p-adic L-functions of automorphic forms

Holger Deppe

Dissertation zur Erlangung des Doktorgrads der Fakultät für Mathematik, Universität Bielefeld

vorgelegt im August 2013

Contents

1	Preliminaries			
	1.1	p-adic measures		
2	Local results for representations with arbitrary central character			
	2.1	Gauss sums		
	2.2	Tamely ramified representations of $\operatorname{GL}_2(F)$		
	2.3	The Bruhat-Tits graph $\tilde{\mathcal{T}}$		
	2.4	Hecke structure of $\tilde{\mathcal{T}}$		
	2.5	Distributions on $\tilde{\mathcal{T}}$		
	2.6	Local distributions		
	2.7	Semi-local theory		
3	Cohomology classes and global measures			
	3.1	Definitions	-	
	3.2	Global measures	4	
	3.3	Integral cohomology classes		
4	<i>p</i> -adic L-functions of automorphic forms			
	4.1	Upper half-space		
	4.2	Automorphic forms		
	4.3	Cohomology of $\operatorname{GL}_2(F)$		
	4.4	Eichler-Shimura map		
	4.5	Whittaker model		
			2	

Introduction

Let F be a number field (with adele ring \mathbb{A}_F), and p a prime number. Let $\pi = \bigotimes_v \pi_v$ be an automorphic representation of $\operatorname{GL}_2(\mathbb{A}_F)$. Attached to π is the automorphic L-function $L(s,\pi)$, for $s \in \mathbb{C}$, of Jacquet-Langlands [JL]. Under certain conditions on π , we can also define a p-adic L-function $L_p(s,\pi)$ of π , with $s \in \mathbb{Z}_p$. It is related to $L(s,\pi)$ by the *interpolation property*: For every character $\chi : \mathcal{G}_p \to \mathbb{C}^*$ of finite order we have

$$L_p(0,\pi\otimes\chi)=\tau(\chi)\prod_{\mathfrak{p}\mid p}e(\pi_{\mathfrak{p}},\chi_{\mathfrak{p}})\cdot L(\frac{1}{2},\pi\otimes\chi),$$

where $e(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}})$ is a certain Euler factor (see theorem 4.12 for its definition) and $\tau(\chi)$ is the Gauss sum of χ .

 $L_p(s,\pi)$ was defined by Haran [Har] in the case where π has trivial central character and $\pi_{\mathfrak{p}}$ is a spherical principal series representation for all $\mathfrak{p}|p$. For a totally real field F, Spieß [Sp] has given a new construction of $L_p(s,\pi)$ that also allows for $\pi_{\mathfrak{p}}$ to be a special (Steinberg) representation for some $\mathfrak{p}|p$.

Here, we generalize Spieß' construction of $L_p(s, \pi)$ to automorphic representations π over any number field, with arbitrary central character. As in [Sp], we will assume that π is ordinary at all primes $\mathfrak{p}|p$ (cf. definition 2.5), that π_v is discrete of weight 2 at all real infinite places v, and a similar condition at the complex places.

Throughout most of this thesis, we follow [Sp]; for section 4.1, we follow Bygott [By], Ch. 4.2, who in turn follows Weil [We].

We define the *p*-adic L-function of π as an integral of the *p*-adic cyclotomic character \mathcal{N} with respect to a certain measure μ_{π} on the Galois group \mathcal{G}_p of the maximal abelian extension that is unramified outside *p* and ∞ , specifically

$$L_p(s,\pi) := \int_{\mathcal{G}_p} \mathcal{N}(\gamma)^s \mu_{\pi}(d\gamma)$$

(cf. section 4.6 for details). Heuristically, μ_{π} is the image of $\mu_{\pi_{\mathfrak{p}}} \times W^p \begin{pmatrix} x^p & 0 \\ 0 & 1 \end{pmatrix} d^{\times} x^p$ under the reciprocity map $\mathbb{I}_F = F_p^* \times \mathbb{I}^p \to \mathcal{G}_p$ of global class field theory. Here $\mu_{\pi_p} = \prod_{\mathfrak{p}|p} \mu_{\pi_{\mathfrak{p}}}$ is the product of certain local distributions $\mu_{\pi_{\mathfrak{p}}}$ on $F_{\mathfrak{p}}^*$ attached to $\pi_{\mathfrak{p}}$, $d^{\times} x^p$ is the Haar measure on the group $\mathbb{I}^p = \prod_{v \nmid p}' F_v^*$ of *p*-ideles, and $W^p = \prod_{v \nmid p} W_v$ is a specific Whittaker function of $\pi^p := \bigotimes_{v \nmid p} \pi_v$.

The structure of this work is the following: In chapter 2, we describe the local distributions μ_{π_p} on F_p^* ; they are the image of a Whittaker functional under a map δ on the dual of π_p . For constructing δ , we describe π_p in terms of what we call the "Bruhat-Tits graph" of F_p^2 : the directed graph whose vertices (resp. edges) are the lattices of F_p^2 (resp. inclusions between lattices). Roughly speaking, it is a covering of the (directed) Bruhat-Tits tree of $\operatorname{GL}_2(F_p)$ with fibres $\cong \mathbb{Z}$. When π_p is the Steinberg representation, μ_p can actually be extended to all of F_p .

In chapter 3, we attach a *p*-adic distribution μ_{ϕ} to any map $\phi(U, x^p)$ of an open compact subset $U \subseteq F_p^* := \prod_{\mathfrak{p}|p} F_{\mathfrak{p}}^*$ and an idele $x^p \in \mathbb{I}^p$ (satisfying certain conditions). Integrating ϕ over all the infinite places, we get a cohomology class $\kappa_{\phi} \in H^d(F^{*'}, \mathcal{D}_f(\mathbb{C}))$ (where d = r + s - 1 is the rank of the group of units of $F, F^{*'} \cong F^*/\mu_F$ is a maximal torsion-free subgroup of F^* , and $\mathcal{D}_f(\mathbb{C})$ is a space of distributions on the finite ideles of F). We show that μ_{ϕ} can be described solely in terms of κ_{ϕ} , and μ_{ϕ} is a (vector-valued) *p*-adic measure if κ_{ϕ} is "integral", i.e. if it lies in the image of $H^d(F^{*'}, \mathcal{D}_f(R))$, for a Dedekind ring R consisting of "*p*-adic integers".

In chapter 4, we define a map ϕ_{π} by

$$\phi_{\pi}(U, x^p) := \sum_{\zeta \in F^*} \mu_{\pi_p}(\zeta U) W^p \begin{pmatrix} \zeta x^p & 0\\ 0 & 1 \end{pmatrix}$$

 $(U \subseteq F_p^* \text{ compact open}, x^p \in \mathbb{I}^p)$. ϕ_{π} satisfies the conditions of chapter 3, and we show that $\kappa_{\phi_{\pi}}$ is integral by "lifting" the map $\phi_{\pi} \mapsto \kappa_{\phi_{\pi}}$ to a function mapping an automorphic form to a cohomology class in $H^d(\mathrm{GL}_2(F)^+, \mathcal{A}_f)$, for a certain space of functions \mathcal{A}_f . (Here $\mathrm{GL}_2(F)^+$ is the subgroup of $M \in \mathrm{GL}_2(F)$ with totally positive determinant.) For this, we associate to each automorphic form φ a harmonic form ω_{φ} on a generalized upper-half space \mathcal{H}_{∞} , which we can integrate between any two cusps in $\mathbb{P}^1(F)$.

Then we can define the *p*-adic L-function $L_p(s,\pi) := \int_{\mathcal{G}_p} \mathcal{N}(\gamma)^s \mu_{\pi}(d\gamma)$ as above, with $\mu_{\pi} := \mu_{\phi_{\pi}}$. By a result of Harder [Ha], $H^d(\mathrm{GL}_2(F)^+, \mathcal{A}_f)_{\pi}$ is one-dimensional, which implies that $L_p(s,\pi)$ has values in a one-dimensional \mathbb{C}_p -vector space.

Our construction has the following potential application: If E is a modular elliptic curve over F corresponding to π (i.e. the local L-factors of the Hasse-Weil L-function L(E, s) and of the automorphic L-function $L(s - \frac{1}{2}, \pi)$ coincide at all places v of F), we define the p-adic L-function of E as $L_p(E, s) := L_p(s, \pi)$. The condition that π be ordinary at all $\mathfrak{p}|p$ means that E must have good ordinary or multiplicative reduction at all places $\mathfrak{p}|p$ of F.

The exceptional zero conjecture (formulated by Mazur, Tate and Teitelbaum [MTT] for $F = \mathbb{Q}$, and by Hida [Hi] for totally real F) states that

$$\operatorname{ord}_{s=0} L_p(E, s) \ge n, \tag{0.1}$$

where *n* is the number of $\mathfrak{p}|p$ at which *E* has split multiplicative reduction, and gives an explicit formula for the value of the *n*-th derivative $L_p^{(n)}(E,0)$ as a multiple of L(E,1). The conjecture was proved in the case $F = \mathbb{Q}$ by Greenberg and Stevens [GS] and independently by Kato, Kurihara and Tsuji.

In [Sp], Spieß has used his new construction of $L_p(E, s) := L_p(s, \pi)$ to prove the conjecture for all totally real number fields F. Our generalization of $L_p(s, \pi)$ might therefore be well-suited for proving the conjecture for general F.

Acknowledgements. I would like to thank Michael Spieß for suggesting and advising this thesis, and for many helpful discussions. I am also thankful to Werner Hoffmann for a useful discussion, and to the CRC 701, 'Spectral Structures and Topological Methods in Mathematics', for providing financial support during most of my studies.

1 Preliminaries

Let \mathcal{X} be a totally disconnected locally compact topological space, R a topological Hausdorff ring. We denote by $C(\mathcal{X}, R)$ the ring of continuous maps $\mathcal{X} \to R$, and let $C_c(\mathcal{X}, R) \subseteq C(\mathcal{X}, R)$ be the subring of compactly supported maps. When R has the discrete topology, we also write $C^0(\mathcal{X}, R) := C(\mathcal{X}, R), C_c^0(\mathcal{X}, R) := C_c(\mathcal{X}, R)$.

We denote by $\mathfrak{Co}(\mathcal{X})$ the set of all compact open subsets of \mathcal{X} , and for an R-module M we denote by $\text{Dist}(\mathcal{X}, M)$ the R-module of M-valued distributions on \mathcal{X} , i.e. the set of maps $\mu : \mathfrak{Co}(\mathcal{X}) \to M$ such that $\mu(\bigcup_{i=1}^{n} U_i) = \sum_{i=1}^{n} \mu(U_i)$ for any pairwise disjoint sets $U_i \in \mathfrak{Co}(\mathcal{X})$.

For an open set $H \subseteq \mathcal{X}$, we denote by $1_H \in C(\mathcal{X}, R)$ the *R*-valued indicator function of *H* on \mathcal{X} .

Throughout this paper, we fix a prime p and embeddings $\iota_{\infty} : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}, \iota_p : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}_p$. Let $\overline{\mathcal{O}}$ denote the valuation ring of $\overline{\mathbb{Q}}$ with respect to the p-adic valuation induced by ι_p .

We write $G := \operatorname{GL}_2$ throughout the thesis, and let *B* denote the Borel subgroup of upper triangular matrices, *T* the maximal torus (consisting of all diagonal matrices), and *Z* the center of *G*.

For a number field F, we let $G(F)^+ \subseteq G(F)$ and $B(F)^+ \subseteq B(F)$ denote the corresponding subgroups of matrices with totally positive determinant, i.e. $\sigma(\det(g))$ is positive for each real embedding $\sigma: F \hookrightarrow \mathbb{R}$. (If F is totally complex, this is an empty condition, so we have $G(F)^+ = G(F)$, $B(F)^+ = B(F)$ in this case.) Similarly, we define $G(\mathbb{R})^+$ and $G(\mathbb{C})^+ = G(\mathbb{C})$.

1.1 *p*-adic measures

Definition 1.1. Let \mathcal{X} be a compact totally disconnected topological space. For a distribution $\mu : \mathfrak{Co}(\mathcal{X}) \to \mathbb{C}$, consider the extension of μ to the \mathbb{C}_p -linear map $C^0(\mathcal{X}, \mathbb{C}_p) \to \mathbb{C}_p \otimes_{\overline{\mathbb{Q}}} \mathbb{C}, f \mapsto \int f d\mu$. If its image is a finitely-generated \mathbb{C}_p -vector space, μ is called a *p*-adic measure.

We denote the space of *p*-adic measures on \mathcal{X} by $\text{Dist}^b(\mathcal{X}, \mathbb{C}) \subseteq \text{Dist}(\mathcal{X}, \mathbb{C})$. It is easily seen that μ is a *p*-adic measure if and only if the image of μ , considered as a map $C^0(\mathcal{X}, \mathbb{Z}) \to \mathbb{C}$, is contained in a finitely generated $\overline{\mathcal{O}}$ -module. A *p*-adic measure can be integrated against any continuous function $f \in C(\mathcal{X}, \mathbb{C}_p)$.

2 Local results for representations with arbitrary central character

For this chapter, let F be a finite extension of \mathbb{Q}_p , \mathcal{O}_F its ring of integers, ϖ its uniformizer and $\mathfrak{p} = (\varpi)$ the maximal ideal. Let q be the cardinality of $\mathcal{O}_F/\mathfrak{p}$, and set $U := U^{(0)} := \mathcal{O}_F^{\times}$, $U^{(n)} := 1 + \mathfrak{p}^n \subseteq U$ for $n \geq 1$.

We fix an additive character $\psi: F \to \overline{\mathbb{Q}}^*$ with ker $\psi = \mathcal{O}_F$. We let $|\cdot|$ be the absolute value on F^* (normalized by $|\varpi| = q^{-1}$), ord $= \operatorname{ord}_{\varpi}$ the additive valuation, and dx the Haar measure on F normalized by $\int_{\mathcal{O}_F} dx = 1$. We define a (Haar) measure on F^* by $d^{\times}x := \frac{q}{q-1}\frac{dx}{|x|}$ (so $\int_{\mathcal{O}_F} d^{\times}x = 1$).

2.1 Gauss sums

Recall that the *conductor* of a character $\chi : F^* \to \mathbb{C}^*$ is by definition the largest ideal \mathfrak{p}^n , $n \geq 0$, such that ker $\chi \supseteq U^{(n)}$, and that χ is *unramified* if its conductor is $\mathfrak{p}^0 = \mathcal{O}_F$.

We will need the following two easy lemmas of [Sp]:

Lemma 2.1. Let $X \subseteq \{x \in F^* | \operatorname{ord}(x) \leq -2\}$ be a compact open subset such that $aU^{(-\operatorname{ord}(a)-1)} \subseteq X$ for all $a \in X$. Then

$$\int_X \psi(x) d^{\times} x = 0.$$

(cf. [Sp], lemma 3.1)

Lemma 2.2. Let $\chi : F^* \to \mathbb{C}^*$ be a quasicharacter of conductor \mathfrak{p}^f , $f \ge 1$, and let $a \in F^*$ with $\operatorname{ord}(a) \neq -f$. Then we have

$$\int_U \psi(ax)\chi(x)d^{\times}x = 0.$$

(cf. [Sp], lemma 3.2)

Definition 2.3. Let $\chi : F^* \to \mathbb{C}^*$ be a quasi-character with conductor \mathfrak{p}^f . The *Gauss sum* of χ (with respect to ψ) is defined by

$$\tau(\chi) := [U:U^{(f)}] \int_{\varpi^{-f}U} \psi(x)\chi(x)d^{\times}x.$$

For a locally constant function $g: F^* \to \mathbb{C}$, we define

$$\int_{F^*} g(x) dx := \lim_{n \to \infty} \int_{x \in F^*, -n \le \operatorname{ord}(x) \le n} g(x) dx,$$

whenever that limit exists. Then we have the following formula:

Lemma 2.4. Let $\chi : F^* \to \mathbb{C}^*$ be a quasi-character with conductor \mathfrak{p}^f . For f = 0, assume $|\chi(\varpi)| < q$. Then we have

$$\int_{F^*} \chi(x)\psi(x)dx = \begin{cases} \frac{1-\chi(\varpi)^{-1}}{1-\chi(\varpi)q^{-1}} & \text{if } f = 0\\ \tau(\chi) & \text{if } f > 0. \end{cases}$$

Proof. (cf. [Sp], lemma 3.4) For $a \in F^*$, we have

$$\int_{U} \psi(ax) d^{\times} x = \begin{cases} 1, & \text{if } \operatorname{ord}(a) \ge 0\\ -\frac{1}{q-1}, & \text{if } \operatorname{ord}(a) = -1\\ 0, & \text{if } \operatorname{ord}(a) \le -2 \end{cases}$$
(by lemma 2.1). (2.1)

Since $d^{\times}x = \frac{dx}{(1-1/q)|x|}$, this implies

$$\int_{F^*} \chi(x)\psi(x)dx = \sum_{n=-\infty}^{\infty} (1 - 1/q)q^{-n} \int_{\varpi^n U} \chi(x)\psi(x)d^{\times}x.$$

For f > 0, all summands except the (-f)th are zero by lemma 2.2, thus we have

$$\int_{F^*} \chi(x)\psi(x)dx = (1-1/q)q^f \int_{\varpi^{-f}U} \chi(x)\psi(x)d^{\times}x = \tau(\chi)$$

by the definition of τ (since $[U: U^{(f)}] = (1 - 1/q)q^f$). For f = 0, we have by (2.1)

$$\begin{split} \int_{F^*} \chi(x)\psi(x)dx &= (1-1/q)\left(-\frac{q}{(q-1)\chi(\varpi)} + \sum_{n=0}^{\infty} (\chi(\varpi)q^{-1})^n\right) \\ &= -\frac{1}{\chi(\varpi)} + \frac{1-1/q}{1-\chi(\varpi)q^{-1}} \quad (\text{since } |\chi(\varpi)| < q) \\ &= \frac{1-\chi(\varpi)^{-1}}{1-\chi(\varpi)q^{-1}}. \end{split}$$

2.2 Tamely ramified representations of $GL_2(F)$

For an ideal $\mathfrak{a} \subset \mathcal{O}_F$, let $K_0(\mathfrak{a}) \subseteq G(\mathcal{O}_F)$ be the subgroup of matrices congruent to an upper triangular matrix modulo \mathfrak{a} .

Let $\pi : \operatorname{GL}_2(F) \to \operatorname{GL}(V)$ be an irreducible admissible infinite-dimensional representation (where V is a \mathbb{C} -vector space), with central quasicharacter χ . It is well-known (e.g [Ge], Thm. 4.24) that there exists a maximal ideal $\mathfrak{c}(\pi) = \mathfrak{c} \subset \mathcal{O}_F$, the *conductor* of π , such that the space $V^{K_0(\mathfrak{c}),\chi} = \{v \in V | \pi(g)v = \chi(a)v \; \forall g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K_0(\mathfrak{c}) \}$ is non-zero (and in fact one-dimensional). A representation π is called *tamely ramified* if its conductor divides \mathfrak{p} .

If π is tamely ramified, then π is the spherical resp. special representation $\pi(\chi_1, \chi_2)$ (in the notation of [Ge] or [Sp]):

If the conductor is \mathcal{O}_F , π is (by definition) spherical and hence a principal series representation $\pi(\chi_1, \chi_2)$ for two unramified quasi-characters χ_1 and χ_2 with $\chi_1 \chi_2^{-1} \neq |\cdot|^{\pm 1}$ ([Bu], Thm. 4.6.4).

If the conductor is \mathfrak{p} , then $\pi = \pi(\chi_1, \chi_2)$ with $\chi_1 \chi_2^{-1} = |\cdot|^{\pm 1}$.

For $\alpha \in \mathbb{C}^*$, we define a character $\chi_{\alpha} : F^* \to \mathbb{C}^*$ by $\chi_{\alpha}(x) := \alpha^{\operatorname{ord}(x)}$.

So let now $\pi = \pi(\chi_1, \chi_2)$ be a tamely ramified irreducible admissible infinitedimensional representation of $\operatorname{GL}_2(F)$; in the special case, we assume χ_1 and χ_2 to be ordered such that $\chi_1 = |\cdot|\chi_2$.

Set $\alpha_i := \chi_i(\varpi)\sqrt{q} \in \mathbb{C}^*$ for i = 1, 2. (We also write $\pi = \pi_{\alpha_1,\alpha_2}$ sometimes.) Set $a := \alpha_1 + \alpha_2, \nu := \alpha_1 \alpha_2/q$. Define a distribution $\mu_{\alpha_1,\nu} := \mu_{\alpha_1/\nu} := \psi(x)\chi_{\alpha_1/\nu}(x)dx$ on F^* .

For later use, we will need the following condition on the α_i :

Definition 2.5. $\pi = \pi_{\alpha_1,\alpha_2}$ is called *ordinary* if a and ν both lie in $\overline{\mathcal{O}}^*$ (i.e. they are *p*-adic units in $\overline{\mathbb{Q}}$). Equivalently, this means that either $\alpha_1 \in \overline{\mathcal{O}}^*$ and $\alpha_2 \in q\overline{\mathcal{O}}^*$, or vice versa.

Proposition 2.6. Let $\chi : F^* \to \mathbb{C}^*$ be a quasi-character with conductor \mathfrak{p}^f ; for f = 0, assume $|\chi(\varpi)| < |\alpha_2|$. Then the integral $\int_{F^*} \chi(x) \mu_{\alpha_1/\nu}(dx)$ converges and we have

$$\int_{F^*} \chi(x) \mu_{\alpha_1/\nu}(dx) = e(\alpha_1, \alpha_2, \chi) \tau(\chi) L(\frac{1}{2}, \pi \otimes \chi),$$

where

$$e(\alpha_1, \alpha_2, \chi) = \begin{cases} \frac{(1 - \alpha_1 \chi(\varpi) q^{-1})(1 - \alpha_2 \chi(\varpi)^{-1} q^{-1})(1 - \alpha_2 \chi(\varpi) q^{-1})}{(1 - \chi(\varpi) \alpha_2^{-1})}, & f = 0 \text{ and } \pi \text{ spherical,} \\ \frac{(1 - \alpha_1 \chi(\varpi) q^{-1})(1 - \alpha_2 \chi(\varpi)^{-1} q^{-1})}{(1 - \chi(\varpi) \alpha_2^{-1})}, & f = 0 \text{ and } \pi \text{ special,} \\ \frac{(1 - \alpha_1 \chi(\varpi) q^{-1})(1 - \alpha_2 \chi(\varpi)^{-1} q^{-1})}{(1 - \chi(\varpi) \alpha_2^{-1})}, & f > 0, \end{cases}$$

and where we assume the right-hand side to be continuously extended to the potential removable singularities at $\chi(\varpi) = q/\alpha_1$ or $= q/\alpha_2$.

Proof. Case 1: $f = 0, \pi$ spherical We have

$$L(s,\pi\otimes\chi) = \frac{1}{\left(1 - \alpha_1\chi(\varpi)q^{-\left(s+\frac{1}{2}\right)}\right)\left(1 - \alpha_2\chi(\varpi)q^{-\left(s+\frac{1}{2}\right)}\right)},$$

 \mathbf{SO}

$$L(\frac{1}{2}, \pi \otimes \chi) \cdot \tau(\chi) \cdot e(\alpha_1, \alpha_2, \chi) = \frac{1 - \alpha_2 q^{-1} \chi(\varpi)^{-1}}{1 - \chi(\varpi) \alpha_2^{-1}}$$
$$= \frac{1 - \nu \alpha_1^{-1} \chi(\varpi)^{-1}}{1 - \alpha_1 \chi(\varpi) \nu^{-1} q^{-1}}$$
$$= \int_{F^*} \chi(x) \chi_{\alpha_1/\nu}(x) \psi(x) dx$$
$$= \int_{F^*} \chi(x) \mu_{\alpha_1/\nu}(dx)$$

by lemma 2.4.

Case 2: $f = 0, \pi$ special Assuming $\chi_1 = |\cdot|\chi_2$, we have

$$L(s,\pi\otimes\chi) = \frac{1}{1-\alpha_1\chi(\varpi)q^{-\left(s+\frac{1}{2}\right)}}$$

and thus

$$L(\frac{1}{2}, \pi \otimes \chi) \cdot \tau(\chi) \cdot e(\alpha_1, \alpha_2, \chi) = \frac{1 - \nu \alpha_1^{-1} \chi(\varpi)^{-1}}{1 - \alpha_1 \nu^{-1} \chi(\varpi) q^{-1}}$$
$$= \int_{F^*} \chi(x) \chi_{\alpha_1/\nu}(x) \psi(x) dx$$
$$= \int_{F^*} \chi(x) \mu_{\alpha_1/\nu}(dx).$$

by lemma 2.4.

Case 3: f > 0In this case, $L(s, \pi \otimes \chi) = 1$ for s > 0 and

$$\int_{F^*} \chi(x) \mu_{\alpha_1/\nu}(dx) = \tau(\chi \cdot \chi_{\alpha_1/\nu})$$

$$= q^{f-1}(q-1) \int_{\varpi^{-f_U}} \psi(x) \chi(x) \chi_{\alpha_1/\nu}(x) d^{\times} x$$

$$= (\alpha_1/\nu)^{-f} q^{f-1}(q-1) \int_{\varpi^{-f_U}} \psi(x) \chi(x) d^{\times} x$$

$$= e(\alpha_1, \alpha_2, \chi) \cdot \tau(\chi) \cdot L(\frac{1}{2}, \pi \otimes \chi).$$

2.3 The Bruhat-Tits graph $\tilde{\mathcal{T}}$

Let $\tilde{\mathcal{V}}$ denote the set of lattices (i.e. submodules isomorphic to \mathcal{O}_F^2) in F^2 , and let $\tilde{\mathcal{E}}$ be the set of all inclusion maps between two lattices; for such a map $e: v_1 \hookrightarrow v_2$ in $\tilde{\mathcal{E}}$, we define $o(e) := v_1, t(e) := v_2$. Then the pair $\tilde{\mathcal{T}} := (\tilde{\mathcal{V}}, \tilde{\mathcal{E}})$ is naturally a directed graph, connected, with no directed cycles (specifically, $\tilde{\mathcal{E}}$ induces a partial ordering on $\tilde{\mathcal{V}}$). For each $v \in \tilde{\mathcal{V}}$, there are exactly q + 1 edges beginning (resp. ending) in v, each.

