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Abstract

The endothelium serves as a main regulator of vascular homeostasis by maintain-

ing the balance between vasodilation and vasoconstriction, inhibition and stimu-

lation of smooth muscle cell proliferation and migration, and thrombogenesis and

fibrinolysis. Disruption of this balance is generally referred to as endothelial dysfunc-

tion, which is a key event in the development of atherosclerosis, the main pathology

underlying cardiovascular diseases. A dysfunctional endothelium is mainly charac-

terized by reduced endothelium-dependent vasodilation due to impaired endothelial

nitric oxide synthase (eNOS) activity or decreased availability of its synthesis prod-

uct, nitric oxide (NO).

Several natural products, found in the daily diet or in phytomedical preparations,

have previously been discussed as modulators of eNOS function. Identification of

so far unknown natural products, influencing NO availability and the elucidation of

their mechanism of action provide valuable information for possible future therapeu-

tic applications. In this work we investigated the molecular mechanism underlying

an increased eNOS activity elicited by two selected compounds, ascorbate and DPPB

(2-(2,4-dihydroxyphenyl)-5-(E )-propenylbenzofuran).

Previous studies have shown that ascorbate (vitamin C) can stabilize and re-

generate the essential eNOS cofactor tetrahydrobiopterin (BH4) after long-term

treatment, thereby preventing the uncoupling of eNOS. Additionally, infusions of

ascorbate were able to rapidly increase endothelium-dependent vasodilation in pa-

tients with different pathological conditions. In this study we found that the fast

effect of ascorbate on eNOS activity is independent on BH4 stabilization. Instead,

ascorbate was shown to rapidly enhance eNOS activity by inhibition of protein phos-

phatase 2A (PP2A), followed by an increase in activating AMP-activated protein

kinase (AMPK) and eNOS phosphorylation patterns.

Several lignans isolated from the roots of the anti-inflammatory medicinal plant

Krameria lappacea were investigated for their influence on eNOS activity and en-

dothelial NO release. Among these compounds only DPPB was able to increase

endothelial NO release. We could show that DPPB increases eNOS activity via

raising intracellular Ca2+ levels and increasing the Ca2+/CaM-dependent kinase ki-

nase b (CaMKKb) and AMPK signaling.
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Zusammenfassung

Das Endothelium is ein wichtiger Regulator für das Aufrechterhalten der vas-

kulären Homeostase. Es erhält das Gleichgewicht zwischen Vasodilation und Va-

sokonstriktion, Hemmung und Stimulierung der Proliferation und Migration glat-

ter Muskelzellen, sowie Thrombogenese und Fibrinolyse. Ist diese Balance gestört,

spricht man von endothelialer Dysfunktion, welche ein Schlüsselereignis in der Ent-

stehung von Atherosklerose, die den meisten kardiovaskulären Erkrankungen zu

Grunde liegt, ist. Das Hauptcharakteristikum endothelialer Dysfunktion ist eine

verminderte Endothelium-abhängige Vasodilation auf Grund einer reduzierten Ak-

tivität der endothelialen Stickstoffmonoxid-Synthase (eNOS) oder ihres Synthese-

produktes, Stickstoffmonoxid (NO).

Für einige Naturstoffe, die in der Nahrung oder Phytopharmaka enthalten sind,

wurde eine modulierende Wirkung auf die eNOS gezeigt. Die Identifizierung von bis-

her unbekannten, eNOS aktivierenden Naturstoffen und die Aufklärung ihres Wir-

kungsmechanismus stellt eine wertvolle Information für zukünftige therapeutische

Anwendungen dar. In dieser Arbeit wurden zwei ausgewählte Substanzen auf ihre

Wirkungsweise im Bezug auf eNOS Aktivität untersucht.

Frühere Studien zeigten, dass Ascorbate (Vitamin C) den essentiellen eNOS Ko-

faktor Tetrahydrobiopterin (BH4) nach Langzeitstimulierung stabilisiert und regene-

riert. Zusätzlich waren Infusionen von Ascorbate in der Lage, sehr schnell die Endo-

thelium bedingte Vasodilation bei Patienten mit verschiedenen kardiovaskulären

Krankheiten zu erhöhen. Hier konnten wir zeigen, dass dieser schnelle Effekt von

Ascorbate unabhängig von der Stabilisierung von BH4 ist. Stattdessen scheint Ascor-

bate schnell die Protein Phosphatase 2A (PP2A) zu inhibieren und anschließend ak-

tivierende AMP-aktivierte Protein Kinase (AMPK) und eNOS Phosphorylierungs-

muster zu verstärken.

Mehrere Lignane, die aus den Wurzeln der entzündungshemmenden Pflanze Kra-

meria lappacea isoliert wurden, wurden auf eine mögliche eNOS aktivierende oder

NO erhöhende Wirkung untersucht. Unter den untersuchten Lignanen war nur DPPB

(2-(2,4-dihydroxyphenyl)-5-(E )-propenylbenzofuran) in der Lage, die NO Freiset-

zung zu steigern. Wir konnten zeigen, dass DPPB die eNOS Aktivität durch Stei-

gern des intrazellulären Ca2+ Levels und Ca2+/CaM-abhängige Kinase Kinase b

(CaMKKb) und AMPK Signaltransduktion erhöht.
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1 Introduction

1.1 The endothelium

The endothelium is characterized as the inner lining of blood vessels. It consists of

a monolayer of endothelial cells and has an estimated surface in the human body

between 300 and 1000 m2 [162; 270]. Therefore it is considered to be a main site for

exchange between the blood and underlying tissue [5]. Endothelial cells are linked

to the basal lamina, which provides a scaffold for endothelial cells towards the vessel

lumen and for smooth muscle cells or pericytes towards the other side. Upon its

discovery the endothelium was considered to be only a diffusion barrier, regulat-

ing the migration of molecules across the vasular wall. Today, endothelial cells are

recognized to be structurally very diverse, dependent on the vascular bed, and to

have multiple physiological functions [4]. They are known to be the main regulator

of vascular tone, controlling the balance between vasodilation and vasoconstriction.

Endothelial cells are also important regulators of wound healing, thereby adjusting

blood fluidity, platelet aggregation, thrombogenesis and fibrinolysis. In addition,

the endothelium regulates the ability of leukocytes to travel to surrounding tissues

and the building of new vessels and remodeling of existing ones. Therefore it is also

involved in metabolic and catabolic activities. Moreover, endothelial cells are able

to regulate the proliferation of vascular smooth muscle cells (reviewed in [102]).

A dysfunctional endothelium is mainly characterized by an impaired endothelial ni-

tric oxide production. This shifts the cells to a pro-thrombotic, pro-inflammatory

and proliferative phenotype. Endothelial dysfunction marks the initial event for

many cardiovascular diseases, such as atherosclerosis, hypertension and heart fail-

ure [67; 127].
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1 Introduction

1.2 The endothelial nitric oxide synthase

1.2.1 History of nitric oxide discovery

In 1980 Furchgott and Zawadski published a study which showed that the endothelial

cell lining is necessary for acetylcholine induced relaxation of isolated blood vessels

[115]. The relaxation observed was proposed to be dependent on the calcium induced

release of the unidentified so called endothelium-derived relaxing factor (EDRF).

This factor was shown to have a half-life of only a few seconds in solution, to target

guanylyl cyclase in smooth muscle cells and to be inactivated by superoxide [129;

158; 281]. It took six years after this initial discovery until Furchgott and Ignarro

independently proposed at the meeting “Mechanism of Vasodilatation” in Rochester,

MN that this factor is nitric oxide (NO) [114; 160], although nitrovasodilators had

already been known before [240]. Palmer et al. later demonstrated that the amount

of NO released by endothelial cells is in the range of the biological activity of EDRF

and that nitric oxide is produced from L-arginine by an NO-synthase [260; 261].

In 1998 Furchgott, Ignarro and Murad were awarded the Nobel prize in physiology

and medicine for discovering that nitric oxide is an important signaling molecule in

the cardiovascular system [251].

1.2.2 Nitric oxide synthase isoforms

In addition to its importance in the cardiovascular system, NO is involved in macro-

phage-induced responses to inflammatory stimuli, and signaling events in the central

nervous system [178; 214]. These findings led to the discovery of three different iso-

forms of human nitric oxide synthases. Their genes are all located on different

chromosomes and share 51 to 57 % homology [9].

1.2.2.1 Neuronal nitric oxide synthase

The first nitric oxide synthase that was described was the neuronal nitric oxide syn-

thase also termed nNOS or NOS-1 [36; 37]. It is expressed mainly in specific neurons

of the brain [108]. Immunohistochemistry has revealed that nNOS is additionally

expressed in many different tissues including the spinal cord, sympathetic ganglia,

adrenal glands, peripheral nitrergic nerves (nerves expressing nNOS and releasing

NO), epithelial cells of various organs, kidney macula densa cells, pancreatic islet

16



1.2 The endothelial nitric oxide synthase

cells, vascular smooth muscle, and skeletal muscle cells [105]. Neuronal NOS is

expressed constitutively, produces only low levels of NO and is regulated by Ca2+

and calmodulin (CaM). nNOS contains no anchoring sites to hold it in the plasma

membrane. However it contains a PDZ domain (also called DHR (Dlg homologous

region) or GLGF (glycine-leucine-glycine-phenylalanine) domain) allowing it to in-

teract with PDZ domains of other proteins. This determines the localization and

activity of the enzyme. Physiological functions of nNOS are extensive. nNOS is

important for synaptic plasticity and for cognitive processes. Independently of its

activity in the central nervous system, it is involved in the regulation of blood pres-

sure. In addition, NO produced by nNOS acts as an atypical neurotransmitter in the

peripheral nervous system, mediating relaxing of gut peristalsis and penile erection.

Moreover, it has been shown that low nNOS expression in vascular smooth muscle

cells can provide some degree of vasodilation when eNOS is not functional [108].

Abnormal nNOS function has been linked to several neurodegenerative pathologies

such as excitotoxicity following stroke, multiple sclerosis, Alzheimer’s disease, and

Parkinson’s disease [309].

1.2.2.2 Inducible nitric oxide synthase

The second nitric oxide synthase described was the inducible nitric oxide synthase

also known as iNOS or NOS-2 [209; 359]. Inducible NOS is constantly active once

induced, produces approximately 20 times higher levels of NO than the constitutive

NOS isoforms and is not regulated by calcium [42]. As the name implies, this

isoform is expressed only upon induction. It is mainly expressed in macrophages as

response to inflammatory stimuli like bacterial lipopolysaccharide (LPS), cytokines

and others, but has been found in almost every cell type when the correct stimulus

was applied. The high amount of NO produced by iNOS can directly interfere with

the DNA of target cells and cause strand breaks and fragmentation. In addition,

NO can inhibit proteins which have iron in their catalytic centers, like complex I

and II in the mitochondrial electron transport chain. These activities are the main

cause for the cytotoxic effects of NO on microorganisms and tumor cells. However,

it has to be considered that high levels of NO released by activated cells can also

harm healthy cells. Furthermore, NO produced from iNOS has been reported to

lead to septic shock [108].
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1 Introduction

1.2.2.3 Endothelial nitric oxide synthase

The last nitric oxide synthase described was the endothelial nitric oxide synthase

also termed eNOS or NOS-3 [268; 299]. Endothelial NOS, similar to nNOS, is con-

stitutively active, produces only low levels of NO and is regulated by Ca2+, CaM and

many other factors described in detail in section 1.4. It is predominantly expressed

in endothelial cells, but has also been found in other cell types such as platelets or

cardiac myocytes. NO derived from eNOS has a crucial role in the regulation of vas-

cular homeostasis. It serves as an important regulator of vasodilation and platelet

aggregation and adhesion. Additionally, it inhibits leucocyte adhesion, vascular in-

flammation, and smooth muscle cell proliferation, regulates angiogenesis, and can

activate endothelial progenitor cells (see section 1.4.7). Endothelial dysfunction is

a hallmark for cardiovascular disease and definded as the impaired ability of eNOS

to produce bioavailable NO. Interestingly, it has been suggested that gene therapy

delivering eNOS hinders the progression of cardiovascular diseases at least in animal

models [108].

1.2.3 Structure, catalytic function and localization

1.2.3.1 Structure

The eNOS gene is located at chromosome 7 (7q35-36) in the human genome and

contains 20,366 basepairs and 26 exons. It is transcribed in 1,203 amino acids and

gives rise to a 133 kDa eNOS protein [9].

The eNOS enzyme consists of a C-terminal reductase domain and an N-terminal

oxygenase domain. The reductase domain contains binding sites for the cofactors

flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and nicotine ade-

nine dinucleotide phosphate (NADPH), and the oxygenase domain for L-arginine,

heme, and tetrahydrobiopterin (BH4). Both domains are linked with a binding site

for CaM [9]. Additionally, the eNOS enzyme activity requires dimerization, to allow

interaction of the reductase domain of one dimer with the oxygenase domain of the

other dimer. For the formation of this homodimer, heme and a tetracoordinated

zinc ion, that interacts with two cysteins from each monomer, are crucial. More-

over, BH4 and L-arginine have a stabilizing function for the already assembled dimer

[14; 197]. Peroxynitrite can disrupt the zinc thiolate cluster [365], which leads to

the release of the zinc ion and oxidation of the thiols. Furthermore, peroxynitrite

can oxidize BH4 to dihydrobiopterin (BH2) [188].
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1.2 The endothelial nitric oxide synthase

1.2.3.2 Catalytic function

The reaction catalyzed by eNOS is an oxidation of one of the guanidino nitrogens

of L-arginine in the presence of molecular oxygen [99]. This reaction has two steps.

First, L-arginine is hydroxylated to Nw-hydroxy-arginine (NOHLA), which remains

bound to the enzyme. Second, this intermediate product is oxidized to L-citrulline

and NO. Both steps are dependent on Ca2+/CaM and NADPH and are enhanced

by BH4 [313]. When intracellular Ca2+ ([Ca2+]i) levels increase CaM binds to the

eNOS enzyme. Bound CaM then facilitates the flow of electrons from NADPH via

FAD and FMN in the reductase domain to heme in the oxygenase domain [108].

There O2 is reduced and L-arginine oxidized to L-citrulline and NO. This electron

transfer leads to the binding of the ferric (Fe3+) heme to O2 and generation of a

ferrous (Fe2+)-dioxy heme. The ferrous heme then may receive a further electron

from BH4 when the enzyme is in the coupled state or from the reductase domain in

the uncoupled state. In the coupled reaction the protonated BH4 is oxidized to the

trihydrobiopterin cation radical (BH4•+). The Fe2+ heme and the oxidized BH4 can

be recycled using electrons from NADPH via the reductase domain and the flavins

of eNOS itself [107; 348]. Oxidized BH4 can alternatively be recycled by exogenous

reducing agents such as ascorbic acid [331]. This reaction is schematically shown in

Figure 1.1.
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Figure 1.1: Reaction catalyzed by the eNOS enzyme

In summary the equation of the reaction catalyzed by eNOS is as follows:

1 L−arginine + 3
2 NADPH + 3

2 H+ + 2 O2 −−→ 1 L−citrulline + 1 NO + 3
2 NADP+ + 2 H2O

19



1 Introduction

1.2.3.3 Localization

The plasma membrane and the Golgi apparatus are the main sites of subcellular

localization of eNOS in endothelial cells [254]. The targeting of eNOS from the

Golgi apparatus to the plasma membrane involves two subsequent steps. First the N-

terminal glycine of eNOS is irreversibly and cotranslationally myristoylated, followed

by a reversible and posttranslational palmitoylation of the cysteine residues 15 and

26. This results in three acyl anchors that can fix eNOS to the caveolae at the

plasma membrane. Myristoylation results in general membrane association of eNOS

and palmitoylation targets eNOS specifically to the plasma membrane. Moreover

depalmitoylation can occur at the plasma membrane and eNOS is then able to

migrate to other cellular compartements. Repalmitoylation of eNOS takes place at

the Golgi apparatus where it is subsequently redistributed [230; 254].

Caveolae are specialized subtypes of membrane rafts, which build flask-like invagi-

nations in the plasma membrane and are enriched in cholesterol and sphingolipids.

Caveolae are important structures for transcytosis and cellular signaling, since they

allow the integration of extracellular signals into intracellular signaling cascades [75].

The structural scaffolding proteins of caveolae are termed caveolins. When eNOS is

bound to caveolin-1, eNOS activity is abolished [168]. However, elevated Ca2+/CaM

levels can reverse this interaction, leading to the translocation of eNOS to the cyto-

plasm and its activation. Decreasing levels of Ca2+/CaM cause the reassociation of

eNOS with caveolin-1 and thereby its inactivation. Deletion of the caveolin binding

site results in an active eNOS, uninhibitable by caveolin-1 [75]. The subcellular

location with the highest eNOS activity is the plasma membrane followed by the

cis Golgi [111; 126; 254]. Moreover, low activities are detectable in the trans Golgi

[111], the cytosol [298], the mitochondria, and the nucleus [163].

Furthermore, reversible S-nitrosylation of eNOS at cysteine residues and proteins

of the cytoskeleton are important for subcellular targeting of eNOS [230] (see section

1.3.5.1 and 1.4.3.6).

Additionally, two eNOS-associated proteins have been identified, that are cru-

cial for eNOS trafficking. eNOS interacting protein (NOSIP) binds the C-terminus

of the eNOS oxygenase domain and helps with the translocation of eNOS from the

plasma membrane caveolae to intracellular membranes [177]. Caveolin-1 inhibts this

interaction [72]. eNOS trafficking inducer protein (NOSTRIN) is stably expressed

in endothelial cells and shuttles eNOS from the plasma membrane to intracellular

vesicles in a caveolin-dependent manner [155; 286].
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1.3 Nitric oxide signaling

Chemically nitric oxide is a gaseous, inorganic, uncharged but reactive radical which

has only a few seconds half-life in a physiological environment as it is rapidly in-

activated by superoxide or hemoglobin [330]. The unpaired electron occupies the

2pp* antibonding orbital and is polarized towards nitrogen [85]. The fact that NO

is a highly diffusible gas allows it to cross membranes and reach targets outside

the location where it was generated. NO is highly reactive towards heme- or other

metal-containing proteins and its radical property allows the generation of nitrat-

ing and nitrosylating agents that react with nucleophilic moieties like cysteine or

tyrosine residues [330].

Endothelium-derived nitric oxide produced from eNOS has many physiological

functions and thereby interacts with many intracellular target proteins [106] as de-

tailed in the following sections.

1.3.1 Soluble guanylyl cyclase

The most prominent action of nitric oxide in the vasculature is the vasodilation of

blood vessels due to the stimulation of soluble guanylyl cyclase and thus increased

cyclic guanosine monophosphate (cGMP) production in vascular smooth muscle

cells [150; 269; 274]. Guanylyl cyclase has a very high affinity to NO that allows

sensitivity to picomolar concentrations of NO [21].

Soluble guanylyl cyclase is a heterodimeric enzyme composed of an a- and a b-

subunit. The b-subunit contains a ferrous heme group (Fe2+) that binds nitric

oxide with great affinity. Binding of NO leads to a conformational change in the

enzyme resulting in an increased catalytic activity. Activated soluble guanylyl cy-

clase catalyzes the conversion of guanosine-5’triphosphate (GTP) to cGMP [157].

cGMP then activates cGMP-dependent kinases such as cGKI and cGKII. cGMP

produced in this manner interacts with phosphodiesterases, regulates cyclic adeno-

sine monophosphate (cAMP) concentration and activates cyclic nucleotide gated

cation channels [26; 284].

cGKI is mainly expressed in vascular smooth muscle cells, platelets and to a
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lesser extent in the endothelium [150; 333]. Relaxation of vascular smooth muscle

cells by nitric oxide is induced by activation of cGKI, that either leads to decreased

[Ca2+]i concentrations or altered calcium sensitivity of contractile proteins [150].

Activated cGKI in turn phosphorylates regulator of G-protein signaling-2 (RGS-2)

and InsP3R-associated cGMP kinase substrate (IRAG) and thereby prevents inositol

trisphosphate (IP3) production and activation of its receptors [124; 321]. This leads

to decreased Ca2+ release from internal stores and inhibition of non-selective cationic

channels and voltage-gated calcium channels. On the other hand potassium channels

get stimulated leading to reduced [Ca2+]i levels. Also, cGKI activates myosin light

chain phosphatase leading to calcium desensitization [150].

