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Abstract  
 

The neurokinin-1 receptor (NK1) knockout mouse (NK1R-/-) has a hyperactive 

phenotype that is attenuated by psychostimulant treatment. This finding led to the 

NK1R-/- mouse being proposed as a model for Attention Deficit Hyperactivity Disorder 

(ADHD). The three core diagnostic symptoms of ADHD, hyperactivity, inattention and 

impulsivity have been investigated in the NK1R-/- mice alongside wildtype controls. 

Circular corridor apparatus was used to monitor activity over a 48-hour period, during 

which there was no overall difference in activity, but NK1R-/- mice displayed 

significantly higher levels of activity in the hour after lights out than wildtype mice. The 

5-choice serial reaction time-task (5-CSRTT) is used to measure levels of attention and 

impulsivity (the other core features of ADHD) in wildtype and NK1R-/- mice. Both 

genotypes were able to learn the task to the pre-determined baseline level, but when the 

difficulty of the task was increased, the NK1R-/- mice displayed impulsivity and 

deficits in attention. Interestingly, the NK1R-/- mice consistently made more 

perseverative responses compared to wildtype controls. This experiment was extended 

to test whether the phenotype of the NK1R-/- mice could be replicated with NK1 

receptor antagonist treatment in wildtype animals. The NK1 receptor antagonist RP 

67580 increased premature responding in wildtype animals, but did not effect omissions 

or perseveration. Because of the robust nature of the perseverative phenotype of the 

NK1R-/- at all stages of the 5-CSRTT, marble burying and burrowing tests were used as 

alternative behavioural paradigms to measure perseveration. In these ‘species-typical’ 

behavioural tests no robust difference in behaviour was noted between wildtype and 

NK1R-/- animals. These findings highlight the multifarious nature of perseverative 

behaviour and provide evidence for differential neural circuitry for perseverative 

behaviour in a cued task versus repetitive motor movement. Using an atlas of the 

distribution of the NK1 receptor and its preferred ligand substance P, this thesis 

concludes with explanations of the underlying neurobiology that may be responsible for 

these observations. 
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1 Introduction 

1.1 Substance P and the NK1 Receptor (NK1R) 
The year 2011 marked the 80th anniversary of the discovery ‘Substance P’ by Ulf Von 

Euler and John Gaddum. Today, the field of neuroscience would be almost 

unrecognisable to these two scientists, but with Substance P research now in its ninth 

decade, there are still many more questions that require answers. This thesis investigates 

the role that SP and its preferred receptor, the neurokinin1 (NK1) receptor, play in 

impulsive and perseverative behaviour in mice, using the NK1 receptor knockout mouse 

and pharmacological blockade of the NK1 receptor.  

 

1.1.1 History of Substance P and NK1R research 
Figure 1.1 provides a timeline of key-findings in the long history of research into the 

NK1 receptor and its preferred ligand Substance P. 

 
Figure 1.1Timeline outlining key-findings in the history of SP and NK1 receptor research 
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1.1.1.1 Substance P 
Substance P (SP) was first isolated in 1931, as a crude extract from equine brain and gut 

tissue. It was found to have potent hypotensive and smooth muscle contractile 

properties (V Euler and Gaddum, 1931). The newly discovered “factor” was named 

three years later, with P referring to the powder obtained during the extraction process 

(Gaddum and Schild, 1934). In the 1950s Fred Lembeck noted the high distribution of 

substance P in the dorsal root of the spinal cord and proposed that substance P was 

involved in sensory neurotransmission (Lembeck, 1953). In parallel to Lembeck, 

members of Von Euler’s laboratory were still working on SP, namely it’s purification, 

distribution and biological action (Pernow, 1953). Great advances were made in the 

isolation procedure for substance P, increasing the yield from a crude extract from 15 to 

3000 units per mg (Pernow, 1953; Lembeck, 2008). 

 

In 1971, Chang et al. identified the amino acid sequence of substance P, an 

undecapeptide, as H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2 (Chang et 

al., 1971). This discovery paved the way for the production of synthetic substance P, 

thereby facilitating all subsequent research into substance P (Tregear et al., 1971). 

Artificial synthesis of substance P gave activity of 200,000 units per mg (1 unit is 5ng) 

(Lembeck, 2008), which enabled researchers to elucidate the role of SP. In a series of 

studies, researchers demonstrated greater levels of SP in dorsal versus ventral roots 

from bovine spinal cord (Takahashi et al., 1974), and excitatory action of SP in frog and 

rat spinal cord with potency more than 200-fold that of glutamate (Konishi and Otsuka, 

1974a, 1974b; Otsuka et al., 1975). These findings confirmed SP as an excitatory 

transmitter of primary afferent fibres, thereby validating Lembeck’s hypothesis more 

than two decades later.  

 

Substance P became part of a group of related polypeptides characterised by their speed 

of the contractions on smooth muscle preparations, they were called ‘tachykinins’, in 

opposition to the slow-acting kinins or ‘bradykinins’. Gradually, other mammalian 

peptides were discovered with similar contractile properties, leading to their inclusion in 

the tachykinin family. All mammalian tachykinins, including these newly characterised 

peptides, now known as neurokinin A (NKA) and neurokinin B (NKB) share a common 

carboxy-terminal sequence, Phe-X-Gly-Leu-Met-NH2, where X is Phe or Val (Otsuka 

and Yoshioka, 1993). 
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Substance P is synthesised in vivo by alternative splicing of the preprotachykinin (PPT-

A) gene, which produces three mRNA transcripts, !-, "-, and #-PPT-A. All three PPT-

A mRNAs encode for the substance P precursor sequence, whilst "-PPT-A, also 

contains precursor sequences for neurokinin A (NKA) and neuropeptide K (NPK). #-

PPT-A contains sequences for NKA, and neuropeptide # (NP#) (Figure 1.2). Neurokinin 

B is synthesised from a separate gene, preprotachykinin-B (PPT-B) (Nawa et al., 1983, 

1984; Tatemoto et al., 1985; Kawaguchi et al., 1986; Carter and Krause, 1990). 

 

 
Figure 1.2 Schematic representation of the biosynthesis of substance P (SP) and other tachykinins 
via alternative splicing of the PPT-A gene. The numbers in the boxes represent the exons of the 
PPT-A gene. NPK, neuropeptide K; NKA, neurokinin A; NP# , neuropeptide # . Figure modified 
from (Otsuka and Yoshioka, 1993). 

 

1.1.1.2 NK1 Receptor 

The identified tachykinins had differential contractile effects on smooth muscle 

preparations indicating the presence of distinct receptor subtypes (Iversen et al., 1982; 

Lee et al., 1982). In a series of studies, three types of neurokinin receptors (NK1, NK2 

and NK3) were identified (Buck et al., 1984; Hunter and Maggio, 1984; Maggi et al., 

1987; Regoli et al., 1987). Substance P, NKA and NKB have some binding affinity for 

all neurokinin receptors, although they preferably bind to NK1, NK2 and NK3 

respectively (Table 1.1) (Saffroy et al., 1988; Regoli et al., 1989; Hökfelt et al., 2001).  

 

Molecular cloning of rat and bovine neurokinin receptors identified them as members of 

the G-protein coupled receptor superfamily, comprising a rhodopsin-like structure with 

seven hydrophobic transmembrane domains connected by intra- and extracellular loops 

(Masu et al., 1987; Yokota et al., 1989; Hershey and Krause, 1990; Shigemoto et al., 

1990; Nakanishi, 1991). The human NK1 receptor was cloned in 1991 and was shown 

to have 94.5% homology with the rat NK1 receptor (Gerard et al., 1991; Takeda et al., 

1991). 
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Tachykinin Receptor Relative binding affinities of tachykinins 
NK1 SP>NKA>NKB 
NK2 NKA>NKB>SP 
NK3 NKB>NKA>SP 

Table 1.1 Relative binding affinities of three tachykinins and the three neurokinin receptors 

 

1.1.2 SP binding and activation of signaling pathways 
SP binds strongly to the NK1 receptor at the extracellular ends of the transmembrane 

helices between the second and seventh extracellular loops of the receptor, with a 

reported Kd value of 0.16nM (Takeda et al., 1992; Gether et al., 1993; Huang et al., 

1994). When the SP/NK1R complex is formed, the associated G-proteins are activated 

(Gq/11, G!s and G!o in humans (Roush and Kwatra, 1998)), leading to the activation of 

three separate secondary messenger systems (Harrison and Geppetti, 2001). Activation 

of phospholipase C" leads to the cleavage of phosphotidylinositol 4,5-bisphosphate 

(PIP2) into diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3), which 

subsequently binds to calcium channels in the endoplasmic reticulum leading to an 

increase in intracellular calcium concentration ([Ca2+]i). Phospholipase A2 activation 

leads to production of arachidonic acid, while adenylyl cyclase increases intracellular 

levels of cyclic adenosine monophosphate (cAMP) (Takeda et al., 1992; Garcia et al., 

1994; Khawaja and Rogers, 1996; Quartara and Maggi, 1997). The 5’ untranslated 

region of the NK1 receptor contains a sequence for cAMP response element binding 

protein (CREB)/calcium response element sequence, meaning that activation of the 

NK1 receptor can lead to enhanced gene transcription in a feed forward loop (Regoli et 

al., 1994). Finally the SP/NK1R complex is internalised into acidic endosomes, where 

the complex dissociates. Substance P is then degraded and the NK1 receptor is recycled 

back into the cell membrane (Grady et al., 1995; Garland et al., 1996).    

 

1.1.3 Distribution  
The distribution of the NK1 receptor and it’s preferred ligand substance P, has been 

studied using a variety of techniques in a wide range of mammalian species (but not 

mouse) and is generally well conserved through evolution. NK1 receptors are located on 

cell bodies and dendrites, normally with SP-positive fibres nearby. In brief, the 

strongest staining for the NK1 receptor in rat brain is seen in cortical amygdaloid 

nucleus, locus coeruleus, caudate-putamen, nucleus accumbens, olfactory tubercle, and 
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raphe nuclei (Nakaya et al., 1994). However staining of receptor and ligand do not 

always correlate. The substantia nigra is abundant with substance P, as seen by intense 

staining with the SP antibody, yet NK1 receptor staining differs little from background 

levels in both rat and human tissue (Kowall et al., 1993; Nakaya et al., 1994). Previous 

studies of NK1 receptor and SP distribution are discussed in depth in Chapter 3, which 

investigates the staining patterns of the NK1 receptor and SP throughout the mouse 

brain. 

 

1.2 Roles of SP-NK1R system 
On the basis of their anatomical localisation, substance P and the NK1 receptor have 

been implicated in the pathophysiology of a diverse range of conditions including 

asthma, inflammatory bowel disease, pain, psoriasis, migraine, movement disorders, 

schizophrenia, depression, anxiety and emesis (Quartara and Maggi, 1997; Rupniak and 

Kramer, 1999). The main avenues of research have concerned the role of the NK1 

receptor in pain and affective disorders such as depression and anxiety. This section 

covers research from cell ablation studies and receptor blockade, while the work using 

the NK1 receptor knockout mouse is covered in section 1.4.3. 

 

1.2.1 Affective disorders 
The umbrella term of ‘affective disorders’ covers conditions with deficits in emotional 

processing such as depression and anxiety. The NK1 receptor has been implicated in 

many of these disorders, given their prevalence in brain regions associated with fear-

processing (including the amygdala, septum, hippocampus, hypothalamus and 

periaqueductal grey).  

1.2.1.1 Anxiety and stress 

The role of SP in anxiety and stress related responses is comprehensively reviewed by 

(Ebner and Singewald, 2006), while the key features are highlighted below. Stress has 

many connotations and can be measured in several ways e.g. physical (restraint 

paradigms), emotional (maternal separation) and painful (foot shock) stressors. 

Activation of the hypothalamic-pituitary-adrenal (HPA) axis releases a cascade of 

‘stress’ hormones including corticotropin releasing hormone, adrenocorticotropic 

hormone and cortisol. Concentrations of neuropeptides NPY and SP also change after 
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stress. Early studies measured changes in SP concentration in various brain regions 

associated with stress (foot-shock or restraint) but some groups reported increases in SP 

levels (Siegel et al., 1984; Rosén et al., 1992; Brodin et al., 1994), while others reported 

decreases (Lisoprawski et al., 1981; Takayama et al., 1986; Siegel et al., 1987). There is 

a plethora of studies into the pharmacological manipulation of NK1 receptor activity 

and response to stress. Intracerebral injections of SP and other NK1 receptor agonists 

have been reported to elicit anxiogenic-like effects, whereas NK1 receptor antagonists 

tend to evoke an anxiolytic effect, however the data varies depending on behavioural 

paradigm, dose and brain region. For instance, microinjections of SP into the dorsal 

periaqueductal gray, lateral septal nucleus and medial amygdala induced anxiogenic 

action (Aguiar and Brandão, 1994, 1996; De Araújo et al., 1999; Gavioli et al., 1999), 

whereas injection in the nucleus basalis magnocellularis exerted anxiolytic-like effects 

in the elevated plus maze (EPM) (Hasenöhrl, Jentjens, et al., 1998; Nikolaus et al., 

1999). In contrast to the above, NK1 receptor antagonism tends to elicit anxiolytic 

effects. For example, the NK1 receptor antagonists FK-888, NKP-608 and RP 67580 all 

induced an anxiolytic-like profile in the elevated plus maze (Teixeira et al., 1996; 

Santarelli et al., 2001; Vendruscolo et al., 2003), while MK-869 and L-733,060 reduced 

isolation-induced vocalisations in guinea pigs (Kramer et al., 1998; Rupniak et al., 

2000). However ablation of NK1 receptor containing neurons in the amygdala 

decreased time spent in the open arms of the EPM, indicative of an anxiogenic profile 

(Gadd et al., 2003), thereby creating a very complex picture for the regulation of stress 

and anxiety responses by the SP/NK1R system. For a comprehensive list of NK1 

receptor related anxiety and stress studies see Ebner and Singewald, (2006). 

1.2.1.2 Depression 
Given that the symptoms of anxiety and depression somewhat overlap, NK1 receptor 

antagonists were also explored as a potential treatment for depression. Early work 

produced promising results with the NK1 receptor antagonists L-760,735 and L-

733,060 (but not their respective inactive enantiomers) reducing isolation-induced 

vocalisation in guinea pigs to the same extent as traditional anti-depressants and 

anxiolytic drugs such as fluoxetine (a selective serotonin reuptake inhibitor (SSRI)) and 

diazepam (a benzodiazepine) (Kramer et al., 1998). Also, NK1 receptor antagonism 

reduced attack behaviour in the resident intruder test (Rupniak et al., 2001). In phase II 

clinical trials, symptoms of depression in patients diagnosed with major depressive 
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disorder were improved by the NK1 receptor antagonist MK-869 (Aprepitant) to the 

same extent as in patients given the classic anti-depressant paroxetine (an SSRI), but 

with fewer detrimental side effects (Kramer et al., 1998). The field of NK1 receptor 

antagonism as an anti-depressant treatment was further bolstered when another NK1 

receptor antagonist, L-759,274, also produced positive results in another phase II 

clinical trial in patients with depression (Kramer et al., 2004). Although NK1 receptor 

antagonism appeared to work well as an antidepressant therapy, the mechanism of 

action was largely unknown. The most obvious connection was to the monoaminergic 

systems, given the mode of action of the already established anti-depressant treatments. 

Systemic administration of NK1 receptor antagonists has been shown to enhance the 

firing rate of dopaminergic, noradrenergic and serotonergic neurons (Adell, 2004). 

Firstly, NK1 receptor antagonists CP-96,345 and WIN 51,708 reduced the inhibitory 

effect of clonidine (an !2-adrenoceptor agonist) on the firing activity of serotonergic 

neurons in the rat dorsal raph! nucleus and noradrenergic neurons of the locus coeruleus 

(Haddjeri and Blier, 2000), while sustained administration of CP-96,345 to dorsal raph!"
serotonergic neurons increased spontaneous firing (Haddjeri and Blier, 2001). 

Dopaminergic systems are also effected by NK1 receptor antagonism. In rats, 

administration of GR 205,171 increased firing of dopaminergic neurons in the 

parabrachial nucleus of the ventral tegmental area resulting in increased dopamine 

efflux in the frontal cortex (Lejeune et al., 2002).  

 

1.2.2 Reward and addiction 
Substance P and the NK1 receptor are also found in brain regions that are associated 

with motivation and reward such as the amygdala, globus pallidus, and nucleus 

accumbens (Everitt and Robbins, 2005). As outlined in the previous section, injection of 

substance P into various brain regions heightens symptoms of stress and anxiety, so it is 

surprising to learn that application of SP to the reward pathway has a reinforcing effect. 

This has mainly been tested using the conditioned place preference paradigm. This test 

consists of two chambers with very different distinguishing features (e.g. stripy wall vs. 

a spotty wall and/or different floor textures), which the animals are free to travel 

between. The mice are administered a drug and immediately placed in one of the 

chambers, while the other chamber is associated with a saline injection. This is repeated 

over a number of tests until a final probe test is conducted with no drug administration, 
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where the animal is free to move between the chambers. An animal will spend more 

time in the chamber associated with a rewarding drug or tend to avoid a chamber 

associated with an aversive drug (conditioned place preference (CPP) and avoidance 

(CPA), respectively). Injection of SP into the globus pallidus, central nucleus of the 

amygdala and nucleus basalis magnocellularis all resulted in conditioned place 

preference for SP treatment over controls (Holzhäuer-Oitzl et al., 1988; Hasenöhrl, 

Frisch, et al., 1998; Kertes et al., 2009, 2010). Ablation of NK1 receptor containing 

neurons in the amygdala, but not the striatum or nucleus accumbens, blunted morphine 

reward behaviour in mice in the CPP test (Gadd et al., 2003). The SP/NK1R pathway is 

not solely responsible for the modulation of reward as there are known interactions with 

the opioid and dopaminergic systems. Pre-treatment with naloxone, an opioid receptor 

antagonist, blocked the reinforcing effects of SP treatment (Hasenöhrl et al., 1991), 

while dopamine efflux increased in the nucleus accumbens after systemic SP 

administration (Huston et al., 1993). Given the strong evidence for the NK1 receptor 

playing a role in reward, it is not surprising that it is also implicated in addiction (Heilig 

et al., 2010). NK1 receptor antagonism decreases alcohol consumption in free choice 

and operant self-administration tests and suppresses alcohol seeking behaviour 

(Steensland et al., 2010; Thorsell et al., 2010; Schank et al., 2011).  Furthermore NK1 

antagonist treatment has shown promising results in clinical trials in reducing alcohol 

cravings (George et al., 2008), while polymorphisms in the TACR1 gene (the human 

equivalent of the NK1 receptor gene) have been associated with alcohol dependence 

(Seneviratne et al., 2009). 

 

1.2.3 Other roles 
The most widely researched role of the SP/NK1R pathway, aside from affective 

disorders, is that of the regulation of pain and nociception focused on the dorsal horn of 

the spinal cord. In rats, depletion of SP in the spinal cord results in thermal analgesia 

(Yaksh et al., 1979) while intrathecal injection of SP causes hyperalgesia to thermal 

stimuli (Moochhala and Sawynok, 1984), providing evidence for the SP/NK1R system 

having a key role in the modulation of pain. Ablation of NK1 receptor positive neurons 

in the spinal cord resulted in prolonged reduction in thermal hyperalgesia, which lead to 

the suggestion that NK1 receptor antagonist therapy could be used for the treatment of 

chronic neuropathic pain (Nichols et al., 1999). Pre-clinical trials in rats using a model 
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of neuropathic pain (ligation of the sciatic nerve) were promising (Cumberbatch et al., 

1998), but subsequent clinical trials were unsuccessful (Hill, 2000). SP also plays a role 

in inflammation, by promoting angiogenesis at sites of neurogenic pain, as shown by 

increased endothelial cell proliferation (Seegers et al., 2003). 

 

Finally the SP/NK1R pathway is prevalent in the brainstem nuclei that regulate emesis. 

The NK1 receptor antagonist CP-99,994 successfully prevented emesis against a 

number of emetogens (e.g. radiation and cytotoxic drugs) firstly in ferrets and later in 

dogs (Bountra et al., 1993; Watson et al., 1995). Unlike the many examples above of 

pre-clinical success followed by failure in Phase II clinical trials, the NK1 receptor 

antagonist MK-869 (Aprepitant), first trialed as an anti-depressant, passed Phase III 

clinical trials and is used in the clinic as a treatment for chemotherapy-induced vomiting 

(Hesketh et al., 2003; Poli-Bigelli et al., 2003). 

 

1.2.4 Clinical successes and failures  
As highlighted in the above sections the SP/NK1R pathway has been implicated in a 

vast array of conditions with NK1 receptor antagonist therapy showing promising initial 

results in pre-clinical trials only to reach phase II clinical trials where they perform no 

better than placebo or existing agents (Keller et al., 2006). NK1 receptor antagonists 

were an important focus for the large pharmaceutical companies at the turn of the 21st 

century, especially as a potential new branch of anti-depressant therapy, yet the only 

NK1 receptor antagonist therapy is currently the anti-emetic drug Aprepitant. The 

reason for the high failure rate between pre-clinical and clinical trials is most likely due 

to the species variation of the NK1 receptor. The rat and human NK1 receptor are ~95% 

homologous (Barr and Watson, 1993), yet the small differences have been shown to 

have a dramatic effect on antagonist binding properties (Fong et al., 1992).  

 

1.3 Genetically modified mice 
Genetically modified mice have had their genome manipulated by genetic engineering 

and are an invaluable tool in scientific research. They enable scientists to study the role 

of individual genes either by creating too much of the gene product, or by eliminating 

its presence and looking at molecular, cellular or behavioural changes, usually in 
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relation to human diseases. A good animal model should fulfill three criteria: a) mimic 

the clinical features of the disease in question (face validity), b) conform to theoretical 

rational e.g. have a similar pathophysiological differences to the relevant disease 

(construct validity) and c) respond to treatments in the same way a human with the 

disease would (predictive validity) (Willner, 1986).  

 

The first ‘transgenic mouse’, a mouse with a simian virus incorporated in its genome, 

was created in the early 1970s (Jaenisch and Mintz, 1974), however the transgene could 

not be passed onto offspring. It was several years before Gordon and Ruddle, (1981) 

created a mouse with a mutation that could be passed to subsequent generations. 

Genetic modification of animal genomes has developed incredibly over the past three 

decades and is now a reliable and widespread laboratory technique. The work in this 

thesis looks at the phenotype of the NK1 receptor knockout mouse (NK1R-/-).  

 

1.3.1 Types of genetically modified mice 
There are several different types of genetically modified mice, of which the most 

common type used in scientific research are ‘knockout’ mice, in which an endogenous 

gene is either replaced or disrupted by insertion of an artificial piece of DNA. However 

if the loss of the gene results in a developmentally non-viable mouse, an alternative 

option is to create a knockin mouse. In this technique a transgene, containing a 

deliberate mutation, is inserted at a specific locus and results in expression of the 

mutated version of the gene product, but does not result in the death of the animal 

(Manis, 2007).  Another method to overcome the problem of embryonic or post-natal 

lethality due to functional disruption of a gene is by creating a conditional knockout 

mouse (Friedel et al., 2011). There are two different approaches to create conditional 

knockout animals, either by using a tetracycline transactivator (tTA) system or the Cre-

LoxP system with Cre recombinase (Morozov et al., 2003). In brief, tTA activates 

transcription when bound to a promoter containing the tetracycline operator, yet when 

in the presence of tetracycline or its analog doxycycline, the complex dissociates and 

transcription is halted (Gossen and Bujard, 1992). In the Cre-LoxP system firstly the 

target gene must be ‘floxed’, that is, two loxP must be integrated (within frame) at 

either end of a gene (usually for a small genes only, for larger genes the sites are placed 

around an essential exon). In the presence of Cre recombinase (which must also be 
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inserted into the genomic sequence) recombination occurs, which leads to the deletion 

of the sequence between the two loxP sites (Gu et al., 1994). The NK1R-/- mouse was 

created using targeted disruption in the first exon that renders the RNA transcript out of 

frame (for details see section 1.4.1). 

 

1.3.2 The importance of background strain 
There are a multitude of different background strains of mice used in scientific research, 

which is known to have a significant effect on behaviour. All mice used in laboratory 

tests derive from a handful of origins and are divided into two categories: inbred and 

outbred strains. The official definition of an inbred mouse strain is one that has 

undergone brother x sister mating for 20 or more consecutive generations (Lyon et al., 

1996). After 20 generations, at least 98.6% of the loci in each mouse are homozygous, 

while many strains have been bred for more than 150 generations and are essentially 

homozygous at all loci (Beck et al., 2000). Since all the mice of a strain are genetically 

identical they have long been used for genetic studies and are the basis for creation of 

transgenic animals. Examples of commonly used inbred mouse strains are DBA, 

C57/BL6 and BALB/c. However, outbred strains (or stocks for the more accurate 

terminology) such as CD-1 and MF-1, should really only be used for mapping of 

quantitative trait loci (QTLs) of complex traits in line with the heterogeneous human 

genome. However, they are sometimes used in the maintenance of genetically modified 

mouse colonies due to their superior breeding performance (Chia et al., 2005). 

Examples of specific phenotypes for different strains include C57BL/6 mice that have a 

high preference for alcohol, while BALB/c mice are valuable in mutagenesis studies 

due to their sensitivity to a wide variety of mutagens. Embryonic stem (ES) cells from 

129 mice are widely used in the creation of genetically modified mice because of their 

high success rate of germline transmission (Beck et al., 2000). It is therefore imperative 

that scientists carefully consider the phenotype of the background strain to use in 

experiments to prevent animal wastage, for example, C3H mice have a genetic defect 

that leads to early retinal degeneration so should not be used for any behavioural tests 

that require sight.  
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1.3.3 The flanking gene problem 
In addition to the phenotype differences between background strains, there are other 

complications that arise from the creation of transgenic animals: epistatic interactions 

and the flanking gene problem. Epistasis is the influence of the genotype of the mouse 

at other, often unlinked loci, on the target-mutated gene. The flanking gene ‘problem’ 

arises when mutated ES cells (e.g. from a 129 background) are placed in the blastocyst 

from a different strain (e.g. C57BL/6). Due to the nature of genetic recombination, 

where the probability of recombination is inversely related to the distance between the 

loci of the genes, those genes that are situated close to the target gene will remain linked 

with the target gene. Therefore the alleles for these genes will remain homozygous for 

the 129-type with no influence from the C57BL/6 background in the homozygous null 

mutants (Gerlai, 1996). Backcrossing offspring onto a single background strain reduces 

the flanking gene problem, although even after 12 generations of backcrossing, 1% 

(16cM of the total 1600cM genome) of the mouse genome remains linked to the target 

gene (Crusio, 2004). It is therefore crucial that strict controls are used in all experiments 

that use transgenic animals to prevent false-positive results being attributed to the target 

gene, when it could be an indirect result from the creation and breeding strategy of the 

background strain and colony.  

 

1.4 The NK1 receptor knockout mouse 
The original NK1 receptor knockout mouse was created by De Felipe et al., (1998). The 

process is briefly outlined below but is reported in more detail in the Chapter 2 (section 

2.1.1). The creation of the NK1 receptor knockout mouse enabled progress in the field 

of SP/NK1R research as the findings from previous NK1 receptor antagonist and cell 

ablation studies (see section 1.2) could be verified.  

 

1.4.1 Creation of the NK1 receptor knockout mouse 
A replacement vector was constructed of the cloned NK1 receptor gene with a cassette 

inserted into exon 1. The vector was then electroporated into embryonic stem (ES) cells, 

derived from a 129/Sv background. Negative selection left only those cells with the 

mutated version of the NK1 receptor gene that were then injected into C57BL/6 

blastocysts to create a 129/Sv x C57BL/6 mouse line in which the gene encoding the 
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NK1 receptor was disrupted. Interbreeding of two heterozygous mice for the disrupted 

allele resulted in healthy homozygous NK1 receptor knockout mice.  

 

1.4.2 The background strain of the NK1 receptor knockout mouse 
In light of the importance of background strain of transgenic mice, the lineage of the 

NK1R-/- mouse must be considered. The original knockout mice were created from the 

ES cells of a 129 mouse, implanted into blastocysts of C57BL/6 mice. Therefore the 

flanking gene problem could arise and have an effect on the behaviour of the NK1R-/- 

mice. However the performance of mice from a 129 lineage was often inferior 

compared to that of C57BL/6 in a number of behavioural tests (Balogh et al., 1999). 

The strain was crossed onto an outbred MF1 strain for rapid dilution of the 129/Sv 

component, although in hindsight this has over-complicated the genetic background of 

the NK1R-/- mouse, however this has become the main colony kept at UCL. Another 

colony of NK1R-/- mice were developed through backcrossing for more than 10 

generations onto a C57BL/6 background, thereby reducing the potential effect of the 

flanking gene problem (McCutcheon et al., 2008). A comparison of mice from the 

original C57BL/6 x 129/Sv (129B6) colony vs. those from the backcrossed C57BL/6 

(B6) colony showed the NK1 receptor knockout mice on the 129B6 strain had elevated 

glucocorticoid receptor immunoreactivity, greater hippocampal neurogenesis and higher 

novelty-induced locomotion compared to the wildtype animals of the 129B6 strain, 

while no genotype differences were observed between the mice on the backcrossed B6 

background (McCutcheon et al., 2008). Experimenters should therefore be cautious 

when drawing conclusions from the colonies of NK1R-/- mice on mixed backgrounds. 

Another group created a different colony of NK1R-/- mice on a pure 129/SvEv 

background (Santarelli et al., 2001). 

 

1.4.3 Findings from the NK1 receptor knockout mouse  
Many of the early experiments using the NK1 receptor knockout mice echoed those of 

the antagonist and cell ablation studies previously mentioned in Section 1.2 of this 

chapter.  
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1.4.3.1 Behavioural differences 

1.4.3.1.1 Reduced nociception 

The role of the SP/NK1R pathway in the modulation of pain signaling was well 

established prior to the creation of the NK1R-/- mouse, however both hyperalgesic and 

analgesic effects had been recorded when the system was disrupted. This was mirrored 

in experiments using the NK1R-/- mouse. NK1 receptor knockout mice displayed 

reduced behavioural responses to capsaicin-induced visceral pain and did not develop 

hyperalgesia (Laird et al., 2000), yet they also did not develop stress-induced analgesia 

while their response to acute pain was comparable to that of wildtype mice (De Felipe et 

al., 1998).  

1.4.3.1.2 Depression 

NK1 receptor antagonist treatment mimicked that of traditional anti-depressants by 

reducing stress-induced vocalisations (Kramer et al., 1998). The behaviour of NK1R-/- 

mice resembles that of wildtype mice given anti-depressants in a number of behavioural 

paradigms. In the forced swim test animals are forced to swim in a cylinder with no 

option of escape. After a period of time spent swimming and trying to escape the animal 

will ‘give-up’ and become immobile. The latency to become immobile is used as a 

reflection of ‘behavioural despair’, while antidepressant treatment lengthens the time 

spent swimming, making it a robust test for modeling depressive-like behaviour in mice 

(Porsolt et al., 1977). In line with the previous pharmacological studies into the 

SP/NK1R system having a role in the regulation of depressive behaviour (section 

1.2.1.2), NK1R-/- mice had a longer latency to immobility than wildtype controls 

(Santarelli et al., 2002). In a similar vein of experiments, NK1R-/- mice spent more time  

struggling (an indication of an ‘anti-depressive’ phenotype) in the tail suspension test 

compared to wildtype animals (Rupniak et al., 2001).  

1.4.3.1.3 Anxiety and stress 

As for the reward and depression related experiments above, the behaviour of the 

NK1R-/- mouse mirrored the behaviour of wildtype mice treated with NK1 receptor 

antagonist in behavioural paradigms that test stress and anxiety. In the resident intruder 

test, used to measure stress related behaviours, the latency to attack was significantly 

longer in NK1R-/- mice than wildtype controls, thereby replicating the findings of the 

same test with NK1 receptor antagonist treatment (De Felipe et al., 1998; Rupniak et al., 
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2001). Similarly, stress induced vocalisations after maternal separation were reduced in 

NK1R-/- mice compared (Rupniak et al., 2000; Santarelli et al., 2001) providing solid 

evidence for the SP/NK1R system playing an important role in the modulation of stress 

response. The findings from anxiety related behaviours in the elevated plus maze (EPM) 

are less clear. While (Santarelli et al., 2001) reported that NK1R-/- mice displayed 

increased time in the open arms of the elevated plus maze compared to wildtype 

controls, indicating a decreased level of anxiety related behaviours, (Murtra et al., 2000) 

found no difference in behaviour between wildtype and NK1 receptor knockout mice. 

1.4.3.1.4 Reward and addiction 

NK1 receptor knockout mice are insensitive to opiates, while responses to other drugs 

remain normal. In the conditioned place preference test NK1R-/- fail to form a 

preference for the chamber paired with morphine pre-treatment (Murtra et al., 2000). 

NK1R-/- mice also administered less morphine than wildtype controls in a self-

administration lever press paradigm and did not sensitise to the locomotor stimulant 

effects of repeated morphine treatment (Ripley et al., 2002). The rewarding effects of 

alcohol are also impaired in NK1R-/- mice as consumption was significantly decreased 

in a two-bottle free-choice paradigm, and do not form a preference to the alcohol-paired 

chamber of the CPP paradigm when compared to wildtype controls (George et al., 2008; 

Thorsell et al., 2010). In all of the tests outlined above, the response of NK1R-/- to 

cocaine was indifferent to that of the wildtype controls, showing that the findings are 

not due to a global impairment in the reward pathway, but is specific to the opiate and 

alcohol reward systems. 

1.4.3.1.5 Locomotor activity 

Locomotor activity is one of the first behaviours to be tested in the battery of paradigms 

used to characterise a new transgenic animal, although it is often reported from a 

number of different tests. In the inaugural paper that characterised the NK1R-/- mouse, 

no difference in locomotor activity was recorded between the knockout mice and 

wildtype controls in the open-field paradigm (although this test is traditionally 

associated with testing anxiety-related behaviours) (De Felipe et al., 1998). Many 

studies have subsequently reported locomotor activity findings, with mixed findings. In 

the elevated-plus maze (also an anxiety-related behavioural test) no difference in 

locomotor activity (as indicated by total number of arm entries) was recorded between 

genotypes (Murtra et al., 2000; Santarelli et al., 2001). Activity chambers, where 
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activity is measured by breaks in infrared beams of light, provide a good measure of 

locomotor activity, since anxiety is reduced as a confounding factor. No difference in 

the locomotor activity of NK1R-/- mice compared to that of wildtype controls were 

reported in a number of studies (Rupniak et al., 2000; Ripley et al., 2002; Gadd et al., 

2003), whereas (Herpfer et al., 2005) found that locomotor activity was significantly 

higher in NK1R-/- mice. This finding has been replicated in the light/dark exploration 

box (LDEB), although this is another paradigm used to measure anxiety and the 

recordings of hyperactivity of NK1R-/- mice were all taken from animals that had been 

administered an injection (Fisher et al., 2007; Yan et al., 2010). The activity of 

treatment naïve wildtype and NK1R-/- mice is investigated in Chapter 4 of this thesis in 

circular corridors. Recent telemetry data from the Hunt laboratory also suggests greater 

locomotor activity in NK1R-/-, although this was most significant in the dark phase of 

the daily cycle (unpublished data, 2012).  

1.4.3.2 Neurochemical differences  

It is important to try and relate observed behaviours such as those outlined above to the 

underlying neurological differences that result from the disruption of the SP/NK1R 

system. Given the link with the anti-depressive phenotype of the NK1R-/- mouse 

(section 1.4.3.1.2) and the known action of anti-depressant therapies in increasing 

central monoamine transmission, it followed to compare the monoaminergic systems of 

wildtype and NK1 receptor knockout mice using microdialysis. 

1.4.3.2.1 Serotonin 

Firing rate of serotonergic neurons in the dorsal raphé (DR) were increased in NK1R-/- 

mice compared to wildtype controls and was comparable to the activity of the 5-HT 

neurons of wildtype mice pre-treated with NK1 receptor antagonist (Santarelli et al., 

2001), while paroxetine-induced 5-HT outflow in the frontal cortex was 4-6 fold higher 

in the NK1R-/- mice compared to wildtype controls, yet basal efflux of 5-HT did not 

differ between genotypes (Froger et al., 2001). The firing rate of dorsal raphé neurons is 

activated by locally released 5-HT, which activates presynaptic inhibitory 5-HT1A 

autoreceptors (Blier and de Montigny, 1985). Antagonism of the 5-HT1A receptor 

inhibited firing of DR neurons in wildtype mice, yet this effect was much reduced in 

NK1R-/- mice (Santarelli et al., 2001). This is probably due to reduced numbers of the 

5-HT1A autoreceptor, as signified by reduced mRNA levels in the anterior raphé 

(Froger et al., 2001). These observations indicate that the presence of the NK1 receptor 



  Chapter 1 

 
34 

has a direct effect on the expression of 5-HT1A receptors. Interestingly, 

immunohistochemical localisation studies showed that there was no co-localisation of 

NK1 receptors and tryptophan hydroxylase (a marker of serotonergic neurons) 

(Santarelli et al., 2001) in the dorsal raphé, suggesting that the modulation of the 

serotonergic system by the NK1 receptor is indirect.  

1.4.3.2.2 Noradrenaline 

Given that the noradrenergic neurons that project from the locus coeruleus also express 

NK1 receptors (Santarelli et al., 2001) and that one of the terminal fields are the raphé 

nuclei, they could provide the link between the NK1 receptor and modulation of the 

serotonergic system. Anaesthetised NK1R-/- mice had a greater basal efflux of 

noradrenaline (NA) in the cerebral cortex than wildtype counterparts (Herpfer et al., 

2005; Fisher et al., 2007), this is most likely explained by increased levels of release 

rather than delayed or inefficient reuptake of the neurotransmitter since systemic 

desipramine treatment (a NA reuptake inhibitor) increased NA efflux to the same extent 

in both genotypes (Herpfer et al., 2005). Excessive noradrenaline release is ordinarily 

regulated by activation of presynaptic inhibitory !2-adrenoreceptors. However 

antagonism of these receptors with RX 821002 in NK1R-/- did not result in increased 

NA efflux as seen in wildtype mice (Fisher et al., 2007). Furthermore, binding of 

[35S]GTP#S was significantly reduced in the locus coeruleus of NK1R-/- mice compared 

to wildtypes, signifying that fewer of the G-protein coupled !2A-adrenoreceptors were 

activated by agonist (adrenaline) (Fisher et al., 2007).  These findings provide evidence 

for the regulation of NA efflux by the NK1 receptor, possibly due to desensitisation of 

!2-adrenoreceptors. However in a subsequent study using local infusion of potassium 

(K+) to induce NA efflux, the initial dose resulted in equal levels of NA release in the 

prefrontal cortex in both genotypes, but when a second challenge of K+ was 

administered, an increase of NA was noted in NK1R-/- mice but not in wildtypes (Yan 

et al., 2009). This effect was calcium dependent suggesting this phenomenon is related 

to exocytosis and the release of the transmitter rather than by regulation by 

!2-adrenoreceptors. 

1.4.3.2.3 Dopamine 

Compared to noradrenaline and serotonin, relatively little is known about any 

interaction between the NK1 receptor and the dopamine (DA) system. Microdialysis 
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studies have shown that basal efflux levels of DA are equivalent in the dorsal striatum 

of wildtype and NK1R-/- mice, but in the prefrontal cortex (PFC) DA efflux in NK1R-/- 

was half that of the wildtype control mice (Yan et al., 2010). When the mice were 

injected with d-amphetamine (a monoamine reuptake inhibitor and catecholamine (DA 

and NA) releasing agent), DA efflux in the dorsal striatum and PFC of wildtype mice 

increased, but this was not observed in the NK1R-/- mice (Yan et al., 2010). These 

findings highlight region specific interactions of the NK1 receptor and the dopaminergic 

system. 

