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Abstract. We describe linear and nonlinear transport across a strongly interacting single impurity An-
derson model quantum dot with intermediate coupling to the leads, i.e. with tunnel coupling I" of the
order of the thermal energy kgT'. The coupling is large enough that sequential tunneling processes (second
order in the tunneling Hamiltonian) alone do not suffice to properly describe the transport characteristics.
Upon applying a density matrix approach, the current is expressed in terms of rates obtained by consid-
ering a very small class of diagrams which dress the sequential tunneling processes by charge fluctuations.
We call this the “dressed second order” (DSO) approximation. One advantage of the DSO is that, still
in the Coulomb blockade regime, it can describe the crossover from thermally broadened to tunneling
broadened conductance peaks. When the temperature is decreased even further (kT < I'), the DSO
captures Kondesque behaviours of the Anderson quantum dot qualitatively: we find a zero bias anomaly
of the differential conductance versus applied bias, an enhancement of the conductance with decreasing
temperature as well as universality of the shape of the conductance as function of the temperature. We can
without complications address the case of a spin degenerate level split energetically by a magnetic field.
In case spin dependent chemical potentials are assumed and only one of the four chemical potentials is
varied, the DSO yields in principle only one resonance. This seems to be in agreement with experiments
with pseudo spin [U. Wilhelm, J. Schmid, J. Weis, K.V. Klitzing, Physica E 14, 385 (2002)]. Furthermore,
we get qualitative agreement with experimental data showing a cross-over from the Kondo to the empty

orbital regime.

1 Introduction

The single impurity Anderson model (STAM) [1] has be-
come a useful tool to describe phenomena arising in
quantum dot devices at low temperatures. It encom-
passes single-electron tunneling events [2], cotunneling
and resonant tunneling [3], as well as Kondo [4,5] physics.
These phenomena have been verified in many experimen-
tal quantum dot set-ups realized at the interface of a two-
dimensional electron gas [6-11], carbon nanotubes [12-16]
and quantum wires [17,18] as well as in single-molecule
junctions [19]. In the regime of weak tunneling coupling
compared to temperature and charging energy sequen-
tial tunneling dominates the transport across the STAM,
and tunneling in and out of the dot is well described
in terms of rate equations [20,21], with rates obtained
within a second order perturbation theory in the tunnel-
ing Hamiltonian Hr (i.e., lowest non-vanishing order in
the coupling strength I"). When the temperature is de-
creased to values of the order of the tunneling coupling
or lower, the sequential tunneling approximation breaks
down, as processes of higher order in I' start to become
important.

® e-mail: johannes.kern@physik.uni-regensburg.de

In the focus of the present work is the description
of the intermediate coupling regime, where the temper-
ature is of the order of the tunneling coupling I'. Here a
Kondo resonance has not yet formed, but renormalization
effects due to coupling to the leads already influence the
transport. It is this regime which might be of interest for
transport through some single-molecule junctions [22,23]
and is relevant to interpret experiments on negative tun-
neling magnetoresistance [14]. In the single molecule ex-
periments [22,23] a conductance gap is observed at low
bias which suggests the presence of charging effects. The
gap is followed by conductance peaks whose broadening
is larger than the estimated temperature, being a hint
that tunneling processes of high order might be respon-
sible for the broadening. In reference [14] Coulomb os-
cillations of the conductance versus the gate voltage are
clearly seen in carbon nanotubes contacted to ferromag-
netic leads; however, the occurrence of a negative mag-
netoresistance requires the presence of level shifts due to
higher order charge fluctuation processes [24,25].

When the temperature is decreased even fur-
ther (kgT < I'), one expects the occurrence of a zero
bias maximum [8,26-30] or minimum [8,31] of the non-
linear conductance for small temperatures in a quan-
tum dot with large Coulomb interaction, depending on
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whether the single particle resonance lies deep below
(Kondo regime) or above (empty-orbital regime) the Fermi
level, respectively. The approximation presented here can
capture qualitatively, though not quantitatively, expected
features of the Kondo resonance in the low temperature
regime kpTx < kT < I, where Tk is the Kondo
temperature.

The description of the intermediate coupling regime is
a challenging task. This is in part due to the difficulty of
developing theories capable to cope with strong Coulomb
interactions and intermediate coupling at the same time.
Besides fully numerical approaches, see references [32,33]
for recent reviews, approximation schemes taylored to the
intermediate regime have been proposed. They range from
a real-time diagrammatic technique [31,34] to a second
order von Neumann approach [35,36], a hierarchic ap-
proach [37], as well as to a real-time renormalization group
framework [38]. In particular, the resonant tunneling ap-
proximation (RTA) is capable to describe level shifts and
level broadening and is exact in the noninteracting case.
The second order von Neumann approach, as well as the
hierarchic approach were recently reported to be equiv-
alent to the RTA. Despite its advantages, the number of
diagrams that are included in the RTA is very large, which
makes it expensive to scale it to complex, multilevel quan-
tum dot systems like single-molecule junctions. Moreover,
the natural question arises, if there exists a subset of dia-
grams smaller than in the RTA capable to capture essen-
tial features of the intermediate coupling regime as e.g.
level broadening and level shifts.

Such a smaller diagram selection is proposed in this
paper. We describe the transport beyond the sequential
tunneling regime by using a diagrammatic approach to
the stationary reduced density matrix of the quantum dot
and the stationary electron current onto one of the leads.
Along the same lines as in reference [25] we include dia-
grams of all orders in which the second order diagrams are
dressed by charge fluctuations in and out of the quantum
dot. Different from the method in reference [25], we do not
only extract tunneling induced level shifts from the analyt-
ical expressions. We calculate tunneling rates and express
the density matrix and the current in terms of those. The
so obtained “dressed second order” (DSO) tunneling rates
are given in integral form with the integrand including the
product of the density of electron levels and a Lorentzian-
like function with a width of linear order in the coupling
to the leads I'. The DSO diagrams are a small subset of
the diagrams kept within the RTA, first proposed in ref-
erence [34] to describe the beyond sequential tunneling
regime. Unlike the DSO, the RTA also includes cotunnel-
ing processes. For a spinless quantum dot the RTA is exact
at the level of the density matrix and of the current. The
much smaller DSO subset, too, is exact at the level of the
current and reproduces e.g. the Breit-Wigner resonance
shape of the linear conductance. This suggests that the
DSO might be the smallest diagram selection capable to
recover the exact result for the current.

We compared the predictions of the RTA and DSO
both for the linear and nonlinear conductance in the case
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of infinitely large Coulomb repulsion and found only small
deviations in the intermediate coupling regime. Larger de-
viations are seen at lower temperatures where the conduc-
tance obtained by the DSO remains considerably below
the RTA-result.

One major achievement of the DSO is its capability
to properly describe a cross-over from thermally broad-
ened conductance peaks at high temperatures to tunneling
broadened conductance peaks at low temperatures. This
is of relevance, e.g. to explain the experiments of refer-
ence [14]. Interestingly, DSO-like rates are necessary to
ensure convergence of the current in quantum dots cou-
pled to superconducting leads in the regime where quasi-
particles dominate transport [39]. Hence, the DSO also
provides the minimum diagram selection which yields ef-
fective Dynes spectral densities [40] in superconducting
set-ups.

For small temperatures, kg1 < I', one expects a zero
bias resonance in the transport across a quantum dot with
odd occupation and large Coulomb interaction. Both the
DSO and the RTA contain the onset of this resonance.
To test the reliability of the DSO beyond the intermedi-
ate coupling regime, we thus investigate the temperature
dependence of the linear conductance obtained by it. We
notice that it displays universality at infinitely large in-
teraction and in the regime where the dot occupation is
one. By the same method we see that the linear conduc-
tance obtained by the RTA displays universality, and we
make use of this in order to compare RTA and DSO. We
stress that the shape of the universal curves obtained in
the RTA and in the DSO strongly deviates from that ex-
pected e.g. from exact numerical renormalization group
methods. This provides an indication that for kgT < I’
the DSO results can only be of qualitative nature.