1.3.2 Other targets containing ferrous heme

In addition to soluble guanylyl cyclase nitric oxide can interact with various other

heme proteins, among them hemoglobin and cytochrome c oxidase.

1.3.2.1 Hemoglobin

Hemoglobin (specifically oxyhemoglobin and deoxyhemoglobin) rapidly reacts with

nitric oxide in vivo [330]. Interestingly, the affinity of deoxyhemoglobin to NO

is 10,000-fold greater than to molecular oxygen [332]. The reaction of NO with

hemoglobin leads to its rapid removal and conversion to nitrate. However, a re-

tardation mechanism prevents the consumption of NO in erythrocytes, such as an

erythrocyte free zone in capillaries under laminar flow [201; 207]. Despite this re-

tardation mechanism hemoglobin is reacting with a huge part of endothelial-derived

NO and therefore crucial for its dynamics and bioavailability [330].

1.3.2.2 Cytochrome C oxidase (CcOx)

Cytochrome C oxidase (CcOx) is the last enzyme in the mitochrondrial electron

transport chain. It catalyzes the reduction of molecular oxygen to water and the

oxidation of cytochrome C during aerobic respiration [229]. These reactions are

linked to the pumping of protons out of the mitochondrial matrix. CcOx contains a

conserved bimetallic active site consisting of a heme iron and a copper ion [35]. NO
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competes with oxygen for the binding to the ferrous heme of CcOx and thereby in-

hibits the enzyme. This leads to the reversible inhibition of mitochondrial respiration

that increases with NO and decreases with oxygen concentrations [16]. NO-binding

is a non-consuming reversible reaction, whereas O2 binding leads to O2 reduction

to water. The affinity of CcOx for NO is much higher than for O2. However, under

normal physiological conditions O2 concentrations are significantly higher than NO

and therefore CcOx reacts more likely with O2 [330]. Moreover, the reduction of

O2 is faster than NO dissociation, thus leading to a gradual increase in the nitrosyl

CcOx up to the equilibrium concentration [16]. The cellular stress resulting from

CcOx inhibition upon NO binding leads to an increase in the AMP/ATP ratio.

This in turn activates AMP-activated protein kinase (AMPK), turning off anabolic

pathways and initiating catabolic pathways. Under decreased O2 availability AMPK

leads to adenosine triphosphate (ATP) production, by enhancing glucose uptake and

glycolysis [217].

These findings suggest that NO acts as an important regulator of oxygen sensitiv-

ity of respiration and plays a key role in the regulation of respiratory processes [41].

Additionally, CcOx is one of the most important targets of nitric oxide signaling

as it can inhibit mitochondrial oxidative phosphorylation and act as a regulator of

apoptosis and reactive oxygen species generation [40; 89].

1.3.3 Targets with non-heme iron sites

Besides heme proteins NO also interacts with metalloproteins containing iron-sulfur

clusters. The iron is tetrahedrally coordinated and is bound by two sulfides and two

other identical ligands, which are usually protein cysteine thiolates [300]. Binding of

NO to the iron of the cluster results in the formation of various iron-nitrosyl species

thereby leading to a conformational change and most often to the inhibition of the

respective enzyme [79; 217].

Iron-sulfur clusters occur in proteins such as aconitase, ferredoxins, NADH dehy-

drogenase, mitochondrial complexes I, II and III and many more. They are impor-

tant in multiple physiological processes such as energy metabolism, gene expression

and iron homeostasis. Moreover, nitrosylation of the iron-sulfur cluster of these pro-

teins has huge physiological consequences [300].
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1.3.4 Molecular oxygen, superoxide and other radicals as targets

of nitric oxide

1.3.4.1 Molecular oxygen

Since O2 has two unpaired electrons it is reactive towards other species with un-

paired electrons including NO. When NO reacts with molecular oxygen nitrite (NO–
2)

is formed. As an intermediate of this reaction dinitrogen trioxide (N2O3) is gener-

ated [330]. This compound is important for N-nitrosation reactions and has been

implicated in DNA base deamination [121]. Another intermediate in this reaction

is nitrogen dioxide (NO2), which is known to nitrate proteins, lipids and DNA [20].

These kind of reactions are more likely to occur in hydrophobic environments, like

in membranes or hydrophobic cores of proteins, as NO and O2 accumulate there

[235].

1.3.4.2 Superoxide

NO is the only known biomolecule that reacts faster with superoxide than super-

oxide dismutase [258]. Reaction of NO with superoxide leads to the production

of peroxynitrite (NO–
3) [330]. Peroxynitrite can create CO–

3 radicals when reacting

with CO2, which is available in high concentrations in biological fluids, leading to

protein-protein [227] and DNA-DNA cross-linking [360]. Additionally, peroxynitrite

can interact with heme and thiol proteins having severe consequences for the devel-

opment of pathologies [28; 84; 145].

1.3.4.3 Radicals

Interaction of NO with radicals can result in antioxidant and pro-oxidant activities.

NO is not a very strong oxidant and there are numerous radicals more reactive in a

physiological environment [330]. Nevertheless, NO can potently inhibit lipid peroxi-

dation [253] and protein oxidation [187] by interacting with lipid- and protein-derived

radicals, thereby terminating radical chain reactions.
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1.3.5 Covalent posttranslational modification of target proteins

by nitric oxide

Covalent posttranslational modification of target proteins by NO occurs mostly at

cysteine and tyrosine residues [217]. Three different modifications, directly or indi-

rectly mediated by NO, are discussed in the following sections.

1.3.5.1 S-nitrosylation

S-nitrosylation is a reversible posttranslational modification which leads to the for-

mation of a nitrosothiol (R-S-N=O) by incorporation of a nitroso group to a cys-

teine thiol. S-nitrosylation is recognized to be an important mechanism for signal

transduction, and is therefore highly regulated. Subcellular compartmentalization,

site specificity and denitrosylation specificity are crucial for signaling involving S-

nitrosylation [74].

S-nitrosylation is considered as a short-range signaling mechanism or “proximity

based NO signaling” in contrast to long-range signaling like activation of soluble

guanylyl cyclase where NO diffuses to vascular smooth muscle cells [218]. Nitro-

sylating agents have to be generated from NO, as NO itself is not considered to

act as a nitrosylating species. Metal-catalyzed nitrosylation and to a lesser ex-

tent dinitrogen trioxide (N2O3), that is formed from NO auto-oxidation, generates

S-nitrosylated species [130]. Tight regulation of subcellular compartmentalization

leads to increased concentrations of nitrosylating species and target residue speci-

ficity can be achieved through the colocalization with target proteins and nitric oxide

synthases [217].

There are two different denitrosylation mechanism discussed. On the one hand

glutathione has been reported to reduce nitrosothiols leading to glutathionylated

proteins and on the other hand thioredoxin can reduce nitrosothiols. Glutathione as

well as thioredoxin can be regenerated by specific reductases and NADPH [134; 203].

1.3.5.2 S-glutathionylation

Glutathione is the most abundant low-molecular-mass thiol inside cells. Reaction of

glutathione with cysteine residues of proteins via formation of a disulfide bridge is

called S-glutathionylation. S-glutathionylation can occur without the direct inter-
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action with NO [217]. Two pathways have been suggested to link NO signaling and

S-glutathionylation. First, glutathionylation is induced by peroxynitrite in several

proteins [61; 255]. Second, an already nitrosylated protein can react with glutathione

resulting in the S-glutathionylation of this protein [217]. S-glutathionylation is con-

sidered to be more stable than S-nitrosylation and seems to be a protective mecha-

nism within the cell. Reaction of glutathione with a thiol guards it against oxidation

to sulfinic or sulfonic acid and allows the enzymatic regeneration of the free thiol

[118; 175].

For the posttranslational glutathionylation of eNOS see section 1.4.3.4.

1.3.5.3 Tyrosine nitration

Tyrosine nitration describes the addition of a nitro group (-NO2) to the phenolic

ring of tyrosine residues to form a 3-nitrotyrosine residue. Peroxynitrite is the most

common nitrating agent, although not the only one [1; 217]. Reactivity of perox-

ynitrite is pH dependent and therefore varies in different subcellular compartments

[1].

Tyrosine nitration has been considered to be an irreversible modification, however

non-enzymatic denitrating mechanisms may exist [1; 7]. It is therefore no classical

signal transduction modification but changes the acitivity of proteins involved in sig-

naling [307]. For example cytochrome C nitration leads to gain of function [151; 307]

whereas nitration of the mitochondrial manganese superoxide dismutase (MnSOD)

inhibits the enzyme [210]. Loss of function of MnSOD was described in several

pathologies [357].

Nitration of fatty acids is also an important modification regarding pathophysi-

ologies [103; 283]. Nitro-fatty acids are formed by the reaction of reactive nitrogen

species with unsaturated fatty acids using nitrogen dioxide as nitrating agent. Nitra-

tion of oleate, lineolate, arachidonate and others has been reported. These nitrated

fatty acids seem to have anti-inflammatory features as they can activate eNOS and

heme oxygenase [173]. Reaction of nitro-fatty acids with thiols is termed nitroalky-

lation and another posttranslational modification involved in NO signaling [22].
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1.4 Regulation of eNOS

Nitric oxide bioavailability is dependent on several regulatory factors such as the

expression of eNOS, the availability of the substrate L-arginine and eNOS cofactors

such as BH4, posttranslational modification of eNOS and the presence of ROS, which

are able to inhibit eNOS activity [239; 281; 312; 349]. Additionally, tight temporal

and spatial regulation of eNOS is necessary for NO functions, as its half-life is very

short. In the following sections the different regulatory levels are discussed.

1.4.1 Regulation of the eNOS promoter

The eNOS promoter lacks a typical TATA box but has multiple potential cis-

regulatory DNA sequences, including a CCAT box, Sp1 sites, GATA motifs, CACCC

boxes, AP-1 and AP-2 sites, a p53 binding region, NF-1 elements, acute phase re-

actant regulatory elements, sterol regulatory elements, and shear stress response

elements [215]. Interestingly, the human and the bovine promoter share 75 % homol-

ogy suggesting a high evolutionary conservation of transcriptional regulation [337].

There are two regulatory regions involved in basal eNOS transcription. The positive

regulatory domain I (PRDI) and II (PRDII), both located close to the transcriptional

start site. These regions are recognition sites for transcription factors such as Sp1

and Ets-1 among others [171]. Interactions between these trans-acting factors and

the regulatory domains is crucial for eNOS promoter activity. Moreover, a 269-nt

enhancer sequence, located approximately 4700-nt upstream of the transcriptional

start site, has been identified in the eNOS promoter [190].

Recently a polymorphism in the eNOS gene has been identified that gives rise to

a 27-nt microRNA, which is able to inhibit eNOS transcription and thereby acts as

a negative feedback regulator of eNOS expression [363].

Expression of eNOS mRNA is restricted to the vascular endothelium, therefore there

needs to be a mechanism impairing eNOS expression in non-endothelial cells. It

has been discovered that the eNOS promoter is more heavily methylated in non-

endothelial cells, especially in the PRDI and PRDII regions, thus leading to the

inhibition of promoter activity [49]. DNA methylation therefore seems to be a

crucial mechanism for cell-type specific eNOS expression, probably also accompanied

by histone modifications [93].
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1.4.2 Posttranscriptional regulation of eNOS mRNA

Posttranscriptional regulation of eNOS happens on several levels, such as modifi-

cation of the primary transcript, nucleocytoplasmic transport, subcellular localiza-

tion, mRNA stability and translation efficiency [294]. In general, these regulatory

modifications are mostly mediated by cis-acting RNA elements located in the 5'-

and 3'-mRNA untranslated regions (5'-UTRs and 3'-UTRs). Both the primary and

secondary structures of these elements and their recognition by trans-acting RNA

binding proteins is necessary for posttranscriptional regulation [202; 267].

Several modulators of eNOS activity act on the transcriptional and posttranscrip-

tional level. Transcriptional upregulation of eNOS expression has been reported for

stimuli as diverse as laminar shear stress, hydrogen peroxide, transforming growth

factor-b1 (TGF-b1), lysophosphatidylcholine, estrogen, and inhibition of histone

deacetylase. Downregulation of eNOS transcription has been reported for instance,

for tumor necrosis factor-a (TNF-a) (reviewed in [294]). Interestingly lysophos-

phatidylcholine, which is a component of oxidized low densitiy lipoprotein (oxLDL),

stimulates reactive oxygen species production in endothelial cells and therefore may

have a similar mechanism of action than hydrogen peroxide [183]. Moreover, in-

creased eNOS expression has often been observed in combination with increased

reactive oxygen species. It was hypothesized that the increase in eNOS expression

is a compensatory mechanism to maintain bioavailable NO levels during increased

reactive oxygen stress, and may explain increased NO levels, for instance, in hyper-

tension and atherosclerosis [34; 191].

Furthermore, eNOS mRNA is regulated posttranscriptionally by modification of

its stability. Stimuli that are known to act by increasing eNOS mRNA half-life

are laminar shear stress, cell proliferation, hydrogen peroxide, statins and vascular

endothelial growth factor (VEGF). Negative effectors of mRNA stability are among

others oxLDL, TNF-a, lipopolysaccharide (LPS), hypoxia, thrombin and hyper-

cholesterolemia (reviewed in [294]).

There are different mechanisms responsible for increased mRNA stability. For in-

stance, interaction of ribonucleoproteins with the 3'-UTR mRNA can modify mRNA

stability. A 51 kDa ribonucleoprotein, containing G actin, was suggested as a desta-

bilizing factor in nonproliferating cells [295; 296]. As G actin is much more abundant

in nonproliferating cells the inhibiting interaction of eNOS mRNA with the G actin
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containing ribonucleoprotein is much more common in these cells. Additionally, the

reduced G actin binding in proliferating cells corresponds to an increased interaction

with the cytoskeleton [294].

Another example is a CU-rich 158-nt sequence at the 3'-UTR that was shown to

be important for the regulation of mRNA stability [186]. Several other studies have

identified cis-regulatory regions in the eNOS 3'-UTR thereby suggesting important

RNA-protein interactions [11; 164].

Another important regulatory mechanism was found by Robb et al [278]. They

discovered an antisense mRNA, also called sONE, that was complementary to 662-nt

of the human eNOS mRNA. This RNA was shown to posttranscriptionally down-

regulate eNOS expression in non-endothelial cells, as it was found in a range of cell

types but not in vascular endothelial cells. For instance, sONE seems to repress

eNOS expression in vasular smooth muscle cells. Therefore, sONE was suggested to

be an important regulator of cell-specific expression of eNOS [278].

There is yet another mechanism leading to a more stable eNOS mRNA. An in-

creased length in the 3'polyadenylated tail of eNOS transcripts leads to a more

stable mRNA which has a prolonged half-life and is more actively translated. This

mechanism has been reported in response to laminar shear stress, statins and hy-

drogen peroxide [344].

1.4.3 Posttranslational modification of eNOS protein

1.4.3.1 Phosphorylation

Phosphorylation is a well investigated mechanism for posttranslational regulation

of eNOS activity. It allows fast changes in eNOS activity in response to diverse

humoral, pharmacological or metabolic stimuli. There are five eNOS serine and

threonine phosphorylation sites known, which are controlled by a still increasing

number of kinases and phosphatases.

Ser1177 phosphorylation Phosphorylation of eNOS at Ser1177 is the best studied

and most important eNOS phosphorylation site. Most stimuli activating eNOS are

leading to an increase of phosphorylation at this site. Dephosphorylation seems to be
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mainly performed by the phosphatase PP2A (protein phosphatase 2A). Whereas,

several kinases have been implicated in the phosphorylation of this site such as

Akt (protein kinase B), PKA (protein kinase A), AMPK, PKG (GKI), CaMKII

(Ca2+/CaM-dependent protein kinase II) and CHK-1 [239; 264]. These kinases

in turn can be activated by numerous other factors like shear stress, VEGF (vas-

cular endothelial growth factor), IGF-1 (Insulin-like growth factor 1), bradykinin,

insulin, ATP, shingosine 1-phosphate, H2O2, IBMX (3-isobutyl-1-methylxanthine),

estrogen, adiponectin, leptin, histamine, thrombin, ischemia, troglitazone, statins,

8-Br-cAMP [239]. Increased eNOS-Ser1177 phosphorylation can affect eNOS activity

by increasing Ca2+/CaM binding or at resting levels of [Ca2+]i [56; 236]. The eNOS-

Ser1177 phosphorylation site, located at the C-terminal tail, is jammed between two

eNOS monomers thereby acting as autoinhibitory domain blocking the electron flow

between the monomers. eNOS-Ser1177 phosphorylation leads to a conformational

change in the enzyme that is able to remove the autoinhibitory domain and increas-

ing electron flow in the reductase domain and thereby enzyme activity [189].

Thr495 phosphorylation Phosphorylation at Thr495 decreases eNOS activity and

is the most important negative regulatory site for eNOS activity. This phosphory-

lation site is located in the Ca2+/CaM binding domain in between the reductase

and the oxygenase domain [101]. Under normal physiological conditions eNOS is

basally phosphorylated at this site. Phosphorylation is mediated by the kinases PKC

(protein kinase C, unknown isoform), AMPK (only in vitro experiments) and Rho

kinase [56; 220; 315]. The inhibitory effect of eNOS-Thr495 on eNOS enzyme activity

is due to its interference for binding of Ca2+/CaM to eNOS [101]. Dephosphory-

lation of this site is performed by phosphatases like PP1 (protein phosphatase 1),

PP2A and PP2B (protein phosphatase 2B, calcineurin), that appear to be activated

upon stimulation with agonists that are mostly increasing [Ca2+]i concentrations

such as bradykinin, VEGF, H2O2 or ionomycin [139; 231; 324]. Interestingly, de-

phosphorylation at Thr495 and phosphorylation at Ser1177 have been shown to be

coordinated in many studies [101; 139; 231; 324]. However, eNOS-Thr495 dephos-

phorylation has also been described without additional increase in eNOS-Ser1177

phosphorylation [291]. Moreover, in a study where eNOS-Thr495 dephosphorylation

was mimicked by mutation at this site to alanine, eNOS uncoupling and therefore

superoxide production were promoted [204]. This finding suggests that eNOS-Thr495
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may have a critical role in eNOS uncoupling when calcium levels are low and there-

fore Ca2+/CaM binding to eNOS is not increased.

Ser633 phosphorylation eNOS-Ser633 phosphorylation is enhancing eNOS activity.

This phosphorylation site is located in the CaM autoinhibitory sequence in the flavin

mononucleotide (FMN) binding region of the reductase domain [233]. Agonists such

as VEGF, bradykinin, ATP, IBMX, 8-Br-cAMPK, statins and additionally shear

stress that increase eNOS phosphorylation at Ser1177 have also been described to

increase phosphorylation at Ser633. However, the onset of Ser633 phosphorylation

seems to be slower [239]. This phosphorylation has been shown to be performed

by PKA and to be independent of an increase in [Ca2+]i [32]. Which phosphatase

performs the dephosphorylation at this site is not known. Altogether it has been

suggested that eNOS-Ser633 phosphorylation follows the initial Ca2+-dependent in-

crease in eNOS-Ser1177 phosphorylation and maintains the enhanced eNOS activity

[239].

Ser615 phosphorylation This phosphorylation site is located in the CaM autoin-

hibitory sequence of the FMN binding domain like the Ser633 site [233]. Phosphory-

lation at this site is transiently stimulated by agonists such as bradykinin, VEGF,

ATP and statins through the kinases PKA and Akt [23; 137; 233]. An increase

in eNOS-Ser615 phosphorylation is suggested to enhance the eNOS sensitivity to

Ca2+/CaM or to modulate interactions of proteins with eNOS and regulation of

other phosphorylation sites [23; 233]. Several eNOS agonists have been found to

increase phosphorylation at this site but studies with mutants mimicking phospho-

rylation or dephosphorylation at Ser615 have been controversial [23].

Ser114 phosphorylation The eNOS-Ser114 phosphorylation site is the only phos-

phorylation site located in the oxygenase domain of eNOS and is basally phos-

phorylated. The function of this phosphorylation site is still very controversial.