 

The work in our laboratory has found several features of the NK1R-/- mouse show a 

close relation to symptoms of the human condition attention deficit hyperactivity 

disorder (ADHD). The NK1R-/- mouse is hyperactive in the LDEB paradigm, which 

can be ameliorated with d-amphetamine (Yan et al., 2009), as well as having 

neurochemical changes that relate to the condition in humans (Herpfer et al., 2005; 

Fisher et al., 2007; Yan et al., 2010). These findings led to the NK1R-/- knockout 

mouse being proposed as a novel rodent model of ADHD (Yan et al., 2009). This 

connection is further explored in the following section.   

 

1.5 Attention Deficit Hyperactivity Disorder (ADHD) 

1.5.1 Prevalence, symptoms and subtypes 
Attention-deficit hyperactivity disorder (ADHD) is one of the most common 

neurobehavioural conditions in children and can result in impaired social and academic 

functioning in later life. Reports of the prevalence of ADHD in children range from as 

low as 1% to as high as 20%, although a large meta-analytical study found the 

worldwide prevalence of ADHD in children and adolescents to be 5.3% (Polanczyk et 

al., 2007). Approximately 20% of cases pervade into adulthood (Faraone et al., 2000), 

with inattentiveness as the most common prevailing symptom (Biederman et al., 2000). 

The disorder is more common in boys than girls with prevalence estimates at 10% and 

4.2% respectively (Polanczyk et al., 2007).  The core symptoms of hyperactivity, 

impulsivity and inattention usually present before the age of seven years. There are 

three subtypes of the disorder; an inattentive subtype, a hyperactive/impulsive subtype 

and a combined subtype where all three symptoms are present (American Psychiatric 
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Association, 1994). The diagnostic criteria for ADHD taken from DSM-IV are outlined 

in Table 1.2. 
Table 1.2 Criteria for diagnosis of ADHD taken from DSM-IV. Symptoms must have persisted for a minimum 
of 6 months to a degree that is inconsistent with the developmental level of the patient. If 6 or more examples 
are present in both sections A and B then combined type ADHD is diagnosed, if 6 or more symptoms are met 
in section A, but not B, the hyperactive/impulsive subtype of the condition is diagnosed and vice versa for the 
predominantly inattentive subtype (American Psychiatric Association, 1994).  

1.5.2 Aetiology of ADHD 
The aetiology of ADHD is largely unknown, but hypotheses range from genetic to 

pathophysiological to environmental origins for the disorder. The clinical complexity of 

the condition probably reflects a multifarious basis, which incorporates 

pathophysiological differences caused by genetic differences, which may have been 

influenced by the environment during development! The Lancet review of ADHD by 

(Biederman and Faraone, 2005) provides a comprehensive look at the many proposed 

origins of the condition, while the main points are highlighted below.  

 

The most widely accepted pathophysiological hypotheses for ADHD are disrupted 

function of the prefrontal cortex and its connection with the basal ganglia and limbic 

systems, based on the similarity of the symptoms of ADHD and the behaviour of 

patients with frontal lobe damage, and disruption of the monoaminergic transmission 

(Davids et al., 2003). In a meta-analysis of brain imaging studies (Seidman et al., 2005) 

reported decreased volumes of the dorsolateral prefrontal cortex, caudate, pallidum and 

cerebellum in children with ADHD, highlighting gross physical changes that may give 

rise to the symptoms of the condition. There is a multitude of evidence for disrupted 

monoaminergic transmission giving rise to ADHD-like symptoms in both human and 

animal studies, although it is the dopaminergic hypothesis of ADHD that is the most 

commonly quoted. The dopaminergic hypothesis arose from the clinical efficacy of 

stimulant drugs such as amphetamine in improving the behavioural deficits associated 

with the condition, although the disruption of a single neurotransmitter causing such a 

complex spectrum of behavioural deficits is now considered an overly simplistic 

explanation (Gonon, 2009).  

 

Twin and adoption studies have estimated the heritability of ADHD between 60-91% 

(Thapar et al., 2005). Genetic linkage studies followed by allelic association studies 

have revealed many susceptibility genes for ADHD, mostly related to monoaminergic 
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transmission. These include the dopamine transporter (DAT1), dopamine receptors 2, 4 

and 5 (DRD2, DRD4 and DRD5), the serotonin 1B receptor (5HT1B), dopamine " 

hydroxylase (DBH), !2A and 1A receptors (ADRA2A and ADRA1A), tryptophan 

hydroxylase 1 and 2  (TPH1 and TPH2) as well as several other genes such as 

synaptosomal-associated protein 25 isoform (SNARE protein SNAP25) (Sharp et al., 

2009). The risk factor from each gene is small and therefore ADHD is likely to arise 

from a combination of factors associated with monoaminergic transmission in 

fronto-striatal brain regions that have undergone gene-gene and gene-environment 

interactions (Faraone, 2004; Thapar et al., 2005; Sharp et al., 2009).  

 

Environmental factors have also been linked to the cause of ADHD, including 

obstetrical complications, older maternal age, and premature birth, although findings 

have been inconsistent and remain inconclusive (Zappitelli et al., 2001).  There is also a 

correlation between parents that drink and smoke excessively having children with 

ADHD, therefore exposure to alcohol or tobacco smoke during early development may 

be a risk factor for the development of ADHD (Streissguth et al., 1994; Milberger et al., 

1997).   

 

1.5.3 Neurobiology of ADHD 
The neurobiology of ADHD has been studied using a number of methods including 

electrophysiology, PET scans, lesions studies and pharmacological treatment in a 

number of behavioural tests and paradigms. Due to the nature of this thesis this section 

focuses on previous animal, rather than human studies, that have been conducted to 

assess the underlying neurobiology of the symptoms of ADHD.  

1.5.3.1 Attention 

A commonly used paradigm to assess attention in rodents is the 5-choice serial reaction 

time task (5-CSRTT), which is used in this thesis and is described in detail in chapter 4, 

while in non-human primate studies, visual attention studies involving measurements of 

gaze are widely used. Previous studies using the 5-CSRTT have helped to elucidate the 

neural basis of attention, although the definitive circuits are still conjecture. Structures 

of the basal ganglia play an important role in the modulation of attention, as a 

‘disconnection’ of the circuitry via a dual excitotoxic lesion of the medial prefrontal 
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cortex and the dorsal striatum on the contralateral side significantly reduced levels of 

attention in the 5-CSRTT (Christakou et al., 2001). Early studies in to the role of 

neurotransmitters in the maintenance of attention demonstrated that cortical depletion of 

noradrenaline (NA) impaired attention (Carli et al., 1983). The noradrenaline basis of 

attention is corroborated by the findings from (Navarra et al., 2008) in which the 

selective NA reuptake inhibitor, atomoxetine, improved attention in the 5-CSRTT and 

elevated NA efflux when the attentional load of the task is increased (Dalley et al., 

2001). However, the neural basis of attention is more complex than that. Both 

methylphenidate and atomoxetine that increase attention in the 5-CSRTT also increase 

extracellular levels of dopamine (DA) and acetylcholine (ACh) in the pre-frontal cortex 

(Bymaster et al., 2002; Robbins, 2002; Tzavara et al., 2006). Neurochemical inputs via 

the basal forebrain cholinergic neuronal projections have been proposed to boost 

‘signal-to-noise ratios’, a key feature of attentional function (Everitt and Robbins, 1997; 

Noudoost et al., 2010). There is a large amount of evidence for the nucleus-basalis-

neocortical cholinergic system having the lead role in the control of visual attention in 

the 5-CSRTT (Muir et al., 1994, 1995, 1996; McGaughy et al., 2002; Risbrough et al., 

2002; Harati et al., 2008). A 70% reduction of cholinergic neurons in the nucleus basalis 

decreased both ACh efflux in the medial frontal cortex and reduced accuracy in the task, 

thus highlighting a direct relationship between impaired attentional function and ACh 

(McGaughy et al., 2002). Therefore it is impossible to disseminate the positive effects 

of methylphenidate and atomoxetine on attentional performance in the 5-CSRTT 

between the cholinergic and noradrenergic systems (Tzavara et al., 2006). There is 

ongoing research into which receptor subtype ACh acts through to mediate attention. 

Accuracy in the 5-CSRTT was reduced by the muscarinic ACh receptor antagonist 

scopolamine treatment, but was not effected by mecamylamine a nicotinic ACh receptor 

(nAChR) antagonist (Ruotsalainen et al., 2000), whereas mice carrying a deletion of the 

"2 subunit of nACh receptors also displayed impaired attentional performance in the 

test (Guillem et al., 2011). Dopamine is also included in the profile of neurotransmitters 

shown to regulate attention, via the sensory-cortical regions and PFC (Noudoost and 

Moore, 2011a). Work using macaque monkeys has pinpointed the frontal eye field 

(FEF) as the origin of spatially directed attention (Moore et al., 2003; Noudoost et al., 

2010), thought to be modulated by the D1 class of DA receptors (Noudoost and Moore, 

2011b). However, the ‘visual attention’ measured in these studies, where the monkey 

must focus on a single locus on a screen, is different to the 5-CSRTT set-up where the 
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animals must scan 5 apertures while waiting for the cue light and therefore are likely to 

involve different neural pathways.  

1.5.3.2 Impulsivity 

Discussion of human studies concerned with impulsivity and cognitive control of 

inhibition is covered in an excellent review by (Aron, 2007). In rodents there are several 

behavioral paradigms used to measure response inhibition including the go/no-go task, 

the stop-signal task, the 5-CSRTT and delay-discounting tests. Impulsivity and 

behavioral inhibition in rodents has been extensively covered in two comprehensive 

reviews (Dalley et al. 2011; Eagle & Baunez 2010), therefore this section serves to 

highlight a selection of findings. The brain regions most widely associated with 

impulsivity are the structures of the basal ganglia (Figure 3.3), especially the 

connectivity between the infra-limbic cortex and the striatum. Lesion studies of 

different structures have yielded results that highlight the discrete roles that these 

regions play in impulsive behaviour. For example, lesions of the orbitofrontal cortex 

and dorsomedial striatum impaired response inhibition in the stop-signal task and 

5-CSRTT (Rogers et al., 2001; Chudasama et al., 2003; Eagle and Robbins, 2003a; 

Eagle et al., 2008), while other fronto-cortical regions such as the infralimbic and 

prelimbic cortex also play a role in modulation of impulsive responses (Chudasama and 

Muir, 2001; Chudasama et al., 2003; Eagle and Robbins, 2003a, 2003b). The role of 

monoamine transmission has also been widely investigated, with serotonin emerging as 

having an important role in the control of response inhibition and impulsivity. Global 

serotonin depletion increased premature responding in the 5-CSRTT (Harrison et al., 

1997), while blockade of serotonin receptors has resulted in findings that are highly 

region and receptor specific as to whether improvements or deficits are recorded in 

impulsivity in the 5-CSRTT (Dalley and Roiser, 2012). The effect of drugs that target 

the monoamine systems including d-amphetamine (a monoamine reuptake inhibitor), 

methylphenidate (a monoamine reuptake inhibitor) and atomoxetine (a selective 

noradrenaline reuptake inhibitor) on behaviour in the 5-CSRTT is discussed in detail in 

the introduction of Chapter 5.  

 

1.5.4 Co-morbid conditions 
ADHD is not a unitary disorder, that is, its symptoms overlap with several other 

neuropsychiatric disorders. There are many reported co-morbid conditions present with 
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ADHD including personality disorder, tic disorders, sleep disturbances, depression, 

anxiety disorders, obsessive compulsive disorder, bipolar disorder, oppositional defiant 

disorder, conduct disorder and perseveration (Tannock and Schachar, 1992; Sharp et al., 

2009; Taurines et al., 2010). However the most well studied co-morbidity is that of 

substance abuse and addiction in later life (Wilens and Morrison, 2011). One 

controversial theory is that this stems from the long-term exposure to psychostimulants 

during childhood treatment of ADHD, however two separate 10-year follow up studies 

both reported that stimulant treatment neither increases, nor decreases, the risk for 

substance abuse disorders in later life (Biederman et al., 2008; Mannuzza et al., 2008). 

It is interesting to note that the neurocircuitry of many of the above disorders, especially 

that of addiction, overlap with the proposed affected brain regions in ADHD (Koob and 

Volkow, 2010). 

  

1.5.5 Treatment  
The first line treatments for ADHD are psychostimulants, namely methylphenidate 

(Ritalin) or a mixture of amphetamine salts (Adderall). These drugs are monoamine 

reuptake inhibitors that work by prolonging the action of central dopamine and 

noradrenaline which helps to reduce hyperactivity, decrease impulsivity and increase 

attention, although reports suggest that first line treatment only works in approximately 

70% of cases (Wilens, 2008). In healthy subjects these drugs increase activity levels, 

making their treatment of ADHD paradoxical.  

 

1.5.6 Current animal models of ADHD 
A good animal model of ADHD should mimic the symptoms of the condition (face 

validity), conform to the proposed underlying pathophysiology of the condition 

(construct validity) and display attenuation of symptoms by treatment that is effective in 

treating the human disorder and give insight into biological and behavioural aspects of 

the disorder that have not been observed in clinical situations (predictive validity) 

(Russell, 2011). There are several complications with analysing animal models of 

ADHD given the heterogeneity of the clinical symptoms and the different subtypes of 

the condition (see section 1.5.1). Also the aetiology of the condition is not definitively 

known, making it very difficult to satisfy the construct validity criterion. There are 
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many proposed animal models of ADHD, both in rats and mice. These include several 

genetic mutants (both naturally occurring and artificially produced), as well as animals 

that undergo brain lesioning or are exposed to neurotoxins, however none of them are 

fully comparable to clinical ADHD (Davids et al., 2003). Table 1.3 summarises each 

model in terms of how they satisfy the ‘three validities’.  

 

By far the most widely studied model of ADHD is the inbred spontaneously 

hypertensive rat (SHR) which is often compared to its derivative strain of normotensive 

Wistar-Kyoto (WKY) rats (Okamoto and Aoki, 1963). SHRs have strong face validity 

for ADHD as they are hyperactive, impulsive and display attentional deficits that mimic 

results from children with ADHD in a test of sustained attention (Sagvolden et al., 

1993, 2005; Sagvolden, 2000). There is also evidence for ADHD-relevant changes in 

brain structure such as reduced volume of the prefrontal cortex and occipital cortex 

(Mignini et al., 2004) and changes in the sequence of the dopamine transporter (DAT) 

(Mill et al., 2005), thus satisfying the criteria for construct validity. However the main 

problem with the SHR model of ADHD is its predictive validity. Administration of 

psychostimulants, such as d-amphetamine and methylphenidate, does not ameliorate the 

ADHD-like symptoms (van den Bergh et al., 2006). The only other model in Table 1.3 

that satisfies all three-core symptoms of ADHD, along with relevant predictive and 

construct validities is the thyroid hormone receptor "1 (TR-"1) transgenic mouse 

(Siesser et al., 2006) but the role of the thyroid in ADHD is ultimately unknown, thus 

limiting the clinical relevance of this model.  

 

Given the strongly implicated role of dopamine in the aetiology of ADHD it is not 

surprising that many rodent models of ADHD concern disruption of the dopaminergic 

system (both genetically and pharmacologically induced) (van der Kooij and Glennon, 

2007).  Brain lesion and neurotoxin induced models include neonatal dopamine 

lesioning, neonatal hypoxia, prenatal BrdU treatment, and hippocampus irradiation and 

although they display some symptoms of ADHD, namely hyperactivity, the findings are 

rarely robust and do not fit the stringent criteria for good animal models of ADHD. The 

genetic models of ADHD that relate to the dopaminergic system (which include the 

SHR model outlined above) tend to be more reliable, but again do no cover the entire 

scope of the condition. For example, the activity of hyperactive wheel-running mice 

(derived from selective breeding of high voluntary wheel running) is reduced by 
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methylphenidate (Rhodes and Garland, 2003), but no other face-validity criteria are met 

thereby restricting its utility as a serious ADHD animal model. Along with the SHR 

model, the dopamine transporter knockout (DAT-/-) and dopamine transporter 

knockdown (DAT KD) mice are probably the most useful models. These mice are 

hyperactive and have impaired impulse response inhibition that can be ameliorated with 

amphetamine and methylphenidate treatment thereby satisfying all three aspects of a 

good ADHD animal model (Gainetdinov, 2010).  

 
Table 1.3 Summary table of current animal models of ADHD divided into genetic and pharmacological 
models. Face validity is split into hyperactivity (hyp), inattention (inat) and impulsivity (imp). A question 
mark denotes where data are unknown. Table constructed from similar tables in (van der Kooij and Glennon, 
2007; Sontag et al., 2010). 

    

1.5.7 The NK1 receptor and ADHD  
The findings that showed the NK1R-/- mouse to be hyperactive compared to wildtype 

controls (face validity) (Herpfer et al., 2005; Fisher et al., 2007), which was reduced 

with d-amphetamine treatment (predictive validity) (Yan et al., 2010), in conjunction 

with neurochemical abnormalities inline with those hypothesised to underlie the 

symptoms of ADHD (construct validity), lead to the NK1R-/- mouse being proposed as 

a novel model of ADHD. The link between the NK1 receptor and ADHD was furthered 

in a study of the TACR1 gene (the human equivalent of the NK1 receptor gene). In a 

study of 450 patients diagnosed with ADHD vs. 600 control subjects four single-

nucleotide polymorphisms (SNPs) in the TACR1 gene showed association with ADHD 

(rs3771829, rs3771833, rs3771856, and rs1701137) (Yan et al., 2010). The NK1R-/- 

mouse not only therefore meets all the criteria to be a model of ADHD based on its 

hyperactive phenotype, but there is a strong link between the NK1 receptor gene and 

susceptibility for ADHD. The final piece of the jigsaw is to explore whether the NK1 

receptor knockout mouse also displays behavioural deficits in impulsivity and attention.  

 

1.6 Aims of this thesis 
The work presented in this thesis serves to further explore the proposal that the NK1 

receptor knockout mouse is a valid model of ADHD. Chapter 3 presents a 

comprehensive study of the distribution of the NK1 receptor and its preferred ligand 

substance P throughout the mouse brain. This provides a solid basis to highlight the 
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brain regions that are most likely to be affected by the functional disruption of the NK1 

receptor and relating them to the role of these regions in the neurobiology of ADHD. 

The triad of diagnostic symptoms of the ADHD is investigated in terms of the 

phenotype of the NK1R-/- mouse. Activity levels of treatment naïve mice are measured 

using circular corridor apparatus (Chapter 4) while the 5-choice serial reaction time task 

(5-CSRTT) is used to measure impulsivity and attention in wildtype and NK1R-/- mice. 

The findings from the 5-CSRTT are further explored in Chapter 6 by testing wildtype 

mice in the 5-CSRTT after treatment with NK1 receptor antagonists to see if their 

behaviour reflects that of the knockout mouse. The final results chapter explores the 

perseverative phenotype of the NK1R-/- that was initially revealed in the 5-CSRTT. The 

concluding chapter draws together the findings with possible explanations of the 

underlying neurobiology that connects the NK1 receptor knockout mouse and ADHD-

like symptoms.  
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2 Materials and Methods 

2.1 Subjects 
2.1.1 Creation of the NK1R-/- mouse  
The original NK1R knockout (NK1R-/-) mouse was created via targeted disruption of 

the NK1R gene (De Felipe et al., 1998) and is summarised in Figure 2.1. The 

replacement vector comprised of a clone of the NK1 receptor gene with a cassette 

containing an internal ribosome entry site (IRES), the lacZ coding sequence and a 

neomycin resistance gene inserted into the unique StuI site in exon 1 (Figure 2.1 inset). 

The vector was then electroporated into HM1 embryonic stem (ES) cells, derived from 

a 129/Sv background. This was followed by negative selection using G418- and 

GANC-containing media to remove cells without neomycin resistance and random 

integration of the vector (rather than homologous recombination) respectively. Cells 

containing the targeted mutation were identified and injected into C57BL/6 blastocysts 

to create a 129/Sv x C57BL/6 mouse line in which the gene encoding the NK1 receptor 

was disrupted. Interbreeding of two heterozygous mice for the disrupted allele resulted 

in healthy homozygous knockout mice.  

 

2.1.2 Background strains 

2.1.2.1 MF1 mice 
The mice created by de Felipe et al (1998) were on a 129/Sv x C57BL/6 background. 

Since 129/Sv mice tend to perform badly in behavioural tests such as the Morris Water 

Maze (WMW) (Wolfer et al., 1997) the mouse line was crossed once onto an outbred 

MF1 background to rapidly dilute the 129/Sv component. 

2.1.2.2 Backcrossed mice 

The backcross colony was derived from the original 129/Sv x C57BL/6 mice by 

backcrossing on to a C57BL/6 (Harlan, Bicester, UK) background for more than 10 

generations. C57BL/6 mice are known to perform well in cognitive tests and the 

homogenous background reduces the problem of flanking genes (see section 1.3.3).  
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Figure 2.1 Schematic diagram of the creation of the NK1 knockout mouse. IRES, internal ribosome entry site; 
Gal, LacZ gene for galactosidase; MC1, promotor; Neo, neomycin resistance gene; HSV-tk, herpes simplex 
virus-thymidine kinase; StuI, unique restriction enzyme site. 
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2.1.3 Housing 
Animals were group-housed in the Biological Services Unit, UCL, London, with 2-5 

animals per cage, kept on a 12-hour light:dark cycle (lights on at 8 a.m. with half light 

from 7-8 (a.m. and p.m.)) at 21 ± 2 °C and 45 ± 5% humidity. Cages were cleaned twice 

weekly. Food and water was available ad libitum (except where stated). Male mice (25-

35g) were used for all experiments. All procedures were carried out in accordance with 

the UK Animals (Scientific Procedures) Act, 1986.  

 

2.1.4 Colony maintenance 

2.1.4.1 Homozygous breeding 

Monogamous breeding pairs were set up with homozygous adults from randomised, 

non-brother/sister pairings, to minimise the effects of inbreeding. Mating pairs were 

kept for approximately 8 months, or up to 6 litters, whichever came first.  Pups were 

weaned at 3 weeks of age. 

2.1.4.2 Heterozygous breeding  

Maternal influences have an important role in the upbringing and therefore behaviour of 

the offspring. One important aspect of maternal care is the ultrasonic vocalisations made 

between mother and pups (Branchi et al., 2001). NK1R-/- pups have reduced ultrasonic 

calls compared to wildtype pups (Rupniak et al., 2000) so to eliminate the effects on 

mother-pup bonding and upbringing, a colony of heterozygous breeding pairs was 

established for the MF1 background mice. Offspring from these pairings were a mixture 

of wildtype, heterozygous and knockout mice and therefore required verification of 

their genotype before use in experiments. The backcrossed C57BL/6 colony was also 

maintained with heterozygous breeding. 

 

2.1.5 Verification of genotype  

2.1.5.1 Ear punching 

Ear clippings were taken from pups aged at least P14 using a 2mm ear punch. The ear 

was swabbed with ice-cold alcohol prior to the punch. The tissue samples were placed 

in 0.5ml Eppendorf tubes and kept on ice until the next step of the protocol.  
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2.1.5.2 Tissue digestion with Hot Sodium Hydroxide and Tris (HotSHOT) 

75µl of alkaline lysis reagent (25mM NaOH, 0.2mM disodium EDTA, dissolved in 

ultra-pure water, pH12.0) was added to each sample and then heated at 95°C for 30mins 

(PTC-100 Programmable Thermal Controller, MJ Research, Boston, USA). After the 

samples were cooled to 4°C, 75µl of neutralising reagent (40mM Tris-HCl dissolved in 

ultra-pure water, pH5.0) was added to produce a final buffer solution of 20mM Tris-

HCl pH8.1 and 0.1M EDTA.  

2.1.5.3 Polymerase chain reaction (PCR) for DNA amplification 

6µl of sample was added to 19µl of master mix that contained three primers for the 

amplification of the NK1 receptor DNA: NK1-F, NK1-R and NeoF. The samples were 

then placed again in the thermocycler for DNA amplification. Full primer sequences, 

master mix recipe and PCR conditions are outlined in detail in Appendix A2.  

2.1.5.4 Agarose gel electrophoresis 

Samples were run on a 2% agarose gel (2g agarose dissolved in 100ml 0.5x Tris-borate-

EDTA (TBE) buffer (National Diagnostics, Hull, UK)) with 8µl of ethidium bromide 

(EtBr), which fluoresces strongly under ultra-violet light when bound to DNA. 500ml of 

TBE buffer (with 2µl of EtBr) was poured into the gel tank. 4µl of loading buffer was 

added to each sample and a total of 15µl was loaded into the wells. The gel was run at 

100-120mV using a FEC105 Voltage Power Pack for approximately 1 hour after which 

it was visualised and photographed on an ultra-violet transilluminator plate (UVP Ltd, 

Cambridge, UK). For homozygous wildtype and NK1R-/- mice a single band is seen 

corresponding to 350 and 260 bases respectively. For heterozygous animals 2 bands are 

present corresponding to 350 and 260 bases. Samples for genotyping were always run 

against positive control samples of known wildtype and NK1 receptor mice and a 

negative H2O control (Figure 2.2). 

 

 
Figure 2.2 An example gel for verification of genotype of a litter of six pups. On the left are controls for +/+ 
(wildtype), -/- (NK1 receptor knockout) and a negative H2O control. In this litter, there were 4 heterozygous 
mice (numbers 1,2,4 and 6), one wildtype and one knockout mouse giving a littermate pair (numbers 3&5 
respectively). The litter of 6 was split into 2 cages that are separated on the gel by a blank lane. 
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2.1.5.5 Confirmation by immunohistochemistry 

Another method for genotype verification is by immunohistochemical staining for the 

NK1 receptor (as outlined in section 2.2), although this should only be used as a 

secondary measure after genotyping by PCR. This method can only distinguish between 

wildtype and knockout mice, as heterozygous mice appear very similar to wildtype. 

Absence of staining for the NK1 receptor denotes tissues from a NK1 receptor knockout 

mouse (Figure 2.3B).  

 
Figure 2.3 Representative immunofluorescent staining for the NK1 receptor in the dorsal striatum of a 
wildtype (A) and NK1 receptor knockout (B) mouse. Primary antibody was rabbit anti-NK1R (1:10000), with 
TSA amplification (section 2.2.3.2). Scale bar =40µm. 

 

2.1.6 Culling 
After experimentation, if tissue was required for immunohistochemical staining (see 

below) mice were perfused (section 2.2.1.1), otherwise mice were culled by CO2 

asphyxiation in a sealed chamber where the percentage of CO2 was gradually increased. 

After cessation of breathing and visible heart beat, cervical dislocation was performed 

as a secondary measure.  

 

2.2 Immunohistochemistry 
 

The basis of immunohistochemistry (IHC) is to identify cellular constituents using a 

visible marker that labels specific antigen-antibody binding sites. The majority of 

immunohistochemistry in this thesis (Chapter 3) is staining for the NK1 receptor and 

it’s preferred ligand Substance P, using avidin/biotin amplification (section 2.2.3.1) and 

chromogenic visualisation with nickel (section 2.2.4.1).  
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2.2.1 Tissue preparation 
Good tissue preparation is fundamental in achieving successful immunohistochemistry. 

Fixation of tissue with paraformaldehyde (PFA) irreversibly cross-links the basic amino 

acid residues of proteins via formation of a methylene (CH2) bridge.  This maintains 

cellular structure and the in vivo locations of sub-cellular components as well as 

protecting against tissue degradation.  

2.2.1.1 Perfusion 

Mice were terminally anaesthetised by intraperitoneal (i.p.) injection of 0.3ml 

pentobarbital sodium (200 mg/ml; Euthatal, Harlow, UK) before being intracardially 

perfused with 20ml ice-cold heparinised 0.9% saline, followed by 20ml of 4% 

paraformaldehyde (PFA) in 0.1M PB.  

2.2.1.2 Post-fix and cryopreservation  
Brains were removed from perfused animals and post-fixed overnight in 4% PFA. 

Brains were then transferred to 30% sucrose in 0.1M PB containing 0.02% NaN3 for 

cryoprotection and stored at 4°C for a minimum of 24 hours prior to sectioning. 

2.2.1.3 Sectioning 

Brains were mounted onto a pre-cooled sliding microtome (SM200R; Leica 

Microsystems, Milton Keynes, UK) and frozen with dry-ice. 40µm coronal sections 

were cut and collected in 5% sucrose solution (made in 0.1M PB) in serial sets of six. 

2.2.1.4 Blocking 

To reduce background staining and minimise non-specific binding of the primary 

antibodies the sections are first incubated in ‘blocking solution’. This solution is made 

up in 0.1M phosphate buffer and comprising 0.03% Triton X-100 (for cellular 

permeabilisation) and 0.3% normal (non-immune) serum (preferably from the host 

species of the secondary antibody). If the stain is for chromogenic visualisation with 

DAB (section 2.2.4.1), 0.2% H2O2 must be added to the blocking solution to quench 

endogenous peroxidase activity of the tissue. 

 

2.2.2 Direct staining 
Specific antibodies to proteins are raised by injecting an animal such as a goat or rabbit, 

with a short peptide corresponding to part of the sequence of the protein under 
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investigation conjugated to a large carrier protein such as bovine serum albumin (BSA). 

Plasma is collected from the animal and the generated antibodies are purified. Primary 

antibodies are applied to tissue sections where they bind to the appropriate antigen. The 

tissue is then incubated in a secondary antibody that is conjugated to a visible marker. 

Visible markers can either be chromogenic or fluorescent (see section 2.2.4). 

 

2.2.3 Amplification methods 
Direct staining usually requires the antibodies to be used in high concentrations, leading 

to higher background staining, and an increase in expense. Amplification methods 

increase the sensitivity of the stain without loss of resolution or increase in background. 

Using amplification systems means that primary antibodies can be used at 

concentrations up to 1000-fold lower than for a direct stain.   

2.2.3.1 Avidin/biotin system 

Avidin is a glycoprotein found in egg white and has a high affinity for biotin, a small 

molecular weight vitamin. Each avidin molecule can bind up to four biotin molecules. 

Biotin is conjugated to a secondary antibody (raised against the primary antibodies host 

animal e.g. biotinylated anti-rabbit secondary antibody). A visible marker such as 

fluoroscein isothiocyanate (FITC) is conjugated to avidin, which binds to the 

biotinylated secondary antibody, thus allowing visualisation of the antigen of interest.  

2.2.3.2 Tyramide Signal Amplification (TSA) 

Tyramide signal amplification also uses the avidin/biotin system and further improves 

the signal-to-noise ratio. Horseradish peroxidase (HRP) is added to catalyse the addition 

of biotinylated tyramide solution to the antigens already bound to the biotinylated 

secondary antibody. The binding of the biotinylated tyramide is fast and covalent (the 

reaction intermediate dimerises with tyrosine residues on the endogenous protein). A 

marker is then used to visualise the complex (e.g. FITC-avidin). 

 

2.2.4 Visualisation methods 

2.2.4.1 Chromogenic staining (DAB staining) 

3,3’-diaminobenzidine tetrahydrochloride (DAB) is a chromogenic electron donor in the 

presence of the enzyme HRP which catalyses the oxidation of DAB to form an 
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insoluble brown polymer. Using an HRP-avidin complex, the reaction product can be 

used to visualise complexes surrounding the primary antibody. Nickel ions can be added 

to the DAB reaction mixture to produce a more intense grey-black precipitate. 

2.2.4.2 Fluorescent staining  

Fluorescent dyes bound to avidin are often used to visualise labelled antigens. The dyes 

are excited at a specific wavelength of light that then emit light at a different 

wavelength, for example, FITC fluoresces green (515nm) when excited at a wavelength 

of 495nm. Because different dyes are excited by different wavelengths, they can be used 

to label separate antigens in the same tissue, a common method used to check for co-

localisation of antigens.  

 

2.2.5 Imaging 
Sections were viewed using a Leica DMR microscope (Leica Imaging Systems Ltd., 

Cambridge, UK), equipped with a CCD camera (C-4742-95; Hamamatsu Photonics, 

Hamamatsu, Japan). Images were captured with OpenLab 4.0.4 software (Perkin Elmer, 

Waltham, MA, USA). Images for the NK1 receptor and substance P atlas were taken at 

x5 magnification and subsequently stitched together using Photoshop 7.0 (Adobe, San 

Jose, CA, USA).  

 

2.3 Locomotor activity  
 

Locomotor activity was measured over a 48-hour period using circular corridor 

apparatus.  

2.3.1 Apparatus 
A bank of eight circular corridors (Imetronic, Pessac, France) was used. Each corridor 

had a total diameter of 17cm, with a 5cm wide corridor and was 15cm high (Figure 2.4). 

Four infra-red beams were evenly spaced around the corridor 1cm above the floor. 

Beam breaks were detected and recorded via an electronic interface and logged using 

Imetronic software running on a connected PC. A consecutive break in two adjacent 

beams (one quarter-turn) was considered a unit of locomotion. The bank of corridors 

was enclosed and ventilated. Animals had access to food and water throughout the 48-

hour experiment.   
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Figure 2.4 Set-up of circular corridor apparatus. During the experiment a water bottle is placed through the 
hole and food is placed in a hopper that hangs inside the corridor. Two consecutive beam breaks represent a 
unit of locomotor activity.  

 

2.3.2 Lighting 
All the corridors were individually lit at the same level (120 lux). The lights were 

programmed on a 12 hour light/dark cycle (lights off at 19.30 and on at 07.30) to mimic 

the timings of the animal house as closely as possible (see section 2.1.3).  

 

2.4 5-choice serial reaction time task (5-CSRTT) 
 

The 5-choice serial reaction time task requires the animal to scan five evenly spaced 

apertures until a light cue is presented, after which a nose-poke response is required in 

the correct spatial location (Bari et al., 2008). The 5-CSRTT can measure both 

attentiveness and impulsivity in a single test and therefore provides an excellent 

paradigm in which to test the hypothesis that the NK1 receptor knockout mouse is a 

model of ADHD. 
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A 

2.4.1 Test Apparatus 
The test apparatus consisted of four mouse operant chambers, each housed within a 

ventilated sound-attenuating box (Med Associates, St. Albans, VT, USA). The internal 

chamber had a curved wall on the left hand side, in which there were 5 equally spaced 

holes, each with an infrared detector inside them to detect nose-poke responses ( 

Figure 2.5A). These holes were lit with yellow stimulus lights, located inside each hole. 

On the opposite wall of the chamber was a larger hole into which the reinforcer was 

delivered (0.01ml of 30% condensed milk solution) ( 

Figure 2.5B), signaled by illumination of the hole. Head entries into the magazine, to 

collect the reward, were also recorded via the interception of an infrared beam. A house 

light, to illuminate the chamber, was mounted above the magazine. The presentation of 

stimuli and the recording of the responses were controlled by a Smart Ctrl Package 

8IN/16OUT with an additional interface by MED-PC-IV for Windows (Med 

Associates, St. Albans, VT, USA).  

 

 
Figure 2.5 5-choice serial reaction time task apparatus, the five cue apertures are on the left-hand wall (A) 
with the magazine hole directly opposite (B). 

 

2.4.2 5-CSRTT Habituation 
During the first three sessions the animals were placed in the boxes for 30 minutes, and 

had access to the liquid food reward on a continuous schedule. To obtain the reward the 

animal had to nose poke into the food magazine, which raised the dipper and gave 

access to the milk solution for 10s. The house light, food magazine and stimulus lights 

remained on for the duration of the habituation sessions.  

 

A B 
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After the initial 3 days of apparatus habituation, the animals were trained on a non-

spatial schedule. The 30-minute sessions began with the dipper arm raised and the 

magazine light on. To start the session the animal nose-poked into the magazine and ate 

the reinforcer. The stimulus lights in all five holes were then illuminated and the reward 

was only presented after a nose-poke into one of the five holes. To pass this procedural 

habituation training stage, the animal needed to earn more than 50 reinforcers on two 

consecutive sessions up to a maximum of 10 sessions. 

 

2.4.3 5-CSRTT Training 
After the initial habituation period, mice were trained through stages 1-6 of the 

5-CSRTT, with each stage getting progressively harder and thus requiring more 

attention to be paid. To pass each stage the animal had to reach certain performance 

criteria (see Table 2.1). 

 

Every training session began with the illumination of the food magazine light and the 

free delivery of the liquid reinforcer via the dipper arm. The first trial was initiated by a 

nose-poke into the food magazine by the animal. After a fixed interval (the inter-trial 

interval (ITI)), one of the holes was illuminated for a short amount of time, known as 

the stimulus duration (SD). The animal then had a set period of time (limited hold, LH) 

to respond with a nose-poke into the correct hole in order to receive the reward. After a 

correct response, the magazine light would come on and the milk reward was made 

available. Collection of the reinforcer initiated the next trial.  

Table 2.1 Summary of training stages 1-6 parameters and criteria required to pass each stage 

Parameters used Stages 
SD (s) LH (s) ITI (s) 

Passing criteria 

1 30 30 2 
2 20 20 2 

> 30 correct trials for 2 consecutive 
sessions 

3 10 10 5 > 50 correct trials for 2 consecutive 
sessions 

4 
 

5 5 5 

5 
 

2.5 5 5 

> 50 correct trials, 
> 75% accuracy,  
< 25% omissions,  
for 2 consecutive sessions 

6 1.8 5 5 > 50 correct,  
> 75% accuracy  
< 25% omissions  
7 sessions required with the final 3 
reaching criteria  
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When the animal performed an incorrect response (nose-poking into one of the four 

non-illuminated holes), or an omission error (failing to respond to any of the five holes 

within the allowed time), or a premature response (response into the holes during the 

ITI, i.e. before the presentation of the stimulus), the house light was extinguished for 5s 

(Time Out, TO). Responses made into the holes during this period restarted the TO. 

After a TO period, the next trial was restarted by a nose-poke into the magazine. 

Perseverative responses, (additional responses into the holes after a correct response and 

before the collection of the reward), were recorded but had no programmed responses. 

Sessions lasted for 100 trials or 30 minutes, whichever came first.  

 

2.4.4 5-CSRTT Tests 
After the training phase, and a prolonged stable performance at stage 6 (baseline) for a 

minimum of 3 consecutive sessions, the animals were subject to two different tests that 

demanded increased attention. The long inter-trial interval (LITI), where the ITI is 

increased from 5 seconds to 7 seconds, and the variable inter-trial interval (VITI) with a 

random schedule of four ITI alternatives (2, 5, 10 or 15 seconds) (Table 2.2). The 

duration of the test sessions was increased to 45 minutes (or 100 trials). The stimulus 

duration for the VITI was the same as stage 6 (1.8s), but unfortunately due to a 

programming error the SD for the LITI was decreased to 1.0s, increasing the attentional 

load furthermore. 

 

Table 2.2 Summary of parameters used in the tests of 5-CSRTT. * At the completion of the experiment it was 
realised the LITI stimulus was set at 1s rather than 1.8s 

 

 

 

 

 

 

Parameters used Tests 
SD (s) LH (s) ITI (s) 

Long ITI (LITI) 1* 5 7 
Variable ITI (VITI) 1.8 5 2, 5, 10, 15 
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2.4.5 Behavioural scoring 
The following variables of the 5-CSRTT training and tests were recorded and analysed: 

 

• Total number of trials required to pass the training phase: the sum of all the 
trials completed at each training stage (for analysing the data obtained from 
Training Stage 1-6 only). 

•  Total number of trials completed in each test session: total correct response 
+ total incorrect + total omission (for analysing the data obtained from the fixed 
long ITI and variable ITI tests, only). 

• % Accuracy: correct responses / (correct + incorrect responses) x 100 
• % Omissions: total omissions / (correct + incorrect responses + omission) x 100 
• % Premature responses: premature responses / (correct + incorrect + omission 

+ premature responses) x 100 
• Latency to correct response: latency to nose-poke into the correct hole after 

the onset of stimulus (seconds) 
• Latency to collect reward: latency to collect the reward after a correct response 

(seconds) 
• Perseveration: total number of responses made into the holes after a correct 

response but before the collection of the reward. 

