the rat 

ventricular myocytes34 and its effect can lead to improved intracellular calcium mobilisation35. 
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Propofol 

Propofol is commonly used for anaesthetic induction as well as maintaining anaesthesia peri- 

and post-operatively (reviewed Bryson 199536).  Propofol has been shown using experimental 

models to protect the heart through its action as a free-radical scavenger37; enhancing tissue 

antioxidant capacity38;39; and inhibiting plasma membrane Ca2+ channels40. 

Some evidence have suggested a role in the inhibition of the mitochondrial permeability 

transition pore (mPTP) [discussed later] in Langendoff perfused rat heart41 and in the activation 

of prosurvival kinases42. 

Etomidate (carboxylated imidazole) 

Etomidate is used intravenously to induce anaesthesia particularly in patients with impaired left 

ventricular (LV) function as it does not alter haemodynamic parameters.  Unlike the agents 

previously mentioned, it has not been shown to be effective in cardioprotection. 

Volatile anaesthesia 

Isoflurane  

Isoflurane is arguably the most extensively studied volatile agent in cardioprotection today and 

is thought to act via a number of different mechanisms.  It blocks L-type calcium channels43; 

preserves energy-rich phosphates44; causes the vasodilatation of coronary vessels45; and 

reduces the expression of adhesion molecules46.   

The role of isoflurane as a possible preconditioning mimetic was suggested by Kersten and 

colleagues47 after demonstrating that it activates ATP-dependent K+ channels, incurring 
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protection via  the mitochondrial ATP-dependent potassium (mitoK ATP)channel opening 

[discussed later] along with reactive oxygen species (ROS) generation and subsequent protein 

kinase C (PKC) activation48-50. Despite all the promise however, Preckel and colleagues51 failed 

to show protection against IRI using isoflurane.  

Sevoflurane 

Sevoflurane is reported to induce a preconditioning-like effect via mitoK ATP channel 

opening52;53.  There is also some evidence of an anti-inflammatory effect, suppressing 

production of IL6 and IL8, inhibiting neutrophil activity54, and modulating pro- and anti-

inflammatory cytokines55. 

In recent years, randomised clinical trials conducted in patients undergoing cardiac bypass 

surgery have demonstrated cardioprotection mostly through the attenuation of cardiac 

troponin release and the improvement of post-operative cardiac function.  However, they have 

lacked the statistical power to demonstrate an advantage in terms of morbidity or mortality.  A 

recent meta-analysis (reviewed by Landoni56), conducted after pooling data on the use of 

Desflurane and Sevoflurane, found significant reductions of in-hospital mortality, myocardial 

infarction rates, intensive care unit and hospital stay, time on mechanical ventilation and 

incidence of long term cardiac events.  Most recently, a systematic review by Yu and colleagues 

included 32 randomised controlled trials encompassing 2,841 patients57.  After examining the 

composite outcome of death or acute MI, volatile anaesthetics did not appear to be associated 

with a reduced frequency of events.  The studies included in this meta-analysis were indeed 

small in size, conducted in low risk population groups and so lacked sufficient power to 
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demonstrate effects on mortality.  A study by Garcia and colleagues included in the meta-

analysis looking at 72 patients undergoing elective CABG was the only study to demonstrate a 

reduction in the incidence of late cardiac events58.  It is clear that a large multi-centred clinical 

study is required to determine whether volatile anaesthetics impact on long-term clinical 

outcomes post-cardiac surgery. 

iv)   Off-pump cardiac surgery 

Off-pump coronary artery bypass (OPCAB) was first performed in the late 1960s59 but soon 

went out of favour as the use of CPB and cardioplegic arrest became routine60.  Its re-

emergence as a safer form of surgical revascularisation is thought to have been precipitated by 

the need to avoid the unwanted complications of CPB particularly in the increasingly complex 

elderly patients referred for operation.  Haemodynamic instability had posed an obstacle in 

OPCAB, preventing grafting of the posterior wall, thus compromising the basic principle of 

complete revascularisation.  However the introduction of the Octopus, a cardiac stabilisation 

device, has allowed surgeons to access all sides of the beating heart allowing OPCAB to be 

performed in patients with triple vessel disease (Reviewed by Hijazi61). 

The implementation of CPB, before and after cardioplegia, exposes the heart and other major 

organs to micro-emboli, protease and chemical cytotoxins as well as regional hypoperfusion62.  

Furthermore, myocardial oedema and the distension of the cardioplegic heart results in the 

reduction of myocardial contractility63; raised ventricular end-diastolic volumes, an increase in 

myocardial wall stress and oxygen consumption62.  Researchers have shown that by allowing 

continuous perfusion of the beating heart, OPCAB should reduce the occurrence of myocardial 
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injury.  Angelini and colleagues demonstrated that the frequency of myocardial infarction was 

reduced by 2% in OPCAB at 2 years of follow-up64; while more recently, Keenan and colleagues 

provided further evidence of this reduction in myocardial injury using cardiac MRI65. 

The aetiology for acute kidney injury post-operatively is multi-factorial particularly in patients 

with co-morbid conditions such as diabetes and pre-existing renal impairment66. The use of CPB 

results in renal hypoperfusion and direct inflammatory damage and is now widely regarded as 

the most important cause of acute renal failure in this setting67.  Beating Heart versus 

Cardioplegic Arrest Studies (BHACAS-1 study) demonstrated a significant reduction in both 

glomerular and tubular function in on-pump compared to off-pump surgery68.  In a 

retrospective study by Magee and colleagues, they were able to show that the reduction in the 

frequency of renal failure in patients undergoing OPCAB was present even in those with pre-

existing renal impairment69.   

Impaired pulmonary function is seen up to 4 months after cardiac surgery.  However, when 

compared with on-pump cardiac surgery, OPCAB showed a reduction in ventilation duration 

allowing for early extubation with the benefits more pronounced in patients with pre-existing 

lung disease70. 

Permanent neurological dysfunction after conventional CABG can result in significant disability, 

carrying a stroke risk of 3% and up to 60% of patients showing varying degrees and durations of 

cognitive decline71.  The pathogenesis of cerebral injury and dysfunction is multifactorial, with 

an increasing body of evidence pointing towards the role of micro-embolisation from the 

ascending aorta, cardiac chambers and the bypass circuit72.  Despite a marked reduction in 
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cerebral embolisation when CPB is avoided, this does not seem to translate to a reduction in 

incidence of stroke and post-operative neurological dysfunction70.  This could be explained by 

the fact that aortic manipulation still occurs in OPCAB particularly during construction of the 

proximal anastomosis73.  The adoption of the aortic ‘no touch’ technique, which aims to avoid 

intraoperative atheromatous embolisation from the diseased aorta, may represent a significant 

step in improving neurological outcomes after OPCAB74. 

The advantages of OPCAB have been shown to extend beyond major organ protection.  The 

benefits of avoiding CPB with the subsequent systemic inflammatory response has been shown 

to reduce post-operative gastrointestinal complications75; reduce the incidence of AF70; reduce 

post-operative bleeding and the need for blood transfusion64.   

Finally, studies have shown comparable mortality rates after OPCAB with that of patients who 

undergo on-pump bypass surgery76.  However, the reduction in morbidity rates with OPCAB and 

a decrease in the incidence of complications are associated with decreased length of ICU and 

hospital stay with favourable economic outcomes77; prompting researchers to contemplate the 

adoption of beating-heart CABG surgery for all surgical revascularisations. 

1.3. The unresolved complication of cardiac bypass surgery 

Researchers and clinicians alike have spent the last four decades trying to understand the 

complexities of myocardial injury in this setting and have made considerable in-roads in tackling 

what is clearly a significant problem.  Despite relatively low 30-day mortality rates following 

cardiac surgery in general, the morbidity and mortality rates remain unacceptably high in the 
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subset of patients undergoing complex surgery (redo operations and CABG+ valves) and those 

with severe aortic stenosis and left ventricular failure78. 

Along with the other mechanisms of myocardial injury [discussed later] these patients are 

particularly susceptible to the lethal effects of myocardial IRI through the prolongation of 

aortic-cross-clamp times commonly seen in complex cardiac surgery.  Ischaemia-reperfusion 

injury is a major cause of myocardial injury during cardiac surgery, and studies have 

demonstrated its correlation with longer hospital stays and worsening long term outcomes 79.   

1.4. Sources of peri-operative myocardial injury 

The mechanism of myocardial injury in the setting of cardiac surgery is multi-factorial with 

variable detrimental effects: 

1.4.1. Technical inadequacy 

Technical inadequacy is an important source of myocardial injury and its impact on patient 

outcomes is often underestimated.  In the setting of cardiac surgery, it usually results in the 

failure of aorto-coronary bypass grafts due to poorly constructed distal anastomosis and 

prosthetic valve regurgitation due to inadequate placement of aortic valve prosthesis80. 

Errors in intra-operative judgment including decisions on whether or not to revascularise an 

occluded coronary artery or deciding to repair a regurgitant mitral valve rather than replace it 

will have a significant bearing on peri-operative and long-term outcomes81. 
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1.4.2. Ischaemic injury 

Aortic cross-clamping or coronary artery/graft occlusion leads to progressive pathological 

ischaemic changes that start within minutes, resulting in a time-dependent hazard for 

myocardial injury.  The current cardioprotective strategies [previously discussed] aim to reduce 

this mode of injury.  It is now recognized that these techniques are limited in their ability to 

offer complete protection particularly in complex operations requiring prolonged cross-clamp 

times82. 

Despite the improvement of cardioplegic techniques and the use of newer perfusion systems, 

the issue of optimising cardioprotection remains topical.  Prolonged cross-clamp times result in 

an increase in myocardial injury, low output syndrome and the need for inotropic support.  

Studies have gone further and identified ischaemic injury as an independent predictor of 

immediate and long-term morbidity and mortality.  Nissinen and colleagues found that the type 

of cardiac surgery performed did not significantly impact on 30-day mortality83.  However a 

strong association was seen between the number of procedures performed in one sitting and 

subsequent 30-day mortality.  While one procedure carried two percent 30-day mortality, this 

increased to as high as 25% after three to four procedures.  It so follows that it is in this group 

of patients who undergo prolonged cross-clamping that would benefit most from 

cardioprotective interventions.  They noted that durations of less than 150 minutes and 240 

minutes for aortic cross-clamp time (XCT) and cardiopulmonary bypass-times (CPBT) 

respectively were associated with a lower risk of morbidity and mortality independent of the 

operative risk to the patient and the complexity of the surgery84. 
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While it is clear that patients with impaired ventricular function are more susceptible to 

myocardial ischaemia, the overall impact of prolonged cross-clamp times is more complex 

compared to patients with normal left ventricular function.  While clearly demonstrating 

prolonged cross-clamp time as an independent predictor of mortality in patients with a LVEF > 

40%, Doenst et al were not able to show similar trends in patients with LVEF < 40%85.  Patients 

with poorer ejection fractions had higher mortality overall and at both ends of the spectrum.  

These patients were more likely to be affected by the effects of preconditioning, as they had 

suffered from previous myocardial infarction, triple vessel disease and unstable angina86.  The 

increase in mortality seen as a result of short cross-clamp times were thought to be due to 

incomplete revascularization, another independent predictor of mortality87. 

1.4.3. Ischaemia-reperfusion injury 

Clamping the aorta during cardiac surgery renders the myocardium ischaemic by compromising 

its blood supply, subsequently resulting in a reduction of oxygen and nutrients to the heart.  

This leads to a reduction in energy production by the mitochondria which in turn results in an 

abnormal accumulation of lactate, sodium and calcium ions (reviewed by Suleiman88).  The 

eventual metabolic imbalance causes a disruption to the ionic pumps and channels resulting in 

the depolarisation of cellular membranes and loss of excitability.  A rapid restoration of blood 

flow can correct ionic haemostasis with the preservation of cellular structure and function.  

However, in the event of prolonged ischaemia, reperfusion tends to have detrimental effects 

on the heart.  Numerous studies have confirmed that reperfusion triggers a further increase in 

cytosolic calcium and the generation of reactive oxygen species (ROS)89;90.  This in turn triggers 

a conformational change within the inner mitochondrial membrane causing the opening of the 
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mitochondrial permeability transition pore [discussed later].  Mitochondrial swelling 

subsequently ensues with eventual cell death through necrosis or apoptotic pathways91.   

The destruction of myocardial cells lead to the activation and accumulation of neutrophils at 

the sites of ischaemia or myocardial damage92.  The simultaneous release of inflammatory 

mediators and cytokines, in particular interleukin-6 (IL6) play a significant role in the 

amplification of this devastating cascade of events perpetuating further cell damage93.  

Interleukin-8 (IL8) stimulates the upregulation of adhesion molecules which in turn encourage 

the adhesion of neutrophils to myocytes were their release of proteolytic enzymes can be most 

damaging94.  The release of IL6 has been shown to be most evident in the coronary beds of 

CABG patients95 and in experimental models using cold crystalloid cardioplegia96.  Direct 

myocardial damage has also be shown to occur with IL6 and IL8; the former causing negative 

inotropic effects as a result of increase nitric oxide and activation of cGMP leading to the 

inhibition of L-type calcium channels97. 

1.4.4. Myocardial stunning 

Myocardial stunning is defined as reversible contractile dysfunction with (near) normal blood 

flow to the stunned region.  In the cardiac surgical setting, it occurs as a result of reperfusion 

following global ischaemia after cross-clamping of the aorta.   Previous studies described 

significant but temporary declines in left and right ventricular ejection fractions after CABG 

despite ‘uncomplicated’ procedures98.  Impaired contractility was notable approximately 4 

hours postoperatively, affecting both systolic and diastolic functions, with a gradual recovery 
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occurring over the subsequent 24 hours99.  After the exclusion of other causes, it is likely that a 

temporary period of myocardial stunning was responsible for impaired function. 

1.4.5. Inadequate revascularisation and aorto-coronary bypass conduit failure 

Failure to achieve complete revascularisation is a recognisable cause of myocardial infarction 

and death post-operatively.  This usually occurs due to failure to recognise the presence of 

significant disease and also in advanced diseases that do not lend themselves to 

revascularisation100.   

Current vein harvesting techniques have been shown to be injurious to the endothelium and 

are thought to play a significant role in aorto-coronary bypass conduit failure101.  Currently the 

point of focus of much research is in improving graft harvest techniques.  Until improvements 

materialise however, one must appreciate this as an important mode of injury. 

1.4.6. Systemic inflammatory response 

The implementation of cardiopulmonary bypass (CPB) triggers a systemic inflammatory 

response as blood comes into contact with foreign surfaces leading to the activation of 

complement pathways102.  The response is then propagated by the release of inflammatory 

mediators leading to the activation of a massive defence reaction.  This includes the release of: 

hormones, cytokines, chemokines, vasoactive substances, cytotoxins, reactive oxygen species 

and proteases.  The detrimental effects of consumptive coagulopathy, interstitial fluid shifts 

and micro-emboli eventually lead to multi-organ dysfunction (reviewed by Raja et al103).  

A similar inflammatory response is triggered peri-operatively by direct surgical trauma, blood 

loss and hypothermia.  At instances where splanchnic hypo-perfusion occurs, subsequent 
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mucosal damage leads to the release of endotoxins from the gut resulting in further organ 

damage104. 

1.4.7. Genetic predisposition  

It is estimated that 10% of patients who undergo cardiac surgery suffer peri-operative 

myocardial injury105.  The relationship between myocardial infarction in the non-surgical 

population and genetic variants on chromosome 9p21 has been well documented106.  It was 

recently shown however that a similar relationship exists between genetic variants in 9p21 and 

peri-operative myocardial injury after CABG107.  These genetic variants are adjacent to genes for 

cyclic-dependent kinases CDKN2A/B108 which regulate cell aging, cell proliferation and 

apoptosis as well as ANRIL109, a large anti-sense non-coding RNA gene expressed in cell types 

involved in atherosclerosis.  This relationship was shown to be independent from type 2 

diabetes and the severity of coronary artery disease110.  Variants in 9p21 have also been shown 

to be associated with carotid atherosclerosis, progression of atherosclerosis111, abdominal 

aortic aneurysm112 and intracranial aneurysm113. 

1.4.8. Identifying key contributors to myocardial injury  

 

Identifying the factors that contribute most to myocardial injury in cardiac surgery is complex 

task.  Clearly, with the multitude of factors previously discussed, it would be difficult to 

measure the contribution of each one individually.  However inferences could be made as to 

which would be the major contributor and this would largely depend on the type of cardiac 

surgery being carried out.   
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In the setting of on-pump cardiac surgery, ischaemia-reperfusion injury as a result of aortic 

cross-clamping gives rise to a global myocardial ischaemia.  With the addition of the systemic 

inflammatory response of CPB, these factors would be the larger contributors to myocardial 

injury.  However in the setting of off-pump surgery, local myocardial ischaemia-reperfusion 

injury occurs after graft anastomosis has taken place contributing mostly to myocardial injury.   

When CABG surgery is carried out concomitantly with mitral valve replacement, a 

comparatively higher release of cardiac enzymes is often seen, reflecting an additional increase 

in myocardial injury.  This is because the replacement of the mitral valve involves more direct 

trauma to the myocardium (through the incision of the left atrium- please refer to chapter 3) 

unlike other forms of cardiac surgery. 

The impact of ischaemia-reperfusion injury and its contribution to myocardial injury is evident 

particularly when the key factors are explored.  In addition, the type of cardiac surgery 

performed has a significant bearing on the mode of cardioprotection that becomes most 

relevant.  A third variable that would be discussed in the next section is the susceptibility of the 

hypertrophied heart to reperfusion injury and its response to cardioprotection. 

1.5. Cardiac hypertrophy and its susceptibility to reperfusion injury 

 

Cardiac hypertrophy is an adaptive response to pressure overload commonly seen clinically in 

systemic hypertension and aortic stenosis114.  The left ventricular chamber stiffness and 

hypertrophy that occurs as a result of pressure overload correlates well with accumulated 

collagen content and has been identified as an independent risk factor for sudden cardiac 

death, myocardial infarction and congestive cardiac failure115.  The hypertrophied heart acts as 
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an arrhythmogenic substrate116, in addition, there is the growing evidence supporting its 

predisposition to IRI due to its reduced capillary density117. 

1.5.1 Cell signalling in cardiac hypertrophy 

 

The triggers for pathological cellular hypertrophy can be divided broadly into neurohumoral 

signalling and stress signalling.  Neurohumoral signalling involves the activation of G-protein-

coupled receptors by hormones (angiotensin II, endothelin I, catecholamines, insulin-like 

growth factor-1) with the activation of Protein kinase C further downstream.  Downstream 

triggers result in the release of Ca2+ from the sarcoplasmic reticulum which in turn activates 

calcineurin.  Cacineurin dephosphorylates nuclear factor of activated T cell (NFAT) transcription 

factors permitting the translocation of NFAT to the nucleus where they participate the 

hypertrophic gene expression (reviewed by Suleiman et al118). 

The stimulation of myocardial stress receptors within the myocardium can also induce 

pathological hypertrophy.  Two important proteins that act as stretch sensors in 

cardiomyocytes are melusin and ‘muscle LIM protein’.  They both act via focal adhesion kinase 

(FAK) and the calcineurin-NFAT signalling pathways respectively, with the end-effect being the 

induction of hypertrophy (reviewed by Suleiman et al118). 

Under the conditions of severe cardiac hypertrophy, the energy production within 

cardiomyocytes is impaired, resulting in the worsening of cardiac contractility.  Important 

metabolic alterations have also been described, including the use of carbohydrate metabolism 

in preference to fatty acids for energy production.  It is likely that cardiomyocytes adopt this 
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mechanism purely for survival and this modulation of myocardial metabolism can certainly act 

as a key target for therapeutic intervention119. 

The hypertrophied heart is more susceptible to the effects of IRI due to its reduced capillary 

density which hinders the diffusion of nutrients and oxygen to energy production sites120.  The 

activation of the renin-angiotensin-aldosterone pathway is thought to further perpetuate 

myocardial injury as the occurrence of systemic vasoconstriction results in an increase in 

afterload with oxygen demand far outstripping supply121.  Some reports have held an opposing 

view, suggesting that the hypertrophied heart is more resistant to ischaemia- this could be 

related to the extent of the hypertrophied heart, as severely hypertrophied hearts were 

thought to be more susceptible to reperfusion injury than moderately hypertrophied hearts122. 

1.5.2 Cardioprotection of the hypertrophied heart 

 

Several signalling pathways have been identified in playing a role in protecting the 

hypertrophied heart.  The stimulation of TNF receptor type 2 results in the production of a 

lower TNF-α concentration which improves the recovery of the hypertrophied heart123.  

Inhibition of Na/H+ exchanger in hypertrophied rat myocardium has also been shown to confer 

significant protection124.  Increased availability of cellular substrates including aspartate and 

glutamate have also been shown to be cardioprotective125.  Interventions during cardioplegic 

arrest are less protective in the hypertrophied heart compared with the normal heart with 

slower recovery rates and more unstable haemodynamic parameters seen compared with 

normal hearts126. 
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Ischaemic post-conditioning has been shown to attenuate IRI in isolated hypertrophied rat 

hearts with its mode of action partly mediated through the PI3K/Akt/GSK-3b signalling 

pathway127. (See below for more on ‘conditioning’ and the RISK pathway). 

1.6. Novel cardioprotective strategies 

1.6.1. ‘Conditioning’ the heart for protection 

The concept of ‘conditioning’ the human heart in order to endogenously protect it from the 

detrimental effects of lethal ischaemia-reperfusion injury has been known to researchers for 

almost three decades.  This rather novel endogenous cardioprotective phenomenon is brought 

about by applying brief non-lethal episodes of ischaemia and reperfusion either directly to the 

heart (by clamping the aorta) or to an organ or tissue remote to it, RIPC (remote ischaemic pre-

conditioning)128.  This strategy can either be applied prior to the index ischaemic insult 

(ischaemic preconditioning); after ischaemia (ischaemic perconditioning) or at the onset of 

reperfusion (ischaemic postconditioning). 

 

 

 

 

 

 



39 
 

Figure 1.01: Variations in the timing of ‘conditioning’ all of which ultimately bring about 

cardioprotection.  The preconditioning protocol consists of short episodes of ischaemia and 

reperfusion that is instituted prior to the index ischaemic period.  Ischaemic perconditioning 

commences after the onset of myocardial ischaemia but prior to myocardial reperfusion, while 

ischaemic post-conditioning commences at the start of the reperfusion phase.  Pharmacological 

agents including statins, erythropoietin and insulin have been shown to activate the RISK 

pathway (discussed further later), while inhibiting the opening of the mitochondrial permeability 

transition pore either directly using CsA or through the phosphorylation of prosurvival kinases 

represents the final stage of cardioprotection. 
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Key: Epo- erythropoietin, RISK- reperfusion injury salvage kinase, mPTP- mitochondrial permeability transition 

pore. 

 

 

i) Background of IPC 

 

Establishing the vital role of reperfusion in the treatment of myocardial ischaemia remains one 

of the most significant discoveries in cardiovascular medicine129.  The introduction of clot-

dissolving drugs, followed by the use of percutaneous coronary angioplasty and stenting, have 
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revolutionised the management of acute coronary syndromes (ACS).  Despite this, clinicians 

were still left bemused as the rates of heart failure and death from ischaemic heart disease 

continued to rise. 

Up until the mid 1980s, it had remained unclear whether or not it would be possible to limit 

infarct size therapeutically.  However, in 1986 Murry and colleagues made the crucial discovery 

of an intrinsic mechanism of profound endogenous protection which they named ischaemic 

preconditioning (IPC)130.  Using a canine experimental model, they showed that exposure of the 

circumflex coronary artery territory to brief periods of ischaemia (4 cycles of 5 minute 

ischaemia followed by reperfusion) before 40 min of complete ischaemia substantially reduced 

the size of the resultant infarct after restoration of blood flow130.  There was no differences in 

coronary collateral blood flow between the groups, suggesting that the mechanism of 

preconditioning was independent of collateral recruitment 130.  It turns out that for each sub-

lethal episode of ischaemia and reperfusion prior to the index lethal ischaemic event, a 

minimum period of 30 seconds to 1 minute of reperfusion was required to see protection131.  

Whether this phenomenon follows an all-or-nothing response or a graded response is still 

unclear.  Although evidence exists for and against either outcome, it is likely that IPC is graded 

as this would comply with nature (reviewed by Yellon and Downey)132. 

Other organs have been shown to be amenable to protection including the kidneys, liver, brain 

and intestine.  The clinical application of IPC in the setting of cardioprotection will be reviewed 

later in this introduction. 
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ii) A brief overview of the mechanism of IPC 

In the ground-breaking publication by Murry and colleagues, a 75% reduction in infarct size was 

demonstrated130.  This strategy has been subsequently reproduced by numerous researchers 

using various animal models all of which have shown similar anti-infarct effects133.  It is now 

regarded as the strongest form of protection against myocardial infarction after reperfusion 

itself134. 

Ischaemic preconditioning changes the physiology of the heart rendering it resistant to 

infarction.  The mechanism of preconditioning exists in two phases.  The first phase, also known 

as “early” or “classical”130 preconditioning is the more potent of the two phases, commencing 

immediately after the IPC stimulus and lasting for 1-2 hours135.  The second phase referred to as 

the second window of protection (SWOP) commences after 12-24 hours following the IPC 

stimulus and lasts up to 3-4 days136. 

Signal transduction pathways which underlie preconditioning can be divided into: triggers, 

mediators, memory and end-effectors.  The pathways are activated by triggers known as 

autacoids which consist of catecholamines, opioids, adenosine and bradykinin132.  The memory 

element keeps the heart in a preconditioned state but how the heart remembers that it has 

been preconditioned is still a mystery.  However, because IPC starts within 10-15 minutes, it is 

likely that the memory effect occurs as a result of reversible post-translational modification of 

pre-existing proteins rather than from gene expression132.  Steps distal to the memory step are 

now referred to as mediators and steps proximal to the memory step are termed triggers132.  
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The second phase of ischaemic preconditioning is thought to share similar trigger substances to 

‘classical’ preconditioning and its underlying mechanism is likely to be related to protein 

synthesis, post-translational protein modification and a change in the compartmentalisation of 

existing proteins132. 