Recall that the Bruhat-Tits tree $\mathcal{T} = (\mathcal{V}, \vec{\mathcal{E}})$ of G(F) is the directed graph whose vertices are homothety classes of lattices of F^2 (i.e. $\mathcal{V} = \tilde{\mathcal{V}} / \sim$, where $v \sim \varpi^i v$ for all $i \in \mathbb{Z}$), and the directed edges $\overline{e} \in \vec{\mathcal{E}}$ are homothety classes of inclusions of lattices. We can define maps $o, t : \vec{\mathcal{E}} \to \mathcal{V}$ analogously. For each edge $\overline{e} \in \vec{\mathcal{E}}$, there is an opposite edge $\overline{e}' \in \vec{\mathcal{E}}$ with $o(\overline{e}') = t(\overline{e}), t(\overline{e}') = o(\overline{e})$; and the undirected graph underlying \mathcal{T} is simply connected. We have a natural "projection map" $\pi : \tilde{\mathcal{T}} \to \mathcal{T}$, mapping each lattice and each homomorphism to its homothety class. Choosing a (set-theoretic) section $s : \mathcal{V} \to \tilde{\mathcal{V}}$, we get a bijection $\mathcal{V} \times \mathbb{Z} \xrightarrow{\cong} \tilde{\mathcal{V}}$ via $(v, i) \mapsto \varpi^i s(v)$. The group G(F) operates on $\tilde{\mathcal{V}}$ via its standard action on F^2 , i.e. $gv = \{gx | x \in v\}$ for $g \in G(F)$, and on $\tilde{\mathcal{E}}$ by mapping $e : v_1 \to v_2$ to the inclusion map $ge : gv_1 \to gv_2$. The stabilizer of the standard vertex $v_0 := \mathcal{O}_F^2$ is $G(\mathcal{O}_F)$.

For a directed edge $\overline{e} \in \overline{\mathcal{E}}$ of the Bruhat-Tits tree \mathcal{T} , we define $U(\overline{e})$ to be the set of ends of \overline{e} (cf. [Se1]/[Sp]); it is a compact open subset of $\mathbb{P}^1(F)$, and we have $gU(\overline{e}) = U(g\overline{e})$ for all $g \in G(F)$.

For $n \in \mathbb{Z}$, we set $v_n := \mathcal{O}_F \oplus \mathfrak{p}^n \in \mathcal{V}$, and denote by e_n the edge from v_{n+1} to v_n ; the "decreasing" sequence $(\pi(e_{-n}))_{n\in\mathbb{Z}}$ is the geodesic from ∞ to 0. (The geodesic from 0 to ∞ traverses the $\pi(v_n)$ in the natural order of $n \in \mathbb{Z}$.) We have $U(\pi(e_n)) = \mathfrak{p}^{-n}$ for each n.

Now (following [BL] and [Sp]), we can define a "height" function $h : \mathcal{V} \to \mathbb{Z}$ as follows: The geodesic ray from $v \in \mathcal{V}$ to ∞ must contain some $\pi(v_n)$ $(n \in \mathbb{Z})$, since it has non-empty intersection with $A := \{\pi(v_n) | n \in \mathbb{Z}\}$; we define h(v) := $n - d(v, \pi(v_n))$ for any such v_n ; this is easily seen to be well-defined, and we have $h(\pi(v_n)) = n$ for all $n \in \mathbb{Z}$. We have the following lemma of [Sp]:

Lemma 2.7. (a) For all $\overline{e} \in \mathcal{E}$, we have

$$h(t(\overline{e})) = \begin{cases} h(o(\overline{e})) + 1 & \text{if } \infty \in U(\overline{e}), \\ h(o(\overline{e})) - 1 & \text{otherwise.} \end{cases}$$

(b) For $a \in F^*$, $b \in F$, $\overline{v} \in \mathcal{V}$ we have

$$h\left(\begin{pmatrix}a&b\\0&1\end{pmatrix}\overline{v}\right) = h(\overline{v}) - \operatorname{ord}_{\overline{\omega}}(a).$$

Proof. (cf. [Sp], Lemma 3.6)

(a) is clear from the definition of h. For (b) we can assume $\overline{v} = \pi(v_0) =: \overline{v_0}$ since $B'(F) := \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} | a \in F^*, b \in F \}$ operates transitively on \mathcal{V} . Put $\overline{e} := \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \pi(e_0)$; since $U(\overline{e}) = a\mathcal{O}_F + b$ does not contain ∞ , we have

$$h\left(\begin{pmatrix}a&b\\0&1\end{pmatrix}\overline{v_0}\right) = h(t(\overline{e})) = h(o(\overline{e})) - 1 = h\left(\begin{pmatrix}a\overline{\omega}^{-1}&b\\0&1\end{pmatrix}\overline{v_0}\right) - 1.$$

If $b \neq 0$, we can iterate this n times such that $\operatorname{ord}(a\varpi^{-n}) \geq \operatorname{ord} b$ and get

$$h\left(\begin{pmatrix}a&b\\0&1\end{pmatrix}\overline{v_0}\right) = h\left(\begin{pmatrix}a\overline{\omega}^{-n}&b\\0&1\end{pmatrix}\overline{v_0}\right) - n = h\left(\begin{pmatrix}a\overline{\omega}^{-n}&0\\0&1\end{pmatrix}\overline{v_0}\right) - n$$
$$= h\left(\begin{pmatrix}a&0\\0&1\end{pmatrix}\overline{v_0}\right) = h(\pi(v_{-\operatorname{ord}(a)})) = -\operatorname{ord}(a).$$

2.4 Hecke structure of $\tilde{\mathcal{T}}$

Let R be a ring, M an R-module. We let $C(\tilde{\mathcal{V}}, M)$ be the R-module of maps $\phi : \tilde{\mathcal{V}} \to M$, and $C(\tilde{\mathcal{E}}, M)$ the R-module of maps $\tilde{\mathcal{E}} \to M$. Both are G(F)-modules via $(g\phi)(v) := \phi(g^{-1}v), (gc)(e) := c(g^{-1}e).$

We let $\mathcal{C}_c(\tilde{\mathcal{V}}, M) \subseteq C(\tilde{\mathcal{V}}, M)$ and $\mathcal{C}_c(\tilde{\mathcal{E}}, M) \subseteq C(\tilde{\mathcal{E}}, M)$ be the (G(F)-stable) submodules of maps with compact support, i.e. maps that are zero outside a finite set. We get pairings

$$\langle -, - \rangle : C_c(\tilde{\mathcal{V}}, R) \times C(\tilde{\mathcal{V}}, M) \to M, \quad \langle \phi_1, \phi_2 \rangle := \sum_{v \in \tilde{\mathcal{V}}} \phi_1(v) \phi_2(v)$$
 (2.2)

and

$$\langle -, - \rangle : C_c(\tilde{\mathcal{E}}, R) \times C(\tilde{\mathcal{E}}, M) \to M, \quad \langle c_1, c_2 \rangle := \sum_{e \in \tilde{\mathcal{E}}} c_1(v) c_2(v).$$
 (2.3)

We define Hecke operators $T, \mathcal{R} : \mathcal{C}(\tilde{\mathcal{V}}, M) \to \mathcal{C}(\tilde{\mathcal{V}}, M)$ by

$$T\phi(v) = \sum_{t(e)=v} \phi(o(e))$$
 and $\mathcal{R}\phi := \varpi\phi$ (i.e. $\mathcal{R}\phi(v) = \phi(\varpi^{-1}v)$)

for all $v \in \tilde{\mathcal{V}}$. These restrict to operators on $C_c(\tilde{\mathcal{V}}, R)$, which we sometimes denote by T_c and \mathcal{R}_c for emphasis. With respect to (2.2), T_c is adjoint to $T\mathcal{R}$, and \mathcal{R}_c is adjoint to its inverse operator $\mathcal{R}^{-1} : \mathcal{C}_c(\tilde{\mathcal{V}}, R) \to C_c(\tilde{\mathcal{V}}, R)$.

T and \mathcal{R} obviously commute, and we have the following Hecke structure theorem on compactly supported functions on $\tilde{\mathcal{V}}$ (an analogue of [BL], Thm. 10):

Theorem 2.8. $C_c(\tilde{\mathcal{V}}, R)$ is a free $R[T, \mathcal{R}^{\pm 1}]$ -module (where $R[T, \mathcal{R}^{\pm 1}]$ is the ring of Laurent series in \mathcal{R} over the polynomial ring R[T], with \mathcal{R} and T commuting).

Proof. Fix a vertex $v_0 \in \tilde{\mathcal{V}}$. For each $n \geq 0$, let C_n be the set of vertices $v \in \tilde{\mathcal{V}}$ such that there is a directed path of length n from v_0 to v in $\tilde{\mathcal{V}}$, and such that $d(\pi(v_0), \pi(v)) = n$ in the Bruhat-Tits tree \mathcal{T} . So $C_0 = \{v_0\}$, and C_n is a lift of the "circle of radius n around v_0 " in \mathcal{T} , in the parlance of [BL].

One easily sees that $\bigcup_{n=0}^{\infty} C_n$ is a complete set of representatives for the projection map $\pi : \tilde{\mathcal{V}} \to \mathcal{V}$; specifically, for n > 1 and a given $v \in C_{n-1}$, C_n contains exactly q elements adjacent to v in $\tilde{\mathcal{V}}$; and we can write $\tilde{\mathcal{V}}$ as a disjoint union $\bigcup_{j \in \mathbb{Z}} \bigcup_{n=0}^{\infty} \mathcal{R}^j(C_n)$.

We further define $V_0 := \{v_0\}$ and choose subsets $V_n \subseteq C_n$ as follows: We let V_1 be any subset of cardinality q. For n > 1, we choose q - 1 out of the q elements of C_n adjacent to v', for every $v' \in C_{n-1}$, and let V_n be the union of these elements for all $v' \in C_{n-1}$. Finally, we set

$$H_{n,j} := \{ \phi \in C_c(\tilde{\mathcal{V}}, R) | \operatorname{Supp}(\phi) \subseteq \bigcup_{i=0}^n \mathcal{R}^j(C_i) \} \text{ for each } n \ge 0, j \in \mathbb{Z},$$

 $H_n := \bigcup_{j \in \mathbb{Z}} H_{n,j}$, and $H_{-1} := H_{-1,j} := \{0\}$. (For ease of notation, we identify $v \in \tilde{\mathcal{V}}$ with its indicator function $1_{\{v\}} \in C_c(\tilde{\mathcal{V}}, R)$ in this proof.)

Define $T': C_c(\mathcal{V}, R) \to C_c(\mathcal{V}, R)$ by

$$T'(\phi)(v) := \sum_{\substack{t(e)=(v),\\o(e)\in\mathcal{R}^{j}(C_{n})}} \phi(o(e)) \quad \text{for each } v \in \mathcal{R}^{j}(C_{n-1}), j \in \mathbb{Z};$$

T' can be seen as the "restriction to one layer" $\bigcup_{n=0}^{\infty} \mathcal{R}^j(C_n)$ of T. We have $T'(v) \equiv T(v) \mod H_{n-1}$ for each $v \in H_n$, since the "missing summand" of T' lies in H_{n-1} . We claim that for each $n \geq 0$, the set $X_{n,j} := \bigcup_{i=0}^n \mathcal{R}^j T^{n-i}(V_i)$ is an R-basis for $H_{n,j}/H_{n-1,j}$. By the above congruence, we can replace T by T' in the definition of $X_{n,j}$.

The claim is clear for n = 0. So let $n \ge 1$, and assume the claim to be true for all $n' \le n$. For each $v \in C_{n-1}$, the q points in C_n adjacent to v are generated by the q-1 of these points lying in V_n , plus T'v (which just sums up these q points). By induction hypothesis, v is generated by $X_{n-1,0}$, and thus (taking the union over all v), C_n is generated by $T'(X_{n-1,0}) \cup V_n = X_{n,0}$. Since the cardinality of $X_{n,0}$ equals the R-rank of $H_{n,0}/H_{n-1,0}$ (both are equal to $(q+1)q^{n-1}$), $X_{n,0}$ is in fact an R-basis.

Analoguously, we see that $H_{n,j}/H_{n-1,j}$ has $\mathcal{R}^j(X_{n,0}) = X_{n,j}$ as a basis, for each $j \in \mathbb{Z}$.

From the claim, it follows that $\bigcup_{j \in \mathbb{Z}} X_{n,j}$ is an *R*-basis of H_n/H_{n-1} for each *n*, and that $V := \bigcup_{n=0}^{\infty} V_n$ is an $R[T, \mathcal{R}^{\pm 1}]$ -basis of $C_c(\tilde{\mathcal{V}}, R)$.

For $a \in R$ and $\nu \in R^*$, we let $\tilde{\mathcal{B}}_{a,\nu}(F,R)$ be the "common cokernel" of T-a and $\mathcal{R}-\nu$ in $C_c(\tilde{\mathcal{V}},R)$, namely $\tilde{\mathcal{B}}_{a,\nu}(F,R) := C_c(\tilde{\mathcal{V}},R)/(\mathrm{Im}(T-a) + \mathrm{Im}(\mathcal{R}-\nu))$; dually, we define $\tilde{\mathcal{B}}^{a,\nu}(F,M) := \ker(T-a) \cap \ker(\mathcal{R}-\nu) \subseteq C(\tilde{\mathcal{V}},M)$.

For a lattice $v \in \tilde{\mathcal{V}}$, we define a valuation ord_v on F as follows: For $w \in F^2$, the set $\{x \in F | xw \in v\}$ is some fractional ideal $\varpi^m \mathcal{O}_F \subseteq F$ $(m \in \mathbb{Z})$; we set $\operatorname{ord}_v(w) := m$. This map can also be given explicitly as follows: Let λ_1, λ_2 be a basis of v. We can write any $w \in F^2$ as $w = x_1\lambda_1 + x_2\lambda_2$; then we have $\operatorname{ord}_v(w) = \min\{\operatorname{ord}_{\varpi}(x_1), \operatorname{ord}_{\varpi}(x_2)\}$. This gives a "valuation" map on F^2 , as one easily checks. We restrict it to $F \cong F \times \{0\} \hookrightarrow F^2$ to get a valuation ord_v on F, and consider especially the value at $e_1 := (1, 0)$.

Lemma 2.9. Let $\alpha, \nu \in \mathbb{R}^*$, and put $a := \alpha + q\nu/\alpha$. Define a map $\varrho = \varrho_{\alpha,\nu} : \tilde{\mathcal{V}} \to \mathbb{R}$ by $\varrho(v) := \alpha^{h(\pi(v))}\nu^{-\operatorname{ord}_v(e_1)}$. Then $\varrho \in \tilde{\mathcal{B}}^{a,\nu}(F, \mathbb{R})$.

Proof. One easily sees that $(v \mapsto \nu^{-\operatorname{ord}_v(e_1)}) \in \ker(\mathcal{R} - \nu)$. It remains to show that $\varrho \in \ker(T - a)$:

We have the Iwasawa decomposition $G(F) = B(F)G(\mathcal{O}_F) = \{ \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \} Z(F)G(\mathcal{O}_F);$ thus every vertex in $\tilde{\mathcal{V}}$ can be written as $\varpi^i v$ with $v = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} v_0$, with $i \in \mathbb{Z}, a \in F^*, b \in F$.

Now the lattice $v = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} v_0$ is generated by the vectors $\lambda_1 = \begin{pmatrix} a \\ 0 \end{pmatrix}$ and $\lambda_2 = \begin{pmatrix} b \\ 1 \end{pmatrix} \in \mathcal{O}_F^2$, so $e_1 = a^{-1}\lambda_1$ and thus $\operatorname{ord}_v(e_1) = \operatorname{ord}_{\varpi}(a^{-1}) = -\operatorname{ord}_{\varpi}(a)$. The q+1 neighbouring vertices v' for which there exists an $e \in \tilde{\mathcal{E}}$ with o(e) = v', t(e) = v are given by $N_i v, i \in \{\infty\} \cup \mathcal{O}_F/\mathfrak{p}$, with $N_\infty := \begin{pmatrix} 1 & 0 \\ 0 & \varpi \end{pmatrix}$, and $N_i := \begin{pmatrix} \varpi & i \\ 0 & 1 \end{pmatrix}$ where $i \in \mathcal{O}_F$ runs through a complete set of representatives mod ϖ . By lemma 2.7, $h(\pi(N_\infty v)) = h(\pi(v)) + 1$ and $h(\pi(N_i v)) = h(\pi(v)) - 1$ for $i \neq \infty$. By considering the basis $\{N_i\lambda_1, N_i\lambda_2\}$ of $N_i v$ for each N_i , we see that $\operatorname{ord}_{N_\infty v}(e_1) = \operatorname{ord}_v(e_1)$ and $\operatorname{ord}_{N_i v}(e_1) = \operatorname{ord}_v(e_1) - 1$ for $i \neq \infty$. Thus we have

$$(T\varrho)(v) = \sum_{t(e)=v} \alpha^{h(\pi(o(e)))} \nu^{-\operatorname{ord}_{o(e)}(e_1)} = \alpha^{h(\pi(v))+1} \nu^{-\operatorname{ord}_v e_1} + q \cdot \alpha^{h(\pi(v))-1} \nu^{1-\operatorname{ord}_v(e_1)}$$
$$= (\alpha + q\alpha^{-1}\nu) \alpha^{h(\pi(v))} \nu^{-\operatorname{ord}_v e_1} = a\rho(v),$$

and also $(T\varrho)(\varpi^i v) = (T\mathcal{R}^{-i}\varrho)(v) = \mathcal{R}^{-i}(a\varrho)(v) = a\varrho(\varpi^i v)$ for a general $\varpi^i v \in \tilde{\mathcal{V}}$, which shows that $\varrho \in \ker(T-a)$.

If $a^2 \neq \nu(q+1)^2$ (we will call this the "spherical case"ⁱ), we put $\mathcal{B}_{a,\nu}(F,R) := \tilde{\mathcal{B}}_{a,\nu}(F,R)$ and $\mathcal{B}^{a,\nu}(F,M) := \tilde{\mathcal{B}}^{a,\nu}(F,M)$.

In the "special case" $a^2 = \nu(q+1)^2$, we need to assume that the polynomial $X^2 - a\nu X + q\nu^{-1} \in R[X]$ has a zero $\alpha' \in R$. Then the map $\varrho := \varrho_{\alpha',\nu} \in C(\tilde{\mathcal{V}}, R)$ defined as above lies in $\tilde{\mathcal{B}}^{a\nu,\nu^{-1}}(F,R) = \ker(T\mathcal{R}-a) \cap \ker(\mathcal{R}^{-1}-\nu)$ by Lemma 2.9, since $a\nu = \alpha' + q\nu^{-1}/\alpha'$. In other words, the kernel of the map $\langle \cdot, \varrho \rangle : C_c(\tilde{\mathcal{V}}, R) \to R$ contains $\operatorname{Im}(T-a) + \operatorname{Im}(\mathcal{R}-\nu)$; and we define

$$\mathcal{B}_{a,\nu}(F,R) := \ker\left(\langle \cdot, \varrho \rangle\right) / \left(\operatorname{Im}(T-a) + \operatorname{Im}(\mathcal{R}-\nu)\right)$$

to be the quotient; evidently, it is an *R*-submodule of codimension 1 of $\mathcal{B}_{a,\nu}(F, R)$. Dually, T-a and $\mathcal{R}-\nu$ both map the submodule $\rho M = \{\rho \cdot m, m \in M\}$ of $C(\tilde{\mathcal{V}}, M)$ to zero and thus induce endomorphisms on $C(\tilde{\mathcal{V}}, M)/\rho M$; we define $\mathcal{B}^{a,\nu}(F, M)$ to be the intersection of their kernels.

In the special case, since $\nu = \alpha^2$, Lemma 2.9 states that $\varrho(gv_0) = \chi_\alpha(ad)\varrho(v_0) = \chi_\alpha(det g)\varrho(v_0)$ for all $g = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in B(F)$, and thus for all $g \in G(F)$ by the Iwasawa decomposition, since $G(\mathcal{O}_F)$ fixes v_0 and lies in the kernel of $\chi_\alpha \circ det$. By the multiplicity of det, we have $(g^{-1}\varrho)(v) = \varrho(gv) = \chi_\alpha(det g)\varrho(v)$ for all $g \in G(F)$, $v \in \tilde{\mathcal{V}}$. So $\phi \in \ker\langle \cdot, \varrho \rangle$ implies $\langle g\phi, \varrho \rangle = \langle \phi, g^{-1}\varrho \rangle = \chi_\alpha(det g)\langle \phi, \varrho \rangle = 0$, i.e. $\ker\langle \cdot, \varrho \rangle$ and thus $\mathcal{B}_{a,\nu}(F,R)$ are G(F)-modules.

By the adjointness properties of the Hecke operators T and \mathcal{R} , we have pairings $\operatorname{coker}(T_c - a) \times \operatorname{ker}(T\mathcal{R} - a) \to M$ and $\operatorname{coker}(\mathcal{R}_c - \nu) \times \operatorname{ker}(\mathcal{R}^{-1} - \nu) \to M$, which "combine" to give a pairing

$$\langle -, - \rangle : \mathcal{B}_{a,\nu}(F, R) \times \mathcal{B}^{a\nu,\nu^{-1}}(F, M) \to M$$

(since $\ker(T\mathcal{R}-a)\cap \ker(\mathcal{R}^{-1}-\nu) = \ker(T-a\nu)\cap \ker(\mathcal{R}-\nu^{-1}))$, and a corresponding isomorphism $\mathcal{B}^{a\nu,\nu^{-1}}(F,M) \xrightarrow{\cong} \operatorname{Hom}(\mathcal{B}_{a,\nu}(F,R),M).$

Definition 2.10. Let G be a totally disconnected locally compact group, $H \subseteq G$ an open subgroup. For a smooth R[H]-module M, we define the *(compactly) induced*

ⁱWe use this term since these pairs of a, ν will later be seen to correspond to a spherical representation of $\operatorname{GL}_2(F)$. The case $a^2 = \nu(q+1)^2$ means that there exists an $\alpha \in \mathbb{R}^*$ with $a = \alpha(q+1), \nu = \alpha^2$, which will correspond to a special representation.

G-representation of M, denoted $\operatorname{Ind}_{H}^{G} M$, to be the space of maps $f: G \to M$ such that f(hg) = f(g) for all $g \in G, h \in H$, and such that f has compact support modulo H. We let G act on $\operatorname{Ind}_{H}^{G} M$ via $g \cdot f(x) := f(xg)$. (We can also write $\operatorname{Ind}_{H}^{G} M = R[G] \otimes_{R[H]} M$, cf. [Br], III.5.)

We further define $\operatorname{Coind}_{H}^{G} M := \operatorname{Hom}_{R[H]}(R[G], M)$. Finally, for an R[G]-module N, we write $\operatorname{res}_{H}^{G} N$ for its underlying R[H]-module ("restriction of scalars").

By Theorem 2.8, $T_c - a$ (as well as $\mathcal{R}_c - \nu$) is injective, and the induced map

$$\mathcal{R}_c - \nu : \operatorname{coker}(T_c - a) = C_c(\tilde{\mathcal{V}}, R) / \operatorname{Im}(T_c - a) \to \operatorname{coker}(T_c - a)$$

(of $R[T, \mathcal{R}^{\pm 1}]/(T-a) = R[\mathcal{R}^{\pm 1}]$ -modules) is also injective. Now since G(F) acts transitively on $\tilde{\mathcal{V}}$, with the stabilizer of $v_0 := \mathcal{O}_F^2$ being $K := G(\mathcal{O}_F)$, we have an isomorphism $C_c(\tilde{\mathcal{V}}, R) \cong \operatorname{Ind}_K^{G(F)} R$. Thus we have exact sequences

$$0 \to \operatorname{Ind}_{K}^{G(F)} R \xrightarrow{T-a} \operatorname{Ind}_{K}^{G(F)} R \to \operatorname{coker}(T_{c} - a) \to 0$$
(2.4)

and (for a, ν in the spherical case)

$$0 \to \operatorname{coker}(T_c - a) \xrightarrow{\mathcal{R} - \nu} \operatorname{coker}(T_c - a) \to \mathcal{B}_{a,\nu}(F, R) \to 0, \qquad (2.5)$$

with all entries being free R-modules. Applying $\operatorname{Hom}_{R}(\cdot, M)$ to them, we get:

Lemma 2.11. We have exact sequences of R-modules

$$0 \to \ker(T\mathcal{R} - a) \to \operatorname{Coind}_{K}^{G(F)} M \xrightarrow{T-a} \operatorname{Coind}_{K}^{G(F)} M \to 0$$

and, if $\mathcal{B}_{a,\nu}(F,M)$ is spherical (i.e. $a^2 \neq \nu(q+1)^2$),

$$0 \to \mathcal{B}^{a\nu,\nu^{-1}}(F,M) \to \ker(T\mathcal{R}-a) \xrightarrow{\mathcal{R}-\nu} \ker(T\mathcal{R}-a) \to 0.$$

For the special case, we have to work a bit more to get similar exact sequences:

By [Sp], eq. (22), for the representation $St^{-}(F, R) := \mathcal{B}_{-(q+1),1}(F, R)$ (i.e. $\nu = 1$, $\alpha = -1$) with trivial central character, we have an exact sequence of *G*-modules

$$0 \to \operatorname{Ind}_{KZ}^G R \to \operatorname{Ind}_{K'Z}^G R \to St^-(F, R) \to 0, \qquad (2.6)$$

where $K' = \langle W \rangle K_0(\mathfrak{p})$ is the subgroup of KZ generated by $W := \begin{pmatrix} 0 & 1 \\ \varpi & 0 \end{pmatrix}$ and the subgroup $K_0(\mathfrak{p}) \subseteq K$ of matrices that are upper-triangular modulo \mathfrak{p} . (Since $W^2 \in Z, K_0(\mathfrak{p})Z$ is a subgroup of K' of order 2.) Now (π, V) can be written as $\pi = \chi \otimes St^-$ for some character $\chi = \chi_Z$ (cf. the proof of lemma 2.14 below), and we have an obvious *G*-isomorphism

$$(\pi, V) \cong (\pi \otimes (\chi \circ \det), V \otimes_R R(\chi \circ \det)),$$

where $R(\chi \circ \det)$ is the ring R with G-module structure given via $gr = \chi(\det(g))r$ for $g \in G, r \in R$. Tensoring (2.6) with $R(\chi \circ \det)$ over R gives an exact sequence of G-modules

$$0 \to \operatorname{Ind}_{KZ}^G \chi \to \operatorname{Ind}_{K'Z}^G \chi \to V \to 0.$$
(2.7)

It is easily seen that $R(\chi \circ \det)$ fits into another exact sequence of G-modules

$$0 \to \operatorname{Ind}_{H}^{G} R \xrightarrow{\left(\begin{smallmatrix} \varpi & 0 \\ 0 & 1 \end{smallmatrix}\right) - \chi(\varpi) \operatorname{id}} \operatorname{Ind}_{H}^{G} R \xrightarrow{\psi} R(\chi \circ \det) \to 0,$$

where $H := \{g \in G | \det g \in \mathcal{O}_F^{\times}\}$ is a normal subgroup containing K, $\begin{pmatrix} \varpi & 0 \\ 0 & 1 \end{pmatrix}(f)(g) := f(\begin{pmatrix} \varpi & 0 \\ 0 & 1 \end{pmatrix})^{-1}g)$ for $f \in \operatorname{Ind}_H^G R = \{f : G \to R | f(Hg) = f(g) \text{ for all } g \in G\}$, $g \in G$, is the natural operation of G, and where ψ is the G-equivariant map defined by $1_U \mapsto 1$.