 

2.5 Species-typical behaviours  
 

The other behavioural tests used in this thesis in addition to the 5-choice serial reaction 

time task are marble-burying and burrowing. These behavioural paradigms are designed 

to measure species-typical behaviours such as digging, and unlike the majority of 

animal experiments, actually provide the animals with a form of environmental 

enrichment rather than a negative experience. Here the tests are used as a measure of 

perseverative behaviour i.e. the repetition of digging bouts in the marble-burying test 

which has been shown to be sensitive to animal species, strain, lesions and drug 

treatments (discussed further in Chapter 7). They are cheap, quick to run and require no 

specialist equipment. 
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2.5.1 Marble burying 

2.5.1.1 Apparatus 

The apparatus for the marble burying test comprised of a covered Perspex box (30 (l) x 

19 (w) x 18 (h) cm), filled with sawdust (Litaspen Premium, Lillico Biotechnology, 

Surrey, UK) to a depth of 5cm. 20 black marbles (1.5 cm diameter) were placed on top 

of the sawdust in an evenly spaced pattern approx. 4cm apart (Figure 2.6A). The test 

was conducted with 2 test boxes next to each other.  

 
Figure 2.6 Experimental set-up for the marble-burying test (A). After 30 minutes the mice are removed and 
the number of marbles buried by more than two-thirds is recorded (B). In this example the NK1 receptor 
knockout mouse (left) buried 3 marbles and the wildtype (right) hand side buried all 20 marbles.  

 

2.5.1.2 Procedure 
The mice were habituated to the boxes without the marbles the day prior to the test for 

15minutes. For the test the mice were placed in the boxes for 30minutes, after which the 

animals were returned to their home cages and the number of marbles buried by more 

than two-thirds was recorded. The tests were videoed using a Panasonic SDR-100 

camcorder for behavioural scoring.  

2.5.1.3 Behavioural scoring 

The videoed tests were going to be used to score the latency to begin digging and the 

number of digging bouts, defined as a coordinated movement of the front paws 

followed by a kick of the hind paws, performed during the 30minute tests. However 

another behaviour, a displacement of sawdust by the front paws and muzzle, was 

prevalent when the videos were viewed. As this behaviour contributes to the burying of 

marbles the total number of  ‘nose-pushes’ and the latency to the first nose-push were 

scored alongside digging bouts. The videos were scored in 5minute time bins to allow 

for further analysis. 
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2.5.2 Burrowing 

2.5.2.1 Apparatus  

Each burrow consisted of 20cm of black drainpipe (6.8cm diameter) with two 5cm 

machine screws bolted 1cm from the end to raise the opening 2.5cm from the floor. The 

opposite end of the burrow was sealed with a metal lid (Figure 2.7A&B). The 

burrowing substrate used in this experiment was gravel (8mm pea-shingle, B&Q, 

Hampshire, UK) (Figure 2.7C).  

 

 
Figure 2.7 A full burrow in situ in the home cages with dimensions (A&B). During the test sessions, the pea-
shingle is displaced from the burrow (C).  

 

2.5.2.2 Procedure  

Rodents burrow spontaneously, but their performance tends to improve with practice. 

To habituate the mice to the burrows and substrate, full burrows were placed in the 

home cages while the animals remained in group housing for two consecutive nights 

(burrows in at 5.00p.m and removed the next morning at 9.30a.m). The mice were then 

separated into individual cages for the burrowing tests, one overnight test and three 2-

hour probe tests on consecutive days. Two different length tests are studied in case a 

ceiling effect is reached in the overnight test. Before each test the burrows were filled to 

approximately 1.5cm from the top and weighed before being placed in the cages. The 

probe tests were run from 3.00-5.00pm on three consecutive days. At the end of each 

test the burrows were removed and reweighed to calculate the gross weight of gravel 
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displaced from the burrow, which was subsequently calculated as a percentage of the 

initial weight.  

 

2.6 Statistical analysis 
 

Data are presented as mean ± standard error of the mean (SEM). Statistical tests were 

carried out using IBM Statistics version 19 for Mac (SPSS Inc, Chicago, Illinois, USA). 

P<0.05 was considered statistically significant. Specific statistical methods for each 

individual experiments are detailed in the results chapters. 
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3 Immunohistochemical localisation of the NK1 
receptor and its preferred ligand substance P 
(SP) throughout the mouse brain  

 

3.1 Introduction 
 

The focus of this thesis is to investigate the potential role of SP and the NK1 receptor in 

the aetiology of ADHD. Therefore knowledge of the distribution of NK1 receptor and 

its ligand substance P throughout the brain is essential for the analysis and interpretation 

of behaviours implicated to the SP-NK1 receptor pathway. Previous studies of NK1 

receptor distribution have been conducted in a range of mammalian species, but to date 

there is no published study of the distribution of the NK1 receptor, and its preferred 

ligand SP, throughout the mouse brain. This chapter serves to fill this void by using 

immunohistochemistry to describe the distribution of NK1 receptor and substance P 

throughout the mouse brain with comparison to previous NK1 receptor distribution 

studies in other species, while also considering those brain regions implicated in the 

aetiology of ADHD.  

 

3.1.1 Previous NK1 receptor distribution studies 

3.1.1.1 Radio-ligand binding 

Early studies into the distribution of NK1 receptors in the central nervous system (CNS) 

examined the binding patterns of radio-labelled ligands of the NK1 receptor using 

autoradiography. In adult rat brain, binding of tritiated or iodinated substance P was 

noted in high concentration in the external layers of the olfactory bulbs, medial 

amygdala, dentate gyrus, superior colliculus, dorsal parabrachial nucleus and locus 

coeruleus. Moderate binding levels were seen in the nucleus accumbens, caudate 

putamen, globus pallidus, periaqueductal gray, lateral and medial septum and subiculum 

(Quirion et al., 1983; Mantyh et al., 1984; Rothman et al., 1984; Shults et al., 1984; 

Buck et al., 1986). One confounding aspect of these early findings is the lack of 

exclusivity in the binding properties of SP to the tachykinin family of receptors. 
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Although SP binds preferentially to NK1, it also exhibits limited binding to NK2 and 

NK3 receptors (Table 1.1 in the Introduction chapter). Thus, later autoradiographic 

distribution studies compared tachykinin-binding sites using NK1-, NK2- and NK3-

specific ligands and more selective NK1 receptor ligands. In adult rat brain the findings 

for NK1 receptor distribution were largely identical to those noted previously due to the 

sheer predominance of the NK1 receptor in comparison to NK2 and NK3 receptors 

(Saffroy et al., 1988; Dam et al., 1990; Dietl and Palacios, 1991). Inter-species 

comparisons have highlighted the conservation of NK1 receptor distribution throughout 

the vertebrate CNS with an apparent increase in receptor density through evolution 

(Dam and Quirion, 1986; Dietl and Palacios, 1991; Rosen et al., 1993; Rigby et al., 

2005). 

 

3.1.1.2 In-situ hybridisation 

In situ hybridisation uses labeled complementary DNA (cDNA) or RNA to localise 

specific DNA or messenger RNA (mRNA) sequences within a piece of tissue. In the rat 

brain hybridisation of oligonucleotides unique for the NK1 receptor yielded strong 

labeling in the diagonal band (both vertical and horizontal limbs, medial septal nucleus, 

nucleus basalis magnocellularis, suprachiasmatic nucleus, dorsal and ventral tegmental 

areas, hypothalamus, and structures of the basal ganglia (including the striatum) (Elde et 

al., 1990; Gerfen, 1991; Maeno et al., 1993; Mick et al., 1994). Findings from feline 

brain tissue reported laminated staining of the visual cortex and labeling of 

hypothalamic structures to varying degrees (weak labeling: posterior medial and lateral 

hypothalamus; moderate labeling: anterior medial hypothalamus and strong labeling of 

the basal amygdaloid complex) (Matute et al., 1993; Yao et al., 1999). Co-localisation 

of choline acetyltransferase (ChAT) and NK1R mRNA in the striatum was noted firstly 

in rat (Gerfen, 1991) and later confirmed in human striatal slices (Aubry et al., 1994). It 

must however be taken into consideration that mRNA levels may not necessarily 

correspond directly to the amount, nor final location, of the translated protein. This 

confounding factor is negated with immunohistochemical visualisation, since it is the in 

situ protein that is targeted.    
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3.1.1.3 Immunohistochemistry 

Immunohistochemistry uses antibodies to bind to unique epitopes of proteins that are 

then visualised either by fluorescent or chromogenic methods. The high specificity and 

contrast of the staining enabled high-resolution images that clearly showed NK1 

receptors on cell bodies and dendrites for the first time. (Nakaya et al., 1994) completed 

a comprehensive map of SP and NK1 receptor distribution in the rat brain which in 

large supported previous findings from other studies. Strong immunohistochemical 

staining was recorded in cortical amygdaloid nucleus, hilus of the dentate gyrus, locus 

coeruleus; moderately in the caudate-putamen, nucleus accumbens, olfactory tubercle, 

median, pontine, and magnus raphe nuclei; and sparsely in the cerebral cortex, basal 

nucleus of Meynert, claustrum, gigantocellular reticular nucleus, and lobules IX and X 

of the cerebellar vermis. Distribution of the NK1 receptor was comparable in guinea-pig 

brain to that of the rat (Yip and Chahl, 2001). Other immunohistochemical studies of 

the NK1 receptor and ligand have tended to focus on specific brain regions such the 

striatum, where NK1 receptors were found on 3% of neurons which were all large and 

aspiny (Shigemoto et al., 1993), these are now known to be cholinergic and 

somatostatinergic interneurons (Kaneko et al., 1993; Oda and Nakanishi, 2000). 

Interspecies comparisons have revealed differences, namely in the regions that control 

circadian rhythms. Staining of the intergeniculate leaflet was comparable in rat, hamster 

and mouse tissue, but double staining for SP and the NK1 receptor in the 

suprachiasmatic nucleus was only seen in hamster and rat, and not mouse (Mick et al., 

1994; Piggins et al., 2001). This is further explored in Chapter 4 for this thesis. The 

NK1 receptor and SP are abundant in structures of the basal ganglia of non-human 

primates including the caudate, putamen, globus pallidus (internal and external 

segments) and ventral pallidum (Parent et al., 1995; Mounir and Parent, 2002; Lévesque 

et al., 2006). In human brain tissue, prefrontal and visual cortex, nucleus basalis, 

hippocampus and basal ganglia (including the striatum, globus pallidus, nucleus 

accumbens) all stain positively for the NK1 receptor (Burnet & Harrison 2000; Kowall 

et al. 1993; Mounir & Parent 2002; Parent et al. 1995; Tooney et al. 2000).  

 

3.1.1.4 Positron emission tomography (PET) 

Positron emission tomography is typically used in medical imaging and measures 

gamma rays released from a positron-emitting tracer. In the instance of distribution 
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studies for the NK1 receptor, radiolabeled antagonists are used such as 11C-GR-205171 

(Engman et al., 2012). The advantage of this technique is that it provides a non-invasive 

method of measuring receptor distribution. Early animal work with Syrian hamsters 

established that a modified, radiolabeled antagonist could penetrate the blood brain 

barrier (Livni et al., 1995) and the highest binding levels were found in the striatum and 

cortex of the guinea-pig brain (Solin et al., 2004). In humans, the strongest responses 

originate from the caudate and putamen, with moderate binding in the thalamus, globus 

pallidus, substantia nigra, and cortical regions that include the frontal, temporal, 

occipital and anterior cingulate cortices (Hargreaves, 2002; Hietala et al., 2005; 

Okumura et al., 2008; Engman et al., 2012). PET has also been used to establish the 

therapeutically relevant dose of aprepitant (the only NK1 receptor antagonist in clinical 

use) (Bergström et al., 2004).  

 

3.1.2 Mismatch of SP and NK1 receptor 
For an as-yet unknown reason, receptor density does not always correlate with that of its 

preferred ligand (Herkenham, 1987). This is the case for the NK1 receptor and 

substance P in several brain regions. This region most widely described with 

mismatched staining is the substantia nigra, which is rich in substance P, yet has very 

low levels of NK1 receptors. This has been noted with all of the techniques outlined 

above across a range of mammalian species (Mantyh et al., 1984; Rothman et al., 1984; 

Shults et al., 1984; Gerfen, 1991; Maeno et al., 1993; Nakaya et al., 1994). In rat brain 

tissue, other regions with high levels of SP relative to that of the receptor include the 

interpeduncular nucleus and the medial amygdaloid nucleus, whereas the dentate gyrus, 

inferior colliculus and dorsal tegmental area stain intensely for the presence of NK1 

receptors, but weakly for SP (Nakaya et al., 1994). The most likely explanation is that 

due to its small size, SP diffuses across large distance relatively quickly so NK1 

receptors in SP-poor regions may receive SP that is released form distant axon terminals 

(Herkenham, 1987). 
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3.1.3 Distribution of NK1R and SP in brain regions associated with 
the symptoms of ADHD 

The focus of this thesis is to investigate the potential role of SP and the NK1 receptor in 

the aetiology of ADHD. The brain regions associated with control of attention and 

impulsivity mainly fall within the basal ganglia system and are therefore considered in 

greater detail in the discussion of this chapter. The specific cortico-striatal circuitry 

associated with the symptoms of ADHD are summarised in Figure 3.1. 

 
Figure 3.1 Hypothesized cortico-striatal circuits responsible for different cognitive functions and the processes 
affected by lesioning specific cortical and subcortical structures in the rat. References: 1 Muir et al., (1996); 2 
Rogers et al., (2001); 3 Chudasama et al., (2003); 4 Christakou et al., (2004); 5 Mobini et al., (2002); 
Winstanley et al., (2004) asterisk indicates depending on procedure used; 6 Cardinal et al., (2001); 7 Eagle et 
al., (2008b), Dagger denotes Bari and Robbins unpublished; 8 Eagle and Robbins (2003). Abbreviations: ACC 
Anterior cingulate cortex, d Dorsal, dm Dorso- medial, IL Infralimbic cortex, Nac Nucleus accumbens, OFC 
Orbitofrontal cortex, STR Striatum. Figure taken from (Bari and Robbins, 2011) 

 

3.2 Materials and Methods 
 

3.2.1 Subjects and tissue preparation 
Male wildtype mice from the homozygous bred MF1 colony (129/Sv x C57BL/6 back-

crossed with an outbred MF1 strain: see section 2.1.2), of approximately 10 weeks of 

age (n =3) were transcardially perfused, and their brains removed and sliced coronally 

using a freezing microtome into 40µm sections.  

 

3.2.2 Immunohistochemistry 
Immunohistochemistry was performed with primary antibodies raised against the NK1 

receptor and its ligand, substance P, on every 6th section through the brain from the 

prefrontal cortex (approximately 2.5mm rostral to bregma) to the brainstem 

(approximately 7mm caudal to bregma). The DAB method of visualisation was used 

because of the greater contrast between stained, and non-stained brain regions. The 

sections were first incubated for one hour in blocking solution (0.1M PB containing 3% 

normal goat serum (NGS), 0.3% Triton X-100 plus additional hydrogen peroxide (2%)). 

This was followed by incubation over-night at room temperature (or 3 days at 4°C) in 

either rabbit anti-NK1 receptor (1:5000, a generous gift from P.W. Mantyh) or rat anti-

Substance P (1:200, Abcam). Sections were subsequently incubated in biotinylated 
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secondary antibodies (1:250, goat-anti-rabbit and goat-anti-rat for NK1 receptor and SP 

respectively, Vector Laboratories, Burlingame, CA, USA) for 90 minutes and then in 

avidin-biotin solution (1:1000) from a Vectastain Elite ABC Kit (Vector Laboratories,) 

for a further 30 minutes. The signal was developed using a DAB Substrate Kit for 

Peroxidase, with added nickel for a blue/black stain (Vector Laboratories). The sections 

were mounted on gelatin-subbed slides, left to air-dry, then dehydrated through a series 

of alcohols and coverslipped using DPX mounting medium. A detailed protocol for this 

DAB stain is given in Appendix A3. 

 

3.2.3 Imaging 
The distribution of NK1 receptor immunoreactivity was comparative in the three brains 

used in this experiment. The best slices from the NK1- and SP-stained sets were 

selected for imaging and paired according to their position from bregma. Sections were 

viewed using a Leica DMR microscope (Leica Imaging Systems Ltd., Cambridge, UK), 

equipped with a CCD camera (C-4742-95; Hamamatsu Photonics, Hamamatsu, Japan). 

Images were captured with OpenLab 4.0.4 software (Perkin Elmer, Waltham, MA, 

USA). Four images per slice were taken for the NK1 receptor and substance P atlas at 

x5 magnification and later stitched together using Photoshop 7.0.  

 
 
 
 
 
 
 
 
 
 
 

3.3 Results 
 

Representative photomicrographs are shown in Figure 3.2, with SP stained images on 

the left- and NK1 receptor on the right-hand panel. An approximate value for the 

distance relative to bregma is given for each pair in the top left corner. Brain regions 

and bregma positions are taken from the mouse brain atlas (Franklin & Paxinos, 1997) 

and confirmed using The Allen Mouse Brain Atlas, an interactive mouse brain atlas 
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(found at http://mouse.brain-map.org/static/atlas). NK1 receptor staining was observed 

mostly in cell bodies and dendrites throughout the mouse brain, however regions of 

more diffuse staining were also seen such as in the central amygdaloid nucleus. Axonal 

SP staining is harder to discern in individual neurons even at higher magnification. 

Regions of relevance to the work in this thesis, along with regions of notable 

mismatched staining are summarised in Table 3.1 on page 78.  

 

3.3.1 Cerebral Cortex 
 In general, staining for the NK1 receptor or SP is weak in the 6 defined layers that 

make up the neocortex, with a slight graduation from the surface (lamina I) through to 

weaker staining in the deeper laminae (Figure 3.2 F’). Staining of the NK1 receptor is 

stronger in the somatosensory and piriform cortices (Figure 3.2E’ & F’ respectively) but 

is not discernable in the tissue stained for SP (Figure 3.2E’-F’). 

 

3.3.2 Basal Ganglia  
NK1 receptors and substance P are found abundantly in the structures that comprise the 

basal ganglia, although staining of receptor and ligand appears to be inversely 

correlated. NK1 receptor staining is strong in the caudate putamen (Figure 3.2E’-L’), 

moderate in the nucleus accumbens (Figure 3.2D’) and vertical nucleus of the diagonal 

band of the pallidum (Figure 3.2F’), and weak in the globus pallidus (Figure 3.2I’-L’), 

ventral pallidum (Figure 3.2G’-I’) and the substantia nigra (Figure 3.2S’-U’). 

Conversely, the staining intensity of SP is extremely intense in the substantia nigra 

(Figure 3.2S-V) and ventral pallidum (Figure 3.2G-I), strong in the shell of the nucleus 

accumbens, moderate in the core of the nucleus accumbens (Figure 3.2E) and weak in 

the caudate putamen, globus pallidus (Figure 3.2E-L) and vertical nucleus of the 

diagonal band of the pallidum (Figure 3.2F). Staining is negligible for both the NK1 

receptor and SP in the subthalamic nucleus (Figure 3.2O&O’). The importance of the 

staining of the basal ganglia structures is discussed in terms of the relation to the 

behaviours measured in the subsequent chapters of this thesis in the discussion section. 
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3.3.3 Limbic system  
In the hippocampus, SP staining is only visible in the molecular layer of the dentate 

gyrus whereas NK1 receptor staining is present in the granule layer of the dentate gyrus, 

pyramidal layer and lacunosum stratum of CA1-CA3 fields (Figure 3.2L’-T’). NK1 

receptors are expressed abundantly in the central and cortical amygdaloid nuclei (Figure 

3.2J’-M’), but not the medial amygdaloid nucleus, where SP staining is more intense 

(Figure 3.2K’). The septum also has regional staining for the NK1 receptor and SP. SP 

staining in intense in the lateral, but not medial septum, and is especially dense in the 

ventral region (Figure 3.2G-H), whereas the NK1 receptor is only found in the internal 

section of the lateral septum, and in the medial septum (Figure 3.2H’)  

 

3.3.4 Thalamus and hypothalamus 
NK1 receptor staining is minimal in the thalamus, except in the habenula where staining 

is greater in the medial rather than lateral section (Figure 3.2M’-N’) and the 

intergeniculate leaflet of the ventral thalamus (Figure 3.2P’-Q’). Substance P staining is 

also found in the intergeniculate leaflet (Figure 3.2P-Q) and in the paraventricular and 

intermediodorsal nuclei of the dorsal thalamus (Figure 3.2M). Overall, the 

hypothalamus stains strongly for SP and moderately for NK1 receptors, however the SP 

stain is so intense that it is difficult to discern the individual nuclei within the 

hypothalamus (Figure 3.2I-P) and is particularly intense and dispersed in the 

periventricular fiber system (Figure 3.2O). Both receptor and ligand stain strongly in 

pre-optic structures (Figure 3.2H/H’-I/I’). NK1 receptors are stained strongly in the 

dorsomedial but not the ventromedial hypothalamic nuclei (Figure 3.2N’-O’). 

  

3.3.5 Midbrain 

3.3.5.1 Motor related structures  

The periaqueductal gray (PAG), and the motor-related component of the superior 

colliculus located above it, are moderately stained for NK1 receptors and strongly 

stained for SP (Figure 3.2R/R’-X/X’). Similarly the ventral tegmental area is also 

stained more intensely for SP than the NK1 receptor (Figure 3.2T&T’). The substantia 

nigra pars reticular, previously mentioned as part of the basal ganglia, is intensely 

stained for SP yet devoid of staining for the NK1 receptor (Figure 3.2S/S’-V/V’). 
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3.3.5.2 Sensory related structures 

The sensory-related components of the superior colliculus (optical, superficial gray and 

zonal layers) are strongly stained for NK1 receptors and very weakly for SP (Figure 

3.2S’-X’). The inferior colliculus is comparably stained for both NK1 receptors and SP 

in the dorsal and external nuclei, but not in the central nucleus (Figure 3.2Y/Y’-Z/Z’). 

3.3.5.3 Behavioural-state related structures 

The main structures of the midbrain that are associated with behavioural-state also have 

mismatched staining of receptor and ligand. Strong staining of NK1 receptors is seen in 

the interpeduncular nucleus, yet only moderate staining for SP (Figure 3.2T&T’). 

Conversely, the substantia nigra par compacta and dorsal raphe nucleus are stained 

more intensely for SP, than NK1 receptors (Figure 3.2S/S’-U/U’ and W&W’ 

respectively).  

 

3.3.6 Hind Brain and cerebellum 

3.3.6.1 Pons 

The pons and medulla in the hindbrain can also be divided into sensory-, motor- and 

behavioural state-related structures. Most notably the parabrachial nucleus, a component 

of the sensory-related pons is stained for both NK1 receptors and SP, especially in the 

lateral division (Figure 3.2Z&Z’). Also part of the sensory-related pons is the superior 

olivary complex that is stained strongly for NK1 receptors and moderately for SP 

(Figure 3.2Z&Z’). Amongst the motor-related structures of the pons region, the dorsal 

tegmental area is clearly defined with moderate staining of the NK1 receptor, but weak 

staining for SP (Figure 3.2Z&Z’). The behavioural-related structures of the pons that 

are stained for SP or NK1 receptor include the locus coeruleus which is strongly stained 

for both receptor and ligand (Figure 3.2Z&Z’). 

3.3.6.2 Medulla  

Structures of the medulla with significant staining include area VII (or 7) the facial 

motor nucleus, which is moderately stained for both SP and NK1 receptors, whereas the 

parapyramidal nucleus is strongly stained for SP, but only weakly for the NK1 receptor 

(Figure 3.2AA&AA’). The nucleus ambiguus, another structure of the motor-related 

components of the medulla, is moderately stained for the NK1 receptor and SP (Figure 

3.2BB&BB’). 
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3.3.6.3 Cerebellum 

Lamination of the cerebellum is visible in the tissue stained for the NK1 receptor, 

whereas no SP staining is visible. NK1 receptors are stained uniformly in the granular 

layer more than the molecular layer of each lobule (Figure 3.2AA&AA’) The cerebellar 

nuclei (fastigial-, interposed- and dentate-nuclei) are also positively stained for the NK1 

receptor, but only weakly (Figure 3.2AA&AA’). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2 Immunohistological localisation of Substance P and the NK1 receptor throughout the mouse brain. 
Approximate values from bregma are shown in the top left corner. Labeling of brain regions and 
abbreviations taken from The Mouse Brain Atlas (Franklin and Paxinos, 1997). A list of abbreviations used 
can be found on page 78. Rat anti-SP antibody 1: 200; rabbit anti-NK1 receptor antibody 1:5000. Scale bar = 
1mm.  
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7  facial motor nucleus 
AAA        anterior amygdaloid area 
aca   anterior commissure, anterior 

part 
Acb  nucleus accumbens 
AcbC       nucleus accumbens, core  
AcbSh     nucleus accumbens, shell 
ACo  anterior cortical amygdaloid 

nucleus 
AHi   amygdalohippocampal area  
AHiPM   amygdalohippocampal area, 

post-medial alveus 
AON    anterior olfactory nucleus 
APT  anterior pretectal nucleus 
Arc   arcuate hypothalamic nucleus 
BLA   basolateral amygdaloid 

nucleus, anterior part  
BMA   basomedial amygdaloid 

nucleus, anterior part 
BLP   basolateral amygdaloid 

nucleus, posterior part  
BMP   basomedial amygdaloid 

nucleus, posterior part 
BST bed nucleus of the stria 

terminalis 
CeA   central amygdaloid nucleus 
CLi    caudal linear nucleus raphe 
CPu    caudate putamen 
DEn    dorsal endopiriform nucleus 
DR  dorsal raphe nucleus  
DTg    dorsal tegmental nucleus 
F  frontal cortex 
fmi    forceps minor corpus 

callosum  
fr    fasciculus retroflexus 
Gi    gigantocellular reticular 

nucleus 
HA  hypothalamic area 
Hb    habenula 
HDB  diagonal band nucleus, 

horizontal limb 
Hp    hippocampus 
IA  intercalated amygdala nucleus 
IO  inferior olivary complex 
IC  inferior colliculus 
IGL    intergeniculate leaflet 
IMD    intermediodorsal thalamic 

nucleus 
IP   interpeduncular nucleus 
IPL  interpeduncular nucleus, 

lateral 
IPC  interpeduncular nucleus, core 
LC  locus coeruleus 
LGP    lateral globus pallidus 
LHb    lateral habenular 
LSI    lateral septal nucleus, 

intermediate part 
LSV    lateral septal nucleus, ventral 

part  
 

lo  lateral olfactory tract 
M  mamillary nucleus 
MD    mediodorsal thalamic nucleus 
ME    median eminence 
MePD   medial amygdaloid nucleus, 

posterodorsal part 
MePV   medial amygdaloid nucleus, 

posteroventral part 
MGP    medial globus pallidus 
MHb    medial habenular  
Mo5    motor nucleus of the 

trigeminal 
Mol    molecular layer of the dentate 

gyrus 
MPN    medial pre-optic nucleus 
MS    medial septal nucleus 
Op    optic layer of the superior 

colliculus  
OT    olfactory tubercle 
PAG    periaquductal gray area 
PBA    parabrachial area 
Pir    piriform cortex 
PH    posterior hypothalamic area 
PMV    pre-mammillary nucleus 
Pn    pontine gray 
Po  posterior thalamus 
PP    peripeduncular nucleus 
PPTg  pedunculopontine tegmental 

nucleus 
PPy  parapyramidal nucleus 
PT    parataenial thalamic nucleus 
PV    paraventricular thalamic 

nucleus 
rf  rhinal fissure 
RMg  raphe nucleus magnus 
RR  retrorubral nucleus 
RRf  retrorubral field 
SCh  suprachiasmatic nucleus 
SN   substantia nigra 
SNC  substantia nigra, pars 

compacta 
SNL  substantia nigra, lateral 
SNR  substantia nigra, pars 

reticulata 
SO  superior olivary complex 
Sol  solitary tract 
SS  somatosensory cortex 
SuG    superficial gray, superior 

colliculus 
TT  components of taenia tecta 
VDB    diagonal band nucleus, 

vertical limb 
VLG  ventrolateral geniculate leaflet 
VMH    ventromedial hypothalamus 
VP    ventral pallidum 
VPM  ventral premamillary nucleus 
VTA  ventral tegmental area 
VTM    ventro tubero mammillary 

nucleus
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Table 3.1 Summary table of noteworthy brain regions and the relative intensity of immunohistochemical 
staining (+++ strong, ++moderate, +weak staining). Regions where there is significant mismatch between 
receptor and ligand are highlighted in orange (more NK1R than SP) and green (more SP than NK1R). 

Brain region NK1  SP Brain Region NK1 SP  
Forebrain     Basolateral nucleus - - 
Olfactory system     Basomedial nucleus - + 

Olfactory bulbs NE NE Medial amygdaloid nu.     
Olfactory tubercle ++ ++ Anterior part - - 

Cerebral cortex     Posteroventral part +++ + 
Frontal cortex + + Posterodorsal part ++ +++ 
Motor cortex + + Subthalamus     
Sensory cortex ++ + Zona Incerta      
Visual cortex + + Ventrolateral part ++ + 
Piriform cortex ++ + Ventromedial part - + 
Entorhinal cortex + + Dorsolateral part + + 
Tenia tecta +++ + Dorsomedial part - + 

Hippocampal circuit     Hypothalamus     
CA1-CA3 + - Ventromedial nucleus - ++ 
Dentate gyrus + + Arcuate nucleus + +++ 

Cerebral nuclei     Posterior hypothalamic nu. ++ ++ 
Caudate putamen ++ ++ Periventricular nucleus ++ +++ 
Nucleus accumbens     Suprachiasmatic nucleus - - 

Core ++ ++ Lateral hypothalamic area ++ +++ 
Shell +++ ++ Pre-mammillary nucleus - ++ 

Globus pallidus + + Mammillary nucleus ++ - 
Ventral pallidum + +++ Supramammillary nucleus + ++ 

Septal regions     Ventro-tubero mammillary ++ ++ 
Medial septal nucleus ++ ++ Midbrain     
Lateral septal nucleus     Anterior pretectal nucleus + - 

Dorsal part + + Marginal part ++ - 
Intermediate part + ++ Pretectal olivary nucleus - + 
Ventral Part - +++ Posterior pretectal nucleus + + 

Basal forebrain regions     Substantia nigra     
Nucleus of the diagonal band     pars compacta + +++ 

Vertical limb +++ - pars reticulata + +++ 
Horizontal limb +++ - Ventral tegmental area  - ++ 

Medial preoptic area ++ + Peripeduncular nucleus ++ + 
Medial preoptic nucleus +++ +++    Interpedunclar nucleus +++ + 

Epithalamus     Superior Colliculus +++ + 
Medial habenular nucleus +++ + Inferior Colliculus     
Lateral habenular nucleus ++ +    Central nucleus ++ - 

Thalamus        External/dorsal nuclei +++ ++ 
Paraventricular nucleus - ++ Periaqueductal gray  ++ +++ 
Parataenial nucleus - - Hind brain      
Mediodorsal nucleus - ++ Pontine nuclei - - 
Centromedial nucleus - ++ Parabrachial area  ++ +++ 
Centrolateral nucleus - + Superior olivary complex ++ + 
Ventral lateral geniculate nu. ++ ++ Inferior olivary complex ++ - 
Dorsal lateral geniculate nu. - - Dorsal tegmental nucleus ++ + 
Intergeniculate leaflet ++ + Ventral tegmental nucleus ++ + 

Amygdala     Locus coeruleus ++ +++ 
Cortex-amygdala transition +++ + Motor nucleus of the trigeminal ++ - 
Amygdalohippocampal area +++ + Ambiguus Nucleus +++ - 
Central nucleus + ++ Facial motor nucleus ++ ++ 
Intercalated amygdaloid nu. - +++ Parapyrimidal nucleus  + +++ 
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3.4 Discussion 
 

There have been many studies into the distribution of NK1 receptors and its preferred 

ligand Substance P, in several species of animal. As well as detailed distribution 

patterns of NK1 and SP, these studies have shown that a high level of NK1 receptor 

expression does not necessarily correspond to a high level of SP (and vice versa). 

However, to date, there has been no direct comparison of NK1 and SP expression 

patterns throughout the mouse brain. The brain regions that stain most intensely for the 

NK1 receptor include the caudate putamen, amygdaloid nuclei, habenula 

interpeduncular nucleus, and the superior olivary complex, whereas SP staining is most 

intense in the accumbens, ventral pallidum, septum, periaqueductal gray, parabrachial 

nucleus and substantia nigra. The structures of relevance to the behaviours measured in 

the subsequent chapters of this thesis, including attention and impulsivity are considered 

in section 3.4.2.  

 

3.4.1 Linking the distribution of the NK1 receptor and SP to clinical 
conditions 

Findings were largely in concordance with previous studies of NK1 receptor 

distribution in the rat brain (Nakaya et al., 1994). In the mouse cortex, NK1 receptor 

staining appears relatively weak, yet in rat and human distribution studies the NK1 

receptor reportedly stained intensely (Nakaya et al., 1994; Okumura et al., 2008; 

Engman et al., 2012). It is therefore the density of the positively stained neurons that 

should also be taken into account, since a few intensely stained neurons will not clearly 

show at the magnification used in this chapter. There is significant staining of either SP 

or the NK1 receptor in the majority of structures that comprise the basal ganglia, which 

is in concordance with the findings from the rat, non-human primate and human studies 

(Nakaya et al., 1994; Mounir and Parent, 2002). The conservation of staining patterns of 

the SP/NK1 receptor system through evolution intimates the importance of the role that 

this receptor and ligand has in the functionality of the basal ganglia. The staining 

patterns of the NK1 receptor and SP in the individual structures of the basal ganglia, 

and how this could give rise to the symptoms of ADHD are discussed in more detail 

below (section 3.4.2.1). 
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The structures of the limbic system have a wide range of functions from learning and 

memory in the hippocampus to the control of emotion, motivation and reward in the 

amygdala. The system is also linked to the decision-making components of the 

prefrontal cortex (orbitofrontal cortex) (Haber and Brucker, 2009). The distribution of 

ligand and receptor are essentially identical between rodent species, although the 

density of staining is slightly reduced in mouse compared to rat in some regions such as 

the amygdaloid nuclei. Substance P and the NK1 receptor play an important role of the 

functionality of the limbic system, as demonstrated by pharmacological manipulations 

and in the phenotype of the NK1R-/- mouse. For example both wildtype mice dosed 

with NK1 receptor antagonists and NK1R-/- mice both show decreased anxiety and 

stress in the resident intruder test (De Felipe et al., 1998; Rupniak et al., 2001). In the 

elevated plus maze (EPM) NK1 receptor antagonists increased the amount of time spent 

in the open arms of the maze (an anxiolytic effect) which was replicated in the 

behaviour of NK1 receptor knockout mouse compared to wildtype animals, however 

ablation of NK1 receptor containing neurons in the amygdala resulted in the opposite 

effect as lesioned mice displayed an anxiogenic profile on the EPM (Santarelli et al., 

2001; Gadd et al., 2003). The nucleus accumbens receives input neurons from the 

basolateral amygdala and plays an important role in reward and addiction. There is 

moderate staining for the NK1 receptor in the core and shell, while staining for SP is 

strong, especially in the shell of the nucleus accumbens. In the conditioned place 

preference (CPP) paradigm, NK1R-/- mice do not develop a preference for the chamber 

associated with morphine (Murtra et al., 2000), furthermore ablation of NK1 receptor 

containing neurons of the amygdala, but not nucleus accumbens, also induced this 

preference deficit (Gadd et al., 2003). The nucleus accumbens sends information to the 

ventral pallidum (VP), which is one of the main brain regions that shows a large 

discrepancy between the staining intensity of receptor and ligand. NK1 receptor staining 

is non-existent in the VP whereas SP staining is almost saturated. The VP is part of the 

limbic system also associated with reward and addiction. These findings highlight the 

importance of the limbic system in many of the conditions that are associated with 

disruption of NK1R/SP brain circuitry.  
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3.4.2 NK1R/SP circuitry and ADHD  
This section takes a closer look at the two most widely accepted hypotheses for the 

aetiology of ADHD as outlined in the introduction chapter of this thesis (see section 

1.5.2), firstly dysfunction of the basal ganglia circuitry and secondly disruption of 

monoamine transmission. 

3.4.2.1 Basal ganglia  

The basal ganglia comprise the globus pallidus, substantia nigra pars compacta and pars 

reticulata, the subthalamic nucleus and the striatum. Together the basal ganglia are 

involved in the selection of actions by evaluating competing ‘action plans’ and selecting 

the best option, which are influenced by previous experiences (Surmeier et al., 2011). 

They also regulate the initiation and control of movements, link the thalamus to the 

motor cortex and are also involved in cognitive and emotional behaviours (Graybiel, 

2008). These effects are produced through an intricate network of excitatory and 

inhibitory connections that are outlined below and summarised schematically in Figure 

3.3.  

 
Figure 3.3 Schematic diagram of the main basal ganglia circuitry. The striatum (STR) receives excitatory 
input from the cortex. The direct pathway originates from D1-expressing GABAergic medium spiny neurons 
(MSNs) of the striatum that project to the substantia nigra pars reticulata (SNr) and the internal segment of 
the globus pallidus (GPi). Inhibition of the output nuclei allows the glutamatergic excitatory feedback from the 
thalamus to the cortex, thus inducing movement. The D2-expressing MSNs of the indirect pathway project to 
the external segment of the globus pallidus (GPe) that connect to the thalamus via the subthalamic nucleus 
(STN). Inhibition of the GPe disinhibits the STN that then sends excitatory messages to the SNr and GPi that 
inhibit the thalamus and thus result in reduced movement. Other targets of the SNr and GPi include the 
superior colliculus and pedunculopontine nucleus (not shown). 

 



 Chapter 3 

 
82 

The basal ganglia receives the majority of input signals from the cerebral cortex 

(including sensory, motor and associational areas) (Bolam et al., 2000), but some 

signals originate from the subthalamic nucleus, particularly the intralaminar thalamic 

nuclei (Smith et al., 2004). In the cortex, significant NK1 receptor and SP staining is 

barely visible when observed at the low magnification used in this chapter, however 

NK1 receptor positive neurons are present in the rat cortex, and given the conservation 

of staining patterns between the rat and mouse we can tentatively assume that they are 

also present in the mouse cortex too. In terms of the 5-choice serial reaction time task 

(used in latter chapters of this thesis), the micro-circuitry of sustained attention 

originates in the prelimbic and anterior cingulate cortical regions and projects to the 

dorsal-striatum, while impulsive behaviour is controlled by the circuitry of the 

infralimbic cortex and the nucleus accumbens (Bari and Robbins, 2011). From the 

results seen in this chapter, with SP and NK1R staining appearing very weak in the 

cortex but abundant in the striatum and nucleus accumbens, it most likely that any 

behavioural deficits of the NK1R-/- mouse associated with attention and impulsivity 

originate from these heavily stained regions rather than the initial cortical input.  

 

All projections from the cortex are glutamatergic and are received by the striatum.  The 

striatum is the largest nucleus of the basal ganglia and is divided into the dorsal striatum 

(caudate putamen) and the ventral striatum (nucleus accumbens). 90% of striatal 

neurons are GABAergic medium spiny neurons (MSNs), with the other 10% comprised 

of four different types of interneuron: cholinergic, parvalbumin-expressing GABAergic, 

calretinin-expressing GABAergic and neuropeptide Y (NPY)/ somatostatin/nitric-oxide 

synthase (NOS)-expressing GABAergic interneurons (Gerfen & Surmeier 2011; 

Kawaguchi et al. 1995). NK1 receptors are expressed on cholinergic interneurons and 

NPY-expressing GABAergic interneurons (Kawaguchi et al., 1995). GABAergic 

interneurons inhibit the activity of MSNs, while the tonically active cholinergic 

interneurons serve to increase the excitability of MSNs (Pisani et al., 2007). Given that 

NK1 receptors are found on both types of interneuron, they could play a role in ‘fine 

tuning’ the activity of the basal ganglia circuitry at the level of the striatum.  