The signal transduction pathways 

The mechanism underlying IPC is receptor-mediated and was first demonstrated by Downey 

and colleagues who implicated the role of the adenosine A1 receptor137.  They were able to 

show that A1 receptor blockers inhibit protection and agonists conferred the protection. 

We now know that any G- protein coupled receptor (GPCRs) can trigger preconditioning; in fact 

multiple receptors work in parallel to stimulate the prosurvival pathway132. 

After the release of autocoids during the brief ischaemic period, their respective receptors 

trigger IPC via the activation of GPCRs.  Blockage of a single receptor acts to increase the 

ischaemic threshold rather than completely blocking it132.   

There are a number of other potential triggers of IPC that have been identified.  Elevated 

calcium levels are thought to bring about protection via a protein kinase C dependent pathway 

and verapamil has been shown to blocks both Ca- induced preconditioning and ischaemic 

preconditioning138;139.  Free radicals have been shown to act directly to trigger IPC via their 

action on protective kinases140.  Other triggers include hyperthermia141, hypoxia, ethanol142 and 

pacing143 but their mechanism of action remains unclear.  Nitric oxide has also been shown to 

have a role in IPC particularly in the SWOP phase [for detailed review refer to Yellon and 

Downey]132 . 
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iii) Some important kinases  

 

The signal transduction pathways consists of highly important kinases that act as mediators 

such that when activated, interact with effectors to bring about protection.  

Protein kinase C 

Protein kinase C (PKC) is a serine threonine kinase whose role in IPC was co-discovered by 

Mitchell and Ytrehus in 1994144;145. It is activated by lipid cofactors derived from the breakdown 

of membrane lipids by phospholipase C132.  It exists as multiple isoforms that can be classified 

as: classical, novel and atypical132.  These isoforms bind to RACK (receptor for activated C 

kinase) -which are strategically located near specific organelles within the cell.  The activation of 

PKC then leads to the phosphorylation of specific protein substrates that lie within the cell132. 

Tyrosine kinase and the mitogen-activated protein kinases 

Maulik identified the presence of tyrosine kinase using genistein, a broad-spectrum tyrosine 

kinase inhibitor and concluded that at least one tyrosine kinase was present in the overall 

pathway146.  Others have suggested that a tyrosine kinase was likely to be downstream147 or at 

least in parallel to PKC148.  It was Maulik who confirmed the identification of this tyrosine kinase 

as p38 MAPK.   

MAPKs are activated by dual phosphorylation of a serine and a threonine.  The MAPK is a 

tyrosine kinase and at least the ones targeting p38 MAPK can be blocked by genistein149.  

Sub-families of MAPK have also been suggested to play a role in IPC.  They include: 
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 ERK (extracellular receptor kinase)- ERK1/2:  ERK 1 activity is said to increase in the 

ischaemically preconditioned myocardium150.  

 JNK (c-jun kinase)- JNK 46 and JNK 54 are present in the heart and are strongly activated 

during reperfusion after ischaemia151. 

 P38 MAPK: exists in at least five different isoforms all of which mediate different 

biological functions152.  It has two amino acids which must be phosphorylated for 

activation132.  The importance of p38 activation for cardioprotection remains unclear 

and this is mainly due to the variety of isoforms in different species and the selectivity of 

the different inhibitors that have been used. 

Phosphatidylinositol 3-kinase (PI3K) has been shown to have a definitive role within the 

pathway.  Using a PI3K inhibitor, Tong and colleagues demonstrated the blockade of protection 

using myocardial contractile dysfunction as the end point153.  Mocanu went on to confirm this 

result using an infarct size model154.   

 

 

 

K ATP channels 

K ATP channels have been shown to be important mediators of cardioprotection in a variety of 

different models.  They were first described by Noma using cardiac ventricular myocytes and 

the name is derived from the fact that they can be inhibited by physiological levels of ATP155.   
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K ATP channels are modulated by pH, fatty acids, NO, SH-redox state, various nucleotides, G 

proteins and various ligands156.  It is the opening of the channels that bring about protection in 

IPC, a phenomenon first proposed by Gross and colleagues157 and further substantiated 

through subsequent studies158;159. 

Two types of K ATP channels have been identified; the sarcolemmal (surface K ATP) and 

mitochondrial (mitoK ATP)160.  Garlid and Liu confirmed that it was mitoK ATP channel that was 

responsible for protection161;162.  The exact composition of the channel is unknown. 

Terzic and colleagues found that opening the mitoK ATP channels made isolated mitochondria 

more resistant to Ca2+ entry therefore promoting cell survival163.  Data exists suggesting that 

transient opening of mitoK ATP channels put the heart into a preconditioned state that continues 

long after the channel is closed. 

Experiments by Pain had suggested that the role of the mitoK ATP channels is as a trigger164.  

However, Wang disputed this, suggesting that the channels played a dual role both as a trigger 

and a mediator165.  Current evidence supports Wang’s proposal suggesting that mitoK ATP 

channel opening triggers a kinase cascade that feeds back in a positive manner to keep the 

channel open during the index ischaemia. 

Pain and colleagues proposed a new view of the pathway suggesting a role for free radicals and 

mitoK ATP channels.  They suggested that receptor binding led to mitoK ATP channel opening that 

resulted in the release of reactive oxygen species (ROS).   The free radicals would then activate 

kinases downstream that would then modulate the end-effectors.  The blockage of protection 

by free radical scavengers supported this theory166. 
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The protection triggered by adenosine however, seems to be elusive to K ATP blockage or free 

radical scavengers.  This led Downey and colleagues to propose that the adenosine pathway 

must be parallel to the RISK pathway167. 

Ischaemia allows autacoids to populate GPCRs, which subsequently trigger the opening of 

mitoK ATP channels.  At this stage, because oxygen is lacking, the signal would eventually die.  

However, reperfusion allows for a burst of ROS which ultimately results in signal transduction 

pathway activation bringing about protection132. 

The final step in the preconditioning pathway has eluded researchers for decades and still 

remains an enigma.  Many theories have been considered, the oldest being that 

preconditioning improves the energy balance in the cell by inhibiting mitochondrial ATPase 

activity168.  However this theory has since been disproven and more viable candidates for end-

effectors including the mitoK ATP channels and the mitochondrial permeability transition pore 

(mPTP) have received much attention.  In fact, Hausenloy et al169 described a vision whereby 

the opening of the mitoK ATP channel acted to inhibit the mPTP. 
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Figure 1.02: The RISK pathway- activation of the G-coupled protein receptor by an IPC stimulus 

leads to the trans-activation of the epidermal growth factor receptor via the matrix 

metalloproteinase.  This then leads to the activation of PI3K-Akt and ErK 1/ 2 both of which are 

thought to run in parallel.  After the subsequent activation of eNOS, guanylate cyclase and 

protein kinase G are activated via nitric oxide and cGMP respectively.  Protein kinase G then 

stimulates the opening of the mitoKATP channel and this leads to the generation of ROS via the 

electron transfer chain.   
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Key: GPCR- G-coupled protein receptor, MP- metalloproteinase, EGFR- epidermal growth factor receptor , (PI3K)-

Akt-phosphatidylinositol-3 kinase- OH, eNOS- extra-cellular nitric oxide synthase, NO- nitric oxide, GC- guanylate 

cyclase, PKG- protein kinase G, cGMP- cyclic guanine-5-monophosphate. 

 

1.6.2. Inhibiting mitochondrial permeability transition pore (mPTP) for protection 

In recent years the mPTP has presented itself as a major potential pharmacological target for 

cardioprotection as researchers have become more aware of the role the mitochondria plays in 

cellular injury.  Pharmacological agents like cyclosporin A that already play a significant role in 

transplant medicine have been shown to prevent cellular injury by inhibiting the formation of 
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this pore through the inhibition of cyclophilin D, one of its major components.  In order to 

appreciate the mitochondria’s involvement in cellular injury, we must first understand the 

nature of calcium transport within the cell. 

i) Calcium transport 

The physiology of calcium regulation has been well known for over 20 years.  The three main 

carriers involved in calcium transport are: the Ca2+ uniporter, Na+/Ca2+ carrier and the Na+/H+ 

antiporter170.  Calcium enters the mitochondria electrophoretically via the Ca2+ uniporter and 

exits via the Na+/ Ca2+ carrier in exchange for Na+170.   This transport cycle allows the changes in 

cytosolic Ca2+ to be relayed to the mitochondrial matrix, establishing a Ca2+ concentration [Ca2+] 

ranging between 0.2-10µM.  It is at this range that calcium-sensitive enzymes especially those 

involved in oxidative metabolism (pyruvate dehydrogenase, oxoglutarate dehydrogenase and 

isocitrate dehydrogenase) are most effective171.    

When the myocyte contracts, there is an increase in cytosolic [Ca2+].  This leads to an increase in 

mitochondrial [Ca2+] which in turn activates the tricarboxylic acid cycle.  This is followed by an 

increase in oxidative phosphorylation and ATP production, allowing the ATP/ADP ratio to 

remain unchanged172.   

It was initially thought that certain types of cellular injury occurred as a result of significant 

energy utilization brought about by rapid mitochondrial calcium transport.  However, the rate 

of Ca2+ cycling cannot exceed that of the Ca2+ uniporter so much so that an exposure of say a 

10-fold increase in cytosolic [Ca2+] would only cause a 2% increase in respiration173.  In other 

words, pathological insults that result in large mitochondrial [Ca2+] do not result in significant 
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energy dissipation from the cell to affect its viability.  Another pathway must therefore exist to 

account for the accumulation of Ca2+ within the mitochondria resulting in injury. 

During ischaemia, cytosolic calcium slowly and progressively accumulates, but it alone is not 

sufficient to cause cellular injury.  The absence of adenine nucleotides is also required for 

cellular injury to occur.  If ATP were present in abundance during cellular injury, the ATP/ADP 

ratio would be maintained and cells would remain viable.  We now know that the presence of 

Ca2+  overload, high phosphate or oxidative stress coupled with an absence of adenine 

nucleotides lead to pore formation within the inner mitochondrial membrane(IMM) ultimately 

leading to cell death174. 

ii) The mitochondrial permeability transition pore 

Alterations in the integrity of the mitochondria following incubation in isotonic solution 

containing phosphate and calcium have been observed since the 1950s175.  The Ca2+ -

dependent pore known to be integral to this change, results in an increase in permeability of 

the IMM with eventual swelling and disruption of mitochondrial function.   

This unique property of the IMM was confirmed in 1979 and coined the “Ca2+ -induced 

transition”176.  Three years prior to this study, while looking at the mechanism and function of 

calcium uptake, Hunter et al noted that in the presence of as little as 10nmol/mg of calcium, 

the IMM underwent a configurational transition followed by an increase in permeability to 

solutes.  This effect which occurred in an all-or-nothing manner, was largely nonspecific  (both 

neutral and charged molecules permeate) and was linked to a reversible disruption in 

respiration177. 
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Hunter and colleagues looked specifically at how this transition could be controlled.  They 

discovered that the increase in permeability of the IMM and subsequent swelling of the 

mitochondria could be inhibited by ADP, NADH and Mg2+ 178,as well as cations including H+ (low 

pH), strontium (Sr2+),manganese (Mn2+), ethylenediaminetetraacetic acid (EDTA) and 

lanthanum(La3+)179;180.  The authors’ own suggested mechanism for this phenomenon involved 

the binding of Ca2+ to units within the IMM in the absence of any endogenous inhibitory agent 

which then led to the opening of a transmembrane hydrophilic channel181.  They deduced that 

the size of solutes permeable through this membrane would have a molecular weight no more 

than 1000Da182.  

Further confirmation of the reversibility of Ca2+ induced permeability came in 1986.  Al Nasser 

and Crompton showed that after permeability had been induced by Ca2+ and phosphate ions in 

liver mitochondria, resealing could be brought about by ethylene glycol tetra-acetic acid (EGTA) 

in a biphasic fashion, with a rapid initial phase followed by a slow second phase183.  Using the 

heart mitochondria, Crompton showed that the requirements for permeability included calcium 

and phosphate ions or calcium and hydroperoxide ions and estimated a pore diameter of about 

2.2nm184.   

In summary, calcium regulation is clearly essential in cardiomyocyte contraction and has a vital 

role in cellular injury.  Moreover, calcium accumulation is imperative for the formation of the 

mPTP particularly in the setting of ischaemia.  However, it was the timely discovery of 

cyclosporin A and its possible role in cardioprotection that really catapulted our understanding 

of the components of the mPTP. 
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iii) A historical perspective of cyclosporin  

First isolated from a Norwegian soil plant in the late 1960s185, cyclosporin A is now widely 

known for both its immunosuppressive properties and as an anti-rejection agent186.  The 

immunosuppressive effect of cyclosporin A was first discovered in 1972 by the pharmaceutical 

company Sandoz (now Novartis) and was approved for clinical use in 1983185. 

Cyclosporin A is a lipophilic cyclic peptide of 11 amino acids.  It has a high affinity to a family of 

cytoplasmic proteins known as cyclophilins (CyPs) which are found in most cells.  The 

cyclophilins share similar binding residues but play different roles in cell metabolism.  CyP-A is 

located within the cytosol and participates in the translocation of apoptosis-inducing factor 

(AIF) in the nucleus and in protecting against O2 stress.  CyP-B resides within the endoplasmic 

reticulum and has a role in suppressing apoptosis associated with O2 stress and altered Ca2+ 

metabolism.   

When CsA binds to CyP-A, it forms a drug-protein complex which binds to and inhibits 

calcineurin (CaN), a calcium and calmodulin dependent phophatase187-189.  This in turn inhibits 

the translocation of a family of transcription factors, NF-AT, leading to reduced transcriptional 

activation of early cytokine genes for IL2, tumour necrosis factor alpha (TNFα), IL3, IL4, CD40L, 

granulocyte-macrophage colony-stimulating factor (GM-CSF), and interferon gamma (IF-γ)188-

190.  In addition to the calcineurin/NF-AT pathway, cyclosporin A inhibits the activation of T-cell 

transcription factors AP-1 and NF-k B through blocking of JNK and p38 signalling pathways191.  

CyP-D resides within the mitochondrial matrix and has recently been confirmed as having a key 

role in ischaemia-reperfusion injury.  
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Figure 1.03:  The mechanism through which CsA enters the T cell- The lipophilic CsA molecule 
enters the cell by passive diffusion.  It then forms a complex with the immunophilin, cyclophilin 
(CyP).  The CsA-CyP complex binds to and inhibits the enzyme calcineurin (CaN), which has a 
serine/ threonine phosphatase activity.  As a result, CaN fails to dephosphorylate the 
cytoplasmic component of the nuclear factor of activated T cells (NF-ATc).  The transport of NF-
ATc into the nucleus and its subsequent binding to the nuclear component of the nuclear factor 
of activated T cells does not occur.  As a result, T cells do not produce IL-2, which is necessary for 
full T cell activation. ref 
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Key:  CsA- cyclosporin A, CyP- cyclophilin, CaN- calcineurin, NF-ATc- nuclear factor of activated T cells (cycloplasmic 
component), NF-ATn- nuclear factor of activated T cells (nuclear component).  

iv) Confirming the properties of the pore using CsA 

The effect of cyclosporin A (CsA) on the mitochondria was first considered by Fournier in 1987.  

He showed that the fluxes of calcium were inhibited by CsA, promoting retention of 

accumulated calcium in the isolated mitochondria192.  Crompton went on to investigate the 

effect of CsA on the Ca2+- induced pore.  He was able to demonstrate using isolated 

mitochondria from the female Sprague-Dawley rat heart, that CsA suppressed the instability of 
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the mitochondria in the presence of calcium and phosphate loading193 and that this was due to 

its action on the pore. 

The turn of the decade sparked a race for the determination of the components of the Ca2+- 

induced pore.  So far it had been understood that Ca2+ influx had a detrimental effect on the 

mitochondria and ultimately the cell.194;195  The Ca2+- induced pore opening was triggered when 

calcium levels reached a certain threshold183;196and resulted in the non-specific permeability of 

the IMM.  It was also clear from previous studies that injuries that involved calcium release 

were particularly troublesome due to their detrimental effects on mitochondrial energy 

transduction which tended to contribute to the progression of the injury197-200.  It became 

apparent that by determining the components of the pore, one might be on the first steps to 

finding pharmacological targets and as a result prevent the occurrence of reperfusion injury. 

Leading the way among others was Crompton, who in 1990 sought to understand the 

relationship between the Ca2+-induced pore and reperfusion-induced injury.  He showed that 

EGTA-induced resealing of the pore was stimulated by ADP.  He reconfirmed the size of the 

pore (2.3nm) and determined that the pore was  proteinaceous and not phospholipid based201  

as it was then thought.  He concluded by hypothesising that the action of CsA must involve 

either directly binding to the pore or binding to a protein involved in pore opening202.   

The use of electrophysiological patch clamp experiments on the ‘contact points’ of the 

mitochondrial membrane led to the identification of channels in the IMM203.  The channels 

were said to be of two types- low conductance and high conductance.  Later, the high 

conductance channels, referred to as the mitochondrial mega-channel (MMC), were shown to: 
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 become activated by calcium ions;  

 become inhibited by divalent cations;  

 demonstrate competitive action between calcium and cyclosporin A;  

 be modulated by pH levels; 

 have similar kinetic behaviour as the permeability pore204.   

It was concluded that the structure considered as being the Ca2+- induced pore was in fact the 

mitochondrial mega-channel which was later referred to as the mitochondrial permeability 

transition pore (mPTP). 

v) Determining the constituents of the pore using CsA 

The exact structural components of the pore still remain an enigma.  The voltage-dependent 

anion channel (VDAC), located within the outer mitochondrial membrane205, was previously 

thought of as a key component of the mPTP as it seemed to exhibit similar electrophysiological 

properties.  Crompton demonstrated in 1998 that CyP-D-glutathione S-transferase would bind 

to both VDAC and adenine nucleotide translocase (ANT) in solubilised heart mitochondria and 

that the VDAC-ANT-CyP-D complex acted as a calcium-dependent pore which was sensitive to 

CsA193.  However, recent genetic manipulations have disputed this model.  Baines et al was able 

to show that mitochondria lacking all the isoforms of VDAC showed similar pore opening 

capabilities as normal mitochondria.  He showed that fibroblasts lacking all isoforms of VDAC 

were more susceptible to cell death induced by oxidative stress.  It seemed therefore that the 

role of VDAC was more to promote survival  rather than as a structural component of the 

mPTP206. 
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Studies have shown that when the nucleotides ADP, ATP and dADP bind to ANT located in the 

inner membrane of the mitochondria, the pore opens207.  ANT tends to act as a gated pore, 

alternating between two conformational states when substrates bind to the ADP/ATP binding 

sites.  ANT can either present its binding site on the matrix side of the inner membrane (m-

state) or on the cytoplasmic side (c-state).  Ligands that bind while in the m-state inhibit the 

pore (bongkrekic acid) by decreasing its sensitivity to [Ca2+] and those that bind while in the c-

state activate it (atractylate) by sensitising the pore to [Ca2+]208.   

Recent knockout studies however, have disputed the role of ANT as being essential for pore 

opening.  Rather, a regulatory role has been attributed to it, leaving the role of a phosphate 

carrier as the most definitive component to date209;210(see below).    

As with ANT, the possibility of the other component of the pore was considered after the effect 

of particular ligands.  The involvement of cyclophilin D(CyP-D) was suggested after it was noted 

that the concentration of CsA needed to inhibit the pore was the same as that needed to inhibit 

the enzymatic activity of mitochondrial cyclophilin D193;211;212.  CyP-D is a nuclear encoded 

mitochondrial isoform of the cyclophilins with a molecular mass of 18kDa213.  The effect of CsA 

is mediated through the inhibition of the peptidyl-propyl cis-trans-isomerase (PPIase) activity of 

CyP-D193;214;215.  Similar sensitivities of the pore and CyP-D have been shown with CsA 

analogues216-218.  Sanglifehrin A, a non-immunosuppressive analogue of CsA has been shown to 

inhibit the pore without interacting with calcineurin219.  Further evidence confirming the role of 

CyP-D as a component of the pore has been shown with the use of CyP-D knockout mice.  

Mitochondria isolated from the knock-out group demonstrated a low sensitivity to calcium 
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resulting in delayed mPTP opening which was subsequently insensitive to CsA220-223.  CyP-D is 

thought to cause pore opening by facilitating the Ca2+-induced conformational change224. 

It has been long recognised that pore opening is activated in the presence of high phosphate 

ions.  However it was only recently that Leung and colleagues showed that CyP-D had an affinity 

for a phosphate carrier and that binding occurred in a CsA sensitive manner225.  This interaction 

tended to increase under conditions of oxidative stress, which sensitised pore opening to Ca2+.  

Further studies have presented the model of a phosphate carrier as a component of the pore 

by showing that pore inhibition through the blocking of CyP-D can only occur in the presence of 

phosphate ions226. 

vi) The relationship between mPTP opening and ischaemia-reperfusion injury 

So far we can appreciate that mPTP opening, triggered by conditions of high Ca2+ ions, 

phosphate ions and oxidative stress in the absence of adenine nucleotides is detrimental to the 

cell192.  We also know that after reperfusing an organ that had been exposed to a period of 

prolonged ischaemia, the presence of calcium, phosphate and oxidative stress play a major role 

in inducing subsequent injury.  Poole-Wilson demonstrated that the influx of calcium occurred 

late during ischemia followed by a more rapid influx early in the reperfusion phase and that this 

was related to cell necrosis 227.  This rapid influx was triggered by the depletion of two-thirds of 

the cell’s ATP reflecting failure of the calcium pumps both on the plasma membrane and on the 

sarcoplasmic reticulum.  Intracellular acidification from increased lactate production led to 

further pump failure by increasing intracellular Na+ (impaired Na+/H+ antiporter) and this in turn 

led to the impairment of the Na+/Ca2+ carrier228.  Cobbold et al noted that when the cytosolic 
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[Ca2+] was below 1-2µM, cell viability was restored during reperfusion.  However if this critical 

limit was exceeded during ischaemia, reperfusion would not restore calcium homeostasis and 

the cell would die.  This finding suggested that Ca2+ overload and pore opening may be a 

precondition for this form of cell death229. 

Reperfusion after a period of prolonged ischaemia gives rise to the production of oxygen 

species through a number of mechanisms.  One such mechanism involves the enzyme xanthine 

dehydrogenase which is found in endothelial cells.  This enzyme is converted to the oxidase 

form by a calcium-dependent protease230. During reperfusion, xanthine oxidase accumulates 

and reacts with hypoxanthine, a by-product of adenine nucleotide degradation, leading to the 

production of hydrogen peroxide231.  Other sources of oxygen species include neutrophils, 

which are recruited to sites of ischaemia by the endothelial cell expression of surface adhesion 

molecules232.  Platelets and mitochondria also produce superoxides during reperfusion which 

are converted to hydrogen peroxide by superoxide dismutase located in the intracellular and 

extracellular compartments233;234.   

While necrosis occurs after substantial ATP depletion, apoptosis is thought to be an energy-

dependent process235.  If a cell was to experience a partial ischaemic insult, some of the mPTPs 

may be open while others may remain closed with continued ATP production.  Cell death is 

then directed down an apoptotic pathway236.  As molecules of a low molecular weight enter the 

matrix, equilibration occurs with the solutes outside the IMM.  Larger molecules remain within 

the matrix generating an osmotic gradient with subsequent mitochondrial swelling.  The IMM 

has a larger surface area than the outer membrane so the outer membrane tends to rupture 
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leaving the IMM intact.  Rupture of the outer membrane leads to the release of proapoptotic 

proteins into the cytoplasm, inducing apoptosis237.   

Cellular breakdown during apoptosis is governed by a complex array of proteins known as 

caspases.  They are expressed as inactive proenzymes and become activated after proteolytic 

cleavage238.  Liu et al was the first to discover that caspase activation required dATP and 

cytochrome c239.  Cytochrome c binds to apoptotic-inducing factor forming a complex which in 

turn leads to the recruitment of further procaspases that present in their active form240.  The 

role of the mitochondria in apoptosis was established after the confirmation that cytochrome c 

was part of the pathway.  Further work has shown that cytochrome c translates into the cytosol 

from the intermembrane space a few hours into the apoptotic process241. 
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Figure 1.04: The intra-cellular and mitochondrial changes that occur during late ischaemia/ 

early reperfusion.  Impaired cell membrane receptors due to low pH result in influx of calcium 

and phosphate ions.  The accumulation of ROS and the absence of ATP lead to the formation of 

the mPTP.  Subsequent mitochondrial swelling leads to eventual cell death via necrosis and 

apoptosis. 
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1.6. Novel cardioprotective strategies 

1.6.1. Cyclosporin A as a cardioprotective agent 

 

The discovery by Crompton and Broekemeier in the late 1980s of the capacity of CsA to inhibit 

the opening of the mPTP184;242, led to a surge in interest that continued through the turn of the 

century.  Halestrap and Davidson showed that the swelling of the heart mitochondria after 

exposure to Ca2+ was inhibited by both bongkrekic acid and CsA through their interaction with 

cyclophilin243.  It then followed that analogues of CsA could also protect against IRI via a similar 
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mechanism although the effect was less pronounced244.  Nazareth et al were able to show that 

by preserving the ATP/ADP ratio, CsA was able to reduce necrosis in ventricular myocytes, 

preserving cell viability245.  Some years later Borutaite et al showed that by preventing mPTP 

opening during reperfusion, CsA prevented cytochrome c release from the mitochondria 

therefore preventing cell death via the apoptotic pathway246.   

In our laboratory, we confirmed that only by intervening in the first fifteen minutes of 

reperfusion was it possible to inhibit pore formation.  Using isolated male Sprague-Dawley rat 

hearts, we showed that by giving sanglifehrin A (an agent pharmacologically similar to CsA that 

does not inhibit calcineurin) within the first fifteen minutes of reperfusion, it was possible to 

reduce the infarct risk ratio by as much as twenty percent247.  The administration of SfA after 

fifteen minutes of reperfusion had no significant effect on infarct size248. 