Now since $H \subseteq G$ is a normal subgroup, we have $\operatorname{Ind}_{H}^{G} R \cong R[G/H]$ as *G*-modules (in fact $G/H \cong \mathbb{Z}$ as an abstract group). Let $X \subseteq G$ be a subgroup such that the natural inclusion $X/(X \cap H) \hookrightarrow G/H$ has finite cokernel; let g_iH , $i = 1, \ldots, n$ be a set of representatives of that cokernel. Then we have a (non-canonical) X-isomorphism $\bigoplus_{i=0}^{n} \operatorname{Ind}_{X\cap H}^{X} \to \operatorname{Ind}_{H}^{G} R$ defined via $(1_{(X\cap H)x})_i \mapsto 1_{Hxg_i}$ for each $i = 1, \ldots, n$ (cf. [Br], III (5.4)).

Using this isomorphism and the "tensor identity" $\operatorname{Ind}_{H}^{G} M \otimes N \cong \operatorname{Ind}_{H}^{G} (M \otimes \operatorname{res}_{H}^{G} N)$ for any groups $H \subseteq G$, H-module M and G-module N ([Br] III.5, Ex. 2), we have

$$\operatorname{Ind}_{KZ}^{G} R \otimes_{R} \operatorname{Ind}_{H}^{G} R \cong \operatorname{Ind}_{KZ}^{G}(\operatorname{res}_{KZ}^{G}(\operatorname{Ind}_{H}^{G} R))$$
$$= \operatorname{Ind}_{KZ}^{G}((\operatorname{Ind}_{KZ\cap H}^{KZ} R)^{2})$$
$$= (\operatorname{Ind}_{KZ}^{G}(\operatorname{Ind}_{K}^{KZ} R))^{2} = (\operatorname{Ind}_{K}^{G} R)^{2}$$

(since $KZ/KZ \cap H \hookrightarrow G/H$ has index 2), and similarly

$$\operatorname{Ind}_{K'Z}^G R \otimes_R \operatorname{Ind}_H^G R \cong \operatorname{Ind}_{K'Z}^G (\operatorname{res}_{K'Z}^G (\operatorname{Ind}_H^G R))$$
$$\cong \operatorname{Ind}_{K'Z}^G ((\operatorname{Ind}_{K'Z\cap H}^{K'Z} R)^2)$$
$$\cong (\operatorname{Ind}_{K'}^G R)^2$$

and thus, we can resolve the first and second term of (2.7) into exact sequences

$$0 \to (\operatorname{Ind}_{K}^{G} R)^{2} \to (\operatorname{Ind}_{K}^{G} R)^{2} \to \operatorname{Ind}_{KZ}^{G} \chi \to 0,$$

$$0 \to (\operatorname{Ind}_{K'}^{G} R)^{2} \to (\operatorname{Ind}_{K'}^{G} R)^{2} \to \operatorname{Ind}_{\langle W \rangle K_{0}(\mathfrak{p})Z}^{G} \chi \to 0.$$

Dualizing (2.7) and these by taking $\operatorname{Hom}(\cdot, M)$ for an *R*-module *M*, we get a "resolution" of $\mathcal{B}^{a\nu,\nu^{-1}}(F,M)$ in terms of coinduced modules:

Lemma 2.12. We have exact sequences

$$0 \to \mathcal{B}^{a\nu,\nu^{-1}}(F,M) \to \operatorname{Coind}_{K'Z}^G M(\chi) \to \operatorname{Coind}_{KZ}^G M(\chi) \to 0,$$

$$0 \to \operatorname{Coind}_{KZ}^G M(\chi) \to (\operatorname{Coind}_K^G R)^2 \to (\operatorname{Coind}_K^G R)^2 \to 0,$$

$$0 \to \operatorname{Coind}_{K'Z}^G M(\chi) \to (\operatorname{Coind}_{K'}^G R)^2 \to (\operatorname{Coind}_{K'}^G R)^2 \to 0$$

for all special $\mathcal{B}_{a,\nu}(F,R)$ (i.e. $a^2 = \nu(q+1)^2$), where $\chi = \chi_Z$ is the central character.

It is easily seen that the above arguments could be modified to get a similar set of exact sequences in the spherical case as well (replacing K' by K everywhere), in addition to that given in lemma 2.11; but we will not need this.

2.5 Distributions on $\tilde{\mathcal{T}}$

For $\rho \in C(\tilde{\mathcal{V}}, R)$ we define *R*-linear maps

$$\begin{split} \tilde{\delta}_{\varrho} &: C(\tilde{\mathcal{E}}, M) \to C(\tilde{\mathcal{V}}, M), \quad \tilde{\delta}_{\varrho}(c)(v) := \sum_{v=t(e)} \varrho(o(e))c(e) - \sum_{v=o(e)} \varrho(t(e))c(e), \\ \\ \tilde{\delta}^{\varrho} &: C(\tilde{\mathcal{V}}, M) \to C(\tilde{\mathcal{E}}, M), \quad \tilde{\delta}^{\varrho}(\phi)(e) := \varrho(o(e))\phi(t(e)) - \varrho(t(e))\phi(o(e)). \end{split}$$

One easily checks that these are adjoint with respect to (2.2) and (2.3), i.e. we have $\langle \tilde{\delta}_{\varrho}(c), \phi \rangle = \langle c, \tilde{\delta}^{\varrho}(\phi) \rangle$ for all $c \in C_c(\tilde{\mathcal{E}}, R), \phi \in C(\tilde{\mathcal{V}}, M)$. We denote the maps corresponding to $\varrho \equiv 1$ by $\delta := \tilde{\delta}_1, \, \delta^* := \tilde{\delta}^1$.

For each ρ , the map $\tilde{\delta}_{\rho}$ fits into an exact sequence

$$C_c(\tilde{\mathcal{E}}, R) \xrightarrow{\tilde{\delta}_{\varrho}} C_c(\tilde{\mathcal{V}}, R) \xrightarrow{\langle \cdot, \varrho \rangle} R \to 0$$

but it is not injective in general: e.g. for $\rho \equiv 1$, the map $\tilde{\mathcal{E}} \to R$ symbolized by

$$\begin{array}{c} & \xrightarrow{-1} \\ & & \\ \downarrow 1 \\ & & \downarrow -1 \\ & & \\ \cdot & \xrightarrow{1} \\ \end{array}$$

(and zero outside the square) lies in ker δ .

The restriction $\delta^*|_{C_c(\tilde{\mathcal{V}},R)}$ to compactly supported maps is injective since $\tilde{\mathcal{T}}$ has no directed circles, and we have a surjective map

$$\operatorname{coker}\left(\delta^*: C_c(\tilde{\mathcal{V}}, R) \to C_c(\tilde{\mathcal{E}}, R)\right) \to C^0(\mathbb{P}^1(F), R)/R, \quad c \mapsto \sum_{e \in \tilde{\mathcal{E}}} c(e) \mathbb{1}_{U(\pi(e))}$$

(which corresponds to an isomorphism of the similar map on the Bruhat-Tits tree \mathcal{T}). Its kernel is generated by the functions $1_{\{e\}} - 1_{\{e'\}}$ for $e, e' \in \tilde{\mathcal{E}}$ with $\pi(e) = \pi(e')$.

For $\rho_1, \rho_2 \in C(\tilde{\mathcal{V}}, R)$ and $\phi \in C(\tilde{\mathcal{V}}, M)$ it is easily checked that

$$(\tilde{\delta}_{\varrho_1} \circ \tilde{\delta}^{\varrho_2})(\phi) = (T + T\mathcal{R})(\varrho_1 \cdot \varrho_2) \cdot \phi - \varrho_2 \cdot (T + T\mathcal{R})(\varrho_1 \cdot \phi).$$

For $a' \in R$ and $\rho \in \ker(T + T\mathcal{R} - a')$, applying this equality for $\rho_1 = \rho$ and $\rho_2 = 1$ shows that $\tilde{\delta}_{\rho}$ maps $\operatorname{Im} \delta^*$ into $\operatorname{Im}(T + T\mathcal{R} - a')$, so we get an *R*-linear map

$$\tilde{\delta}_{\varrho}$$
: coker $\left(\delta^*: C_c(\tilde{\mathcal{V}}, R) \to C_c(\tilde{\mathcal{E}}, R)\right) \to \operatorname{coker}(T_c + T_c \mathcal{R}_c - a').$

Let now again $\alpha, \nu \in \mathbb{R}^*$, and $a := \alpha + q\nu/\alpha$. We let $\varrho := \varrho_{\alpha,\nu} \in \tilde{\mathcal{B}}^{a,\nu}(F, \mathbb{R})$ as defined in lemma 2.9, and write $\tilde{\delta}_{\alpha,\nu} := \tilde{\delta}_{\varrho}$. Since $\tilde{\delta}_{\alpha,\nu}$ maps $1_{\{e\}} - 1_{\{\varpi e\}}$ into $\operatorname{Im}(\mathbb{R} - \nu)$, it induces a map

$$\tilde{\delta}_{\alpha,\nu}: C^0(\mathbb{P}^1(F), R)/R \to \mathcal{B}_{a,\nu}(F, R)$$

(same name by abuse of notation) via the commutative diagram

Lemma 2.13. We have $\varrho(gv) = \chi_{\alpha}(d/a')\chi_{\nu}(a')\varrho(v)$, and thus

$$\tilde{\delta}_{\alpha,\nu}(gf) = \chi_{\alpha}(d/a')\chi_{\nu}(a')g\tilde{\delta}_{\alpha,\nu}(f),$$

for all $v \in \tilde{\mathcal{V}}$, $f \in C^0(\mathbb{P}^1(F), R)/R$ and $g = \begin{pmatrix} a' & b \\ 0 & d \end{pmatrix} \in B(F)$.

Proof. (a) Using lemma 2.7(b) and the fact that $\operatorname{ord}_{gv}(e_1) = -\operatorname{ord}_{\varpi}(a') + \operatorname{ord}_{v}(e_1)$, we have

$$\varrho\left(\begin{pmatrix}a' & b\\ 0 & d\end{pmatrix}v\right) = \alpha^{h(v) - \operatorname{ord}_{\varpi}(a'/d)}\nu^{\operatorname{ord}_{\varpi}(a') - \operatorname{ord}_{v}(e_{1})} = \chi_{\alpha}(d/a')\chi_{\nu}(a')\varrho(v)$$

for all $v \in \tilde{\mathcal{V}}$. For f and g as in the assertion, we thus have

$$\begin{split} \tilde{\delta}_{\alpha,\nu}(gf)(v) &= \sum_{v=t(e)} \varrho(o(e))f(g^{-1}e) - \sum_{v=o(e)} \varrho(t(e))f(g^{-1}e) \\ &= \sum_{g^{-1}v=t(e)} \varrho(o(ge))f(e) - \sum_{g^{-1}v=o(e)} \varrho(t(ge))f(e) \\ &= \chi_{\alpha}(d/a')\chi_{\nu}(a')\varrho(v) \left(\sum_{g^{-1}v=t(e)} \varrho(o(e))f(e) - \sum_{g^{-1}v=o(e)} \varrho(t(e))f(e)\right) \\ &= \chi_{\alpha}(d/a')\chi_{\nu}(a')g\tilde{\delta}_{\alpha,\nu}(f)(v). \end{split}$$

We define a function $\delta_{\alpha,\nu} : C_c(F^*, R) \to \mathcal{B}_{a,\nu}(F, R)$ as follows: For $f \in C_c(F^*, R)$, we let $\psi_0(f) \in C_c(\mathbb{P}^1(F), R)$ be the extension of $x \mapsto \chi_\alpha(x)\chi_\nu(x)^{-1}f(x)$ by zero to $\mathbb{P}^1(F)$. We set $\delta_{\alpha,\nu} := \tilde{\delta}_{\alpha,\nu} \circ \psi_0$. If $\alpha = \nu$, we can define $\delta_{\alpha,\nu}$ on all functions in $C_c(F, R)$.

We let F^* operate on $C_c(F, R)$ by $(tf)(x) := f(t^{-1}x)$; this induces an action of the group $T^1(F) := \{ \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix} | t \in F^* \}$, which we identify with F^* in the obvious way. With respect to it, we have

$$\psi_0(tf)(x) = \chi_\alpha(t)\chi_\nu(t)^{-1}t\psi_0(f)(x)$$

and

$$\hat{\delta}_{\alpha,\nu}(tf) = \chi_{\alpha}^{-1}(t)\chi_{\nu}(t)t\hat{\delta}_{\alpha,\nu}(f),$$

so $\delta_{\alpha,\nu}$ is $T^1(F)$ -equivariant.

For an *R*-module *M*, we define an *F*^{*}-action on $\text{Dist}(F^*, M)$ by $\int fd(t\mu) := t \int (t^{-1}f)d\mu$. Let $H \subseteq G(F)$ be a subgroup, and *M* an *R*[*H*]-module. We define an *H*-action on $\mathcal{B}^{a\nu,\nu^{-1}}(F,M)$ by requiring $\langle \phi, h\lambda \rangle = h \cdot \langle h^{-1}\phi, \lambda \rangle$ for all $\phi \in \mathcal{B}_{a,\nu}(F,M)$, $\lambda \in \mathcal{B}^{a\nu,\nu^{-1}}(F,M)$, $h \in H$. With respect to these two actions, we get a $T^1(F) \cap H$ -equivariant mapping

$$\delta^{\alpha,\nu}: \mathcal{B}^{a\nu,\nu^{-1}}(F,M) \to \text{Dist}(F^*,M), \quad \delta^{\alpha,\nu}(\lambda) := \langle \delta_{\alpha,\nu}(\cdot), \lambda \rangle$$

dual to $\delta_{\alpha,\nu}$.

2.6 Local distributions

Now consider the case $R = \mathbb{C}$. Let $\chi_1, \chi_2 : F^* \to \mathbb{C}^*$ be two unramified characters. We consider (χ_1, χ_2) as a character on the torus T(F) of $\operatorname{GL}_2(F)$, which induces a character χ on B(F) by

$$\chi \begin{pmatrix} t_1 & u \\ 0 & t_2 \end{pmatrix} := \chi_1(t_1)\chi_2(t_2).$$

Put $\alpha_i := \chi_i(\varpi)\sqrt{q} \in \mathbb{C}^*$ for i = 1, 2. Set $\nu := \chi_1(\varpi)\chi_2(\varpi) = \alpha_1\alpha_2q^{-1} \in \mathbb{C}^*$, and $a := \alpha_1 + \alpha_2 = \alpha_i + q\nu/\alpha_i$ for either *i*. When *a* and ν are given by the α_i like this, we will often write $\mathcal{B}_{\alpha_1,\alpha_2}(F,R) := \mathcal{B}_{a,\nu}(F,R)$ and $\mathcal{B}^{\alpha_1,\alpha_2}(F,M) := \mathcal{B}^{a\nu,\nu^{-1}}(F,M)$ (!) for its dual.

In the special case $a^2 = \nu (q+1)^2$, we assume the χ_i to be sorted such that $\chi_1 = |\cdot|\chi_2$ (not vice versa).

Let $\mathcal{B}(\chi_1,\chi_2)$ denote the space of continuous maps $\phi: G(F) \to \mathbb{C}$ such that

$$\phi\left(\begin{pmatrix} t_1 & u\\ 0 & t_2 \end{pmatrix}g\right) = \chi_{\alpha_1}(t_1)\chi_{\alpha_2}(t_2)|t_1|\phi(g)$$
(2.8)

for all $t_1, t_2 \in F^*$, $u \in F$, $g \in G(F)$. G(F) operates canonically on $\mathcal{B}(\chi_1, \chi_2)$ by right translation (cf. [Bu], Ch. 4.5). If $\chi_1 \chi_2^{-1} \neq |\cdot|^{\pm 1}$, $\mathcal{B}(\chi_1, \chi_2)$ is a model of the spherical representation $\pi(\chi_1, \chi_2)$; if $\chi_1 \chi_2^{-1} = |\cdot|^{\pm 1}$, the special representation $\pi(\chi_1, \chi_2)$ can be given as an irreducible subquotient of codimension 1 of $\mathcal{B}(\chi_1, \chi_2)$.ⁱⁱ

Lemma 2.14. We have a G-equivariant isomorphism $\mathcal{B}_{a,\nu}(F,\mathbb{C}) \cong \mathcal{B}(\chi_1,\chi_2)$. It induces an isomorphism $\mathcal{B}_{a,\nu}(F,\mathbb{C}) \cong \pi(\chi_1,\chi_2)$ both for spherical and special representations.

Proof. We choose a "central" unramified character $\chi_Z : F^* \to \mathbb{C}$ satisfying $\chi_Z^2(\varpi) = \nu$; then we have $\chi_1 = \chi_Z \chi_0^{-1}, \chi_2 = \chi_Z \chi_0$ for some unramified character χ_0 . We set $a' := \sqrt{q} (\chi_0(\varpi)^{-1} + \chi_0(\varpi))$, which satisfies $a = \chi_Z(\varpi)a'$.

For a representation (π, V) of G(F), by [Bu], Ex. 4.5.9, we can define another representation $\chi_Z \otimes \pi$ on V via

 $(g, v) \mapsto \chi_Z(\det(g))\pi(g)v$ for all $g \in G(F), v \in V$,

ⁱⁱNote that [Bu] denotes this special representation by $\sigma(\chi_1, \chi_2)$, not by $\pi(\chi_1, \chi_2)$.

and with this definition we have $\mathcal{B}(\chi_1,\chi_2) \cong \chi_Z \otimes \mathcal{B}(\chi_0^{-1},\chi_0)$. Since $\mathcal{B}(\chi_0^{-1},\chi_0)$ has trivial central character, [BL], Thm. 20 (as quoted in [Sp]) states that $\mathcal{B}(\chi_0^{-1},\chi_0) \cong \mathcal{B}_{a',1}(F,\mathbb{C}) \cong \operatorname{Ind}_{KZ}^{G(F)} R/\operatorname{Im}(T-a').$ Define a *G*-linear map $\phi : \operatorname{Ind}_K^G R \to \chi_Z \otimes \operatorname{Ind}_{KZ}^G R$ by $1_K \mapsto (\chi_Z \circ \det) \cdot 1_{KZ}$. Since 1_K (resp. $(\chi_Z \circ \det) \cdot 1_{KZ}$) generates $\operatorname{Ind}_K^G R$ (resp. $\chi_Z \otimes \operatorname{Ind}_{KZ}^G R$) as a $\mathbb{C}[G]$ -module,

 ϕ is well-defined and surjective.

 ϕ maps $\mathcal{R}1_K = \begin{pmatrix} \varpi & 0 \\ 0 & \varpi \end{pmatrix} 1_K$ to

$$\left(\begin{smallmatrix} \varpi & 0 \\ 0 & \varpi \end{smallmatrix}\right)\left(\left(\chi_Z \circ \det\right) \cdot 1_{KZ}\right) = \chi_Z(\varpi)^2 \cdot \left(\left(\chi_Z \circ \det\right) \cdot 1_{KZ}\right) = \nu \cdot \phi(1_K).$$

Thus $\operatorname{Im}(\mathcal{R}-\nu)\subseteq \ker\phi$, and in fact the two are equal, since the preimage of the space of functions of support in a coset KZg $(g \in G(F))$ under ϕ is exactly the space generated by the 1_{Kzg} , $z \in Z(F) = Z(\mathcal{O}_F)\{(\begin{smallmatrix} \varpi & 0\\ 0 & \varpi \end{smallmatrix})\}^{\mathbb{Z}}$.

Furthermore, ϕ maps $T1_K = \sum_{i \in \mathcal{O}_F/(\varpi) \cup \{\infty\}} N_i 1_K$ (with the N_i as in Lemma 2.9) to

$$\sum_{i} \chi_{Z}(\det(N_{i})) \cdot ((\chi_{Z} \circ \det) \cdot N_{i} \mathbb{1}_{KZ}) = \chi_{Z}(\varpi) \cdot (\chi_{Z} \circ \det) T \mathbb{1}_{KZ}$$

(since det(N_i) = ϖ for all i), and thus Im(T - a) is mapped to Im ($\chi_Z(\varpi)T - a$) = $\operatorname{Im}\left(\chi_Z(\varpi)(T-a')\right) = \operatorname{Im}(T-a').$

Putting everything together, we thus have G-isomorphisms

$$C_{c}(\tilde{\mathcal{V}},\mathbb{C})/(\operatorname{Im}(T-a)+\operatorname{Im}(\mathcal{R}-\nu)) \cong \operatorname{Ind}_{K}^{G} R/(\operatorname{Im}(T-a)+\operatorname{Im}(\mathcal{R}-\nu))$$
$$\cong \chi_{Z} \otimes (\operatorname{Ind}_{KZ}^{G} R/\operatorname{Im}(T-a')) \quad (\text{via } \phi)$$
$$\cong \chi_{Z} \otimes \mathcal{B}(\chi_{0}^{-1},\chi_{0}) \cong \mathcal{B}(\chi_{1},\chi_{2}).$$

Thus, $\mathcal{B}_{a,\nu}(F,\mathbb{C})$ is isomorphic to the spherical principal series representation $\pi(\chi_1,\chi_2)$ for $a^2 \neq \nu (q+1)^2$.

In the special case, $\mathcal{B}_{a,\nu}(F,\mathbb{C})$ is a *G*-invariant subspace of $\mathcal{B}_{a,\nu}(F,\mathbb{C})$ of codimension 1, so it must be mapped under the isomorphism to the unique G-invariant subspace of $\mathcal{B}(\chi_1,\chi_2)$ of codimension 1 (in fact, the unique infinite-dimensional irreducible G-invariant subspace, by [Bu], Thm. 4.5.1), which is the special representation $\pi(\chi_1,\chi_2).$

By [Bu], section 4.4, there exists thus for all pairs $a, \nu a$ Whittaker functional λ on $\mathcal{B}_{a,\nu}(F,\mathbb{C})$, i.e. a nontrivial linear map $\lambda: \mathcal{B}_{a,\nu}(F,\mathbb{C}) \to \mathbb{C}$ such that $\lambda\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}\phi\right) =$ $\psi(x)\lambda(\phi)$. It is unique up to scalar multiples.

From it, we furthermore get a Whittaker model $\mathcal{W}_{a,\nu}$ of $\mathcal{B}_{a,\nu}(F,\mathbb{C})$:

$$\mathcal{W}_{a,\nu} := \{ W_{\xi} : GL_2(F) \to \mathbb{C} \, | \, \xi \in \mathcal{B}_{a,\nu}(F,\mathbb{C}) \},\$$

where $W_{\xi}(g) := \lambda(g \cdot \xi)$ for all $g \in GL_2(F)$. (see e.g. [Bu], Ch. 3, eq. (5.6).)

Now write $\alpha := \alpha_1$ for short. Recall the distribution $\mu_{\alpha,\nu} = \psi(x)\chi_{\alpha/\nu}(x)dx \in$ $\text{Dist}(F^*, \mathbb{C})$. For $\alpha = \nu$, it extends to a distribution on F.

Proposition 2.15. (a) There exists a unique Whittaker functional $\lambda = \lambda_{a,\nu}$ on $\mathcal{B}_{a,\nu}(F,\mathbb{C})$ such that $\delta^{\alpha,\nu}(\lambda) = \mu_{\alpha,\nu}$.

(b) For every $f \in C_c(F^*, \mathbb{C})$, there exists $W = W_f \in \mathcal{W}_{a,\nu}$ such that

$$\int_{F^*} (af)(x)\mu_{\alpha,\nu}(dx) = W_f \begin{pmatrix} a & 0\\ 0 & 1 \end{pmatrix}.$$

If $\alpha = \nu$, then for every $f \in C_c(F, \mathbb{C})$, there exists $W_f \in \mathcal{W}_{a,\nu}$ such that

$$\int_{F} (af)(x)\mu_{\alpha,\nu}(dx) = W_f \begin{pmatrix} a & 0\\ 0 & 1 \end{pmatrix}.$$

(c) Let $H \subseteq U = \mathcal{O}_F^{\times}$ be an open subgroup, and put $W_H := W_{1_H}$. For every $f \in C_c^0(F^*, \mathbb{C})^H$ we have

$$\int_{F^*} f(x)\mu_{\alpha,\nu}(dx) = [U:H] \int_{F^*} f(x)W_H \begin{pmatrix} x & 0\\ 0 & 1 \end{pmatrix} d^{\times}x.$$

Proof. (a) (cf. [Sp], prop. 3.10 for the first part) We let the additive group F act on $C_c(F, \mathbb{C})$ by $(x \cdot f)(y) := f(y - x)$, and on $C^0(\mathbb{P}^1(F), \mathbb{C})/\mathbb{C}$ by $x\phi := \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \phi$. Thus the functional

$$\Lambda: C_c(F, \mathbb{C}) \to \mathbb{C}, \quad f \mapsto \int_F f(x)\psi(x)dx$$

satisfies $\Lambda(xf) = \psi(x)\Lambda(f)$ for all $x \in F$ and all $f \in C_c(F, \mathbb{C})$, and there is an *F*-equivariant isomorphism

$$C^0(\mathbb{P}^1(F,\mathbb{C})/\mathbb{C}\to C_c(F,\mathbb{C}), \quad \phi\mapsto f(x):=\phi(x)-\phi(\infty).$$

Thus the composite

$$St(F,\mathbb{C}) := C^0(\mathbb{P}^1(F,\mathbb{C})/\mathbb{C} \xrightarrow{\cong} C_c(F,\mathbb{C}) \xrightarrow{\Lambda} \mathbb{C}$$
(2.9)

is a Whittaker functional of the Steinberg representation.