To show the predictive power of the DSO on a qual-
itative level we address the case that the two spin levels
are split energetically by a magnetic field and reproduce
the result that the zero bias resonance of the conductance
versus the bias splits into two peaks [28]. Furthermore, we
show the behavior of the DSO-resonance when the chem-
ical potentials of the leads depend on the spin. Only one
of the four chemical potentials is varied and the others
are kept constant and equal. In this situation, the DSO
yields only one resonance at finite bias even if the levels
are energetically split. A similar behavior has been exper-
imentally observed in studies of the Kondo effect in two
electrostatically coupled quantum dot systems [42].

Finally, we focus on the case of finite but still large
Coulomb interaction and consider the linear conductance
as a function of the gate voltage and the temperature. The
effect of changing the gate voltage is a shift of the rela-
tive position of the level energy with respect to the Fermi
level. This offers the possibility to investigate the cross-
over from the Kondo regime to the mixed valence and
finally the empty orbital regime, corresponding to sin-
gle particle energies lying deep below, in the vicinity and
above the Fermi level of the leads, respectively. We com-
pare with experimental results in reference [7] and, similar
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to reference [35], we obtain in many respects qualitative
agreement.

The structure of the paper is as follows: Section 2 in-
troduces the model of the transport current. Section 3
illustrates the diagrammatic approach and recalls known
results for the reduced density matrix and the current in
second order in the tunneling Hamiltonian. Analytical ex-
pressions for the current and the reduced density matrix
are provided in terms of rates.

The DSO approximation is explained in Section 4. In
Sections 5, 6, and 7 the DSO is applied to the spinless case,
to the case of infinite interaction and of finite interaction,
respectively. In particular, in Sections 5 and 6 the DSO
and RTA predictions are compared; the case of energeti-
cally split levels is considered. In Section 7, on the other
hand, we compare with the experimental results in [7].
Finally, conclusions are drawn in Section 8.

2 Basic model
2.1 Hamiltonian

The Hamilton operator of our system is H = Hr + Hg +
Hrp. In the reservoirs we assume noninteracting electrons.
Correspondingly, we choose

_ i
Hpr = E €lokC] i Clok-
lok

In this formula, the indices [, o and k denote the lead,
the spin and the wave vector of an electron level in the
contacts, respectively; €;,k is the band energy correspond-
ing to this electron level; ¢;,x is the annihilation operator
of the level lok and the dagger denotes the Hermitian
conjugate.

The Hamiltonian of the isolated quantum dot is

He = Udldd{d, + Y E,did,,

where U is the Coulomb interaction and d,, and d} are the
annihilation and creation operator of the level o0 =7/ | on
the dot. Alternatively, the Hamiltonian of the isolated dot
can be written as

Ho = Eol0)(0] + ) Eslo)(o] + E2|2)(2].

For any of the four many particle states a = 0,7, |, 2, E,
denotes the energy of this state. The Hamiltonian of the
quantum dot is diagonal in the basis given by these four
states. By comparison with the above representation we
get: Eg = 0,Ey = U + ) E,. Only differences between
energies of quantum dot states are relevant. We introduce
the terminology

Eab = Ea — Eb.
Finally, the tunneling Hamiltonian,
Hr = Z Tikod! cieo + H. c. (Hermitian conjugate),
lok

connects electron levels on the leads with the level on the
quantum dot [41].
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2.2 Initial condition

We assume that there is an initial time at which the sys-
tems are still separate and express this by writing the ini-
tial density matrix as product of density matrices of the
quantum dot and the leads:

p(to) = po(to) ® pr,

where pg(to) is some arbitrary initial density matrix de-
scribing the state of the dot; pr = pRicft @ PR, right 1S
the density matrix of the leads in thermal equilibrium.
Specifically, we choose

1 -1
_ t
PRI = — exXp (szT E (€ike — m)clkqua> ;

! ko

where p; is the chemical potential of lead [ and where n; is
a normalization factor. After this initial time we assume
that the time evolution of the density matrix is ruled by
the total Hamiltonian H according to the Liouville-von
Neumann equation [43].

2.3 Thermodynamic limit and the current

For each of the leads we define an electron counting oper-
ator as N; = Zkg cjkaclkg and the operator of the particle
current onto that lead as I; = £[H, N;]. Then the current
onto the chosen lead at time ¢ is:

d

2 1t (Nip(t)) = Tr (Lip(t)) =: (I)(2)-

We define the stationary current by letting the time go to
infinity and taking the average current:

[e}

(I)oo = lim A dt(I;) (t)e M=t (1)

—0 to

where A > 0 is the argument of the Laplace transform of
the function ([;)(t). The total weight of the multiplicant
e~ ME=t0) oyer [tg, oo| is always unity, but for smaller and
smaller values of A it will be distributed over a larger and
larger time interval. The current in this definition is zero
as long as the contacts are finite. Therefore, we first let
the size of the contacts go to infinity and redefine

(L)(t) = lim (L)(t, V). (2)

V—o0

Then the current in the definition of equation (1) is
our model of the dc-current measured in transport
experiments with quantum dots.

3 Diagrammatic approach

3.1 Basic method

An analysis of the time evolution of the current, equa-
tion (2), shows that it can be separated into subsequent
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smallest segments, so-called irreducible tunneling pro-
cesses [44,45]. The calculation of the stationary current
can be reduced to the calculation of the corresponding
transform of these irreducible segments. The theory is
exact.

The technical realization of this theory can be de-
scribed as follows: the irreducible segments of the time
evolution of the current are called kernels. We distin-
guish between the density matrix kernel K, which deter-
mines the reduced density matrix of the quantum dot, and
the current kernel K¢ which defines the relation between
the reduced density matrix and the current. The fact that
the time evolution of the current is completely determined
by the kernels can be expressed in a compact way by the
two equations:

) =T [ Kol Voot
po®) = 5loolt). Hol + [ dsK(t— s)oo(s)

to

where we use the terminology pe(t) := Trr{p(t)} for
the reduced density matrix of the quantum dot. The sec-
ond equation is also called the quantum master equa-
tion [43,46,47]. We take the Laplace transform of both
equations in the limit A — 0. Then, the second equa-
tion allows the calculation of the stationary reduced den-
sity matrix as far as K (A = 0) is calculated. Finally, the
Laplace transform of the first equation can be used to
calculate the stationary current.

The calculation of the current means thus the calcu-
lation of the kernels. The contributions to the kernels are
visualized by diagrams, whose number and variety is huge.
This forces us to take into account only special classes of
diagrams about which we have reason to believe that they
might be important and which we are able to calculate.
Only in the special case of the spinless quantum dot an
exact solution was presented. It has been shown that a
derivation of the exact result is possible by the use of the
RTA [34].

3.2 Second order approximation

The approximation to be presented in this work is an ex-
tension of the second order theory, so we recall in the
following its meaning.

All of the contributions to the kernels have an or-
der in the sense that the coefficients of the tunneling
Hamiltonian appear a certain number of times. All odd
orders vanish. Thus, the kernels have the structure:

K=K® KW
Ke=KS + K& +....

For weak tunneling coupling one takes into account only
the approximations for the kernels up to order 2n and
calculates the current on this basis. Indeed, the current,
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0

0)

lok

9) 0

Fig. 1. An example of a second order diagram; by convention
we let the time increase from the right to the left. The hori-
zontal lines are called contours, the third line tunneling line; it
represents an electron from lead [ with spin o and wave vec-
tor k which tunnels in two steps onto the dot. The intersection
points of the tunneling lines with the contours are called wver-
tices. The vertices separate the contours into intervals, and to
each of these we assign a quantum dot state. The particle num-
ber of neighbouring quantum dot states can differ only by +1.
The chronological order of the density matrices of the quan-
tum dot in this diagram, viewed still as a diagram in the time
space, is found as follows: we imagine a vertical line which cuts
each of the contours one time. We consider then especially the
intervals between two neighbouring vertices which are cut by
the vertical line and take the two quantum dot states assigned
to them. If they are a and b on the lower and on the upper
contour, respectively, then the current quantum dot matrix is
given by |a)(b|. The imaginary vertical line we move from the
right to the left end of the diagram. The sequence of quantum
dot matrices in the above diagram is: |0)(0|, |0)(c| and finally

o) (a].

equation (1), is analytic in the coupling parameter and its
Taylor expansion up to the order 2n is obtained by taking
into account the corresponding orders of the kernels.