As noted previously, the action of CsA has an immunosuppressive component so it is possible 

that its action could occur via calcineurin inhibition.  Since FK506 is also a calcineurin inhibitor, 

studies were done looking at the effects of this agent against IRI.  FK506 was found to be at best 

only marginally protective in this setting reconfirming that protection occurred via mPTP 

inhibition249;250.  The use of NIM811, a non-immunosuppressive and more specific derivative of 

CsA further reaffirmed the cardioprotective properties as it was demonstrated to be even more 

effective than CsA 251. 

Over the years other mechanisms for cardioprotection were postulated.  Using H9c2 embryonic 

rat heart-derived cell lines, Huei-Wen et al examined the mechanism through which CsA 

regulated the cardiomyocytes against stress-induced apoptosis252.  They first demonstrated that 
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cells exposed to hydrogen peroxide exhibited morphological signs of apoptosis (cell shrinkage, 

apoptotic body formation and DNA fragmentation) similar to those seen after exposure to 

hypoxia/ re-oxygenation injury253.  They were able to show that pre-treatment using CsA at a 

concentration of 0.1μM provided protection against the effects of peroxide-induced apoptosis.  

They went on to postulate that the ‘delayed protection’ that is usually observed in 

preconditioning may be due to the expression of cardio-protective proteins namely, heat-shock 

protein 70 (HSP-70) and induced-nitric oxide synthase (iNOS) which were observed in cells 

exposed to CsA254. 

The effect of reactive oxygen species in the context of CsA was regarded as a double-edged 

sword.  At small doses, CsA produces a small amount of ROS which was cardio-protective; 

however at larger doses or in the presence of hydrogen peroxide, large amounts of ROS were 

generated promoting cell death255.   Huei-Wen and colleagues were the first team to look at the 

cardio-protective effects of CsA in the context of its relationship with ROS as well as the first to 

consider the up-regulation of cardio-protective proteins and their role in delayed protection.  

 Other possible mechanisms shown to be responsible for cardioprotection included immune-

modulation256; modulation of cardiac metabolism257; interaction with the mitoKATP channel258 

and direct, pleiotropic effect against metabolic, structural and stress signalling changes which 

resulted in cardioprotection259.   

It was not until 2004 that the cardio-protective effects of CsA were first demonstrated in the 

human cardiac muscle.  Shanmuganathan et al looked at human atrial appendages taken from 

patient undergoing coronary artery bypass surgery260.  Experiments were also carried out on 
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atrial myocytes isolated from the atrial appendages and subjected to IRI.  Their aim was to see 

whether CsA and sanglifehrin, another known inhibitor of the mPTP, offered any cardio-

protection and the mechanism by which protection occurred261.    

They were able to show significant improvement in the force of contraction of human 

appendages treated with both CsA and SfA compared with control.  The treated group showed 

a higher percentage of cell survival along with a significant reduction in the percentage of 

necrotic cells.  They also demonstrated that after laser-induced oxidative stress, the time taken 

for mPTP opening was significantly prolonged in cells exposed to CsA or SfA 262.  

These findings were very significant at the time, as they further reaffirmed the mPTP as a viable 

target for cardio-protection.  The study also went on to demonstrate not only that CsA was 

cardio-protective, but by using Sanglifehrin-A they showed that the benefits were not due to 

immuno-suppression but almost certainly due to inhibition of mPTP opening as SfA is a more 

specific inhibitor of mPTP and has no effect on calcineurin263.  

Over recent years, numerous experimental data have been published which have demonstrated 

as high as forty-percent reduction of infarct size through pharmacological manipulation of the 

mPTP by maintaining its closure during reperfusion.  This has been supported by a landmark 

proof-of-concept clinical study conducted by Ovize et al.  They looked at 58 patients from 

multiple centres who had all presented within 12 hours of an ST-elevation myocardial 

infarction264.  Ten minutes before direct stenting, patients in the treatment group received 

2.5mg/kg of Cyclosporin A intravenously while the control group received normal saline.  They 

were able to demonstrate approximately a 40% reduction in infarct size in the CsA group, 
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shown through a reduction in the ‘area under the curve’ (AUC) for serum creatinine kinase265.  

A subgroup of 27 patients underwent cardiac MRI five days after their initial presentation.  In 

the cyclosporin group, the absolute mass of the area of hyper-enhancement was significantly 

reduced- a reduction of 20%.  This study was the first of its kind to suggest the occurrence of IRI 

in humans and has once again shown that cyclosporin A can offer protection against this 

phenomenon likely through its action on the mPTP266. 

Table 1.01: A summary of studies investigating the cardioprotective effects of CsA. 

Source  Aim /intervention  Mechanism Outcome  

Crompton et al 1988
193

 Heart mitochondria; 
action of CsA on Ca

2+ 

dependent pore. 

Inhibition of Ca
2+

 
dependent pore. 

CsA potent inhibitor of 
pore opening. 

Halestrap and Davidson 
1990

267
 

Heart and liver 
mitochondria; inc dose of 
CsA. 

Preventing Ca
2+

-induced 
pore formation. 

CsA inhibited 
mitochondrial swelling. 

Griffiths and Halestrap 
1991

268
 

IRI on isolated rat hearts; 
0.2micro M CsA; G and H 
less effective 

Prevention of interaction 
of ANT and matrix PPIase 

CsA showed 
cardioprotection through 
improved LV developed 
pressure. 

Nazareth et al 1991
269

 Ventricular 
cardiomyocytes from 
Sprague-Dawley rats.  CsA 
200nM 

Limitation of decrease of 
ATP/ADP concentrations 

Substantial reduction in 
necrosis. 

 

Massoudy et al 1997
270

 IRI on isolated guinea pig 
hearts; 0.8micro M CsA 

CsA elevates the level of 
nitric oxide thereby 
reducing O2 stress. 

CsA showed 
cardioprotection.  

Halestrap et al 1997
271

 Isolated Langendoff 
hearts; CsA 0.2μM 

mPTP inhibition 

 

 

 

 

Greater recovery of LVDP 
and ATP/ADP ratios. 

Lower AMP levels and 
EDP. 

Analogues of CsA were 
also used and they too 
showed protection. 
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Weinbrenner et al 1998
272

 Isolated rabbit hearts; CsA 
and FK506 

Inhibition of phosphatases 
and prolongation of 
phosphorylation state in 
ischaemic cells. 

Reduction of infarct size 
particularly after 
administration prior to or 
10min after ischaemic 
insult. 

Squadrito et al 1999
273

 Rat hearts 

CsA 1mg/kg 

Anti-inflammatory Reduced myocardial 
necrosis, MPO and CPK 
activity, inc myocardial 
contractility. 

Minners et al 2000
274

 Langendorff- perfused 
isolated rat hearts; CsA 

Modulation of 
mitochondrial 
homeostasis. 

DNP and CsA were 
protective.  Trimetazidine 
attenuated 
preconditioning. 

Griffiths et al 2000
275

 Isolated adult rat 
ventricular myocytes; 0.2 
and 1microM CsA 

Suggested mechanisms: 
low dose CsA via mPTP 
inhibition; high dose CsA 
via calcineurin inhibition. 

Cell recovery and 
protection seen in CsA 
treated group. 

Nieman et al 2002
276

 Male  Sprague-Dawley 
rats; CsA 0-25mg/kg 

Modulation of cardiac 
metabolism 

CsA showed 
cardioprotection  

Huei-Wen et al 2002
277

  H9c2 embryonic rat heart-
derived cell lines; CsA 
0.1μM 

1. Reversal of collapse of 
mitochondrial membrane 
potential. 

2.  up-regulation of HSP-
70 and iNOS. 

CsA showed 
cardioprotection. 

Hausenloy et al 2002
278

 Isolated rat hearts; IPC, 
0.2 μmol/l CsA, FK506, 
atractyloside, diazoxide, 
atractyloside, CCPA 

mPTP inhibition via 
activation of 
mitochondrial K(ATP) 
channel. 

Reduction of infarct size 
seen in: CsA, IPC, 
diazoxide.  

Hausenloy et al 2003
279

 Isolated perfused rat 
hearts; 1 μM SfA. 

Inhibition of mPTP 
opening in the first 15min 
of reperfusion. 

Limitation of infarct size 
and protection against O2 
stress. 

Borutaite et al 2003
280

 Langendorff-perfused rat 
hearts; CsA and FK506 

Inhibition of mPTP 
prevents cytochrome c 
release. 

CsA prevented ischaemic 
changes and thus 
apoptosis.  FK506 not 
protective. 

Schneider et al 2003
281

 Isolated atrial appendage; 
CsA 0.2microM/L and 
insulin 5mU/mL 

CsA causes slight decrease 
in ATP production which 
inhibits mitoKATP (as 
mitoKATP is inhibited by 
ATP). Opening of mitoKATP 
is protective. 

Both agents protective, 
insulin more so than CsA. 

Ganote et al 2003
282

 CCCP ischaemia on 
Isolated rabbit 

Reduction of 
mitochondrial swelling by 

Cardioprotection- additive 
with both; swelling 
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cardiomyocyte; CsA and 
IPC, NIM 811 

pore inhibition. reduced by CsA; NIM 811 
also protective. 

Hausenloy et al 2004
283

 Adult rat myocytes; 0.2μM 
CsA and 0.4 μM N-methyl-
4-valine-CsA 

Suppression of mPTP in 
the presence of O2 stress. 

Promotes cell survival. 

Bes et al 2005
284

 Rat cardiomyocytes; CsA 
(100 and 1000 ng/ml) 

Direct, pleiotropic 
protection against 
metabolic, structural and 
stress signalling changes. 

Preservation of 
mitochondrial function 
and cell viability. 

Shanmuganathan et al 
2005

285
 

IRI on human atrial tissue; 
CsA 0.2micromol/l and SfA 
1micromol/l 

Inhibition of mPTP during 
reperfusion 

Cardioprotective via 
improved survival. 

M. Nathan et al 2005
286

  FK506 (0.2μM/l) vs 
CsA(0.2μM/l )- isolated 
perfused rat hearts. 

mPTP inhibition The inhibitory effects of 
calcinuerin were shown 
not to play a role.  

Argaud et al 2005
287

 Male NZW rabbits. CsA vs 
NIM811.   

mPTP inhibition The inhibitory effects of 
calcinuerin were shown 
not to play a role. 

Lim et al 2007
288

 Looking for role of mPTP 
in cardioprotection.  
Male/female wide type or 
CyP-D knockout mice; 
Diazoxide; CsA; IPC; SfA; 
bradykinin. 

Inhibition of mPTP. No cardioprotection in 
CyP-D knockout mice 
indicating that mPTP 
crucial for 
cardioprotection. 

J.E. Xie et al 2007
289

 Male Sprague-Dawley rats 
(in vivo); CsA 10mg/kg. 

Inhibition of mPTP. Reduction in infarct size. 

Fang et al 2008
290

 Is Post(con) protective 
against IRI; Sprague-
Dawley rats; Post(con), 
IPC, CsA. 

mPTP inhibition All show Cardioprotection 
resulting in smaller infarct 
size. 

Ovize et al 2008
291

  Patients presenting with 
STEMI undergoing PPCI up 
to 12hrs after onset of 
chest pain; CsA 2.5mg/kg. 

mPTP inhibition Significant reduction in 
CK-MB and infarct size. 

Key: LVDP- left ventricular diastolic pressure, EDP- end-diastolic pressure,FK506- tarcrolimus, MPO- 

myeloperoxidase, CPK- creatine phosphokinase, DNP, HSP-70- heat shock protein-70, iNOS- induced nitric-oxide 

synthase, mitoKATP, IPC- ischaemic pre-conditioning, Post(con)- ischaemic post-conditioning, CK-MB- Creatinine 

kinase-MB. 
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1.6.2. Protecting major organs from ischaemia reperfusion injury using CsA 

 

Liver transplantation remains the definitive mode of treatment for fulminant hepatic failure 

and end-stage liver disease292.  This  form of treatment however, is unpredictably predisposed 

to hepatic ischaemia which can ultimately result in tissue injury and graft dysfunction- an 

important cause of death in liver transplantation293.  The process of liver donor storage (cold) 

followed by warm reperfusion can itself result in hepatic ischaemia and the protective effects of 

CsA have been thoroughly investigated within this setting with beneficial results294.  The 

mechanism for hepatic injury rests on the production of oxygen free-radicals namely hydrogen 

peroxide and superoxides295.  These tend to accumulate during the following conditions: 

 Ischaemia- as aerobic metabolism is lost296. 

 Neutrophil infiltration- production of myeloperoxidase297. 

 Mitochondrial dysfunction- influx of calcium and reactive oxygen species production298. 

 

Oxygen free radicals cause cellular damage through the destruction of polyunsaturated fatty 

acids located within cell membranes via a process known as lipid peroxidation299;300.  As a 

result, cellular disintegration ensues resulting in tissue injury and organ failure. 

It is now accepted that the effects of IRI are widespread, affecting all the major systems, 

resulting in irreversible damage to tissues and ultimately organ dysfunction.  

The concept of ‘no flow’ phenomenon301 with reference to skin reconstructive surgery has been 

widely debated.  It is thought that the slowing of blood flow during periods of ischaemia results 
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in ‘no flow’ within the microcirculation302.  Although a complex phenomenon, prostaglandins 

and oxygen free radicals have been identified as playing a major role along with other 

inflammatory mediators, their effects accounting for significant morbidity after microvascular 

flap and reconstructive surgery303. 

Kucukcelebi and Ozcan designed a study to determine whether CsA could limit the detrimental 

effects of ischaemia-reperfusion injury in island skin flap in rats304.  They found that 10mg/kg of 

CsA diluted in normal saline significantly improved the survival of skin flaps after being 

subjected to ischaemia305.  This study was the first to demonstrate the protective effects of CsA 

against ‘no flow’ phenomenon and led the way for its administration in other forms of 

replantation surgery306. 

The effects of gut ischaemia have been implicated in the severe and life-threatening condition 

known as Necrotising Enterocolitis307.  This debilitating gastrointestinal syndrome affects 

severely premature infants leading to sepsis, DIC, intestinal perforation, peritonitis and even 

death308.  Puglisi et al sought to attenuate the inflammatory cellular changes associated with 

gut ischaemia using CsA and aimed to quantify their results using computerised 

morphometry309.  They successfully showed that CsA played a role in reducing IRI in the gut 

with the preservation of mucosal cell function and a reduction in villous destruction310. 

The effects of IRI on the kidneys can manifest itself as acute renal failure or allograft failure in 

the case of renal transplantation311.  Singh et al sought to determine whether CsA could offer 

any protection within this setting.  After kidneys had been subjected to IRI they were able to 

show that at a dose of 3mg/kg, CsA could significantly improve renal function (improved urea 
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and creatinine clearance) and preserve kidney morphology (with a normal glomeruli and only 

slight oedema of tubular cells)312.  

The first report to demonstrate the protective effects of CsA against ischaemic reperfusion 

injury in the brain came in 1992.  Shiga et al administered Male Wistar rats with CsA 

15mg/kg/day orally for 5 days preceding the ischaemic insult which took the form of occlusion 

of the middle cerebral artery313.  They were able to show a significant reduction in brain 

oedema in the CsA treated group along with a significant reduction in infarct size- with the 

effect more pronounced in the cerebral cortex than in the basal ganglia314.  The mechanism 

proposed was that of immuno-suppression- the binding of CsA to cyclophilin A leading 

ultimately to the inhibition of T helper cells315. Since then other mechanisms have been 

proposed, including the inhibition of mPTP opening316, the reduction of the efflux of free fatty 

acids317 and the possible role of the activation of the mitoKATP channel318.  
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Table 1.02: A summary of studies investigating the protective effects of CsA on other organs. 

Organ  Study Aim  Intervention  Proposed 
mechanism 

Outcome  

Liver  Yamanoi et 
al 1991

319
. 

Adult mongrel 
dogs- to protect 
against IRI in liver. 

CsA 10mg/ml; effects 
of allopurinol and 
methylprednisolone 
were also investigated. 

Possibly by 
stimulating the 
proliferation of 
hepatocytes. 
Mechanism 
unclear. 

Better survival 
rates and reduction 
in hepatic injury 
with CsA. 

 Kim et al 
1991

320
. 

Male pigs 10mg/kg CsA oral for 4 
consecutive days  

Inhibition of 
macrophages and 
prevention of 
intravascular 
coagulation. 

Reduction of 
hepatic injury; 
improved survival. 

 Goto et al 
1990

321
. 

Male Wistar rats- 
to protect against 
IRI- rat liver 
transplant model 
used. 

10mg/kg CsA for 3 
days. 

Inhibition of lipid 
peroxidation by 
free radicals and 
suppression of 
endothelial injury. 

Improved survival. 

 Kurokawa 
et al 
1992

322
. 

Male Wistar rats- Pre-treatment with 
10mg/kg CsA iv; 

Membrane 
stabiliser.  

Improved recovery 
of mitochondrial 
function; 

 Suzuki et al 
1993

323
. 

Male Sprague-
Dawley rats- 
protect against IRI 
in liver. 

5mg/kg CsA; 0.3mg/kg 
FK506 also used. 

Inhibition of 
neutrophil 
infiltration. 

Reduction in liver 
injury and cell 
membrane damage 
(MDA levels). 
Improved survival. 

 Konukoglu 
et al 
1998

324
. 

Male Sprague-
Dawley rats- to 
protect against IRI 
in liver. 

CsA 25mg/kg; effect of 
ibuprofen also 
investigated. 

Inhibition of 
cytokine 
production, 
mitochondrial 
dysfunction and 
neutrophil 
adhesion. 

Improved survival. 

 Travis et al 
1998

325
. 

Mongrel pigs- 
protect against 
normothermic IRI 
in liver.   

20mg/kg CsA Anti-inflammatory- 
inhibit lymphocyte 
proliferation and 
decrease neutrophil 
migration. 

Prevention of 
hepatic injury and 
speeding recovery. 

 Mizuta et al 
1999

326
. 

Male Wistar rats- 
protection against 
warm-ischaemic 

CsA dissolved 5mg/mL 
oral; FTY720 was also 
investigated. 

Inhibiting free 
radicals via 
suppression of 
neutrophil 

Decrease in 
circulatory 
lymphocytes and 
PMNs; reduction in 
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reperfusion. migration. hepatic damage; 

 Ishii et al 
1999

327
. 

Female Sprague-
Dawley rats 

10mg/kg CsA oral for 4 
consecutive days  

Modulation of TNF 
production. 

Improved survival. 

 Leducq et al 
2000

328
. 

Perfused rat livers. 2μM/L CsA Prevention of mPTP 
opening. 

Prevention of 
mitochondrial 
dysfunction. 

 Saxton et al 
2002

329
. 

Male Sprague-
Dawley rats 

30mg/kg CsA oral Reduction of 
neutrophil 
infiltration. 
Inhibiting the 
upregulation of Fas 
gene expression.  

Decrease in 
necrosis; inhibition 
of apoptosis; 
decrease 
neutrophil 
infiltration. 

 Plin et al 
2004

330
. 

Male Wistar rats- 
to protect against 
CPWR. 

1μMCsA  Inhibition of mPTP 
opening. 

Partial protection 
against CPWR. 

 Theruvath 
et al 
2008

331
. 

To protect against 
IRI in  rat liver 
transplantation 

10mg/kg of NIM811; 
minocycline  

Inhibition of mPTP 
opening. 

Attenuation of 
graft injury and 
improvement in 
graft survival with 
both agents. 

Brain  Shiga et al 
1992

332
. 

Male Wistar rats- 
to prevent IRI by 
MCAO. 

CsA 15mg/kg/day for 
5days. 

Immuno-
suppression.  

Reduction in brain 
oedema and infarct 
size. 

 Friberg et al 
1998

333
. 

Male Wistar rats- 
to prevent 
hypoglycaemic 
induced brain 
damage. 

CsA 50mg/kg iv; 

FK506 2mg/kg iv. 

Inhibition of mPTP 
opening. 

Decreased 
hypoglycaemic 
brain damage.  

 Li et al 
2000

334
.  

Male Wistar rats- 
to prevent IRI in rat 
brain. 

CsA 10mg/kg via 
carotid artery. 

Immuno-
suppression and 
mPTP inhibition. 

Decreased cerebral 
damage and 
improved survival. 

 Phillis et al 
2002

335
. 

Sprague-Dawley 
rats- to prevent IRI 
in rat brain. 

CsA 5μM (other 
immune-suppressants 
were also investigated). 

Immuno-
suppression and 
inhibition of mPTP 
opening led to 
reduction in efflux 
of FFAs. 

Prevent neuronal 
injury.  

 Santos et al 
2003

336
. 

Adult male 
C57BL/6 and 
FVB/N mice- to 
prevent neuronal 
damage 

CsA 5, 10, and 
20mg/kg; FK506 
0.5mg/kg. 

Maintaining 
mitochondrial 
integrity 

Protection of 
hippocampal 
neurons against 
excitotoxin cell 
death. 
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 Korde et al 
2007

337
. 

Male Sprague-
Dawley rats- IRI via 
CCA and MCA 
occlusion 

NIM811 50mg/kg Inhibition of mPTP 
opening. 

40% protection 
against transient 
focal cerebral 
ischaemia 

 Wu et al 
2006

338
. 

Male Sprague-
Dawley rats- to 
prevent IRI by 
MCAO. 

CsA 0.5/1μmol/L; other 
agents were also used. 

Inhibition of mPTP 
opening and 
possibly activation 
of mitoK ATP 
channel. 

Reduction in brain 
damage and 
improved 
neurological score.  

Skin 

 

Kucukcelebi 
et al 
1992

339
. 

Skin flap survival- 
Male Sprague-
Dawley rats. 

10mg/kg CsA. Protection against 
no flow. 

Improved survival 
of skin flaps. 

 Askar et al 
2002

340
. 

Cremaster muscle 
of male Sprague-
Dawley rats. 

CsA. Inhibition of 
leukocyte 
infiltration. 

Decrease in 
neutrophil 
infiltration; 
preservation of 
capillaries. 

Gut  Puglisi et al 
1996

341
. 

Sprague-Dawley 
rats- gut. 

5mg/kg subcutaneous 
CsA.  

Anti-inflammatory. Preservation of 
mucosal structure 
and function. 

 Puglisi et al 
1996

342
.  

Sprague-Dawley 
rats- small bowel. 

5mg/kg CsA and 
2mg/kg rifampicin. 

Anti-inflammatory. Reduction of 
xanthine oxidase 
free radical leading 
to decrease cell 
membrane 
damage. 

Kidney Zhu et al 
2002

343
. 

Sprague-Dawley 
rats- to prevent IRI. 

CsA 1.5mg/kg stat 
followed by 
1.5mg/kg/day for 7 
days. 

Inhibition of 
neutrophil 
infiltration and 
mPTP opening. 

Renal protection. 

 Singh et al 
2005

344
. 

Male Wistar rats- 
to prevent IRI in 
vivo kidneys. 

3mg/kg CsA. Increased 
expression of HSP 
and inhibition of 
apoptotic pathway. 

Renal protection. 

Key: PMN- polymorphonuclear leukocytes, TNF- tumour necrosis factor, CPWR- cold-preservation warm 

reperfusion , IRI- ischaemia reperfusion injury, MCAO- middle cerebral artery occlusion, FFA- free fatty acids, CCA- 

common carotid artery, MCA- middle cerebral artery, HSP- heat shock protein. 
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1.6.3. The clinical limitations of cyclosporin A 

 

Despite the existence of substantial evidence supporting the protective effects of CsA both in 

animal models and more recently in the clinical setting, its use is not without reservation.   

Studies have shown that CsA may either directly or indirectly cause cardiac toxicity.  

Owunwanne et al showed that after the subcutaneous injection of CsA in rats, there were 

histological evidence suggesting direct cellular injury to myocytes345.   Hutcheson et al 

suggested that CsA induced cardiotoxicity indirectly through its inhibition of Ca2+ ATPase (a 

calmodulin-dependent enzyme) and nitric oxide synthase (NOS) in the rat myocardium.  They 

went on to show that these effects could be reversed by fructose-1,6-diphosphate346.  Some of 

the other undesirable effects associated with cyclosporin A including nephrotoxicity, 

anaphylaxis, immuno-suppression and hypertension, have been attributed to the vehicle347 

rather than the agent itself, and also to its affinity for other molecular targets including 

calcineurin. 

These potential limitations have created a conundrum prompting researchers to develop an 

agent that could be more specific in its targeting action. 

Crompton recently showed that the limitations of CsA are largely due to its interactions with 

the other cyclophilins.  He confirmed that CyP-D played a major role in the energy failure of the 

cell and that by specifically targeting the mitochondria, the protective effects of CsA could be 

enhanced348. 

By allowing CsA to bind with triphenylphosphonium (TPP+), the complex was able to enter 

electrophoretically into the negatively charged inner mitochondrial membrane where it could 
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interact only with CyP-D348.  Using hippocampal neurons from Sprague-Dawley rats, the team 

induced IRI through oxygen and glucose deprivation.  They showed a 50% reduction in mortality 

using 0.8µM of mtCsA (CsA-TPP+).  CsA in comparison was less effective than mtCsA as larger 

concentrations tended to obliterate protection348.   

Crompton concluded that the protective effects of CsA could only be fully understood by 

specifically targeting the mitochondria using mitochondrial-specific CsA (mtCsA)348.  This 

concept is in part supported by previous studies using CsA analogues including NIM 811, 

sanglifehrin A, Debio 025 and SMB2-CsA all of which avoid the effects of calcineurin. 