Let now $\lambda : \mathcal{B}_{a,\nu}(F,\mathbb{C}) \to \mathbb{C}$ be a Whittaker functional of $\mathcal{B}_{a,\nu}(F,\mathbb{C})$. By lemma 2.13,

$$(\lambda \circ \tilde{\delta}_{\alpha,\nu})(u\phi) = \lambda(u\tilde{\delta}_{\alpha,\nu}(\phi)) = \psi(x)\lambda(\tilde{\delta}_{\alpha,\nu}(\phi)),$$

so $\lambda \circ \tilde{\delta}_{\alpha,\nu}(\phi)$ is a Whittaker functional if it is not zero. To describe the image of $\tilde{\delta}_{\alpha,\nu}$, consider the commutative diagram

where the vertical maps are defined by

$$C_c(\tilde{\mathcal{E}}, R) \to C_c(\tilde{\mathcal{E}}, R), \quad c \mapsto \left(e \mapsto c(e)\varrho(o(e))\varrho(t(e))\right)$$
 (2.10)

resp. by mapping ϕ to $v \mapsto \phi(v) \varrho(v)$; both are obviously isomorphisms.

Since the lower row is exact, we have $\operatorname{Im} \delta = \ker \langle \cdot, 1 \rangle =: C_c^0(\tilde{\mathcal{V}}, R)$ and thus $\operatorname{Im} \tilde{\delta}_{\alpha,\nu} = \varrho^{-1} \cdot C_c^0(\tilde{\mathcal{V}}, R).$

Since $\lambda \neq 0$ and $\mathcal{B}_{a,\nu}(F,\mathbb{C})$ is generated by (the equivalence classes of) the $1_{\{v\}}$, $v \in \tilde{\mathcal{V}}$, there exists a $v \in \tilde{\mathcal{V}}$ such that $\lambda(1_{\{v\}}) \neq 0$. Let ϕ be this $1_{\{v\}}$, and let $u = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \in B(F)$ such that $x \notin \ker \psi = \mathcal{O}_F$. Then

$$\varrho \cdot (u\phi - \phi) = \varrho \cdot (1_{\{u^{-1}v\}} - 1_{\{v\}}) = \varrho(v)(1_{\{u^{-1}v\}} - 1_{\{v\}}) \in C_c^0(\tilde{\mathcal{V}}, R)$$

by lemma 2.13, so $0 \neq u\phi - \phi \in \operatorname{Im} \tilde{\delta}_{\alpha,\nu}$, but $\lambda(u\phi - \phi) = \psi(x)\lambda(\phi) - \lambda(\phi) \neq 0$.

So $\lambda \circ \tilde{\delta}_{\alpha,\nu} \neq 0$ is indeed a Whittaker functional. By replacing λ by a scalar multiple, we can assume $\lambda \circ \tilde{\delta}_{\alpha,\nu} = (2.9)$.

Considering λ as an element of $\mathcal{B}^{a\nu,\nu^{-1}}(F,\mathbb{C}) \cong \operatorname{Hom}(\mathcal{B}_{a,\nu}(F,\mathbb{C}),\mathbb{C})$, we have

$$\delta^{\alpha,\nu}(\lambda)(f) = \langle \delta_{\alpha,\nu}(f), \lambda \rangle$$

= $\Lambda(\chi_{\alpha}\chi_{\nu}^{-1}f)$
= $\int_{F^*} \chi_{\alpha}(x)\chi_{\nu}^{-1}(x)f(x)\psi(x)dx$
= $\mu_{\alpha,\nu}(f).$

(b) For given f, set $W_f(g) := \lambda(g \cdot \delta_{\alpha,\nu}(f))$. Then $W_f \in \mathcal{W}_{a,\nu}$, and for all $a \in F^*$ we have:

$$W_f \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} = \lambda \left(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \delta_{\alpha,\nu}(f) \right)$$

= $\lambda(\delta_{\alpha,\nu}(af))$ (by the $T^1(F)$ -invariance of $\delta_{\alpha,\nu}$)
= $\int_{F^*} (af)(x)\mu_{\alpha,\nu}(dx).$

(c) Without loss of generality we can assume $f = 1_{aH}$ for some $a \in F^*$. We have

$$\int_{F^*} 1_{aH}(x)\mu_{\alpha,\nu}(dx) = \int_{F^*} 1_H(a^{-1}x)\mu_{\alpha,\nu}(dx)$$
$$= \int_{F^*} (a \cdot 1_H)(x)\mu_{\alpha,\nu}(dx)$$
$$= W_H \begin{pmatrix} a & 0\\ 0 & 1 \end{pmatrix} \text{ by (b)},$$

and since the left-hand side is invariant under replacing a by ah (for $h \in H$), the

right-hand side also is, so we can integrate this constant function over H:

$$= [U:H] \int_{H} W_{H} \begin{pmatrix} ax & 0 \\ 0 & 1 \end{pmatrix} d^{\times} x$$

$$= [U:H] \int_{F^{*}} 1_{H}(x) W_{H} \begin{pmatrix} ax & 0 \\ 0 & 1 \end{pmatrix} d^{\times} x$$

$$= [U:H] \int_{F^{*}} 1_{H}(a^{-1}x) W_{H} \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} d^{\times} x$$

$$= [U:H] \int_{F^{*}} 1_{aH}(x) W_{H} \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} d^{\times} x.$$

2.7Semi-local theory

We can generalize many of the previous constructions to the semi-local case, considering all primes $\mathfrak{p}|p$ at once.

So let F_1, \ldots, F_m be finite extensions of \mathbb{Q}_p , and for each *i*, let q_i be the number of elements of the residue field of F_i . We put $\underline{F} := F_1 \times \cdots \times F_m$.

Let R again be a ring, and $a_i \in R, \nu_i \in R^*$ for each $i \in \{1, \ldots, m\}$. Put $\underline{a} := (a_1, \ldots, a_m), \, \underline{\nu} := (\nu_1, \ldots, \nu_m).$ We define $\mathcal{B}_{\underline{a}, \underline{\nu}}(\underline{F}, R)$ as the tensor product

$$\mathcal{B}_{\underline{a},\underline{\nu}}(\underline{F},R) := \bigotimes_{i=1}^{m} \mathcal{B}_{a_{i},\nu_{i}}(F_{i},R).$$

For an *R*-module *M*, we define $\mathcal{B}^{\underline{a}\nu,\underline{\nu}^{-1}}(\underline{F},M) := \operatorname{Hom}_{R}(\mathcal{B}_{a,\nu}(\underline{F},R),M)$; let

$$\langle \cdot, \cdot \rangle : \mathcal{B}_{\underline{a},\underline{\nu}}(\underline{F}, R) \times \mathcal{B}^{\underline{a}\underline{\nu},\underline{\nu}^{-1}}(\underline{F}, M) \to M$$
 (2.11)

denote the evaluation pairing.

We have an obvious isomorphism

$$\bigotimes_{i=1}^{m} C_c^0(F_i^*, R) \to C_c^0(\underline{F}^*, R), \quad \bigotimes_i f_i \mapsto \left((x_i)_{i=1,\dots,m} \mapsto \prod_{i=1}^{m} f_i(x_i) \right).$$
(2.12)

Now when we have $\alpha_{i,1}, \alpha_{i,2} \in \mathbb{R}^*$ such that $a_i = \alpha_{i,1} + \alpha_{i,2}$ and $\nu_i = \alpha_{i,1}\alpha_{i,2}q_i^{-1}$, we can define the $T^1(\underline{F})$ -equivariant map

$$\delta_{\underline{\alpha}_{1,2}} := \delta_{\underline{\alpha}_1,\underline{\nu}} : C_c^0(\underline{F}, R) \to \mathcal{B}_{\underline{a},\underline{\nu}}(\underline{F}, R)$$

as the inverse of (2.12) composed with $\bigotimes_{i=1}^{m} \delta_{\alpha_{i,1},\nu_i}$. Again, we will often write $\mathcal{B}_{\underline{\alpha_1,\alpha_2}}(F,R) := \mathcal{B}_{\underline{a\nu,\nu}^{-1}}(F,R)$ and $\mathcal{B}^{\underline{\alpha_1,\alpha_2}}(F,M) :=$ $\mathcal{B}^{\underline{a\nu},\underline{\nu}^{-1}}(F,M).$

If $H \subseteq G(F)$ is a subgroup, and M an R[H]-module, we define an H-action on $\mathcal{B}^{\underline{a\nu},\underline{\nu}^{-1}}(F,M) \text{ by requiring } \langle \phi,h\lambda \rangle = h \cdot \langle h^{-1}\phi,\lambda \rangle \text{ for all } \phi \in \mathcal{B}_{\underline{a},\underline{\nu}}(F,M),$ $\lambda \in \mathcal{B}^{\underline{a\nu},\underline{\nu}^{-1}}(F,M), h \in H$, and get a $T^1(\underline{F}) \cap H$ -equivariant mapping

$$\delta^{\underline{\alpha_1},\underline{\alpha_2}}: \mathcal{B}^{\underline{a\nu},\underline{\nu}^{-1}}(F,M) \to \operatorname{Dist}(\underline{F}^*,M), \quad \delta^{\underline{\alpha_1},\underline{\alpha_2}}(\lambda) := \langle \delta_{\underline{\alpha_1},\underline{\alpha_2}}(\cdot),\lambda \rangle.$$

Finally, we have a homomorphism

$$\bigotimes_{i=1}^{m} \mathcal{B}^{a_{i}\nu_{i},\nu_{i}^{-1}}(F_{i},R) \xrightarrow{\cong} \bigotimes_{i=1}^{m} \operatorname{Hom}_{R}(\mathcal{B}_{a_{i}\nu_{i},\nu_{i}^{-1}}(F_{i},R),R) \to \operatorname{Hom}(\mathcal{B}_{a_{1},\nu_{1}}(F_{1},R),\operatorname{Hom}(\mathcal{B}_{a_{2},\nu_{2}}(F_{2},R),\operatorname{Hom}(\ldots,R))...) \xrightarrow{\cong} \mathcal{B}^{\underline{a}\nu,\underline{\nu}^{-1}}(F,R).$$

$$(2.13)$$

where the second map is given by $\otimes_i f_i \mapsto (x_1 \mapsto (x_2 \mapsto (\ldots \mapsto \prod_i f_i(x_i))...))$, and the last map by iterating the adjunction formula of the tensor product.

3 Cohomology classes and global measures

3.1 Definitions

From now on, let F denote a number field, with ring of integers \mathcal{O}_F . For each finite prime v, let $U_v := \mathcal{O}_v^*$. Let $\mathbb{A} = \mathbb{A}_F$ denote the ring of adeles of F, and $\mathbb{I} = \mathbb{I}_F$ the group of ideles of F. For a finite subset S of the set of places of F, we denote by $\mathbb{A}^S := \{x \in \mathbb{A}_F | x_v = 0 \ \forall v \in S\}$ the S-adeles and by \mathbb{I}^S the S-ideles, and put $F_S := \prod_{v \in S} F_v, U_S := \prod_{v \in S} U_v, U^S := \prod_{v \notin S} U_v$ (if S contains all infinite places of F), and similarly for other global groups.

For ℓ a prime number or ∞ , we write S_{ℓ} for the set of places of F above ℓ , and abbreviate the above notations to $\mathbb{A}^{\ell} := \mathbb{A}^{S_{\ell}}, \mathbb{A}^{p,\infty} := \mathbb{A}^{S_p \cup S_{\infty}}$, and similarly write $\mathbb{I}^p, \mathbb{I}^{\infty}, F_p, F_{\infty}, U^{\infty}, U_p, U^{p,\infty}, \mathbb{I}_{\infty}$ etc.

Let F have r real embeddings and s pairs of complex embeddings. Set d := r+s-1. Let $\{\sigma_0, \ldots, \sigma_{r-1}, \sigma_r, \ldots, \sigma_d\}$ be a set of representatives of these embeddings (i.e. for $i \ge r$, choose one from each pair of complex embeddings), and denote by $\infty_0, \ldots, \infty_d$ the corresponding archimedian primes of F. We let $S^0_{\infty} := \{\infty_1, \ldots, \infty_d\} \subseteq S_{\infty}$.

We fix an additive character $\psi : \mathbb{A} \to \mathbb{C}^*$ which is trivial on F, and let ψ_v denote the restriction of ψ to $F_v \hookrightarrow \mathbb{A}$, for all primes v; we assume that $\ker(\psi_v) = \mathcal{O}_{F_v}$ for all $\mathfrak{p}|p$.

For each place v, let dx_v denote the associated self-dual Haar measure on F_v , and $dx := \prod_v dx_v$ the associated Haar measure on \mathbb{A}_F . We define Haar measures $d^{\times}x_v$ on F_v^* by $d^{\times}x_v := c_v \frac{dx_v}{|x_v|_v}$, where $c_v = (1 - \frac{1}{q_v})^{-1}$ for v finite, $c_v = 1$ for $v | \infty$.

For $v \mid \infty$ complex, we use the decomposition $\mathbb{C}^* = \mathbb{R}^*_+ \times S^1$ (with $S^1 = \{x \in \mathbb{C}^*; |x| = 1\}$) to write $d^{\times}x_v = d^{\times}r_v \, d\vartheta_v$ for variables $r_v, \, \vartheta_v$ with $r_v \in \mathbb{R}^*_+, \, \vartheta_v \in S^1$.

Let $S_1 \subseteq S_p$ be a set of primes of F lying above $p, S_2 := S_p - S_1$. Let R be a topological Hausdorff ring.

Definition 3.1. We define the module of continuous functions

$$\mathcal{C}(S_1, R) := C(F_{S_1} \times F_{S_2}^* \times \mathbb{I}^{p, \infty} / U^{p, \infty}, R);$$

and let $\mathcal{C}_c(S_1, R)$ be the submodule of all compactly supported $f \in \mathcal{C}(S_1, R)$. We write $\mathcal{C}^0(S_1, R)$, $\mathcal{C}^0_c(S_1, R)$ when R is assumed to have the discrete topology.

Definition 3.2. For an *R*-module *M*, let $\mathcal{D}_f(S_1, M)$ denote the *R*-module of maps

$$\phi: \mathfrak{Co}(F_{S_1} \times F_{S_2}^*) \times \mathbb{I}_F^{p,\infty} \to M$$

that are $U^{p,\infty}$ -invariant and such that $\phi(\cdot, x^{p,\infty})$ is a distribution for each $x^{p,\infty} \in \mathbb{I}_F^{p,\infty}$.

Since $\mathbb{I}_{F}^{p,\infty}/U^{p,\infty}$ is a discrete topological group, $\mathcal{D}_{f}(S_{1}, M)$ naturally identifies with the space of *M*-valued distributions on $F_{S_{1}} \times F_{S_{2}}^{*} \times \mathbb{I}_{F}^{p,\infty}/U^{p,\infty}$. So there exists a canonical *R*-bilinear map

$$\mathcal{D}_f(S_1, M) \times \mathcal{C}^0_c(S_1, R) \to M, \quad (\phi, f) \mapsto \int f \, d\phi,$$
 (3.1)

which is easily seen to induce an isomorphism $\mathcal{D}_f(S_1, M) \cong \operatorname{Hom}_R(\mathcal{C}_c^0(S_1, R), M).$

For a subgroup $E \subseteq F^*$ and an R[E]-module M, we let E operate on $\mathcal{D}_f(S_1, M)$ and $\mathcal{C}^0_c(S_1, R)$ by $(a\phi)(U, x^{p,\infty}) := a\phi(a^{-1}U, a^{-1}x^{p,\infty})$ and $(af)(x^{\infty}) := f(a^{-1}x^{\infty})$ for $a \in E, U \in \mathfrak{Co}(F_{S_1} \times F^*_{S_2}), x^{\cdot} \in \mathbb{I}_F$; thus we have $\int (af) d(a\phi) = a \int f d\phi$ for all a, f, ϕ .

When M = V is a finite-dimensional vector space over a *p*-adic field, we write $\mathcal{D}_f^b(S_1, V)$ for the subset of $\phi \in \mathcal{D}_f(S_1, V)$ such that ϕ is even a measure on $F_{S_1} \times F_{S_2} \times \mathbb{I}_F^{p,\infty}/U^{p,\infty}$.

Definition 3.3. For a \mathbb{C} -vector space V, define $\mathcal{D}(S_1, V)$ to be the set of all maps $\phi : \mathfrak{Co}(F_{S_1} \times F_{S_2}^*) \times \mathbb{I}^p \to V$ such that:

- (i) ϕ is invariant under F^{\times} and $U^{p,\infty}$.
- (ii) For $x^p \in \mathbb{I}^p$, $\phi(\cdot, x^p)$ is a distribution of F_p .
- (iii) For all $U \in \mathfrak{Co}(F_{S_1} \times F_{S_2}^*)$, the map $\phi_U : \mathbb{I} = F_p^{\times} \times \mathbb{I}^p \to V, (x_p, x^p) \mapsto \phi(x_p U, x^p)$ is smooth, and rapidly decreasing as $|x| \to \infty$ and $|x| \to 0$.

We will need a variant of this last set: Let $\mathcal{D}'(S_1, V)$ be the set of all maps $\phi \in \mathcal{D}(S_1, V)$ that are " $(S^1)^s$ -invariant", i.e. such that for all complex primes ∞_j of F and all $\zeta \in S^1 = \{x \in \mathbb{C}^*; |x| = 1\}$, we have

$$\phi(U, x^{p, \infty_j}, \zeta x_{\infty_j}) = \phi(U, x^{p, \infty_j}, x_{\infty_j}) \text{ for all } x^p = (x^{p, \infty_j}, x_{\infty_j}) \in \mathbb{I}^p.$$

There is an obvious surjective map

$$\mathcal{D}(S_1, V) \to \mathcal{D}'(S_1, V), \quad \phi \mapsto \left((U, x) \mapsto \int_{(S^1)^s} \phi(U, x) d\vartheta_r \cdots d\vartheta_{r+s-1} \right)$$

given by integrating over $(S^1)^s \subseteq (\mathbb{C}^*)^s \hookrightarrow \mathbb{I}_{\infty}$.

Let $F^{*'} \subseteq F^*$ be a maximal torsion-free subgroup (so that $F/F^{*'} \cong \mu_F$, the roots of unity of F). If F has at least one real embedding, we specifically choose $F^{*'}$ to be the set F^*_+ of all totally positive elements of F (i.e. positive with respect to every real embedding of F). For totally complex F, there is no such natural subgroup available, so we just choose $F^{*'}$ freely. We set

$$E' := F^{*'} \cap O_F^{\times} \subseteq O_F^{\times},$$

so E' is a torsion-free \mathbb{Z} -module of rank d. E' operates freely and discretely on the space

$$\mathbb{R}_{0}^{d+1} := \left\{ (x_{0}, \dots, x_{d}) \in \mathbb{R}^{d+1} | \sum_{i=0}^{d} x_{i} = 0 \right\}$$

via the embedding

$$\begin{array}{rcccc}
E' & \hookrightarrow & \mathbb{R}_0^{d+1} \\
a & \mapsto & (\log |\sigma_i(a)|)_{i \in S_\infty}
\end{array}$$

(cf. proof of Dirichlet's unit theorem, e.g. in [Neu], Ch. 1), and the quotient \mathbb{R}_0^{d+1}/E' is compact. We choose the orientation on \mathbb{R}_0^{d+1} induced by the natural orientation on \mathbb{R}^d via the isomorphism $\mathbb{R}^d \cong \mathbb{R}_0^{d+1}$, $(x_1, \ldots, x_d) \mapsto (-\sum_{i=1}^d x_i, x_1, \ldots, x_d)$. So \mathbb{R}_0^{d+1}/E' becomes an oriented compact *d*-dimensional manifold.

Let \mathcal{G}_p be the Galois group of the maximal abelian extension of F which is unramified outside p and ∞ ; for a \mathbb{C} -vector space V, let $\text{Dist}(\mathcal{G}_p, V)$ be the set of V-valued distributions of \mathcal{G}_p . Denote by $\varrho : \mathbb{I}_F/F^* \to \mathcal{G}_p$ the projection given by global reciprocity.

3.2 Global measures

Now let $V = \mathbb{C}$, equipped with the trivial $F^{*'}$ -action. We want to construct a commutative diagram

$$\mathcal{D}(S_1, \mathbb{C}) \xrightarrow{\phi \mapsto \kappa_{\phi}} H^d(F^{*\prime}, \mathcal{D}_f(S_1, \mathbb{C}))$$
(3.2)
$$\xrightarrow{\phi \mapsto \mu_{\phi}} \\ Dist(\mathcal{G}_p, \mathbb{C})$$

First, let R be any topological Hausdorff ring. Let $\overline{E'}$ denote the closure of E' in U_p . The projection map pr : $\mathbb{I}^{\infty}/U^{p,\infty} \to \mathbb{I}^{\infty}/(\overline{E'} \times U^{p,\infty})$ induces an isomorphism

$$\mathrm{pr}^*: C_c(\mathbb{I}^\infty/(\overline{E'} \times U^{p,\infty}), R) \to H^0(E', C_c(\mathbb{I}^\infty/U^{p,\infty}, R))$$

and the reciprocity map induces a surjective map $\overline{\varrho} : \mathbb{I}^{\infty}/(\overline{E'} \times U^{p,\infty}) \to \mathcal{G}_p$. Now we can define a map

$$\varrho^{\sharp}: H_0(F^{*'}/E', C_c(\mathbb{I}^{\infty}/(\overline{E'} \times U^{p,\infty}), R)) \to C(\mathcal{G}_p, R)$$
$$[f] \mapsto \left(\overline{\varrho}(x) \mapsto \sum_{\zeta \in F^{*'}/E'} f(\zeta x) \text{ for } x \in \mathbb{I}^{\infty}/(\overline{E'} \times U^{p,\infty})\right)$$

This is an isomorphism, with inverse map $f \mapsto [(f \circ \overline{\varrho}) \cdot 1_{\mathcal{F}}]$, where $1_{\mathcal{F}}$ is the characteristic function of a fundamental domain \mathcal{F} of the action of $F^{*'}/E'$ on $\mathbb{I}^{\infty}/U^{\infty}$.

We get a composite map

$$C(\mathcal{G}_{p}, R) \xrightarrow{(\varrho^{\sharp})^{-1}} H_{0}(F^{*'}/E', C_{c}(\mathbb{I}^{\infty}/(\overline{E'} \times U^{p,\infty}), R))$$

$$\xrightarrow{\mathrm{pr}^{*}} H_{0}(F^{*'}/E', H^{0}(E', C_{c}(\mathbb{I}^{\infty}/U^{p,\infty}, R)))$$

$$\longrightarrow H_{0}(F^{*'}/E', H^{0}(E', \mathcal{C}_{c}(S_{1}, R))), \qquad (3.3)$$

where the last arrow is induced by the "extension by zero" from $C_c(\mathbb{I}^{\infty}/U^{p,\infty}, R)$ to $\mathcal{C}_c(S_1, R)$.

Now let $\eta \in H_d(E', \mathbb{Z}) \cong \mathbb{Z}$ be the generator that corresponds to the given orientation of \mathbb{R}^{d+1}_0 . This gives us, for every *R*-module *A*, a homomorphism

$$H_0(F^{*'}/E', H^0(E', A)) \xrightarrow{\cap \eta} H_0(F^{*'}/E', H_d(E', A))$$

Composing this with the edge morphism

$$H_0(F^{*'}/E', H_d(E', A)) \to H_d(F^{*'}, A)$$
 (3.4)

(and setting $A = C_c(S_1, R)$) gives a map

$$H_0(F^{*'}/E', H^0(E', \mathcal{C}_c(S_1, R))) \to H_d(F^{*'}, \mathcal{C}_c(S_1, R))$$
 (3.5)

We define

$$\partial: C(\mathcal{G}_p, R) \to H_d(F^{*'}, \mathcal{C}_c(S_1, R))$$

as the composition of (3.3) with this map.

Now, letting M be an R-module equipped with the trivial $F^{*'}$ -action, the bilinear form (3.1)

$$\mathcal{D}_f(S_1, M) \times \mathcal{C}_c(S_1, R) \to M$$

 $(\phi, f) \mapsto \int f \, d\phi$

induces a cap product

$$\cap: H^d\big(F^{*\prime}, \mathcal{D}_f(S_1, M)\big) \times H_d\big(F^{*\prime}, \mathcal{C}_c(S_1, R)\big) \to H_0(F^{*\prime}, M) = M.$$
(3.6)

Thus for each $\kappa \in H^d(F^{*'}, \mathcal{D}_f(S_1, M))$, we get a distribution μ_{κ} on \mathcal{G}_p by defining

$$\int_{\mathcal{G}_p} f(\gamma) \ \mu_{\kappa}(d\gamma) := \kappa \cap \partial(f) \tag{3.7}$$

for all continuous maps $f: \mathcal{G}_p \to R$.

Now let M = V be a finite-dimensional vector space over a *p*-adic field K, and let $\kappa \in H^d(F^{*\prime}, \mathcal{D}_f^b(S_1, V))$. We identify κ with its image in $H^d(F^{*\prime}, \mathcal{D}_f(S_1, V))$; then it is easily seen that μ_{κ} is also a measure, i.e. we have a map

$$H^{d}(F^{*\prime}, \mathcal{D}^{b}_{f}(S_{1}, V)) \to \operatorname{Dist}^{b}(\mathcal{G}_{p}, V).$$
 (3.8)

Definition 3.4. The *p*-adic cyclotomic character $\mathcal{N} : \mathcal{G}_p \to \mathbb{Z}_p^*$ is defined by requiring $\gamma \zeta = \zeta^{\mathcal{N}(\gamma)}$ for $\gamma \in \mathcal{G}_p$ and all *p*-power roots of unity ζ . We put $\mathcal{N}(\gamma)^s := \exp_p(s \log_p(\mathcal{N}(\gamma)))$ for all $s \in \mathbb{Z}_p$.