Dephosphorylation of eNOS-Ser114 by VEGF or troglitazone [59; 181] and phospho-

rylation by shear stress or high density lipoprotein (HDL) seem to be activating

eNOS activity [80; 117]. Additionally, results from studies with phosphorylation or
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dephosphorylation mimicking mutants have not been able to clarify the function

of this phosphorylation site. Several kinases have been implicated to phosphorylate

this site such as PKC, AMPK and cyclin-dependent kinase-5 (CDK-5). PP2B seems

to dephosphorylate eNOS-Ser114 [239].

Tyrosine phosphorylation In addition to serine and threonine phosphorylation,

eNOS can be regulated by phosphorylation at two different tyrosine residues, Tyr81

and Tyr657 [95; 112]. eNOS phosphorylation at Tyr81 is performed by Src kinase

thereby increasing eNOS activity [112]. In contrast, Tyr657 is phosphorylated by

proline-rich tyrosine kinase 2 (PYK2), leading to a decrease in eNOS activity [95].

Interestingly, tyrosine phosphorylation seems to be well detectable in primary en-

dothelial cells but seems to disappear in cultured cells [98; 119]. This may explain

why these phosphorylation sites are not as extensivly studied.

1.4.3.2 Acetylation

Another posttranslational modification important for eNOS function is the N-acetyl-

ation of the epsilon amino group of lysines. The addition of the acetyl group to lysine

is performed by lysine acetyltransferases (KAT) using acetyl-CoA [8]. Deacetyla-

tion has been reported to be carried out by the class III NAD+-dependent histone

deacetylase SIRT1 (sirtuin 1). SIRT1 colocalizes with eNOS and deacetylation leads

to an increase in eNOS activity. eNOS is constitutivly acetylated at Lys497 and

Lys507 in the CaM binding domain of the enzyme. The acetylation in this region

inhibits CaM binding and therefore has a similar function than the Thr495 phos-

phorylation [221]. Another acetylation site is Lys610, which has been shown to be

acetylated by acetyl-salicylic acid (aspirin). Acetylation of this residue enhances

eNOS activity by allowing increased binding of CaM to eNOS [169].

1.4.3.3 Glycosylation

Addition of N-acetylglucosamine (GlcNAc) to serine or threonine residues leads to

O-glycosylation. As this leads to the modification of the same residues as by phos-

phorylation, these two mechanism can compete with each other. Glycosylation is
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relevant for the regulation of protein-protein interactions, protein turnover, subcel-

lular localization and changes in activity. The enyzme performing the glycosylation

is O-linked N-acetylglucosamine transferase (OGT) and b-N-acetylglucosaminidase

(OGA) carries out the deglycosylation reaction [361]. Interestingly, there is only one

enzyme for the glycosylation and one for the deglycosylation reaction. Therefore it

seems likely that glycosylation is a regulator of signal intensities in dependance of the

nutritional status of the cell. Hyperglycemia has been reported to increase GlcNAc

concentrations resulting in the glycosylation of Ser1177 of eNOS, thereby inhibiting

eNOS activity [82].

1.4.3.4 S-glutathionylation

For a detailed description of S-glutathionylation see section 1.3.5.2.

eNOS can be reversibly S-glutathionylated at Cys689 and Cys908 residues, located

within the reductase domain. These glutathionylations lead to the uncoupling of

eNOS, thereby resulting in increased superoxide production. S-glutathionylation of

eNOS therefore seems to be an important mechanism for redox regulation of cellular

signalling, endothelial function and vascular tone [53].

1.4.3.5 Acylation

As already stated in section 1.2.3.3, eNOS is acylated at three residues to provide

membrane association.

1.4.3.6 S-nitrosylation

For a detailed describtion of S-nitrosylation see section 1.3.5.1.

S-nitrosylation of the cysteine residue 94 and 99 of eNOS have been shown to in-

hibit eNOS activity itself. These residues are located in the zinc tetrathiolate cluster

at the eNOS homodimer interface and their nitrosylation was proposed to interfere

with the dimer formation, the electron flow between the monomers or the substrate

and cofactor binding. When eNOS is activated by agonists it is depalmitoylated as

mentioned previously (section 1.2.3.3) and translocated away from the caveolae and

the plasma membrane. There it is denitrosylated and thereby activated [90].
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Additionally, S-nitrosylation has been reported of proteins directly interacting

with eNOS, such as heat-shock protein 90 (Hsp90) (see section 1.4.4) [120]. Ni-

trosylation of a cysteine residue located within the interacting region with eNOS

abolishes the ATPase activity of Hsp90 and the stimulating effect on eNOS itself.

This suggests a negative feedback mechanism by which NO could regulate its own

generation by a pseudo-allosteric mechanism [219].

1.4.4 Protein-protein interactions

Several protein-protein interactions are known to be important for eNOS enzyme

regulation. In the following some of these proteins are introduced.

Heat-shock protein 90 (Hsp90): Hsp90 is an important molecular chaperone,

responsible for the correct folding of numerous proteins, such as eNOS. Hsp90 is

necessary for the insertion of heme into the immature eNOS protein [27]. Many

eNOS agonists, such as VEGF, histamine, fluid shear stress and estrogen are able

to increase the interaction of Hsp90 to eNOS [120]. Association of Hsp90 with

eNOS is dependent on the agonist-induced tyrosine phosphorylation and leads to an

increased binding of CaM to eNOS [138]. Additionally, nitrosative stress can lead

to S-nitrosylation of Hsp90 (see section 1.4.3.6), thereby inhibiting eNOS activity

[275].

Hsp90 binding to eNOS has been found to be crucial to Akt-dependent phospho-

rylation of eNOS-Ser1177 [345]. Upon activation of Akt, binding of Hsp90 to eNOS

leads to the switching from Ca2+-dependent to Ca2+-independent eNOS activation.

This is achieved by the formation of a complex between Hsp90, Akt and CaM bound

eNOS [319; 320].

Calmodulin (CaM): CaM was the first protein reported to be associated with

eNOS [46]. The binding of calmodulin to the CaM-binding domain of eNOS is de-

termined by several molecular interactions and also by the phosphorylation status

of Thr495 [101]. Other modifications such as the binding of Hsp90 and phosphoryla-

tion at Ser1177 have also been shown to affect the association of these two proteins

[128]. The association of CaM with its binding site activates eNOS by enabling

the reductase domain to transfer electrons to the oxygenase domain [2]. Under

low Ca2+ concentrations CaM binding is inhibited by a 45-amino acid insert in the
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FMN-binding domain, acting as an autoinhibitory loop. Rising Ca2+ concentrations

lead to the displacement of the insert and the binding of CaM and the activation of

eNOS [66].

PECAM-1 (platelet endothelial cell adhesion molecule; CD31): PECAM-

1 has been predominantly found at cell-cell contacts. PECAM-1 and eNOS colocalize

at the plasma membrane where they are then associating [97]. It has been suggested

that PECAM-1 is acting as a mechanoreceptor on the endothelial cell surface and

regulates the response of endothelial cells on shear stress by allowing the interaction

with tyrosine kinases, the tyrosine phosphatase SHP2 and the scaffolding protein

Gab1 [58].

Proteins important for the subcellular localization of eNOS: Caveolins

are the structural scaffolding proteins of the caveolae. Caveolin-1 binding to eNOS

inhibits eNOS activity, by impairing the binding of calmodulin to eNOS, as men-

tioned in section 1.2.3.3. NOSTRIN and NOSIP are two proteins necessary for

eNOS trafficking as mentioned earlier (section 1.2.3.3).

Additional proteins known to associate with eNOS include G protein-coupled

receptors such as the angiotensin II AT1 receptor [167], polymerized actin [314],

voltage-dependent anion channel 1 (VDAC1) [13] and many more.

1.4.5 Substrate availability

The substrate for the catalyzed eNOS reaction is L-arginine. Deficiency in the

substrate availabilty leads to eNOS uncoupling resulting in the generation of su-

peroxide instead of nitric oxide [108]. Interestingly, the mean plasma concentration

of L-arginine is in the range of 100 µM and therefore far above the Km for eNOS

[62]. Therefore, reduced L-arginine availability should not be an issue for eNOS

activity. Moreover, endothelial cells are able to recycle the product of eNOS, L-

citrulline, back to L-arginine and can generate L-arginine from protein breakdown

[141; 301]. Despite these facts L-arginine supplementation has proven beneficial in

conditions such as hypercholesterolemia, ischemia, and hypertension [30; 81; 149].

Therefore, this has been referred to as the “L-arginine paradox”. An explanation

for these observations may be that L-arginine locally competes with endogenous
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analogues, like symmetric dimethyl-L-arginine (SDMA), asymmetric dimethyl-L-

arginine (ADMA) or NG-monomethyl-L-arginine (L-NMMA) [334]. ADMA and

L-NMMA act as direct eNOS inhibitors and especially ADMA has been implicated

in cardiovascular diseases [31]. An increase in ADMA reflects the activity and

expression of the metabolizing enzymes dimethylarginine dimethylaminohydrolases

(DDAH-1 and DDAH-2). Overexpression of DDAH-1 was described to enhance NO

production in vivo, whereas its downregulation has been associated with endothelial

dysfunction [68; 194].

Additionally the cationic amino acid transporter (CAT-1) may be a limiting factor

for L-arginine availability as other amino acids such as L-lysine compete for the same

transporter. This transporter is necessary for the L-arginine supply of eNOS [136].

Another factor involves the breakdown of L-arginine to L-ornithine and urea by

arginase-II, an enzyme that competes with eNOS for the substrate. Arginase-II has

been reported to be more active or to be higher expressed during cardiovascular

diseases and suppression of arginase-II activity leads to enhanced vascular NO pro-

duction [25; 238; 356].

1.4.6 Tetrahydrobiopterin (BH4) availability

Tetrayhydrobiopterin (BH4, 5,6,7,8-tetrahydrobiopterin) is an essential cofactor for

eNOS, as previously described in section 1.2.3.2. Impaired availability of this co-

factor leads to the uncoupling of eNOS. Then the electron transport to the ferrous

(Fe2+) heme-O2 species occurs not fast enough for prevention of their oxidative de-

cay. As a result superoxide is formed instead of NO. NO bioavailability is therefore

reduced and endothelial dysfunction promoted [50].

It has been suggested recently that not only the amount of BH4 is crucial for en-

dothelial function, but the ratio of the reduced BH4 to BH2 (7,8-dihydrobiopterin).

eNOS is known to bind BH2 and BH4 with similar affinity, however, BH2 can re-

place bound BH4 leading to eNOS uncoupling [64; 65; 339]. Dihydrofolate reductase

(DHFR) can reduce BH2 to BH4, thereby shifting the ratio towards BH4 and the

coupled eNOS [289].

BH4 is synthesized via a de novo pathway from GTP in a three step reaction.

The first reaction is catalyzed by GTP cyclohydrolase I (GTPCH I), and converts

GTP to 7,8-dihydroneopterin triphosphate. This enzyme is rate-controlling for the

biosynthesis of BH4. In the following step the enzyme 6-pyruvoyltetrahydropterin
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synthase (PTPS) generates 6-pyruvoyltetrahydropterin, that is converted by sepi-

apterin reductase (SR) to BH4 in a final step [348]. Regulation of GTPCH occurs

at transcriptional, translational and posttranslational levels [146]. Overexpression

of GTPCH has been proven to augement NO availability in human endothelial cells

[12]. Interestingly, the enzyme GTPCH feedback regulatory protein (GFPR) can

reduce the amount of BH4 by catalyzing the reaction from BH4 to GTP [135].

Additionally, it has been reported that downregulation of GFRP in cultured en-

dothelial cells leads to increased BH4 levels and GTPCH phosphorylation [199].

Bacterial lipopolysaccharide (LPS) and H2O2 are able to downregulate the expres-

sion of GFPR [161; 347].

Alternatively to the de novo synthesis pathway BH4 can be generated via the

salvage pathway. Thereby, sepiapterin is converted into 7,8-dihydrobiopterin by

sepiapterin reductase, followed by the reduction to BH4 by DHFR [249].

Taken together, supplementation of BH4 by addition of sepiapterin may be ben-

eficial for endothelial function [262].

1.4.7 Endothelial function and dysfunction

Besides the function of eNOS in vasodilation it has also other important roles in

the vasculature. eNOS-derived NO has been shown to inhibit platelet aggregation

and platelet adhesion to the vascular wall [10; 45], to decrease the expression of

the proinflammatory protein MCP-1 (monocyte chemotactic protein-1) [362], and

to inhibit leukocyte adhesion by interfering with the binding of the leukocyte adhe-

sion molecule CD11/CD18 to the endothelial cells or by suppressing CD11/CD18

expression [18; 182]. Furthermore, eNOS is critical for vascular remodelling in re-

sponse to changes in blood flow [282], and for the prevention of endothelial cell

apoptosis and stimulation of angiogenesis [78]. Another crucial function of eNOS

is the inhibition of vascular smooth muscle cell proliferation, that is likely to be

mediated by cGMP [122; 244]. All these functions of eNOS-derived NO contribute

to its anti-atherosclerotic character.

Several mechanism have been linked to the uncoupling of eNOS, like reduced

availability or oxidation of BH4, reduced availability of L-arginine, oxidative dis-

ruption of the zinc-thiolate cluster, and increased concentrations of asymmetric

dimethyl-L-arginine (ADMA) [108]. A new mechanism for eNOS uncoupling is the
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S-glutathionylation of conserved cysteine residues in the reductase domain during

oxidative stress [53]. Oxidative stress is often enhanced in vascular diseases, like

atherosclerosis. This can lead to the degradation of NO by superoxide to peroxyni-

trite or to the uncoupling of eNOS, so that the enzyme itself produces superoxide.

Peroxynitrite, which is formed under oxidative stress from NO, can lead to the ox-

idation of BH4 to BH2, and disrupt the zinc-thiolate cluster of the eNOS enzyme

[188; 365].

Additionally, hypertension and all forms of diabetes (type I and type II) have

been associated with reduced NO bioavailability or impaired vasodilation, due to

the increased production of superoxide [51].

Interestingly, once oxidative stress starts damaging eNOS a vicious cycle begins.

Superoxide leads to the formation of peroxynitrite that further disrupts eNOS func-

tion leading to superoxide formation and so on, and so on. Upregulation of eNOS

under these circumstances is very detrimental.

Endothelial dysfunction is regarded as the initial event for the onset of atheroscle-

rosis. Atherosclerosis is in turn thought to be the underlying pathology of cardio-

vascular diseases, such as stroke, peripheral vascular disease and coronary heart

disease [51]. Endothelial dysfunction is characterized by an impaired function of

eNOS and NO availability [67]. A strong link between endothelial-derived NO and

atherosclerosis is provided by studies showing that administration of L-arginine or

BH4 reduces the progression of atherosclerotic lesions [6; 326]. This could be pre-

vented by the addition of NOS inhibitors [343].

1.5 Natural products and their influence on eNOS

An increasing amount of studies show an influence of natural products on cardio-

vascular health. Moreover, natural products from dietary sources or derived from

medicinal plants have been identified in the last years to have positive effects on

eNOS activity or NO bioavailability. In general compounds taken up with the diet

can easily reach the endothelium via the blood stream and are therefore interesting

to investigate. Several natural products and dietary habits have been discussed as

modulators of eNOS function such as grapes and red wine, resveratrol, black and

green tea, cocoa, soy isoflavones and many more [291].
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Many studies suggested a negative correlation between moderate red wine con-

sumption and the occurance of cardiovascular diseases [69]. This effect has been

attributed to the red wine polyphenols [73]. Moreover, synergistic effects between

single polyphenols are likely [341]. Treatment with red wine polyphenols elicit a

long-term and additionally a fast effect. Long-term treament was shown to upreg-

ulate eNOS expression, thereby increasing endothelial NO release [193; 342]. Fur-

thermore, short-term effects are based on the rapid increase in Ca2+ concentrations

and eNOS-Ser1177 phosphorylation via the activation of the PI3K/Akt pathway in

cultured cells, resulting in fast NO-dependent vasodilation [288]. Red wine polyphe-

nols have also been shown to increase reactive oxygen species production, such as

superoxide and hydrogen peroxide [248]. It is possible that this moderate stress is

triggering defense mechanisms protecting cells from future stress. Consumption of

red wine had however not in all studies beneficial effects [243; 246; 364].

Grape juice, red grape polyphenol extract and grape skin extract have similar

beneficial effects [15; 195; 305]. Oligomeric procyanidins seem to account for these

effects which are also likely to be in part responsible for the effect of red wine [63].

Interstingly, the grade of oligomerization correlated with the degree of vasodilation

elicited by these preparations [96].

The stilbene derivative resveratrol is another compound contained in red wine, but

can also be found in grape skin, berries and peanuts. Both in vivo and in vitro studies

showed improved vascular function upon resveratrol treatment [17; 277; 340; 341].

However, this was only in part due to increased NO availability [242; 273]. The eNOS

stimulatory effect of resveratrol seems to be dependent on oestrogen receptors [176].

However, until now no studies in humans have been performed. The fact that the

amount of resveratrol in red wine is only a few milligrams per litre and that it is

metabolized rapidly in the blood suggests that resveratrol is not responsible for the

beneficial effects of red wine [125; 256].

The consumption of black and green tee has been implicated with improved en-

dothelial function [86; 165]. They contain different polyphenols dependent on their

preparation and fermentation, among them (=)-epicatechin and epigallocatechin

gallate (EGCG). (=)-Epicatechin increased NO production [265] and EGCG, a com-

pound mainly contained in green tea, was shown to activate eNOS via the PI3K/Akt

pathway [208].

(=)-Epicatechin is additionally contained in cocoa as well as oligomeric procyani-

dines, which are both responsible for the enhancing effect of cocoa preparations on
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endothelium-dependent vasodilation and eNOS activity [88; 172; 293]. Interestingly,

(=)-epicatechin serves as a building block for oligomeric procyanidins. However, the

beneficial effect of cocoa products is attenuated by the high amount of sugar often

contained in these products [91].

The soy isoflavone genistein was reported to enhance eNOS activity via PKA

and eNOS-Ser1177 phosphorylation after long-term treatment [205]. Another soy

isoflavone, equol, rapidly enhances NO production in cultured endothelial cells in

submicromolar concentrations via increasing [Ca2+]i concentrations followed by en-

hanced eNOS-Ser1177 phosphorylation [166]. Possibly, soy isoflavones mimic hor-

monal effects of estrogen, which is a known activator of eNOS [185; 346].

Pomegranate juice is also a rich source of polyphenols and has been reported to

increase eNOS expression and prevent NO degradation via superoxide scavenging

[70; 71; 159].

Oleic acid, oleanolic acid and polyphenols contained in olive oil are beneficial for

endothelium-dependent vasodilation [109; 279; 280].

The polyunsaturated omega-3 fatty acids docosahexaenoic acid and eicosapen-

taenoic acid, contained in fish oil, directly increase endothelial NO release. This

may be achieved by alteration of the lipid composition of the plasma membrane by

these compounds, resulting in the release of eNOS from caveolin-1 [200].

The effect of caffeine on endothelial function is controversial. It has been reported

that caffeine intake leads to increased [Ca2+]i concentrations, thereby activating

eNOS [140], but there are also studies indicating a decrease in endothelial function

upon coffee consumption [263; 276].

The most abundant polyphenol in plants and therefore also in the diet is quercetin

[212]. It was shown to elevate [Ca2+]i levels and thereby eNOS activity [184]. How-

ever, besides numerous studies showing enhancing endothelium-dependent vasodi-

lation upon quercetin treatment, there are also several studies showing no effect or

even a negative effect of quercetin on NO availability (reviewed in [291]).

Other phytomedical preparations influencing endothelium-dependent vasodilation

are Ginkgo biloba leaves, that increase eNOS expression and Ser1177 phosphoryla-

tion [180]. Hawthorn extract is increasing endothelium-dependent vasodilation as

well, probably dependent on the amount of oligomeric procyanidines contained [39].