1.7. Cyclosporin A in cardiac bypass surgery 

 

It has been my hope to convince the reader that CsA, an agent known for its profound 

immunosuppressive effects, may also harbour cardioprotective benefits by its action on the 

mitochondrial permeability transition pore through its inhibition of cyclophilin D.  Numerous 

studies have demonstrated using animal models, its effect in attenuation myocardial injury, 

while others have shown similar protective effects in other major organs.  The landmark study 

by Piot and colleagues was the first to demonstrate the presence of mPTP in humans as well as 

the potential of inhibiting the pore and bringing about protection349.  Future efforts are 

directed at the development of agents that can target the pore specifically thereby avoiding 

unwanted side-effects.  So far, it remains undetermined whether mPTP inhibition can be a 

target in patients undergoing cardiac bypass surgery and as such, this question formed the basis 

of my research hypothesis.   
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1.8. ‘Conditioning’ in cardiac bypass surgery 

 

Despite advances in surgical techniques and anaesthetic management, CABG surgery continues 

to be associated with significant morbidity and mortality particularly in high risk patients 350.  In  

chapter 5, we explore the cardioprotective potential of ischaemic preconditioning (IPC), a 

potent endogenous strategy that starts with the activation of membrane receptors that 

subsequently stimulate a protective protein kinase cascade, ultimately finishing with the 

inhibition of the mPTP downstream.   

The beneficial effects of ischaemic preconditioning in the setting of cardiac surgery have been 

substantiated in numerous proof-of-concept studies.  Its effect on robust outcomes such as 

mortality has not been verified by larger studies for a number of reasons.  Firstly, cardiac 

surgeons have been reluctant to apply this invasive cardioprotective strategy due to the 

inevitable prolongation of the duration of surgery.  In addition, the number of cycles required 

to establish protection has never been clearly defined. Thirdly, the process of aortic clamping 

and de-clamping holds a substantial thrombo-embolic risk particularly in the elderly.  Therefore, 

emergence of a concept that implements sub-lethal episodes of ischaemia to one vascular bed 

resulting in a protective benefit at a distant vascular bed was welcomed by many in the field.  

1.8.1. Remote ischaemic conditioning 

In 1993, Przyklenk and colleagues were the first to demonstrate the concept of remote 

ischaemic preconditioning in a proof-of-concept study using a canine model351.  A 

preconditioning protocol of ischaemia and reperfusion was applied to the left circumflex artery 

5 minutes prior to the occlusion of the left anterior descending artery (LAD) for one hour.  They 
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showed a 35% reduction of infarct size in the LAD territory in the preconditioned group 

compared with the control352. 

This landmark study did not only re-ignite the field of cardioprotection but contributed to the 

underlying mechanism of preconditioning by excluding the role of collateral perfusion albeit a 

major determinant of infarct size353. 

Cardioprotection induced from distant organs has since been demonstrated with the 

preconditioning protocol applied from the kidney, the intestine, and the limb354(Reviewed by 

Lim et al355). Birnbaum et al showed that transient limb ischaemia in rabbits brought about 

preconditioning of the heart356.  They were able to demonstrate a 65% reduction of infarct size 

expressed as a ratio of area at risk (p=0.0006)357.  The use of transient ischaemia of skeletal 

muscle to implement RIPC is now regarded as a potent cardioprotective strategy.  Kharbanda 

and colleagues demonstrated a significant protective benefit in a porcine model against CPB-

induced tissue injury358. The animals were subjected to 180 minutes of CPB, including 120 

minutes of aortic cross-clamping, followed by reperfusion.  RIPC was induced by 4 cycles of 5 

minute ischaemia/ reperfusion prior to the institution of CPB.  The results demonstrated a 

significant attenuation in experimental myocardial injury as well as a reduction in endothelial 

dysfunction in humans359. 

Schmidt and colleagues defined the concept of remote perconditioning after demonstrating 

using brief intermittent limb ischaemia, significant protection during an evolving myocardial 

infarction.  They identified the role of ATP-dependent potassium channels as part of the 

underlying mechanism360. 
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Andreka et al demonstrated that the use transient limb ischaemia applied after the induction of 

myocardial infarction can be protective.  Defined as remote ischaemic postconditioning, this 

strategy has been shown to protect against reperfusion-induced persistent ventricular 

fibrillation361.   

With the classification of these protective strategies dependent on the timing of the brief 

ischaemic protocol, it is likely that a synergistic effect is possible if these modalities were used 

in combination with one another; perhaps an objective for future studies. 

 

The underlying mechanism that underpins remote ischaemic preconditioning still remains 

unclear.  Many have suggested that similarities are shared with IPC in terms of the role of 

autocoids such as adenosine362 and nitric oxide363, signal membrane receptors, proteins kinase 

cascades, ending with the involvement of the mitochondria via the mPTP and mitoKATP 

channels364.  It still remains unanswered as to how the cardioprotective signal is conveyed from 

the preconditioned organ or tissue to the target organ.  Recently, our institution demonstrated 

that both humoral and neural pathways were integral to this step in the mechanism365.  Using 

anaesthetised C57BL/6 mice, the coronary ischaemia was applied by the ligation of the LAD 

followed by 120 minutes of reperfusion.  RIPC was induced by 3 cycles of 5 minutes femoral 

artery occlusion/ reperfusion.  Some study groups were subjected to femoral vein occlusion 

(humoral pathway), while other groups were subjected to femoral nerve resection and/ or 

sciatic nerve resection (neural pathway).  While RIPC resulted in a reduction of infarct size 

compared with the control group, occlusion of the femoral vein completely abolished the effect 

of RIPC.  Although the resection of both the femoral and sciatic nerves also completely 
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abolished the cardioprotective effects of RIPC, isolated resection of either the femoral nerve or 

the sciatic nerve only partially abolished the cardioprotective effect.  This study confirmed that 

both pathways were required to limit infarct size, however the way in which these two 

pathways interplay still remains unclear366.  We can be reasonably certain that the occlusion of 

the femoral vein acted to prevent washout of cardioprotective factors from the preconditioned 

limb.  The blood-borne carriage of cardioprotective factors is supported by numerous studies.  

In one example, Dickson et al showed that blood from a preconditioned rabbit can reduce 

infarct size in a non-treated rabbit367.  Most recently, Konstantinov et al showed that RIPC 

induced in a recipient pig could reduce the infarct size of the denervated donor heart368.  

Furthermore, a study by Shimizu et al identified the humoral factors to be hydrophilic and less 

than 15kDa369. 

With regards to the neurogenic pathway, we know that RIPC can be abolished by pre-treatment 

with the ganglionic blocker hexamethonium370.  It seems that adenosine371 or bradykinin372 

activate a local neural pathway within the remote organ or tissue, with the need for an intact 

peripheral nervous system being imperative for the delivery of complete cardioprotection. 

Three inter-related events have subsequently been identified: 

1. The generation of endogenous autocoids at the remote organ triggered by the RIPC 

stimuli. 

2. Conveying the blood-borne cardioprotection signal from the remote organ to the heart 

with the subsequent activation of neural pathway(s) mediating the cardioprotective 

effect. 
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3. A series of events occurring at the target organ to confer protection. 

Despite numerous attempts in clarifying the mechanism underlying RIPC, what can be stated 

with some confidence is that gene expression, leukocyte activation and KATP channels have a 

crucial role in the protection induced by brief ischaemia (Reviewed by Saxena et al373). 

The process of preconditioning the heart using brief ischaemia and reperfusion in the limb was 

characterised as a non-invasive procedure in human volunteers by MacAllister’s research 

group374.   Since then, preliminary studies using RIPC have been encouraging albeit with rather 

small sample sizes.  The first of such trials, studied eight male patients undergoing CABG375.  

With the treatment group receiving brief episodes of right upper limb ischaemia, they found 

inconclusive results with respect to cardiac enzymes, which is likely due to the small sample 

size376.   

The first randomised controlled trial carried out by Cheung and colleagues studied 37 infants 

who underwent repair of various congenital defects.  With a longer cross-clamp time compared 

with the previous study, they demonstrated a significant reduction in troponin I and a reduction 

in inotrope requirement377.  The following year, using three cycles of 5 minutes ischaemia and 

5min reperfusion, our group was able to show that the adult myocardium was also amenable to 

protection.  A 43% reduction in troponin T was observed in the RIPC group after intermittent 

cross-clamp fibrillation378.  Following this, we showed that a similar level of protection was 

possible after cold/blood cardioplegia with the same protocol379.  Our group is currently looking 

at diabetic patients undergoing cardiac surgery to assess their predilection for cardioprotection 

after the application of RIPC.  
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Other organ systems have been studied and results in favour of protection have been 

consistent.  Using a more invasive protocol of clamping the common iliac artery, Ali and 

colleagues were able to demonstrate a 27% reduction in myocardial injury in the setting of 

abdominal aortic aneurysm380.  So far, the potential of RIPC seems vast with ongoing trials 

looking at its reno-protective and neuro-protective effects.   

Most recently, Thielman et al provided more evidence in support of RIPC in patients undergoing 

cardiac surgery in the setting of crystalloid cardioplegia381.  Some may argue that this was to be 

expected considering that crystalloid cardioplegia has been shown to be less effective as a 

cardioplegic agent compare with blood due to its deficient oxygen-carrying capability.  

However, this was disputed by Rahman and colleagues who found RIPC induced by 3 cycles of 5 

minute I/R to be of no benefit in patients who underwent elective coronary artery bypass 

surgery via cold-blood cardioplegia382. 

What is ultimately required however is a large randomised-controlled trial looking at harder 

end-points such as post-operative death and peri-operative myocardial infarction.  Our 

institution currently embarking on an EME approved multi-centre double-blind randomised 

controlled clinical trial, investigating the effect of RIPC on clinical outcomes in high-risk patients 

undergoing CABG surgery.  The study titled: ‘The Effect of Remote Ischaemic Conditioning on 

clinical outcomes in Coronary Artery bypass graft Surgery’ or ERICCA study aims to determine 

whether RIPC, a virtually cost-free, non-invasive, non-pharmacological strategy, could improve 

health outcomes in high-risk patients undergoing CABG +/- concomitant valve surgery.  1610 

high-risk patients (additive Euro-SCORE of 6 or more) undergoing CABG +/- valve surgery will be 
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recruited from 12 UK hospitals and randomly allocated to receive either RIPC or control.  It is 

proposed that major adverse cardiac and cerebral events at one year (MACCE-death, MI, 

revascularisation, stroke) would be the primary outcome measured.  The secondary outcomes 

measured would include: peri-operative myocardial and renal injury; length of ITU/ hospital 

stay and inotrope score; 6 minute walk test; quality of life analysis and cost-effectiveness 

analysis.  A sub-study analysis of LV systolic function would be carried out using 

echocardiography. 

Table 1.03: A summary of studies investigating the cardioprotective effects of RIPC in human 

cardiac surgery. 

 

Study No. Intervention 
(RIPC) 

Myocardial 
preservation 

Mean aortic 
cross-clamp 
time 
(RIPC/control) 
in minutes 

Outcomes  

Gunaydin et al 
2000

383
 

8 male 
patients 

Two cycles (3min 
ischaemia, 2min 
reperfusion) 

CABG 37.8/28.5 Reduction in LDH 
levels. 

Cheung et al 
2006

384
-first 

application in 
humans 

37 infants Four 5min cycles 
of upper limb 
ischaemia 

Repair of 
congenital 
defects- blood 
cardioplegia 

55/59 Significant 
reduction in 
troponin I; less 
inotrope 
requirement and 
significantly less 
airway 
resistance. 

Hausenloy et al 
2007

385
 

57 patients Three episodes 
(5min ischaemia, 
5min reperfusion) 

CABG- ICCF Control 45; 
RIPC 36 

cTnT reduction of 
43%. 

Ali et al 2007
386

 82 patients Two cycles (10min 
ischaemia, 10min 
reperfusion)- 
clamping of 
common iliac 
artery. 

AAA  27% reduction in 
myocardial 
injury. 
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Venugopal et al 
2009

387
 

45 patients Three episodes 
(5min ischaemia, 
5min reperfusion) 

CABG- cold blood 
cardioplegia 

Control 65; 
RIPC 53 

Absolute cTnT 
reduction by 
42%. 

Zhou et al 
2010

388
 

60 infants Two episodes 
(24hr and 1hr 
preop)- three 
5min cycles of L 
upper limb- for 
early and late 
phase protection. 

VSD repair- 
cardioplegia 

24.13/24.17 Significantly 
lower cardiac 
enzyme release; 
no difference in 
EF; less inotrope 
need 

Thielmann et al 
2010

389
 

53 patients 3 x 5min cycles of 
L upper arm 
ischaemia. 

CABG- standard 
crystalloid 
cardioplegia 

 Peak post-op 
cTnI 
concentrations 
significantly 
reduced. 

Rahman et al 
2010

390
 

162 patients 3 x 5min cycles of 
L upper arm 
ischaemia. 

CABG- blood 
cardioplegia 

80 RIPC/ 82 
control 

RIPC did not 
reduce troponin 
release, improve 
haemodynamics, 
or enhance lung 
or renal 
protection. 

Key: CABG- coronary artery bypass graft surgery, LDH- lactate dehydrogenase, cTnT- cardiac troponin T, ICCF- 

intermittent cross-clamp fibrillation, AAA- abdominal aortic aneurysm, RIPC- remote ischaemic preconditioning, 

VSD- ventricular septal defect. 

Over the last four decades cardioprotection in the setting of cardiac surgery has steadily 

progressed particularly with the improvement of general anaesthesia.  However, as society 

evolves and demographics change, cardiac surgery is destined to become even more 

challenging with an inevitable increase in peri-operative morbidity and mortality despite pre-

existing strategies of cardioprotection. 

It is likely that the future of cardioprotection will lie not only in our understanding of cellular 

and mitochondrial pathways of protection but also in the discovery of viable pharmacological 

targets which present minimum risk to patient safety peri-operatively.  This along with the 
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support of large randomised controlled trials is likely to revolutionise cardioprotection for the 

21st century. 

1.9. Indicators of myocardial injury in cardiac surgery 

 

Since its conception in 1997, troponins have enjoyed widespread use as detectors of myocardial 

injury and infarction in the setting of acute coronary syndromes (ACS).  There higher specificity 

and sensitivity for myocardial injury compared with their pre-existing counterparts myoglobin 

and creatine kinase MB, have more recently highlighted the seriousness of this injury in the 

setting of cardiac surgery.  However, it is the correlation of elevated troponins with mortality 

that has geared our research team into studying novel ways and strategies in which this injury 

could be attenuated. 

Assessing the effectiveness of cardioprotective strategies deployed in cardiac surgery requires 

accurate and reliable documentation of myocardial injury.  Clearly the gold standard for 

measuring outcomes is the documentation of mortality and/ or the occurrence of peri-

operative myocardial infarction.  The incidence of peri-operative mortality in CABG surgery has 

been documented at 1.9% rising to between 5-7% in complex cardiac surgery (CABG+ valve or 

redo CABG)391.  The incidence of post-operative myocardial infarction has been recorded at 

about 2% in most studies.   These variables being relatively low would therefore require large 

studies that would supply sufficient power for reliable comparisons to be made and conclusions 

drawn. 

Haemodynamic parameters for assessing myocardial function such as pulmonary artery balloon 

catheterisation and nuclear vetriculography do give reproducible results.  However the invasive 
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nature of the procedure carries a morbidity risk which renders it unusable in the clinical or 

research setting392. 

1.9.1. Serum biochemical markers 

  

The serum biochemical markers can be divided into 3 groups: enzymatic, non-enzymatic 

cytoplasmic, non-enzymatic non-cytoplasmic393.   The main limitation with regards to serum 

biomarkers lie with their non-specific release from both skeletal muscle and the myocardium 

during cardiac surgery394.    

i) Myoglobin 

 

Myoglobins are low molecular weight cytoplasmic proteins present in cardiac and skeletal 

muscle.  They show a rapid rise in plasma concentrations during myocardial injury as a result of 

cellular membrane disruption and so give valuable information on the timing of injury.  Its 

specificity is improved when measured within the coronary sinus and when simultaneously 

measured with carbonic anhydrase III395.  While skeletal muscle injury shows a rise in both 

proteins, myocardial injury is associated predominantly with myoglobin release396.   The 

measurement of myoglobin in the setting of cardiac surgery is usually made in conjunction with 

other cardiac biomarkers when detecting myocardial injury. 

ii) Fatty-acid-binding protein 

 

Fatty-acid-binding proteins (FABPs) are early markers of myocardial injury and serum and urine 

levels tend to be elevated in myocardial infarction.  They are rapidly excreted and therefore 

require frequent early sampling and rapid assays397. 
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iii) Creatinine kinase (CK) 

 

Creatinine kinase plays a role in transferring high energy phosphate from ATP to form creatine 

phosphate398.  It is not excreted in the urine and therefore not affected by renal impairment.  

Its isoenzymes are defined by the presence of subunits M and B; MM found predominantly in 

striated muscle, BB in the brain and MB in the heart399.  The isoforms MB1 and MB2 have been 

identified and seem to offer a more precise diagnosis of myocardial injury400.  However due to 

the technical difficulties involved in the electrophoretic analysis, their use is limited in the 

research and clinical setting.   

iv) Troponin 

 

Troponins are regulatory proteins that are located within striated muscle.  Within the healthy 

cardiac muscle, they are bound to the contractile apparatus while some exist within the 

cytoplasm, allowing for very low plasma concentrations.  In injury, Troponins are released in a 

biphasic manner with cytoplasmic release occurring after 3-5 hours due to loss of membrane 

integrity.  This is then followed by a later phase after 5 days corresponding to the destruction of 

the contractile apparatus and cell death401. 

Of all the cardiac enzymes, Troponins are the most sensitive and although some cross-reacting 

exists between myocardial and skeletal Troponin T, modern monoclonal assays are able to 

reduce this to less that 1%.  Troponin I has been shown to be more sensitive that Troponin T 

with the added advantage of maintaining its levels in renal impairment402.   
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(For more on troponin see Section 1.10 Troponin release as a predictor of mortality). 

v) Glycogen-6-phosphorylase 

 

Glycogen-6-phosphorylase is crucial for glycogenolysis and exists as 3 isoenzymes BB, LL, and 

MM.  During myocardial ischaemia, glycogenolysis increases significantly, resulting in the 

release of G6P-BB into the circulation403.  Early studies by Muir and colleagues demonstrated its 

sensitivity for myocardial injury but like Troponin T, it is less reliable in the setting of renal 

impairment or cerebral injury404. 

1.9.2. Imaging findings  

i)   Echocardiography  

 

The advancement of imaging techniques used to assess cardiac structure and physiology has led 

to the discovery of diagnostic modalities that have proven to be both sensitive and specific for 

myocardial injury. 

Tissue Doppler imaging measures the Doppler shift frequencies produced by the contraction 

and relaxation of longitudinal muscle fibres running from the atrio-ventricular annuli to the 

apex405.  This allows for the quantification of both systolic and diastolic function.  Vassalos and 

co-workers were able to demonstrate in paediatric cardiac surgery that a reduction in post-

operative right ventricular velocities was associated with myocardial injury defined by an 

increase in troponin I release406.  A reduction in pre- and post-operative left ventricular 

velocities was associated with longer ventilation times and longer hospital stays.  Incidentally, 

they were able to show that because the damage due to trauma was minimal, the main cause 
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for troponin release had to be ischaemia-reperfusion injury due to prolonged aortic cross-clamp 

time.  They concluded that ischaemia-reperfusion injury was the main contributor to reduced 

contractility with the right ventricle being the most vulnerable anatomically407. 

ii)   Cardiac MRI 

 

It is widely acknowledged that off-pump cardiac surgery offers less myocardial injury compared 

with cardioplegic cardiac surgery408.  However Selvanayagam and colleagues aimed to show 

that this reduction in injury, previously show using biochemical markers, also translated to a 

reduction in myocardial stunning and irreversible myocardial damage409.  Using cine MRI to 

measure LV function and contrast-enhanced MRI to identify irreversible myocardial injury, they 

were able to show a 6% reduction in ejection fraction after cardioplegic surgery compared with 

off-pump surgery.  They postulated that the lower end-systolic volumes seen in off-pump 

surgery resulted in an improvement in left-ventricular function410.  Contrast-enhanced MRI 

showed no difference between the two groups with respect to myocardial injury.  They also 

showed proportionality between aortic cross-clamp times and changes in LV volumes 

suggesting that longer cross-clamp times resulted in an increase in myocardial stunning411.  

1.10. Troponin release as a predictor of mortality 

 

The consequences of peri-operative myocardial infarction (PMI) have been widely documented 

due to the undeniable impact on morbidity and mortality412.  Despite its high incidence (6.4% 

was recorded from the Coronary Artery Surgery trial413) PMI still presents a diagnostic challenge 

to surgeons and clinicians alike.  The ECG and echocardiogram carry limited usefulness in the 

clinical setting as they invariably fail to identify subtle degrees of myocardial injury which may 
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indeed carry prognostic significance.  The emergence of cardiac biomarkers made considerable 

in-roads in addressing this conundrum.   Having previously explored the mechanisms of 

myocardial injury during cardiac surgery, we can now appreciate that irrespective of the 

underlying mechanism, elevations in cardiac biomarker release hold strong prognostic value in 

predicting length of hospital stays414 as well as short and long-term adverse outcomes415. 

Myocardial damage is a continuous phenomenon that occurs universally in all cardiac 

surgery416.  A threshold therefore is needed above which an elevation in cardiac biomarkers can 

be said to indicate prognostically significant damage.  Using a cohort of 3,812 patients 

undergoing CABG, Brener and colleagues showed that an elevation of CK-MB greater than 10 

times the upper limit of laboratory normal (ULN), was a positive predictor of mortality417.  This 

result substantiated the outcomes of preceding data from the GUARDIAN418 and ARTS419 

studied which had shown a similar correlation between elevations of CK-MB and both 6-month 

and one-year mortality respectively. 

The past decade saw the development of commercially available assays for detecting cardiac 

troponin which has since revolutionised cardiovascular diagnostics.  Cardiac troponin isoforms 

(cTnI, cTnT, TnC) are proteins belonging to the thin filament regulatory system of the contractile 

complex.  Troponin T and I are highly sensitive and specific for cardiac muscle (never expressed 

in skeletal muscle) making them appropriate markers for the detection of myocardial injury.  

Troponin C is less useful clinically as it is also expressed in smooth muscle cells (reviewed by 

Baker et al420).  In 2007, the ESC/ACC Joint Task Force redefined PMI, suggesting a cut-off at five 

times the upper limit for laboratory normal (ULN) of biomarkers (preferably troponin) within 
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the first 72 hours following CABG, when associated with the appearance of new pathological Q-

waves or new left bundle branch block (LBBB), or angiographically documented new graft or 

native coronary artery occlusion, or image evidence of new loss of viable myocardium was 

sufficient to make a diagnosis (type 5 MI)421.  This new definition was not without its objections, 

as it remained unproven and lacked validation in the cardiac surgical population.  Nonetheless, 

what is gaining wide consensus is that elevations in cardiac troponin strongly predict poor 

outcomes after cardiac surgery. 

Eigel and colleagues were the first to look at cardiac troponin as a prognostic marker of adverse 

outcomes.  In a study of 540 adult patients, they were able to show that a cut-off at cTnI > 

0.495ng/L was a strong predictor of adverse outcomes with measurements taken after CPB and 

prior to sternum closure422. 

Troponins are preferred over CK-MB for the clinical detection of myocardial injury peri-

operatively as they offer greater accuracy and a higher sensitivity.  This was verified most 

recently by Muehlschlegel and colleagues after the retrospective analysis of data collected on 

545 adult patients who underwent CABG surgery.  They were able to show that cTnI was indeed 

the strongest predictor of 5-year mortality when compared with other diagnostic modalities 

including the ECG and CK-MB423. 

Over the past decade, researchers have consistently demonstrated an association with elevated 

troponins I424-427 and T428;429 with poor in-hospital outcomes.  Many have carried out medium to 

long-term follow-up studies showing that the predictive value of troponin was still validated430-
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432.  However, others have contested these findings, suggesting that CK-MB may be much better 

at predicting long-term outcomes433.  

In paediatric cardiac surgery, Mildh and colleagues were the first to demonstrate a relationship 

between cardiac troponin T and patient survival.  In a study of 1001 children undergoing 

corrective congenital cardiac surgery, they showed that a 24-hour post-operative troponin T > 

5.9µg/L was a powerful predictor of mortality434. 

The emergence of a highly sensitive assay for detecting cardiac troponin is set to lead to 

changes in our understanding of the pathophysiology of coronary artery disease and how we 

interpret elevations in the clinical setting.  The highly sensitive assays are 1000-10,000-fold 

more sensitive than the original first generation assays (Singulex high sensitivity cTnI) and hold 

the potential of improving diagnostic certainty of acute coronary syndromes at time points 

earlier than 10-12hrs.  In addition, they allow for early testing, thereby expediting treatment in 

NSTEMI or discharge from ‘Medical Admissions Units’ due to their high negative predictive 

value435.   

In a recent sub-study of patients taken from the PEACE trial, Omland and colleagues showed 

that elevated levels of highly sensitive cardiac troponin T (hsTnT) were detectable in patients 

with stable coronary artery disease and preserved LV systolic function436.  This elevation was 

shown to have prognostic significance as it was associated with an increase risk of heart failure 

and cardiovascular death.  A rise in troponin level is thought to occur as a result of clinically 

silent ischaemic episodes and small vessel occlusions; inflammatory processes; cardiomyocyte 
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apoptosis; reduced renal clearance; and increased myocardial strain due to pressure or volume 

overload437. 

Despite its promising benefits in acute coronary syndromes, uncertainties remain regarding the 

use of high sensitivity assays in cardiac surgery.  The use of a 99th percentile healthy population 

cut-off as the ULN reduces its specificity for MI diagnosis but does increase the sensitivity of 

myocardial necrosis through which future research in myocardial protection will certainly 

benefit. 
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Table 1.04: A summary of studies investigating the prognostic value of cardiac biomarkers in the 

setting of cardiac surgery. 
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Study Patient number Surgery Cardiac enzyme  Outcome  

Brener et al 2002
438

 3812 adult 
patients 

CABG CK-MB CK-MB elevation x10 
ULN was 
independent 
predictor of 
mortality. 

Eigel et al 2001
439

 540 adult patients CABG Troponin I (after CPB 
and before sternum 
closure) 

cTnI > 0.495ng/L 
was optimal cut-off 
for predicting 
adverse outcomes 

Lasocki et al 2002
424

 502 adult patients CABG or valve  Troponin I cTn I >13ng/ml 
independent 
predictor of in-
hospital mortality. 