Definition 3.5. Let K be a p-adic field, V a finite-dimensional K-vector space. We define the *p*-adic L-function of $\kappa \in H^d(F^{*\prime}, \mathcal{D}^b_f(S_1, V))$ as

$$L_p(s,\kappa) := \int_{\mathcal{G}_p} \mathcal{N}(\gamma)^s \mu_{\kappa}(d\gamma)$$

for all $s \in \mathbb{Z}_p$.

Remark 3.6. Let $\Sigma := {\pm 1}^r$, where *r* is the number of real embeddings of *F*. The group isomorphism $\mathbb{Z}/2\mathbb{Z} \cong {\pm 1}, \varepsilon \mapsto (-1)^{\varepsilon}$, induces a pairing

$$\langle \cdot, \cdot \rangle : \Sigma \to \{\pm 1\}, \quad \langle ((-1)^{\varepsilon_i})_i, ((-1)^{\varepsilon'_i})_i \rangle := (-1)^{\sum_i \varepsilon_i \varepsilon'_i}.$$

For a field k of characteristic zero, a $k[\Sigma]$ -module V and $\underline{\mu} = (\mu_0, \dots, \mu_{r-1}) \in \Sigma$, we put $V_{\underline{\mu}} := \{v \in V \mid \langle \underline{\mu}, \underline{\nu} \rangle v = \underline{\nu}v \; \forall \underline{\nu} \in \Sigma \}$, so that we have $V = \bigoplus_{\underline{\mu} \in \Sigma} V_{\underline{\mu}}$. We write v_{μ} for the projection of $v \in V$ to V_{μ} , and $v_{+} := v_{(1,\dots,1)}$.

We identify Σ with $F^*/F^{*'}$ via the isomorphism $\Sigma \cong \prod_{i=0}^{r-1} \mathbb{R}^*/\mathbb{R}^*_+ \cong F^*/F^{*'}$. Then for each F^* -module M, Σ acts on $H^d(F^{*'}, \mathcal{D}_f(S_1, M))$ and on $H^d(F^{*'}, \mathcal{D}_f^b(S_1, M))$. The exact sequence $\Sigma \cong \prod_{i=0}^{r-1} \mathbb{R}^*/\mathbb{R}^*_+ = \mathbb{I}_{\infty}/\mathbb{I}_{\infty}^0 \to \mathcal{G}_p \to \mathcal{G}_p^+ \to 0$ of class field theory (where \mathbb{I}_{∞}^0 is the maximal connected subgroup of \mathbb{I}_{∞}) yields an action of Σ on \mathcal{G}_p . We easily check that (3.8) is Σ -equivariant, and that the map $\gamma \mapsto \mathcal{N}(\gamma)^s$ factors over $\mathcal{G}_p \to \mathcal{G}_p^+$. Therefore we have $L_p(s, \kappa) = L_p(s, \kappa_+)$.

For $\phi \in \mathcal{D}(S_1, V)$ and $f \in C^0(\mathbb{I}/F^*, \mathbb{C})$, let

$$\int_{\mathbb{I}/F^*} f(x)\phi(d^{\times}x_p, x^p) \ d^{\times}x^p := [U_p:U] \int_{\mathbb{I}/F^*} f(x)\phi_U(x) \ d^{\times}x,$$

where we choose an open set $U \subseteq U_p$ such that $f(x_p u, x^p) = f(x_p, x^p)$ for all $(x_p, x^p) \in \mathbb{I}$ and $u \in U$; such a U exists by lemma 3.7 below.

Since this integral is additive in f, there exists a unique V-valued distribution μ_{ϕ} on \mathcal{G}_p such that

$$\int_{\mathcal{G}_p} f \ d\mu_{\phi} = \int_{\mathbb{I}/F^*} f(\varrho(x))\phi(d^{\times}x_p, x^p) \ d^{\times}x^p \tag{3.9}$$

for all functions $f \in C^0(\mathcal{G}_p, V)$.

Lemma 3.7. Let $F : \mathbb{I}/F^* \to X$ be a locally constant map to a set X. Then there exists an open subgroup $U \subseteq \mathbb{I}$ such that f factors over \mathbb{I}/F^*U .

Proof. (cf. [Sp], lemma 4.20)

 $\mathbb{I}_{\infty} = \prod_{v \mid \infty} F_v$ is connected, thus f factors over $\overline{f} : \mathbb{I}/F^*\mathbb{I}_{\infty} \to X$. Since $\mathbb{I}/F^*\mathbb{I}_{\infty}$ is profinite, \overline{f} further factors over a subgroup $U' \subseteq \mathbb{I}^{\infty}$ of finite index, which is open. \Box

Let $U_{\infty}^{0} := \prod_{v \in S_{\infty}^{0}} \mathbb{R}_{+}^{*}$; the isomorphisms $U_{\infty}^{0} \cong \mathbb{R}^{d}$, $(r_{v})_{v} \mapsto (\log r_{v})_{v}$, and $\mathbb{R}^{d} \cong \mathbb{R}_{0}^{d+1}$ give it the structure of a *d*-dimensional oriented manifold (with the natural orientation). It has the *d*-form $d^{\times}r_{1} \cdot \ldots \cdot d^{\times}r_{d}$, where (by slight abuse of notation) we choose $d^{\times}r_{i}$ on $F_{\infty_{i}}$ corresponding to the Haar measure $d^{\times}x_{i}$ resp. $d^{\times}r_{i}$ on $\mathbb{R}_{+}^{*} \subseteq F_{\infty_{i}}^{*}$.

E' operates on U_{∞}^{0} via $a \mapsto (|\sigma_{i}(a)|)_{i \in S_{\infty}^{0}}$, making the isomorphism $U_{\infty}^{0} \cong \mathbb{R}_{0}^{d+1}$ E'-equivariant. For $\phi \in \mathcal{D}'(S_1, V)$, set

$$\begin{split} \int_0^\infty \phi \; d^{\times} r_0 \colon \mathfrak{Co}(F_{S_1} \times F_{S_2}^*) \times \mathbb{I}^{p,\infty_0} &\to \mathbb{C} \\ (U, x^{p,\infty_0}) &\mapsto \int_0^\infty \phi(U, r_0, x^{p,\infty_0}) \; d^{\times} r_0, \end{split}$$

where we let $r_0 \in F_{\infty_0}$ run through the positive real line \mathbb{R}^*_+ in F_{∞_0} . Composing this with the projection $\mathcal{D}(S_1, V) \to \mathcal{D}'(S_1, V)$ gives us a map

$$\mathcal{D}(S_1, V) \to H^0(F^{*\prime}, \mathcal{D}_f(S_1, C^{\infty}(U^0_{\infty}, V)))),$$

$$\phi \mapsto \int_{(S^1)^s} \left(\int_0^\infty \phi \ d^{\times} r_0 \right) d\vartheta_r \ d\vartheta_{r+1} \dots d\vartheta_{r+s-1}$$
(3.10)

(where $C^{\infty}(U^0_{\infty}, V)$ denotes the space of smooth V-valued functions on U^0_{∞}), since one easily checks that $\int_0^{\infty} \phi \ d^{\times} r_0$ is $F^{*'}$ -invariant.

Define the complex $C^{\bullet} := \mathcal{D}_f(S_1, \Omega^{\bullet}(U^0_{\infty}, V))$. By the Poincare lemma, this is a resolution of $\mathcal{D}_f(S_1, V)$. We now define the map $\phi \mapsto \kappa_{\phi}$ as the composition of (3.10) with the composition

$$H^0(F^{*\prime}, \mathcal{D}_f(S_1, C^{\infty}(U^0_{\infty}, V)))) \to H^0(F^{*\prime}, C^d) \to H^d(F^{*\prime}, \mathcal{D}_f(S_1, V)),$$
 (3.11)

where the first map is induced by

$$C^{\infty}(U^0_{\infty}, V) \to \Omega^d(U^0_{\infty}, V), \quad f \mapsto f(r_1, \dots, r_d)d^{\times}r_1 \cdot \dots \cdot d^{\times}r_d,$$
 (3.12)

and the second is an edge morphism in the spectral sequence

$$H^{q}(F^{*\prime}, C^{p}) \Rightarrow H^{p+q}(F^{*\prime}, \mathcal{D}_{f}(S_{1}, V)).$$

$$(3.13)$$

Specializing to $V = \mathbb{C}$, we now have:

Proposition 3.8. The diagram (3.2) commutes, i.e., for each $\phi \in \mathcal{D}(S_1, \mathbb{C})$, we have

$$\mu_{\phi} = \mu_{\kappa_{\phi}}.$$

Proof. (cf. [Sp], prop. 4.21) We define a pairing

$$\langle , \rangle : \mathcal{D}(S_1, \mathbb{C}) \times C^0(\mathcal{G}_p, \mathbb{C}) \to \mathbb{C}$$

as the composite of $(3.10) \times (3.3)$ with

$$H^{0}(F^{*\prime}, \mathcal{D}_{f}(S_{1}, C^{\infty}(U_{\infty}^{0}, \mathbb{C}))) \times H_{0}(F^{*\prime}/E', H^{0}(E', \mathcal{C}_{c}^{0}(S_{1}, \mathbb{C})))$$

$$\xrightarrow{\cap} H_{0}(F^{*\prime}/E', H^{0}(E', C^{\infty}(U_{\infty}^{0}, \mathbb{C}))) \to H_{0}(F^{*\prime}/E', \mathbb{C}) \cong \mathbb{C}, \quad (3.14)$$

where \cap is the cap product induced by (3.1), and the second map is induced by

$$H^0(E', \mathcal{C}^{\infty}(U^0_{\infty}, \mathbb{C})) \to \mathbb{C}, \quad f \mapsto \int_{U^0_{\infty}/E'} f(r_1, \dots, r_d) \ d^{\times}r_1 \dots d^{\times}r_d.$$
(3.15)

An easy computation shows that

$$\langle \phi, f \rangle = \int_{\mathcal{G}_p} f(\gamma) \ \mu_{\phi}(d\gamma) \quad \text{for all } f \in C^0(\mathcal{G}_p, \mathbb{C}).$$

So we need to show that $\kappa_{\phi} \cap \partial(f) = \langle \phi, f \rangle$; i.e. it suffices to show that the diagram

$$H^{0}(F^{*'}, \mathcal{D}_{f}(S_{1}, C^{\infty}(U_{\infty}^{0}, \mathbb{C}))) \times H_{0}(F^{*'}/E', H^{0}(E', \mathcal{C}_{c}^{0}(S_{1}, \mathbb{C})))$$

$$(3.16)$$

$$(3.11) \times (3.5)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.14)$$

$$(3.1$$

commutes. For this consider the commutative diagram

where the horizontal maps are cap-products induced by the pairing (3.1), η denotes cap-product with η , 3 and 4 are induced by (3.12), 5 and 6 by the edge morphism (3.4), and 7 and 8 by an edge morphism of (3.13) and a homological spectral sequence for the resolution $0 \to \mathbb{C} \to \Omega^{\bullet}(U_{\infty}^{0})$, respectively.

Since the composition of the left-hand-side vertical maps is $(3.11) \times (3.5)$, we need to show that the composition of the right-hand-side vertical maps is induced by (3.15). But this follows easily from the commutativity of the diagram

$$\begin{split} H^{0}(E', C^{\infty}(U^{0}_{\infty}, \mathbb{C})) & \xrightarrow{(3.12)_{*}} H^{0}(E', \Omega^{d}(U^{0}_{\infty}, \mathbb{C})) \longrightarrow H^{d}(E', \mathbb{C}) \\ & \downarrow^{\cap \eta} & \downarrow^{\cap \eta} & \downarrow^{\cap \eta} \\ H_{d}(E', C^{\infty}(U^{0}_{\infty}, \mathbb{C})) & \xrightarrow{(3.12)_{*}} H_{d}(E', \Omega^{d}(U^{0}_{\infty}, \mathbb{C})) \longrightarrow H_{0}(E', \mathbb{C}) \end{split}$$

since for a *d*-form on the *d*-dimensional oriented manifold $M := \mathbb{R}_0^{d+1}/E' \cong U_{\infty}^0/E'$, integration over M corresponds to taking the cap product with the fundamental class η of M under the canonical isomorphism $H_{dR}^d(M) \cong H_{sing}^d(M) = H^d(E', \mathbb{C})$. \Box

3.3 Integral cohomology classes

Definition 3.9. For $\kappa \in H^d(F^{*'}, \mathcal{D}_f(S_1, \mathbb{C}))$ and a subring R of \mathbb{C} , we denote the image of

$$H_d(F^{*\prime}, \mathcal{C}^0_c(S_1, R)) \to H_0(F^{*\prime}, \mathbb{C}) = \mathbb{C}, \quad x \mapsto \kappa \cap x$$

by $L_{\kappa,R}$. ("Module of periods of R")

Lemma 3.10. Let $R \subseteq \overline{\mathbb{Q}}$ be a Dedekind ring. (a)For a subring $R' \supseteq R$ of \mathbb{C} , we have $L_{\kappa,R'} = R'L_{\kappa,R}$. (b) If $\kappa \neq 0$, then $L_{\kappa,R} \neq 0$.

Proof. (cf. [Sp], lemma 4.15) (a) We have $\mathcal{C}_c^0(S_1, R') = \mathcal{C}_c^0(S_1, R) \otimes R'$, and since R' is a flat R-module, we have $H_d(F^{*'}, \mathcal{C}_c^0(S_1, R')) = H_d(F^{*'}, \mathcal{C}_c^0(S_1, R)) \otimes R'$.

(b) The pairing (3.1), and thus the cap-product (3.6), is non-degenerate for $M = R = \mathbb{C}$. Thus $L_{\kappa,\mathbb{C}} \neq 0$, and (a) implies $L_{\kappa,R} \neq 0$.

Definition 3.11. A nonzero cohomology class $\kappa \in H^d(F^{*'}, \mathcal{D}_f(S_1, \mathbb{C}))$ is called integral if κ lies in the image of $H^d(F^{*'}, \mathcal{D}_f(S_1, R)) \otimes_R \mathbb{C} \to H^d(F^{*'}, \mathcal{D}_f(S_1, \mathbb{C}))$ for some Dedekind ring $R \subseteq \overline{\mathcal{O}}$. If, in addition, there exists a torsion-free Rsubmodule $M \subseteq H^d(F^{*'}, \mathcal{D}_f(S_1, R))$ of rank ≤ 1 (i.e. M can be embedded into R, by the classification of finitely generated R-modules) such that κ lies in the image of $M \otimes_R \mathbb{C} \to H^d(F^{*'}, \mathcal{D}_f(S_1, \mathbb{C}))$, then κ is integral of rank ≤ 1 .

Proposition 3.12. Let $\kappa \in H^d(F^{*'}, \mathcal{D}_f(S_1, \mathbb{C}))$. The following conditions are equivalent:

- (i) κ is integral (resp. integral of rank ≤ 1).
- (ii) There exists a Dedekind ring $R \subseteq \overline{\mathcal{O}}$ such that $L_{\kappa,R}$ is a finitely generated *R*-module (resp. a torsion-free *R*-module of rank ≤ 1).
- (iii) There exists a Dedekind ring $R \subseteq \overline{\mathcal{O}}$, a finitely generated R-module M (resp. a torsion-free R-module of rank ≤ 1) and an R-linear map $f : M \to \mathbb{C}$ such that κ lies in the image of the induced map $f_* : H^d(F^{*'}, \mathcal{D}_f(S_1, M)) \to H^d(F^{*'}, \mathcal{D}_f(S_1, \mathbb{C})).$

Proof. (cf. [Sp], prop. 4.17)

(i) \Rightarrow (ii): Let R be such that κ lies in the image of $H^d(F^{*\prime}, \mathcal{D}_f(S_1, R)) \otimes_R \mathbb{C} \rightarrow H^d(F^{*\prime}, \mathcal{D}_f(S_1, \mathbb{C}))$. Then $\kappa = \sum_{i=1}^n x_i \kappa_i$ with $x_i \in \mathbb{C}, \ \kappa_i \in \mathrm{Im}(H^d(F^{*\prime}, \mathcal{D}_f(S_1, R)))$ (with $n \leq 1$ if κ has rank ≤ 1) and thus $L_{\kappa, R} \subseteq \sum_{i=1}^n x_i L_{\kappa_i, R} \subseteq \sum_{i=1}^n x_i R$.

(ii) \Rightarrow (iii): We have a commutative diagram

where the horizontal maps are given by the cap-product and the vertical ones are induced by the inclusion $L_{\kappa,R} \hookrightarrow \mathbb{C}$. By the universal coefficient theorem (using the isomorphism $\mathcal{D}_f(S_1, M) \cong \operatorname{Hom}_R(\mathcal{C}_c^0(S_1, R), M))$, the lower horizontal map is an isomorphism, and the kernel and cokernel of the upper horizontal map are Rtorsion; since the map $\kappa \cap \cdot$ lies in $\operatorname{Hom}_R(H_d(F^{*\prime}, \mathcal{C}_c^0(S_1, R)), L_{\kappa,R}))$, some multiple $a \cdot \kappa, a \in R^*$, must have a preimage in $H^d(F^{*\prime}, \mathcal{D}_f(S_1, L_{\kappa,R}))$. Thus we can choose $M = L_{\kappa,R}$ and $f : L_{\kappa,R} \to \mathbb{C}, x \mapsto a^{-1}x$ in (iii).

(iii) \Rightarrow (i): Since f(M) is a torsion-free finitely generated module over a Dedekind ring, it can be embedded into a free module $R^n \hookrightarrow \mathbb{C}$ (with $n \leq 1$ if M has rank ≤ 1). Then f factorizes over $M \to f(M) \hookrightarrow R^n \hookrightarrow \mathbb{C}$, and thus f_* factorizes over $H^d(F^{*'}, \mathcal{D}_f(S_1, R^n))$. Thus, we can assume that $M = R^n$.

Now let $x_1, \ldots, x_n \in \mathbb{C}$ be the images of the standard basis of M under f. Then we have

$$\kappa \in \operatorname{Im}(f_*) = \sum_{i=1}^n x_i \operatorname{Im} \left(H^d(F^{*\prime}, \mathcal{D}_f(S_1, R)) \to H^d(F^{*\prime}, \mathcal{D}_f(S_1, \mathbb{C})) \right)$$
$$\subseteq \operatorname{Im} \left(H^d(F^{*\prime}, \mathcal{D}_f(S_1, R)) \otimes_R \mathbb{C} \to H^d(F^{*\prime}, \mathcal{D}_f(S_1, \mathbb{C})) \right).$$

Corollary 3.13. Let $\kappa \in H^d(F^{*'}, \mathcal{D}_f(S_1, \mathbb{C}))$ be integral and $R \subseteq \overline{\mathcal{O}}$ be as in proposition 3.9. Then

(a) μ_{κ} is a p-adic measure, and (b) the map $H^{d}(F^{*'}, \mathcal{D}_{f}(S_{1}, L_{\kappa,R})) \otimes \overline{\mathbb{Q}} \to \mathcal{H}^{d}(F^{*'}, \mathcal{D}_{f}(S_{1}, \mathbb{C}))$ is injective and κ lies in its image.

Proof. (cf. [Sp], cor. 4.18.)

The image of $C^0(\mathcal{G}_p,\overline{\mathcal{O}}) \to \mathbb{C}$, $f \mapsto \int f\mu_{\kappa} = \kappa \cap \partial(f)$ is contained in $L_{\kappa,\overline{\mathcal{O}}}$ since $\partial(f) \in H_d(F^{*'}, \mathcal{C}_c^0(S_1,\overline{\mathcal{O}}))$. Condition (iii) in the proposition implies that $L_{\kappa,\overline{\mathcal{O}}}$ is a finitely generated $\overline{\mathcal{O}}$ -module, from which (a) follows.

(b): In the proof of (ii) \Rightarrow (iii) above, the right-hand vertical map in (3.17) is injective, thus the left-hand map tensored with $\overline{\mathbb{Q}}$ also is (and κ lies in its image), since the horizontal maps are isomorphisms after tensoring with $\overline{\mathbb{Q}}$.

Remark 3.14. Let κ be integral with Dedekind ring R as above. By (b) of the corollary, we can view κ as an element of $H^d(F^{*\prime}, \mathcal{D}_f(S_1, L_{\kappa,R})) \otimes \overline{\mathbb{Q}}$. Put $V_{\kappa} := L_{\kappa,R} \otimes_R \mathbb{C}_p$; let $\overline{\kappa}$ be the image of κ under the composition

$$H^{d}(F^{*\prime}, \mathcal{D}_{f}(S_{1}, L_{\kappa, R})) \otimes_{R} \overline{\mathbb{Q}} \to H^{d}(F^{*\prime}, \mathcal{D}_{f}(S_{1}, L_{\kappa, R})) \otimes_{R} \mathbb{C}_{p} \to H^{d}(F^{*\prime}, \mathcal{D}_{f}^{b}(S_{1}, V_{\kappa})),$$

where the second map is induced by $\mathcal{D}_f(S_1, L_{\kappa,R}) \otimes_R \mathbb{C}_p \to \mathcal{D}_f^b(S_1, V_\kappa)$. By lemma 3.10 (a), $\overline{\kappa}$ does not depend on the choice of R.

Since μ_{κ} is a *p*-adic measure, $\mu_{\overline{\kappa}}$ allows integration of all continuous functions $f \in C(\mathcal{G}_p, \mathbb{C}_p)$, and by abuse of notation, we write $L_p(s, \kappa) := \int_{\mathcal{G}_p} \mathcal{N}(\gamma)^s \mu_{\kappa}(d\gamma) := L_p(s, \overline{\kappa})$ (cf. remark 3.6). So $L_p(s, \kappa)$ has values in the finite-dimensional \mathbb{C}_p -vector space V_{κ} .

4 *p*-adic L-functions of automorphic forms

We keep the notations from chapter 3; so F is again a number field with r real embeddings and s pairs of complex embeddings.

For an ideal $0 \neq \mathfrak{m} \subseteq \mathcal{O}_F$, we let $K_0(\mathfrak{m})_v \subseteq G(\mathcal{O}_{F_v})$ be the subgroup of matrices congruent to an upper triangular matrix modulo \mathfrak{m} , and we set $K_0(\mathfrak{m}) := \prod_{v \nmid \infty} K_0(\mathfrak{m})_v$, $K_0(\mathfrak{m})^S := \prod_{v \nmid \infty, v \notin S} K_0(\mathfrak{m})_v$ for a finite set of primes S. For each $\mathfrak{p}|_P$, let $q_\mathfrak{p} = N(\mathfrak{p})$ denote the number of elements of the residue class field of $F_\mathfrak{p}$.

We denote by $|\cdot|_{\mathbb{C}}$ the square of the usual absolute value on \mathbb{C} , i.e. $|z|_{\mathbb{C}} = z\overline{z}$ for all $z \in \mathbb{C}$, and write $|\cdot|_{\mathbb{R}}$ for the usual absolute value on \mathbb{R} in context.

Definition 4.1. Let $\mathfrak{A}_0(G, \underline{2}, \chi_Z)$ denote the set of all cuspidal automorphic representations $\pi = \bigotimes_v \pi_v$ of $G(\mathbb{A}_F)$ with central character χ_Z such that $\pi_v \cong \sigma(|\cdot|_{F_v}^{1/2}, |\cdot|_{F_v}^{-1/2})$ at all archimedian primes v. Here we follow the notation of [JL]; so $\sigma(|\cdot|_{F_v}^{1/2}, |\cdot|_{F_v}^{-1/2})$ is the discrete series of weight 2, $\mathcal{D}(2)$, if v is real, and is isomorphic to the principal series representation $\pi(\mu_1, \mu_2)$ with $\mu_1(z) = z^{1/2} \overline{z}^{-1/2}, \ \mu_2(z) = z^{-1/2} \overline{z}^{1/2}$ if v is complex (cf. section 4.5 below).

We will only consider automorphic representations that are *p*-ordinary, i.e $\pi_{\mathfrak{p}}$ is ordinary (in the sense of chapter 2) for every $\mathfrak{p}|p$.

Therefore, for each $\mathfrak{p}|p$ we fix two non-zero elements $\alpha_{\mathfrak{p},1}, \alpha_{\mathfrak{p},2} \in \mathcal{O} \subseteq \mathbb{C}$ such that $\pi_{\alpha_{\mathfrak{p},1},\alpha_{\mathfrak{p},2}}$ is an ordinary, unitary representation. By the classification of unitary representations (see e.g. [Ge], Thm. 4.27), a spherical representation $\pi_{\alpha_{\mathfrak{p},1},\alpha_{\mathfrak{p},2}} = \pi(\chi_1,\chi_2)$ is unitary if and only if either χ_1,χ_2 are both unitary characters (i.e. $|\alpha_{\mathfrak{p},1}| = |\alpha_{\mathfrak{p},2}| = \sqrt{q_{\mathfrak{p}}})^{\text{iii}}$, or $\chi_{1,2} = \chi_0| \cdot |^{\pm s}$ with χ_0 unitary and $-\frac{1}{2} < s < \frac{1}{2}$. A special representation $\pi_{\alpha_{\mathfrak{p},1},\alpha_{\mathfrak{p},2}} = \pi(\chi_1,\chi_2)$ is unitary if and only if the central character $\chi_1\chi_2$ is unitary. In all three cases, we have thus $\max\{|\alpha_{\mathfrak{p},1}|, |\alpha_{\mathfrak{p},2}|\} \ge \sqrt{q_{\mathfrak{p}}}$. Without loss of generality, we will assume the $\alpha_{\mathfrak{p},i}$ to be ordered such that $|\alpha_{\mathfrak{p},1}| \le |\alpha_{\mathfrak{p},2}|$ for all $\mathfrak{p}|p$.

As in chapter 2, we define $a_{\mathfrak{p}} := \alpha_{\mathfrak{p},1} + \alpha_{\mathfrak{p},2}, \nu_{\mathfrak{p}} := \alpha_{\mathfrak{p},1}\alpha_{\mathfrak{p},2}/q_{\mathfrak{p}}.$

Let $\underline{\alpha_i} := (\alpha_{\mathfrak{p},i}, \mathfrak{p}|p)$, for i = 1, 2. We denote by $\mathfrak{A}_0(G, \underline{2}, \chi_Z, \underline{\alpha_1}, \underline{\alpha_2})$ the subset of all $\pi \in \mathfrak{A}_0(G, \underline{2}, \chi_Z)$ such that $\pi_{\mathfrak{p}} = \pi_{\alpha_{\mathfrak{p},1},\alpha_{\mathfrak{p},2}}$ for all $\mathfrak{p}|p$.