 

Information passes through the striatum to the output nuclei of the basal ganglia through 

two different methods: the direct and indirect pathways. The medium spiny neurons in 

the striatum are divided into two distinct populations dependent on their differential 



 Chapter 3 

 
83 

expression of dopamine receptors and their axonal projections. The MSNs of the direct 

pathway release dynorphin and Substance P in conjunction with GABA, mainly express 

D1 receptors (which are associated with excitatory G-proteins) and project straight to 

the internal segment of the globus pallidus (GPi) and the substantia nigra pars reticulata 

(SNr) which are the GABAergic output nuclei of the basal ganglia. In contrast, the 

MSNs of the indirect pathway release enkephalin in conjunction with GABA and 

mainly express D2-receptors (which are associated with inhibitory G-proteins) and 

project only to the external capsule of the globus pallidus (GPe). The inhibition of the 

GPe disinhibits the subthalamic nucleus, which then provides excitatory glutamatergic 

signals to the GPi and SNr. The output nuclei (GPi and SNr) provide inhibitory 

GABAergic projections to the thalamus, superior colliculus and pedunculopontine 

nucleus (Gerfen & Surmeier 2011).  

 

The striatal inhibition of the SNr-GPi complex coupled with SNr-GPi inhibition of the 

thalamus therefore results in a net reduction of inhibition of the thalamus via the 

striatum. The thalamus projects excitatory glutamatergic neurons to the cortex itself. 

The direct pathway, therefore, results in the excitation of the motor cortex by the 

thalamus. In contrast, the end-result of activation of the indirect pathway is inhibition of 

the thalamus and, therefore, decreased stimulation of the motor cortex. Therefore 

disruption of basal ganglia circuitry directly links to the symptoms of ADHD, namely 

hyperactivity and impulsivity.  

 

3.4.2.2 Origins of monoamines 

Although presented in separate sections disruption of monoamine transmission and 

dysfunction of the basal ganglia are not mutually exclusive. For example, the striatum 

receives dopaminergic input from the core of the substantia nigra, which in turn 

activates the direct and indirect pathways of the basal ganglia circuitry, thus disruption 

of the monoaminergic transmission can feed into other circuits and have further indirect 

effects. In this section the origins of the neurotransmitter systems are considered in 

relation to SP and the NK1 receptor while more detailed discussion of the 

monoaminergic systems and ADHD are covered in the subsequent results chapters. 
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The dopaminergic hypothesis of ADHD arose from the efficacy of psychostimulants in 

alleviating the symptoms of ADHD. The three main origins of dopamine in the brain 

are the substantia nigra pars compacta, the ventral tegmental area and the hypothalamus. 

All of these regions stain at least moderately for SP and the NK1 receptor, which could 

potentially have a regulatory effect on the release of dopamine. The main origin of 

noradrenaline is the locus coeruleus (LC) with axons targeting a number of different 

regions including the cortex, amygdala, hippocampus and septum (Sara, 2009). 

Interestingly the only major structure not to receive innervation from the LC is the basal 

ganglia. The LC stains strongly for both SP and the NK1 receptor, again revealing 

potential for SP/NK1R control of neurotransmitter release. Serotonin originates from 

the raphe nuclei located in the brain stem. The dorsal raphe nucleus is stained more 

strongly for SP then for the NK1 receptor and projects out to the amygdala and 

periaqueductal gray regions, both of which are associated with the control of stress and 

anxiety both of which are behaviours linked to the SP/NK1 receptor system.  

 

3.4.3 Mismatched distribution of ligand and receptor 
In line with previous observations in other species, the distribution of NK1 receptors 

and substance P are not always correlated in the mouse brain. Regions where there 

appears to be an abundance of SP, relative to that of the NK1 receptor in the mouse 

brain include the nucleus accumbens, ventral pallidum, medial amygdaloid nucleus, and 

the substantia nigra. The latter is a well-characterised area of ‘mismatch’ and has been 

reported in a number of mammalian species (Mantyh et al., 1984; Rothman et al., 1984; 

Shults et al., 1984; Gerfen, 1991; Maeno et al., 1993; Nakaya et al., 1994). Although we 

are still unsure of the full explanation for a mismatched density between receptor and 

ligand, it is by no means a unique phenomenon for the NK1R/SP system, as reviewed 

by (Herkenham, 1987). The most likely explanation is that NK1 receptors in regions 

with little SP receive substance P released from distant axon terminals. Conversely the 

regions with strong NK1 receptor staining and weak SP staining include the cortical 

amygdaloid nucleus, dorsal tegmental nucleus, and the superior and inferior colliculi. 

SP is a regarded as a neuromodulator, therefore unlike neurotransmitters, it can be 

released non-synaptically and due to its small size it can diffuse considerably long 

distances (Herkenham, 1987; Landgraf and Neumann, 2004). 
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3.4.4 Methodological considerations and conclusions  
This chapter has looked at the distribution of the NK1 receptor, and its preferred ligand 

substance P throughout the mouse brain using immunohistochemistry. In this study the 

brain was only considered caudally from +2.50mm relative to bregma, therefore the 

olfactory bulbs, in which NK1 receptors are prevalent in the rat, are not considered here. 

It is therefore impossible to rule out other interspecies differences in this region. This 

technique, especially with DAB chromogenic visualisation, provides a high level of 

contrast between background levels, and regions where the receptor and/or ligand are 

present. The reliability of the results is based on the specificity of the primary 

antibodies, in this case rabbit anti-NK1 receptor and rat anti-SP, for their respective 

epitopes. This was tested in a control experiment where the protocol was repeated, 

omitting the primary antibodies. No staining was seen in the control tissue (data not 

shown), showing that the staining for the NK1 receptor and substance P is not an 

artifact of any other stage of the protocol and is a product of the primary antibodies 

binding to their target. To further investigate the distribution of NK1 receptors and SP 

in the mouse brain, a subsequent study could include the olfactory bulbs, as well as 

looking at the regions of relevance to conditions associated with the NK1 receptor, such 

as the basal ganglia and amygdala at higher magnifications to categorise the density and 

types of stained neurons. Yet from the images obtained at the magnification here, we 

can say that the NK1R/SP system could influence behaviours such as impulsivity and 

attention based on their presence in relevant brain regions for these behaviours such as 

the striatum and nucleus accumbens. A fluorescent double-stain for NK1 receptors and 

SP could also be imaged using high magnification confocal microscopy to further study 

the proximity of SP-positive axons and NK1 receptors, both in matched and 

mismatched regions of staining.  
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4 Measuring the locomotor activity of NK1R-/- mice 
 

4.1 Introduction 
 

Previous work in our lab demonstrated that NK1 receptor knockout mice had greater 

levels of activity in the light/dark exploration box (measured by total number of line 

crosses) than the wildtype controls (Herpfer et al., 2005; Fisher et al., 2007). A later 

study also demonstrated higher activity levels of the NK1R-/- mice in the LDEB, 

expressed as lines crossed per unit of time (Yan et al., 2010). However all of these 

locomotor measurements were taken after injections had been administered.  

 

As noted in the previous chapter, the NK1 receptor is expressed in the thalamic 

intergeniculate leaflet, which is involved in circadian pace-making (Piggins et al., 2001) 

and NK1 receptor antagonist treatment can alter circadian rhythms (Challet et al., 1998). 

This chapter looks at whether the activity levels and/or circadian rhythm patterns of 

treatment naïve NK1R-/- mice differ from that of wildtype mice over a 48-hour period.  

 

4.1.1 NK1 receptor and circadian rhythms  
Circadian rhythms are controlled by the hypothalamic suprachiasmatic nucleus, which 

receives photic information directly via the retinohypothalamic tract and indirectly from 

retinally innervated cells in the thalamic intergeniculate leaflet. SP is a possible 

modulator within the circadian rhythm system. In rats, early neuroanatomical 

investigations revealed SP-immunoreactivity in fibres and terminals of the SCN and 

highlighted a population of SP-positive retinal-ganglion cells that projected directly to 

the SCN (Ljungdahl et al., 1978; Takatsuji et al., 1991). Antagonist studies also 

implicated a role for the SP/NK1R system in circadian rhythm modulation in hamsters. 

NK1 receptor antagonist GR-205,171 inhibited light-induced phase advances in hamster 

circadian wheel running activity rhythms. However, systemic injection of the antagonist 

did not induce non-photic changes in circadian rhythm shift indicating that tachykinin 

NK1 receptor antagonists are only effective when a light stimulus is applied to the 

pacemaker system (Gannon and Millan, 2005). NK1 receptor antagonist treatment has 
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also been shown to induce phase-advances in wheel running in hamsters kept in 

constant light conditions (Challet et al., 1998) providing more evidence that the 

SP/NK1R system modulates photic responses of the SCN.  

 

However, caution must be applied when making interspecies comparisons into the role 

of the NK1R/SP system in circadian rhythm modulation, since NK1 receptor and SP 

staining patterns across rodent species in the SCN and intergeniculate leaflet are slightly 

different. In rats, SP and NK1 receptor staining is intense in the ventral, retinally 

innervated portion of the SCN, while in hamsters and mice the staining for NK1 and SP 

in this region is sparse. Staining patterns were found to be comparable across hamsters, 

rats and mice in the intergeniculate leaflet for both SP and the NK1 receptor (Piggins et 

al., 2001). These data indicate that SP could play more of a role in direct circadian 

rhythm modulation in the rat than in the hamster or mouse, but the indirect modulation 

via the intergeniculate leaflet may be conserved.   

 

4.1.2 NK1 receptor and locomotor activity 
There is contrasting evidence as to the role that the NK1 receptor plays in regulating 

locomotor activity. Intracerebroventricular injection of NK1 receptor agonists has been 

shown to enhance locomotor hyperactivity in rats, mice and guinea pigs (Naranjo and 

Del Rio, 1984; Elliott and Iversen, 1986; Piot et al., 1995), while an intraperitoneal 

injection of NK1 antagonist also elicited an increase in locomotor activity in mice (Yan 

et al., 2010). Many previous comparisons of activity levels of NK1R-/- mice and 

wildtype controls have reported no differences in locomotor activity (Rupniak et al., 

2000; Ripley et al., 2002; Gadd et al., 2003).  

 

In this experiment, wildtype and NK1R-/- mice were placed in circular corridors to 

monitor their activity levels over a period of 48-hours. This experimental set-up enables 

a simultaneous study of circadian rhythm patterns as well as locomotor activity levels. 

Given that the NK1R-/- mouse is a proposed model of ADHD and children with the 

condition often have sleep-problems (Cortese et al., 2009), here we test whether its 

phenotype matches the hyperactive profile of the condition before investigating 

attentional and impulsive behaviour that make up the triad of core symptoms. 
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4.2 Materials and methods 
 

4.2.1 Subjects 
Six wildtype and NK1R-/- mice were used from the homozygous bred MF1 colony 

(mixed background of 129/Sv x C57BL/6 x MF1) (see section 2.1.2.1). All mice were 

8-10 weeks old at the time of experiment. 

 

4.2.2 Apparatus 
The experimental setup is described in section 2.3 of the materials and methods chapter. 

In brief, the 5cm wide circular corridors contained four evenly spaced infrared photo 

beams 1cm above the floor. Locomotor activity was recorded by a computer interface. 

Quarter turns, as measured by the consecutive breaking of two adjacent beams, was 

taken as a unit of locomotor activity. The animals had free access to food and water 

throughout the experimental period.  

 

4.2.3 Procedure 
Mice were placed in the circular corridors at 13.30hrs to measure their locomotor 

activity for a period of 48-hours. The lighting of the corridors was programmed on a 12-

hour light/dark cycle to mimic that of the animal house lights as closely as possible 

(lights off at 19.30 and on at 07.30). This is illustrated in  

Figure 4.1. Data were collected in 5-minute time bins that were then combined into 1- 

and 6-hour time bins for statistical analysis. 

 

4.2.4 Statistics 
Total activity over the 48-hours was analysed using an independent t-test with genotype 

as the between subject factor. To test for a difference in activity levels across the 48-hr 

time period a repeated measures univariate analysis was used with genotype as the 

between subject factor and time-bin as the within-subject factor. Statistical significance 

was set at P<0.05.  
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4.3 Results  
 

As expected, the activity levels of the animals was in line with the changes in lighting 

with large increases in activity after the lights went out at 19.30 on both days. Activity 

during the light phases is significantly lower for both genotypes. A full statistical 

analysis is discussed further in section 4.3.3.  

 
Figure 4.1Illustrative figure of the activity of six wildtype (blue line) and six NK1R-/- (red line) mice over a 
48-hour period. Periods of light and dark are designated by yellow and grey backgrounds respectively. 

 

4.3.1 Total activity 
There was no statistical difference in the total number of quarter turns travelled by each 

genotype in the circular corridors over the 48-hour time period, although NK1R-/- mice 

tended to have greater activity levels than the wildtype animals (Figure 4.2).  

 
Figure 4.2 Total locomotor activity of wildtype and NK1 receptor knockout mice over a period of 48-hours. 
N=6. 
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4.3.2 6-hour time bin analysis 
There was an overall interaction between time bin and genotype (F(7,70)=2.29, P<0.05) 

in the repeated measures univariate test. Independent t-tests were conducted for each 

6-hour time bin to look for genotype differences, but none emerged. The activity during 

the period of 19.30-01.30 on both occasions was higher for both wildtype and knockout 

mice than all other time bins (paired t-tests).  

 

 
Figure 4.3 Locomotor activity data for WT and NK1R KO mice across 48-hrs divided into 6-hr time bins. 
Activity of both genotypes was highest during the period just after lights out at 19.30-01.30.  N=6 

 

4.3.3 1-hour time bin analysis 
The split of the activity into hour time bins is the clearest display of the varying activity 

levels over the 48-hr period (Figure 4.4). There was a significant interaction between 

time bin and genotype (F(6.2,62)=2.54. P<0.05), with further analyses revealing a 

difference in activity levels between genotypes in the hour directly after the dark phase 

began. The activity of NK1 receptor knockout mice was approximately twice that of the 

wildtype mice during this hour after lights out on both occasions within the experiment 

(hour7; t(10)=3.6, P<0.05 and hour31; t(10)=2.78, P<0.05).  

 

____ ____ * * 
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Figure 4.4 Locomotor activity data for WT and NK1 receptor KO mice across 48-hrs divided into 1-hr time 
bins. Activity of NK1 receptor knockout mice was significantly higher in the hour after lights out compared to 
wildtype mice. N=6 

 

4.4 Discussion 
 

4.4.1 The NK1 receptor and circadian rhythms 
From the illustrative figure (Figure 4.1) we can see that placing the animals in the 

circular corridor apparatus for 48-hours did not disrupt the circadian changes in 

locomotor activity. Both NK1R-/- and wildtype mice showed a significant increase in 

locomotor activity in the early period of the dark-phase, which is ordinarily associated 

with natural ‘foraging’ time (Benstaali et al., 2001). Although the 48-hour time period 

enables a visualisation of locomotor activity in terms of circadian activity, this 

experiment was never meant to be an in depth circadian rhythm study. With this 

experimental set-up and small sample size, only very crude differences in circadian 

phases would ever show up. Substance P and NK1 receptors are found in the 

intergeniculate leaflet of the mouse, which is part of the indirect pathway from the 

retina to the suprachiasmatic nucleus, the control center of circadian rhythms. The 

NK1R/SP system has previously been considered as having a role in the modulation of 

circadian rhythms (Challet et al., 1998; Gannon and Millan, 2005), although the 

locomotor activity profiles of wildtype and NK1R-/- mice do overlap there is a 

difference in time bin at which the peak activity is reached. The peak of activity in 

NK1R-/- is in the hour immediately after lights-out, while the peak for wildtype mice is 

in the second hour of the dark phase. This would suggest that the NK1R-/- mice are 

more sensitive to the change of light conditions, which could arise from the lack of 
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SP/NK1R modulation of the rhythm through the IGL. More specific experiments related 

to the control of circadian rhythms such as keeping the mice in constant light or dark 

conditions could reveal further genotype differences in circadian modulation via the 

SP/NK1R system.  

 

4.4.2 The NK1 receptor and locomotor activity 
Across the 48-hour period there was no difference in the total locomotor activity of the 

NK1R-/- mice and wildtype controls. However given the extended period of study time 

for any differences to emerge there would have to have been a robust difference across 

the majority of the time bins. When the data were analysed in 1-hour time bins the 

locomotor activity of the NK1R-/- mice was significantly higher than that of the control 

animals in the hour immediately following the onset of the dark phase, but no 

differences in activity levels were seen during the light phase (‘day’) when experimental 

studies are ordinarily conducted. Therefore, although the NK1R-/- mice have previously 

been shown to be more active than wildtypes in the light/dark exploration box paradigm 

(Yan et al., 2010), although this was measured after the administration of injection, the 

data presented here from treatment naïve animals show that the knockout mice are not 

always more active than the control animals and caution should be applied when 

labeling them as ‘hyperactive’.  

 

4.4.3 Methodological considerations 
The circular corridor experimental set-up enables us to consider activity levels over an 

extended period of time. There was no difference in activity levels of NK1R-/- and 

wildtype mice across the total 48-hr period, nor when this was broken down into 6-hour 

time bins. This is important because other short-term activity related experiments in the 

light/dark exploration box (LDEB) have reported a hyperactive phenotype for the 

NK1R-/- mouse (albeit after injections had been given). However the LDEB is usually 

used to measure anxiety related behaviours and is therefore designed to have an 

aversive effect on the mice, which is likely to influence activity levels. Also neither the 

circular corridor, nor the LDEB experiment, takes into consideration the speed at which 

the animals were moving. This is an important consideration since we cannot determine 

whether the ‘hyperactivity’ of the NK1R-/- is due to an increase in the speed of 
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movement or just an increase in movement per se. This could be measured with 

computerised tracking software such as EthoVision (TrackSys Ltd., UK). 

  

Similarly the circular corridors are far removed from the sawdust lined home-cage 

environment where intrinsic activity levels are best reflected. Telemetry experiments, 

where a probe is inserted subcutaneously to monitor activity levels by interacting with a 

telemetry mat placed beneath the home cage circumvent the above raised issues, but 

surgery is required, thus providing a possible confounding factor. Therefore the best 

method to measure locomotor activities would be to use a computerised home-cage 

infrared boxes and a large number of mice over an extended period of time. The next 

chapter looks at the phenotype of the NK1R-/- mouse in terms of the other core 

symptoms of ADHD, namely impulsivity and attention using the 5-choice serial 

reaction time task.  
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5 Testing the NK1R-/- mouse in the 5-choice serial 

reaction time task (5-CSRTT) 

5.1 Introduction 
 

Previous work has shown that NK1R-/- mice display locomotor hyperactivity that is 

attenuated by treatment with d-amphetamine or methylphenidate (Herpfer et al., 2005; 

Fisher et al., 2007; Yan et al., 2009). These findings, supported by neurochemical 

abnormalities in the NK1R-/- led to the proposal that the NK1 receptor knockout mouse 

is a valid animal model of attention-deficit hyperactivity disorder (ADHD) (Herpfer et 

al., 2005; Fisher et al., 2007; Yan et al., 2009, 2010). The aim of this chapter was to 

further explore this hypothesis by using the 5-choice serial reaction time task 

(5-CSRTT) to measure attention and impulsivity (which alongside hyperactivity make 

up the three core diagnostic criterion of ADHD) in NK1R-/- mice versus wildtype 

controls.  

 

5.1.1 Development of the 5-choice serial reaction time task 
The 5-choice serial reaction time task for rodents was developed in the early 1980’s 

(Carli et al., 1983) as an analog of Leonard’s 5-choice serial reaction time task used to 

assess ‘vigilance’ in humans (Wilkinson 1963), and also contains elements of a 

continuous performance test (CPT) of sustained attention. CPT is an ‘umbrella-term’ for 

a range of attention/vigilance tasks (Riccio et al., 2002) including Rosvold and 

colleagues’ early CPT studies where a child’s behaviour was classified as ‘on-task’ (i.e. 
paying attention) or ‘off-task’ (loss of visual attention for more than 2 seconds from the 

task) (Rosvold et al., 1956) and the widely used X-CPT (responding to an ‘X’ on a 

computer screen, while withholding a response to other letters of the alphabet) (Conners 

1985). Children with ADHD achieve lower scores in the CPT as measured by increased 

impulsive and incorrect responding (Epstein et al., 2006).  

 

The rodent version of the 5-choice serial reaction time task requires the animal to scan 

five evenly spaced apertures until a light cue is presented, after which a nose-poke 
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response is required in the correct spatial location (Bari et al., 2008). Low response 

accuracy, and/or a high number of missed (omitted) responses would indicate a deficit 

in attention, whereas a high number of nose-poke responses prior to the onset of the 

stimulus light is indicative of an impulsive phenotype. 

 

5.1.2 Measuring impulsivity and attention in rodents using the 
5-CSRTT 

 

In the three decades that the 5-CSRTT has been used in rodents, a wide variety of 

physiological and pharmacological studies of attention and impulsivity have been 

conducted. The main aim of these studies has been to elucidate the nature of the deficits 

shown by children with attention deficit/hyperactivity disorder (ADHD) and the effects 

of drugs used in the clinic to treat the disorder (Robbins, 2002). Studies using the 

5-CSRTT tend to fall into 4 categories 1) systemic pharmacological manipulations, 2) 

physiological manipulations (ablations or lesions) of specific brain regions, 3) 

phenotyping of knockout mice and 4) comparisons between background strain (usually 

mice). These divisions (exceptcomparisons of background strain) tend to look at 

individual neurotransmitter systems e.g. the noradrenergic or dopaminergic systems, 

and the role these systems potentially play in attention and impulsivity. Although many 

studies are outlined below, this topic has been comprehensively reviewed in (Robbins, 

2002). 

5.1.2.1 Manipulations of the noradrenergic system  

ADHD in the clinic is treated with a targeted increase in noradrenaline (NA) using both 

selective noradrenaline reuptake inhibitors (e.g. atomoxetine) and non-selective 

monoamine reuptake inhibitors that also work on the dopaminergic and to a lesser 

extent the serotonergic neurotransmitter systems (e.g. methylphenidate (Ritalin®) and 

d-amphetamine (Adderall®)). It is therefore not surprising that a plethora of studies 

have been conducted in the 5-choice serial reaction time task using the above drugs. 

However results appear to depend on the particular parameters used for the tests and 

small differences in protocol can drastically effect the experimental outcome as 

highlighted below. The data are summarised in Table 5.1. All experiments presented 

here were conducted in rats.  
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Methylphenidate (MPH) (a monoamine reuptake inhibitor)  

Although methylphenidate is used to treat ADHD it has been used to artificially induce 

impulsivity, which was preventable with a β-, but not an α1-andrenoreceptor antagonist 

(Milstein et al., 2010). The increase in premature responding after methylphenidate 

treatment was somewhat corroborated in the work of Navarra and colleagues, but only 

when the inter-trial interval was at its longest (10s) (Navarra et al., 2008). Interestingly, 

when MPH was orally administered, no increase in premature responding was observed 

(Robinson, 2011). Furthermore, MPH has also been shown to decrease ‘anticipatory 

responses’ (a similar measurement to premature responding, but one that was not 

‘punished’) (Bizarro et al., 2004). In terms of attention, MPH again displays variable 

results between studies. No changes were reported in %accuracy after 2mg/kg i.p. in 

rats, nor after oral MPH (1.0-10mg/kg p.o.) (Milstein et al., 2010; Paterson et al., 2011; 

Robinson, 2011), yet improvements in attention (increased %accuracy) have been 

reported after treatment within the same dose range (Bizarro et al., 2004; Navarra et al., 

2008).  

 

d-Amphetamine (d-AMP) (monoamine reuptake inhibitor and catecholamine releaser)  

Intra-peritoneal injection of d-amphetamine in rats has been shown to both improve and 

worsen impulsive responding in the 5-choice serial reaction time task (Grottick and 

Higgins, 2002; Bizarro et al., 2004; Paterson et al., 2011). The effect of d-amphetamine 

on attention appears to be more robust, with studies reporting improvement in 

percentage accuracy after treatment with low doses of d-AMP (0.1-1.0mg/kg i.p.) 

(Grottick and Higgins, 2002; Bizarro et al., 2004). Higher doses were also effective at 

increasing accuracy, but only when the sensitivity of the test was increased (more nose-

poke responses (either 3 or 10) were required to release the reward) (Koffarnus and 

Katz, 2011). 

 

Reboxetine (selective noradrenaline reuptake inhibitor) 

In rats, low doses of reboxetine (0.1-0.3mg/kg i.p.) have been shown to decrease 

premature responding, however the number of ‘missed’ responses (‘omissions’, an 

index of attention) also increased (Robinson, 2011). A higher dose (10mg/kg i.p.) 

improved premature responding and attention, but also increased omission and 

latencies, perhaps suggesting a sedatory side effect of the high dose (Liu et al., 2009). 
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Atomoxetine (selective noradrenaline reuptake inhibitor)  

Results from the 5-CSRTT after atomoxetine treatment are similar to those of 

reboxetine inasmuch that premature responses (impulsivity) and accuracy (attention) 

were both improved, but omissions and latencies worsened (Navarra et al., 2008; 

Robinson, 2011). However, other studies have reported a decrease in premature 

responding after atomoxetine treatment, without detrimentally affecting other measures 

(Robinson et al., 2008; Paterson et al., 2011). 

 
 

Table 5.1 Description of previous findings on impulsivity and attention in the 5-CSRTT after pharmacological 
manipulation of the noradrenergic system. ↑  indicates either an increase in impulsivity or an improvement in 
attention, ↓ indicates either a decrease in impulsivity or attention, i.p., intraperitoneal, p.o., per os, a only when 
the ITI was 10s, b not premature responses but ‘anticipatory responses’ that were not punished, c over 
extended sessions of 250 trials, d impulsivity decreased, but the total number of reinforcers also decreased, e 
only animals that displayed sub-optimal performance were tested, f accuracy improved, but errors of omission 
increased. 

 

Although pharmacological studies provide a vital insight into the role of 

neurotransmitter systems in human diseases, treatment tends to be systemic, and 

therefore cannot reveal which brain regions within the noradrenergic system are 

responsible for the effects observed. Studies that use a targeted depletion of a specific 

neuronal population can help narrow down the brain regions that are important for 

specific behaviours. Surprisingly, drastic depletion of cortical noradrenaline of up to 

95% either with intracortical infusion of dopamine-β-hydroxylase conjugated to saporin 

(DβH-saporin) or 6-hydroxydopamine (6-OHDA) lesion of the dorsal noradrenergic 

bundle did not impair any aspect of performance in the 5-choice serial reaction time 

task (Carli et al., 1983; Cole and Robbins, 1987, 1992; Milstein et al., 2010). Therefore 

other brain regions within the noradrenergic system such as the locus coeruleus may 

have a greater role in determining the behaviours in the 5-CSRTT. 

5.1.2.2 Manipulations of the dopaminergic system 

One strong hypothesis for the cause of ADHD is the dopaminergic theory as discussed 

in section 1.5.2. It is therefore important to consider the effect of manipulating the 

dopaminergic system in relation to performance in the 5-CSRTT. 

 

Systemic blockade of D4, but not D1 or D2, receptors reduced methylphenidate-induced 

impulsivity, but did not effect accuracy (% correct or % omissions) (Milstein et al., 
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2010). Nafadotride, a D2/3 antagonist when delivered systemically has no effect on 

impulsivity in the 5-CSRTT, yet when administered via microinfusion into the nucleus 

accumbens core and shell (NAcbC and NAcbS) of rats selected for their high impulsive 

nature, the antagonist both decreased and increased impulsivity respectively. 

Furthermore a DA D2/3 partial agonist (aripiprazole) administered in the same regions 

had no effect on impulsivity, yet systemic injection decreased impulsive behaviour 

(Besson et al., 2010). This one study highlights the complex and opposing nature of 

receptors within a single brain region, and the importance of the route of administration 

as to the action of a drug. Antagonism of D1 but not D2 receptors in the core and shell 

regions of the nucleus accumbens decreases premature responding in the task (Pattij et 

al., 2007a).  The dopaminergic system also has a role in the control of behaviours other 

than impulsivity in the 5-CSRTT. D1 and D2 receptors within the core of the nucleus 

accumbens also appear to modulate different aspects of behaviour in the 5-CSRTT. 

Manipulating the activity of D1 receptors in the NAcbC had selective effects on 

attentional accuracy, while stimulation of D2 receptors increased perseverative 

responding (Pezze et al., 2007). In addition to the importance of the dopaminergic 

system the NAcb in the control of behaviours associated with the 5-CSRTT, 

manipulations of the DA system in the medial prefrontal cortex also modulate 

attentional performance (Granon et al., 2000).  

 

In the synaptic cleft, dopamine is metabolised by the enzyme catecholamine-o-methyl 

transferase (COMT), which is inhibited by the drug tolcapone. Based on the selective 

effect of tolcapone on cortical dopamine versus noradrenaline (Tunbridge et al., 2004) it 

was given to rats that demonstrated sub-optimal baseline behaviour in the 5-CSRTT to 

try to improve their performance. Tolcapone had no positive effect on accuracy or 

premature responding, and in fact worsened performance by increasing the percentage 

of omitted responses (Paterson et al., 2011). 

 

Depletion of dopamine using 6-OHDA has been carried out in both the ventral 

(including the nucleus accumbens) and dorsal (caudate-putamen) striatum. Despite the 

lesions being comprehensive, no changes in baseline response accuracy were observed 

for either sub-region (Cole and Robbins, 1989; Baunez and Robbins, 1999). Depletion 

of dopamine in the ventral striatum did however elicit a small decrease in premature 

responding (Cole and Robbins, 1989).  
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5.1.2.3 Manipulations of the serotonergic system 

Serotonin is a member of the monoamine family of neurotransmitters, although non-

selective monoamine re-uptake inhibitors are thought to only have small effects on the 

serotonergic system. The behavioural findings from the 5-CSRTT following 

manipulation of the serotonergic system paint a diverse and complex picture, possibly 

due to the large number of 5-hydroxytryptophan (5-HT or serotonin) receptor subtypes 

and the non-selectivity of the agents used to investigate the system. 

 

In one early study there were deficits in accuracy following administration of the non-

selective 5-HT2A/C agonists LSD (0.1mg/kg, i.p.) and quinzapine (2.5mg/kg) that were 

attenuated by the 5-HT2A/C-receptor antagonist ritanserin (Carli and Samanin, 1992). 

However further studies using an alternative 5-HT2A/C agonist, DOI, did not replicate 

the initial findings and in fact found no change in accuracy, yet premature responding 

was elevated (Koskinen et al., 2000). Serotonergic agents often bind to more than one 

sub-type of receptor e.g. LSD acts on both 5-HT2A/C and 5-HT1A receptors. Carli and 

Samanin (2000) continued their initial work by further investigating the 5-HT1A 

receptor and found treatment with the agonist OH-DPAT severely impaired behaviour 

in the 5-CSRTT (Carli and Samanin, 2000). The previously mentioned 

methylphenidate-induced impulsivity observed by Milstein et al. (2010), was not 

reduced by co-treatment with 5-HT1A, nor 5-HT1B antagonists. Attention was also not 

affected by this antagonist treatment (Milstein et al., 2010). 

 

The complex findings that come from the pharmacological blockade of the serotonergic 

system are echoed in that from central 5-HT depletion studies. Two different 

neurotoxins have been used for central 5-HT depletion, para-chlorophenylalanine 

(PCPA) and 5,7 dihydroxytryptamine (DHT) that have resulted in conflicting results. 

PCPA treatment, leading to a 99% reduction in frontal cortical serotonin (but also 

reduction of cortical dopamine and noradrenaline) reduced accuracy, without affecting 

premature responding, yet intracerebroventricular administration of DHT (after pre-

treatment with a noradrenergic and dopaminergic uptake inhibitors) robustly increased 

impulsivity but not accuracy in rats in the 5-CSRTT (Jäkälä et al., 1992; Harrison et al., 

1997). Therefore serotonergic control of impulsivity in the 5-CSRTT is not driven from 

the cortex. 
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5.1.2.4 Manipulations of the cholinergic system  

The cholinergic system has not been as comprehensively studied as the monoamine 

systems above, but given the influential role of cholinergic interneurons in the striatum, 

a region highly associated with those behaviours measured in the 5-CSRTT, it is an 

imbalance that should be addressed. 

 

The cholinergic studies that have been completed mainly report deficits in response 

accuracy after treatment (both systemic treatment and lesion studies) but conflicting 

results have arisen. Systemic treatment with scopolamine, a muscarinic antagonist, has 

produced inconsistent findings in the 5-CSRTT. One group reported impairments in 

response accuracy with a low dose of the drug (0.1mg/kg s.c.), yet with the same 

injection route and dose others only found a deficit in attention when the stimulus light 

was presented at the same time as a white-noise distracter (Jones and Higgins, 1995; 

Mirza and Stolerman, 2000). The variable findings from systemic scopolamine 

treatment have also been reported in mice, where differences in background strain and 

attentional load produced inconsistent results after scopolamine treatment (Humby et 

al., 1999). Following on from the findings that muscarinic acetylcholine receptor 

antagonism causes attentional deficit, it is surprising that mAChR agonists, nor the 

cholinesterase inhibitor physostigmine have not shown any beneficial effects on 

baseline performance in the 5-CSRTT (Muir et al., 1995; Robbins, 2002), however one 

group have shown improved accuracy and decreased omissions with nicotine treatment 

(an cholinesterase inhibitor) (Bizarro et al., 2004). Cholinesterase inhibitors however do 

improve the 5-CSRTT performance of rats with lesions of the nucleus basalis 

magnocellularis (nbm), a major cholinergic centre (Muir et al., 1995). The effects of 

nicotinic acetylcholine receptors (nAChR) are also inconsistent. The non-competitive 

nAChR antagonist, mecamylamine, has been shown to have a detrimental effect on 

accuracy (Jones et al., 1995; Grottick and Higgins, 2002), yet other groups reported no 

change in response accuracy (Mirza and Stolerman, 2000). A recent study has even 

implicated the cholinergic system in impulsivity, more specifically the α4β2 nicotinic 

acetylcholine receptor subtype, although the brain region responsible for this is yet to be 

elucidated. Candidate areas with high levels of endogenous acetylcholine and α4β2 

receptors include the ventral tegmental area, the dopaminergic terminals in the nucleus 

accumbens and the infralimbic cortex (Tsutsui-Kimura et al., 2010). 
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A lack of a suitably specific neurotoxin hindered early work on lesions of the 

cholinergic system, since different excitotoxins varied greatly in potency and selectivity 

for cholinergic neurons (Everitt and Robbins, 1997). AMPA was discovered to be a 

good excitotoxin and lesion of the basal forebrain, but not the vertical limb of the 

diagonal band, resulted in poor performance in the 5-CSRTT, thus showing that the 

effects of cholinergic depletion are region specific (Muir et al., 1994, 1996). 

 

5.1.2.5 Using mice in the 5-CSRTT 

All of the above experimental work in the 5-CSRTT has been conducted using rats. 

However with a few minor changes to the 5-CSRTT parameters, mice can learn and 

perform the task equally well (Humby et al., 1999; Sanchez-Roige et al., 2012). Under 

low attentional demand, mice can develop a stable baseline performance with high 

levels of accuracy, short response times and low levels of premature responding 

(Humby et al., 1999; Marston et al., 2001; de Bruin et al., 2006; Hoyle et al., 2006; 

Davies et al., 2007).  

 

Unlike in rats, where there is a relatively small selection of background strains used in 

biomedical research, there is a phenomenal number of different mouse lineages. It is 

commonly known, but not often seriously considered, that background strain can have a 

significant influence on the behavioral performance in a single experimental paradigm. 

There have been several studies that have looked at the baseline performance of 

different rat and mouse strains in the 5-CSRTT. Wistar and Long Evans rats perform to 

a similar level in the 5-CSRTT, but in comparison Brown Norwegian/Lewis crosses 

displayed decreased responding, speed and impulsivity (Didriksen and Christensen, 

1993). Sprague-Dawley rats required significantly fewer training sessions to learn the 

task than Long Evans rats (Auclair et al., 2009). Mouse background strain has a 

significant effect on behaviour in the 5-CSRTT as outlined in Table 5.2. 

  
Table 5.2 Table outlining a selection of mouse background strain comparisons conducted in the 5-CSRTT 

 

The fact that mice can perform equally as well as rats in the 5-CSRTT allows for the 

testing of transgenic and genetically modified mice in a behavioural paradigm that can 

assess attention, response inhibition, compulsion, response times and motivation.  
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5.1.3 The NK1R-/- mouse as a model of ADHD 
Previous findings within the lab have shown that NK1R-/- mice display locomotor 

hyperactivity in the light/dark exploration box (LDEB) (Herpfer et al., 2005; Fisher et 

al., 2007). This finding, observed in two separate studies, provided the first evidence 

towards the NK1R-/- mouse being proposed as a rodent model of ADHD (face validity). 

Furthermore this hyperactivity was attenuated by treatment with d-amphetamine and 

methylphenidate providing predictive validity for the NK1R-/- mouse being a model of 

ADHD (Yan et al., 2010). The proposal was further consolidated when it was shown 

that NK1R-/- mice display similar neurochemical profiles to patients with ADHD, 

including reduced DA efflux in the frontal cortex (Yan et al., 2009, 2010).  

 

5.1.4 Experimental aims 
The ability of the 5-choice serial reaction time task to measure both attention and 

impulsivity in the same experimental set-up makes it the ideal choice for testing the 

NK1R-/- mouse as a rodent model of ADHD. Given the previous findings that the 

hyperactivity of the NK1R-/- mouse is attenuated with psychostimulants that are used to 

treat ADHD in the clinic we would hypothesise that the NK1R-/- mouse would display 

increased impulsivity and attentional deficits in the 5-CSRTT compared to wild-type 

counterparts. All of the behaviours recorded in the 5-CSRTT will be looked at in their 

entirety to form a complete profile to investigate further the ADHD-like behaviour of 

the NK1R-/- mouse. 

 

 

5.2 Materials and Methods 
5.2.1 Subjects 
The animals used in the 5-CSRTT were from the original, homozygous bred, MF1 

colonies as outlined in section 2.1.2. 12 wildtype (WT) and 12 knockout (KO) animals 

(males, aged approximately 8 weeks old at the start of each experiment) were tested in 

this experiment. One WT mouse from cohort 2 died in the early stages of training. The 

mice were kept on a restricted diet to maintain body weights at 90% of the animals free-
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feeding weight to ensure they remained motivated for the task. Animals were weighed 

every day prior to the start of the experiment.  

 

5.2.2 5-CSRTT Procedures 
The training / testing session occurred once a day, Monday to Friday. All mice were 

brought to the lab at 09.00, weighed, and placed in the test room for acclimatisation. 

Each mouse was placed in the 5-CSRTT chambers at the same time every day.	
 Six 

wildtype and six knockout mice were trained / tested between 10.00 and 12.00, and six 

of each genotype between 13.00 and 15.00. The mice were habituated, trained and 

tested in the 5-choice serial reaction time task as outlined in full in the Materials and 

Methods chapter (section 2.4) and was based on the protocol from (Oliver et al., 2009). 

Figure 5.1 is a schematic diagram of the possible outcomes from the 5-choice serial 

reaction time task. 

 

 
Figure 5.1 Schematic diagram of the sequence and potential outcomes from the 5-choice serial reaction time 
task. A trial is initiated with a head entry into the magazine, which is followed by a brief light stimulus in one 
of five apertures on the opposite wall to the magazine after an inter-trial interval (ITI) of 5 seconds (at 
baseline). The inter-trial interval can be extended in a long inter-trial interval (LITI) test or presented in an 
unpredictable variable inter-trial interval (VITI) test. If the animal responds before the stimulus is illuminated 
a premature response is recorded. After the presentation of the stimulus the mice have 5 seconds to respond 
within the ‘limited hold’ time (LH).  If a nose poke response is made into the hole where the stimulus was 
presented a correct response is recorded and a reward released. If the animal nose pokes into the wrong hole, 
or fails to respond within the LH time period a time out (TO) period of complete darkness is initiated. A 
premature response also incurs a time out period. (Figure modified from (Bari et al., 2008)). 