3.2.1 Second order density matrix

One of the diagrams visualizing the second order contri-
butions to the density matrix kernel is shown in Figure 1.
A possible way of describing the process is to say that the
quantum dot is at first in the unoccupied state 0; then
an electron with spin ¢ tunnels in two steps onto the dot.
Finally, the dot is in the state o. The analytical expres-
sions which correspond to the diagrams are given by dia-
grammatic rules, e.g. [31,34,45,48]. The expression for the
diagram in Figure 1 reads:

1 fileno) | Tieo|”

hh\+ i(&lkg — El()) ’

where we let A, the argument of the Laplace trans-
form, still be finite. For simplicity we assume degener-
acy, F; = FEz, and write E,9 =: Fqo. Later, we will con-
sider also the case of different energies E, # Ez. We
let fi(e) be the Fermi function at chemical potential 14
and temperature T, ie. fi(e) = f((e —w)/ksT) with
f(z) = 1/(1 + e®). We perform then the sum with re-
spect to the leads and the wave vector. The thermody-
namic limit is taken by replacing the sum with respect to
the allowed wave vectors k by an integral over the first
Brillouin zone.
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Fig. 2. Second order diagrams of this form ensure that the
trace of K (\)|a){a| is always zero. Their contributions to the
density matrix kernel amount to — 32, (0| {K(\)|a)(al} [b).

We split now the integration into two parts: first, we
fix the band energy and integrate over the surface in the
first Brillouin zone where €k, equals this band energy. In
a second step, we integrate over the band energies [49].
There are two diagrams of second order which are contri-
butions to the kernel element (| {K(A)[0)(0|}|o). They
are given by the above diagram and by the one we get
by mirroring this with respect to a horizontal axis. Their
contributions are complex conjugate, so we have to take
two times the real part of the above expression. In the
limit A — 0 we obtain:

ﬁ ZO(I E10
+

(o[ {K (X =0)[0)(0}|o) =
where we used the notation ;" (¢) = a;(¢) fi(e) and

dSZ; | Tieo |
o(e) = / ——— (3)
(cuw=c) Ve (k)]

Z; is the number of allowed wave vectors in the first
Brillouin zone per volume in the wave vector space. In
the case that the tunneling coefficients T}k, were indepen-
dent of the wave vector, the function a;(¢) would just be
proportional to the density of electron levels in lead [ [49].

The other second order kernel elements are calculated
essentially in the same way. With the further notation
a; (e) = aq(e)(1 = fi(e)) we obtain:

OHER = 0)lo) (o} 0) = 27 3 ag (Bro)
l

CHEN =)o) o]} 2) = 7 3 af (B)
l

(o] (KO = 0)2) (20} o) = 25 3 a7 (Ban)
l

For simplicity we assume for this that the definition of oy,
equation (3), does not depend on the spin. By considering
the contributions of diagrams as in Figure 2 one can ver-
ify that the general property of the density matrix kernel
Tr {K|a){a|} = 0 holds true also within the second order
theory. Therefore, we already calculated implicitly the re-
maining kernel elements of the form (a| {K(\)|a)(al} |a).

In all situations considered in this text the density ma-
trix kernel maps a diagonal matrix to a diagonal matrix,
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e. (b {K(A=0)|a){a|} b’y =0if b#b'. Thus, it is a lin-
ear operator with rank three or lower acting on the four
dimensional space of the diagonal matrices, since one de-
gree of freedom is destroyed by the condition that the trace
of the resulting matrix is zero. We can conclude that there
is a diagonal solution p of the quantum master equation
(QME) in the stationary limit. With the notations

Paa ‘= <a|p| >
21
Fﬁcm = EO‘?E(EN)
27
and I‘fm = Eali (E21)

the QME turns into the following set of two equations for
the three variables poo, p22 and pr1 = pyy:

:_POOZ 101+PWZ 1,01
0_pUUZFIIQ P2QZF112

This information is sufficient to determine the stationary
reduced density matrix since we know that the normaliza-
tion condition, poo +2ps0+p22 = 1, holds. The solution is:

P00 F()J_}F@
O e e @
PLL I'plon+ I e | Lol s
p22 LIy

where we used the notations

ab_i: l,ab’

Ly = rab + 1,

3.2.2 Second order current kernel

In order to calculate the current we have to determine the
second order current kernel. The structure of the contri-
butions to it is the same as that of the contributions to
the density matrix kernel. We take into account only the
diagrams with the final vertex on the lower contour. The
lead index attached to the corresponding tunneling line is
fixed and given by the lead onto which we are calculat-
ing the current. An additional sign, as compared to the
density matrix kernel, has then to be taken into account.
There are several equivalent possibilities of defining the
current kernel [44].

The second order particle current is found by apply-
ing the current kernel to the reduced density matrix and
taking the trace [31]:

=5 (1) Tl —linlio ) -
! N F(n FllQFllQ Fllgfl,w ’
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where we used { to denote the opposite lead of lead ! and
the abbreviations:

N = I'ylo1 + Iy e,
VARTRSS FzJ,rab + 1 ap

This is the particle current onto lead [. The net current,
i.e. the sum of the two currents onto lead ! and [, is zero.

In the case of proportional tunneling coupling,
i.e. ap = Kk, with k; positive scalar factors fulfilling
> K1 = 1, the expression for the current can be simplified:

(2) _ n .
= 1+ LAVERTY (lef,Ol - 'ilFl,m)
o1 Iy,
2 - —
r— (Wl wl). @
F()+1F12

The prefactor of the second line turns out to be the sta-
tionary electron number on the quantum dot, i.e. the ex-
pectation value Tr{Ngp} with Ng the particle counting
operator on the quantum dot; the prefactor of the first
line is the expectation value of 2 — N, and we refer to it
as the hole number.

Our non-perturbative approximation (DSO) is an ex-
tension of the second order theory. The equations for the
density matrix and the current in terms of the transition
rates I l:.Ezb still hold true but the expressions for these rates
change.

4 Dressed second order diagrams

In this section we account for diagrams similar to the ones
of the second order theory but dress them by charge fluctu-
ations. Figure 3 shows two possibilities of dressing the sec-
ond order diagram of Figure 1. There is one more electron
level of the leads involved in the tunneling processes given
by these diagrams. We might comment that an electron
(lower example diagram) or a hole (upper example dia-
gram) tunnels for some time halfway onto the dot and then
leaves it again. The tunneling of the one electron which
finally enters the dot is accompanied by the tunneling of
further electrons or holes in these diagrams.

According to the diagrammatic rules the sum of the
contributions of the diagrams in Figure 3 to the density
matrix kernel is given by:

1 a™(e)
h / d
ale)

Eh)\—f—l(ff _EIO)
-1
d !/
Xh)\*l*i(E*El())/ Eh)\‘i’i(&*&/),

where we let \ still be finite and used the notations:

+ . +
ot = 3 of,
l

a:=a"+a = g Q.
l
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=90 9
I'ok*

lok

— 0

0O o
Fig. 3. Two examples of dressing the diagram of Figure 1 with
further tunneling lines. In the upper diagram the temporal se-
quence of quantum dot matrices is: |[0)(0], |0)(c|,|0)(0],]0)(c]
and |o){(c|. A hole from lead I’ with wave vector k' is partic-
ipating in the process. In the lower diagram, it is a further

electron which is accompanying the tunneling of the electron
from the level lko.

Fig. 4. The existence of the state 2 leads to a fourth possibility
of dressing. The tunneling line on the upper contour represents
an electron of the opposite spin which tunnels onto the dot and
leaves it again.

In the first line we recognize the contribution of the second
order diagram. However, the integrand is multiplied by a
factor, the second line, and this reflects the participation
of further particles. From the upper diagram in Figure 3
we get a~ (¢’), from the lower one we get o™ (¢”). The sum
yields a(e’), which appears in the factor.