Fellahi et al 2003
430

 

 

202 adult patients  CABG Troponin I (peak 
post-op value) 

Trop I >13ng/ml 
associated with 
increased risk of 2-
year mortality. 

Katherisan S. et al 
2004

440
 

 

136 adult patients CABG Troponin T (18-24hr 
post-op) 

TnT > 1.58ng/ml 
strong predictor of 
1-year mortality rate 

Lehrke et al 2004
441

 204 adult patients CABG Troponin T Cardiac troponin T 
>/=0.46ug/L at 
48hrs is associated 
with 4.9-fold 
increase risk of 
mortality. 

Paparella et al 2005
442

 230 adult patients CABG Troponin I (peak 
post-op value) 

Tn I > 13ng/l 
independent 
predictor of in-
hospital mortality.  
Tn I did not predict 
outcome at 2 years. 

Bottio et al 2006
443

 520 adult patients Correction of 
congenital heart 
disease 

Troponin I (peak 
value) 

cTnI >35µg/L lost its 
prognostic 
significance at 12 
months. 

Mildh et al 2006
444

 1001 children Paediatric cardiac 
surgery 

Troponin T (24-hr 
post-op) 

Tn T > 5.9µg/L was a 
powerful predictor 
of death. 

Fellahi et al 2008
426

 184 adult patients CABG or AVR Troponin I In measuring serial 
Tn I release 
compared with a 
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Despite the benefits gained from cardiac bypass surgery, post-operative mortality rates remain 

high particularly in high-risk patients undergoing more complex procedures.  Therefore, the 

need for novel cardioprotective measures has never been more paramount in the clinical 

setting.  In the next chapter, I set out the hypothesis and objectives which form the basis of this 

thesis were I look at the role of mPTP inhibition as well as the benefits of targeting the RISK 

pathway through remote ischaemic preconditioning. 

single 24-hr 
measurement- both 
equally good at 
predicting in-
hospital outcome. 

Buse et al 2009
445

 741 adult patients CABG Troponin T (day 1 
and day 2 post-op) 

Troponin T > 0.1µg/L 
positive predictor of 
12-month mortality. 

Nesher et al 2008
446

 1918 adult 
patients 

CABG, valve, 
CABG+valve 

Troponin T (peak 
levels in 24hr) 

cTn T >0.8µg/L 
associated with 
increased MACE. 

Muehlschlegel et al 
2009 (retrospective 
analysis from 
prospectively collected 
data)

447
. 

545 adult patients CABG Troponin I  Compared with ECG 
and CK-MB, cTnI was 
strongest predictor 
of 5 year mortality. 

Mohammed et al 
2009

448
 

847 adult patients  Troponin T (in 24hr 
post-op) 

A linear association 
demonstrated 
between cTnT and 
length of stay and 
ventilator hours; 
cTnT independently 
prognostic for 
death, death or HF, 
death or need for 
vasopressor and the 
composite of all 3. 

Van Geene et al 2010
449

 938 adult patients CABG or valve Troponin I (at 1 
hour) 

cTn I > 4.25nl/L as 
optimal cut-off for 
predicting in-
hospital mortality. 
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3.6. Risk stratification in cardiac surgery 

3.6.1. EuroSCORE 

 

European system for cardiac operative risk evaluation (EuroSCORE) was developed in 1995 and 

first published in 1999 to provide a simple additive risk model to cardiac surgery450.  Its use has 

since evolved into a decision-making tool to identify ‘high-risk patients’ and determine 

mortality.  It has subsequently gained wide acceptance across Europe, Asia and Africa. 

Two models exist- the additive (initial model now thought to underestimate risk) and the 

logistic (based on logistic regression) risk stratification models451.  It is the logistic model that is 

increasingly used to justify therapeutic decision-making.  However because of the 

methodological limitations of this model, its statistical accuracy has been brought into question 

when used for individual predications.   

Some studies have suggested that the logistic EuroSCORE overestimates surgical risk452-454 and 

should therefore be used with caution in the decision-making process. 

The score focuses on the complexity of the procedure, the patient’s age, and their co-

morbidities.  It does not take into account pre-operative medical management, improved 

surgical tools, advancements in peri-operative and post-operative care as the score is built on 

retrospective data.  

It has therefore been suggested that the clinical status of the patient must still form the crucial 

basis for medical decision-making. 

Table 3.01: EuroSCORE.  Reproduced from Nashef et al455 
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CHAPTER 2 

2.  Targeting mechanistic pathways for improving cardioprotection in cardiac surgery- 

Hypothesis, aims and objectives 

2.1. Introduction 

 

Coronary artery bypass surgery provides an important option for revascularisation therapy 

particularly for the severest form of coronary artery disease.  This however, is not without 

subjecting the heart to a considerable amount of injury, particularly during more complex 

procedures where the aortic-cross clamp times are prolonged. 

Cyclosporin A is a pharmacological agent that acts directly to inhibit the mitochondrial 

permeability transition pore.  Researchers have investigated the cardioprotective effects of CsA 

in the setting of ST elevation myocardial infarction with promising results albeit in a small 

sample size456.  Cardiac surgery is an ideal model of ischaemia-reperfusion injury and provides a 

setting in which the cardioprotective potential of CsA has yet to be studied. 

Remote ischaemic preconditioning triggers a powerful endogenous cardioprotective cascade 

and its potential has already been demonstrated clinically by a number of research institutions 

including our own.  However, the majority of the evidence is extrapolated from proof-of-

concept studies and a larger recent study by Rahman and colleagues, failed to show any 

statistically significant cardioprotection457.  It is also worth stating at this point that the number 

of cycles and cycle-duration for the optimum preconditioning stimulus protocol has yet to be 

confirmed.  In addition, whether the cardioprotective benefits are more pronounced in more 

complex cardiac surgeries has yet to be demonstrated. 
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2.2. Hypothesis (study 1) 

 

CsA reduces myocardial injury and hastens post-operative recovery in patients undergoing 

cardiac surgery by inhibiting the formation of the mitochondrial permeability transition pore. 

2.2.1. Overall aim (study 1) 

 To study the effect of cyclosporin A on myocardial injury in adult patients undergoing 

coronary artery bypass surgery with or without concomitant valve repair or replacement 

(with blood cardioplegia). 

 To investigate the effect of cyclosporin A on the immediate recovery of other major 

organs post-operatively.  

2.2.2. Objectives (study 1) 

 To administer CsA to randomised patients undergoing elective coronary artery bypass 

graft surgery with or without valve repair or replacement and study its effect on 

myocardial injury. 

 

 To study the effect of CsA on outcomes after elective cardiac surgery- 

Short term outcomes: 

 Duration of ventilation support 

 Duration of ITU stay 

 Inotrope score 
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 Serum creatinine over the first three postoperative days 

 Incidence of atrial fibrillation. 

2.3. Hypothesis (study 2)  

 

Remote Ischaemic Preconditioning reduces myocardial injury in patients undergoing complex 

cardiac surgery (redo CABG or CABG+ aortic valve surgery). 

2.3.1 Overall aim (study 2) 

 

 To study the effect of Remote Ischaemic Preconditioning on myocardial injury in 

patients undergoing complex cardiac surgery (redo CABG or CABG + aortic valve 

surgery). 

2.3.2 Objectives (study 2)  

 

 To study the effect of remote ischaemic preconditioning on myocardial injury in patients 

undergoing elective complex cardiac surgery using intermittent cold blood cardioplegia 

as the technique for myocardial preservation.  
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CHAPTER 3 

3. Enhancing Cardioprotection in the setting of Cardiac Surgery- Study methodology 

 

To elucidate the cardioprotective effects of CsA and RIPC within the clinical setting of cardiac 

surgery, it was thought that a multi-centre randomised-controlled, single-blinded trial would be 

the most appropriate and logistically feasible study-design that would best answer the research 

question. 

During the process of carrying out this research project, numerous departmental restrictions 

and logistical obstacles had to be overcome in the quest to acquire sufficient and tangiable data 

that could subsequently be analysed.   

This chapter highlights the study methology as well as some of the logistical and practical 

challenges encountered.  The process of obtaining the sample size and power calculation is also 

discussed here. 

3.2. Ethical approval and informed consent 

 

The research project was constructed in accordance with the International Conference on 

Harmonisation- Good Clinical Practice (ICH-GCP) guidance.  Research ethics was sought from, 

and successfully approved by the joint University College London (UCL) / University College 

London Hospitals (UCLH) Committees (now known as London Bentham based at Royal Free 

Hospital).  The application form for ethical approval was initially provided by NHS COREC 

(Central Office for the Research Ethics Committees) which has now integrated with the National 

Research Ethics Service (NRES), affiliated to the National Patient Safety Agency.  Since the initial 
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protocol was written the format for ethical approval application is now entirely done on-line on 

the Integrated Research Approval System form and this method was used for recruiting other 

centres as the study expanded into a multi-centre trial.  In addition to the study protocol, the 

patient information sheet, consent form and letter to the patient’s general practitioner were 

also subject to approval by the ethical committee. 

After obtaining ethical approval, a separate application was made to the research and 

development department within UCLH who also acted as a sponsor for the study.  During the 

research period, amendments to the protocol, consent form and information sheet were made 

by myself.  The new versions were clearly numbered and dated. The documents were then 

annotated and categorised as major or minor, and subsequently submitted to the ethical 

committee.  

3.3. Patient selection 

 

There were two approaches through which patients were recruited for the research project.  

Some patients were recruited during the pre-admissions clinic.  Patients would be requested via 

letter to come to the clinic two weeks prior to the date of their elective surgery.  They would 

then be shown a short video of the final steps leading to surgery as well as the processes 

involved during post-operative recovery.  After the video, I delivered a short presentation of my 

research project and supplemented this by handing out a shortened version of the information 

sheet containing details of the study.  Patients were then taken on a tour around the hospital’s 

intensive care unit to allow them to familiarise themselves with the hospital’s surroundings.  On 

their return, those who wished to participate in the study and deemed eligible, were given the 
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full version of the information sheet.  Having read the full version, those still happy to proceed 

were consented for the research study.  They received a copy of the signed consent form with a 

further copy attached to their clinical notes.  The original copy was kept for our records.  On the 

morning of the surgery, patients who had been recruited were approach again to ensure that 

they were still happy to participate in the study. 

The majority of patients were recruited twenty-four hours prior to their elective operation at 

the time of their admission into hospital.  After scrutinising their clinical notes, those deemed 

eligible were approached and given a relatively detailed account of what the study involved 

including the benefits of participating as well as the potential risks involved.  They were then 

given as much time as needed to consider their inclusion into the study.  Those willing to 

participate in the research study were then consented in the appropriate manner. 

3.4. Anaesthetic procedure 

 

The pre-anaesthetic protocol was standardised across the two study centres.  Patients were 

pre-medicated with temazepam (10-20mg) one hour prior to surgery.  They would then receive 

midazolam intravenously while in the anaesthetic room.  This was then followed by the 

insertion of an arterial cannula for invasive BP monitoring.  A large-bore cannula was also 

inserted for the infusion of normal saline solution. 

Anaesthesia was then induced with Fentanyl (5-15 µg/kg), followed by Etomidate (causes less 

haemodynamic instability) or Propofol and this was consistent at both centres.  It is important 

to emphasise at this stage that the type of muscle relaxant used at the two centres were 

different.  The choice of muscle relaxant adopted within the anaesthetic protocol was left to 
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the anaesthetist’s discretion.  The anaesthetists at the Heart Hospital used rocuronium as their 

preferred muscle relaxant while the anaesthetic team at King’s College Hospital chose 

atracurinum as their preferred agent- the differences between the two agents is further 

expanded upon in chapter 4. 

At both centres, the trachea was then intubated and mechanical ventilation started with 

oxygen +/- air.  Anaesthesia was maintained using either a halogenated anaesthetic such as 

Isoflurane or Sevoflurane or with infusion of Propofol administered by target controlled 

infusion to achieve a target plasma concentration of 3 to 8 µg/ml.  Midazolam, Fentanyl and a 

neuromuscular blocking agent were given as required.  Arterial BP, central venous pressure, 

ECG and nasopharyngeal temperature were recorded at set intervals.  The trans-oesophageal 

echocardiogram was used particularly in the setting of valve surgery to ensure a well-seated 

prosthetic valve and a gross assessment of LV systolic function. 

3.5. Surgical procedure 

3.5.1. CABG 

 

The patients selected for CABG surgery tended to have one of the following: left main stem 

disease, multi-vessel disease, double-vessel disease with proximal left anterior descending 

artery involvement with or without angina, myocardial infarction and LV dysfunction. 

Coronary arteries with greater than 70% stenosis were usually bypassed as graft patency is 

compromised if native vessels compete for flow.  The angiographic criteria play a significant 

role in decision-making and surgery remains the treatment of choice particularly when success 

from percutaneous coronary intervention (PCI) is difficult.  
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A short median sternotomy exposes the ascending aorta and aortic valve following which 

standard cannulation techniques are commenced.   

The proximal anastomosis of the free bypass conduits was performed at the ascending aorta 

before or after the distal anastomosis while the aorta was cross-clamped.  A partial occlusion 

clamp was most commonly used but a single clamp technique avoids additional aortic 

manipulation and the risk of neurological injury.  However this technique does pose an 

ischaemic injury risk due to a longer ischaemic time. 

Prior to commencing the distal anastomosis, visual inspection of the epicardium was performed 

were the target native arteries were examined and a strategy for the sequence of anastomosis 

was formulated in the hope of reducing cross-clamp time. 

Overall UK mortality of isolated CABG is 1.5%458.  Usage of bilateral internal thoracic artery is 

associated with significantly better survival than single internal thoracic artery, with a lesser 

need for re-operation or angioplasty. 

3.5.2. Mitral valve replacement 

 

Mitral valve replacement was indicated in the event of symptoms, thrombo-embolic episodes, 

endocarditis, poor pulmonary haemodynamics or a depression in myocardial function.  Mitral 

valve replacement is not generally as satisfactory as a good repair procedure and the possibility 

of a repair is generally considered.   

Anaesthetic technique and monitoring was as standard for all cardiac surgery. 
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As previously mentioned, the trans-oesophageal echocardiogram (TOE) is an important adjunct 

to mitral valve surgery.  It is used to guide repair procedures, confirms unsuitability for repair 

(in cases of calcific masses or severe chordal fusion), and confirm normal function after 

replacement. 

A vertical sternotomy was the commonest approach used as it allowed optical access to the 

aorta for de-airing and defibrillation to take place.   

The cannulation for cardiopulmonary bypass (CPB) occurred before the manipulation of the 

heart to avoid cardiac instability and dislodging of an atrial thrombus.  Separate cannulae were 

placed in the inferior and superior vena cava to allow access to the left atrium.  CPB was 

established with a moderate hypothermia of 320C.  

Following cross-clamping of the ascending aorta, cold blood cardioplegia was delivered via a 

Medicut cannula into the aorta. 

The left atrium was then opened (by an incision close to the right superior pulmonary vein) at 

the start of cardioplegic administration.  The incision continued superiorly toward the left atrial 

roof, and inferiorly in front of the inferior pulmonary vein and behind the inferior vena cava. 

The mitral valve was then exposed using a Cosgrove/ Cooley retractor.  It is at this point that 

the possibility of a mitral repair is considered. 

Resection of the valve was made at the junction of the anterior leaflet and atrial floor; the 

posterior leaflet was left in place and any calcified or fused chordate was removed.  Any excess 

tissue was resected along with any loose chordate which could interfere with the mechanical 
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valve.  Resection of the chordate was done just above the insertion into the papillary muscle 

avoiding transection of muscle itself. 

Anchoring and placement of prosthesis was achieved following a series of complex suturing 

techniques after which the atrium was closed.  De-airing of the heart was aided by ventilating 

the lungs which encouraged left atrial venous return.  Once de-airing was complete the aortic 

cross-clamp was released and regular left ventricular contractions were established. 

3.5.3. Aortic valve replacement 

 

After cannulation of the ascending aorta and the right atrium, CPB was instituted and the 

patient cooled to 300C.  After achieving electro-chemical standstill with cold blood cardioplegia, 

the aorta was opened.  The stenotic or degenerative valve was then removed and 

decalcification of the annulus was performed.  A surgical sponge was placed within the ventricle 

to capture debris which is unavoidable at this stage. 

Careful and diligent work is done to prevent detachment of the aorta from the fibrous skeleton 

of the heart.  Calcification which can extend to the outflow tract and the anterior mitral leaflet 

was removed while avoiding penetration of the Bundle of His. 

Sizing of the annulus was then undertaken followed by complex suturing and implantation of 

prosthesis. 

After the prosthesis was securely implanted, warm retrograde cardioplegia (hot shot) was 

started, and the aortotomy was closed. 
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With the heart de-aired and ejecting, the function of the prosthesis was checked by trans-

oesophageal echocardiography (TOE) to detect any technical problems including paravalvular 

leaks. 

3.7. Serum Troponin-T measurement 

 

Blood samples for the measurement of troponin-T were taken pre-operatively and at 6, 12, 24, 

48 and 72 hours following surgery.  Troponin-T was measured quantitatively by a one-step 

enzyme immunoassay based on electrochemiluminescence technology (Elecsys 2010; Roche).  

The lower detection limit of this assay was 0.01µg/L with a recommended diagnostic range of 

0.03-0.09µg/L indicating possible myocardial injury and a threshold of >0.1µg/L indicating 

myocardial injury suggestive of myocardial infarction. 

The Elecsys TnT assay employs two monoclonal antibodies specifically directed against human 

cardiac troponin T.  The antibodies specifically recognise two epitopes (amino acid position 125-

131 and 136-147) located in the central part of the cardiac troponin T protein, which consists of 

288 amino acids.  The quatitative measurement of TnT is done using the ‘sandwich principle’.  

In the first incubation phase, 50 µL of blood sample together with a biotinylated monoclonal 

cTnT-specific antibody and a monoclonal cTnT-specific antibody labelled with a ruthenium 

complex react to form a sandwich complex.  Streptavidin-coated microparticles are then added 

to the complex during the second incubation phase.  The reaction mixture is then aspirated into 

a measuring cell where the microparticles are magnetically captured onto the surface of the 

electrode.  Unbound substances are then removed with ProCell.  A voltage is then applied to 
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the electrode to induce a chemiluminescent emission which is measured by a photomultiplier.  

Results are then determined using a calibration curve provided via the reagent barcode. 

The area under the curve indicative of absolute troponin release over 72 hours was calculated 

as follows: 

AUC t1-t2 = [(cTnT at t1 hours + cTnT at t2 hours)/2] x (t2-t1) 

AUC72 hours= AUC0-6 +AUC6-12+ AUC12-24+ AUC24-48 + AUC48-72 

Troponin-T analysis could not be carried out at King’s College Hospital as their biochemistry 

laboratory only performed Troponin-I.  An arrangement was set up with the biochemistry 

laboratory at St Thomas’ Hospital, London for blood samples to be centrifuged and the serum 

separated for CK-MB analysis at King’s laboratory and a separate batch frozen (-800C) and 

transported to the biochemistry department at St Thomas’ Hospital for Troponin-T analysis.   

3.8. CK-MB measurement 

 

CK-MB was measured using the VITROS ECi/ECiQ Immunodiagnostic Systems and this 

technology was available at both centres. An immunometric immunoassay technique was used, 

which involves the simultaneous reaction of CK-MB present in a 40 µL blood sample with a 

biotinylated antibody and a horseradish peroxidise (HRP)-labelled antibody conjugate.  The 

antigen-antibody complex is captured by streptavidin (a protein purified from the bacterium 

Streptomyces avidinii) and unbound materials are removed by washing.  
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The bound HRP conjugate is measured by a luminescent reaction.  A reagent containing 

luminogenic substrates and an electron transfer agent are then added. The HRP in the bound 

conjugate catalyses the oxidation of the luminal derivative, producing light. The electron 

transfer agent increases the level of light produced and prolongs its emission.  The light signals 

are interpreted by the system.  The amount of HRP conjugate bound is directly proportional to 

the concentration of the CK-MB present.  

The normal range of the assay was 0-3 ng/ml. 

3.9. Statistical analysis  

 

Standard statistical methods were used for analysis.  The data was assessed in both groups to 

check for normal distribution.  Categorical variables were assessed for differences using the Chi-

squared test.  The significance was interpreted at the 95% confidence interval prior to which 

any inequality of variance between groups was corrected for.  The data was analysed using the 

SPSS statistical software (PASW) version 18. 

4.2. Power and sample size calculation 

 

This clinical study was designed such that our primary end-point (Troponin T AUC over 72 

hours) would be acquired after comparing independent control and experimental subjects with 

approximately 1 control per experimental subject.  In previous studies conducted within our 

institution, Troponin T AUC over 72 hours was normally distributed with standard deviation 

25µg/l459.  As the true difference in total serum troponin T release over 72 hours between the 

experimental and control means was 15µg/l, we calculated that we will need to study 45 
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experimental subjects and 45 control subjects to be able to reject the null hypothesis that the 

population means of the experimental and control groups are equal with probability (power) 

0.8.   The Type I error probability associated with this test of the null hypothesis is 0.05.  The 

study design has been graphically represented in the figure below. 

 

Figure 4.01: The reciprocal relationship between the experimental sample size and the 

difference in population means is shown by the graph below. 

 

 

5.3. Power and sample size calculation 

 

The study was designed such that the continuous response variable (Troponin T AUC over 72 

hours) would be acquired from the analysis of an independent control and experimental 

subjects with approximately 1 control per experimental subject.  In a previous study the 

response within each subject group was normally distributed with standard deviation 25µg/l.  If 
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the true difference in total serum troponin T release over 72 hours between the experimental 

and control means is 15µg/l, we will need to study 45 experimental subjects and 45 control 

subjects to be able to reject the null hypothesis that the population means of the experimental 

and control groups are equal with probability (power) 0.8.   The Type I error probability 

associated with this test of the null hypothesis is 0.05.  The study design has been graphically 

represented in the figure below. 

Figure 5.02: The reciprocal relationship between the experimental sample size required and the 

difference in population means is shown by the graph below. 
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CHAPTER 4 

4. Cyclosporin A reduces Myocardial Injury in Patients undergoing Coronary Artery Bypass 

Surgery and Valve Replacement Surgery 

4.1. Introduction  

 

Coronary artery disease (CAD) is estimated to cost the UK economy £ 7.9 billion a year through 

direct health care costs, public education and productivity loses.  Despite this, the yearly 

mortality stands at 94,000 making CAD the most common cause of death in the UK460.   

We already know that infarct size is the most common cause of mortality and so it seems logical 

that limiting infarct size should form the basis of strategies directed at improving outcomes.  

Currently the mainstay of treatment for acute myocardial infarction is to achieve reperfusion 

through coronary angioplasty or thrombolytic therapy, with CABG surgery reserved for treating 

the severest form of the disease.  However, the evidence for the detrimental effects of 

reperfusion including lethal reperfusion injury is now extensive, with the opening of the 

mitochondrial permeability transition pore playing a major role. It is this that prompted Piot 

and colleagues to look at whether the administration of cyclosporin A at the onset of 

reperfusion reduced infarct size in patients with ongoing acute myocardial infarction461.  Their 

study was the first of its kind to look at the cardioprotective effects of CsA in the clinical setting 

of primary percutaneous coronary intervention.   

In this study, we aimed to determine whether CsA could induce similar cardioprotective effects 

on adult patients undergoing elective coronary artery bypass surgery with or without 

concomitant valve replacement or repair. 
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4.3. Overview of methods 

 

During the initial stages of the study, the rate of recruitment was slow and so it was decided to 

expand the project into a multi-centre study.  It was felt that this expansion would allow us to 

reach the sample size target within the time allocated allowing us to make statistical inferences 

when analysing the data. 

Discussions were held with the research team at Kings College Hospital NHS Foundation Trust, 

another leading cardiac centre that was in the process of embarking on a similar study.  Upon 

agreement on a multi-centre randomised controlled trial, I began the process of gaining ethical 

approval, adding another research centre and drafting a major amendment request. 

After successfully gaining ethical approval with UCL acting as sponsor, attention was focused on 

the logistics of managing a multi-centre study.   

4.3.1. Logistics of multi-centre study 

 

Patient recruitment was conducted via a similar approach as previously mentioned.  

(See chapter 3).  Patients were either consented two weeks prior to their elective cardiac 

surgery in the pre-admissions clinic or consented twenty-four hours prior to their surgery.  

Patients who were deemed eligible for the study were approached by the principal investigator 

at Kings College Hospital on the day before their surgery.  I was then informed by email of the 

eligible patients who had formally consented to participate in the study along with their 

operation times.   
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4.3.2. Patient recruitment 

 

Consecutive adult patients admitted for elective cardiac surgery with or without concomitant 

valve replacement or repair, were recruited from October 2008 to September 2010.  

Recruitment was carried out simultaneously at the Heart Hospital (UCL) and Kings College 

Hospital, two major cardiac centres in London as part of a multi-centre project.  

Patients with moderate to severe renal impairment were excluded because CsA has been 

known to worsen renal function.  It is also known that the excretion of Troponins is impaired in 

these patients potentially distorting the accuracy of the results. 

Patients who had suffered an acute myocardial infarction (MI) were excluded due to the 

elevated Troponins seen for up to two weeks post MI.  It would be difficult to ascertain whether 

an elevation in Troponins was due to the MI or as a result of the injury caused by the surgery 

itself. 

It has been documented that the cardioprotective effects of ischaemic preconditioning is not 

seen in the elderly but no evidence exists suggesting that mPTP inhibition does not occur in this 

patient group.  It was therefore decided that all patients over 18 years and considered fit for 

cardiac surgery were to be recruited.  Ischaemic heart disease affects a predominantly elderly 

population and it is this group that could potentially benefits from a pharmacological 

cardioprotective agent. 

i) Inclusion criteria for cyclosporin A 

 

 All adult cardiac surgery- CABG, valve surgery, redo operations. 
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 Male and female. 

 All ages provided medically fit for cardiac surgery. 