 

5.2.3 Testing regime 
After each animal had satisfactorily reached the criteria to pass training and performed 

at a stable baseline, they were tested with a single inter-trial interval probe test of the 

long and variable ITI tests. Half the cohort was first tested with a long ITI (LITI NI-1), 

the other with the variable ITI (VITI NI-1). One week later, after performing 

satisfactorily at baseline, the corresponding test was conducted. There was then an 

unscheduled 5-week break in testing due to various reasons. The mice were on ad lib 

food for 3 weeks, followed by a week to re-establish the 90% body weight and a final 

week to re-establish satisfactory baseline performances.  They were then tested in the 

LITI and VITI tests again with no injection treatment (LITI and VITI NI-2) to make 

sure the results were comparable to the first experience of the tests. They then went on 
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to be tested in a fully randomised drug regime with 2 different NK1 receptor antagonists 

(RP 67580 (RP) or L-733,060 (L-733)) at 2 different doses with both the LITI and VITI 

tests. The animals either received another no-injection trial (NI-3), vehicle, RP 5mg/kg, 

RP 10mg/kg, L-733 5mg/kg and L-733 10mg/kg. The results from training and the 

initial LITI and VITI tests are presented here, whilst data from the antagonist study are 

presented in the next chapter.  

 

5.2.4 5-CSRTT Statistics  
The behaviours scored in the 5-CSRTT, were previously outlined in section 2.4.5 but 

are here as a reminder.  

• Total number of trials required to pass the training phase: the sum of all the 
trials completed at each training stage (for analysing the data obtained from 
Training Stage 1-6 only). 

•  Total number of trials completed in each test session: total correct response 
+ total incorrect + total omission (for analysing the data obtained from the fixed 
long ITI and variable ITI tests, only). 

• % Accuracy: correct responses / (correct + incorrect responses) x 100 
• % Omissions: total omissions / (correct + incorrect responses + omission) x 100 
• % Premature responses: premature responses / (correct + incorrect + omission 

+ premature responses) x 100 
• Latency to correct response: latency to nose-poke into the correct hole after 

the onset of stimulus (seconds) 
• Latency to collect reward: latency to collect the reward after a correct response 

(seconds) 
• Perseveration: total number of responses made into the holes after a correct 

response but before the collection of the reward. 

 

For the training data, a repeated measures 2-way ANOVA with ‘stage’ as the within-

subject factor and genotype as the between subject factor was used. Statistics were 

carried out on raw data where possible, but if the variance of the groups differed (i.e. 

Levene’s test for the equality of error variance was significant), the data was 

transformed (Square-root, Lg10 or Lg10(score+1) (the latter being used if any of the 

raw data values were zero)) to normalise the variance. If this did not correct the 

problem, non-parametric statistical tests were used. These exceptional cases are 

highlighted in the results section. Significant differences for the within subject factor 

‘stage’, were not pursued. Statistical significance was set at P<0.05. For the column 
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graphs, significant genotype differences are denoted by a black bar between the 

columns that represent a statistical difference of at least P<0.05. 

 

5.3 Results 
 

5.3.1 Training 
Of the behaviours measured across training stages 1-6 overall genotype differences 

were found in the total number of sessions required to pass training, latency to collect 

reward (F(1,21)=8.76, P<0.01) and perseveration (F(1,21)=6.0, P<0.05). Each behaviour is 

discussed below with the relevant post-hoc analyses for latency to collect the reward 

and perseveration.  

 

Total number of sessions required to pass training. NK1 receptor knockout mice 

required more training sessions to reach satisfactory baseline criterion than the wildtype 

control animals (t(21)=2.63, P<0.05) (Figure 5.2A).  

 

Accuracy is calculated as the (number of correct responses / (number of correct 

responses + number of incorrect responses)) yet only takes into account the accuracy of 

when a response is made. Although conventionally considered as an index of attention, 

this measure does not take omissions or premature responses into consideration.  No 

overall genotype difference was found meaning both genotypes were equally accurate 

over the six stages of training (Figure 5.2B). 

 

Omissions is calculated as the (number of omissions / (number of omissions + number 

of correct responses + number of incorrect responses)). Although NK1R-/- mice failed 

to respond to the stimulus light more often than wildtype controls, especially at stages 2, 

3 and 4, this did not yield a significant genotype difference (Figure 5.2C). 

 

Premature responses is calculated as the (number of premature responses / (number of 

premature responses + number of omissions + number of correct responses + number of 

incorrect responses)). Premature responding corresponds to impulsivity. Across the six 

training stages there was no significant difference in the impulsive behaviour of 

wildtype and NK1 receptor knockout mice (Figure 5.2D). 
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Latency to make a correct response is an index of both attention and motivation. No 

overall genotype difference was observed for this measure showing that both genotypes 

respond to the cue light at the same time (Figure 5.2E). 

 

Latency to collect reward is typically used as a measure of motivation but as 

suggested below it is strongly linked with perseveration too. NK1R-/- mice were 

consistently slower to collect the reward after a correct response had been made. This 

occurred at all stages of training (1-6), but was statistically different at stages 1, 5 and 6 

(Figure 5.2F). This could be due to a motivational deficit, however the latency to make 

a correct response did not differ from that of the wildtype mice, making this an unlikely 

reason. It is most likely to be due to the increased perseverative responding (see below) 

after a correct response had been recorded, which would delay the collection of the 

reward.   

 

Perseveration is recorded as repeated, yet unnecessary, nose poking in the stimulus 

hole after a correct response has been made. NK1R-/- mice consistently recorded a 

higher number of repeated nose pokes into the stimulus hole after the initial correct 

response compared to wildtype controls, although this was only statistically significant 

at stages 1 and 5 of training (Figure 5.2G).  
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Figure 5.2 A comparison of the behaviour of WT and KO mice in the 5-CSRTT during training stages 1 to 6. 
(A) number of sessions required to pass training, (B) percentage accuracy, (C) percentage omissions, (D) 
percentage premature responses, (E and F) latencies to make a correct response and to collect the reward 
respectively and (G) perseverative nose pokes made after a correct response. WT - wildtype (white circles) and 
KO - knockout (grey squares). * P<0.05, ** P<0.01 N=11-12 
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5.3.2  Long and variable inter-trial interval tests (LITI and VITI NI-1) 
Once the animals had reached a stable baseline performance with the parameters of the 

task as of that for stage 6 they were subjected to the test phases of the 5-choice serial 

reaction time task. The long inter-trial interval (LITI) test increases the attentional load 

of the task as the wait time between trial initiation and the stimulus light being 

illuminated is increased from 5s to 7s, while in the VITI test the interval is either 2, 5, 

10 or 15 seconds presented in a randomised order. The data from the two tests were first 

analysed with a 2-way ANOVA with genotype as the between subject factor and ‘test’ 

(LITI and VITI) as the within subject factor to check whether any behaviours differed 

between the tests.  

 

Total number of trials is an indication of motivation and sustained attention. Across 

the two 5-CSRTT tests, there was a significant effect of genotype (F(1,21)=5.43, P<0.05) 

and test (F(1,21)=6.98, P<0.05). Further post-hoc analysis revealed that the NK1R-/- mice 

completed significantly fewer trials in the VITI test than in the LITI, which also resulted 

in a significant genotype difference in the VITI test (t(12.1)=2.69, P<0.05) (Figure 5.3A).  

 

Accuracy The difficulty of the test did not effect the high accuracy of the responses 

made, and there was no genotype difference in the accuracy of the responses made in 

either test (Figure 5.3B). Again this does not take into account omissions or premature 

responses. 

 

Omissions Both wildtype and NK1R-/- mice made more errors of omission in the 

unpredictable VITI test than in the LITI test (F(1,21)=29.8, P<0.001). There was also a 

significant genotype difference in both tests (F(1,21)=15.8, P<0.001) with NK1R-/- mice 

failing to respond to the stimulus lights more than the wildtype controls (LITI: 

t(21)=2.17, P<0.05; VITI: t(21)=3.17, P<0.01) (Figure 5.3C). This fits with the hypothesis 

of the NK1R-/- mouse model of ADHD, as a high percentage of omissions indicate a 

lack of attention to the task, thus replicating one of the core symptoms of ADHD. 

 

Premature responses The initial 2-way ANOVA revealed significant overall 

differences in ‘genotype’ and ‘test’ (F(1,21)=7.5, P<0.05 and F(1,21)=13.8, P<0.001 

respectively). Post-hoc analyses showed that there was no difference in the behaviour of 
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wildtype and NK1R-/- mice in the LITI test, but a significant increase in premature 

responses made by the NK1R-/- mice in the VITI test compared to the LITI test (KO c.f. 

LITI t(11)=3.7, P<0.01) elicited a genotype difference (t(21)=3.3, P<0.01) (Figure 5.3D). 

Therefore in their first experience of the unpredictable VITI test the NK1R-/- mice 

display an impulsive phenotype.  

 

Latency to correct response Both wildtype and NK1R-/- mice were slower to respond 

to the cue light in the VITI test compared to the LITI test (F(1,21)=39.4, P<0.001, WT: 

t(10)=7.1, P<0.001 and KO: t(11)=4.35, P<0.001). Both genotypes responded in a similar 

manner in the LITI test, but in the VITI test NK1R-/- mice were significantly slower to 

make a correct response than the wildtype controls (t(13.7)=2.5, P<0.05) (Figure 5.3E). 

 

Latency to collect reward As in seen in all stages of training, NK1R-/- mice were 

slower to collect the reward after a correct response in both the LITI and VITI tests 

(F(1,21)=13.2, P<0.01; post-hoc LITI t(21)=3.0, P<0.01; VITI t(21)=3.9, P<0.001), but the 

difficulty of the task did not alter the response times in either genotype (Figure 5.3F). 

 

Perseveration As seen in training, NK1R-/- mice made more repeated nose pokes into 

the stimulus hole after a correct response had already been made in the LITI and VITI 

tests (effect of ‘genotype’ F(1,21)=4.2, P<0.05; post-hoc LITI t(14.0)=1.9, P<0.05; VITI 

t(11.4)=2.0, P<0.05), but this was not changed by the different difficulties of the tests 

(Figure 5.3G).  
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Figure 5.3 A comparison of the behaviour of WT and KO mice in the 5-CSRTT during the animals’ first 
experience of the long and variable inter-trial interval tests (LITI and VITI NI-1). (A) Total number of trials 
completed in the session, (B) percentage accuracy, (C) percentage omissions, (D) percentage of premature 
responses, (E) latency to a correct response, (F) latency to collect reward and (G) number of perseverative 
nose-poke responses. WT - wildtype and KO - knockout. Genotype differences are represented by solid black 
bars between the columns. * P<0.05, ** P<0.01, ***P<0.001 N=11-12 
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Table 5.3 summarises the findings from training and the LITI and VITI tests. The 

increasing difficulty of the tests draws out more behavioural differences between the 

NK1R-/- mice and their wildtype controls. The only genotype differences during 

training were increased perseverative responding by the NK1R-/- mice, which was 

accompanied by a longer latency to collect the reward probably as a direct consequence 

of the perseverative behaviour. These differences prevailed across the two test phases 

too. The accuracy of responses did not waver across training and the two tests and 

remained extremely high throughout. Increasing the inter-trial interval from 5 to 7s 

(LITI test) meant that the NK1R-/- mice performed more errors of omission than their 

wildtype controls, indicative of an inattentive phenotype that also remained in the VITI 

test. NK1R-/- mice display an impulsive phenotype, but only in the VITI test when the 

cue lights were presented in an unpredictable order.   

 

Behaviour Training LITI test VITI test 

% Accuracy No genotype 
difference 

No genotype 
difference 

No genotype 
difference 

% Omissions No genotype 
difference KO  KO  

% Premature 
responses 

No genotype 
difference 

No genotype 
difference KO  

Latency to 
correct response 

No genotype 
difference 

No genotype 
difference 

KO slower to respond 
to the cue light 

Latency to 
collect reward 

KO slower KO slower KO slower 

Perseveration KO  KO  KO  
Table 5.3 Summary of findings from training LITI and VITI tests  

 

5.3.3 Splitting the VITI into separate ITI times 
The fact that the LITI test and VITI tests produced different results, i.e. the impulsive 

phenotype of the NK1 receptor knockout mice was only drawn out in the VITI test, we 

can say that the difficulty of the task has a bearing on the behavioural responses. 

Prolonging the ITI time in the LITI test from 5 to 7s did not draw-out any underlying 

differences in impulsivity between the genotypes, but when the ITI was varied and 

presented in an unpredictable, randomised schedule the NK1R-/- committed 

significantly more premature responses than the wildtype controls. There are two 
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possible reasons for this; either the NK1R-/- mice cannot adjust to the irregular 

presentation of the stimulus, or that the knockout mice cannot withhold their response 

during the longer ITI times of 10 and 15 seconds. Here the VITI data are further 

analysed into the different ITI trials of 2, 5, 10, and 15seconds. This should provide 

more of an insight into the level of control the mice have over their behaviour. The data 

were analysed with a 2-way repeated measures ANOVA with ‘genotype’ as the between 

subject factor and ‘ITI’ as the within-subject factor.  

 

Total number of trials Both genotypes completed fewer trials at the longer ITI 

intervals (main interaction of ‘genotype’ and ‘ITI’: F(1.7,35.3)=5.97, P<0.01) (Figure 

5.4A). The computer system presents the cue lights on a randomised schedule, with an 

equal ratio of ITI times. The decrease in total number of trials arises because these data 

do not include the number of premature responses, which were significantly higher 

during the longer ITI times (see below).  

 

Accuracy The accuracy of responses was not dependent on the ITI length, but a 

previously unknown overall ‘genotype’ effect arose (F(1,21)=5.1, P<0.05) with NK1R-/- 

mice being slightly less accurate across each split. Post-hoc analysis revealed that this 

was only significant for the 15s ITI split (t15.2)=2.2, P<0.05) (Figure 5.4B).  

 

Omissions Significant overall effects of ‘genotype’ and ‘ITI’ were found in the initial 

ANOVA (F(1,21)=15.7, P<0.001 and F(3,63)=15.7, P<0.001 respectively). Post-hoc 

analyses revealed that NK1R-/- mice omitted more than wildtypes at 5, 10 and 15 

second ITI splits, but not at 2s. There was no statistical interaction between genotype 

and ITI so, in general, as the ITI time increased so did the errors of omission committed 

by both genotypes. The percentages of omissions committed at 10s and 15s ITI splits 

were significantly higher than that of 2s and 5s (Figure 5.4C).  

 

Premature responses As the length of the ITI increased, so did the number of 

premature responses made by both genotypes (F(3,63)=155.8, P<0.001). At the 2s ITI 

split, no premature responses were made by either genotype. Given that there was a 

significant interaction between genotype and ITI split, post-hoc analyses were 

conducted to compare each data set. Each comparison was statistically significant from 

each other except the premature responses made by NK1R-/- mice at 10 and 15s. There 
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was also an overall effect of genotype (F(1,21)=10.9, P<0.01), with NK1 receptor 

knockout mice performing more premature responses at 5, 10 and 15s ITI splits, 

however this only reached significance at the 10s ITI (t(21)=3.93, P<0.001) and only just 

failed to reach significance at the 15s ITI (P=0.054) (Figure 5.4D). 

 

Latency to correct response Non-parametric statistical analysis had to used on the data 

for the latency to correct response because Levene’s test of variance was violated and 

could not be corrected with either square-root of log10 transformation of the data. 

Interestingly, even though a significant genotype difference was found in the analysis of 

the pooled VITI data (Figure 5.3E), when analysed separately with non-parametric 

Mann-Whitney tests no genotype differences emerged. However the Wilcoxon signed 

rank tests for comparison of the ITI splits showed that the latency to respond after the 2s 

ITI was greater than that after a 5 or 15 second ITI, possibly reflecting the position of 

the mice within the chambers (c.f. 2s: 5s Z=4.17, P<0.001 and 15s Z=2.56, P<0.05) 

(Figure 5.4E). 

 

Latency to collect reward The length of ITI did not have any effect on the latency to 

collect the reward, but NK1R-/- mice were robustly slower at every ITI split (Figure 

5.4F). 

 

Perseveration A significant interaction between ‘genotype’ and ‘ITI’ emerged for the 

perseveration data set (F(1.3,28.1)=3.8, P<0.05). Perseverative responses were consistent 

across all ITI splits for the wildtype mice but not for the NK1R-/- mice. There was a 

significant decrease in number of perseverative responses made after the longer ITI 

times (10 and 15s) than for the shortest ITI time of 2s (10s t(11)=2.9, P<0.05 and 15s 

t(11)=2.7, P<0.05). The NK1 receptor knockout mice committed a greater number of 

perseverative responses than the wildtype controls at every ITI split, but this only 

reached statistical significance at the 2s interval (t(11.7)=2.3, P<0.05) and just failed to 

reach significance at the 5s split (P<0.053) (Figure 5.4G). 

  

 



 Chapter 5 

 
114 

 
Figure 5.4 A comparison of the behaviour of WT and KO mice in the 5-CSRTT during the animals’ first 
experience of the variable inter-trial interval test (VITI NI-1) split into the individual inter-trial interval trials 
of 2, 5, 10 and 15 seconds. (A) Total number of trials (B) percentage accuracy, (C) percentage omissions, (D) 
percentage of premature responses, (E) latency to a correct response, (F) latency to collect reward and (G) 
number of perseverative nose-poke responses. WT - wildtype and KO - knockout. Genotype differences are 
represented by solid black bars between the columns. * P<0.05, ** P<0.01, ***P<0.001 N=11-12 
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Both accuracy and the latency to collect the reward were not affected by the different 

lengths of ITI wait times. Unsurprisingly the % omissions and % premature responses 

increased as the length of the ITI was increased. The latency to respond to the cue light 

differed with ITI, with both genotypes taking longer to respond after a 2s ITI than 15s, 

possibly because of their position within the chamber. There was also a significant 

difference in response time after a 5s and 15s ITI. The perseverative responses made by 

the NK1 receptor knockout mice were significantly fewer after the longer ITI splits than 

after 2 or 5s ITI wait times.  

    

5.4 Discussion 
 

As predicted from the hypothesis that the NK1R-/- mouse is a model of attention deficit 

hyperactivity disorder (ADHD) the knockout mice displayed attentional deficits and 

higher impulsive responses in the 5-choice serial reaction time task (5-CSRTT), but this 

was dependent on the difficulty of the test parameters. What also emerged was a robust 

perseverative phenotype in the NK1R-/- compared to the wildtype counterparts at every 

phase of the experiment.  

 

5.4.1 Task acquisition 
23 out of 24 mice (one died) that started the experiment successfully reached the criteria 

for a stable baseline at the end of training. The lack of functioning NK1 receptor did not 

impede the ultimate acquisition of the task as However the NK1R-/- mice did require a 

greater number of training sessions to reach the test phase of the experiment. There was 

no difference in the behaviour of the NK1R-/- mice compared to the wildtype 

counterparts in accuracy, premature responding, and latency to respond to the cue light. 

Errors of omission were generally higher in the NK1R-/- mice, but this failed to reach 

statistical significance. Although no other experiments in the 5-CSRTT have been 

conducted on the exact background strain as the mice tested here (C57BL/6 x 129/Sv, 

crossed once onto an MF1 strain), a study of C57BL/6 x 129/Sv mice showed that they 

are capable of learning the procedure (Humby et al., 1999) suggesting that any 

behavioural deficits of the NK1R-/- mice presented here are unlikely to be related to the 

background strain of the animals used. The results in the previous chapter demonstrated 

that there was no difference in the overall activity levels at the times at which the 
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5-CSRTT was conducted therefore this should not impact the behaviour in the task. 

When the VITI data are split into individual ITI times, there is a decrease in the number 

of trials completed at the longer ITI times. Despite the computer programme presenting 

the cues in a randomised but balanced order, the decrease arises because more 

premature responses are made during the longer ITI times, after which the animal is 

punished with a time-out period of darkness. This resets the computer to present the 

next ITI time and the response is not recorded in the total number of completed trials. 

This is perhaps a flaw in the experimental programming since it creates a bias for the 

total number of trials completed at the shorter ITI times. It would be more beneficial if a 

premature response simply reset the ITI and did not cycle to the next trial, however this 

would perhaps promote a greater learning aspect to the task and could therefore mask an 

underlying impulsive phenotype. 

 

5.4.2 NK1R-/- mice display deficits in attention 
No one single behaviour in the 5-CSRTT measures ‘attention’ per se, but by 

considering the accuracy of the responses made, alongside the percentage of omitted 

responses and the latency to respond to the cue light we can gain insight into the 

attentional profile of the animals. There were no differences in the behaviour of 

wildtype and NK1R-/- mice in the measures associated with attention during the 

training stages of the experiment. This demonstrates that the level of attentional demand 

required during the training stages of the 5-CSRTT is not enough to draw-out the 

attentional deficits observed in the NK1R-/- mice in the more demanding LITI and VITI 

tasks. A lack of attentiveness in the 5-CSRTT could be interpreted as a blunted 

motivation to complete the task, perhaps due to apathy towards the reward. However 

maintaining the animals at 90% of their free feeding weight along with the incentive of 

highly calorific condensed milk as a reinforcer, this is an unlikely explanation.  

 

Increasing the inter-trial interval (ITI) time from 5 to 7 seconds in the long ITI test, did 

not impact on the accuracy, nor the latency of the responses made to the cue lights. 

However NK1R-/- mice committed a greater percentage of omission errors than the 

wildtype controls in the LITI test. When the attentional demand of the task was further 

increased in the variable ITI test, both genotypes displayed an increase in the percentage 

of omissions, with the NK1R-/- mice failed to respond to the cue light more than the 
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wildtype mice. Also, the increased difficulty of the test increased the average time taken 

to respond to the cue light in both genotypes, but more so in the NK1R-/- group, thus 

revealing a genotype difference in the latency to make a correct response. In addition to 

the deficits in acute attention (i.e. responding to each individual trial), NK1 receptor 

knockout mice completed fewer trials in the VITI test than the wildtype controls, 

suggesting they may also have a problem with sustaining attention across a long period 

of time. These findings point towards an inattentive phenotype of the NK1R-/- mouse.  

 

By analysing the data from the VITI in terms of each separate ITI time, we can gain 

more of an insight into the attention profile of the mice. After the longest ITI period of 

15s, NK1R-/- mice were less accurate with their responses thus adding to their profile of 

attentional deficits. Percentage omissions are greater with the longer ITI times, in both 

genotypes, while the NK1R-/- mice omit more than wildtypes at the 5, 10 and 15s ITI 

splits, but not at the shortest ITI length of 2s. This is most likely due to the fact that 

there is less time for the mice to get ‘distracted’ or carry out other behaviours such as 

grooming before the cue light is illuminated. The split ITI analysis for the latency to 

make a correct response is a little more insightful. When split, the genotype difference 

of NK1R-/- mice responding slower disappears. Both genotypes were slowest to 

respond after the 2s ITI time, possibly indicating that the mice are ‘out of position’ and 

have to cross the length of the box before responding. Also, the quickest response times 

are after the 5s ITI, which is the same ITI period as the baseline level which the mice 

are most accustomed to.  

 

With this evidence, the most likely explanation for the increased number of omissions 

recorded by the NK1R-/- mice in the LITI and VITI tests is a deficit in attention caused 

by a lack of the NK1 receptor.  

 

The neural circuits and computations that underlie normal and abnormal attention are 

not well understood. Attention is a complex cognitive faculty, and the 5-CSRTT can 

only measure one aspect of the multifaceted behaviour, namely top-down (voluntary) 

spatial attention. The main brain regions associated with attention are the prefrontal and 

parietal cortices as well as those associated with gaze and oculomotor function 

(Robbins, 2002; Moore, 2006; Noudoost et al., 2010; Noudoost and Moore, 2011). 
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Several neurotransmitters are associated with attention including acetylcholine (ACh), 

noradrenaline (NA) and dopamine (DA) but how they modulate attention is unclear.  

 

ACh efflux in the medial frontal cortex has been shown to increase at the onset of the 

5-CSRTT, implicating it as having an important role in the modulation of behaviour in 

the task. Furthermore, a depletion of cholinergic neurons in the nucleus basalis 

magnocellularis resulted in a depletion of cortical ACh efflux and corresponding 

impairment in accuracy (McGaughy et al., 2002). Another hypothesis for ACh is that it 

works via muscarinic acetylcholine receptors (mAChR), as the central muscarinic 

antagonist scopolamine (but not a nicotinic antagonist) reduced choice accuracy in rats, 

however mice carrying nicotinic acetylcholine receptor (nAChR) deletions of the β2 

subunit also have impaired attentional performance in the in the 5-CSRTT 

(Ruotsalainen et al., 2000; Guillem et al., 2011). The mAChR theory is corroborated by 

work in macaque monkeys where delivery of ACh into V1 sites increased attentional 

modulation (Herrero et al., 2008). Alternative hypotheses postulate that the ACh 

governs attention via gating of information within sensory cortical areas or by 

mediation of prefrontal cortex (PFC) function (Xiang et al., 1998; Parikh and Sarter, 

2008).  

 

Dopamine and noradrenaline also play important roles in the function of the PFC as 

demonstrated in other rodent studies using the 5-CSRTT and other attention measuring 

paradigms such as set-shifting (Crofts et al., 2001; Dalley et al., 2001; Milstein et al., 

2007; Tait et al., 2007). The striatum is also a potential component of the neural system 

associated with performance in the 5-CSRTT because of the input it receives from the 

PFC. Lesions of the medial and lateral striatum both cause considerable disruption of 

5-CSRTT performance and depletion of DA in the dorsal and ventral striatum using 

6-OHDA increased errors of omission and increased response latencies (Cole and 

Robbins, 1989; Baunez and Robbins, 1999; Rogers et al., 2001). Conversely, infusion 

of the DA D1 receptor agonist, SKF 38393, into the pre-limbic frontal cortex produced 

improvements in otherwise poor performing rats in the 5-CSRTT (Granon et al., 2000). 

The dopaminergic system in the core of the nucleus accumbens is also implicated in 

attentional accuracy via D1 receptors, since region-selective D1 antagonism impaired 

accuracy and increased omissions, whilst a D1 stimulations improved accuracy and 

decreased omissions (Pezze et al., 2007).  Milstein and colleagues examined the effect 
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of noradrenaline depletion in the PFC and reported that accuracy was decreased in the 

VITI test after a selective lesion (Milstein et al., 2007). 

 

Although basal levels of acetylcholine efflux have not been measured in the NK1R-/-, 

these mice do have a greater tonic release of noradrenaline in corticostriatal brain 

regions and reduced extracellular dopamine in the PFC which could contribute to their 

inattentiveness (Fisher et al., 2007; Yan et al., 2009, 2010).  

 

5.4.3 NK1R-/- mice are impulsive in the VITI 
In the 5-CSRTT the percentage of premature responses (a nose poke into a hole prior to 

the presentation of the cue light) provides a direct index of the impulsive nature of an 

animal. From the hypothesis that the NK1R-/- mouse is a model of ADHD, and would 

thus display traits of impulsivity, we would predict that they would commit a higher 

number of premature responses than the wildtype controls in the 5-CSRTT. Although 

this was proved to be correct in the variable ITI test, no difference was seen between 

genotypes during the training stages or in the long ITI test. These results clearly show 

that impulsivity is correlated with the difficulty of the task.  

 

The difference in findings from the LITI and VITI provides insight into the nature of the 

impulsivity displayed by these animals. Both genotypes responded to the prolonged 

inter-trial interval in the LITI test equally, thus showing that simply elongating the 

‘wait-time’ from 5 to 7 seconds is not a large enough increase in difficulty to draw-out 

any underlying differences in impulsivity. However when the inter-trial interval was 

varied, and delivered in a non-predictable, randomised schedule of 2, 5, 10 or 15 

seconds, NK1R-/- mice committed significantly more premature responses than the 

wildtype controls. There are two possible reasons for this; either the knockout cannot 

adjust to the irregular presentation of the stimulus, or that the much longer inter-trial 

interval times (10 and 15s) are long enough to elicit the underlying impulsive phenotype 

of the NK1R-/- mice. Splitting the VITI data into the individual ITI times revealed, 

unsurprisingly, that the percentage of premature responses increased with longer ITI 

times. NK1R-/- mice performed a greater number of premature responses than wildtype 

controls at the 5, 10 and 15s ITI splits, that when collapsed yields the overall genotype 

difference in premature responding in the VITI, but when split behaviour between 
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genotypes is significantly different only at the 10s ITI. These data demonstrate that it is 

the longer ITI times that draw-out the underlying deficit in impulsive behaviour of the 

NK1R-/- mouse.  

 

There is a large body of evidence to suggest that impulsivity is associated with impaired 

serotonergic transmission, although the specific brain region(s) affected are unknown 

(Stein et al., 1993; Harrison et al., 1997; Evenden, 1999a; Dalley et al., 2002, 2008).  

However, a 90% reduction of forebrain serotonin in the rat brain does not necessarily 

effect all types of impulsivity (as seen by an increase in premature responding in a 

visual attention task, yet no change in impulsive choice was observed in a delayed-

discounting test), further highlighting the complexity of the behaviour (Winstanley et 

al., 2004). The evidence also is contradictory as to whether impulsivity is the result of a 

deficiency in 5-HT transmission (Harrison et al., 1997, 1999) or whether excessive 

serotonin levels contribute to impulsive behaviour (Puumala and Sirviö, 1998; Dalley et 

al., 2002). A number of lesion and pharmacological studies have been used to examine 

the relationship between serotonin function and impulsivity in the 5-CSRTT. 

Widespread depletion of 5-HT by the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) 

significantly increased premature responding, but did not impair accuracy (Harrison et 

al., 1997). Administration of 5-HT receptor agonists, specifically for the 1A and 2A 

subtypes of the receptor, also produced similar increases in premature responding (Carli 

and Samanin, 2000; Koskinen et al., 2000a, 2000b). NK1R-/- mice have reduced levels 

of 5-HT1A receptors and also respond differently to wildtype mice when given 

systemic paroxetine (a selective serotonin reuptake inhibitor (SSRI)) (Froger et al., 

2001), thus suggesting they have a significant disruption of the serotonergic neural 

circuitry which may contribute to the impulsivity recorded here in the 5-CSRTT. 

Dopaminergic transmission also plays a role in the modulation of premature responding, 

namely in the nucleus accumbens, since intra-accumbens injection a D1 antagonist 

significantly decreased premature responding in rats (Pattij et al., 2007a).  

 

Impulsivity is known to be a multi-faceted behaviour with many different varieties 

(Evenden, 1999b). To further explore the difference in impulsivity between the two 

genotypes the mice could be tested in an adapted version of the 5-CSRTT known as the 

‘go/no-go’ test.  Here, in addition to the presentation of the individual cue lights on a 

randomised schedule (as used in this experiment), an extra test is included where all 5 
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apertures are illuminated simultaneously. To obtain a reward from this stimulus the 

animal must refrain from responding in any of the five locations (Young et al., 2009). 

The go/no-go task and the standard 5-CSRTT both measure action restraint, that is, 

inhibition of a pre-planned motor action before the response has been initiated. Yet in 

the go/no-go task the animals must make the additional decision whether to respond to 

the cue or to inhibit the action upon the presentation of a no-go signal. It does not 

necessarily follow that a poor performance in one task correlates with the other. An 

animal that successfully withholds its response during the ITI of the 5-CSRTT could 

still commit a large number of ‘false alarm’ responses (a response to the no-go signal) 

in the go/no-go task. This would suggest an impairment with the decision making 

process of whether to respond or not, a slightly different aspect of impulsive behaviour 

as seen in the NK1R-/- mice in the 5-CSRTT. Disrupted serotonin neurotransmission 

has also previously been associated with poor performance in the Go/No-go test 

(Harrison et al., 1999). 

 

5.4.4 NK1R-/- mice perseverate more than wildtype mice 
One unexpected finding from this experiment was the high number of perseverative 

responses committed by the NK1R-/- mice in relation to the wildtype mice, which was 

present at all phases of the experiment. The NK1R-/- mice unnecessarily continued to 

nose-poke into the hole after a correct response had already been recorded, up to 4-fold 

more than their wildtype counterparts. This may account for the increased latency to 

collect reward routinely seen in the NK1R-/- mice compared to wildtypes.  

 

Although perseveration is a symptom most commonly associated with obsessive-

compulsive disorder (OCD) it is also a co-morbid feature of ADHD, however it is not a 

diagnostic criterion (Tannock and Schachar, 1992; Houghton et al., 1999; Lawrence et 

al., 2004). The neural circuitry of perseveration is thought to overlap with that 

associated with impulsivity, since lesions of the pre-limbic cortex and medial striatum 

both increased perseverative responding in the 5-CSRTT (Chudasama and Muir, 2001; 

Rogers et al., 2001; Chudasama et al., 2003). This is consistent with other findings from 

studies of reversal learning (another measure of perseveration where the subject must 

learn a rule, and then forget the rule and learn another) after lesions of the dorsal-medial 

and medial striatum (in rats and monkeys respectively) and neonatal lesions of the 
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medial PFC (mPFC) all increased perseveration (Schwabe et al., 2004; Clarke et al., 

2008; Castañé et al., 2010). The monoaminergic systems within the corticostriatal 

circuit may govern perseverative responding, since both d-amphetamine and stimulation 

of D2 receptors in the core of the nucleus accumbens increase perseverative responding 

in the 5-CSRTT (Pezze et al., 2007; Paterson et al., 2011). Background strain also has a 

significant influence on perseveration, as it does on performance in the 5-CSRTT. In a 

comparison of fourteen different strains in a test of operant extinction behaviour 

C57BL/6 mice did not show any deficit in extinction, whereas Bxd-16, Bxd-42 and 

NOD/Ltj mice all displayed high levels of perseveration (Malkki et al., 2011).   

 

Interestingly, there was a decrease in perseverative responding of the NK1R-/- mouse 

with increased ITI interval time. The high number of perseverative responses made by 

the NK1R-/- mouse at 2s and 5s ITI times is not seen at 10 or 15seconds ITI. This trend 

of decreased perseverative responses at longer ITI times can also be seen in the work of 

Paterson et al., (2011), yet was not covered in their discussion of the data. This 

observation is likely to stem from the fact that fewer trials are completed at the longer 

ITI splits (see section 5.4.1), and because perseveration is recorded as a cumulative 

measure rather than a percentage of the total number of trials, fewer perseverative 

responses are made. Additionally, (although unfortunately not recorded by our 

computer system), it would be of interest to look at whether the NK1R-/- mice make 

perseverative nose-pokes into the magazine hole upon collection of the reward (to see if 

the behaviour is purely driven by the cue or if it also applies to the reward aspect of the 

task) and whether they make perseverative responses after an incorrect or premature 

response during the time-out darkness period (to see if the behaviour pervades after an 

additional environmental cue (lights out)). These measures are rarely mentioned in 5-

CSRTT literature.  

 

Although perseverative responses are recorded in the 5-CSRTT, they have no 

programmable consequence for the mice. Punishing the animals for a perseverative 

response with a time-out period of darkness has been shown to disrupt learning of the 

task (Bari et al., 2008). This could suggest that the knockout mice are not extinguishing 

the behaviour learnt in the habituation stages, when the reward is on a continuous 

reinforcement schedule, and therefore advantageous to nose-poke as much as possible 

to gain the maximum amount of reward permitted. Alternatively the perseverative 
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responding could be considered a ‘checking’ behaviour, more associated with OCD and 

anxiety, although this would not fit with the early findings that NK1R knockout mice 

display reduced anxiety compared to wildtype animals (Kramer et al., 1998; Rupniak et 

al., 2000; Santarelli et al., 2001). Whether either of these theories is correct, the robust 

nature of the genotype difference at all stages of the 5-CSRTT certainly warrants further 

investigation.  

 

5.4.5 Methodological considerations 
The 5-choice serial reaction time task is an excellent behavioural paradigm for 

measuring impulsivity and attention, although all the recorded behaviours need to be 

analysed in conjunction with one another to build up a complete behavioural profile of 

the animals (Robbins, 2002). Impulsivity, attention and perseveration are all complex 

behaviours and the 5-CSRTT only measures one such aspect of each (Evenden, 1999b; 

Dalley et al., 2011). Therefore, even though the NK1R-/- mice display impulsivity in 

the 5-CSRTT (thought to be due to a deficit in disinhibition), this may not be true in 

other tests of impulsivity such as temporal-discounting (which measures whether an 

animal will choose an immediate small reward, or a larger reward after a period of time 

has elapsed) or the go/no-go task which measures the ability to stop an already initiated 

action.  

 

The large number of variables within the 5-CSRTT schedule e.g. the ITI time, stimulus 

duration, and session length make it unlikely that any two protocols will be exactly the 

same, making comparisons between studies difficult. It must also be noted that after the 

completion of the study, a fault in the programming of the LITI test was discovered, 

which had resulted in the stimulus duration of the LITI test being just 1 second, instead 

of 1.8s, however this does not appear to have had a detrimental effect on the 

performance of the animals since accuracy remained high in both genotypes. The 

revelation that there is a bias for the shorter ITI times, which impacts on the 

interpretation of the data, is an important finding that other users of the 5-CSRTT 

should be aware of and take into consideration.  
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5.4.6 Conclusions 
NK1R-/- mice display deficits in attentiveness and impulsivity when challenged with 

the variable inter-trial interval test in the 5-choice serial reaction time task. This 

supports the proposal that the NK1R-/- mouse is a model of attention-deficit 

hyperactivity disorder. To further investigate whether these deficits are due to a lack of 

functional NK1 receptor the mice in cohort 2 were treated with NK1R antagonists to see 

if the findings from the knock out mice could be replicated in wildtype animals. The 

data from this experiment are reported in the next chapter. 
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6 Effect of NK1 receptor antagonists on behaviour 

in the 5-CSRTT 

6.1 Introduction 
 

From the findings in the previous chapter we know that NK1R-/- mice display 

inattentiveness and impulsivity in the 5-choice serial reaction time task (5-CSRTT), 

which are both core symptoms of ADHD. NK1R-/- mice also committed a greater 

number of perseverative responses than the wildtype controls, and although it is not a 

diagnostic criterion, it is a co-morbid feature of the disorder (Tannock and Schachar, 

1992; Houghton et al., 1999; Lawrence et al., 2004). The aim of this chapter is to look 

at the effect of treating wildtype mice with NK1R antagonists to see if the behavioural 

profile of the NK1R-/- mice can be replicated. If so, it is likely that the behavioural 

deficits observed in the previous chapter are caused by the lack of a functional NK1 

receptor.  

 

6.1.1 NK1 Receptor Antagonists 
Antagonists are agents that bind to a channel or receptor, but do not elicit a biological 

response. The first antagonist produced for the NK1R, CP-96,345, was developed by 

Pfizer in the early 1990’s (Snider et al., 1991) thereby opening up the NK1R research 

field and many more were developed in quick succession. NK1R antagonists generally 

fall into two categories: the less common peptide antagonists such as FR 113680 (a tri-

peptide SP antagonist, with NK1R selectivity (Morimoto et al., 1992)) and non-peptide 

antagonists which include CP-96,345, RP 67580 and L-733,060 (Garret et al., 1991; 

Snider et al., 1991; Rupniak et al., 1996). The two antagonists used in this chapter, RP 

67580 and L-733,060, both have high stereospecificity for the NK1 receptor, over the 

other tachykinin receptors, and their respective enantiomers (RP 67581 and L-733,061) 

are inactive (Garret et al., 1991; Moussaoui et al., 1993; Rupniak et al., 1996). 
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6.1.2 Antagonist vs. knockout  
When investigating the role a receptor may play in controlling certain behaviours it is 

prudent to study the effect of antagonist treatment in conjunction with that of the 

transgenic receptor knockout mouse (if available). This allows a comparison of the 

antagonist treatment that creates an acute, temporary blockade of the receptor 

functionality vs. the long-term chronic effects that the absence of a functional receptor 

may cause along with any compensatory effects that may occur in a knockout animal. If 

findings from the two types of experiment yield the same results confidence increases 

that the observed differences are a direct consequence of the receptor in question. In one 

such example, a double knockout of the muscarinic acetylcholine receptors M2 and M4 

((M(2)/M(4)(-/-)) mice, had impaired long-term depression, but not long-term 

potentiation in the striatum, findings which were corroborated with an M(2)/M(4) 

antagonist (AF-DX384) (Bonsi et al., 2008). The coloboma mutant mouse is 

hyperactive and is a less well-known animal model of ADHD, but it has been used to 

dissociate D2 dopamine receptors as the mediators of hyperactivity, which was 

confirmed using a selective D2 receptor antagonist L-741,626 (Fan et al., 2010).  