Because of the existence of the two spins there is still
a third way of dressing our second order diagram with one
further tunneling line: the bubble on the lower contour of
Figure 3 might as well represent an electron with opposite
spin which accompanies the tunneling. The contribution
of this diagram is the same as the contribution of the
diagram with only one spin appearing, but it is important
because it does not have a counterpart: there is no way of
dressing the diagram with a bubble on the upper contour
which represents a hole of the opposite spin. Finally, there
is the possibility to dress the diagram by a tunneling line
on the upper contour which represents an electron of the

opposite spin, as shown in Figure 4.
We saw that there are four ways of dressing the

second order diagram with one bubble. Moreover, we
can dress the diagrams with two or even more, in
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rg, =2 [ o (€) [l + at)(e) + o (B0 — o)) (8)
’ h 72 [(a+ at)(e) + at (B2 — &) + [¢ + Payart (€) = Dot (E20 — €) — Ero]”’
I, =2 [ e o ) [(o+ a)(e) + o (Fro )] 5 (9)
’ h m2[(a+a7)(e) + a (B —&)° + [e + paya— () = Pa-(B2o — &) — Ea1]

9

2 0 0
C—TT U

0 G 0
Fig. 5. An example of a diagram with four bubbles. If we
count the bubbles from the right to the left, then for the
choice of each of them we have four different possibilities. This
example-diagram contains all four of these possibilities.

o Q 0

general n, subsequent, non-intersecting bubbles. An ex-
ample is sketched in Figure 5. For the choice of each of
these bubbles we have four possibilities. It might represent
an electron of the same or the opposite spin and thus ap-
pear on the lower contour, or represent a hole of the same
spin or an electron of the opposite spin and appear on the
upper contour. The sum of the contributions of all of these
diagrams to the kernel element (| {K(A)[0)(0|} |o) is

i e 5 (e

| [ i ()

,(atat)(e) }” _
n+i(e+e’'— FEa)
de 7
/ n -+ Z(E — El()) —+ de/ (atat)(e) -+

at(e) ’
n+i(e+e’—FE20)

(7)

where we replaced AA by 1. In Appendix A we sketch a
proof of the equality for arbitrary A\ € {Re > 0}.

n+i(e—e’)
at(e)/h
n+i(e—e’)

4.1 DSO tunneling rates

All of the other second order diagrams can be dressed in
the same way. For the diagrams connecting the particle
numbers one and two we see that a support of the tunnel-
ing by holes and electrons of the same spin and by a hole
of the opposite spin is possible, but not by an electron of
the opposite spin. We obtain the following transition rates
within this dressed second order approximation:

see equations (8) and (9) above,

where we define for any function h the function pj by:
*®  hle4+w)—hle—w
pr(e) = / dw ( ) ( )

0

pr(g) is a principal part integral.

; (10)

w

Hence, the DSO rates are given in the form of an inte-
gral where the integrand is the product of the second order
functions ali(s) and of a Lorentzian-like resonance func-
tion. We, thus, expect that the second order rates are re-
covered when the temperature broadening of the functions
ali largely exceeds the width of the Lorentzian broaden-
ing. In the regime kT > 2ra(Ep) these transition rates
indeed turn into the transition rates of the second order
theory.

The stationary reduced density matrix within the DSO
is given by equation (4) and the current is given by
equation (5) and in the case of proportional coupling by
equation (6).

4.2 Linear conductance within the DSO

We assume that the second order functions «;, equa-
tion (3), are obtained by multiplication of the density of
electron levels in the leads by a coupling constant, and
assume a simple shape of the density of electron levels,
Figure 7.

Deriving the formula for the current, equation (6), with
respect to the bias, eVyiqs =  — p47, one obtains at zero
bias the following expression for the linear conductance:

see equation (11) next page

where Ep is the Fermi level, f(z) = 1/(1 + %) the

normalized Fermi function,

2
Toil',
I o

ne =
1+

is the particle number on the dot as noted above, and
where we use the abbreviations do1(¢) and dj2(e) for the
denominators in the expressions for the transition rates,
equations (8) and (9), respectively. The prefactor 4x;k; is
one in the case of symmetric coupling and less than one
otherwise. We finally included the electron charge in the
formula.

5 Result of the DSO for a spinless quantum
dot

We consider here the case of a spinless quantum dot with
only two possible states 0 and o, so with only one spin.
This problem is equivalent to the SIAM with E; = E|
and U = 0 in the sense that the current across the SITAM
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+ coupling:

Fig. 6. The structure of the diagrams within the RTA. They
are defined by the condition that any vertical line cuts at most
two tunneling lines. When projecting all of the vertices of two-
contour diagrams (see previous figures) onto one contour only,
then any RTA diagram has the structure sketched in the figure:
there is an integer number of neighbouring “long” tunneling
lines with an overlap of one vertex. Moreover, in the intervals
enclosed by the long tunneling lines there can be an arbitrary
number of bubbles. For the sum of all of these diagrams an
integral equation was derived [34]. Its origin is the relation
between the contributions of all RTA diagrams with n or less
long tunneling lines on the one hand and of all RTA diagrams
with n + 1 or less long tunneling lines on the other hand. In
the limit n — oo the two are equal.

quantum dot is then just two times the current across a
spinless quantum dot.

The resonant tunneling approximation (RTA) is the
diagram selection defined by the condition that any imag-
inary vertical line cuts at most two tunneling lines [31,34].
It has been applied to the case of the spinless quan-
tum dot, in which it is exact [50], to the case of in-
finite interaction [31], but also to the case of finite
interaction [35,36]. The structure of the RTA-diagrams is
conveniently sketched by projecting all vertices onto one
contour only (Fig. 6).

The DSO takes into account only diagrams with the
structure of the first line of Figure 6. In the cases of the
spinless quantum dot and of the Anderson model with in-
finite interaction, the DSO takes into account all diagrams
with the structure of the first line of Figure 6. In the case
of finite interaction, on the other hand, the DSO does not
contain all diagrams with the structure of the first line.
Unlike the DSO, the diagram selection defined by the first
line in Figure 6 yields the exact result for the current in
the limit of vanishing interaction.

The tunneling rates obtained by the DSO in the
spinless case are:

2w
+
Fl,Ol = E/d&:

(ozlioz)(e)
7202(e) + (pale) + & — Erg)?’

DSO _ 4, K,W_Q a*(e) (fi = fi) (e) ]
g = drury h /dEwQaQ(s) + (e + pa(e) — E1g)?

In the limit of small temperatures and in case the second
order functions «a;(¢) are rather constant, the current is
obtained by integrating a Lorentzian-like function with
width (full width at half maximum) I" := 27« between
the two chemical potentials. The differential conductance
as function of the bias thus reproduces the shape of this
Lorentzian. Frequently, the quantity I' rather than « is
used to define the coupling.

In the case of proportional tunneling coupling the re-
sult of the DSO for the spinless quantum dot is actually
the same which was presented within the RTA [34] and
thus exact.

We will now concentrate on applying the DSO approxi-
mation to cases with nonzero interaction. We will consider
the regimes I' ~ kT and I' > kpT and ask with re-
spect to which aspects the DSO is successful in explaining
experimental results and how it compares with existing
theories.

6 The case of infinite interaction

In the case of infinite interaction, U = oo, all of the di-
agrams which contain the state 2 are neglected and the
equality poo + ZU poo = 1 holds. The formulas for the
linear conductance of the RTA [31] and DSO in the case
of infinite interaction read:

2
- 4nml—%2

n2a?(e) —1 e—Ep
d /
X/ U6 Rt < kT )
2
GP50 — 4/<;l/ﬁ% (2—ng)

2 [ala+at)) () -1 ,, (e—F
X/d8 i@ kT ( kBTF>’

GRTA

where we used the abbreviation

d(e) = m*(a+ a)?(e) + (¢ + Patar () — Eio)?
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Fig. 7. Energy dependence of the dimensionless function
b(e) = a(e)/a(Er). We placed the Fermi level Er in the mid-
dle in order to ensure that the chemical potential at equilibrium
always equals the Fermi level. Moreover, we chose W =1 eV,
w = 0.9 W. A cut-off is needed in order to ensure the existence
of the principal parts pa, p,+, etc. of equation (10).

for the common denominator. Differences are only found
in the prefactor and in the numerator. To compute the
conductances we have to make a choice about the second
order function a(e). We wrote a(e) = a(Er)b(e) with
a dimensionless function b(e) fulfilling b(Er) = 1. The
variable a(E'r) is then our coupling parameter. Figure 7
shows how we chose the function b(¢).