Let $S_1 \subseteq S_p$ be the set of places such that π_p is the Steinberg representation (i.e. $\alpha_{p,1} = \nu_p = 1, \ \alpha_{p,2} = q$).^{iv}

For later use we note that $\pi^{\infty} = \bigotimes_{v \nmid \infty} \pi_v$ is known to be defined over a finite extension of \mathbb{Q} , the smallest such field being the *field of definition* of π (cf. [Sp]).

ⁱⁱⁱTo avoid confusion: By $|\alpha_{\mathfrak{p},i}|$ we always mean the archimedian absolute value of $\alpha_{\mathfrak{p},i} \in \mathbb{C}$; whereas in the context of the *p*-adic characters χ_i , $|\cdot|$ always means the *p*-adic absolute value, unless otherwise noted.

^{iv}Note that all $\mathfrak{p}|p$ with $\alpha_{\mathfrak{p},1} = \nu_{\mathfrak{p}} \in \overline{\mathcal{O}}^*$, i.e. $\alpha_{\mathfrak{p},2} = q$, already lie in S_1 , since $|\alpha_{\mathfrak{p},2}| < q$ in the spherical case. $L_p(s,\pi)$ should have an exceptional zero for each $\mathfrak{p} \in S_1$, according to the exceptional zero conjecture.

4.1 Upper half-space

Let $\mathcal{H}_2 := \{z \in \mathbb{C} | \operatorname{Im}(z) > 0\} \cong \mathbb{R} \times \mathbb{R}^*_+$ be the complex upper half-plane, and let $\mathcal{H}_3 := \mathbb{C} \times \mathbb{R}^*_+$ be the 3-dimensional upper half-space. Each \mathcal{H}_m is a differentiable manifold of dimension *i*. If we write $x = (u, t) \in \mathcal{H}_m$ with $t \in \mathbb{R}^*_+$, *u* in \mathbb{R} or \mathbb{C} , respectively, it has a Riemannian metric $ds^2 = \frac{dt^2 + du \, d\overline{u}}{t}$, which induces a hyperbolic geometry on \mathcal{H}_m , i.e. the geodesic lines on \mathcal{H}_m are given by "vertical" lines $\{u\} \times \mathbb{R}^*_+$ and half-circles with center in the line or plane t = 0.

We have the decomposition $\operatorname{GL}_2(\mathbb{C}) = B'_{\mathbb{C}} \cdot Z(\mathbb{C}) \cdot K_{\mathbb{C}}$, where $B'_{\mathbb{C}}$ is the subgroup of matrices $\binom{\mathbb{R}^*_+ \mathbb{C}}{0}$, Z is the center, and $K_{\mathbb{C}} = \operatorname{SU}(2)$ (cf. [By], Cor. 43); and analogously $\operatorname{GL}_2(\mathbb{R})^+ = B'_{\mathbb{R}} \cdot Z(\mathbb{R}) \cdot K_{\mathbb{R}}$ with $B'_{\mathbb{R}} = \{\binom{y \ x}{0 \ 1} | x \in \mathbb{R}, y \in \mathbb{R}^*_+\}$ and $K_{\mathbb{R}} = \operatorname{SO}(2).$

We can identify $B'_{\mathbb{C}}$ with \mathcal{H}_3 via $\begin{pmatrix} t & z \\ 0 & 1 \end{pmatrix} \mapsto (z, t)$, and $B'_{\mathbb{R}}$ with \mathcal{H}_2 via $\begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \mapsto x + iy$. This gives us natural projections

$$\pi_{\mathbb{R}} : \mathrm{GL}_2(\mathbb{R})^+ \twoheadrightarrow \mathrm{GL}_2(\mathbb{R})^+ / \mathbb{R}^* \operatorname{SO}(2) \cong \mathcal{H}_2$$

and

$$\pi_{\mathbb{C}} : \mathrm{GL}_2(\mathbb{C}) \twoheadrightarrow \mathrm{GL}_2(\mathbb{C}) / \mathbb{C}^* \operatorname{SU}(2) \cong \mathcal{H}_3.$$

The corresponding left actions on cosets are invariant under the Riemannian metrics on \mathcal{H}_m , and can be given explicitly as follows:

 $\operatorname{GL}_2(\mathbb{R})^+$ operates on $\mathcal{H}_2 \subseteq \mathbb{C}$ via Möbius transformations,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z) := \frac{az+b}{cz+d},$$

and $\operatorname{GL}_2(\mathbb{C})$ operates on \mathcal{H}_3 by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z,t) := \left(\frac{(az+b)(\overline{cz+d}) + a\overline{c}t^2}{|cz+d|^2 + |ct|^2}, \frac{|ad-bc|t}{|cz+d|^2 + |ct|^2} \right)$$

([By], (3.12)); specifically, we have

$$\begin{pmatrix} t & z \\ 0 & 1 \end{pmatrix} (0,1) = (z,t) \quad \text{for } (z,t) \in \mathcal{H}_3.$$

A differential form ω on \mathcal{H}_m is called *left-invariant* if it is invariant under the pullback L_g^* of left multiplication $L_g: x \mapsto gx$ on \mathcal{H}_m , for all $g \in G$. Following [By], eqs. (4.20), (4.24), we choose the following basis of left invariant differential 1-forms on \mathcal{H}_3 :

$$\beta_0 := -\frac{dz}{t}, \quad \beta_1 := \frac{dt}{t}, \quad \beta_2 := \frac{d\overline{z}}{t},$$

and on \mathcal{H}_2 (writing $z = x + iy \in \mathcal{H}_2$):

$$\beta_1 := \frac{dz}{y}, \quad \beta_2 := -\frac{d\overline{z}}{y}.$$

We note that a form $f_1\beta_1 + f_2\beta_2$ is harmonic on \mathcal{H}_2 if and only if f_1/y and f_2/y are holomorphic functions in z ([By], lemma 60).

Let $k \in \{\mathbb{R}, \mathbb{C}\}$. The Jacobian J(g, (0, 1)) of left multiplication by g in $(0, 1) \in \mathcal{H}_m$ with respect to the basis $(\beta_i)_i$ gives rise to a representation

$$\varrho = \varrho_k : Z(k) \cdot K_k \to \mathrm{SL}_m(\mathbb{C})$$

with $\varrho|_{Z(k)}$ trivial, which on K_k is explicitly given by

$$\varrho_{\mathbb{C}}\begin{pmatrix} u & v \\ -\overline{v} & \overline{u} \end{pmatrix} = \begin{pmatrix} u^2 & 2uv & v^2 \\ -u\overline{v} & u\overline{u} - v\overline{v} & v\overline{u} \\ \overline{v}^2 & -2\overline{u}\overline{v} & \overline{u}^2 \end{pmatrix},$$

resp.

$$\varrho_{\mathbb{R}} \begin{pmatrix} \cos(\vartheta) & \sin(\vartheta) \\ -\sin(\vartheta) & \cos(\vartheta) \end{pmatrix} = \begin{pmatrix} e^{2i\vartheta} & 0 \\ 0 & e^{-2i\vartheta} \end{pmatrix}$$

([By], (4.27), (4.21)). In the real case, we will only consider harmonic forms on \mathcal{H}_2 that are multiples of β_1 , thus we sometimes identify $\rho_{\mathbb{R}}$ with its restriction $\rho_{\mathbb{R}}^{(1)}$ to the first basis vector β_1 ,

$$\varrho_{\mathbb{R}}^{(1)} : \mathrm{SO}(2) \to S^1 \subseteq \mathbb{C}^*, \quad \kappa_{\vartheta} = \begin{pmatrix} \cos(\vartheta) & \sin(\vartheta) \\ -\sin(\vartheta) & \cos(\vartheta) \end{pmatrix} \mapsto e^{2i\vartheta}$$

For each *i*, let ω_i be the left-invariant differential 1-form on $\operatorname{GL}_2(k)$ which coincides with the pullback $(\pi_{\mathbb{C}})^*\beta_i$ at the identity. Write $\underline{\omega}$ (resp. $\underline{\beta}$) for the column vector of the ω_i (resp. β_i). Then we have the following lemma from [By]:

Lemma 4.2. For each *i*, the differential ω_i on *G* induces β_i on \mathcal{H}_m , by restriction to the subgroup $B'_k \cong \mathcal{H}_m$. For a function $\phi : G \to \mathbb{C}^m$, the form $\phi \cdot \underline{\omega}$ (with \mathbb{C}^m considered as a row vector, so \cdot is the scalar product of vectors) induces $f \cdot \underline{\beta}$, where $f : \mathcal{H}_m \to \mathbb{C}^m$ is given by

$$f(z,t) := \phi\left(\begin{pmatrix} t & z \\ 0 & 1 \end{pmatrix}\right).$$

(See [By], Lemma 57.)

To consider the infinite primes of F all at once, we define

$$\mathcal{H}_{\infty} := \prod_{i=0}^{d} \mathcal{H}_{m_i} = \prod_{i=0}^{r-1} \mathcal{H}_2 imes \prod_{i=r}^{d} \mathcal{H}_3$$

(where $m_i = 2$ if σ_i is a real embedding, and = 3 if σ_i is complex), and let $\mathcal{H}^0_{\infty} := \prod_{i=1}^d \mathcal{H}_{m_i}$ be the product with the zeroth factor removed.^v

For each embedding σ_i , the elements of $\mathbb{P}^1(F)$ are cusps of \mathcal{H}_{m_i} : for a given complex embedding $F \hookrightarrow \mathbb{C}$, we can identify F with $F \times \{0\} \hookrightarrow \mathbb{C} \times \mathbb{R}_{\geq 0}$ and define the "extended upper half-space" as $\overline{\mathcal{H}_3} := \mathcal{H}_3 \cup F \cup \{\infty\} \subseteq \mathbb{C} \times \mathbb{R}_{\geq 0} \cup \{\infty\};$

^vThe choice of the 0-th factor is for convenience; we could also choose any other infinite place, whether real or complex.

similarly for a given real embedding $F \hookrightarrow \mathbb{R}$, we get the extended upper half-plane $\overline{\mathcal{H}_2} := \mathcal{H}_2 \cup F \cup \{\infty\}$. A basis of neighbourhoods of the cusp ∞ is given by the sets $\{(u,t) \in \mathcal{H}_m | t > N\}, N \gg 0$, and of $x \in F$ by the open half-balls in \mathcal{H}_m with center (x, 0).

Let $G(F)^+ \subseteq G(F)$ denote the subgroup of matrices with totally positive determinant. It acts on \mathcal{H}^0_{∞} by composing the embedding

$$G(F)^+ \hookrightarrow \prod_{v \mid \infty, v \neq v_0} G(F_v)^+, \qquad g \mapsto (\sigma_1(g), \dots, \sigma_d(g)),$$

with the actions of $G(\mathbb{C})^+ = G(\mathbb{C})$ on \mathcal{H}_3 and $G(\mathbb{R})^+$ on \mathcal{H}_2 as defined above, and on $\Omega^d_{\text{harm}}(\mathcal{H}^0_{\infty})$ by the inverse of the corresponding pullback, $\gamma \cdot \underline{\omega} := (\gamma^{-1})^* \underline{\omega}$. Both are left actions.

Denote by $S_{\mathbb{C}}$ (resp. $S_{\mathbb{R}}$) the set of complex (resp. real) archimedian primes of F. For each complex v, we write the codomain of ϱ_{F_v} as

$$\varrho_{F_v}: Z(F_v) \cdot K_{F_v} \to \mathrm{SL}_3(\mathbb{C}) =: \mathrm{SL}(V_v),$$

for a three-dimensional \mathbb{C} -vector space V_v . We denote the harmonic forms on $\operatorname{GL}_2(F_v)$, \mathcal{H}_{F_v} defined above by $\underline{\omega_v}$, $\underline{\beta_v}$ etc.

Let $V = \bigotimes_{v \in S_{\mathbb{C}}} V_v \cong (\mathbb{C}^3)^{\otimes s}$, $Z_{\infty} = \prod_{v \mid \infty} Z(F_v)$, $K_{\infty} = \prod_{v \mid \infty} K_{F_v}$. We can merge the representations ϱ_{F_v} for each $v \mid \infty$ into a representation

$$\varrho = \varrho_{\infty} := \bigotimes_{v \in S_{\mathbb{C}}} \varrho_{\mathbb{C}} \otimes \bigotimes_{v \in S_{\mathbb{R}}} \varrho_{\mathbb{R}}^{(1)} : Z_{\infty} \cdot K_{\infty} \to \mathrm{SL}(V),$$

and define V-valued vectors of differential forms $\underline{\omega} := \bigotimes_{v \in S_{\mathbb{C}}} \underline{\omega}_v \otimes \bigotimes_{v \in S_{\mathbb{R}}} \omega_v^1, \underline{\beta} := \bigotimes_{v \in S_{\mathbb{C}}} \underline{\beta}_v \otimes \bigotimes_{v \in S_{\mathbb{R}}} (\beta_v)_1$ on $\operatorname{GL}_2(F_{\infty})$ and \mathcal{H}_{∞} , respectively.

4.2 Automorphic forms

Let $\chi_Z : \mathbb{A}_F^* \to \mathbb{C}^*$ be a Hecke character that is trivial at the archimedian places. We also denote by χ_Z the corresponding character on $Z(\mathbb{A}_F)$ under the isomorphism $\mathbb{A}_F^* \to Z(\mathbb{A}_F), a \mapsto \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$.

Definition 4.3. An automorphic cusp form of parallel weight $\underline{2}$ with central character χ_Z is a map $\phi : G(\mathbb{A}_F) \to V$ such that

- (i) $\phi(z\gamma g) = \chi_Z(z)\phi(g)$ for all $g \in G(\mathbb{A}), z \in Z(\mathbb{A}), \gamma \in G(F)$.
- (ii) $\phi(gk_{\infty}) = \phi(g)\varrho(k_{\infty})$ for all $k_{\infty} \in K_{\infty}$, $g \in G(\mathbb{A})$ (considering V as a row vector).

(iii) ϕ has "moderate growth" on $B'_{\mathbb{A}} := \{ \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \in G(\mathbb{A}) \}$, i.e. $\exists C, \lambda \ \forall A \in B'_{\mathbb{A}} : \|\phi(A)\| \leq C \cdot \sup(|y|^{\lambda}, |y|^{-\lambda}) \text{ (for any fixed norm } \|\cdot\| \text{ on } V);$ and $\phi|_{G(\mathbb{A}_{\infty})} \cdot \underline{\omega}$ is the pullback of a harmonic form $\omega_{\phi} = f_{\phi} \cdot \underline{\beta} \text{ on } \mathcal{H}_{\infty}.$

- (iv) There exists a compact open subgroup $K' \subseteq G(\mathbb{A}^{\infty})$ such that $\phi(gk) = \phi(g)$ for all $g \in G(\mathbb{A})$ and $k \in K'$.
- (v) For all $g \in G(\mathbb{A}_F)$,

$$\int_{\mathbb{A}_F/F} \phi\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} g\right) \, dx = 0. \qquad ("Cuspidality")$$

We denote by $\mathcal{A}_0(G, \operatorname{harm}, \underline{2}, \chi_Z)$ the space of all such maps ϕ .

For each $g^{\infty} \in \mathbb{A}_{F}^{\infty}$, let $\omega_{\phi}(g^{\infty})$ be the restriction of $\phi(g^{\infty}, \cdot) \cdot \underline{\omega}$ from $G(\mathbb{A}_{F}^{\infty})$ to \mathcal{H}_{∞} ; it is a (d+1)-form on \mathcal{H}_{∞} .

We want to integrate $\omega_{\phi}(g^{\infty})$ between two cusps of the space \mathcal{H}_{m_0} . (We will identify each $x \in \mathbb{P}^1(F)$ with its corresponding cusp in $\overline{\mathcal{H}_{m_0}}$ in the following.) The geodesic between the cusps $x \in F$ and ∞ in $\overline{\mathcal{H}_{m_0}}$ is the line $\{x\} \times \mathbb{R}^*_+ \subseteq \mathcal{H}_{m_0}$ and the integral of ω_{ϕ} along it is finite since ϕ is uniformly rapidly decreasing:

Theorem 4.4. (Gelfand, Piatetski-Shapiro) An automorphic cusp form ϕ is rapidly decreasing modulo the center on a fundamental domain \mathcal{F} of $\operatorname{GL}_2(F) \setminus \operatorname{GL}_2(\mathbb{A}_F)$; i.e. there exists an integer r such that for all $N \in \mathbb{N}$ there exists a C > 0 such that

$$\phi(zg) \le C|z|^r \|g\|^{-N}$$

for all $z \in Z(\mathbb{A}_F)$, $g \in \mathcal{F} \cap SL_2(\mathbb{A}_F)$. Here $||g|| := \max\{|g_{i,j}|, |(g^{-1})_{i,j}|\}_{i,j \in \{1,2\}}$.

(See [CKM], Thm. 2.2; or [Kur78], (6) for quadratic imaginary F.)

In fact, the integral of $\omega_{\phi}(g^{\infty})$ along $\{x\} \times \mathbb{R}^*_+ \subseteq \mathcal{H}_{m_0}$ equals the integral of $\phi(g^{\infty}, \cdot) \cdot \underline{\omega}$ along a path $g_t \in \mathrm{GL}_2(F_{\infty_0}), t \in \mathbb{R}^*_+$, where we can choose

$$g_t = \frac{1}{\sqrt{t}} \begin{pmatrix} t & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{t}} & \frac{x}{\sqrt{t}} \\ 0 & \sqrt{t} \end{pmatrix},$$

and thus have $||g_t|| = \sqrt{t}$ for all $t \gg 0$, $||g_t|| = C \frac{1}{\sqrt{t}}$ for $t \ll 1$, so the integral $\int_x^\infty \omega_\phi(g^\infty) \in \Omega^d_{\text{harm}}(\mathcal{H}^0_\infty)$ is well-defined by the theorem.

For any two cusps $a, b \in \mathbb{P}^1(F)$, we now define

$$\int_{a}^{b} \omega_{\phi}(g^{\infty}) := \int_{a}^{\infty} \omega_{\phi}(g^{\infty}) - \int_{b}^{\infty} \omega_{\phi}(g^{\infty}) \in \Omega^{d}_{\mathrm{harm}}(\mathcal{H}^{0}_{\infty}).$$

Since ϕ is uniformly rapidly decreasing $(||g_t|| \text{ does not depend on } x, \text{ for } t \gg 0)$, this integral along the path $(a, 0) \to (a, \infty) = (b, \infty) \to (b, 0)$ in $\overline{\mathcal{H}}_{m_0}$ is the same as the limit (for $t \to \infty$) of the integral along $(a, 0) \to (a, t) \to (b, t) \to (b, 0)$; and since ω_{ϕ} is harmonic (and thus integration is path-independent within \mathcal{H}_{m_0}) the latter is in fact independent of t, so equality holds for each t > 0, or along any path from (a, 0) to (b, 0) in \mathcal{H}_{m_0} . Thus we have

$$\int_{a}^{b} \omega_{\phi}(g^{\infty}) + \int_{b}^{c} \omega_{\phi}(g^{\infty}) = \int_{a}^{c} \omega_{\phi}(g^{\infty})$$

for any three cusps $a, b, c \in \mathbb{P}^1(F)$. Let $\operatorname{Div}(\mathbb{P}^1(F))$ denote the free abelian group of divisors of $\mathbb{P}^1(F)$, and let $\mathcal{M} := \operatorname{Div}_0(\mathbb{P}^1(F))$ be the subgroup of divisors of degree 0.

We can extend the definition of the integral linearly to get a homomorphism

$$\mathcal{M} \to \Omega^d_{\mathrm{harm}}(\mathcal{H}^0_{\infty}), \quad m \mapsto \int_m \omega_{\phi}(g^{\infty}).$$

For $\gamma \in G(F)^+$, $g \in G(\mathbb{A}^{\infty})$, $m \in \mathcal{M}$ and $x^0_{\infty} \in G(F_{S^0_{\infty}})$, we have
$$\gamma^* \left(\int_{\gamma m} \omega_{\phi}(\gamma g) \right) (x^0_{\infty}) = \int_{\gamma m} \omega_{\phi}(\gamma g) (\gamma x^0_{\infty})$$
$$= \int_{\gamma m} \phi(\gamma g, \gamma x^0_{\infty}, *) \cdot \omega$$
$$= \int_{\gamma m} \phi(g, x^0_{\infty}, \gamma^{-1}*) \cdot \underline{\omega} \qquad (by (i) \text{ of definition 4.3})$$
$$= \int_m \phi(g, x^0_{\infty}, *) \cdot \underline{\omega} \qquad (since \ \underline{\omega} \text{ is } G(F_{\infty})\text{-left invariant})$$
$$= \int_m \omega_{\phi}(g)(x^0_{\infty}),$$

i.e.

$$\gamma^* \left(\int_{\gamma m} \omega_\phi(\gamma g) \right) = \int_m \omega_\phi(g). \tag{4.1}$$

Now let \mathfrak{m} be an ideal of F prime to p, let χ_Z be a Hecke character of conductor dividing \mathfrak{m} , and $\underline{\alpha_1}, \underline{\alpha_2}$ as above.

Definition 4.5. We define $S_2(G, \mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2})$ to be the \mathbb{C} -vector space of all maps

$$\Phi: G(\mathbb{A}^p) \to \mathcal{B}^{\underline{\alpha_1},\underline{\alpha_2}}(F_p, V) = \operatorname{Hom}(\mathcal{B}_{\underline{\alpha_1},\underline{\alpha_2}}(F_p, \mathbb{C}), V)$$

such that:

- (a) ϕ is "almost" $K_0(\mathfrak{m})$ -invariant (in the notation of [Ge]), i.e. $\phi(gk) = \phi(g)$ for all $g \in G(\mathbb{A}^p)$ and $k \in \prod_{v \nmid \mathfrak{m} p} G(\mathcal{O}_v)$, and $\phi(gk) = \chi_Z(a)\phi(g)$ for all $v \mid \mathfrak{m}$, $k = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K_0(\mathfrak{m})_v$ and $g \in G(\mathbb{A}^p)$.
- (b) For each $\psi \in \mathcal{B}_{\underline{\alpha_1},\underline{\alpha_2}}(F_p,\mathbb{C})$, the map

$$\langle \Phi, \psi \rangle : G(\mathbb{A}) = G(F_p) \times G(\mathbb{A}^p) \to V, \ (g_p, g^p) \mapsto \Phi(g^p)(g_p\psi)$$

lies in $\mathcal{A}_0(G, \operatorname{harm}, \underline{2}, \chi_Z)$.

Note that (a) implies that ϕ is K'-invariant for some open subgroup $K' \subseteq K_0(\mathfrak{m})^p$ of finite index ([By]/[We]).

4.3 Cohomology of $GL_2(F)$

Let M be a left G(F)-module and N an R[H]-module, for a ring R and a subgroup $H \subseteq G(F)$. Let $S \subseteq S_p$ be a set of primes of F dividing p; as above, let $\chi = \chi_Z$ be a Hecke character of conductor \mathfrak{m} prime to p.

Definition 4.6. For a compact open subgroup $K \subseteq K_0(\mathfrak{m})^S \subseteq G(\mathbb{A}^{S,\infty})$, we denote by $\mathcal{A}_f(K, S, M; N)$ the *R*-module of all maps $\Phi : G(\mathbb{A}^{S,\infty}) \times M \to N$ such that

- 1. $\Phi(gk,m) = \Phi(g,m)$ for all $g \in G(\mathbb{A}^{S,\infty}), m \in M, k \in \prod_{v \nmid mp} G(\mathcal{O}_v);$
- 2. $\Phi(gk) = \chi_Z(a)\Phi(g)$ for all $v|\mathfrak{m}, k = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K_0(\mathfrak{m})_v$ and $g \in G(\mathbb{A}^{S,\infty}), m \in M$.

We denote by $\mathcal{A}_f(S, M; N)$ the union of the $\mathcal{A}_f(K, S, M; N)$ over all compact open subgroups K.

 $\mathcal{A}_f(S, M; N)$ is a left $G(\mathbb{A}^{S,\infty})$ -module via $(\gamma \cdot \Phi)(g, m) := \Phi(\gamma^{-1}g, m)$ and has a left *H*-operation given by $(\gamma \cdot \Phi)(g, m) := \gamma \Phi(\gamma^{-1}g, \gamma^{-1}m)$, commuting with the $G(\mathbb{A}^{S,\infty})$ -operation.

In contrast to our previous notation, we consider two subsets $S_1 \subseteq S_2 \subseteq S_p$ in this section. We put $(\underline{\alpha_1}, \underline{\alpha_2})_{S_1} := \{(\alpha_{\mathfrak{p},1}, \alpha_{\mathfrak{p},2}) | \mathfrak{p} \in S_1\}$, we set

$$\mathcal{A}_f((\underline{\alpha_1},\underline{\alpha_2})_{S_1},S_2,M;N) = \mathcal{A}_f(S_2,M;\mathcal{B}^{(\underline{\alpha_1},\underline{\alpha_2})_{S_1}}(F_{S_1},N))$$

we write $\mathcal{A}_f(\mathfrak{m}, (\underline{\alpha_1}, \underline{\alpha_2})_{S_1}, S_2, M; N) := \mathcal{A}_f(K_0(\mathfrak{m}), (\underline{\alpha_1}, \underline{\alpha_2})_{S_1}, S_2, M; N)$. If $S_1 = S_2$, we will usually drop S_2 from all these notations.

We have a natural identification of $\mathcal{A}_f(\mathfrak{m}, (\underline{\alpha_1}, \underline{\alpha_2})_S, M; N)$ with the space of maps $G(\mathbb{A}^{S,\infty}) \times M \times \mathcal{B}_{(\underline{\alpha_1},\underline{\alpha_2})_S}(F_S, R) \to N$ that are "almost" K-invariant.