 

NK1R-/- display greater locomotor activity in the light-dark exploration box compared 

to their wildtype controls (Herpfer et al., 2005; Fisher et al., 2007). Furthermore, 

hyperactivity is induced in wildtype animals treated with two NK1R antagonists RP 

67580 and L-733,060 (5 and 10 mg/kg, i.p.) (Yan et al., 2010), thus suggesting that the 

hyperactivity of NK1R-/- mice is a direct consequence of the lack of functional NK1 

receptors, rather than any secondary developmental or adaptive changes of the 

genotype. The experiments in this chapter serve to investigate whether the cognitive 

deficits of the NK1R-/- mice in the 5-CSRTT, namely inattention, impulsivity and 

perseveration (see previous chapter), are also a consequence of the disruption of the 

NK1 receptor. Wildtype mice injected with the same NK1 antagonists (and doses) that 

were previously shown to induce hyperactivity are tested in the 5-CSRTT, while 

NK1R-/- mice also received antagonist treatment to control for non-NK1R-mediated 

effects of the antagonists. The data are discussed in two parts; firstly the effect of 

repeated testing in the LITI and VITI tests followed by the effect of antagonist 

treatment on the behaviour of wildtype and NK1R-/- mice in the 5-CSRTT. 
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6.2 Materials and Methods 
 

6.2.1 Subjects 
The animals used in the 5-CSRTT were from the original, homozygous bred, MF1 

colonies as outlined in section 2.1.2.1. 12 wildtype (WT) and 12 knockout (KO) 

animals (males, aged approximately 8 weeks old at the start of the experiment) began 

the experiment but one wildtype mouse died during training. The mice were kept on a 

restricted diet to maintain body weights at 90% of the animals free-feeding weight to 

ensure they remained motivated for the task. Animals were weighed every day prior to 

the start of the experiment.  

 

6.2.2 NK1R antagonists  
The NK1R antagonists RP 67580 and L-733,060 hydrochloride (Tocris, Bristol, UK) 

were dissolved in a 10% Tween80 in 0.9% sterile saline solution and were administered 

i.p. at an injection volume of 10ml/kg. Control injections of the vehicle solution 

consisted of the equivalent volume. Doses for L-733,060 are expressed as the salt. 

 

6.2.3 Testing regime 
The habituation and training procedure for these mice are outlined in sections 2.4.2 and 

2.4.3 respectively. After completion of training half the cohort was tested with no-

injection in the long inter-trial interval test (LITI NI-1), the other with no-injection in 

the variable inter-trial interval test (VITI NI-1). One week later, after performing 

satisfactorily at baseline, the corresponding test was conducted. There was then an 

unscheduled 5-week break in testing due to various reasons. The mice were on ad lib 

food for 3 weeks, followed by a week to re-establish the 90% body weight and a final 

week to re-establish satisfactory baseline performances. They were then re-tested in 

both tests (LITI- and VITI-NI-2), before starting on a pseudo-randomised (Latin-square) 

treatment regime of either, i.p. injection of vehicle (saline with 10% Tween80, 

10ml/kg), NK1R antagonist L-733,060 or RP 67580 (5 or 10mg/kg, (L-5, L-10, RP-5 

and RP-10 respectively)) or no-injection (NI-3) in the LITI or VITI test. Animals were 

injected 30 minutes prior to being tested in the 5-CSRTT and each animal received each 

treatment once. The dose of NK1R antagonists was chosen based on previous work in 
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the lab where hyperactivity was induced in wildtype mice, but did not dampen the 

hyperactivity of the knockout (Yan et al. 2010). The same behavioural outputs were 

recorded as in the previous chapter. 

 

6.2.4 Statistics 
A repeated measure ANOVA with ‘test’ (e.g. no injection 1 or 2 (NI-1 or NI-2) or drug 

treatment (RP-5)) as a within subject factor and ‘genotype’ as the between subject 

factor. In tests where Mauchly’s test of sphericity in the repeated measure ANOVA was 

significant, the Greenhouse-Geisser ‘ε’ correction was read instead of the ‘sphericity 

assumed’ output.  A significant effect of ‘test’, ‘genotype’, or and interaction between 

‘test’ and ‘genotype’ (test*genotype) was the criterion for progressing to a one-way 

multivariate ANOVA with ‘genotype’ as the between subject factor (for differences of 

‘genotype’) and matched pair t-tests (for differences of ‘test’ for each genotype) (or the 

equivalent non-parametric tests, Kruskal-Wallis and Wilcoxon-rank, respectively). 

Variable ITI data were further analysed with a 3-way ANOVA (‘genotype’, ‘ITI’, and 

‘treatment’). Statistical significance was set at P<0.05. 

 

 

6.3 Results 
 

There are three main findings from this study into the effects of NK1R antagonist 

treatment on the behavior of wildtype and NK1R-/- mice in the 5-CSRTT: 1) Behavior 

of both wildtype and NK1R -/- mice changes with repeated exposure to the test sessions 

of the 5-CSRTT in the long and variable ITI tests. 2) A high dose of the NK1R 

antagonist RP 67580 (10mg/kg) has behavioral consequences for both genotypes, 

suggesting a non-NK1R mediated effect 3) Splitting the VITI data into individual ITI 

comparisons reveals effects of antagonist treatment on premature responding in 

wildtype mice.   

 

6.3.1 Effect of repeated exposure to the test parameters 
The protocol was initially designed to only incorporate two no-injection tests in the 

VITI and LITI, the initial treatment naïve test (NI-1) immediately after training and a 
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second no-injection test embedded in the Latin-square design drug-testing phase. 

However, the experiment was interrupted which resulted in a 5-week break in testing at 

the point when the animals had completed training and had completed the first LITI- 

and VITI tests (NI-1). The decision was then taken to re-test the animals after the break 

with a no-injection test (NI-2) before they commenced the drug-testing phase, where 

they experienced the third test (NI-3) without a prior injection as part of the treatment 

regimen.  

 

6.3.1.1 Repeated testing in the LITI test 

Repeated exposure to the LITI test parameters improved performance in several of the 

measured behaviours including accuracy, omissions, and the latency to make a correct 

response, thus demonstrating that this should be considered when running a long 

experiment in the 5-CSRTT. 

 

Total number of trials There was no change in the total number of trials completed 

across the three LITI where the animals did not receive an injection. All animals (bar 

one knockout at NI-1) completed the maximum limit of 100 trials in the test (Figure 

6.1A).   

 

% Accuracy There was a significant interaction between ‘genotype’ and ‘test’ 

(F(2,42)=3.38, P<0.05). Post-hoc analyses revealed that the behaviour of the wildtype 

mice did not change with repeated exposure to the LITI test, yet the NK1R-/- mice 

became more accurate in the latter tests (NI-1 vs. N1-3 t(11)=4.7, P<0.001). This 

improvement in accuracy also resulted in a significant genotype difference at NI-3 

(t(21)=2.6, P<0.05) (Figure 6.1B). 

 

% Omissions A main effect of ‘test’ (F(2,42)=6.1, P<0.01), but no interaction with 

‘genotype’ demonstrates that the performance of both genotypes equally improves with 

repeated exposure to the LITI test parameters (c.f. NI-1: NI-2 t(22)2.9, P<0.01; NI-3 

t(22)=3.0, P<0.01) . However there is also a main effect of ‘genotype’ (F(1,21)=14.2, 

P<0.001) with NK1R-/- mice performing more errors of omission across the three tests 

compared to WT controls, but by the time the mice experienced the third no injection 
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test in the LITI, the difference had resolved (NI-1 t(21)=2.2, P<0.05; NI-2 t(21)=2.7, 

P<0.05; NI-3 t(13.7)=1.6, P=0.14) (Figure 6.1C). 

 

% Premature responses There was no significant change in the behaviour of either 

genotype across the three tests, nor was there a difference in the number of premature 

responses made by either genotype (Figure 6.1D). 

 

Latency to correct response A main effect of ‘test’ (F(2,42)=5.4, P<0.01) but no 

interaction with ‘genotype’ signifies that both wildtype and NK1R-/- mice improved 

their response times with repeated exposure to the LITI test parameters (NI-3 vs. NI-3 

t(22)=2.8, P<0.01) (Figure 6.1E).  

 

Latency to collect reward Repeated testing in the LITI had no effect on the latency to 

collect the reward after a correct response. There was a main effect of ‘genotype’ 

(F(1,21)=5.8, P<0.05) with NK1R-/- mice taking longer to collect the reward at all no-

injection tests, but this was significant only in the NI-1 and NI-3 tests (NI-1 t(21)=3.0, 

P<0.01; NI-3 t(21)=2.3, P<0.05) (Figure 6.1F). 

 

Perseveration A 2-way ANOVA revealed an overall main effect of ‘test’ (F(2,42)=5.3, 

P<0.01) and ‘genotype’ (F(1,21)=5.5, P<0.05) but no interaction between the two. With 

repeated testing the number of perseverative responses made by both genotypes 

increased (NI-1 vs. NI-3 t(22)=3.1, P<0.01), while the genotype difference was only 

significant in the NI-2 test (t(17.3)=2.2, P<0.05) (Figure 6.1G).  
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Figure 6.1 Effects of repeated exposure to the LITI test. Repeated exposure to the test parameters improved 
performance in terms of omissions, but not premature responding or perseveration.  (A) Total number of 
trials completed, (B) Percentage accuracy, (C) percentage omissions, (D) percentage premature responses, (E 
and F) latencies to make a correct response and to collect the reward respectively and (G) perseverative nose 
pokes made after a correct response. * P<0.05, ** P<0.01, ***P<0.001 N=11-12. Some statistical bars are in 
bold for clarity only. A bar across columns represents a statistical difference in behaviour between genotype of 
at least P<0.05. 
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6.3.1.2 Repeated testing in the VITI test 
As with the LITI test, both wildtype and NK1R-/- mice adjusted their behaviour with 

repeated exposure to the VITI test parameters as shown by improvements in several 

behaviours including accuracy, omissions, and the latency to make a correct response. 

 

Total number of trials completed It is difficult to complete statistical analysis on the 

data for total number of trials completed because all animals from both genotypes in the 

second and third experience of the VITI test reached 100 trials. Therefore there is no 

variance in the data and an analysis of variance (ANOVA) test is not possible. Non-

parametric analysis (Friedman test) revealed an overall effect of ‘test’ (χ2=18.0, 

P<0.001). Wilcoxon signed rank tests showed no change in total number of trials 

completed by the wildtype animals, but the NK1R-/- increased the total number of trials 

completed between NI-1 and NI-2 (Z=2.5, P<0.01) (Figure 6.2A). 

 

% Accuracy Repeated exposure to the VITI test increased accuracy in both genotypes 

with time (interaction between ‘test’ and ‘genotype’ F(2,40)=4.2, P<0.05). NK1R-/- 

showed continual improvement with each consecutive test (NI-1 vs. NI-2 t(11)2.8, 

P<0.05, NI-2 vs. NI-3 t(10)=2.5, P<0.05), whereas wildtype mice only significantly 

improved between NI-1 and NI-3 (t(10)=2.5, P<0.05) (Figure 6.2B). This shows that both 

genotypes adjusted their behaviour after their first experience of the variable inter-trial 

interval, as indicated by an increase in % accuracy (an index of attention), by NI-3.  

 

% Omissions A main effect of ‘test’ (F(2,40)=17.5, P<0.001), but no interaction with 

‘genotype’ demonstrates that the performance of both genotypes equally improves with 

repeated exposure to the VITI test parameters (c.f. NI-1: NI-2 t(22)=5.4, P<0.001; NI-3 

t(21)=5.3, P<0.001). There is also a main effect of ‘genotype’ (F(1,21)=14.2, P<0.001) 

with NK1R-/- mice performing more errors of omission across the three tests compared 

to WT controls (NI-1 t(21)=3.2, P<0.01; NI-2 t(21)=3.6, P<0.01; NI-3 t(20)=2.5, P<0.05) 

(Figure 6.2C). 

 

% Premature Responses The behaviour profile of premature responses for each 

genotype differed with repeated exposure to the VITI test parameters (interaction 

between ‘test’ and ‘genotype’ F(1.6,31)=10.7, P<0.001). At the first experience of the 

VITI test parameters NK1R-/- mice made more premature responses than the wildtype 
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controls (t(21)=3.3, P<0.01). This apparent impulsive behaviour of the knockout mice 

improved with repeated exposure to the test parameters, and by the third no-injection 

test, no genotype difference remained (NI-1 vs. NI-3 t(10)=4.3, P<0.01; NI-2 vs. NI-3 

t(10)=3.2, P<0.01). Interestingly there was a transient increase the number of premature 

responses made by wildtype mice in the NI-2 test (t(10)=3.1, P<0.05) which returned to 

NI-1 levels in their third VITI no-injection test (NI-2 vs. NI-3 t(10)=3.7, P<0.01) (Figure 

6.2D).  

 

Latency to correct response Repeated testing with the VITI parameters had a 

differential effect on each genotype (main interaction of ‘test’ and ‘genotype’ 

F(2,40)=3.7, P<0.05). Compared to NI-1, the latency to a correct response was reduced in 

both genotypes at NI-2 (WT t(10)=2.3, P<0.05; KO t(11)=2.6, P<0.05), and further still at 

NI-3 in NK1R-/- mice (t(10)=4.6, P<0.001). NK1R-/- mice were slower to respond to the 

stimulus light at NI-1 (t(13.7)=2.5, P<0.05) and NI-2 (t(21)=2.2, P<0.05), but by the third 

no-injection test, there was no difference in the response time of wildtype and NK1R-/- 

mice  (Figure 6.2E).  

 

Latency to collect reward NK1R-/- mice were robustly slower to collect the reward 

after a correct response compared to wildtype mice (main effect of ‘genotype’ 

F(1,20)=11.6, P<0.01). This was despite a decrease in these animals response time at NI-2 

compared to NI-1 (t(11)=3.0, P<0.05) (Figure 6.2F).   

 

Perseveration NK1R-/- mice made more repeated nose pokes into the cued hole after 

the initial correct response in all three ‘no-injection’ tests, although this was only 

significant at NI-1 (t(12.5)=2.0, P<0.05) and NI-3 (t(16)=2.3, P<0.05). Wildtype mice 

increased perseverative responding with repeated testing (c.f. NI-1: NI-2 t(10)=2.5, 

P<0.05 and NI-3 t(10)=2.5, P<0.05) (Figure 6.2G).   
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Figure 6.2 Effects of repeated exposure to the VITI test. Repeated exposure to the test parameters generally 
improved performance in the task, except in the case of perseveration. (A) Total number of trials completed, 
(B) Percentage accuracy, (C) percentage omissions, (D) percentage premature responses, (E and F) latencies to 
make a correct response and to collect the reward respectively and (G) perseverative nose pokes made after a 
correct response. * P<0.05, ** P<0.01, ***P<0.001 N=11-12. Some statistical bars are in bold for clarity only. A 
bar across columns represents a statistical difference in behaviour between genotype of at least P<0.05. 
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In summary these data show that task performance generally improves with repeated 

exposure to the test parameters of the long and variable inter-trial interval tests as seen 

in the change in the total number of trials completed, the improvement in accuracy, a 

decrease in omitted responses and the decrease in the latencies to make a correct 

response across the tests. With the exception of premature responses, the behavioural 

patterns of wildtype and NK1R-/- are largely comparable across the LITI and VITI 

tests. While the significantly higher number of omitted responses made by the NK1R-/- 

mice in the LITI resolves with repeated exposure to the test parameters, this is not the 

case in the VITI test. The same pattern is seen with perseverative responses. The higher 

perseverative responding is likely to explain the genotype difference observed in the 

latency to collect the reward, where NK1R-/- mice are robustly slower.  

 

6.3.2 Effect of NK1 antagonists on behaviour in the 5-CSRTT 
 

After training and initial LITI and VITI tests, the mice completed the drug testing phase 

of the experiment, where they were tested with two doses (5 and 10mg/kg) of NK1R 

antagonists RP 67580 and L-733,060. The data in this section was analysed with a 

repeated measures 2-way ANOVA, with the within subject factor of ‘treatment’ 

including the four conditions: no-injection (NI-3), vehicle, low dose (L5 or RP5) and 

high dose (L10 or RP10) antagonist, and the between-subject factor of ‘genotype’. 

 

6.3.2.1 Effect of NK1 receptor antagonist treatment in the LITI test 

 

Total number of trials With no variance on many of the data sets the 2-way ANOVA 

could not be completed. Friedmans non-parametric test revealed an overall effect of 

‘treatment’ (χ2=19.7, P<0.001). Subsequent Wilcoxon ranked paired tests show a 

significant reduction in the total number of trials completed in the 45min time limit after 

treatment with the high-dose of RP (RP10) (Z=2.0, P<0.05) (Figure 6.3A). 

 

% Accuracy There was a main effect of genotype (F(1,20)=7.0, P<0.05) which revealed 

NK1R-/- mice were more accurate than the wildtype controls when no injection was 
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administered and after injection of low dose of L-733,060 (NI-3 t(21)=2.6, P<0.05; L5 

t(20)=3.8, P<0.01). A main interaction of ‘genotype’ and ‘treatment’ allowed multiple 

post-hoc comparisons. The accuracy of responses made by wildtype mice increased 

after a vehicle injection (NI-3 vs. veh t(10)=2.3, P<0.05) and also after treatment with the 

higher dose of RP 67580 (veh vs. R10 t(10)=2.3, P<0.05). The accuracy of responses also 

increased in the NK1R-/- mice treated with low doses of the two antagonists (c.f. Veh: 

L5 t(10)=3.0, P<0.05; R5 t(10)=2.9, P<0.05) (Figure 6.3B). 

 

% Omissions There was a main effect of ‘treatment’ (F(3.1,61.9)=6.4, P<0.001), but no 

interaction with ‘genotype’. The only treatment to elicit a change in behaviour was the 

high dose of RP 67580, which increased the number of omission errors made by both 

genotypes (t(22)=5.2, P<0.001) (Figure 6.3C).  

 

% Premature responses As with % omissions there was a main effect of ‘treatment’ 

(F(5,100)=7.3, P<0.001), but no interaction with genotype. A vehicle injection 

significantly reduced the number of premature responses made by both wildtype and 

NK1R-/- mice (NI-3 vs. veh t(22)=2.6, P<0.05). Treatment with the high dose of RP 

67580 reduced premature responding in both genotypes (t(22)=2.6, P<0.05) (Figure 

6.3D). 

 

Latency to correct response In an identical pattern to premature responses, there was a 

main effect of ‘treatment’ (F(5,100)=12.9, P<0.001), but no interaction with ‘genotype’. 

Injection of the vehicle fluid increased response time to the cue light in both genotypes 

(t(22)=2.9, P<0.01) which was further increased by RP 67580 (10mg/kg) (veh vs. RP10 

t(22)=4.1, P<0.001) (Figure 6.3E).  

 

Latency to collect reward A main effect of ‘genotype’ (F(1,20)=14.0, P<0.001) was 

further analysed with post-hoc independent t-tests which revealed that NK1R-/- mice 

were robustly slower to collect the reward after a correct response to the cue light under 

every treatment condition. The post-hoc analysis of the main effect of ‘treatment’ 

(F(2.4,49.0)=13.4, P<0.001) echoed the other behavioural profiles (NI-3 vs. veh t22)=2.9,  

P<0.01 and veh vs. RP10 t(22)=3.2, P<0.01) (Figure 6.3F). 
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Perseveration There was a main effect of ‘genotype’, but despite the NK1R-/- mice 

perseverating more at each treatment condition this only reached significance at low-

dose of L-733,060 (L5) (t(20)=3.1, P<0.01) (Figure 6.3G). 
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Figure 6.3 Effect of NK1R antagonists L-733,060 and RP 67580 on performance in the LITI test. High dose RP 
67580 (RP-10) affected both genotypes for most behaviours except perseveration. L-733,060 treatment induced 
no behavioural changes (A) Total number of trials completed in the session, (B) percentage accuracy, (C) 
percentage omissions, (D) percentage of premature responses, (E) latency to a correct response, (F) latency to 
collect reward and (G) number of perseverative nose-poke responses. WT – wildtype (N=11) and KO – 
knockout (N=12). Lines between bars denote a significant difference between genotype of at least P<0.05.  
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6.3.2.2 Effect of NK1 receptor antagonist treatment in the VITI test 

 

Total number of trials With no variance on many of the data sets the 2-way ANOVA 

could not be completed. Friedmans non-parametric test revealed an overall effect of 

‘treatment’ (χ2=12.3, P<0.05). Subsequent Wilcoxon ranked paired tests show a 

significant reduction in the total number of trials completed in the 45min time limit after 

treatment with the high-dose of RP (RP10) (Z=2.1, P<0.05) (Figure 6.4A).  

 

% Accuracy No main effect of ‘test’, ‘genotype’, or interaction between the factors 

was found for %accuracy, thus showing that treatment with NK1 receptor antagonists 

has no effect on the accuracy of responses made in the VITI test for either genotype 

(Figure 6.4B).  

 

% Omissions Statistical analysis for %omissions had to be non-parametric since the 

raw data violated Levene’s test of variance, which could not be corrected by 

transformation of the data. NK1R-/- mice always scored a higher percentage of 

omissions compared to wildtype mice (Friedman χ2=17.0, P<0.01). Further analysis 

with shows that this only reached significance in the NI-3, L5 and L10 tests (NI-3: 

Z=2.3, P<0.05; L5: Z=2.3, P<0.05; L10: Z=2.0, P<0.05). Wilcoxon signed rank tests 

revealed that more omissions were made after treatment with the higher dose of RP 

67580 compared to vehicle (Z=3.0, P<0.01)(Figure 6.4C).  

 

% Premature responses There was a main effect of ‘treatment’ (F(5,100)=4.2, P<0.01), 

but no interaction with ‘genotype’. Post-hoc analysis showed that premature responses 

were reduced in both genotypes after treatment with the high dose of RP 67580 (veh vs. 

R10 (t(21)=2.9, P<0.01)  (Figure 6.4D). 

 

Latency to correct response Non-parametric statistical tests were required for analysis 

of this data set, since Lg10 or square-root transformations did not normalise the 

variance of the data. An overall Friedman test was significant (χ2=30.0, P<0.01) 

showing that treatment had an effect on the response time to the cue light. Wilcoxon 

signed rank tests revealed that both genotypes were slower to respond after treatment 

with 10mg/kg of RP 67580 (veh vs. R10 Z=2.7, P<0.01). Although NK1R-/- mice 
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tended to be slightly slower to respond to the cue light, non-parametric statistical tests 

did not highlight this as significant (Figure 6.4E). 

 

Latency to collect reward The 2-way ANOVA highlighted a significant effect of 

‘genotype’ (F(1,20)=22.5, P<0.001) because NK1R-/- mice were consistently slower to 

collect the reward after a correct response at all conditions in drug-testing phase. Post-

hoc analysis showed this to be significant at every test. There was also an interaction 

between the effect of ‘treatment’ and ‘genotype’ (F(2.7,53.7)=5.9, P<0.01). Vehicle 

injection increased the time taken by NK1R-/- mice to collect their reward after a 

correct response (t(10)=3.4, P<0.01), which was further increased by the high dose of RP 

67580 (t(10)=4.0, P<0.01). The same dose of antagonist also increased the latency to 

collect the reward in wildtype mice (t(10)=3.7, P<0.01) (Figure 6.4F).  

 

Perseveration While antagonist treatment had no effect on the number of perseverative 

responses made by either genotype, NK1R-/- mice consistently made a greater number 

of repeated nose pokes into the cue hole after a correct response compared to wildtype 

mice (main effect of genotype (F(1,20)=6.3, P<0.05), although this only reached 

significance at NI-3, and with low dose antagonist treatment (NI-3: t(16.0)=2.3, P<0.05; 

L-5: t(13.5)=2.9, P<0.01; R-5 t(11.4)=2.4, P<0.05) (Figure 6.4G). 
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Figure 6.4 Effect of NK1R antagonists L-733,060 and RP 67580 on performance in the VITI test. High dose RP 
67580 (RP-10) affected both genotypes for most behaviours except perseveration (A) Total number of trials 
completed in the session, (B) percentage accuracy, (C) percentage omissions, (D) percentage of premature 
responses, (E) latency to a correct response, (F) latency to collect reward and (G) number of perseverative 
nose-poke responses. WT – wildtype (N=11) and KO – knockout (N=12). Lines between bars denote a 
significant difference between genotype of at least P<0.05.  
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6.3.3 Splitting of VITI data into individual ITI times 
 

As shown in the previous chapter (section 5.3.3) the behavioural responses of the mice 

in the VITI test vary with ITI duration, e.g. premature responses increase with longer 

ITI durations. Therefore it is important to look at the effect of antagonist treatment at 

each individual ITI time split as changes could be masked in the overall analysis of 

VITI data. A 3-way ANOVA with ‘genotype’ (G) as the between subject factor, and 

‘ITI split’ (I) and ‘treatment’ (T) as within-subject factors was conducted for each 

behaviour with subsequent post-hoc analyses.  

 

The only behaviour to reveal a different outcome from the analysis of collapsed VITI 

data was premature responses (G*I*T interaction F(6.9,138.8)=2.76, P<0.01). The overall 

analysis only showed a decrease in premature behaviour after treatment with the high 

dose of RP 67580 (Figure 6.4D), which was echoed in the 10s ITI split (Figure 6.5C). 

But also 5mg/kg RP 67580 increased premature responding in wildtype mice at the 

longest ITI duration of 15s which was not seen in the overall analysis (G*T interaction 

F(5,100)=3.92, WT Veh vs. R-5 t(10)=2.3, P<0.05) (Figure 6.5D). The graphs for the other 

measured behaviours can be found in Appendix A4. 

 
Figure 6.5 Effect of NK1R antagonist treatment on premature responses made in the VITI test split for 
individual ITI times of 2, 5, 10 and 15s (A,B,C and D respectively). RP-5 increases premature responding in 
WT mice at the 15s ITI split. WT – wildtype (N=11) and KO – knockout (N=12). *P<0.05, **<0.01. 
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6.4 Discussion 
 

6.4.1 Summary of results 
Repeated exposure to the LITI and VITI tests in the 5-CSRTT leads to a general 

improvement in performance including increased accuracy of responses, decreased 

omissions and a reduction in premature responding. However this sometimes resulted in 

a resolution of behavioural differences between NI-1 and NI-3. For example at their 

first experience of the LITI test the NK1R-/- mice committed more errors of omission 

than their wildtype counterparts, but by the embedded control test in the drug testing 

regimen (NI-3) the genotype difference was no longer present. This similarly occurred 

with premature responses in the VITI test.  

 

NK1R antagonists were administered to both genotypes, firstly to see if the findings 

from Chapter 5 where NK1R-/- mice displayed impulsivity and inattentiveness in the 

5-CSRTT, could be replicated in wildtype mice given NK1R antagonist and secondly to 

control for any effects that are non-NK1R mediated by dosing the knockout mice. The 

high dose of RP 67580 (10mg/kg) affected several behavioural measures in both 

genotypes, while the selective effect on wildtype mice of low-dose RP was limited to an 

increase in premature responses at the longest ITI split in the VITI test.   

 

6.4.2 Effect of repeated testing in the LITI and VITI 
Improvements in performance were seen with repeated exposure to the LITI and VITI 

tests in which the animals were not subject to the stress of an injection (no injection 

(NI-1, -2 and -3). In both the LITI and VITI tests %accuracy improved, errors of 

omission decreased and the latency to make a correct reward decreased with repeated 

exposure to the test parameters. This trio of behaviours can be interpreted in terms of 

attentiveness and/or motivation for the task. If considered in terms of motivation the 

findings would point towards an increased drive for the task with repeated exposure, an 

unlikely scenario given that the latencies to collect the reward did not differ with 

repeated testing. The overall improvement in the level of ‘attention’ paid to the task, 

could be explained by a ‘learning’ based change, that is, the mice learn that the task has 
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been modified, and adjust their behaviour accordingly. By NI-3 in the LITI there was no 

longer a genotype difference for omissions, but NK1R-/- mice continued to make more 

omissions than their wildtype counterparts in the VITI.  

 

In contrast to the improvement in errors of omission, the pattern of premature responses 

with repeated exposure differed between the long and variable ITI tests. In the LITI test, 

both wildtype and NK1R-/- performed a similar number of premature responses that did 

not decrease with repeated exposure to the test. In the VITI test the NK1R-/- mice 

committed a greater number of premature responses than the wildtypes at NI-1, but by 

NI-3 the difference was no longer present. The wildtype mice displayed a transient 

increase in premature responses at NI-2 compared to NI-1, but by NI-3 this returned to 

the same level as NI-1, whereas the premature responses of the NK1R-/- mice decreased 

with each consecutive test.  

 

Since the NI-3 test was embedded in the drug testing regime, some animals will have 

completed this test having previously been exposed to the VITI up to seven times (NI-1, 

NI-2, Veh, RP5, RP10, L5 and L10). This is an important methodological consideration 

since the effects of drug treatment are compared to the results from the NI-3 test. One 

other group have reported an improvement in premature responding with repeated 

testing in the VITI test (Walker et al., 2011), while high impulsive (HI) rats continue to 

score high numbers of premature responses over three repeated exposures to the LITI 

test (Dalley et al., 2008; Besson et al., 2010), yet it must be noted that the rats in the 

above studies are from a population of animals that are selected for their level of 

impulsivity (high vs. low). The neurobiological differences between these two 

populations have been attributed to deficits in PFC function, especially the anterior 

cingulate cortex (Cg1), with specific regards to DA turnover and 5-HT release 

(Barbelivien et al., 2001; Dalley et al., 2002). In contrast, the high impulsivity observed 

in the NK1R-/- mice at NI-1, was spontaneous and likely to be caused by the lack of a 

functional NK1 receptor. NK1 receptors are found on serotonergic neurons of the dorsal 

raphe nucleus that are known to project to the forebrain (Baker et al., 1991; Lacoste et 

al., 2006). The firing rate of DR serotonergic neurons in NK1R-/- mice, and wildtype 

mice acutely pre-treated with RP 67580, is significantly higher than in control animals 

demonstrating direct negative regulation of neuronal activity by NK1 receptors 

(Santarelli et al., 2001). If this system were responsible for impulse control in the 
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5-CSRTT, it would account for the high impulsivity of the NK1R-/- at NI-1, yet must 

adapt with repeated exposure to the test as shown by consecutive performance 

improvement in the NK1R-/- mice. Unfortunately the fact that the impulsive phenotype 

of the NK1R-/- mouse diminishes with repeated testing somewhat limits its use as a 

model of ADHD since it would be impossible to run a drug-testing regime designed to 

reduce impulsivity in the 5-CSRTT.  

 

In both the LITI and VITI tests there is a general trend for an increase in perseverative 

responding with repeated exposure to the test parameters. In the LITI test both wildtype 

and NK1R-/- mice make more perseverative responses at NI-3 compared to NI-1, while 

in the VITI the increase is only significant for wildtype mice, but the high level of 

perseverative responding by NK1R-/- mice pervades throughout. This, at least in part, 

arises from the combination of a small increase in the total number of trials completed, 

along with a slight improvement in accuracy i.e. an increase in correct responses and 

since perseveration is a cumulative score across correct trials a positive correlation is 

likely. Another explanation is that the increased familiarity with the test parameters 

somehow manifests as an increase in perseverative responses. Increased perseverative 

responses with repeated exposure to the LITI test has been reported elsewhere in 

C57BL/6 mice (Peña-Oliver et al., 2011). Other 5-CSRTT experiments that have 

resulted in increased perseverative responding include lesions of the prelimbic and 

anterior cingulate cortical regions and medial striatum (Muir et al., 1996; Chudasama 

and Muir, 2001; Rogers et al., 2001). High levels of perseverative responding have been 

induced with d-amphetamine treatment (Paterson et al., 2011), although this is not 

always seen (Yan et al., 2011).  

 

6.4.3 Effect of NK1R antagonist treatment in the 5-CSRTT 
The two NK1R antagonists and doses used in this experiment were chosen based on 

their efficacy to induce hyperactivity in wildtype mice to levels that match those of 

NK1R-/- mice (Yan et al., 2010). Here we predicted that NK1R antagonist treatment in 

wildtype mice would induce impulsivity, impair attention and increase perseverative 

responding based on the previous findings from NK1R-/- mice. Yet we observed 

unexpected effects from the two antagonists; RP 67580 induced impulsivity in wildtype 

mice at the lower dose of 5mg/kg (at the longest ITI split time of 15seconds in the 



 Chapter 6 

 
146 

VITI), but had no influence on accuracy, omissions or perseveration, and the higher 

dose of 10mg/kg affected the performance of both genotypes in the LITI and VITI tests 

of the 5-CSRTT, implicating a non-NK1 mediated effect. NK1 antagonist L-733,060 

had no significant effect on the behaviour of wildtype mice in either test. 

 

RP 67580 is a highly potent NK1 receptor antagonist (Beaujouan et al., 1993) with a 

higher affinity for the NK1 receptor than L-733,060 (in rats pK(i) RP 67580 = 7.6 (Floch 

et al., 1994); L-733,060 = 5.7 (Brocco et al., 2008)). Although there are well-

characterised differences in binding affinities of compounds between human and rodent 

NK1 receptors (Fong et al., 1992), rats and mice are thought to have very high sequence 

homology and therefore their receptors are likely to have similar pharmacological 

properties. Despite the difference in binding affinities, it is still surprising that 

L-733,060 had no effect on any behaviour in the 5-CSRTT, since the same dose induced 

hyperactivity in wildtype mice in the LDEB (albeit to a lesser extent than RP 67580) 

(Yan et al., 2010), clearly demonstrating that it reaches the CNS at a pharmacologically 

relevant concentration. Therefore the doses used here may not have been high enough to 

induce cognitive changes that influence behaviour in the 5-CSRTT.  

 

The increase in premature responding after 5mg/kg RP 67580 in wildtype mice adds 

weight to the hypothesis that the NK1 receptor is important in the regulation of impulse 

control via the serotonergic neurons that project from the dorsal raphe nucleus to the 

frontal cortex (see section 6.4.2). However neither omitted nor perseverative responses 

were affected by antagonist treatment, which would imply that there are differences 

between an acute blockade of the receptor and the long-term compensatory effects that 

arise from the lack of functional NK1 receptor or the level of receptor blockade was not 

sufficient to mimic 100% functional loss. Compensatory up- or down-regulation, or 

altered sensitivity of other receptors in the NK1R-/- mice in response to the 

dysfunctional NK1 receptor could be responsible for the robust differences in attention 

and perseverative responding observed in the NK1R-/- mice.  

 

This is not the first study to report differential behavioural profiles after treatment with 

2 different NK1R antagonists. RP 67580, but not CP-96,345 produced anxiolytic effects 

in the black-and-white box behavioural paradigm (traditionally used to assess anxiety 

and is similar to the light-dark exploration box on which the antagonists and doses for 
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this experiment were based). Interestingly, in contrast to the induction of hyperactivity 

found by Yan et al (2010), other groups have reported these antagonists have sedative 

effects (Zernig et al., 1993). This may help explain the deficit in performance seen in 

both genotypes after treatment with the higher dose of RP 67580 in the 5-CSRTT and is 

discussed below.  

 

6.4.3.1 Non-NK1 mediated effects of high dose RP 67580 

The higher dose of RP 67580 (10mg/kg) lengthened latencies, increased omissions, and 

decreased premature responding in both wildtype and knockout mice, implicating a 

non-NK1R mediated effect. Two obvious candidates for the target of off-site effects of 

an NK1 receptor antagonist would be the other tachykinin receptors, NK2 and NK3. 

This is highly unlikely since the K(i) RP 67580 for the NK1 receptor is 2.9nM and 

>10µM for NK2 and NK3 receptors (in rat) (values taken from the product Certificate 

of Analysis from the supplier (Tocris, Bristol, UK)). There is however evidence that in 

addition to the NK1 receptor, non-peptidergic tachykinin receptors also bind to L-type 

Ca2+ channels (Guard et al., 1993; Rupniak et al., 1993; Lombet and Spedding, 1994; 

Wang et al., 1994). L-type Ca2+ channels are voltage gated with a relatively long 

activation periods (hence L-type). If the higher dose of RP 67580 was binding to L-type 

Ca2+ channels it would impede neuronal transmission and could therefore contribute to 

the behavioural deficits observed in both genotypes. It also explains the sedative effects 

of NK1 receptor antagonists noted by (Zernig et al., 1992). 

 

6.4.4 Methodological considerations and conclusions 
Given the unexpected disparity in the findings from two different NK1R antagonists, 

despite them having similar effects in the LDEB at the same doses used here, in future 

experiments it would be prudent to focus on the effects of one antagonist over a wider 

range of doses. By the time the planned experimental conditions had been tested the 

mice were relatively old and the decision was made to end the experiment rather 

continue with higher doses of L-733,060. Pharmacologically induced manipulations in 

the 5-CSRTT are typically small in magnitude and often not reliably obtained at a 

particular dose (Koffarnus and Katz, 2011). Therefore despite the 5-CSRTT providing 

an excellent method for measuring attention, impulsivity, and compulsivity 
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(perseveration) in one behavioural paradigm, findings should ideally be followed up in 

complementary experiments. The effects of repeated exposure to a behavioural test need 

to be integrated into experimental design not only in basic science, but possibly also in 

human-based studies. Unfortunately the findings in this chapter bring into question the 

role of the NK1 receptor in the control of ADHD-like behaviours and the usefulness of 

the knockout as a model of the condition, since only impulsivity was induced in 

wildtype animals after antagonist treatment, while measures of attention were not 

affected. Perseverative responses from NK1R-/- mice remained almost twice as high 

compared to the wildtype controls, even after antagonist treatment. However the lack of 

effects induced by NK1 receptor antagonists on behaviour in the 5-CSRTT brings into 

question the role of the NK1 receptor in ADHD. Due to the unexpected and robust 

elevated perseverative responses made by the NK1R-/- from the very early stages of 

training in the 5-CSRTT through the LITI and VITI tests and even after the stress of 

injection, the next chapter looks at alternative measures of perseveration to further 

investigate this phenotype of the NK1R-/- mouse.  
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7 Exploring the perseverative phenotype of the 
NK1R-/- mouse 

 

7.1 Introduction 
 

The previous two chapters looked at the behaviour of NK1R-/- and wildtype mice in the 

5-choice serial reaction time task (5-CSRTT), firstly in a drug naïve state (Chapter 4) 

and then after treatment with an NK1 receptor antagonist (Chapter 5) to investigate 

whether the knockout mice displayed traits of impulsivity and inattention to fit with the 

proposal that the NK1R-/- mouse is a model of ADHD. In addition to measures of 

impulsivity and attention, perseverative responses were also recorded if the mice 

continued to nose-poke into the cue holes after a correct response had already been 

made. From the early stages of training, through to the long- and variable- inter-trial 

interval test phases, the NK1 receptor knockout mice made significantly more 

perseverative responses than the wildtype controls, making it the most robust difference 

between genotypes in the test. However when the wildtype mice were administered an 

NK1 antagonist their number of perseverative responses did not increase to that of the 

knockout. This leads to the question as to whether it is the disruption of NK1 receptor 

function that is the basis for the perseverative phenotype observed in the 5-CSRTT or 

whether an unrelated mutation has occurred in one of the homozygous breeding 

colonies that either increases perseveration in the population of NK1R-/- mice, or 

decreases perseveration in the wildtype colony. Another explanation could be an 

interaction between the disruption of the NK1 receptor and the background strain that 

has resulted in a compensatory up- or down-regulation of other members of the 

substance P/NK1 receptor pathway in the NK1R-/- mice.  