 Informed consent. 

ii) Exclusion criteria for cyclosporin A 

 

 Moderate to severe renal impairment- eGFR< 45 ml/min/1.73sqm. 

 Cirrhotic liver disease. 

 Immuno-compromised conditions eg. Retroviral disease, malignancy, chemotherapy. 

 Recent infective endocarditis (surgery < 4weeks of diagnosis). 

 Uncontrolled hypertension (systolic >160mmHg). 

 Recent myocardial infarction (STEMI or NSTEMI within four weeks before the 

surgery). 

 Angina within 3 days of elective surgery. 

 

4.3.3. Anaesthetic protocol 

 

The anaesthetic protocols used at the Heart Hospital and at Kings College Hospital were similar 

as that previously describe in chapter 3.  The main difference was in the type of muscle relaxing 

agent used in the two centres.   

Rocuronium is the muscle-relaxing agent of choice used at the Heart Hospital.  It has been 

widely available in Europe since 1994 and continues to be a popular amino-steroidal non-

depolarising neuromuscular blocking agent462.  It popularity stems from its rapid onset time, 
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minimal cardiovascular effects with no significant histamine release making bronchospasm an 

extremely uncommon occurrence.  This has led many anaesthetists to prefer rocuronium 

compared to other neuromuscular blocking agents463.   However, there are a number of case 

reports and articles that have highlighted an increase in incidence of both anaphylaxis and 

anaphylactoid reactions after the use of rocuronium; some suggesting that the rise is in 

proportion to the use of the drug.  What remained unclear was how a potential adverse event 

could impact on the research project. 

Atracurium was the main neuromuscular blocking agent used at Kings College Hospital.  It is a 

short-acting relaxant which is rapidly metabolized by the body.  It produces few direct 

circulatory effects, but the absence of vagal blocking activity exposes patients to bradycardias 

during anaesthesia464.  Histamine release is triggered at higher doses but rarely causes 

bronchospasm at standard doses465. 

  

4.3.4. Administration of CsA 

 

Cyclosporin A was administered at a dose of 2.5mg/kg less than 10 minutes before direct 

stenting in Piot’s study466.  This dose was chosen after observations from experimental data 

demonstrated that 2.5mg/kg of CsA was able to reduce infarct size and did not result in any 

significant haemodynamic effect467.  Being the first and only clinical trial to use CsA in the 

setting of myocardial injury, Piot’s study served as an important source of evidence in allowing 

us to gain approval from our hospital pharmacy before placing orders for the drug.   
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CsA has been used for many years as an immuno-suppressive agent.  Its long term use is 

associated with potentially adverse effects including renal and hepatic toxicity, predisposition 

to infections and malignancy.  Acute administration has been linked with anaphylactic reactions 

but these events are deemed very rare, occurring at a rate of 1 in 1900. 

On the morning of the operation, CsA was prepared in the treatment room according to the 

patient’s weight.  A dose of 2.5mg/kg was diluted in 100mls of normal saline fifteen minutes 

prior to induction and stored in the fridge away from direct light.   

Patients were randomised at this point using a computerised sequence generator with the 

control group labelled (A) and the treatment group labelled (B).  This information was known 

only to the investigator (the author) as the surgical and anaesthetic teams remained blind to 

the allocation protocol.  

The bag containing the treatment drug was labelled (B) and the bag containing 0.9% normal 

saline (control) was labelled (A).  No one else was made aware of this labelling structure.  

Immediately after induction, the pre-prepared agent was attached to a drip in the patient’s left 

forearm and allowed to infuse over 30 minutes.  During the infusion, the patient’s vital signs 

were carefully monitored along with any skin changes which may indicate an adverse reaction. 

After the infusion was complete, the line was flushed with normal saline and the patient was 

transferred into theatre to be prepped for surgery. 
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4.3.5. Summary of administration protocol for study 

 

 The control group (A) received 100mls of normal saline which was also infused over 30 

minutes.  

 The treatment group (B) received 2.5mg/kg of CsA diluted in 100mls of normal saline.  

The prepared drug was infused immediately after induction over 30 minutes. 

4.3.6. Secondary end-points 

 

The protective effects of CsA have been shown to extend beyond the myocardium to include 

other major organs such as the brain468, liver327;469-471, kidneys472;473 and gut474;475, albeit in 

animal studies.  Other studies have demonstrated the direct pleiotropic protection exerted by 

CsA on isolated cardiomyocytes476 which along with mPTP inhibition could serve to reduce 

inadequate preload, impaired ventricular function and the subsequent excessive use of 

inotropes.   

The trauma of cardiac surgery predisposes the heart to both atrial and ventricular arrhythmias.  

Atrial fibrillation (AF) can affect normal atrio-ventricular synchrony and result in a 15-20% 

reduction in cardiac output post-operatively.  It is possible that the cardioprotective effects of 

CsA could reduce the incidence of post-operative AF by limiting the inflammatory response and 

subsequent necrosis and scar formation. 

Acute renal failure occurs in up to 30% of patients post cardiac surgery, when defined as a 50% 

increase in serum creatinine concentration above baseline477.  One to five percent of patients 

require dialysis.  A prospective cohort study documented a 30-day mortality of 64% compared 
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to 4% in patients with normal renal function478.  Given the reno-protective effects of CsA in 

previous animal studies it is possible that CsA could have an impact on our treated cohort. 

A series of parameters that are routinely monitored post-operatively were diligently recorded 

on day 0, day 1, day 2, and day 3: 

 Inotrope use (the duration, drugs and dosages were recorded). 

 Atrial fibrillation (paroxysmal or persistent).  

 Hourly urine output during post-operative day one. 

 Daily serum Creatinine measurements over the first 72 hours. 

 Duration of stay in the intensive therapy unit- ITU (defined as the interval from the time 

of admission of the patient from the operating theatre to the ITU up to the time a 

decision was made by the supervising intensivist or surgical team to transfer the patient 

to the high dependency unit or the ward). 

 Duration of ventilation. 

Secondary outcomes measurements were carried out prospectively.  As mentioned earlier, 

patients who developed post-operative renal impairment were excluded from the analysis of 

myocardial injury as troponin T release is overestimated in these patients due to impaired 

excretion of the protein.  However these patients were included for the purpose of measuring 

secondary outcomes. 
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i) Calculation of inotrope score 

The inotrope score provides an objective measurement of the requirement of inotropes in the 

immediate post-operative period.  This was adapted from Ko et al479 and was calculated using 

the maximum inotropic dose administered during the first post-operative day. 

Inotrope score = Dosages (in µg/kg/min) of Dopamine + Dobutamine + [(Adrenaline + 

Noradrenaline + Isoproterenol) x 100] + [Enoxinome x 15] 

ii) Measurement of Acute Kidney Injury (AKI) 

 

The Acute Kidney Injury Network (AKIN) recently proposed a new definition and classification of 

renal injury which could be used as a uniform standard for patient management as well as for 

clinical and translational research480.  This has been validated in the intensive care setting and 

correlated with outcomes in patients admitted to the intensive care unit481;482.  In our patients, 

the AKIN criteria480 were used to define peri-operative AKI 1, 2 and 3 over the first 3 post-

operative days (with the first 24-48 hours in ITU and the following 24 hours in the High 

Dependency Unit- HDU). 
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4.4. Results 

 

A total of 115 patients admitted for elective adult cardiac surgery at both sites were assessed 

for inclusion into the study.  Fifteen patients required urgent coronary artery bypass surgery 

after suffering an acute myocardial infarction; 16 patients had renal impairment with an 

eGFR<45 on admission- as a result, all were unsuitable for recruitment.  One patient had a 

retroviral illness in her past medical history and as such, was deemed unsuitable for consent.   

Six patients refused to take part in the study.   

Of the 77 patients randomised, 4 suffered from renal impairment after the operation; three 

patients were done off-pump and 2 patients met the criteria for peri-operative myocardial 

infarction.  A total of 68 patients went through to the end of the study and a schematic 

representation can be seen below. 
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Figure 4.02: Schematic of patient screening and recruitment change diagram 72 pts 

 

 

Patients screened
(115)

Patient unsuitable
Immunocompromised

(1)
eGFR< 45 

(16)
Urgent surgery 

(15)
Refused

(6)

Patients 
randomised

CsA Control 

Analysed
(33) 

Analysed
(35) 

Patients excluded
Renal impairment 

(2)
Peri-op MI

(2)

Patients excluded
Renal impairment  

(2)
Off pump

(3)

 

Key: eGFR- estimated glomerular filtration rate, MI- myocardial infarction, CsA- cyclosporin A. 
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Table 4.01: Baseline characteristics and patient profile. 

DEMOGRAPICS Control  Cyclosporin A 

Age  
 

67+/- 11.1 70+/- 8.1 

Male 
 
Female  

24 (34.8%) 
 
11 (15.9%) 

27 (39.1%) 
 
7 (10.1%) 

Hypercholesterolemia  19 (27.5%) 18 (26.1%) 

Hypertension  23 (33.3%) 20 (29.0%) 

Diabetes mellitus 7 (10.1%) 7 (10.1%) 

Previous MI 10 (14.5%) 11 (15.9%) 

Previous stroke 4 (5.8%) 4 (5.8%) 

Peripheral vascular disease 2 (2.9%) 0 

Smoking history 
 
Current smoker 
 
Ex smokers 
 
Never smoked 

 
 
2 (2.9%) 
 
18 (26.1%) 
 
15 (21.7%) 

 
 
2 (2.9%) 
 
14 (20.3%) 
 
18 (26.1%) 

Family history of IHD 9 (13.0%) 13 (18.8%) 

Euro SCORE 2.3 2.8 
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Drug History Control  Cyclosporin A 

Anti-platelet  25 (36.2%) 25 (36.2%) 

Anticoagulants 2 (2.9%) 5 (7.2%) 

Βeta-blockers 21 (30.4%) 18 (26.1%)   

Ca-channel blockers 10 (14.5%) 4 (5.8%) 

ACE inhibitor/ATIIRBs 22 (31.9%) 23 (33.3%) 

Diuretics 10 (14.5%) 5 (7.2%) 

Nitrates LA 5 (7.2%) 4 (5.8%) 

Amiodarone  1 (1.4%) 2 (2.9%) 

Statins 29 (42.0%) 26 (37.7%) 

Oral hypogylcaemics 3 (4.3%) 4 (5.8%) 

Insulin  3 (4.3%) 2 (2.9%) 

Table 4.01 continued Key: MI- myocardial infarction, IHD- ischaemic heart disease, ACE- angiotensin 

converting enzyme, ATIIRB- angiotensin 2 receptor blocker, LA- long-acting. 

 

4.4.1. Baseline characteristics- patient profile 

 

The baseline characteristics of the patients are summarised in table 4.01 above.  There were no 

significant differences between the control group and the CsA treated group.  The mean 

EuroSCORE of patients in the CsA sub-study was 2.3 in the control group and 2.8 in the CsA 

group which puts the patients in a low risk category. 
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4.4.2. Baseline characteristics- intra-operative variables  

 

The intra-operative variables of the two groups are summarised in table 4.02.  The average 

cross-clamp time in the CsA treated group is 7 minutes longer than that in the control group 

(66+/-30 vs 59+/-22) but this difference was not significant.  This is likely to be due to one 

patient in the CsA treated group undergoing CABG with aortic and mitral valve replacements. 

Table 4.02: Baseline characteristics- intra-operative variables 

 
Control  Cyclosporin A p value 

Aortic Cross clamp time 
(min)- mean +/- SD 

59 +/- 22 66 +/- 30 
 

Bypass time (min) 
Mean +/- SD 

88 +/- 44 99 +/- 34 
 

Type of surgery 
 
CABG 
 
AVR 
 
CABG+AVR 
 
REDO OP 
 
MVR 
 
CABG+MVR 
 
AVR+MVR 
 
CABG+AVR+MVR 
 

 
19 (54.3%) 
 
5 (14.3%) 
 
4 (11.4%) 
 
1 (2.9%) 
 
3 (8.6%) 
 
0 (0%) 
 
1 (2.9%) 
 
0 (0%) 
 

 
16 (47.1%) 
 
9 (26.5%) 
 
5 (14.7%) 
 
1 (2.9%) 
 
1 (2.9%) 
 
0 (0%) 
 
1 (2.9%) 
 
1 (2.9%) 
 

 
0.599 
 
 

Key: SD- standard deviation, AVR- aortic valve replacement, REDO OP- redo-operation, MVR- mitral valve 

replacement. 

Almost half of the patients in both groups underwent CABG surgery alone, with the second 

most common surgery being isolated aortic valve replacement.  Complex cardiac operations 

tended to be performed with much less frequency (11.4% in control vs 14.7% in CsA treated 
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group), an important observation as this is the group that could potentially benefit from 

cardioprotective interventions. 

4.4.3. Serum concentration of CsA 

 

In Piot’s study measurements of blood concentrations of CsA revealed circulating levels above 

values recommended in transplant patients as early as 1 minute after reflow and for at least 3hr 

after reperfusion483. 

Figure 4.03: High blood concentrations of CsA at the time of reperfusion which will most 

certainly have guaranteed a well saturated myocardium.  (The graph below taken from Piot’s 

study484).  

 

 

 

 

 

 

 

 

 

We measured serum CsA at the time of aortic cross-clamp removal in three patients with the 

following results: 
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Table 4.03: The serum CsA level after cross-clamp removal. 

 

Case number Serum CsA level  (µg/L) 

1 220 

2 582 

3 664 

Normal therapeutic range for CsA 100-400 (µg/L) 

We were only able to measure the CsA serum levels of 3 patients because the laboratory test 

was deemed too expensive to carry out on all the patients recruited.  In addition, securing 

funding prior to starting the recruitment process presented its own challenges that threatened 

to delay the study start date and so this option was abandoned.  Ideally, we would have 

preferred to measure the serum CsA levels in all cases, comparing the pharmacokinetic treads 

with that of Piot’s study.  Despite this, important information was revealed from these three 

cases through which inferences could be made. 

Firstly, it is likely that the levels required to inhibit the mPTP are considerably higher than that 

reached in our study. Very high levels of CsA were reached immediately after transfusion and at 

the time of reperfusion in Piot’s study, and it is likely that this may have had an important 

influence on their findings.   

Secondly, it brings into question whether or not the administration of CsA should have taken 

place at the time at which the aorta was unclamped.  These points are further expanded upon 

in the discussion. 
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4.4.4. Serum troponin T release 

 

Testing for normality  

The data was tested for normality in order to establish the appropriate statistical test to use.  

The skewness and kurtosis of the data were analysed and the Shapiro-Wilk test was applied to 

test for normality. 

Table 4.04: Descriptive statistics of study data. 

Descriptive statistics Skewness Kurtosis 

CsA 1.043 0.037 

Control 2.171 4.714 

Key: CsA- cyclosporin A 

Table 4.05: Testing for normality. 

Tests of normality Shapiro-Wilk test 

CsA 0.001 

Control 0.000 

Key: CsA- cyclosporin A 

The entire study data is not normally distributed and this is demonstrated by the skewness 

being greater than 1 and a kurtosis greater than 0.  I was also able to demonstrate homogeneity 

of variance between the two samples with a trimmed mean of 0.811.  Please see Tables 4.04 

and 4.05 above. 

The data from both the CsA group and the control group are displayed on normality plots and 

summarised on box-plots below.  
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Figure 4.04: Displays the normal probability plot for the CsA group. 

 

The graph above displays the relationship between the expected normal and the CsA group 

data.  The data seem to spiral around the normality line which does not reflect a normal 

distribution. 
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Figure 4.05: Displays the normal probability plot for the control group data. 

 

The graph above displays the relationship between the expected normal and the control group.  

Clearly the data do not lie on the normality line suggesting that the data is not normally 

distributed. 
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Figure 4.06: The box-plots display the data of both the control group and the CsA group.  

 

The box-plots above summarise the study data.  As the data is positively skewed, it was deemed 

appropriate to perform non-parametric tests as the main tool for comparing the two groups. 
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Table 4.06: Application of non-parametric tests for total AUC troponin T over 72 hours 
(mcg/L.72hr) . 

Study group n Mean rank Median  Sum of 
ranks 

Mann- 
Whitney U 

Z-statistic Asymptotic 
Sig. (2-
tailed) 

CsA 34 37.37 17.58 1308.00 617.000 -0.344 0.731 

Control  37 35.68 17.22 1320.00  

Key: CsA- cyclosporin A 

Seventy-one patients were analysed all of whom had a complete data set.  The 34 patients in 

the CsA group had a mean rank of 37.37 and a median total troponin T AUC over 72 hours of 

17.58mcg/L.72hr.  The 37 patients in the control arm had a mean rank of 35.68 and a median 

total troponin T AUC over 72 hours of 17.22mcg/L.72hr.  No significant difference was 

demonstrated between the two groups confirmed by a 2-tailed asymptotic significance of 

0.731. 

Cardiac troponin-T levels were measured preoperatively (baseline) and then at 6, 12, 24, 48 and 

72 hours post-operatively.  The mean difference, confidence intervals and p-values are shown 

in table 4.3 below.   The largest difference can be seen at 6 hours where a value of 0.61 is seen 

in the control group compared with 0.50 in the CsA group.  This suggests that if any benefit is to 

be detected, this would be seen in the first 6 hours post-operatively.  At 12 hours and beyond, 

there seems to be little difference separating the two groups. 
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Table 4.07: Serum troponin T levels over 72 hours following cardiac surgery  

Time  
(hours)  

Control (mcg/L) CsA (mcg/L) Mean difference Confidence interval P value 

6 0.61 0.50 0.11 -0.096 to 0.315 0.294 

12 0.52 0.51 0.005 -0.190 to 0.199 0.962 

24 0.42 0.40 0.013 -0.133 to 0.159 0.860 

48 0.28 0.27 0.013 -0.104 to 0.131 0.820 

72 0.19 0.21 -0.02 -0.106 to 0.066 0.646 

Key:  CsA- cyclosporin A 

 

Figure 4.07: Troponin T release over 72 hours postoperatively (mean +/-SEM) all cardiac 

surgery. 

 

Over the 72 hour period, the cardiac troponin-T levels were slightly lower in the CsA treated 

group compared with the control group, but this was not found to be statistically significant.   
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4.4.6. Correlation and regression analysis  

 

As expected, there was a positive correlation between the total mean Troponin T AUC over 72 

hours and the aortic cross-clamp time.  These findings suggest that as the cross-clamp duration 

increases, the myocardial injury sustained during cardiac surgery increases.  The regression 

lines of the control data and the CsA treated data seem to intersect just before cross-clamp 

duration of sixty minutes (see figure 4.07).  It therefore seems reasonable to postulate that the 

effect of cardioprotection is likely to be more apparent in complex operations particularly those 

with longer cross-clamp durations which also tend to carry a higher peri-operative risk.   

However as previously mentioned, complex operations involving CABG and valve replacement 

occur less commonly compared with CABG only or isolated valve replacement.  Therefore to 

test this hypothesis, a large, multi-centre randomised controlled trial would be required. 
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Figure 4.08: The correlation between the mean total troponin T AUC over 72 hours and the 

aortic cross-clamp time (minutes) is displayed in the scatter diagrams below.  

 
 
Table 4.08: Displays Pearson’s correlation of regression lines with p-values. 
Study group n Pearson’s correlation p-value 

CsA 34 0.610 <0.001 

Control 37 0.399 0.014 

Key: CsA- cyclosporin A 

The CsA group demonstrates a moderate correlation (r=0.610) between troponin T release and 

aortic cross-clamp duration with a p value of <0.001.  In comparison, the correlation between 
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troponin T and aortic cross-clamp duration in the control group is weaker but still within the 

moderate range at r=0.399. 

The scatter diagram also seems to imply that for a given increase in aortic cross-clamp duration, 

the increase in total mean troponin T AUC over 72 hours was less in the CsA group compared 

with the control group.  This suggests that as the aortic cross-clamp duration increase, 

contributing to an increase in myocardial damage, the cardioprotective effects of CsA is likely to 

be more pronounced.  Clearly a large randomised control trial is needed to confirm this 

potential observation. 

The positive correlation between cardiac enzyme release and aortic cross-clamp time in the 

scatter diagrams is consistent with previous studies that identified the aortic cross-clamp time 

as an independent predictor for myocardial injury. 
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4.4.8. Serum CK-MB release 

 

Figure 4.09: Dot-plot diagrams displaying total mean CK-MB AUC over 72hrs in study groups. 

100 300 500 700 900 1100 1300 1500

Total CK-MB AUC over 72hrs (µg/mL.72hr)

All cardiac surgery (CsA group)

Mean=  460.79 +/- 296.96

200 700 1200 1700 2200
Total CK-MB AUC over 72hrs (µg/mL.72hrs)

All cardiac surgery (control group)

Mean= 577.37 +/- 420.81 
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Table 4.09: Application of non-parametric tests for total AUC CK-MB over 72 hours (µg/ml.72hr) 
. 

Study group n Mean rank Median  Sum of 
ranks 

Mann- 
Whitney U 

Z-statistic Asymptotic 
Sig. (2-
tailed) 

CsA 36 31.11 349.50 1120.00 454.00 -1.857 0.063 

Control  34 40.15 438.90 1365.00  

Key: CsA- cyclosporin A 

The mean and standard deviation of the total mean CK-MB over 72 hours are displayed in the 

dot-plot diagrams above (see figure 4.09).  The CsA group had a lower mean of 

460.79µg/mL.72hr compared with a mean of 577.37µg/mL.72hr in the control group.  This 

correlates with the median which is lower in the CsA group at 349.50µg/mL.72hr compared 

with 438.90µg/mL.72hr in the control group.  According to the Mann-Whitney U test, this 

difference is not significant but is clearly demonstrating a tendency towards significance with a 

p-value = 0.063.  With a larger sample size, it is likely that a significant difference would be 

seem between the two groups.  
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Table 4.10: Shows the mean total CK-MB AUC over 72 hours (ng/mL.72hr) within the specified 

time intervals. 

Time (Hours) Control  CsA Mean difference CI P value 

0-6 104.31 77.81 26.49 -6.27 to 59.27 0.111 

6-12 178.98 137.49 41.49 -17.70 to 100.68 0.166 

12-24 153.78 124.32 29.56 -20.73 to 79.64 0.246 

24-48 98.87 83.60 15.27 -15.19 to 45.73 0.321 

48-72 41.44 40.70 0.74 -12.17 to 13.64 0.910 

Key: AUC- area under the curve, CI- confidence interval 

 

Figure 4.10: The total CK-MB AUC over 72 hours of all cardiac surgery patients. 

 

 

The table above shows a clear difference in the magnitude of CK-MB release in the CsA group 

compared with the control group, however this difference was not significant at 0.05 level.  This 

difference can be seen within the first 24 hours but in particular in the 6-12 hour interval 

revealing a mean difference of 41.49ng/ml.  The findings also seem to point towards the 
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maximum benefit occurring within the first 6-24 hours post-operatively.  This could potentially 

have significant clinical implications in the optimization of patient care post-operatively and 

therefore improving intermediate to long-term clinical outcomes. 

Figure 4.11: The correlation between the CK-MB AUC over 72 hours and the aortic cross-clamp 

time (minutes) are displayed in the scatter diagrams below.  
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Table 4.11: Displays the correlation coefficient and the p-values in the study groups. 
 
 

Study group n Pearson’s correlation p-value 

CsA 34 0.558 0.001 

Control 37 0.301 0.07 

 
 
The scatter diagram above displays the correlation between the total mean CK-MB AUC over 72 

hours and the aortic cross clamp time.  Moderate correlation can be seen in both the CsA group 

and the control group with a stronger correlation in the CsA group (Pearson’s= 0.558 vs 0.301).  

The regression lines diverge just before 40 minutes of aortic cross-clamp time.  The scatter 

diagram seems to demonstrate that for a given aortic cross-clamp duration, a lower CK-MB 

release is seen in the CsA group when compared with the control group. 

The scatter diagram below demonstrates a moderate correlation between the total mean 

troponin T AUC over 72 hours and the cardio-pulmonary bypass duration in both the CsA group 

and the control group.  It is also clear that for a given CPB duration there is a lower troponin T 

release in the CsA group compared with that in the control group.  The p values of the regression 

lines are shown in table 4.12 below. 
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Figure 4.12: The correlation between the total mean troponin T AUC over 72 hours and the 

cardiopulmonary bypass time (minutes) is displayed in the scatter diagram below.  

 

 

Study group n Pearson’s correlation p-value 

CsA 34 0.539 0.001 

Control 37 0.317 0.056 
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Figure 4.13: The correlation between the total mean troponin T AUC over 72 hours and the 
cardiopulmonary bypass time (minutes) is displayed in the scatter diagram below. 
 

 

 

Study group n Pearson’s correlation p-value 

CsA 34 0.428 0.012 

Control 37 0.239 0.155 

 

Once again we see a positive correlation between the total mean CK-MB AUC over 72 hours and 

the CPB duration. The relationship is stronger in the CsA group compared with the control 
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group with a p-value of 0.012 and 0.155 respectively.  The regression lines seem to diverge just 

before 60 minutes of CPB duration.  We can also see that for a given CPB duration the CK-MB 

release is lower in the CsA group compared with the control group. 

 

4.5. Cyclosporin A and the risk of anaphylaxis 

 

While conducting the first sub-study looking at the cardioprotective effects of cyclosporin A, 

two events occurred that were deemed moderate in severity.  In both cases, soon after the 

administration of Propofol, Fentanyl, Rocuronium (muscle relaxant) and cyclosporin A, the 

patients became hypotensive and developed a generalised macular rash.  Their blood pressures 

failed to respond to fluid resuscitation or ephedrine and subsequently required boluses of 

epinephrine to maintain haemodynamic stability.  It was possible that cyclosporin A was the 

culprit agent responsible for what was confirmed as an anaphylactic reaction, but it was equally 

as likely that the other pre-anaesthetic agents could have caused the episode.  Nonetheless, 

both events were reported to the research and development department by filling in a serious 

adverse events form.  In both cases it was concluded that the risk to patient safety posed by 

cyclosporin A was negligible and so the study was allowed to continue. 