Ginseng root aqueous extract activates eNOS via PI3K/Akt [174] and ursolic acid,

contained in a Salvia miltiorrhiza water extract, strongly enhances eNOS expression
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[310]. Interestingly, betulinic acid, contained in Zizyphi spinosi seeds, is upregulat-

ing eNOS expression and at the same time downregulates NADPH oxidase, thereby

enhancing NO availability through both mechanisms [311].

Other compounds and preparations enhancing eNOS activity are ascorbic acid (see

section 1.6.1), the lignan sesamol, contained in sesame seeds [54], an artichoke leaf

extract [198], the citrus flavone hesperidin [206], the passion flower flavone chrysin

[83], the legume flavanoid dioclein [196], cranberry [211] and watermelon juice [354]

and many more.

1.6 Natural products used in this work

1.6.1 Ascorbate

Ascorbate is the deprotonated form of ascorbic acid (vitamin C, Figure 1.2). It acts

as a water-soluble reducing agent and antioxidant in biological systems. Humans

and other primates have lost the ability to synthesize vitamin C on their own due to

a defect in L-gulono-1,4-lactone oxidase, the enzyme that catalyzes the conversion of

L-gluconolactone into ascorbic acid. Therefore the diet is their only source of vitamin

C to prevent the vitamin C deficiency disease, scurvy, and maintain general health

[331]. In healthy, well-nourished, nonsmoking people mean plasma levels of ascorbate

are between 50 to 60 µM. However, oral supplementation can increase plasma levels

up to 100 µM [19; 38; 60; 317; 353]. Low levels of plasma ascorbate are common in

different diseases linked to oxidative stress such as cancer, diabetes, cataract, HIV

infection and sepsis or in smokers [29; 92; 116; 213; 257; 259; 323; 350]. In most

cells ascorbate concentration is considerably higher than 50 µM. This is achieved

by an active transport mechanism using sodium-dependent vitamin C transporters

(SVCT) [335]. The final concentration of ascorbate inside cells was determined to

be between 3 and 4 mM [216; 223]. Interestingly, the oxidized form of ascorbate,

dihydroascorbate (DHA), is taken up by endothelial cells via GLUT-transporters

and rapidly reduced to ascorbate inside the cells. However, DHA uptake seems not

to be relevant for intracellular ascorbate concentrations as uptake competes with

glucose which is approximately 1000 times more abundant [3; 77].

Ascorbate has many important functions in the body. Several studies have ob-

served that ascorbate has beneficial effects on the prevention of atherosclerosis [3].
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Figure 1.2: L-ascorbate

In cultured endothelial cells ascorbate was shown to stabilize BH4 after 24 hours

[144; 153]. As mentioned earlier (see section 1.4.6) low levels of BH4 lead to the un-

coupling of eNOS by promoting the transfer of electrons to molecular oxygen instead

of L-arginine. The therapeutic potential of ascorbate to prevent eNOS uncoupling

under conditions of oxidative stress has been investigated in several clinical studies.

They showed that oral supplementation of vitamin C is mostly ineffective in this

regard [308] whereas ascorbate infusions rapidly improved endothelium-dependent

vasodilation in conditions such as diabetes [142; 327], hypertension [48; 148; 247;

306; 318], hypercholesterolemia [266; 328], experimental sepsis [336; 350] and smok-

ing [143; 147; 287] without affecting healthy control groups.

It should be noted that the endothelial cell culture medium used in this study is

not supplemented with ascorbic acid apart from traces contained in the FBS. The

cells used are therefore under chronic lack of vitamin C which enhances oxidative

stress and decreases eNOS activity likely due to BH4 deficiency [304]. Cultured

endothelial cells are therefore a useful model for endothelial dysfunction in cardio-

vascular diseases.

Besides its importance for BH4 stabilization ascorbate acts as a cofactor and elec-

tron donor for several enzymes, such as prolyl and lysyl hydroxylases which are

important for collagen synthesis and HIF-1a (hypoxia-inducible factor 1a) hydroxy-

lation [43; 241]. In addition ascorbate is involved in the synthesis of norepinephrine,

carnitine, cholesterol, several amino acids and peptide hormones [52]. Stabiliza-

tion of collagen by ascorbate is crucial for the formation of connective tissue in the

whole body which is responsible for the main symptoms of scurvy [3]. Additionally,

ascorbate was shown to stabilize atherosclerotic plaques in apolipoprotein E (ApoE)

knockout mice, through its ability to build up collagen [245].

Another important function of ascorbate is its action as antioxidant. The hydroxyl
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groups can donate a hydrogen atom to different oxidants, including oxygen- and

nitrogen-based free radicals, peroxides and superoxide [3; 44]. Furthermore, it can

reduce ferric iron in dioxygenase enzymes [3]. Importantly, ascorbate can recycle

oxidized vitamin E (a-tocopherol) [250].

Oxidized ascorbate itself can also be recycled inside the cell [3].

Here we investigated if stabilization of BH4 is the underlying mechanism for the

rapid effects of ascorbate infusions in diseased patients or if additional mechanisms

for the activation of eNOS are involved.

1.6.2 Lignans isolated from Krameria lappacea

Plant secondary metabolites from the benzofuran class are known to exhibit a

broad range of bioactivites including anti-inflammatory [131; 152], cardio- and vaso-

protective [113; 154], cytostatic [192], and antioxidant actions [170; 228]. However,

there are no reports on eNOS activation by this compound class so far. The roots of

Krameria lappacea (Dombey) Burdet et Simpson (syn. K. triandra Ruiz et Pavon),

are a rich source of such compounds. Root preparations have been used traditionally

in South America for the treatment of different inflammation-related complaints, in-

cluding bowel complaints and inflammation of the throat. In the European medicine

it has been used since the 18th century [47; 302; 303].

In this study we investigated eleven lignans (nine benzofuran lignans and two

epoxy lignans) including the benzofran derivative 2-(2,4-dihydroxyphenyl)-5-(E)-

propenylbenzofuran (DPPB, Figure 1.3) that were isolated from the dried roots of

K. lappacea. Isolation of these compounds was perfomed by the group of Prof. Stup-

pner (Institut of Pharmacy/Pharmacognosy and Center for Molecular Biosciences

Innsbruck, University of Innsbruck, Austria).

O

OH

HO

Figure 1.3: Structure of the benzofuran derivative DPPB (2-(2,4-dihydroxyphenyl)-5-(e)-
propenylbenzofuran)

One study has been published identifying DPPB as the major active compound of
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a standardized K. triandra root extract. There DPPB was shown to exert a potent

cytoprotective effect on different cell lines exposed to stress.

Here we investigated if the isolated lignan derivatives act as activators of eNOS

activity in cultured endothelial cells.
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2 Material & Methods

2.1 Materials

2.2 Cell culture

For all experiments control cells were treated with an equal volume of solvent. When

DMSO was used as solvent the concentration used did not exceed 0.1 % unless stated

otherwise.

2.2.1 EA.hy926 cells

EA.hy926 cells were a kind gift from Dr. C.-J. S. Edgell, University of North Car-

olina, Chapel Hill (USA) [87]. This permanent human vascular cell line was created

in 1983 by hybridization of primary human umbilical vein endothelial cells (HU-

VEC) and the human lung carcinoma cell line clone A549/8. This clone is deficient

in hypoxanthine phosphoribosyltransferase (HPRT), which is used for selection with

HAT medium (hypoxanthine-aminopterin-thymidine medium). HAT medium con-

tains amongst others aminopterin which blocks de novo nucleotide synthesis. HPRT

deficiency leads to loss of function in the alternative nucleotide synthesis pathway,

the salvage pathway. Because of that A549/8 cells are not able to synthesize DNA

in the presence of HAT medium and die. The primary HUVEC can only live for a

limited number of replication cycles and will therefore die after some time in culture.

Hybrid cells with restored HPRT function are therefore the only cells surviving in

HAT medium for an extended passage number. The EA.hy926 cell line was con-

firmed to produce von Willebrand Factor (factor VIII related antigen) with the same

morphological distribution as in their parental endothelial cells and to upregulate

ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular adhesion molecule-

1) and E-selectin expression upon stimulation with TNF-a [87; 325]. Futhermore
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EA.hy926 cells grow faster, need less growth factors and can be used for more pas-

sages than HUVEC due to their immortality. Therefore they are a lot easier to

cultivate. However, as a hybrid cell line differential responses and reactions can not

be excluded. Keeping that in mind we confirmed all the key results obtained in

EA.hy926 cells in HUVEC.

2.2.1.1 Cultivation

EA.hy926 cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) with-

out phenol red containing 4.5 g/L glucose supplemented with 2 mM glutamine, 100

U/ml penicillin, 100 µg/ml streptomycin, HAT supplement (100 µM hypoxanthine,

16 µM thymidine, 0.4 µM aminopterin - for selection of hybridoma cells) and 10 %

heat-inactivated fetal bovine serum (serum was heat-inactivated at 56� for 30 min).

EA.hy926 cells were cultivated in an humidified incubator at 37� and 5 % CO2.

Thawing A cryovial containing one million EA.hy926 cells was taken out of the

liquid nitrogen and quickly defrosted in a 37� waterbath. The still frozen cells were

poured into 10 ml complete growth medium. Then they were centrifuged at 210 g

for 10 min to get rid of the DMSO contained in the freezing medium. The cell pellet

was then resuspended in 20 ml complete growth medium and transferred to a 75

cm2 flask. The medium was changed after three to four days and the cells reached

confluency approximately after one week.

Passaging Cells were passaged when reaching confluency approximately after one

week. The cells were washed with prewarmed PBS and subsequently trypsinized

with T/E solution. Trypsinization was stopped with complete growth medium.

Cells were then counted in the cell viability analyzer ViCell®. For cultivation in

a 75 cm2 flask 0.7 x 106 cells were seeded and for a 175 cm2 flask 1.6 x 106 cells

were seeded. The medium was changed after three to four days after passaging.

EA.hy926 cells were used for experiments until reaching passage 26.

2.2.2 Human umbilical vein endothelial cells (HUVEC)

Primary human umbilical vein endothelial cells (HUVEC) were purchased from

Lonza.
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2.2.2.1 Cultivation

HUVEC were grown in endothelial cell basal medium (EBM�) supplemented with 10

% heat-inactivated standardized fetal bovine serum (serum was heat-inactivated at

56� for 30 min), 100 U/ml penicillin, 100 µg/ml streptomycin, 1 % amphotericin B

and EGM�SingleQuots�, containing recombinant human epidermal growth factor,

hydrocortisone, gentamicin sulfate, amphotericin B and 0.4 % bovine brain extract.

Dishes and plates were coated with gelatine before cells were seeded. Thus, the

culture dishes and plates were incubating with 0.1 % gelatine solution for 10 min at

room temperature. HUVEC were cultivated in an humidified incubator at 37� at

5 % CO2.

Thawing A cryovial containing one million HUVEC was taken out of the liquid ni-

trogen and quickly defrosted in a 37� waterbath. The still frozen cells were poured

into 10 ml of complete growth medium. Cells were then centrifuged at 210 g for 10

min to get rid of the DMSO contained in the freezing medium. The cell pellet was

resuspended in 20 ml complete growth medium and then seeded in a 10 cm dish.

Usually the cells reached confluency after five days.

Passaging Cells were passaged when reaching confluency approximately after one

week. The cells were washed with prewarmed PBS and subsequently trypsinized

with T/E solution. Trypsinization was stopped with complete growth medium.

Cells were then centrifuged at 210 g for 10 min and the resulting cell pellet was

resusupended in complete growth medium. The concentration of the cell suspension

was determined by counting in the cell viability analyzer ViCell®. Cells were seeded

at a density of 0.2 x 106 in a 10 cm dish and incubated for approximately one week

until reaching confluency. HUVEC were used for experiments until reaching passage

6, since it was published before that they tend to loose their primary characteristics

and responsiveness to various stimuli beyond this passage number [33].
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2.2.3 Solutions and buffers for cell culture

Complete growth medium
(EA.hy926)

DMEM with 4.5 g/L glu-
cose

500 ml

L-glutamine 2 mM
penicillin 100 U/ml
streptomycin 100 µg/ml
heat-inactivated fetal
bovine serum

10 %

HAT supplement:
hypoxanthine 100 µM
aminopterin 0.4 µM
thymidine 16 µM

Complete growth medium
(HUVEC)

EBM� 500 ml
penicillin 100 U/ml
streptomycin 100 µg/ml
amphotericin B 1 %
heat-inactivated stan-
dardized fetal bovine
serum

10 %

EGM� SingleQuots�:
recombinant human

epidermal growth factor
0.5 ml

hydrocortisone 0.5 ml
gentamicine sulfate &

amphotericin B
0.5 ml

bovine brain extract 0.4 %

PBS pH 7.4
NaCl 123 mM
Na2HPO4 10 mM
KH2PO4 3.2 mM
ddH2O ad 1000 ml

T/E solution
trypsin 0.05%
EDTA 0.02 %
in PBS

0.1% gelatine solution
gelatine 0.1%
in PBS
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2.3 Quantification of endothelial NO release by 4,5-diaminofluorescein-2 (DAF-2)

2.3 Quantification of endothelial NO release by

4,5-diaminofluorescein-2 (DAF-2)

2.3.1 Principle

Direct determination of endothelial NO release faces several difficulties. First of all

the amount of NO released from endothelial cells is very low and additionally the

half-life of NO is very short. Furthermore NO can rapidly be degraded by superox-

ide to form peroxynitrite. A very sensitive and specific method for determination

of low amounts of NO was developed by Kojima et al. [179]. They generated fluo-

rescence probes (diaminofluoresceins) which react with NO to the highly fluorescent

triazolofluoresceins (DAF-Ts) by nitrosation and dehydration (Figure 2.1). The

detection limit of this method is as low as 5 nM and therefore suitable for determi-

nation of NO produced from eNOS.

As NO can rapidly be degraded, eNOS enzyme activity does not necessarily corre-

spond to the amount of bioavailable NO released from endothelial cells. Therefore

it is important to determine endothelial NO release in addition to enzyme activity.

In the course of this thesis the DAF-2 assay was optimized for 96-well plates and

measurement in a plate reader.

In addition to DAF-2 cells were incubated with the calcium ionophore A23187.

This allowed Ca2+ ions to pass into the cells, thereby activating eNOS. To account

for non-NO specific fluorescence the eNOS inhibitor L-NAME (L-NG-nitroarginine

methyl ester) was used. To normalize for seeding irregularities cell viability is mea-

sured using the resazurin conversion method.

NO, O2

Figure 2.1: Reaction of DAF-2 to DAF-2T in the presence of O2 and NO
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2.3.2 Procedure

EA.hy926 cells were seeded in 96-well plates at a density of 2.5 x 104 cells/well and

were treated with test compounds at confluence after approximately 72 h. Cells

were washed two times with PBS+ containing 100 µM arginine and equilibrated

10 min in this buffer. Then the calcium ionophore A23187 was added to a final

concentration of 1 µM and DAF-2 to a final concentration of 0.1 µM and the cells

were incubated for 1 h at 37�. Addition of L-NAME to a final concentration of

200 µM allowed correction for non-NO-specific fluorescence. The supernatant was

transferred to a black 96-well plate and fluorescence was measured in a plate reader

with an excitation wavelength of 485 nm and an emission wavelength of 520 nm.

Fluorescence values were normalized to viable cells as determined by the resazurin

conversion method [252]. For this, the cells were incubated with 0.1 mg/ml resazurin

in PBS for 30 min before measuring the fluorescence at an excitation wavelength of

535 nm and an emission wavelength of 590 nm.

2.3.3 Solutions and buffers

PBS+

NaCl 137 mM
KCl 2.68 mM
Na2HPO4 8.1 mM
KH2PO4 1.47 mM
MgCl2 · 6 H2O 0.5 mM
CaCl2 · 2 H2O 0.68 mM
ddH2O ad 1000 ml
sterile filtered

2.4 [14C]L-arginine/[14C]L-citrulline conversion assay

2.4.1 Principle

The eNOS enzyme catalyzes the reaction from L-arginine and molecular oxygen

to L-citrulline and nitric oxide. As citrulline and NO are produced in equimolar
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2.4 [14C]L-arginine/[14C]L-citrulline conversion assay

amounts by the enzyme, citrulline can be used as a surrogate marker for NO pro-

duction. The principle of this assay is that radiolabeled [14C]L-arginine is taken

up by endothelial cells and converted to radiolabeled [14C]L-citrulline by the eNOS

enzyme. The ratio of this conversion over a given period of time can be used as an

indirect measurement for eNOS enzyme activity. Metabolizing enzymes can however

disturb this ratio [141; 237; 238].

With the addition of the calcium ionophor A23187 Ca2+ ions from the buffer can

pass through the cell membrane into the cells. This increase in [Ca2+]i results in an

increased activity of the eNOS enzyme and increased signal intensities. Differences

in treatment groups can therefore be detected more reliably. After stopping the con-

version reaction, cells are lysed and extracts are dried under vacuum. Amino acids

are then extracted from the samples and separated with thin layer chromatography.

Finally radioactivity can be detected by autoradiography.

2.4.2 Procedure

HUVEC or EA.hy926 cells were seeded in 6-well plates at a density of 0.1 x 106

cells/well or 0.5 x 106 cells/well, respectively, and treated with test compounds

when reaching confluency approximately after 72 h. All further steps were per-

formed in the same manner for both cell types.

Cells were washed and equilibrated in HEPES buffer for 10 min at 37�. Then the

cells were incubated with 10 µl 0.32 µM of [14C]L-arginine solution (349 mCi/mmol)

for 10 min before 1 µM of the calcium ionophore A23187 was added for exactly

15 min. The reaction was stopped by putting the plates on ice. The cells were

now washed twice with ice-cold PBS and then lysed with 800 µl 96 % (v/v) ice-

cold ethanol for 15 min while shaking on ice and 10 min while shaking at room

temperature. 600 µl of the supernatant were transferred to a fresh reagent tube.

900 µl H2O were added to the cells and they were again incubated for 15 min at

room temperature while shaking. Then the remaining supernatant was transferred

to the reagent tubes. The cell extracts were then dried under vacuum in a SPD

1010 SpeedVac (Thermo Savant) and the resulting pellets were resolved in 35 µl

water/methanol (1:1, v/v). Amino acids were extracted by alternating shaking and

vortexing of the samples. The extracts were then centrifuged for 20 min at 867 g and

20 µl of the supernatant were applied to thin layer chromatography plates (Polygram

SIL N-HR, Machery-Nagel). Separation of [14C]L-arginine from [14C]L-citrulline was
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performed in the solvent system water:chloroform:methanol:ammonium hydroxide

25 % (2:1:9:4, v/v/v/v). The plates were analyzed by autoradiography in a phospho-

imager (BAS-1800II, Fujifilm). AIDA software (raytest) was used for densitometric

analysis. ENOS activity was determined as the percentage of [14C]L-citrulline in re-

lation to the total radioactivity recovered and normalized to the untreated control.

2.4.3 Solutions and buffers

HEPES buffer pH 7.4
HEPES 10 mM
NaCl 145 mM
KCl 5 mM
MgSO4 2 mM
a- D(+)-glucose 10 mM
CaCl2 · 2 H2O 1.5 mM

[14C]L-arginine solution
[14C]L-arginine 349 mCi/mmol
1:10 diluted in ddH2O

2.5 Determination of eNOS mRNA levels by

quantitative real-time PCR

2.5.1 Principle

Analysis of mRNA levels in cells requires multiple steps. First of all RNA has to be

isolated from cells, then the mRNA is converted to cDNA by reverse transcription,

followed by quantitative real-time polymerase chain reaction (qRT-PCR) as a final

step. The PCR reaction consists of several steps that are repeated in cycles. First

the double-stranded DNA has to be denatured at 95�, then primers are annealed at

a lower temperature (dependent on primer sequence). Finally the DNA is elongated

by a heat-stable DNA polymerase. The principle of PCR is that each cycle doubles

the amount of DNA, thereby leading to an exponential increase in PCR products.

Using quantitative real-time PCR it is possible to monitor the amplification process

by measurement of the fluorescence of a DNA double-strand-specific dye. Analysis of

the resulting fluorescence curves serves as a measure for the originally present mRNA

levels in the sample. To control for the specificity and quality of the PCR reaction
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2.5 Determination of eNOS mRNA levels by quantitative real-time PCR

a melting point analysis can be performed. Therefore the samples are heated up

constantly until a drop in fluorescence occurs. This signals the denaturation of the

DNA strands. The melting temperature is specific for a given DNA sequence and

allows to check for the accuracy of the measurement.