Let $S_0 \subseteq S_1 \subseteq S_2 \subseteq S_p$ be subsets. The pairing (2.11) induces a pairing

$$\langle \cdot, \cdot \rangle : \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_{S_1}, S_2, M; N) \times \mathcal{B}_{(\underline{\alpha_1}, \underline{\alpha_2})_{S_0}}(F_{S_0}, R) \to \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, S_2, M; N),$$

$$(4.2)$$

which, when restricting to K-invariant elements, induces an isomorphism

$$\mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_{S_1}, S_2, M; N) \cong \mathcal{B}^{(\underline{\alpha_1}, \underline{\alpha_2})_{S_1 - S_0}}(F_{S_1 - S_0}, \mathcal{A}_f(\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, S_2, M; N).$$
(4.3)

Putting $S_0 := S_1 - \{\mathfrak{p}\}$ for a prime $\mathfrak{p} \in S_1$, we specifically get an isomorphism

$$\mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_{S_1}, S_2, M; N) \cong \mathcal{B}^{\alpha_{\mathfrak{p}, 1}, \alpha_{\mathfrak{p}, 2}}(F_{\mathfrak{p}}, \mathcal{A}_f(\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, S_2, M; N).$$

Lemmas 2.11 and 2.12 now immediately imply the following:

Lemma 4.7. Let $S \subseteq S_p$, $\mathfrak{p} \in S$, $S_0 := S - \{\mathfrak{p}\}$. Let $K \subseteq G(\mathbb{A}^{S,\infty})$ be a compact open subgroup.

(a) If $\pi_{\alpha_{\mathfrak{p},1},\alpha_{\mathfrak{p},2}}$ is spherical, we have exact sequences

$$0 \to \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, M; N) \to Z \xrightarrow{\mathcal{R} - \nu_{\mathfrak{p}}} Z \to 0$$

and

$$0 \to Z \to \mathcal{A}_f(K_0, (\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, M; N) \xrightarrow{T-a_{\mathfrak{p}}} \mathcal{A}_f(K_0, (\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, M; N) \to 0$$

for a $G(\mathbb{A}^{S_0,\infty})$ -module Z and a compact open subgroup $K_0 = K \times K_{\mathfrak{p}}$ of $G(\mathbb{A}^{S_0,\infty})$.

(b) If $\pi_{\alpha_{\mathfrak{p},1},\alpha_{\mathfrak{p},2}}$ is special (with central character $\chi_{\mathfrak{p}}$), we have exact sequences

$$0 \to \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, M; N) \to Z' \to Z \to 0$$

and

$$0 \to Z \to \mathcal{A}_f(K_0, (\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, M; N)^2 \to \mathcal{A}_f(K_0, (\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, M; N)^2 \to 0, \\ 0 \to Z' \to \mathcal{A}_f(K'_0, (\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, M; N)^2 \to \mathcal{A}_f(K'_0, (\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, M; N)^2 \to 0,$$

with $Z := \mathcal{A}_f(K_0, (\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, S, M; N(\chi_{\mathfrak{p}}))$ and $Z' := \mathcal{A}_f(K'_0, (\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, S, M; N(\chi_{\mathfrak{p}})),$ where $K_0 = K \times K_{\mathfrak{p}}$ and $K'_0 = K \times K'_{\mathfrak{p}}$ are compact open subgroups of $G(\mathbb{A}^{S_0, \infty})$.

Proposition 4.8. Let $S \subseteq S_p$ and let K be a compact open subgroup of $G(\mathbb{A}^{S,\infty})$.

(a) For each flat R-module N (with trivial G(F)-action), the canonical map $H^q(G(F)^+, \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; R)) \otimes_R N \to H^q(G(F)^+, \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; N))$ is an isomorphism for each q > 0.

(b) If R is finitely generated as a \mathbb{Z} -module, then $H^q(G(F)^+, \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; R)$ is finitely generated over R.

Proof. (cf. [Sp], Prop. 5.6)

(a) The exact sequence of abelian groups $0 \to \mathcal{M} \to \text{Div}(\mathbb{P}^1(F)) \cong \text{Ind}_{B(F)}^{G(F)}\mathbb{Z} \to \mathbb{Z} \to 0$ induces a short exact sequence of $G(\mathbb{A}^{S,\infty})$ -modules

$$0 \to \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, \mathbb{Z}; N) \to \operatorname{Coind}_{B(F)^+}^{G(F)^+} \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, \mathbb{Z}; N) \\ \to \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; N) \to 0.$$

$$(4.4)$$

Using the five-lemma on the associated diagram of long exact cohomology sequences $H^q(\cdot, R) \otimes_R N$ (which is exact due to flatness) and $H^q(\cdot, N)$, it is enough to show that (4.4) holds for $\mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, \mathbb{Z}; \cdot)$ and $\operatorname{Coind}_{B(F)^+}^{G(F)^+} \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, \mathbb{Z}; \cdot)$ instead of $\mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; \cdot)$. By lemma 4.7, it is furthermore enough to consider the case $S = \emptyset$. Since $\mathcal{A}_f(K, \mathbb{Z}; N) \cong \operatorname{Coind}_K^{G(\mathbb{A}^\infty)} N$, we thus have to show that

$$H^{q}(G(F)^{+}, \operatorname{Coind}_{K}^{G(\mathbb{A}^{\infty})} R) \otimes_{R} N \to H^{q}(G(F)^{+}, \operatorname{Coind}_{K}^{G(\mathbb{A}^{\infty})} N),$$
$$H^{q}(B(F)^{+}, \operatorname{Coind}_{K}^{G(\mathbb{A}^{\infty})} R) \otimes_{R} N \to H^{q}(B(F)^{+}, \operatorname{Coind}_{K}^{G(\mathbb{A}^{\infty})} N)$$

are isomorphisms for all $q \ge 0$ and all flat *R*-modules *N*.

Since every flat module is the direct limit of free modules of finite rank, it suffices to show that $N \mapsto H^q(G(F)^+, \operatorname{Coind}_K^{G(\mathbb{A}^\infty)} N)$ and $N \mapsto H^q(B(F)^+, \operatorname{Coind}_K^{G(\mathbb{A}^\infty)} N)$ commute with direct limits.

For $g \in G(\mathbb{A}^{\infty})$, put $\Gamma_g := G(F)^+ \cap gKg^{-1}$, By the strong approximation theorem, $G(F)^+ \setminus G(\mathbb{A}^{\infty})/K$ is finite. Choosing a system of representatives g_1, \ldots, g_n , we have

$$H^q(G(F)^+, \operatorname{Coind}_K^{G(\mathbb{A}^\infty)} N) = \bigoplus_{i=1}^n H^q(\Gamma_{g_i}, N).$$

Since the groups Γ_g are arithmetic, they are of type (VFL), and thus the functors $N \mapsto H^q(\Gamma_g, N)$ commute with direct limits by [Se2], remarque on p. 101.

Similarly, the Iwasawa decomposition $G(\mathbb{A}^{\infty}) = B(\mathbb{A}^{\infty}) \prod_{v \nmid \infty} G(\mathcal{O}_v)$ implies that $B(F)^+ \setminus G(\mathbb{A}^{\infty})/K$ is finite. Therefore, the same arguments show that $N \mapsto H^q(B(F)^+, \operatorname{Coind}_K^{G(\mathbb{A}^{\infty})} N)$ commutes with direct limits.

(b) This follows along the same line of reasoning as (a), since $H^q(\Gamma_g, R)$ is finitely generated over \mathbb{Z} by [Se2], remarque on p. 101.

With the notation as above, we define

$$H^q_*(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, M; R)) := \varinjlim H^q(G(F)^+, \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, M; R))$$

where the limit runs over all compact open subgroups $K \subseteq G(\mathbb{A}^{S,\infty})$; and similarly define $H^q_*(B(F)^+, \mathcal{A}_f((\alpha_1, \alpha_2)_S, \mathcal{M}; R))$. The proposition immediately implies

Corollary 4.9. Let $R \to R'$ be a flat ring homomorphism. Then the canonical map

$$H^q_*(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; R)) \otimes_R R' \to H^q_*(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; R')$$

is an isomorphism, for all $q \ge 0$.

If R = k is a field of characteristic zero, $H^q_*(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, M; R)$ is a smooth $G(\mathbb{A}^{S,\infty})$ -module, and we have

$$H^q_*(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, M; k)^K = H^q(G(F)^+, \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, M; k).$$

We identify $G(F)/G(F)^+$ with the group $\Sigma = \{\pm 1\}^r$ via the isomorphism

$$G(F)/G(F^+) \xrightarrow{\det} F^*/F^*_+ \cong \Sigma$$

(with all groups being trivial for r = 0). Then Σ acts on $H^q_*(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, M; k))$ and $H^q(G(F)^+, \mathcal{A}_f(K, (\underline{\alpha_1}, \underline{\alpha_2})_S, M; k))$ by conjugation. For $\pi \in \mathfrak{A}_0(G, \underline{2})$ and $\underline{\mu} \in \Sigma$, we write $H^q_*(G(F)^+, \cdot)_{\pi,\underline{\mu}} := \operatorname{Hom}_{G(\mathbb{A}^{S,\infty})}(\pi^S, H^q_*(G(F)^+, \cdot))_{\underline{\mu}}$.

Now we can show that π occurs with multiplicity 2^r in $H^q_*(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; k)$:

Proposition 4.10. Let $\pi \in \mathfrak{A}_0(G, \underline{2}, \chi_Z, \underline{\alpha_1}, \underline{\alpha_2})$, $S \subseteq S_p$. Let k be a field which contains the field of definition of π . Then for every $\mu \in \Sigma$, we have

$$H^q_*(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; k)_{\pi,\underline{\mu}} = \begin{cases} k, & \text{if } q = d; \\ 0, & \text{if } q \in \{0, \dots, d-1\} \end{cases}$$
(4.5)

Proof. (cf. [Sp], prop. 5.8)

First, assume $S = \emptyset$. The sequence (4.4) induces a cohomology sequence

$$\dots \to H^q_*(G(F)^+, \mathcal{A}_f(\mathbb{Z}, k)) \to H^q_*(B(F)^+, \mathcal{A}_f(\mathbb{Z}, k)) \to H^q_*(G(F)^+, \mathcal{A}_f(\mathcal{M}, k))$$
$$\to H^{q+1}_*(G(F)^+, \mathcal{A}_f(\mathbb{Z}, k)) \to \dots$$

Harder ([Ha]) has determined the action of $G(\mathbb{A}^{\infty})$ on $H^q_*(G(F)^+, \mathcal{A}_f(\mathbb{Z}, k))$ and $H^q_*(G(F)^+, \mathcal{A}_f(\mathbb{Z}, k))$: For q < d, $H^q_*(G(F)^+, \mathcal{A}_f(\mathbb{Z}, k))$ is a direct sum of onedimensional representations; for q = d there is a $G(\mathbb{A}^{\infty})$ -stable decomposition

$$H^{d+1}_*(G(F)^+, \mathcal{A}_f(\mathbb{Z}, k)) = H^{d+1}_{\text{cusp}} \oplus H^{d+1}_{\text{res}} \oplus H^{d+1}_{\text{Eis}},$$

with the last two summands again being direct sums of one-dimensional representations, and

$$H^{d+1}_{\operatorname{cusp}}(G(F)^+, \mathcal{A}_f(\mathbb{Z}, k))_{\pi,\underline{\mu}} \cong k$$

([Ha], 3.6.2.2); $H^q_*(B(F)^+, \mathcal{A}_f(\mathbb{Z}, k))$ always decomposes into one-dimensional $G(\mathbb{A}^{\infty})$ -representations. Since π^S does not map to one-dimensional representations, this proves the claim for $S = \emptyset$.

Now for $S = S_0 \cup \{\mathfrak{p}\}$ and $\pi_{\mathfrak{p}}$ spherical, lemma 4.7(a) and the statement for S_0 give an isomorphism

$$H^q_*(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_{S_0}, \mathcal{M}; k))_{\pi,\mu} \cong H^q_*(G(F)^+, \mathcal{A}_f((\underline{\alpha_1}, \underline{\alpha_2})_S, \mathcal{M}; k))_{\pi,\mu}$$

since the Hecke operators $T_{\mathfrak{p}}$, $\mathcal{R}_{\mathfrak{p}}$ act on the left-hand side by multiplication with $a_{\mathfrak{p}}$ or $\nu_{\mathfrak{p}}$, respectively. If $\pi_{\mathfrak{p}}$ is special, we can similarly deduce the statement for S from that for S_0 , using the first exact sequence of lemma 4.7(b) (cf. [Sp]), since the results of [Ha] also hold when twisting k by a (central) character.

4.4 Eichler-Shimura map

Given a subgroup $K_0(\mathfrak{m})^p \subseteq G(\mathbb{A}^{p,\infty})$ as above, there is a map

$$I_0: S_2(G, \mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}) \to H^0(G(F)^+, \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}; \Omega^d_{harm}(\mathcal{H}^0_\infty)))$$

given by

$$I_0(\Phi): (\psi, (g, m)) \mapsto \int_m \omega_{\langle \Phi, \psi \rangle}(1_p, g),$$

for $\psi \in \mathcal{B}_{\underline{\alpha_1},\underline{\alpha_2}}(F_p,\mathbb{C}), g \in G(\mathbb{A}^{p,\infty}), m \in \mathcal{M}$, where 1_p denotes the unity element in $G(F_p)$.

This is well-defined since both sides are "almost" $K_0(\mathfrak{m})$ -invariant, and the $G(F)^+$ invariance of $I_0(\Phi)$ follows from the similar invariance for differential forms, and the definition of the $G(F)^+$ -operations on $\mathcal{A}_f(M, N)$, $\mathcal{B}^{\underline{\alpha_1},\underline{\alpha_2}}(F_p, N)$ and $\Omega^d_{\mathrm{harm}}(\mathcal{H}^0_\infty)$: For each $\psi \in \mathcal{B}_{\underline{\alpha_1},\underline{\alpha_2}}(F_p, \mathbb{C}), g \in G(\mathbb{A}^{p,\infty}), m \in \mathcal{M}$, we have

$$(\gamma I_0(\Phi))(\psi, (g, m)) = \gamma I_0(\Phi)(\gamma^{-1}\psi, (\gamma^{-1}g, \gamma^{-1}m))$$

$$= \gamma \cdot \int_{\gamma^{-1}m} \omega_{\langle \Phi, \gamma^{-1}\psi \rangle}(1_p, \gamma^{-1}g)$$

$$= (\gamma^{-1})^* \int_{\gamma^{-1}m} \omega_{\langle \Phi, \gamma^{-1}\psi \rangle}(1_p, \gamma^{-1}g)$$

$$= \int_m \omega_{\langle \Phi, \gamma^{-1}\psi \rangle}(\gamma 1_p, g) \qquad (by (4.1))$$

$$= I_0(\Phi)(\psi, (g, m)).$$

We have a complex $\mathcal{A}_f(m, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}; \mathbb{C}) \to C^{\bullet} := \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}; \Omega^{\bullet}_{harm}(\mathcal{H}^0_{\infty})).$ Therefore we get a map

$$S_2(G, \mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}) \to H^d(G(F)^+, \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}; \mathbb{C}))$$
 (4.6)

by composing I_0 with the edge morphism $H^0(G(F)^+, C^d) \to H^d(G(F)^+, \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}; \mathbb{C}))$ of the spectral sequence

$$H^q(G(F)^+, C^p) \implies H^{p+q}(G(F)^+, C^{\bullet}).$$

Using the map $\delta^{\underline{\alpha_1},\underline{\alpha_2}}: \mathcal{B}^{\underline{\alpha_1},\underline{\alpha_2}}(F,V) \to \text{Dist}(F_p^*,V)$ from section 2.7, we next define a map

$$\Delta_{V}^{\underline{\alpha_{1},\underline{\alpha_{2}}}}: S_{2}(G,\mathfrak{m},\underline{\alpha_{1}},\underline{\alpha_{2}}) \to \mathcal{D}(S_{1},V)$$

$$(4.7)$$

by

$$\Delta_{\overline{V}}^{\underline{\alpha_1},\underline{\alpha_2}}(\Phi)(U,x^p) = \delta^{\underline{\alpha_1},\underline{\alpha_2}} \left(\Phi \begin{pmatrix} x^p & 0\\ 0 & 1 \end{pmatrix} \right) (U)$$

for $U \in \mathfrak{Co}(F_{S_1} \times F_{S_2}), x^p \in \mathbb{I}^p$, and we denote by $\Delta^{\underline{\alpha_1},\underline{\alpha_2}} : S_2(G, \mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}) \to \mathcal{D}(S_1, \mathbb{C})$ its $(1, \dots, 1)$ th coordinate function (i.e. corresponding to the harmonic forms $\bigotimes_{v \mid \infty} (\omega_v)_1, \bigotimes_{v \mid \infty} (\beta_v)_1$ in section 4.1):

$$\Delta^{\underline{\alpha_1},\underline{\alpha_2}}(\Phi)(U,x^p) = \delta^{\underline{\alpha_1},\underline{\alpha_2}} \left(\Phi \begin{pmatrix} x^p & 0\\ 0 & 1 \end{pmatrix} \right)_{(1,\dots,1)} (U).$$

Since for each complex prime $v, S^1 \cong \mathrm{SU}(2) \cap T(\mathbb{C})$ operates via ϱ_v on $\Phi, \Delta^{\underline{\alpha_1},\underline{\alpha_2}}$ is easily seen to be S^1 -invariant, i.e. it lies in $\mathcal{D}'(S_1,\mathbb{C})$.

We also have a natural (i.e. commuting with the complex maps of each C^{\bullet}) family of maps

$$\mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}, \Omega^i_{\text{harm}}(\mathcal{H}^0_\infty)) \to \mathcal{D}_f(S_1, \Omega^i(U^0_\infty, \mathbb{C}))$$
(4.8)

for all $i \geq 0$, and

$$\mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}, \mathbb{C}) \to \mathcal{D}_f(S_1, \mathbb{C})$$
 (4.9)

(the i = -1-th term in the complexes), by mapping $\Phi \in \mathcal{A}_f(\mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2}, \mathcal{M}, \cdot)$ first to

$$(U, x^{p,\infty}) \mapsto \Phi\left(\begin{pmatrix} x^{p,\infty} & 0\\ 0 & 1 \end{pmatrix}, \infty - 0\right) \left(\delta_{\underline{\alpha_1},\underline{\alpha_2}}(1_U)\right) \in \Omega^i_{\text{harm}}(\mathcal{H}^0_{\infty}) \text{ resp. } \in \mathbb{C},$$

and then for $i \ge 0$ restricting the differential forms to $\Omega^i(U^0_\infty)$ via

$$U_{\infty}^{0} = \prod_{v \in S_{\infty}^{0}} \mathbb{R}_{+}^{*} \hookrightarrow \prod_{v \in S_{\infty}^{0}} \mathcal{H}_{v} = \mathcal{H}_{\infty}^{0}.$$

One easily checks that (4.8) and (4.9) are compatible with the homomorphism of "acting groups" $F^{*'} \hookrightarrow G(F)^+, x \mapsto \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}$, so we get induced maps in cohomology

$$H^{0}(G(F)^{+}, \mathcal{A}_{f}(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M}, \Omega^{d}_{\mathrm{harm}}(\mathcal{H}^{0}_{\infty}))) \to H^{0}(\mathcal{D}_{f}(S_{1}, \Omega^{d}(U^{0}_{\infty}, \mathbb{C})))$$
(4.10)

and

$$H^{d}(G(F)^{+}, \mathcal{A}_{f}(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M}, \mathbb{C})) \to H^{d}(F^{*'}, \mathcal{D}_{f}(S_{1}, \mathbb{C})),$$
(4.11)

which are linked by edge morphisms of the respective spectral sequences to give a commutative diagram (given in the proof below).

Proposition 4.11. We have a commutative diagram:

Proof. The given diagram factorizes as

$$\begin{split} S_2(G,\mathfrak{m},\underline{\alpha_1},\underline{\alpha_2}) & \xrightarrow{I_0} H^0(G(F)^+,\mathcal{A}_f(\mathfrak{m},\underline{\alpha_1},\underline{\alpha_2},\mathcal{M},\Omega^d_{\mathrm{harm}}(\mathcal{H}^0_\infty))) \longrightarrow H^d(G(F)^+,\mathcal{A}_f(\mathfrak{m},\underline{\alpha_1},\underline{\alpha_2},\mathcal{M},\mathbb{C})) \\ & \downarrow^{(4.10)} & \downarrow^{(4.11)} \\ \mathcal{D}'(\mathcal{G}_m,\mathbb{C}) \longrightarrow H^0(\mathcal{D}_f(S_1,\Omega^d(U^0_\infty,\mathbb{C}))) \longrightarrow H^d\big(F^{*\prime},\mathcal{D}_f(\mathbb{C})\big) \end{split}$$

The right-hand square is the naturally commutative square mentioned above; the commutativity of the left-hand square can be checked by hand:

Let $\Phi \in S_2(G, \mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2})$. Then $I_0(\Phi)$ is the map $(\psi, (g, m)) \mapsto \int_m \omega_{\langle \Phi, \psi \rangle}(1_p, g)$, which is mapped under (4.10) to

$$\begin{array}{rcl} (U,x^{p,\infty}) &\mapsto & \int_0^\infty \omega_{\langle \Phi,\delta_{\underline{\alpha_1},\underline{\alpha_2}}(1_U)\rangle} \left(1_p, \begin{pmatrix} x^{p,\infty} & 0\\ 0 & 1 \end{pmatrix} \right) \Big|_{U_{\infty}^0} \\ &= & \int_0^\infty \Phi_{(1,\ldots,1)} \begin{pmatrix} x^p & 0\\ 0 & 1 \end{pmatrix} (\delta_{\underline{\alpha_1},\underline{\alpha_2}}(1_U)) \frac{dt_0}{t_0} \frac{dt_1}{t_1} \dots \frac{dt_d}{t_d}; \end{array}$$

along the other path, Φ is mapped under $\Delta^{\underline{\alpha_1},\underline{\alpha_2}}$ to the map

$$(U, x^p) \mapsto \delta^{\underline{\alpha_1}, \underline{\alpha_2}} \left(\Phi \begin{pmatrix} x^p & 0\\ 0 & 1 \end{pmatrix} \right)_{(1, \dots, 1)} (U) = \Phi_{(1, \dots, 1)} \begin{pmatrix} x^p & 0\\ 0 & 1 \end{pmatrix} (\delta_{\underline{\alpha_1}, \underline{\alpha_2}}(1_U))$$

and then also to

$$(U, x^{p,\infty}) \mapsto \int_0^\infty \Phi_{(1,\dots,1)} \begin{pmatrix} x^p & 0\\ 0 & 1 \end{pmatrix} (\delta_{\underline{\alpha_1},\underline{\alpha_2}}(1_U)) d^{\times} r_0 d^{\times} r_1 \dots d^{\times} r_d$$

(with $x^p = (x^{p,\infty}, r_0, r_1, \dots, r_d)$). \Box

4.5 Whittaker model

We now consider an automorphic representation $\pi = \bigotimes_{\nu} \pi_{\nu} \in \mathfrak{A}_0(G, \underline{2}, \chi_Z, \underline{\alpha_1}, \underline{\alpha_2}).$ Denote by $\mathfrak{c}(\pi) := \prod_{v \text{ finite}} \mathfrak{c}(\pi_v)$ the conductor of π .

Let $\chi : \mathbb{I}^{\infty} \to \mathbb{C}^*$ be a unitary character of the finite ideles; for each finite place v, set $\chi_v = \chi|_{F_v^*}$. For each prime v of F, let \mathcal{W}_v denote the Whittaker model of π_v . For each finite and each real prime, we choose $W_v \in \mathcal{W}_v$ such that the local L-factor equals the local zeta function at g = 1, i.e. such that

$$L(s, \pi_v \otimes \chi_v) = \int_{F_v^*} W_v \begin{pmatrix} x & 0\\ 0 & 1 \end{pmatrix} \chi_v(x) |x|^{s-\frac{1}{2}} d^{\times} x$$
(4.12)

for any unramified quasi-character $\chi_v : F_v^* \to \mathbb{C}^*$ and $\operatorname{Re}(s) \gg 0$.

This is possible by [Ge], Thm. 6.12 (ii); and by loc.cit., Prop. 6.17, W_v can be chosen such that SO(2) operates on W_v via ρ_v for real archimedian v, and is "almost" $K_0(\mathfrak{c}(\pi_v))$ -invariant for finite v.

For complex primes v of F, we can also choose a W_v satisfying (4.12) and which behaves well with respect to the SU(2)-action ρ_v , as follows:

By [Kur77], there exists a three-dimensional function

$$\underline{W_v} = (W_v^0, W_v^1, W_v^2) : G(F_v) \to \mathbb{C}^3$$

such that $W_v^i \in \mathcal{W}_v$ for all i, and such that $\mathrm{SU}(2)$ operates by the right via ϱ_v on $\underline{W_v}$; i.e. for all $g \in G(F_v)$ and $h = \begin{pmatrix} u & v \\ -\overline{v} & \overline{u} \end{pmatrix} \in \mathrm{SU}(2)$, we have $\underline{W_v}(gh) = \underline{W_v}(g)M_3(h),$

where

$$M_3(h) = \begin{pmatrix} u^2 & 2uv & v^2 \\ -u\overline{v} & u\overline{u} - v\overline{v} & v\overline{u} \\ \overline{v}^2 & -2\overline{u}\overline{v} & \overline{u}^2 \end{pmatrix}.$$

Note that W_v^1 is thus invariant under right multiplication by a diagonal matrix $\begin{pmatrix} u & 0 \\ 0 & \overline{u} \end{pmatrix}$ with $u \in S^1 \subseteq \mathbb{C}$. Since π_v has trivial central character for archimedian v by our assumption, a function in \mathcal{W}_v is also invariant under $Z(F_v)$. Thus we have

$$W_v^1\left(g\begin{pmatrix}u&0\\0&1\end{pmatrix}\right) = W_v^1(g)$$
 for all $g \in G(F_v), \ u \in S^1$.

 W_v^1 can be described explicitly in terms of a certain Bessel function, as follows. The modified Bessel differential equation of order $\alpha \in \mathbb{C}$ is

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} - (x^{2} + \alpha^{2})y = 0.$$

Its solution space (on {Re z > 0}) is two-dimensional; we are only interested in the second standard solution K_v , which is characterised by the asymptotics

$$K_v(z) \sim \sqrt{\frac{\pi}{2z}} e^{-z}$$

(as defined in [We]; see also [DLMF], 10.25).^{vi}

^{vi}Note that [Kur77] uses a slightly different definition of the K_v , which is $\frac{2}{\pi}$ times our K_v .

By [Kur77], we have $W_v^1 \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} = \frac{2}{\pi} x^2 K_0(4\pi x)$. (W_v^0 and W_v^2 can also be described in term of Bessel

 $(W_v^0 \text{ and } W_v^2 \text{ can also be described in term of Bessel functions; they are linearly dependent and scalar multiples of <math>x^2 K_1(4\pi x)$.)