6.1 Coulomb peaks from high to low temperatures

In Figure 8 we compare the linear conductances as a func-
tion of the gate voltage obtained within the RTA and
the DSO for various temperatures. We observe a tran-
sition from a temperature dominated to a tunneling dom-
inated width of the Coulomb peak. The transition occurs
at temperatures around 1 K which corresponds to a ther-
mal energy which is of the order of the chosen coupling
a(Er) = 0.042 meV. The peak height of the DSO still
increases up to temperatures of about 100 mK and de-
creases then. In this respect, the DSO fails to describe ex-
perimental reality below 100 mK. Notice that the shape of
the curve saturates at low temperatures both within the
RTA and the DSO: the effect of decreasing the tempera-
ture further and further is only a shift of the graph. As
we will show in the next subsection and in Appendix B,
these features do not depend on the choice of b(e).

6.2 Universality and Kondo temperature in the infinite
U-case

We show now that the DSO conductance displays uni-
versality as function of the temperature in the regime of
strong coupling. For a fixed value of the gate voltage, i.e.
for fixed Fyg, the linear conductance becomes a function
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Fig. 8. Linear conductance of the DSO as a function of the
energy difference Fio for different temperatures. The dashed
lines show the result of the RTA; the coupling we chose to
be a(Fr) = 0.042 meV and W = 1 eV (the same choices
we made for a later comparison with an experiment, discussed
in Sect. 7.2). A temperature of 1 K corresponds to a thermal
energy of about kT ~ 0.1 meV. For large temperatures the
resonance is smeared out, its centre is found roughly around
the Fermi level. For decreased temperatures the position of
the maximum is shifted and the width of the peak is propor-
tional to a(Er). While the logarithmic shift of the peak with
the temperature does not stop, the shape of the curve and its
maximum value saturate. We find numerically within the RTA
the maximum =0.99 ¢? /h, within the DSO ~0.69 ¢*/h. We em-
phasize that neither these maximum values nor the shapes of
the curves in the limit of small temperatures depend on the
the way in which the function b(¢) is chosen.

G(T) of the temperature. This is expected to display uni-
versality [51] in the following sense: there is a tempera-
ture Tk such that G(T')/Gmax is a universal function of
the ratio T'/Tk, where Gax is the maximum value of the
conductance. We can show that this holds for GFT4 as
well as for GP59 in case E1g < Ep. Both the RTA and
the DSO, however, do not yield the expected convergence
G(T) — Gumax = 4k16;2€* /b (T — 0).

We present in Appendix B a derivation of the univer-
sality of the conductance obtained by the DSO and the
RTA, respectively. For the temperature Tk, defined by
the condition that the conductance reaches one half of its
maximum, we obtain:

(12)

Ew— E
kBﬂ(:7WNmp(—£L——E)

a(Er)
The prefactor 7 changes if the shape of the band (Fig. 7)
is chosen in a different way, for example, to be Lorentzian.

The conditions under which the results of Appendix B
are valid read:

kpT < a(Ep) < W.

In this case we obtain the expression

2 T
GDSO:4I€1H[6—(27TL®)FDSO cip +log — |,
h Tk

where Ty is given by equation (12), ng is the par-
ticle number and the function FPSC is defined in
equation (B.7) (Appendix B).
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Fig. 9. A comparison of the universal function of the DSO with
an NRG-fit [7]: both functions take the value 0.5 at T' = Tk
and are normalized in such a way that the maximum is one.
A striking feature of the fit is that within one power of ten
the linear conductance increases from 50% to about 95% of
its maximum while our function is growing much less in this
interval. We included also the universal curve which is obtained
for the RTA. In agreement with Figure 8 and unlike the NRG-
fit, the universal functions of RTA and DSO decrease again
for even smaller exponents than shown here. The equation for
the NRG-fit is G(T) = Gmax (1/ [(T/Ti)* +1])° with Tj =
Tr/(2'/% —1)Y/? so that G(Tk) = Gmax/2; we chose s = 0.2.

The particle number ng is in general a function of
temperature and gate voltage. At temperatures kpT <
a(Er) and when Eyg < Ep (compared to the coupling),
however, n¢ essentially becomes a constant, since the elec-
tron is then trapped in the dot. The DSO linear conduc-
tance becomes a universal function of T/Tk in the regime
Ey < Ep; at T = Tk, G(T) reaches one half of its maxi-
mum. In Figure 9 we compare our result for the universal
function with a fit to the one obtained by NRG calcula-
tions [51]. The same reasoning one can apply to the RTA
in order to obtain an analogous universality; the result-
ing formula for Tk deviates only in the prefactor. The
relation between a(Fr) and the coupling parameter I" by
the use of which Tk is most frequently expressed, e.g.
references [7,29,44], is I' = 2ra(Er).

We acknowledge very clearly that the DSO fails to de-
scribe the regime of strong coupling quantitatively cor-
rectly. For example, the DSO (and the RTA) expression
for Tk, given in equation (12), has an exponent which dif-
fers by a factor of two from the exponent extracted from
more accurate theories [5]. However, we think it is very
remarkable that the linear conductance obtained by it dis-
plays a universality in the same sense as it is predicted by
perfectly different approaches.

6.3 Zero bias anomaly of the differential conductance

In addition to the linear conductance we considered the
differential conductance obtained within the DSO for in-

e\/bias ( meV)

Fig. 10. The differential conductance versus the bias. We set
E = Ep —1 meV and chose a(Er) = 0.042 meV, W = 1 eV
as in Figure 8. We fixed one of the chemical potentials at the
Fermi level, y;, = EF, changed only the other one and de-
fined eViias = My — Er. We assumed a capacitive coupling
between the leads and the quantum dot in such a way that
Er10(Viias) = Eig) + 0.2eVhias. We see a resonance appearing
at zero bias for small temperatures. The dashed lines show
the result of the RTA. The resonance is becoming more and
more pronounced with decreasing temperature. The shape of
the curve depends on the capacitive coupling and on how the
window between the two chemical potentials is opened; how-
ever, the appearing of the zero bias anomaly does not in prin-
ciple depend on these choices as one can conclude from the fact
that they are irrelevant for the differential conductance at zero
bias.

finite U. We notice that in qualitatively the same way
as the RTA [31] the approximation produces a zero bias
maximum of the differential conductance in case Eg lies
below the Fermi level (Fig. 10) and a minimum in case
it lies above or in the vicinity of the Fermi level. The
effect becomes more pronounced for smaller and smaller
temperatures.

The generalization of the DSO for infinite U to the
case of different energies F; # E| is straightforward. One
obtains the tunneling rates

see equation (13) above.

We see (Fig. 11) that the zero bias anomaly is split ac-
cording to eVyi,s = £E7|, in agreement with theoretical
results [28,31,52,53] and experiments [8,30,54].

6.4 Situations in which only one resonance is expected

In reference [8] a resonance close to zero bias whose posi-
tion changed slightly with the gate voltage was reported.
The dependence of the position on the gate voltage was
explained by the conjecture that two different wave func-
tions (not only two different spins) might be involved, so
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Fig. 11. The zero bias resonance is split if E; # E|.
We chose the temperature 7' = 100 mK and the remain-
ing parameters as in Figure 10 apart from the splitting,
EY = Er —1 meV + E,, /2.

that the assumption of different capacitive couplings of the
levels to the gate electrode was justified. However, in this
case one would expect to see a second peak at the oppo-
site bias. However, the latter peak was not observed. We
assume different capacitive couplings of the levels to the
leads and obtain that with growing asymmetry one of the
peaks is changing position, getting wider and much less
pronounced. The other one, however, is getting sharper
(Fig. 12). The explanation for this behavior at the level
of the transition rates, equation (13), is that Flf changes
considerably with the bias in regions where

M — pp = Eaé’v

since then the region of large values of p_+ (6 — E5,) is leav-

ing or entering the interval over which the integral essen-
tially goes. This leads to the condition “eVii,s ~ £E1”
for rapid change of the current with the bias. In case of
different capacitive couplings of the levels to the leads the
energy difference becomes a function of the bias. With
increasing bias, one of the differences is decreasing while
the other one is increasing. Thus, one of the resonances is
getting sharper while the other one is smeared out. The
positions are no longer symmetric with respect to zero
bias.