As an internal control for normalization of RNA levels 18S ribosomal RNA (rRNA)

was used. This RNA is suitable as it is expressed constantly and in the same extent

as the target RNA.

2.5.2 Procedure

EA.hy926 cells were seeded at a density of 1.1 x 106 cells per 6 cm dish and treated

with test compounds when reaching confluency approximately after 72 h.

2.5.2.1 RNA extraction

For extraction of RNA from EA.hy926 cells the peqGOLD Total RNA Kit (peqlab)

was used according to the manufacturer’s instructions. EA.hy926 cells were lysed

with 400 µl of RNA lysis buffer. DNA was removed with DNA removing columns.

70% ethanol was added to the lysates before vortexing vigourously. Then the lysates

were applied to RNA binding columns and washed three times. Afterwards the

columns were dried by centrifugation and the RNA was eluted with 30 µl RNAse

free H2O. To control the quality of the isolated RNA 9 µl of RNA were mixed with

1 µl loading buffer. This mixture was loaded on a 1 % agarose gel. The agarose gel

was stained with SYBR® Green (Invitrogen) and as a running buffer 0.5 % TBE

was used. Bands were visulized by UV transillumination at a gel documentation

system (Biostep).

2.5.2.2 First-strand cDNA synthesis

For reverse transcription of the isolated RNA to complementary DNA (cDNA) the

Superscript� First-Strand Synthesis System from Invitrogen was used. 500 ng RNA

were mixed with 200 ng random hexamers and 1 µl 10 mM dNTPmix (desoxyri-

bonucleotides) and filled up with DEPC-treated water to a volume of 10 µl. This

mixture was incubated at 65� for 5 min to allow denaturation of the RNA and

cooled on ice for at least 1 min. Meanwhile 2 µl of 10x RT buffer, 4 µl 25 mM

MgCl2, 2 µl 0.1 M DTT and 1 µl RNaseOUT ribonuclease inhibitor (40 U/µl) per

sample were mixed. 9 µl of this reaction mixture were added to each sample and

53



2 Material & Methods

incubated at room temperature for 2 min to allow annealing of the primers. Then

1 µl of Superscript� II Reverse Transcriptase (50 U/µl) was added and the samples

were left at room temperature for 10 min. The tubes were then transferred to 42�

and incubated for 90 min. The reaction was terminated by inactivation of the en-

zyme at 70� for 15 min. 1 µl of RNase H was added to each tube and incubated

for 20 min at 37� to break down the remaining RNA in the samples and thereby

avoid interference with the following quantification step.

2.5.2.3 Quantitative real-time PCR

For analysis of mRNA isolated from cells and converted to cDNA in the previous

steps quantitative real-time polymerase chain reaction (qRT-PCR) was used. For

this purpose the LightCycler® 480 real-time PCR system was used including the

LightCycler® 480 instrument and the LightCycler® 480 SYBR Green I Master

reagent.

cDNA was diluted 1:10 for the measurement of eNOS mRNA and 1:20 for the

detection of 18S rRNA. 2 µl of every cDNA were mixed with 4 µl H2O, 7.5 µl SYBR

Green Mastermix, 0.75 µl of 15 µM primer solution for each primer. See table 2.2 for

primer sequences. Every cDNA sample was measured in triplicate. The qRT-PCR

was performed as stated in Table 2.1.

step T[�] time

Denaturation 95 10 min

Cycling (50 cycles)
95 5 sec
61 5 sec
72 15 sec

Melting
95 5 sec
60 10 sec
97 0.5 sec

Cooling 40 ∞

Table 2.1: qRT-PCR conditions
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2.6 Protein detection by Western Blotting

Gene Direction Sequence (5’ to 3’)

eNOS
Forward CAC TGT GAT GGC CGA GCG AAG GTT G
Reverse GCT TAG GGA GAG CGA GCT GGT GTT

18S
Forward GAA TTG ACG GAA GGG CAC CAC CAG
Reverse GTG CAG CCC CGG ACA TCT AAG G

Table 2.2: Primer sequences used for qRT-PCR

2.5.3 Solutions and buffers

TBE 10x pH 8.0
Tris-base 890 mM
boric acid 890 mM
EDTA 20 mM
ddH2O ad 1000 ml

10x DNA loading
buffer

bromphenol blue 0.6 µM
glycerol 50 %
ddH2O ad 10 ml

2.6 Protein detection by Western Blotting

2.6.1 Principle

Protein detection by Western Blotting requires several steps. First of all cells have

to be lysed and proteins solubilized. For the solubilization of membrane proteins,

such as eNOS, the usage of a strong detergent, like CHAPS, in the lysis buffer is

advantageous. Additionally membranes can be ruptured by sonication or in an ul-

trasonic bath. Proteins are denatured by boiling and disulfide bonds are reduced

with b-mercaptoethanol. In addition, the proteins are negatively charged with the

detergent sodium dodecylsulfate (SDS), in a uniform mass-charge ratio, which al-

lows separation of proteins by their molecular weight. Proteins are separated by

discontinuous gel electrophoresis using a polyacrylamide gel. Afterwards they are

transferred to a polyvinylidene difluoride (PVDF) membrane. Membranes are then

blocked with bovine serum albumin or milk to prevent unspecific binding of the

antibody to the membrane. Then membranes are incubated with primary antibody

solutions which are directed against the protein of interest. To visualize the interac-

tions of this antibody with the membrane a secondary antibody is used. Secondary
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antibodies bind the primary antibody and are usually conjugated to a reporter en-

zyme, like horeseradish peroxidase. When provided with a certain detection buffer

antibodies coupled with horseradish peroxidase can oxidize the substrate luminol

thus producing a luminescence signal which can be related to the amount of protein

bound to the membrane.

2.6.2 Procedure

2.6.2.1 Whole cell protein lysates

EA.hy926 cells or HUVEC were seeded in 6-well plates at a density of 0.5 x 106

cells/well or 0.1 x 106 cells/well, respectively, and treated with test compounds

when reaching confluency approximately after 72 h. For preparation of whole cell

protein lysates cell layers were washed twice with ice-cold PBS and put on ice. Then

100 µl lysis buffer were added to each well before cells were scraped. The lysates

were transferred to reagent tubes and incubated on ice for 15 min. Afterwards they

were put into a ultrasonic bath for 30 sec followed by centrifugation at 4� for 40

min at 16,090 g.

5 µl of the supernatant were used for the determination of protein concentration

by the Bradford method. EA.hy926 cell lysates were diluted 1:20 and HUVEC

lysates 1:10 before samples were mixed 1:20 with Bradford reagent (1:2.7 dilution

of Roti®-Quant). Protein concentration was measured at 595 nm at a plate reader

after 5 min incubation on a shaker. Samples and BSA standards (2.5 - 25 µg/ml

final BSA concentration) were measured in triplicate.

The remaining supernatant was mixed with 3x sample buffer and boiled for 5 min

at 95� to denature the proteins. Samples were then frozen until loaded on a gel.

2.6.2.2 SDS-PAGE

The separation of proteins was performed by sodium dodecyl sulfate polyacrylamide

gel electrophoresis (SDS-PAGE) according to Laemmli. Gels were prepared with

Rotiphorese® Gel 30 (containing 30 % acrylamid solution with 0.8 % bisacrylamid

at the ratio 37.5 : 1) and a Mini-PROTEAN® 3 Cell System. The final concentra-

tion of polyacrylamide (PAA) in the resolving gel was 7.5 - 12 % dependent on the

size of the target proteins. In every lane of the gel the same amount of protein was

loaded. For EA.hy926 cells usually 30 µg of protein was loaded and for HUVEC 8
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Protein kDa Dilution diluted in Source Company

eNOS 140 kDa 1:2500 1x TBS-T mouse BD
phospho-eNOS-Ser1177 140 kDa 1:1000 5 % BSA

in 1x TBS-
T

rabbit Cell Signaling

phospho-eNOS-Thr495 140 kDa 1:1000 5 % BSA
in 1x TBS-
T

rabbit Cell Signaling

AMPK 62 kDa 1:1000 5 % BSA
in 1x TBS-
T

rabbit Cell Signaling

phospho-AMPK-Thr172 62 kDa 1:1000 5 % BSA
in 1x TBS-
T

rabbit Cell Signaling

Akt 60 kDa 1:1000 5 % BSA
in 1x TBS-
T

rabbit Cell Signaling

phospho-Akt-Ser473 60 kDa 1:1000 5% BSA in
1x TBS-T

rabbit Cell Signaling

HA-Tag - 1:1000 5 % BSA
in 1x TBS-
T

rabbit Cell Signaling

iNOS 130 kDa 1:1000 2 % milk in
1x TBS-T

mouse R&D

nNOS 160 kDa 1:1000 5 % milk in
1x TBS-T

rabbit Cell Signaling

tubulin 55 kDa 1:1000 1x TBS-T mouse Santa Cruz
actin 42 kDa 1:1000 1x TBS-T mouse MPBio
rabbit IgG - 1:1000 5 % milk in

1x TBS-T
goat Cell Signaling

mouse IgG - 1.6:1000 1x TBS-T goat MPBio

Table 2.3: Antibodies used for Western Blotting

- 20 µg, dependent on the available amount. Proteins were seperated at 25 mA per

gel for approximately 80 min.

2.6.2.3 Western Blotting

Proteins were transferred to a PVDF membrane with the Mini Trans-Blot® Elec-

trophoretic Transfer Cell System at 100 V for 90 min. Afterwards the membrane
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was blocked with 5 % fat-free milk powder in 1x TBS-T for 2 hours and washed

three times with 1x TBS-T for 10 min.

2.6.2.4 Protein detection

Primary antibodies were diluted as listed in Table 2.3. Membranes were incubated

with primary antibody solutions over night at 4�. Then the membranes were washed

three times with 1x TBS-T for 10 min before incubation for 2 h with the respective

horseradish peroxidase conjugated secondary antibody solution at room tempera-

ture. The membranes were then again washed three times with 1x TBS-T for 10 min

and incubated in 10 ml homemade ECL-solution for 1 min. Protein bands were visu-

alized in the luminescent image analyzer LAS-3000 and quantified by densitometric

analysis with the AIDA software (raytest).

2.6.3 Solutions and buffers

solutions and buffers

lysis buffer Stock pH 7.5 Tris-HCl 50 mM

CHAPS 20 mM

EDTA 0.5 mM

EGTA 0.5 mM

DTT 2 mM

glutathione 7 mM

glycerol 10 %

ddH2O ad 25 ml

phosphatase inhibitor stock

20x

NaF 0.2 M

Na3VO4 40 mM

Na4P2O7 ∗ 10 H2O 0.1 M

ddH2O ad 5 ml

lysis buffer (prepared

freshly before use)

lysis buffer stock 637 µl

continued on next page
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continued on previous page

solutions and buffers

complete� protein in-

hibitor 25x

28 µl

phosphatase inhibitor

stock 20x

35 µl

Western blot sample buffer

3x

Tris-HCl pH 6.8 187.5 mM

SDS 0.2 M

glycerol 30 %

bromphenol blue 0.2 mM

ddH2O ad 1000 ml

b-mercaptoethanol

(added shortly before

use)

15 %

resolving gel PAA (Rotiphorese®

Gel 30 - 30 % PAA)

7.5 - 12 %

Tris-HCl pH 8.8 375 mM

SDS 0.1 %

TEMED 0.1 %

APS 0.05 %

ddH2O ad 7.5 ml

stacking gel PAA (Rotiphorese®

Gel 30 - 30 % PAA)

5 %

Tris-HCl pH 6.8 125 mM

SDS 0.1 %

TEMED 0.2 %

APS 0.1 %

ddH2O ad 3.75 ml

SDS-Running buffer 10x Tris-base 248 mM

glycine 1.9 M

SDS 35 mM

ddH2O ad 1000 ml

continued on next page
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continued on previous page

solutions and buffers

Blotting buffer 5x Tris-base 125 mM

glycine 971 mM

ddH2O ad 1000 ml

Blotting buffer 1x Blotting buffer 5x 200 ml

methanol 200 ml

ddH2O ad 1000 ml

TBS-T pH 8.0 10x Tris-base 248 mM

NaCl 1.9 M

Tween-20 1 %

ddH2O ad 1000 ml

homemade ECL-solution Tris-base pH 8.5 100 mM

luminol 1.24 mM

p-coumaric acid 0.2 mM

H2O2 0.018 %

ddH2O ad 10 ml

2.7 Transient transfection of cells

2.7.1 Principle

Introduction of nucleic acids into mammalian cells by transient transfection is an

important technique not only for cell signaling studies. In this way small interfer-

ing RNAs (siRNA), targeting a gene for knockdown, or DNA plasmids carrying a

gene for overexpression studies or a mutated gene isoform, can be transfected into

cells. Several different approaches for transfection are available, using chemicals or

physical methods or even viruses. For the transfection of plasmids into HUVEC we

used a lipid-based transfection system from Promega (FuGENE® HD). Most often

proteins from expression vectors are tagged, for instance with a HA-tag (human in-

fluenza hemagglutinin tag) for easier detection with antibodies or with a poly(His)

tag used for affinity purification. Protein tags can have other purposes as well, like

helping with the correct folding of the protein or adding a fluorescence epitope.

For the knockdown of a target protein siRNA transfection into HUVEC was per-

formed using the Oligofectamine transfection system from Invitrogen. SiRNAs can
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bind their complementary mRNAs in cell, thereby leading to the degeneration of

the target mRNA.

2.7.2 Overexpression of the catalytic subunit of protein

phosphatase 2A (PP2Ac)

Isolation of the plasmids was performed using the PureYield� Plasmid Midiprep

System according to the manufacturer’s instructions. 5 ml bacterial pre-cultures

were prepared and after 7 h used to inoculate 200 ml LB medium for overnight

growth. These overnight cultures were pelleted at 8,068 g for 10 min and resus-

pended in 6 ml Resuspension Solution. Then 6 ml lysis solution were added. These

mixtures were inverted several times and incubated for 3 min at room temperature

before 10 ml Neutralization Solution was added. Again the tubes were inverted and

left at room temperature for 3 min. The lysates were then centrifuged for 15 min at

20,500 g. Meanwhile column stacks were assembled by nesting a PureYield Clearing

Column into the top of a PureYield Binding Column. These column stacks were

placed onto the vacuum manifold. After centrifugation the lysates were poured into

the PureYield Clearing Column and incubated for 3 min. Then vacuum was applied

until all liquid has passed through both columns. The columns were washed with

5 ml Endotoxin Removal Wash and 20 ml of Column Wash Solution. Then the

membranes were dried by applying vacuum for 30 sec. The Binding Columns were

removed and placed on the Eluator device. The DNA was eluted with 1 ml of nucle-

ase free water and the concentration of DNA was measured spectrophotometrically.

The sequence of the DNA was checked by restriction analysis.

HUVEC were seeded in 6-well plates at a density of 0.5 x 106 cells/well and trans-

fected 1 day later with 1 µg of an expression vector for the catalytic subunit of protein

phosphatase 2A (pCMV-HA-PP2Ac), kindly provided by Dr. Verin (Medical Col-

lege of Georgia, Atlanta, GA, USA)[322] or empty control vector (pCMV) using the

FuGENE® HD transfection reagent according to the manufacturer’s instructions.

For one well 100 µl Opti-MEM® were mixed with 2 µg vector and 4 µl FuGENE®

HD transfection reagent. This mixture was left on room temperature for 15 min.

Meanwhile cells were washed with PBS and 1.5 ml Opti-MEM® were added to every

well. Then the FuGENE®HD / DNA mixture was added to the wells. After four

hours cells were washed with PBS and 2 ml of complete growth medium were added
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per well. One day later cells were treated with test compounds and further used

for experiments. Successfull overexpression was confirmed by Western Blot analysis.

2.7.3 siRNA-mediated knockdown of AMPKa

HUVEC were seeded in 6-well plates at a density of 0.3 x 106 cells/well and trans-

fected 1 day later with 33 pmol AMPKa siRNA or scrambled control (Stealth RNAi

negative control, Medium GC control from Invitrogen) using the Oligofectamine�

transfection reagent. First 10 µl 20 µM siRNA solution were mixed with 155 µl

Opti-MEM® and separatly 8 µl Oligofectamine transfection reagent and 17 µl Opti-

MEM® were mixed. Both tubes were left at room temperature for 10 min. Then

the contents of the tubes were mixed and again incubated for 15 min at room tem-

perature. Meanwhile cells were washed with PBS and 800 µl Opti-MEM® per well

were added. The Oligofectamine�/siRNA mix was added to the wells and incubated

for 5 h. Then 1 ml complete growth medium was added. This time point was taken

as 0 h after transfection. At the next day the medium was changed. 72 h after

transfection cells were used for experiments. Successfull knockdown of AMPKa was

confirmed by Western Blot analysis.

2.8 Ascorbate uptake assay

2.8.1 Principle

Determination of ascorbate uptake into endothelial cells is relatively easy to per-

form. Cells are incubated for a particular period of time with radiolabeled ascorbate

and then the radioactivity that enters the cells is measured in a liquid scintillation

counter. Ascorbate is taken up into endothelial cells mainly by the SVCT2 trans-

porter (Sodium-dependent Vitamin C Transporter). However when ascorbate is

oxidized to dehydroascobate (DHA) it can be transported by glucose transporters

and is reduced to ascobate inside the cells. Addition of reduced glutathione to

the incubation buffer keeps ascorbate in its reduced state and addition of glucose

serves as a competitor to DHA for the glucose transporter and acts as an additional

mechanism to prevent the influence of DHA on the ascorbate uptake measured.
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2.9 Determination of intracellular Ca2+ concentration

2.8.2 Procedure

EA.hy926 cells or HUVEC were seeded in 12-well plates at a density of 0.16 x 106

cells/well or 0.08 x 106 cell/well, respectively, and were treated with test compounds

when reaching confluency approximately after 72 h. Cells were washed twice with

KRH buffer and incubated for the indicated time points at 37� with KRH buffer

containing 5 mM D-glucose, 0.5 mM glutathione, and 100 µM [1-14C]L-ascorbic

acid. The supernatant was aspirated and the cell layer was washed twice with ice-

cold KRH buffer before the cells were treated for 30 min with 0.5 ml 0.05 N NaOH

in PBS. 350 µl of the cell lysate was added to 5 ml Ultima Gold liquid scintillation

fluid. The radioactivity of duplicate samples was measured in a Packard TRI-CARB

2100TR liquid scintillation analyzer after at least 1 h, to allow decay of chemilumi-

nescence. Results were normalized to protein content of the cells as determined by

the Bradford method like described in section 2.6.2.1.

2.8.3 Solutions and buffers

KRH buffer
(Krebs-Ringer-HEPES)
pH 7.4

HEPES 20 mM
NaCl 128 mM
KCl 5.2 mM
NaH2PO4 1 mM
MgSO4 1.4 mM
CaCl2 1.4 mM

2.9 Determination of intracellular Ca2+ concentration

2.9.1 Principle

An easy method to determine intracellular Ca2+ levels uses cell permeable fluorescent

indicators, e.g. Fluo-3-AM. These indicators can cross the cell membrane due to

their ester structure. Esterases inside the cell then hydrolyze the ester to yield the

Ca2+ indicator. Upon binding of Ca2+ an increase in fluorescence can be measured

in a flow cytometer.
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2 Material & Methods

2.9.2 Procedure

Intracellular calcium concentration ([Ca2+]i) was determined with the intracellular

calcium indicator Fluo-3-AM. Therefore EA.hy926 cells were seeded at a density of

0.5 x 106 cells/well in a 6-well plate and treated with test compounds when reach-

ing confluency approximately after 72 h. Cells were washed once with PBS and

trypsinzed with 600 µl T/E solution per well. The trypsinization was stopped after

approximately 5 min with 1.2 ml Stop-Medium (PBS with 5 % heat-inactivated fetal

bovine serum). The cells were transferred to FACS vials and centrifuged at 130 g for

5 min. Then the cells were washed once with PBS and resuspended in 500 µl 2 µM

Fluo-3-AM solution in PBS. The vials were incubated at 37� for 45 min protected

from light. Afterwards cells were pelleted and washed twice with PBS. As a last

step the cell pellets were resuspended in 500 µl PBS and read immediately in the

flow cytometer (FL-1 channel; excitation wavelength: 495 nm, emission wavelength:

519 nm).