 

7.1.1 Background strain and maternal influences on animal 
behaviour 

Differences in maternal care and background strain can lead to profound differences in 

both animal behaviour and physiology. There are a multitude of comparison studies into 

the influence of background strain across a range of behaviours including the species-
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typical behavioural tests used in this chapter. Deacon et al., (2007) showed that 

C57BL/10 mice performed less vigorously than C57BL/6 mice in both burrowing and 

marble burying tests, while in larger comparisons of multiple strains CBA/J mice 

consistently perform well in these tasks, while 129S6/SvEv mice perform poorly 

(Solberg et al., 2006; Thomas et al., 2009). One study into GABA/A receptor 

expression encompasses the influence of both background strain and maternal 

upbringing (Caldji et al., 2004). This study is based on the finding that BALBc/ByJ 

display higher levels of anxiety than C57BL/6ByJ mice. When this phenomenon was 

investigated at a molecular level C57BL/6 mice showed increased mRNA levels for the 

α1 and γ2 subunits of the GABA/A receptor in brain regions associated with anxiety 

(locus coeruleus and central nucleus of the amygdala, respectively), compared to the 

BALB/c mice. Pups were then cross-fostered to mothers on the alternative background 

strain 6-hours after birth. Biological offspring of the C57BL/6 mothers, raised by 

BALB/c dams actually had lower levels of γ2-subunit mRNA, compared to C57 pups 

that were fostered to C57 mothers (and the reverse was found for the biological 

offspring of the BALB/c mice). The change in physiology was also accompanied by a 

corresponding change in anxiety-related behaviours, with BALB/c mice raised by C57 

mothers showing reduced anxiety responses compared to controls. This elegant study 

highlights an important epigenetic effect mediated by maternal care. 

 

7.1.2 ADHD and perseveration 
Although perseveration is not one of the core diagnostic criteria for ADHD, there are 

many examples of the presence of co-morbid perseveration and ADHD. A response 

perseveration test is often used as an assessment for children diagnosed with ADHD 

and conduct disorder (CD). The test is a ‘door opening’ task (Daugherty and Quay, 

1991) where the children are presented with option of opening a door or stop playing, 

knowing that there is either a ‘punishment’ or a ‘reward’ on the other side. The ratio of 

punished responses to rewarded responses is steadily increased and a large number of 

doors opened is indicative of a high response perseveration, although this could be 

interpreted as an aspect of impulsivity. Children with ADHD and CD show high levels 

of response perseveration compared to the control population (Daugherty and Quay, 

1991; Matthys et al., 1998; Fischer et al., 2005). Other studies have looked at the effect 

of methylphenidate (Ritalin) on perseveration but findings have been varied, with 
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reports of both increased and decreased perseverative responses in the Wisconsin Card 

Sorting Task (used to assess ‘set-shifting’ ability (see section 7.1.3.3)) after treatment 

(Tannock and Schachar, 1992). Another group made an important distinction by stating 

that methylphenidate treatment doesn’t elicit perseveration, but improves persistence 

(Douglas et al., 1995). Impaired stopping performance, although not a perseverative 

deficit per se, it is often impaired in disorders that are associated with perseverative 

deficits such as OCD. Family members of individuals with ADHD display deficits in 

tests of response inhibition, alongside those diagnosed with the condition (Schachar et 

al., 2005; Fisher et al., 2011). Therefore this could serve as an indicator of genetic 

vulnerability for the disorder. Methylphenidate treatment in patients with ADHD 

improves response inhibition in the stop-signal reaction test (see section 7.1.3.2) (Aron 

et al., 2003). 

 

7.1.3 Behavioural paradigms used to measure perseveration 
Many behavioural tests that were developed for clinical assessment of human 

psychological disorders have been successfully adapted for use in rodent studies. 

Perseveration is a broad term that is used to describe a multitude of different 

behaviours. Some of the tests that have been used for the measurement of perseverative 

behaviour are outlined below. 

7.1.3.1 5-choice serial reaction time task 

The 5-choice serial reaction time task used in Chapters 5 and 6 and has been widely 

discussed previously in this thesis. In brief, perseveration is measured in this task when 

an animal nose-pokes into the stimulus hole repeated times before collecting the reward. 

This unnecessary action has been interpreted in many ways including motor-

perseveration and compulsivity (Dalley et al., 2011). Unlike premature and incorrect 

responses, perseverative responses are not punished by a timeout period of darkness, 

and tend to persist throughout all stages of the task. The number of responses also does 

not seem to correlate with the attentional load of the task, i.e. if an animal displays a 

perseverative phenotype it will pervade from the first stage of training through the long- 

and variable inter-trial interval tests (observation from data). 
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7.1.3.2 Stop-signal task 

The stop-signal task is designed to measure the speed of the process of inhibition (Eagle 

et al., 2008), so although it is not a direct measure of a perseverative response, a deficit 

in this task points toward a disruption of the inhibitory brain circuits that have important 

roles in impulsivity and perseveration. It was first developed for use in clinical 

assessment of inhibitory reaction times. In short, the subject is presented with a stimulus 

to which they must respond; yet in some trials a stop-signal (usually an auditory tone 

but can also be a visual cue) is co-presented to signify that the subject should not 

respond. Measurements are taken for the normal reaction time to the stimulus, but also 

the number of trials with the stop-signal that resulted in a response, the reaction time to 

a stop-signal trial in which the subject failed to inhibit and the reaction time to the stop-

signal (Logan et al., 1984). The test has successfully been adapted for use in rodent 

studies which have been used to elucidate the neural systems underlying and action 

cancellation.  

7.1.3.3 Reversal learning and set-shifting 

Reversal learning and set-shifting paradigms come in a variety of forms, all based 

around a central behavioural test in which subjects learn a ‘rule’ or action, followed by 

a change in the rule that requires a different response. The Wisconsin Card Sorting 

(WCS) test is a set-shifting paradigm used in clinical assessment of cognitive flexibility 

(Berg, 1948). Here the subjects are presented with a set of cards with designs that differ 

in colour, quantity and design image (Figure 7.1) they must assign the cards to a 

different pile (cards 1-4 in Figure 7.1). Participants are unaware of the rule, which can 

be based on colour, number of shapes or the form of the shape, but are told whether the 

pairing is correct or not. At various points in the test the matching rule is changed and 

the participant must respond accordingly. Failure to adapt to the new rule is indicative 

of perseverative behaviour. Non-human primates are able to perform well in a slightly 

simplified version of the WCS test (Buckley et al., 2009). 

 

 
Figure 7.1 Example cards from the Wisconsin Card Sorting Task. The card with 2 red crosses needs to be 
matched to one of the cards numbered 1-4 according to a ‘matching rule’ that is unknown to the participant. 
In this example, if the matching rule was based on colour, card 1 would be a correct match. If shape was the 
rule then card 4 would be a match and if number of shapes on the card was the rule then card 2 would be the 
correct choice.  
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Rodent tests of cognitive flexibility and perseveration tend to be much simpler and 

usually involve a bifurcated choice, such as a T-maze or 2-armed lever press. In T-maze 

reversal learning, mice or rats are trained to collect a reward down one arm of the maze 

(Figure 7.2). Once they reach a specific criterion such as 8 out of 10 correct trials for a 

set number of consecutive days, the reward is switched to the opposite arm. The number 

of training days to learn the new location of the reward is recorded. Animals that require 

more days to adapt to the new location are seen as having a perseverative phenotype 

(Izquierdo and Belcher, 2012). Another measure of perseveration in the T-maze is 

spontaneous alternation, that is, a mouse or rat will enter alternate arms of the maze on 

sequential trials, a large number of alternated trials is defined as highly perseverative 

behaviour (Gross et al., 2011). 

 
Figure 7.2 Example of a T-maze set-up. For reversal learning one arm is baited with a reward, while the other 
remains empty. When the mouse or rat has learnt which the rewarded arm is, the reward is switched to the 
opposite arm.  

 

7.1.3.4 Species-typical behaviours  

Species-typical behaviours encompass marble burying, digging and burrowing tests. 

These are simple naturalistic behaviours that provide environmental enrichment for the 

animals rather than a negative experimental experience. The marble burying paradigm 

set-up requires sawdust to a depth of 5cm and 20-25 marbles placed on top in an evenly 

spaced pattern (Deacon, 2006a). The animals appear to detect the depth of sawdust and 

begin to dig, which in turn displaces the sawdust and buries the marbles. In the 

burrowing test, artificial burrows made of plastic tubing are filled with a substrate, 

namely sawdust, food pellets or pea-shingle gravel (Deacon, 2006b). The animals 

remove the substrate from the burrow over time. A larger number of buried marbles or a 

greater percentage of substrate removed from a burrow suggests increased repetitive 

digging behaviour, which can be interpreted as increased perseveration. These tests are 

sensitive to a variety of variables including species, background strain, hippocampal 

lesions and pharmacological treatments (Webster et al., 1981; Dudek et al., 1983; 

Njung’e and Handley, 1991; Contet et al., 2001; Deacon et al., 2002; Deacon and 

Rawlins, 2005). Early pharmacological studies established marble burying as a model of 

anxiety due to its sensitivity to anxiolytics such as diazepam (Broekkamp et al., 1986). 

Early work carried out on the NK1R-/- mouse was associated with anxiety related 
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behaviours, and NK1 receptor antagonists were found to abolish marble burying 

behaviour (Millan et al., 2002). In more recent times marble burying has been thought 

of more as a model for repetitive digging and that the burying of the marbles is an 

indirect consequence of this behaviour (Thomas et al., 2009). The type of perseveration 

measured in these species-typical behavioral tests is very different to the tests above due 

to the amount of cognitive input required.  

 

7.1.4 Neurobiology of perseveration 
Since perseveration can be interpreted in a number of ways including stereotypy and 

compulsivity the study of the underlying neurobiology is difficult. However 

perseveration, like impulsivity, is a behavioural deficit related to the inhibition of 

cognitive control and the two behaviours are therefore likely to involve overlapping 

brain circuitry. It is therefore the connectivity from the prefrontal cortex to the 

structures of the basal ganglia that are thought to be disrupted in perseverative disorders 

such as obsessive-compulsive disorder and ADHD (Aron et al., 2007). In rats, both 

lesion of cholinergic cortical neurons and pharmacological blockade of glutamatergic 

receptors in the medial prefrontal cortex (mPFC) increase perseverative responding in 

the 5-CSRTT (Dalley et al., 2004; Pozzi et al., 2011). Also in the 5-CSRTT, lesions of 

the pre-limbic cortex and medial striatum both increase perseverative responding 

(Chudasama and Muir, 2001; Rogers et al., 2001). Reversal learning is also disrupted 

after neonatal lesions of the mPFC (Schwabe et al., 2004). Striatal lesions of the dorsal-

medial and medial regions in rats and monkeys respectively, also resulted in disrupted 

reversal learning (Clarke et al., 2008; Castañé et al., 2010). The dopaminergic system is 

also implicated in perseverative responding since d-amphetamine treatment increases 

perseveration in a dose-dependent manner in the 5-CSRTT (Paterson et al., 2011). A 

more in depth overview of the interlinking neurobiology of attention, impulsivity, 

perseveration and the NK1 receptor can be found in the final discussion of this thesis 

(Chapter 7). 

 

7.1.5 Experimental aims 
In this chapter we look at measuring an alternative type of perseverative behaviour 

through the marble burying and burrowing paradigms, which measure ‘species-typical 
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behaviours’. The behaviour of wildtype and NK1 receptor knockout mice from the 

colonies maintained by homozygous breeding are compared with littermate pairs from 

heterozygous parents, which are both on a mixed background (see sections 2.1.2 and 

2.1.4), but also mice from a backcrossed colony on a C57BL/6 background. This will 

allow an investigation into the whether the behavioural differences between genotypes 

are solely due to disruption of NK1 receptor function or whether genetic drift has 

occurred due to the maintenance of the NK1 receptor genetic mutation by homozygous 

breeding over an extended period of time. Also looking at the behaviour of wildtype and 

NK1R-/- mice on a backcrossed background will provide insight as to whether there is 

any interaction between the genetically modified NK1 receptor and the genes from the 

parental strains. 

 

7.2 Materials and Methods 
 

7.2.1 Subjects 
For the marble-burying experiment 9 wildtype and 9 NK1R-/- mice were used from 

each of the homozygous bred colonies, littermate pairs from heterozygous breeders 

(both on the mixed background of 129/Sv x C57BL/6 x MF1) and from the backcrossed 

colony on a C57BL/6 background (see section 2.1.2). In the burrowing experiment, 6 

wildtype and 6 NK1R-/- mice from both the homozygous- and heterozygous-bred 

colonies were used. After the 2 nights of habituation to the burrows the mice were then 

individually housed until the end of the experiment. All mice were 8-12 weeks old at 

the time of experiment. 

 

7.2.2 Marble burying 
The apparatus and experimental set-up is described in detail in section 2.5.1 of the 

Materials and Methods chapter. The protocol used is based on that of (Deacon, 2006a). 

7.2.2.1 Procedure 
The mice were habituated to the boxes without the marbles the day prior to the test for 

15minutes. For the test the mice were placed in the boxes for 30minutes, after which the 

animals were returned to their home cages and the number of marbles buried by more 
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than two-thirds was recorded. The tests were videoed using a Panasonic SDR-100 

camcorder for behavioural scoring.  

7.2.2.2 Behavioural scoring 

The videoed tests were going to be used to score the latency to begin digging and the 

number of digging bouts, defined as a coordinated movement of the front paws 

followed by a kick of the hind paws, performed during the 30minute tests. However 

another behaviour, a displacement of sawdust by the front paws and muzzle, was 

prevalent when the videos were viewed. As this behaviour contributes to the burying of 

marbles the total number of  ‘nose-pushes’ and the latency to the first nose-push were 

scored alongside digging bouts. The videos were scored in 5minute time bins to allow 

for further analysis. 

 

7.2.3 Burrowing 
The apparatus and experimental set-up is described in detail in section 2.5.2 of Chapter 

2. The protocol used is based on that of (Deacon, 2006b). 

7.2.3.1 Procedure 

Rodents burrow spontaneously, but their performance tends to improve with practice. 

To habituate the mice to the burrows and substrate, full burrows were placed in the 

home cages while the animals remained in group housing for two consecutive nights 

(burrows in at 5.00p.m and removed the next morning at 9.30a.m). The mice were then 

separated into individual cages for the burrowing tests, one overnight test and three 2-

hour probe tests on consecutive days. Two different length tests were studied in case a 

ceiling effect was reached in the overnight test. Before each test the burrows were filled 

to approximately 1.5cm from the top and weighed before being placed in the cages. The 

probe tests were run from 3.00-5.00pm on three consecutive days. At the end of each 

test the burrows were removed and reweighed to calculate the gross weight of gravel 

displaced from the burrow, which was subsequently calculated as a percentage of stones 

removed from the burrow.  
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7.2.4 Statistical analysis 
Firstly the data was analysed with a 2-way ANOVA with genotype and colony as 

between subject factors. Where a significant main-effect for either factor, or an 

interaction between the two was seen, independent t-tests between groups were used. 

The data that were split into time bins or conducted over several days (as in the 

burrowing experiment) were analysed with a repeated measures ANOVA with ‘time-

bin’ or ‘test’ as a within-subject factor. In the repeated measures test, if Mauchly’s test 

of sphericity was significant, the Greenhouse-Geiser output was taken. Statistical tests 

were carried out on raw data sets where possible, but if the variance of the groups 

differed (i.e. Levene’s test for the equality of variance was significant) the data was 

transformed (square-root or Lg10) to normalise the variance. If this did not satisfactorily 

correct the variance, then non-parametric statistical tests were used. Statistical 

significance was set at P<0.05.  

 

 

 

 

 

 

 

 

 

 

7.3 Results 
 

Following on from the robust perseverative phenotype of the NK1R-/- mice observed in 

the 5-CSRTT in chapters, the behavioural paradigms used in this chapter also measure a 

form of perseveration, that of digging and burrowing. In addition to the comparison of 

perseverative behaviour across different experimental set-ups, wildtype and NK1R-/- 

mice from different colonies have been used to investigate the effect of background 

strain (pure C57BL/6 vs. a mixed 129/Sv x C57BL/6 x MF1 background) and maternal 

influences by studying mice from homozygous-bred wildtype and knockout colonies 
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versus littermate pairs from heterozygous parents both with the same mixed MF1 

background.  

 

7.3.1 Marble burying 
Video recording the marble-burying test enabled the scoring of behaviours throughout 

the 30minute test, in addition to the traditional observation of the total number of 

marbles buried. Initially this was going to be number of digging bouts, defined by a 

coordinated movement of the front paws followed by a hind leg kick, yet some mice 

preferred to displace the sawdust with a push of the muzzle and front paws. Therefore, 

these were also scored, and recorded as ‘nose-pushes’.   

7.3.1.1 Total number of marbles buried 

For statistical analysis of the total number of marbles buried by more than two-thirds, a 

2-way ANOVA was used with colony and genotype as the between-subject factors, yet 

Levene’s test for the equality of variance was significant for the raw data set, as well as 

square-rooted and lg10 transformed data. Non-parametric statistical tests were therefore 

used but did not yield any significant differences across the colonies or between 

genotype (For colony: Kruskal-Wallis χ2=3.83, P=0.148; For genotype: Mann-Whitney 

Z=1.12, P-0.263) (Figure 7.3). 

 
Figure 7.3 Total number of marbles buried by more than two-thirds in 30 minutes by wildtype (WT) and NK1 
receptor knockout mice (KO) from homozygous-bred colonies (left), heterozygous-bred littermate pairs 
(middle) and backcrossed mice on a C57BL/6 background (right). N=9 

 

Yet, just because the end point of the test was not different between groups, does not 

necessarily mean that it was reached in the same manner. That is, one colony may bury 
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the marbles in the first 5minutes and do nothing for the remainder of the test, whereas 

another may only bury in the final 5minutes. Therefore, using still frames from the 

videoed tests, the number of marbles buried was recorded at 2minute intervals (Figure 

7.4) and analysed with a repeated measure ANOVA. Despite an apparent difference 

between littermate pairs of wildtype and NK1 receptor knockout mice, this was not 

enough to be pulled out in the overall ANOVA (Table 7.1).  

 

Between-subject effects F-value P-value 
Colony F(2,48) = 1.42 P = 0.253 
Genotype F(1,48) = 0.51 P = 0.477 
Colony*Genotype F(2,48) = 1.25 P = 0.295 
Within-subject effects#   
Test F(1.6,169) = 3.69 P = 0.001 
Test*Colony F(7.1,169) = 0.90 P = 0.505 
Test*Genotype F(3.5,169) = 1.11 P = 0.351 
Test*Colony*Genotype F(7.1,169) = 1.44 P = 0.193 

Table 7.1 Statistical outputs from a repeated-measure ANOVA over the marble burying test with genotype 
and colony as between subject effects and test as the within subject factor. Significant P-values highlighted in 
bold. #Mauchly’s test was significant therefore sphericity of the data could not be assumed and the 
Greenhouse-Geiser statistical output for within-subject effects was taken. 
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Figure 7.4 Number of marbles buried taken at two minute intervals in the marble burying test for wildtype 
(WT) and NK1 receptor knockout (KO) mice from homozygous bred colonies (A), littermate pairs from 
heterozygous parents (B) and back-crossed animals on the C57BL/6 background (C). WT data displayed with 
open circles, and KO data with grey squares. N=9. 

 

7.3.1.2 Latency to first dig and nose-push 

Despite there being no differences in the marble-burying profile across the different 

colonies it is important to consider the latency to begin digging as this measure is often 

analysed as an indicator of anxiety levels. The variance of the raw data violated 

Levene’s test for the equality of variance, as did the transformed data sets (square-root 

and lg10) so non-parametric tests were used. There is no difference in the latency to the 

first dig between the three colonies, yet the NK1 receptor knockout mice were always 

slower to begin digging than their wildtype counterparts as seen with a Mann-Whitney 

test (Z=2.33, P<0.05). When further explored with independent t-tests this difference 

was only statistically significant for the mice from heterozygous bred parents 

(Littermate pairs: t(16) = 2.15, P<0.05) (Figure 7.5A). The latency to the first nose-push 

raw data set did not have equal variance and was square-rooted for normalisation. There 
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was no difference in the latency to nose-push between genotype, yet there was a 

significant difference between colonies but with no genotype interaction (Table 7.2).  

 

Between subject effects F-value P-value 
Colony F(2,48) = 3.67 P = 0.033 
Genotype F(1,48) = 1.34 P = 0.253 
Colony*Genotype F(2,48) = 1.06 P = 0.356 

Table 7.2 2-way ANOVA results for the latency to first nose-push with genotype and colony as between subject 
effects. Statistical test was applied to square-root transformed data. Significant P-values highlighted in bold. 

 

A 1-way ANOVA for colony with Bonferonni post-hoc tests revealed that mice from 

the back-crossed colony on C57BL/6 background performed their first nose-push 

significantly earlier than the mice from littermate pairs on the MF1 background 

(P<0.05) (Figure 7.5B). 

 

 
Figure 7.5 Latency to the first dig (A) and nose-push (B) performed by wildtype (WT) and NK1 receptor 
knockout (KO) mice from homozygous bred colonies, littermate pairs from heterozygous parents and back-
crossed animals on a C57BL/6 background. A black line between bars represents significance of at least 
P<0.05. * P<0.05. N=9 

 

7.3.1.3 Total number of digging bouts and nose-pushes 

The total number of digging bouts and nose-pushes in the 30minute test period were 

scored and analysed with a 2-way ANOVA for genotype and colony as between 

subject-factors. Although NK1 receptor knockout mice from every colony scored a 

lower number of digging bouts than their respective wildtype counterparts, the 

difference was not significant. There was also no difference in digging behaviour across 
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the three colonies (Figure 7.6A). The profile of sawdust displacement by nose-pushing 

however does differ across the colonies. The 2-way ANOVA revealed a main effect of 

colony, and an interaction between colony and genotype (Table 7.3).  

 

Between subject effects F-value P-value 
Colony F(2,48) = 8.62 P = 0.001 
Genotype F(1,48) = 1.57 P = 0.217 
Colony*Genotype F(2,48) = 7.12 P = 0.002 

Table 7.3 2-way ANOVA results for the total number of nose-pushes with genotype and colony as between 
subject effects. Statistical test was applied to lg10-transformed data. Significant P-values highlighted in bold. 

 

Interestingly, NK1 receptor knockout mice from the homozygous-bred colony made 

significantly fewer nose-pushes than their wildtype counterparts (t(11.0)=3.54, P<0.01), 

whereas in the back-crossed C57BL/6 colony, the NK1 receptor knockout mice 

displaced sawdust via a nose-push, than the wildtypes (t(16)=2.18, P<0.05). There was 

no difference in behaviour across the wildtype mice of each colony, but the NK1 

receptor knockout mice from the back-crossed colony completed more nose-pushes than 

those from the MF1 background strain colonies (Bonferroni post-hoc test: P<0.001) 

(Figure 7.6B). 

 
Figure 7.6 Total number of digging bouts (A) and nose-pushes (B) performed by wildtype (WT) and NK1 
receptor knockout (KO) mice from homozygous bred colonies, littermate pairs from heterozygous parents and 
back-crossed animals on a C57BL/6 background. A black line between bars represents significance of at least 
P<0.05. *** P<0.001. N=9 
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7.3.1.4 Digging bouts and nose-pushing per 5-minute time bin 

As with the total number of marbles buried, the total values only represent the end point 

of the 30minute test and therefore give no indication of the profile by which they were 

achieved. The data was recorded in 5minute time bins, and analysed with a repeated 

measures ANOVA with genotype and colony as between subject factors and time-bin as 

a within subject factor (Table 7.4).  

 

Between-subject effects F-value P-value 
Colony F(2,48) = 0.35 P = 0.706 
Genotype F(1,48) = 2.82 P = 0.100 
Colony*Genotype F(2,48) = 0.12 P = 0.891 
Within-subject effects   
Time-bin F(5,240) = 4.29 P = 0.001 
Time*Colony F(5,240) = 1.22 P = 0.281 
Time*Genotype F(5,240) = 2.97 P = 0.013 
Time*Colony*Genotype F(5,240) = 1.61 P = 0.106 

Table 7.4 Statistical outputs from a repeated-measure ANOVA for digging bouts over 5-minute time bins of 
the marble burying test with genotype and colony as between subject factor and time-bin as the within subject 
factor. Significant P-values highlighted in bold. 

 

There was no overall difference in the behaviour across the three colonies tested in the 

marble-burying paradigm and the data from each colony is presented separately in 

Figure 7.7. Each colony was then considered individually in a repeated measures 

ANOVA with only genotype as the between subject factor. There was no overall 

difference in digging behaviour between wildtype and NK1 receptor knockout mice in 

any of the three colonies tested, yet there was a significant interaction between time-bin 

and genotype (time*genotype) in the homozygous bred colony and an overall effect of 

time-bin in the back-crossed colony (Table 7.5) 

 

 Time-bin Time*Genotype 
Homozygous bred 
(MF1)  

F(5,80) = 1.79 
P=0.125 

F(5,80) = 3.25 
P=0.010 

Littermate pairs 
(MF1) 

F(2.9,46.6) = 1.74 
P=0.173 

F(2.9,46.6) = 1.34 
P=0.272 

Back-crossed 
(C57) 

F(5,80) = 3.20 
P=0.011 

F(5,80) = 1.68 
P=0.171 

Table 7.5 Statistical outputs from a repeated-measure ANOVA for dig bouts over 5-minute time bins of the 
marble burying test for each individual colony with genotype as the between subject factor and time-bin as the 
within subject factor. Significant P-values highlighted in bold. 
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Both wildtype and knockout mice from the homozygous-bred colony displayed an 

almost identical digging profile for the first 15minutes of the test, after which the 

wildtype mice continued to dig (time bin 16-20 vs. 26-30: t(8)=2.47, P<0.05) whereas 

the NK1 receptor knockout mice decreased their digging (time bin 16-20 vs. 26-30: 

t(8)=2.81, P<0.05) leading to a significant difference in the number of digging bouts 

completed by wildtype and NK1 receptor knockout mice in the final 5minutes of the 

test (t(16)=4.07, P<0.01) (Figure 7.7A). There were no statistically significant differences 

in the digging profiles of the wildtype and NK1 receptor knockout littermate pairs 

(Figure 7.7B). The mice from the back-crossed colony displayed the same burying 

profile independent of genotype, where there was a significant increase in digging bouts 

between the first and third time bins (paired t-test: time bin 1-5 vs. 11-15: t(17)=2.30, 

P<0.05) (Figure 7.7C). 

 

 
Figure 7.7 Number of digging bouts per 5-minute time bin for wildtype (WT) and NK1 receptor knockout 
(KO) mice from homozygous bred colonies (A), littermate pairs from heterozygous parents (B) and back-
crossed mice on a C57BL/6 background (C). WT data displayed with open circles, and KO data with grey 
squares. N=9. * P<0.05 

 



 Chapter 7 

 
165 

In the repeated measures ANOVA for nose-pushes, with genotype and colony as 

between subject factors and time-bin as the within subject factor significant overall 

differences were found across colonies, an interaction between colony and genotype and 

for time-bin (Table 7.6).  

 

Between-subject effects F-value P-value 
Colony F(2,48) = 11.9 P = 0.001 
Genotype F(1,48) = 0.61 P = 0.438 
Colony*Genotype F(2,48) = 7.96 P = 0.001 
Within-subject effects#   
Time-bin F(3.7,180.6) = 5.49 P = 0.001 
Time*Colony F(7.5,180.6) = 0.71 P = 0.675 
Time*Genotype F(3.7, 180.6) = 1.66 P = 0.164 
Time*Colony*Genotype F(7.5,180.6) = 1.82 P = 0.080 

Table 7.6 Statistical outputs from a repeated-measure ANOVA for nose-pushes over 5-minute time bins of the 
marble burying test with genotype and colony as between subject factor and time-bin as the within subject 
factor. Square-root transformed data used for analysis to normalise the difference in variance of the raw data. 
Significant P-values highlighted in bold. # Mauchly’s test of sphericity was significant therefore Greenhouse-
Geiser outputs were taken.  

 

The statistical difference in the behavioural profile of the colonies was independent of 

time, and has already been reported in section 7.3.1.3 along with overall genotype 

differences. Here the colony*genotype interaction is further analysed by looking at the 

individual colonies with a repeated measures ANOVA with genotype as the only 

between subject factor (Table 7.7).  

 

 Time-bin Time*Genotype 
Homozygous bred 
(MF1)  

F(5,80) = 2.47 
P=0.040 

F(5,80) = 2.69 
P=0.027 

Littermate pairs 
(MF1) 

F(5,80) = 1.19 
P=0.321 

F(5,80) = 1.04 
P=0.399 

Back-crossed 
(C57) 

F(5,80) = 3.82 
P=0.004 

F(5,80) = 1.37 
P=0.246 

Table 7.7 Statistical outputs from a repeated-measure ANOVA for nose-pushes over 5-minute time bins of the 
marble burying test for each individual colony with genotype as the between subject factor and time-bin as the 
within subject factor. Significant P-values highlighted in bold. 

 

In the homozygous bred MF1 colonies, the wildtype mice performed more nose-pushes 

than the NK1 receptor knockout mice which increased over time and was significantly 

higher in the final time bin compared to the first (t(8)=5.46, P<0.01). Conversely the 

homozygous bred knockout mice increased their nose-pushing sawdust displacement 
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over the first 15minutes, and then tailed off (time bin 1-5 vs. 11-15; t(8)=3.21, P<0.05). 

These different behavioural profiles resulted in a significant genotype difference, with 

the NK1 receptor knockout mice performing fewer nose-pushes than the wildtype 

controls in the final two time bins of the 30minute test (Figure 7.8A). There was no 

difference in the behaviour of wildtype and knockout littermate pairs across the entire 

test (Figure 7.8B). Unlike the NK1 receptor knockout mice in the homozygous bred 

colonies, the knockout mice on the C57BL/6 background performed more nose-pushes 

than their wildtype counterparts although this did not reach statistical significance. Both 

genotypes from the back-crossed colony increased the number of nose pushes over the 

course of the test (cf. time bin 1-5; 6-10 t(17)2.12, P<0.05; 11-15 t(17)=3.83, P<0.01 and  

26-30 t(17)=4.11, P<0.01) (Figure 7.8C). 

 

Figure 7.8 Number of nose-pushes per 5-minute time bin for wildtype (WT) and NK1 receptor knockout (KO) 
mice from homozygous bred colonies (A), littermate pairs from heterozygous parents (B) and back-crossed  
mice on a C57BL/6 background (C). WT data displayed with open circles, and KO data with grey squares. 
N=9. * P<0.05, ** P<0.01 
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7.3.2 Burrowing 
In the mice’s first experience of the burrows, they were filled, weighed and placed in 

the home-cages at 5.00 p.m., left overnight and removed the following day at 9.00 a.m. 

when they were again weighed. The percentage of stones removed from the burrow was 

calculated for analysis. The data for the overnight test was analysed with a 2-way 

ANOVA, with colony and genotype as the between subject factors (Table 7.8). There 

was a main effect of genotype but no difference in behaviour between colonies. 

 

Between subject effects F-value P-value 
Colony F(1,23) = 0.82 P = 0.377 
Genotype F(1,23) = 12.42 P = 0.002 
Colony*Genotype F(1,23) = 0.71 P = 0.408 

Table 7.8 2-way ANOVA results for the overnight burrowing test with genotype and colony as between subject 
effects. Significant P-values highlighted in bold.   

 

However the raw data set violated Levene’s test for the equality of variance and 

transforming the data by square-root and lg10 did not correct for this, therefore non-

parametric statistical tests were used for further analysis. Although the wildtype mice 

from both colonies burrowed more than their respective knockout counterparts this was 

only significant for the homozygous bred populations (Mann-Whitney test: Z=2.24, 

P<0.05) (Figure 7.9).  

 
Figure 7.9 Percentage of stones removed from the burrows overnight by wildtype (WT) and NK1 receptor 
knockout (KO) mice from homozygous bred colonies and littermate pairs from heterozygous parents. N=6. 
Black line between bars represents a statistical difference of at least P<0.05.  
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After the initial overnight test, the mice were tested on three consecutive days with a 2-

hour probe test from 3.00-5.00 p.m. A repeated-measure ANOVA with colony and 

genotype as between subject factors and ‘test’ as the within-subject factor was used for 

statistical analysis. Neither colony, test, nor interaction of factors were significant but 

there was an overall difference between genotypes (Table 7.9). 

 

Between-subject effects F-value P-value 
Colony F(1,20) = 3.35 P = 0.082 
Genotype F(1,20) = 8.98 P = 0.007 
Colony*Genotype F(1,20) = 0.38 P = 0.547 
Within-subject effects   
Test F(2,40) = 2.68 P = 0.081 
Test*Colony F(2,40) = 0.54 P = 0.587 
Test*Genotype F(2,40) = 0.73 P = 0.489 
Test*Colony*Genotype F(2,40) = 1.32 P = 0.279 

Table 7.9 Statistical outputs from a repeated-measure ANOVA over the three burrowing probe tests with 
genotype and colony as between subject effects and test as the within subject effect. Significant P-values 
highlighted in bold.   

 

Since there was no overall difference in the burrowing performance of the two colonies, 

they have been separated below for further genotype analysis. NK1 receptor knockout 

mice from both homozygous- and heterozygous-bred colonies burrowed less than their 

wildtype counterparts, yet this was only statistically significant in the third probe test 

for the homozygous bred mice (Figure 7.10A) and in the second probe test between the 

littermate pairs (Figure 7.10B). 

 

 
Figure 7.10 Burrowing performance across three probe tests on consecutive days for wildtype (WT) and NK1 
receptor knockout (KO) mice from homozygous bred colonies (A) and littermate pairs from heterozygous 
parents (B). WT data displayed with open circles, and KO data with grey squares. N=6. * P<0.05, ** P<0.01 
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7.3.3 Summary of results 
In the marble burying test there was no overall difference in the number of marbles 

buried by either genotype across all colonies tested, nor in the profile over time in 

which the marbles were buried. NK1 receptor knockout mice were in general slower to 

commence digging than their wildtype counterparts, although this only reached 

significance between wildtype and knockout littermate pairs from heterozygous parents. 

There was no significant statistical difference in the total number of digging bouts 

across genotype or colony, although knockout mice tended to dig less than the wildtype 

counterparts of each colony. When the data was divided into 5minute time bins a 

genotype difference emerged between the homozygous bred mice. For the first 

15minutes the profile of wildtype and knockout digging bouts was indistinguishable, yet 

in the latter stages of the test the homozygous bred knockout mice decreased their 

digging behaviour, while the wildtype mice dug more.  

 

The latency to the first nose-push varied across the colonies, the heterozygous littermate 

pairs and homozygous bred knockout mice were much slower than the back-crossed 

colony and the homozygous bred wildtype mice to first perform this method of sawdust 

displacement. This difference was also reflected in the total number of nose-pushes. 

While NK1R-/- mice from the homozygous bred colony performed significantly fewer 

nose-pushes than their respective wildtype mice, the knockout mice from the back-

crossed colony nose-pushed significantly more than their respective wildtypes and the 

other knockout mice from the other colonies.  

 

In the burrowing experiment using homozygous- and heterozygous-bred colonies, NK1 

receptor knockout mice tended to burrow less than the wildtype counterparts, although 

this was only significant between the homozygous-bred mice in the overnight test. In 

the three 2-hour probe tests over consecutive days, the knockout mice always burrowed 

less in both colonies, yet only significantly so in probe test 3 for the homozygous-bred 

mice and probe test 2 for the mice from heterozygous parents.  
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7.4 Discussion 
  

Marble burying and burrowing are experimental paradigms that exploit the natural 

tendency of rodents to dig and forage. In fact these paradigms provide the animals with 

a form of environmental enrichment and since they cause no ‘pain, suffering, distress or 

lasting harm’ to normal animals they are not regulated procedures as defined by the UK 

Animals (Scientific Procedures) Act of 1986 (Deacon, 2006a). They are very simple to 

run, require no specialist equipment and are therefore inexpensive to conduct, yet 

provide quantitative data under controlled laboratory conditions. Previous studies have 

shown these species-typical behaviours are sensitive to species, background strain, brain 

lesions and drug treatment (Webster et al., 1981; Dudek et al., 1983; Njung’e and 

Handley, 1991; Contet et al., 2001; Deacon et al., 2002; Deacon and Rawlins, 2005). 

The main premise of this chapter was to use marble burying and burrowing as a 

measure of perseveration after NK1R-/- mice displayed a robust perseverative 

phenotype in the 5-choice serial reaction time task (Chapter 4). The tests were carried 

out with wildtype and NK1 receptor knockout mice from three separate colonies 

(homozygous bred wildtype and NK1R-/- MF1 colonies, littermate pairs from 

heterozygous MF1 parents and the colony backcrossed onto a C57BL/6 background). 

Using wildtype and knockout littermate pairs from heterozygous parents negates 

differences in maternal bonding since NK1R-/- mice produce fewer ultrasonic 

vocalisations than wildtypes (Rupniak et al., 2000) and reduces the problem of genetic 

drift that can arise from long-term breeding of homozygous colonies. The effect of 

background strain on marble-burying behaviour (but not burrowing) was investigated 

with a comparison of the backcrossed C57BL/6 mice versus those on the mixed 129/Sv 

x C57BL/6 x MF1 background.  

 

7.4.1 The role of the NK1 receptor in species-typical behaviours 
Although rodents use bedding material to bury noxious stimuli such as shock probes 

(De Boer and Koolhaas, 2003) it immediately became apparent when viewing the 

videos that the mice showed no aversion to the presence of the marbles, which 

corroborates the findings of (Njung’e and Handley, 1991) who showed that mice did not 

avoid the marble-containing side of a two-compartment box. The mice rarely displayed 

any interest in the presence of the marbles, and any marble burying was an indirect 
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consequence of spontaneous digging behaviour. This is inline with previous 

observations from other groups that state that marble burying is simply a measure of 

repetitive, perseverative digging (Gyertyán, 1995; Masuda et al., 2000; Thomas et al., 

2009). Interestingly, the mice showed two very distinct methods of sawdust 

displacement, firstly by traditional ‘digging’, (a coordinated movement of the front 

paws followed by a kick of the back paws) but also by a pushing of the sawdust with the 

snout and front paws. This behaviour has been reported in rat burying studies as a 

deliberate strategy for burying objects (Poling et al., 1981), but not in mouse marble-

burying studies. The number of  ‘nose-pushes’ was therefore scored in addition to 

digging bouts.  

 

In the 5-choice serial reaction time task NK1R-/- mice displayed a high number of 

perseverative responses, i.e. they continued to nose poke into the cue hole after a correct 

response, yet a perseverative phenotype was not observed in the marble burying and 

burrowing tests, where there was no difference in the number of marbles buried, or total 

number of digging bouts performed between wildtype and knockout mice (although the 

NK1R-/- mice from all colonies dug less than their respective wildtype counterparts this 

failed to reach significance). In fact in the burrowing test, NK1R-/- mice burrowed less 

than their wildtype counterparts, the very opposite of a perseverative phenotype. 

Interestingly, a previous study into the effect of NK1 receptor antagonists in the marble-

burying paradigm reported an absolute blockade of marble burying behaviour after 

antagonist treatment (Millan et al., 2002). This highlights that perseveration, like 

impulsivity is a multifaceted behaviour that does not necessarily translate across 

behavioural paradigms. 

 

Other genotype differences in behaviour were noted in the marble-burying and 

burrowing tests. NK1R-/- mice tended to be slower to begin digging, although this was 

only significant between the wildtype and knockout littermate pairs from heterozygous 

parents. When marble burying is used in the context of measuring anxiety, reduced 

marble-burying and a long latency to commence digging is interpreted as an ‘anti-

depressed’ phenotype (Catches et al., 2012). The marble burying profile of the NK1R-/- 

mouse would therefore fit into this antidepressant-like phenotype, which is in line with 

early work on the NK1 receptor knockout mouse, that ultimately led to NK1 receptor 

antagonists being trialed as anti-depressants (Rupniak et al., 2001; Santarelli et al., 
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2001). Yet the use of the marble burying test is highly controversial and the consensus 

is that it is a better measure of repetitive perseverative behaviour more than novelty 

induced anxiety (Deacon, 2006a; Thomas et al., 2009). 