Moreover, we notice that also asymmetric tunnel cou-
pling can have the effect that one of the resonances is get-
ting less pronounced. One can let the coupling functions
(), equation (3), be dependent on the spin as well as on
the lead and thus obtain further independent parameters.
We evaluated the differential conductance also in this case
(not shown) and we can qualitatively confirm the assump-

bias

Fig. 12. An asymmetry of the capacitive couplings of the
levels to the leads has the effect that the resonances become
asymmetric; one is starting to vanish, the other one is get-
ting sharper. The black line is the one already appearing in
Figure 11. For the red (grey) line we changed the capacitive
couplings in such a way that F1o(Viias) = E%g) + 0.4eViias,

ELO(‘/bias) - EE%) + 0.16‘/131'11&

tion that different tunnel couplings of the levels to source
and drain, too, can be responsible for the observation of
only one peak [8].

Moreover, we consider another situation where the
DSO yields, this time, in principle only one resonance:
the energies Ey, F/| are different and there are four differ-
ent, separately variable, chemical potentials pu;, for each
of the leads and each of the spins. The chemical potentials
of the down-spin are kept constant and equal, ] =: p;
one of the up-spin chemical potentials, too, is kept con-
stant. Only g, is varied. The current is considered as a
function of eVyias = pj 1 — t1,1- The DSO can be easily
applied to such a situation. The coupling functions be-
come dependent on spin. The tunneling rates of the DSO
for infinite U read in the most general case:

see equation (14) above.

The rates Flf change rapidly with the bias in regions
where
Hiec — HU'a ~ E06'~

This leads to the resonance condition

eVhias = By == Ef — EY, (15)
where we used the definition E} := E,p — f,0. Indeed,
a plot of the differential conductance as function of the
bias displays one resonance located approximately at this
value of the bias (Fig. 13). Experiments with a pseudo
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Fig. 13. The differential conductance as function of the bias
in the following situation: the temperature is 7' = 100 mK, the
capacitive coupling we chose to be zero; moreover, we chose
ny = Er — 0.5 meV, w1 = Er + 0.5 meV. The energies are
chosen as: Eyo = jiy0 — 1 meV + Ej5/2.

spin [42] might be interpreted by the use of the STAM.
The DSO predicts the appearing of only one resonance in
case only one of the voltages is varied. This prediction is,
up to our knowledge, novel. There are alternative meth-
ods and concepts which yield qualitatively similar results.
However, the question which concepts to apply to describe
a particular experiment can be tricky.

7 Linear conductance at finite U

In this section we investigate the linear conductance at fi-
nite interaction according to equation (11). By considering
the integrals we can see qualitatively that we can expect
an enhancement of the conductance with decreasing tem-
perature if Fqo lies below and FEs; lies above the Fermi

level: the function k;—lT I (Ek*BETF ) of ¢ has total weight

one and is concentrated in a region of the size of the ther-
mal energy around the Fermi level. In the denominators
(Eq. (8)) the behavior of the p-functions becomes impor-
tant. The principal part pp(e) (Eq. (10)), measures an
asymmetry of the function h with respect to £ (h is an
arbitrary function here). In particular, p,+ takes negative
values around the Fermi level since in this region o™ (¢)
decreases (Fig. 14).

If we decrease the temperature, then the decay of the
values of at is more rapid and thus the absolute val-
ues of p,+(€) are getting larger. Around the Fermi level,
€ 4 pa+(€) approaches the energy difference Ejo and the
integral increases. At some point the sum even reaches and
crosses the level position and then the integral decreases
again. For the other integral the arguments are analogous.
The energy correction p,- is positive here and increases
if we decrease the temperature.

7.1 DSO-conductance from weak to strong coupling

For the numerical implementation of equation (11) we
wrote the coupling functions a(e) still as a(Ep)b(e), where

Eur. Phys. J. B (2013) 86: 384
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Fig. 14. Behavior of the normalized function b} :=
at(e)/a(Er) for which we use the abbreviation b} and the
resulting behavior of the function Py () == [ dw(bf (e +w) —
bt (e —w))/w around the Fermi level. It measures the surplus of
electrons with energy larger than € with a strong emphasis on
the situation locally around e. Therefore, the principal parts
display a dip around Er. If we decrease the temperature by a
factor of ten, then the value of the principal part in the centre
goes down by the logarithm of ten. Moreover, if we stretch the
narrower of the two dips by this factor, then we obtain the
other dip. There is a well defined universal shape of the dips,
as we will show in Appendix B.

the choice of b(e) is given in Figure 7. We modeled the
cases of strong and weak tunnel coupling by large and
small factors a(Er), respectively. In Figure 15, we show
plots of GPS9(E,) for different values of the tunnel cou-
pling. In the limit of weak coupling we reproduce the result
of the second order theory while for larger coupling we ex-
pect essentially three effects: the peaks are getting higher,
broader and the maxima are moving towards each other.

7.2 From the empty orbital regime to the Kondo
regime

We want to compare now the result of the DSO for the
linear conductance as a function of EFqy and of the tem-
perature with experimental data [7]. In the experiment
a region within a two dimensional electron gas was iso-
lated by electrostatically generated tunneling barriers. In
this way a quantum dot which is tunnel coupled to leads
was formed. Via a gate voltage it is possible to vary E1g.
The linear conductance was measured as a function of the
gate voltage and the temperature. The results were in-
terpreted in terms of the SIAM. The authors distinguish
between three different regimes of parameters, depend-
ing on whether the level position, i.e. Fjq, is far below
the Fermi energy (here the particle number is one, Kondo
regime), in the vicinity of the Fermi level (mized valence
regime) or above the Fermi level (here the particle number
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Fig. 15. Differential conductance at zero bias as a function of
E1o (corresponding to a plot as a function of the gate voltage)
for different tunnel couplings. We chose the interaction to be
U = 1 meV and the temperature 7' = 100 mK. For weak
coupling we see peaks of small height whose width is given by
the temperature; the peak positions are quite precisely defined
by the resonance conditions Fi9 = Er and E2; = Er. Upon
increasing the coupling the corrections become more and more
important; the width increases with a(Er), the peak position is
shifted by the corrections p,+. The DSO approximation breaks
for strong couplings where it produces a sharp dip in the center
of this plot which is not observed in reality. This problem is
present even and still in the RTA for finite U [35].

is zero, empty orbital regime). We tested the performance
of the DSO approximation by adjusting the parameters
and comparing with the experimental data.

We fitted the parameters in the following way: the tem-
peratures are given explicitly. The value of the Coulomb
interaction U, too, we take directly from the experiment.
To fix the coupling parameter o(Ep), we plotted G(F1q)
for various values of it. We determined the parameter by
the demand that the full width at half maximum of the
peaks is close to the measured values (Fig. 16).

In Figure 17 we show a plot of the linear conductance
as a function of the energy difference Eig for different
temperatures. We get qualitatively very similar behavior
as in [7]: with decreasing temperature, the peaks are mov-
ing towards each other, they are getting higher and their
widths are getting smaller and seem to saturate finally. In
the end, we adjusted also the factor 4x;x;, which expresses
an asymmetry of the tunneling couplings to source and
drain. This, however, is only a fit made in such a way that
the absolute values of the linear conductance are about
the same in theory and experiment. The experiment was
addressed also in reference [55], where a different asym-
metry was assumed and good quantitative agreement was
obtained. Moreover, the experiment was addressed also by
the RTA for finite U in reference [35].

For a further comparison we show the dependence of G
on the temperature for fixed Fqo. To this end we express
F1p in terms of its position relative to the Fermi level
and divide it by a quantity I', which characterizes the
tunnel coupling, in a similar way as in the experiment.
By the plot we conclude that we have agreement of our
theoretical result with the experimental data in the sense
that the transition from the empty orbital regime, where
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Fig. 16. Full widths at half maximum (FWHM) of the peaks in
Figure 17 as a function of the temperature; the value of a(Er)
is here 0.042 meV. For small temperatures the FWHM seems
to saturate at a value of about 0.39 meV which is in agree-
ment with the value of the experiment [7]. For large temper-
atures the FWHM increases; the graph has positive curvature
which is happening since the two peaks are getting mixed as
we increase the temperature. This is why we cannot define the
coupling constant in the same way as done in the experiment:
there, a linear dependence of the FWHM on the temperature
for large temperatures was observed and the coupling constant
was determined via the slope of the plot.
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Fig. 17. Linear conductance as a function of the energy differ-
ence E19. We chose the interaction U = 1.9 meV, the coupling
a(EFr) = 0.042 meV, and the temperatures in agreement with
the experiment [7]; the asymmetry of the tunnel couplings to
left and right lead we chose as 4k;k; = 0.5, i.e. we assume an
asymmetry of about k; : k; = 0.17. For even smaller temper-
atures we would again see the sharp dip in the center of the
plots already shown in Figure 15.

with decreasing temperature we see only a decrease and
then rather constant behavior, to the Kondo regime, where
we see only an increase, happens within an interval of Fqq-
values of the size of approximately 21".