2.9.3 Solutions and buffers

Flow cytometer buffer

pH 7.37

NaCl 0.14 M

KH2PO4 1.9 mM

Na2HPO4 17 mM

KCl 3.8 mM

LiCl 10 mM

NaN3 3 mM

Na2EDTA 1 mM

ddH2O ad 1000 ml

2.10 Determination of Cell Viability

2.10.1 Principle

Cell viability assays are widely used for the determination of cytotoxic effects in

cells treated with a given substance. Several different systems are used including
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cytolysis or membrane leakage assays and assays testing for mitochondrial or caspase

activity. In this work two different assays were used. The LDH (lactate dehydro-

genase) release assay tests for LDH that is released into the culture medium when

cells lose their membrane integrity either due to apoptosis or necrosis. LDH activity

can be measured by a colorimetric reaction with a provided substrate.

The resazurin conversion assay measures the mitochondrial activity of cells. When

cells are healthy they can convert resazurin to resorufin. The fluorescent resorufin

can then be measured and taken as indicator of cell viability.

2.10.2 LDH release assay

For determination of LDH release the CytoTox96® Non-Radioactive Cytotoxicity

Assay from Promega was used. Therefore, EA.hy926 cells were seeded in 96-well

plates at a density of 2.5 x 104 cells/well and treated with test compounds at con-

fluence after approximately 72 h. For maximal LDH release, cells were lysed with

10 µl of lysis solution (10x) per 100 µl medium for 45 min prior to harvesting su-

pernatants. Then the plate was centrifuged for 5 min at 250 g. 50 µl of the cell

supernatants were transferred to a new plate and 50 µl reconstituted substrate mix

were added per well. Then absorbance was measured at 490 nm in 5 min cycles to

assure that the values are not already saturated.

2.10.3 Resazurin conversion assay

EA.hy926 cells were seeded in 96-well plates at a density of 2.5 x 104 cells/well and

treated with test compounds at confluence after approximately 72 h. The medium

of the cells was changed to 0.1 mg/ml resazurin in PBS and incubated for 30 min at

37�. Then fluorescence was measured at an excitation wavelength of 535 nm and

an emission wavelength of 590 nm.

2.11 Determination of BH4 levels

BH4 levels were determined in collaboration with Prof. Ernst Werner (Medical

University of Innsbruck, Austria). Levels were quantified by HPLC after oxidation

with iodine in acid and base as described [144], by methods modified from Fukushima
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and Nixon [110]. In short, cells were homogenized with an microhomogenizer in dd

H2O with 5 mM DTT and centrifuged at 13,000 g for 10 min at 4 �. To 100 µl

supernatant, 20 µl of a 1:1 (v/v) mixture of 0.1 M HCl and iodine (0.1 M in 0.25

M KI) or 0.1 M NaOH and iodine (0.1 M in 0.25 M KI) was added and incubated

for 60 min in the dark. 20 µl 0.1 M HCl were then added to the alkaline solution

and insoluble material removed from both incubations by centrifugation for 5 min at

13,000 g. Then 20 µl freshly prepared ascorbic acid (100 µM in ddH2O) were added

to both incubations and the mixtures were analyzed on an Agilent 1200 HPLC

System. 20 µl of the final mixture were injected onto a Nucleosil 10 SA column

isocratically eluted with 100 mM potassium phophate buffer, pH 3.0, at a flow rate

of 1.5 ml/min at 35 �. Biopterin was detected by fluorescence with an excitation

wavelength of 350 nm and an emission wavelength of 440 nm an a detection limit

of 1 nmol/L. The amount of tetrahydrobioperin was calculated from the difference

between the oxidation in acid and base, respectively. Values were normalized to the

protein content of extracts determined by the Bradford method.

2.12 Determination of extracellular hydrogen

peroxide (H2O2) levels

2.12.1 Principle

In the presence of peroxidase, the Amplex® red reagent reacts with H2O2 in a

1:1 stoichiometry to produce the red-fluorescent oxidation product, resorufin. The

fluorescence of resorufin can easily be measured in a plate reader.

2.12.2 Procedure

Extracellular H2O2 levels were determined with the Amplex® red assay according

to the manufacturer’s instructions. EA.hy926 cells were seeded in 12-well plates at

a density of 0.16 x 106 cells/well until reaching confluence after approximately 72 h.

Cells were washed twice with prewarmed PBS. Then 300 µl complete Amplex® red

reagent were added and cells were equilibrated for 5 min in an incubator. Cells were

then stimulated as indicated and incubated for 60 min. Addition of 150 U Catalase

allowed correction for non-catalase-blockable fluorescence. 80 µl of every treatment

(duplicates) were transferred to a 96-well plate and fluorescence was measured with
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an excitation wavelength of 535 nm and an emission wavelength of 590 nm.

2.12.3 Solutions and buffers

KRPG buffer
(Krebs-Ringer-
Phosphate-Glucose)
pH 7.35

NaCl 145 mM
Na2HPO4 57 mM
KCl 4.86 mM
CaCl2x2 H2O 0.54 mM
MgSO4x7 H2O 1.22 mM
glucose 5.5 mM
ddH2O ad 500 ml

complete amplex red
reagent

horse radish peroxi-
dase

0.2 U/ml

amplex red reagent 1 mM
KRPG buffer ad 3.75 ml

2.13 Statistical analysis

Statistical analysis was performed using the GraphPad Prism software version 4.03.

One-way or two-way ANOVA was used for comparison of different treatment groups

and Student’s t test for comparison of two groups. p values < 0.05 were considered

significant. In figures with bar graphs, these show means ± SEM of at least three

independent experiments unless stated otherwise.
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3 Results and discussion

3.1 Ascorbate stimulates endothelial nitric oxide

synthase enzyme activity by rapid modulation of

its phosphorylation status

3.1.1 Results

3.1.1.1 Rapid increase in eNOS activity by ascorbate is independent of

chemical stabilization of BH4

Previous studies have shown that ascorbate stabilizes the eNOS cofactor BH4 in

endothelial cells, thereby enhancing eNOS enzyme activity [144; 153]. To confirm

these results we performed time-course experiments in EA.hy926 cells and HUVEC.

Cells were treated with 100 µM ascorbate for 30 min to 24 h. In both cell types

ascorbate treatment led to a time-dependent gradual increase in eNOS enzyme ac-

tivity (Figure 3.1). Already 0.5 h after treatment an increase was detectable and

got significant after 2 h in EA.hy926 cells and after 4 h in HUVEC.

The administration of increasing concentrations of ascorbate showed that already

5 µM were enough for a significant increase in eNOS enzyme activity. Concentra-

tions from 10 to 100 µM saturated the activating effect of ascorbate (Figure 3.2).

As mentioned before, previous studies showed that ascorbate is able to stabilize

the cofactor BH4 after 24 h [144; 153]. To elucidate whether BH4 stabilization upon

ascorbate treatment is also a gradual effect, BH4 levels were measured in collabora-

tion with Prof. Ernst Werner (Medical University of Innsbruck, Austria). Ascorbate

was able to increase BH4 levels after 24 h in EA.hy926 cells, however shorter in-

cubation periods showed no influence (Figure 3.3). Total biopterin levels did not

change.
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Figure 3.1: Ascorbate increases eNOS enzyme activity time-dependently. (A) EA.hy926 cells
or (B) HUVEC were treated with 100 µM ascorbate (Asc) for 0.5 to 24 h. Then eNOS enzyme

activity was determined. [
14

C]L-citrulline production was normalized to the untreated control
(***, p < 0.001; ns, not significant; mean ± SEM, n = 3). Figure A by Christoph A. Schmitt
[290]. Figure B obtained with the technical assistance of Daniel Schachner.
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Figure 3.2: Concentration-dependent effect of ascorbate on eNOS enzyme activity. EA.hy926
cells were treated for 2 h with 0 to 100 µM ascorbate (Asc) and eNOS activity was determined
(***, p < 0.001; **, p < 0.01; ns, not significant; mean ± SEM, n = 3). Figure obtained with
the technical assistance of Daniel Schachner.
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Figure 3.3: Time-dependent effect of ascorbate on endothelial BH4 levels. EA.hy926 cells
were treated with 100 µM ascorbate (Asc) for 0 to 24 h. Intracellular BH4 levels were quantified
by HPLC after oxidation with iodine in acid and base. The values obtained (pmolBH4/µg
cellular protein) were normalized to the cellular BH4 level at time point 0 (**, p < 0.01; mean
± SEM, n = 3).

Upon supplementation of the BH4 precursor sepiapterin ascorbate was still able to

increase eNOS-Ser1177 phosphorylation (Figure 3.4), leading to the conclusion that

BH4 stabilization had no influence in the rapid effect of ascorbate on eNOS enzyme

activity and phosphorylation changes (see next chapter).

3.1.1.2 Rapid activation of eNOS by ascorbate is associated with changes in

eNOS phosphorylation

Changes in eNOS enzyme activity are usually accompanied by changes in the eNOS

phosphorylation pattern. An increased phosphorylation at Ser1177 and a decreased

phosphorylation of Thr495 are indicating an increase in eNOS enzyme activity and

seem to be coordinated together [239]. The Ser1177 residue is located in the reductase

domain close to the carboxy-terminus of the enzyme and phosphorylation at this

site increases the electron flux in the reductase domain thereby resolving an autoin-

hibitory loop and activating eNOS. Phosphorylation of the Thr495 in the Ca2+/CaM

binding domain interferes with binding of Ca2+/CaM to eNOS.

To confirm if the results from figure 3.1 are correlated to an activating phospho-

rylation pattern of eNOS, EA.hy926 cells and HUVEC were treated with 100 µM

ascorbate and the eNOS phosphorylation status was determined after 0 to 60 min in-

cubation. In both cell types ascorbate elicited the same activating pattern. Already

after 5 min a significant reduction in eNOS-Thr495 phosphorylation was detectable
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Figure 3.4: Supplementation of sepiapterin does not abolish the effect of ascorbate on eNOS
phosphorylation. HUVEC were pretreated with 10 µM sepiapterin (Sep) for 30 min and then
incubated with 100 µM ascorbate (Asc) for 60 min as indicated. (Phospho-) eNOS protein
levels were determined by Western blot and subsequent densitometric analysis. Band inten-
sities were normalized to actin and expressed as fold untreated control. One representative
blot is shown. The dashed line indicates that interjacent lanes on the same membrane were
cut out (**, p < 0.01; mean ± SEM, n = 3).

and after 30 min the increase in eNOS-Ser1177 phosphorylation was significant (Fig-

ure 3.5).

Furthermore, ascorbate elicited a dose-dependent change in eNOS phosphoryla-

tion in EA.hy926 cells when treated with concentrations of ascorbate, ranging from

0 to 100 µM (Figure 3.6).

In comparison with already well-known activators of eNOS, changes induced by

treatment with ascorbate are in the same range (Figure 3.7).

As already mentioned in the introduction, plasma levels of ascorbate are in the

range of 50 µM in humans [353]. Therefore the question arose whether eNOS is

chronically stimulated at a basal level under physiological conditions. We compared

the response of scorbutic (normal, not Asc supplemented) and non-scorbutic (sup-

plemented with 50 µM Asc) endothelial cells to ascorbate treatment. The basal

activation of eNOS, as determined by eNOS enzyme activity and eNOS-Ser1177

phosphorylation, was increased in the Asc-supplemented cells compared to the non-

supplemented cells. However, additional exogenous administration of ascorbic acid

was able to further elevate these parameters of eNOS activity (Figure 3.8). Thus
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Figure 3.5: Ascorbate rapidly changes the eNOS phosphorylation pattern. (A) EA.hy926
cells and (B) HUVEC were treated with 100 µM ascorbate (Asc) for 5 to 60 min. (Phospho-)
eNOS protein levels were determined by Western blot and subsequent densitometric analysis.
Band intensities are normalized to tubulin and expressed as fold untreated control. One
representative blot is shown (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, not significant;
mean ± SEM, n = 5 for (A) and n = 3 for (B)). Experiments for Figure A and B were in part
performed by Christoph A. Schmitt [290].
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Figure 3.6: Ascorbate dose-dependently changes eNOS-Ser1177 and eNOS-Thr495 phospho-
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eNOS protein levels were determined by Western blot and subsequent densitometric analysis.
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72



3.1 Rapid modulation of eNOS phosphorylation by ascorbate

A

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

A
M

P
K

-P
 / 

to
ta

l A
M

P
K

(a
rb

itr
ar

y 
va

lu
es

)
VEGF (min) 50VEGF (min) 50

eN
O

S
-P

 / 
to

ta
l e

N
O

S
(a

rb
itr

ar
y 

va
lu

es
)

AMPK-Thr172 phosphorylationeNOS-Ser1177 phosphorylation

total eNOS

AMPK-
Thr172-P

eNOS-
Ser1177-P

total AMPK

* *

0.5

1.0

1.5

2.0

eN
O

S 
en

zy
m

e 
ac

tiv
ity

([14
C

]L
-c

itr
ul

lin
e 

pr
od

uc
tio

n)

0.5

1.0

1.5

2.0

eN
O

S 
en

zy
m

e 
ac

tiv
ity

([14
C

]L
-c

itr
ul

lin
e 

pr
od

uc
tio

n)

Res +- Mev +-

***

***

0.5

1.0

1.5

eN
O

S
-P

 / 
to

ta
l e

N
O

S
(a

rb
itr

ar
y 

va
lu

es
)

*

VEGF (min) 50

eNOS-Thr495 phosphorylation

total eNOS

eNOS-
Thr495-P

CB

Figure 3.7: ENOS activation by known activators. (A) EA.hy926 cells were treated with
50 ng/ml VEGF for 5 min. (Phospho-) eNOS and AMPK protein levels were determined
by Western blot and subsequent densitometric analysis. Band intensities were normalized to
actin and expressed as fold untreated control. One representative blot is shown (*, p < 0.05;
mean ± SEM, n = 3). EA.hy926 cells were treated with (B) 30 µM resveratrol (Res) or (C)
3 µM mevastatin (Mev). Then eNOS enzyme activity was determined (***, p < 0.001; mean
± SEM, n = 3 for (B) and n = 5 for (C)).

treatment with ascorbate still has an effect in non-scorbutic cells and not only in

ascorbate-deficient cells.

3.1.1.3 Ascorbate has no influence on cellular H2O2 levels or Akt activity

It was shown previously that ascorbate can promote H2O2 formation in cell culture

medium [123; 132] and interstitial fluids after infusion [55]. In endothelial cells

H2O2 in µM concentration can activate the phosphatidylinositol-3-kinase (PI3K)

that in turn activates Akt and eNOS further downstream [324]. These two findings

led us to the hypothesis that ascorbate may trigger an elevation of extracellular

H2O2 concentration and thereby an increase in eNOS enzyme activity. However,

the pretreatment of endothelial cells with catalase, an enzyme necessary for the

decomposition of H2O2 to H2O and oxygen, did not alter the effect of ascorbate on

eNOS enzyme activity (Figure 3.9A).

Determination of extracellular H2O2 levels showed that ascorbate produced less

than 0.25 µM H2O2 and therefore H2O2 seems to be very unlikely to play a role

in the rapid ascorbate effect (Figure 3.9B). Moreover, inhibition of PI3K by wort-

mannin had no effect on the enhanced eNOS-Ser1177 phosphorylation after ascorbate

treatment (Figure 3.9C) and ascorbate treatment did not elicit an activation of Akt

kinase (Figure 3.9D). Altogether these data suggested that neither H2O2 nor the
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Figure 3.8: Exogenous addition of ascorbic acid elevates eNOS enzyme activity and eNOS-
Ser1177 phosphorylation in both scorbutic and non scorbutic cells. Endothelial cells were
incubated in normal (not Asc supplemented) medium (scorbutic) or medium supplemented
with 50 µM ascorbate (Asc-supplemented) at least for 7 days. Then 100 µM ascorbate (Asc)
were added (on top) for 4 h for (A) and for 1 h for (B) and (A) eNOS activity or (B) eNOS
phosphorylation was determined (*, p < 0.05; **, p < 0.01; mean ± SEM, n = 4 for (A) and
n = 2 for (B)). Figure A obtained with the technical assistance of Daniel Schachner.
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Figure 3.9: Ascorbate has no influence on extracellular H2O2. (A) EA.hy926 cells were
pretreated with 300 U catalase for 35 min and then incubated with 100 µM ascorbate (Asc)
for 4 h. Then eNOS enzyme activity was determined (***, p < 0.001; ns, not significant;
mean ± SEM, n = 4). (B) EA.hy926 cells were treated with 100 µM ascorbate (Asc), 0.25 µM
or 1 µM H2O2 as indicated. For determination of extracellular H2O2 levels an Amplex® red
assay was performed. Supernatants of untreated cells were used as controls (mean ± SEM, n
= 1). (C) EA.hy926 were pretreated with 0.1 µM wortmannin for 30 min and then incubated
with 100 µM ascorbate (Asc) for 30 min. (Phospho-) eNOS protein levels were determined
by Western blot and subsequent densitometric analysis. Band intensities were normalized to
tubulin and expressed as fold untreated control. One representative blot is shown (n = 3).
(D) EA.hy926 cells were treated with 100 µM ascobate (Asc) for 5 to 60 min. (Phospho-)
Akt protein levels were determined by Western blot and subsequent densitometric analysis.
Band intensities were normalized to tubulin and expressed as fold untreated control. One
representative blot is shown (mean ± SEM, n = 3). Figure C by Christoph A. Schmitt [290].
Figure A and B obtained with the technical assistance of Daniel Schachner.
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3.1 Rapid modulation of eNOS phosphorylation by ascorbate

PI3K pathway is involved in the rapid effect of ascorbate on eNOS enzyme activity.

3.1.1.4 Modulation of eNOS phosphorylation is dependent on cellular uptake

of ascorbate

To elucidate whether an intracellular rise in ascorbate is necessary for the change

in eNOS-Ser1177 upon ascorbate treatment, we determined ascorbate uptake in en-

dothelial cells. Endothelial cells were able to take up ascorbate very rapidly with

a linear increase over time. Already after 5 min ∼ 500 pmol/mg protein ascorbate

were taken up and after 1 h ∼ 4 nmol/mg protein were measured. There was no

difference detectable between EA.hy926 cells and HUVEC (Figure 3.10A and 3.10B).
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Figure 3.10: Intracellular ascorbate uptake into endothelial cells. (A) EA.hy926 cells or
(B) HUVEC were treated with 100 µM [1-14C]L-ascorbic acid (Asc) for 5 min to 1 h. Then
ascorbate uptake was performed as described. The measured radioactivity was normalized to
cellular protein content (***, p < 0.001; mean ± SEM, n = 4).

Additionally if endothelial cells were pretreated with phloretin, a compound used

to block the sodium-dependent vitamin C transporter (SVCT2; SLC23A2) [222; 338]

the uptake of ascorbate was reduced by 59 % (Figure 3.11A). Moreover, phloretin

abolished the effect of ascorbate on eNOS-Ser1177 phosphorylation (Figure 3.11B).

The application of ouabain, another compound used to block ascorbate uptake,

instead of phloretin had similar results (Figure 3.11A and 3.11B). Altogether these

data suggests that ascorbate is rapidly taken up by endothelial cells and subse-

quently increased eNOS-Ser1177 phosphorylation.
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Figure 3.11: Ascorbate uptake is necessary for the modulation of eNOS phosphorylation.
(A) EA.hy926 cells were pretreated with 10 µM phloretin or 10 µM ouabain for 30 min and
then incubated with 100 µM [1-14C]L-ascorbic acid (Asc). Ascorbate uptake was determined
as described. The measured radioactivity was normalized to cellular protein content (*, p
0.05; ***, p < 0.001; mean ± SEM, n = 3). (B) EA.hy926 cells were pretreated with 10 µM
phloretin or 10 µM ouabain for 30 min and then incubated with 100 µM ascorbate (Asc) for 1
h. (Phospho-) eNOS protein levels were determined by Western blot and subsequent densit-
ometric analysis. Band intensities were normalized to actin and expressed as fold untreated
control (*, p < 0.05; ns, not significant; mean ± SEM, n = 3).