By [JL], Ch. 1, Thm. 6.2(vi), $\sigma(|\cdot|_{\mathbb{C}}^{1/2}, |\cdot|_{\mathbb{C}}^{-1/2}) \cong \pi(\mu_1, \mu_2)$ with

$$\mu_1(z) = z^{1/2} \overline{z}^{-1/2} = |z|_{\mathbb{C}}^{-1/2} z, \qquad \mu_2(z) = z^{-1/2} \overline{z}^{1/2} = |z|_{\mathbb{C}}^{-1/2} \overline{z};$$

and the L-series of the representation is the product of the L-factors of these two characters:

$$L_v(s,\pi_v) = L(s,\mu_1)L(s,\mu_2) = 2(2\pi)^{-(s+\frac{1}{2})}\Gamma(s+\frac{1}{2}) \cdot 2(2\pi)^{-(s+\frac{1}{2})}\Gamma(s+\frac{1}{2})$$
$$= 4(2\pi)^{-(2s+1)}\Gamma(s+\frac{1}{2})^2.$$

On the other hand, letting $d^{\times}x = \frac{dx}{|x|_{\mathbb{C}}} = \frac{dr}{r}d\vartheta$ (for $x = re^{i\vartheta}$), we have for $\operatorname{Re}(s) > -\frac{1}{2}$:

$$\int_{\mathbb{C}^*} W_v^1 \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} |x|_{\mathbb{C}}^{s-\frac{1}{2}} d^{\times}x = \int_{S^1} \int_{\mathbb{R}_+} W_v^1 \begin{pmatrix} re^{i\vartheta} & 0 \\ 0 & 1 \end{pmatrix} |x|_{\mathbb{C}}^{s-\frac{1}{2}} \frac{dr}{r} d\vartheta$$

$$= 4 \int_0^{\infty} x^2 K_0 (4\pi x) x^{2s-1} \frac{dx}{x}$$

(invariance under SU(2) $\cdot Z(F_v)$ gives a constant integral w.r.t. ϑ)

$$= 4 (4\pi)^{-2s+1} \int_0^{\infty} K_0(x) x^{2s} dx$$

$$= 4 (4\pi)^{-2s+1} 2^{2s-1} \Gamma(s+\frac{1}{2})^2 \qquad (by [DLMF] 10.43.19)$$

$$= 4 (2\pi)^{-2s+1} \Gamma(s+\frac{1}{2})^2$$

Thus we have

1

$$\int_{\mathbb{C}^*} W_v^1 \begin{pmatrix} x & 0\\ 0 & 1 \end{pmatrix} |x|_{\mathbb{C}}^{s-\frac{1}{2}} d^{\times} x = (2\pi)^2 L_v(s, \pi_v)$$

for all $\operatorname{Re}(s) > -\frac{1}{2}$.

We set $W_v := (2\pi)^{-2} W_v^1$; thus (4.12) holds also for complex primes.

Now that we have defined W_v for all primes v, put $W^p(g) := \prod_{v \nmid p} W_v(g_v)$ for all $g = (g_v)_v \in G(\mathbb{A}^p)$.

We will also need the vector-valued function $\underline{W}^p: G(\mathbb{A}_F) \to V$ given by

$$\underline{W}^{p}(g) := \prod_{v \nmid p \text{ finite or } v \text{ real}} W_{v}(g_{v}) \cdot \bigotimes_{v \text{ complex}} (2\pi)^{-2} \underline{W_{v}}(g_{v}).$$

4.6 *p*-adic measures of automorphic forms

Now return to our $\pi \in \mathfrak{A}_0(G, \underline{2}, \chi_Z, \underline{\alpha_1}, \underline{\alpha_2})$. We fix an additive character $\psi : \mathbb{A} \to \mathbb{C}^*$ which is trivial on F, and let ψ_v denote the restriction of ψ to $F_v \hookrightarrow \mathbb{A}$, for all primes v. We further require that $\ker(\psi_{\mathfrak{p}}) = \mathcal{O}_{\mathfrak{p}}$ for all $\mathfrak{p}|p$, so that we can apply the results of chapter 2.

As in chapter 2, let $\mu_{\pi_{\mathfrak{p}}} := \mu_{\alpha_{\mathfrak{p},1}/\nu_{\mathfrak{p}}} = \mu_{q_{\mathfrak{p}}/\alpha_{\mathfrak{p},2}}$ denote the distribution $\chi_{q_{\mathfrak{p}}/\alpha_{\mathfrak{p},2}}(x)\psi_{\mathfrak{p}}(x)dx$ on $F_{\mathfrak{p}}$, and let $\mu_{\pi_{p}} := \prod_{\mathfrak{p}|p} \mu_{\pi_{\mathfrak{p}}}$ be the product distribution on $F_{p} := \prod_{\mathfrak{p}|p} F_{\mathfrak{p}}$.

Define $\phi = \phi_{\pi} : \mathfrak{Co}(F_{S_1} \times F^*_{S_2}) \times \mathbb{I}^p \to \mathbb{C}$ by

$$\phi(U, x^p) := \sum_{\zeta \in F^*} \mu_{\pi_p}(\zeta U) W^p \begin{pmatrix} \zeta x^p & 0\\ 0 & 1 \end{pmatrix}.$$

By proposition 2.15(a), we have for each $U \in \mathfrak{Co}(F_{S_1} \times F_{S_2}^*)$:

$$\begin{split} \phi(x_p U, x^p) &= \sum_{\zeta \in F^*} \mu_{\pi_p}(\zeta x_p U) W^p \begin{pmatrix} \zeta x^p & 0\\ 0 & 1 \end{pmatrix} \\ &= \sum_{\zeta \in F^*} W_U \begin{pmatrix} \zeta x_p & 0\\ 0 & 1 \end{pmatrix} W^p \begin{pmatrix} \zeta x^p & 0\\ 0 & 1 \end{pmatrix} \\ &= \sum_{\zeta \in F^*} W \begin{pmatrix} \zeta x & 0\\ 0 & 1 \end{pmatrix}, \end{split}$$

where $W(g) := W_U(g_p)W^p(g^p)$ lies in the global Whittaker model $\mathcal{W} = \mathcal{W}(\pi)$ for all $g = (g_p, g^p) \in G(\mathbb{A})$, putting $W_U := W_{1_U}$; so ϕ is well-defined and lies in $\mathcal{D}(S_1, \mathbb{C})$ (since W is smooth and rapidly decreasing; distribution property, F^* - and $U^{p,\infty}$ -invariance being clear by the definitions of ϕ and W^p).

Let $\mu_{\pi} := \mu_{\phi_{\pi}}$ be the distribution on \mathcal{G}_p corresponding to ϕ_{π} , as defined in (3.9), and let $\kappa_{\pi} := \kappa_{\phi_{\pi}} \in H^d(F^{*'}, \mathcal{D}_f(S_1, \mathbb{C}))$ be the cohomology class defined by (3.10) and (3.11).

Theorem 4.12. Let $\pi \in \mathfrak{A}_0(G, \underline{2}, \chi_Z, \underline{\alpha_1}, \underline{\alpha_2})$; we assume the $\alpha_{\mathfrak{p},i}$ to be ordered such that $|\alpha_{\mathfrak{p},1}| \leq |\alpha_{\mathfrak{p},2}|$ for all $\mathfrak{p}|p$.^{vii}

(a) Let $\chi : \mathcal{G}_p \to \mathbb{C}^*$ be a character of finite order with conductor $\mathfrak{f}(\chi)$. Then we have the interpolation property

$$\int_{\mathcal{G}_p} \chi(\gamma) \mu_{\pi}(d\gamma) = \tau(\chi) \prod_{\mathfrak{p} \in S_p} e(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}}) \cdot L(\frac{1}{2}, \pi \otimes \chi),$$

where

$$e(\pi_{\mathfrak{p}},\chi_{\mathfrak{p}}) = \begin{cases} \frac{(1-\alpha_{\mathfrak{p},1}x_{\mathfrak{p}}q_{\mathfrak{p}}^{-1})(1-\alpha_{\mathfrak{p},2}x_{\mathfrak{p}}^{-1}q_{\mathfrak{p}}^{-1})(1-\alpha_{\mathfrak{p},2}x_{\mathfrak{p}}q_{\mathfrak{p}}^{-1})}{(1-x_{\mathfrak{p}}\alpha_{\mathfrak{p},2}^{-1})}, & \operatorname{ord}_{\mathfrak{p}}(\mathfrak{f}(\chi)) = 0 \text{ and } \pi \text{ spherical}, \\ \frac{(1-\alpha_{\mathfrak{p},1}x_{\mathfrak{p}}q_{\mathfrak{p}}^{-1})(1-\alpha_{\mathfrak{p},2}x_{\mathfrak{p}}^{-1}q_{\mathfrak{p}}^{-1})}{(1-x_{\mathfrak{p}}\alpha_{\mathfrak{p},2}^{-1})}, & \operatorname{ord}_{\mathfrak{p}}(\mathfrak{f}(\chi)) = 0 \text{ and } \pi \text{ special}, \\ \frac{(\alpha_{\mathfrak{p},2}/q_{\mathfrak{p}})^{\operatorname{ord}_{\mathfrak{p}}}(\mathfrak{f}(\chi))}{(\alpha_{\mathfrak{p},2}/q_{\mathfrak{p}})^{\operatorname{ord}_{\mathfrak{p}}}(\mathfrak{f}(\chi))}, & \operatorname{ord}_{\mathfrak{p}}(\mathfrak{f}(\chi)) > 0 \end{cases}$$

^{vii}So we have $\chi_{\mathfrak{p},1} = |\cdot|\chi_{\mathfrak{p},2}$ for all special $\pi_{\mathfrak{p}}$.

and $x_{\mathfrak{p}} := \chi_{\mathfrak{p}}(\varpi_{\mathfrak{p}}).$

(b) Let $U_p := \prod_{\mathfrak{p}|p} U_{\mathfrak{p}}$, put $\phi_0 := (\phi_{\pi})_{U_p}$. Then

$$\int_{\mathbb{I}/F^*} \phi_0(x) d^{\times} x = \prod_{\mathfrak{p}|p} e(\pi_{\mathfrak{p}}, 1) \cdot L(\frac{1}{2}, \pi).$$

(c) κ_{π} is integral (cf. definition 3.11). For $\underline{\mu} \in \Sigma$, let $\kappa_{\pi,\underline{\mu}}$ be the projection of κ_{π} to $H^d(F^{*'}, \mathcal{D}_f(S_1, \mathbb{C}))_{\pi,\mu}$. Then $\kappa_{\pi,\mu}$ is integral of rank 1.

Proof. (a) We consider χ as a character on \mathbb{I}_F/F^* (which is unitary and trivial on \mathbb{I}_{∞}), and choose a subgroup $V \subseteq U_p$ such that $\chi_p|_V = 1$ (where $\chi_p := \chi|_{F_p}$) and V is a product of subgroups $V_p \subseteq U_p$.

Let $W_V \in \mathcal{W}_p$ be the product of the W_{V_p} , as defined in prop. 2.15, set $W(g) := W^p(g^p)W_V(g_p) \in \mathcal{W}$, and let

$$\phi_V(x) := \phi(x_p V, x^p) = \sum_{\zeta \in F^*} W \begin{pmatrix} \zeta x^p & 0 \\ 0 & 1 \end{pmatrix}.$$

Since π is unitary, we have $|\alpha_{\mathfrak{p},2}| \ge \sqrt{q_{\mathfrak{p}}} > 1 = |\chi_{\mathfrak{p}}(\varpi_{\mathfrak{p}})|$ for all \mathfrak{p} , thus $e(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}}| \cdot |_{\mathfrak{p}}^{s})$ is always non-singular, and we will be able to apply proposition 2.6 locally below.

We want to show that the equality

$$[U_p:V] \int_{\mathbb{I}_F/F^*} \chi(x) |x|^s \phi_V(x) d^{\times} x = N(\mathfrak{f}(\chi))^s \tau(\chi) \prod_{\mathfrak{p}|p} e(\pi_\mathfrak{p}, \chi_\mathfrak{p}|\cdot|_\mathfrak{p}^s) \cdot L(s+\frac{1}{2}, \pi \otimes \chi)$$

holds for s = 0. Since both the left-hand side and $L(s + \frac{1}{2}, \pi \otimes \chi)$ are holomorphic in s (see [Ge], Thm. 6.18 and its proof), it suffices to show this equality for $\operatorname{Re}(s) \gg 0$.

For such s, we have

$$\begin{split} [U_{p}:V] \int_{\mathbb{I}_{F}/F^{*}} \chi(x) |x|^{s} \phi_{V}(x) d^{\times}x &= \int_{\mathbb{I}_{F}} \chi(x) |x|^{s} W\begin{pmatrix} x & 0\\ 0 & 1 \end{pmatrix} d^{\times}x \quad (\text{def. of } \phi_{V}) \\ &= \left[U_{p}:V \right] \int_{F_{p}^{*}} \chi_{p}(x) |x|^{s} W_{U} \begin{pmatrix} x & 0\\ 0 & 1 \end{pmatrix} d^{\times}x \cdot \int_{\mathbb{I}_{F}^{p}} \chi^{p}(y) |y|^{s} W^{p} \begin{pmatrix} y & 0\\ 0 & 1 \end{pmatrix} d^{\times}y \\ &= \prod_{\mathfrak{p} \mid p} \int_{F_{\mathfrak{p}}^{*}} \chi_{\mathfrak{p}}(x) |x|^{s}_{\mathfrak{p}} \mu_{\pi_{\mathfrak{p}}}(dx) \cdot L_{S_{p}}(s + \frac{1}{2}, \pi \otimes \chi) \quad (\text{by prop. 2.15 and (4.12)}) \\ &= \prod_{\mathfrak{p} \mid p} \left(e(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}} |\cdot|^{s}_{\mathfrak{p}}) \tau(\chi_{\mathfrak{p}} |\cdot|^{s}_{\mathfrak{p}}) \right) \cdot L(s + \frac{1}{2}, \pi \otimes \chi) \quad (\text{by prop. 2.6}) \\ &= N(\mathfrak{f}(\chi))^{s} \tau(\chi) \prod_{\mathfrak{p} \mid p} e(\pi_{\mathfrak{p}}, \chi_{\mathfrak{p}} |\cdot|^{s}_{\mathfrak{p}}) \cdot L(s + \frac{1}{2}, \pi \otimes \chi). \end{split}$$

For s = 0, we get the claimed statement, since by (3.9) we have

$$\int_{\mathcal{G}_p} \chi(\gamma) \mu_{\pi}(d\gamma) = \int_{\mathbb{I}_F/F^*} \chi(x) \phi(dx_p, x^p) d^{\times} x^p = [U_p : V] \int_{\mathbb{I}_F/F^*} \chi(x) \phi_V(x) d^{\times} x.$$

(b) This follows immediately from (a), setting $\chi = 1$, since $\tau(1) = 1$.

(c) Let $\lambda_{\underline{\alpha_1},\underline{\alpha_2}} \in \mathcal{B}^{\underline{\alpha_1},\underline{\alpha_2}}(F_p,\mathbb{C})$ be the image of $\otimes_{v|p}\lambda_{a_v,\nu_v}$ under the map (2.13). For each $\psi \in \mathcal{B}_{\alpha_1,\alpha_2}(F_p,\mathbb{C})$, define

$$\begin{split} \langle \Phi_{\pi}, \psi \rangle (g^{p}, g_{p}) &:= \sum_{\zeta \in F^{*}} \lambda_{\underline{\alpha_{1}, \alpha_{2}}} \left(\begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix} g_{p} \cdot \psi \right) \underline{W}^{p} \left(\begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix} g^{p} \right) \\ &=: \sum_{\zeta \in F^{*}} \underline{W}_{\psi} \left(\begin{pmatrix} \zeta & 0 \\ 0 & 1 \end{pmatrix} g \right) \end{split}$$

for a V-valued function W_{ψ} whose every coordinate function is in $\mathcal{W}(\pi)$.

This defines a map $\Phi_{\pi} : \overline{G}(\mathbb{A}^p) \to \mathcal{B}^{\underline{\alpha_1},\underline{\alpha_2}}(F_p, V)$. In fact, Φ_{π} lies in $S_2(G, \mathfrak{m}, \underline{\alpha_1}, \underline{\alpha_2})$, where \mathfrak{m} is the prime-to-p part of $\mathfrak{f}(\pi)$:

Condition (a) of definition 4.5 follows from the fact that the W_v are almost $K_0(\mathfrak{c}(\pi_v))$ -invariant, for $v \nmid p, \infty$.

For condition (b), we check that $\langle \Phi_{\pi}, \psi \rangle$ satisfies the conditions (i)-(v) in the definition of $\mathcal{A}_0(G, \operatorname{harm}, \underline{2}, \chi)$:

Each coordinate function of $\langle \Phi_{\pi}, \psi \rangle$ lies in (the underlying space of) π by [Bu], Thm. 3.5.5, thus $\langle \Phi, \psi \rangle$ fulfills (i) and (v), and has moderate growth. (ii) and (iv) follow from the choice of the W_v and $\underline{W_v}$.

Now since $\pi_v \cong \sigma(|\cdot|_v^{1/2}, |\cdot|_v^{-1/2})$ for $v \mid \infty$, it follows from those conditions that $\langle \Phi, \psi \rangle |_{B'_{F_v}} \cdot \underline{\beta_v} = C \sum_{\zeta \in F^*} \underline{W_v} \begin{pmatrix} \zeta t & 0 \\ 0 & 1 \end{pmatrix} \cdot \underline{\beta_v}$ is harmonic for each archimedian place v of F: for real v, it is well-known that f(z)/y is holomorphic for $f \in \mathcal{D}(2)$, and thus $f \cdot (\beta_v)_1$ is harmonic; for complex v, this is also true, see e.g. [Kur78], p. 546 or [We].

Now we have

$$\begin{split} \Delta^{\underline{\alpha_1},\underline{\alpha_2}}(\Phi_{\pi})(U,x^p) &= \delta^{\underline{\alpha_1},\underline{\alpha_2}} \left(\Phi \begin{pmatrix} x^p & 0\\ 0 & 1 \end{pmatrix} \right)_{(1,\dots,1)} (U) \\ &= \sum_{\zeta \in F^*} \lambda_{\underline{\alpha_1},\underline{\alpha_2}} \left(\begin{pmatrix} \zeta & 0\\ 0 & 1 \end{pmatrix} \delta_{\underline{\alpha_1},\underline{\alpha_2}} (1_U) \right) W^p \begin{pmatrix} \zeta x^p & 0\\ 0 & 1 \end{pmatrix} \\ &\stackrel{(*)}{=} \sum_{\zeta \in F^*} \mu_{\pi_p}(\zeta U) W^p \begin{pmatrix} \zeta x^p & 0\\ 0 & 1 \end{pmatrix} = \phi_{\pi}(U,x^p), \end{split}$$

where (*) follows from the calculation (with w_0 as defined in Ch. 2)

$$\begin{split} \lambda_{\underline{\alpha_1},\underline{\alpha_2}} \left(\begin{pmatrix} \zeta & 0\\ 0 & 1 \end{pmatrix} \delta_{\underline{\alpha_1},\underline{\alpha_2}}(1_U) \right) &= \prod_{\mathfrak{p}|p} \int_{F_\mathfrak{p}} \begin{pmatrix} \zeta & 0\\ 0 & 1 \end{pmatrix} \delta_{\alpha_{\mathfrak{p},1},\alpha_{\mathfrak{p},2}}(1_U) \left(w_0 \begin{pmatrix} 1 & x\\ 0 & 1 \end{pmatrix} \right) \psi_\mathfrak{p}(-x) dx \\ &= \prod_{\mathfrak{p}|p} \int_{F_\mathfrak{p}} \delta_{\alpha_{\mathfrak{p},1},\alpha_{\mathfrak{p},2}}(1_U) \underbrace{\left(\begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & x\\ 0 & 1 \end{pmatrix} \begin{pmatrix} \zeta^{-1} & 0\\ 0 & 1 \end{pmatrix} \right)}_{= \begin{pmatrix} 0 & 1\\ -\zeta^{-1} & -x \end{pmatrix}} \psi_\mathfrak{p}(-x) dx \\ &= \prod_{\mathfrak{p}|p} \int_{F_\mathfrak{p}} \chi_{\alpha_{\mathfrak{p},2}}(-x) \chi_{\alpha_{\mathfrak{p},1}}(-1) 1_U(-x\zeta) \psi_\mathfrak{p}(-x) dx \\ &= \int_{\zeta U} \prod_{\mathfrak{p}|p} \chi_{\alpha_{\mathfrak{p},2}}(-x) \psi_\mathfrak{p}(-x) dx = \mu_{\pi_p}(\zeta U) \end{split}$$

for all $\zeta \in F^*$.

Let R be the integral closure of $\mathbb{Z}[a_{\mathfrak{p}}, \nu_{\mathfrak{p}}; \mathfrak{p}|p]$ in its field of fractions; thus R is a Dedekind ring $\subseteq \overline{\mathcal{O}}$ for which $\mathcal{B}_{\underline{\alpha_1},\underline{\alpha_2}}(F,R)$ is defined. \mathbb{C} is flat as an R-module (since torsion-free modules over a Dedekind ring are flat); thus by proposition 4.8, the natural map

$$H^{d}(G(F)^{+}, \mathcal{A}_{f}(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M}, R)) \otimes \mathbb{C} \to H^{d}(G(F)^{+}, \mathcal{A}_{f}(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M}, \mathbb{C}))$$

is an isomorphism. The map (4.11) can be described as the "*R*-valued" map

$$H^{d}(G(F)^{+}, \mathcal{A}_{f}(\mathfrak{m}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \mathcal{M}, R)) \to H^{d}(F^{*'}, \mathcal{D}_{f}(R))$$

tensored with \mathbb{C} . By proposition 4.11, κ_{π} lies in the image of (4.11), and thus in $H^d(F^{*\prime}, \mathcal{D}_f(R)) \otimes \mathbb{C}$; i.e. it is integral.

Similarly, it follows from propositions 4.8 and 4.10 that $\kappa_{\pi,\underline{\mu}}$ is integral of rank 1.

Corollary 4.13. μ_{π} is a *p*-adic measure.

Proof. By proposition 3.8, $\mu_{\pi} = \mu_{\phi_{\pi}} = \mu_{\kappa_{\pi}}$. Since κ_{π} is integral, $\mu_{\kappa_{\pi}}$ is a *p*-adic measure by corollary 3.13.

We can now define the *p*-adic *L*-function of $\pi \in \mathfrak{A}_0(G, \underline{2}, \chi_Z, \alpha_1, \alpha_2)$ by

$$L_p(s,\pi) := L_p(s,\kappa_\pi) := L_p(s,\kappa_{\pi,+}) := \int_{\mathcal{G}_p} \mathcal{N}(\gamma)^s \mu_\pi(d\gamma)$$

for all $s \in \mathbb{Z}_p$, where \mathcal{N} is the *p*-adic cyclotomic character (definition 3.4; cf. remark 3.14). $L_p(s,\pi)$ is a locally analytic function with values in the one-dimensional \mathbb{C}_p -vector space $V_{\kappa_{\pi,+}} = L_{\kappa,\overline{\mathcal{O}},+} \otimes_{\overline{\mathcal{O}}} \mathbb{C}_p$.

References

- [BL] L. Barthel, R. Livne: Modular Representations of GL₂ of a Local Field: The Ordinary, Unramified Case. Journal of Number Theory 55, 1-27 (1995).
- [By] J. Bygott: Modular Forms and Modular Sumbols over Imaginary Quadratic Fields. PhD thesis, 1998.
- [Br] K. Brown: *Cohomology of Groups.* Graduate Texts in Mathematics, Springer-Verlag, 1982.
- [Bu] D. Bump: Automorphic Forms and Representations. Cambridge University Press, 1998.
- [CKM] J. Cogdell, H. Kim, M. Murty: Lectures on automorphic L-functions. Fields Institute Monographs, 20. American Mathematical Society, Providence, RI, 2004.
- [DLMF] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/
- [Ge] S. Gelbart: *Automorphic forms on adele groups*. Princeton University Press and University of Tokyo Press, 1975.
- [GS] R. Greenberg, G. Stevens: p-adic L-functions and p-adic periods of modular forms. Invent. Math. 111 (1993), 407-447.
- [Ha] G. Harder: Eisenstein cohomology of arithmetic groups. The case GL2. Invent. Math. 89 (1987), 37-118.
- [Har] Sh. Haran: *p-adic L-functions for modular forms.* Compositio Math. 62 (1987), no. 1, 3146.
- [Hi] H. Hida: L-invariants of Tate curves. Pure Appl. Math. Q. 5, 1343-1384 (2009)
- [JL] H. Jacquet; R. P. Langlands: Automorphic forms on GL(2). Lecture Notes in Mathematics, Vol. 114. Springer-Verlag, Berlin-New York, 1970.
- [Kud] St. Kudla: From Modular Forms to Automorphic Representations. In: Bump, Cogdell et al.: An Introduction to the Langlands Program, Birkhäuser Boston, 2004.
- [Kur77] P. F. Kurcanov: The zeta-function of elliptic curves over certain abelian extensions of imaginary quadratic fields. English translation in: Math. USSR-Sb. 31 (1977), no. 1, 49-62 (1978).
- [Kur78] P. F. Kurcanov: Cohomology of discrete groups and Dirichlet series connected with Jacquet-Langlands cusp forms. English translation in: Math. USSR Izvestija, Vol 12 (1978), No. 3, 543-555.
- [MTT] B. Mazur, J. Tate and J. Teitelbaum: On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 84 (1986), 1-48.
- [Neu] J. Neukirch: Algebraische Zahlentheorie. Springer-Lehrbuch, 1992.
- [Se1] J.-P. Serre: *Trees.* Springer Monographs in Mathematics, 1980.

- [Se2] J.-P. Serre: Cohomologie des groupes discrets. Ann. of Math. Studies 70 (1971), 77-169.
- [Sp] M. Spieß: On special zeros of p-adic L-functions of Hilbert modular forms. Invent. Math., April 2013 (to be published in print), http://link.springer.com/article/10.1007/s00222-013-0465-0
- [We] A. Weil: *Dirichlet Series and Automorphic Forms*. Lecture Note in Mathematics, Springer-Verlag, 1971.