On the other hand, we see a qualitative deviation in
the regime F19 ~ E: the linear conductance obtained by
the DSO displays quite clearly a decrease with decreasing
temperatures for small temperatures while in the experi-
ment this decrease is much weaker. A study of the behav-
ior of the linear conductance in all three different regimes
obtained by numerical renormalization group calculations
can be found in reference [56].
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T (mK)

T (mK)

Fig. 18. A plot of G(T') for fixed values of the gate voltage, ex-
pressed in terms of € := (E10 — Er)/I". We take I' =~ 0.3 meV
as in the experiment with the argument that the saturation
width of Figure 16 is the same as in the experiment. The
different parameter regimes are called empty orbital regime
(g0 > 0), mized valence regime (—0.5 < £y < 0) and Kondo
regime (€0 < —0.5).

8 Conclusions

We used a diagrammatic approach in order to describe
transport across a SIAM quantum dot. We found a small
selection of diagrams, which we called “dressed second or-
der” (DSO) diagrams, which straightforwardly yield the
current in terms of transition rates. In general, the DSO
represents the natural extension of the sequential tunnel-
ing approximation, valid for large interactions and when
kT > I, to the regime kT ~ I'. The charge fluctua-
tions accounted for by the DSO yield a broadening linear
in I'. When kpT > I', the sequential tunneling rates are
recovered. When kT ~ I, the conductance versus gate
voltage exhibits peaks with a broadening no more given by
the temperature but by the tunnel coupling. Appealing of
the DSO is its simplicity and its potential for scalability to
multilevel quantum dot systems. Moreover, its extension
to set-ups with ferromagnetic or superconducting leads is
straightforward.

Furthermore, the diagram selection contains a zero
bias anomaly developing at low temperatures (kT < I').
We showed that, if the degenerate level lies below the
Fermi energy, then it is a zero bias maximum of the dif-
ferential conductance which appears for low temperatures
and becomes more pronounced if the temperature is de-
creased further. We showed that the anomaly displays fea-
tures of the Kondo effect such as a universality in the
dependence of the linear conductance as function of the
temperature in the regime where the dot occupancy is
one. We investigated the behavior of the anomaly in case
a magnetic field is applied and discussed the impact of
asymmetries with respect to capacitive or tunnel couplings
to the leads. Moreover, we considered a situation in which
we expect in principle only one peak. We think we can
adequately describe experiments with pseudo spin as in
reference [42] by the use of the DSO.

We pointed out the close relation of the DSO
diagram selection to that of the resonant tunneling

Eur. Phys. J. B (2013) 86: 384

approximation (RTA). The RTA is more precise in the
sense that it includes more diagrams such as cotunneling
contributions. We showed that the inclusion of the dia-
grams outside the DSO which are contained in the RTA is
not essential to describe important transport features at
low bias, including the appearing of the zero bias anomaly.
For the spinless quantum dot, the RTA is exact (at the
level of the density matrix as well as of the current). The
DSO, too, is exact at the level of the current across the
spinless quantum dot. We think the DSO is a minimum
diagram selection fulfilling this condition.

The DSO for finite U does not produce the observed
plateau of the linear conductance as a function of the gate
voltage for small temperatures forming between the two
resonances [11]. Additionally, the DSO for general U does
not correctly describe the noninteracting, spin degenerate
limit. There is, however, a natural extension of the DSO
which is indeed doing so, as outlined in Section 5. Thus,
there is hope that the DSO can be improved in such a way
that the case of small interaction is described better. In
the same way, knowledge on the performance of the DSO
(and RTA) in the low temperature regime can serve as a
guideline to look for a larger class of diagrams capable to
describe the Kondo anomaly quantitatively. For example,
such a diagram class should yield a resonance broadening
of the order of Tk and hence nonlinear in the coupling I

In conclusion, the DSO is a novel, versatile approxi-
mation for the intermediate coupling regime. Despite its
simplicity, it captures the main features of transport in
strongly correlated quantum dots in this regime.

We thank the DFG for financial support within the framework
of the GRK 1570 and of the SFB 689.

Appendix A: Diagram summation

We justify the technique applied for the diagram summa-
tion in equation (7). The DSO diagram selection in the
time space has the property:

>

DSO diagrams, order 2n

(c/t)2n72

|diagram(t)| < cm

with ¢, > 0 large enough constants. This can be seen
by an estimate of the contribution of a single diagram,
making use of the equality

tk_l

te) ity >0t 44t =tt=Vk—
)t > 0t e }\/_(k—l)!

pr {(t1, ...

with pp the Lebesgue measure, and by multiplying the
resulting estimate with the number of DSO diagrams. The
latter number does not contain factorials. The vector space
in which the diagrams exist (a space of maps) has finite
dimension, therefore all norms are equivalent.

As a consequence, for values of the argument \ of the
Laplace transform with Re\ > ¢/, the Laplace transform


http://www.epj.org

Eur. Phys. J. B (2013) 86: 384

of the diagram series
KP30(1) = 37 KRS (1)

exitsts in the absolute sense and is the sum of the Laplace
transforms of K299 (t). The summation of the geometric
series performed in equation (7), too, can be justified for
large enough values of the real part of 1 (we used the letter
7 to denote A\). Let now F'(A) be the right hand side of
equation (7) and f(t) be the sum of those DSO diagrams
in the time space which were summed up in this equation.

We know
/ dt e Mf(t)=F(\) for Re\>c".
0

If @ > ¢” is fixed, then the function b +— F(a + bi) is the
Fourier transform of ¢ — e~%t f(¢),¢ > 0. Upon applying
the Fourier back transform, we conclude that there is a
sequence 1, — oo with the property that for almost all
teR:

1 T .
f(t) = lim 2—6‘” / db e F(a+ bi).

-7y

The function F is holomorphic on the half plane { Re > 0}.
Moreover, for even arbitrary a > 0 the function b +—
F(a + bi) decays at least like 1/|b|. Existence and value
of the above limit are independent of the choice of a > 0,
since for fixed value of ¢ the function \ +— e MF()\) is
holomorphic. Multiplying with e~2%, we see that

e 2 f(t) = e " F (b Fla+bi)) (1)

is integrable with respect to t for arbitrary a > 0. This
shows the existence of the Laplace transform of f(¢) in
the absolute sense for all arguments A with Re\ > 0.
Both this Laplace transform and F' are holomorphic on
{Re > 0}; since they are equal on {Re > ¢}, they must
be equal also on the larger set.

Appendix B: Universality

First, we derive an alternative representation of the linear
conductance obtained by the RTA in the case of infinite

interaction, Section 6,
-1 f/ g — EF
kT kT

/ds
~ FRTA <E10 — Ew  kpT )
o(Br) ' a(Er))’

’/T2042 (5) Viias=0

d(e)

where the denominator of the integral is given by

d(e) := (a4 a™)?(e) + (€ + Pata+ (€) — E10)?,

the function FT4 is universal and where E;y does not

depend on the gate voltage or on the temperature. To this
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end we write the second order function a(e) as a(Er)b(¢)
and divide numerator and denominator of the integral by
a(Er). Moreover, we write ¢ = Ep + xkpgT and integrate
with respect to x instead of . We argue then that the
integral is concentrated in a region of a few multiples of
the thermal energy around Fr and that it is, because of
this, for sufficiently small temperatures allowed to esti-
mate b(e) = 1 and pp(e) = pp(Er); pp(EF) is zero because
we chose the function b to be symmetric around Er. After
these modifications we obtain the integral:

—m*f'(x)
d , B.1
| # i o rew (B1)
where we used the abbreviation
kgT Er — FEqo
= E T
#() IQ(EF) a(Er) +pb;( r o+ oksT)

and where the function b}, is given by

by () =b(e)f (e — Er)/kpT).