3.1.1.5 Ascorbate promotes phosphorylation of eNOS-Ser1177 via activation

of AMPK-Thr172

Several kinases are located upstream of eNOS. One of them is the AMP-activated

protein kinase (AMPK). AMPK has been reported to phosphorylate eNOS at the

Ser1177 residue [56]. To investigate a possible influence of AMPK on the ascor-

bate effect we used compound C, an AMPK inhibitor. When endothelial cells were

pretreated with compound C ascorbate was not able to increase eNOS-Ser1177 phos-

phorylation (Figure 3.12A). Interestingly compound C alone led to an unexpected

increase in eNOS-Ser1177 phosphorylation probably due to off-target effects or com-

pensatory mechanisms. Therefore we performed an additional experiment using a

siRNA approach. Downregulation of AMPK by siRNA completely blocked the effect

of ascorbate on eNOS-Ser1177 phosphorylation (Figure 3.12B).

Next we investigated whether treatment of endothelial cells with ascorbate is ac-

tivating AMPK. Therefore AMPK phosphorylation at Thr172 was investigated after

treatment with ascorbate for up to 1 h. Indeed ascorbate led to a significant increase

of AMPK-Thr172 phosphorylation already after 30 min in EA.hy926 cells as well as

in HUVEC (Figure 3.13A and 3.13B). This increase in AMPK phosphorylation was

also dose-dependent, reaching significance at 20 µM of ascorbate (Figure 3.13C).

76



3.1 Rapid modulation of eNOS phosphorylation by ascorbate

A

- ++

eNOS-
Ser1177-P

total eNOS

eNOS-Ser1177 phosphorylation

Asc

 Compound C

- +

-

+-

*
ns

eN
O

S-
P 

/ t
ot

al
 e

N
O

S
(a

rb
itr

ar
y 

va
lu

es
)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.5

1.0

1.5

2.0

eNOS-Ser1177 phosphorylation

eN
O

S-
P 

/ t
ot

al
 e

N
O

S
(a

rb
itr

ar
y 

va
lu

es
)

Asc +-
scrambled

-

AMPKα siRNA

+

eNOS-
Ser1177-P

total eNOS

actin

total AMPK

B

*

ns

Figure 3.12: Inhibition of AMPK abrogates the effect of ascorbate on eNOS-Ser1177 phos-
phorylation. (A) EA.hy926 cells were pretreated with 20 µM compound C for 30 min and
then incubated with 100 µM ascorbate (Asc) for 1 h. (Phospho-) eNOS protein levels were
determined by Western blot and subsequent densitometric analysis. Band intensities were
normalized to tubulin and expressed as fold untreated control. One representative blot is
shown (*, p < 0.05; ns, not significant; mean ± SEM, n = 3). (B) HUVEC were transfected
with AMPKα siRNA or scrambled control before treated with 100 µM ascorbate (Asc) for 1
h. (Phospho-) eNOS and AMPK protein levels were determined by Western blot and subse-
quent densitometric analysis. Band intensities were normalized to actin and expressed as fold
untreated control. One representative blot is shown (*, p < 0.05; ns, not significant; mean ±
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to 1 h. (Phospho-) AMPK protein levels were determined by Western blot and subsequent
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fold untreated control. One representative blot is shown. (***, p < 0.001; ns, not significant;
mean ± SEM, n = 4).
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3.1 Rapid modulation of eNOS phosphorylation by ascorbate

These data suggests that the fast activation of AMPK by ascorbate is necessary

for the modulation of eNOS phosphorylation and activation.

3.1.1.6 CaMKKb may be involved in the activation of AMPK upon ascorbate

treatment

To elucidate how phosphorylation of AMPK comes about we next assayed Ca2+/CaM-

dependent protein kinase kinase b (CaMKKb), a known activator of AMPK [94].

Pre-incubation with the CaMKKb inhibitor STO 609 completely abolished activa-

tion of AMPK and diminished eNOS-Ser1177 phosphorylation in response to ascor-

bate (Figure 3.14A). Again STO 609 led to a basal increase in eNOS-Ser1177 phos-

phorylation, that may be due to off-target effects. We also tried to knockdown

CaMKKb using a siRNA approach. Unfortunately we were only able to manage

a maximal knockdown of ∼ 30 % , which in fact was accompanied by a trend to

decreased eNOS and AMPK phosphorylation upon Asc exposure (Figure 3.14B).

However, due to the only moderate decrease in CaMKKb protein levels, these data

are not very convincing. Based on these findings, we could not find a clear connec-

tion between the activation of AMPK upon ascorbate treatment and CaMKKb.

3.1.1.7 Ascorbate inhibits PP2A

Protein phosphatase 2A (PP2A) is a regulator of eNOS and AMPK activity as it

can dephosphorylate eNOS at Ser1177 and AMPK at Thr172 [231; 351]. Okadaic acid

(OA) is a selective inhibitor of PP2A when used in concentrations below 1 µM [234].

Interestingly, endothelial cells treated with okadaic acid elicited a strikingly similar

eNOS and AMPK phosphorylation pattern in comparison to ascorbate treated cells

(Figure 3.15).

Furthermore, okadaic acid increased eNOS enzyme activity in a dose-dependent

manner and endothelial NO release is upregulated upon treatment with 10 nM

okadaic acid for 20 h (Figure 3.16). Endothelial NO release was, however, only mea-

sured twice and therefore no statistics could be calculated.

These results suggested that ascorbate may act as inhibitor of PP2A. To study

this further we overexpressed the catalytic subunit of PP2A (PP2Ac) in HUVEC.
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This overexpression completely abrogated the increase in eNOS-Ser1177 and AMPK-

Thr172 phosphorylation upon ascorbate treatment (Figure 3.17).
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Moreover, overexpression of PP2Ac blocked the ascorbate induced increase in

eNOS enzyme activity (Figure 3.18).
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Figure 3.18: Overexpression of PP2A blocks the ascorbate induced increase in eNOS enzyme
activity. HUVEC were transfected with empty vector of HA-tagged PP2Ac expression vector
and treated with 100 µM ascorbate (Asc) for 4 h. Then eNOS activity was determined (*, p
< 0.05; ns, not significant; mean ± SEM, n = 3). For better visualization of the small but
significant effect the x-axis starts at 0.9.

Interestingly, the response of transfected HUVEC treated with ascorbate was

weaker when compared to the untransfected control. This may be due to the stress

of the transfection. However, the effect of ascorbate on eNOS and AMPK phospho-

rylation as well as on eNOS activity was abolished when PP2Ac was overexpressed.

Taken together this data strongly links inhibition of PP2A activity or activation to

the rapid effect of ascorbate on AMPK and eNOS in endothelial cells.

3.1.2 Discussion

In this study we showed a novel mechanism where ascorbate rapidly enhances eNOS

activity in cultured endothelial cells via changes in eNOS phosphorylation. This fast

response was dependent on changes on PP2A and AMPK activity, however it proved

to be independent of BH4 stabilization. Interestingly, the rapid effect of ascorbate

on eNOS enzyme activity was in the same range as for well known activators such

as VEGF.

Long-term treatment of endothelial cells in culture with ascorbate (24 hours) has

previously been shown to increase eNOS enzyme activity by stabilizing the essential

eNOS cofactor BH4 [144; 153]. However, whether the fast increase in eNOS activity

upon ascorbate treatment, as observed in cultured endothelial cells, or the rapid

increase in endothelial-dependent vasodilation after ascorbate infusion is dependent
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3.1 Rapid modulation of eNOS phosphorylation by ascorbate

on stabilization of BH4 had not yet been investigated to the best of our knowledge.

In this study we could show that an increase in intracellular ascorbate led to

enhanced eNOS-Ser1177 phosphorylation and concomitantly decreased eNOS-Thr495

phosphorylation within 30 minutes after ascorbate treatment. With the help of phar-

macological inhibitors and an siRNA knockdown approach, AMPK was found to be

the responsible upstream kinase for eNOS-Ser1177 phosphorylation. The Akt/PI3K

pathway was not involved in these effects. Overexpression of PP2A blocked eNOS-

Ser1177 and AMPK-Thr172 phosphorylation, thereby suggesting that ascorbate may

act via inhibition of PP2A activity or PP2A activation. Moreover, the pharmaco-

logical inhibition of PP2A by okadaic acid led to a similar phosphorylation pattern

of eNOS and AMPK. Taking into account that PP2A is known to dephosphorylate

both AMPK and eNOS we hypothesized that ascorbate elicits its effect on eNOS

activity at least in part by inhibition of PP2A activation or activity. This sugges-

tion is supported by two studies in which ascorbate enhanced endothelial barrier

function in an experimental model of sepsis by inhibition of PP2A activation [133]

and increased NO formation [224]. This recently observed importance of PP2A in

endothelial health may support PP2A as a novel therapeutic target.

PP2A is known to be activated by oxidative stress, therefore ascorbate may in-

terfere with PP2A activation via scavenging of reactive oxygen species and reducing

oxidative stress [133]. In cultured endothelial cells oxidative stress is often increased

when ascorbate levels in the culture medium are low [304]. As this is also the case

with patients, who suffer from endothelial dysfunction, this could explain the rapid

effects of ascorbate infusions on patients with endothelial dysfunction and the lack of

such rapid effects on patients with normal endothelial function. So far, the molecu-

lar mechanism of how the generation of reactive oxygen species is rapidly prevented

is not known. It is possible that ascorbate acts as a general antioxidant so that

preferred oxidation of ascorbate maintains stores of the intracellular antioxidant

glutathione and thereby counteracts prooxidant signaling [225; 226]. Therefore, we

investigated if ascorbate treatment can reduce intracellular reactive oxygen species,

using oxidized dihydrofluorescein. Suprisingly, ascorbate had no effect on intracel-

lular reactive oxygen species levels in our experimental setting (unpublished data

from our lab). This result suggests that ascorbate is not acting via modulation of

reactive oxygen species levels.

In addition to the rapid effects, ascorbate can stabilize the cofactor BH4 after long-

term treatment as stated before. This leads to the prevention of eNOS uncoupling
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and thereby reduces the amount of oxidative stress generated [304].

It has been published that ascorbate as well as other antioxidants are able to

generate hydrogen peroxide in cell culture medium which can then activate eNOS

[132; 324]. However, in our experimental settings only nanomolar amounts of hy-

drogen peroxide were measurable in the medium, which is two to three orders of

magnitude below the concentrations needed to activate eNOS [324]. Moreover, the

addition of catalase, the enzyme responsible for hydrogen peroxide breakdown, to

the medium did not prevent the fast increase in eNOS activity upon ascorbate treat-

ment.

Our data provided a mechanism for the increased phosphorylation of eNOS-Ser1177

after ascorbate treatment, but the signaling events necessary for eNOS-Thr495 de-

phosphorylation could not be identified. It is known that PP2A can directly dephos-

phorylate eNOS at Thr495, however, suprisingly inhibition of PP2A with okadaic acid

did not increase the phosphorylation at this site [239]. This suggests that PP2A is

predominantly acting on eNOS-Ser1177 and AMPK-Thr172 and not on eNOS-Thr495

as previously shown [231; 292]. eNOS-Thr495 was shown to be selectively altered in

at least one study but other studies suggest a concomitant regulation with eNOS-

Ser1177 phosphorylation [100; 292]. In order to understand the underlying mechansim

of this coordinated regulation, further research is required.

PP2A is known to dephosphorylate CaM, thereby inactivating calcium/calmodulin

dependent kinases [272]. This could place PP2A inhibition upstream of the appar-

ently calcium-independent activation of CaMKKb upon treatment with ascorbate.

CaMKKb, in turn, may lead to activation of AMPK which then positively affects

eNOS-Ser1177 phosphorylation and eNOS activity. However, our data did not show

a clear connection between the activation of AMPK upon ascorbate treatment and

CaMKKb.

Taken together, this study describes a novel mechanism for the rapid activation

of eNOS by ascorbate independent of BH4 stabilization. Ascorbate was shown to

modulate PP2A and AMPK in order to change the phosphorylation pattern of eNOS,

thereby activating the enzyme (Figure 3.19). Activation of eNOS by ascorbate is

therefore divided into two phases. First, rapid changes in eNOS phosporylation

increase eNOS activity within minutes. Second, long-term effects of ascorbate are

achieved by stabilization of BH4 after one day. One has to keep in mind that this

study was only performed in cell culture models. Whether these mechanisms take
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Figure 3.19: Proposed mechanism underlying the rapid eNOS activation by ascorbate. In-
hibition of PP2A by ascorbate leads to an increase in AMPK, and eNOS activity. Full arrows
indicate activation, blocked lines inhibition.

place in vivo as well needs further investigation.
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3.2 2-(2,4-dihydroxyphenyl)-5-(E)-

propenylbenzofuran (DPPB) promotes

endothelial nitric oxide synthase activity in

human endothelial cells

3.2.1 Results

3.2.1.1 DPPB is the only compound isolated from K. lappacea that

stimulates endothelial NO release and increases eNOS enzyme

activity

Eleven lignan derivatives were isolated from the dried roots of K. lappacea by the

group of Prof. Stuppner (Institut of Pharmacy/Pharmacognosy and Center for

Molecular Biosciences Innsbruck, University of Innsbruck, Austria) (Figure 3.20)

[24] and we investigated these compounds for their ability to influence endothelial

NO release.

Compound 6 (DPPB) was the only lignan that led to a significant increase in

endothelial NO release. Whereas treatment with compounds 1, 5, and 9 led to a

decrease. All the other compounds had no significant effect in this assay (Figure

3.21A). Furthermore we tested the eleven lignans for possible cytotoxic effects, using

the LDH release assay and the resazurin conversion assay. None of the compounds

had a negative effect on endothelial cell viability (Figure 3.22A and 3.22B). Com-

pounds 6, 7, 8, and 11 were further investigated for their ability to alter eNOS

enzyme activity as they were the most promising compounds regarding the NO re-

lease assay, although only compound 6 elicited a significant increase. Interestingly,

again only compound 6 (DPPB) significantly increased eNOS enzyme activity (Fig-

ure 3.21B).

Consequently we chose to further investigate the effect of DPPB. Treatment of

endothelial cells with 10 µM DPPB led to a ∼ 2-fold increase in endothelial NO

release when compared to the solvent control (Figure 3.23A). As a positive control

1 µM mevastatin was used, which is known to upregulate eNOS expression and thus

increases NO release [285; 297]. DPPB did also elicit a dose-dependent increase

in eNOS enzyme activity in EA.hy926 cells, reaching ∼ 1.2-fold activity at 10 µM
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Figure 3.20: Structures of the eleven lignans isolated from K. lappacea. 5-(3-
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Figure 3.22: None of the eleven lignans had a cytotoxic effect on endothelial cells. EA.hy926
cells were treated with 10 µM for 24 h. Then (A) Resazurin conversion assay or (B) LDH
release assay was performed. Values were normalized to the solvent control (***, p < 0.001;
mean ± SEM, n = 3 for (A) and n = 4 for (B)).

DPPB when compared to the solvent control (Figure 3.23A). In HUVEC 10 µM

DPPB had a similar effect (Figure 3.23B). As a positive control in this assay we

used ascorbic acid, which is known to stabilize the eNOS cofactor BH4 thereby

leading to an increase in eNOS enzyme activity [144; 153].
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Figure 3.23: DPPB increases endothelial NO release and eNOS enzyme activity. (A)
EA.hy926 cells were treated with 10 µM DPPB for 24 h. Mevastatin (Mev, 1 µM) was used
as positive control. Then endothelial NO release was measured (*, p < 0.05; mean ± SEM,
n =3). (B) EA.hy926 cells or (C) HUVEC were treated with the indicated concentrations
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3.2 DPPB promotes eNOS activity in human endothelial cells

3.2.1.2 DPPB changes the eNOS phosphorylation pattern

ENOS enzyme activity is upregulated by increased phosphorylation at Ser1177 or de-

phosphorylation at Thr495. These two phosphorylation sites have been reported to

be controlled concomitantly [239]. Treatment of EA.hy926 cells with 10 µM DPPB

led to a time-dependent increase in eNOS phosphorylation at Ser1177 and dephos-

phorylation at Thr495, corresponding to an enhanced eNOS enzyme activity (Figure

3.24A). After 24 h treatment the effects of DPPB were strongest. Therefore this

condition was used in the following experiments. Similar results were obtained with

HUVEC when 10 µM DPPB for 24 h were used (Figure 3.24B). Interestingly, DPPB

did not alter total eNOS protein levels (Figure 3.24) and moreover, had no effect on

eNOS mRNA levels (Figure 3.25), suggesting a direct stimulatory action of DPPB

on eNOS enzyme activtiy.
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Figure 3.24: Changes in eNOS phosphorylation upon DPPB treatment. (A) EA.hy926
cells or (B) HUVEC were treated with 10 µM DPPB for 0 to 24 h in (A) and for 24 h
in (B). (Phospho-) eNOS protein levels were determined by Western blot and subsequent
densitometric analysis. Band intensities were normalized to tubulin or actin and expressed as
fold untreated control. One representative blot is shown (*, p < 0.05; **, p < 0.01; ***, p <
0.001; ns, not significant; mean ± SEM, n = 3)

Furthermore we investigated DPPB for its action on neuronal NOS (nNOS) and

inducible NOS (iNOS) protein levels. However, no differences between DPPB treated

and solvent treated cells were detectable (Figure 3.26). For the detection of nNOS

rat brain extract was used as positive control, and for iNOS DLD-1 cells (colorectal

adenocarcinoma cell line) treated with a cytomix (kindly provided by Prof. Klein-
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Figure 3.25: DPPB does not influence eNOS mRNA levels. EA.hy926 cells were treated
with 10 to 1 µM DPPB for 24 h and eNOS mRNA levels were determined (n = 2).
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Figure 3.26: Expression levels of nNOS and iNOS in EA.hy926 cells. EA.hy926 cells were
treated with 10 µM DPPB for 24 h. Rat brain extract was used as a positive control for nNOS
and as a positive control for iNOS we used DLD-1 cells, either untreated (negative control) or
treated with cytomix (DLD-1 cell lysates were a kind gift from Prof. Kleinert). NNOS and
iNOS protein levels were determined by Western blot. One representative blot is shown (n =
3).

3.2.1.3 DPPB does not affect Akt but increases the phosphorylation of

AMPK-Thr172

Two of the most studied kinases known to activate eNOS are AMP-activated kinase

(AMPK) and Akt kinase [56; 232]. Both are directly catalyzing the phosphory-

lation of eNOS-Ser1177, thus activating the enzyme. Treatment of EA.hy926 cells

with DPPB time-dependently increased AMPK phosphorylation at Thr172, thus sug-

gesting an increased AMPK activity (Figure 3.27A). However, Akt kinase was not

influenced by DPPB, as determined by Akt-Ser473 phosphorylation status (Figure

3.27A). Similar results were obtained in HUVEC (Figure 3.27B).
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Figure 3.27: Changes in AMPK and Akt phosphorylation upon DPPB treatment. (A)
EA.hy926 cells or (B) HUVEC were treated with 10 µM DPPB for 0 to 24 h in (A) and for
24 h in (B). (Phospho-) AMPK and Akt protein levels were determined by Western blot and
subsequent densitometric analysis. Band intensities were normalized to tubulin or actin and
expressed as fold untreated control. One representative blot is shown (*, p < 0.05; **, p <
0.01; ns, not significant; mean ± SEM, n = 3)

3.2.1.4 Increased eNOS-Ser1177 phosphorylation upon DPPB treatment is

dependent on AMPK and CaMKKb

Next we investigated whether AMPK is directly involved in the enhancing effect

of DPPB on eNOS activity. Treatment of endothelial cells with compound C, an

inhibitor of AMPK, abolished the increase in eNOS-Ser1177 and AMPK-Thr172 phos-

phorylation (Figure 3.28A). However, compound C alone increased the phosphory-

lation at these sites. This is probably due to off-target effects or compensatory

mechanisms in endothelial cells upon treatment with compound C. Additionally we

used a siRNA approach to downregulate AMPK expression. HUVEC transfected

with AMPKa siRNA were no longer able to enhance eNOS-Ser1177 phosphoryla-

tion upon DPPB treatment (Figure 3.28). Interestingly, transfection with AMPKa

siRNA also increased eNOS-Ser1177 phosphorylation without any treatment when

compared to cells transfected with scrambled control. This is probably caused due

to off-target effects of the siRNA.