Patients admitted for elective cardiac surgery were approached on the evening of their 

admission.  Their notes were scrutinised and their clinical letters check for eligibility.  Informed 

consent was then obtained using the latest revised versions of the documents along with the 

patient’s signature.  A copy of the signed consent form was given to the patient, another copy 
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was file in the patient’s notes and the original copy was file in a locked room within the Hatter 

Institute. 

Hypersensitivity reactions to cyclosporin A are rare, with the latest data suggesting an 

occurrence of 1 in 1900; as such the mechanism of the reaction has yet to be clearly defined. 

Of all the documented cases in the literature (about 30 cases in MEDLINE), it is the intravenous 

preparation of CsA that is most associated with adverse reactions.  It has been suggested that it 

is the polyoxyethylated castor oil (Cremaphor E) solubilizer used in the injective formulation of 

cyclosporin A that triggers a hypersensitivity reaction.   

The mechanism of the reaction is not anaphylactic or IgE-mediated as skin tests conducted on 

patients who had suffered from hypersensitivity reactions after treatment with intravenous CsA 

have been largely negative for the antigen cremophor E.  It seems more likely that the reaction 

is anaphylactoid in nature resulting from direct mast cell degranulation and complement 

activation by cremophor E. 

4.5.1. Clinical presentation and diagnosis 

 

Adverse reactions after intravenous cyclosporin A tend to occur after just one administration, 

further supporting the mechanism of an anaphylactoid reaction.  It is highly recommended that 

care is taken during the preparation of intravenous CsA to avoid high concentrations of the 

solubilising agent being injected during administration as this increases the risk of 

hypersensitivity. 
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Hypersensitivity reactions are usually seen within minutes of administration of CsA, with 

patients developing a generalised erythematic rash and may complain of pruritus.  Clinical signs 

include tachycardia and hypotension due to an extensive capillary leakage leading to circulatory 

collapse and a depression in cardiac output.  A trans-oesophageal echocardiogram might reveal 

an empty ventricle.  In patients who are ventilated, an increase in airway resistance is noted. 

4.5.2. Management  

 

Immediate management involves a rapid assessment of airway, breathing and circulation.  The 

infusion should be stopped immediately.  In the event of stable haemodynamics, symptoms can 

be controlled with corticosteroids.  However in severe cases of acute capillary leak syndrome, 

the use of adrenaline and intravenous fluids are required to treat the circulatory collapse. 

4.5.3. Medical and clinical research implications 

 

The medical implications of cyclosporin A hypersensitivity is clearly distressing for the patient as 

well as the medical team present at the time.  From a management perspective, provided that 

the indications for its use and the method of administration were in accordance with the set 

institutional guidelines, further issues need not arise.  However, in the setting of this clinical 

research trial, the implications were more complicated with the development of further 

repercussions. 

One of the main issues that arose after one of the patients suffered what could have been a 

hypersensitivity reaction to CsA was whether or not to continue with their elective operation.  

Of the two patients who suffered hypersensitivity reactions and subsequent acute capillary leak 
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syndrome, one had their surgery cancelled and postponed.  The patient was subsequently 

awoken from his anaesthesia and informed along with his family of the event that had 

occurred. 

From a clinical governance perspective, the cancellation of surgical procedures result in issues 

of cost-effectiveness, and reassurances must be made to the clinical team as well as the patient 

and their families with regards to patient safety. 

An extensive ‘severe adverse event’ form was completed along with a ‘clinical incident form’ 

clearly outlining the sequence of events and the measures taken to ensure the upmost care to 

the patient according to Good Clinical Practice. 

Another point considered was the continuation or termination of the study and the impact on 

other centres conducting the study using a similar protocol.  In this regard, the Research and 

Development department favoured the continuation of the study concluding that the risk 

posed by cyclosporin A was small. 
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4.6. The effect of cyclosporin A on secondary outcomes 

 

So far we have studied the effects of CsA on the myocardium during cardiac surgery and I 

intend to conclude this thesis by discussing the possible reasons for our findings.  Previous 

studies have looked at the protective effects of CsA in other organs and have demonstrated 

protective effects.  I intended to look at the effect of CsA on secondary outcomes despite the 

study not being adequately powered for this purpose.  With regards to major cardiovascular 

events and mortality, one would need a very large population study as the operative risk in the 

patient group studied is very small, between 1-3%485. 

Table 4.09: The classification of AKI. 

AKI Grade Serum Creatinine criteria Urine output criteria 

1 A rise of >26.4µmol/L or 150-200% 

of baseline 

<0.5ml/kg/hr for >6 hours. 

2 An increase of 200-300% of baseline <0.5ml/kg/hr for >12 hours. 

3 An increase of >300%; or serum 

Creatinine >354µmol/L with an 

acute rise of at least 44µmol/L. 

<0.3ml/kg/hr for >24 hours or 

anuria for 12 hours 

Key: AKI- acute kidney injury. 

Only one criterion was required for each grade.  If the patient was classified into different 

grades by the separate criteria the higher grade was used.  All patients who needed renal 

replacement therapy were classified as AKI3 irrespective of other criteria. 

The table below shows the mean and standard deviation of the secondary outcomes measured 

during the CsA study.  The results demonstrate that patients treated with CsA had a significantly 

shorter stay in ITU compared with control with a mean period of 30.1 +/- 13.9 hours vs 40.6 +/- 
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29.4 hours respectively.  This difference did not translate to ventilation time as no difference 

was demonstrated between the two groups in this regard.  The control group mean ventilation 

duration was 6.61 +/- 3.00 hours vs 7.91 +/- 3.54 hours in the CsA group.  At this point I would 

like to stress that no formal criteria was implemented to determine when patients were 

suitable for discharge.  In general, a number of factors are taken into consideration before a 

patient is deemed suitable for ‘step-down’ from the cardiac intensive care unit.  These include 

their: 

 POTTS score 

 other criteria- look up internet 

Establishing a formal criteria for the study and implementing it to the two study centres proved 

a challenging task as it risked interfering with local clinical practice.  At the same time we 

appreciate that this does pose a limitation to the study and caution should be taken when 

interpreting the effects of CsA on ITU stay. 

Table 4.10: Descriptive statistics of secondary outcomes with a display of the mean and 

standard deviation. 

Outcome  Control (38) CsA (43) p-value 

ITU stay (Hours) 40.6+/- 29.4 30.1+/- 13.9 0.04 

Ventilation (Hours) 6.61+/- 3.00 7.91+/- 3.54 0.08 

Serum Creatinine 

(µmol/L) 

   

Baseline 84.52 +/- 14.51 88.15 +/- 15.75 0.381 

Day 1 82.30 +/- 20.09 87.04 +/- 23.26 0.430 

Day 2 86.74 +/- 36.35 96.85 +/- 30.53 0.279 
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Day 3 81.52 +/- 28.38 86.31 +/- 24.36 0.513 

Urine output day 1 (mls) 2211.07 +/- 657.67 2159.08 +/- 895.66 0.810 

AKI 1 1 1  

AKI 2 1 0  

AKI 3 0 0  

Dialysis  0 0  

AF 8 (9.9%) 16 (19.8%) 0.161 

Stroke  0 0  

Inotrope use 14 (17.3%) 16 (19.8%) 0.973 

Inotropic score 15.02 +/- 64.95  5.96 +/- 15.80 0.378 

Key: ITU- intensive care unit, AKI- acute kidney injury, AF- atrial fibrillation 

There were no deaths, myocardial infarctions or revascularisations during the period of hospital 

stay.  There were no documented occurrences of cerebrovascular events suffered by patients in 

both group during the period of study. 

There were no significant differences in the baseline Creatinine of the CsA group and the 

control group and this remained the case over the 72 hours through which patients were 

monitored.  The urine output was measured hourly over post-operative day 1 with the control 

group averaging 2211.07 +/- 657.67mls and the CsA group 2159.08 +/- 895.66mls.  Both groups 

had one patient who was classified as having grade one acute kidney injury and one patient on 

the control group was classified as having grade two AKI.  No patient in either group required 

dialysis post-operatively.   
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There were twice as many patients who suffered from atrial fibrillation post-operatively in the 

CsA group compared with the control group but this was not found to be statistically significant 

as the overall number of patients suffering from post-operative AF was low. 

There were no differences in inotropic use in both groups with 14 (17.3%) in the control and 16 

(19.8%) in the CsA group.  However, when inotropes were used, three times as much was 

needed in the control group compared with the CsA group.  The average inotrope score in the 

control group was 15.02 +/- 64.95 compared with a score of 5.96 +/- 15.80 in the CsA group. 

DOES ANOVA HAVE A ROLE HERE???  
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4.7. Discussion 

 

Recent decades have seen great advances in the treatment of ischaemic heart disease, yet this 

condition remains the leading cause of death and morbidity within the western world.  The 

severest form of this condition, treated by coronary artery bypass surgery is not without its 

risks.  The clamping of the aorta and the application of cold blood cardioplegia during the 

cardiopulmonary bypass process renders the myocardium ischaemic.  The subsequent 

reperfusion of the myocardium through unclamping the aorta in addition to graft anastomosis 

is paradoxically associated with the death of cardiomyocytes, a phenomenon termed lethal 

ischaemia reperfusion injury.  Despite the use of cardioprotection mainly in the form of 

cardioplegia frequently implemented during CABG surgery, myocardial injury is still a significant 

problem, manifesting itself in the form of low cardiac output syndrome and arrhythmias in the 

short term and a prolonged length of recovery and increased mortality in the intermediate to 

long-term. 

It is without question therefore that novel therapeutic strategies are needed particularly during 

the peri-operative period to protect against the effects of lethal ischaemia reperfusion injury, 

thereby improving cardiac function and augmenting post-operative recovery. 

The crucial observation by Fournier and colleagues, that CsA could inhibit the influx of calcium 

into the mitochondrion486, followed by the discovery that CsA could inhibit the mPTP192;487, has 

led to a surge in basic science research into the mechanism of the CsA-mPTP interaction. 
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In this chapter, the mitochondrial permeability transition pore was investigated as a target for 

cardioprotection on the basis of previous studies that have identified its critical role in cell 

death. 

Of the 115 patients who were screened for eligibility, 68 patients were successfully recruited.  

Of those successfully recruited, there were no significant differences in the demographics, drug 

treatment or type of surgery between the treatment group and the control.  Interestingly, the 

mean EuroSCORE in both groups was less than 3 which is considered a low risk.  As previously 

discussed (see chapter 1), this score is based on a number of pre-operative factors that include 

the level of complexity of the surgery.  The results from this study suggest that a significant 

cardioprotective benefit cannot be achieved in operations deemed to be low risk.  Future 

studies in cardioprotection in the setting of cardiac surgery should focus on patients with a 

EuroSCORE greater than 6 with particular attention paid to the complexity of the operation.  

Higher risk operations result in a higher level of myocardial injury as they often require 

prolonged aortic cross-clamp times. 

In Piot’s study which looked at the cardioprotective effects of CsA in the setting of STEMI, the 

administration of intravenous CsA at 2.5mg/kg (without dilution) occurred less than 10 minutes 

before direct stenting of the culprit artery.  In our study, the administration of CsA occurred 

between 2-3 hours prior to the removal of the aortic cross-clamp.  We took blood samples at 

the time of the cross-clamp removal to measure the level of CsA within the circulation.  We 

found that the level of CsA within the bloodstream remained within therapeutic levels at the 

time the cross-clamp was removed.  What remains uncertain however is whether the dose 
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required for pore inhibition falls at a much higher level.  Piot’s study demonstrated that very 

high levels of CsA were available at the time of coronary reperfusion- the time in which it has 

been shown for the mitochondrial permeability transition pore formation to occur.  It is likely 

that the timely administration of CsA coupled with the much higher levels of myocardial injury 

seen in STEMI in the absence of additional elements of cardioprotection may explain why a 

cardioprotective benefit was seen in Piot’s study and not in our own.  It may be such that the 

differences in the two clinical settings may account for the disparity in results. 

A number of ways for achieving better CsA delivery and therefore better mPTP inhibition could 

be explored in future studies.  They include: 

 The intravenous administration of CsA at the time of the removal of the aortic cross-

clamp. 

 Increasing the administration dose of CsA from 2.5mg/kg to 5mg/kg. 

 Adding the study dose of CsA to the cardioplegic solution. 

 Administering the study dose of CsA without dilution. 

The analysis of the primary end-point (troponin T AUC over 72 hours) showed no significant 

statistical difference between the treatment group and the control group.  Some of the reasons 

for this result may lie in the nature of the clinical setting; where cardioplegia and advances in 

anaesthesia may provide a level of protection leaving only a small amount of injury to protect 

against.  A further reason for this result may lie in the mode of administration of CsA previously 

discussed. 
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An interesting finding that became apparent during the analysis of the results was the effect of 

mitral valve surgery on the data.  As described earlier, the level of direct myocardial trauma is 

particularly high in this type of surgery as it involves the opening of the left atrium. The amount 

of troponin release was particularly high when compared with the other types of surgery and 

this subsequently resulted in some skewing of the data. It is for this reason that further studies 

should exclude mitral valve replacements from the trial cohort. 

We assessed the mean level of CK-MB release at specified time points over the 72 hour period.  

Although the graphs do separate particularly within the first 6-24 hours, this separation was not 

statistically significant.  The mean total CK-MB AUC over 72 hours was not significantly different 

between the treatment group and the control group.  Although this result is consistent with our 

primary end-point, interestingly, it differs from Piot’s study which albeit in the setting of STEMI, 

found a 40% reduction in CK-MB release in the CsA group.  The reason for this disparity in Piot’s 

study is not clear; however the emergence of highly sensitive troponins may have a role in 

future studies in addressing this disparity. 

The scatter diagrams (A) and (B) display a positive correlation between the total troponin T AUC 

over 72 hours and the aortic cross-clamp time (XCT), a finding that is consistent with previous 

studies that have implicated XCT and cardiopulmonary bypass time (CPBT) as positive 

predictors of long-term morbidity and mortality488.  Scatter diagram (A) which displays data for 

all cardiac surgery shows a divergence of the lines of best fit at durations between 40 and 60 

minutes.  This is suggestive of a possible cardioprotective benefit of CsA in cardiac surgeries 

with more prolonged durations of XCT.  Interestingly, after the removal of surgeries involving 
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the mitral valve, this benefit was no longer present.  While searching for a plausible explanation 

for this, it is important to remember that the correlation between the variables of XCT and 

cardiopulmonary bypass time (CPBT) is not straight-forward.  It is very difficult to separate the 

negative impact of these variables from the effect of the patient’s own individual risk, the 

expertise of the surgeon, the anaesthetist and the influence of post-operative care. 

The scatter diagrams C and D reflect the expected observation of a positive correlation 

between the total CK-MB AUC over 72 hours and the XCT.  Scatter diagram C shows an early 

divergence of the lines of best fit, alluding to a cardioprotective benefit of CsA.  However, as 

with troponin T, after the removal of mitral valve surgeries, this protection is no longer seen. 

The positive correlation seen in the scatter diagrams (E) and (F) reflect the findings by Nissinen 

and colleagues who showed that in fact it is the CPBT that has more of a significant impact on 

long-terms outcome when compared with XCT. 

The effects of lethal ischaemia-reperfusion injury extends beyond the myocardium, affecting 

other major organs including the kidneys, liver, brain and gut (see introductory chapter).  It 

contributes significantly to acute kidney injury which affects 30% of patients undergoing cardiac 

surgery, with up to 2% of patients requiring renal replacement therapy489.  In addition, changes 

in serum creatinine level >0.5mg/dL after cardiac surgery can contribute to an increase in 30-

day post-operative mortality.  We looked for an indication of a reno-protective effect of CsA 

through measurements of serum creatinine level and urine output post-operatively.  Our 

results did not show any evidence of reno-protection.  One patient in the control group 
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suffered grade 2 AKI while there were no patients in the treatment group that suffered AKI > 

grade 1.  

There was a significant reduction of ITU stay in the CsA group when compared to the treatment 

group.  It is difficult to discern whether this difference can be attributed to an organ-protective 

effect as there are other factors that impact on ITU duration including experience of post-

operative care nursing staff and bed availability. 

In summary, this study did not show a cardioprotective benefit of CsA in the setting of cardiac 

surgery.  However, it exposed the challenges involved in setting up a multi-centre randomised 

control trial and went some way to address future considerations in the administration of CsA 

in the surgical setting.  It begs the question as to whether the therapeutic level of CsA can be 

considered adequate enough for mPTP inhibition in this setting.  This study was limited by its 

sample size and so it cannot be categorically stated that CsA is ineffective in cardioprotection in 

the setting of cardiac surgery.  As we continue to study this heterogenic group, we are now 

more informed from this preliminary analysis about the challenges involved in implementing 

protective strategies over-and-above pre-existing measures. 

 

4.7.1. Limitations of the study 

 

The anaesthetist and the surgeon were blinded to the study protocol; however, for safety, the 

administrator was aware of which patients were receiving the control sample or the treatment 

sample in order to anticipate and potentially initiate early treatment for anaphylaxis.   
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The doses of volatile gases were not strictly controlled and the choice of volatile gas was left for 

the anaesthetist’s discretion.  In most cases, isoflurane was avoided as it is a known 

preconditioning agent.  

This study remains limited due to its sample size and as such, recruitment is still ongoing.   

  



158 
 

CHAPTER 5 

5. Remote Ischaemic Preconditioning in the Setting of Complex Cardiac Surgery 

5.1. Introduction 

 

After successfully demonstrating the protective effects of remote ischaemic preconditioning in 

the setting of CABG surgery490, the next logical step was to investigate whether a similar level of 

protection could be seen in a higher risk patient group where the level of myocardial injury is 

likely to be increased.  In the previous chapter, we investigated the cardioprotective effects of 

cyclosporin A in all adult cardiac surgery and a positive linear correlation was shown between 

the total troponin T AUC and the aortic cross-clamp time.  Following this, it seemed highly 

suggestive that the maximum cardioprotective effects of RIPC, which targets the entire RISK 

pathway as well as the mPTP, would be best seen in cardiac surgeries with prolonged aortic 

cross clamp times.  To date, studies that have looked for the cardioprotective effects of RIPC in 

the setting of CABG surgery, in general, tended to have relatively shorter aortic cross-clamp 

times.  Some authors have since emphasised the need for researchers to focus mainly on 

complex cardiac surgery as it is these high risk patients that are likely to benefit from novel 

cardioprotective strategies.  The advancement of routine cardioprotective strategies along with 

a focus on a lower risk patient group may go some way to explaining the inconsistencies in 

results that has so far been seen in recent proof-of-concept studies. 

The aim of this sub-study was to investigate whether patients who underwent complex cardiac 

surgeries with aortic cross clamp times greater than sixty minutes were more amenable to 

protection with RIPC. 
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5.2. RIPC procedure 

 

Remote ischaemic preconditioning was induced by transient upper limb ischaemia in patients 

randomised to receive the intervention.  This was achieved by inflating the blood pressure cuff 

to 200mmHg in the upper arm for five minutes and then deflating the cuff for five minutes.  

This cycle was repeated to achieve a total of three cycles. 

The protocol was applied to the left arm whenever possible.  However if the arterial cannula 

that provides a more accurate measurement of the blood pressure was placed in the left arm, 

then the RIPC protocol was applied to the right arm.   

After induction, a 9cm blood pressure cuff was placed around the left upper arm.  At this point 

an envelope containing a random computer generated number was opened to determine the 

allocation of the patient.  The allocation determined whether the patient underwent the cycles 

of cuff inflation and deflation. 

In the control group, the blood pressure cuff was placed around the left upper arm and 

remained deflated throughout the period allocated for the stimulus application.  The operating 

surgeon remained blinded to the patient selection process thoughout the duration of the study 

but the anaesthetist was unblinded.  Due to time constraints we were unable to modify the 

study protocol to address this issue but we recognise it as a limitiation to the study.   

The decision for administration of inotropic support was made between the anaesthetist and 

the surgeon.  Introduction of support was indicated if the operating surgeon identified poor 

contractility at separation of CPB or if haemodynamics were deemed to be unacceptable. 
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Efforts were made to standardise the criteria for extubation, ICU and hospital discharge critieria 

and post-op AF care as much as possible within the constraints of local hospital practice. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.01: Stills from a short film titled “The Good Heart Attack” produced by Uli Hesse and Dr 

Sean Davidson (of the Hatter Institute) as part of the Science on Film initiative run by the 

Wellcome Trust.  http://www.wellcome.ac.uk/Achievements-and-Impact/Initiatives/Public-

engagement/Broadcast-media-strategy/Science-on-fim/index.htm. 

 

http://www.wellcome.ac.uk/Achievements-and-Impact/Initiatives/Public-engagement/Broadcast-media-strategy/Science-on-fim/index.htm
http://www.wellcome.ac.uk/Achievements-and-Impact/Initiatives/Public-engagement/Broadcast-media-strategy/Science-on-fim/index.htm
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5.2.1. Inclusion criteria for RIPC in complex surgery 

 

 Consecutive patients undergoing complex cardiac surgery (CABG + aortic valve 

replacement). 

 Age 18-80 years. 

 Informed consent. 

5.2.2. Exclusion criteria for RIPC in complex surgery 

 

 Patients older than 80 years. 

 Moderate to severe renal impairment- eGFR< 45 ml/min/1.73sqm. 

 Peripheral vascular disease. 

 Diabetic patients on glibenclamide. 

 Recent myocardial infarction (STEMI or NSTEMI within four weeks before the surgery). 

 Angina within 3 days of elective surgery and patients on nicorandil. 
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5.3.1. Patient recruitment chart 

 

Figure 5.02: The patient recruitment strategy adopted for this sub-study.  

61 patients  assessed 
for eligibility

11 patients 
underwent 
Control stimulus with 
complete data 51

14 patients underwent 
RIPC in upper arm with 
complete data

30 patients randomly 
assigned

35 patients consented 
for study

26 patients excluded
10 diabetics
7 refused to participate
9 other

5 withdrawn  
logistic reasons

5 with incomplete data

 

 

Twenty-six patients were excluded after initial assessment- 10 were diabetic, 7 refused to 

participate primarily due to bad experiences in previous trials they had been involved in; the 

remainder met the exclusion criteria.  
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5.4. Overview of methods 

 

This was a single-centre, single-blinded, prospective, randomised placebo-controlled trial in 

patients undergoing complex cardiac surgery.  Subjects were randomly assigned on a 1:1 basis. 

Adult patients who were admitted for planned CABG surgery with concomitant valve surgery 

between January 2010 and September 2010.   

Complex cardiac surgery was defined as coronary artery bypass graft surgery with concomitant 

aortic valve surgery with XCT > 60 minutes or redo cardiac surgery with XCT > 60 minutes.   

Mitral valve surgery releases disproportionately high troponin T levels compared to those who 

undergo aortic valve surgery.  This is largely due to the direct effect of surgical trauma when an 

incision is made in the left atrium to expose the diseased mitral valve.  The results displayed 

below are of all patients who were subsequently deemed to be eligible for recruitment. 

5.4.1. Study protocol 

 

The protocols adopted for premedication, anaesthesia, perfusion, cardioplegia were all 

standardised (refer to chapter 3). 

An ECG was performed prior to surgery and on post-operative day 1 and 4.  This was done 

primarily to identify and potentially exclude patients who suffered peri-operative myocardial 

infarction.  Peri-operative myocardial infarction was defined as any new left bundle branch 

block or new Q waves of 2mm in depth in two contiguous leads by day 3. 
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Continuous telemetry (ECG) monitoring was carried out six hours prior to surgery and 

continued up to 48 hours after surgery. 

5.5. Results 

 

Table 5.01: Baseline characteristics and patient profile. 

DEMOGRAPICS Control  RIPC 

Age  68 (+/- 12.5) 68 (+/- 11.4) 

Male 

Female  

8 (32%) 

6 (24%) 

11 (44%) 

0 

Hypercholesterolemia  10 (38.5%) 7 (26.9%) 

Hypertension  11 (42.3%) 9 (34.6%) 

Diabetes mellitus 0 0 

Previous MI 2 (7.7%) 1 (3.8%) 

Previous stroke 3 (11.5%) 1 (3.8%) 

Smoking history 

Current smoker 

Ex smokers 

Never smoked 

 

5 (19.2%) 

3 (11.5%) 

6(23.1%) 

 

2(7.7%) 

3 (11.5%) 

6 (23.1%) 

Family history of IHD 2 (7.7%) 1 (3.8%)  

EuroSCORE 3.2 3.6 

Key: RIPC- remote ischaemic pre-conditioning, MI- myocardial infarction, IHD- ischaemic heart disease 
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This sub-study is currently in its preliminary stages and during the writing of this thesis, 

recruitment was still ongoing.  There was no difference in the average age of patients in both 

the treatment and the control groups.  There were eleven male patients in the RIPC group 

compared with eight in the control group.  There were obvious differences within the female 

patients with six in the control group compared with none in the RIPC group.  There were five 

current smokers in the control group compared with two in the RIPC group.  Both groups had 

an equal number of ex-smokers and those who had never smoked.   

Table 5.01 continued: Baseline characteristics and patient profile. 

Drug History Control  RIPC 

Anti-platelet  10 (38.5%) 10 (38.5%) 

Anticoagulants 0 0 

Βeta-blockers 6 (23.1%) 7 (26.9%) 

Ca
2+

channel blockers 3 (11.5%) 3 (11.5%) 

ACE inhibitors/ATiiRBs 10 (38.5%) 9 (34.6%) 

Diuretics 0 0 

Nitrates LA 0 1(3.8%) 

Amiodarone  0 0 

Statins 10 (36.8%) 8 (31.6%) 

Oral hypogylcaemics 0 0 

Insulin  0 0 

 Key: ACE- angiotensin converting enzyme, ATIIRB- angiotensin 2 receptor blocker, LA- long-acting. 
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There were no significant differences in the drug history of patients in the RIPC group compared 

with patients in the control group. 

5.5.1. Baseline characteristics- intra-operative variables 

 

Table 5.02: Summary of the intra-operative variables in the RIPC sub-study. 