Thus, what remains to be done is the analysis of py+ (Er+
xkpT). First of all, we consider its values in x = 0 for dif-
ferent temperatures. By taking the derivative with respect
to the temperature one obtains:

d [ b(Er+w)f (,CBLT) —b(Ep —w)f (1;;_0})
i), _

1 o0

- / de — f'(x) [(Ep + oksT) + b(Ep — kgT))
0

1

T
For the final estimate we assumed that the temperature
is sufficiently small such that in a region of a few kpT
around the Fermi level we have b(e) ~ 1.

Secondly, we need to consider the values of py+ (Er +
xkpT) for one temperature and different values of x. We
consider

Dyt (Ep + akpT) — Dyt (Er) = /OOO %
x (b(Er +kpT(x +y))f(x +y)
b(Er + kTy)f(y)

b(EF +kpT(x—y))f(r —y)
b(Er — ksTy)f(—y)).

+ (B.2)
For every single value of y, the limit 7' — 0 can be taken.

We can guess that the limit of the integral is given by the
integral of the pointwise limit,

oto):= [ N Yir+9) - )

— flz—y) + f(~y)). (B.3)
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Then we replace the function of = given by equation (B.2)
by g(x) with the argument that for small temperatures the
deviations between the two can be expected to be small.

For the proof we want to apply Lebesgue’s convergence
theorem, so we need an integrable upper bound which
is independent of the temperature. Moreover, we write
IS = fol + [, since the different intervals make different
treatment necessary.

The integrand has the form
(AB)(z +y) — (AB)(y) — (AB)(z — y) + (AB)(—y).

As to the integral fol, we group the terms with equal
xr into pairs and consider the two resulting differences
separately. By adding and subtracting the mixed terms
A(x + y)B(x — y) one can see that we have even a con-
stant upper bound within this interval. The conditions
which we demand from the function b(e) for this are the
following:

— it is bounded, |b(¢)| < B, B independent of ;
— it satisfies a Lipschitz condition of the form:
[b(e) — b(e")] < L|e —€'|, L independent of ¢ and &’

We mention that the Fermi function, too, has the two
properties; the latter can be seen by using the fact that
the derivative of the Fermi function is bounded and the
mean value theorem. Moreover, a Lorentzian or our choice
of the function b (Fig. 7) fulfills these conditions.

As to the integral floo, we group the terms with equal
sign in front of y into pairs. Again, it is useful to add and
subtract the mixed terms, e.g.: A(z + y)B(y). We obtain
then:

§b<EF +kpT( +9) (F@ +y) — fW) +

(b(Er + kT (x +y)) — b(Er + kpTy)) f(y). (B.4)

< | =

The pointwise limit of the first line s
1/y (f(x +vy) — f(y)), and the convergence is bounded by
B/y|f(z+y)— f(y)]- This is integrable because we can
estimate:

lfz+y) = fy)
y

<max{|f'(2)]: |z —y| < |z|}|x]
= :1my(y) ||,

where we used y > 1. We treat = as a constant during
these considerations. Because of the rapid decay of the
derivative of the Fermi function m,(y) is integrable.

The pointwise limit of the second line is zero. In or-
der to get an integrable upper bound we introduce the
function

[b(e”) —b(e)]
gl — g

L~ (¢) := sup {

:5§5’<5”}.

Eur. Phys. J. B (2013) 86: 384

0 1 1 1 1
-15 -10 -5 0 5 10 15

B.1. A plot of the function g(z) defined by equation (B.3),
i.e. the normalized shape of the functions Py (e) around the
Fermi level in units of the thermal energy. The growth of g(z) is
logarithmic in the sense that zg'(z) — 1 (Jz| — oo). However,
because of the presence of the derivative of the Fermi function
in the integrals, the behaviour of g(z) around z = 0 is more
important for us.

Then we can estimate the second line by

5 (0(Er + kpT(x +)) — b(Ep + ksTy)) £ (1)

o
< 'y—' (Er + ksT(y — |o]) — Ep + kpTla]

L (Er + kT (y — |z[)),

where we multiplied and divided everything by kT |x|y
(the square bracket is just a complicated way of writ-
ing kpTy). We note now that for sure L~ (¢) < L and
make the further assumption that the function L~ () is
bounded over any interval which has a lower bound, i.e.
for any €9 we have

L7 (g0) == sup{leL=(e)] : € > g0} < 0. (B.5)

This assumption is fulfilled both for Lorentzian shapes of
b(e) and for our way of choosing the second order function
(Fig. 7), the reason being the rapid decay of the derivatives
of these functions. Using these properties we obtain for
temperatures smaller than some arbitrary temperature Tj
the upper bound:

X
|y—2| {L(|BF|+ |2lkpTo) + L7 (Br — |a|kpTo)} -

This is integrable with respect to y over the interval be-
tween one and infinity and independent of the tempera-
ture between zero and Tp. With Lebesgue we can conclude
that the integral of the function (B.4) of y really goes to
zero. The terms with a minus in front of y we can treat in
the same way. For this we introduce functions L. (¢) and
L<(e) in analogy to the above method and demand the
corresponding property of b(e) of assumption (B.5).
We showed the convergence

Pyt (Er + kpTx) ~ Pyt (Er) — g(x) (T — 0)

for arbitrary x, where the limit is given by the defini-
tion (B.3). In Figure B.1 we plotted the function g(z). Al-
ready earlier we noticed that the dependence of Py (Er)
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on the temperature is logarithmic. By putting the two
pieces of information together we can estimate:

(Er) +log ( ) +g(a),

prTr (EF + axkpT) = Py+

Ta(BER) a(Er)
where T, (g,) is defined by the condition kpTy(g,) =
a(Er). We insert this into the integral (B.1) and obtain:

T +log< r
To(Er) T,

a(Er)

Er — FEig
+=E 20 4 Er).
a(Er) pb;awm( F)

¢(x)

~ T

> +9(x)

Now we define a reference value for Eig, “E1o”, by the
demand that the value of the second line is zero for Eyg =
Eyp. The integral (B.1) has then the form

RTA By — Eig  kpT
OéEF ’ a(EF) ’

where the definition of FET4 ig

FRTA(a,b):/dx _7T2fl($)

(1 + f(2))? + @2 4 (2)

with

Pap() = g(x) — a+ xb+ log(b). (B.6)

The corresponding integral in the formula for the linear
conductance within the DSO in the case of infinite U,
Section 6, can be represented in an analogous way. The
result is

2 Ey - F kT
GDPSO o g (2 — pDso 10 10
where the definition of FP5C is
—m*f'(x)(1 + f(z))

DSO (4 b) = [ du
FPS0(a) = [ do— @)+ 3@

and where

EIO =Fr+ OZ(EF)pb; (EF)

a(Ef)

The particle number ng is a function of the tunneling
rates and still contains the temperature. However, for tem-
peratures kpT < «(FEr) the tunneling rates become es-
sentially independent of the temperature, so we can con-
centrate on the temperature dependence of the rest. The
integral with respect to x contains the derivative of the
Fermi function and is thus concentrated in a region of the
order of one around zero. Therefore, we can in the case of
small temperatures compared to a(Er), kpT < o(Er),
neglect the linear term in ¢, ;(z) and estimate

Gap(x) = g(x) —a+log(b).
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The simplification enables us to write

o2
~ 4/@%;7 (2—ne)

o« pDSO ( Eio — Ero
Oé(EF)

GDSO

+ log ) ;
To(Er)

with

DSO () — . —m2f'(x)(1 + f(z)
F “*/d 2t (@) + (@) + 7

(B.7)

For large positive values of ¢, FP59(c) takes small positive
values. At some value “cpax” a maximum is reached. In be-
tween there is a value of ¢, “c; /5", for which FDSO(cl/Q) =
1/2FP350 (cpay).

We define the temperature Tk by the demand ¢ = ¢y,
ie.

Eyw—-FE
Tk = €“/? exp (710 F)

a(EFr)

a(Ep)

X To(Br) €XP <pb; (EF)) :

The second line seems to depend on the coupling a(Fr),
but this dependence is weak because of the logarithmic
dependence of p,+ (Er) on the temperature. The depen-

T
dence on the bandwidth W as introduced in Figure 7 is
proportionality as long as a(Er) < W, so we arrive at
equation (12) of Section 6.
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