To strengthen these results we studied the effect of DPPB on eNOS enzyme ac-

tivity in the presence of compound C. Compound C completely blocked the increase

in eNOS enzyme activity upon DPPB treatment (Figure 3.29A). This strongly links

the enhancing effect on eNOS activity by DPPB to AMPK.

Next we studied how AMPK is activated by DPPB. Therefore we investigated
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Figure 3.29: AMPK and CaMKKβ are involved in the stimulating effect of DPPB on eNOS-
Ser1177. (A) EA.hy926 cells were pretreated with 10 µM compound C for 30 min and then
incubated with 10 µM DPPB for 24 h. Then eNOS enzyme activity was determined (*,
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One representative blot is shown (**, p < 0.01; ns, not significant; mean ± SEM, n = 3).
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3.2 DPPB promotes eNOS activity in human endothelial cells

the influence of CaMKKb, an upstream kinase of AMPK [94; 352]. Treatement of

EA.hy926 with STO 609, an inhibitor of CaMKKb, abolished the increase in eNOS-

Ser1177 and AMPK-Thr172 phosphorylation, suggesting an involvement of CaMKKb

in the DPPB-induced activation of eNOS (Figure 3.29B).

3.2.1.5 DPPB enhances intracellular Ca2+ levels

An increase in intracellular calcium ([Ca2+]i) can lead to the activiation of CaMKKb

as well as eNOS [230; 316]. Therefore we next investigated whether DPPB treatment

leads to an increase in [Ca2+]i. Indeed, DPPB led to a dose-dependent increase in

[Ca2+]i levels in endothelial cells (Figure 3.30A).
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3.2.1.6 Chelation of intracellular Ca2+ abolishes the activating effect of

DPPB on eNOS-Ser1177 and AMPK-Thr172 phosphorylation

To strengthen our hypothesis, that the activation of AMPK and eNOS by DPPB

may be caused by an increase in [Ca2+]i, we treated EA.hy926 cells with the Ca2+

chelator, Bapta AM. Chelation of Ca2+ blocked the enhancing effect of DPPB on

eNOS-Ser1177 and AMPK-Thr172 phosphorylation, suggesting that Ca2+ ions are

necessary for the action of DPPB (Figure 3.30B). Again Bapta AM alone led to

basally increased AMPK-Thr172 phosphorylation, similar to compound C. However,

as for compound C DPPB could not increase the phophorylation any further.

Taken together, these data strongly suggests a link between increased endothelial

NO release and the observed increase in [Ca2+]i upon DPPB treatment.

3.2.2 Discussion

In this study we show that the benzofuran derivative DPPB increases eNOS activity

and also NO availability in cultured endothelial cells by increasing [Ca2+]i levels,

leading to the activation of eNOS via Ca2+/CaM, CaMKKb and AMPK.

Secondary metabolites from the benzofuran class are known to exhibit a broad

range of bioactivities (see section 1.6.2 and [131; 152; 154; 170; 192]), but an influence

on eNOS activity or nitric oxide availability had not been shown so far. Out of eleven

benzofuran derivatives isolated from K. lappacea [24], we could identify DPPB as

the only compound which promotes eNOS activity in cultured human endothelial

cells.

The mechanism underlying the increase in endothelial NO release upon DPPB

treatment involves increased [Ca2+]i concentrations. Typically an increase in [Ca2+]i

can be divided into two phases. In the first phase [Ca2+]i levels rise transiently until

the intracellular Ca2+ stores are depleted. This triggers the second phase, which

is characterized by a sustained increase in [Ca2+]i, that is due to Ca2+ entry from

the extracellular space through plasma membrane channels [104; 271]. Upon treat-

ment of endothelial cells with DPPB we could detect a late rise of [Ca2+]i but no fast

transient increase. This suggests a mechanism independent on the depletion of Ca2+

stores. Store-operated Ca2+ channels (SOCCs) are located at the plasma membrane

and act as the main route for cellular Ca2+ entry. Treatment of endothelial cells

with DPPB probably activates SOCCs at the plasma membrane leading to an in-
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crease in [Ca2+]i without involving the intracellular calcium stores. Interestingly,

S-nitrosylation of transient receptor potential (TRP) proteins, acting as SOCCs,

has been reported to induce Ca2+ entry, thereby further sustaining increased [Ca2+]i

levels and enhanced eNOS activity [358].

eNOS activation via an increase in [Ca2+]i levels is a well known mechanism.

Protein-protein interaction of eNOS with the intracellular calcium sensor CaM en-

ables the electron transfer from NADPH at the reductase domain of the enzyme to

the heme center at the oxygenase domain, thereby activating the enzyme [230]. CaM

acts as a well-established and important mediator of calcium signaling. Several dif-

ferent target proteins are regulated by the binding of CaM, thereby affecting numer-

ous cellular functions [57]. CaMKKb is such a target protein of CaM. Interestingly,

CaMKKb translates the increase in [Ca2+]i to the phosphorylation of downstream

targets such as AMPK [94; 352]. Besides its importance in metabolism AMPK is

also crucial for the maintenance of endothelial function and redox balance [355].

Therefore, AMPK acts also as anti-atherosclerotic modulator by influencing various

signaling pathways important in the increase of NO bioavailability, attenuated free

radical generation, and activation of angiogenic factors [94]. Additionally, activated

AMPK has been shown to exert anti-inflammatory effects as it reduces the activation

of NF-κB in endothelial cells [76]. Furthermore, AMPK inhibits the proliferation of

vascular smooth muscle cells, thus supporting anti-atherosclerotic functions [156].

The increase in eNOS activity upon activation of AMPK was achieved by enhanced

phosphorylation of eNOS-Ser1177 [239].

Our data revealed a strong increase in AMPK-Thr172 phosphorylation upon DPPB

treatment, concomitant with eNOS-Ser1177 phosphorylation. This finding led us

to the suggestion that eNOS is not only activated via a direct protein-protein in-

teraction with Ca2+/CaM, but additionally via a pathway involving Ca2+/CaM-

dependent CaMKKb, and AMPK activation and finally increased eNOS-Ser1177

phosphorylation. Application of pharmacological inhibitors of CaMKKb and AMPK

(STO 609 and compound C, respectively) and knockdown of AMPK by siRNA con-

firmed a causal connection between these pathway components.

These approaches successfully blocked the DPPB-induced increase in eNOS-Ser1177

phosphorylation, resulting in the activation of eNOS. Phosphorylation of eNOS-

Ser1177 was accompanied by a decrease in eNOS-Thr495 phosphorylation. The eNOS-

Thr495 phosphorylation site is located in the CaM binding domain of the enzyme.

Therefore reduced phosphorylation at this site correlates with a stronger interaction
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of CaM and eNOS. This is due to interference of the phosphorylated residue with

CaM binding to the CaM binding domain of eNOS [97; 101].

Phosphorylation of eNOS at Ser1177 is performed by kinases, such as Akt and

the already mentioned AMPK. Several studies have observed crosstalk between the

signaling of the Akt and AMPK pathway, therefore it is difficult to determine which

effects are directly influenced by AMPK activation [94]. However, we could not de-

tect any modulation of Akt upon treatment with DPPB. Similar results have been

shown for the regulation of eNOS by several agonists of G protein-coupled recep-

tors such as bradykinin or histamine. They elicit their function independent of the

PI3K/Akt pathway but are dependent on an increase in [Ca2+]i in their signaling in

endothelial cells [97; 329].

Taken together, this data shows that the benzofuran derivative DPPB, isolated

from the medicinal plant K. lappacea increases eNOS activity and NO availability

in cultured endothelial cells. This is mediated by a mechanism involving increased

[Ca2+]i concentrations and increased activity of CaMKKb and AMPK (Figure 3.31).

Moreover this data presents DPPB as an interesting natural compound regarding

the treatment of cardiovascular diseases. Further studies would be required to de-

termine the suitability of DPPB for therapeutical applications, especially regarding

the metabolism of the compound and its toxicity and bioavailability in vivo.
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Figure 3.31: Scheme of the proposed mechanism by which DPPB increases eNOS activity.
Treatment of endothelial cells with DPPB results in an increase in [Ca2+]i and enhanced
Ca2+/CaM signaling, thereby activating CaMKKβ , AMPK and finally eNOS. This leads
ultimately to increased NO production. The inhibitors used in this study (Bapta AM, STO
609, AMPKα siRNA and compound C) and their place of action is indicated.
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der K, and Frölich JC. L-arginine induces nitric oxide-dependent vasodilation

100



4 Bibliography

in patients with critical limb ischemia. a randomized, controlled study. Circu-

lation, 93(1):85–90, Jan 1996.
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6 Appendix

6.1 Material Suppliers and stock solutions used

Table 6.1: Different materials, their suppliers and stock solutions used

name stock solution supplier

DMEM with 4.5 g/l glucose - Lonza, Verviers, Belgium

L-glutamine 200 mM in 0.85 %

NaCl

Lonza, Verviers, Belgium

penicillin/streptomycin

mixture

10,000 U/ml peni-

cillin; 10,000 U/µl

streptomycin

Lonza, Verviers, Belgium

trypsin 2.5 % 10x in HBSS

without Ca, Mg

Cambrex Bio Science,

Verviers, Belgium

HAT-supplement 50x in BSS (balanced

salt solution)

Biochrom AG, Berlin, Ger-

many

FBS Superior Standardized - Biochrom AG, Berlin, Ger-

many

FBS - Gibco via Invitrogen, Pais-

ley, UK

EBM� - Lonza, Verviers, Belgium

EGM� SingleQuots� - Lonza, Verviers, Belgium

A23187 (free acid) 10 mM in DMSO Alexis Biochemicals,

Lausen, Switzerland

DAF-2 5 mM in DMSO Alexis Biochemicals,

Lausen, Switzerland

continued on next page
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continued on previous page

name stock solution supplier

[14C]L-arginine 1:10 dilution in

ddH2O

New England Nuclear,

Boston, MA, USA

[1-14C]L-ascorbic acid 100 mM in 0.1 mM

acetic acid in ddH2O

New England Nuclear,

Boston, MA, USA

L-arginine 100 mM in ddH2O Fluka, Sigma-Aldrich, Vi-

enna, Austria

L-NAME 1 M in ddH2O Sigma-Aldrich, Vienna,

Austria

Resazurin 10 mg/ml in PBS Sigma-Aldrich, Vienna,

Austria

Ascorbic acid 100 mM in ddH2O

pH 7.4 adjusted with

NaOH

Sigma-Aldrich, Vienna,

Austria

Wortmannin 100 µM in DMSO Sigma-Aldrich, Vienna,

Austria

Sepiapterin 100 mM in DMSO Sigma-Aldrich, Vienna,

Austria

Phloretin 10 mM in EtOH (al-

ways prepared fresh)

Santa Cruz Biotechnology,

Santa Cruz, CA, USA

Ouabain 10 mM in EtOH (al-

ways prepared fresh)

Santa Cruz Biotechnology,

Santa Cruz, CA, USA

Compound C 10 mM in DMSO Sigma-Aldrich, Vienna,

Austria

Okadaic acid 300 µM in DMSO Alexis Biochemicals,

Lausen, Switzerland

Mevastatin 3 mM in DMSO Sigma-Aldrich, Vienna,

Austria

Resveratrol 100 mM in DMSO Sigma-Aldrich, Vienna,

Austria

STO 609 10 mM in DMSO Sigma-Aldrich, Vienna,

Austria

Bapta AM 30 mM in DMSO Tocris, Bristol, UK

continued on next page
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continued on previous page

name stock solution supplier

rat brain extract 2.5 µg/µl in western

blotting buffer

Santa Cruz Biotechnology,

Santa Cruz, CA, USA

SYBR® Green I Nucleic

Acid Gel Stain

10,000 x Invitrogen, Paisley, UK

peqGOLD Total RNA kit - peqlab Biotechnologie, Er-

langen, Germany

eNOS primers 300 µM in ddH2O Invitrogen, Paisley, UK

18S rRNA primers 300 µM in ddH2O Invitrogen, Paisley, UK

Roti®-Quant Bradford

reagent

5 x Carl Roth, Karlsruhe, Ger-

many

Immun-Blot® PDVF mem-

brane

- Bio-Rad Laboratories, Her-

cules, CA, USA

Gel blotting paper - Whatman plc, Kent, UK

Polygram SIL N-HR thin

layer chromatography

plates

- Machery-Nagel, Markus

Bruckner Analysentechnik,

Linz, Austria

FuGENE®HD transfection

reagent

- Promega, Madison, WI,

USA

Opti-MEM® - Invitrogen, Paisley, UK

AMPKa siRNA 20 µM in ddH2O Santa Cruz Biotechnology,

Santa Cruz, CA, USA

Oligofectamine - Invitrogen, Paisley, UK

Stealth RNAi negative con-

trol, Medium GC

20 µM in ddH2O Invitrogen, Paisley, UK

Fluo-3-AM 442 µM in DMSO Invitrogen, Paisley, UK

Amplex red reagent 10 mM in DMSO Invitrogen, Paisley, UK

Hydrogen peroxide 30 % 200 mM in ddH2O Carl Roth, Karlsruhe, Ger-

many

Catalase 600 U/µl in ddH2O Sigma-Aldrich, Vienna,

Austria

Horse radish peroxidase 200 U/ml in PBS Fluka, Sigma-Aldrich, Vi-

enna, Austria

continued on next page
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continued on previous page

name stock solution supplier

Superscript� First-Strand

Synthesis system

- Invitrogen, Paisley, UK

CytoTox96® Non-

Radioactive Cytotoxicity

Assay

- Promega, Madison, WI,

USA

PureYield� Plasmid

Midiprep System

- Promega, Madison, WI,

USA

ViCell® cell viability ana-

lyzer

- Beckman Coulter, Vienna,

Austria

LAS-3000 Luminescent Im-

age Analyzer

- Fujifilm, Düsseldorf, Ger-

many

BAS-1800II - Fujifilm, Düsseldorf, Ger-

many

Mini-PROTEAN® 3 Cell

system

- Bio-Rad Laboratories, Her-

cules, CA, USA

Power Supply PowerPac HC - Bio-Rad Laboratories, Her-

cules, CA, USA

Mini Trans-Blot® Elec-

trophoretic Transfer Cell

system

- Bio-Rad Laboratories, Her-

cules, CA, USA

LightCycler® 480 real-time

PCR system

- Roche Diagnostics, Vienna,

Austria

Tecan Genios Pro - Tecan, Grödig, Austria

Tecan Sunrise - Tecan, Grödig, Austria

Ultima Gold liquid scintilla-

tion fluid

- PerkinElmer, Waltham,

MA, USA

Packard TRI-CARB

2100TR liquid scintilla-

tion analyzer

- PerkinElmer, Waltham,

MA, USA

SPD 1010 SpeedVac

Thermo Savant

- Thermo Scientific, Lan-

genselbold, Germany

continued on next page
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continued on previous page

name stock solution supplier

FACSCalibur - BD Bioscciences, Franklin

Lakes, NJ, USA

Biostep Gel documentation

system DH-30/32

- Biostep, Jahnsdorf, Ger-

many
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6.2 Abbreviations

A

A adenine

ADMA asymmetric dimethyl-L-arginine

Akt protein kinase B

AMPK AMP-activated protein kinase

ApoE apolipoprotein E

ATP adenosine triphosphate

B

BH2 7,8-dihydrobiopterin

BH4 5,6,7,8-tetrahydrobiopterin

C

C cytosine

[Ca2+]i intracellular calcium

CaM calmodulin

CaMKII Ca2+/CaM-dependent protein kinase II

CaMKKb Ca2+/CaM-dependent kinase kinase b

cAMP cyclic adenosine monophosphate

CAT-1 cationic amino acid transporter 1

CcOx cytochrome C oxidase

CDK-5 cyclin-dependent kinase 5

cGK cGMP-dependent kinase

cGMP cyclic guanosine monophosphate

D

DAF-2 4,5-diaminofluorescein-2

DAF-T triazolofluorescein

DDAH dimethylarginine dimethylaminohydrolase
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DHA dehydroascorbate

DHFR dihydrofolate reductase

DMEM Dulbecco’s Modified Eagle’s Medium

DMSO dimethylsulfoxide

DPPB 2-(2,4-dihydroxyphenyl)-5-(E)-propenylbenzofuran

DTT dithiothreitol

E

EDRF endothelium-derived relaxing factor

EGCG epigallocatechin gallate

eNOS endothelial nitric oxide synthase

F

FAD flavin adenine dinucleotide

FMN flavin mononucleotide

G

G guanine

GlcNAc N-acetylglucosamine

GFPR GTPCH feedback regulatory protein

GTP guanosine-5'triphosphate

GTPCH I GTP cyclohydrolase 1

H

HA-tag human influenza hemaglutinin-tag

HAT-medium hypoxanthine-aminopterin-thymidine medium

HDL high density lipoprotein

HIF-1a hypoxia-inducible factor 1a

HPLC high-performance liquid chromatography

HPRT hypoxanthine phosphoribosyltransferase

Hsp90 heat-shock protein 90

HUVEC human umbilical vein endothelial cell
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I

IBMX 3-isobutyl-1-methylxanthine

ICAM-1 intercellular adhesion molcule 1

IGF-1 insulin-like growth factor-1

iNOS inducible nitric oxide synthase

IP3 inositol triphosphate

IRAG InsP3R-associated cGMP kinase substrate

K

KAT lysin acetyltransferase

kDA kilodalton

L

LDH lactate dehydrogenase

L-NAME L-NG-nitroarginine methylester

L-NMMA NG-monomethyl-L-arginine

LPS lipopolysaccharide

M

MCP-1 monocyte chemotactic protein-1

MnSOD manganese superoxide dismutase

N

NADPH nicotine adenine dinucleotide phosphate

nNOS neuronal nitric oxide synthase

NO nitric oxide

NOHLA Nw-hydroxy-arginine

NOS-1 neuronal nitric oxide synthase

NOS-2 inducible nitric oxide synthase

NOS-3 endothelial nitric oxide synthase

NOSIP eNOS interacting protein
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NOSTRIN eNOS trafficking inducer protein

O

OGA b-N-acetylglucosaminidase

OGT O-linked N-acetylglucosamine transferase

oxLDL oxidized low density lipoprotein

P

PAA polyacrylamide gel electrophoresis

PAGE polyacrylamide

PECAM-1 platelet endothelial cell adhesion molecule, CD31

PI3K phosphoinositol 3-kinase

PKA protein kinase A

PKC protein kinase C

PP1 protein phosphatase 1

PP2A protein phosphatase 2A

PP2B protein phosphatase 2B

PRD positive regulatory domain

PTPS 6-pyruvoyltetrahcdropterin synthase

PVDF polyvinylidene difluoride

PYK2 proline-rich tyrosine kinase

Q

qPCR quantitative real-time polymerase chain reaction

R

RGS-2 regulator of G-protein signaling-2

S

SDMA symmetric dimethyl-L-arginine

SDS sodium dodecyl sulfate

SIRT1 sirtuin 1
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SOCC store-operated Ca2+ channel

SR sepiapterin reductase

SVCT sodium-dependent vitamin C transporter

T

T thymine

TGF-b1 transforming growth factor-b1

TNF-a tumor necrosis factor-a

TRP transient receptor potential

U

UTR untranslated region

V

VDAC-1 voltage-dependent anion channel 1

VECAM-1 vascular adhesion molecule-1

VEGF vascular endothelial growth factor
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Ratschlägen und Korrekturen immer sehr geholfen hat. Auch Dr. Atanas Atana-
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Tina Blažević, die mit mir die ganzen vier Jahre über ein Büro geteilt hat, bin
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Bürokratie. Auch bei allen anderen Kollegen des Departments möchte ich mich für
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