 

7.4.2 Effect of homozygous vs. heterozygous breeding for colony 
maintenance  

Although maintaining a genetic mutation through homozygous mating is probably the 

easiest and cheapest option, it is not good laboratory practice. The best methods for 

maintaining a mutation are either by breeding heterozygotes with each other or 

backcrossing on to an inbred strain such as C57BL/6 (Wolfer et al., 2002). This 

eliminates the risk of genetic drift of separate wildtype and knockout colonies over 

time, and also negates the possibility of differential maternal upbringing by wildtype 

and knockout dams (Crusio, 2004). This is especially important in this study since NK1 

receptor mouse pups elicit fewer ultrasonic vocalisations when removed from their 

mother than wildtype pups, so maternal bonding could differ between the wildtype and 

knockout homozygous colonies (Rupniak et al., 2000). However, if it is only the pups, 

and not the mother that are effected, this would put NK1R-/- pups at a distinct 

disadvantage in a large litter of offspring from heterozygous parents in which there 

would be wildtype and heterozygous pups too that do not have this bonding problem. In 

this study there are no fundamental differences in the behaviour of wildtype and NK1 

receptor knockout mice from the homozygous maintained colonies, compared to 

littermate pairs from heterozygous parents, in either the marble burying- or burrowing-

test. This suggests that the previously considered differences in maternal upbringing 

either did not arise or they do not effect the instinctive and naturalistic behaviours 

measured in the marble burying and burrowing tests.  

 

7.4.3 Effect of background strain on behaviour 
Many studies have been conducted into the influence of background strain on mouse 

behaviour, yet it is often overlooked when planning experiments and interpreting 

results. It is also possible in a genetically manipulated mouse that background genes 

from parental strains may interact with the mutated gene, which could compromise the 

interpretation of the mutant phenotype (Crawley et al., 1997). In this chapter wildtype 
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and knockout mice on two different background strains were used, a backcrossed 

colony on a ‘pure’ C57BL/6 background (crossed for more than 10 generations so they 

are ~99.9% C57BL/6) and a mixed background of 129/Sv x C57BL/6 x MF1. This is 

unusual since most background comparisons are of single background strains, whereas 

the behaviour of the mixed background mouse is determined by the combination of the 

three different strains. Marble burying behaviour is known to differ across background 

strains, with AKR/J, FVB/NJ and CBA/J strains burying the most marbles in a 

comparison of 10 inbred strains, while 129S6/SvEv-Tac mice buried the least (Thomas 

et al., 2009). The greatest difference between the strains tested here was not seen in the 

traditional measure of ‘digging’ but in ‘nose-pushing’, the other recorded method of 

sawdust displacement. The NK1 receptor knockout mice from the backcrossed colony 

performed more nose-pushes than the knockout mice on the mixed background, 

whereas the behaviour of wildtype mice was comparable across all three colonies. This 

suggests there is an interaction between the NK1 receptor and strain of the mouse. 

Similar interactions were found in a comparison of corticosterone levels of wildtype and 

NK1R-/- mice in response to a mild-stressor (restraint) on two background strains 

(backcrossed C57BL/6 and a mixed 129/Sv x C57BL/6) (McCutcheon et al., 2008). 

 

Due to limited availability of the back-crossed colony of wildtype and NK1 receptor 

knockout mice, these mice were not included in the burrowing experiment. However 

previous comparisons of mouse burrowing behaviour across different backgrounds have 

highlighted marked strain differences. In one, SLJ mice burrowed less than C57BL/6 or 

DBA/2 mice (Deacon, 2009), while in another, 129S2/SvHsd mice burrowed 

considerably less than C57BL/6JOlaHsd and did not improve over days, whereas the 

C57s did (Contet et al., 2001). Burrowing data across a larger number of strains (A/J, 

AKR/J, BALBc/J, CBA/J, C3H/HeJ, C57BL/6J, DBA/2J and LP/J) reported that 

CBA/J, DBA/2J and LP/J mice were prolific burrowers (Solberg et al., 2006). Since 

species specific behaviours are based on digging behaviour, it has been hypothesised 

that behavioural polymorphisms between strains stem from ancient habitat selection that 

potentially required different levels of digging depending on the location and substrate 

into which the burrows were dug (Dudek et al., 1983). This theory is supported by the 

lack of burrowing of the spiny mouse in laboratory conditions compared to that of other 

rodents (Deacon, 2009), as in the wild they prefer to use rock crevices for shelter, rather 

than dig their own burrows (Elvert et al., 1999).  
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7.4.4 Methodological considerations and conclusions 
Tests for species-typical behaviours such as marble burying and burrowing are cheap 

easy to run, yet over the years they have been used as a ‘measure’ of many behaviours 

including anxiety, obsessive-compulsive disorder (OCD)-like symptoms and digging.  

In order to appropriately interpret behavioural differences between subjects it is 

imperative that researchers understand the basis of the behaviour itself. I believe that 

marble burying and burrowing are both a fundamental test of digging, which is a 

spontaneous and intrinsic natural phenomenon displayed by rodents when the 

opportunity arises. There is mounting evidence against marble burying being a measure 

of anxiety. One such study tested a range of inbred mouse strains in the marble burying 

test and in open-field and light/dark exploration tests, both of which are traditional tests 

of anxiety-related behaviours. No correlation was found between levels of marble 

burying and the traditional tests of anxiety across all ten tested strains (Thomas et al., 

2009). Secondly, if digging were a natural phenomenon, the fact that anti-depressants 

reduce this behaviour would mean that normal wildtype mice are ‘depressed’. Therefore 

the treatment is actually creating a new problem by preventing a natural instinctive 

behaviour rather than correcting a behavioural deficit. However to this day, papers are 

still being published that use marble burying as an anxiogenic test (Catches et al., 2012). 

 

The burrowing test exploits the fact that rodents in the wild will build burrows for a 

variety of purposes including safety from predators, food storage, and shelter (Boice, 

1977; Dudek et al., 1983). Although rodents kept under laboratory conditions do not 

need to build burrows, they will if presented with the chance. Although the species-

typical behaviours used here both measure digging behaviour, the burrowing test is 

reported to be slightly more sensitive than marble burying (Deacon, 2006a). Although 

the species-typical behavioural tests used in this chapter provide invaluable data into the 

naturalistic behaviour of rodents, I feel that they are not a measure of perseveration in 

clinical terms, and that scientists should proceed with caution when relating these 

behaviours to conditions such as OCD and ADHD.   

 

The findings from this chapter in which marble burying and burrowing have been used 

as measures of perseverative behaviour do not correlate with the previous chapters 
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where NK1R-/- mice display a robust perseverative phenotype in the 5-choice serial 

reaction time task. Here the behaviour of the NK1 receptor knockout is rarely different 

from that of the wildtype controls, and in cases where there are genotype differences it 

is more common for the NK1R-/- to show less perseveration in the species-typical 

behaviours. These studies show that perseveration is a multifaceted behaviour and 

where a perseverative phenotype may be robust in one paradigm, this does not 

necessarily translate across to other behavioural paradigms. The perseverative 

phenotype of the NK1R-/- therefore requires further investigation, perhaps with a 

reversal test in a T-maze set-up, as this would have more of a cognitive aspect like the 

5-CSRTT, rather than the species-typical behaviours that measure repetitive motor 

movements. Reversal learning in the Morris Water Maze was conducted as part of a 

battery of learning and memory experiments for the NK1R-/- mouse, but no difference 

was found between wildtype and NK1R-/- mice (Gadd, 2003).  We are currently testing 

the heterozygous-bred littermate pairs in the 5-choice serial reaction time task. This will 

provide clarity as to whether the difference in perseverative responding between 

wildtype and NK1R-/- mice is due to the functional disruption of the NK1 receptor, or 

whether it was a result of a spontaneous mutation and genetic drift as a result of 

maintaining the NK1 receptor mutation through homozygous breeding.  

 

In the final chapter, findings from this thesis will be brought together to consider the 

implications of this work, including a wider discussion of ‘perseveration’. There I will 

look at the different types of perseveration that are covered in this thesis, the 

overlapping neurobiology of perseveration and impulsivity and finally a look at the 

future directions of research into the role of the NK1 receptor.  
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8 General Discussion  
 

Attention deficit hyperactivity disorder (ADHD) is a developmental disorder 

characterised by pervasive and impairing symptoms of inattention, hyperactivity and 

impulsivity (American Psychiatric Association, 1994). Prevalence estimates of 

childhood ADHD range from 1% to 20%, although meta-analysis of 102 studies from 

across the globe placed the overall figure at 5.3% (Polanczyk et al., 2007). For many 

years ADHD was considered to be a childhood disorder, but it is now known to pervade 

into adulthood in approximately 50% of cases (Schmidt and Petermann, 2009). 

Adoption, twin and family studies show that there is a strong heritable component of 

ADHD (Sprich et al., 2000; Rietveld et al., 2003; Ouellet-Morin et al., 2008), and 

although the candidate genes are numerous, many are related to monoamine systems 

(Sharp et al., 2009). Given that ADHD can be a lifelong disorder it can place major 

financial burden on families and society and despite many years of research into the 

disorder, the definitive causes are as-yet unknown. Therefore more research is needed 

into the aetiology of this psychiatric disorder.  

 

There are already a number of animal models of ADHD, but none fit completely with 

the strict criteria for face, predictive and construct validity. The NK1 receptor knockout 

mouse has a hyperactive phenotype, (measured in the LDEB paradigm) that is reduced 

with psychostimulant treatment and underlying differences in dopamine and 

noradrenaline levels that are inline with proposed deficits of the condition, which led to 

the proposal that the NK1R-/- mouse is a model of ADHD (Yan et al., 2009, 2010). 

This was further supported by a genetic study of the TACR1 gene (the human 

equivalent of the NK1 receptor), in which four single-nucleotide polymorphisms were 

found to be strongly associated with ADHD (Yan et al., 2010). With this evidence, the 

NK1 receptor knockout mouse was a promising model of ADHD, meeting face validity 

with the hyperactive phenotype, predictive validity in its response to psychostimulant 

treatment and construct validity with the neurochemical differences, yet no studies had 

been done to measure impulsivity and attention, the other core symptoms of ADHD.  

 



 Chapter 8 

 
177 

The aim of this thesis was to assess the characteristics of ADHD (hyperactivity, 

impulsivity and inattention) in the NK1R-/- mouse phenotype. Firstly by measuring 

activity levels of treatment naïve NK1R-/- mice as all previous recordings of activity 

were taken after injections had been administered.  Attention and impulsivity 

behaviours were investigated using the 5-choice serial reaction time task (5-CSRTT). A 

thorough mapping of the expression pattern of the NK1 receptor, and its preferred 

ligand Substance P throughout the mouse brain was also conducted.  With these results, 

the brain regions that were likely to be effected by the loss of a functional NK1 receptor 

and that may contribute to the behavioural phenotype of the knockout mouse in relation 

to ADHD could be elucidated.   

 

8.1 Summary of key findings  
 

The first chapter of results in this thesis set the scene by investigating the complex 

expression patterns of the NK1 receptor and its preferred ligand substance P throughout 

the mouse brain. In this immunohistochemical study, the brain regions implicated in the 

pathophysiology of ADHD, including the structures of the basal ganglia, were looked at 

in relation to the presence of the NK1 receptor and SP. Based on previous literature, 

dysfunction of basal ganglia circuitry, and disturbed monoamine transmission are the 

forerunners in the likely aetiology of ADHD and therefore will be the focus in trying to 

relate the underlying neurobiology of the NK1 receptor to the phenotype of the NK1 

receptor knockout mouse.  

 

Activity levels of wildtype and NK1R-/- mice were monitored over a 48-hour period in 

circular corridor apparatus on a 12-hour light dark cycle. Peak activity levels were 

found in the hours immediately following the onset of the dark phase, inline with 

normal circadian fluctuations. NK1R-/- mice displayed greater activity levels in the first 

hour after lights out, but over the entire 48-hour period there was no difference in the 

overall activity of wildtype and NK1R-/- mice. During the light phase, the time when 

experiments are ordinarily conducted, no difference in activity levels were noticeable 

between genotypes. Although there is elevated activity of the NK1R-/- mice for one 

hour time bin, these results do not indicate that the NK1R-/- mouse has a robust 

hyperactive phenotype.  
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The 5-choice serial reaction time task (used in chapters 5 and 6) was an excellent 

behavioural paradigm in which to further explore the proposal that the NK1R-/- mouse 

is a model of ADHD. Levels of attention and impulsivity can be assessed in a single 

test, and the difficulty of the task can be increased by elongating and varying the inter-

trial interval timings (LITI and VITI respectively). These tests increase the attentional 

load and promote impulsive responses. NK1 receptor knockout and wildtype controls 

were trained over six stages of increasing difficulty to reach a stable baseline 

performance. During these training stages, there was no difference in the percentage 

accuracy, percentage of omissions, or percentage of premature responses made by the 

wildtype and NK1R knockout mice, nor in the latency to make a correct response. The 

increased number of perseverative responses made by the NK1R-/- mice at all stages of 

the training stages was an unexpected finding. When the attentional load of the 

5-CSRTT was increased, firstly with a longer inter-trial interval time of 7 seconds, and 

then with a variable inter-trial interval or either 2, 5, 10 or 15 seconds more differences 

between the genotypes emerged. In the LITI NK1R-/- mice made more errors of 

omission than the wildtype controls, while in the harder VITI test, NK1R-/- mice 

omitted more and made more premature responses than wildtype controls, indicative of 

deficits in attention and impulse control respectively. The increased number of 

perseverative responses made by the knockout mice remained throughout every phase 

of the experiment. Therefore in the animals’ first experience of the variable inter-trial 

interval test of the 5-CSRTT, the NK1 receptor knockout mouse fits well as a model for 

ADHD. Repeated exposure to the test parameters did lead to resolution of some of these 

genotype differences and thus by the imbedded no-injection test (NI-3) among the drug 

testing regimen the high impulsive responding of the NK1R-/- mouse was no longer 

present.  

 

The aim of the second chapter of results from the 5-CSRTT (Chapter 6) was to emulate 

the findings from Chapter 5 by treating wildtype mice with NK1 receptor antagonists to 

see if the characteristics of the NK1R-/- phenotype were induced. The two antagonists 

(RP 67580 and L-733,060) and doses were chosen based on previous work that induced 

hyperactivity in wildtype mice to the level seen in the NK1R knockout mice (Yan et al., 

2010). The antagonists were also tested in the NK1R-/- mice to control for any non-

NK1R-mediated effects. L-733,060 had no effect on the behaviour of either genotype 
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and either of the two doses tested in either the LITI or VITI test, whereas RP 67580 did 

modify the behaviour of the wildtype mice. The lower dose (5mg/kg) of RP 67580 

increased premature responding in wildtype mice compared to vehicle (but only at the 

10s ITI split of the VITI data), but did not effect accuracy or omissions. The higher dose 

(10mg/kg) appeared to have a sedative effect as omissions and latencies increased 

across both genotypes. Perseverative responses remained high in the NK1 receptor 

knockout mice, but were not increased by antagonist treatment in the wildtype mice. 

The unexpected perseverative phenotype of the NK1R-/- mouse that featured so 

prevalently at all stages of the 5-CSRTT was the target for further exploration in the 

final results chapter. 

 

Perseveration, like impulsivity, is a complex behaviour that can have different 

connotations depending on the paradigm used to measure it and is strongly associated 

with both habit formation and impulsivity. To complement the perseverative behaviour 

findings from the 5-CSRTT, a very different type of perseveration was measured using 

marble burying and burrowing tests. These two tests come under the umbrella of 

species-typical behaviours and both measure of digging behaviour. This is a natural 

instinctive behaviour that rodents perform spontaneously when presented with the 

opportunity (deep sawdust in the marble burying test and a substrate filled tube in the 

burrowing test). From the previous findings in the 5-CSRTT, we would hypothesise that 

the NK1R-/- mice have a perseverative phenotype and would therefore bury more 

marbles, and displace more stones from a burrow than wildtype mice. However, there 

were few genotype differences in these tests, and where differences emerged, it was the 

NK1 receptor knockout mice that buried and burrowed less than the wildtype controls. 

In this chapter the importance of background strain and breeding strategy was also 

investigated by testing NK1 receptor knockout mice (and the respective wildtype 

controls) on a backcrossed C57BL/6 background, and littermate pairs from 

heterozygous parents.  
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8.2 The role of the NK1 receptor in attention, impulsivity, 
and perseveration 

 

From the experiments conducted in this thesis we can conclude that the NK1 receptor 

does play a role in the modulation of the symptoms associated with ADHD, yet it is 

impossible to ascertain a specific role for the NK1 receptor without further 

investigations. Below are putative suggestions as to the direct and indirect roles that the 

NK1 receptor could play in controlling attention, impulsivity and perseveration taking 

into consideration the findings from the distribution of the receptor, results from the 

5-CSRTT from NK1R-/-, wildtype and wildtype mice treated with NK1 receptor 

antagonist and the differential findings of perseveration from the species-typical 

behaviours.  

 

The high levels of expression of the NK1 receptor in the striatum and nucleus 

accumbens, the association of these regions with attention and impulsivity and the 

multiple monoaminergic innervations of these structures make them strong candidate 

regions for the regulation of ADHD-like symptoms via the NK1 receptor. Figure 8.1 

overleaf is a schematic to summarise these interactions. 
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Figure 8.1 Schematic diagram to demonstrate a possible role for the NK1 receptor in the modulation of 
behaviours associated with ADHD. In a wildtype mouse there are multiple interactions between the 
monoaminergic systems and the basal ganglia, of which the striatum plays an important role in the modulation 
of Go/No-go signals that control attention and impulsivity. NK1 receptors are expressed on cholinergic 
interneurons which given their tonic activity and unique firing patterns during action selection and attentional 
shifts makes them prime candidates for being essential regulatory neurons of impulse control and attention. 
The lack of functional NK1 receptor in the NK1R-/- mouse causes ADHD like symptoms in the 5-CSRTT. This 
could be due to a direct consequence of the lack of NK1 receptors in the dorsal and ventral striatum, by 
causing an imbalance in monoaminergic control (as seen by decreased DA efflux and increased NA efflux in 
the frontal cortex of NK1R-/- (Herpfer et al., 2005; Fisher et al., 2007; Yan et al., 2010)).  

 

8.2.1 Attention 
The attention component of the behaviour measured in the 5-CSRTT is defined as ‘top-

down, spatial attention’, that is, the focus is on the location of the cue light (spatial 

attention) and the response is driven by a voluntary behavioural goal (top-down control) 

(Noudoost et al., 2010). The microcircuitry of attention in the 5-CSRTT involves a loop 

between the anterior cingulate and prelimbic cortical regions and the dorsal striatum as 

revealed by excito-toxic lesion studies (Muir et al., 1996; Chudasama and Muir, 2001; 

Rogers et al., 2001). These cortical regions have multiple monoaminergic inputs, which 

would explain why drugs such as atomoxetine that increases NA levels have a positive 

effect on attention in the 5-CSRRT but as part of this loop, the signal must pass through 

the interneurons of the striatum, possibly the NK1R expressing cholinergic 
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interneurons. This could explain the deficit in attention of the NK1R-/- mice in the 

variable inter-trial interval test of the 5-CSRTT.  

 

Cholinergic interneurons in the striatum and nucleus accumbens make up approximately 

1% of the local neuronal population yet have extraordinary control over transmission of 

signals through the basal ganglia circuitry (Wang et al., 2006; Aosaki et al., 2010). They 

are of major relevance the work presented here since they co-express NK1 receptors and 

have strong interactions with dopaminergic transmission (Kaneko et al., 1993). 

Cholinergic interneurons are tonically active, with a distinct firing pattern (slow tonic 

firing, wide action potentials, and prominent hyperpolarisations) (Aosaki et al., 1995).  

Given the interlinked circuitry of the dopaminergic and cholinergic systems in the basal 

ganglia, it is not surprising that the activity of cholinergic interneurons has been 

implicated in many ADHD-like symptoms in addition to the hyperactivity mentioned 

above. Ding et al., (2010) conducted an elegant series of experiments in which the 

thalamic input to cholinergic interneurons was implicated in ‘attentional-shift’ and 

cessation of ongoing motor activity, which has direct links to the 5-CSRTT. 

Furthermore patients with the combined subtype of ADHD have been shown to have a 

higher incidence of a specific splice variant of the pre-synaptic choline transporter gene 

thus directly implicating the cholinergic system in the aetiology of ADHD (English et 

al., 2009). 

 

However acute blockade of the NK1 receptor in wildtype mice did not impair attention 

in the 5-CSRTT. It could be that the chronic loss of a functional NK1 receptor as in the 

NK1R-/- mice has caused long-term changes in the connectivity/activity profiles of   

cholinergic interneurons that cannot be replicated with an acute dose of antagonist, or 

that the level of receptor blockade achieved in these experiments. NK1R-/- mice have a 

reduced number of choline acetyl transferase (ChAT) positive interneurons in the dorsal 

striatum compared to wildtype controls (unpublished observation), which may indicate 

that NK1 receptor function is necessary for either the production or maintenance of 

cholinergic interneurons. The disruption to cholinergic transmission in the direct and 

indirect pathways of the basal ganglia (Go pathway and no/go pathway respectively) 

could account for some of the ADHD-like symptoms observed in 5-CSRTT in the NK1 

receptor knockout mouse that could not be replicated with NK1 receptor antagonist 

treatment.  
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8.2.2 Impulsivity 
Dopamine and serotonin are the neurotransmitters most commonly associated with the 

neurological basis of impulsivity, which is covered in section 1.5.3.2 of the Introduction 

chapter. Although NK1R-/- mice displayed an impulsive phenotype in their first 

experience to the variable inter-trial interval test of the 5-CSRTT this diminished upon 

repeated exposure suggesting that the underlying neurobiological system has a large 

degree of plasticity. This mimics human data where impulsive responding of ADHD 

patients in the delayed-response time task is known to decrease with repeated exposure 

to the task (Williams and Dayan, 2005). Both hypo- and hyper-functioning dopamine 

systems have been reported to result in impulsivity (Sagvolden and Sergeant, 1998; 

Spielewoy et al., 2000; Williams and Dayan, 2005). Dopamine efflux in the PFC of 

NK1R-/- mice is less than 50% that of wildtype control animals (Yan et al., 2010), 

which could be contributing to the impulsive phenotype of the NK1 receptor knockout 

mouse. There is also evidence that an imbalance of serotonin levels (both increased and 

depleted) can lead to impulsivity (Harrison et al., 1997, 1999; Puumala and Sirviö, 

1998; Dalley et al., 2002) and to complicate the picture further an interaction between 

the dopaminergic and serotonergic systems has been postulated to control impulsive 

responding (Harrison et al., 1997). NK1R-/- mice have reduced levels of the 1A subtype 

of the serotonin receptor (Froger et al., 2001), and substance P is abundant in the dorsal 

raphé nucleus (the origin of serotonergic neurons). The firing rate of serotonergic 

neurons in the dorsal raphé in NK1R-/- mice, and wildtype mice acutely pre-treated 

with RP 67580, is significantly higher than in control animals demonstrating direct 

negative regulation of neuronal activity by NK1 receptors (Santarelli et al., 2001).  

 

Disruption of the cholinergic system has also been shown to effect impulsivity, with 

DHβE, an α4β2 nAChR antagonist decreasing impulsive responding in a simpler 

version of the 5-CSRTT (a 3-CSRTT) (Tsutsui-Kimura et al., 2010). Muscarinic 

antagonists also shift behaviour in rats from waiting longer for a larger reward, to 

choosing a small immediate reward in the delay-discounting test (Mendez et al., 2012). 

In a small clinical trial (29 adult participants) the cholinergic agonist (ABT-418) 

performed better than placebo in alleviating the symptoms of ADHD, especially 

attention (Wilens et al., 1999). Patients with Tourette syndrome, another condition that 
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falls under the umbrella of impulse control disorders, have decreased number of 

cholinergic interneurons in the striatum (Kataoka et al., 2010). 

 

Treatment of wildtype mice with the low dose of the NK1 receptor antagonist RP 67580 

increased impulsive responding in the 5-CSRTT to a comparable level of the knockout 

mouse. This suggests a more direct involvement of the NK1 receptor in the modulation 

of impulsive responding, possibly through a decrease in neuronal inhibition of the 

dopaminergic or serotonergic systems at the cortical level or a cholinergic basis at the 

level of the ventral striatum.  

 

8.2.3 Perseveration 
The neurobiology of perseveration, sometimes referred to as compulsivity, overlaps 

with that of attention and impulsivity, as it too involves microcircuitry loops between 

the pre-frontal cortex and the basal ganglia. Monoaminergic corticostriatal circuitry 

plays an important role since lesion of the pre-limbic cortex and medial striatum 

increased perseverative responding but effected no other measures in the 5-CSRTT 

(Chudasama and Muir, 2001; Rogers et al., 2001), while treatment with d-amphetamine 

increased perseveration in a dose dependent manner (Paterson et al., 2011). The 

serotonin system is thought to play an important role in the modulation of perseveration 

since agonist induced activation of 5-HT-1A receptors induced perseverative arm 

choices in the spontaneous alternation test, while increased expression of 5-HT6 in the 

dorsolateral striatum decreases habitual lever pressing (Eskenazi and Neumaier, 2011; 

Rhoads et al., 2012).  The NK1R-/- mice display a robust perseverative phenotype in the 

5-CSRTT, which could be caused by their disrupted monoamine transmission, although 

it is impossible to say specifically which one without further experiments. However 

treatment of wildtype animals with NK1 receptor antagonists did not increase 

perseverative responding, making it unlikely that the action NK1 receptor is involved 

directly in the control of perseveration. When tested in alternative paradigms of 

perseverative behaviour, no difference was observed between wildtype and NK1R-/- 

mice, highlighting that perseveration has discrete subtypes.  
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8.3 Future directions  
 

Although the results presented here have progressed our knowledge into the putative 

role that the NK1 receptor may play in the neurobiological basis of ADHD, there are 

still many unanswered questions that require further experimentation to answer. Firstly 

the key findings from the 5-CSRTT should be replicated either with wildtype and 

NK1R-/- mice from the backcrossed C57/BL6 background colony, or using littermate 

pairs from heterozygous pairings. This would control for the fact that the findings 

reported here are from wildtype and knockout mice, not only on a mixed background 

strain (129/Sv x C57BL/6 x MF1) in which there is a possibility of an interaction 

between the NK1 receptor and the parental strains, but also from colonies that were 

maintained for many generations by homozygous breeding, which may have resulted in 

genetic drift through spontaneous mutations within the separate colonies. 

 

Further tests of impulsivity and perseveration should be conducted to try and narrow-

down the specific impulsive and perseverative phenotype of the NK1 receptor knockout 

mouse. Given the multifaceted nature of both these behaviours, further tests such as the 

stop-signal task, and the Go/No-go and delay-discounting would provide insight into the 

nature of the impulsivity. For example, the impulsive behaviour measured in the 

5-CSRTT is an inability to wait for the cue light to appear, whereas the stop-signal tasks 

measures ability to stop an already initiated response (Dalley et al., 2011). The above 

tests also incorporate measures of perseveration, while another test of perseverative 

behaviour can be measured in a T-maze (previously mentioned in chapter 7). This test 

of perseveration is highly linked with habit formation, which is attributed to the 

circuitry of the basal ganglia, especially the dorsal striatum (Yin and Knowlton, 2006).  

 

Lesion studies would be a viable avenue in which to pursue this project and would 

provide a means to further explore the role of the NK1 receptor in causing disruption of 

monoaminergic transmission. By using a targeted approach to ablate NK1 receptor 

positive cells in discrete brain regions, rather than global disruption of the NK1 receptor 

as in the knockout mouse, or systemic antagonist treatment, the role of the NK1 

receptor can be more precisely elucidated. Despite the all-encompassing data for 

attention, impulsivity and perseveration that can be obtained from the 5-CSRTT, the 

experiments are extremely time consuming taking approximately 6 months to complete. 
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For lesion studies, it would therefore be preferable to find shorter experiments that 

replicate the findings from the 5-CSRTT. Possible target regions for lesions given their 

association with ADHD the NK1 receptor would be the discrete structures of the basal 

ganglia including the pre-frontal cortex, striatum, nucleus accumbens, subthalamic 

nucleus and the substantia nigra. Ablation of NK1 receptor containing neurons in the 

dorsal raphe nucleus and locus coeruleus would provide insight into the role of NK1 

receptor in the modulation of serotonergic and noradrenergic transmission and the role 

these systems play in of the aetiology of the symptoms of ADHD. An NK1 receptor 

specific lesion of the striatum would provide results to further the cholinergic 

hypothesis, although the GABAergic NOS/somatostatin/NPY-positive interneurons in 

the striatum also express NK1 receptors (Kaneko et al., 1994). However it must be 

taken into consideration that lesion studies totally ablate the cells containing the target 

structure, which may disrupt other systems rather than simply disrupting the function of 

the single receptor.  

 

One relatively new field that could be used to further explore the cholinergic hypothesis 

of ADHD is that of optogenetics, where the activity of neurons can be driven or blocked 

by light. Selective inhibition of ChAT interneurons in the nucleus accumbens with high 

temporal precision has the overall effect of increasing MSN activity and blocking 

cocaine conditioning in freely-moving mice (Witten et al., 2010). These findings 

opposed those from chronic ablation of cholinergic interneurons in the NAc which 

reported increased sensitivity to cocaine (Hikida et al., 2001). This further highlights 

that chronic changes such as permanent lesions of cell populations or knockout mice 

can provide opposing results to temporary manipulations such as pharmacological 

treatment or optogenetic control of neuronal firing. (English et al., 2012) have 

conducted optogenetic studies of cholinergic interneurons in the dorsal striatum and 

report that the characteristic pause-excitation firing pattern inhibits the activity of 

MSNs. Simple behavioural paradigms would be required to see if manipulation of NK1 

receptor positive cholinergic interneurons induced or reduced ADHD-like symptoms, of 

which locomotor activity would be the easiest.  
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8.4 Final conclusions 
 

We must not forget that ADHD is not a monogenic disorder and perhaps by trying to 

study all angles of the condition in a knockout mouse of a single gene we may overlook 

the real worth of the model. The NK1R-/- mouse could be considered as a general 

model of impaired impulse control, given its impulsive and perseverative phenotype. 

From this angle it could be used for research into a wider range of disorders including 

obsessive-compulsive disorder, autism, Tourette’s syndrome, addiction, as well as 

ADHD. Broadening the scope in which this valuable knockout mouse could be used 

would benefit the wider scientific community in elucidating the origin of neurological 

disorders that relate to deficits in impulse control.  
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Detailed laboratory protocols 

A1 – General laboratory solutions 

Phosphate buffer (PB) (0.1 M; pH 7.4) 
190 mM NaH2PO4 (BDH Laboratory Supplies, Poole, UK) 

810 mM Na2HPO4 (BDH) 

 

Paraformaldehyde 
4 % paraformaldehyde (BDH) 

0.1 M phosphate buffer 

 

Heparinised saline 
5 IU/ml heparin (CP Pharmaceuticals, Wrexham, UK) 

0.9 % NaCl (Baxter, Lessines, Belgium) 

 

Sucrose with sodium azide 
30 % or 5 % sucrose (BDH) 

0.02 % NaN3 (Sigma-Aldrich, Poole, UK) 

NB: 30 % sucrose is used for cryopreserving whole brains before sectioning; 5 % 

sucrose is used for storing sections prior to immunohistochemistry. 
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A2 – Genotyping with PCR 

PCR solutions 
Alkaline Lysis Reagent 

25mM NaOH 

0.2mM Na2 EDTA 

Ultrapure water (18 MΩ/cm) 

 

Neutralising Reagent 

40 mM Tris-HCl 

Ultrapure water (18 MΩ/cm) 

 

dNTP mix (10 mM) 

10 mM dATP (Promega) 

10 mM dCTP (Promega) 

10 mM dGTP (Promega) 

10 mM dTTP (Promega) 

 

PCR reaction master mix (enough for 20 samples) – keep all reagents on ice during 

preparation 

200µl ultrapure water (18 MΩ) 
51.6µl Taq DNA polymerase buffer (Promega) 
33.3µl 25mM MgCl2 (Promega) 
11.1µl dNTP mix (10 mM) (see above) 
27.5µl NeoF: (0.5µg/µl; Sigma Genosys, Cambridge, UK) 
27.5µl NK1-F: (0.5µg/µl; Sigma Genosys) 
27.5µl NK1-R: (0.5µg/µl; Sigma Genosys) 
2µl Taq DNA polymerase (Promega) – add last 
 

Primer Name Primer Sequence 
NeoF 5’-GCAGCGATCGCCTTCTATC-3’ 
NK1-F 5’-CTGTGGACTCTGATCTCTTCC-3’ 
NK1-R 5’-ACAGCTGTCATGGAGTAGATAC-3’ 
Table A1 Primer sequences used in genotyping of wildtype and NK1 receptor knockout mice 

0.5x TBE buffer 
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30ml 10x Tris-borate-EDTA (National Diagnostics) 

570ml distilled H2O 

 

Running buffer 

500ml 0.5x TBE buffer  

2µl ethidium bromide 

 

DNA extraction from ear clipping 
- Swab the ear to be clipped with ice-cold alcohol 

- Take a tissue sample using a 2mm ear punch 

- Place the sample in a 0.5ml Eppendorf tube and keep on ice  

- Add 75µl of alkaline lysis reagent to each tube and place in a thermocycler (PTC-100 

Programmable Thermal Controller, MJ Research, Boston, USA) at 95°C for 30minutes 

- Allow the samples to cool to 4°C and then add 75µl of neutralising reagent to each 

tube, mix thoroughly  

- The samples can be frozen at this point until the PCR step 

 

NK1 receptor PCR protocol 
- Add 6µl DNA sample to 19µl PCR reaction master mix and mix thoroughly 

- Include extra tubes for wildtype and knockout positive controls and a negative H2O 

control 

- Quickly spin the tubes to draw all the contents to the bottom 

- Place tubes in the PCR temperature cycler and run the NK1 programme (conditions 

outlined in Table A2. 

Step Temperature (°C) Duration (min) 
1 94 5 
2 58 1 
3 72 1 
4 94 1 
5 Cycle 35 times stages 2-4 
6 58 1 
7 72 7 
8 4 Hold 

Table A2 PCR conditions for the amplification of DNA for genotyping of wildtype and NK1 receptor knockout 

mice 



 Appendices 

 
209 

 

Running the gel 
- Add 2g agarose to 100ml running buffer and dissolve in the microwave (do not let it 

boil over) 

- Cool under the tap and add 8µl of ethidium bromide 

- Pour slowly into the gel tray to avoid bubbles, add combs and leave to set 

- Add 2µl of ethidium bromide to the remaining 500ml running buffer and pour into gel 

tank 

- Add 4µl of 5x DNA loading buffer (Bioline, London, UK) to each sample and mix 

well 

- Load 15µl of each sample into the wells 

- Run the gel at 100-120 mV for approximately 1 hour 

- Visualise and photograph under ultraviolet illumination 
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A3 – Immunohistochemistry  
 

Protocol for DAB staining as used in Chapter 3  
 

Preparation of gelatinised slides 
-Dissolve 2.5 g gelatine (BDH) in 500 ml dH2O by heating gently to no more than 

50°C. Add 0.5 g chrome alum (chromic potassium sulphate; Sigma-Aldrich) then filter 

the solution. Dip twin-frost slides in the solution for 30 seconds each and dry overnight. 

 

Tissue preparation 
Cut 40µm coronal sections on a freezing microtome and place into 5% sucrose with 

azide. Staining should be carried out as soon as possible after sectioning. 

 

Solutions for immunohistochemistry 
Blocking solution 

0.1M phosphate buffer 

3% Normal serum from the species in which the secondary antibody was raised  

2% H2O2 to quench endogenous peroxidase activity (not required for fluorescent 

staining) 

0.3% Triton X-100 

  

Tris/Triton buffered saline (TTBS) 

0.05M Tris base 

0.3% Triton X-100 

0.9% NaCl 

 

Primary antibodies concentrations (made up in TTBS) 

Rabbit anti-NK1 receptor 1:5000  

Rat anti-SP 1:200 
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DAB staining 
All steps are carried out on a rocker at room temperature unless otherwise stated 

 

- Select relevant sections and rinse in phosphate buffer to remove residual sucrose 

solution 

- Place the sections in blocking solution for one hour (with normal goat serum for the 

NK1 receptor stain and normal donkey serum for SP stain) 

- Place the sections in primary antibody solutions and either incubate overnight at room 

temperature or for 3 days at 4°C 

- 3 x 10 min washes in 0.1M PB 

- Incubate the sections in biotinylated antibodies (goat anti-rabbit for NK1R and donkey 

anti-rat for SP) at 1:250 made up in TTBS for 90 mins 

- Meanwhile, make up the avidin-biotin complex (ABC) solution using the Vectastain 

kit (Vector laboratories)  
- Mix 1 µl/ml Reagent A (avidin) and 1 µl/ml Reagent B (biotinylated horseradish peroxidase, 

HRP) with 0.1M phosphate buffer and incubate for at least 30 min to allow reaction to take place 

- 3 x 10 min washes in 0.1M PB 

- Incubate the sections with ABC solution for 30 mins 

- 3 x 10 min washes in 0.1M PB 

- Make up DAB solution using the DAB Vectastain kit (Vector Laboratories) 

- Add 2 drops buffer, 4 drops DAB, 2 drops peroxidase and 2 drops nickel to 5 ml dH2O 

- Incubate sections in DAB until a suitable level of staining is achieved, normally within 

3-10 min 

- Stop the reaction with dH2O and transfer to 0.1M phosphate buffer for 5 min 

- Rinse in 0.01M phosphate buffer before mounting onto gelatinised slides and leave to 

air-dry overnight. 

- Dehydrate sections through dH2O, 70% ethanol (twice), 95% ethanol (twice) and 

100% ethanol (twice), dipping the slides for 1 min at each stage 

- Clear in Histoclear (National Diagnostics, Hull, UK) twice for 1 min 

- Coverslip immediately using DPX mounting medium (BDH) 
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A4 – Split VITI data from antagonist 5-CSRTT experiment 
 

Although many significant interactions were found by the 3-way ANOVA analysis (G-

‘genotype’, I-‘ITI split’ and T-‘time’) of the data from the split VITI tests from the 

antagonist experiment in the 5-CSRTT, no new observations (except for a small effect 

of RP 67580 5mg/kg which is discussed in the main results chapter) were drawn out 

that had not yet been previously discussed (such as the dependence of behaviour on ITI 

split (Chapter 5, Section 5.3.3) or the effect of antagonist treatment on behaviour in the 

VITI test (Chapter 6, Section 6.3.2.2).  

 

 
Figure A.1 Total number of trials. Main G*I*T interaction (F(6.6,131.2)=2.88, P<0.01). RP-10 reduced the 
number of trials completed at 2 and 5s ITI splits. Fewer trials completed at the longer ITI splits than for 
shorter ITI times. This is discussed in section 5.3.3 of the thesis. WT – wildtype, KO – NK1R-/-. **P<0.01 
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Figure A.2 Percentage accuracy. Treatment nor genotype had any effect on percentage accuracy. A main 
effect of ITI split revealed both genotypes were more accurate at the 5s ITI than 15s.  

 

 

 

 
Figure A.3 Percentage omissions. A significant G*I*T interaction (F(6.0,120.2)=2.51, P<0.05). RP-10 increased 
omissions in both wildtype and knockout mice at the shorter ITI splits but not in the longer ITI splits. More 
genotype differences were observed at the longest ITI split of 15s. WT – wildtype, KO – NK1R-/-. *P<0.05, 
**P<0.01. Black bar between columns represents a significant P value of <0.05 at least. 
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Figure A.4 Latency to correct response. Main I*T interaction (F(2.1,40.4)=4.3, P<0.05). Antagonist treatment 
only had significant effects at the shorter ITI splits. WT – wildtype, KO – NK1R-/-. *P<0.05, **P<0.01.  

 

 

 

 
Figure A.5 Latency to magazine. Main effect of ITI (F(1.7,32.2)=8.2, P<0.01) and a G*T interaction (F(3.0,56.2)=4.2, 
P<0.01) reveal that RP-10 increased the latency to collect the reward at all ITI splits. WT – wildtype, KO – 
NK1R-/-. *P<0.05, **P<0.01, ***P<0.001. Black bar between columns represents a significant P value of <0.05 
at least. 
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Figure A.6 Perseverative responses. Main G*I interaction (F(1.8,36.5)=13.5, P<0.05). More perseverative 
responses are made at the shorter ITI splits because more trials are completed at these splits (see section 5.3.3). 
Black bar between columns represents a significant P value of <0.05 at least. 

 

 

 