 
Control  RIPC p value 

Aortic Cross clamp time 

(min)- mean +/- SD 

78.30+/- 27.4 74.89+/-29.7 0.798 

Bypass time (min) 

Mean +/- SD 

110.90+/-33.8 102.4+/-34.7 0.598 

Key: SD- standard deviation, RIPC- remote ischaemic pre-conditioning. 

There was no difference in the mean aortic cross-clamp times between the control group 

(78.3+/- 27.4min) and the RIPC group (74.9+/- 29.7min) which was reassuring considering the 

small sample size.  No difference could be seen in the mean bypass times between the two 

groups (110.9+/-33.8min vs 102.4+/- 34.7min respectively).  When looking at the breakdown of 

the types of surgery performed, some heterogeneity could be seen which was largely due to 

the small sample size.   
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Table 5.03: Summary of type of cardiac surgery performed within the two groups. 

Type of surgery RIPC Control P-value 

CABG 5 (45.5%) 6 (54.5%) 0.539 

MVR 1 (100%) 0 (0%)  

AVR+MVR 1 (100%) 0 (0%)  

CABG+valve 5 (71.4%) 2 (28.6%)  

CABG+AVR+MVR 2 (50%) 2 (50%)  

Redo-surgery 0 (0%) 1 (100%)  

Key: RIPC-remote ischaemic pre-conditioning, CABG-, AVR- aortic valve replacement, MVR- mitral valve 

replacement. 

 

5.5.2. Serum troponin T release 

 

Testing for normality  

The data was tested for normality in order to establish the appropriate statistical test to use.  

The study is still ongoing and the data collected so far is in its preliminary stages.  It is 

anticipated therefore that the data would not be normally distributed and so non-parametric 

tests would have to be applied to compare the two study groups. 

Table 5.04: Descriptive statistics of study data. 

Descriptive statistics Skewness Kurtosis 

RIPC 0.550 -0.249 

Control 2.179 6.076 

Key: RIPC- remote ischaemic preconditioning 
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Table 5.05: Normality test. 

Study group Shapiro-Wilk test 

RIPC 0.685 

Control 0.004 

Key: RIPC- remote ischaemic preconditioning 

 

Interestingly the RIPC data is normally distributed and this is demonstrated by a skewness of 

0.550 (less than 1) and a kurtosis of -0.249 (less than 0).  The control data was not normally 

distributed and as a result, non-parametric statistical tests were used to compare the two 

groups.  I was also able to demonstrate homogeneity of variance between the two samples 

with a trimmed mean of 0.269.  Please see Tables 5.04 and 5.05 above. 

The data from both the RIPC group and the control group are displayed on normality plots and 

summarised on box-plots below.  
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Figure 5.03: Normality plot for RIPC data. 

 

Graph A 

Graph B 
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The graphs A and B above display the relationship between the expected normal and the RIPC 

and control data respectively.  In graph B, a close relationship is seen suggestive of normality 

while in graph A, the relationship is less suggestive of normality as the plots do not lie as closely 

to the normality line. 

Figure 5.05: Box-plots of study data 

 

The box-plots above summarise the study data.  There is some suggestion of a positively 

skewed RIPC data and a negatively skewed control data.  Based on this, it was deemed 

appropriate to perform non-parametric tests as the main tool for comparing the two groups. 
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Figure 5.06: The dot-plot diagrams A and B display the mean and standard deviation of the total 

troponin AUC over 72hrs in the RIPC group and the control group. 

0 10 20 30 40 50 60

Total troponin T AUC over 72hrs (mcg/L.72hr)

Elective complex cardiac surgery 
(control group)

Mean= 15.89 +/- 12.21

5 10 15 20 25

Total troponin T AUC over 72hrs (mcg/L.72hrs)

Elective complex cardiac surgery 
(RIPC group)

Mean= 12.75 +/-4.95

 

 

Diagram A 

Diagram B 
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Table 5.06: Application of non-parametric tests for total AUC troponin T over 72 hours 

(mcg/L.72hr) . 

Study group n Mean rank Median  Sum of 
ranks 

Mann- 
Whitney U 

Z-statistic Exact Sig. 
(2-tailed) 

RIPC 14 12.57 11.72 176.00 71.00 -0.329 0.757 

Control  11 13.55 14.19 149.00  

Key: RIPC- remote ischaemic pre-conditioning 

Non-parametric analysis of the study groups revealed a mean rank of 12.57 in the RIPC group 

compared with a mean rank of 13.55 in the control group.  These values are much lower than 

would be expected for complex cardiac surgery with more prolonged aortic cross-clamped 

times contributing to an increase in myocardial injury. However as these results are 

preliminary, conclusions remain difficult to draw at this stage.  The median in the RIPC group 

was 11.72mc/L.72hr which was less than that in the control group of 14.19mcg/L.72hr.  The 

Mann-Whitney U value was 71.00 with a Z-statistic of -0.329.  The 2-tailed exact significance 

value was taken as the sample size was less than 61 giving a value of 0.757 suggesting no 

significant difference at this stage between the 2 groups. 
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Table 5.07: Serum troponin T levels at set intervals over 72 hours following cardiac surgery. 

Time (Hours) Control  RIPC Mean difference CI P value 

0-6 0.69 0.59 0.10 -0.415 to 0.211 0.507 

6-12 0.77 0.57 0.20 -0.667 to 0.261 0.376 

12-24 0.58 0.44 0.14 -0.405 to 0.132 0.304 

24-48 0.42 0.37 0.05 -0.254 to 0.159 0.641 

48-72 0.38 0.30 0.07 -0.279 to 0.131 0.464 

Key: CI- confidence interval. 

 

Figure 5.07: The mean total troponin T (AUC) over 72 hours. 

 

 

Furthermore, the mean troponin T at each time interval was compared between the group to 

identify whether there was a particular point post-operatively were protection was optimal.  

Although the the control group demonstrated a higher mean troponin T release over the entire 

72 hour period post-operatively, there was no interval in which this difference was significant. 
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Serum CK-MB release 

Figure 5.08: The dot-plot diagrams display the mean and standard deviation of the total CK-MB 
AUC over 72hrs in the RIPC group and the control group. 

 

0 200 400 600 800 1000 1200 1400 1600

Total CK-MB AUC over 72hrs (µg/L.72hr)

Complex cardiac surgery 
(RIPC group)

Mean= 532.68 +/- 335.25

0 200 400 600 800 1000 1200 1400

Total CK-MB AUC over 72hrs (µg/L.72hr)

Complex cardiac surgery (control group)

Mean= 543.46 +/- 340.48

 

Diagram A 

Diagram B 
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Table 5.08: Application of non-parametric tests for total AUC CK-MB over 72 hours (µg/ml.72hr) 

. 

Study group n Mean rank Median  Sum of 
ranks 

Mann- 
Whitney U 

Z-statistic Exact Sig. 
(2-tailed) 

RIPC 14 12.85 479.85 180.00 75.000 -0.109 0.936 

Control  11 13.18 406.80 145.00  

Key: RIPC- remote ischaemic pre-conditioning 

Comparatively, the dot-plot diagrams display a lower mean total AUC CK-MB of 

532.68µg/ml.72hr in the RIPC group in contrast to 543.46µg/ml.72hr in the control group.  

However the RIPC group had a median of 479.85µg/ml.72hr compared with 406.80µg/ml.72hr 

in the control group.  Attention must be drawn to the Mann-Whitney value of 75.000 and a Z-

statistic of -0.109.  Once again, as the sample size was less than 61, I adopted to interpret the 

data using the 2-tailed exact significance which revealed a value of 0.936.  This suggests 

accepting the null hypothesis, so based on these preliminary results there is no difference 

between the two groups with regards to CK-MB release.  Once again these results should be 

reviewed with caution as the study is still ongoing. 
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Table 5.09: The mean serum CK-MB levels at set intervals over 72 hours following cardiac 

surgery. 

Time (Hours) Control  RIPC Mean difference CI P value 

0-6 26.49 27.16 -0.67 -13.984 to 15.316 0.9 

6-12 25.40 23.35 2.05 -15.555 to 11.455 0.756 

12-24 21.89 19.84 2.05 -15.236 to 11.140 0.751 

24-48 11.56 12.49 0.93 -9.191 to 11.053 0.851 

48-72 6.95 7.51 0.56 -5.830 to 6.942 0.859 

 

The mean CK-MB levels were calculated at set intervals over the 72 hour period post-

operatively.  There was no significant difference between the two groups, the results of which 

are graphically represented in the figure below. 

Figure 5.09: The level of CK-MB release at specific time points over a 72 hour period is shown in 

the graph below.  These early results do not show any significant difference between the two 

groups. 
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Post-operative secondary outcomes 

Table 5.10: Post-operative secondary outcomes. 

 Control (n=14) RIPC (n=11) P value 

Treated AF 5(35.7%) 4(36.4%)  

New onset LBBB (0%) (0%)  

New onset Q waves (0%) (0%)  

Postoperative IABP 0(0%) 0(0%)  

12-hours LCO syndrome 2(14.3%) 0(0%)  

Inotrope usage 2(14.3%) 0(0%)  

Vasoconstrictor usage 1(7.1%) 2(18.2%)  

Δ creatinine (day 0-3) 2.2 (-19.9, 24.3) -4.1 (-39.3, 31.1) 0.589 

ITU stay (days) 3 (2.1, 3.9) 2.8 (2, 3.6)  0.582 

Ventilation (Hours) 5.7 (5, 6.4) 6.1 (5.6, 6.6)  0.165 

Key: AF- atrial fibrillation, LBBB- left bundle branch block, IABP- intra-aortic balloon pump, LOC- low cardiac 

output, ITU- intensive care unit. 

 

The electrocardiograms of patients in both groups were analysed 6 hours prior to surgery and 

for 48 hours over the post-operative period.  There were no incidences of new-onset LBBB or Q-

waves suggestive of peri-operative myocardial infarction.  In the control group, 5 patients 

developed peri-operative atrial fibrillation requiring treatment with intravenous Amiodarone 

while this was noted in 4 patients in the RIPC group.  Two patients developed low cardiac 

output syndrome in the control group compared with none in the RIPC group.  The diagnosis 

was based on clinical findings supported by haemodynamic parameters.  There were 2 patients 

in the control group who required inotropic support compared with none in the treatment 
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group.  Vasoconstrictor usage was required in one patient in the control group compared with 

two patients in the RIPC group. 

There were no significant differences between the two groups in the change in creatinine pre-

operatively to day 3 post-operatively.  No significant differences could be identified in the 

ventilation times and in the ITU stay in both groups.  Once again, one must stress that no formal 

criteria was implemented to determine when patients were suitable for discharge.  The results 

for the effects of RIPC on ITU stay should therefore be viewed with caution. 

5.6. Discussion 

 

Coronary artery disease accounts for fifty percent of all cardiovascular events491.  It is the 

leading cause of disability and mortality worldwide and its impact on global economics through 

loss of productivity is staggering.  Revascularisation therapy through coronary artery bypass 

surgery remains the mainstay of treating the severest form of this disease; however 

establishing reperfusion in an occluded artery inevitably gives rise to lethal ischaemia 

reperfusion injury (IRI), a phenomenon that results in further myocardial injury and 

cardiomyocyte death. 

Reducing the burden of IRI in the setting of cardiac surgery has been the focus of this research 

chapter. 

The idea of inducing sub-lethal doses of ischaemia in one vascular bed, and subsequently 

incurring protection in another vascular bed generated much excitement to researchers, as it 

avoids direct manipulation of the organ in question.  First described in 1993 by Przyklenk and 
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colleagues, remote ischaemic preconditioning (RIPC) is favoured amongst surgeons when 

compared with IPC, mainly because the ischaemic protocol can be applied non-invasively to an 

organ or tissue distant from the organ being protected with minimal interruption to the 

operation.  Przyklenk et al discovered that the size of the infarct that occurred as a result of 

occluding the left anterior descending artery for one hour in canine hearts was substantially 

reduced by the application of sub-lethal levels of ischaemia and reperfusion to the left 

circumflex artery 5 minutes prior to the index ischaemic insult. 

Following this, researchers have shown using animal models that distant organs including the 

kidneys, intestine and the limb can indeed bring about cardioprotection with as high as a 65% 

reduction in infarct size.  

Reassuringly, the magnitude of the protective effect of RIPC is thought to be similar to that of 

IPC.  Furthermore, based on what we understand so far, the recruitment of collateral arterioles 

is not part of the mechanism of RIPC.  Rather, a similar mechanism to IPC has been postulated, 

involving the role of membrane signalling receptors, pro-survival protein kinases and 

mitochondrial involvement with the mPTP and mitoKATP (see introduction for mechanism of 

RIPC). 

Some of the most important proof-of-concept studies in this field have shown that RIPC can be 

effective in reducing the level of myocardial injury incurred during cardiac surgery492-495.  

Researchers have demonstrated cardioprotective benefits in children undergoing congenital 

heart defect repair using CPB with a reduction in troponin release and inotropic requirement 

after the implementation of RIPC to the lower limb496.  In a more invasive approach to RIPC, 



180 
 

unilateral iliac artery clamping brought about a significant reduction in troponin release and 

renal injury in the setting of AAA surgery497. 

The significance of troponin release in the setting of cardiac surgery has been widely debated.  

Some have suggested that it does not represent myocardial injury- rather that this ‘transient’ 

rise in cardiac enzymes is a consequence of breaching of the sarcolemmal membrane with an 

increase in its permeability498.  However the occurrence of low cardiac output syndrome post-

operatively and the subsequent impact on intermediate to long-term post-operative outcomes 

has led some researchers to suggest that cardiac troponins an important predictor of 

mortality499-501. 

The aim of this study was to determine the effectiveness of RIPC in promoting protection in 

complex cardiac surgery.  We also wanted to see if these benefits were reproducible. 

Clearly, at this preliminary stage in the study, it is difficult to draw definitive conclusions based 

on the results.  The prolonged aortic cross-clamp times resulted in a higher mean troponin AUC 

which is consistent with our hypothesis.  However no significant difference could be seen 

between the two groups.  Further analysis of myocardial injury with a comparison of the total 

CK-MB AUC over 72 hours did not show any significant difference between the two groups.   

This study is still ongoing; however analysis at this interim phase has revealed some 

considerations as well as limitations that are worthy of mention.   

Some researchers have suggested that troponin release reflects myofibrillar damage or 

myocyte necrosis or increased sarcolemmal permeability with leakage of cytosolic pools.  It may 
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be that RIPC exerts its effect on necrotic damage but has a lesser effect on sarcolemmal 

leakage.  Myocardial stunning post-CABG has also been implicated as a possible cause for a 

‘transient’ period of myocardial injury that is largely corrected through the optimisation of 

haemodynamics with the use of inotropic support.  What we know from studies looking at RIPC 

in the setting of PCI is that post-ischaemic stunning cannot be attenuated through 

‘conditioning’. 

Previous studies have reported that classic ischaemic preconditioning reduced post-operative 

tachy-arrhythmias which occurred as a result of scarring, oedema or reperfusion.  We did not 

find any significant differences between the treated group and the control group with regards 

to the incidence of treated atrial fibrillation in the post-operative 48 hour period.  Further 

recruitment is required to delineate the true impact of RIPC on reperfusion fibrillation. 

At this stage it is reasonable to consider whether a stronger stimulus is required to bring about 

protection.  Ali et al subjected a larger muscle mass to the RIPC protocol while others have 

applied the cuff to the lower limb with good result502.  Future studies should consider longer 

ischaemic durations applied to a larger muscle mass in the hope of optimising the 

cardioprotective effects of RIPC. 

 

 

 

 

 

 



182 
 

5.6.1. Limitations of the study 

 

Logistically, we were unable to remove inadvertent bias from the anaesthetist’s perspective.  

The implications of this limitation is indeed siginificant as the anaesthetist has an important role 

in affecting which cardioprotective modality is implemented through the choice of anaesthesia 

given.  With the anaesthetist remaining unblended, he/she could choose to affect the results by 

adopting various anaesthetic protocols that may in turn have variable cardioprotective effects.  

However while trying to maintain the integrity of the study, this at times had to be balanced 

with the need to minimise the disruption to local practice and anaesthetic preference. Ideally 

the anaesthetist and the researcher should have been blinded to achieve true double-blind 

status.  The single-blind status was maintained by having the protocol conducted within the 

anaesthetic room so the surgeon was blinded to the protocol. 

Regarding discharges from ITU, a standardised criteria was needed to thoroughly assess 

whether or not this particular outcome measured was affected by the cardioprotective 

strategy.  Once again, being conscious of the affect that the introduction of a new criteria 

would have on the working practices of health professionals, it was decided that the 

standardisation of ITU and HDU discharges would not be strictly adhered to and therefore best 

not implemented.  The limitation to the study as a result of this decision is that the results must 

be reviewed with some caution. 

The doses of volatile gases were not strictly controlled and the choice of volatile gas was left to 

the anaesthetist’s discretion.  In most cases, isoflurane was avoided as it is a known 
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preconditioning agent. This study is still at its preliminary stage and as such is significantly 

limited due to its sample size.   

Despite the study limitations, much of this work holds value at least as a hypothesis generating 

study which can be used to inform the design of larger randomised control trials attempting to 

delineate the effects of RIPC in this patient group.  
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CHAPTER 6 

6.1. The Challenges of Translation in the Pursuit of Clinical Cardioprotection 

 
The burden of ischaemic heart disease cannot be overstated, with one in five deaths worldwide 

occurring as a result of cardiovascular disease503.  The past five decades have witnessed an 

evolution in cardiac surgery, with the improvements of CPB and cardioplegia resulting in 

marked reductions in morbidity and mortality.  Despite this however, peri-operative damage to 

the myocardium in the form of ischaemia-reperfusion injury still poses prognostic significance, 

and has been demonstrated through the elevation of cardiac enzymes and functional imaging 

modalities including the cardiac MRI.   

This thesis explored two distinct strategies for protecting the heart against ischaemia 

reperfusion injury.  The first strategy involved directly inhibiting the formation of the 

mitochondrial permeability transition pore by inhibiting cyclophilin D using cyclosporin A.  We 

failed to produce a significant difference between the treated group and the control group with 

regards to a reduction in myocardial injury- however it must be noted that due to time 

constraints the study was under-powered.  We have since applied for ethical approval for a 

substantial amendment which will allow for the increase in the number of patients recruited at 

King’s College Hospital.  As the study continues, it is our hope to definitively establish the 

cardioprotective efficacy of CsA in the setting of cardiac surgery.   

The second strategy directly targeted the RISK pathway using the potent endogenous technique 

of remote ischaemic preconditioning.  Prior to the conception of RIPC by Przyklenk et al504 and 

the subsequent demonstration of Schmidt et al505 that short episodes of limb ischaemia can 
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indeed bring about cardioprotection, the concept of ‘conditioning’ had been extensively 

researched with proof-of-concept studies predominantly focused on animal models.  In this 

concluding chapter, I wish to explore the reasons for the failure to translate some of the 

positive results seen at the bench to the bedside.  I will also take a brief look at some of the 

evidence for pharmacological pre-conditioning and conclude with a look at what lies ahead for 

these novel therapeutic applications. 

It has been widely reported by researchers that the application of short episodes of non-lethal 

ischaemia and reperfusion to the heart itself or to an organ or tissue away from it can bring 

about a reduction of infracted tissue by 40-50%.  The cardioprotective benefits have been 

present when the conditioning stimulus has been applied prior to, at or after the lethal 

ischaemic event (reviewed by Levi)506. 

Isolated, in vitro, buffer-perfused animal hearts are the current models used by most 

researchers in the field.  The hearts are subjected to regional and global ischaemia following 

which, cardiac enzymes, cardiac function and infarct size can be measured507.  The benefits of 

the in vitro model are that it is largely reproducible, robust and allows researchers to have 

more control over the application of treatment strategies.  In contrast, the ‘in vivo’ model is 

certainly more technically demanding.  However it holds an advantage in its utilisation of an 

intact nervous and circulatory system508.  These models provide some insight into the 

mechanism of IRI but they do not compare to the complexities of the human biology of disease 

seen in cardiac surgery or AMI.   

Infarction in the animal model is usually induced by external compression of an otherwise 

healthy artery while in a patient with AMI, the rupture of an unstable atherosclerotic plaque 
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followed by platelet activation and aggregation and thrombus formation is responsible for 

coronary occlusion.  It is also worth mentioning that the inflammatory response that follows 

cannot be easily emulated in experimental models despite various attempts at doing so. 

The long-term effects of cardiac remodelling, infarct size reduction and mortality remain 

undetermined in the experimental setting.  However, imaging modalities such as the 

echocardiogram and the cardiac MRI can provide information on cardiac indices that may be of 

clinical relevance. 

One of the ways in which researchers have tried to mimic human pathophysiology has been 

through the promotion of thrombus formation directly within the coronary artery.  Ferric 

chloride, an endothelial irritant has been used to activate the clotting cascade509.  Other 

methods have included: Rose Bengal, green light laser agitation, a high cholesterol diet and 

partial surgical ligation.  These methods are challenging to perform and the best among them 

still fail to mirror the human scenario510. 

6.2. The impact of cardiovascular risk factors on cardioprotection 

 

The typical patient with established coronary artery disease is usually an elderly male with one 

or more cardiovascular risk factors.  Ageing is associated with a decrease in the protective 

effects of ischaemic conditioning in animals as well as humans.   The effects of RIPC and 

pharmacological conditioning have also been shown to decline with age511.  Other studies have 

suggested that the protection is preserved512.  What remains certain is that ageing is an 

unavoidable variable which is likely to impact on the effectiveness of ‘conditioning’ in adults 

with IHD.  It is likely that the threshold for protection is increased in this group of patients-
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therefore protocols providing a stronger stimulus, for example the use of the lower limb, is one 

way for future studies to address this issue. 

Diabetic patients seem to show a reduction in the cardioprotective effects induced by 

conditioning.  This is thought to be related to the effect of a hyperglycaemic state on the KATP  

channels, acting effectively, along with oral hypoglycaemic agents to abolish 

cardioprotection513. 

While non-smokers display a significant increase in forearm blood flow and acetylcholine 

release after preconditioning, this response is absent in smokers possibly due to the presence 

of endothelial dysfunction514.  Similarly, the attenuation of cardioprotection by preconditioning 

has also been shown to occur in the presence of hypertension515 and hyperlipidaemia, with the 

later suppressing the opening of mitoKATP channels 516.  With the majority of patients with IHD 

who could benefit from cardioprotective strategies also presenting with metabolic syndromes 

that attenuate these protective effects, it is clear that a stronger stimulus must be implemented 

in adult patients.  In fact, our institution is currently looking at applying remote ischaemia 

preconditioning in the upper and lower limbs using x2 10 minute cycles. 

6.3. Evidence of pharmacological preconditioning in ischaemia-reperfusion injury 

 

The use of pharmacological conditioning has so far not been addressed in this thesis.  However, 

its role in preconditioning is worthy of a mention as it remains an area of important ongoing 

research.   
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Calcium channel blockers, nitroprusside and adenosine are all used in the treatment of ‘no-

flow’ phenomenon.  Studies have shown calcium channel blockers to improve blood flow in 

both the animal model517and in humans518.  In a small study looking at 98 patients presenting 

with STEMI, nitroprusside showed no significant benefit in its primary end point of >70% 

resolution if ST-segment resolution when compared with placebo but showed a significant 

difference in six month mortality519.   

Adenosine has experienced widespread use in the setting of ‘no-flow’ phenomenon.  Due to its 

vasodilatory effects on the microcirculation, it improves myocardial blood flow and preserves 

endothelial integrity520.  Adenosine receptors are involved in the conditioning of the heart (see 

chapter 1).  The receptors are sensitised during the preceding ischaemia and this in turn 

facilitates their activation by agonists released during conditioning.  Adenosine has both anti-

platelet and anti-inflammatory effects and brings about cardioprotection through the opening 

of ATP-sensitive potassium channels.  It has also been shown to replenish high energy 

phosphate stores in the endothelial and myocardial cells; promote preconditioning; improve 

microvascular function and inhibit ROS formation.  The AMISTAD-2 trial looked at 2118 patients 

presenting with anterior STEMI treated with either PPCI or thrombolytic therapy.  The treated 

group demonstrated a reduction in infarct size at high doses of adenosine compared with 

placebo.  However there was no difference in the primary end point of heart-failure and 

death521.  The overall data is more in favour of ischaemic preconditioning when compared with 

pharmacological preconditioning, a finding likely to be due to the action of multiple mechanistic 

pathways acting synergistically. 
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6.4. What lies ahead for therapeutic applications 

 

The landmark proof-of-concept study by Piot and co-workers522 is the first to demonstrate the 

cardioprotective effects of CsA in STEMI patients.  It highlighted the role of the mPTP as a 

critical mediator in IRI and confirmed the existence of this injury in man.  As a result of this 

study, a large multi-centre randomised control trial is now underway to determine whether 

CsA, administered as adjuvant therapy with PPCI can improve clinical outcomes in patients with 

IHD presenting with STEMI.  Furthermore, the role of CsA as an mPTP inhibitor could be 

investigated in the settings of elective and urgent PCI to determine its effect against peri-

procedural injury.  The immunosuppressive effect of CsA is readily utilised in cardiac 

transplantation but its effect against IRI presents a further setting for investigation.    

The question still remains as to how best to maximise the preconditioning stimulus in order to 

overcome cardiovascular risk factors which tend to attenuate cardioprotection.  Possible 

directions of study include: the combination of IPC and pharmacological preconditioning; the 

combination of per-conditioning with preconditioning and increasing the ischaemic burden in 

RIPC by using both the upper and lower limbs to increase the preconditioning stimulus.  Our 

institution is currently conducting a multi-centre randomised control trial to determine whether 

RIPC reduces the damage to the myocardium during cardiac surgery.  It is anticipated that this 

study would address the pertinent question as to whether RIPC could improve health outcomes 

in terms of better patient survival and reduction in cerebrovascular morbidity.   
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With regards to the future of mPTP inhibition, the use of CsA is not without its potential 

adverse effects.  The future would seem brighter after the development of safer, more selective 

mPTP inhibitors that could potentially benefit patients with IHD. 
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